

D I SSERTAT ION

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Long-Term Planning and Reactive Execution in Highly Dynamic
Environments

Doktoringenieurin (Dr.-Ing.)

M.Sc. Xenija Neufeld

18.01.1990 Nikolskoje

Prof. Dr.-Ing. habil. Sanaz Mostaghim
Prof. Dr. Simon Lucas
Prof. Dr. Mike Preuss

17.12.2020

Abstract

In many highly dynamic environments artificial agents need to follow long-term goals and

therefore are required to reason and to plan far into the future. At the same time, while

following long-term plans, the agents are also required to stay reactive to environmental

changes and to act deliberately while always maintaining robust and secure behaviors.

In many cases, such agents act as parts of a larger system and need to collaborate

while coordinating their actions. Generating agent behaviors that allow for long-term

planning and reactive acting is a complex task, which becomes even more challenging

with an increasing number of agents and an increasing size of the search space. This

thesis focuses on video games as highly dynamic multi-agent environments proposing a

solution that allows to combine long-term planning with reactive execution.

On the one hand, existing literature proposes a variety of different planning approaches.

However, plans that are executed in highly-dynamic environments are very likely to

fail during their execution. This can lead to high replanning frequencies and delayed

execution. On the other hand, there are various reactive decision-making approaches,

which allow agents to quickly adjust their behaviors to environmental changes. However,

usually such approaches do not allow for long-term planning.

Inspired by various approaches observed in areas such as spacecraft control, robotics,

and video games, this thesis proposes a hybrid approach. The general idea of the hybrid

solution combines a Hierarchical Task Network (HTN) planner and a reactive approach

in a three-layer architecture. The approach separates the decision-making responsibilities

between a planner, which is responsible for abstract long-term planning, and a reactive

approach that is responsible for local decision-making and task refinement at execution

time. The major contribution of this work, which allows for such interleaved decision-

making and continuous execution of long-term plans, is an extension of the plan tasks,

which is used by the reactive approach at execution time.

The thesis describes two different implementations of this solution using either Behavior

Trees or Monte Carlo Tree Search (MCTS) as reactive approaches. It examines the effects

of the interleaved decision-making in two different highly dynamic video game environ-

ments and evaluates the performance of agents using the hybrid approaches comparing

them to existing benchmark agents. Additionally, it proposes a possibility to automati-

cally improve the execution of long-term tasks using an Evolutionary Algorithm.

The results of the performed experiments show that the proposed solutions allow to

reduce the global replanning frequencies and decrease the total execution time of multi-

agent long-term plans while increasing the success rates of their execution when com-

pared to a pure planning approach. Furthermore, the use of the extended high-level plan

tasks allows to guide the search process of MCTS resulting in emergent agent behav-

iors, which can be further improved by a learning mechanism such as an Evolutionary

Algorithm.

Zusammenfassung

In vielen hochdynamischen Umgebungen müssen Agenten Langzeitziele verfolgen und

dafür weit in die Zukunft planen können. Während sie Langzeitpläne ausführen, müssen

sie schnell auf Veränderungen in ihrer Umgebung reagieren können und stets bewusstes,

robustes und sicheres Verhalten zeigen. In vielen Fällen agieren sie als Teile eines

größeren Systems und müssen ihre Handlungen koordinieren. Die Generierung von

Agentenverhalten, die sowohl die Verfolgung von Langzeitplänen als auch reaktives Han-

deln ermöglichen, ist eine große Herausforderung, die mit steigender Agentenanzahl

und steigender Größe des Suchraums noch komplexer wird. In dieser Thesis werden

Videospiele als hochdynamische Multiagentenumgebungen untersucht und eine Lösung

vorgeschlagen, die es erlaubt, die Verfolgung von Langzeitzielen mit reaktivem Handeln

zu kombinieren.

Einerseits beschreibt existierende Literatur eine Vielzahl an unterschiedlichen Planungs-

ansätzen, jedoch scheitern Langzeitpläne oft bei ihrer Ausführung in hochdynamis-

chen Umgebungen. Dies kann zu häufigen Neuplanungen führen und potenziell die

Ausführung der Pläne verzögern. Andererseits existieren viele reaktive Entscheidungssys-

teme, die schnelle Anpassungen an Agentenverhalten ermöglichen, jedoch nicht weit in

die Zukunft planen können.

Inspiriert von unterschiedlichen Ansätzen aus den Bereichen der Raumfahrt, der Robotik

und der Videospiele wird in dieser Thesis ein hybrider Ansatz vorgeschlagen. In seiner

Grundidee kombiniert der Ansatz einen Hierarchical Task Network Planer und ein reak-

tives Entscheidungssystem in einer Drei-Schichten-Architektur. Die Entscheidungsver-

antwortung wird zwischen dem Planer, welcher für abstrakte Langzeitplanung verant-

wortlich ist, und einem reaktiven System, welches lokale Entscheidungen trifft und

die abstrakten Aufgaben während der Ausführung verfeinert, aufgeteilt. Der Haupt-

beitrag dieser Arbeit, der eine gekoppelte Entscheidungsfindung and eine ununterbroch-

ene Ausführung ermöglicht, ist eine Erweiterung der Planungsdomäne, welche während

der Ausführung von dem reaktiven System benutzt wird.

Die Thesis beschreibt zwei konkrete Umsetzungen der vorgeschlagenen Lösung, die en-

tweder Behavior Trees oder Monte Carlo Tree Search (MCTS) als reaktive Systeme

einsetzen. Die Auswirkungen der kombinierten Entscheidungsfindung werden in zwei

unterschiedlichen hochdynamischen Videospielumgebungen untersucht und die hybriden

Agenten mit existierenden Benchmark-Agenten anhand ihrer Spielleistung verglichen.

Außerdem wird eine Möglichkeit vorgeschlagen, die Ausführung von Langzeitaufgaben

durch einen evolutionären Algorithmus zu verbessern.

Experimentergebnisse zeigen, dass die vorgeschlagene Lösung die globale Häufigkeit der

Neuplanungen sowie die Ausführzeit von Langzeitplänen im Vergleich zu einem reinen

Planungsansatz verringern kann während die Erfolgsrate der Ausführungen erhöht wird.

Die Erweiterung der Planungsdomäne erlaubt es außerdem den Suchprozess von MCTS

zu lenken, wodurch emergente Verhalten entstehen, die durch einen Lernmechanismus

wie einen evolutionären Algorithmus noch weiter angepasst werden können.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Highly Dynamic Environments . 3

1.3 Goals of the Thesis . 11

1.4 Structure of the Thesis . 12

2 Background and Related Work 13

2.1 Reactive Decision-Making Approaches . 13

2.1.1 Behavior Trees . 14

2.1.2 Monte Carlo Tree Search . 18

2.2 Planning Approaches . 23

2.2.1 Classical Planning . 24

2.2.2 Real-Time Planning . 25

2.2.3 Hierarchical Task Network Planning 27

2.3 Planning and Execution . 33

2.3.1 Interleaved Planning and Execution 33

2.3.2 Multi-Agent Planning and Execution 39

2.4 Conclusion . 45

3 HTN Planning in a Highly Dynamic Game 47

3.1 Goals . 47

3.2 Test Environment . 48

3.3 HTN Fighter . 50

3.3.1 Two-layer Architecture . 51

3.3.2 Planning Domain . 52

3.3.3 Top Layer . 55

3.3.4 Bottom Layer . 58

3.4 Evaluation . 62

3.4.1 Ordered Method Selection . 63

3.4.2 UCB Method Selection . 66

3.5 Limitations of Pure HTN Planning . 70

3.6 Conclusion . 71

4 Hybrid Approach : General Idea 73

4.1 Goals . 73

4.2 Three-Layer Architecture . 74

4.3 Top Layer . 75

4.4 Planning Domain . 75

CONTENTS

4.5 Middle Layer . 77

4.6 Bottom Layer . 78

5 Hybrid Approach I : HTN + BT 79

5.1 Goals . 79

5.2 Test Environment . 81

5.3 Hybrid Approach . 83

5.3.1 Three-layer Architecture . 83

5.3.2 Planning Domain . 85

5.3.3 Top Layer . 89

5.3.4 Middle Layer . 91

5.3.5 Bottom Layer . 97

5.4 Evaluation . 97

5.5 Conclusion . 104

6 Hybrid Approach II : HTN + MCTS 107

6.1 Goals . 107

6.2 Test Environment . 109

6.3 Hybrid Approach . 110

6.3.1 Three-layer Architecture . 111

6.3.2 Planning Domain . 112

6.3.3 Top Layer . 116

6.3.4 Middle Layer . 116

6.3.5 Bottom Layer . 121

6.4 First Evaluation . 121

6.5 Evolution of Evaluation Functions . 128

6.5.1 Application of the Genetic Algorithm 130

6.5.2 Second Evaluation . 132

6.6 Conclusion . 140

7 Conclusion 143

7.1 Summary . 143

7.2 Discussion . 148

7.3 Limitations and Future Work . 151

Bibliography 153

List of Figures 166

List of Tables 168

Acronyms 169

Glossary 171

CONTENTS

A Combo Results of the

FightingIce Experiments

with UCB Method Selection 173

B HTN Domains for the

Hybrid Approach I 177

B.1 Pure HTN Domain . 177

B.2 Hybrid HTN Domain . 186

C Behavior Trees for the

Hybrid Approach I 191

D Game Maps for the Hybrid Approach II 207

C
h
a
p
t
e
r

1
Introduction

In many virtual as well as real-world environments, artificial agents are required to

operate deliberately and pursue long-term goals under quickly changing environment

conditions. The difficulty of achieving such goals while staying reactive increases if

further requirements such as coordination or cooperation are added. This work focuses

on such problems and proposes different solutions to them. This chapter explains the

motivation of this work in more details and describes fundamental characteristics of the

kind of environments considered in this work. It clarifies the problems and challenges

arising from such environments and, finally, defines the goals of this thesis.

1.1 Motivation

Virtual and physical artificial agents are operating in many environments such as video

games, simulation environments, smart factory environments, and various robotics ap-

plications. Often, they are contributing to an overall high-level goal while being part of

a larger system. In order to help achieving such goals, the agents are required to reason

far into the future searching for feasible (and potentially optimal) sequences of actions

and to execute them in a robust way over a potentially long period of time. At the

same time, while pursuing long-term goals, the agents are equally required to act in a

reactive way, which includes detecting environmental changes, recognizing and managing

potential failures, and adapting their behaviors accordingly. These two requirements are

usually addressed separately by dedicated solutions.

1

2 CHAPTER 1. INTRODUCTION

The process of reasoning far into the future and searching for long-term solutions is

called planning and sequences of actions to be executed by an agent are called plans.

There is a high variety of different planning techniques in academia. However, classical

planning techniques (described in Section 2.2.1) assume that the agent is operating in

a static environment and that it is the only entity that changes the environment. This

allows for a planner to create a full plan in a planning phase followed by an execution

phase, in which the agent can execute the created plan from the beginning to the end.

However, the clear separation between the two phases and a full execution of a plan are

not possible in highly dynamic environments for several reasons.

The major challenges of planning in highly dynamic environments are caused by non-

determinism, uncertainties, and partial observability. Trying to reason and to plan into

the future, an agent is likely to be lacking some necessary information, which can only

become known at the execution time, during the planning phase. This requires the agent

to actively gather information and to make use of it by potentially requesting a more

optimal plan (also called replanning) during the execution. Furthermore, the information

that was already available at plan time can change along with environmental changes

during the execution invalidating the previously created plan. Such plan failures also

require replanning. Another reason for replanning can be a change or re-prioritization of

the agent’s goals. For these reasons, planning and execution can no longer be separated

and have to be tightly interleaved ensuring that the agent is always following an updated

plan.

Other challenges of highly dynamic environments considered in this work are the large

search spaces that an agent has to deal with. Searching far into the future and gener-

ating a detailed long-term plan can be computationally intensive and take a long time.

Stopping the execution of a previous plan while waiting for a new plan can potentially

violate robustness and safety requirements of an agent, endanger the agent and other

actors, or simply lead to unnatural and undesired agent behaviors. That means, on

the one hand, the agent is required to create a long-term plan, which accomplishes a

high-level goal but the computation of which can be very expensive and consequently

delay its execution. On the other hand, it requires reactive execution that considers the

current state of the environment and ensures robust and safe behavior of the agent in

all possible situations and cannot be delayed by a long search process. Therefore, when

interleaving planning and execution, it is not desirable to perform a full replanning very

frequently. Instead, the replanning frequency and replanning times should be minimized

in order to not delay the execution.

1.2. HIGHLY DYNAMIC ENVIRONMENTS 3

In contrast to planners, which search for long sequences of actions, there are different

reactive approaches that allow for fast decision-making at execution time. Among such

approaches are Behavior Trees as richer extensions of Finite State Machines and Monte

Carlo Techniques that approximate a full search. Usually, reactive approaches focus on

a local search considering the current state of the environment and searching for a single

optimal action to be executed in the current moment. They do not provide further

actions to be executed afterwards and, in many cases, neither consider previous states

nor reason into the future. Limiting the search space in this way allows for a fast and

efficient search, which is sufficient for purely reactive behaviors and tasks. However,

if no previous and no future states are considered, following high-level long-term goals

becomes problematic.

In order to bridge the gap between purely reactive decision-making and pure planning,

there are different hybrid approaches that combine various techniques. As described

in more details in Section 2.3.1, a major challenge in combining planners and reactive

approaches is the fact that they operate on different domain descriptions. Reactive tech-

niques usually operate on either a predefined domain, which describes rules for decision-

making (for example Behavior Trees as described in Section 2.1.1) or they require a

(simulation) model of the world on which to perform a search (for example Monte Carlo

Tree Search as described in Section 2.1.2). Manual as well as automated creation of both

domains and models is difficult to a certain degree, however not fully impossible.

More challenging is the combination of these domains with planning domains, which

usually have a different structure. For that reason, many existing hybrid approaches are

domain-specific and consequently cannot be used in other domains. Furthermore, most

of these approaches are used in environments that are less complex and less dynamic

than the highly dynamic environments that are considered in this work. Therefore,

there remains the need for a solution that can interleave long-term planning and reactive

execution that is general enough to be used in various environments and is applicable to

highly dynamic environments according to their description in the following section.

1.2 Highly Dynamic Environments

As the name suggests, highly dynamic environments change very frequently. Natu-

rally, these are real-time environments and therefore time is an important variable when

making decisions and acting in such environments. For artificial agents, the dynamics

especially affect the requirements and the restrictions on the computational time budget

that is available to make a decision and execute a program step. When speaking about

highly dynamic environments, we consider scenarios in which the computational budget

lies in the milliseconds range.

4 CHAPTER 1. INTRODUCTION

In addition to the computational time, another important aspect to be considered in

highly dynamic environments is the impact of the changes in an environment on the

agents’ behaviors. Dynamic environments can be categorized by the severity of changes

and the frequency of changes [1]. The severity indicates how much an environmental

changes and whether these changes are only small local changes that do or do not affect

an agent’s behavior or whether they are large changes that affect the global situation.

The frequency indicates how often environmental changes happen and consequently how

often an agent has to adapt its behavior. For highly dynamic environments, we assume

a very high (up to continuous) frequency of small environmental changes and a high

frequency of severe changes that happen in the range of seconds to minutes.

There are various causes of environmental changes such as (natural) changes coming

from the environment itself (for example time of day or weather changes) or changes

that are caused by other actors1 acting in the environment. With a growing number

of actors that can affect an environment, its dynamics increase. Therefore, in highly

dynamic environments, we expect a high number of actors. For that reason, in this

work, we focus on multi-agent scenarios with multiple agents being controlled by our

approaches and additional agents acting independently contributing to environmental

changes.

When considering multi-agent scenarios, there are certain challenges that do not neces-

sarily arise from highly dynamic environments as such but do result from the multi-agent

setting and make decision-making in such environments even more complex. For exam-

ple, in addition to other actors, which simply do not directly communicate with the

agents, there can be actors who act as adversaries of the agents. In both cases, they

add more uncertainty and non-determinism to the environment. However, in the adver-

sarial setting, they can deliberately manipulate the environment and try to invalidate

an agent’s plan. Therefore, in highly dynamic adversarial environments, we expect

extremely high uncertainty.

An important requirement for agents is cooperation. If the agents act as parts of a

larger system or a group, they are required to cooperate while following a common goal.

Alternatively, if no cooperation is required, each agent simply follows its own goals.

Cooperation usually implies a distribution of tasks. Consequently, another requirement

can be an optimal assignment of tasks to agents, which sometimes happens through role

assignment. The challenge of an optimal role assignment becomes, again, more complex

if the agents are heterogeneous with different types of agents being able to execute

only certain tasks. Therefore, working with heterogeneous agents makes the problem of

decision-making combinatorial and increases the size of the search space even further.

For that reason, when speaking about highly dynamic multi-agent environments, which

are in most cases continuous, we assume large search spaces.

1Throughout this work, we use the word agent for artificial agents, while an actor can be both an
artificial or a natural entity acting in the environment.

1.2. HIGHLY DYNAMIC ENVIRONMENTS 5

Another challenge comes from the requirements or restrictions on the agent control.

One important aspect here is the way that multiple agents are controlled, which can

be achieved by using a centralized system or each agent making its own decisions in a

decentralized manner or there can be a kind of hierarchy among the agents. The type of

multi-agent control can imply whether the agents use a shared knowledge and how they

can communicate with each other or with the central system.

These aspects affect the planning and acting of agents in highly dynamic environments

in multiple ways. For example, having one centralized system that plans far into the

future for multiple agents can lead to long planning times and possibly cause delays in

the execution. On the other hand, maintaining a shared knowledge base can save some

communication between the agents and allow for more precise plans. In contrast, dis-

tributed planning can be more time-efficient but requires more communication between

the agents, which, again, can cause delays.

Besides planning times and possible delays, another important aspect in the context

of control in highly dynamic environments is the extent to which the change of one

agent’s behavior affects other agents’ plans. Depending on how the agents are controlled,

how they communicate, and the severity of changes, their frequency of decision-making

and behavior adaptation can vary. For example, with a shared knowledge base and a

central decision-making system, a failure of one agent’s task can be recognized by the

central system immediately and the system can decide whether a new global plan is

required depending on the severity of the change. Consequently, with an increasing

number of agents, the frequency of behavior adaptation for every agent can grow. On

the other hand, it allows every agent to operate on the most recent plan. In contrast, in

a decentralised system, each agent can decide for itself whether the change of the other

agent’s behavior is severe enough to change its own plan, which does not necessarily lead

to a globally optimal plan execution. Additionally, an environmental change can lead to

a change of the common goal requiring a global adaptation of all agents’ behaviors.

Independent from the question whether or not the agents cooperate, when acting in the

same environment and using the same resources, they can be required to coordinate their

actions. Such coordination can be required even if every agent is following its own goals.

An example for such coordinated behavior are multiple agents requiring to use the same

resource one after another, such as one agent walking through a narrow corridor with

another agent waiting at the other end not blocking the way. Coordinated behaviors are

even more likely in cooperative scenarios, for example, if multiple agents have to use the

same resource simultaneously in order to contribute to the common goal. Carrying an

object together is a common example for such cooperative and coordinated behavior.

6 CHAPTER 1. INTRODUCTION

When considering coordination between multiple agents in a scenario with planning

and execution, it is important to distinguish between the time phases at which the

coordination is required. For example, it can be required at plan-time only if the agents

have to coordinate either the distribution or the order of their tasks but do otherwise

not depend on each other at execution-time. On the other hand, it is possible that there

is no (time) dependency between the agents’ plans at plan-time but the requirement for

coordination arises during the execution. This holds for the corridor example mentioned

above.

Alternatively, in the cooperative and coordinated scenario where two agents are supposed

to carry an object, coordination is required both at plan time and at execution time. At

plan time, the agents need to coordinate their plans in such a way that both of them

move next to the object before picking it up together. At execution time, they need to

coordinate their actions locally in order to simultaneously pick it up and balance the

object trying not to drop it during the transportation.

Another important question in the context of coordination is whether it happens in an

explicit or an implicit way. Implicit coordination requires less communication between

the agents (and the central control system) than explicit coordination. It can be enabled

through a shared knowledge base or through observations of the other agents and the

environment.

When creating artificial agents for a certain environment, a very important aspect is

the degree of autonomy: how much control over the agents is desired as opposed to how

much autonomy they can be granted with. The solution to this depends, in first place, on

the required robustness level of the agents’ behaviors and potentially on the availability

of expert knowledge about the environment. Especially in highly dynamic environments

where the agents are making decisions under limited time constraints, it is important to

decide how much autonomy they can be provided with. In certain critical or dangerous

environments, full control over an agent’s decision-making process can be granted by

providing it with predefined rules. Selecting and following such rules does not only

ensure specific behaviors in dangerous situations but also decreases the decision-making

time in comparison to a full autonomous search.

1.2. HIGHLY DYNAMIC ENVIRONMENTS 7

In contrast, in less critical environments or when not enough expert knowledge is avail-

able or if such knowledge cannot be encoded properly, the agents can be granted more

autonomy. In this case, they can search for feasible actions, potentially simulating them

into the future. Simulation, however, requires a model of the environment, which, in the

extreme case, the agents can be required to learn from scratch. A possible drawback

of full autonomy, however, are undesired behaviors. The level of autonomy can also

vary depending on the situation or the granularity of the decision to be made. Varying

the provided level of autonomy is possible with hybrid solutions consisting of different

decision algorithms used either at different points of time (depending on the situation)

or on different control levels (depending on the decision granularity).

The described challenges are present in many different real-time environments and make

decision-making and acting in highly dynamic environments especially complex. As

already mentioned, all these challenges do not apply in classical planning. Therefore, if

there is a need for long-term planning in such environments, it requires a flexible and

yet powerful approach that is able to deal with the presented complexity of the search

space and the high dynamics during the execution. In the remainder of this section, we

present examples of highly dynamic environments and classify the environments used in

this thesis according to the described challenges.

With the increasing amount of automation that can be observed in various industries,

there arise more dynamic environments, in which artificial agents are used. A large part

of dynamic environments represents the industrial sector, where different kinds of ma-

chines work as part of a factory system. In many cases, such agents work next to human

workers and are referred to as cobots (collaborating robots). Another example of robots

that operate in interaction with humans are the so called social robots. These machines

can be used in different service sectors such as retirement homes or hotels. Further

examples are robots that are used in rescue missions where the degree of uncertainty is

particularly high and the severity of dynamics are critical. More real-world environments

for robotic planning as well as their challenges and opportunities are described in [2].

Since interaction between machines and humans is challenging and due to the unpre-

dictability of human behaviors, the uncertainty of an environment from an agent’s per-

spective increases with the number of human actors in it. Additionally, with an in-

creasing size of the environment and the search space, the possible severity levels of

environmental changes increase. Therefore, we assume open spaces with a high number

of human actors to have generally higher dynamics than closed environments with a low

number of non-controllable actors.

8 CHAPTER 1. INTRODUCTION

A good example for a highly dynamic real-world environment are future traffic scenarios,

in which autonomous cars are the artificial agents operating among many human actors.

When driving from point A to point B, an autonomous car is required to have a long-

term plan containing different sub-sections of a path. However, it is not possible to

create this plan on a very detailed level upfront. Instead, while following the original

plan, the agent is required to observe the environment, react to its changes, and refine

its plan according to the situation ensuring safety and robustness of all actors.

In regards to the challenges mentioned above, the agent, in this case, is operating in a

multi-agent environment where it is following its own goals. It is using shared resources

(the road) with other actors and therefore is required to reason about their intentions

and coordinate its actions. According to most of the visions of the future of autonomous

driving, it can have the possibility to communicate with other (autonomous) cars but

it cannot communicate with human road users. Since it is acting as an individual

and not as part of a group, it is using its own decentralized decision-making approach.

Additionally, in case of smart cities, it can communicate with some central system, which

is responsible, for example, for an optimal distribution of traffic within the city through

traffic light and navigation system control. Since it is impossible to manually encode

a detailed rule set for every possible situation in such scenarios, the agent is required

to act fully autonomously. For this, it usually uses a simulation model, the learning of

which is one of the major challenges nowadays.

Similarly to the described real-world environments, there is a large number of virtual

highly dynamic environments, namely video games. In the last two decades, the graph-

ical quality of video games has improved, reaching almost photo-realistic visualizations.

The constantly improving hardware allows for large open-world games with large num-

bers of simultaneously playing players. These aspects increase the size of the search

spaces of artificial agents acting in such games. At the same time, the expectations

of players towards many game aspects grow, including the believability of the artificial

agents’ behaviors.

In many games, artificial agents can collaborate with players as so-called buddy char-

acters. Although, in most cases, they act as adversaries of the player. In both cases,

the agents can be required to show deliberate long-term behaviors as well as to quickly

react to environmental changes. In different game genres, ranging from so-called shooter

games to Real-Time Strategy (RTS) games, multiple agents can be operating as part of

a group. In such cases, an expectation of a player is a visible coordination of the agents’

actions. Especially in strategic games, the requirement for visible long-term strategies is

very high. From the perspective of the game industry, the player is the most important

variable in the design process of a game. For that reason, an improvement of the agents’

(collaborative) behaviors is interesting to the industry.

1.2. HIGHLY DYNAMIC ENVIRONMENTS 9

From the research perspective, on the other hand, video games represent highly dynamic

environments whose complexity can even exceed the complexity of the currently avail-

able real-world settings. At the same time, simulating game environments and testing

academic approaches in them is less expensive, faster, and less dangerous than using

real-world environments or creating specific simulation environments for tests. Video

games represent the previously described challenges to different degrees, as described in

more details in our survey [3]. They are multi-agent environments, in which the agents

can be required to act in a cooperative and adversarial manner at the same time. The

number of cooperating agents can reach multiple hundreds while the size of the simulated

environment can reach multiple square kilometers.

The size of the already large search space can increase even further with heterogeneous

agents and large numbers of players. Since players are the major source of uncertainty

from the agents’ perspective, the uncertainty is particularly high in multi-player games.

At the same time, most games are high-pace environments where both the frequency

and the severity of environmental changes can be very high. Both the agents and the

players are able to execute a large number of actions and to cross long distances within

seconds combining different forms of movement (running, driving, flying).

For example, in shooter games, a player can pick up some objects, run a hundred meters,

and hide from an agent’s view in less than a minute, forcing the agent to adapt its

behavior multiple times during this time span. In RTS games, the severity of the changes

that can happen within the same time is even higher. For example, if an agent is

controlling an army of 100 military units and its opponent is moving its army of a

similar size, then each of the 200 units can cross certain distances and execute multiple

actions within one minute. This can possibly change not only the local situations of each

army but also lead to a global game change. Such large numbers of artificial cooperating

agents are not (yet) usual for real-world scenarios.

In addition to all mentioned challenges, a major challenge is represented by the require-

ments on the computational performance of a game. Due to the improving possibilities

of gaming hardware and the increasing expectations of players, modern games are ex-

pected to run with a so-called frame rate of 60 to 120 frames per second. The frame

rate represent the frequency of game updates, leaving only 8 to 16 milliseconds for a full

computation of certain game systems. Although there can be systems that are allowed to

run their computations less frequently and therefore can distribute one computation over

multiple frames, the systems responsible for artificial agents are usually required to up-

date their logic in every frame. Taking into consideration that the provided milliseconds

are shared among multiple systems, it leaves even less time for decision-making. There-

fore, video games are not only highly dynamic but also very restricted in the provided

computation time.

10 CHAPTER 1. INTRODUCTION

Parameter Chapter 3 Chapters 5 Chapter 6

Type of environment academic commercial academic

Simulation model available X 7 X
Number of controlled agents 1 2 – 9 1 – 42

Type of agents – homogeneous heterogeneous

Cooperation required – X X
Coordination required – X X
Adversarial setting X X X

Table 1.1: Characterization of the environments used in Chapters 3, 5, 6.

An important aspect that counterbalances these limitations is that, from the indus-

try perspective, the agents are usually not required to find optimal solutions during

decision-making. Since the time and reactivity aspects outweigh other aspects, it is

usually enough to find a feasible but not necessarily optimal solution. Furthermore,

optimal solutions are often even undesired by game developers since they can provide an

advantage to the agent and make it much stronger than the player. This can lead to the

player loosing the game and increase their frustration. However, as already mentioned,

player enjoyment in a game is the highest priority.

Nevertheless, video games are not only used for entertainment. Meanwhile, there are

many academic game environments that are used as highly dynamic benchmark environ-

ments for artificial agents. These games usually offer simpler graphics than commercial

games but focus more on the aspect of agent control. In contrast to commercial games,

academic game environments encourage strong (adversarial) agent behaviors and are

used in multiple competitions where the performance of different agents can be mea-

sured against each other.

Considering the advantages and challenges that they provide, in this work, we focus

on video games as highly dynamic virtual multi-agent environments. We concentrate

on three different environments, which offer different challenges. The characteristics of

these environments are summarized in Table 1.1. The environment used in Chapter 5

resembles a commercial game, whereas the environments of Chapter 3 and 6 are academic

game environments. The environments of Chapter 3 and Chapter 6 provide their own

simulation models, which can be used by the agents to perform a search, while the agents

in Chapter 5 are not provided with such a model. The agents in Chapter 6 are granted

full autonomy on low levels of a decision hierarchy, while the higher levels are controlled

by predefined rules. In Chapters 3 and 5, we keep full control over the agent’s decision

logic. The number of agents that are controlled by the proposed solutions vary between

1 (in Chapter 3) and 42 (in Chapter 6). Only the agents in the latter environment

are heterogeneous. In Chapters 5 and 6, the agents are required to cooperate and to

coordinate their actions while using shared resources. All environments are adversarial

and contain other actors that are not controlled by our approaches.

1.3. GOALS OF THE THESIS 11

1.3 Goals of the Thesis

This thesis aims to propose a framework that allows for a combination of long-term

(strategic) planning and reactive (tactical) execution in highly dynamic environments.

Given the problems and challenges described in Sections 1.1 and 1.2, we specifically

focus on multi-agent environments. Agents controlled by the proposed framework will

be able to continue following a long-term plan while staying reactive and adjusting their

behaviors according to the current environmental situation. In order to fulfill this goal,

the following sub-goals are defined:

Separation of decision levels and interleaved decision-making Provided the

large search spaces existent in highly dynamic multi-agent environments, the major

sub-goal is the introduction of a hybrid approach that allows for an interleaved use of a

planner and a reactive decision-making and execution technique. With this combination,

we aim to separate the responsibility and the complexity of decision-making on different

levels of a decision hierarchy, allowing the planner to make abstract high-level decisions

and the reactive approach to refine these decisions on a lower level.

Reduction of the planning complexity and the replanning rate Due to very

limited computational time budgets in highly dynamic environments, an important sub-

goal of the proposed solution is the reduction of both the planning complexity and the

replanning frequency on high decision levels.

Improvement of the execution In order to ensure robust behaviors, it is important

to avoid any delays in the execution. Therefore, another important sub-goal is the

improvement of reactive decision-making and the reduction of the overall execution time.

Guidance of the reactive decision-making from the planner In order to ensure

a smooth interplay between the two control approaches and to allow the agents to focus

on long-term goals even when making reactive decisions, we aim to provide a possibility

for the high-level planner to guide the decision-making process of the reactive approach.

Automatic improvement of the guidance In case of guided decision-making of

the reactive approach, another sub-goal is the proposal of a possibility to learn and

automatically improve this guidance.

The following sub-goals are defined in terms of the research concept of this thesis:

• Proposal of a general, domain-independent approach for planning and execution

that can be adapted to any environment.

• Proposal of concrete implementations of this approach.

• Evaluation of the concrete approach implementations.

12 CHAPTER 1. INTRODUCTION

Intuitive use and maintenance A secondary goal for the concrete implementations

is the use of existing decision-making approaches without major changes to them. The

intention behind this is the maintenance of the available expertise on such techniques

and the desire for an intuitive use of the new approach.

1.4 Structure of the Thesis

The stated goals are addressed in multiple steps in this thesis. First, Chapter 2 introduces

basic concepts of the two major areas of this work, planning and reactive decision-making

approaches. It gives an overview of the existing work from different research areas and

different types of environments describing known problems and available solutions to

them.

In the next step, Chapter 3 describes a pre-study on the usage of a pure planner but

no reactive approach in a highly dynamic single-agent environment. As a follow-up,

Chapter 4 describes the general idea of a hybrid approach that combines a long-term

planner with a reactive decision-making and execution approach. It points out major

challenges of such a combination and introduces a new solution that is used in further

chapters in the form of concrete implementations. Chapters 5 and 6 describe two different

hybrid approaches based on the general idea.

The focus of Chapter 5 is on the evaluation of the advantages of a hybrid approach

in comparison to a pure planning approach. The hybrid approach of this chapter uses

Behavior Trees as a reactive decision-making technique in combination with a planner.

The proposed solution is evaluated in a multi-agent scenario where it is controlling up

to 9 collaborating agents simultaneously.

Chapter 6 transfers the general idea into a multi-agent environment where it is required

to control tens of agents, while dealing with a large search-space. It proposes a hybrid so-

lution combining a planner and Monte Carlo Tree Search granting more agent autonomy

on the reactive decision levels. This chapter describes a possibility to represent descrip-

tive plan tasks in a way that can be used by Monte Carlo Tree Search. Furthermore, it

proposes a way to automatically improve reactive behaviors under the consideration of

the high-level plan tasks.

Finally, Chapter 7 concludes this work summarizing its ideas and insights. It discusses

remaining questions and limitations and outlines possible directions for future work.

C
h
a
p
t
e
r

2
Background and Related Work

This chapter describes the two areas that are the focus of this work – reactive decision-

making and planning. For both areas, it gives insights into existing work underlining

challenges faced in different highly dynamic environments and describing possible solu-

tions. Finally it concludes with a summary of the related work.

2.1 Reactive Decision-Making Approaches

Reactive decision-making approaches are commonly used in highly dynamic environ-

ments. In general, such approaches are able to make decisions at run-time. By con-

stantly monitoring the environment and making decisions a on a regular basis, such

approaches are able to instantly react to changes in the environment and adapt the

agent’s behaviors accordingly. However, such decisions have to be made within a limited

time in order to ensure a fluent execution. For that reason, most reactive approaches do

not perform a deep search or plan ahead in time. Instead, they make decisions based on

the current environment state and potentially on some limited historical data searching

for an optimal solution for the current state.

Well known reactive approaches are Finite State Machines (FSMs) and Markovian De-

cision Processes (MDPs). Both approaches allow to encode state-action transitions that

enable quick decision-making. However, they are limited in their functionalities when it

comes to search in large search spaces and execution. In the following sections we de-

scribe two reactive approaches that are used in this work. First, Behavior Trees (BTs)

are described as a powerful extension of FSMs. Afterwards, Monte Carlo Tree Search

(MCTS) is described as an approach that allows for quick near-optimal search through

MDPs with a large search space. We regard the usage of BTs as suitable whenever full

control over an agent’s behavior is required, for example due to safety or robustness

requirements. On the other hand, MCTS is rather suitable for situations where more

autonomy from the agent is desired and where instead of fully encoding the decision

rules, the decision problem can be formulated as an optimization problem.

13

14 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 Behavior Trees

Behavior Trees (BTs) represent a reactive control approach that originates from the

video games industry [4]. Extending Finite State Machines, Behavior Trees are able

to constantly monitor the environment, make decisions in every time step and execute

durative actions. This way, they offer high reactivity and allow for deliberative behaviors,

which are very important when controlling Non-Player Characters (NPCs) in real-time

video games [5].

Behavior Trees are a popular choice amongst game developers and have been widely used

in most commercial games [6–9]. Being very modular systems, BTs can be composed

of different stand-alone modules that can be easily read by humans. Furthermore, BTs

preserve safety, robustness, and efficiency [10]. For these reasons, they have been gaining

an increasing interest in the area of robotics in the last few years [11–15].

A detailed introduction to Behavior Trees (BTs) can be found in [8], but we will give

a short overview here. The traversal of a Behavior Tree starts from a root node and

the tree is updated in every update cycle - the so called tick. The frequency of ticks

can be set by developers depending on the dynamics of the environment and the desired

computational performance.

In each tick, the tree is updated from the top nodes to the bottom in depth-first order.

Each node can either be running, which allows for durative actions and looping behav-

iors, or its execution can succeed or fail after which it will remain dormant until the

parent node decides to start ticking it again. Each node is running as long as at least

one of its children is running. A success or failure of a node is propagated to its parent

and the parent reacts to this change according to its own node type. BT nodes can rep-

resent conditions, actions or composite nodes that allow for sequential (sequence node),

parallel (parallel node) or selective (selector node) execution of behaviors. Furthermore,

many implementations of BTs have additional decorator nodes, which allow for complex

structures such as loops, timers, wait nodes (waiting for a signal) or other, potentially

domain-specific functionalities.

In the following, the most common types of Behavior Tree nodes are explained according

to [8]:

• Condition:

This node is used to check information. It can run with the following options:

instant check or monitoring.

With the instant check, the information is checked once the node is initialized and

depending on the outcome the node succeeds or fails immediately.

With the monitoring option, the node runs and checks the information as long as

the condition is true. Once the outcome becomes false, the node fails.

(Usually, both options can be negated.)

2.1. REACTIVE DECISION-MAKING APPROACHES 15

• Action: This node executes an action. It is running as long as the action is

executed and succeeds or fails depending on the success of the action execution.

• Composite Nodes:

Sequence:

This node is responsible for a sequential execution of its children. It is running as

long as one of its children is running. It starts with the initialization of its first

child and switches to the next child when the first one succeeds. If a child fails,

the sequence node fails and will not execute the remaining children following the

failed node. It succeeds when all its children succeed.

Selector (also known as Fallback):

This node represents an OR node allowing for different fallback behaviors. The

execution starts with the initialization of its first child and the node is running as

long as one of its children is running. If a child fails, the next child is initialized

and tried. A selector node succeeds when one of its children succeeds and fails

when all of its children fail.

Parallel:

This node is responsible for the parallel execution of its children. All of its children

are initialized at once. Usually, the node implements different possible options for

running and termination criteria. Depending on the selected options, the node can

either succeed of fail when either one or all of its children succeed or fail. Until

then, then node will be running.

• Decorator Node:

Decorator nodes have only one child and are used to add more logic to the tree -

for example, a Loop.

Loop:

This node repeats the execution of its child. Depending on the selected options, it

can either run the child n times, or as long as the child keeps succeeding or failing.

As long as its termination condition is not met, this node will be running.

Combinations of these nodes allow for very advanced behaviors. For example, checking a

condition in a loop leads to a constant monitoring of the environment, whereas executing

an action in parallel to such a monitoring branch, allows to react to environmental

changes and switch to different behaviors aborting the current action. For example, the

Behavior Tree in Figure 2.1 can be read as follows: if there is a free seat, then sit down.

Otherwise wait for as long as the seat is occupied and sit down afterwards. Then, if there

is a book and some coffee available, read and take a sip of coffee afterwards. Repeat

reading and drinking coffee until neither book nor coffee is available.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Sit Down

Take A Sip

Is Coffee AvailableIs Book Available

Read

Is Seat Free Sit Down

Is Seat Occupied

Wait

Loop

Action

?

Parallel-Node

Selector-Node

Sequence-Node

Root-Node

?

Condition Loop
Until
False

Decorator

Figure 2.1: Example of a Behavior Tree.

There are different works that extend the functionalities of standard BT nodes or add new

node types. For example, the work described in [16] optimizes the Selector node learning

the success probabilities of its children and sorting them accordingly. A new Decorator

node that enables synchronization between multiple agents executing a common task is

added in [17].

Coming from the area of game development, BTs are usually fully hand-crafted by

developers offering full control over the agent’s behavior. This is an advantage in en-

vironments where the agent should not show any unexpected behaviors. In games, full

control is usually desired due to two reasons: debug-ability and maintainability. First,

knowing the structure of its Behavior Tree, it is easier to debug an agent’s behavior

and to understand its reasoning. Second, knowing exactly under which circumstances a

certain behavior is (not) executed, developers can easily tweak and adapt it to certain

situations. For these reasons, BTs can be applied in other environments where full con-

trol is required - such as for example environments where unexpected behaviors lead to

dangerous situations.

2.1. REACTIVE DECISION-MAKING APPROACHES 17

Nevertheless, there are some works that allow for automatically learned behaviors exe-

cuted through BTs. One possibility is to combine hand-crafted and learned behaviors

ensuring that safety criteria are met. For example, the work described in [18] creates

Behavior Trees that are responsible for switching between different controllers depending

on the task progress and the safety status of the agent. The tree can switch between

a reliable model-based controller, a high performing Neural Network controller, and a

safe emergency controller. Combining these controllers in a BT, this approach provides

efficient execution ensuring that the safety requirement is met during the control of

the well-known pole-cart control problem (inverted pendulum problem). Further alter-

natives to incorporate automatically learned behaviors into BTs are described in the

following section.

Automatic Generation and Learning of Behavior Trees

Automatic generation of BTs can be performed with the aim to save the time that

a human developer would require for the generation of BTs. Another goal is to find

behavior variations that a human cannot find otherwise. Such behaviors can be more

efficient, more robust or even more creative than those generated by a human.

One way to create or improve BTs automatically are Evolutionary Algorithms (EAs).

Here, an individual is usually represented by a single Behavior Tree. In order to auto-

matically evolve the trees, the developer needs to define which leaf nodes are legal, which

can be either condition or action nodes. Thus, defining which conditions/variables an

agent is able to check in the given environment and which actions it can execute. One

of the pioneering works that applied an Evolutionary Algorithm to evolve BTs for an

RTS game is described in [19].

However, the main challenge of applying a simple Evolutionary Algorithm to BTs, is the

fact that resulting trees can lose their structure and syntactic correctness and can grow to

undesired sizes. This makes the trees unreadable and their execution computationally

expensive. For example, an inappropriate selection of cross-over points can lead to

infinite loops, wrong type of leaf nodes or checks of contradicting conditions within the

same branch.

In order to prevent the creation of such trees, the work described in [20, 21] proposes

using grammars to encode syntactical rules and domain knowledge. These grammars

can be used for Grammatical Evolution creating BTs that follow the encoded rules.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

Alternatively, enforcing a correct structure and an acceptable size on evolved trees can

be performed through additional control mechanisms that are used during or after ge-

netic operators. For example, the work described in [22] allows nodes to be changed to

other nodes of the same type (for example only composite nodes) during mutation to

prevent illegal tree configurations. Additionally it applies an anti-bloat mechanism to

the final trees - those trees that achieve a given goal - pruning and removing redundant

nodes. Another approach that enforces constraints during evolution is described in [23].

Additionally, in order to prevent the trees from growing to unreadable sizes, selective

pressure can be used to prefer shorter trees [24].

An initial population of BTs can be initialized either manually by a human expert or

automatically. In case the EA uses constraints or rules in its genetic operators, it is

important to ensure that the initial population of trees conforms to the same rules. For

the automatic initialization, it is common to grow them starting from very small trees

(only the root node) and iteratively adding nodes to them either at random [25] or

greedily trying to achieve some goal [22]. A more detailed description of an algorithm to

iteratively refine a Behavior Tree with the help of a planning algorithm is given in [26].

Further problems evolving BTs can arise if the agent’s memory or execution times are

limited. For example, a BT can evolve towards the optimal fitness values but result in

undesirably long execution times [25]. Similarly, given only a small internal memory,

which is usually the case for small mobile robots, the number of variables, tasks, and

tree nodes available to it might need to be kept to a minimum [24].

Besides EAs, there are some works that use other learning approaches to either create

BTs automatically or to learn how to execute certain behaviors. For example, the works

described in [27–29] introduce new types of so-called learning nodes. These nodes use

Reinforcement Learning to either learn how to execute an action [27,28] or when/under

which conditions to execute certain behaviors (actions or sub-trees) [28, 29]. Combined

with expert knowledge regarding the reward and state representation, these nodes are

used within a human-designed BT to improve the execution of simple tasks.

2.1.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a best-first tree search algorithm that searches

for a near-optimal solution in a large stochastic state space [30, 31]. When used as a

decision-making algorithm for an agent, a solution represents the agent’s action that is

supposed to lead to the optimal outcome. Since the algorithm is usually used in every

time step (also called frame or tick), the agent performs the search on the most recent

environment data and thus can dynamically react to environmental changes. MCTS was

first introduced to solve classic board games and led to great interest in the research

area of computational intelligence in video games. In the last decade it has been applied

to multiple academic video game environments [32–38]

2.1. REACTIVE DECISION-MAKING APPROACHES 19

S3

S2

S0

 1. Tree
 Selection

 2. Expansion

 3. Monte Carlo
 simulation

S1

4. Back-
propagation

Default
Policy

a1

Tree
Policy

a3

a2

Figure 2.2: Workflow of the Monte Carlo Tree Search Algorithm.

MCTS works under the assumption that the search space can be represented by a Marko-

vian Decision Process (MDP) and a model of this process is available. In the context of

MCTS this model is usually called the forward or simulation model since it is used to

simulate an agent’s actions forward into the future.

The search process of MCTS is shown in Figure 2.2. The search for an optimal agent

action starts with the initial world state s0 represented by the root node. Actions are

represented by branches and states are represented by nodes. The search tree is built

by iteratively executing the following four steps: selection, expansion, Monte Carlo sim-

ulation, and back-propagation. The search starts by selecting an action that is available

in the initial state. The selection is done following a tree policy. By simulating the

selected action, the tree is expanded by the new node that represents the new state s1.

Having reached a node from which not all actions have been selected (here the node

with the state s2), a Monte Carlo simulation is performed from this node. Following a

default policy, which usually selects actions at random, the simulation runs until either

reaching a final (game) state or another terminal criterion. The new state reached by

the simulation (s3) is then evaluated with the help of an evaluation function (EF, also

called reward function) and the resulting reward is back-propagated updating the average

rewards of all preceding nodes.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

The described steps are repeated until reaching a final criterion, for example until ex-

ceeding a computational time budget. By repeating the steps, an asymmetric tree is

built up iteratively and the final decision is made with the help of the average rewards

of actions available in the initial state. For this purpose, each node stores the number

of times that its state s was visited (N(s)), the number of times that an action a was

selected from this state (N(s, a)), and the average reward obtained from selecting action

a in state s (Q(s, a)). These values are updated in each iteration.

In the selection step, each action can be selected uniformly at random. However, usually

the selection follows a more complex tree policy taking into consideration the stored

number of visits and the received rewards. Assuming that multiple actions can lead to

near-optimal solutions, most tree policies try to balance between exploration of actions

that were simulated less often and exploitation of more promising search branches [39].

Such policies are typical for Multi-Armed Bandit (MAB) problems. A MAB problem

presents multiple slot machines. Selecting an arm of one of these machines leads to

a random reward and the reward distribution is unknown in advance. The goal is to

minimize the regret, which is the difference between the theoretical optimal reward and

the cumulative reward obtained from selecting arms. When using MCTS, every action

represents an arm of a MAB and the average rewards stored in each node represent the

payoff of selecting this arm.

A well-known MAB policy is the Upper Confidence Bound (UCB1) [40] or Upper Con-

fidence Tree (UCT) [30], when applied to MCTS. As shown in Equation 2.1, this policy

tries to balance between exploitation (left part of the term) and exploration (right part

of the term) through the parameter C selecting the action with the highest upper con-

fidence bound.

a∗ = arg maxa∈A(s)

{
Q(s, a) + C

√
ln N(s)

N(s, a)

}
(2.1)

Multiple early works on MCTS in different RTS games have used the UCT sampling

strategy as presented in [33, 35, 37]. These works have shown promising first results.

However, their performance deteriorated with the growing number of units.

2.1. REACTIVE DECISION-MAKING APPROACHES 21

NäıveMCTS

There are certain environments and problems where a centralized approach is desired to

control multiple agents, such as a group of robots that are controlled as one swarm or all

units of one player in an RTS game. When a tree search algorithm is applied to solve such

a problem, its goal is to find the optimal combination of multiple agents’ actions. Thus,

the branching factor of the search tree becomes combinatorial and the MAB problem is

then formulated as a Combinatorial Multi-Armed Bandit (CMAB) problem [34,41,42].

Following the notions used in [34,42], a CMAB is defined by:

• A set of variables X = {X1, ..., Xn} with each variable Xi taking one of the Ki

values Xi = {v1i , ..., v
Ki
i }.

• A reward distribution R : Xi × ...×Xn −→ R that depends on all variables.

• A function V : Xi × ... × Xn −→ {true, false} determining which variable value

combinations are legal.

When used to solve a common task in a multi-agent environment, each variable Xi ∈ X
represents a single agent and its values represent the agent’s actions.

The goal of solving a CMAB problem is to maximize the reward over a legal1 combination

of variables (R(x1, ..., xn)) as opposed to a MAB problem where the reward is dependant

on a single variable (R(x)). However, most tree search algorithms struggle to find optimal

solutions of combinatorial problems. A näıve approach to solve a CMAB problem is to

assume that the variables (actions of different agents) are independent from each other

and the reward over all variables can be approximated as the sum of rewards over single

variables (R(x1, ..., xn) =
∑i=n

i=1 Ri(xi)). In this case, each legal combination of variable

values can be considered to be a different arm of a global MAB (MABg). Whereas each

of these arms (combinations) on its own represents a local MAB problem (MABi). Each

MABi selects a value for each of the variables Xi ∈ X maximizing the sum of rewards

over single variables. Additionally, MABg selects the optimal combination of variable

values.

1A combination of variables is legal when it does not contain variable values that are not possible
or not allowed. An example of an illegal combination of actions is two agents trying to simultaneously
make a move into the same location/grid cell.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

Applied as a tree policy to MCTS, this approach is known as näıveMCTS [34,42]. When

selecting a legal combination of actions, it first uses a policy π0 in order to balance

between exploration (simulation of less-explored action combinations) and exploitation

(selection of the best action combination). If exploration is chosen, a local policy πl is

used to solve MABi by selecting an action for each agent independently. Resulting new

action combinations are added to MABg as new arms. If exploitation is chosen, a global

policy πg is used to select a combination of actions from MABg. In [34,42], each of these

policies is an ε-greedy policy with different ε probabilities to select exploration and 1− ε
probability to select exploitation.

Since in most real-time environments an agent’s actions are durative and multiple agents

can execute actions in parallel, näıveMCTS considers these facts when selecting and

simulating actions. The selection of actions is only done when there is at least one agent

that can execute a new action. Afterwards, the world state is simulated applying the

selected actions until reaching the new decision point (next time when one of the agents

is free to start a new action). Furthermore, in the case of adversarial environments such

as two-player zero sum games, the sampling strategy distinguishes between the agent

side and tries to maximize or minimize the reward accordingly.

As the results of [34, 42] show, with a growing branching factor found in microRTS

(which is described in Section 6.2), näıveMCTS is able to outperform UCT as well as

other CMAB sampling strategies such as Matching Learning with Polynomial Storage

(MLPS) [41], and Linear Side Information (LSI) [43]. Furthermore, it outperforms other

tree search strategies such as α-β Considering Durations (ABCD) search [44].

Further Enhancements to MCTS (and its Apllications to Games)

Although näıveMCTS is able to outperform some earlier sampling techniques in mi-

croRTS, in its pure form it is still not able to find optimal solutions in large search

spaces, such as those presented in RTS games. The main reason for finding sub-optimal

solutions is that given a large action space, the algorithm is usually able to look only

a few steps ahead within the very limited avalable time (as for example 100 millisec-

onds in microRTS). Therefore, it is not able to reach a final game state in order to

sufficiently evaluate possible action sequences. In order to overcome these difficulties,

different enhancements to MCTS have been proposed.

2.2. PLANNING APPROACHES 23

One solution to avoid exploring actions that are less effective in certain situations is to

embed some domain knowledge into the sampling strategy. For example, when explor-

ing the action space in microRTS, the work described in [45] considers a probability

distribution of actions played by a strong player. This way, the search is guided by the

probability distribution in addition to the reward function. Another way to reduce the

considered actions is described in [46]. Here, following the asymmetric action abstraction

approach [47], the sampling strategy only considers a limited sub-set of actions of each

unit. The sub-sets are created in accordance to the unit type (similar to an agent type

in a heterogeneous multi-agent environment) and other unit-specific parameters. Both

approaches are able to outperform a pure näıveMCTS in microRTS.

Other approaches that use action abstractions in combination with MCTS are described

in [37, 48]. The former work uses an Upper Confidence Tree Considering Durations

(UCTCD) tree policy and the latter an ε-greedy policy in the game StarCraft. Both

works use abstract actions to control groups of units instead of giving orders to single

units. In addition to abstract group actions, MCTS used in [48] is operating with

abstract game states and abstract evaluation functions. These works have shown that

abstractions can decrease the size of the search space while still leading to good results.

A different way to manipulate the search process of MCTS is to tweak its parameters

such as the maximum search depth, the maximum simulation time, or the parameter that

is used to balance between exploration and exploitation [38]. Additionally it is possible

to change the default policy used in the Monte Carlo simulation [49] or to adapt the

evaluation function used for the evaluation of (game) states guiding the search towards

certain solution [50,51].

2.2 Planning Approaches

In contrast to purely reactive approaches, planning approaches do not only search for

a single action that is optimal in the current situation but try to create a plan that is

supposed to lead to a long-term goal. Thus, a plan is usually a sequence of actions. To

find a solution, a planner uses a planning domain that is predefined by a human expert

and contains a model of the environment. Depending on the planning approach, a plan

can be created in different ways. For example, a planner can be flat or hierarchical. The

following section underlines the differences between classical planning and real-world

planning and introduces two hierarchical planners, which are used as a base for the

Hierarchical Task Network with Postconditions (HTNp) planner proposed later in this

work.

24 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.1 Classical Planning

In the research area of automated planning a plan represents a sequence of actions (also

called operators) to be executed by an agent in order to achieve a goal. The creation

of such a plan requires the definition of a planning domain, which provides relevant

information about the environment. In particular, a planning domain usually contains

a set of state variables F (also called facts), and a set of actions A that an agent can

execute. Additionally, in hierarchical planning, a domain contains further information

about the task hierarchy (see Section 2.2.3).

An action is usually represented by the tuple (pre, add, del). Preconditions pre ∈ 2F

define the set of facts that have to (not) be true in a state for the action to be applicable.

The set of preconditions can be divided into two sets: facts that have to be true and

those that have to be false before applying the action. However, in the major part of

literature, preconditions are represented by one common set pre. For that reason, we

stick to this definition. Additionally, effects of an action describe which facts are added

to or deleted from a state after executing the action. They are usually represented by

the two sets add ∈ 2F and del ∈ 2F respectively. Preconditions and effects allow a

planner to simulate changes in the world during the planning phase that will be caused

by the execution of an action.

A well-known classical planner that provides the basics for many other planners is the

Stanford Research Institute Problem Solver (STRIPS) [52]. It belongs to the planners

that search through the space of states (in this work the term state and world state are

used as synonyms). Following the STRIPS formulation, a planning problem is defined

by the tuple p = (F,A, sI , sG) with the set of facts F , the set of actions A, an initial

state sI ∈ 2F , and the goal state sG ∈ 2F .

A widespread definition language for planning problems is the Planning Domain Defi-

nition Language (PDDL) [53], which was first used in the 1998 International Planning

Competition. Since then, it received multiple extensions such as the possibility to han-

dle durative actions and continuous effects [54] or the combination of hard and soft

constraints [55].

2.2. PLANNING APPROACHES 25

A space-state planner aims to find a sequence of actions that lead from the initial state

to the goal state. It reasons about state transitions checking the preconditions of ac-

tions and simulating their effects. A STRIPS-like planner performs a backwards-search

starting from the goal state. Trying to resolve the difference of facts between the ini-

tial state and the goal state it first searches for an action whose effects lead to one of

the facts that exist in the goal state but not in the initial state. When such an action

is found, it is added to the ordered plan and its preconditions are added as further

sub-goals to be achieved in the state preceding the goal state. Iteratively, the planner

adds further actions to the plan until all sub-goals are reached – thus, until the plan-

ning state corresponds to the initial state and the plan can be applied starting from

it [56, Chapter 4.4], [3].

Classical planners like STRIPS operate on classical planning domains, which underlie

the following limitations [3,57]: a) the set of possible states is finite, b) the environment

is fully observable, c) all state transitions are deterministic, d) the system is static so

that only the agent’s actions can lead to a transition in states, e) the only kind of goals

are attainment goals defined as goal states meaning that e.g. states to be avoided are

not defined, f) a solution plan is an ordered finite sequence of actions, g) actions are

instantaneous transitions between states and have no duration, h) planning is done offline

without considering any state changes that appear during the planning time. However,

most of these assumptions do not hold in real-world environments and a lot of research

has been done focusing on challenges presented in such environments. Some of these

challenges are described in more details in the following section.

2.2.2 Real-Time Planning

In contrast to classical planning domains, most real-time environments are non- deter-

ministic, highly dynamic, and partially-observable. For these reasons, plans are likely

to fail during execution. Possible approaches for plan failure management and plan-

ning under uncertainty are summarized in [58] and include conditional or contingency

planning [59–61] and probabilistic planning through Bayesian Networks [62] .

Alternatively, online planning and interleaved planning and execution can be used to

recognize and deal with plan failures at execution-time (as described in more details in

Section 2.3.1). In these cases either plan repairing approaches or full replanning can be

used [63]. The former allows to keep a plan and only repair the failed parts of it, whereas

the latter generates a new plan from scratch. In the area of video games, full replanning

is preferred over plan repair. One reason for this is the additional engineering effort

required for a repair approach. Another reason is the potentially high computational

time required for a proper repair. In contrast, planners used in video games are usually

optimized enough to allow computationally cheap replanning [3].

26 CHAPTER 2. BACKGROUND AND RELATED WORK

A popular planning approach used in multiple commercial video games is the Goal

Oriented Action Planner (GOAP) [64–67], which is an adapted version of STRIPS.

Since its first implementation in the game F.E.A.R2, it has been used in further games

such as Rise of the Tomb Raider3 and Middle-earth: Shadow of Mordor4 [3, 68]. In

order to deal with the challenges existent in the highly dynamic real-time games, is has

made four major changes to STRIPS.

First, it added costs to actions and used them as heuristics in the search process. Second,

instead of representing an action’s preconditions and effects by lists of facts (as described

above), it represented them by fixed-sized arrays allowing for faster comparisons of world

states. Third, it added the possibility to not only check variables as preconditions, but

also to call code functions in order to perform more complex checks (such as finding

a path). And lastly, instead of applying effects as instantaneous state changes during

the plan execution, a Finite State Machine was controlling the states of the agent and

updating the planner’s world state.

In order to reason about time and deal with time-dependent and parallel actions, there

are different temporal planning techniques [69–72]. However, temporal planning is – to

the best of our knowledge – not used in the area of video games and is out of scope

of this thesis. Instead of considering temporal constraints during the planning phase,

we rely on recognizing and dealing with plan failures caused by temporal dependencies

during the execution phase.

Another challenge when planning for real-world environments, is the large (continuous)

state space. In order to deal with such a search space in real-time, it can be beneficial to

reduce its size by embedding some domain knowledge into the planning algorithm itself.

To achieve this, it is possible to create domain-specific planners [57]. As opposed to

domain-independent planners, which can work with any planning domain, or domain-

configurable planner that receive the planning domain description and the planning

problem description as input, domain-specific planners encode domain information in

themselves. Using the information to decrease the size of the search space, they are able

to work in a more efficient way in the specified domain. However, they cannot be used

for a different domain.

2F.E.A.R.: Developer: Monolith Productions; Publisher: Sierra Entertainment. 2005
3Rise of the Tomb Raider: Developer: Crystal Dynamics, Publisher: Square Enix, 2015
4Middle-earth: Shadow of Mordor: Developer: Monolith Productions, Publisher: Warner Bros.

Interactive, 2014

2.2. PLANNING APPROACHES 27

Further disadvantage of domain-specific planners is the maintenance of the domain.

If it frequently changes or needs to be corrected, it requires programmers to change

the planner code directly. Whereas for a domain-configurable planner, whose domains

are defined in some high-level planning language (such as PDDL), anyone can change

the planning domain without modifying the planner itself. Thus, depending on the

size of the planning domain and the planning problems, the available manpower, the

expected requirement in maintenance on the domain, and the desired performance of

the planning algorithm a domain-configurable or a domain-specific planner can be a

better choice. In commercial video games, both approaches have been successfully used

so far [3]. Although domain-independent planners are less popular due to the difficulty of

building a domain compiler that can interpret the high-level planning language, there are

some successful applications of such planners [73]. On the other hand, most academic

planners are domain-independent.

An important aspect when planning for real-time environments is the coordination of

multiple possibly heterogeneous agents. Whether in video games, service robotics, evac-

uation planning or autonomous vehicle control, the agents are usually acting within a

larger ecosystem and have to either coordinate their actions or at least interpret and

react to the other agents’ actions. Thus, not only planning but also the execution is an

important aspect at this point. For that reason, the topic of multi-agent planning (and

execution) is discussed in Section 2.3.2.

2.2.3 Hierarchical Task Network Planning

In contrast to flat planners that search the space of states, hierarchical planners search

the space of plans. In particular, a Hierarchical Task Network (HTN) planner is based

on the idea of task decomposition. Instead of searching for a sequence of actions that

leads to a goal state, an HTN planner tries to find a sequence of subplans that perform

a certain task. For this purpose, it is searching for a feasible decomposition of the task.

In HTN planning, tasks can be recursively decomposed into further subtasks and thus

build a hierarchical network. Those tasks that can be further decomposed are called

compound tasks (or abstract tasks), whereas primitive tasks represent the actions that

can be directly executed by an agent and thus cannot be further decomposed. (Some

related work uses the term operator to describe what kind of actions can be executed

by an agent [74–76]. In this case, a primitive task represents a ground instance of an

operator. Thus it is an operator instance with values assigned to its parameters. In this

work, we use the terms operator and primitive task as synonyms.)

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Following previous work [77–79], we denote the set of compound tasks as C and the set

of primitive tasks as A. An HTN planning domain is defined as D = (F,C,A,M) where,

similarly to a classical planning problem, F is a set of state variables or facts. An HTN

planning problem is defined by the tuple p = (D, sI , cI), where sI ∈ 2F is the initial

state, and cI ∈ C is the task to be performed. The Hierarchical Task Network is defined

as tn = (T,≺, α) with a set of possibly empty task identifiers T , a strict order of tasks

≺, and α : T → A ∪ C.

When a planner receives a compound task to be performed, it is possible that this task

can be performed in different ways. In order to describe in what way and under which

conditions a certain decomposition is possible, the so-called methods (represented by

the set M) are used. A method m ∈ M is defined by the tuple (c, pre, tn) with the

compound task c ∈ C that it decomposes, the preconditions pre ∈ 2F under which it

is applicable, and a network of subtasks (compound or primitive) tn that it decomposes

into. Multiple methods can be assigned to decompose the same compound task. Using

the methods’ preconditions, a planner can decide which method is applicable in its own

internal simulated state.

For example, in Figure 2.3 the initial compound task cI is EnterRoom(agent A, room A)

requiring agent A to enter room A. This task can be decomposed by the methods

EnterThroughDoor and EnterThroughWindow. In the first step, the planner checks the

first method’s precondition, which is IsReachable(door A, agent A). Since S0 (the initial

state in this case) contains a fact indicating that the door is reachable by the agent,

this method is is selected for the decomposition of the task. It decomposes into the

primitive task GoToDoor(agent A, door A) and another compound task StepInThrough-

Door(agent A, room A, door A).

When a method decomposes a compound task into a primitive task, this primitive task

is added to the final plan. The planning process runs until all subtasks are decomposed

and the plan contains primitive tasks only. Similarly to actions in classical planning

(see Section 2.2.1), primitive tasks are defined by the tuple (pre, add, del) – their pre-

conditions and effects that are added or deleted to the state (add ∈ 2F and del ∈ 2F

respectively). Thus, before adding a primitive task to a plan, an HTN planner checks

the task’s preconditions and, if the task is applicable, adds it to the plan. Afterwards,

the planner updates its internal state representation with the task’s effects. That way,

the planner can keep track of the state changes and reason into the future.

In the above example, the planner checks the precondition of the GoToDoor(agent A,

door A) task, which, in this case, is the same as the method’s precondition and therefore

holds in the initial state. After adding this primitive task to the final plan, the updated

state S1 contains another fact IsNextToDoor(agent A, door A). Using this informa-

tion, the planner can further decompose the remaining compound task StepInThrough-

Door(agent A, room A, door A) following the same rules.

2.2. PLANNING APPROACHES 29

Discarded
Decomposition /
Method

Selected
Decomposition /
Method

IsReachable(door_A, agent_A)
IsNextToDoor(agent_A, door_A)

IsDoorOpen(door_A)
IsInRoom(agent_A, room_A)

IsReachable(door_A, agent_A)
IsNextToDoor(agent_A, door_A)

IsDoorOpen(door_A)

IsReachable(door_A, agent_A)
IsNextToDoor(agent_A, door_A)IsReachable(door_A, agent_A)

Facts

Simulated
World State

S

Method Selection
(OR branch)

Decomposition
(AND branch)

Preconditions,
Effects

Method

Primitive Task

Compound Task

S3S2

S1S0
precondition not checked

precondition fails

Preconditions:
IsNextToDoor(agent_A, door_A)

IsDoorOpen(door_A)
Effects:

IsInRoom(agent_A, room_A)

StepIn(agent_A, door_A)

Preconditions:
IsNextToDoor(agent_A, door_A)

!(IsDoorOpen(door_A))
Effects:

IsDoorOpen(door_A)

OpenDoor(agent_A, door_A)

Preconditions:
(IsDoorOpen(door_A)

StepInDirectly(agent_A, room_A, door_A)

Preconditions:
!(isDoorOpen(door_A))

OpenAndStepIn(agent_A, room_A, door_A)

Preconditions:
IsReachable(door_A, agent_A)

Effects:
IsNextToDoor(agent_A, door_A)

GoToDoor(agent_A, room_A, door_A) StepInThroughDoor
(agent_A, room_A, door_A)

Preconditions:
IsReachable(window_A, agent_A)

IsAgentFree(agent_B)
NotEqual(agent_A, agent_B)

Preconditions:
IsReachable(door_A, agent_A)

EnterThroughWindow(agent_A, window_A)EnterThroughDoor(agent_A, door_A)

EnterRoom(agent_A, room_A)

Decomposition

Decomposition

Figure 2.3: Example of an HTN decomposition.

Usually, effects are reversible so that if a certain method or primitive task cannot be

used in later states, the planner is able to backtrack to the previous compound task

removing all effects caused by the applied method. After failing to use one method, the

planner searches for a different method to decompose the compound task. If no other

method is applicable or available, the planner backtracks further up in the decomposition

hierarchy.

There are different possibilities for a planner to select the order of subtasks to be de-

composed [80]. The most intuitive technique is the total order approach. Here, subtasks

are decomposed in the same order in which they will be executed later on [75, 81]. In

Figure 2.3 that is from left to right resulting in the following plan: GoToDoor, Open-

Door, StepIn. The advantage of a total-order decomposition is that the planner plans

forward from the initial state and always operates on the updated state. Also, it does

not require any explicit information about the tasks’ dependencies.

30 CHAPTER 2. BACKGROUND AND RELATED WORK

Alternatively, subtasks can be decomposed in a partial order allowing subtasks of differ-

ent compound tasks to be interleaved during execution [76]. In this case however, the

tasks have to be either independent from each other or their dependencies have to be

explicitly defined in the planning domain. An advantage of partial task decomposition

is the possibility to parallelize the decomposition of multiple tasks. Furthermore, more

critical or less computationally intensive precondition checks can be performed first, po-

tentially saving some expensive computations. However, since in this case the planner is

no longer planning strictly forward from the initial state, the final order of tasks in the

plan requires additional checks of dependencies between preconditions and effects of the

interleaved tasks.

One of the most-known HTN planners is the Simple Hierarchical Ordered Planner

(SHOP) [75] and its extended version Simple Hierarchical Ordered Planner 2 (SHOP2) [76].

Both approaches implement total-order task decomposition. Additionally, SHOP2 al-

lows for partial-order of tasks enabling interleaved sub-task. Both planners are widely

used in various industrial and academic applications such as evacuation mission planning

and UAV control [82].

Independently from its decomposition order, once an HTN planner is able to apply a

method to decompose a task, it is not taking into consideration other methods. This

way, the planner is able to prune the search space early in the search process focusing

only on a small part of it. Therefore, having a well-designed HTN allows for efficient

planning even within very limited computation time, which is one reason why HTN

planners are used in multiple video games such as Killzone 2 5 [83], Killzone 3 6 [73],

Transformers: Fall of Cybertron7 [84], Horizon Zero Dawn8 [85].

Another advantage of HTN planning is its similarity to the way humans think. When

we are facing a task, we naturally sub-divide it into smaller tasks. For that reason,

creating, reading and understanding an HTN domain is more intuitive in comparison to

a classical planning domain. Additionally, the plan’s execution is better understandable

by a human, which is a very important aspect in video games as well as in robotics [2].

5Killzone 2: Developer: Guerrilla Games, Publisher: Sony Computer Entertainment, 2009
6Killzone 3: Developer: Guerrilla Games, Publisher: Sony Computer Entertainment, 2011
7Transformers: Fall of Cybertron: Developer: High Moon Studios, Publisher: Activision, 2012
8Horizon Zero Dawn: Developer: Guerrilla Games, Publisher: Sony Interactive Entertainment, 2017

2.2. PLANNING APPROACHES 31

There are some works on learning parts of an HTN planning domain [86–91]. Most

learning approaches are based on explanation-based learning from expert traces. These

approaches try to find causal relationships between changes in the environment and the

tasks executed by a human expert and build an HTN using these relationships. Some

earlier methods concentrate on learning only certain parts of the domain. For example

the work presented in [89] learns preconditions of methods, [90] learns method precon-

ditions and action models, [86, 87, 91] learn method structures, whereas [88] focuses on

learning the methods that optimize the quality of plans integrating Reinforcement Learn-

ing (RL) into an HTN planner. Some other works concentrate on learning hierarchical

goal structures (see Section 2.2.3) [92,93].

The major question when reasoning about the domain structure is how to combine tasks

into higher-level tasks. Additionally, in order to correctly generalize their preconditions

and effects it requires a large amount of training data to extract knowledge from. Al-

though existing approaches provide promising results, most of them are tested in simple

static benchmark environments from planning competitions. Therefore, it is unclear

whether they are scalable for more complex problems. For these reasons, learning a hi-

erarchical planning domain for a large dynamic environment still remains a challenging

problem.

There are many other aspects of HTN planning that are important to consider for certain

environments. However, summarizing all of them would exceed the target of this thesis.

Some survey papers can be found under [74,94].

Hierarchical Goal Network Planning

Although Hierarchical Task Network planning formalism is quite expressive, its major

flaw in comparison to classical planning is that its tasks are defined as actions that are

to be performed but they have no semantic meaning. A task can be executed but there

is no notion of a task being finished or achieved. Thus it is impossible to monitor their

progress during execution and to check their fulfillment against the current state of the

environment [95]. In the previous HTN example from Figure 2.3, the agent can try to

open a door but the planner will not know whether the door was actually opened.

32 CHAPTER 2. BACKGROUND AND RELATED WORK

A Hierarchical Goal Network (HGN) [96,97] solves this problem by combining hierarchi-

cal decomposition with the classical planning formalism. Instead of dealing with tasks,

an HGN deals with goals or goal states, which, similarly to classical planning, are des-

cribed by facts. Formally, an HGN planning problem is defined as p = (D, sI , sG) where

D is an HGN planning domain, and SI and SG are the initial and the goal state respec-

tively. An HGN planning domain is then represented as D = (D′,M) where D′ = (F,A)

is a classical planning domain (with a set of facts F and a set of actions A) and M is a

set of methods. However, in contrast to HTN methods, HGN methods are not assigned

to compound tasks. Instead they only describe which goals they achieve. A method

m ∈ M is defined by the tuple (pre, sub, post) where preconditions pre are similar to

those used in HTNs, sub =< g1, ..., gk > is a sequence of subgoals to be achieved with

gi ∈ 2F , and post ∈ 2F are the postconditions of a method. If sub is non-empty, then

post = gk, otherwise post = pre. Actions are defined in the same way as in classical

planning (see section 2.2.1). As shown in [96], an HGN is as expressive as an HGN.

A Goal Decomposition Planner (GDP) [96] solves an HGN planning problem by iter-

atively decomposing and resolving subgoals. Similarly to classical planning it tries to

resolve the difference in facts between the initial state and the goal state. To achieve this,

it searches for actions and methods that are relevant for the goal state, either directly

adding actions to the final plan or adding subgoals by applying a relevant method. An

advantage of an HGN over an HTN is that it does not require the domain to be complete

in the sense that it is possible to not define all necessary methods. If no method is avail-

able to divide a goal into subgoals, the planner can apply classical planning techniques

by directly searching through actions.

An extended version of GDP uses so-called landmarks to infer such subgoals if a top-level

goal cannot be solved by any method [98]. In an HGN planning problem, landmarks are

subgoals that every solution to a planning problem must satisfy. (Similarly in an HTN

planning problem landmarks are tasks that have to be decomposed in every solution to

the problem [99]). Additionally, it is possible to add heuristics to the classical planning

search [96]. Further approaches combine HTNs and HGNs into so-called Goal-Task-

Networks [97], which operate on a mixed planning domain containing elements of both

network types.

2.3. PLANNING AND EXECUTION 33

2.3 Planning and Execution

A planner is usually responsible for plan generation only and does not take care of the

plan execution. This is, however, problematic in real-time environments and especially in

highly dynamic environments since environmental changes can invalidate the plan very

quickly and a new plan can be be required within a short time period. The problem

becomes even more complex when planning is performed for multiple agents. For these

reasons, there are different approaches to interleaved planning and execution. The fol-

lowing section introduces the major problems and advantages of different architectures

for interleaved planning and execution .

2.3.1 Interleaved Planning and Execution

Even though there is a lot of research being done in the area of automated planning,

many works do not take into consideration the execution phase underestimating the

importance of deliberation during the execution. Not only the two phases, planning and

execution, are separated in time, but also are they usually performed by two different

systems, a planner and an execution system. An execution system is usually responsible

for environmental monitoring, simultaneous execution of actions, possible coordination,

and failure management.

A related area, in which planning and execution plays an important role is spacecraft

control. However, it is important to note that spacecraft and planetary robots are usually

the only agents that operate in the environment and thus do not have to handle high

dynamics of the environment, which are the topic of this thesis. Possible uncertainties

of the environment are usually covered either through plan contingencies or by relying

on on-board error detection systems [100], which are lower layers of the architecture

described in the following paragraphs. The applications in this area are mostly divided

between those that use model-based approaches (planning) for on-board decision-making

(such as described in [101]) and those that use Markovian Decision Processes. The

major advantage of model-based approaches is the generation and maintainability of their

domains, which describe goals and problems logically with the help of some planning

language. However, their weakness can lie in the time required to make a decision, since

finding a plan happens online.

34 CHAPTER 2. BACKGROUND AND RELATED WORK

Control / Functional Layer

Executive / Operational Layer

Deliberative / Planning Layer

Monitoring System

Human Operator

Sensor mSensor 2Sensor 1

System nSystem 3System 2System 1

Model
Execution System

Planning
Domain /

Model
Planner /

Decision-making System

Figure 2.4: Example of a general three-layer architecture for spacecraft control.

In contrast, policies of MDPs can be generated offline but they require a sufficient

amount of information on the probability distribution of state-action-transitions, which

is not always available [102]. Furthermore, with an increasing size of the state-space,

MDPs face the curse of dimensionality as well as the curse of modeling. Thus, even

though they are used in robotics, they struggle to find application in practical cases in

the area of spacecraft control [102]. Even though there are some works that combine

model-based reasoning with MDPs, the solutions are still not ready to be used in real

space-missions [102]. For these reasons we only concentrate on model-based approaches

in the following paragraphs.

A typical approach towards full autonomy in model-based spacecraft control implements

a three-layer architecture [103] shown in Figure 2.4 including a deliberative or planning

layer that is responsible for decision-making (which can be either fully autonomous or

incorporate human-sent objectives), an executive or operational layer that is responsible

for monitoring and command execution, and a control or functional layer that reads

specific sensors and controls specific subsystems on the lowest layer [102].

2.3. PLANNING AND EXECUTION 35

Depending on the underlying approach and its level of autonomy, these layers are ex-

changing different kinds and amounts of data, and each of these layers has a certain

degree of autonomy and memory. Although high-level reasoning and planning for space-

craft control has been mostly done by humans (ground operators) so far, full autonomy

is becoming increasingly important. Autonomous failure management is especially im-

portant in the time windows when communication with the ground is not possible. A

detailed overview of recent space projects involving model-based mission planning and

execution is provided in [102].

When it comes to execution, traditional spacecraft and rovers are usually controlled

by a small set of high-level commands using a simple execution language. Many ex-

ecution systems used in this sub-area do not allow for complex behaviors like loops,

conditions, iterations, concurrent and sequential activities, or time- and event-driven

activities. Some of such systems either use an internal planner or can be coupled with

an external planner. Some approaches that are most similar to our work are presented in

the following paragraph and a brief overview of further execution systems for spacecraft

and robots can be found in [100].

The Universal-Executive system [104] represents a tree-based execution approach which

is very similar to Behavior Trees (see Section 2.1.1). Here, each node is defined by

pre-, post-, and invariant-conditions and can have different states such as executing

or finished. Similarly to Behavior Trees, the expressiveness of the Universal-Executive

system allows for concepts such as loops or concurrent activities, where internal nodes

are responsible for complex compositions and leaf nodes represent actions. The input of

the system is a domain description written in the Plan Execution Interchange Language

(PLEXIL) [105], which makes the system itself independent of the domain it is being

used in. The Universal-Executive system can be used as a stand-alone system as well as

in combination with an external planner.

Instead of connecting to an external planner, some systems implement a hybrid approach

implementing an internal planner [106]. In these cases a reactive execution system

requests the internal planner to come up with a plan that achieves a certain goal chosen

by the system. The planner then either generates a plan for the whole system or it

is used to find optimal sequences of actions of only one subsystem in order to achieve

a certain system configuration [106]. One problem with the latter approach, however,

can be unpredictable behaviors caused by the concurrent handling of weakly-interacting

subsystems [106].

36 CHAPTER 2. BACKGROUND AND RELATED WORK

A major problem in most systems so far remains the definition of models for reactive

execution in the operational layer and their connection to the higher decision layer [102].

A planner usually operates on a descriptive or declarative action model. That means

that an action representation describes what an action does, for example which effects

it has on the environment. Whereas an executive system usually uses an operational

action model, which describes how an action can be performed. Some approaches for

integrated planning and execution try to bridge the gap between the different repre-

sentations used by the planner and the execution system. For example the Intelligent

Distributed Execution Architecture (IDEA) [107] uses declarative models on all control

layers while the Program Planning and Execution Language (PROPEL) [108] works with

operational models only.

Similarly, some works outside of the area of spacecraft control such as the works des-

cribed in [109, 110] see the major problem for truly interleaved planning and execution

solutions in the different ways of knowledge representation used by the planning and

executive systems. In order to interleave the two systems, the work described in [110]

proposes the usage of a unified language both for planning and execution. What is first

described as an abstract idea, is implemented later with the help of the Refinement

Acting Engine (RAE) [111, 112], which is responsible both for planning and execution.

Using an operational action model for both phases, the engine refines (or decomposes)

tasks into smaller sub-tasks, in a similar way to SHOP. However, since the planner now

also uses operational action representations, which are programs that execute an action,

it is required to simulate these programs to reason about their outcomes.

In this case, the executive part of the engine receives the high-level task to be per-

formed and every time that the agent is making a decision on how to refine a task (thus

which method to select), it calls the planner to reason about possible outcomes of the

different refinement methods. The planner simulates possible sub-plans and forwards

the result of its decision to the executive system for execution. For the simulation, the

planner performs Monte Carlo rollouts over the different refinement methods. In its

simple version, the executive part waits for the planner to complete its search (i.e. to

fully refine/decompose all possible methods). However, since this can take a long time

and potentially stop the execution, the later works [112, 113] experiment with different

variations of the proposed solution, for example, applying a UCT-based approach for

method selection instead of a planner. Still, the proposed approaches require more than

10 seconds for a single computation [113] and are therefore not yet applicable to highly

dynamic environments.

A related approach for agent control in games is presented in [114]. Here, a planner is

extended by Behavior Trees to simulate the plan’s outcomes during the planning phase.

However, this work does not provide a description of the plans’ execution.

2.3. PLANNING AND EXECUTION 37

Another area that is closely related to our work and requires interleaved planning and ex-

ecution is robotics [2]. However, similarly to spacecraft control, most earlier approaches

in both areas implemented solutions for specific agents or environments - for example

for a specific spacecraft or a specific robot. Even though they were very effective and

successful in that implementation, they did not use standardised languages, which made

their integration with other systems more difficult. An important work that proposes a

modular architecture that combines two popular standards in robotics is ROSPlan [115].

ROSPlan provides an interface for any PDDL 2.1 based planner that can handle the

syntax of the domain and Robot Operating System (ROS) 9 [116]. ROS is used in many

robotic systems in the industry as well as in academia. ROSPlan has two ROS modules:

a Planning System and a Knowledge Base [115]. The Knowledge Base is updated using

real information such as coordinates. Additionally, it translates continuous data provided

by sensors into symbolic discrete descriptions that can be used by the planner allowing

for continuous monitoring through sensing actions.

The Planning System uses the information from the Knowledge Base and generates the

planning problem, the initial and goal states. These are then forwarded to an external

planner. Additionally, the Planning System is responsible for the generation of a so-

called planning filter that considers static facts and the plan’s actions’ preconditions.

This filter is then used by the Knowledge Base to be checked against the current world

state. In case any inconsistency is found, the Knowledge Base notifies the Planning

System, which in turn handles the replanning. Furthermore the Planning System is

responsible for the translation of the high-level PDDL actions into low-level control

actions (ROS messages) using pre-existent libraries for robotics domains.

Many works in the area of robotics that incorporate planning are focusing on path plan-

ning since the problem of navigation is still a major concern. Other works focus on

motion planning, which is important for grasping robots. However, these types of plan-

ning are different from the long-term deliberative task planning that this thesis focuses

on. The sub-areas of robotics that are most relevant for us are the so-called social

robots [117] - robots that interact with humans and thus act in highly dynamic environ-

ments and make long-term decisions autonomously and deliberatively. Such robots are

service robots and robots that work cooperatively with humans - the so-called cobots. To

the best of our knowledge, however, interleaving deliberative task planning and execution

has not been deeply studied in these sub areas since they are quite new.

9ROS: https://www.ros.org

https://www.ros.org

38 CHAPTER 2. BACKGROUND AND RELATED WORK

One such work is described in [118]. It uses a three-layer architecture to control a cobot.

The cobot receives multiple tasks to be performed from a human user. The highest

architecture layer schedules these tasks, the middle layer controls and monitors the

execution of single tasks, and the lowest layer takes care of the path planning. In addition

to the typical failure detection, this work focuses on the detection of opportunities that

can arise during the execution of a plan. For example, if the robot is given multiple

high-level tasks it can interleave their subtasks in different ways. Starting with an initial

execution schedule, the robot is able to detect situations in which a subtask that is

scheduled for later can be executed immediately adapting the schedule. Seizing such

opportunities allows to decrease the total execution time of all plans.

The approach described in [119] proposes a combination of Behavior Trees with HTN

planning in a robotic scenario. This work aims to decrease the execution time of plans

through parallelization of certain subtasks and elimination of unnecessary actions. It

does so by using BT-like parallel nodes, and HTN-like pre- and post-condition checks

during a hierarchical plan creation through task decomposition. In contrast to pure

HTN planning, the resulting plans have tree structures defining sequenced and parallel

execution of tasks. However, in contrast to pure BTs, the order of branches in the tree

is selected dynamically during the planning phase taking into consideration the tasks’

preconditions. In comparison to predefined trees, the dynamically created trees lead to

shorter execution times.

As already mentioned in Section 2.2.2, an alternative to interleaved planning and ex-

ecution can potentially be probabilistic or contingent planning. Probabilistic planning

approaches deal with probabilistic action effects [120]. Considering these probabilities,

a planner tries to find a plan with the highest success probability. Doing so, it creates

multiple possible contingencies of a plan. During execution, these contingencies can be

used for decision-making considering the current state of the world. In this case, replan-

ning is not required if a fitting contingency exists. Even though the advantage of these

approaches is the elimination of replanning, the major disadvantage is the increased

planning time that results from the creation of all contingencies. Additionally, in highly

dynamic environments that involve human actors, the approach needs to deal with a

large branching factor of possible contingencies, for which it is impossible to compute

the probabilities.

2.3. PLANNING AND EXECUTION 39

In order to be able to plan for different contingencies without actually decomposing

them at plan-time, the work described in [121] postpones decision-making on conditional

branches until execution-time through so-called assertions. Assertions are abstract ac-

tions whose purpose is the gathering of information that is unknown at plan-time. Sim-

ilarly to other actions, they have preconditions and effects. Additionally assertions are

defined by special conditions that describe when replanning - or rather plan refining -

should take place. When these conditions are met at execution-time, plan refinement

is triggered and the abstract action is replaced by concrete actions using the gathered

information. This way, the planner is more efficient than a full contingency planner at

plan-time. It can create an abstract plan even in environments with uncertainties and

postpone the local decision-making to later stages.

2.3.2 Multi-Agent Planning and Execution

When speaking about multi-agent planning, there are different aspects that are impor-

tant to be considered such as whether the agents are cooperating or not, whether they

are communicating and whether this communication takes place only at plan-time, only

at execution-time, or both. It is possible that the planner is centralized and thus no

communication is required during the plan-time but the agents still act autonomously,

i.e. there is no central coordinator of their actions during the plan execution. In this

case the agents have to synchronize their actions on their own. This can be done either

explicitly through communication or implicitly by observing the actions of other agents.

In the latter case, the agents can be required to reason about the other agents’ beliefs,

goals, and plans.

Planning with beliefs is the basis for dealing with uncertainty in epistemic planning [122–

124]. In this sub-area of planning, an agent is supposed to be able to reason about his

knowledge as well as the lack of it. With this reasoning, an agent is further able to

use beliefs about possible world states in order to plan for knowledge gathering actions

and to create conditional plans. Additionally, in a multi-agent environment with de-

centralized planning, agents can have beliefs about other agents’ capabilities and their

knowledge [123]. In order to achieve coordination, agents can then reason at plan-time

about possible plans of other agents and their knowledge. If an agent beliefs that another

agent lacks some knowledge required to execute its (part of the) plan, the first agent can

share this knowledge.

40 CHAPTER 2. BACKGROUND AND RELATED WORK

Additionally, multi-agent epistemic planning has a concept of nested beliefs. That means,

an agent A can belief ”that agent B beliefs that agent A beliefs X”. Such nesting

can, in theory, have an arbitrary depth. However, since this can largely increase the

computational complexity of the planning algorithm, the depth can be bound [122].

Nested beliefs are usually used for implicit coordination between multiple agents at

execution-time. In order to reason about possible actions of an agent B that might

contribute to an agent A’s plan, agent A needs to reason from agent B’s perspective.

This is usually done through so-called perspective shifts [123].

Although epistemic planning provides some interesting ideas for implicit coordination

at execution-time, most experiments with it have been performed in quite simple test

environments so far [125]. Thus, it is unclear whether it can be performant enough

for highly dynamic environments, a high number of agents, and large search spaces.

Furthermore, if planning is done in a decentralized manner and implicit coordination

takes place at execution-time only, agents can come up with incompatible plans. This

will require replanning, which can lead to livelocks [123].

With am imcreasing number of agents, communication between all agents in a tightly-

coupled system becomes a combinatorial problem, whereas loosely-coupled systems re-

quire less coordination and are thus easier to plan for [126]. Some works try to save

the cost of coordination at plan-time by using a centralized planner. However, a disad-

vantage of a centralized planner in a large-scale multi-agent environment in comparison

to decentralized planning is the increased planning cost. In order to prevent expen-

sive planning, many works use abstract world models on the higher levels of centralized

hierarchical planning.

In order to be able to plan with simplified abstract models and not to lose important

information, there are techniques for information compression. For example, the works

described in [127,128] implement a centralized hierarchical planner that creates abstract

high-level plans for a team of agents and enables tighter coordination of agents at the

lower levels during execution through plan merging. The abstract plan contains subplans

for each agent. Each subplan holds so-called summary information about its own and

its children’s conditions, which must or may hold at certain points of time during the

plan’s execution.

2.3. PLANNING AND EXECUTION 41

These summary information are then communicated between agents during execution

and used for coordination of their subplans. The coordination of plans is done by one of

the agents reasoning about all involved plans’ compatibility, trying to merge them. When

merging plans, the agent is taking into consideration temporal relations such as must

start before or must finish after and the usage of shared resources [129]. However, the

search for possible plan merging also becomes combinatorial and it is unclear how well it

is suitable for high numbers of agents and long-term plans. Additionally, as pointed out

in [127] the search for plan combinations does not always determine correct possibilities

for overlapping. The generation of correct rules for temporal relations involves a high

engineering effort, which is not feasible for certain applications, such as video games.

In the following, we concentrate on loosely-coupled multi-agent systems where as little

as possible communication is required for an effective execution of plans that contribute

to common goals. A great part of research on multi-agent coordination is working with

centralized planning approaches and implicit coordination at execution-time. Although

there are some works that consider decentralized planning[126,130] and loosely-coupled

execution.

An important subarea of research in robotics, which works with multi-agent problems

quite similar to the ones explored in this work is focused around the RoboCup compe-

titions10. RobCup represents different football leagues where teams of robots compete

against each other. These competitions require competitive as well as cooperative behav-

ior with dynamic role assignments to multiple heterogeneous agents in a highly dynamic

and non-deterministic environment. Although task planning is less complex in such

games and a greater importance is given to navigation planning.

Most approaches presented in RoboCup implement a hierarchical architecture that allows

for a centralized abstract team coordination and reactive individual behaviors. Such

architectures are similar to the three-layer architecture described in Section 2.3.1 with

the difference that the highest layer is responsible for centralized decision-making for the

whole team. One popular variation of such an approach is the Skills, Tactics, and Plays

(STP) architecture [131,132]. Here, the highest level of a control hierarchy is responsible

for the so-called Plays that define, for example, which robot plays the ball and which

robot should try to receive it. On this level, the system assigns roles and objectives to

all team players. Selecting Plays from a predefined pool – the so-called Playbook – is

also adapted in further variations of hierarchical architectures such as [133].

In the next control layer – the Tactics layer – each robot makes decisions autonomously

following its objective. This can be done through FSMs [132] or any other reactive

approach. Finally, the lowest hierarchy level implements basic Skills, which are similar

to simple actions such as moving or kicking. Depending on the robot’s architecture

further systems are required for navigation and motion control [131].

10RoboCup: https://www.robocup.org/

https://www.robocup.org/

42 CHAPTER 2. BACKGROUND AND RELATED WORK

However, in contrast to our problem definition, a typical high-level RoboCup task usually

does not involve long-term planning or planning at all. In most cases it is based on

reactive high-level decision-making [134], for example through Play selection. In these

cases, a Play is selected by considering the current world state and potential statistics

about the Plays’ previous success rates [131]. Once a Play is executed (or aborted), a

new one is selected in a reactive manner.

More complex approaches that incorporate Playbooks outside of RoboCup are described,

for example, in [135, 136]. The former work presents an early study on a user-selected

Plays for teams of UAV agents in military scenarios. Mission plans are then created by

an HTN planner for the whole team. This work focuses on constraint satisfaction for

resource control and coordination of actions. For example, simultaneous execution of

tasks of multiple agents can be defined through additional constraints on these tasks.

The work mentions that in order to meet these constraints during the execution an

agent would have to wait for another agent. However, no further description of the

plan’s execution is provided. The latter work describes a Playbook-based planning-

and-execution approach that combines a SHOP2 planner and a reactive monitoring and

execution system for multi-agent firefighting scenarios [136]. Here, the planner creates

an approximate team plan reasoning with a discrete representation of the world. In the

next step, this plan’s parameters are translated into a continuous representation to be

used during execution.

Multi-agent planning and execution in the area of video games is mostly required for

coordination of opponent agents that are supposed to attack the player in groups. There

are some well-known examples both for decentralized planning and centralized planning

used in games. When using decentralized planning, coordination on abstract levels is

easier to implement for loosely-coupled game scenarios. However, it becomes more com-

plex for tightly-coupled coordination on more detailed levels. In general, there is always

a trade-off between the flexibility on different coordination levels and the computational

cost [127,137].

With decentralized planning, agents usually have limited abilities to reason about the

group and thus need more communication in order to achieve tightly-coupled coordi-

nation, which is costly and thus rarely implemented in games. Usually, interesting

group behaviors in games are rather resulting from emergent agent behaviors than from

planned coordination [138]. The best example for the use of decentralized GOAP (see

Section 2.2.2) is the game F.E.A.R [65]. For example, what a player could perceive as a

complex squad behavior in this game, was the result of emergent behaviors and vocal-

ized dialogues between the opponent agents. However, these dialogues did not represent

actual negotiations between agents but were rather added after all agents’ behaviors

were selected independently [64].

2.3. PLANNING AND EXECUTION 43

In contrast to decentralized planning, the use of a centralized planner allows for tighter-

coupled coordination of a group members’ actions on a higher level. Furthermore, hier-

archical structures of agents as well as hierarchies of goals are natural for many game

scenarios, such as military squads (or animal herds) with strategic as well as tactical

goals. For these reasons, centralized coordination by a single squad entity or even mul-

tiple hierarchical layers can be used to plan group maneuvers and assaults, to send

commands to group members on lower levels and to synchronize their actions [139,140].

In this case, the central coordinating squad unit can reason with a high-level representa-

tion of the world and monitor the overall squad situation. Dealing with high-level world

states and actions can decrease the computational costs on the squad level planning.

Each individual can then reason about his own situation prioritizing between incoming

squad commands, opportunities and their own basic goals such staying alive [140,141].

The complexity of a central command unit can vary from simple selection of a squad

mission to actual planning of a squad maneuver [142, 143]. Similarly, the individual

behaviors of agents can be implemented either through a reactive approach, such as an

FSM [144] or with the help of another planner that deals with a more detailed planning

domain. For example, in the game Killzone 2 the hierarchy contained 3 layers [141]. On

the highest layer, a strategy was selected though a global designer-defined policy. On

the middle layer, squads were build dynamically based on the availability and distance

of agents. Each squad was using a multi-agent HTN planner sending high-level tasks to

individual agents. Finally, on the lowest layer, every agent used its own HTN planner

prioritizing and planning for either its own needs, general combat or the orders from the

squad.

Since game environments are highly dynamic, generating long-term plans and monitor-

ing their progress during execution is very hard. Instead of continually checking the

feasibility of such plans, some approaches tend to replan in fixed time intervals ensuring

that the plan is based on relatively new information, similarly to the approach described

in [145]. For example, replanning in Killzone 2 was done on at a frequency of 5Hz with

some precautions taken to prevent unnecessary checks and oscillating behaviors [141].

The current plan was replaced by a new one if the new plan was found to be better

or if the current plan became infeasible or failed to be executed. In order to interleave

planning and monitoring and to prevent abrupt action cancellations, the individual task

networks contained so-called continue-branches, which were responsible for smooth tran-

sitions between actions [141].

44 CHAPTER 2. BACKGROUND AND RELATED WORK

Some possible optimizations of multi-agent hierarchical planning in games are proposed

in [143]. These include the use of heuristic-based searches such as A* during the task

decomposition. For example, the cost of a possible sub-plan can be computed as the

expected execution time of the plan. When selecting a method to decompose a task,

A* can select the best sub-plan based on its estimated time. Additionally, this work

proposes to decompose high-level tasks that are already fully grounded and thus do not

rely on outputs of preceding tasks first, instead of using total-order decomposition. Since

high-level task have a greater impact on the feasibility of the plan, recognizing failures

on higher levels can prevent some unnecessary backtracking during plan creation [143].

The approach described in [146] implements a planning and reactive execution archi-

tecture for an agent acting in a Navy simulation environment. It uses an HTN planner

and a so-called state transition system for execution of plan steps. When a plan is cre-

ated, it is assigned a set of expectations about the world state during its execution. A

monitoring systems compares the actual world state against these expectations and, if

discrepancies are detected, tries to generate an explanation for the plan failure before

triggering replanning. Due to the hierarchical nature of HTNs, this approach also allows

for multi-agent planning, as shown within a shooter game environment in [147].

There are some academic works that combine case-based planning for high-level goal

selection and BTs for reactive acting of multiple agents in RTS games [148–151]. In

these cases, a goal is selected from a case base containing games played by humans.

The approach described in [148, 149] uses different manager systems to control sub-

areas of an agent’s behavior on a tactical level. For example, one manager system is

responsible for build order selection and another one for the economy. Then, either

micromanagement behaviors are used for low-level control of each unit separately or

squad-level behaviors are used for control of unit groups. All these types of behaviors

are predefined manually and stored in a behavior library. Once a goal is selected, it

is added to a so-called Active Behavior Tree, which is build dynamically selecting and

adding the corresponding behaviors from the behavior library to the tree. This way, one

single tree is used to control all sub-areas of a game and all units of a player. The work

described in [151] also tries to automatically build BTs for the execution of high-level

tasks provided by the case base. However, it does not provide experimental results due

to the inability of the created BTs to properly perform low-level commands.

In contrast, the approach presented in [150] uses predefined BTs for the execution of

tactical behaviors in an RTS game environment. Given a high-level goal selected from

a case base, the tactical layer chooses among multiple Behavior Trees that are able

to achieve this goal measuring the similarity between the current game state and the

BTs’ preconditions. The most similar BT is then added to a pool of running BTs for

execution. This work, however, describes a theoretical approach without providing any

empirical evaluation.

2.4. CONCLUSION 45

As already pointed out in [150], the major drawbacks of case-based approaches in general

is the requirement for case bases that are large enough to cover all possible situations and

the difficulty of identifying (sub-) plans and distinct actions performed by the human

players in order to create corresponding low-level behaviors.

Another approach that uses HTN planning in an RTS game environment is Adversarial

Hierarchical Task Network planning or AHTN [152]. This work combines planning and

Minmax search to plan for a player’s as well as its opponent’s actions minimizing the

player’s loss. The main extension of the standard Minmax search here is the addition of

hierarchical decomposition of nodes. This way, the tree switches between min and max

nodes only when a plan is decomposed up to a primitive task, which can be directly

simulated. This approach plans for all units of a player. However, in contrast to most

other approaches described above, the units are not following the long-term plan that is

created once. Instead, planning is performed every time that a unit can start executing

a new action. This way, even though a full plan is provided to the unit, it only uses its

first action and the rest of the plan is dismissed in the next replanning.

2.4 Conclusion

In this chapter, we have provided an overview of the two major focus areas of this

work: reactive decision-making and planning. We have given a detailed insight into

Behavior Trees and Monte Carlo Tree Search as reactive approaches and Hierarchical

Task Network planners. Subsequently, we have discussed some hybrid architectures that

combine both areas.

Behavior Trees provide a modular and intuitive way for human developers to manually

generate reactive agent behaviors. Due to the high modularity, Behavior Trees allow for

complex and yet robust behavior combinations. Over years they have been successfully

used in the area of game development allowing humans to keep full control over an agent’s

decision-making strategies. Recently, there has been an increasing interest in Behavior

Trees within the area of robotics, where first approaches to automatic generation of

Behavior Trees have been introduced. An agent using a Behavior Tree is very reactive in

its decision-making and execution at run-time, however it does not plan into the future

and usually requires an additional system for coordination and cooperation with other

agents.

46 CHAPTER 2. BACKGROUND AND RELATED WORK

On the other hand, Monte Carlo Tree Search provides a way to make reactive deci-

sions taking into consideration possible future outcomes. Since the approach is based

on action-simulation and search within a state-action space, it allows for autonomous

decision-making without the need to pre-define agent behaviors. However, it requires a

forward model (simulation model) of the environment that it operates in. Its extension

called näıveMCTS allows for centralized multi-agent decision-making with durative and

concurrent actions. However, with a an increasing size of the search space and a limited

computation budget it suffers to simulate far enough into the future to be able to take

long-term goals into consideration.

In contrast to reactive approaches, which provide the agent with a single action, planners

create sequences of tasks that are supposed to lead to a long-term goal. Hierarchical

planners, such as the Hierarchical Task Network planner, offer an intuitive way to gen-

erate behaviors for multiple agents. However, in highly dynamic environments, such

plans are likely to fail within a short time during their execution. For that reason, it

is necessary for real-world applications to combine planners with reactive approaches

allowing to interleave decision-making on different abstraction and control levels.

In this section, we have given insights into some hybrid architectures used in environ-

ments such as spacecraft control and robotics. Most of such approaches are based on a

three-layer architecture where the top-most layer is responsible for high-level long-term

planning while the middle layer takes care of more detailed reactive control. The low-

est layer usually represents the distinct systems responsible for perception and action

execution.

These architectures offer great insights into possible problems and solutions to be con-

sidered in our work. However, most of these approaches are hand-tailored for specific

environments that are less complex than those provided in video games and thus they do

not fulfil all goals described in Section 1.3. Some of them neither consider multi-agent

scenarios nor deal with large search spaces nor high dynamics of the environment. In

the following chapters we propose different approaches that are inspired by the existing

architectures while aiming to combine their advantages and avoid their disadvantages.

C
h
a
p
t
e
r

3
HTN Planning in a Highly Dynamic

Game

As we have seen in the previous chapter, interleaving planning, monitoring, and exe-

cution is of great importance when aiming for long-term planning in highly dynamic

environments. In the following chapter, we introduce a two-layer architecture for in-

terleaved planning and execution. This architecture is used to control a single agent

within a highly dynamic adversarial video game environment. In the following sections,

we describe the goals of this chapter, present the game environment and the proposed

architecture, and discuss the results of the performed experiments. The ideas and results

described here were previously presented in [153].

3.1 Goals

Before focusing on very complex scenarios including multiple cooperating agents and

large search spaces, it is important to consider simpler highly dynamic environments.

For that reason, we first concentrate on a single-agent scenario with the following goals.

G 1: Analysis of the agent performance using a pure planner in a highly

dynamic environment. As already shown in the previous chapter, interleaving plan-

ning, monitoring, and execution is important in highly dynamic environments. Many

existing works propose using a three-layer architecture that combines a planner and a

reactive approach in order to allow for abstract long-term behaviors as well as more

detailed local decision-making. However, our first goal is to evaluate whether a pure

planning approach that is directly connected to the monitoring and execution mecha-

nism can be sufficient for deliberate and reactive decision-making. Therefore, we aim to

evaluate whether a two-layer architecture (without an additional reactive approach) can

lead to a good performance of an agent.

47

48 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

G 2: Analysis of the advantages of long-term planning in comparison to

reactive approaches when used in a highly dynamic environment. Our second

goal is to analyze the advantages and disadvantages of long-term planning in a highly

dynamic game environment in comparison to purely reactive approaches. In order to

directly compare these approaches and to be able to measure their effects on the agent’s

behavior, we focus on the usage of the so-called combos. Combos are sequences of

actions that have to be executed in a certain order. For that reason, we argue that the

execution of such complex sequences requires long-term plans and cannot (or only to a

limited extent) be done with a purely reactive approach. For that reason, we aim to

analyze the success of the execution of such combos comparing our approach to reactive

agents.

3.2 Test Environment

FightingICE is a simplified game environment built for research purposes that is provided

for the Fighting Game AI Competition1[154], which takes place annually since 2013.

Developers and researches can submit agents that play the game and are evaluated

against other competitors. The environment is very similar to most traditional fighting

video games. Two opponent characters fight against each other using different skills.

Each character starts with a certain amount of Health Points (HPs) and energy. When

a character takes damage it loses HPs. Executing an attack skill can consume energy,

which can be restored by hitting the opponent. A game round ends when the Health

Points of a character reach zero or after 60 seconds. A full game consists of 3 rounds.

The game arena is represented by a two-dimensional limited space.

There are three different characters in FightingICE, ZEN, GARNET, and LUD. Each

character’s skills are executed under different conditions and lead to different effects.

Furthermore characters differ by their attributes such as jump or attack ranges. All

these data are fully observable to the agent as well as to its opponent. They are static

throughout the game and can be accessed through the so-called Character Data.

Additionally, the game environment provides the so-called Frame Data. A frame is a time

interval in which the agents as well as the game can perform necessary computations.

The Frame Data contains information about the game in a certain frame such as both

characters’ locations, their vertical and horizontal speed, number of their energy and

health points, and information about currently executed actions. FightingICE runs at

60 frames per second, which means that an agent has approximately 16, 6 milliseconds

to make a decision and forward an action to the game.

1Fighting Game AI Competition: www.ice.ci.ritsumei.ac.jp/˜ftgaic

www.ice.ci.ritsumei.ac.jp/~ftgaic

3.2. TEST ENVIRONMENT 49

Actions are durative and, depending on the type of action, the execution of an action

is divided into three different phases: startup, active, and recovery phase. During the

first two phases of an attack skill no other action can be executed and the agent cannot

change the direction or speed of its character. Depending on the skill, the third phase can

be aborted by certain other skills. This means that an agent is not required to forward

an action to the game in every frame but only when this is possible. Furthermore, some

skills can only be executed if the character has the required amount of energy.

Actions of an artificial agent simulate an input of a human player, which can be done

through the keyboard. Depending on the desired skill, a human player is required to

press multiple keys simultaneously. Agents can combine the required inputs into Key

Input data.

A major challenge presented in this game environment is an artificial delay of 15 frames

with which the Frame Data is provided to the agents. Instead of getting the actual

current game state, the agents receive the game state that existed 15 frames earlier. This

is intended by the competition organizers to simulate the delay in the reaction of a human

player and makes planning, monitoring, and execution even more difficult. The agent

has to either deal with outdated information or try to approximate the current world

state by simulating the last 15 frames while having to deal with even more uncertainty.

Each character can execute attacks that either knock-back or knock-down the opponent.

In both cases the opponent character is playing the falling and recovering animations.

During this time, this character is uncontrollable, which is giving its opponent a pos-

sibility to deal even more damage. A good strategy for a fighting game is executing

multiple such attacks in a sequence. Such sequences can be created by a planner.

Furthermore, what makes this environment interesting for us is that it provides a way

for an agent to achieve better results by executing a sequence of certain skills. Such

sequences are known as combos and are a well-established element of fighting games.

In order to count as a combo, certain attack skills have to be executed in a predefined

order and every two consecutive attacks have to be performed within 30 frames. There

are 14 different combos in FightingICE and each combo consists of 4 attack skills. By

executing a complete combo, an agent deals more damage to its opponent than the

cumulative damage dealt by the distinct skills used in the combo.

50 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

When an agent successfully executes the first skill of one of the combos, a combo counter

for this agent starts. However, the opponent can abort a player’s combo by executing

one of the predefined counter-attacks, so called combo breakers, between the completion

of the second and the fourth combo attack. In this case, the agent performing the combo

receives extra damage instead and its combo counter is re-set to zero. Furthermore, if

the agent executes an attack skill that is not part of the combo sequence or exceeds

the time limit, its counter is re-set as well. Both agents have access to the counters

and can react to the opponent executing an attack. However, similarly to other game

information, the counter is also updated with a 15 frames delay.

There is some work that investigated the improvements of an agent’s performance

through combos in a different fighting game environment [155]. However, there are

two major differences between the environment used in the mentioned work and Fight-

ingICE. First, combo sequences used in the mentioned work were unknown in advance.

For that reason, the work focused on finding possible combos. Second, in contrast to

the environment used in the mentioned work and some other game environments, being

hit by combo attacks in FightingICE does not make the opponent character uncontrol-

lable (also called stunned). In FightingICE, a character is still able to move and execute

actions while receiving damage through combo skills.

In FightingICE, it can be enough to use a purely reactive approach for aborting the

opponent’s combo. For that, the agent has to monitor the opponent’s combo counter

and quickly react to it with a combo-breaker skill. However, in order to execute a

complete combo it is not enough to be purely reactive. The agent needs to plan for a

certain combo and continue executing the selected sequence of skills over some period

of time. For that reason, the agent described in the following section incorporates a

planner.

3.3 HTN Fighter

In order to use the advantages of long-term planning in a real-time environment, it

requires an architecture that allows to interleave planning, monitoring, and execution.

Our agent incorporates a two-layer architecture, which contains a planning layer and a

monitoring and execution layer. This agent participated under the name HTN Fighter

in the 2017 edition of the Fighting Game AI Cometition2, where it scored 8th and was

partially described in our previous work [153]. The distinct components of the HTN

Fighter are described in more detail in the following sections.

3.3. HTN FIGHTER 51

Bottom Layer

Top Layer

Execution Loop

Planning Loop

FightingICE

Agent Controller

Planning
Domain

HTN Planner

Plan

Frame DataKey Input

Plan Failure / PlanEnd

Domain

Figure 3.1: Two-layer architecture for the HTN Fighter.

3.3.1 Two-layer Architecture

The two-layer architecture of HTN Fighter is shown in Figure 3.1. It allows for inter-

leaved planning and plan execution. Furthermore, it monitors the environment and the

plan progression recognizing plan failures and triggering replanning. In contrast to a

common three-layer architecture, there is no additional layer responsible for low-level

decision-making. Instead, the planner is responsible both for high- and low-level plan-

ning and decision-making. There are two update loops connecting the two layers with

each other and the game environment. These loops run at different frequencies. In the

execution loop, the Agent Controller receives an update from the game environment in

every frame, whereas the communication with the planner happens only when a new

plan is required.

2Results of the 2017 Fighting Game AI Competition:
http://www.ice.ci.ritsumei.ac.jp/˜ftgaic/index-R17.html

http://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-R17.html

52 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

Receiving the delayed Frame Data in every frame, the Agent Controller is continuously

monitoring the environment. In order to counterbalance the information delay, it is ap-

proximating the current game state by simulating the game 15 frames forward from the

delayed Frame Data. While following a given plan, the Agent Controller monitors the

environment for incoming attacks to which the agent potentially needs to react. Further-

more, before executing a new task, the Agent Controller checks the task’s applicability

in the approximated game state. If the task’s preconditions are invalid in this state or

the agent is required to react to a certain attack, the Agent Controller requests a new

plan from the planner. Otherwise, the agent forwards the Key Input data that corre-

sponds to the task to the game environment. All details of this process are described in

Section 3.3.4.

3.3.2 Planning Domain

As already mentioned in Section 2.2.2, there are different ways to create a planning

domain. In classical planning, a planning domain is usually defined in some planning

language, such as for example PDDL (see Section 2.2.1). A domain-independent planner

is then able to work with any domain that is defined in the specific planning language

that the planner is using. However, since a planner itself is written in some programming

language, it requires a domain compiler to translate the domain into executable code.

In contrast, it is possible to define the planning domain directly in the programming

language used by the planner. With such a pre-compiled domain, there is no need to

translate it from the planning language into code. For that reason, we use a pre-compiled

domain that is written directly in Java.

Similarly to the definitions used in Section 2.2.3, we denote an HTN planning domain

by the tuple D = (F,C,A,M), where C is a set of compound tasks, A is a set of

primitive tasks (or actions), and M is a set of methods. Each task (both compound

and primitive) and each method in the HTN of the HTN Fighter is represented by a

corresponding class. Since the characters in FightingICE always face towards each other

and each skill represents a specific Key Input, there is no need to parametrize the tasks

in the planning domain. Each skill can be represented by a corresponding task without

any ambiguities.

Furthermore, since the domain is fully pre-compiled, there is no need to define the set

of facts F . Instead, it is possible to directly use the data provided by the game to

represent the environment. These data include the previously mentioned Frame Data

and the Character Data and represent the game arena as well as character-specific facts.

In order to read some additional facts, which are not directly obtainable from the game,

we have created helper functions that can be called by the planner at plan-time. For

example, to receive the distance between the two game characters, the planner can call

a function that computes the distance using the coordinates of the characters.

3.3. HTN FIGHTER 53

Method SelectionDecompositionPreconditions MethodCompound Task

......

Preconditions:
- No projectile with
0 enegry available

Preconditions:
- Projectile with

0 enegry available

Come Closer Keep Distance

Move

Preconditions:...

Move

Preconditions:
- I am in air/landing

Landing Action

Sliding Attack

Knock-DownKnock-BackKnock-Back

Preconditions:
- Short distance

Knock-Back Attack

... ShootKnock-Down

Sliding Attack

Preconditions:
-Short distance

FourthHitThirdHitSecondHitFirstHit

Continue Combo

Preconditions:
- My combo > 0

Start Combo

Preconditions:
- My combo = 0

Perform Combo
Perform Attack

Preconditions:
-Middle distance

Preconditions:
- Short distance

Projectile AttackKnock-Down Attack

Use Attack-Skill

Preconditions:
- Opponent's projectile

is in the air

Preconditions:
- I am in a corner

Escape
From CornerAvoid Projectiles

Preconditions:
- Opponent's combo < 2

Preconditions:...

Use Combo

Act

Figure 3.2: High-level HTN for HTN Fighter [153].

Changes that are expected to happen after executing a task are usually simulated during

the planning phase through effects. Such changes in the environment can be simulated

in FightingICE directly through manipulations of the Character Data and Frame Data.

However, in order to be able to backtrack during plan creation, these changes should be

reversible and the planner should keep track of changes made by each task. For that

reason, during the planning phase, the planner keeps a copy of these data before adding

a new primitive task to the plan. In case the effects of this task need to be reverted, the

planner can fall back on the saved copy of the data.

However, it is not necessary to pre-define task effects in the planning domain for Fight-

ingICE. Instead, actions can be directly simulated by the planner, as described in more

detail in Section 3.3.3. For that reason, in contrast to the definition used in Section 2.2.3,

primitive tasks in HTN Fighter ’s domain are defined by their preconditions pre ∈ 2F

only and do not include the effect lists add and del.

Another difference between the common representation of an HTN domain and the

domain of HTN Fighter is the way how methods and compound tasks are related. As

described in Section 2.2.3, a method is usually defined by the tuple (c, pre, tn) including

c – the compound task that it decomposes, its preconditions pre, and the task network

that it decomposes into. There can be multiple methods that decompose the same task.

Therefore, the planner needs to search for applicable methods during plan time, or bind

them to compound tasks in advance. Instead of defining methods by compound tasks,

we assign applicable methods to each compound task directly. Thus, a compound task

is defined by a list of methods M ′ ∈ M , whereas each method is now defined only by

(pre, tn).

54 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

The high levels of the HTN Fighter ’s task network are shown in Figure 3.2. However,

the full network used for the HTN fighter contains 26 compound tasks, 104 methods,

and 45 primitive tasks. Although the execution of combos is the main goal of this

work (represented by the Use Combo task), an agent is required to act deliberately in

every possible situation. That means that in addition to combos the planning domain

should also include strong single attacks (Use Attack-Skill task), avoidance of incoming

projectiles (Avoid Projectiles task), and actions that are can be executed when the

character is landing after a jump (Landing Action task). In general, an agent who

is trapped in a corner is usually more vulnerable to opponent’s attacks since it has

little chances to escape them. Therefore, the agent should also avoid getting too close

to corners in first place (Escape From Corner task). Furthermore, the agent can be

required to move towards or away from the opponent using the Move task. The highest

goal is always winning the game.

When decomposing a compound task and using ordered method selection (which is

described in Section 3.3.3), the order of the task’s methods plays an important role.

It defines which preconditions are checked first and consequently which of the possible

sub-tasks are more likely to be executed. For example, in the domain in Figure 3.2,

the preconditions for Avoid Projectile are always checked first. Therefore, whenever

they hold, this method will be used and all following methods will be ignored even if

their preconditions hold as well. However, the attack skills of the 3 game character in

FightingICE have different character-specific characteristics (i.e. different attack ranges

and damage amount) and different energy requirements. For that reason, the order

of the methods that decompose the leaf tasks in Figure 3.2 is not predefined in code.

Instead, the planner adds methods to these tasks dynamically at game initialization

considering the character’s skill specifications. Additionally, it sorts the methods by

the damage amount that the corresponding skills deal. For example, the Knock-Down

task will decompose into some methods a, b, c, d for the character ZEN and into some

other methods b, d, f, a, e for GARNET. Following this approach, it is not necessary

to create a static planning domain for each character. Instead, it is possible to create

a universal domain, which is static for all characters on the higher strategic levels and

can be dynamically adapted to each character on the lowest tactical levels.

There are two different high-level tasks that represent strategic behaviors and create

plans that contain more than one action. Besides the task Use Combo, which can be

decomposed into one of the 14 possible combos for each character, the compound task

Knock-Back Attack leads to a sequence of 3 attack skills containing attacks that either

knock back or knock down the opponent. The strategy behind this is to make the

opponent uncontrollable for some time while dealing additional damage to them.

3.3. HTN FIGHTER 55

Furthermore, in order to move the character into the attack range of a certain skill, each

attack method can decompose into a movement action and the actual attack action.

This is necessary if, for example, a previous action pushes the opponent back, so that

the agent cannot reach the opponent from its previous position anymore. A good plan

will first move the character closer to the opponent and then trigger an attack. Therefore,

at this point, a plan containing 4 combo attacks can reach a length of up to 8 actions.

3.3.3 Top Layer

Since our first goal is to investigate whether a planner can work in a specific highly

dynamic environment, namely FightingICE, the planner described in this chapter is

domain-specific. It is written in Java and uses the pre-compiled domain described above.

Using a domain-specific planner means that the planner cannot be used for a different

environment without making modifications to it. However, it allows to encode domain-

specific information into the planner itself. For example, since the game environment

limits the time that an agent can use for decision-making, the planner constantly checks

the time passed since the beginning of the frame. If it is unable to come up with a

plan within the limited time, which is 16.6 milliseconds, it aborts the planning process.

In this case, the Agent Controller is responsible for assigning a default action to the

character (see Section 3.3.4).

As already mentioned, it is not necessary to pre-define task effects in the planning do-

main. Instead the planner can make use of a simulator that is provided with a sample

agent called mizunoAI [156] and simulate the task directly on copies of the Frame Data

and the Character Data for both characters. Although, this way, the planner only sim-

ulates the agent’s plan tasks and the action that is currently being performed by the

opponent. It does not predict the opponent’s future actions. For example, if the oppo-

nent was jumping when the simulation started, the simulator only predicts its landing

trajectory and assumes that the opponent will stand still afterwards. There is some work

that tries to predict the opponent’s actions considering its previous moves [156]. This is

a possible improvement for future work. However, since the focus of this work is not a

general improvement of our agent’s performance but the investigation of improvements

through long-term strategies in the form of combos, we do not implement any prediction

mechanism yet.

Using copies of these data to represent the world states between distinct tasks, the plan-

ner is able to backtrack during the planning process and to apply different decomposition

methods if required.

56 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

The planner implements total-order decomposition, which means that tasks are decom-

posed and added to the final plan in the same order that they will be executed in.

Furthermore, as already mentioned, the methods that decompose one compound task

are either predefined in the domain or assigned dynamically in a certain order. As

opposed to some planners that select a method randomly, we have implemented two

different strategies for method selection in the planner: an Ordered Method Selection

and a UCB Method Selection.

Ordered Method Selection The most simple and common way to select a method

to decompose a compound task is to examine all this task’s methods in their order of

definition in the domain. When representing the domain as a tree as in Figure 3.2 this

order is left-to-right. Following this approach, the first method whose preconditions

hold is selected to decompose the compound task. Only if the decomposition of this

method fails will the planner continue checking the preconditions of further methods

that decompose the same compound task. Ideally, the methods should be defined in

an order that prioritizes more critical tasks allowing their preconditions to be checked

first. A major advantage of this selection is the avoidance of unnecessary checks of

preconditions of all applicable methods and the early reduction of the search space.

However, this selection leads to a feasible plan only but not necessarily to an optimal

plan. Nevertheless, in the area of video games the improved computation time outweighs

the optimality criteria.

UCB Method Selection Instead of minimizing the computational efforts by checking

methods in a predefined order, the aim of the UCB1 selection approach is to find more

optimal methods for a task by trying out all of them and evaluating them. This selection

approach is inspired by the UCB1 selection policy applied in Monte Carlo Tree Search

as described in Section 2.1.2. However, in contrast to MCTS, which gathers the required

evaluation values over multiple simulations, we propose using this approach over a certain

period of time using actual execution of resulting tasks.

m∗(c) = arg maxm∈Mc

{
V (c,m) +K

√
ln N(c)

N(c,m)

}
(3.1)

3.3. HTN FIGHTER 57

The planner can use Equation 3.1 to select the best method m∗(c) for the compound

task c out of all methods Mc that decompose c. This way, it will try to balance between

exploitation of more promising methods (left addend) and exploration of all methods

(right addend) through the value K. To evaluate the quality of a method, the value

V (c,m) is used. This value can be computed in different ways, depending on whether

the goal is to select methods that lead to more damage, those that are successfully

executed more often or any other objective. The values N(c) and N(c,m) represent the

number of times that the compound task c was decomposed so far and the number of

times that the method m was used to decompose c accordingly. By decreasing K over

some period of time, for example throughout a match, the algorithm can first allow for

stronger exploration at the beginning of the match and focus on more optimal methods

towards the match end. Alternatively, this process can be applied over multiple games.

The numbers counting how often a method or a compound task was selected for a plan

can be increased directly during the planning phase. However, in order to evaluate

the quality V (c,m) of a certain method, the execution of the plan that it led to needs

to be observed. Similarly to back-propagation in a MCTS tree (as described in Sec-

tion 2.1.2), the quality value obtained after the execution of a primitive task needs to

be back-propagated to the tasks and methods in its hierarchy. Therefore, each primitive

task in a plan saves a reference to the corresponding decomposition tree containing all

linked compound tasks and methods that led to this task. Since a method can decom-

pose into multiple tasks and therefore lead to multiple primitive tasks within a plan, all

of which can back-propagate their own quality values, the quality value of the method

itself (V (c,m)) is computed as the sum of all its sub-tasks. As described later in Sec-

tion 3.3.4, these values are updated after the execution of each primitive task by the

Agent Controller as shown in Algorithm 1 in line 27.

The proposed approach is especially interesting for cases when no expert knowledge is

available to pre-define a good order of methods in the HTN. In the case of FightingICE,

it can be applied if the attributes of a character’s attacks are not known in advance

and therefore manual ordering is not possible. For example, in the Fighting Game AI

Competition, the skill characteristics of one of the three characters are usually hidden

in advance and are only revealed during the competition games. With the proposed

approach, the values for all compound tasks and methods from Equation 3.1 can be saved

in a file, updated, and used throughout multiple games allowing the agent performance

to improve over time.

58 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

3.3.4 Bottom Layer

The Agent Controller is responsible for plan execution, environmental monitoring, and

recognizing and reacting to task failures. The communication between the Agent Con-

troller and the game environment follows the protocol provided by the environment.

The controller receives the Frame Data from the game environment in every frame, runs

its update logic and returns a Key Input data to the environment. The pseudocode

describing the complete decision-making logic of the Agent Controller is shown in Al-

gorithm 1. Due to the fixed game frame rate of 60 frames per second, the computation

time of the agent is limited to 16.6 milliseconds. This time budget is checked in line 16

of the algorithm. If an agent exceeds this time, its input will only be applied in the next

frame and the previous input will be repeated in the current frame. To prevent this,

in case the planner does not manage to create a plan within the given time, the Agent

Controller triggers a default attack skill, which is set in line 5. A distinct default skill

is predefined for each character.

As already mentioned, after receiving the delayed Frame Data, the Agent Controller uses

a simulator to approximate the current game state by simulating the last 15 frames, as

shown in line 3. In order to perform further checks on the updated data fdnew, the

controller forwards this data to the Command Center in line 8.

Command Center is a class that is provided by FightingICE and is responsible for

starting and processing skills (or commands). For example, a skill can require the

following list of keys to be pressed : 6 2 3 B. Where the first two keys should be

pressed in a sequence and the last two keys should be pressed simultaneously. There is

no need for the agent itself to keep track of the exact timing of the distinct Key Inputs.

Instead, the corresponding skill can be forwarded once to the Command Center, which

will convert it into the corresponding Key Input data and take care of the sequential

input. For the time that a command is being processed by the Command Center no

other command can be accepted. The Agent Controller checks in line 9 whether the

Command Center is still executing a skill. In case it is still processing the input queue

of a previous skill, the controller just returns the corresponding Key Input.

What makes planning in FightingICE even more challenging is the aforementioned delay

of 15 frames. This is less problematic for purely-reactive approaches since they do not

rely on a correct task execution order and therefore do not need to take into consideration

the progress of any previous or future actions. For a successful plan execution, however,

the order as well as the timing of tasks plays an important role. As already mentioned,

when performing a combo, the agent is required to execute all 4 combo skills in the

predefined order and with a maximum of 30 frames between two consecutive skills. If

either of these conditions is violated, the combo is aborted.

3.3. HTN FIGHTER 59

Algorithm 1 Processing

Input: Frame Data
Output: Key Input, which corresponds to the action to be executed

1: cc← Command Center
2: fd← Frame Data
3: fdnew ← simulate(fd, 15)
4: π ← current plan
5: a← default character action
6: k ← a.Key
7: UpdateUCBWeight() {used only in the UCB approach}
8: cc.setFrameData(fdnew)
9: if cc.getSkillF lag then

10: k ← cc.inputKey {continue executing a skill}
11: return k
12: end if
13: decisionMade← false
14: replan← false
15: if canPerformNextAction then
16: while decisionMade = false and belowTimeBudget do
17: if opponentProjectileInAir or prevActionFailed then
18: replan← true
19: end if
20: if π = nil or replan = true then
21: π ← CreateP lan() {create a new plan}
22: if π = nil then
23: break
24: end if
25: end if
26: tprev ← t
27: UpdateUCBStatistics(tprev, fdnew) {used only in the UCB approach}
28: t← next task in π {get next plan task}
29: if t valid in fdnew then
30: decisionMade← true
31: k ← t.action.Key
32: else {t invalid}
33: π ← nil {continue}
34: end if
35: end while
36: end if
37: return k

Furthermore, every attack in FightingICE is durative and cannot always be aborted.

Therefore, in the next step in line 15 the controller checks whether the character is able

to start the next action. This includes checking both whether the previous skill has

been finished and whether the Command Center shows the character as controllable

(see Figure 3.3). A character can be uncontrollable even if it is not actively executing

any skill, for example when it is falling down or recovering from a hit.

60 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

Due to the delay, it is not possible to know whether a forwarded command was actually

executed. Therefore, CanPerformNextAction first checks whether more than 15 frames

passed since the previous skill was forwarded to the Command Center. In this case, the

start of the skill can actually be observed in the delayed Frame Data and this information

can be used to check whether the skill was actually triggered. Furthermore, its start time

and its length can be used to calculate the end time of the skill. Also, in the following

frames these data can be used to ensure that the skill was not aborted by an opponent’s

hit as described below and shown in line 17.

Waiting 15 frames for the information provided by the Command Center, however,

is only feasible for attack skills because all of them last longer than 15 frames. In

contrast, simple movement actions are executed as long as the corresponding Key Input

is forwarded to the game. Therefore, if the character is moving to the right by ”pressing”

the right arrow key for only 5 frames this will be only shown by the Command Center 10

frames after he stops. If the agent was waiting for this information before executing the

next skill, it would be standing still for 10 frames. For that reason, whenever an action

that is shorter than 15 frames is executed, the Agent Controller assumes that the action

was successfully executed and starts the next action without waiting for the Command

Center. If, according to the checks performed in line 15, a new action can be started, the

algorithm tries to execute the next task within the while loop in line 16. Before executing

a task, however, it performs further checks, which can lead to replanning. This is done

until it either succeeds to execute a task or exceeds the total time budget in line 16.

An important requirement for an agent in such a dynamic game is staying reactive even

when using a long-term planner. Since projectiles deal a lot of damage, an agent should

always try to avoid being hit by them. Therefore, even if the HTN Fighter is executing

a combo, the plan containing combo actions should be dismissed in favor of avoiding the

projectile first and continuing the combo or starting a new one afterwards. In Fighting-

ICE, a projectile can be avoided by moving away or jumping over it. In order to detect

projectiles and react to them, the agent controller checks for opponentProjectileInAir in

line 17 and triggers replanning if needed. It is noteworthy that the projectile data is

also delayed by 15 frames.

Monitoring the execution success of previous actions is another important objective of a

long-term planning agent since it relies on the correct execution order of action sequences.

For that reason, the algorithm checks for prevActionFailed in line 17 deciding whether

to continue executing the current plan or to replan. Again, due to the artificial delay

in the Frame Data, the real value of prevActionFailed is only known if the length of the

previous action is higher than 15 frames and at least 15 frames have passed since the

action was triggered. In this case, it is possible to directly check the action in the delayed

Frame Data. Before this time or in case the action itself is shorter than 15 frames the

Agent Controller assumes that the action was successfully executed. A possible future

improvement at this point is to learn the action success rates from past experiences.

3.3. HTN FIGHTER 61

Combo Plan: STAND_ A, STAND_ B, STAND_ FA, STAND_ FACharacter States

Actual Character State

Controllable

Not Controllable

Character State
Shown by the CC

Controllable

Not Controllable

Events

command repeated.

 1 8 16 19 23 36 	 51 59

{15 fr} delay for
STAND_B

command lost

{15 fr} delay for
STAND_A

 Frames

 Frames

{15 fr} delay for
STAND_RECOV

-STAND_B shown

-End of STAND_B
(actual and
shown by the CC)
-Command
STAND_FA

-End of STAND_RECOV
(actual and shown by the CC)
-STAND_B not executed.
Re-planning:
-Command STAND_B repeated

-STAND_RECOV shown

-End of command
STAND_A assumed
-Command STAND_B

-Agent is hit
STAND_RECOV

-Command
STAND_A
shown

-Command
STAND_A

Figure 3.3: Timeline with the actual character state (in terms of controllability) and the
state shown by the Command Center to the Agent Controller [153].

If either one of the previous checks requires replanning or the previous plan was success-

fully completed, a new plan is requested from the planner in line 21. If the planner is

not able to create a plan within the given time, the main loop is exited in line 23 and

the default Key Input is forwarded to the game in line 37.

However, if a valid plan π exists, the Agent Controller selects the task to be executed

next (line 28). Before executing this task, the controller checks whether its preconditions

still hold in the approximated current game state using the simulated Frame Data fdnew
in line 29. This is especially important for tasks that are scheduled later in the plan

since the game state might have changed a lot since the time that the plan was created.

Depending on the validity of the task’s preconditions either its Key Input is assigned to

be forwarded to the game (line 31) or the plan is dismissed (line 33). This causes the

while-loop to repeat the process and to request a new plan.

If the planner uses the UCB1 method selection described in Section 3.3.3, the weight

balancing between exploration and exploitation is updated in each frame in line 7. Fur-

thermore, once the Agent Controller ensures that the previous action completed, the

corresponding UCB1 statistics are updated in line 27. During the ordered method se-

lection these lines are ignored.

62 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

The timeline presented in Figure 3.3 [153] shows the progress of a plan execution and the

differences between the character’s actual state and its state as shown by the Command

Center, which is delayed by 15 frames. In this case, the agent is supposed to exe-

cute the plan containing the following actions: STAND A, STAND B, STAND FA,

STAND FA. In frame 1, the agent triggers the first command STAND A. It starts

executing it and therefore becomes uncontrollable for the next frames (actual state is

uncontrollable). However, the Command Center only recognizes this 15 frames later

and therefore shows the character as controllable until frame 16. In frame 16, the

Agent Controller uses the information provided by the CommandCenter knowing that

STAND A was successfully triggered. Using its skill length of 18 frames, the Agent

Controller assumes that the skill will end in frame 19.

However, while the character is executing STAND A, it is hit by its opponent in frame

8. This causes the character to play the STAND RECOV ER animation recovering

from the hit. This animations lasts 28 frames and therefore the character remains

uncontrollable until frame 36. It cannot accept any new commands during this time.

The information about the hit is not available to the Agent Controller in frame 19 and

therefore, assuming that the character is controllable, it triggers the second skill in the

plan STAND B. Only in frame 23 (15 frames after the hit) does the Agent Controller

recognize the hit and can deduct that the character is uncontrollable and that command

STAND B could not be accepted in the meantime.

This failure recognition is what allows the agent to repeat the same command later

on in frame 36 instead of continuing with the next skill. After a successful execution

of STANDB, the agent can trigger the following command STAND FA in frame 59

ensuring the correct execution of the plan. Although it is still possible that commands

that are shorter than 15 frames are lost, for attack skills this strategy allows a safe

execution without unnecessary plan re-generation.

3.4 Evaluation

The experiments described in this chapter were performed focusing on the two goals

defined in Section 3.1. The first goal was to evaluate whether the proposed two-layer

planning approach can lead to a strong performance of our agent. The second goal

was the evaluation of the ability to follow long-term strategies while using a planner

in comparison to purely reactive approaches. For the evaluation of the first goal, we

measure the win rate of the HTN Fighter while it is playing against multiple reactive

opponents. The success of the second goal is measured by the number of executed

combos of each agent during these games.

3.4. EVALUATION 63

The opponent agents used in all experiments described below were Thunder01, Ranezi,

MrAsh, and a sample MCTS agent that is provided with the game environment. The

first three opponents were the top agents submitted to the 2016 edition of the Fighting

Game AI Competition3. Each of these agents is based on MCTS extended by additional

rules.

We have performed two different experiments with the two method selection approaches

described in Section 3.3.3. Having good knowledge about the game environment and the

skills of the character ZEN, we have manually defined its planning domain and used the

common ordered method selection in order to evaluate the success of the goals described

above. Afterwards, we have used the UCB method selection for the character LUD,

whose skills’ characteristics differ from ZEN’s and therefore the character can benefit

from a different order of methods. Both experiments are described in the following.

3.4.1 Ordered Method Selection

The description and results of the experiments described in this section were published

in our previous work [153]. For these experiments, the planner used ordered method

selection. Thus, when it was selecting a method to decompose a compound task, it

checked (the preconditions of) the methods assigned to this task in the order that they

were defined in the code. As already mentioned, skills in FightingICE are different

for each character in terms of the required energy, their range, and the damage they

deal. A skill that is very powerful for example for the character ZEN can be a worse

choice for other characters. For that reason, the initial domain described in Section 3.3.2

was designed according to our knowledge of the game and some prior test runs for the

character ZEN specifically. This domain was used in the experiments described in this

section.

In order to evaluate both, the overall performance of the agent and the frequency and

length of the executed combos, HTN Fighter played 100 games against each of the 4

opponents with 50 games on each played side. A game consists of 3 rounds meaning that

in total 300 games were played between HTN Fighter and each opponent. Following the

rules of the FightingICE competition, each agent started a game round with 400 Health

Points (HPs) and the round lasted for maximum 60 seconds. If the HPs of one of the

agents reached 0, the round ended with the other agent winning the game. If none of the

agents was able to win the game within 60 seconds, the agent with the higher number

of HPs at the end of the round was considered winner. Figure 3.5 shows the number of

games won by HTN Fighter against each opponent. Our agent was able to outperform

all opponents and after closer observation of the games we could see that the usage of

combos contributed to these results as described below.

3Results of the 2016 Fighting Game AI Competition:
http://www.ice.ci.ritsumei.ac.jp/˜ftgaic/index-R16.html

http://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-R16.html

64 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

(a) HTN Fighter vs. MCTS (b) HTN Fighter vs. Thunder01

(c) HTN Fighter vs. Ranezi (d) HTN Fighter vs. MrAsh

Figure 3.4: The average number of successfully performed chains of combo-hits of the
length 1 – 4 for each agent pair playing with the character ZEN. HTN Fighter uses
ordered method selection [153].

As already mentioned, a full combo in FightingICE consists of 4 attack actions that have

to be executed within a limited time between each two consecutive attacks and there are

14 different combos in total. An agent’s combo can be aborted by its opponent through

one of the combo-breaker attacks performed after the second combo-attack and before

the last combo attack. However, it is not aborted between the first two attacks.

For each agent pair, the average number of consecutively executed combo-attacks was

recorded during the 300 game rounds. These numbers are shown in Figure 3.4. The

value in each column means that an agent hit its opponent exactly this many times

before the combo ended. With 4 consecutive hits a combo was successfully completed,

whereas an end after only 1 to 3 hits means that the combo was aborted either by a

combo-breaker or because the agent did not execute any further combo-attacks within

the time limit.

3.4. EVALUATION 65

Figure 3.5: Number of games won by HTN Fighter playing as character ZEN using
ordered method selection in 100 games (300 rounds) against opponent agents [153].

Many combos start with an attack skill that does not require much energy and can be

executed very quickly. This skill on its own is very popular amongst the majority of

agents. Therefore, having a high value of only 1 combo hits (shown in the first column

of each diagram) does not necessarily imply that an agent intentionally started a combo.

It can mean that the agent executed this skill for some other reason. However, having a

high value in the second column indicates a higher possibility that the agent intended to

execute a combo. In Figure 3.4, it is clearly visible that HTN Fighter started a combo

much more often than most of its opponents. Sequences of 2 combo-hits were executed

only by MrAsh.

Since a combo can be aborted after the second hit only, it is not surprising that the

number of 3 consecutive combo hits drops in comparison to 2-hit sequences. Still, HTN

Fighter was able to execute longer sequences and successfully complete some combos,

which was not achieved by any of the opponents.

Another possible reason for the high difference between sequences of 2 and 3 combo-

attacks performed by HTN Fighter is the fact that the second attack usually pushed the

opponent away. Consequently, the preconditions of the planned third attack did not hold

anymore. In this case, following the logic described in Section 3.3.4, the Agent Controller

recognized a plan failure and triggered replanning. In many cases, we observed that

the following plan involved a sliding action, which moved the agent quickly towards

the opponent and dealt high damage. Followed by a sequence of Knock-Back Attacks,

the opponent was uncontrollable for some time and received more damage from HTN

Fighter. Such sequences of close-range skills explain the overall good performance of

HTN Fighter against three opponents and the slightly worse performance against the

pure MCTS agent as shown in Figure 3.5.

66 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

Due to the limited computation time in FightingICE, pure MCTS is able to perform

rolls-out up to a certain depth only. That means that if its opponent was far away, the

MCTS agent would need to simulate movement actions far enough into the future to

actually reach its opponent and perform a close-range attack. However, due to time

limits, the MCTS agent was not able to simulate that far ahead and was therefore

not approaching its opponent. Instead it was rather firing range attacks. From the

observations of the games against the MCTS agent, we could see that such situations

were problematic to handle for HTN Fighter since it did not have a specific strategy

for ranged fights. This can be the major reason for the worse performance against the

MCTS agent in comparison to other agents.

As already mentioned, the other three agents were using MCTS in combination with

some enhancements, which allowed them to approach the opponent and have close-range

fights rather then staying in distance. In these cases, however, the HTN Fighter could

apply the strong sequences of attacks described above, which explains the higher win

numbers against other opponents shown in Figure 3.5.

The fact that HTN Fighter was able to execute some longer sequences of attacks shows

that the use of a planner in a highly dynamic fighting game is possible in general.

Furthermore, the recognition of plan failures through the monitoring Agent Controller

shows that the architecture is suitable for reactive planning. However, especially cases

where small changes caused replanning show that an additional low-level decision-making

mechanism can be beneficial to deal with such situations without triggering global re-

planning. For example, when the opponent moved out of the next attack’s range, the

global plan would be still valid if our agent moved slightly closer to the opponent. In

this case, replanning could be prevented by some additional movement actions added at

execution time.

3.4.2 UCB Method Selection

As already mentioned, the planning domain described in Section 3.3.2 was created for

the character ZEN specifically. The order of methods used in this domain was selected

to the best of our knowledge of the game and was used with ordered method selection in

the first experiments described above. Other characters’ skills, however, have different

attributes and therefore a different order of methods can be more optimal for them. In

order to evaluate the effects of ordered method selection and UCB method selection,

we have tested both selection approaches for different characters in further experiments

described in this section. First, the experiments described above were repeated with

UCB method selection for the character ZEN. Afterwards, they were repeated with both

ordered and UCB method selection for the character LUD while using ZEN’s planning

domain.

3.4. EVALUATION 67

For both characters, we have first used a learning phase to collect the UCB values

that were used later in test games following Equation 3.2. Each character was trained

independently while playing against the same character (i.e. ZEN versus ZEN and

LUD versus LUD) controlled by each of the 4 opponents from the previous section:

Thunder01, Ranezi, MrAsh, and MCTS. The learning games consisted of 300 rounds

against each opponent (with 100 games against each opponent, a game consisting of

3 rounds and 50 games played on each player side). During the training games, UCB

did not use any exploitation. Instead it was exploring all applicable methods (methods

whose preconditions held in the current situation) with a uniform selection probability.

Throughout all games, all UCB values were recorded. These values were the number of

times that a compound task c was decomposed so far (N(c)), the number of times that

the method m was used to decompose c (N(c,m)), and the quality of method m.

m∗balanced(c) = arg maxm∈Mc

{
RelDamageDealt+K

√
ln N(c)

N(c,m)

}
(3.2)

Following a strategy that balanced between offense and defense, the quality of a method

was computed as the relative damage that was dealt to the opponent by the tasks that

resulted form a method. As shown in Equation 3.3, this was computed as the difference

between the damage dealt by HTN Fighter and the damage received from its opponent.

These values were computed at execution time after finishing the execution of a task

that resulted from method m.

RelDamageDealt =
DamageDealt−DamageReceived

DamageDealt+DamageReceived+ ε
(3.3)

The dealt damage, again, was computed as the difference between the opponent’s HPs

after the end of the task and before the start of the task as shown in Equation 3.4. Sim-

ilarly, the received damage was computed taking into consideration HTN Fighter’s HPs

as shown in Equation 3.5. Following these computations, HTN Fighter was supposed to

select a strategy that allowed to deal more damage to the opponent than to get hit.

DamageDealt = oppHPcurrent − oppHPprevious (3.4)

DamageReceived = myHPcurrent −myHPprevious (3.5)

68 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

(a) Ordered method selection - ZEN. (b) Ordered method selection - LUD.

(c) UCB method selection - ZEN. (d) UCB method selection - LUD.

Figure 3.6: Number of games won by HTN Fighter playing as character ZEN and LUD
using different method selection approaches. The agents played 100 games (300 rounds)
in each setup against 4 opponent agents.

After the training phase against all 4 opponents, the collected values for each character

were used by UCB during further 300 test rounds against each opponent according to

Equation 3.2. Similarly to the first experiment, we have measured the general perfor-

mance of our agent by the number of games it won against each opponent. Furthermore,

we have measured the average number of combos performed by each agent during the

300 rounds.

Figure 3.6 shows the general performance of HTN Fighter against the 4 opponents.

For the purpose of a better comparison, we have added the results already shown in

Figure 3.5 as Figure 3.6a. It becomes very obvious that HTN Fighter’s performance was

much worse in the 3 additional experiments. In these cases, the agent was not able to

win most games against all opponents. When looking at the games played by ZEN, we

assume that the performance drop with UCB selection appears due to the fact that we

pre-tweaked the original planning domain in such a way that the strongest strategies were

considered first when using ordered method selection. Therefore, adding more variation

through UCB meant potentially selecting weaker strategies or combinations of actions

that are less optimal in their combination. In the games with UCB selection, the agent’s

behavior seemed more chaotic and oscillating than with ordered method selection.

3.4. EVALUATION 69

Another possible reason is the way that the quality of a method was measured during

the training phase. A damage dealt by a task was measured directly after finishing the

task (and the additional delay of 15 frames.) However, it was not possible to correctly

register the damage dealt by projectile attacks since a projectile can hit the opponent

many frames after the character finishes executing the attack. Furthermore, there can

be multiple projectiles in the air at the same time. Therefore, it requires a complex

system in order to track all projectiles and to connect their damage with the respective

previously executed tasks. For that reason, UCB did not learn the correct values for

projectiles, which might have led to a decreased usage of projectiles and an even worse

performance of the agent both as ZEN and LUD.

The major insight from LUD’s results is that while using ZEN’s planning domain, LUD

performs much worse against all opponents with both ordered and UCB method selec-

tion. This was expected since all skills in the game are character-specific and therefore

each character requires a specific high-level strategy. For example, we have noticed that

while playing as LUD, our agent often did not move at all when its opponent was out

of hit range. If played as ZEN, the agent usually used a projectile attack in this case.

However, this attack required a certain amount of energy from LUD, whereas it did not

require any energy from ZEN. Therefore, LUD did not have the option for a ranged

attack and remained passive until the opponent came closer. This problem was not even

solved by a different method order through the UCB selection since approaching the

opponent was not regarded as rewarding according to the UCB computation.

Similarly to the weak general performance of the agent, the numbers of combos per-

formed while playing as LUD or as ZEN with UCB selection are also much lower than

those achieved while playing as ZEN using ordered selection (shown in Figure 3.4).

These numbers for all 3 additional experiment setups are shown in Appendix A. For all

setups, these numbers indicate that the agent was not even able to execute sequences

of 2 consecutive combo attacks, which can also explain the worsened performance. Fur-

thermore, there is no obvious difference between the numbers of combos achieved with

the two different method selection mechanisms for LUD. This, again, can result from

the usage of high-level strategies that were not designed for LUD.

In general we can conclude that the usage of UCB for method selection did not provide

the expected advantage of finding strategies that were more optimal than those defined

manually. Instead, it led to more chaotic behaviors and a worsened performance. Fur-

thermore, it diminished the main advantage of an HTN, namely the early decrease of

the search space size through the avoidance of unnecessary precondition checks. With

ordered method selection, a planner only checks a task’s methods’ preconditions un-

til it finds an applicable method, which, in the best case, is only one method. With

UCB selection, however, the planner was checking the preconditions of all methods of a

compound task, which often led to increased planning times.

70 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

3.5 Limitations of Pure HTN Planning

The experiments of this chapter have shown that the usage of a planner allows an agent to

execute more advanced and long-term behaviors than with purely reactive approaches.

Our agent was able to execute a higher number of combos than its opponents and

achieved a higher win rate through further sequences of specific attacks.

Furthermore, using the proposed architecture allowed the agent to monitor the progress

of a plan, compare it against the world state, and trigger replanning, if required. As

intended, replanning was triggered whenever the preconditions of a task could no longer

be met or if the goal of the agent changed. The former happened very often if the agent

was no longer withing the attack range and therefore was not able to hit its opponent.

The latter happened if, for example, the agent was required to abort its current plan in

order to avoid being hit by a projectile.

Although in these situations a full replanning led to better behaviors than if the agent

continued to follow the old plan, we see the high frequency of such global replanning

as problematic for multi-agent environments. Assuming that in such cases a centralized

planner creates plans for all agents, every time that an agent is out of the attack range

the planner will replan for all agents globally. That, again, means that every other agent

will potentially change its behavior every time, which can be especially problematic if it

happens with a high frequency (for example, every few milliseconds). Alternatively, if

every agent has its own (decentralized) planner, replanning of one agent will require it

to communicate its new plan to all other agents, all agents to synchronize their plans,

and potentially to adapt their plans through replanning.

Naturally, global replanning cannot and should not be avoided completely. However,

we argue that in many cases seen in this chapter the execution of the plan could be

continued if the agent reacted to the situation locally by, for example, slightly adjusting

its position. This leads us to the conclusion that using a high-level planner only is not

enough for reactive execution. It requires some low-level mechanism in order to stay

reactive while following long-term plans without every minor local change causing a

global replanning. In the following chapters, we propose some solutions that tackle this

problem.

3.6. CONCLUSION 71

3.6 Conclusion

In this chapter, we have introduced a first approach to planning and execution to be

used in a highly dynamic environment. The proposed approach is based on a two-

layer architecture. Here, the top layer consists of an HTN planner and is responsible

both for strategic (high-level) and tactical (low-level) planning. The bottom layer is

represented by an Agent Controller, which takes over the monitoring of the environment,

the monitoring of the plan’s execution, and the forwarding of commands to the game

environment in order for the agent to start their execution. By checking the planned

tasks against the environment, the Agent Controller is able to recognize plan failures as

well as important changes in the world and trigger replanning when needed. For this, it

requests a new plan from the top layer.

The approach was tested in a typical fighting game environment, where an artificial

agent can control a game character fighting against other artificial players. The main

goal of proposed approach was the evaluation of the ability of a long-term planner to stay

reactive in a highly dynamic environment while following a long-term strategy. For that

purpose, we have created a planning domain for one of the available game characters

and performed experiments letting our agent play against multiple strong opponents.

In order to be able to measure the success of long-term strategies, we have focused on

so-called combos, sequences of certain attacks that have to be executed consecutively

without any interruption. During the experiments, we have tracked the number of

successfully executed combos for each character, as well the number of only partially

executed combo sequences. Additionally, we have measured the overall performance

of every agent tracking their win rates. The experiments have shown that the use of

a planner greatly contributes to the successful execution of combos as well as further

sequences of actions. Our agent tried to execute a combo more often than its opponents

and was able to execute longer combos. Through further sequences of strong attacks, it

was able to outperform all opponents.

72 CHAPTER 3. HTN PLANNING IN A HIGHLY DYNAMIC GAME

This, however, was only true for the one character for which the planning domain was

specifically created. When the same planning domain was applied to a different charac-

ter whose actions have different requirements and effects, the agent was very ineffective

in both the overall performance and the execution of combos. This shows the impor-

tance and effects of a well-defined planning domain. In addition to a common planning

technique where a planner selects the first applicable method to decompose a compound

task and dismisses the other possibilities, we have evaluated the effects of method se-

lection based on Upper Confidence Bound (UCB1). Here, the planner was supposed to

balance between exploration and exploitation of all applicable methods. This approach,

however, could not outperform the manually designed order of methods and worsened

the agent’s performance resulting in more chaotic behaviors. Furthermore, since apply-

ing the UCB1 selection possibly means checking the preconditions of all methods, this

approach dismisses the main advantage of an HTN planner, namely the early decrease

of the search space. For that reason, we do not recommend applying this selection in

highly dynamic environment where the planner’s computation time should be decreased.

Although the first experiments have shown good results in terms of strategic long-term

behaviors, we see the major problem in the two-layer approach in the fact that every

minor change in the environment can trigger a replanning. In many cases, the change

can be so small that a local adjustment of the behavior could allow the agent to con-

tinue executing its existing plan. However, without an intermediate decision system, the

agent is required to request a decision from the planner, which unnecessarily increases

the replanning rate. We regard this fact as especially problematic in multi-agent envi-

ronments where global replanning can be caused even more frequently by every agent,

which, again can lead to further problems. For that reason, we conclude this chapter

with the suggestion to add an intermediate layer to the proposed architecture that should

be responsible for local reactive decision-making following the examples of three-layer

architectures described in Section2.3.1.

C
h
a
p
t
e
r

4
Hybrid Approach : General Idea

In the previous chapter have pointed out some drawbacks that can arise when using a

two-layer architecture in a highly dynamic environment. Seeing a necessity for a third

layer with the goal to take over some low-level decision-making, we describe the general

idea of a three-layer architecture in this chapter.

4.1 Goals

One major problem observed in Chapter 3 is that the replanning frequency can increase if

failure management and decision-making are fully performed by a planner. Furthermore,

with the planner dealing with both high-level and low-level decisions, the planning time

can unnecessarily increase. In addition, the last chapter dealt with only a single agent

in an environment which was modified by only one other actor (the opponent player).

With an increasing number of factors that influence the environment and with multiple

agents being controlled by our approach, the mentioned problems become even more

complex and challenging.

G 1: Introduction of the general idea of a three-layer architecture The ma-

jor goal of this chapter is to describe the general idea of a domain-independent hybrid

planning-and-execution approach that is based on a three-layer architecture. The pro-

posed approach is designed to be used in different highly dynamic environments and, if

necessary, adapted to their needs while still following the general idea described in this

chapter.

G 2: Separation of the decision-making levels The goal of the hybrid three-layer

approach is the separation of the decision-making into different granularity levels, the

reduction of decision complexities on the different levels, and the distribution of the

responsibilities between the higher layers of the architecture. The intention behind this

separation is the reduction of the planning time and the planning frequency as well as

the improvement of the execution.

73

74 CHAPTER 4. HYBRID APPROACH : GENERAL IDEA

4.2 Three-Layer Architecture

Inspired by the three-layer architectures that are common in robotics and spacecraft

control (as described in Section 2.3.1), we propose a three-layer architecture to be used in

highly dynamic environments such as video games. The proposed architecture allows for

strategic multi-agent planning, environmental monitoring, and reactive decision-making

and execution.

The two higher layers of the architecture are responsible for decision-making on different

abstraction levels and in regards to different time spans for which the decisions are

made. The top layer is supposed to reason far into the future and make long-term

plans. However, since no details about the future can be known in advance, we propose

abstracting the representation of the environment on which the top layer operates. We

expect these measures to decrease the planning complexity and the planning time of the

top layer.

Instead of creating a fully detailed plan or being prepared for its contingencies, the top

layer forwards the refinement of the abstract plans to the middle layer. Receiving an

abstract plan, the middle layer is responsible for finding a way to execute each plan

task in the most appropriate (feasible or optimal) way. In order to do so, it requires

information about the properties and boundaries of each task. Therefore, we propose

an extension to a common planning domain, which is described in more details in the

following section. Using this information and monitoring the environment, the middle

layer is able to make reactive decisions that allow an agent (or multiple agents) to show

robust behaviors while proceeding with the long-term plan.

When refining and executing a certain plan task, the middle layer is responsible for rea-

soning about this task only, which decreases its own decision complexity and prevents

it from exceeding computation time budgets and delaying its action execution. Further-

more, the use of the more reactive middle layer allows for additional security measures

such as fall-back behaviors, which can be executed in extreme situations such as un-

planned delays or minor failures. With a long-term planner only, such situations would

require full replanning. However, since the top layer generates only abstract plans, we

expect them to fail only in the case of severe environmental changes but not due to small

local changes. We assume that, in most cases, small changes can be handled locally by

the middle layer without requiring global replanning.

During the execution of a plan task, the middle layer is also monitoring the environment

and validating the task against the current state of the environment. For that purpose, it

is receiving sensory information from the lowest layer of the architecture. Additionally,

the lowest layer is responsible for the actual updates of different systems. This layer is

very specific to an agent’s general architecture and is, therefore, not within the focus of

this chapter.

4.3. TOP LAYER 75

4.3 Top Layer

The top architecture layer is responsible for strategic long-term planning. Since we are

considering multi-agent planning problems, this layer can incorporate either one central

planner or multiple decentralized planners assigned to each agent. In this work, we

focus on coordinating and cooperating agents and therefore coordination is an important

aspect to consider when selecting a planning mechanism. Decentralized planning requires

coordination between agents at plan-time, which can lead to high communication and

coordination costs and longer planning times of the involved planners. This, in turn, can

delay the execution and negatively affect the agents’ behaviors. As we have mentioned in

Chapter 2, such delays are critical in highly dynamic environments such as video games.

On the other hand, coordination costs at plan-time can be omitted when using a central-

ized planner, which can access all agents’ knowledge. A single planner creating plans for

all agents allows for tightly-coupled coordination on higher hierarchy levels. However,

the planning problem becomes combinatorial and, if these plans are very detailed, the

planning time can exceed all acceptable limits. As already described in Section 2.3.2,

in order to decrease the size of the search space and the planning costs of a centralized

planner, it is common to use abstract world models on higher levels of a task hierarchy.

We propose using a centralized HTN planner on the top layer of the architecture. The

purpose of the planer is to generate long-term plans while deciding on high-level strate-

gies and operating on an abstract world representation. The planner is not be responsi-

ble for low-level detailed decision-making and therefore only replans when the high-level

plan fails or a new strategy is required. Furthermore, it can generate common plans

for multiple agents, if required. As already mentioned in Section 2.3.2, in many cases,

hierarchical planners are used for coordinated multi-agent planning since hierarchical

structures of agents and goals allow for intuitive strategy generation.

4.4 Planning Domain

A major challenge when interleaving a planner with a reactive approach that is respon-

sible for task refinement is the representation of plan tasks in a form that is readable by

the reactive approach. For that purpose, we introduce the Hierarchical Task Network

with Postconditions (HTNp) extending the standard notion of HTNs by an element that

allows for refinement of high-level plans during execution. To the best of our knowledge,

such an extension has not been made so far.

76 CHAPTER 4. HYBRID APPROACH : GENERAL IDEA

The definition of the HTNp’s planning problem is similar to the standard notion of HTNs

described in Section 2.2.3: p = (D, sI , cI), with sI ∈ 2F being the initial state, cI ∈ C

the compound task to be decomposed, and D = (F,C,A,M) the planning domain. The

domain consists of a set of facts F , a set of compound tasks C, a set of methods M ,

and a set of primitive tasks A. However, in contrast to the common definition, primitive

tasks are defined not only by their preconditions but also by postconditions. That is, a

primitive task t ∈ A is defined by the tuple (pre, add, del, post), their preconditions,

effects, and postconditions with add ∈ 2F , del ∈ 2F , and post ∈ 2F .

The purpose of postconditions is the definition of a primitive task’s end. Combining

notions of tasks (as used in HTNs) and goals (as used in HGNs), we assume that the

primitive tasks used by the abstract high-level planner are durative and can be finished

or achieved through different influences, not only by (an) agent(s) but also through some

external effects. For example, a task to collect a barrel of water can be performed by

an agent bringing multiple buckets of water. But if it starts to rain into the barrel this

task can be finished or achieved1 earlier through the external influence.

The knowledge about changes caused by the rain, however, is only available once the

agent starts executing the task. Therefore, the main difference between effects and

postconditions, is that effects are used by the planner during the planning phase, whereas

postconditions are used by the executing system during execution. This allows for such

complex behavioral structures as iterations, loops, concurrent and sequential activities,

or time- and event-driven activities at execution-time. The importance of such structures

has been addressed in multiple planning-and-execution approaches used in spacecraft

control as described in Section 2.3.1.

Postconditions do not affect the search and decomposition process of the planner in any

way. The decomposition is still done using preconditions and effects only. That way, any

HTN planner can be used at the top layer of the architecture ignoring the postconditions

of the tasks. For example, after adding the task of collecting a barrel of water to the

plan, the planner will add the effect of having a barrel of water to its internal world state

representation. At this point, the planner is not concerned with how the task will be

achieved later on, the effect is expected to be the same. During execution, however, the

middle layer can implement different ways to refine the task, such as bringing multiple

buckets of water or waiting for the rain to fill the bucket, all of which aim to meet the

same postcondition of having a barrel of water.

1For simplicity, we use the notion of achieving a task in this work.

4.5. MIDDLE LAYER 77

Although, intuitively the effects and postconditions of most of the tasks will be the same,

they can as well differ in some cases. For example, postconditions can include facts that

have to hold in the environment without a direct influence of any agent. This kind of

postconditions replace certain temporal conditions such as the task has to be achieved

at daytime. Furthermore, postconditions can be used for synchronization of tasks of

multiple agents. For example, one agent can be required to keep the barrel open for as

long as another agent is filling water into it. An effect of the first agent’s task is barrel

is open while its postcondition is barrel is filled.

Using the postconditions, the middle layer can monitor the progression of the currently

executed high-level task and decide when to proceed from one task to the next one.

This way, it is also possible that a task can be achieved due to external events and not

only through the agent’s actions only. For example, using the postcondition of the first

agent (barrel is filled), the middle layer will recognize at execution time when the task

is achieved and will proceed to the next task.

4.5 Middle Layer

On the middle layer, we propose using one of the common reactive approaches described

in Section 2.1. By using a standardized and widely used approach, we aim to make

the use of the architecture more intuitive. The purpose of this layer is to allow (an)

agent(s) some local autonomy while following a (common) long-term plan provided by

the top-level planner.

In particular, this layer is responsible for refining a high-level plan. During the refine-

ment, it is responsible for the monitoring of the plan progress and for plan validation

against the current environment state. In case of plan failures, it requests a new plan.

Communicating with the lowest layer, it is responsible for a translation of plan tasks into

actions that can be directly executed by the low-level control systems, while interpreting

the information provided by the lowest layer and additional systems.

Since this layer is responsible for more detailed decision-making at execution time, it

uses a more detailed world representation than the top layer. Therefore, there are two

major aspects that need to be considered when using different world models on different

architecture levels, namely knowledge representation and action representation. When

abstracting the world representation, it is important to not lose information and to

be able to translate between different knowledge representations used by the different

architecture layers. While the highest layer operates on abstract information, the lowest

layer can use detailed sensory information perceived by dedicated systems. This data

can be filtered and combined with real data (such as world coordinates) in the middle

layer before being further abstracted and represented as facts to the top layer planner.

Therefore, it requires some binding between the different data representations. The

details of this binding are presented for each proposed approach in the following chapters.

78 CHAPTER 4. HYBRID APPROACH : GENERAL IDEA

Another important aspect is the translation of high-level tasks into low-level behaviors

and actions. According to most of the three-layer architectures described in previous

works, the middle layer usually deals with operational action representations, as opposed

to the declarative representation used by a planner. Although there have been some

approaches that used either operational or declarative representations on both layers,

these are very uncommon in practice, which makes their maintainability more difficult

and less intuitive. Our goal, however, is the creation of an approach that is easy to

use and maintain. For that reason, we propose using combinations of standardized

and common methodologies. Therefore, the proposed architecture includes a declarative

planning layer and operational low-level decision-making and execution layers.

Since reactivity and fast decision-making is very important at the middle layer, we

avoid explicit communication between all agents at execution-time to save the costs

of communication. Instead of explicitly communicating with every other agent, we

propose coordinating individual plans either through specific synchronization signals

and synchronization actions between the affected agents, similarly to the idea described

in [127] (as used in Chapter 5), or through fully implicit communication (as described

in Chapter 6).

4.6 Bottom Layer

Similarly to most of the three-layer architectures, the lowest layer is responsible for

communication to concrete systems of an agent retrieving information from sensors or

perception systems and forwarding the low-level actions provided by the middle layer

to systems like the navigation and locomotion systems. The details of the lowest layer

depend mostly on the environment, the available systems, and possibly the agent’s hard-

ware. In most cases of virtual environments, the agents are required to implement certain

predefined protocols and software interfaces. For that reason, this layer is not standard-

ized in general. In the following sections, more details are given on how this layer is

implemented for two concrete environments.

C
h
a
p
t
e
r

5
Hybrid Approach I : HTN + BT

In this chapter, we introduce a novel hybrid planning-and-execution approach that imple-

ments a three-layer architecture based on the idea described in Chapter 4. This approach

uses Behavior Trees as the low-level decision-making and executing mechanism on the

middle architecture layer, which allows for local autonomy of each agent in a multi-

agent scenario. In the following, we describe the goals, the use-case environment, and

the details of the hybrid architecture, followed by the description of the evaluation. The

ideas and experiments described in the following sections were published in a previous

work [157].

5.1 Goals

As we have seen in Chapter 3, in most cases, a plan failure happens due to small changes

in the environment such as the opponent not being close enough for the agent to execute

its next attack directly. However, these failures can usually be managed locally. They

do not invalidate the overall plan and only require some adjustments on the lowest levels

of a task hierarchy. This, however, cannot be done with a two-layer architecture where a

planner is responsible for both high-level and low-level decision-making. Furthermore, if

a planner is responsible for very detailed planning, its planning time, even for one agent,

can be unacceptably high. Therefore, the following section discusses how to tackle these

problems and further challenges described in Section 2.1 and Section 2.3.1.

79

80 CHAPTER 5. HYBRID APPROACH I : HTN + BT

The introduced approach is intended to be used for a manageable number of agents that

build teams of up to 10 agents, as opposed to a crowd or a swarm of agents, which can

exceed this number by far. Furthermore, as a team, the agents are following a common

goal while each individual agent’s goals and actions remain important. In contrast, for

example, in a swarm, only the group’s goal are important to every agent. Furthermore,

the proposed approach should allow for very precise action execution in a continuous

environment even though planning is performed on an abstract discretized world model.

A scenario including a higher group size with a higher focus on the group’s goal as well

as execution in a discrete environment will be dealt with in Chapter 6. The goals of this

chapter are the following:

G 1: Reduction of the global replanning frequency. The main goal of this

chapter is to reduce the global high-level replanning. The applied solution tries to hand

over the management of small local changes to individual agents that use a reactive

approach. To achieve this, it requires a hybrid planning-and-execution approach that

allows for strategic multi-agent planning with common goals and autonomous execution

by each agent separately. The replanning frequency at the group level should be reduced

through failure recognition and autonomous failure management on the individuals’ level.

G 2: Improvement of the reactive execution in terms of execution time and

execution success rate. The purpose of the middle layer in a three-layer architecture

is the autonomous and deliberative refinement of high-level tasks into reactive behaviors

with local failure management. In particular, the use of BTs in the following approach

allows for creation of complex behaviors through constructs such as loops, conditional

execution, sequential and parallel execution, which are not possible with other reactive

approaches like, for example, FSMs. The importance of such constructs was already

pointed out [100] and addressed in Section 2.3.1. The second goal of this chapter is to

investigate whether, and to what extent, the use of BTs and such structures affects the

execution times and the success rate of multi-agent plan execution in comparison to an

architecture that uses only a planner.

G 3: Intuitive use and maintenance. Finally, we aim to introduce a framework

that allows for a combination of wide-spread and well-known approaches that are com-

monly used in multiple areas of research and in multiple industries. The advantage of

using such approaches is the available expertise in them, which allows for intuitive and

easy creation and maintenance of individual agent behaviors and common high-level

strategies. Similarly to ROSPlan [115], which combines a planner with the Robot Op-

erating System that is very popular in robotics, the hybrid approach introduced in the

following sections combines a planner with Behavior Trees, which are similarly popular

in video game development and are gaining more attention in other industries. They are

well-readable by human users and usually come with specialized editing and debugging

tools.

5.2. TEST ENVIRONMENT 81

Figure 5.1: An example room including all elements and actors used in the test environ-
ment.

5.2 Test Environment

With the goal to test the proposed approach in a complex and highly dynamic environ-

ment, we take a realistic continuous simulation environment that requires fluid movement

and precise execution of actions. Such environments are usually given in realistic 3D

video games. However, there are very few available benchmark environments that are

representative enough to show the full complexity and high dynamics of a realistic game.

For that reason, we have created an example environment using CryEngine1, a game

engine that allows to build custom environments (called levels) with realistic physics

simulations. Furthermore, it offers multiple components and systems that are required

to build agents that can act in the created environments, either autonomously (AI char-

acters) or controlled by a user (player characters). Similarly to agents acting in other

simulation environments, AI characters can use multiple sensory systems to simulate

perception. They can access a path-planning and a navigation system, and use an ani-

mation system to visually represent a character’s movements. Additionally, CryEngine

provides a Behavior Tree system, which can be directly integrated into the proposed

hybrid approach (as described in more details in Section 5.3). Most of these AI systems

and comparable level editors can be found in other game engines as well, so that similar

experiments can be re-created in another engine.

In the creation process of the test environment and the problems to be addressed by the

hybrid approach, the following aspects were considered as important: the simulation had

to offer a) a multi-agent environment with b) a common long-term goal that required

c) coordinated actions while dealing with d) uncertainty and e) high dynamics of the

environment. Both d and e can be caused by other actors operating in the environment.

1CryEngine: www.cryengine.com

www.cryengine.com

82 CHAPTER 5. HYBRID APPROACH I : HTN + BT

With these aspects in mind, we have built the following experiment scenario: there are

multiple rooms that are all accessible from an open space between them. One such room

is shown in Figure 5.1. Each room can be entered either through a normal door, which

can be opened by any agent, or through a gate that slides upwards. In order to open

the gate it requires one agent to crank a handle and hold this handle to keep the gate

open. During this time, another agent can pass through the gate. Therefore, it requires

2 agents to coordinate their actions. We refer to this kind of gates as co-op gates.

In another corner of the room, there is a metal cage. The cage can be entered from inside

the room through a toggle gate that, similarly to a door, remains in its state (opened

or closed) until changed by an agent. Opening this gate takes a few seconds but it can

be closed very quickly. The other side of the cage has another co-op gate and leads into

the open space between the rooms. Therefore, a room can be exited by going through

the cage.

In every room, there is a zombie wandering around. If the zombie sees an agent, who

is referred to as a hunter, the zombie becomes aggressive and chases the hunter while

trying to attack him. A hunter has 100 health points and with each hit by the zombie

the hunter’s health points are reduced by 15. With no health points left, a hunter dies.

The hunter is 0.5 meters per second faster than the zombie.

There are multiple hunters in the level. Initially, all of them are located in the open

space between the rooms. Their common high-level goal is to catch every zombie inside

the cage of the corresponding room. This means that each zombie should be inside a

cage and both gates of the cage should be closed. To do so, a hunter needs to enter

the room, catch the zombie’s attention, and then quickly run into the cage through the

toggle gate making sure the zombie follows him inside the cage. Next, the hunter has to

exit the cage through the co-op gate leading outside of the room. For this to happen,

another hunter needs to hold the co-op gate of the cage open at the right moment, while

making sure it will be closed again to prevent the zombie from exiting. Then, a hunter

needs to enter the room (again) and close the entry toggle gate of the cage making sure

that the zombie is trapped inside.

In order to accomplish this task for one room, it requires at least 2 hunters, since the

co-op gate of the cage can only be opened by a second hunter. The hunter closing the

entry toggle gate can be one of the first two hunters or a third one. Therefore, at most 3

hunters are required to clear a room. Since there will be multiple such rooms, depending

on the total number of hunters, the task of clearing all rooms can be achieved either by

working in all rooms in parallel or in a sequence.

The agents can have two different roles. A runner is the hunter that goes into the room

and lures the zombie into the cage. The gate keeper opens the co-op gate to let the

runner out of the cage.

5.3. HYBRID APPROACH 83

The high level goal is considered as achieved when all zombies are caught in cages. An

additional constraint is that all hunters have to survive in order for the common goal to

be achieved. Therefore, if a hunter dies, the global goal is considered as failed.

With the presented scenario, the environment is highly dynamic because of the zombies

that change their location and chase the hunters. Additionally, the hunters themselves

can trigger changes in the environment such as changing the state of the doors, occupying

crank handles, and changing their own locations. Also, the fact that the zombies are

behaving autonomously and are not controlled by our approach adds uncertainty to

the environment. Certain information such as, for example, the actual locations of the

zombies cannot be known at plan-time and has to be dealt with at execution-time. The

goal of catching all zombies requires long-term planning.

While hunters are following their common long-term goal, they are also required to

react to each other’s and the zombie’s actions and adapt their behaviors. For example,

two hunters can be in each other’s ways when going to a door and should figure out

at execution-time how to behave in that situation without triggering global replanning.

Furthermore, the usage of co-op gates requires a certain degree of coordination between

the hunters at execution-time.

5.3 Hybrid Approach

Following the general idea of a three-layer architecture described in Chapter 4 and keep-

ing the goals described in Section 5.1 in mind, the following section describes the major

elements of two approaches. A so-called hybrid approach combines the advantages of an

HTN planner and Behavior Trees. Additionally, a pure approach that is based on an

HTN planner only is described in the following section and compared against the hybrid

approach.

5.3.1 Three-layer Architecture

The hybrid approach implements a three-layer architecture as shown in Figure 5.2, which

includes a centralized HTN planner on the top layer. The planner operates on a Hier-

archical Task Network with Postconditions. The planner decomposes a common task of

multiple agents into abstract plans for each agent and forwards these plans to the middle

layer.

84 CHAPTER 5. HYBRID APPROACH I : HTN + BT

Bottom Layer

Middle Layer

Top Layer

Action

Action

Action

Action

Action

Action

Agent

Agent

Execution Component

Execution Component

BT

BT

BT

HTN
Planner

Agent

Path-planning

...Interaction

PerceptionAnimation

Navigation

BT

Execution Component

Planning
Domain

Plan Manager

State Updates

Update Calls

 BT for the current
 Plan Task

 BT for the current
 Plan Task

 BT for the current
 Plan Task

Coordination
Signals

Plans

World State

De-/Registration

Domain

Action Commands

Plan Failure /
Plan End

Plan

Figure 5.2: Three-layer architecture for the hybrid approach including a centralized HTN
planner on the top layer and decentralized agent control with the help of Behavior Trees
on the middle layer.

On the middle layer, the architecture is distributed among the agents. Each agent

receives its own abstract plan and refines it using Behavior Trees. Here, each primitive

task from the planning domain is represented as a separate BT that can be executed

under the task’s preconditions, is responsible for producing the task’s effects and ensuring

the achievement of the task’s postconditions (more details in Section 5.3.4). Due to the

modularity of BTs, it is possible to refine a task in different ways combining conditional,

sequential, and parallel behaviors, which is not possible with, for example, FSMs as used

in [144]. A BT allows for constant monitoring of the environment and reacting to signals

coming from other agents as well as an agent’s own low-level systems.

Comparable to the idea described in [121] and some prior works described in Sec-

tion 2.3.1, this allows the planner to operate with incomplete information at plan-time

leaving primitive tasks abstract. When the information becomes known to a BT at

execution-time, the BT will try to refine and execute the task in the best way dealing

locally with unexpected situations. Only if the corresponding BT is not able to execute

the task in any way, the failure is reported back to the top layer and global replanning

is triggered.

5.3. HYBRID APPROACH 85

With a centralized HTN planner and decentralized BTs for each agent, this approach al-

lows for tight high-level coordination at plan-time and implicit coordination at execution-

time.

Since the environment is build with CryEngine, all parts of the architecture are written

in C++. The details of the planning domain, each architecture layer, and the commu-

nication between them are described in the following sections.

5.3.2 Planning Domain

In Chapter 3, the planning domain was written in Java and a domain-specific planner was

used in order to avoid the effort of writing a domain compiler that translates the domain

from a planning language into compiled code. However, for the approach described in the

current chapter, we have extended the open source planner derPlanner2. It provides a

compiler that translates a domain written in a custom planning language into executable

C++ code. It is possible to write the planning domain in one text file that follows a clear

structure. Afterwards, the compiler can generate all required C++ methods and data

structures to be used by the planner. The use of such a compiler allows for quick and

easy modifications of the planning domain in the text file without the need to modify

program code directly.

The goal of this chapter is reducing the replanning frequency on the high level. In order

to be able to evaluate the success of our approach, we have created two planning domains

with different levels of details. The first domain allows for planning up to the lowest

actions that can be directly executed by an agent. An example sequence of such actions

is aligning to a door, opening a door, stepping through a door, aligning to a door, and

closing a door. Each of these low-level actions is represented by a primitive task and the

sequence of them can be combined into the compound task going through a closed door.

The first domain with this level of details allows the planner to generate exhaustive

plans that do not require refinement at execution-time. However, local changes in the

environment can lead to failures in the plan and trigger global replanning. For example,

if the agent is not close enough to the door or there is an obstacle between the agent

and the door, the agent will be unable to open the door and will have to replan in order

to move into a better position. This domain is presented in Appendix B.1 and contains

9 primitive tasks and 30 compound tasks. Since its primitive tasks do not require any

task refinement, there is no need to use a reactive approach in addition to the planner.

For that reason, this domain is used in the pure HTN approach.

2derPlanner: www.github.com/alexshafranov/derplanner

www.github.com/alexshafranov/derplanner

86 CHAPTER 5. HYBRID APPROACH I : HTN + BT

The second planning domain is more abstract and can be regarded as a condensed version

of the first domain that is cut off at some hierarchy level. For example, the mentioned

task go through closed door is now a primitive task with the effects and postconditions

that the agent is on the opposite site of the door and the door is closed. This domain

now depends on local refinement of its tasks at execution-time in order to obtain the

same results. For example, an agent that is trying to go through a door, is now able to

recognize the obstacle being in its way and adjust its position without triggering global

replanning. This refinement is done by Behavior Trees and used in the hybrid approach.

The full domain for the hybrid approach can be found in Appendix B.2 and contains 7

primitive tasks and 13 compound tasks in total.

In the following, we briefly describe all elements of a planning domain using the syntax

of the planning language used to define the domains for this work (see Appendix B).

While most of the components described below are available in the original version of

derPlanner, the syntax of some elements has been extended for this work. In particular,

primitive tasks have been extended with agent IDs in order to allow for multi-agent plan-

ning. As shown in Planning Domain Element 5.1, the first argument of every primitive

task is the ID of the agent that this task is assigned to. The planner is keeping each

agent’s plan in a separate list. When a compound task is decomposed into primitive

tasks, the planner adds each primitive task into the list of the corresponding agent. This

way, each agent can independently proceed with its own tasks during execution.

1 prim

2 {

3 GoTo!(id32, vec3)

4 }

Planning Domain Element 5.1: Primitive Task

For the synchronization of plans, we use so-called wait tasks where an agent is supposed

to wait for a certain event to happen before proceeding with its plan. The details of this

way of implicit coordination are described in Section 5.3.4.

Similarly, each fact describing an entity (zombie, hunter, room or an object) includes

an ID as its first variable ensuring a unique identification of that entity. In general, all

literals of a fact as well as all parameters of a primitive task are defined by their types.

For example, the fact agent(id32, vec3) shown in Planning Domain Element 5.2 shows

that an agent is represented by its ID (which is a 32-bit integer) and its location (which

is a vector containing the coordinates on 3 axes). The use of unique IDs ensures that

the same fact is only saved once for each entity. For example the agent with the ID = 1

cannot be in two places at the same time.

5.3. HYBRID APPROACH 87

However, some facts can be intentionally saved multiple times. For example the fact

connectsRooms(2, 3, 4) means that a door with ID = 2 connects two rooms with their

respective IDs 3 and 4. Thus, this fact represents a relation between the rooms, which is

symmetric. Therefore, the fact connectsRooms(2, 4, 3) is allowed as well. The possibility

to have multiple entries of a fact with the same ID is shown by theˆ-symbol (caret) in

front of the fact name connectsRooms in Planning Domain Element 5.2.

1 fact

2 {

3 agent(id32, vec3)

4 ˆconnectsRooms(id32, id32, id32)

5 }

Planning Domain Element 5.2: Facts

Another addition to the original version of the planner and its domain are effects. The

original version of derPlanner did not include effect propagation during the planning

phase. Therefore, the planner was not changing its internal world state and was very

limited when it came to long-term planning. For that reason, a planning domain of

derPlanner did not have a concept of effects at all. For this work, the concept of effects

and their propagation during planning has been added. Following the common represen-

tation (such as described in Section 2.2.3), effects can be defined as facts that are added

to or deleted from a world state.This is shown in Planning Domain Element 5.3 by the

respective effects. The parameter of an effect is the table name of the fact to be added or

deleted. For example, the task of opening a door has the effect delete(closed(door(2)))

1 effect

2 {

3 add(table)

4 delete(table)

5 change(table, table)

6 }

Planning Domain Element 5.3: Effects

Additionally, we have introduced the notion of effects that can change a fact f1 into a

fact f2 as shown in Planning Domain Element 5.3. A change is done by first deleting

f1 from a world state and then adding f2 to it. The purpose of these effects was a more

intuitive change of certain attributes of the same object. For example, changing the

position of an agent a from x to y can be done by using the effect change(agent(a,x),

agent(a,y)). Therefore, in order to make sure that only the attributes of the same entity

are changed, the table names (here agent) as well as the IDs of the entity (here ID = a)

are required to be equal.

88 CHAPTER 5. HYBRID APPROACH I : HTN + BT

Following the standard notion of derPlanner, different methods of a compound task are

represented as distinct case branches as shown in Planning Domain Element 5.4. They

are checked in the order of definition. This way, the planner follows ordered method

selection. For example, the task of opening a co-op object o can be performed by an

agent a in two different cases. If it is an object that is opened by using a crank handle h

that is close to the object, the agent first needs to go to the handle, align to it (or turn

into its direction), and than interact with it (which is represented by the Hold task).

Otherwise, if it is one of the gates that is opened by pushing the gate upwards (either

the co-op gate of the cage or the toggle gate), the agent can directly interact with it.

Respectively, preconditions of a method are written before the − > symbol (arrow) and

the sequence of tasks that the method decomposes into is written thereafter. In this

case, the GoTo and the Hold tasks are compound tasks and AlignTo is a primitive task,

which is shown by the ! symbol (exclamation mark) behind its name.

1 task OpenCoopObject(a, o)

2 {

3 case (crank_object(o, y) & crank_handle(h,z) & handleForObject(h,o))

4 -> [GoTo(a,z), AlignTo!(a,h), Hold(a,h)]

5

6 case ((coop_gate(o, y) | toggle_gate(o, y)))

7 -> [Hold(a,o)]

8 }

Planning Domain Element 5.4: Compound Task

The last element of a domain used by derPlanner are the so-called macros. They can be

regarded as shortcuts or simplifications of complex combinations of precondition checks.

For example, the macro handleForObject(h, o) shown in Planning Domain Element 5.5

checks whether the passed objects h and o represent a handle (crank handle) and an

object that is opened by the crank handle (crank object), and whether their locations

x and y are closer than 3 meters to each other.

1 macro

2 {

3 handleForObject(h, o) =

4 crank_handle(h, x) & crank_object(o, y) & dist(x, y) < 3

5 }

Planning Domain Element 5.5: Macro

5.3. HYBRID APPROACH 89

Here, dist is an external function that is defined separately in C++ code. This allows

to call functions provided by the agent’s low-level systems, by the environment, or other

interfaces. Furthermore, it allows for maintainability of these functions without affecting

the planning domain. For example, if developers decide to change the distance calcu-

lation from Manhattan Distance to actual walking distance on a path, this change will

not require any adjustments in the planning domain.

With the elements described above elements, the planning domains for both approaches

(hybrid and pure) are defined by D = (F,C,A,M) with a set of facts F , compound

tasks C, primitive tasks A, and methods M . The postconditions of an Hierarchical Task

Network with Postconditions are not defined in the planning domain directly. Since they

are not required at planning time but at execution time only, they are part of the BTs

in the hybrid approach (as described in more details in Section 5.3.4). Whereas the pure

approach simply uses the preconditions of the following task as postconditions for the

current task.

5.3.3 Top Layer

The top layer of the architecture consists of a centralized coordinating plan manager

system and an external planner. As already mentioned, the planner used in this section

is an extended version of the open source HTN planner derPlanner.

The Planner

The planner is a domain-independent total-order HTN planner, which means that it

decomposes tasks in the order that they will be executed on. It is a multi-agent planner

and therefore each agent’s plan (the sequence of actions that should be executed by the

same agent) is saved separately. After successfully decomposing the initial (common)

compound task, the planner provides the plan manager with a collection of plans mapped

to corresponding agent IDs.

Due to the added concept of effects, the extended version of the planner allows for

effect propagation. This, again, allows for longer plans causing more changes in the

simulated world. Furthermore, the planner saves the history of applied methods and

effects caused by them allowing for backtracking in case of an unsuccessful decomposition

(see Section 2.2.3 for backtracking).

Additionally, the bindings of arguments of each primitive task as well as the bindings

of literals used in the preconditions of the task are provided with the task. This allows

to a) use them as arguments during execution and b) check the validity of the task at

execution-time as described in Section 5.3.4.

Although derPlanner allows to time-slice the planning procedure over multiple frames,

this feature was not used in this work.

90 CHAPTER 5. HYBRID APPROACH I : HTN + BT

Plan Manager

The centralized plan manager acts as an interface between the planner and the lower

layers of the architecture. At the beginning of a simulation (experiment run), each agent

registers with the plan manager providing its ID and location. If an agent dies during

the experiment, it is de-registered and the manager deletes its plan and further related

data. In theory, agents can register to and de-register from the manager at any point of

time. This allows for dynamic group creation and adaptation in more complex scenarios.

However, it is not required in the given test scenario.

Additionally, the manager collects all information about relevant objects, zombies, and

rooms. Currently, the manager has full observability over the environment. However,

this information can as well be added and deleted at any point of time. This way, with

partial observability, the manager can receive these data from agents perceiving new

information at execution time.

Since the planner is domain-independent, the pre-compiled planning domain is saved

separately. During the initialization phase, the plan manager provides the domain to

the planner. Afterwards, binding the actual environment information to the planning

domain’s facts, the plan manager generates the initial world state for the planner. As

the plan manager gets notified about changes in the environment during the execution,

it updates the corresponding facts forwarding the most recent data to the planner.

As already mentioned, the agents in the considered scenario can have different roles of

either opening co-op doors or running into the room. In general, the problem of assigning

agents to roles is combinatorial and can be solved by the planner itself or by any external

solver. In this work, the plan manager is responsible for role assignment as it has the

required information about all agents. Since all agents used here are homogeneous and

therefore can perform each role, the manager simply assigns 2 agents to each room in

the order that the agents are registered. If more agents are available or the number of

agents is odd, it adds a third agent to a room.

In more complex scenario, heterogeneous agents can be used as well. In this case, the

manager will require additional information about the skills and attributes of all agents.

Furthermore, the assignment of agents to roles can be optimized in the future through the

use of heuristics such as distance of agents to rooms, their availability or the applicability

of their skills to the tasks, as it was done for the game Horizon Zero Down [85].

5.3. HYBRID APPROACH 91

Once the planner’s state is initialized and the agents have been assigned to their roles, the

plan manager requests the planner to decompose the goal task described in Section 5.2

given the planning domain. The planner decomposes the common task and returns

plans for all involved agents mapping each agent’s plan to the corresponding agent ID.

All plans are stored in the manager and, before triggering replanning, the manager clears

all agent’s plans. After receiving the plans from the planner, the manager forwards each

plan to the middle layer triggering the start of their execution, which is described in the

following Section.

Furthermore, the manager is responsible for the communication between agents and

for the notification of agents about relevant environmental changes. The manager keeps

track of all objects that are relevant to the planning domain and it has information about

all agent’s task. Whenever an object’s or another agent’s state changes, the manager

identifies the agents whose current task involves the former object or agent and notifies

the latter agent about the change. That way, only implicit coordination, which is guided

by the plan manager, happens between the agents at execution-time, as described in

more details in the following section.

5.3.4 Middle Layer

As already mentioned, there are two different approaches used in this chapter, a hybrid

approach that involves plan refinements and a pure HTN approach that generates very

detailed plans. The difference between these approaches lies in the middle architecture

layer. The middle layer of the hybrid approach is described in the following subsection,

followed by the description of the middle layer of the pure approach.

Middle Layer for the Hybrid Approach

Following the general idea of the three-layer architecture described in Chapter 4, the

purpose of the middle layer in the hybrid approach is the interpretation of the high-

level plan tasks and their refinement into low-level actions. The layer is organized in a

decentralized manner. This way, each agent is responsible for its own plan progression

and local decision-making. In the process of task refinement, each agent is allowed some

local autonomy. On this layer, each agent contains a general execution component and

a running Behavior Tree. The execution component is responsible for plan progression

and communication with the central plan manager on the top layer, while the BT refines

the current plan task. The Behavior Trees used in this work are the so-called Modular

Behavior Trees provided with CryEngine3.

3Documentation on the Modular Behavior Trees of CryEngine:
https://docs.cryengine.com/display/SDKDOC4/Modular+Behavior+Tree

https://docs.cryengine.com/display/SDKDOC4/Modular+Behavior+Tree

92 CHAPTER 5. HYBRID APPROACH I : HTN + BT

Once the agent receives its plan from the top layer, it starts executing its tasks in

their order. Similarly to the approach used in Chapter 3 and described in detail in

Section 3.3.4, before starting the execution of a task, the agent needs to check its validity

in the current world state. To do so, it checks the preconditions of the task using the

variables bound to its arguments during planning.

The automatic creation of C++ code that allows such checks was added together with

the expansions described in Section 5.3.2 to the original compiler of derPlanner. Now,

when the planning domain is automatically translated from text into program code,

the compiler generates not only functions for plan-time checks of preconditions but also

functions for execution-time checks. The difference between those is that, when planning,

the planner searches for variables whose values allow a precondition to become true.

Once such a variable is found, it is bound, potentially used in further decomposition,

and used to update the planner’s world state. During the execution an agent is not

searching for a new variable. Instead, it uses the bound variable and checks whether its

current value (which might have changed since planning) still allows the precondition to

be true.

For example, at plan-time the planner assumes that the zombie with ID = 1 will be

inside the cage, when the agent wants to exit the cage. Therefore, it binds the ID of

the zombie to the argument of the precondition. Then, at execution-time, before leaving

the cage, the agent checks the actual position of the zombie with ID = 1 and finds out

that it did not enter the cage yet. If the preconditions of an agent’s task do not hold

in the current world state, the agent notifies the plan manager and a global replanning

is triggered on the top layer, dismissing the remaining plans for all agents and creating

new ones.

When checking certain preconditions against the actual world state, an agent can use

the fact tables stored in the top-layer plan manager. For example, the state of a gate

(opened or closed) does not change very frequently and is updated instantly in the

fact table whenever it changes. Therefore, its state can be checked at execution-time

through the table. However, since the planning domain is kept abstract, there are certain

preconditions, that can be checked more precisely by calling external functions. For that

purpose, some facts are bound to external functions. That way, the planner can use the

fact table during the planning process, while the agents can call the corresponding

external function during the execution. For example, during planning, the planner can

assume that, if a door is open, there is a path through that door. However, at execution-

time, there can be some other agent or an obstacle blocking that path. In order to find

out whether a path actually exists, the agent can query the path-finding system directly

at execution-time.

5.3. HYBRID APPROACH 93

If the preconditions of the current task still hold, the agent selects the Behavior Tree

corresponding to the task to be executed. All BTs used in the hybrid approach are

presented in Appendix C. For this work, the mapping between the primitive tasks and

Behavior Trees is simply done through the usage of identical names. In the future,

however, more efficient data structures can be used for more efficient mapping. Once

a BT is selected, the agent sends a signal with the BT name to switch the running

behavior tree of the agent. Since Behavior Trees in CryEngine are not parametrized,

the parameters of the current task are saved for each agent in its execution component

and can be queried from within the running BT. Parametrized BT, however, could take

task parameters directly.

A Behavior Tree is the main system that controls an agent. It is responsible for reacting

to certain events, decision-making, and action execution. Therefore, without a running

BT, an agent is not able to do any of this. In our scenario, every agent starts with a

default BT simply waiting for commands to come from the top layer. In more complex

scenarios, however, the default BT can implement some basic behaviors, for example,

ensuring the safety of an agent in any situation.

Once the agent receives a signal to start a certain task, it switches to the corresponding

BT. Depending on the task, it is then listening for other signals relevant to the task.

Such signals can result from other agent’s actions and can be used for the coordination

of multiple agents’ plans. For that purpose, inspired by the work described in [127],

instead of letting an agent communicate with all other agents, we define what signals

an agent should wait for.

For example, assume that an agent is supposed to hold a co-op gate until another agent

passes through the gate. In the BT of the first agent, the action of holding the gate is

executed until the signal of the second agent having passed is received. This is done by

having the hold action and the WaitForEvent node running in parallel4. In this case,

the time that the first agent waits is intentionally not limited because there is no danger

to the first agent and the task of waiting for the other agent has a high priority. That

means that this agent’s BT cannot fail at this point. However, the second agent might

never arrive at the co-op gate, which can leave the first agent waiting endlessly.

In such situations where multiple agents are required to coordinate their actions and

depend on each other, we distinguish between an active agent, the one going through

the door, and a passive agent that is waiting for a signal. In order to prevent the passive

agent from infinitely executing an action, the active agent is supposed to notify the plan

manager about it passing through the gate or failing its task. Since the manager triggers

global replanning for all agents if one agent fails to execute its task, the passive agent

will be notified about the other agent’s failure.

4A tutorial on the creation of a Modular Behavior Tree including a WaitForEvent node
in CryEngine: https://docs.cryengine.com/display/CEMANUAL/Tutorial+-+Getting+
Started+With+The+Behavior+Tree+Editor

https://docs.cryengine.com/display/CEMANUAL/Tutorial+-+Getting+Started+With+The+Behavior+Tree+Editor
https://docs.cryengine.com/display/CEMANUAL/Tutorial+-+Getting+Started+With+The+Behavior+Tree+Editor

94 CHAPTER 5. HYBRID APPROACH I : HTN + BT

Similarly, when the active agent goes through the gate, it will notify the manager as well.

The manager, in turn, will use the knowledge about each agent’s currently executed

task and its parameters. Using this information, it will notify all agents, whose task’s

parameters include either the gate or the active agent’s ID. This way, only affected agents

will receive the information relevant to them and will be able to react to it. That means,

the agent holding the gate will know that it is no longer required to hold it. There will

be no unnecessary communication between all agents.

In theory, the relation between active and passive agents may be an n− to−m relation

with multiple agents waiting for one agent to send a signal or one agent awaiting multiple

signals to arrive. In this case, it is important to prevent deadlocks with multiple agents

waiting for each other. Since the situation in which multiple agents need to coordinate

their actions is represented by a common compound task in the planning domain, the

check for possible deadlocks can be performed for each common task on some hierarchy

level of the HTN. These kind or relations, however, are not present in this work and

show a potential way for improvement for the future. For the current scenario, only

1− to− 1 relations are required and deadlocks are prevented by manually ensuring that

no dependencies exist for every pair of cooperating agents. Alternatively, additional

types of BT nodes can be implemented in order to synchronize BTs of cooperating

agents as proposed in [17].

Besides validating preconditions, Behavior Trees are also responsible for checking for the

fulfillment of postconditions of the task that they represent. Therefore, in this hybrid

approach, postconditions of tasks are not defined in the planning domain but within each

BT. The check for postconditions is done in parallel to the action sequence executed by

the agent. Only when all postconditions become true and the agent finishes the execution

of its own actions, the task can be regarded as achieved. In this case, the Behavior Tree

will succeed and send a success signal to the execution component. If the agent has

more tasks assigned to it, the next task in the plan will be validated following the same

procedure as described above.

5.3. HYBRID APPROACH 95

After replanning, the manager provides each agent with a new plan and each agent

sends a signal to switch to a potentially different BT. In this work, switching between

BTs is done instantly. However, in environments where an agent’s behavior should

always be robust, instant abortions of actions can be undesired and even dangerous.

This can be solved on the side of the running BT by deciding how to handle incoming

signals. For example, there can be special behavior branches for finishing an action in

a safe way and only then switching to a new tree. Alternatively, such safety measures

can be implemented on the lower architecture layer allowing certain systems to queue

any changes until the end of a current action instead of applying them immediately.

This is commonly done in the Animation System of game characters. Aborting some

animations can lead to unnatural visual representations of the characters, for example if

a sitting character starts running without first playing a stand up animation. Therefore,

animation switches are queued, potentially playing transitioning animations in-between.

With the procedures described above, global replanning is triggered in two different

cases. The first case is if the preconditions of an agent’s task do not hold at execution

time. This means that the plan does not hold anymore and a new strategy should be

selected. The second case for global replanning is an agent not being able to execute

its task even though its preconditions still hold. This means that the agent is not able

to find a local solution and needs guidance through new commands from the central

planner. In this case, the planner’s world state will be updated with the most recent

knowledge and therefore the agent can rely on the planner to recognize the local changes

and generate a global plan that is different from the previous one. In more complex

scenarios, however, more attention should be given to forwarding the exact reason for

the plan failure to the planner. This will prevent the planner from creating the same

plan over and over again and can be done by blocking the variables that were bound to

the task in the failed plan. This way, the planner will not be able to bind these variables

in the next planning cycle.

Since BTs refine high-level tasks, they are, in general, more detailed, more complex, and

more expressive than the plan tasks. They allow to represent different ways of achieving

a task through alternative and parallel branches, including additional run-time checks,

loops, and signal receivers, which are not present in HTNs. For that reason, they cannot

be directly generated from an HTN task. Therefore, it is the developer’s task to create

each BT in such a way that it leads to the desired effects, includes listeners for the

required signals, and checks for the desired postconditions. For the approach described

in this chapter, all BTs were created manually under consideration of the respective

HTN tasks and the simulation environment.

96 CHAPTER 5. HYBRID APPROACH I : HTN + BT

Middle Layer for the Pure Approach

In general, the architecture of the pure approach looks very similar to the one of the

hybrid approach. However, since the planner uses a very detailed planning domain, all

plans are granular and do not need further refinement. Here, primitive tasks represent

actions that can be directly executed by an agent. For that reason, the middle layer of

the pure approach does not include Behavior Trees. Instead, each agent simply receives

its plan, checks for the preconditions of a task in the same manner as described above

and directly triggers its execution.

Similarly to the hybrid approach, in case the preconditions of a task do not hold, the

agent forwards the failure to the top layer, where the plan manager triggers replanning.

A major difference to the hybrid approach is, however, is the handling of task execution

failures. Since plans do not include any logic for execution failure and the agents do

not incorporate any additional mechanisms for local decision-making, they do not try

to solve such failures locally. Therefore, if an action fails to be executed, the agent also

forwards this failure back to the manager, which leads to a global replanning for all

agents. However, if an action is successfully executed, the agent proceeds with the next

plan task.

One special case represent the wait tasks in this architecture. Coordinating two agents

is done in the same manner as in the hybrid approach by having an active agent and

a passive agent waiting for a signal to proceed with or abort its plan. In the hybrid

approach, such wait tasks are part of BTs and are not present in the planning domain

In contrast, in the pure approach, all granular tasks are encoded in the planning domain,

including the wait tasks. However, the time that an agent will need to wait during the

execution, is not known at plan-time. Therefore, at least some autonomy is required at

execution-time from the agents to decide how long to wait.

As already mentioned, in the hybrid approach, an agent is waiting for a signal while

executing its own actions. This is done with the help of the WaitForEvent BT node,

which waits for a predefined signal, and a Parallel node. However, neither signal receivers

nor parallel branches are provided by a planner. For that reason, in the pure approach,

the agent’s execution component itself includes an artificial loop for the execution of

the wait task. By default, a wait task in the pure approach lasts a certain amount

of time. In our case 1 second. Once the task finishes, the agent validates that the

preconditions of the next task hold. If this is not the case, the wait task is repeated.

This procedure is repeated until either the preconditions of the next task become true

or the agent’s plan is aborted. Similarly to the hybrid approach, the passive agent relies

on the active agent succeeding or failing with its task and that way affecting the passive

agent’s plan execution. Additionally, the preconditions of the next task in the plan

replace the postconditions of the wait task. Therefore, when creating the pure domain,

it is the developer’s duty to define correct preconditions for the task that follows a wait

task.

5.4. EVALUATION 97

5.3.5 Bottom Layer

On the most granular level, each action, regardless of whether executed directly by the

agent or from a Behavior Tree, can be represented as an FSM. Typical states of such

an FSM include a beginning and an end of an action. These states can be used for the

initialization and proper release of variables, which are used by further low-level systems.

Depending on the action, further states can be included between the beginning and the

end of an action, in which the agent can trigger and react to changes from the low-level

systems.

For example, the action GoTo will initialize the goal position and forward it to the Path-

planning system. Once this systems returns either a failure or a valid path, the state

of the GoTo-FSM will change to fail the action or to start the navigation respectively.

When the agent starts navigating, both the Navigation and the Animation system run

corresponding functions.

The details of how exactly these systems communicate with each other depends on

the underlying architecture of the (simulation) environment and the agent and are not

relevant for this work. Depending on whether the navigation succeeds or fails, the final

state of the FSM releases the variable with the goal position and forwards the success or

failure signal of the GoTo action to the middle layer. Depending on the approach used

in the middle layer, this signal is then handled either in the task-BT or by the agent’s

execution component directly.

5.4 Evaluation

The experiments of this chapter were performed with the intention to measure the success

of the goals defined in Section 5.1. In particular, goal G1 was the reduction of the global

replanning frequency through local autonomy and failure management. The second goal

G2 was a faster and more successful execution through reactive behaviors provided by

the hybrid approach than achieved by a pure planning approach, which was addressed by

the use of BTs on the middle architecture layer. The experiments and results described

here were previously published in a prior work [157].

Given the environment described in Section 5.2 and the common task of catching all

zombies into cages, the experiment scenario has a clearly defined end. Therefore, the

evaluation measurements for each experiment run can be taken between the start of a

simulation run and the point of time when all zombies are caught in cages. In order to

evaluate the success of the first goal, we measure the average number of times that a

global replanning is triggered before achieving the common task. Assuming that the BTs

of the hybrid approach will manage some local failures, the expected result is a lower

replanning frequency with the hybrid approach than with the pure planning approach.

98 CHAPTER 5. HYBRID APPROACH I : HTN + BT

Figure 5.3: Top-down view of the experiment setup with 3 rooms (1 zombie in each
room) and a group of 9 hunters in the middle.

For the evaluation of the second goal, we measure the average time required to achieve

the common task. The idea behind this measurement is that when simply following the

plan without any local autonomy, the agent might perform some unnecessary actions

taking more time than required. Since the plan is based on the information that was

available to the planner at plan-time, it is possible that the environment has changed by

the time that the agent executes a task. For example, the agent will run to an outdated

location to catch the zombie’s attention, even if the zombie is much closer at this point

of time. With the hybrid approach, however, the agent will recognize that the zombie’s

position has changed when executing this task through a Behavior Tree. This way, the

agent can switch to the next task in its plan earlier.

Additionally, considering that the experiment fails if one of the agents dies, we assume

that with the hybrid approach such failures should happen less often than with the pure

planner approach. Similarly to the situation described above, reactive behaviors of the

BTs should protect the agents from being hit by a zombie too frequently. For that

reason, we measure the failure rate of the experiments performed with both approaches.

5.4. EVALUATION 99

In order to compare the performance of both approaches under different complexities

of the problem, the experiments were performed with the following setups. First, the

number of rooms to be cleared from a zombie varied between 1 and 3. Second, different

numbers of agents were tested in order to generate situations where multiple rooms

could be cleared simultaneously by different agents as well as situations with sequential

clearing of multiple rooms by the same agents. As already described in Section 5.2, the

minimum number of agents required to clear one room is 2 and the maximum number is

3. For that reason, the total number of agents used in the experiments varied between

2 and 3 × n, with n representing the current number of rooms used in the respective

experiment setup. That means, for 2 rooms, the maximum number of agents was 6 and

for 3 rooms 9. All 3 rooms (with one zombie in each room) and 9 agents standing in

the open space between the rooms are shown in the top-down view in Figure 5.3. The

positions of the agents and zombies in Figure 5.3 represent their locations at the start

of each simulation run. Additionally, selected experiment runs with different setups and

different approaches are shown in the uploaded videos5.

Each experiment setup was first tested 20 times measuring the experiment failure rate.

In some cases the common task was not achieved due to an agent’s death. Out of these 20

tries, only successfully finished experiments were used for the other two evaluations, the

time that the agents required to achieve the common task and the replanning frequency.

For that reason, more experiments were performed afterwards to measure the time and

the frequency until 20 successful attempts were achieved for each setup.

The average number of occurrences of global replanning are shown in Figure 5.4 for

all experiment setups. The results give two insights. First, the replanning numbers of

the pure approach, which uses an HTN planner only, are higher than the ones of the

hybrid approach for all scenarios. Second, there is a (more) obvious increase of the

replanning numbers with an increasing number of agents when using the pure approach

in comparison to the hybrid approach.

The first point confirms our expectation in regards of goal G1 that, with Behavior Trees

on the middle layer, the agents are able to react to environmental changes and solve

some problems locally preventing global replanning. In some experiments we could

observe situations where agents with the hybrid approach managed to avoid an obstacle

(represented by another agent) or moved to a zombie’s actual position without triggering

global replanning. However, if an agent was not able to move because of an obstacle

or did not find the zombie at its planned position, the pure approach triggered global

replanning immediately.

5Experiment videos: https://bit.ly/2MW1OdY

https://bit.ly/2MW1OdY

100 CHAPTER 5. HYBRID APPROACH I : HTN + BT

(a) 1 room with 1 zombie. (b) 2 rooms with 1 zombie each.

(c) 3 rooms with 1 zombie each.

Figure 5.4: The average number of plan failures that triggered global replanning before
the goal was reached. Measured with 1, 2, and 3 zombies and a varying number of
hunters using a pure HTN planner and the combination of an HTN planner with Behavior
Trees [157].

With an increasing number of agents, more coordination was required at execution-

time. However, the higher number of actors (agents and zombies) caused even higher

dynamics in the environment. Looking at Figure 5.4c, we can see that these changes

affected the pure approach more than the hybrid approach. This, again, confirms that

the environmental changes were small enough for the agents with the hybrid approach

to handle them locally. However, the agents with the pure approach required a new

global plan in case of such changes. For that reason, only the failure numbers of the

pure approach grew with a higher complexity of the environment.

5.4. EVALUATION 101

(a) 1 room with 1 zombie. (b) 2 rooms with 1 zombie each.

(c) 3 rooms with 1 zombie each.

Figure 5.5: The average time in seconds required to reach the goal. Measured with
1,2, and 3 zombies and a varying number of hunters using a pure HTN planner and the
combination of an HTN planner with Behavior Trees [157].

The higher reactivity of agents with the hybrid approach can also be observed in the

average time required to achieve the group task, which is shown in Figure 5.5. In most

scenarios the agents with the hybrid approach were able to clear all rooms faster than the

agents with the pure approach. The difference, however, is not as high as expected. This

can be explained by the fact that, even though the agents with BTs could perceive local

changes and react to local failures faster, they sometimes required multiple attempts to

solve these failures, which resulted in slightly longer execution times.

102 CHAPTER 5. HYBRID APPROACH I : HTN + BT

For example, as mentioned in Section 5.3.4, if an agent encountered an obstacle between

itself and the object it was required to interact with (a door), its BT tried to make the

agent step aside and try to interact again. This solution worked if the obstacle was static.

However, if the obstacle itself was moving (if it was another agent) or if the first agent

step further away from the interactable object, its following attempts failed as well. This

behavior, however, results from a bad design choice made during the BT creation, which

can be solved by either adding more run-time checks in the corresponding branch or by

solving this problem in a different way than letting the agent step aside. For that reason,

we assume that an even faster execution can be achieved with the hybrid approach.

(a) 1 room with 1 zombie. (b) 2 rooms with 1 zombie each.

(c) 3 rooms with 1 zombie each.

Figure 5.6: The rate of failed execution attempts, which occurred due to a hunter’s
death trying to catch 1,2, and 3 zombies by varying numbers of hunters using a pure
HTN planner and the combination of an HTN planner with Behavior Trees [157]

5.4. EVALUATION 103

Lastly, the rate of failed experiments is shown in Figure 5.6. Out of 20 experiment runs

for each scenario, these were the ones where an agent died and the common task could

not be achieved. As the results shows, the failure rate was high for both approaches for

scenarios where only 2 or 3 agents were assigned to clear more than one room, which is

reflected in the columns for 2 and 3 hunters in Figures 5.6b and 5.6c. Even with BTs,

the agents got hit by a zombie in rare cases and, with more then one room to clear, the

agent that ran into the rooms had a higher chance to be hit by each zombie. Therefore,

even with the hybrid approach, the agents died quite frequently in these scenarios.

However, in cases where enough agents were assigned to execute the task, the failure

rate of the pure approach was significantly higher. This confirms the expectation that

the use of BTs allows the agents to be more reactive and execute the tasks in a safer

and more successful way. Even though the agents still got hit, they were able to evade

enough hits to finish the task. The results from both Figures 5.5 and 5.6 confirm the

expectations regarding goal G2.

Since both approaches share the same high-level HTN and the task roles are assigned

in the same way, we assume that all results can be improved for both approaches in

general. However, the experiments performed here were intended to show the differences

between a pure planning approach and an approach with interleaved high-level planning

and reactive low-level decision-making and execution. These differences can be observed

in the presented results. Therefore, even with an improved planning domain for both

approaches, we expect that the hybrid approach will outperform the pure HTN approach.

104 CHAPTER 5. HYBRID APPROACH I : HTN + BT

As for the goal G3 of providing an approach that allows for an intuitive and easy creation

and maintenance, we have shown that it is possible to create the domains for the given

scenario with the use of existent systems. Due to the human-readable syntax of the plan-

ning language used by derPlanner the pure planning domain could easily be transformed

into the hybrid domain by simply removing some primitive tasks and transforming for-

mer compound tasks into primitive tasks. Through the provided compiler, there was

no need to modify the program code when changing the domain. Additionally, reactive

behaviors of the hybrid approach could be achieved with the help of Behavior Trees

provided by the CryEngine without any modifications to the trees. The combination

of standard nodes in the trees and the possibility to execute low-level actions allowed

for improved local behaviors, even with simple BTs, which are shown in Appendix C.

The resulting BTs were created with the help of CryEngine’s BT editor6, which allows

for intuitive BT generation through a graphical interface. The possibility to add nodes

through drop-down lists ensured the syntactic as well as semantic correctness of the BT.

Furthermore, the provided BT debugging interface allowed to observe the behaviors of

the agents at execution-time and recognize potential opportunities for improvement. An

additional advantage of the proposed combination was that each BT could be changed

without affecting the planning domain or requiring any changes in the program code.

Although manual generation of BTs means a higher engineering effort, it is not necessar-

ily undesired. It can even be required for some environments where full human control

over the agents’ behaviors is necessary in order to ensure robustness and coverage of all

potential situations. In this case, BTs are an expressive tool that is easily understand-

able and maintainable by human users. On the other hand, an interesting direction for

future work includes research on automatically learning such BTs when high-level tasks

are provided, potentially using one of the approaches described in Section 2.1.1.

5.5 Conclusion

In this chapter, we have introduced a hybrid planning-and-execution approach that com-

bines a Hierarchical Task Network with Postconditions and Behavior Trees. Combining

these two decision-making techniques, the hybrid approach follows the general idea pro-

posed in Chapter 4. The proposed approach is intended to be used in multi-agent

scenarios where the agents are required to follow common goals as a team while each

agent’s well-being and its goals remain important. In order to achieve the common goals,

the agents need to work cooperatively and coordinate their actions in certain situations.

6Documentation on the Behavior Tree editor of CryEngine:
https://docs.cryengine.com/display/CEMANUAL/Behavior+Tree+Editor+Window

https://docs.cryengine.com/display/CEMANUAL/Behavior+Tree+Editor+Window

5.5. CONCLUSION 105

In the proposed architecture, the top layer consists of a centralized HTNp planner that

ensures a tightly-coupled agent coordination on the high behavioral level. The planner

works with an abstract world model and generates a high-level plan for each agent.

Such plans do not contain any details that can be easily invalidated at execution-time.

Instead, the architecture relies on the middle layer to refine every plan step according

to the actual world state at its execution-time.

For that purpose, each primitive task is represented by a distinct Behavior Tree on the

middle layer. Here, the architecture is decentralized with each agent following its own

plan. When executing a certain plan task, an agent selects the corresponding Behavior

Tree, which, in turn, tries to refine the plan task taking into consideration run-time

information, which was not available to the planner at plan-time. Due to its modularity,

a Behavior Tree allows for complex and yet flexible behaviors that can run sequentially

or in parallel. This way, it also enables agents to wait for specific coordination signals

ensuring coordinated execution of certain tasks. The lowest architecture layer is respon-

sible for actual execution of primitive actions and knowledge gaining through sensory

systems.

The main goal of this chapter were the evaluation of hypothesis that such separation

between high-level long-term planning and low-level reactive decision-making can reduce

the global replanning rate. The idea behind this hypothesis was that most plan failures

happen locally can be managed by an agent without invalidating the overall plan and

triggering replanning for all agents. Another goal was the evaluation whether such three-

layer architecture can improve the execution of plans in terms of time and success rate.

For that purpose, the proposed approach was compared against a pure planning approach

in a multi-agent scenario. The pure planning approach consisted of a planner only,

which was responsible for detailed plan creation and did not require plan refinement.

The observed scenarios included 2 – 9 agents where pairs of agents were required to

coordinate their actions at different points of time.

The experiments have shown that the hybrid approach does reduce the global replanning

frequency compared to the pure planning approach. Furthermore the results have shown

that due to the higher flexibility in the agent behaviors when using the Behavior Trees,

the agents have a higher rate of successfully achieving the common goal and can do this

in a shorter time period. Although the time difference is smaller than initially expected.

106 CHAPTER 5. HYBRID APPROACH I : HTN + BT

Another important insight of this chapter is that the creation of the hybrid approach

is possible with only minor program changes to the HTN planner and no changes to

Behavior Trees. This allows for a wider use of the hybrid approach due to the existing

expertise on these systems. Since postconditions are encoded in the structure of the

Behavior Trees and not in the planning domain, any planner and any Behavior Tree

system can be used for this purpose. The main addition is the architecture around these

approaches enabling the connection and the communication between the three layers.

This includes the translation of plan steps into Behavior Trees and the possibility of the

Behavior Trees to check pre- and postconditions of a plan step. Another advantage is

that both approaches allows for a well-readable domain definition and maintenance. At

this point, the transformation was done manually. On the one hand it means additional

effort for a human developer. On the other hand, it allows developers to keep full

control over the agents’ behaviors and ensure their robustness. However, if full control

is not a required criterion, Behavior Trees can be automatically generated as described

in Section 2.1.1.

C
h
a
p
t
e
r

6
Hybrid Approach II : HTN + MCTS

The following chapter introduces a hybrid planning-and-execution approach that, simi-

larly to the approach described in Chapter 5, is based on the general idea of a three-layer

architecture described in Chapter 4. The focus of this chapter is on large search spaces

with a large number of actors with common goals where the achievement of the common

group goals is more important than each individual’s goals. Due to the large number

of actors, the considered environments are expected to have even more dynamics. The

proposed solution combines a planner that operates on a Hierarchical Task Network

with Postconditions (HTNp), which is used for strategic long-term planning and Monte

Carlo Tree Search (MCTS) for tactical short-term decision-making. Due to the use of

Monte Carlo Tree Search, the major requirement for this approach is the availability of

a Forward Model (or simulation model) of the environment.

The hybrid approach is tested in an adversarial real-time game environment. The fol-

lowing sections describe the goals, the test environment, and the details of the hybrid

approach. Afterwards, intermediate experiment setups and their results are discussed.

Next, an extension to the approach is proposed that allows for an improved achievement

of the high-level tasks through MCTS. The chapter concludes with an evaluation of the

extended approach. The presented solutions and their evaluation have been published

in previous works [79,158].

6.1 Goals

The intention of this chapter is the introduction of an approach that can scale in terms of

the number of agents that it controls. In order to allow for fast planning and execution

for a high number of agents, the approach should allow for both the planning and

the decision-making at execution time being performed on discretized world models.

Concrete goals of this work are described in the following.

107

108 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

G 1: Introduction of an architecture that allows for a combination of strategic

and tactical behaviors in a multi-agent environment that can work in large

search spaces. The architecture should allow for long-term strategic planning, which

can be refined into short-term tactical decision-making at execution-time while monitor-

ing the environment and adapting the tactical behaviors according to the environmental

changes. As an extension to the scenarios regarded in the previous chapters, the focus of

this chapter are multi-agent scenarios with even larger search spaces through a) a higher

number of agents, and b) heterogeneous agents. Furthermore, this chapter’s scenarios

deal with additional uncertainty through an adversarial setting and a high number of

opponent agents.

G 2: No explicit/manual generation of tactical behaviors. Since this chap-

ter deals with even more complex problems than those regarded in the previous chap-

ters, typical execution systems that are used, for example, for spacecraft control (see

Section 2.3.1) and rely on fully predefined domains are not suitable because it is not

possible to pre-define the combinations of low-level behaviors that cover all edge-cases

for all agents. For that reason, another goal of this chapter is the introduction of an

approach that does not require manual generation of such behaviors but instead allows

for run-time decision-making based on simulations of the environment.

G 3.1: Guidance of the mid-level reactive approach by the high-level planner.

The proposed approach is based on the three-layer architecture with the top layer consist-

ing of a planner and the middle layer consisting of MCTS. Depending on the high-level

strategic plan tasks, the tactical behaviors should be distinguishable from each other

and each of them should aim to achieve the corresponding high-level task. However,

assuming that the tactical behaviors are not manually created (goal G2), the next goal

of this chapter is to provide a way for the planner to guide the reactive approach (in this

case MCTS) in its search for the correct tactical actions. In particular, this requires an

interface between the two top layers that will allow for implicit guidance.

G 3.2: More efficient execution of tactical behaviors through an improved

guidance from the planner. Once it is possible to guide the middle layer approach by

the planner (Goal G 3.1), it is important to optimize the execution of tactical behaviors.

This should, in turn, lead to a better performance in regards to the strategic high-level

plan execution.

6.2. TEST ENVIRONMENT 109

6.2 Test Environment

In order to evaluate the hybrid approach proposed in this chapter, we have selected a

highly dynamic adversarial research environment called microRTS1. This environment

represents a simplified version of a typical Real-Time Strategy (RTS) game. Its major

differences to most commercial RTS games are the simple graphics used to represent the

environment and the discrete world, in which the actors move on a 2D grid. Nevertheless,

it offers the major mechanics of a typical RTS game such as collecting resources, building

different types of buildings, and creating different types of agents. Additionally, in

contrast to commercial games, microRTS offers a Forward Model, which can be accessed

by an agent playing the game. For these reasons, it has been successfully used as a

benchmark environment for artificial agents in the microRTS AI Competitions since

2017 [159]. The environment is written in Java and therefore artificial agents playing

the game have to be written in Java as well.

In microRTS, two players play against each other. A player can be a human player or

an artificial agent. Each player can control multiple units at the same time. Units are

static buildings – either a base or a barrack, as well as dynamic units – workers and light,

range, and heavy units. The last three units are military units and can only move and

attack the opponent units, whereas a worker can also gather resources, bring them to the

base, and build further buildings. A base, in turn, can produce more workers, whereas a

barrack can produce military units. In contrast to other more complex RTS games, there

is only one type of resources in microRTS, different amounts of which are used for the

creation of both static and dynamic units. Each unit has a predefined number of Health

Points (HPs). Additionally, each type of dynamic unit has a different amount of damage

that it deals and a different movement speed. For example, light units move fast but

deal little damage, whereas heavy units are slow but deal more damage. Additionally to

resources and player units, there are non-destructible walls in some maps of microRTS.

All units are the size of one grid cell on the map.

There are multiple maps of different sizes provided with microRTS, all of which are

symmetric. The players start a match in the opposite sides of a map and have an equal

number of units present in the beginning. They are required to provide a so-called player

action to the environment in every frame. A player action represents the combination

of actions for all of the player’s units that can start a new action. Similarly to the

environment described in Chapter 3, actions in microRTS are durative and therefore a

unit is only able to start a new action after finishing the previous one. The frame time

that a player can use to make a decision is limited to 100 milliseconds. Exceeding this

limit multiple times leads to a disqualification of the player from the competition.

1microRTS: https://sites.google.com/site/microRTSaicompetition

https://sites.google.com/site/microRTSaicompetition

110 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

A typical game will usually progress as follows: a player will first start gathering resources

to be able to build barracks and increase the size of their army. Once the army has the

desired size, they will start an attack on the opponent player. Therefore, a high-level

strategy will usually consist of a Game Opening, a Middle Game, and an End Game.

Depending on the map (size) and the start configuration of the players’ units, the details

of these parts can vary and require different tactics on the lower levels. For example, on

very small maps it is not feasible to build more buildings. Instead a so-called rush is a

better strategy to quickly attack the opponent with available units. On the other hand,

if the game starts with players having enough resources, they can begin the middle game

immediately.

Since there are some benchmark agents provided with microRTS and all agents from

previous competitions are available, it is possible to evaluate an agent’s performance

against existing opponents.

In its default version, microRTS offers full observability and deterministic actions. Al-

though, it is possible to enforce partial observability by limiting each unit’s sight. Addi-

tionally, there is an option to introduce non-determinism to actions, which, for example,

results in non-deterministic damage dealt. In this work, however, we use the default

version of the environment with full observability and determinism.

Nevertheless, due to its adversarial nature and a possibly large number of units on both

sides, which can select from multiple different actions, and a possibly big size of the

map, the size of the search space is large. For example, for a map of size 12 × 12

cells the branching factor can exceed 1017 [42]. The main source of uncertainty in

this environment are the opponent’s actions. Additionally, more uncertainty is added

if multiple units try to step onto the same grid cell at the same time. In the non-

deterministic version of the game, one of the units is selected randomly and is allowed to

do its move while all other units’ actions are cancelled. However, in the default version

used in this work, all units’ actions are cancelled in such a case.

6.3 Hybrid Approach

Following the general idea of a planning-and-execution system as described in Chapter 4,

the following section describes the implementation of a hybrid approach that includes

an HTNp planner and MCTS and is used for centralized control of multiple units in a

real-time environment. Based on the goals defined in Section 6.1, the architecture aims

to let the planner provide guidance to MCTS through an interface allowing for strategic

and tactical behaviors.

6.3. HYBRID APPROACH 111

Bottom Layer

Middle Layer

Top Layer

microRTS

naiveMCTSAgent Controller

Planning
Domain

HTN Planner

Plan

Evaluation Function

Game StatePlayer Action

Plan Failure / PlanEnd

Player Action

Domain

Figure 6.1: Three-layer architecture for the hybrid approach including a centralized
HTN planner on the top layer and a centralized Agent Controller with näıveMCTS on
the middle layer.

6.3.1 Three-layer Architecture

The hybrid approach presented in this chapter is built as a three-layer architecture that

is shown in Figure 6.1. With the goal to introduce an architecture that allows both

for strategic and tactical behaviors, which in their nature can be easily represented by

hierarchies, a centralized HTNp planner is used in this chapter for strategic long-term

planning. As we have already seen in Chapter 5 such a centralized planner allows for co-

ordination of multiple units on a high level without requiring inter-unit communication.

The high-level strategies are refined on the middle layer. This layer uses a centralized

MCTS algorithm to select combinations of actions for the agent’s units. While making

decisions about the actions, it takes into consideration the high-level task provided by

the planner. The task itself, is represented by an Evaluation Function that can be used

by MCTS for Game State evaluation. That way, a strategic task implicitly guides the

selection of tactical behaviors during execution. In addition to tactical decision-making,

the middle layer is responsible for environmental monitoring and recognition of certain

events and plan failures. Similarly to the architecture described in Chapter 5, the middle

layer notifies the top layer about plan failures and requests new plans.

112 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

Given the current environment, the lowest layer of the architecture is not part of our

work. Similarly to the architectures used in previous chapters, the lowest layer is respon-

sible for information gathering and the actual execution of each unit’s action. However,

microRTS does not allow the agent to control each unit separately. Instead, a Player

Action that includes the combination of all unit’s actions is passed to the game and its

corresponding systems take care of the low-level execution. Similarly, the game provides

an aggregated representation of the game state, which includes information about all

units.

6.3.2 Planning Domain

Since the planner is responsible for high-level strategies, dealing with low-level details

during the planning phase given the large search space is very inefficient. For that reason,

the planning domain is kept very abstract. The use of an abstract world model as well

as abstract actions is very common in RTS game environments and has been mentioned

in multiple previous works [36,37,46,160].

Furthermore, due to the high dynamics of the environment, keeping track of the absolute

positions of every dynamic unit in the planning domain can result in a large overhead.

Therefore, in addition to abstract high-level tasks and an abstract world representation,

the domain only includes facts that describe the absolute positions of static units such

as buildings and resources, whereas information about only the most important dynamic

units is represented in the planning domain. This includes, for example, the distance of

the closest opponent unit to a friendly building but not its exact position or the positions

of any other units. Further facts include abstract information such as the closest resource

point for every friendly base and the current number of friendly and opponent moving

units.

The test environment used here is written in Java and therefore all agents have to be

implemented in Java as well. Therefore, a planner very similar to the one used in

Chapter 3 is used in this chapter’s hybrid approach. The planner is, again, domain-

specific and therefore the planning domain is written as Java code directly. Similarly

to the definition used in Section 3.3.2, we define an HTNp planning domain as D =

(F,C,A,M), consisting of sets of facts F , compound tasks C, primitive tasks A, and

methods M respectively. Each task and each method is represented by a separate Java

class.

6.3. HYBRID APPROACH 113

Evaluation Function

AttackOpponent - EFBuildAndDefend - EFCollectResources- EF

......

EndgameMiddlegame

Method Selection

Decomposition

Preconditions,
Effects,

Postconditions

Method

Primitive Task

Compound Task

Preconditions:
EnoughMilitaryUnitsAvailable

End Game

Preconditions:
EnoughResourcesAvailable

Preconditions:
EnoughResourcesAvailable

OpponentNotAttacking
Effects:

MilitaryUnitsAvailable
Postconditions:

MilitaryUnitsAvailable

Preconditions:
ResourcesRequired

OpponentNotAttacking

BuildAndDefend AttackOpponentCollectResources

Preconditions:
IsOpponentReachable

EnoughMilitaryUnitsAvailable
Effects:

OpponentHasNoUnits
Postconditions:

OpponentHasNoUnits

Preconditions:
IsResourceReachable
OpponentNotAttacking

Effects:
ResourcesCollected

Postconditions:
ResourcesCollected

Middle GameGame Opening

Win RTS Match
HTN

Figure 6.2: Abstract HTNp with 3 Evaluation Functions (EFs) used by the hybrid
approach II in microRTS.

However, there are two major differences between the planning domain in Chapter 3

and the one used in this chapter. Since the planner in Chapter 3 was the only decision-

making mechanism in the agent architecture, it was planning on actual low-level actions

that could be directly executed by the agent. For that reason, it was not necessary

to define effects of primitive tasks. Instead, tasks could be directly simulated during

the planning phase using the game’s simulation model. Here, the environment also

provides a simulation model. However, this chapter’s planner deals with abstract high-

level actions, which cannot be directly simulated by the simulation model of microRTS.

For that reason, it is necessary to define effects of the abstract primitive tasks used in

this domain. Therefore, in addition to preconditions, a primitive task is also defined by

its effects.

The second difference to the domain from Chapter 3 are postconditions of primitive

tasks. The hybrid approach described in this chapter is based on the general idea of

task refinement at execution-time from Chapter 4. Therefore, primitive tasks of this

chapter’s planning domain are also defined by their postconditions that are used at

execution-time by the middle layer. Postconditions were not present in the domain in

Chapter 3 since there was no task refinement at execution-time and a task’s end was

equivalent to the end of an action. Furthermore, the architecture used in Chapter 3

was designed for a single agent who was the only agent responsible for achieving a task.

Here, however, the architecture is designed for multiple agents and a more dynamic

environment. Therefore, an abstract task can be achieved not only through the agents’

actions but also as a result of environmental changes that are not controlled by the hybrid

approach (such as the water filling a barrel example from Section 4.4.) Therefore, here,

a primitive task is also defined by its postconditions and the planner is working on a

Hierarchical Task Network with Postconditions.

114 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

As already mentioned in Section 6.2, an RTS game typically consists of a Game Open-

ing, a Middle Game and an End Game. These abstract compound tasks are shown in

Figure 6.2 as the highest level of the HTNp used in this chapter. In practice, each of

these 3 tasks can be decomposed by different methods that depend on the map size and

the start configuration of the game. Nevertheless, independent from the decomposition

path, there are only the following 4 primitive tasks that can be used as part of a plan:

CollectResources, BuildAndDefend, AttackOpponent, and PreventAttack. The first three

tasks are used in this order in a typical game scenario. The task PreventAttack is usually

not part of an initial plan as its purpose is to defend the friendly base from an attack,

which usually does not happen right at the start of a game. However, it can become

part of the Game Opening or the Middle Game in case the opponent attacks first. In

this situation, the agent will recognize the attack (by monitoring the environment on the

middle layer) and trigger a replanning. The new plan will consist of the PreventAttack

task followed by other tasks according to the situation.

Although typically an agent will proceed with the tasks in the order CollectResources,

BuildAndDefend, AttackOpponent, it can be required to return to a previous task if

the preconditions for the current task no longer hold. This, however, can result in

oscillating behaviors. The fact that postconditions of the current task (that are used

at execution-time to recognize a task’s end) can be different from the preconditions

of the following task (that are also used at execution-time to check the next task’s

validity) allows for fuzzy rules for switching back and forth between tasks. They can

help preventing oscillating behaviors. For example, postconditions of the BuildBarracks

task can require to have 1 barrack and the number of friendly military units has to be

mo + 3, where mo is the number of the opponent’s military units. This way, once the

number of the agent’s military units outweighs by 3, the building task can be considered

as achieved and the agent can switch to the attack task. Consequently, all its military

units will stop protecting the friendly base and will start moving towards the opponent’s

base.

Assume that now the opponent reacts to the attack and destroys one of the agent’s

units on their way. If the preconditions for the AttackOpponent task also require mo +

3 military units, the task will be invalidated and the agent will switch back to the

BuildBarracks task. This will force all units to return back to their own base. And if one

unit is produced again very quickly, the movement will result in an oscillation. However,

if the preconditions of the AttackOpponent task are set to lower numbers than the ones

used for postconditions of the preceding BuildBarracks task, the generated hysteresis

buffer will allow for faster switches to the next plan tasks and delayed switching to the

preceding task are possible.

6.3. HYBRID APPROACH 115

With the planner being able to plan on abstract high-level tasks, it is the responsibility of

MCTS to refine these tasks during the execution. In order to allow for such refinements,

it requires a way to translate the descriptive representation of an HTNp task into a

mathematical representation that can be used by MCTS. For that purpose, we propose

assigning Evaluation Functions (EFs) to primitive tasks. These EF represent the most

important extension to primitive tasks in the planning domain of this chapter.

As already mentioned in Section 2.1.2, MCTS samples different action sequences trying

to find the optimal action to be executed in the next step. In order to decide what action

is the most optimal one, the game state resulting from each action sequence is evaluated

with the help of an EF. Depending on what behaviors and what outcomes are desired,

such an EF can consist of multiple objectives. For example, if an agent in microRTS

is supposed to CollectResources, it has to minimize the distances of its worker units to

the resources, maximize the number of resources that are carried by each worker while

at the same time trying to avoid being hit by opponent units and therefore maximizing

the number of all its units’ HPs. Whereas for the AttackOpponent task, it does not care

about the resources but tries to maximize the friendly units’ HPs while minimizing the

distance to the opponent’s base and minimizing the opponents’ units’ HPs.

As shown in Equation 6.1, we represent such a multi-objective Evaluation Function E

as a weighted sum over Evaluation Functions ej that optimize the distinct objectives

xj . Depending on the task that E is representing, the number K of its objectives and

the values of the distinct weights wj can vary. Respectively, we define a primitive task

t ∈ A by the tuple (pre, add, del, post, E) – its preconditions, effects, postconditions,

and its Evaluation Function.

E =
K∑
j=1

wjej(xj) (6.1)

The possibility to combine multiple objectives in an EF also allows for implicit parametriza-

tion of each unit’s actions. For that purpose, instead of using explicit parameters in plan

tasks, the planning domain contains facts that can be used within objectives of an EF.

Such a fact, for example, can be the ID of the enemy unit that is closest to the agent’s

base. If such an enemy unit comes too close to the base, the planner will schedule the

PreventAttack task. During the execution of this task, the knowledge about the clos-

est (and therefore most dangerous) enemy unit can be used to minimize the distances

between every agent’s unit and the enemy unit, allowing for a focused and quick elimina-

tion of the enemy unit. If multiple bases are available, it is possible to track the closest

enemy unit for each base and assign friendly units to defend different bases. In case of

an attack, MCTS will then minimize the distances between each friendly unit and the

attacker of the base that the friendly unit is assigned to.

116 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

With the use of EFs, we provide a possibility for the planner to guide the decision

process of MCTS without explicitly pre-defining each unit’s behaviors for every possible

situation. That way, we aim for the goals described in Section 6.1. More details on how

these EFs are forwarded to and used by MCTS are given in Section 6.3.4.

6.3.3 Top Layer

The top-most layer of the proposed architecture consists of a centralized planner and its

planning domain. Similarly to the previous approaches, the planner used here is a total-

order HTN planner that uses ordered method selection. It is domain specific as it uses

the Java planning domain described in Section 6.3.2, which includes the postconditions

of primitive tasks and the newly introduced Evaluation Functions for MCTS.

Although the planner generates common strategies for multiple units, it is different from

the multi-agent planner described in Chapter 5. Here, the planner does not distinguish

between the units and does not assign sub-plans to each unit. Instead, it generates a

single strategy for all units. This way, the result of the planning procedure is one single

plan. The assignment of units actions is done later on the middle layer at execution-time.

Not dealing with distinct unit plans and operating on an abstract model offers the

planner a major advantage in terms of computational time, which can otherwise become

a problem with high numbers of units that are present in an RTS game. Furthermore,

this way, the combinatorial problem is forwarded to MCTS, which is better suitable for

dealing with such problems, as described in more details in the next section.

In the future, however, the planner can be adapted to be able to deal with hierarchies

of units. For example, units can be assigned to squads according to some metric, as

mentioned in some prior work in Section 2.3.2. This way, the planner can handle a more

detailed model and assign more detailed sub-plans to each squad. This can be especially

useful for larger environments, where different groups of units are required to execute

different tasks. For example, in the more complex game StarCraft division of units are

more desired than on the relatively small maps of microRTS.

6.3.4 Middle Layer

The design of this chapter’s middle layer is, to some extent, enforced by the design of

the environment and by the interface that the agent can use in order to operate in the

environment. For that reason, the layer consists of a central controller, which according

to the requirements, extends the AI Java class provided by microRTS and, for reasons

described below, directly extends the provided näıveMCTS class.

6.3. HYBRID APPROACH 117

In contrast to the environment described in Chapter 5, the level of detail of the action

execution is less granular here. In Chapter 5 the agents were supposed to execute their

actions in a very precise manner since they were acting in a continuous environment.

There, each agent should be in the correct location and have the required rotation in

order to be able to interact with an object. This was especially important when two

agents were required to cooperate. In contrast, in microRTS, the units are moving on a

2D grid and only have 4 different (movement/rotation) directions. Therefore, the level

of detail in this discrete environment is much lower.

Additionally, in Chapter 5 the number of agents was relatively low and we focused rather

on the local effects of cooperation between two agents. Here, however, friendly units do

not explicitly cooperate with each other. Instead, they can be regarded as a swarm

of units, which is required to execute a common task with implicit coordination only.

For these reasons, the focus of this chapter’s middle layer is on the achievement of the

common high-level task rather than on the detailed actions of each unit.

Nevertheless, the agent is controlling each unit and should return the combination of all

units’ actions to the game environment. Therefore, its aim is to find a combination of

unit actions that contributes the most to the common goal. Searching for an optimal

solution through a full tree search over all possible action combinations, however, is not

feasible if either the computational budget is limited or if a decision needs to be made

at run-time, both of which apply to microRTS.

However, as already pointed out in Section 2.1.2, such a problem can be regarded as

a Combinatorial Multi-Armed Bandit (CMAB) problem over a set of variables X =

{X1, ..., Xn}, where each unit is represented by a variable Xi ∈ X and the unit’s actions

are represented by the values of Xi. Regarding the search problem as a CMAB allows

näıveMCTS to perform a search over combinations of unit actions. As already mentioned

in Section 2.1.2, näıveMCTS is a version of Monte Carlo Tree Search, which on its

own is particularly known for good performance in large search spaces. Furthermore,

näıveMCTS has been successfully used for agent control in microRTS previously [34,

42]. This version is both adapted to perform simulations on durative actions and to

approximate the joint reward of an action combination as the sum of rewards over the

distinct units’ actions. The fact that microRTS provides a forward model, in general,

allows for the use of simulation-based methods such as MCTS.

The goal of näıveMCTS in the scenario presented here is the maximization of the total

reward gained from selecting a combination of unit action. The reward is usually com-

puted with the help of an Evaluation Function (EF) that evaluates the game state at the

end of a simulation (more details on MCTS and näıveMCTS are given is Section 2.1.2).

In the architecture proposed here, this EF is provided by the top-layer planner and

differs depending on the high-level task that is currently executed.

118 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

That way, whenever the agent is required to provide a Player Action to the game, it

forwards the EF of the current plan task to näıveMCTS. Similarly to the game envi-

ronment described in Chapter 3, this is done in every frame. Therefore, in contrast to

some other works, which regard MCTS as a planning mechanism [110,111], we use it for

reactive decision-making in every frame. It is reactive since it makes a decision based on

the most-current data and therefore can react to any events. Furthermore, even though

MCTS internally simulates sequences of actions, which can be regarded as plans, it only

returns one single action to be performed in the current step. It does not provide a full

plan.

Although very similar on the first look, there is a major difference between our work and

the approach described in [111,112]. First, those works use a pure Monte Carlo method,

which in contrast to MCTS does not include a tree search. Second, the time and the

direction of the communication and control between the planner and the corresponding

Monte Carlo-based technique are different. In those works Monte Carlo rollouts are

performed on applicable planning methods during task decomposition, while in our case

a planner guides MCTS during the execution phase, which simulates actual low-level

actions and not planning methods. A major disadvantage of the former work, however,

is that during plan decomposition, the planner relies on the Monte Carlo approach to

finish its simulation. That means, it has to simulate until a full decomposition of a

compound task has been achieved. Only that way primitive tasks can be added to a

plan for execution. This, however, can take a long time and delay the execution as

pointed out in [112].

In contrast, in our hybrid approach the abstract plan is generated in an efficient way

before the actual execution. If, for some reason, the planner does take more time for

planning than the environment allows, the middle layer ensures that the agent’s behavior

stays robust. In this case, näıveMCTS simply uses either a default EF or the EF used in

the previous cycle. Since MCTS can make a decision at any depth of the search tree, it

can provide an action at any point of time, even if its computational budget is limited.

That way, the agent is always able to make a decision through näıveMCTS even if the

planner is unable to come up with a plan within the given time.

The complete workflow of the agent’s GetAction function, which is called by microRTS

in every frame is shown in Algorithm 2. Since in this chapter the planner is operating

on an abstract world model and it is not required to generate a new plan in every step,

its world state is not continuously updated. Instead, in order to provide more time for

decision-making as described below, the planner’s world state is updated when all units

are currently executing an action and consequently no new action can be started and

therefore no decision has to be made in this frame. Additionally, in order to ensure

that the planner’s world state does not become too outdated, it is updated at certain

intervals, in our case every 10 frames (lines 5 – 10).

6.3. HYBRID APPROACH 119

Afterwards, the general workflow is quite similar to the one described in Chapter 3. If

the agent is able to assign a new action to at least one of its units, it first checks whether

the currently executed task t has finished (line 14) using its postconditions. If it has

not finished yet, the algorithm checks whether the task is still valid. To check the task’s

validity, the agent checks its preconditions against the current world state. In case the

task was achieved, the agent needs to make a new decision before proceeding with the

next task in the current plan. If, however, the task was not finished yet but became

invalid, the agent has to replan and make a new decision given the new plan.

Making a new decision, in this case, means finding the next valid task – whether in an

existent or in a new plan – and forwarding this task’s Evaluation Function to näıveMCTS.

This is done within the while loop in lines 22 – 37. As already mentioned, the time budget

that is provided by microRTS to an agent is limited to 100 milliseconds. A maximum

of 80 milliseconds of this time is allocated to the planner while the remaining time

can be fully used by MCTS. The planner is allowed to use more time since replanning

will presumably happen on rare occasions compared to the reactive decision-making of

MCTS. As long as the agent is within the time budget, it can try to make a decision.

If replanning is required, a new plan is requested from the HTN planner in line 25. If a

plan is available, the agent steps to the next (or first) task in this plan in line 30. Before

starting to execute the task its validity is checked in line 31. If the task is valid in the

current game state, its Evaluation Function E is selected in line 33. Otherwise another

replanning is triggered in line 35. Note that in case the loop exceeds the time budget

before having found a valid task, the previous Evaluation Function will stay selected.

In the beginning of a game, a default EF is assigned to ensure a robust behavior of the

agent. Finally, the current EF E is forwarded to näıveMCTS in line 38. This, in turn,

checks internally for the remaining time budget and returns a Player Action trying to

best balance between optimizing E and exploring all action combinations. The exact

parameters of näıveMCTS used in this work’s experiment are presented in Section 6.4.

The Player Action provided by näıveMCTS is then forwarded to the game environment

microRTS.

120 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

Algorithm 2 GetAction

Input: Current game state
Output: PlayerAction, which represents the combination of actions of all units of the
playing agent

1: s← current game state
2: π ← current plan
3: t← current task
4: E ← current evaluation function
5: if cantExecuteAnyUnitAction or isTimeToUpdate then
6: UpdatePlannerWorldState()
7: if cantExecuteAnyUnitAction then
8: return noAction
9: end if

10: end if
11: decisionMade← false
12: replan← false
13: if t 6= nil then
14: if t finished then
15: {continue in line 22}
16: else if t running and t valid then
17: decisionMade← true {proceed with naiveMCTS}
18: else {t invalid}
19: replan← true
20: end if
21: end if
22: while decisionMade = false and belowTimeBudget do
23: if π = nil or replan = true then
24: {generate a new plan}
25: π ← GenerateP lan()
26: if π = nil then
27: continue
28: end if
29: end if

{get next plan task}
30: t← next task in π
31: if t valid then
32: decisionMade← true {proceed with naiveMCTS}
33: E ← Et {evaluation function of t}
34: else {t invalid}
35: π ← nil {continue}
36: end if
37: end while
38: return naiveMCTS(E)

6.4. FIRST EVALUATION 121

6.3.5 Bottom Layer

The Player Action provided by the middle layer is forwarded to the lowest layer of the

architecture. A Player Action contains an action for each free unit. On the lowest layer,

these actions are executed by microRTS itself and therefore the lowest layer is not an

actual part of our architecture. Here, microRTS updates the units’ health points, their

locations and rotations, and, if the visual display is turned on, draws them. Additionally,

it handles local conflicts if, for example, two units want to move into the same cell

simultaneously. Depending on the game mode, this is solved either by updating the

units in a predefined order or in a non-deterministic way (in the non-deterministic game

mode). Finally, microRTS forwards the updated environmental data to every player.

This corresponds to sensory perception and is handled by the agent’s middle layer.

6.4 First Evaluation

The experiments described in this chapter were performed in order to evaluate the

achievement of the goals that were set in Section 6.1 and their results have been published

in [79]. In particular, the focus of the initial experiments was on G1, which addressed

the possibility to combine strategic (long-term) and tactical (short-term) behaviors in a

large search space.

For strategic behaviors, we have used the planning domain described in Section 6.3.2.

This domain included 4 primitive tasks CollectResources, BuildAndDefend, AttackOppo-

nent, PreventAttack and the 4 corresponding Evaluation Functions CollectEF, BuildEF,

AttackEF and PreventEF. Inspired by EFs used by benchmark agents that are provided

with microRTS, the initial evaluation functions that were used in the experiments des-

cribed in this section considered different variables. For example, all EFs except for the

CollectEF considered the number of all units’ HPs (friendly and opponent units sepa-

rately) and the distance to their targets. CollectEF considered only the number of HPs

of worker units and bases. Additionally, CollectEF and BuildEF considered the num-

ber of resources carried by workers and the number of resources available for use. The

selection of features to be considered in each EF as well as their weights in the weighted

sums were selected manually according to our knowledge of the game and tweaked in

some prior experiments.

122 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

We assume that the different strategic behaviors executed by our agent should be es-

pecially visible when comparing them against an agent that follows a single strategy

throughout the whole game. For that reason, we have compared our agent against a

pure näıveMCTS agent [34], which the middle layer of our approach is based on. The

näıveMCTS agent was following the same strategy throughout all stages of a game using

one single Evaluation Function – the SqrtEF function [34]. This function is trying to

maximize the relative strength of an agent compared to the total number of friendly and

opponent units on the map. As shown in Equation 6.2, it sums the cost (resources spent)

of its own units U weighted by the square root of their remaining HPs, then subtracting

the same sum for the opponent’s units O:

SqrtEF = (
U∑

u=1

costu ∗

√
HPu−left
HPu−max

)− (
O∑

o=1

costo ∗

√
HPo−left
HPo−max

) (6.2)

All other MCTS parameters have been set to identical values for our hybrid agent and

the pure näıveMCTS agent. These parameters were pre-set to the default values of the

näıveMCTS agent distributed with microRTS. We follow the definitions of parameters

as described in Section 2.1.2. All policies π0, πl, and πg were ε-greedy policies with

ε0 = 0.4, εl = 0.3 and εg = 0 respectively. The maximum simulation time of an action

was set to 100 frames. The maximum tree depth was 10 and the default policy was

RandomBiasedAI. This policy gives attack, collect, and return (a resource) actions a

higher chance to be selected than movement actions.

For a direct comparison, we have let these two agents play against each other and for

a comparison of their performance in general, we have let both of them play against

further opponents. Both agents were tested against a pure planning agent that uses an

HTN planner. For that purpose, the Adversarial Hierarchical Task Network (AHTN)

agent [152] was selected. To the best of our knowledge, this is the only available agent

for microRTS that is using a planner. However, it is noteworthy that, in contrast to

our agent, which is creating abstract high-level tasks, this agent is operating on low-

level unit actions. For that reason, the generated plans are very short and very detailed.

Additionally, due to the high dynamics of the environment, most plans cannot be carried

over to the next frame, since a plan failure is very likely to happen. For that reason,

AHTN generates a new plan in every frame. Therefore, when comparing against our

agent, we did not expect from the AHTN agent to show any long-term strategies.

6.4. FIRST EVALUATION 123

(a) FourBasesWorkers-8x8 (b) NoWhereToRun-9x8

(c) basesWorkers-8x8A

Figure 6.3: Results of 50 matches played by our agent (HTN-MCTS) and näıveMCTS
against 3 (2) opponents on small maps [79].

In addition to the two pure approaches mentioned above, we have compared our agent

and näıveMCTS against another agent that combines strategic and tactical behaviors.

The agent StrategyTactics [161] uses tree search for low-level tactical behaviors and

predefined scripts (programs) for strategic behaviors. First used in the Puppet Search

agent [160] in StarCraft such scripts were responsible for forwarding the game state by

more than just one action and allow for look-ahead search over longer time spans. For

StrategyTactics, the approach was extended by a convolutional neural network to select

the scripts. This agent won the 2017 edition of the microRTS competition.

In order to test their performances and to observe their behaviors, our agent and the

näıveMCTS agent were tested against the three (two in näıveMCTS’ case) mentioned

opponents on 7 different maps of microRTS, which are shown in Appendix D. These

maps belonged to 3 different size categories: 3 small maps (8× 8 cells), 2 mid-size maps

(16× 16 cells) and 2 big maps (24× 24 cells). Following the competition rules [162], the

maximum length of each game was limited according to the size category of the map

to 3000 frames, 4000 frames, and 5000 frames respectively. An agent won a game if

its opponent had no units left on the map. If there was no winner after the maximum

number of frames, the game result was a tie. Each agent’s computational time was

limited to 100 milliseconds. Each agent combination played 50 games on each map. Out

of the 50 games, each agent played 25 games on each player side.

124 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

(a) basesWorkers-16x16A (b) TwoBasesBarracks-16x16

Figure 6.4: Results of 50 matches played by our agent (HTN-MCTS) and näıveMCTS
against 3 (2) opponents on mid-size maps [79].

(a) basesWorkers-24x24A (b) DoubleGame-24x24

Figure 6.5: Results of 50 matches played by our agent (HTN-MCTS) and näıveMCTS
against 3 (2) opponents on bigger maps [79].

The results of the experiments are shown in Figures 6.3 – 6.5. In General, the exper-

iments have shown that the weights have a large effect on the agent’s behaviors and

weights that lead to good performance on maps of a certain size or type are not good

enough for other maps. For example, military units do not play an important role on

small maps since the agents start the game so close to each other that the best strategy

is to attack quickly with worker units only, instead of building an army. This, however,

is a weak strategy for big maps where assaults performed by military units lead to a

higher chance of success.

Additionally, we assume that the manually predefined weights were not balanced well

enough between the different unit types. Furthermore, the general importance of HPs

in comparison to distance minimization was not proportional to the map sizes. This

way, on bigger maps, a higher importance was given to keeping friendly military units

alive than to minimizing the distance to the opponent base and destroying the opponent

units. For that reason, our agent’s military units stayed close to the friendly base trying

to defend themselves and the base rather than starting a determined attack on bigger

maps. That way, most of the games of our agent against the näıveMCTS agent on the

bigger maps resulted in a tie. On small maps, however, all distances were so short, that

it was more optimal for our agent to reach the opponent and destroy its units.

6.4. FIRST EVALUATION 125

The defensive behavior of our agent was especially effective against AHTN and Strategy-

Tactics on the mid-size maps and the big map with only one base (basesWorkers24×24A

in Figure 6.5). In contrast to the näıveMCTS agent, these agents are aggressive and

start an attack quickly. Therefore, in most games against these opponents, our agent’s

BuildAndDefend task was interrupted by their attack and the PreventAttack task was

executed instead. During this task, collecting resources and creating new units was not

important. Instead, all units tried to defend their base by counter-attacking the incom-

ing opponent units. The PreventAttack task was executed until no more attacking units

were in close range to the friendly base.

As can be seen in the example video2 of a game against StrategyTactics on the map

basesWorkers24 × 24A, after successfully preventing an attack, our agent returned to

the BuildAndDefend task. The ability to quickly switch between different behaviors

showed that the proposed architecture enabled the agent to stay reactive while still

following a long-term strategy. Throughout one game, the agent could switch multiple

times between the building and the attack-preventing task before finally starting its own

attack. Although, in some cases our agent was not able to handle the persistent stream

of incoming StrategyTactics units and was defeated.

In contrast to StrategyTactics, who always kept a few worker units at its base during

its attack to ensure that further resources were collected and new units were created,

AHTN focused all its units on attacking the opponent. Therefore, no new units were

created and the stream of attackers ended at some point. This allowed our agent to

first destroy all mobile AHTN units without having to cross the map and to attack the

opponent base later on. That way, our agent won most of the games against AHTN.

Compared to the performance of the näıveMCTS agent against these two agents, we

can see that the strongly defensive behavior of our agent allowed for a higher win rate

especially on mid-size and big maps.

However, there are two special maps, which are different from the other maps used in

these experiments. These maps are the second mid-size map and the second big map,

whose results are shown on the right side of Figure 6.4 (TwoBasesBarracks16× 16) and

Figure 6.5 (DoubleGame24 × 24) respectively. In both maps, each agent started with

2 bases instead of one. Additionally, in the mid-size map, each agent had initially 2

barracks pre-built. The big map was separated by a wall of resources so that one base

of each agent was on each side of the wall and the player could, in theory, play two

simultaneous games on each side.

2Experiment video: https://youtu.be/Eox_ab836tM

https://youtu.be/Eox_ab836tM

126 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

Figure 6.6: Progress of a match between our agent (striped units) and naiveMCTS [79].

Since StrategyTactics is able to build an army and simultaneously attack the opponent,

it was very strong on the big map with 2 barracks. Additionally, because our agent

stopped the building task when preventing an attack, it quickly lost the games against

StrategyTactics on the mid-size map, which is reflected in the 4% win rate in Figure 6.4.

On the big map, the fact that the agent was supposed to play different strategies on

the different sides of the wall, was the reason for a weak performance of our agent. As

already mentioned, StrategyTactics allowed distinct agents to follow separate strategies.

However, our agent was designed in such a way that a single strategic task was selected

for all units. For that reason, if the planner made a high-level decision based on the

event on one side of the map, this decision affected the units on the other side as well.

This, again, resulted in less optimal behaviors and led to a high failure rate. This is

shown in the results against StrategyTactics on the DoubleGame map in Figure 6.5. We

assume that changes in the planning domain as well as a possibility for the planner to

separate units into groups will solve this problem.

A possible reason for a generally weak performance of näıveMCTS on bigger maps is

the limited simulation depth, which did not allow the agent to look ahead far enough

to find an optimal solution. Therefore, it was mostly acting locally and spreading its

units very slowly. In contrast to that, our agent, was showing more deliberate behaviors

depending on its current EF. Since our agent always tried to minimize a distance (either

to resources or to the opponent), it was able to move more consciously towards its

target than näıveMCTS, who was always trying to optimize its strength in relation to

the opponent. These deliberate behaviors were very distinguishable in many cases, as

can be seen in the video mentioned above. An additional example showing the progress

of a strategic long-term plan is shown in Figure 6.6.

6.4. FIRST EVALUATION 127

This scenario shows a game between our agent (on the left side of the map) and the

näıveMCTS agent (on the right side) on the small map NoWhereToRun 9 × 8. (The

blue, red, and violet background colors indicate the visibility of a cell to different players

in a partially observable mode. However, these are not relevant for our experiments,

which are performed with full observability.) In the first part of Figure 6.6, the begin-

ning of the game is shown. Both players start with a base and a worker. They cannot

reach each other because of the resource wall in the middle. Therefore, first, both players

start gathering resources. In this case, our hybrid agent executes the task CollectRe-

sources. The corresponding EF is maximizing the number of resources and minimizing

the workers’ distances to resources (if not carrying a resource) or to the base (if carrying

a resource). For that reason the workers stay within a narrow range to the base.

Since the näıveMCTS agent is always maximizing the number of its units, it immedi-

ately starts creating more workers and therefore spends all its resources. The creation of

worker units requires the least amount of resources and therefore Equation 6.2 is max-

imized in this case. The second part of Figure 6.6 shows that näıveMCTS has created

many workers, which spread all around its side of the map. In contrast, once our agent

has collected enough resources, it switches to the BuildAndDefend task and builds a bar-

rack. As we can see on the second picture, some workers still keep collecting resources

staying close to the base. In the meantime, 3 light units were created by the barrack.

These units’ distances to the base are also minimized since they are supposed to defend

the base from attacks. At this point in time, the wall is still closed and there is no way

to the opponent’s base. Therefore our agent is not able to start an attack and keeps

creating more military units.

Once the wall is opened up in the third part of Figure 6.6, our agent does not immediately

start an attack since the opponent is outnumbering and therefore the attack task’s

preconditions still do not hold. However, the opponent’s units start spreading onto

our agent’s side of the map. At this point, the agent detects an attack and triggers a

replanning. The task PreventAttack starts and the light units move towards attacking

opponent workers that are closest to the base (in this case the opponent workers on the

bottom of the map).

Afterwards, our agent keeps on building up its army and defending the base until, finally,

the preconditions for an assault are met. The last part of Figure 6.6, shows that its units

are now deliberately moving towards the opponent’s base and destroying opponent units.

128 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

The results of the experiments described here and the observations made throughout

multiple game rounds offer multiple insights. First, in regards to goal G1, the proposed

hybrid architecture clearly allows for a combination of strategic and tactical behaviors

interleaving high-level planning and low-level decision-making for a high number of units

in a large search space. Based on the efficient sampling of the näıveMCTS agent, our

agent is showing promising results even in the large search space of microRTS. Although,

an improvement of the strategic behaviors is required for the future.

Regarding goal G2, the agent is able to make deliberate tactical decisions at run-time

without being provided any explicit commands. With the use of MCTS on its middle

layer, the agent is capable of finding combinations of unit actions that implicitly lead to

tactical behaviors, which are very close to the expected ones.

Furthermore, the sequencing of the distinguishable tactical behaviors leads to a recogniz-

able player strategy, which is provided by the planner. Therefore, the experiments have

shown that it is possible to guide the search of MCTS through a planner, as defined by

goal G3.1. By constantly monitoring the environment and the progress of the high-level

plan, the agent is able to recognize when certain adjustments to the plan are required

from the planner in order to change the reactive behavior of the agent.

In general, the results show that a good balance between the weights used in the tasks’

Evaluation Functions can have a big impact on the progress and the outcome of the

game. As we have seen on certain map types and on maps of bigger sizes, the EFs used

in these experiments are not optimal and should be constructed in a more granular way.

It is not enough to use one single set of EFs for all types and sizes of maps. Instead,

there remains a requirement to better adapt them to some specific features of certain

groups of maps. Furthermore, we assume that general adjustments to the weights can

lead to better results. However, balancing the weights manually is a major difficulty of

this hybrid approach. For that reason, we regard goal G3.2 as not accomplished and

propose further improvements in the following sections.

6.5 Evolution of Evaluation Functions

The focus of the following sections is on goal G3.2 defined in Section 6.1, namely to

optimize the execution of tactical behaviors through an improved guidance from the

planner. Since the guidance is happening through the tasks’ Evaluation Functions, we

assume that adjusting the weights used in these functions will lead to optimized tactical

behaviors.

6.5. EVOLUTION OF EVALUATION FUNCTIONS 129

In order to improve the weighting of different features used in the tasks’ Evaluation

Functions, we propose two steps. First, the balance between the weights of EFs needs be

different for different types of maps. For example, in bigger maps, the weight of distance

optimization should be higher in relation to other features than it is on small maps,

where units can easily reach their targets. Second, we propose replacing the manual

configuration and adjustment of weights by an optimization algorithm. In particular,

we propose using a Genetic Algorithm (GA) for this purpose. Although, we assume that

alternative Machine Learning algorithms can be used in a similar manner at this point.

The ideas and results described in the following sections have been previously published

in [158].

The idea behind using a GA for the optimization of weights is the following: each EF is

using a predefined number of features and corresponding weights. This means that one

EF can be represented as a chromosome, where each gene represents a certain weight.

As we have seen in the initial experiments, changing these weights, directly affects the

tactical (low-level) behavior of the agent and depending on the quality of its tactical be-

haviors, the agent proceeds better or worse with its overall strategy (high-level behavior).

Therefore, the weights do not only affect the local behaviors of units but also the global

plan. For that reason, the quality of an EF, that leads to a certain tactical behavior, can

be measured by the time required to finish the plan task that this EF is representing.

This way, an EF with well-selected weights is expected to lead to a deliberate and fast

achievement of the corresponding task, whereas poorly balanced weights will lead to

undesired behaviors. For that reason, the success of a task execution and the required

time can be used as a fitness measurement of the EFs or rather the chromosomes that

represent their weights.

Furthermore, as we have noticed in previous experiments, some weights can be interre-

lated. This means that changing complete tuples of weights can entail certain behavioral

patterns. Such changes of tuples can be represented by applying a crossover operator

to two chromosomes and exchanging multiple genes (weight values) between them. For

the reasons mentioned above, a Genetic Algorithm offers a good possibility for weight

optimization in an Evaluation Function.

Previously, different Evolutionary Algorithms (EAs) have been successfully applied to

different parts of MCTS. For example, [49] used an EA to evolve the default policy of

MCTS instead of using a predefined one. Changing Evaluation Functions in order to

guide the search of MCTS was also done with the help of EAs in previous works. For

example, [51] fully evolved EFs through a Genetic Algorithm (GA), which did not only

adjust the weights of its sub-functions but changed the structure of the EFs. This way,

it also evolved the operators used in the functions.

130 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

In a way that is more similar to our approach, [50] evolved weights of EFs used by MCTS.

The major difference to our work is, however, that evolution in [50] was done online,

meaning that one generation of individuals was evaluated during one single iteration of

MCTS. Both approaches ([51] and [50]) have shown that evolving EF can lead to great

improvements of MCTS.

6.5.1 Application of the Genetic Algorithm

In the following section, we describe the elements of the proposed application of a Genetic

Algorithm using the notion of [158].

Each EF that represents a plan task τ is a sum of weighted features (objectives) that

should either be minimized (for example distance or the opponent’s Health Points (HPs))

or maximized (for example resources or HPs of friendly units). For the Genetic Algo-

rithm, each EF is represented as a chromosome of the length equal to the number of

the EF’s features. Each gene gj of a chromosome represents the weight wj ∈ [0.0, 1.0]

assigned to the corresponding feature. We refer to an instance of a chromosome as an in-

dividual i. The initial population of individuals is generated by assigning random values

between 0 and 1 to each gene of each individual.

We apply two genetic operators to every individual. First, a uniform crossover between

two neighboring individuals is applied by switching the values of each pair of genes with

a 50% chance. This allows certain genes to be carried over into the next generation.

Additionally, we apply a mutation operator, which changes the value of each gene to

a new value between 0 and 1. For every gene, the mutation is applied with a certain

probability. In the experiments described in the next section, we apply two different

mutation probabilities of 50% and 20%.

As already mentioned, the goal of applying a GA to the tasks’ EFs is optimizing their

weights in such a way that the resulting EFs enable MCTS to achieve the corresponding

task as fast and efficient as possible. For that reason, we use the time required to

successfully finish a task as a measurement of an individual’s fitness F (i), where time

corresponds to the number of frames. Since the time should be minimized, we are also

minimizing the fitness values as opposed to the usual fitness maximization.

6.5. EVOLUTION OF EVALUATION FUNCTIONS 131

Each individual’s fitness is evaluated after the agent plays a game using the current in-

dividual for the initialization of the weights in the corresponding task EF. Equation 6.3

shows the calculation of the individual’s fitness F (i) after one game. As already men-

tioned, each game in microRTS is limited to a maximum number of frames tmax. The

time ti, in which a task τ is executed represents the difference between the task’s end

and its beginning. A task can end either being achieved or by failing (i.e. the agent

triggers replanning).

F (i) =

{
−(tmax − ti) if task τ achieved

(tmax − ti) if task τ failed
(6.3)

Since the fitness should be minimized, we are considering the negative difference between

maximum time tmax and the required time ti for successfully finished tasks. For the failed

cases, we assume that if the agent needed more time before the task failed as a better

option than if it failed after a very short time. The latter case would indicate that

the agent’s behavior was very wrong. However, failing a task is not desired in general.

For that reason, we consider the positive difference between the maximum time and the

task’s time for the fitness calculation.

Since a game progress does not only depend on our agent’s behavior but also on the

opponent’s actions, it is not enough to evaluate each individual in one single game.

In order to better approximate the fitness, it requires multiple games with the agent

playing on both sides of the map. Furthermore, in order to evolve EFs that generalize

well against different kinds of opponents and different situations, each individual should

be evaluated by playing multiple games against different opponents on multiple maps.

For these reasons, the total fitness of an individual FT (i) is computed as shown in

Equation 6.4.

FT (i) = tMAX −
M∑

match=1

F (i) (6.4)

The total fitness considers the fitness values F (i) gained in M games (or matches), which

are computed according to Equation 6.3. The M games are played multiple times against

multiple opponents on multiple maps. The exact numbers and types of opponents and

maps used in this work, are described in Section 6.5.2. The final fitness is the difference

between the total maximum time of all M games (tMAX) and the sum of all games’

fitness values. This way, the total value is minimized, while varying between the total

maximum time and 0.

132 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

Once all individuals of one generation are evaluated, we use a µ+λ with elitism selection

strategy. Here, µ is the number of the individuals in the parent population and λ the

number of individuals in the offspring population. For this work, we use µ = λ and

select the µ best individuals among parents and the offspring for the next generation.

Furthermore, we always keep the µ best individuals found so far in a so called archive.

6.5.2 Second Evaluation

The experiments of this section describe the evolution of the EFs’ weights and their ef-

fects on the agent’s behaviors. These experiments and their results have been published

in [158]. With the aim to improve the previous behaviors, we have used the same plan-

ning domain as used in the first experiments and described in Section 6.3.2. However, the

results of the initial experiments have indicated that the balance of weights should vary

according to the map size that the agent is playing on. For that reason, in the following

experiments, the agent was still using the 4 previously described plan tasks CollectRe-

sources, BuildAndDefend, AttackOpponent, PreventAttack with the corresponding EFs

CollectEF, BuildEF, AttackEF and PreventEF. However, during a game, the configu-

ration of each EF was selected according to the current size of the map. Here, maps

were divided into 3 sets: small maps (8× 8 cells), mid-size maps (16× 16 cells), and big

maps (24 × 24 cells and bigger). This way, given the 3 map sizes and 4 tasks, in total,

12 configurations of EFs were evolved.

In addition to the 7 maps used in the first experiments, we have used an even larger map

of the size of 32×32 cells, which is also shown in Appendix D. The major difficulty of this

map is that the resources are at a long distance from both players’ bases. Therefore, in

order to reach them, the players are required to use some form of deliberate navigation

and long-term planning. It can be problematic for simple search-based agents (including

MCTS) to reach these resources due to a limited search depth. Similarly to the first

experiments, the maximum number of frames was limited to 3000 frames and 4000 frames

for small and mid-size maps respectively and 5000 frames for big maps with a 24 cell

width and 6000 frames for the biggest map. As before, a frame was limited to 100

milliseconds.

6.5. EVOLUTION OF EVALUATION FUNCTIONS 133

As mentioned in Section 6.5.1, an individual’s fitness is measured while the agent is

playing a certain number of games against each of the opponents from the training

set (described below) on each of the maps of the corresponding size. The fitness val-

ues of each game are then summed into the total fitness of an individual according to

Equation 6.4. A fitness of an individual after one game depends on the time that was

required to finish the task that is represented by the EF, whose values are currently

evolved. Therefore, when the weights of, for example, the AttackEF are evolved, the

evaluation starts only when the agent starts executing the task AttackOpponent. How-

ever, it can happen that the agent does not get a chance to start this task throughout

a game because, for example, its opponent is very strong and the agent is required to

only defend its base. In such cases, the game round cannot be evaluated and is repeated

until the agent executes the attack task.

Whether the agent gets a chance to execute a task depends to a big extent on the

agent’s previous behavior. For example, if the agent did not collect enough resources or

did not create enough military units, it cannot attack. For that reason, the probability

of executing the AttackOpponent task depends on a successful and efficient execution of

the tasks CollectResources and BuildAndDefend. This efficiency cannot be guaranteed

using manually balanced EFs for these tasks. For that reason, we propose evolving

the EFs in the order, in which the tasks will usually be scheduled providing a more

optimal game flow to the agent. For each map size, the EFs are evolved in the following

order: CollectEF, BuildEF, PreventEF and AttackEF. This way, we first try to optimize

CollectEF and only after running the GA for a certain number of generations on this

EF do we switch to evolving the next EF.

However, since some maps present special conditions, through which the planner will

never schedule certain tasks, these maps were left out during the evolution of such tasks.

For example, on very small maps, a good strategy is attacking the opponent with worker

units only. For that reason, an agent switches from collecting resources directly to

attacking the opponent, without ever starting the BuildAndDefend task. On some other

maps, both players already start with barracks built and some resources available. Here,

the agent will usually not go back to the task CollectResources.

The experiments of this section were performed in order to evaluate goal G3.2 from

Section 6.1, which was a more efficient execution of tactical behaviors. For that reason,

a direct comparison of the performance of the hybrid agent that uses the evolved EFs

with the agent that uses the manually balanced EFs was required. Therefore, we have

tested the agent with all configurations of the EFs against the previous 3 opponents

(näıveMCTS [34], AHTN [152], and StrategyTactics [161]). Both, the näıveMCTS agent

and our agent used the same parameters as described in Section 6.4, namely π0, πl, and

πg ε-greedy policies with with ε0 = 0.4, εl = 0.3 and εg = 0 respectively, a maximum

tree depth of 10, a maximum simulation time of 100 frames, and RandomBiasedAI as

the default policy.

134 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

Training set Test set

Tiamat Tiamat
SCVPlus SCVPlus

NaiveMCTS NaiveMCTS
Capivara
AHTN

StrategyTactics

Table 6.1: Agents used in the training set and in the test set.

Additionally, we used further strong agents from the 2018 edition of the microRTS com-

petition3: Tiamat [163, 164], Capivara [165], and SCVPlus [166]. Similarly to the idea

behind StrategyTactics, Tiamat [163] – the winner of the competition – defines unit

behaviors through scripts. These scripts are assigned per unit type, which allows groups

of different unit types to follow different strategies. Later, [164] scripts with different pa-

rameters are used to represent different strategies. An Evolutionary Algorithm is then

used to find optimal strategies. Also extending the idea behind [163], Capivara [165]

combines unit-type specific scripts with näıveMCTS. While running näıveMCTS, the

scripts restrict the actions for certain unit types according to the current situation en-

forcing certain behaviors. SCVPlus [166] is also based on scripting. Here, a voting

system is used to generate new scripts from existing ones.

First, we have evolved the EFs against the strongest of the 6 opponents – Tiamat.

However, after the first results, which are described below, we have divided the agents

into a training set and a test set as shown in Table 6.1 aiming to train the agent to play

equally well against different types of agents, strong and weak. The training set was

used during the evolution and included the agents Tiamat, SCVPlus, and näıveMCTS,

which are sorted from the strongest to the weakest agent. After the evolution process

ran for a certain number of generations, our agent was tested in games against all 6

opponents from the test set.

Table 6.2 shows the parameters of the GA used in the three experiments. The first two

runs were done using Tiamat only. The major difference between the first experiments

is the changed mutation rate of 50% and 20%. Since playing a high number of games on

multiple maps takes a long time given a population of 10 individuals, we have further

varied the number of games played in each configuration (6 and 2 respectively) and the

total number of generations (20 and 30).

3Results of the 2018 microRTS competition: https://sites.google.com/site/
micrortsaicompetition/competition-results/2018-cig-results

https://sites.google.com/site/micrortsaicompetition/competition-results/2018-cig-results
https://sites.google.com/site/micrortsaicompetition/competition-results/2018-cig-results

6.5. EVOLUTION OF EVALUATION FUNCTIONS 135

Parameter Tiamat only (T20) Tiamat only (T30) Full training set (F)

Number of opponents 1 1 3

Mutation probability 50% 20% 50%

Crossover probability 50% 50% 50%

Population size = µ = λ 10 10 10

Number of generations 20 30 10

Number of games per
opponent per map

6 2 6

Table 6.2: Parameters of the Genetic Algorithm used in three separate evolution pro-
cesses, using Tiamat only in the first two processes and all 3 opponents from the training
set in the last process.

After finishing the evolution of all EFs, the best 10 individuals of each EF were saved in

the corresponding archive. Out of each archive, we have selected the best individual to

be tested against the opponents in the test set. The agents using combinations of these

individuals are shown as IT20 and IT30 (for the experiments over 20 and 30 generations

respectively) in Table 6.3.

In order to test the evolved agents, every agent played 25 games against each opponent

from the test set on each player side (50 in total), on each map. The resulting winning

percentages shown in Table 6.3 were computed as the sum of the number of games that

our agent won and half of the number of draws divided by the total number of games

and multiplied by 100. Additionally, in order to evaluate the performance gain of the

evolved agents, the initial agent that was using the manually balanced weights (described

in Section 6.4) played the same number of games. This agent is represented as the Init.

agent in Table 6.3.

The major disadvantage of training only against Tiamat was the strength of this op-

ponent. As already mentioned, the probability of the AttackOpponent task depends on

the progress of the game. With a very strong opponent, our agent sometimes was not

able to start this task, which resulted in multiple repetitions of a game. Furthermore,

even if the agent was able to start executing the task, especially on mid-size and big

maps, it was not able to successfully achieve it. Instead, it lost the game. In these cases,

when computing the individual’s fitness, Equation 6.3 only tried to maximize the time

that the agent required to fail the task. There was no regularization through positive

examples and consequently the agent was rather forced to survive for as long as possible

by avoiding the opponent instead of attacking it.

136 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

For that reason, in the third experiment, we have used the full training set to play against

during the evolution. By introducing weaker agents, we ensured that our agent had

better chances to start all tasks and to successfully finish them. As shown in Table 6.2,

we have used the same parameters as in the first experiment. However, playing 6 games

against 3 opponents on 2 (or 3, depending on the map size) maps with a population of 10

individuals resulted in at least 360 (or 540) games per population, with possibly many

repetitions of some games. Considering that a maximum game length varied between

3000 and 6000 frames depending on the map size and a frame lasts 100 milliseconds, the

evaluation of one population could take up to multiple days. For that reason, we have

limited the total number of generations to 10.

After the evolution of all EFs over 10 generations each, the final archives contained 10

best individuals for each EF. Similarly to the first experiments, we have selected the

best individuals of each archive and tested the agent with this combination against all

6 opponents from the test set. The results of this configuration are shown as IF1 in

Table 6.3 with the best results against each opponent (max. of each column) marked

green.

As we can see, in most cases, this combination has shown better results than the agents

that used the EFs trained against Tiamat only (IT20 and IT30). For that reason, we have

further tested combinations of individuals from the last experiment. For that purpose,

in each archive, we have identified groups of individuals that had the highest number

of equal genes. These were related individuals, who were most likely derived from the

same ancestors and consequently were carrying the same genetic information. Our goal

was to test different kinds of behaviors. Assuming that groups of similar weight values

(related individuals) will lead to similar behaviors, we have selected the best individual

(the one with the lowest fitness values) from 2 groups that were different from the group

that IF1 belonged to. This way, these individuals were unrelated or only weakly related

with each other. The agents with the combinations of these individuals are shown as

IF2 and IF3.

Table 6.3 shows that in most cases the agent with the best individuals – IF1 – shows

the highest performance gain in comparison to the initial agent with manually balanced

weights. Interestingly, the agents IT20 and IT30, which were trained against Tiamat, did

not outperform IF1 against Tiamat on any map. This indicates that, in comparison to

using a single opponent during training, using multiple opponents improves the agent’s

performance not only against other opponents but also against the one concrete opponent

(in this case Tiamat).

6.5. EVOLUTION OF EVALUATION FUNCTIONS 137

FourBasesWorkers8x8 basesWorkers8x8A

Tia-
mat

SCV-
plus

Naive-
MC-
TS

Capi-
vara

A-
HTN

ST Tia-
mat

SCV-
plus

Naive-
MC-
TS

Capi-
vara

A-
HTN

ST

Init. 85 96 90 80 100 98 Init. 51 100 51 17 91 51
IT20 91 86 78 70 100 84 IT20 38 94 57 16 85 72
IT30 80 91 63 60 100 86 IT30 39 100 16 25 65 19
IF1 96 100 96 98 100 100 IF1 74 100 74 29 85 77
IF2 97 100 96 98 100 100 IF2 62 100 73 26 77 79
IF3 86 94 82 82 100 98 IF3 46 99 57 10 96 53

NoWhereToRun9x8 basesWorkers16x16A

Tia-
mat

SCV-
plus

Naive-
MC-
TS

Capi-
vara

A-
HTN

ST Tia-
mat

SCV-
plus

Naive-
MC-
TS

Capi-
vara

A-
HTN

ST

Init. 0 98 78 14 98 58 Init. 0 97 64 0 85 37
IT20 0 95 80 27 94 86 IT20 2 68 54 0 57 20
IT30 0 100 99 38 100 94 IT30 10 98 82 0 64 58
IF1 10 99 100 46 100 93 IF1 10 100 96 0 88 63
IF2 6 99 99 32 100 94 IF2 2 100 93 0 98 58
IF3 0 84 32 27 92 41 IF3 4 94 96 2 75 84

TwoBasesBarracks16x16 basesWorkers24x24A

Tia-
mat

SCV-
plus

Naive-
MC-
TS

Capi-
vara

A-
HTN

ST Tia-
mat

SCV-
plus

Naive-
MC-
TS

Capi-
vara

A-
HTN

ST

Init. 0 83 57 0 96 2 Init. 0 81 50 0 80 47
IT20 0 59 50 0 69 2 IT20 0 52 50 0 100 48
IT30 2 94 77 0 100 13 IT30 0 48 50 0 98 43
IF1 2 96 73 2 100 16 IF1 0 72 50 0 100 32
IF2 0 93 85 0 96 8 IF2 0 42 50 0 60 10
IF3 0 100 85 0 98 12 IF3 0 54 50 0 94 44

DoubleGame24x24 BWDistantResources32x32

Tia-
mat

SCV-
plus

Naive-
MC-
TS

Capi-
vara

A-
HTN

ST Tia-
mat

SCV-
plus

Naive-
MC-
TS

Capi-
vara

A-
HTN

ST

Init. 43 69 50 6 99 0 Init. 0 0 50 0 10 3
IT20 50 72 50 8 68 8 IT20 0 0 52 0 14 18
IT30 50 70 50 0 40 8 IT30 0 0 58 5 28 6
IF1 50 69 50 6 99 0 IF1 0 0 50 0 0 14
IF2 50 70 50 6 96 0 IF2 0 0 52 0 16 10
IF3 48 68 50 4 80 2 IF3 0 0 50 0 8 4

Table 6.3: Winning percentage of the row player against the column player. Computed
as the sum of victories of the row-player against the column-player and half of the number
of draws, divided by the number of matches and multiplied by 100 [158]. Best results of
each column are marked green.

In some cases, the agents IF2 and IF3 were able to outperform the agents trained against

Tiamat and to perform comparably to IF1. Although, in most cases IF1 was stronger.

This indicates that selecting the best individual for each EF separately also leads to a

better performance of the agent in general. Consequently, improving the execution of

distinct tactical behaviors also improves the execution of a complete strategy.

138 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

The differences between IF1, IF2, and IF3 were mainly dependent on the opponents. For

example, we can see that on the midsize map basesWorkers16× 16A IF3 performed best

against StrategyTactics (ST) but was weaker than IF2 against AHTN. This indicates that

the different (unrelated) individuals in the final archives can represent different player

profiles that are differently suited to play against certain opponents. This means that

combining different kinds of individuals of the distinct EFs can lead to more aggressive

or more defensive agents. This opens an interesting outlook for future work, where

evolving EFs can be used for procedural generation of game-playing agents.

In general, the results show that evolving EF weights through a Genetic Algorithm can

improve the efficiency of a task execution done by MCTS. Although the agent does not

outperform the strongest opponents, the evolutionary approach shows promising results.

The agents using the evolved individuals achieve a winning percentage that is similar

to or higher than the one of the initial agent with the manually defined weights, even

against the strongest opponents. Consequently, the plan tasks can be improved in such

a way that they provide a more efficient guidance for the execution of tactical behaviors

as aimed for by the goal G3.2 in Section 6.1.

Furthermore, the high-level tasks act as a guidance for the Genetic Algorithm during

the evolution process. An individual’s fitness is computed as the time required to finish

a task. Knowing when a plan task is finished is possible due to the use of the proposed

postconditions. During the training phase they are the key indicators of a task’s end.

By constantly monitoring the game state and comparing it to a task’s pre- and postcon-

ditions, the agent is able to track the time and the success of the task’s execution and

to forward this information to the Genetic Algorithm.

The major difficulty of using the proposed approach, however, are the very long training

times. On the one hand, they result due to the way of how an individual’s fitness is

measured: by playing multiple games in real-time. On the other hand, the training time

can be drastically extended by failed game trials. That is, whenever the task, whose

EF is currently evolved does not start throughout a whole game match, this match has

to be repeated. This can happen in multiple consecutive games and therefore delay the

evaluation of an individual a lot.

6.5. EVOLUTION OF EVALUATION FUNCTIONS 139

A possible reason for a task not being started in a game is that its preconditions are

never met and a reason for that can be a non-efficient execution of preceding tasks.

For example, an attack cannot be started if the agent did not create an army. This

is especially the case for tasks that are usually scheduled later within a strategic plan.

Their success depends a lot on the performance of the preceding tasks. In order to

minimize such situations, we have proposed to evolve the tasks in the order that they

are usually scheduled in. However, even after evolving a task’s EF over a certain number

of generations, there is no guarantee that the agent will execute this task in an optimal

way. Therefore, alternatively to evolving EFs in a certain order, a parallelized evolution

or co-evolution of EFs can decrease the training time. Shorter training times will, in

turn, allow for a higher number of generations to be evolved in the same time.

Additionally, with an increasing map size the size of the search space handled by MCTS

also increases. Consequently, the agent can execute a larger variety of action sequences.

That way, with even slightly less optimally balanced weight values it becomes less likely

for the agent to achieve any task at all. For example, we could see that in many cases

on the bigger maps the agent collected a resource and approached its base in a very

targeted manner. However, it stopped a few cells in front of the base and did not drop

the resource into the base. This happened because the balance between the distance to

the base weight and the resources in the base weight were balanced in a very fine-tuned

way.

As long as the agent was holding the resource, it was only minimizing the distance. If

it dropped the resource, the resources value would increase (the objective is to increase

this value). However, the agent’s target would now become another resource, which

was far away. Therefore, the distance value would suddenly increase (the objective is

to decrease this value). This would affect the total EF value in a negative way a lot

more than the benefit from the resource. For that reason, MCTS did not select this

action. At this point, the weights of these two conflicting objectives required a better

balancing. However, this could not be achieved with the number of generations used in

our experiments. We assume that a longer evolution process will lead to better results.

However, as already mentioned, with the ordered evolution of EFs, this will also increase

the training time by days.

140 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

6.6 Conclusion

In this chapter, we have proposed a hybrid approach that allows for strategic long-term

planning, tactical short-term decision-making, and reactive execution. The focus of this

chapter were large-scale environments with a large number of agents that are controlled

by the hybrid approach as well as a large number of other actors that operate in the same

environment. For such environments, we have focused on scenarios where the common

group goals are more important than an agent’s own goals. Such scenarios are well

represented in Real-Time Strategy (RTS) games, which provide highly dynamic large-

scale adversarial environments. One such game environment was used in this chapter’s

experiments.

Similarly to the approach described in Chapter 5, the approach if this chapter follows

the general idea of Chapter 4 and is built as a three-layer architecture. On the top-most

layer, it uses a central Hierarchical Task Network with Postconditions (HTNp) planner

that operates on an abstract world model and is responsible for strategic planning. It

generates a common plan for all units (agents) that it controls and forwards the plan to

the middle layer.

In order to be able to make deliberate decisions for a large number of units, the middle

layer requires a mechanism that can operate in large search spaces. At this point, manual

generation of agent behaviors (as it was done in Chapter 5) becomes infeasible due to

the size of the search space and should be avoided. For that reason, we have proposed

using a mechanism that is able to perform a search in a large search space and to find

solutions within a limited time without relying on manually created behaviors but using

a simulation model of the environment.

As already described in Section 2.1.2, Monte Carlo Tree Search (MCTS) has proven to

perform well under such circumstances. For that reason, the middle layer of the hybrid

approach uses MCTS. In particular it uses näıveMCTS, which allows for a search of

actions for multiple agents and can operate on durative actions. Using näıveMCTS, the

middle layer decides on tactical behaviors for all units while following a strategic high-

level task provided by the planner. At this point, the achievement of the common plan

task by the combination of all units’ actions is more important than any single unit’s

action.

For a translation between descriptive HTNp tasks and the operational search performed

by MCTS, it requires some connection between the two techniques. The main contribu-

tion of this chapter is the introduction of so-called Evaluation Functions (EFs) as part

of primitive tasks of the HTNp. Similarly to the approach described in Chapter 5 where

each primitive task was represented by a distinct Behavior Tree, in this chapter, each

primitive task is described by a distinct EF. Such an EF represents a weighted sum of

objectives that are to be optimized in order to achieve the corresponding plan task. Such

objectives can be, for example, minimization of distances and maximization of resources.

6.6. CONCLUSION 141

When an agent using this hybrid approach starts executing a certain plan task, the

middle architecture layer forwards the task’s EF to näıveMCTS. This, in turn, uses the

provided EF to evaluate the world states resulting after its simulations and to make

decisions based on the EF values (more details on MCTS are provided in Section 2.1.2).

This way, we allow the planner to guide the search process of näıveMCTS towards

actions that are supposed to lead to the achievement of a plan task. Similarly to the

hybrid approach in Chapter 5, the middle layer uses post-conditions of a task in order

to recognize a task’s end. The lowest layer of the architecture, which is responsible for

actual action execution, is implemented as part of the game environment.

With the goals to provide an architecture that allows for strategic and tactical decision-

making in large search-spaces without relying on manual behaviors generation and with

the possibility for the planner to guide the reactive approach on the middle layer, we

have tested the proposed approach in some initial experiments in the microRTS game

environment. Here, we have defined the EFs of all tasks to the best of our knowledge of

the game environment. The hybrid agent was tested against multiple benchmark agents

in multiple games. In addition to the agent’s overall performance against other agents,

we have compared its performance and its behaviors to an agent that used näıveMCTS

with a single EF throughout all games. The initial experiments have shown that the

proposed architecture allows for visibly distinct and different tactical behaviors when

executing different strategic tasks even without explicitly pre-defining tactical behaviors

for single units. In comparison to the pure näıveMCTS agent, we could observe that the

hybrid agent was acting more goal-oriented in different stages of a game and therefore

performed similarly well or better than the pure agent.

Nevertheless, the major disadvantage of the initial approach was the strong impact of the

weights used in EFs on the agent’s behaviors and the difficulty to tweak these weights

manually. Therefore, another goal and an important contribution of this chapter was

the proposal of an automatic way to improve EFs. We have proposed using a Genetic

Algorithm (GA) to evolve the weights used in the weighted sums of EFs with the goal to

find combinations of weights that allow for a faster and a more successful execution of

plan tasks. In order to provide a more optimal game flow during the evolution process,

we have proposed to evolve the EFs of tasks in the order that the tasks are usually

scheduled in.

142 CHAPTER 6. HYBRID APPROACH II : HTN + MCTS

After evolving the EFs on different map sizes and testing them against multiple bench-

mark agents and directly comparing the behaviors resulting from the evolved Evaluation

Functions to the ones resulting from the manually created Evaluation Functions, we have

observed the following results. The major insight was that the evolution of EFs does, in-

deed, improve the behaviors of the agent. However, consecutive evolution of EFs is very

time-consuming, which becomes very challenging with an increasing map size, a larger

search space, and a lower chance for an individual to succeed in earlier tasks and to start

later tasks. For that reason, we regard automatic improvement of EFs in general as an

important addition to the proposed hybrid approach. However, we believe that it can

be improved in terms of training time by either simultaneous evolution (or co-evolution)

of all tasks’ EFs or by the usage of a learning algorithm other than a GA.

As future research opportunities the weighted sums used in EFs can be replaced by

other approaches for multi-objective optimization. For example, instead of using the

sum, MCTS can compare the Hyper Volumes of alternative solutions for the evaluation

of the resulting game states [167]. Another option is the evolution of the complete

structure of an EF instead of simply adjusting the weights. Alternatively, MCTS can

use a trained neural network, a so-called value network [168], in place of the EFs.

C
h
a
p
t
e
r

7
Conclusion

This chapter summarizes the ideas and findings of this work. Afterwards it discusses

possibilities and limitations of the proposed approaches in general and specifically in

regards to the goals defined in Chapter 1. Finally, it concludes outlining ideas for future

work.

7.1 Summary

This work deals with deliberate behaviors of artificial agents in highly dynamic environ-

ments. In such environments, small local changes can happen at a very high, possibly

continuous, frequency. Additionally, severe global changes that affect long-term goals

can happen every few seconds to minutes. The main motivation of this work is the re-

quirement for a decision-making approach that allows for long-term (strategic) planning

and reactive (tactical) execution while handling different types of environmental changes

without delaying the action execution of an agent or leading to unnatural or not robust

behaviors.

Major problems in highly dynamic environments are uncertainties and large search

spaces, which become even more challenging with an increasing number of actors that

operate in the environment and the number of agents, which possibly have to cooperate

and to coordinate their actions. This work focuses on video games as highly dynamic

multi-agent environments, which allow for high complexities comparable to those found

in many real-world scenarios.

The proposal of a framework that allows for long-term planning and reactive execution

is defined as the main goal in Chapter 1. With this goal, this thesis focuses on two

major areas of decision-making, planning and reactive decision-making approaches. Basic

concepts of both areas are described in Chapter 2, which gives detailed descriptions of

Behavior Trees and Monte Carlo Tree Search as reactive approaches, and Hierarchical

Task Networks as a possibility for multi-agent long-term planning. Additionally, this

chapter covers the importance of interleaved planning and execution.

143

144 CHAPTER 7. CONCLUSION

Looking at environments such as video games, robotics, and spacecraft control, Chapter 2

outlines major questions and solutions that exist in these areas. Many of these solutions

propose hybrid and multi-layer approaches, most of which consist of three layers with

the top-most layer being responsible for abstract high-level decision-making (possibly

provided by human operators) and the middle layer dealing with low-level decisions.

The lowest layer is usually responsible for action execution and sensory perception.

Although most of the existing solutions are used in either less dynamic environments or

in single-agent scenarios, they are the main inspiration for the approaches proposed in

this work.

Focusing on interleaved planning and execution, Chapter 3 explores the use of an HTN

planner in a highly dynamic adversarial video game environment. As a start, we observe

a single-agent scenario before diving deeper into multi-agent settings in the following

chapters. The environment represents a typical fighting game where two agents play

against each other controlling one game character each. The major goal of this study

is the analysis of the performance of an agent that uses a long-term planner but no

additional reactive decision-making mechanism in comparison to purely reactive agents.

This chapter proposes a two-layer architecture where the top layer HTN planner directly

communicates with the bottom-layer system that monitors the environment and the plan

progress, recognizes plan failures, and executes single actions. In this case, the planner

operates on a detailed representation of the world and generates detailed plans, which

consist of distinct actions that can be directly executed by the agent. Consequently,

there is no abstraction involved in this scenario.

In order to evaluate the advantages of a planner in comparison to reactive approaches,

this chapter focuses on so-called combos. A combo is a predefined sequence of 4 actions,

which have to be executed within a limited time frame without being interrupted by an

opponent attack. Therefore, it requires long-term planning in order to generate a plan

consisting of all 4 actions and a deliberate system to execute these actions consecutively.

The performed experiments of Chapter 3 show that the use of a long-term planner

greatly increases the number of such combos and improves the success of their execution

when compared to multiple reactive agents. This indicates that it is, in general, possible

to achieve long-term goals in such highly dynamic environments even with a two-layer

architecture.

7.1. SUMMARY 145

In terms of the general performance in comparison to its opponents, the agent shows

good results. However, due to the high dynamics and the fact that the planner is

responsible both for strategic and tactical planning, we observe very high replanning

rates caused by minor environmental changes. This indicates a serious problem for multi-

agent environments with even higher dynamics and even larger search spaces. Therefore,

assuming that most minor changes do not invalidate the overall long-term plan and

can be handled locally, and inspired by the existing three-layer solutions, Chapter 4

proposes to add an intermediate architecture layer responsible for reactive low-level

decision-making.

When combining two different decision layers, there are certain aspects that are very

important to consider. Chapter 4 summarizes these aspects and describes the general

idea of a hybrid approach that is implemented in the following chapters. The idea consists

of separating the decision-making responsibilities between a long-term planner and a

reactive approach. In this case, the planner operates on an abstract world representation

and generates abstract plans. During the execution of an abstract plan task, the reactive

approach monitors the environment and refines the task under the consideration of the

current, more detailed representation of the world state.

The major novelty of the proposed approach are postconditions that extend the com-

mon definition of HTN plan tasks (see Section 4.4). Postconditions are conditions that

have to hold at the end of a task. They are used during the execution by the reactive

approach in order to recognize a task’s end. Using postconditions of the current task

and preconditions of the following task, the reactive approach is able to validate each

task and to proceed with the long-term plan. Furthermore, postconditions can be used

to encode certain temporal conditions and provide a possibility for implicit coordination

of multiple agents. In case of the recognition of a global plan failure, or if the reactive

approach is not able to refine a task, the middle layer is responsible for requesting a new

plan. That way, replanning is still possible but the replanning frequency is decreased

through local failure management by the reactive approach.

146 CHAPTER 7. CONCLUSION

Another important aspect of the hybrid approach is the link between declarative plan

tasks, and an operational reactive approach. The following chapters propose different

solutions to that challenge. Based on the general idea of Chapter 4, Chapters 5 and 6

discuss the implementation of two different hybrid approaches that are used in other

highly dynamic game environments. First, in order to evaluate the effects of adding

a reactive layer to the architecture, Chapter 5 implements two architectures, which

operate on two planning domains of different detail levels and compares them in the

same environment. For this, it observes multi-agent scenarios with a varying number

of agents and further non-controllable actors existing in the environment. A two-layer

architecture resembles the one from Chapter 3 with detailed planning and no additional

reactive layer. A three-layer architecture operates on an abstract high-level Hierarchical

Task Network with Postconditions combined with detailed Behavior Trees that refine

plan tasks at execution time.

For the three-layer approach, each high-level task is represented by a single Behavior

Tree, which refines the task in the best possible way. For that purpose, it monitors

the environment and makes local decisions for a single agent considering information

that was not available during plan-time. The beginning and the end of a high-level task

are represented to the Behavior Tree through preconditions and the newly introduced

post-conditions respectively. Due to features of Behavior Trees such as event-driven and

looping behaviors and parallel branches, which are not available for planners, the agents

are able to perform additional checks at execution time and to execute high level tasks

in a more flexible and efficient way.

The advantages of the three-layer architecture can be seen in decreased global replanning

frequencies, decreased overall execution times, and increased execution success when

compared to the two-layer architecture. An additional advantage of Behavior Trees

is the possibility to coordinate actions of multiple agents by using parallel branches

(see Section 2.1.1) to wait for other agents while executing a task. Another important

characteristic of Behavior Trees that Chapters 5 points out is the possibility to keep full

control over an agent’s behavior at any point of time using manually predefined Behavior

Trees. Keeping full control over an agent can be desired in different environments and

for different reasons. For example, in dangerous real-world situations, full control can

be required for security and robustness reasons, whereas in video games reproducibility

and predictability of an agent’s behavior play a very important role. Considering the

fact that the hybrid approach does not require any changes to common Behavior Tree

systems, it grants great maintainability to experts of existing systems.

7.1. SUMMARY 147

Having studied a multi-agent scenario with a relatively small number of homogeneous

agents (max. 9 agents) in Chapter 5, Chapter 6 focuses on environments with even

larger numbers of heterogeneous agents (max. 42 agents) and non-controllable actors

and consequently even larger search spaces. Considering the large numbers of agents,

the large search space, and very high environment dynamics, manually pre-defining the

agent’s behaviors for all possible situations is an unmanageable task. Therefore, the

proposed approach grants more autonomy to the agents on the tactical decision level

and only uses predefined strategic behaviors on the highest level. For that purpose it is

using Monte Carlo Tree Search for reactive decision-making on the middle architecture

layer. Similarly to the previous chapter, the top-layer planner operates on an abstract

Hierarchical Task Network with Postconditions. The usage of a multi-agent version

of MCTS allows for centralized decision-making on both upper layers of the proposed

approach.

The middle-layer MCTS is responsible for task refinements at execution-time. However,

in contrast to Behavior Trees, which explicitly execute predefined behaviors and there-

fore can be clearly assigned to corresponding tasks, MCTS combines tree search and

Monte Carlo simulations (see Section 2.1.2). Therefore, the major challenge here is the

connection between high-level plan tasks and the search process of MCTS. As a solu-

tion to this challenge, we propose changing the Evaluation Functions which are used by

MCTS to evaluate each branch of the search tree, in such a way that MCTS selects ac-

tions that facilitate a quick accomplishment of the current plan task. By providing such

an Evaluation Function with every task, the planner guides the search process of MCTS

at execution time. As a result, the agents show emergent behaviours, which clearly

differ from each other depending on the current task. These behaviors are very close

to the expected ones, although the agents are not provided with any explicit low-level

commands.

Similarly to the previous chapter, the progress of the long-term plan is possible due to

the preconditions and postconditions of plan tasks. These indicate the beginning and the

end of each task and are used by the middle layer at execution time to recognize global

plan failures and to decide when to proceed to the next task in the plan. Furthermore,

postconditions play an important role in the next step of Chapter 6.

In order to further optimize tactical decision-making of MCTS, we propose to automat-

ically improve the mentioned Evaluation Functions. For that purpose, each Evaluation

Function is evolved by a Genetic Algorithm. Here, the average execution time of a plan

task is minimized in the fitness function of the Genetic Algorithm during the evolution.

That way, the algorithm prefers Evaluation Functions that lead to fast achievements of

a task and improves the overall execution times. In order to measure the execution time

of a task, the algorithm computes the time difference between the start of a task, which

is defined by its preconditions, and the time point when its postconditions are satisfied

and the task is regarded as achieved.

148 CHAPTER 7. CONCLUSION

As discussed in Chapter 6, the proposed approach shows that the evolution of Evaluation

Functions improves the search of MCTS in general, allowing it to achieve plan tasks

faster than with manually defined Evaluation Functions. However, the proposed process

of consecutive evolution of Evaluation Functions is very time-consuming due to the inter-

dependencies of different plan tasks and can be improved by simultaneously learning all

tasks’ Evaluation Functions.

7.2 Discussion

The major goal of this work was the proposal of an approach that allows for combined

long-term planning and reactive execution in highly dynamic environments with a focus

on multi-agent scenarios. In conclusion, we discuss the results of this work under the

consideration of the sub-goals stated in Chapter 1 and propose possibilities for future

work.

Separation of decision levels and interleaved decision-making An important

goal of this work was the separation of the responsibilities between a planning approach

and a reactive approach while allowing to combine (or interleave) decision-making of

both approaches. The experiments of Chapter 3 have shown that although a pure plan-

ning approach can be used in highly dynamic single-agent environments, it needs to

deal with both minor and major environmental changes. This can lead to high replan-

ning frequencies and long planning times, which confirms the requirement for a hybrid

approach.

Inspired by different three-layer architectures found in literature, we have proposed a

hybrid approach that transfers the responsibility of local decision-making to a reactive

approach and leaves abstract long-term reasoning and planning to a planner. A major

contribution of this work that allows for an interleaved decision-making and acting of a

planner and a reactive approach are postconditions, which extend a common planning

domain. In addition to the usage of the preconditions by the planner at plan-time, both

preconditions and postconditions are used by the reactive approach at execution-time.

This allows to combine reactive behaviors with deliberate execution of long-term plans

as well as for a recognition of local and global plan failures by the reactive approach.

What remains an open question here is how to find the optimal level of the decision

hierarchy at which to separate the responsibilities between the two decision-making

mechanisms. Future research can examine the effects of giving more control to one of

the approaches.

7.2. DISCUSSION 149

Reduction of the planning complexity and the replanning rate In order to re-

duce the planning complexity, the planning time, and the replanning rate, a major step

of this work was the abstraction of the planning domain. The effects of the abstraction

have been shown in Chapter 5 in a direct comparison between an approach that uses a

detailed planning domain and one that uses an abstract domain and hands over its re-

finement to a reactive approach. By reducing the detail level of the world representation

and the action representation that the planner operates on, its search space is reduced,

which decreases the planning time. At the same time, the lack of detailed information in

a plan reduces the probability of a plan failure caused by a minor environmental change

at execution time and therefore decreases the replanning frequency.

With regard to the previous open question, another question that can be explored in

future research is how to find a good balance between decreasing the size of the search

space through abstraction and not loosing too much important information required for

long-term reasoning.

Improvement of the execution In order to ensure robust behaviors of agents, the

execution of a plan cannot be delayed by long planning times. For that reason, an

agent is required to always be able to quickly make local decisions and act in accordance

to the current situation. This can be done by transferring some responsibility to the

reactive approach. Due to the fact that the reactive approach is now responsible for

only local decision-making, the size of its search space is also decreased and therefore its

own computations can be done very quickly. In the case of Behavior Trees, this can be

done instantaneously by simply checking the tree in the predefined order of branches,

whereas the search process of MCTS can be aborted at any time delivering the best

solution found so far. That way, even if the planner does require a long time to generate

a plan, the reactive approach is able to find a local solution and the agent can continue

with its execution.

Furthermore, the extension of a planner by a reactive approach also decreases the over-

all execution time of a whole plan. As we have shown in Chapter 5, when using a

hybrid approach, agents can achieve their common plans faster and with a higher suc-

cess probability than with a pure planning approach. This is possible due to the modular

structures of Behavior Trees that allow for advanced behaviors such as loops and sequen-

tial and parallel branches with additional condition checks that allow an agent to quicker

recognize failures and possibilities and execute a plan task in the most efficient way.

However, since Behavior Trees are usually hand-crafted, the actual improvement of the

execution time depends to a high extent on the expert knowledge of the designer of

the respective Behavior Tree. For that reason, an interesting outlook for future work

is research for an automatic way to either improve hand-crafted Behavior Trees or to

generate them from scratch aiming for an even more efficient execution of a plan. This

corresponds to the goal of automatic improvement of the guidance described below.

150 CHAPTER 7. CONCLUSION

Guidance of the reactive decision-making from the planner In order to allow

an agent to keep its long-term goals in mind while acting in a reactive way, a very

important sub-goal of this work was the proposal of a possibility to represent plan tasks

in a way that can be understood by a reactive approach. For that purpose, we have

proposed two different alternatives that depend on the underlying reactive approach. In

the hybrid approach of Chapter 5, each plan task is represented by a single Behavior

Tree that is explicitly designed in such a way that it achieves the corresponding plan

task. By switching between Behavior Trees, an agent can proceed with its overall plan.

This solution can be used with other reactive approaches that explicitly define behaviors

and can be clearly assigned to a certain task.

In contrast to that, search mechanisms which do not rely on predefined rules but perform

a search over a state-action space are more difficult to be guided by a planner. As

a solution to this challenge, we have proposed to use Evaluation Functions to guide

the search process of MCTS. By encoding a plan task as a mathematical function,

the algorithm can prefer actions that lead to states with more optimal values of the

Evaluation Function and allow for a faster achievement of the corresponding task. Since

most search mechanisms use some kind of Evaluation Function, this solution can be used

with other search-based approaches as well.

In this work, we have encoded the Evaluation Functions as weighted sums of multiple

objectives that are to be optimized for a plan task. Future work can examine multi-

objective optimization approaches other than the weighted sum approach and study

their effects on the execution of long-term plans.

Automatic improvement of the guidance With the described possibilities to guide

reactive decision-making according to a plan, the next goal was the improvement of this

guidance aiming for a more efficient achievement of plan tasks. The proposed solution

consisted of an evolution of the aforementioned Evaluation Functions for MCTS. The

experiment results of Chapter 6 have shown that it is, in general, possible to improve

the reactive behaviors for distinct high-level tasks. The provided access of the reactive

approach to the tasks’ pre- and postconditions did not only allow it to track the task’s

progress at execution time, but also allowed for the computation of a task’s execution

duration during the evolution.

Although the proposed evolution is very time consuming, the fact that a reactive behavior

can be improved by considering the the end and the beginning of a high-level task opens

great possibilities for future research. As proposed in Chapter 6, the training can be

done in the form of co-evolution of multiple tasks’ functions. Alternatively, a machine

learning approach other than a Genetic Algorithm can lead to different results.

7.3. LIMITATIONS AND FUTURE WORK 151

Another interesting possibility opens up for the improvement of reactive decision-making

with Behavior Trees. As described in Section 2.1.1, there are some works on automatic

generation and improvement of Behavior Trees. Future work can examine the appli-

cability of the proposed Machine Learning approach to Behavior Trees given the tasks

that they represent. This way, a Behavior Tree can be automatically generated (or im-

proved) considering the preconditions under which the corresponding task can start and

the postconditions that have to hold at its end.

Intuitive use and maintenance A side-goal for the concrete implementations of the

proposed solution was intuitive use of the new approaches and the maintenance of the

available expertise in existing solutions. For that purpose, we have used existing and

well-known techniques with a minimum amount of adjustments made to them.

Behavior Trees are widely-spread in the area of video game development and gain more

interest in the area of robotics. MCTS is a well-known technique in research areas such

as computational intelligence in games. For both hybrid solutions, no changes to the un-

derlying reactive approaches were required. Therefore, both reactive approaches can be

intuitively used by many experts in the corresponding fields. Similarly, the only exten-

sion to a typical HTN planning domain introduced in this work are postconditions. Due

to the descriptive nature of common planning languages, the design of postconditions is

very intuitive and resembles the creation of preconditions and effects (see Section 4.4).

Furthermore, since postconditions are not used during the planning phase but during

the execution only, they do not require any changes to the planner itself.

The major novelty of the proposed solutions lays in the architecture around the existent

techniques. An important question here is how to combine a long-term planner with a

reactive approach. This work has proposed two solutions to this question, which can

be adapted to further environments and techniques in accordance to the general idea

described in Chapter 4.

7.3 Limitations and Future Work

In addition to the open questions mentioned in the previous section, there remain some

major limitations of the proposed solutions, which open up more possibilities for future

work. One such limitation in regards to the Hybrid Approach II described in Chapter 6

is the requirement for a Forward Model for MCTS. Currently, the proposed solution

cannot be used in environments for which such a model does not exist. Future work

can study the question whether approximating the Forward Model [169] can solve this

problem and facilitate interleaved planning in any way.

152 CHAPTER 7. CONCLUSION

Considering the planning itself, there are multiple options for an extension of this work.

For example, in order to allow for time-dependent assumptions or reasoning with nested

beliefs, the planner can be replaced or extended by temporal or epistemic planning re-

spectively (see Sections 2.2.2 and 2.3.2). The effects of such enhancements are especially

interesting in regards to coordinated behaviors.

Another interesting possibility for future work is the applicability of the proposed so-

lution in partially observable environments. In such cases, high-level plans can contain

tasks for the agent to actively gather certain information. The requirement for this in-

formation can be encoded in the postconditions of the corresponding tasks. Using these

postconditions, the reactive approach will try to refine the task until either obtaining

the required knowledge or failing the task.

This work has proposed a way to automatically improve reactive behaviors under the

consideration of high-level tasks. This approach can be extended to a fully-automatic

generation of such behaviors. However, a major limitation of the proposed solution is

that, so far, it requires the high-level planning domain to be manually designed. As

such, every solution is very specific and cannot be transferred to other environments. A

possibility to automatically generate both the planning domain and the reactive behav-

iors can extend the proposed idea to a general-purpose solution and open up its use for

further industries and research areas.

Bibliography

[1] J. Branke, Evolutionary optimization in dynamic environments. Springer Science

& Business Media, 2012, vol. 3.

[2] R. Alterovitz, S. Koenig, and M. Likhachev, “Robot planning in the real world:

research challenges and opportunities,” in AI Magazine, vol. 37, no. 2. AAAI,

2016, pp. 76–84.

[3] X. Neufeld, S. Mostaghim, D. Sancho-Pradel, and S. Brand, “Building a plan-

ner: A survey of planning systems used in commercial video games,” in IEEE

Transactions on Games, vol. 11, no. 2. IEEE, 2019, pp. 91–108.

[4] D. Isla, “Managing complexity in the halo 2 AI system,” in Game Developers

Conference, 2005.

[5] C. Côté, “Reactivity and deliberation in decision-making systems,” in Game AI

Pro: Collected Wisdom of Game AI Professionals. CRC Press, 2013, pp.

137–147.

[6] S. Rabin, “#define GAME AI,” in Game Developers Conference, 2009, last

accessed on August 4th, 2020. [Online]. Available: http://gdcvault.com/play/

1366/(307)-define-GAME

[7] A. Champandard, “Behavior trees: Three ways of cultivating strong

AI,” in Game Developers Conference, 2010, last accessed on August

4th, 2020. [Online]. Available: https://www.gdcvault.com/play/1012416/

Behavior-Trees-Three-Ways-of

[8] A. Champandard and P. Dunstan, “The behavior tree starter kit,” in Game AI

Pro: Collected Wisdom of Game AI Professionals. CRC Press, 2013, pp.

73–91.

[9] J. Gillberg, “AI behavior editing and debugging in ’tom clancy’s the

division’,” in Game Developers Conference, 2016, last accessed on August

4th, 2020. [Online]. Available: https://www.gdcvault.com/play/1023382/

AI-Behavior-Editing-and-Debugging

[10] M. Colledanchise and P. Ögren, “How behavior trees modularize hybrid control

systems and generalize sequential behavior compositions, the subsumption ar-

chitecture, and decision trees,” in IEEE Transactions on robotics, vol. 33, no. 2.

IEEE, 2016, pp. 372–389.

[11] P. Ogren, “Increasing modularity of UAV control systems using computer game

behavior trees,” in AIAA Guidance, Navigation, and Control Conference, 2012,

p. 4458.

153

http://gdcvault.com/play/1366/(307)-define-GAME
http://gdcvault.com/play/1366/(307)-define-GAME
https://www.gdcvault.com/play/1012416/Behavior-Trees-Three-Ways-of
https://www.gdcvault.com/play/1012416/Behavior-Trees-Three-Ways-of
https://www.gdcvault.com/play/1023382/AI-Behavior-Editing-and-Debugging
https://www.gdcvault.com/play/1023382/AI-Behavior-Editing-and-Debugging

154 BIBLIOGRAPHY

[12] C. I. Sprague, Ö. Özkahraman, A. Munafo, R. Marlow, A. Phillips, and P. Ögren,

“Improving the modularity of auv control systems using behaviour trees,” in

IEEE OES Autonomous Underwater Vehicle Workshop. IEEE, 2018, pp. 1–6.

[13] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and Al: An Introduc-

tion. CRC Press, 2018.

[14] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Semi-autonomous simulated

brain tumor ablation with ravenii surgical robot using behavior tree,” in IEEE

International Conference on Robotics and Automation. IEEE, 2015, pp. 3868–

3875.

[15] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “Costar: Instruct-

ing collaborative robots with behavior trees and vision,” in IEEE International

Conference on Robotics and Automation. IEEE, 2017, pp. 564–571.

[16] B. Hannaford, D. Hu, D. Zhang, and Y. Li, “Simulation results on selector adap-

tation in behavior trees,” arXiv preprint arXiv:1606.09219, 2016.

[17] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren, “Towards a unified

behavior trees framework for robot control,” in IEEE International Conference

on Robotics and Automation. IEEE, 2014, pp. 5420–5427.

[18] C. I. Sprague and P. Ögren, “Adding neural network controllers to behavior trees

without destroying performance guarantees,” arXiv preprint arXiv:1809.10283,

2018.

[19] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees for the com-

mercial game defcon,” in European Conference on the Applications of Evolu-

tionary Computation. Springer, 2010, pp. 100–110.

[20] D. Perez-Liebana and M. Nicolau, “Evolving behaviour tree structures using gram-

matical evolution,” in Handbook of Grammatical Evolution. Springer, 2018,

pp. 433–460.

[21] M. Nicolau, D. Perez-Liebana, M. O’Neill, and A. Brabazon, “Evolutionary be-

havior tree approaches for navigating platform games,” in IEEE Transactions

on Computational Intelligence and AI in Games, vol. 9, no. 3. IEEE, 2016,

pp. 227–238.

[22] M. Colledanchise, R. N. Parasuraman, and P. Ogren, “Learning of behavior trees

for autonomous agents,” IEEE Transactions on Games, vol. 11, no. 2, pp.

183–189, 2019.

[23] Q. Zhang, J. Yao, Q. Yin, and Y. Zha, “Learning behavior trees for autonomous

agents with hybrid constraints evolution,” in Applied Sciences, vol. 8, no. 7.

Multidisciplinary Digital Publishing Institute, 2018, pp. 17–38.

[24] S. Jones, M. Studley, S. Hauert, and A. Winfield, “Evolving behaviour trees for

swarm robotics,” in Distributed Autonomous Robotic Systems. Springer, 2018,

pp. 487–501.

BIBLIOGRAPHY 155

[25] K. Y. Scheper, S. Tijmons, C. C. de Visser, and G. C. de Croon, “Behavior trees

for evolutionary robotics,” Artificial life, vol. 22, no. 1, pp. 23–48, 2016.

[26] M. Colledanchise, D. Almeida, and P. Ögren, “Towards blended reactive planning

and acting using behavior trees,” in International Conference on Robotics and

Automation. IEEE, 2019, pp. 8839–8845.

[27] M. KARTAŠEV, “Integrating reinforcement learning into behavior trees by hier-

archical composition.”

[28] R. d. P. Pereira and P. M. Engel, “A framework for constrained and adaptive

behavior-based agents,” arXiv preprint arXiv:1506.02312, 2015.

[29] R. Dey and C. Child, “Ql-bt: Enhancing behaviour tree design and implementation

with q-learning,” in IEEE Conference on Computational Intelligence in Games.

IEEE, 2013, pp. 275–282.

[30] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in European

Conference on Machine Learning. Springer, 2006, pp. 282–293.

[31] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree search: A new

framework for game ai.” in Fourth AAAI Artificial Intelligence and Interactive

Digital Entertainment Conference, 2008, pp. 216–217.

[32] M. Chung, M. Buro, and J. Schaeffer, “Monte carlo planning in RTS games.” in

IEEE Symposium on Computational Intelligence and Games, 2005, pp. 117–

124.

[33] R.-K. Balla and A. Fern, “UCT for tactical assault planning in real-time strategy

games.” in International Joint Conference on Artificial Intelligence, 2009, pp.

40–45.

[34] S. Ontañón, “The combinatorial multi-armed bandit problem and its application

to real-time strategy games,” in AAAI Artificial Intelligence and Interactive

Digital Entertainment Conference, 2013, pp. 58–64.

[35] D. Soemers, “Tactical planning using MCTS in the game of starcraft,” in Bach-

elor’s thesis. Department of Knowledge Engineering, Maastricht University,

2014.

[36] D. Churchill and M. Buro, “Portfolio greedy search and simulation for large-scale

combat in starcraft,” in IEEE Conference on Computational Intelligence in

Games. IEEE, 2013, pp. 1–8.

[37] N. Justesen, B. Tillman, J. Togelius, and S. Risi, “Script-and cluster-based UCT

for starcraft.” in IEEE Conference on Computational Intelligence in Games.

IEEE, 2014.

[38] C. F. Sironi, J. Liu, D. Perez-Liebana, R. D. Gaina, I. Bravi, S. M. Lucas, and

M. H. Winands, “Self-adaptive MCTS for general video game playing,” in

International Conference on the Applications of Evolutionary Computation.

Springer, 2018, pp. 358–375.

156 BIBLIOGRAPHY

[39] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfsha-

gen, S. Tavener, D. Perez-Liebana, S. Samothrakis, and S. Colton, “A survey

of monte carlo tree search methods,” in IEEE Transactions on Computational

Intelligence and AI in games, vol. 4, no. 1. IEEE, 2012, pp. 1–43.

[40] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed

bandit problem,” in Machine learning, vol. 47, no. 2-3. Springer, 2002, pp.

235–256.

[41] Y. Gai, B. Krishnamachari, and R. Jain, “Learning multiuser channel allocations

in cognitive radio networks: A combinatorial multi-armed bandit formulation,”

in IEEE Symposium on New Frontiers in Dynamic Spectrum. IEEE, 2010,

pp. 1–9.

[42] S. Ontañón, “Combinatorial multi-armed bandits for real-time strategy games,”

in Journal of Artificial Intelligence Research, vol. 58, 2017, pp. 665–702.

[43] A. Shleyfman, A. Komenda, and C. Domshlak, “On combinatorial actions and

cmabs with linear side information,” in European Conference on Artificial In-

telligence, 2014, pp. 825–830.

[44] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for rts game combat

scenarios,” in AAAI Artificial Intelligence and Interactive Digital Entertain-

ment Conference, 2012, pp. 112–117.

[45] S. Ontañón, “Informed monte carlo tree search for real-time strategy games,” in

IEEE Conference on Computational Intelligence and Games. IEEE, 2016, pp.

1–8.

[46] R. O. Moraes, J. R. Mariño, L. H. Lelis, and M. A. Nascimento, “Action abstrac-

tions for combinatorial multi-armed bandit tree search,” in AAAI Artificial

Intelligence and Interactive Digital Entertainment Conference, 2018, pp. 74–

80.

[47] R. O. Moraes and L. H. Lelis, “Asymmetric action abstractions for multi-unit

control in adversarial real-time games,” in AAAI Conference on Artificial In-

telligence, 2018, pp. 876–883.

[48] A. Uriarte and S. Ontañón, “Game-tree search over high-level game states in RTS

games,” in AAAI Artificial Intelligence and Interactive Digital Entertainment

Conference, 2014, pp. 73–79.

[49] A. M. Alhejali and S. M. Lucas, “Using genetic programming to evolve heuristics

for a monte carlo tree search ms pac-man agent,” in IEEE Conference on

Computational Inteligence in Games. IEEE, 2013, pp. 65–72.

[50] S. M. Lucas, S. Samothrakis, and D. Perez, “Fast evolutionary adaptation for

monte carlo tree search,” in European Conference on the Applications of Evo-

lutionary Computation. Springer, 2014, pp. 349–360.

BIBLIOGRAPHY 157

[51] A. Benbassat and M. Sipper, “EvoMCTS: Enhancing MCTS-based players through

genetic programming,” in IEEE Conference on Computational Inteligence in

Games. IEEE, 2013, pp. 57–64.

[52] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application of

theorem proving to problem solving,” in Artificial intelligence, vol. 2, no. 3-4.

Elsevier, 1971, pp. 189–208.

[53] D. M. McDermott, “The 1998 ai planning systems competition,” in AI magazine,

vol. 21, no. 2. AAAI, 2000, pp. 35–55.

[54] M. Fox and D. Long, “Pddl2. 1: An extension to pddl for expressing temporal

planning domains,” in Journal of artificial intelligence research, vol. 20, 2003,

pp. 61–124.

[55] A. Gerevini and D. Long, “Preferences and soft constraints in pddl3,” in Interna-

tional Conference on Automated Planning and Scheduling. Workshop on Plan-

ning With Preferences and Soft Constraints, 2006, pp. 46–53.

[56] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory & practice.

Elsevier, 2004.

[57] D. S. Nau, “Current trends in automated planning,” in AI magazine, vol. 28, no. 4,

2007, pp. 43–58.

[58] J. Blythe, “An overview of planning under uncertainty,” in Artificial intelligence

today. Springer, 1999, pp. 85–110.

[59] R. Dearden, N. Meuleau, S. Ramakrishnan, D. E. Smith, and R. Washington, “In-

cremental contingency planning,” in International Conference on Automated

Planning and Scheduling. Workshop on Planning Under Uncertainty and In-

complete Information, 2003, pp. 38–47.

[60] M. Horstmann and S. Zilberstein, “Automated generation of understandable

contingency plans,” in International Conference on Automated Planning and

Scheduling. Workshop on Planning Under Uncertainty and Incomplete Infor-

mation, 2003, pp. 57–63.

[61] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso, “Planning in nondeterministic

domains under partial observability via symbolic model checking,” in Interna-

tional Joint Conferences on Artificial Intelligence, vol. 2001, 2001, pp. 473–478.

[62] D. Hyde, “Using bayesian networks to reason about uncertainty,” in AI Game

Programming Wisdom, vol. 4, 2008, pp. 429–442.

[63] M. Fox, A. Gerevini, D. Long, and I. Serina, “Plan stability: Replanning versus

plan repair.” in International Conference on Automated Planning and Schedul-

ing, vol. 6, 2006, pp. 212–221.

[64] J. Orkin, “Three states and a plan: the ai of fear,” in Game Developers Conference,

2006, pp. 1–18.

158 BIBLIOGRAPHY

[65] ——, “Three states and a plan: the ai of fear,” 2006, last accessed on August

4th, 2020. [Online]. Available: https://www.gdcvault.com/play/1013459/

Three-States-and-a-Plan

[66] ——, “Applying goal-oriented action planning to games,” AI Game Programming

Wisdom, vol. 2, no. 2004, pp. 217–227, 2004.

[67] ——, “Agent architecture considerations for real-time planning in games.” in AAAI

Artificial Intelligence and Interactive Digital Entertainment Conference, 2005,

pp. 105–110.

[68] P. Higley, “Goal-oriented action planning: Ten years old and no fear!”

2015, last accessed on August 4th, 2020. [Online]. Available: http:

//www.gdcvault.com/play/1022019/Goal-Oriented-Action-Planning-Ten

[69] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory & practice.

Elsevier, 2004, ch. 13 Time for Planning.

[70] L. A. Castillo, J. Fernández-Olivares, O. Garcia-Perez, and F. Palao, “Efficiently

handling temporal knowledge in an htn planner.” in International Conference

on Automated Planning and Scheduling, 2006, pp. 63–72.

[71] L. Castillo, J. Fdez-Olivares, Ó. Garćıa-Pérez, and F. Palao, “Temporal enhance-

ments of an htn planner,” in Conference of the Spanish Association for Artificial

Intelligence. Springer, 2005, pp. 429–438.

[72] M. Li, H. Wang, C. Qi, and C. Zhou, “Handling temporal constraints with prefer-

ences in htn planning for emergency decision-making,” in Journal of Intelligent

& Fuzzy Systems, vol. 30, no. 4. IOS Press, 2016, pp. 1881–1891.

[73] R. Straatman, T. Verweij, A. Champandard, R. Morcus, and H. Kleve, “Hierarchi-

cal AI for multiplayer bots in killzone 3,” in Game AI Pro: Collected Wisdom

of Game AI Professionals. CRC Press, 2013, pp. 377–390.

[74] I. Georgievski and M. Aiello, “Htn planning: Overview, comparison, and beyond,”

in Artificial Intelligence, vol. 222. Elsevier, 2015, pp. 124–156.

[75] D. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila, “SHOP: Simple hierarchical

ordered planner,” in International Joint Conference on Artificial Intelligence.

Morgan Kaufmann Publishers Inc., 1999, pp. 968–973.

[76] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Ya-

man, “SHOP2: An htn planning system,” in Journal of artificial intelligence

research, vol. 20, 2003, pp. 379–404.

[77] D. Höller, G. Behnke, P. Bercher, and S. Biundo, “Plan and goal recognition as

HTN planning,” in International Conference on Tools with Artificial Intelli-

gence. IEEE, 2018, pp. 466–473.

[78] D. Höller, P. Bercher, G. Behnke, and S. Biundo, “HTN plan repair using unmod-

ified planning systems,” in International Conference on Automated Planning

and Scheduling. Workshop on Hierarchical Planning, 2018, pp. 26–30.

https://www.gdcvault.com/play/1013459/Three-States-and-a-Plan
https://www.gdcvault.com/play/1013459/Three-States-and-a-Plan
http://www.gdcvault.com/play/1022019/Goal-Oriented-Action-Planning-Ten
http://www.gdcvault.com/play/1022019/Goal-Oriented-Action-Planning-Ten

BIBLIOGRAPHY 159

[79] X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “A hybrid planning and exe-

cution approach through HTN and MCTS,” in International Conference on

Automated Planning and Scheduling. Workshop on Integrating Planning, Act-

ing, and Execution., 2019, pp. 37–45.

[80] D. S. Nau, S. J. Smith, K. Erol et al., “Control strategies in htn planning: Theory

versus practice,” in AAAI/IAAI, 1998, pp. 1127–1133.

[81] A. Menif, E. Jacopin, and T. Cazenave, “SHPE: HTN planning for video games,” in

Workshop on Computer Games, European Conference on Artificial Intelligence.

Springer, 2014, pp. 119–132.

[82] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman, H. Muñoz-Avila,

and J. W. Murdock, “Applications of SHOP and SHOP2,” in IEEE Intelligent

Systems, vol. 20, no. 2. IEEE, 2005, pp. 34–41.

[83] A. Champandard, T. Verweij, and R. Straatman, “Killzone 2 multiplayer bots,”

in Game AI Conference, 2009, last accessed on August 4th, 2020. [Online].

Available: https://www.guerrilla-games.com/read/killzone-2-multiplayer-bots

[84] T. Thompson, “HTN planning in transformers: Fall of cybertron,” in

AI & Games, last accessed on August 4th, 2020. [Online]. Available:

https://www.youtube.com/watch?v=kXm467TFTcY

[85] A. Beij, “The AI of horizon zero down,” in Game AI North, 2017, last accessed

on August 4th, 2020. [Online]. Available: http://eej.dk/gain/2017/slides/

THE AI OF HORIZON ZERO DAWN.pdf

[86] N. Nejati, P. Langley, and T. Konik, “Learning hierarchical task networks by

observation,” in International Conference on Machine learning. ACM, 2006,

pp. 665–672.

[87] C. Hogg, H. Muñoz-Avila, and U. Kuter, “Htn-maker: Learning htns with minimal

additional knowledge engineering required.” in AAAI, 2008, pp. 950–956.

[88] C. Hogg, U. Kuter, and H. Muñoz-Avila, “Learning methods to generate good

plans: integrating htn learning and reinforcement learning,” in AAAI Confer-

ence on Artificial Intelligence. AAAI, 2010, pp. 1530–1535.

[89] O. Ilghami and D. S. Nau, “Camel: Learning method preconditions for htn plan-

ning,” in International Conference on Artificial Intelligence Planning Systems,

2002, pp. 131–141.

[90] H. H. Zhuo, D. H. Hu, C. Hogg, Q. Yang, and H. Muñoz-Avila, “Learning htn

method preconditions and action models from partial observations,” in Interna-

tional jont conference on Artifical intelligence. Morgan Kaufmann Publishers

Inc., 2009, pp. 1804–1809.

[91] H. H. Zhuo, H. Muñoz-Avila, and Q. Yang, “Learning hierarchical task network

domains from partially observed plan traces,” in Artificial intelligence, vol. 212.

Elsevier, 2014, pp. 134–157.

https://www.guerrilla-games.com/read/killzone-2-multiplayer-bots
https://www.youtube.com/watch?v=kXm467TFTcY
http://eej.dk/gain/2017/slides/THE_AI_OF_HORIZON_ZERO_DAWN.pdf
http://eej.dk/gain/2017/slides/THE_AI_OF_HORIZON_ZERO_DAWN.pdf

160 BIBLIOGRAPHY

[92] T. Könik and J. E. Laird, “Learning goal hierarchies from structured observations

and expert annotations,” in Machine Learning, vol. 64, no. 1. Springer, 2006,

pp. 263–287.

[93] M. Fine-Morris and H. Muñoz-Avila, “Learning domain structure in hgns for non-

deterministic planning,” in International Conference on Automated Planning

and Scheduling. Workshop on Hierarchical Planning, 2019, pp. 22–30.

[94] P. Bercher, R. Alford, and D. Höller, “A survey on hierarchical planning–one

abstract idea, many concrete realizations,” in International Joint Conference

on Artificial Intelligence, 2019, pp. 6267–6275.

[95] D. Dvorak, A. Amador, and T. Starbird, “Comparison of goal-based operations

and command sequencing,” in SpaceOps 2008 Conference, 2008, p. 3335.

[96] V. Shivashankar, U. Kuter, D. S. Nau, and R. Alford, “A hierarchical goal-based

formalism and algorithm for single-agent planning,” in International Confer-

ence on Autonomous Agents and Multiagent Systems, 2012, pp. 981–988.

[97] R. Alford, V. Shivashankar, M. Roberts, J. Frank, and D. W. Aha, “Hierarchical

planning: Relating task and goal decomposition with task sharing.” in Inter-

national Joint Conference on Artificial Intelligence, 2016, pp. 3022–3028.

[98] V. Shivashankar, R. Alford, U. Kuter, and D. Nau, “The godel planning system:

a more perfect union of domain-independent and hierarchical planning,” in

International Joint Conference on Artificial Intelligence, 2013, pp. 2380–2386.

[99] M. Elkawkagy, P. Bercher, B. Schattenberg, and S. Biundo, “Improving hierarchi-

cal planning performance by the use of landmarks,” in AAAI Conference on

Artificial Intelligence, 2012, pp. 1763–1769.

[100] V. Verma, A. Jónsson, R. Simmons, T. Estlin, and R. Levinson, “Survey of com-

mand execution systems for nasa spacecraft and robots,” in International Con-

ference on Automated Planning and Scheduling. Workshop on Plan Execution:

A Reality Check, 2005, pp. 92–99.

[101] M. Bozzano, A. Cimatti, A. Guiotto, A. Martelli, M. Roveri, A. Tchaltsev, and

Y. Yushtein, “On-board autonomy via symbolic model-based reasoning,” in

ESA Workshop on Advanced Space Technologies for Robotics and Automation,

2008, pp. 1–8.

[102] M. Tipaldi and L. Glielmo, “A survey on model-based mission planning and ex-

ecution for autonomous spacecraft,” in IEEE Systems Journal, vol. 12, no. 4.

IEEE, 2017, pp. 3893–3905.

[103] E. Gat, R. P. Bonnasso, R. Murphy et al., “On three-layer architectures,” in

Artificial intelligence and mobile robots. AAAI Press, 1998, pp. 195–210.

[104] V. Verma, A. Jónsson, C. Pasareanu, and M. Iatauro, “Universal-executive and

plexil: engine and language for robust spacecraft control and operations,” in

AIAA Space, 2006.

BIBLIOGRAPHY 161

[105] V. Verma, T. Estlin, A. Jónsson, C. Pasareanu, R. Simmons, and K. Tso, “Plan

execution interchange language (plexil) for executable plans and command se-

quences,” in International symposium on artificial intelligence, robotics and

automation in space, 2005.

[106] B. Pell, E. B. Gamble, E. Gat, R. Keesing, J. Kurien, W. Millar, C. Plaunt,

and B. C. Williams, “A hybrid procedural/deductive executive for autonomous

spacecraft,” in Autonomous Agents and Multi-Agent Systems, vol. 2, no. 1.

Springer, 1999, pp. 7–22.

[107] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, C. Plaunt, and D. Clancy,

“IDEA: Planning at the core of autonomous reactive agents,” in International

NASA Workshop on Planning and Scheduling for Space. AAAI, 2002.

[108] R. Levinson, “Unified planning and execution for autonomous software repair,” in

International Conference on Automated Planning and Scheduling. Workshop

on Plan Execution: A Reality Check, 2005, pp. 55–62.

[109] M. Ghallab, D. Nau, and P. Traverso, “The actor’s view of automated planning

and acting: A position paper,” in Artificial Intelligence, vol. 208. Elsevier,

2014, pp. 1–17.

[110] D. S. Nau, M. Ghallab, and P. Traverso, “Blended planning and acting: Prelimi-

nary approach, research challenges.” in AAAI, 2015, pp. 4047–4051.

[111] S. Patra, M. Ghallab, D. Nau, and P. Traverso, “Acting and planning using oper-

ational models,” in AAAI Conference on Artificial Intelligence, 2019.

[112] ——, “Interleaving acting and planning using operational models,” in International

Conference on Automated Planning and Scheduling. Workshop on Integrating

Planning, Acting, and Execution., 2019, pp. 46–54.

[113] S. Patra, J. Mason, A. Kumar, M. Ghallab, P. Traverso, and D. Nau, “Integrating

acting, planning, and learning in hierarchical operational models,” in Interna-

tional Conference on Automated Planning and Scheduling, 2020, pp. 478–487.

[114] D. Hilburn, “Simulating behavior trees: A behavior tree/planner hybrid ap-

proach,” in Game AI Pro: Collected Wisdom of Game AI Professionals. CRC

Press, 2013, pp. 99–111.

[115] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera, N. Palom-

eras, N. Hurtos, and M. Carreras, “Rosplan: Planning in the robot operating

system,” in International Conference on Automated Planning and Scheduling,

2015, pp. 333–341.

[116] “Robot operating system (ROS),” last accessed on August 4th, 2020. [Online].

Available: https://www.ros.org/

https://www.ros.org/

162 BIBLIOGRAPHY

[117] J. C. González, F. Fernández, A. Garcıa-Olaya, and R. Fuentetaja, “On the ap-

plication of classical planning to real social robotic tasks,” in International

Conference on Automated Planning and Scheduling. Workshop on Planning

and Robotics, 2017, pp. 38–47.

[118] J. C. González Dorado, M. Veloso, F. Fernández, and A. Garćıa-Olaya, “Task

monitoring and rescheduling for opportunity and failure management.” in Pro-

ceedings of the Twenty-Eighth International Conference on Automated Plan-

ning and Scheduling. Workshop on Integrated Planning, Acting and Execution.

Association for the Advancement of Artificial Intelligence (AAAI), 2018, pp.

24–31.

[119] F. Rovida, B. Grossmann, and V. Krüger, “Extended behavior trees for quick

definition of flexible robotic tasks,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems. IEEE, 2017, pp. 6793–6800.

[120] I. Little, S. Thiebaux et al., “Probabilistic planning vs. replanning,” in ICAPS

Workshop on IPC: Past, Present and Future, 2007.

[121] M. Brenner and B. Nebel, “Continual planning and acting in dynamic multiagent

environments,” in Autonomous Agents and Multi-Agent Systems, vol. 19, no. 3.

Springer, 2009, pp. 297–331.

[122] C. J. Muise, V. Belle, P. Felli, S. A. McIlraith, T. Miller, A. R. Pearce, and

L. Sonenberg, “Planning over multi-agent epistemic states: A classical planning

approach.” in AAAI Conference on Artificial Intelligence, 2015, pp. 3327–3334.

[123] T. Engesser, T. Bolander, R. Mattmüller, and B. Nebel, “Cooperative epistemic

multi-agent planning with implicit coordination,” in International Conference

on Automated Planning and Scheduling. Workshop on Distributed and Multi-

Agent Planning, 2015, pp. 68–76.

[124] T. Bolander, “A gentle introduction to epistemic planning: The del approach,” in

9th Workshop on Methods for Modalities, vol. 243, 2017, pp. 1–22.

[125] A. Alshehri, T. Miller, and L. Sonenberg, “Improving performance of multiagent

cooperation using epistemic planning,” in arXiv preprint arXiv:1910.02607,

2019.

[126] R. I. Brafman and C. Domshlak, “From one to many: Planning for loosely coupled

multi-agent systems.” in International Conference on Automated Planning and

Scheduling., 2008, pp. 28–35.

[127] B. J. Clement and E. H. Durfee, “Top-down search for coordinating the hierarchical

plans of multiple agents,” in Proceedings of the third annual conference on

Autonomous Agents. ACM, 1999, pp. 252–259.

[128] “Abstract reasoning for planning and coordination,” in Clement, Bradley J and

Durfee, Edmund H and Barrett, Anthony C, vol. 28, 2007, pp. 453–515.

BIBLIOGRAPHY 163

[129] B. J. Clement, A. C. Barrett, G. R. Rabideau, and E. H. Durfee, “Using abstraction

in planning and scheduling,” in Sixth European Conference on Planning, 2014,

pp. 35–42.

[130] U. Kuter, R. P. Goldman, and J. Hamell, “Assumption-based decentralized htn

planning,” in International Conference on Automated Planning and Scheduling.

Workshop on Hierarchical Planning, 2018, pp. 9–16.

[131] B. Browning, J. Bruce, M. Bowling, and M. Veloso, “Stp: Skills, tactics, and

plays for multi-robot control in adversarial environments,” in Proceedings of the

Institution of Mechanical Engineers, Part I: Journal of Systems and Control

Engineering, vol. 219, no. 1. SAGE Publications, 2005, pp. 33–52.

[132] P. Cooksey and M. Veloso, “Intra-robot replanning to enable team plan condi-

tions,” in IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems. IEEE, 2017, pp. 1113–1118.

[133] R. D’Andrea, T. Kalmar-Nagy, P. Ganguly, and M. Babish, “The cornell robocup

team,” in Robot Soccer World Cup. Springer, 2000, pp. 41–51.

[134] S. Behnke and R. Rojas, “A hierarchy of reactive behaviors handles complexity,”

in Workshop on Balancing Reactivity and Social Deliberation in Multi-Agent

Systems. Springer, 2000, pp. 125–136.

[135] R. P. Goldman, K. Z. Haigh, D. J. Musliner, and M. J. Pelican, “Macbeth: a multi-

agent constraint-based planner [autonomous agent tactical planner],” in Digital

Avionics Systems Conference, 2002. Proceedings. The 21st, vol. 2. IEEE, 2002,

pp. 7E3–1.

[136] R. P. Goldman, D. Bryce, M. J. Pelican, D. J. Musliner, and K. Bae, “An archi-

tecture for hybrid planning and execution,” in The Workshops of the Thirtieth

AAAI Conference on Artificial Intelligence Planning for Hybrid Systems, 2016,

pp. 592–600.

[137] N. Wallace, “Hierarchical planning in dynamic worlds,” in AI Game Programing

Wisdom, vol. 2, 2004, pp. 229–236.

[138] W. Van Der Sterren, “Squad tactics: Team ai and emergent maneuvers,” in AI

game programming wisdom, 2002, pp. 233–246.

[139] J. Reynolds, “Tactical team ai using a command hierarchy,” in AI Game Program-

ming Wisdom, vol. 1, 2002, pp. 260–271.

[140] W. Van Der Sterren, “Squad tactics: Planned maneuvers,” in AI Game Program-

ming Wisdom, 2002, pp. 247–259.

[141] T. Champandard, Alex J.and Verweij and R. Straatman, “Killzone 2

multiplayer bots,” in Paris Game AI Conference, 2009, last accessed on

August 4th, 2020. [Online]. Available: https://www.guerrilla-games.com/

read/killzone-2-multiplayer-bots

https://www.guerrilla-games.com/read/killzone-2-multiplayer-bots
https://www.guerrilla-games.com/read/killzone-2-multiplayer-bots

164 BIBLIOGRAPHY

[142] W. Van Der Sterren, “Multi-unit planning with htn and a*,” in Paris Game

AI Conference, 2009, last accessed on August 4th, 2020. [Online]. Available:

https://www.cgf-ai.com/docs/multi unit htn with astar.pdf

[143] W. van der Sterren, “Hierarchical plan-space planning for multi-unit combat ma-

neuvers,” in Game AI Pro: Collected Wisdom of Game AI Professionals. CRC

Press, 2013, pp. 169–183.

[144] H. Muñoz-Avila and H. Hoang, “Coordinating teams of bots with hierarchical task

network planning,” in AI Game Programing Wisdom, vol. 3, 2006, pp. 417–427.

[145] P. Gorniak and I. Davis, “Squadsmart: Hierarchical planning and coordinated plan

execution for squads of characters.” in AIIDE, 2007, pp. 14–19.

[146] M. Molineaux, M. Klenk, and D. Aha, “Goal-driven autonomy in a navy strategy

simulation,” in AAAI Conference on Artificial Intelligence, 2010, pp. 1548–

1554.

[147] H. Muñoz-Avila, D. W. Aha, U. Jaidee, M. Klenk, and M. Molineaux, “Apply-

ing goal driven autonomy to a team shooter game,” in International Florida

Artificial Intelligence Research Society Conference, 2010, pp. 465–470.

[148] B. G. Weber, P. Mawhorter, M. Mateas, and A. Jhala, “Reactive planning idioms

for multi-scale game AI,” in IEEE Symposium on Computational Intelligence

and Games. IEEE, 2010, pp. 115–122.

[149] B. G. Weber, M. Mateas, and A. Jhala, “Building human-level AI for real-time

strategy games.” in AAAI Fall Symposium: Advances in Cognitive Systems,

vol. 11, 2011, pp. 329 – 336.

[150] R. Palma, P. A. González-Calero, M. A. Gómez-Mart́ın, and P. P. Gómez-Mart́ın,

“Extending case-based planning with behavior trees,” in International Florida

Artificial Intelligence Research Society Conference, 2011, pp. 407 – 412.

[151] G. Robertson and I. Watson, “Building behavior trees from observations in real-

time strategy games,” in International Symposium on Innovations in Intelligent

SysTems and Applications. IEEE, 2015, pp. 1–7.

[152] S. Ontañón and M. Buro, “Adversarial hierarchical-task network planning for com-

plex real-time games,” in International Conference on Artificial Intelligence.

AAAI Press, 2015, pp. 1652–1658.

[153] X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “Htn fighter: Planning in a

highly-dynamic game,” in IEEE International Computer Science and Elec-

tronic Engineering Conference. IEEE, 2017, pp. 189–194.

[154] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R. Thawonmas,

“Fighting game artificial intelligence competition platform,” in Global Confer-

ence on Consumer Electronics. IEEE, 2013, pp. 320–323.

https://www.cgf-ai.com/docs/multi_unit_htn_with_astar.pdf

BIBLIOGRAPHY 165

[155] G. L. Zuin, Y. Macedo, L. Chaimowicz, and G. L. Pappa, “Discovering combos

in fighting games with evolutionary algorithms,” in Proceedings of the 2016 on

Genetic and Evolutionary Computation Conference. ACM, 2016, pp. 277–284.

[156] K. Yamamoto, S. Mizuno, C. Y. Chu, and R. Thawonmas, “Deduction of fighting-

game countermeasures using the k-nearest neighbor algorithm and a game sim-

ulator,” in IEEE Conference on Computational Intelligence and Games. IEEE,

2014, pp. 437–441.

[157] X. Neufeld, S. Mostaghim, and S. Brand, “A hybrid approach to planning and

execution in dynamic environments through hierarchical task networks and

behavior trees,” in AAAI Artificial Intelligence and Interactive Digital Enter-

tainment Conference. AAAI, 2018.

[158] X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “Evolving game state evaluation

functions for a hybrid planning approach,” in IEEE Conference on Games.

IEEE, 2019.

[159] S. Ontañón, N. A. Barriga, C. R. Silva, R. O. Moraes, and L. H. Lelis, “The first

microRTS artificial intelligence competition.” in AI Magazine, vol. 39, no. 1,

2018.

[160] N. A. Barriga, M. Stanescu, and M. Buro, “Puppet search: Enhancing scripted be-

havior by look-ahead search with applications to real-time strategy games,” in

AAAI Artificial Intelligence and Interactive Digital Entertainment Conference,

2015, pp. 9–15.

[161] ——, “Combining strategic learning with tactical search in real-time strategy

games,” in AAAI Artificial Intelligence and Interactive Digital Entertainment

Conference. AAAI, 2017, pp. 9–15.

[162] S. Ontañón, “Microrts AI competition,” 2017, last accessed on August 4th, 2020.

[Online]. Available: https://sites.google.com/site/micrortsaicompetition/

[163] L. H. S. Lelis, “Stratified strategy selection for unit control in real-time strategy

games,” in International Joint Conference on Artificial Intelligence, 2017, pp.

3735–3741.

[164] J. R. H. Mariño, R. O. Moraes, C. F. M. Toledo, and L. H. S. Lelis, “Evolving

action abstractions for real-time planning in extensive-form games,” in AAAI

Conference on Artificial Intelligence, vol. 33. AAAI, 2019, pp. 2330–2337.

[165] R. O. Moraes, J. R. H. Mariño, L. H. S. Lelis, and M. A. Nascimento, “Action

abstractions for combinatorial multi-armed bandit tree search,” in AAAI Con-

ference on Artificial Intelligence and Interactive Digital Entertainment. AAAI,

2018, pp. 74–80.

[166] C. R. Silva, R. O. Moraes, L. H. Lelis, and K. Gal, “Strategy generation for multi-

unit real-time games via voting,” in IEEE Transactions on Games, vol. 11,

no. 4. IEEE, 2018, pp. 426–435.

https://sites.google.com/site/micrortsaicompetition/

[167] D. Perez, S. Mostaghim, S. Samothrakis, and S. M. Lucas, “Multiobjective monte

carlo tree search for real-time games,” in IEEE Transactions on Computational

Intelligence and AI in Games, vol. 7, no. 4. IEEE, 2014, pp. 347–360.

[168] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mas-

tering the game of go with deep neural networks and tree search,” in nature,

vol. 529, no. 7587. Nature Publishing Group, 2016, p. 484.

[169] S. M. Lucas, A. Dockhorn, V. Volz, C. Bamford, R. D. Gaina, I. Bravi, D. Perez-

Liebana, S. Mostaghim, and R. Kruse, “A local approach to forward model

learning: Results on the game of life game,” in IEEE Conference on Games.

IEEE, 2019, pp. 1–8.

List of Figures

2.1 Example of a Behavior Tree. 16

2.2 Workflow of the Monte Carlo Tree Search Algorithm. 19

2.3 Example of an HTN decomposition. 29

2.4 Example of a general three-layer architecture for spacecraft control. 34

3.1 Two-layer architecture for the HTN Fighter. 51

3.2 High-level HTN for HTN Fighter [153]. 53

3.3 Timeline with the actual character state (in terms of controllability) and the

state shown by the Command Center to the Agent Controller [153]. 61

3.4 The average number of successfully performed chains of combo-hits of the

length 1 – 4 for each agent pair playing with the character ZEN. HTN Fighter

uses ordered method selection [153]. 64

3.5 Number of games won by HTN Fighter playing as character ZEN using or-

dered method selection in 100 games (300 rounds) against opponent agents [153]. 65

3.6 Number of games won by HTN Fighter playing as character ZEN and LUD

using different method selection approaches. The agents played 100 games

(300 rounds) in each setup against 4 opponent agents. 68

5.1 An example room including all elements and actors used in the test environment. 81

5.2 Three-layer architecture for the hybrid approach including a centralized HTN

planner on the top layer and decentralized agent control with the help of

Behavior Trees on the middle layer. 84

5.3 Top-down view of the experiment setup with 3 rooms (1 zombie in each room)

and a group of 9 hunters in the middle. 98

166

5.4 The average number of plan failures that triggered global replanning before

the goal was reached. Measured with 1, 2, and 3 zombies and a varying

number of hunters using a pure HTN planner and the combination of an

HTN planner with Behavior Trees [157]. 100

5.5 The average time in seconds required to reach the goal. Measured with 1,2,

and 3 zombies and a varying number of hunters using a pure HTN planner

and the combination of an HTN planner with Behavior Trees [157]. 101

5.6 The rate of failed execution attempts, which occurred due to a hunter’s death

trying to catch 1,2, and 3 zombies by varying numbers of hunters using a pure

HTN planner and the combination of an HTN planner with Behavior Trees [157]102

6.1 Three-layer architecture for the hybrid approach including a centralized HTN

planner on the top layer and a centralized Agent Controller with näıveMCTS

on the middle layer. 111

6.2 Abstract HTNp with 3 EFs used by the hybrid approach II in microRTS. . . 113

6.3 Results of 50 matches played by our agent (HTN-MCTS) and näıveMCTS

against 3 (2) opponents on small maps [79]. 123

6.4 Results of 50 matches played by our agent (HTN-MCTS) and näıveMCTS

against 3 (2) opponents on mid-size maps [79]. 124

6.5 Results of 50 matches played by our agent (HTN-MCTS) and näıveMCTS

against 3 (2) opponents on bigger maps [79]. 124

6.6 Progress of a match between our agent (striped units) and naiveMCTS [79]. . 126

A.1 The average number of successfully performed chains of combo-hits of the

length 1 – 4 for each agent pair playing with the character ZEN. HTN Fighter

uses UCB method selection. 173

A.2 The average number of successfully performed chains of combo-hits of the

length 1 – 4 for each agent pair playing with the character LUD. HTN Fighter

uses ordered method selection. 174

A.3 The average number of successfully performed chains of combo-hits of the

length 1 – 4 for each agent pair playing with the character LUD. HTN Fighter

uses UCB method selection. 175

D.1 Start configurations of the game maps used in the experiments of Chapter 6.

Player 1 starts on the top/left side, player 2 on the bottom/right side of

each map. The blue, red, and violet background colors indicate the visibility

of a cell to player 1, 2, or both respectively in a partially observable mode.

However, these are not relevant for our experiments, which are performed

with full observability. 207

167

168 List of Tables

List of Tables

1.1 Characterization of the environments used in Chapters 3, 5, 6. 10

6.1 Agents used in the training set and in the test set. 134

6.2 Parameters of the Genetic Algorithm used in three separate evolution pro-

cesses, using Tiamat only in the first two processes and all 3 opponents from

the training set in the last process. 135

6.3 Winning percentage of the row player against the column player. Computed

as the sum of victories of the row-player against the column-player and half

of the number of draws, divided by the number of matches and multiplied by

100 [158]. Best results of each column are marked green. 137

Acronyms

HTNp Hierarchical Task Network with Postconditions. 23, 75, 76, 83, 89, 104, 105, 107,

110–115, 140, 146, 147, 167

ABCD α-β Considering Durations. 22

AHTN Adversarial Hierarchical Task Network. 122, 125, 133, 138

BT Behavior Tree. 3, 12–18, 35, 36, 38, 44, 45, 79–81, 83–86, 89, 91, 93–99, 101–106,

140, 143, 146, 147, 149–151, 166

CMAB Combinatorial Multi-Armed Bandit. 21, 22, 117

EA Evolutionary Algorithm. 17, 18, 129, 134

EF Evaluation Function. 111, 113, 115–119, 121, 122, 126–142, 147, 148, 150, 167

FSM Finite State Machine. 13, 41, 43, 80, 84, 97

GA Genetic Algorithm. 129, 130, 133–135, 138, 141, 142, 147, 150, 168

GDP Goal Decomposition Planner. 32

GE Grammatical Evolution. 17

GOAP Goal Oriented Action Planner. 26, 42

HGN Hierarchical Goal Network. 32, 76

HPs Health Points. 48, 63, 67, 109, 115, 121, 122, 124, 130

HTN Hierarchical Task Network. 27, 28, 30–32, 38, 42–46, 52, 53, 57, 69, 71, 72, 75,

76, 83–85, 89, 91, 94, 95, 99, 103, 106, 111, 116, 119, 122, 143–145, 151, 166, 167,

171

LSI Linear Side Information. 22

MAB Multi-Armed Bandit. 20, 21

MCTS Monte Carlo Tree Search. 3, 12, 13, 18–20, 22, 23, 45, 46, 56, 107, 108, 110,

111, 115–119, 122, 128–130, 132, 138–143, 147–151

169

170 ACRONYMS

MDP Markovian Decision Process. 13, 19, 33, 34

MLPS Matching Learning with Polynomial Storage. 22

NPC Non-Player Character. 14

PDDL Planning Domain Definition Language. 24, 27, 37, 52

RAE Refinement Acting Engine. 36

RL Reinforcement Learning. 31

ROS Robot Operating System. 37, 80

RTS Real-Time Strategy. 8, 9, 17, 20–22, 44, 45, 109, 112, 114, 116, 140

SHOP Simple Hierarchical Ordered Planner. 30, 36

SHOP2 Simple Hierarchical Ordered Planner 2. 30, 42

STP Skills, Tactics, and Plays. 41

STRIPS Stanford Research Institute Problem Solver. 24–26

UAV Unpiloted Aerial Vehicle. 30, 42

UCB1 Upper Confidence Bound. 20, 56, 61, 72

UCT Upper Confidence Tree. 20, 22, 36

UCTCD Upper Confidence Tree Considering Durations. 23

Glossary

actor throughout this work, we use the word actor for artificial or natural entities acting

in an environment. 4, 143

agent throughout this work, we use the word agent for artificial agents. 3, 143

FightingICE Fighting Game AI Competition:

http://www.ice.ci.ritsumei.ac.jp/˜ftgaic/ . 48–50, 52–55, 57–60,

63, 64, 66

Forward Model a simulation model of the environment that allows to apply actions

to a world state and roll the state forward. 107, 109, 151

microRTS microRTS: https://sites.google.com/site/microRTSaicompetition.

22, 23, 109, 110, 112, 113, 115–119, 121–123, 128, 131, 134, 141, 167

planning domain an HTN planning domain is defined as follows: D = (F,C,A,M)

with a set of facts F , a set of compound tasks C, a set of primitive tasks A, and a

set of methods M . 3, 23–28, 30–32, 43, 52–55, 63, 66, 68, 69, 71, 72, 74, 76, 84–87,

89–92, 94, 96, 103, 104, 106, 112, 113, 115, 116, 121, 126, 132, 146, 148, 149, 151,

152, 171

planning problem an HTN planning problem is defined as follows: p = (D, sI , cI),

with sI ∈ 2F being the initial state, cI ∈ C the compound task to be decomposed,

and D = (F,C,A,M) the planning domain. 24, 26–28, 32, 37, 75, 76

Player Action In microRTS: a combination of all players’ units’ actions. 118, 119, 121

StarCraft StarCraft AI Competition: https://www.cs.mun.ca/˜dchurchill/

starcraftaicomp/. 23, 116, 123

unit In microRTS: an entity controlled by a player. Following types of units are avail-

able: worker, light, ranged, heavy, base, barrack. 20, 23, 109

171

http://www.ice.ci.ritsumei.ac.jp/~ftgaic/
https://sites.google.com/site/microRTSaicompetition
https://www.cs.mun.ca/~dchurchill/starcraftaicomp/
https://www.cs.mun.ca/~dchurchill/starcraftaicomp/

A
p
p
e
n
d
i
x

A
Combo Results of the

FightingIce Experiments

with UCB Method Selection

(a) HTN Fighter vs. MCTS (b) HTN Fighter vs. Thunder01

(c) HTN Fighter vs. Ranezi (d) HTN Fighter vs. MrAsh

Figure A.1: The average number of successfully performed chains of combo-hits of the
length 1 – 4 for each agent pair playing with the character ZEN. HTN Fighter uses UCB
method selection.

173

174

APPENDIX A. COMBO RESULTS OF THE
FIGHTINGICE EXPERIMENTS

WITH UCB METHOD SELECTION

(a) HTN Fighter vs. MCTS (b) HTN Fighter vs. Thunder01

(c) HTN Fighter vs. Ranezi (d) HTN Fighter vs. MrAsh

Figure A.2: The average number of successfully performed chains of combo-hits of the
length 1 – 4 for each agent pair playing with the character LUD. HTN Fighter uses
ordered method selection.

175

(a) HTN Fighter vs. MCTS (b) HTN Fighter vs. Thunder01

(c) HTN Fighter vs. Ranezi (d) HTN Fighter vs. MrAsh

Figure A.3: The average number of successfully performed chains of combo-hits of the
length 1 – 4 for each agent pair playing with the character LUD. HTN Fighter uses UCB
method selection.

A
p
p
e
n
d
i
x

B
HTN Domains for the

Hybrid Approach I

B.1 Pure HTN Domain

1 domain pure_domain

2 {

3 fact

4 {

5 agent(id32, vec3)

6 zombie(id32, vec3)

7 room(id32, vec3)

8 ˆconnects(id32, vec3, vec3)

9 crank_handle(id32, vec3)

10 door(id32, vec3)

11 crank_object(id32, vec3)

12 coop_gate(id32, vec3)

13 toggle_gate(id32, vec3)

14 closed(id32)

15 holding(id32, id32)

16 isInRoom(id32, id32)

17 runner(id32)

18 gateKeeper(id32)

19 zombieRoom(id32)

20 cageRoom(id32)

21 outsideRoom(id32)

22 handleForObject(id32, id32)

23 ˆroleAssigned(id32, id32)

24 ˆconnectsRooms(id32, id32, id32)

25 }

26

27 prim

28 {

29 GoTo!(id32, vec3)

30 AlignTo!(id32, id32)

31 InteractUse! (id32, id32)

177

178
APPENDIX B. HTN DOMAINS FOR THE

HYBRID APPROACH I

32 InteractHold!(id32, id32)

33 StopAction!(id32, id32)

34 Wait!(id32, int8)

35 Crouch!(id32)

36 StandUp!(id32)

37 Run!(id32)

38 }

39

40 effect

41 {

42 add(table)

43 delete(table)

44 change(table, table)

45 }

46

47

48 macro

49 {

50 object_far_from_point(x ,y) = dist(x, y)>=3

51 }

52

53 macro

54 {

55 object_close_to_point(x ,y) = dist(x, y)<3

56 }

57

58 macro

59 {

60 closerToFirstPos(p, x, y) = dist(p, x) <= dist(p, y)

61 }

62

63 macro

64 {

65 notClosed(o) = isntInTable(o, 12)

66 }

67

68 macro

69 {

70 isRoomInbetween(a, r, s, q) = room(r, m) & room (s, l) & room(q, n) &

connects(o, i, j) & path(a, i, l) & path(a, j, n) & connects(p, x, z

) & path(a, x, n) & path(a, z, m)

71 }

72

73 macro

74 {

75 handleForObject(h, o) = crank_handle(h, x) & crank_object(o, y) & dist(

x, y) < 3

76 }

77

78 task root()

79 {

80 each (zombie(g,y)) -> [AssignRoles(g)]

B.1. PURE HTN DOMAIN 179

81 }

82 task Wait(a, t)

83 {

84 case() -> [Wait!(a,t)]

85 }

86

87 task GoTo(a, p)

88 {

89 case(agent(a,x) & holding(a,o)) -> [StopInteracting(a,o), GoTo(a, p)]

90 case(agent(a, x)) -> [Run!(a), GoTo!(a, p), change(agent(a,x), agent(a,

p))]

91 }

92

93 task Hold(a, o)

94 {

95 case(agent(a, x) & toggle_gate (o, y) & isntInTable(a,17) &

object_close_to_point(x, y)) -> [AlignTo!(a, o), InteractHold!(a, o)

, delete(closed(o)), add(holding(a, o)), Wait(a, 10)]

96 case(agent(a, x) & coop_gate (o, y) & isntInTable(a,17) &

object_close_to_point(x, y)) -> [AlignTo!(a, o), InteractHold!(a, o)

, delete(closed(o)), add(holding(a, o)), Wait(a, 10)]

97 case(agent(a, x) & crank_handle(o,y) & crank_object(h, z) &

object_close_to_point(z, y) & isntInTable(a,17) &

object_close_to_point(x, y)) -> [AlignTo!(a, o), InteractHold!(a, o)

, delete(closed(h)), add(holding(a, o)), Wait(a, 10)]

98 case(agent(a, x) & toggle_gate (o, y) & holding(a, o)) -> [Wait(a, 10),

delete(closed(o)), add(holding(a, o))]

99 case(agent(a, x) & coop_gate (o, y) & holding(a, o)) -> [Wait(a, 10),

delete(closed(o)), add(holding(a, o))]

100 case(agent(a, x) & crank_handle(o,y) & crank_object(h, z) &

object_close_to_point(z, y) & holding(a, o)) -> [Wait(a, 10), delete

(closed(h)), add(holding(a, o))]

101 }

102

103 task Use(a, o)

104 {

105 case(agent(a,x) & holding(a,h)) -> [StopInteracting(a,h), Use(a, o)]

106 case(agent(a, x) & toggle_gate (o, y) & object_close_to_point(x, y)) ->

[AlignTo!(a, o), InteractUse!(a, o)]

107 }

108

109 task StopInteracting(a, o)

110 {

111 case(agent(a,x) & holding(a,o)) ->[StopAction!(a, o),delete(holding(a,o

))]

112 }

113

114 task GoToObject(a, o)

115 {

116 case (agent(a,x) & connects(o,m,l) & path(a,x,m) & dist(x,m) < 1) -> []

117 case (agent(a,x) & connects(o,m,l) & path(a,x,m) & closerToFirstPos(x,

m, l)) -> [GoTo(a, m)]

180
APPENDIX B. HTN DOMAINS FOR THE

HYBRID APPROACH I

118 case (agent(a,x) & room(r,y) & isInRoom(a,r) & connects(o,m,l) & path(a

,x,m) & closerToFirstPos(y,m,l)) -> [GoTo(a,m)] }

119 task OpenDoorObject(a, o)

120 {

121 case (door(o, y) & agent(a,x) & object_close_to_point(x, y) & closed(o)

) -> [AlignTo!(a, o), InteractUse!(a, o), delete(closed(o))]

122 case (door(o, y) & agent(a,x) & object_close_to_point(x, y)) -> []

123 }

124

125 task CloseSingleAgentObject(a, o)

126 {

127 case (door(o, y) & agent(a,x) & object_close_to_point(x, y) & notClosed

(o)) -> [AlignTo!(a, o), InteractUse!(a, o), add(closed(o))]

128 case (toggle_gate(o, y) & agent(a,x) & object_close_to_point(x, y) &

notClosed(o)) -> [AlignTo!(a, o), InteractUse!(a, o), add(closed(o))

]

129 }

130

131 task TraverseThroughDoor(a, o)

132 {

133 case (door(o, y) & agent(a,x) & connects(o, m, l) & closerToFirstPos(x,

l, m) & notClosed(o)) -> [GoTo!(a, m), change(agent(a,x), agent(a,m

))]

134 }

135

136 task TraverseThroughToggleGate(a, o)

137 {

138 case (toggle_gate(o, y) & agent(a,x) & notClosed(o) & connects(o, m, l)

& closerToFirstPos(x, l, m)) -> [GoTo!(a, m), change(agent(a,x),

agent(a,m))]

139 case (toggle_gate(o, y) & agent(a,x) & notClosed(o) & connects(o, m, l)

& closerToFirstPos(x, m, l)) -> [GoTo!(a, l), change(agent(a,x),

agent(a,l))]

140 case (toggle_gate(o, y) & agent(a,x) & closed(o) & connects(o, m, l) &

closerToFirstPos(x, l, m)) -> [Hold(a, o) ,

TraverseThroughToggleGate(a, o)]

141 case (toggle_gate(o, y) & agent(a,x) & closed(o) & connects(o, m, l) &

closerToFirstPos(x, m, l)) -> [Hold(a, o) ,

TraverseThroughToggleGate(a, o)]

142 }

143

144 task PrepareAndGoThroughObjectSingleAgent(a, o)

145 {

146 case (door(o, y)) -> [OpenDoorObject(a, o), Wait(a, 3),

TraverseThroughDoor(a, o)]

147 case (toggle_gate(o, y)) -> [TraverseThroughToggleGate(a, o)]

148 }

149

150 task GoThoughCoopObject (a, o)

151 {

152 case (agent(a, x) & notClosed(o) & connects(o, m, l) & closerToFirstPos

(x, m, l)) -> [GoTo!(a, l), change(agent(a,x), agent(a,l))]

B.1. PURE HTN DOMAIN 181

153 }

154

155

156

157 task OpenCoopObject(a, o)

158 {

159 case (crank_object(o, y) & crank_handle(h,z) & object_close_to_point(z,

y)) -> [GoTo(a,z), Hold(a,h)]

160 case ((coop_gate(o, y) | toggle_gate(o, y))) -> [Hold(a,o)]

161 }

162

163 task EnterRoom(a, s, g)

164 {

165 case (isInRoom(a,r) & outsideRoom(r) & crank_object(o, p) &

connectsRooms(o, s, r) & agent(b, y) & a˜=b & roleAssigned(g,b) &

isntInTable(b, 21)) -> [GoToObject(a, o), OpenCoopObject(b, o),

Wait(a,10), GoThoughCoopObject(a, o), change(isInRoom(a,r), isInRoom

(a,s)), Wait(b, 10), StopInteractingAfterwards(b, o, a, s)]

166

167 case (isInRoom(a,r) & door(o, p) & connectsRooms(o, r, s)) -> [

GoToObject(a, o), PrepareAndGoThroughObjectSingleAgent(a, o), change

(isInRoom(a,r), isInRoom(a,s))]

168

169 case (isInRoom(a,r) & toggle_gate(o, p) & connectsRooms(o, r, s)) -> [

GoToObject(a, o), PrepareAndGoThroughObjectSingleAgent(a, o), change

(isInRoom(a,r), isInRoom(a,s))]

170 }

171

172 task StopInteractingAfterwards(b, o, a, c)

173 {

174 case (agent(a, x) & runner(a) & isInRoom(a,r) & outsideRoom(r) & agent(

b, y) & holding(b, o) & coop_gate(o, g) & dist(x,y)<2 & dist(x, g)>

0.75) -> [StopAction!(b, o), delete(holding(b,o)), add(closed(o))]

175

176 case (agent(a, x) & agent(b, y) & zombieRoom(c) & isInRoom(a,c) &

crank_object(o,g) & holding(b, z) & crank_handle(z, p)) -> [

StopAction!(b, z), delete(holding(b,z)), add(closed(o))]

177 }

178

179 task TryToEnterCage(a, g, r, c, t)

180 {

181 case (agent(a,x) & isInRoom(a,r) & connects(t, m, l) & closerToFirstPos

(x, m, l) & isInRoom(g,h)) -> [GoTo(a,m),

PrepareAndGoThroughObjectSingleAgent(a, t), change(isInRoom(a,r),

isInRoom(a,c)) , change(isInRoom(g,h), isInRoom(g,c))]

182 }

183

184 task GetGruntsAttention(a, g, q)

185 {

186 case (isInRoom(g, q)) -> []

187 case (zombie(g,y) & isInRoom(g, r) & agent(a,x) & isInRoom(a,h)) -> [

GoTo(a, y), change(isInRoom(a,h), isInRoom(a,r))]

182
APPENDIX B. HTN DOMAINS FOR THE

HYBRID APPROACH I

188 }

189

190

191

192 task TryToExitCage(a, r, o, t, g, q)

193 {

194 case(isInRoom(a, q) & outsideRoom(j) & connects(o, y, z) & isInRoom(g,q

)) -> [GoToObject(a, o), Crouch!(a), GoThoughCoopObject(a, o),

change(isInRoom(a,q), isInRoom(a,j))]

195 case(isInRoom(a, r) & outsideRoom(j) & notClosed(t) & isInRoom(g,l)) ->

[GoToObject(a, o), Crouch!(a), GoThoughCoopObject(a, o), change(

isInRoom(a,r), isInRoom(a,j)), change(isInRoom(g,l), isInRoom(g,q))]

196 case(isInRoom(a, r)) -> [TryToEnterCage(a, g, r, q, t), TryToExitCage(a

, r, o, t, g, q)]

197 }

198

199 task ReplaceRunner(a)

200 {

201 case(empty(runner)) -> [add(runner(a))]

202 case(agent(b,x) & runner(b)) -> [delete(runner(b)), add(runner(a))]

203 }

204

205 task ReplaceGateKeeper(a)

206 {

207 case(empty(gateKeeper)) -> [add(gateKeeper(a))]

208 case(agent(b,x)&gateKeeper(b))->[delete(gateKeeper(b)),add(gateKeeper(a

))]

209 }

210

211 task DoRunnerJob(a, r, q, o, t, g)

212 {

213 //0 zombie in cage, runner outside

214 case(agent(a,x) & zombie(g,y) & isInRoom(g,q) & outsideRoom(t) &

isInRoom(a,t)) -> [FinishRunnerJob(a, g, q)]

215

216 //1 both in cage

217 case(agent(a,x) & isInRoom(a,q) & zombie(g,y) & isInRoom(g,q)) -> [

TryToExitCage(a, r, o, t, g, q), FinishRunnerJob(a, g, q)]

218

219 //2 runner in cage,zombie inzombieroom

220 case(agent(a,x) & isInRoom(a,q) & zombie(g,y) & isInRoom(g,r)) -> [

GetGruntsAttention(a, g, q), TryToExitCage(a, r, o, t, g, q),

FinishRunnerJob(a, g, q)]

221

222 //3 runner inzombieroom,zombie in cage

223 case(agent(a,x) & isInRoom(a,r) & zombie(g,y) & isInRoom(g,q)) -> [

GetGruntsAttention(a, g, q), TryToExitCage(a, r, o, t, g, q),

FinishRunnerJob(a, g, q)]

224

225 //4 runner,zombie inzombieroom

B.1. PURE HTN DOMAIN 183

226 case(agent(a,x) & isInRoom(a,r) & zombie(g,y) & isInRoom(g,r)) -> [

GetGruntsAttention(a, g, q), TryToExitCage(a, r, o, t, g, q),

FinishRunnerJob(a, g, q)]

227

228 //5 runner outside

229 case(agent(a,x) & zombie(g,y) & isInRoom(g,r)) -> [EnterRoom(a, r, g),

DoRunnerJob(a, r, q, o, t, g)] }

230 task FinishRunnerJob(a, g, q)

231 {

232 case(agent(a, x) & isInRoom(g, q) & outsideRoom(t) & isInRoom(a, t)) ->

[Run!(a)]

233 }

234

235 task CloseCageDoor(r,o, g, c)

236 {

237 case(closed(o)) ->[]

238

239 // zombie in cage, helper in room, runner outside

240 case(agent(a,x) & roleAssigned(g,a) & runner(b) & a˜=b & isInRoom(b,t)

& outsideRoom(t) & isInRoom(a,r) & isInRoom(g,c)) -> [RunToCage(a,o,

g), CloseCage(a,o, g, c), EnterRoom(a,t, g)]

241

242 // zombie in cage, helper and runner outside

243 case(agent(a,x) & roleAssigned(g,a) & runner(b) & a˜=b & isInRoom(b,t)

& outsideRoom(t) & isInRoom(a,t) & isInRoom(g,c)) -> [EnterRoom(a,r,

g), CloseCageDoor(r,o, g, c)]

244 }

245

246 task RunToCage(a,o,g)

247 {

248 case(notClosed(o)) ->[GoToObject(a, o)]

249 }

250

251 task CloseCage(a,o, g, c)

252 {

253 case(isInRoom(g,c) & notClosed(o)) ->[AlignTo!(a, o), InteractUse!(a, o

), add(closed(o))]

254 }

255

256 task SolveCoop(g, r, q, t, o, a, b)

257 {

258 //0 both in cage

259 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,q) & isInRoom(a,q))

-> [ReplaceRunner(a), ReplaceGateKeeper(b), GoToObject(b, o),

OpenCoopObject(b, o), DoRunnerJob(a, r, q, o,t, g),

StopInteractingAfterwards(b, o, a, r), CloseCageDoor(r, t, g, q),

delete(runner(a)), delete(gateKeeper(b))] //& isInRoom(a,r)

260

261 //1 zombie in the cage

184
APPENDIX B. HTN DOMAINS FOR THE

HYBRID APPROACH I

262 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,q) & isInRoom(a,r))

-> [ReplaceRunner(a), ReplaceGateKeeper(b), GoToObject(b, o),

OpenCoopObject(b, o), DoRunnerJob(a, r, q, o,t, g),

StopInteractingAfterwards(b, o, a, r), CloseCageDoor(r, t, g, q),

delete(runner(a)), delete(gateKeeper(b))] //& isInRoom(a,r)

263

264 //2 zombie in cage and runner outside

265 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,q)) -> [ReplaceRunner

(a), ReplaceGateKeeper(b), CloseCageDoor(r,t, g, q), delete(runner(a

)), delete(gateKeeper(b))]

266

267 //3

268 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,r) & isInRoom(a,q))

-> [ReplaceRunner(a), ReplaceGateKeeper(b), GoToObject(b, o),

OpenCoopObject(b, o), DoRunnerJob(a, r, q, o, t, g),

StopInteractingAfterwards(b, o, a, r), CloseCageDoor(r,t, g, q),

delete(runner(a)), delete(gateKeeper(b))] //& isInRoom(a,r)

269

270 //4

271 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,r) & isInRoom(a, r))

-> [ReplaceRunner(a), ReplaceGateKeeper(b), GoToObject(b, o),

OpenCoopObject(b, o), DoRunnerJob(a, r, q, o,t, g),

StopInteractingAfterwards(b, o, a, r), CloseCageDoor(r,t, g, q),

delete(runner(a)), delete(gateKeeper(b))] //& isInRoom(a,r)

272

273 //5

274 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,r)) -> [ReplaceRunner

(a), ReplaceGateKeeper(b), GoToObject(b, o), OpenCoopObject(b, o),

DoRunnerJob(a, r, q, o, t, g), StopInteractingAfterwards(b, o, a, r)

, CloseCageDoor(r,t, g, q), delete(runner(a)), delete(gateKeeper(b))

] //& isInRoom(a,r)

275 }

276

277 task AssignRoles(g)

278 {

279 // finished - free

280 case (agent(a,y) & roleAssigned(g,a) & zombie(g,x) & cageRoom(r) &

isInRoom(g,r) & isInRoom(a,s) & r˜=s & toggle_gate(t,m) &

connectsRooms(t,r, p) & closed(t)) -> []

281

282 // assigned - continue

283 case (roleAssigned(g,a) & roleAssigned(g,b) & a˜=b & zombie(g,x) &

zombieRoom(r) & isInRoom(g,r) & toggle_gate(t,m) & agent(a,y) &

connectsRooms(t,r,c) & coop_gate(o, p) & connectsRooms(o, c, d)) ->

[SolveCoop(g, r, c, t, o, a, b)]

284 case (roleAssigned(g,a) & roleAssigned(g,b) & a˜=b & zombie(g,x) &

cageRoom(c) & isInRoom(g,c) & toggle_gate(t,m) & agent(a,y) &

connectsRooms(t,r,c) & coop_gate(o, p) & connectsRooms(o, c, d)) ->

[SolveCoop(g, r, c, t, o, a, b)]

285

286 // not enough agents - wait

287 case() -> []

B.1. PURE HTN DOMAIN 185

288

289 // assigning done in code!

290 }

291 }

186
APPENDIX B. HTN DOMAINS FOR THE

HYBRID APPROACH I

B.2 Hybrid HTN Domain

1 domain hybrid_domain

2 {

3 fact

4 {

5 agent(id32, vec3)

6 zombie(id32, vec3)

7 room(id32, vec3)

8 ˆconnects(id32, vec3, vec3)

9 crank_handle(id32, vec3)

10 door(id32, vec3)

11 crank_object(id32, vec3)

12 coop_gate(id32, vec3)

13 toggle_gate(id32, vec3)

14 closed(id32)

15 holding(id32, id32)

16 isInRoom(id32, id32)

17 runner(id32)

18 gateKeeper(id32)

19 zombieRoom(id32)

20 cageRoom(id32)

21 outsideRoom(id32)

22 handleForObject(id32, id32)

23 ˆroleAssigned(id32, id32)

24 ˆconnectsRooms(id32, id32, id32)

25 }

26

27 prim

28 {

29 OpenCoopObject!(id32, id32)

30 GoThoughCoopObject!(id32, id32)

31 GetGruntsAttention!(id32, id32)

32 TryToEnterCage!(id32, id32)

33 TryToExitCage!(id32, id32)

34 TraverseThroughDoor!(id32, id32)

35 CloseCage!(id32, id32, id32)

36 }

37

38 effect

39 {

40 add(table)

41 delete(table)

42 change(table, table)

43 }

44

45

46 macro

47 {

48 object_far_from_point(x ,y) = dist(x, y)>=3

49 }

B.2. HYBRID HTN DOMAIN 187

50

51

52 macro

53 {

54 object_close_to_point(x ,y) = dist(x, y)<3

55 }

56

57 macro

58 {

59 closerToFirstPos(p, x, y) = dist(p, x) <= dist(p, y)

60 }

61

62 macro

63 {

64 notClosed(o) = isntInTable(o, 12)

65 }

66

67 macro

68 {

69 isRoomInbetween(a, r, s, q) = room(r, m) & room (s, l) & room(q, n) &

connects(o, i, j) & path(a, i, l) & path(a, j, n) & connects(p, x, z

) & path(a, x, n) & path(a, z, m)

70 }

71

72 task root()

73 {

74 each (zombie(g,y)) -> [AssignRoles(g)]

75 }

76

77 task OpenCoopObject(a, o)

78 {

79 case (crank_object(o,y)&crank_handle(h,z) & object_close_to_point(z,

y)) -> [OpenCoopObject!(a,h) ,delete(closed(o)),add(holding(a,h))

]

80 case ((coop_gate(o, y) | toggle_gate(o, y))) -> [OpenCoopObject!(a,

o), delete(closed(o)), add(holding(a, o))]

81 }

82

83 task EnterRoom(a, s, g)

84 {

85 case (isInRoom(a,r) & outsideRoom(r) & crank_object(o, p) &

connectsRooms(o, s, r) & agent(b,y) & a˜=b & roleAssigned(g,b) &

isntInTable(b, 21)) -> [OpenCoopObject(b, o), GoThoughCoopObject!(a,

o), change(isInRoom(a,r), isInRoom(a,s))]

86

87 case (isInRoom(a,r) & door(o, p) & connectsRooms(o, r, s)) -> [

TraverseThroughDoor!(a, o), change(isInRoom(a,r), isInRoom(a,s))]

88 }

89

90 task TryToEnterCage(a, g, r, c, t)

91 {

188
APPENDIX B. HTN DOMAINS FOR THE

HYBRID APPROACH I

92 case (isInRoom(a,r) & isInRoom(g,h) & agent(a,x) &zombie(g,y) & room(c,

z)) -> [TryToEnterCage!(a, t), delete(closed(t)), change(agent(a,x),

agent(a,z)), change(zombie(g,y),zombie(a,z)), change(isInRoom(a,r),

isInRoom(a,c)) , change(isInRoom(g,h), isInRoom(g,c))] }

93 task GetGruntsAttention(a, g, q)

94 {

95 case (isInRoom(g, q)) -> []

96 case (zombie(g,y) & isInRoom(g, r) & agent(a,x) & isInRoom(a,h)) -> [

GetGruntsAttention!(a, g), change(isInRoom(a,h), isInRoom(a,r))]

97 }

98

99 task TryToExitCage(a, r, o, t, g, q)

100 {

101 case(isInRoom(a, q) & outsideRoom(j) & connects(o, y, z) & isInRoom(g,q

)) -> [TryToExitCage!(a, o), change(isInRoom(a,q), isInRoom(a,j))]

102 case(agent(a,x) &zombie (g,y) & dist(x,y)< 3 & outsideRoom(j) &

notClosed(t) & isInRoom(g,l)) -> [TryToExitCage!(a, o), change(

isInRoom(a,r), isInRoom(a,j)), change(isInRoom(g,l), isInRoom(g,q))]

103 case(isInRoom(a, r)) -> [TryToEnterCage(a, g, r, q, t), TryToExitCage(a

, r, o, t, g, q)]

104 }

105

106 task ReplaceRunner(a)

107 {

108 case(empty(runner)) -> [add(runner(a))]

109 case(agent(b,x) & runner(b)) -> [delete(runner(b)), add(runner(a))]

110 }

111

112 task ReplaceGateKeeper(a)

113 {

114 case(empty(gateKeeper)) -> [add(gateKeeper(a))]

115 case(agent(b,x) & gateKeeper(b)) -> [delete(gateKeeper(b)), add(

gateKeeper(a))]

116 }

117

118 task DoRunnerJob(a, r, q, o, t, g)

119 {

120 //0 zombie in cage, runner outside

121 case(agent(a,x) &zombie(g,y) & isInRoom(g,q) & outsideRoom(t) &

isInRoom(a,t)) -> []

122

123 //1 both in cage

124 case(agent(a,x) & isInRoom(a,q) &zombie(g,y) & isInRoom(g,q)) -> [

TryToExitCage(a, r, o, t, g, q)]

125

126 //2 runner in cage,zombie inzombieroom

127 case(agent(a,x) & isInRoom(a,q) &zombie(g,y) & isInRoom(g,r)) -> [

GetGruntsAttention(a, g, q), TryToExitCage(a, r, o, t, g, q)]

128

129 //3 runner in zombie room,zombie in cage

130 case(agent(a,x) & isInRoom(a,r) &zombie(g,y) & isInRoom(g,q)) -> [

GetGruntsAttention(a, g, q), TryToExitCage(a, r, o, t, g, q)]

B.2. HYBRID HTN DOMAIN 189

131

132 //4 runner,zombie in zombie room

133 case(agent(a,x) & isInRoom(a,r) &zombie(g,y) & isInRoom(g,r)) -> [

GetGruntsAttention(a, g, q), TryToExitCage(a, r, o, t, g, q)]

134

135 //5 runner outside

136 case(agent(a,x) &zombie(g,y) & isInRoom(g,r)) -> [EnterRoom(a, r, g),

DoRunnerJob(a, r, q, o, t, g)]

137 }

138

139 task CloseCage(a,o,g, r, c)

140 {

141 case(isInRoom(a,r) & isInRoom(g,c)) -> [CloseCage!(a,o, g)]

142 }

143

144 task CloseCageDoor(r,o, g, c)

145 {

146 case(closed(o)) ->[]

147

148 // zombie in cage, helper in room, runner outside

149 case(agent(a,x) & roleAssigned(g,a) & runner(b) & a˜=b & isInRoom(b,t)

& outsideRoom(t) & isInRoom(a,r) & isInRoom(g,c)) -> [CloseCage(a,o,

g, r, c), EnterRoom(a,t, g)]

150

151 // zombie in cage, helper and runner outside

152 case(agent(a,x) & roleAssigned(g,a) & runner(b) & a˜=b & isInRoom(b,t)

& outsideRoom(t) & isInRoom(a,t) & isInRoom(g,c)) -> [EnterRoom(a,r,

g), CloseCageDoor(r,o, g, c)]

153 }

154

155 task SolveCoop(g, r, q, t, o, a, b)

156 {

157 //0 both in cage

158 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,q) & isInRoom(a,q))

-> [ReplaceRunner(a), ReplaceGateKeeper(b), OpenCoopObject(b, o),

DoRunnerJob(a, r, q, o,t, g), CloseCageDoor(r, t, g, q), delete(

runner(a)), delete(gateKeeper(b))]

159

160 //1 zombie in the cage

161 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,q) & isInRoom(a,r))

-> [ReplaceRunner(a), ReplaceGateKeeper(b), OpenCoopObject(b, o),

DoRunnerJob(a, r, q, o,t, g), CloseCageDoor(r, t, g, q), delete(

runner(a)), delete(gateKeeper(b))]

162

163 //2 zombie in cage and runner outside

164 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,q)) -> [ReplaceRunner

(a), ReplaceGateKeeper(b), CloseCageDoor(r,t, g, q), delete(runner(a

)), delete(gateKeeper(b))]

165

166 //3

190
APPENDIX B. HTN DOMAINS FOR THE

HYBRID APPROACH I

167 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,r) & isInRoom(a,q))

-> [ReplaceRunner(a), ReplaceGateKeeper(b), OpenCoopObject(b, o),

DoRunnerJob(a, r, q, o, t, g), CloseCageDoor(r,t, g, q), delete(

runner(a)), delete(gateKeeper(b))]

168

169 //4

170 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,r) & isInRoom(a, r))

-> [ReplaceRunner(a), ReplaceGateKeeper(b), OpenCoopObject(b, o),

DoRunnerJob(a, r, q, o,t, g), CloseCageDoor(r,t, g, q), delete(

runner(a)), delete(gateKeeper(b))]

171

172 //5

173 case(isInRoom(b, s) & outsideRoom(s) & isInRoom(g,r)) -> [ReplaceRunner

(a), ReplaceGateKeeper(b), OpenCoopObject(b, o), DoRunnerJob(a, r, q

, o, t, g), CloseCageDoor(r,t, g, q), delete(runner(a)), delete(

gateKeeper(b))]

174 }

175

176 task AssignRoles(g)

177 {

178 //finished - free

179 case (agent(a,y) & roleAssigned(g,a) & zombie(g,x) & cageRoom(r) &

isInRoom(g,r) & isInRoom(a,s) & r˜=s & toggle_gate(t,m) &

connectsRooms(t,r,p) & closed(t)) -> []

180

181 //assigned - continue

182 case (roleAssigned(g,a) & roleAssigned(g,b) & a˜=b & zombie(g,x) &

zombieRoom(r) & isInRoom(g,r) & toggle_gate(t,m) & agent(a,y) &

connectsRooms(t,r,c) & coop_gate(o, p) & connectsRooms(o, c, d)) ->

[SolveCoop(g, r, c, t, o, a, b)]

183 case (roleAssigned(g,a) & roleAssigned(g,b) & a˜=b & zombie(g,x) &

cageRoom(c) & isInRoom(g,c) & toggle_gate(t,m) & agent(a,y) &

connectsRooms(t,r,c) & coop_gate(o, p) & connectsRooms(o, c, d)) ->

[SolveCoop(g, r, c, t, o, a, b)]

184

185 //not enough agents - wait

186 case() -> []

187

188 //assigning done in code!

189 }

190 }

A
p
p
e
n
d
i
x

C
Behavior Trees for the

Hybrid Approach I

The documentation for standard nodes of the Modular Behavior Trees in CryEngine can

be found under: https://docs.cryengine.com/display/SDKDOC4/Modular+

Behavior+Tree+Nodes

Default Behavior Tree

1 <BehaviorTree>

2 <Root>

3 <StateMachine>

4 <State name="DefaultBT">

5 <Transitions>

6 <Transition to="CloseCage" onEvent="CloseCage!"/>

7 <Transition to="GoThoughCoopObject" onEvent="GoThoughCoopObject!"/>

8 <Transition to="OpenCoopObject" onEvent="OpenCoopObject!"/>

9 <Transition to="StopInteractingAfterwards" onEvent="

StopInteractingAfterwards!"/>

10 <Transition to="TraverseThroughDoor" onEvent="TraverseThroughDoor!"/>

11 <Transition to="GetGruntsAttention" onEvent="GetGruntsAttention!"/>

12 <Transition to="TryToEnterCage" onEvent="TryToEnterCage!"/>

13 <Transition to="TryToExitCage" onEvent="TryToExitCage!"/>

14 <Transition to="StopPlan" onEvent="StopPlan!"/>

15 </Transitions>

16 <BehaviorTree>

17 <Loop>

18 <Log message="Waiting for commands"/>

19 </Loop>

20 </BehaviorTree>

21 </State>

22 </StateMachine>

23 </Root>

24 </BehaviorTree>

191

https://docs.cryengine.com/display/SDKDOC4/Modular+Behavior+Tree+Nodes
https://docs.cryengine.com/display/SDKDOC4/Modular+Behavior+Tree+Nodes

192
APPENDIX C. BEHAVIOR TREES FOR THE

HYBRID APPROACH I

”CloseCage” Behavior Tree

1 <BehaviorTree>

2 <Root>

3 <StateMachine>

4 <State name="CloseCage">

5 <Transitions>

6 <Transition to="CloseCage" onEvent="CloseCage!"/>

7 <Transition to="GoThoughCoopObject" onEvent="GoThoughCoopObject!"/>

8 <Transition to="OpenCoopObject" onEvent="OpenCoopObject!"/>

9 <Transition to="StopInteractingAfterwards" onEvent="

StopInteractingAfterwards!"/>

10 <Transition to="TraverseThroughDoor" onEvent="TraverseThroughDoor!"/>

11 <Transition to="GetGruntsAttention" onEvent="GetGruntsAttention!"/>

12 <Transition to="TryToEnterCage" onEvent="TryToEnterCage!"/>

13 <Transition to="TryToExitCage" onEvent="TryToExitCage!"/>

14 <Transition to="StopPlan" onEvent="StopPlan!"/>

15 </Transitions>

16 <BehaviorTree>

17 <Loop>

18 <Selector>

19 <Parallel successMode="any">

20 <Sequence>

21 <WaitForEvent name="GruntLeftRoom"/>

22 <X-functionName="FailBT"/>

23 <Halt />

24 </Sequence>

25 <LoopUntilSuccess attemptCount="5">

26 <Sequence>

27 <Selector>

28 <Sequence>

29 <Case functionName="PreconditionsHold"

returnValueOutputParam="True" />

30 <Log message="Preconditions hold"/>

31 </Sequence>

32 <Sequence>

33 <Case functionName="PreconditionsHold"

returnValueOutputParam="False"/>

34 <Log message="Preconditions do not hold"/>

35 <Action functionName="FailBT"/>

36 <Halt />

37 </Sequence>

38 </Selector>

39 <Log message="cage open?"/>

40 <Action name="Run"/>

41 <Selector>

42 <Sequence>

43 <Check functionName="IsClosed" returnValueOutputParam="

True"/>

44 <Action functionName="SucceedBT"/>

45 <Halt />

46 </Sequence>

193

47 <Sequence>

48 <Action name="StopAction"/>

49 <Parallel successMode="any">

50 <Selector>

51 <Action name="NavigateTo"/>

52 <Sequence>

53 <Action name="StepAside"/>

54 <Action name="NavigateTo"/>

55 </Sequence>

56 </Selector>

57 <LoopUntilSuccess>

58 <Check functionName="DistReached"

returnValueOutputParam="True"/>

59 </LoopUntilSuccess>

60 </Parallel>

61 <Action name="AlignTo"/>

62 <Action name="InteractUse"/>

63 </Sequence>

64 </Selector>

65 </Sequence>

66 </LoopUntilSuccess>

67 <Sequence>

68 <WaitForEvent name="ToggleGateClosed"/>

69 <Action name="SucceedBT"/>

70 <Halt />

71 </Sequence>

72 </Parallel>

73 <Sequence>

74 <Action functionName="FailBT"/>

75 <Halt />

76 </Sequence>

77 </Selector>

78 </Loop>

79 </BehaviorTree>

80 </State>

81 </StateMachine>

82 </Root>

83 </BehaviorTree>

194
APPENDIX C. BEHAVIOR TREES FOR THE

HYBRID APPROACH I

”TraverseThroughDoor” Behavior Tree

1 <BehaviorTree>

2 <Root>

3 <StateMachine>

4 <State name="TraverseThroughDoor">

5 <Transitions>

6 <Transition to="CloseCage" onEvent="CloseCage!"/>

7 <Transition to="GoThoughCoopObject" onEvent="GoThoughCoopObject!"/>

8 <Transition to="OpenCoopObject" onEvent="OpenCoopObject!"/>

9 <Transition to="StopInteractingAfterwards" onEvent="

StopInteractingAfterwards!"/>

10 <Transition to="TraverseThroughDoor" onEvent="TraverseThroughDoor!"/>

11 <Transition to="GetGruntsAttention" onEvent="GetGruntsAttention!"/>

12 <Transition to="TryToEnterCage" onEvent="TryToEnterCage!"/>

13 <Transition to="TryToExitCage" onEvent="TryToExitCage!"/>

14 <Transition to="StopPlan" onEvent="StopPlan!"/>

15 </Transitions>

16 <BehaviorTree>

17 <Loop>

18 <Selector>

19 <Parallel>

20 <Sequence>

21 <WaitForEvent name="AgentEnteredRoom"/>

22 <WaitForEvent name="DoorClosed"/>

23 <functionName="SucceedBT"/>

24 <Halt />

25 </Sequence>

26 <Sequence>

27 <Selector>

28 <Sequence>

29 <Case functionName="PreconditionsHold" returnValueOutputParam="

True"/>

30 <Log message="Preconditions hold"/>

31 </Sequence>

32 <Sequence>

33 <Case functionName="PreconditionsHold" returnValueOutputParam="

False"/>

34 <Log message="Preconditions do not hold"/>

35 <Action name="FailBT"/>

36 <Halt />

37 </Sequence>

38 </Selector>

39 <Action name="Run"/>

40 <LoopUntilSuccess attemptCount="5">

41 <Parallel successMode="any">

42 <Selector>

43 <Action name="NavigateTo"/>

44 <Sequence>

45 <Action name="StepAside"/>

46 <Action name="NavigateTo"/>

47 </Sequence>

195

48 </Selector>

49 <LoopUntilSuccess>

50 <Case functionName="MinDistReached"

returnValueOutputParam="True" />

51 </LoopUntilSuccess>

52 </Parallel>

53 </LoopUntilSuccess>

54 <LoopUntilSuccess attemptCount="5">

55 <Selector>

56 <Sequence>

57 <Case functionName="IsClosed" returnValueOutputParam="

True" />

58 <Action name="AlignTo"/>

59 <Action name="InteractUse"/>

60 <WaitForEvent name="DoorOpened"/>

61 <Action name="StepThrough"/>

62 </Sequence>

63 <Sequence>

64 <<Case functionName="IsClosed" returnValueOutputParam="

False"/>

65 <Action name="StepThrough"/>

66 </Sequence>

67 </Selector>

68 </LoopUntilSuccess>

69 <LoopUntilSuccess attemptCount="5">

70 <Sequence>

71 <<Case functionName="IsClosed" returnValueOutputParam="False"/>

72 <Action name="AlignTo"/>

73 <Action name="InteractUse"/>

74 <WaitForEvent name="DoorClosed"/>

75 <Action name="SucceedBT"/>

76 </Sequence>

77 </LoopUntilSuccess>

78 </Sequence>

79 </Parallel>

80 <Sequence>

81 <Action name="FailBT"/>

82 <Halt />

83 </Sequence>

84 </Selector>

85 </Loop>

86 </BehaviorTree>

87 </State>

88 </StateMachine>

89 </Root>

90 </BehaviorTree>

196
APPENDIX C. BEHAVIOR TREES FOR THE

HYBRID APPROACH I

”GoThoughCoopObject” Behavior Tree

1 <BehaviorTree>

2 <Root>

3 <StateMachine>

4 <State name="GoThoughCoopObject">

5 <Transitions>

6 <Transition to="CloseCage" onEvent="CloseCage!"/>

7 <Transition to="GoThoughCoopObject" onEvent="GoThoughCoopObject!"/>

8 <Transition to="OpenCoopObject" onEvent="OpenCoopObject!"/>

9 <Transition to="StopInteractingAfterwards" onEvent="

StopInteractingAfterwards!"/>

10 <Transition to="TraverseThroughDoor" onEvent="TraverseThroughDoor!"/>

11 <Transition to="GetGruntsAttention" onEvent="GetGruntsAttention!"/>

12 <Transition to="TryToEnterCage" onEvent="TryToEnterCage!"/>

13 <Transition to="TryToExitCage" onEvent="TryToExitCage!"/>

14 <Transition to="StopPlan" onEvent="StopPlan!"/>

15 </Transitions>

16 <BehaviorTree>

17 <Loop>

18 <Selector>

19 <Parallel>

20 <Sequence>

21 <Action name="StopAction"/>

22 <WaitForEvent name="AgentEnteredRoom"/>

23 <Action name="SucceedBT"/>

24 <Halt />

25 </Sequence>

26 <LoopUntilSuccess attemptCount="5">

27 <Sequence>

28 <Selector>

29 <Sequence>

30 <Case functionName="PreconditionsHold"

returnValueOutputParam="True"/>

31 <Log message="Preconditions hold"/>

32 </Sequence>

33 <Sequence>

34 <Case functionName="PreconditionsHold"

returnValueOutputParam="False"/>

35 <Log message="Preconditions do not hold"/>

36 <Action name="FailBT"/>

37 <Halt />

38 </Sequence>

39 </Selector>

40 <Action name="Run"/>

41 <Parallel successMode="any">

42 <Selector>

43 <Action name="NavigateTo"/>

44 <Sequence>

45 <Action name="StepAside"/>

46 <Action name="NavigateTo"/>

47 </Sequence>

197

48 </Selector>

49 <LoopUntilSuccess>

50 <Case functionName="MinDistReached"

returnValueOutputParam="True"/>

51 </LoopUntilSuccess>

52 </Parallel>

53 <Selector>

54 <Sequence>

55 <Case functionName="IsClosed" returnValueOutputParam="

True"/>

56 <WaitForEvent name="CoopOpened"/>

57 <LoopUntilSuccess attemptCount="5">

58 <Action name="StepThrough"/>

59 </LoopUntilSuccess>

60 <Sequence>

61 <WaitForEvent name="AgentEnteredRoom"/>

62 <Action name="SucceedBT"/>

63 </Sequence>

64 </Sequence>

65 <Sequence>

66 <Case functionName="IsClosed" returnValueOutputParam="

False"/>

67 <Action name="StepThrough"/>

68 <Sequence>

69 <WaitForEvent name="AgentEnteredRoom"/>

70 <Action name="SucceedBT"/>

71 </Sequence>

72 </Sequence>

73 </Selector>

74 </Sequence>

75 </LoopUntilSuccess>

76 </Parallel>

77 <Sequence>

78 <Action name="FailBT"/>

79 <Halt />

80 </Sequence>

81 </Selector>

82 </Loop>

83 </BehaviorTree>

84 </State>

85 </StateMachine>

86 </Root>

87 </BehaviorTree>

198
APPENDIX C. BEHAVIOR TREES FOR THE

HYBRID APPROACH I

”OpenCoopObject” Behavior Tree

1 <BehaviorTree>

2 <Root>

3 <StateMachine>

4 <State name="OpenCoopObject">

5 <Transitions>

6 <Transition to="CloseCage" onEvent="CloseCage!"/>

7 <Transition to="GoThoughCoopObject" onEvent="GoThoughCoopObject!"/>

8 <Transition to="OpenCoopObject" onEvent="OpenCoopObject!"/>

9 <Transition to="StopInteractingAfterwards" onEvent="

StopInteractingAfterwards!"/>

10 <Transition to="TraverseThroughDoor" onEvent="TraverseThroughDoor!"/>

11 <Transition to="GetGruntsAttention" onEvent="GetGruntsAttention!"/>

12 <Transition to="TryToEnterCage" onEvent="TryToEnterCage!"/>

13 <Transition to="TryToExitCage" onEvent="TryToExitCage!"/>

14 <Transition to="StopPlan" onEvent="StopPlan!"/>

15 </Transitions>

16 <BehaviorTree>

17 <Loop>

18 <Selector>

19 <Parallel>

20 <Sequence>

21 <WaitForEvent name="AgentEnteredRoom"/>

22 <Action name="StopAction"/>

23 <Action name="StepAside"/>

24 <Action name="SucceedBT"/>

25 <Halt />

26 </Sequence>

27 <Sequence>

28 <Selector>

29 <Sequence>

30 <Case functionName="PreconditionsHold" returnValueOutputParam="

True"/>

31 <Log message="Preconditions hold"/>

32 </Sequence>

33 <Sequence>

34 <Case functionName="PreconditionsHold" returnValueOutputParam="

False"/>

35 <Log message="Preconditions do not hold"/>

36 <Action name="FailBT"/>

37 <Halt />

38 </Sequence>

39 </Selector>

40 <Selector>

41 <Case functionName="MinDistReached" returnValueOutputParam="True"/>

42 <Sequence>

43 <Action name="Run"/>

44 <Action name="StopAction"/>

45 <LoopUntilSuccess attemptCount="5">

46 <Parallel successMode="any">

47 <Selector>

199

48 <Action name="NavigateTo"/>

49 <Sequence>

50 <Action name="StepAside"/>

51 <Action name="NavigateTo"/>

52 </Sequence>

53 </Selector>

54 <LoopUntilSuccess>

55 <Case functionName="MinDistReached"

returnValueOutputParam="True"/>

56 </LoopUntilSuccess>

57 </Parallel>

58 </LoopUntilSuccess>

59 </Sequence>

60 </Selector>

61 <LoopUntilSuccess attemptCount="5">

62 <Selector>

63 <Sequence>

64 <Case functionName="IsClosed" returnValueOutputParam="

True"/>

65 <Action name="AlignTo"/>

66 <Action name="StopAction"/>

67 <Action name="InteractHold"/>

68 <WaitForEvent name="CoopOpened"/>

69 <WaitForEvent name="AgentEnteredRoom"/>

70 </Sequence>

71 <Sequence>

72 <Case functionName="IsClosed" returnValueOutputParam="

False"/>

73 <Action name="AlignTo"/>

74 <Action name="StopAction"/>

75 <Action name="InteractHold"/>

76 <WaitForEvent name="AgentEnteredRoom"/>

77 </Sequence>

78 </Selector>

79 </LoopUntilSuccess>

80 </Sequence>

81 </Parallel>

82 <Sequence>

83 <Action name="FailBT"/>

84 <Halt />

85 </Sequence>

86 </Selector>

87 </Loop>

88 </BehaviorTree>

89 </State>

90 </StateMachine>

91 </Root>

92 </BehaviorTree>

200
APPENDIX C. BEHAVIOR TREES FOR THE

HYBRID APPROACH I

”GetGruntsAttention” Behavior Tree

1 <BehaviorTree>

2 <Root>

3 <StateMachine>

4 <State name="GetGruntsAttention">

5 <Transitions>

6 <Transition to="CloseCage" onEvent="CloseCage!"/>

7 <Transition to="GoThoughCoopObject" onEvent="GoThoughCoopObject!"/>

8 <Transition to="OpenCoopObject" onEvent="OpenCoopObject!"/>

9 <Transition to="StopInteractingAfterwards" onEvent="

StopInteractingAfterwards!"/>

10 <Transition to="TraverseThroughDoor" onEvent="TraverseThroughDoor!"/>

11

12 <Transition to="GetGruntsAttention" onEvent="GetGruntsAttention!"/>

13 <Transition to="TryToEnterCage" onEvent="TryToEnterCage!"/>

14 <Transition to="TryToExitCage" onEvent="TryToExitCage!"/>

15 <Transition to="StopPlan" onEvent="StopPlan!"/>

16 </Transitions>

17 <BehaviorTree>

18 <Loop>

19 <Selector>

20 <Parallel successMode="any">

21 <Sequence>

22 <WaitForEvent name="TargetSawMe"/>

23 <Log message="target saw me"/>

24 <Action name="SucceedBT"/>

25 </Sequence>

26 <LoopUntilSuccess attemptCount="10">

27 <Sequence>

28 <Selector>

29 <Sequence>

30 <Case functionName="PreconditionsHold"

returnValueOutputParam="True"/>

31 <Log message="Preconditions hold"/>

32 </Sequence>

33 <Sequence>

34 <Case functionName="PreconditionsHold"

returnValueOutputParam="False"/>

35 <Log message="Preconditions do not hold"/>

36 <Action name="FailBT"/>

37 <Halt />

38 </Sequence>

39 </Selector>

40 <Action name="Run"/>

41 <Selector>

42 <Sequence>

43 <Case functionName="IAmVisible" returnValueOutputParam="

True"/>

44 <Log message="I am visible"/>

45 <Action name="SucceedBT"/>

46 <Halt />

201

47 </Sequence>

48 <Sequence>

49 <Log message="not visible"/>

50 <Action name="NavigateTo"/>

51 <Case functionName="IAmVisible" returnValueOutputParam="

True"/>

52 </Sequence>

53 </Selector>

54 </Sequence>

55 </LoopUntilSuccess>

56 </Parallel>

57 <Sequence>

58 <Action name="FailBT"/>

59 <Halt />

60 </Sequence>

61 </Selector>

62 </Loop>

63 </BehaviorTree>

64 </State>

65 </StateMachine>

66 </Root>

67 </BehaviorTree>

202
APPENDIX C. BEHAVIOR TREES FOR THE

HYBRID APPROACH I

”TryToEnterCage” Behavior Tree

1 <BehaviorTree>

2 <Root>

3 <StateMachine>

4 <State name="TryToEnterCage">

5 <Transitions>

6 <Transition to="CloseCage" onEvent="CloseCage!"/>

7 <Transition to="GoThoughCoopObject" onEvent="GoThoughCoopObject!"/>

8 <Transition to="OpenCoopObject" onEvent="OpenCoopObject!"/>

9 <Transition to="StopInteractingAfterwards" onEvent="

StopInteractingAfterwards!"/>

10 <Transition to="TraverseThroughDoor" onEvent="TraverseThroughDoor!"/>

11 <Transition to="GetGruntsAttention" onEvent="GetGruntsAttention!"/>

12 <Transition to="TryToEnterCage" onEvent="TryToEnterCage!"/>

13 <Transition to="TryToExitCage" onEvent="TryToExitCage!"/>

14 <Transition to="StopPlan" onEvent="StopPlan!"/>

15 </Transitions>

16 <BehaviorTree>

17 <Loop>

18 <Selector>

19 <Parallel>

20 <Sequence>

21 <WaitForEvent name="AgentEnteredRoom"/>

22 <Action name="SucceedBT"/>

23 <Halt />

24 </Sequence>

25 <LoopUntilSuccess attemptCount="5">

26 <Sequence>

27 <Selector>

28 <Sequence>

29 <Case functionName="PreconditionsHold"

returnValueOutputParam="True"/>

30 <Log message="Preconditions hold"/>

31 </Sequence>

32 <Sequence>

33 <Case functionName="PreconditionsHold"

returnValueOutputParam="False"/>

34 <Log message="Preconditions do not hold"/>

35 <Action name="FailBT"/>

36 <Halt />

37 </Sequence>

38 </Selector>

39 <Action name="Run"/>

40 <Action name="NavigateTo"/>

41 <Log message="toggle gate Open?"/>

42 <Selector>

43 <Sequence>

44 <Case functionName="IsClosed" returnValueOutputParam="

True"/>

45 <Action name="AlignTo"/>

46 <Action name="InteractHold"/>

203

47 <WaitForEvent name="ToggleGateOpened"/>

48 <Action name="StepThrough"/>

49 </Sequence>

50 <Sequence>

51 <Case functionName="IsClosed" returnValueOutputParam="

False"/>

52 <Action name="StepThrough"/>

53 </Sequence>

54 </Selector>

55 </Sequence>

56 </LoopUntilSuccess>

57 </Parallel>

58 <Sequence>

59 <Action name="FailBT"/>

60 <Halt />

61 </Sequence>

62 </Selector>

63 </Loop>

64 </BehaviorTree>

65 </State>

66 </StateMachine>

67 </Root>

68 </BehaviorTree>

204
APPENDIX C. BEHAVIOR TREES FOR THE

HYBRID APPROACH I

”TryToExitCage” Behavior Tree

1 <BehaviorTree>

2 <Root>

3 <StateMachine>

4 <State name="TryToExitCage">

5 <Transitions>

6 <Transition to="CloseCage" onEvent="CloseCage!"/>

7 <Transition to="GoThoughCoopObject" onEvent="GoThoughCoopObject!"/>

8 <Transition to="OpenCoopObject" onEvent="OpenCoopObject!"/>

9 <Transition to="StopInteractingAfterwards" onEvent="

StopInteractingAfterwards!"/>

10 <Transition to="TraverseThroughDoor" onEvent="TraverseThroughDoor!"/>

11 <Transition to="GetGruntsAttention" onEvent="GetGruntsAttention!"/>

12 <Transition to="TryToEnterCage" onEvent="TryToEnterCage!"/>

13 <Transition to="TryToExitCage" onEvent="TryToExitCage!"/>

14 <Transition to="StopPlan" onEvent="StopPlan!"/>

15 </Transitions>

16 <BehaviorTree>

17 <Loop>

18 <Selector>

19 <Parallel>

20 <Sequence>

21 <WaitForEvent name="AgentEnteredRoom"/>

22 <Action name="Run"/>

23 <WaitForEvent name="CoopClosed"/>

24 <Action name="SucceedBT"/>

25 <Halt />

26 </Sequence>

27 <LoopUntilSuccess attemptCount="5">

28 <Sequence>

29 <Selector>

30 <Sequence>

31 <Case functionName="PreconditionsHold"

returnValueOutputParam="True"/>

32 <Log message="Preconditions hold"/>

33 </Sequence>

34 <Sequence>

35 <Case functionName="PreconditionsHold"

returnValueOutputParam="False"/>

36 <Log message="Preconditions do not hold"/>

37 <Action name="FailBT"/>

38 <Halt />

39 </Sequence>

40 </Selector>

41 <Parallel successMode="any">

42 <Action name="NavigateTo"/>

43 <LoopUntilSuccess>

44 <Case functionName="MinDistReached"

returnValueOutputParam="True"/>

45 </LoopUntilSuccess>

46 </Parallel>

205

47 <Action name="Crouch"/>

48 <Log message="doorOpen?"/>

49 <Selector>

50 <Sequence>

51 <Case functionName="IsClosed" returnValueOutputParam="

True"/>

52 <WaitForEvent name="CoopOpened"/>

53 <Action name="StepThrough"/>

54 <Sequence>

55 <WaitForEvent name="AgentEnteredRoom"/>

56 <Action name="SucceedBT"/>

57 </Sequence>

58 </Sequence>

59 <Sequence>

60 <Case functionName="IsClosed" returnValueOutputParam="

False"/>

61 <Action name="StepThrough"/>

62 <Sequence>

63 <WaitForEvent name="AgentEnteredRoom"/>

64 <Action name="SucceedBT"/>

65 </Sequence>

66 </Sequence>

67 </Selector>

68 </Sequence>

69 </LoopUntilSuccess>

70 </Parallel>

71 <Sequence>

72 <Action name="FailBT"/>

73 <Halt />

74 </Sequence>

75 </Selector>

76 </Loop>

77 </BehaviorTree>

78 </State>

79 </StateMachine>

80 </Root>

81 </BehaviorTree>

206
APPENDIX C. BEHAVIOR TREES FOR THE

HYBRID APPROACH I

”StopPlan” Behavior Tree

1 <BehaviorTree>

2 <Root>

3 <StateMachine>

4 <State name="StopPlan">

5 <Transitions>

6 <Transition to="CloseCage" onEvent="CloseCage!"/>

7 <Transition to="GoThoughCoopObject" onEvent="GoThoughCoopObject!"/>

8 <Transition to="OpenCoopObject" onEvent="OpenCoopObject!"/>

9 <Transition to="StopInteractingAfterwards" onEvent="

StopInteractingAfterwards!"/>

10 <Transition to="TraverseThroughDoor" onEvent="TraverseThroughDoor!"/>

11 <Transition to="GetGruntsAttention" onEvent="GetGruntsAttention!"/>

12 <Transition to="TryToEnterCage" onEvent="TryToEnterCage!"/>

13 <Transition to="TryToExitCage" onEvent="TryToExitCage!"/>

14 <Transition to="StopPlan" onEvent="StopPlan!"/>

15 </Transitions>

16 <BehaviorTree>

17 <Halt />

18 </BehaviorTree>

19 </State>

20 </StateMachine>

21 </Root>

22 </BehaviorTree>

A
p
p
e
n
d
i
x

D
Game Maps for the Hybrid Approach II

(a) basesWorkers-
8x8A

(b)
NoWhereToRun-
9x8

(c)
FourBasesWorkers-
8x8

(d)
TwoBasesBarracks-
16x16

(e) basesWorkers-
16x16A

(f) basesWorkers-
24x24A

(g) DoubleGame-
24x24

(h)
BWDistantResources-
32x32

Figure D.1: Start configurations of the game maps used in the experiments of Chapter 6.
Player 1 starts on the top/left side, player 2 on the bottom/right side of each map. The
blue, red, and violet background colors indicate the visibility of a cell to player 1, 2, or
both respectively in a partially observable mode. However, these are not relevant for
our experiments, which are performed with full observability.

207

1

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete

fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich

nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte

haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter

 Weise zu interpretieren,

- fremde Ergebnisse oder Veröffentlichungen plagiiert,

- fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und

Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die

Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland

noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als

Ganzes auch noch nicht veröffentlicht.

Magdeburg, den

17.08.2020

Xenija Neufeld

	Introduction
	Motivation
	Highly Dynamic Environments
	Goals of the Thesis
	Structure of the Thesis

	Background and Related Work
	Reactive Decision-Making Approaches
	Behavior Trees
	Monte Carlo Tree Search

	Planning Approaches
	Classical Planning
	Real-Time Planning
	Hierarchical Task Network Planning

	Planning and Execution
	Interleaved Planning and Execution
	Multi-Agent Planning and Execution

	Conclusion

	HTN Planning in a Highly Dynamic Game
	Goals
	Test Environment
	HTN Fighter
	Two-layer Architecture
	Planning Domain
	Top Layer
	Bottom Layer

	Evaluation
	Ordered Method Selection
	UCB Method Selection

	Limitations of Pure HTN Planning
	Conclusion

	Hybrid Approach : General Idea
	Goals
	Three-Layer Architecture
	Top Layer
	Planning Domain
	Middle Layer
	Bottom Layer

	Hybrid Approach I : HTN + BT
	Goals
	Test Environment
	Hybrid Approach
	Three-layer Architecture
	Planning Domain
	Top Layer
	Middle Layer
	Bottom Layer

	Evaluation
	Conclusion

	Hybrid Approach II : HTN + MCTS
	Goals
	Test Environment
	Hybrid Approach
	Three-layer Architecture
	Planning Domain
	Top Layer
	Middle Layer
	Bottom Layer

	First Evaluation
	Evolution of Evaluation Functions
	Application of the Genetic Algorithm
	Second Evaluation

	Conclusion

	Conclusion
	Summary
	Discussion
	Limitations and Future Work

	Bibliography
	List of Figures
	List of Tables
	Acronyms
	Glossary
	Combo Results of the FightingIce Experiments with UCB Method Selection
	HTN Domains for the Hybrid Approach I
	Pure HTN Domain
	Hybrid HTN Domain

	Behavior Trees for the Hybrid Approach I
	Game Maps for the Hybrid Approach II

