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Summary

Runoff events are fundamental hydrological elements that define quantity and quality of water de-
livered to the streams and play an imperative role in shaping riverine environments. Singular large
runoff events (i.e., flood events) have tremendous socio-economical consequences. In a changing
world accurate predictions of runoff events are crucial for management of future water resources
and flood hazard. Understanding of processes that control runoff event generation and dynamics
can strengthen the robustness of such predictions. The objective of this thesis is to provide a
deeper understanding on large scale controls of spatial patterns and temporal dynamics of runoff
event characteristics and to develop a framework for event characterization and classification that
is able to distinguish events governed by different runoff generation processes.
In the first part of this thesis an automated event separation procedure was devised that includes
existing time-series-based base flow separation, runoff event identification, rainfall attribution and
a novel iterative procedure for refinement of single-peak components of multiple-peak events. This
procedure allowed consistent event isolation from continuous hydro-meteorological time series in
a wide range of German catchments across different landscape and climatic regions. The analysis
of event-to-event variability of runoff event characteristics based on more than 220,000 events re-
vealed regions with dominance of different runoff generation mechanisms. The seasonality of event
characteristics highlighted the importance of snowmelt contribution and the seasonal variations of
water balance components. Non-stationarity of event characteristics (i.e., their long-term trends)
emphasized the role of modifications of the intra-annual seasonality wetness conditions rather than
of the total precipitation amount.
In the second part of this thesis the analysis of spatial distribution of runoff event characteristics re-
vealed relatively clear regional patterns due to the dominance of climatic controls at regional scale.
Subsurface properties (i.e., catchment storage) played also a considerable role for the prediction
of event runoff response. Best performing variable selection method based on the Self-Organizing
Maps identified soil depth, hydraulic permeability and frequency, size and seasonality of wet spells
as relevant catchment descriptors for prediction of spatial patterns and regionalized values of runoff
event characteristics. Linking temporal dynamics of runoff event characteristics and their spatial
controls with hypothesized runoff generation mechanisms and the concept of threshold processes
in catchments provided the basis for deriving archetypes of distinct catchment behaviors in Ger-
many. The identified controls of event runoff response and hydrologically-homogeneous regions
might provide useful information for selecting relevant physical catchment descriptors for various
hydrological applications.
Finally, in the third part of this thesis a new process-based framework for characterizing runoff
events and deriving event typologies was developed in this study. The indicators of the proposed
framework categorize runoff events based on space-time dynamics of observed precipitation and
simulated snowmelt and soil moisture and their mutual interactions within catchments. A rigor-
ous uncertainty analysis showed that the indicators of the framework are robust and regionally
consistent. Dimensionless covariance- and ratio-based indicators used in the framework reduces
classification uncertainty compared to commonly used indicators relying on absolute values of
metrics such as rainfall volume, duration or intensity and allow consistent classification of runoff
events of various magnitudes and recurrences. The validation procedure based on cross recurrence
plots showed that the event typology derived in this thesis is able to stratify events with distinct
hydrograph dynamics in most of study catchments, even though streamflow was not directly used
for classification. This indicates that the derived event typology effectively captures first-order
controls of event runoff response in a wide variety of catchments.
Consistent national data sets of isolated and classified runoff events and their event characteristics
produced in this study are a valuable source of information for advancing data-driven approaches
in the context of comparative hydrology in Germany. Moreover, the developed event characteri-
zation framework can be further applied for understanding regional differences of runoff and flood
events and detect temporal changes of the dominant processes. Similarly, it could be applied for
disentangling the variability of solutes and particulates exports from catchments during different
runoff event conditions, thus providing additional insights on variability of water quality metrics
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Summary

observed in streams.
This thesis consists of three peer-reviewed papers published in the ISI-listed journals.

Keywords Rainfall-runoff events, events separation, event characteristics, runoff coefficient, tem-
poral dynamics, catchment descriptors, regional patterns, event classification, event typology,
runoff generation mechanisms
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Zusammenfassung

Abflussereignisse sind wesentliche hydrologische Elemente, die Menge und Qualität des Abflusses
bestimmen und eine wichtige Rolle für die Entwicklung der aquatischen Ökosysteme spielen.
Einzelne singuläre Ereignisse, wie z.B. große Hochwasserereignisse können enorme wirtschaftliche
und gesellschaftliche Folgen haben. Zuverlässigere Vorhersagen von Abflussereignissen in einer sich
schnell verändernden Welt sind daher entscheidend für das nachhaltige Management zukünftiger
Wasserressourcen und des Hochwasserrisikos. Das Ziel dieser Dissertation ist die Entwicklung einer
Methode zur großräumigen Analyse und Charakterisierung von Niederschlags-Abflussereignissen
als Grundlage für ein verbessertes Verständnis für die regionale Variabilität und Dynamik der
Abflussbildung und ihrer kontrollierenden Prozesse.
Der erste Teil dieser Dissertation beinhaltet die Entwicklung eines Verfahrens zur automatis-
chen Separation von Niederschlags-Abflussereignissen aus kontinuierlichen hydro-meteorologischen
Zeitreihen. Das Verfahren besteht aus einer Basisabflussabtrennung, der Bestimmung von Anfangs-
und Endpunkten von Abflussereignissen, der Ermittlung der zugehörigen Ereignisniederschläge
und einem neuen iterativen Ansatz zur Verbesserung der Separation bei Ereignissen mit mehreren
Abflussscheiteln. Im Fokus der Entwicklung des Verfahrens stand die automatische Anwendung
und Übertragbarkeit auf viele Einzugsgebiete mit unterschiedlichen Landschafts- und Klimabedin-
gungen. Das Verfahren wurde an 185 deutschen Einzugsgebieten entwickelt und getestet.
Für die über 220 000, mit Hilfe der Methode, separierten Einzelereignisse wurden Ereignisindika-
toren für die Niederschlags-Abflussdynamik berechnet. Die Analyse der Variabilität dieser Indika-
toren zeigt deutlich die unterschiedliche Bedeutung verschiedener Abflussbildungsmechanismen in
einzelnen Regionen Deutschlands. Die Bedeutung von Schneeschmelze und der jahreszeitlichen
Schwankungen der Wasserbilanzkomponenten spiegelt sich in der saisonalen Schwankung von den
Ereignisindikatoren wieder. Langjährige Trends in den Ereignisindikatoren werden mehr durch
veränderte saisonale Dynamik der Bodenfeuchte hervorgerufen als durch Trends im Jahresnieder-
schlag.
Im zweiten Teil der Dissertation werden die räumlichen Muster der Ereignisindikatoren untersucht
und in Zusammenhang mit Klima- und Landschaftscharakteristiken in Deutschland gesetzt. Die
Ereignisindikatoren zeigen deutliche regionale Muster, die den dominanten Einfluss des Klimas auf
die regionalen Unterschiede im Abflussgeschehen erkennen lassen. Die regionale Variabilität der
Abflussbildung ist auch stark durch die Hydrogeologie geprägt. Mit Hilfe von Self-Organising Maps
konnten Bodentiefe, hydraulische Durchlässigkeit, durchschnittliche Häufigkeit, Größe und Saison-
alität von Niederschlagsphasen als die maßgeblichen Einzugsgebietscharakteristiken für die Vorher-
sagbarkeit der Ereignisindikatoren identifiziert werden. Es konnten so Archetypen von Einzugsge-
bieten in Deutschland herausgearbeitet werden, die regional unterschiedliche Zusammenhänge von
Klima- und Landschaftsbedingungen auf die Abflussbildung aufzeigen.
Im dritten Teil dieser Dissertation wurde ein neues prozess-basiertes Klassifikationssystem für
Niederschlags-Abflussereignisse entwickelt, dass gegenüber existierenden Ereignisklassifikationen
in der hydrologischen Literatur folgende Innovationen aufzeigt: a) Mit Hilfe des Verfahrens wur-
den alle Niederschlags-Abflussereignisse und nicht nur Extreme, wie z.B. Hochwasserereignisse,
klassifiziert; b) Das Verfahren berücksichtigt die raum-zeitliche Dynamik und die Interkation von
Niederschlag, Bodenfeuchte und Schneebedeckung innerhalb von Einzugsgebieten und kann somit
das Zusammenwirken dieser hydrologischen Größen bei der Abflussentstehung besser beschreiben;
c) Die Klassifikation beruht auf dimensionslosen Indikatoren, wie z.B. Verhältnisse und Kovari-
anzen und kann somit besser auf andere Untersuchungsgebiete und Ereignisse unterschiedlichster
Größe übertragen werden; d) Das Verfahren basiert auf einem hierarchischen Ansatz, so dass
flexibel unterschiedliche Dynamiken von Niederschlag, Schneebedeckung und Bodenfeuchte erfasst
werden können. In einer umfassenden Unsicherheitsanalyse erwiesen sich die gewählten Ansätze
als robust und regional konsistent. Die Validierung mit Hilfe der Recurrence Plots Analyse zeigte,
dass die entwickelte Klassifikation in der Lage ist, zwischen Ereignissen unterschiedlicher Abfluss-
dynamik zu unterscheiden, obwohl die Abflussdaten für die Klassifizierung nicht direkt benutzt
wurden. Dies bestätigt, dass das Klassifikationsverfahren die wesentlichen Ähnlichkeiten und Un-
terschiede in der Abflussentstehung zwischen Gebieten gut erfassen kann.
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Zusammenfassung

Auf Basis des entwickelten Ansatzes konnten zum ersten Mal deutschlandweit alle Niederschlag-
Abflussereignisse konsistent in hydrologische Prozesstypen eingeteilt werden. Mit Hilfe dieser
Prozesstypen lassen sich nun regionale Dynamiken in der Abflussbildung besser erklären und
die dominanten Treiber der zeitlichen Änderungen erfassen. Dies erlaubt neue daten-basierte
regionale Prozessanalysen im Sinne der

”
Comparative Hydrology“ und öffnet neue Wege hin zu

z.B. einer zuverlässigeren Vorhersage der Größe und Frequenz zukünftiger Hochwasserereignisse
oder des Einflusses sich verändernder hydrologischer Prozesses auf den Stofftransport und -eintrag
von Einzugsgebieten.
Diese Dissertation besteht aus drei peer-reviewed Artikeln, die bereits in ISI-gelisteten Journals
veröffentlicht wurden.

Keywords Niederschlag-Abfluss Ereignisse, Ereignisabtrennung, Abflussbeiwert, Abflussbildung,
Ereignistypen, Ereignis-Klassifizierung
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1 Introduction

Robust predictions of the future streamflow behavior are imperative in a changing world (Milly
et al., 2008). The goodness of these predictions depends largely on in-depth understanding of the
governing physical processes of runoff generation at the catchment scale. In the recent decades
the efforts to deepen this understanding led to establishment of multiple terrestrial research obser-
vatories in the world (Tetzlaff et al., 2017) and to increasing of the density of state observational
networks (Bonell et al., 2006). The accumulated long term data has immense value as it provides
an opportunity on one hand to observe the full range of possible runoff generation mechanisms
and on the other hand to detect any possible changes in their occurrence. However, conversion of
the accumulated data into the knowledge about the processes that generated these data remains
a challenge (Babovic, 2005). Development of novel techniques to “squeeze” valuable information
from the existing data sets provides a remarkable opportunity to obtain insightful process impli-
cations (Soulsby et al., 2008).
Such data-based approaches might have a high exploratory potential beyond existing concepts in
catchment hydrology. Compared to the model-based approaches that investigate runoff generation
mechanisms (e.g., Vivoni et al., 2007; Frei et al., 2010; Sinha et al., 2016; Ala-aho et al., 2017),
data-based techniques are not constrained to the investigation of the processes that are explicitly
represented in the model structure and avoid model-specific uncertainties.
One way to extract additional information on runoff generation mechanisms from widely available
data is to view recorded continuous time series of streamflow as the series of distinct events of
quick flow interrupted by the periods of base flow. Isolating these events from the continuous time
series provides an opportunity to extract valuable short-term dynamics of streamflow (i.e., event
hydrograph) that is an instructive metric of catchment response to the inducing meteorological
events (Blöschl et al., 2013b).
Manually identified rainfall-runoff events for a long time were and still are the main study object
of the studies that aim to decipher hydrological processes that govern their generation in a singular
catchment (e.g., McDonnell, 1990; McGlynn et al., 2004; Tromp-Van Meerveld and McDonnell,
2006; Rinderer et al., 2016; Knapp et al., 2020). Automation of rainfall-runoff event separation
from continuous hydro-meteorological time series together with recent developments in regional
seamless hydrological modeling (Samaniego et al., 2010; Kumar et al., 2013; Mizukami et al., 2017;
Merz et al., 2020) that provide consistent regional datasets of modelled internal catchment states
(e.g., soil moisture, snow water equivalent) (Zink et al., 2017) offer novel opportunities to the
data-driven analysis of hydrological processes at larger scales. The analyses of temporal and spa-
tial variability of runoff event characteristics proved to be a valuable tool for understanding runoff
generation processes and their climatic and physiographic controls at regional and national scale
(e.g., Seibert et al., 2016; Merz and Blöschl, 2009a). Such multi-catchment studies are an impor-
tant step towards learning hydrological similarities and differences across places and advancing
comparative hydrology (Sivapalan, 2009).
Analysis of discrete events also provides an opportunity to identify and characterize their imme-
diate hydro-climatic and hydro-meteorological drivers. This might be particularly of interest for
singular large streamflow events (i.e., flood events) due to their destructive socio-economic impact
and their changing risks in the future (Slater and Wilby, 2017). The emergence of these singular
flood events from ordinary runoff events is still debated in hydrology (Rogger et al., 2012; Smith
et al., 2018; Miniussi et al., 2020). The analysis of large samples of runoff events that include
runoff events of various sizes and major flood events might shed a light on the uniqueness of the
latter.
By the definition flood events as well as their observations are rare and are limited mostly to peak
discharges in the past. Therefore, flood frequency analysis was long dominated by application of
univariate extreme value statistics. Extreme value theory assumes that all flood observations in
a catchment are homogeneous (Gumbel, 1941). In fact this is rarely the case (Merz and Blöschl,
2008a,b). Flood events can be non-identically distributed due to their various hydro-climatic and
hydro-meteorological origins (e.g., Hirschboeck, 1987; Merz and Blöschl, 2003a) and be nonstation-
ary due to long-term climatic variability (Alila and Mtiraoui, 2002). Therefore, this is of advantage
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Chapter 1 Introduction

to only consider events that exhibit similar traits when comparing river floods in different periods
or catchments (Blöschl et al., 2013a).
A classification of runoff events (and specifically of flood events) that arranges events according
to their generation processes and mechanisms can provide a tool to derive homogeneous groups of
events that are necessary for robust flood frequency analysis in a changing world. In fact several
causative classifications of river flood events that adopt hydro-climatic, hydrological or hydrograph
perspectives were developed in the past (Tarasova et al., 2019) and used to improve at-site and
regional flood frequency estimates (Alila and Mtiraoui, 2002; Merz and Blöschl, 2008a,b), identify
and quantify changes in flood generation mechanisms (Hirschboeck et al., 2000; Nied et al., 2014)
and assists in deciphering changes even if clear trends in climatic forcing or catchment conditions
are not observed (Hirschboeck, 2009; Keller et al., 2018).
Despite usefulness of the existing causative classifications of flood events, lack of the uncertainty
analysis and validation procedures limits their reliability (Tarasova et al., 2019). Locally derived
and site-specific criteria hamper transferability of these frameworks across different climatic re-
gions (Stein et al., 2019). More diverse and quantitative multicriteria classifications that account
for antecedent wetness state and space-time dynamics of precipitation events are needed to encom-
pass the wide spectrum of possible generation mechanisms and foster wider and novel applications
of event classification frameworks in hydrological science and practice (Tarasova et al., 2019).
This calls for the development of the reliable tools for event separation, characterization and classi-
fication that can be applied at large scale to a wide range of catchments and can provide automated
isolation of discrete runoff events from the observed streamflow time series, characterize various
aspects of event generation using concise, non-local and transferable indicators and classify events
accordingly using robust approaches that are rigorously tested.
Coupling automated separation of runoff events with comprehensive and transferable process-based
event classification framework provides an opportunity of extending classifications from flood evens
to all runoff events. This can put singular flood events into perspective of the full distribution of
streamflow events and allow to track transformation of processes from small to large events. On
the other hand, it can facilitate large scale analysis of runoff generation processes and provide a
unique opportunity to detect possible changes in the relevance of the governing processes in time
and space.

Objectives

The general goal of this work is to provide a deeper understanding on large scale controls of runoff
event characteristics and to develop a framework for event characterization and classification that is
able to distinguish events governed by different runoff generation processes. This objective is pur-
sued through the development of comprehensive tools that enables an automated analysis of runoff
events in wide range of catchments and specifically includes three major steps: event separation
of continuous hydro-meteorological time series; event characterization procedure that computes
spatially and temporally-explicit indicators of precipitation event dynamics and their interaction
with antecedent catchment states from gridded hydro-meteorological products and outputs of
distributed hydrological models; and event classification that comprehensively combines derived
event characteristics to stratify events generated by distinct runoff generation mechanisms. The
developed approaches are especially designed to deal with large datasets and allow for automated
application in wide range of mesoscale catchments across climatic and physiographic regions. The
approaches take advantages of dense long-term hydro-meteorological observations and regional
distributed hydrological simulations available in Germany and provides an example on how the
conventional continuous observational and simulated data can be merged and comprehensively
analyzed to provide more insights on the event dynamics at regional scale.
The specific research objectives of this thesis are:

• Development of an automated procedure to identify rainfall-runoff events that can be applied
to a wide range of catchments encompassing different landscape and climatic regions

• Investigating temporal dynamics of the event runoff response and exploring large scale con-
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trols of its temporal variability at different time scales

• Investigating emergent regional pattern of event characteristics and exploring their spatial
controls

• Development of a new multi-layer framework for process-based characterization of runoff
events that uses dimensionless indicators of space-time dynamics of precipitation events and
their spatial interaction with antecedent catchment states described as snow cover, distribu-
tion of frozen soils and soil moisture content

• Deriving and testing the event typology for Germany that captures first order controls of
event runoff response and runoff generation processes in a wide range of German catchments

Innovations

The research presented in this thesis makes a novel contribution by Germany-wide analysis of
runoff event characteristics and their large scale controls, and by developing the event typology
for Germany that goes beyond existing approaches in several ways:

a In contrast to past frameworks, all runoff events that are identified by the proposed event
separation procedure are classified which allows to analyze the process transformation from
small to larger events

b Event types are derived using indicators of spatially and temporally distributed rainfall and
soil moisture within the catchment. This goes beyond existing approaches that employ
lumped indicators and are unable to examine runoff generation mechanisms within catch-
ments in a distributed way

c A new hierarchical classification scheme is developed in which meteorological forcing and
catchment state are analyzed separately. This new methodological approach allows capturing
a large number of different process combinations effectively.

The outcome of this research is a unique database of separated and classified runoff events of
various sizes for a wide range of German catchments for several observational decades that can be
further used to detect transformation of processes from small to large events and temporal changes
in runoff generation mechanisms across different regions.

Structure of dissertation

The outlined research is presented in this thesis as follows:

• Chapter 2 presents an automated event separation procedure that consists of available time-
series-based base flow separation, runoff event identification, rainfall attribution and a novel
iterative procedure for the adjustment of thresholds used to identify single-peak components
of multiple-peak events. Temporal dynamics of event characteristics of separated events is
analyzed at different time scales (i.e., event-to-event variability, seasonality and long-term
trends) and their large scale controls are investigated.

• Chapter 3 investigates regional pattern and spatial controls of event characteristics in Ger-
many. Multi-objective performances of various variable selection methods are used to identify
hydrologically-relevant variables from a comprehensive set of catchment descriptors featur-
ing climatic, topographical, geomorphological, hydrogeological, geological, soil and land use
descriptors. The hydrological interpretation of the emergent regional event characteristics,
their variability and seasonality provides insights on archetypical catchment behaviors.

• Chapter 4 present a new multi-layer process-based framework for characterization and clas-
sification of runoff events that uses dimensionless indicators of space-time dynamics of pre-
cipitation events and their spatial interaction with antecedent catchment states. A rigorous
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uncertainty analysis of the developed indicators is performed by means of the Monte Carlo
simulations. The ability of the event typology derived from the proposed characterization
framework to stratify events that result in distinct hydrograph dynamics is tested using cross
recurrence plots and recurrence quantification analysis of event hydrographs.

• Chapter 5 summarizes pivotal findings and conclusions. Future potential research perspec-
tives that emerge from the findings of this thesis are also discussed.

Chapters 2-4 are formatted versions of the three peer-reviewed papers published in the ISI-listed
journals.
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Abstract

Analyzing a response of catchments to rainfall inputs allows for deeper insights on the mecha-
nisms of runoff generation at catchment scale. In this study an automated time-series-based event
separation procedure consisting of available base flow separation, runoff event identification and
rainfall attribution methods and of a novel iterative procedure for the adjustment of thresholds
used to identify single-peak components of multiple-peak events is proposed. Event runoff co-
efficient, time scale, rise time and peak discharge of more than 220,000 identified rainfall-runoff
events are then used to analyze dynamics of event runoff response in 185 catchments at multiple
temporal scales. In mountainous catchments with poor storage event runoff response is strongly
controlled by the characteristics of rainfall and is generated by event-fed saturation or infiltration
excess. A distinct switch between saturated and unsaturated states occurs in these catchments. A
weak relation between rainfall and runoff event properties is instead observed in lowland and hilly
catchments with substantial storage, where a gradual transformation between functioning states
occurs and the response is driven by pre-event saturation. The seasonality of their event charac-
teristics is governed by the contribution of snowmelt and the seasonality of the aridity index rather
than of rainfall properties. Long-term changes of total precipitation amount alone do not explain
season-specific long-term changes of event characteristics that are rather consistent with changes
of seasonal indicators of the wetness state. The effects of land use changes are detectable only in
a few cases and display themselves mostly in the characteristic response time of catchments.
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Chapter 2 Event Separation and Temporal Dynamics of Event Runoff Response

2.1 Introduction

Streamflow time series can be regarded as a sequence of distinct runoff events separated by periods
of base flow. This view is deemed useful for exploring hydrological processes and rainfall-runoff
transformation at catchment scale (Seibert et al., 2016). In particular, linking event hydrographs
to their rainfall triggers and to pre-event catchment wetness states can give insights on the role of
hydrologic connectivity and subsurface stormflow (Graeff et al., 2012) and provide relevant infor-
mation about runoff generation processes and their temporal dynamics (Blume et al., 2007). The
variability of the event runoff response in time and among regions produces distinct patterns of
water and nutrients delivery to river channels (Stieglitz et al., 2003; James, 2007). In addition,
climate and land use changes can modify the relative importance and the mutual interactions of
hydrological processes (Merz et al., 2011), thus altering the response of catchments to rainfall
events. Therefore, detecting and attributing heterogeneity of events’ characteristics is pivotal for
flood protection and water quality management and constitutes a key issue to predict future hy-
drologic behaviors.
Although the concept of runoff events is widely used in hydrology and is probably a part of every
hydrology textbook, there is no widely accepted approach, how to identify runoff events from con-
tinuous streamflow series. All the existing techniques to identify runoff events and link them to
their triggers involve a base flow separation, identification of potential runoff (rainfall) events with
their starting and ending points, and the attribution of rainfall to runoff events (or vice versa).
However, applied methods and assumptions differ considerably and are often tailored to a specific
catchment under study. For example, base flow separation has been previously realized by means
of recursive filters (e.g., Chapman and Maxwell, 1996; Eckhardt, 2005), event-based recession anal-
ysis (Blume et al., 2007) or simple smoothing of time series (Institute of Hydrology, 1980). None
of these methods delivers a “true” base flow (Su et al., 2016), but they are useful to identify runoff
events when combined with additional separation thresholds (Hewlett and Hibbert, 1967). The
search for potential rainfall-runoff events can be initiated from the identification of either runoff
(Merz et al., 2006; Graeff et al., 2012; Rodŕıguez-Blanco et al., 2012; Mei and Anagnostou, 2015)
or precipitation events (Koskelo et al., 2012; Seibert et al., 2016; Tang and Carey, 2017). In the
latter case, critical rainfall depth (or intensity) and duration of dry spells are used as determinants
(e.g., Graeff et al., 2012; Rodŕıguez-Blanco et al., 2012). The search for runoff events instead
begins with the identification of the event peaks using criteria of minimum peak magnitude (e.g.,
ratios between quick and base flow or between peak flow and pre-event flow) (Norbiato et al.,
2009). Runoff events are further defined by their beginning and end points (Mei and Anagnostou,
2015). While the beginning of a runoff event is relatively straightforward to identify, the choice of
the end point is far more challenging, largely depends on the applied base flow separation method
(Seibert et al., 2016) and often requires additional separation thresholds, such as the long-term
base flow index (e.g., Mei and Anagnostou, 2015), or the ratio between quick and base flow at the
end of the event (e.g., Merz et al., 2006). Separation thresholds like the time interval between two
peaks (e.g., Graeff et al., 2012) or the ratio between two consecutive peak discharges (e.g., Sikorska
et al., 2015) are also used to assess the independency of events and divide multiple-peak events into
their single-peak components. These thresholds are usually selected to mimic an event separation
a hydrologist would do manually for the catchments under study. Hence they are site-specific
and have a limited transferability to catchments with contrasting event runoff response. Finally,
rainfall events must be attributed to runoff events (or vice versa) in order to derive events’ at-
tributes and draw conclusions on the processes linking these two phenomena. Previously proposed
attribution methods range from very simple approaches (like the integration of rainfall depths
occurring during runoff events Capell et al. (2012)) to physically-based methods that consider the
whole precipitation fallen within the average lag time of a basin (Mei and Anagnostou, 2015), to
even more sophisticated procedures that take into account the characteristic rainfall time scale of
a catchment (Merz et al., 2006).
Dimensionless variables, such as the event runoff coefficient and time scale (i.e., the ratio between
volume and peak of each event (Gaál et al., 2012)), prove handy to describe events’ attributes and
analyze spatial and temporal differences exhibited by hydrological processes (Merz and Blöschl,
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2009a,b; Seibert et al., 2016). Several studies correlated varying event runoff coefficients to sets of
indicators, highlighting their dependence on event rainfall amounts (Merz et al., 2006; Blume et al.,
2007), rainfall intensity (Blume et al., 2007; Graeff et al., 2012), volume of snowmelt Norbiato et al.
(2009) and antecedent conditions of rainfall, flow and soil moisture (Merz et al., 2006; James, 2007;
Rodŕıguez-Blanco et al., 2012; Graeff et al., 2012). Both event runoff coefficients and time scales
exhibited seasonality due to seasonal variations of soil moisture and rainfall attributes (Merz and
Blöschl, 2009a; Rodŕıguez-Blanco et al., 2012) and to the effect of snowmelt (Gaál et al., 2012).
At long time scale their changes are often attributed to land use changes (e.g., urbanization, defor-
estation and wildfire), especially in small catchments (e.g., Andréassian et al., 2003; Martin et al.,
2012; Trudeau and Richardson, 2015). However, changes of the climatic forcing (e.g., precipitation
and temperature) might also affect the event runoff response (Sawicz et al., 2014; Dumanski et al.,
2015; Ajami et al., 2017).
The majority of the referred literature studied only few catchments (with the noticeable exceptions
of Merz et al. (2006) and Gaál et al. (2012)) and merely examined variability among events, despite
the evidence of multi-scale (e.g., seasonal and long-term) variability of the runoff response. Existing
multi-catchment comparative studies focused on annual floods (e.g., Gottschalk and Weingartner,
1998; Gaál et al., 2012) or on a few large events per year (Norbiato et al., 2009), and were confined
to the climatically homogeneous alpine regions of Northern Italy, Switzerland and Austria. These
limitations lead to fragmented information about the temporal dynamics of event runoff response
and to contradictory results concerning its drivers. Moreover, the effect of changing climate forcing
and land use on runoff event characteristics has not been quantitatively examined yet. Most of
the cited studies also adopted event runoff identification techniques that are tailored to specific
geographic areas, thus preventing the possibility to use their results to perform regional analyses
of the runoff response across climatic gradients. An enabling prerequisite for a consistent large
scale analysis of the attributes of runoff events is the availability of a simple method to identify
them that could be automated and uniformly applied to diverse river basins and long time series
of streamflow and rainfall (Hewlett and Hibbert, 1967).
The purpose of this study is twofold. First, we propose a procedure to automatically identify
rainfall-runoff events that can be applied to a wide range of catchments across climatic and phys-
iographic regions. To reach this goal, different base flow separation methods are tested and an
optimal technique for subsequent identification of runoff events is selected. Rainfall attribution is
performed using a simple physically-based method proposed by Mei and Anagnostou (2015), which
accounts for the seasonal variability of rainfall events and is suitable also in case of snowmelt. A
novel iterative procedure to objectively select separation thresholds used to distinguish between
overlapping single-peak and multiple-peak events (called multiple-peak events refinement in the
following) is proposed. The second goal is to analyze temporal dynamics (i.e., event-to-event
variability, seasonality and long-term changes) of the event runoff response in a large number of
catchments featuring varied climatic and morphological conditions (using the whole of Germany as
case study). The comparison of these dynamics among themselves and with a set of explanatory
variables aims to shed light on the drivers of the observed variability of runoff response at different
time scales. The inter-catchment variability of event characteristics and its spatial patterns will
be instead discussed in a companion paper (Tarasova et al., 2018a).

2.2 Data

Germany is located in a transition zone between a maritime climate in the west and a continen-
tal climate in the eastern part of the country. Precipitation is dominated by westerly circulation
patterns, whose influence decreases from west to east. Spatial precipitation patterns are strongly
affected by topography, which features lowlands in the North, the Alps in the South, and the
Central Uplands in the middle part of Germany. German catchments mostly drain to the North
Sea (e.g., the Rhine, the Weser and the Elbe Rivers), with the exception of the Danube that flows
to the Black Sea. Figure 2.1 shows the main landscape regions of Germany and the outlets of the
catchments selected for this study.
Water resources management has a long history in Germany. All catchments affected by flow
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Figure 2.1: The study area is the whole of Germany, which is divided into four main landscape units (the North German

Plain, Central Uplands, South German Scarplands and Alpine Foreland regions). The names of smaller natural
regions of Germany are also indicated. 185 catchments where daily flows are not affected by anthropogenic
modifications were selected based on data availability

disturbance due to large reservoirs or control gates (Lehner et al., 2011) were removed from the
dataset in order to avoid confounding effects on event characteristics due to anthropogenic flow
regulation. Moreover, catchments were removed from the dataset if visual examination revealed
obvious diurnal flow disturbances. The preselection resulted in a set of 185 catchments with area
ranging from 31 to 23,700 km2 and median value equal to 516 km2. The length of the considered
daily time series of streamflow and rainfall varies between 37 and 63 years, with a median value
of 61 years.
Daily precipitation time series for each catchment were aggregated from the Regionalisierte Nieder-
schlagshöhen (REGNIE) dataset provided by the German Weather Service (Rauthe et al., 2013).
In this dataset, rainfall fields are estimated from point observations through multiple regression
using elevation, aspect and location as explanatory variables. Residuals are interpolated by means
of the Inverse Distance Weighting method and then accounted for (Rauthe et al., 2013). Daily
temperature time series in the considered basins were generated from the German Weather Service
observations by means of external drift kriging, using elevation as explanatory variable (Zink et al.,
2017).
Catchment wetness conditions preceding runoff events were assessed by considering the soil mois-
ture values simulated by the mesoscale Hydrological Model (mHM) (Samaniego et al., 2010; Ku-
mar et al., 2013). Daily snowmelt and actual evapotranspiration were also simulated by using
the mHM model (Zink et al., 2017). The evolution of land use in the study catchments was ana-
lyzed by using the change layers of “Coordination of Information on the Environment (CORINE)”
dataset (http://land.copernicus.eu/pan-european/corine-land-cover), which are available for the pe-
riods 1990-2000, 2000-2006 and 2006-2012.
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2.3 Methods

2.3.1 Time-series-based identification of runoff events

An event separation procedure consists of three main steps: base flow separation, identification
of runoff events and attribution of rainfall events Figure 2.2a-b). Base flow separation divides
streamflow time series into quick and base flows. Quick flow episodes separated by periods of base
flow are then identified as runoff events using additional separation thresholds (e.g., time interval
between two peaks, ratio between two peak discharges) (Merz et al., 2006; Graeff et al., 2012;
Sikorska et al., 2015). Finally, rainfall events are attributed to the identified runoff events. In
this study, event separation is implemented through the above mentioned steps plus a novel itera-
tive procedure for the adjustment of separation thresholds that allows for distinguishing between
multiple-peak and single-peak overlapping events (Figure 2.2c, Chapter 2.3.1.4).
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Figure 2.2: Summary of the event separation procedure. The River Kyll at Junkerath is used as an example to illustrate

it: a) base flow separation and identification of runoff events (Chapters 2.3.1.1 and 2.3.1.2); b) attribution of
rainfall events (Chapter 2.3.1.3) using median seasonal lag time (med.lag); c) refinement of multi-peak events
(Chapter 2.3.1.4) using iterative adjustment of separation thresholds, which are portrayed in the inset of panel
c and described in Table 2.1; d) updating the samples of single and multiple-peak events
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2.3.1.1 Base flow separation Several techniques for base flow separation were tested in order to
find the most suitable option to identify runoff events. In continuous streamflow time series, troughs
(defined as the days i where Qi < Qi−1 and Qi < Qi+1) potentially correspond to the beginnings
of runoff events (see e.g., the inset circles of Figure 2.3. To allow for separating consecutive runoff
events, the estimated values of base flow should equal to total flow in correspondence to troughs.
Therefore, base flow separation methods were assessed by comparing their ability to consistently
match troughs across a set of basins. This is especially important for studies analyzing a large
number of catchments, since biases may arise if the base flow separation method identifies troughs
with varied reliability in different case studies. Additionally, we also performed time delay analysis
calculating the maximum of the cross correlation function between total and base flow time series
to examine the lag and the strength of relation between total and separated base flow time series.
Only digital filters were tested due to their applicability to large datasets. More elaborated methods
were instead discarded due to possible parameters’ uncertainty in absence of “true” base flow data
for calibration (Chapman, 1999). We have examined the following techniques:

• Three algorithms which assume that catchments behave as linear reservoirs. These techniques
require the estimation one (i.e., recession constant) (Chapman and Maxwell, 1996) or two
parameters (i.e., recession constant and maximum base flow index, BFImax) (Eckhardt,
2005). The recession constant was estimated from recession analysis as described in Vogel
and Kroll (1992). BFImax was instead estimated as the ratio of Q90 to Q50 (Smakhtin, 2001),
or by using the backward smoothing method proposed by Collischonn and Fan (2013);

• One algorithm based on the assumption of a non-linear relationship between storage and
outflow, which requires the estimation of two parameters (Wittenberg, 1999). Parameters of
the non-linear reservoir were estimated as suggested by Ye et al. (2014) and Berghuijs et al.
(2016a);

• A non-parametric algorithm based solely on the analysis of streamflow time series Institute of
Hydrology (1980); WMO (2008). In a first step the algorithm finds local minima within non-
overlapping 5-days windows for the entire time series. In the following step, the extracted
series of minima are examined to find turning points, which are empirically defined as the
points that are smaller than 1.11 times their neighboring minima. Once all turning points
have been found, the base flow hydrograph is reconstructed by linear interpolation between
the points.

2.3.1.2 Runoff event identification After the separation of base flow, streamflow time series
were screened to identify runoff events, which are characterized by their: peak, beginning and end
points (Mei and Anagnostou, 2015). A peak occurs at day i if Qi > Qi+1 and Qi > Qi−1. The event
begins at the closest point in time before the peak when total runoff is equal to base flow before
the peak, whereas it ends as soon as total runoff has fallen to the base flow level again (Figure
2.2a). The minimal duration of a runoff event was set equal to one day due to the daily temporal
resolution of the available time series. To avoid the detection of false events caused by small runoff
fluctuations, only events with peak discharge higher than 10% of the base flow were considered as
potential events. This threshold was set as a trade-off between number of unattributed and total
number of identified runoff events. Finally, runoff events with only one peak (see e.g., event 3 in
Figure 2.2b) were aggregated into a reference group of single-peak events.

2.3.1.3 Attribution of rainfall/ snowmelt events A physically-based criterion, namely the me-
dian basin lag time (Mei and Anagnostou, 2015), was applied to identify beginning and end of
rainfall and snowmelt events from daily time series and attribute them to runoff events. The
basin lag time is the delay between rainfall and runoff generation and is largely independent from
storm type (Bell and Om Kar, 1969). For simplicity we defined the basin lag times as the time
between rainfall and flow peaks (Marchi et al., 2010). To account for differences between rainfall
and snowmelt events we identified lag time for winter and summer periods separately (Mei and
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Anagnostou, 2015). The seasonal median lag time was subsequently used to set a distance back-
wards from the starting point of the runoff event within which searching for rainfall. All rainfall/
melting that has occurred within the basin lag time was assumed to contribute to the considered
runoff event and was excluded from preceding events, unless it occurred during the rising limb of
the latter (Figure 2.2b). Volume and maximum intensity of the attributed rainfall events were
finally calculated. This step is required to determine event runoff coefficients.

2.3.1.4 Refinement of multiple-peak events Previous studies dealing with runoff event separa-
tion (e.g., Merz et al., 2006; Norbiato et al., 2009; Mei and Anagnostou, 2015; Sikorska et al., 2015)
have shown that using base flow separation alone might lead to the identification of multiple-peak
events that are merely artefacts arising from erroneous results of the base flow separation method.
Therefore, additional separation thresholds are usually applied to identify single runoff events. In
this study we devised a procedure to separate multiple-peak events into their single-peak compo-
nents by using a set of iteratively adjusted refinement thresholds (see Table 2.1 for a description
of them), chosen among those commonly used in the event separation studies cited in Chapter 2.1.
The goal is to avoid subjective selection of separation thresholds and allow for applicability of the
method to a wide range of catchments. The procedure (Figure 2.2c) comprises the following steps:

i Thresholds are set to initial values chosen either from literature or based on their physical
meanings;

ii Every multiple-peak event is analyzed based on these thresholds, and results either in a
main single event followed by minor peaks, or in two or more single events, or still in a
multiple-peak event;

iii Events identified as potentially single-peak events are grouped together and the frequency
distribution of their runoff coefficients is compared to the distribution of runoff coefficients of
reference single-peak events by means of a Kolmogorov-Smirnov test of equality (see Chapter
2.6.1 for details);

iv If the two distributions differ, more conservative thresholds (i.e., resulting in fewer multiple-
peak events being divided into their components) are chosen and the procedure is repeated
from step 2.

The refinement proceeds iteratively until either all multiple-peak events are subdivided into their
single-peak components or the critical threshold values are reached (Table 2.1). Once the critical
values are reached, unrefined events are assigned to a group of multiple-peak events.
Although the lacking knowledge of the “true” multiple-peak events prevents us from a rigorous
evaluation the proposed refinement procedure, its performance in terms of number of identified,
attributed and refined events in catchments with different runoff regimes and belonging to different
landscape regions has been analyzed, since consistent performances for a wide range of catchments
are required for a comparative analysis of event characteristics.

2.3.2 Temporal dynamics of event runoff response

Based on the set of identified rainfall-runoff events we analyzed dynamics of event runoff response
on multiple temporal scales: the variability among events (Chapter 2.3.2.2), seasonality (Chapter
2.3.2.3) and long-term changes (Chapter 2.3.2.4). Event runoff response was characterized by the
set of event characteristics that provide an insight regarding catchment-scale runoff generation
processes and their variability in time (Chapter 2.3.2.1). To understand controls of emergent
variability we examined dynamics of hypothesized drivers and evaluated their consistency with
event characteristics at each corresponding scale.
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Table 2.1: Separation thresholds and their initial and critical values

Parameter Description Purpose
Initial
valuea Incrementb

Critical
valuec Referenced

peak2trough

Min time interval
in days between
max peak and
previous/next

trough

Distinguishing
separated events

3 1 10

Merz et al.
(2006); Graeff
et al. (2012);
Sikorska et al.
(2015)

base.fraction

Fraction of peak

flow value at which

total runoff is

equal to base flow

Distinguishing
separated events

0.20 -0.02 0.02

Rinderer
et al. (2016);
Sikorska et al.
(2015)

double.ratio

Ratio between
secondary peak

discharge and max
peak discharge

Distinguishing
between

multiple-peak and
minor peaks on

the limb of
single-peak events

0.60 0.02 0.78
Sikorska et al.
(2015)

trough.ratio

Ratio between

local trough and

secondary peak

discharge

Distinguishing

between

multiple-peak and

minor peaks on

the limb of

single-peak events

0.80 0.02 0.98

Merz et al.
(2006);
Rodŕıguez-
Blanco et al.
(2012); Graeff
et al. (2012)

min.rise

Min length in days

of the rising limb

of secondary peaks

Distinguishing

between

multiple-peak and

minor peaks on

the limb of

single-peak events

1 1 5
Sikorska
et al. (2015)

a The initial values of thresholds were chosen either from literature (peak2through, base.fraction, double.ratio,
through.ratio) or set to the physical minimum (min.rise)

b After each iteration more conservative thresholds were chosen resulting in fewer multiple-peak events being
refined. The increments of the thresholds were set to the time step size (1 day) for temporal thresholds and
back-calculated using initial and critical values for fractional thresholds

c The critical values of thresholds were chosen either from literature (peak2through, min.rise, double.ratio) or set
to the physical minimum (base.fraction, through.ratio)

d References where similar criteria for event separation or refinement were used

2.3.2.1 Event characteristics and possible drivers Four diagnostic variables (called event char-
acteristics in the following) of every identified rainfall-runoff event were computed to objectively
quantify differences among them. The (i) event runoff coefficient (rc) [dimensionless] is estimated
as the ratio between the volume of the quick runoff component [mm] of a particular event and
the respective rainfall and/or snowmelt event [mm]. It characterizes which portion of rainfall
(snowmelt) is stored (including interception by vegetation, soil moisture accumulation and perco-
lation into deeper layers) and which portion is instead released from the storages as event runoff.
The (ii) runoff event time scale (ts) [days] is the ratio between quick runoff volume [mm] and
peak discharge [mm/day] (Gaál et al., 2012). The event time scale characterizes the shape of the
hydrograph and the duration of an event. Shorter event time scales are expected when fast runoff
generation processes prevail, while longer time scales is an indicator that slow runoff components
contribute as well. For most rainfall-runoff events in humid climates as in Germany, one would
expect a mixture of fast and slow runoff generation processes. An indicator of the relative impor-
tance of fast and slow runoff generation processes within one event is the event rise time. The
(iii) event rise time (rt) [dimensionless] characterizes the duration [days] from the beginning of the
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event till the day when peak discharge is observed (Bell and Om Kar, 1969) normalized by the
overall duration of the event in days. It shows how fast the peak is reached. During event with
a mixture of runoff generation processes, but with a relative high contribution of fast processes
one would expect earlier peaks (i.e., short event rise time), but also longer recession time, (i.e.,
longer event time scales). The (iv) normalized event peak discharge (peak) [dimensionless] is the
maximum total discharge [mm/day] of the identified runoff event normalized by the long-term av-
erage flow (Q50) [mm/day] derived from observed discharge time series. The event peak provides
information about the magnitude of a runoff event. Its normalized version allows for comparing
of the magnitude of the peak deviation from the mean discharge in catchments with various flow
conditions.
With the aim of understanding controls on characteristics of runoff events occurring at different
times, we also analyzed several indicators describing rainfall/ snowmelt events (e.g., overall volume
and maximum intensity) and pre-event wetness states (e.g., antecedent rainfall, soil moisture and
base flow). Their metadata are summarized in Table 2.2.

Table 2.2: Summary of rainfall-runoff event characteristics and indicators of pre-event catchment state used

in this study

Description Symbol Unit
Data

source

Event characteristics

Event runoff

coefficient

Ratio between the volumes of quick
runoff and the attributed rainfall and

snowmelt events (Pvol)
rc dimensionless

Event
separation

Event time scale
Ratio between quick runoff volume
[mm] and peak discharge [mm/day]

ts days
Event

separation

Event rise time

Duration [day] from the beginning of
the event till the day when peak

discharge was observed, normalized by
the total duration [day] of the event

rt dimensionless
Event

separation

Normalized event

peak discharge

Maximum event flow normalized by
the long-term average flow (Q50)

peak dimensionless
Event

separation

Rainfall/ snowmelt characteristics

Rainfall and

snowmelt event

volume

Sum of rainfall and snowmelt volumes
contributing to a certain runoff event

Pvol mm

REGNIE
(Rauthe

et al., 2013),
mHM (Zink
et al., 2017)

Volume of snowmelt
Integrated volume of the snowmelt

contributing to a certain runoff event
melt mm

mHM (Zink
et al., 2017)

Maximum intensity

of rainfall event

Max rainfall/ snowmelt intensity
during the attributed event

Pint mm/day
REGNIE
(Rauthe

et al., 2013)

Indicators of pre-event catchment state

Antecedent soil

moisture

Catchment average of the water
content within the entire soil column

in the day preceding the event
sm mm

mHM (Zink
et al., 2017)

10-day antecedent

rainfall and

snowmelt

10-day sum of rainfall and snowmelt
before the attributed rainfall/ melting

event
Pant10 mm

REGNIE
(Rauthe

et al., 2013)

Base flow at the

beginning of the

event

Base flow in the day preceding the
runoff event

qbase mm/day

Base flow
separation

(Institute of
Hydrology,

1980)
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2.3.2.2 Event-to-event variability of event characteristics To understand the role played by
rainfall/ melting in determining runoff response characteristics we quantified the strength of their
inter-relationships by using Spearman-rank correlation. A similar procedure was applied to study
the effect of catchments’ pre-event states on runoff generation processes.
To analyze regional differences in the event-to-event variability of runoff coefficients with increasing
soil moisture, for every catchment we fitted an exponential function (rc = a∗esm∗b ) to the average
runoff coefficient of events grouped by their antecedent soil moisture. The residual standard error
was chosen as criterion to assess the quality of the fit. The dependency of the threshold behavior
on the subsurface storage capacity was analyzed by comparing regional patterns of the scaling
exponent b of the fitted function and of the ratio between Q90 and Q50 (ratio between the daily
discharge which is exceeded 90% of the time and the median flow) (Norbiato et al., 2009).

2.3.2.3 Seasonal variability of event characteristics In this study, the year is divided into four
seasons as suggested by Beurton and Thieken (2009) for German catchments: winter (December-
February), spring (March-May), summer (June-August) and autumn (September-November). In
order to provide insights concerning the seasonality of event characteristics, we have quantified the
deviation of their mean seasonal values from their long-term (1951-2013) annual means. Seasonality
of rainfall/ snowmelt and of the indicators of pre-event catchment state was also analyzed to link the
detected seasonality of event characteristics to its drivers. In addition seasonal patterns of general
hydro-climatic conditions, represented by means of continuous variables such as total precipitation
and aridity index (Budyko, 1974) were also analyzed.

2.3.2.4 Long-term variability of event characteristics To detect possible changes of event char-
acteristics in Germany in the period 1951-2013 we applied a non-parametric Mann-Kendall test
(Kendall, 1975) on their mean seasonal values calculated for each year. The Mann-Kendall test
is often used for detection of hydrological changes and was previously applied for trend analysis
of water-balance-based runoff coefficients (Dumanski et al., 2015; Ajami et al., 2017), hydrological
extremes (e.g., Petrow et al., 2009), as well as for analysis of hydro-climatic and water quality
trends (e.g., Lutz et al., 2016). Data were corrected for serial correlation using trend-free pre-
whitening procedure (Yue et al., 2002). The magnitude of the trend was finally determined by
using the non-parametric Sen’s slope estimator (Sen, 1968).
For the attribution of potential hydrological changes to their causes we also performed trend
analysis on possible drivers of these changes, such as rainfall/ snowmelt properties and pre-event
conditions. Additionally, to identify possible trends of the general climatic conditions in Germany
we applied the Mann-Kendall test to time series of seasonal (cumulated or average) values of
precipitation and aridity index. Finally, we analyzed available data on land use and land cover
changes in Germany, with the aim of investigating the role played by local landscape conditions in
determining hydrological trends. The overall land use change per catchment was estimated as the
sum of the areas that changed land use during three available periods 1990-2000, 2000-2006 and
2006-2012.

2.4 Results

2.4.1 Time-series-based event separation

2.4.1.1 Performance of tested base flow separation methods Various base flow separation
techniques were tested in this study with the goal of selecting a robust methodology for further
event identification. Specifically, the parametric digital filter proposed by Chapman and Maxwell
(1996), two versions of the filter introduced by Eckhardt (2005), the non-linear approach of (Wit-
tenberg, 1999) and a non-parametric simple smoothing ((Institute of Hydrology, 1980) have been
compared. In the absence of the “true base flow” as a reference for comparison, performances of
the methods were assessed by their ability to unambiguously identify the beginning of potential
runoff events (i.e., troughs; see the zoom circles in Figure 2.3a-c).
The digital filters of Chapman and Maxwell (1996) (Figure 2.3, light blue line) and Eckhardt
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Figure 2.3: Base flow separation: a-c) results of the different base flow separation methods tested for three selected catch-

ments. Zoom circles display base flow behavior at the beginning of potential runoff events (i.e., troughs); d)
fraction of troughs identified by different base flow separation methods for all catchments in the data set; e) time
delay (lag) determined by the argument of the maximum of the cross correlation between total and base flow for
all catchments in the data set. The length of time delay characterizes how fast does base flow reacts to changes
of total runoff. R2 shows the averaged value of the cross correlation coefficient averaged for all catchments and
characterizes the strength of relation between total and base flow. Boxplots represents all catchments in the
data set (fine horizontal line: median; box: interquartile range defined as the difference between 75th and 25th

percentile; whiskers: 1.5 times interquartile range beyond the box; crosses: outliers)

(2005) (in the version where the parameter BFImax is estimated as the ratio between Q90 and
Q50 (Smakhtin, 2001); see Figure 2.3, orange line) consistently underestimated base flow, i.e.,
base flow is considerably below the observed streamflow, even during dry spells for most catch-
ments. This is visible in the exemplifying hydrographs of Figure 2.3b-c, and becomes clear from
the boxplots of Figure 2.3d, where the overall fraction of troughs identified by the tested base flow
separation methods is shown. Because of their poor performances, using these two methods for
event identification would require additional cut-off thresholds to set the starting points of events.
Also time delay analysis of cross correlation (Figure 2.3e) shows that these two methods had the
lowest correlation coefficient (R2) indicating poor relation between separated base flow and total
runoff time series. An alternative version of the Eckhardt (2005) approach, where BFImax is esti-
mated by using a backward moving filter (Collischonn and Fan, 2013) (Figure 2.3, turquoise line)
performed fairly well for mid-altitude catchments with fast runoff response, such as the one shown
in Figure 2.3a. However, for other types of catchments (Figure 2.3c) the base flow contribution
at the beginning of runoff events was underestimated, thus hampering the possibility to identify
their starting points.
The non-linear filter of Wittenberg (1999) consistently overestimated base flow for most catch-
ments (Figure 2.3a-c, green line). Time delay analysis shows that for all catchments the maximum
of the cross correlation between base and total flow time series is at lag = 0 (Figure 2.3e), meaning
that base flow reacts immediately when total runoff changes. This result indicates that compared
to other base flow separation methods (Figure 2.3e) this method failed to capture the variability
of delay times expected in the diverse catchments in study data set. Although this method allows
for identifying a large fraction of troughs on average, its performance strongly varies among catch-
ments (Figure 2.3d). Moreover, for more than 20% of the catchments the estimation procedure
resulted in implausible values of the exponent of the non-linear filter, thus hampering reliable base
flow separation.
Despite its simplicity, the non-parametric simple smoothing method (Institute of Hydrology, 1980)
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allowed for unambiguous identification of the beginning points of events (Figure 2.3a-c, zoomed
circles) in a wide range of catchments. In particular, this method guaranteed the lowest variance of
the fraction of identified troughs among catchments (Figure 2.3d), an especially important feature
in view of studying and comparing runoff response in a large number of case studies. The cross
correlation of base flow separated with this method and the range of identified delay times (Figure
2.3e) is comparable with the version of Eckhardt (2005) filter with parameters estimated as in Col-
lischonn and Fan (2013). Therefore, Institute of Hydrology (1980) was finally chosen to implement
the initial step (i.e., base flow separation) of the procedure used to identify rainfall-runoff events.

2.4.1.2 Attribution of rainfall to runoff events and refinement of multiple-peak events A total
number of 222,353 events were identified from daily series of streamflow observed in 185 German
catchments in the period from 1951 to 2013. The number of events for each catchment varied
from 622 to 1779. No corresponding rainfall or melting events were found for 3082 runoff events,
which have therefore been discarded (see unattributed events in Figure 2.4a). The application of
the proposed iterative procedure for multiple-peak events refinement highlighted the possibility
to extract from this group of events single-peak events whose distribution of runoff coefficients
matched the distribution of the reference group of single-peak events (Figure 2.4b). At the same
time, this distribution significantly differed from that of the remaining multiple-peak events (Figure
2.4b). This is true for 183 out of 185 analyzed catchments. For two nested sub-catchments
(with area equal to 1193 and 1256 km2) of the Amper River (located in the Alpine Foreland
region of Germany) no significant differences between runoff coefficients of single and multiple-
peak events existed. This result can be explained by the fact that streamflow in this catchment
is strongly dampened by passing through the Ammer Lake (which has an area of 47 km2 and
subtends a catchment area of 995 km2), thus resulting in very similar event runoff characteristics.
The multiple-peak refinement procedure performed homogeneously for catchments belonging to
different natural regions of Germany (Figure 2.4a). After its application 44.7% of all identified
and attributed events were classified as multiple-peak events.

2.4.2 Temporal dynamics of event runoff response

The set of identified rainfall-runoff events was used to examine how rainfall/ snowmelt event prop-
erties and antecedent catchment wetness (described through soil moisture and base flow indicators)
alter event runoff coefficient, time scale, rise time and normalized peak among the events and at
seasonal and long-term time scales.

2.4.2.1 Event-to-event variability of rainfall-runoff event characteristics Typical event-to-event
variations of the runoff response of German catchments are presented in Figure 2.5, where event
characteristics (i.e., runoff coefficient, time scale, rise time, and normalized peak discharge) are
plotted against several rainfall and pre-event wetness indicators for two selected catchments.
The strength of these and other additional relationships in all studied catchments is summarized
through the correlation maps displayed in Figure 2.6.
The event runoff coefficient (rc) and the normalized peak discharge (peak) exhibit similar relation-
ships with rainfall properties and pre-event catchment state (Figure 2.5). The volume of rainfall
(Pvol) appears to be a stronger predictor of these two runoff event characteristics than rainfall
intensity (Figure 2.5, rc-Pint, peak-Pint). The event peak discharge increases proportionally to
the volume of rainfall in all study catchments (Figure 2.6, peak-Pvol), whereas a strong relation of
the latter variable with the event runoff coefficient is confined to the Central Uplands and South
German Scarplands (Figure 2.6, rc-Pvol). In smaller mountainous headwater catchments of these
regions, where very intense rainfall events occur, correlation between runoff characteristics and
rainfall intensity is strong as well (Figure 2.6, rc-Pint, peak-Pint).
Interestingly multiple-peak events (blue crosses in Figure 2.5, albeit exhibiting a similar behavior
to single-peak events (red dots in Figure 2.5), reach higher values of runoff coefficient, normalized
peak and time scale. For both types of events the time scale is strongly influenced by the un-
derlying volume of rainfall and snowmelt (Pvol). In fact, except for catchments belonging to the

16



Chapter 2 Event Separation and Temporal Dynamics of Event Runoff Response

0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0.80 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

b)

quartile of the distribution of runoff coefficients [-]

single-peak 
(refined)

multiple-peak 
(unrefined)

multiple-peak 
(refined)

1:1 line

a)

qu
ar

til
e 

of
 th

e 
di

st
rib

ut
io

n 
of

 ru
no

ff 
co

ef
fic

ie
nt

s 
[-]

si
ng

le
-p

ea
k 

ev
en

ts
 (r

ef
er

en
ce

)

p25 p50 p75

single-peak events multiple-peak events unattributed events
after after after afterbefore before before before

0

10

20

30

40

50

60

70

80

90

100 Alpine Foreland Central Uplands North Plain South Scarplands

[%
] o

f a
ll 

id
en

tif
ie

d 
ev

en
ts

pe
r n

at
ur

al
 re

gi
on

Figure 2.4: Performance of multiple-peak refinement procedure: a) subdivision among single-peak, multiple-peak and

unattributed events before and after applying the multiple-peak refinement procedure to catchments of different
natural regions. Although, refinement procedure does not directly affect the absolute number of unattributed
events, its relative portion might change if total number of identified events is increased after multiple-peak
events are refined into their single-peak components; b) quartiles of the distribution of runoff coefficients for
unrefined multiple-peak events (obtained after base flow separation and rainfall attribution) and refined single-
peak and multiple-peak events (obtained after applying also the multiple-peak refinement procedure) plotted
against quartiles of the distribution of runoff coefficients for the reference group of single-peak events. p25
corresponds to a lower quartile (25th percentile), p50 corresponds to median and p75 corresponds to the upper
quartile (75th percentile) of a cumulative probability function of event runoff coefficients

Alpine Foreland region, a strong correlation of the event time scale with this explanatory variable
is observed for most catchments (Figure 2.6, ts-Pvol). The pre-event base flow rate only slightly
affected the event time scale (Figure 2.5, ts-qbase), while it is a strong linear predictor of runoff
coefficient and peak discharge, especially in the lowlands (Figure 2.6, rc-qbase, peak-qbase). On
the contrary, antecedent rainfall during a period of 10-days shows no correlation with any of the
examined event characteristics (Figure 2.6, Pant10 ). No clear relation is also observed between
event rise time (rt) and the considered rainfall/ snowmelt and pre-event characteristics (see rt
plots in Figures 2.5 and 2.6).
Figure 2.5 distinctly portrays the existence of a non-linear relation between event runoff coefficient
and pre-event soil moisture. An exponential function was fitted in each catchment to the aver-
age value of runoff coefficients observed for different ranges of soil moisture (see Chapter 2.3.2.2
and Figure 2.7a). The relation between the scaling exponent of the fitted function and the ratio
between Q90 and Q50 (the ratio between low and median flows) was then examined, in order
to understand the role played by the subsurface storage of catchments (Figure 2.7). Catchments
with large subsurface storage capacity (high Q90/Q50) tend to have lower scaling exponents b
(Figure 2.7b), which reflect a gradual increase of the event runoff coefficient with increasing soil
moisture content (Figure 2.7a). On the contrary, in the Central Uplands, South Scarplands and
mountainous Alpine regions characterized by poor-developed soils runoff coefficients exhibit minor
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Figure 2.5: Relationship between runoff event characteristics (event runoff coefficient rc, time scale ts, rise time rt and

normalized peak) and both the rainfall/ snowmelt event volume (Pvol) and the indicators of pre-event catchment
state (antecedent soil moisture sm and pre-event base flow qbase). Results for the Lippe River at Haltern and
the Ems River at Einen are displayed

variations up to a certain saturation threshold (different for each basin), strongly increasing in
both value and variability once this threshold is crossed.

2.4.2.2 Seasonality of event characteristics Figure 2.8 shows deviations of the long-term sea-
sonal means of event characteristics from their long-term annual averages, thus providing insights
on the seasonality of runoff generation processes in Germany. Our results reveal strong seasonal-
ity of event runoff coefficient and normalized event peak for most catchments, with considerably
higher values in winter and considerably lower values in summer (Figure 2.8, rc, peak). This sea-
sonality is especially strong for western catchments where summer runoff coefficients are very low.
On the contrary, catchments in the Alpine Foreland exhibit only weak seasonality of event runoff
coefficient and normalized event peak. The seasonal pattern of these event characteristics seems
to be inversely related to the seasonal values of the aridity index (Budyko, 1974) (Figure 2.8, AI ),
while the seasonality of the soil moisture appears to be shifted (Figure 2.8, sm).
Time scales of summer events are also considerably shorter than those of winter and spring events
and follow the pattern of snowmelt contribution and soil moisture (Figure 2.8, ts, sm, melt) with
the exception of south-eastern catchments where the seasonality is low (Figure 2.8, ts). Rise time
of winter and spring events was slightly shorter than of summer and autumn events in most study
catchments (Figure 2.8, rt).
Volume and intensity of rainfall and snowmelt events show asymmetrical seasonal patterns in the
Western, North-Eastern and Southern parts of Germany. The maximum of the total precipitation
amount occurs in summer for the whole country (Figure 2.8, P), but the amount of the runoff
generating rainfall is apparently lower in this season than in winter and spring in the Western
part (Figure 2.8, Pvol), while in the North-Eastern and Southern parts summer events are more
pronounced (Figure 2.8, Pvol and Pint).
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Figure 2.6: Squared Spearman correlation coefficient (R2) between event characteristics (runoff coefficient rc, time scale ts,

rise time rt, normalized peak) and both the properties of rainfall/ snowmelt events (volume Pvol, max intensity
Pint) and the indicators of pre-event catchment state (10-day antecedent rainfall Pant10, pre-event soil moisture
sm and base flow qbase). Higher values of R2 indicate stronger linear correlation between the two considered
variables. Thin grey lines represent the borders of the four main landscape regions of Germany (from north to
south): North German Plain, Central Uplands, South German Scarplands and Alpine Foreland. Catchments’
borders are not shown for clarity

2.4.2.3 Long-term trends of event characteristics Changes of the event runoff response (in
terms of event runoff coefficient rc and time scale ts) and their relation with the long-term evolu-
tion of hydro-climatic characteristics and land use are analyzed in Figures 2.9 and 2.10. To em-
phasize the regional patterns the results are grouped according to the four major natural regions of
Germany: North German Plain, Central Uplands, South German Scarplands and Alpine Foreland
(respectively yellow, green, blue and red markers and ellipses in Figures 2.9 and 2.10). Evidences
of consistency between detected changes of event characteristics and their possible drivers (Merz
et al., 2012) are investigated by plotting the relative Sen’s slope of long-term seasonal trends in
event characteristics versus trends in hydro-climatic variables (total precipitation amount P, arid-
ity index AI, soil moisture sm), properties of rainfall (events’ volume Pvol and maximum intensity
Pmax ) and snowmelt contribution (melt) (Figure 2.9-2.10). The relative Sen’s slope can be in-
terpreted as the mean change per year in percent of the long-term mean value of the considered
variable within the analyzed period (1951-2013). If there is evidence of trend consistency between
two variables the points in Figure 2.9-2.10 appear either in the top right and bottom left quadrants
(if the variables are directly proportional), or in the two remaining quadrants (if the variables are
inversely proportional). If points are dispersed along the y-axis but constrained within a limited
range on the x-axis, there is no evidence of consistency in trends. The trends for event rise time rt
and normalized event peak discharge peak are shown in the Supporting Information (see Chapter
2.6.2, Figures 2.11-2.12).
In summer most catchments exhibit decreases of normalized peaks (Figure 2.12, peak.summer)
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Figure 2.7: Soil moisture as a non-linear control of event runoff coefficient: a) the average of event runoff coefficients

corresponding to different soil moisture conditions is represented for selected catchments as an exponential
function of soil moisture fitted to them. The lines were color-coded according to the sub-surface storage index
(Norbiato et al., 2009) defined as the ratio between Q90 and Q50; b) the exponent parameter b of the fitted
exponential function plotted against the ratio between Q90 and Q50. Lower values of b characterize a more
gradual increase of event runoff coefficients with increasing antecedent soil moisture. Higher values indicate
instead a rapid increase of event runoff coefficients. Error bars show the residual standard error of the exponential
model for every catchment. The regression line represents the best fit of an error-weighted regression model
between scaling exponent and sub-surface storage index; c) spatial pattern of the subsurface storage index in
Germany. Thin grey lines represent the borders of the four main landscape regions of Germany (from north to
south): North German Plain, Central Uplands, South German Scarplands and Alpine Foreland. Catchments’
borders are not shown for clarity

and runoff coefficients which are consistent with the decreasing volume of rainfall events and total
amount of precipitation (Figure 2.9, rc.summer-Pvol, rc.summer-P). Smaller volumes of rainfall
events and generally drier conditions (i.e., positive trends in aridity index) also influence flashiness
and timing of runoff response, as shown by the negative trends of event time scale (Figure 2.10,
ts.summer-AI ) and positive trends of rise time in all natural regions (Figure 2.11, rt.summer).
Although in autumn strong negative trends of soil moisture are observed (Figure 2.9, rc.autumn-
sm), an increase of event runoff coefficients and normalized event peak discharges occurs as the
result of increasing volume of rainfall events (see Figure 2.9, rc.autumn-Pvol and Figure 2.12,
peak.autumn-Pvol). The situation is different only in the North German Plain, where most of
the catchments show negative trends of runoff coefficient and normalized event peak discharge.
Changes of characteristic response times are inhomogeneous within natural regions, but negative
trends prevail (Figure 2.10, Figure 2.11).
Differently from the other seasons, conditions tend to get wetter in spring, as indicated by the
respectively negative and positive trends of the aridity index and the soil moisture (Figure 2.9).
Changes in the volume of rainfall events are consistent with trends in runoff coefficients (Figure
2.12, rc.spring-Pvol) and normalized peak (Figure 2.12, peak.spring-Pvol), except for the North
Plain and the catchments of the Alpine Foreland, where considerable changes in the contribution
of melting are detected (Figure 2.9, rc.spring-melt ; Figure 2.12, peak.spring-melt).
Winter snowmelt contribution is shrinking in all catchments, while the total amount of precipitation
and the volume of rainfall events mostly increase (Figure 2.9, rc.winter). Consequently, normal-
ized event peak discharges increase country-wide (Figure 2.12, peak.winter). Observed changes in
winter runoff coefficients are instead difficult to attribute (Figure 2.9, rc.winter). Despite drier
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Figure 2.8: Seasonality of event characteristics (rc, ts, rt, peak) rainfall and snowmelt properties (Pvol, Pint, melt), pre-

event indicators (sm) and hydro-climatic variables (P, AI ). The seasonality was computed as seasonal deviation
(%) from the mean annual value of the considered variable. For non-additive variables (aridity index AI ) the
deviation (%) of the mean seasonal value from the mean annual value is shown. For additive variables (total
precipitation P) the deviation (%) of the cumulative (3 month) seasonal value from the average among the
cumulative values for the four seasons is shown. Thin grey lines represent the borders of the four main landscape
regions of Germany (from north to south): North German Plain, Central Uplands, South German Scarplands
and Alpine Foreland. Catchments’ borders are not shown for clarity

conditions in winter (i.e., country-wide positive trends of the aridity index and negative trends of
soil moisture), runoff coefficients mostly increase in the Alpine Forelands and Southern Scarplands.
On the other hand, runoff coefficients tend to decrease in the North Plain despite an increase of
the volume of rainfall events, and both negative and positive trends are detected in the Central
Uplands (Figure 2.9, rc.winter). Event time scales also reveal varied patterns of change across the
country (Figure 2.10, ts.winter).
Finally, catchments featuring land use changes larger than 2% of their surface area (represented
with dots and triangles in Figures 2.9 and 2.10) exhibit deviations from regionally consistent trends
(i.e., climate-induced trends) only in a few cases. For example, a very strong negative trend of
the event time scales is detected in autumn for a catchment in the Central Uplands with land use
change between 2 and 4% (green circle in Figure 2.10, ts.autumn), although there are no apparent
differences in rainfall, snowmelt, soil moisture and hydro-climatic trends compared to other catch-
ments from the same region (see the green ellipse representing 95% confidence level, Figure 2.10,
ts.autumn).

2.5 Discussion and Conclusions

An automated time-series-based event separation procedure consisting of available base flow sep-
aration, runoff event identification and rainfall attribution methods and of a novel iterative pro-
cedure for the adjustment of thresholds needed to identify and separate single-peak components
of multiple-peak events was proposed. This procedure was explicitly developed with the goal of
facilitating large scale investigation of temporal dynamics of the event runoff response in catch-
ments characterized by diverse morphological attributes and subject to different climatic forcing
(the whole of Germany was used as a case study). Five different base flow separation methods were
tested. The simple smoothing approach (Institute of Hydrology, 1980) proved to be superior in
identifying the starting point of potential runoff events (i.e., troughs) and performed consistently
in a wide range of catchments. The other investigated methods (Chapter 2.4.1.1) had problems in
lowland catchments with high groundwater contribution and in the Alpine Foreland catchments,
where base flow rises in spring due to snowmelt. In fact, according to them streamflow of lowland

21



Chapter 2 Event Separation and Temporal Dynamics of Event Runoff Response

30(4)
23(7)
24(7)
8(0)

0(0)
15(5)
2(0)
0(0)

42(1)
5(0)

16(2)
16(2)

0(0)
5(1)
0(0)
0(0)

−0.01

0.00

0.01

rc
.w

in
te

r

28(4)
38(12)
25(7)
8(0)

2(0)
0(0)
1(0)
0(0)

34(0)
10(1)
13(2)
10(1)

8(1)
0(0)
3(0)
6(1)

0(0)
1(1)
1(0)
1(0)

27(4)
34(10)
22(6)
7(0)

0(0)
1(0)
0(0)
0(0)

41(1)
9(1)
16(2)
14(2)

23(4)
23(8)
16(4)
5(0)

7(0)
15(4)
10(3)
3(0)

29(1)
5(0)
8(0)
14(1)

13(0)
5(1)
8(2)
2(1)

19(0)
22(6)
15(3)
5(0)

11(1)
16(6)
11(4)
3(0)

21(1)
4(0)
6(0)
9(1)

21(0)
6(1)
10(2)
7(1)

2(0)
3(3)
4(1)
2(0)

26(4)
34(8)
20(6)
5(0)

2(0)
2(0)
1(0)
4(0)

40(1)
7(0)
15(2)
12(2)

32(0)
23(3)
29(8)
9(0)

2(0)
7(2)
0(0)
2(0)

25(9)
10(0)
13(2)
10(3)

13(6)
8(0)
0(0)
3(3)

−0.01

0.00

0.01

rc
.s

pr
in

g

0(0)
0(0)
0(0)
0(0)

34(0)
30(5)
29(8)
11(0)

0(0)
0(0)
0(0)
0(0)

38(15)
18(0)
13(2)
13(6)

16(0)
3(0)
9(5)
5(0)

13(0)
12(3)
7(0)
3(0)

11(5)
0(0)
1(0)
4(2)

15(6)
12(0)
7(1)
3(1)

25(0)
14(1)
25(7)
9(0)

9(0)
16(4)
4(1)
2(0)

23(9)
5(0)
9(2)
8(5)

15(6)
13(0)
4(0)
5(1)

12(0)
7(0)
16(6)
2(0)

22(0)
23(5)
13(2)
9(0)

18(9)
5(0)
6(1)
5(3)

20(6)
13(0)
7(1)
8(3)

23(0)
23(5)
25(8)
7(0)

8(0)
7(0)
4(0)
2(0)

33(14)
8(0)
8(2)
10(4)

5(1)
9(0)
4(0)
2(1)

1(0)
0(0)
1(1)
2(0)

10(4)
18(4)
16(4)
1(1)

12(6)
4(1)
0(0)
4(1)

49(24)
26(10)
25(10)
17(12)

−0.01

0.00

0.01

rc
.s

um
m

er

7(4)
16(4)
15(4)
1(1)

4(0)
2(0)
2(1)
2(0)

41(20)
23(9)
24(10)
15(10)

20(10)
7(2)
1(0)
6(3)

0(0)
2(0)
0(0)
0(0)

0(0)
1(0)
0(0)
0(0)

0(0)
4(1)
0(0)
0(0)

0(0)
1(0)
0(0)
0(0)

3(2)
2(0)
2(0)
3(1)

8(2)
16(4)
15(5)
0(0)

12(6)
8(4)
7(2)
7(5)

49(24)
22(7)
18(8)
14(8)

4(3)
3(1)
2(0)
2(0)

7(1)
15(3)
15(5)
1(1)

3(1)
4(2)
2(1)
1(0)

58(29)
26(9)
23(9)
20(13)

5(1)
7(2)
10(3)
2(0)

6(3)
11(2)
7(2)
1(1)

30(18)
10(4)
15(6)
8(5)

30(12)
20(7)
10(4)
13(8)

40(12)
35(19)
30(7)
4(1)

2(0)
0(0)
3(1)
1(0)

28(10)
13(1)
9(1)

19(7)

2(0)
0(0)
0(0)
0(0)

−0.01

0.00

0.01

−0.01 0.00 0.01

P

rc
.a

ut
um

n

42(12)
35(19)
33(8)
5(1)

0(0)
0(0)
0(0)
0(0)

30(10)
13(1)
9(1)
19(7)

0(0)
0(0)
0(0)
0(0)

−0.01 0.00 0.01

AI

0(0)
1(0)
0(0)
0(0)

0(0)
7(5)
0(0)
0(0)

0(0)
0(0)
0(0)
0(0)

0(0)
0(0)
0(0)
0(0)

−0.02 −0.01 0.00 0.01

melt

38(11)
23(14)
21(5)
4(0)

4(1)
11(5)
11(3)
1(1)

18(6)
9(1)
4(0)
18(6)

11(3)
3(0)
5(1)
1(1)

−0.01 0.00 0.01

Pvol

21(7)
7(5)
9(2)
4(0)

21(5)
28(14)
24(6)
1(1)

13(4)
1(0)
3(1)
1(0)

17(6)
12(1)
6(0)
18(7)

−0.01 0.00 0.01

Pmax

0(0)
2(1)
2(0)
1(0)

42(12)
33(18)
31(8)
4(1)

0(0)
0(0)
0(0)
0(0)

30(10)
13(1)
9(1)
19(7)

−0.004 −0.002 0.000 0.002

sm

Sen's slope [−]

S
en

's
 s

lo
pe

 [−
]

Land use change [%] 0−2 2−4 4−10 Landscape AlpineForeland CentralUplands NorthPlain SouthScarplands

Figure 2.9: Long-term changes of the event runoff coefficient. Seasonal trends of rc in the period 1951-2013 were plotted

against seasonal trends of rainfall properties (volume of rainfall events Pvol, maximum intensity of rainfall
events Pmax) and hydro-climatic variables (total precipitation amount P, aridity index AI, soil moisture sm,
contribution of snow melt melt). Trends were quantified by means of the relative Sen’s slope that can be
interpreted as the mean change per year in percent of the long-term mean value of the considered variable.
Each marker represents a catchment belonging to a specific natural region differentiated by color. The marker’s
shape indicates the relative change of land use in the catchment from 1990-2012. Color-coded ellipses represent
95% confidence interval of seasonal trends for each natural region. The number of catchments in each quadrant
was recorded in the corner of respective quadrant and color-coded according to a specific natural region. The
number of catchments with significant trends of event runoff coefficient (α = 0.1) was noted in brackets for each
quadrant and color-coded according to a specific natural region.

rivers and summer discharge of pre-alpine catchments always have a share of quick flow, thus
making an automated separation of runoff events impossible (Merz et al., 2006).
No overlapping rainfall or snowmelt was found for a small portion (ca. 1%) of the identified runoff
events. These were mostly small events observed in small and middle-sized catchments. The occur-
rence of local rainfall events not recorded at any station is a possible reason for this discrepancy,
but uncertainty linked to the modeling of melting processes cannot be excluded as well. It is
worth to note that, if the minimum peak discharge for quick flow to qualify as a runoff event is
set to a value higher than the currently used 10% of the base flow, the above mentioned problem
disappears.
The number of sampled events affects the reliability of the distribution equality test used in the
iterative procedure to objectively identify suitable separation thresholds. The proposed method is
consequently limited by the availability of relatively long hydro-climatic time series. Moreover, the
approach is based on the assumption that single-peak and multiple-peaks events have significantly
different distributions of event runoff coefficients. Therefore, the method must be applied with care
to catchments where runoff is strongly smoothed or event-to-event variability of runoff response is
very low.
In this study we used hydro-climatic time series of daily resolution to identify rainfall-runoff events.
Daily resolution might limit event identification, especially in small catchments where events are
often shorter than 1 day. However, only 13 study catchments have catchment area less than 100
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Figure 2.10: Long-term changes of the event time scale. Seasonal trends of ts in the period 1951-2013 were plotted against

seasonal trends of rainfall properties (volume of rainfall events Pvol, maximum intensity of rainfall events
Pmax) and hydro-climatic variables (total precipitation amount P, aridity index AI, soil moisture sm, contri-
bution of snow melt melt). Trends were quantified by means of the relative Sen’s slope that can be interpreted
as the mean change per year in percent of the long-term mean value of the considered variable. Each marker
represents a catchment belonging to a specific natural region differentiated by color. The marker’s shape
indicates the relative change of land use in the catchment from 1990-2012. Color-coded ellipses represent 95%
confidence interval of seasonal trends for each natural region. The number of catchments in each quadrant
was recorded in the corner of respective quadrant and color-coded according to a specific natural region. The
number of catchments with significant trends of event runoff coefficient (α = 0.1) was noted in brackets for
each quadrant and color-coded according to a specific natural region.

km2, while most analyzed catchments are mesoscale basins. In addition, the analysis of event
dynamics at multiple temporal scales requires long time series. These are not available with finer
resolution in a large number of locations. Therefore, we believe that using daily data is suitable for
this data set in the context of the objectives of our study. Moreover, daily data can be considered
sufficient to represent event characteristics selected for this study as they are based on volumetric
ratios of rainfall and runoff (e.g., runoff coefficient, time scale). Event characteristics based on
timing of event might be indeed affected by coarse resolution of the available data, which in fact
might be the reason why for event rise time no clear drivers were identified among tested variables
(Figure 2.6, rt).
Although there is no certainty about the real nature (i.e., single- or multiple-peak) of runoff
events (Hewlett and Hibbert, 1967), the proposed iterative procedure enabled the identification
and attribution of more than 220,000 rainfall-runoff events and consistently addressed the issue of
multiple-peak events refinement in catchments characterized by various runoff regimes and differ-
ent climatic and physiographic properties, thus allowing for a country-wide analysis of the event
runoff response.
The study of the event-to-event variability of runoff event characteristics at this large scale un-
veiled the existence of different runoff generation mechanisms in Germany. The dominance of the
rainfall/ snowmelt event volume compared to its intensity as a driver of event runoff coefficients
indicates that Dunnian processes prevail in the studied catchments. This is in line with what found
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by Merz et al. (2006); Graeff et al. (2012) and Seibert et al. (2016), who reported similar results
for several mesoscale European catchments. Event runoff generation through infiltration excess as
the result of intensive rainfall seems to be only possible in small mountainous catchments in the
Western part of the country where intensive rainfall events are common. Rainfall intensity was
identified as an important driver of runoff response in single mountainous catchments also by pre-
vious studies (e.g., Blume et al., 2007; Graeff et al., 2012). A particularly strong relation between
event runoff coefficients and volume of rainfall events exist in the Central Uplands and South Ger-
man Scarplands (Figure 2.6), indicating that in these regions event-fed saturation is possible (i.e.,
a single rainfall event can lead to partial or full catchment saturation and thus cause increase of
the event runoff coefficient) (Berghuijs et al., 2016b). For drier hilly and lowland catchments with
higher storage capacity pre-event saturation (i.e., catchment saturation caused by a sequence of
antecedent rainfall or snowmelt events) is instead the main mechanism of event runoff generation,
as it is here unlikely that a single rainfall/ snowmelt event will lead to catchment saturation. These
catchments show a characteristic gradual increase of the event runoff coefficient with increasing
soil moisture content (i.e., a very slow transition between “dry” and “wet” states) (Figure 2.7a,
low parameter b). These findings are similar to those of Norbiato et al. (2009), who showed that
the difference between mean runoff coefficients of “dry” and “wet” states was minimal in the catch-
ments with highly permeable aquifers. On the contrary, in the Central Uplands and mountainous
Alpine catchments with poor-developed soils the event runoff coefficient increases rapidly as soil
saturation rises (Figure 2.7a, high parameter b), marking a clear transition between two func-
tioning types. A threshold-like dependence between event runoff coefficients and antecedent soil
moisture might be an indicator of a critical switch in the catchment behavior, in correspondence of
which the hydrologic connectivity and its characteristic pattern change (James and Roulet, 2007;
Graeff et al., 2012). Our results also indicate that, unlike antecedent soil moisture and pre-event
base flow, the amount of rainfall in the 10 days preceding runoff events do not well represent the
wetness state of German catchments (Figure 2.6). Taking into account the strong seasonality of
the event runoff coefficients (Figure 2.8), antecedent rainfall computed during a longer time range
(30-60 days) might be a more suitable proxy of wetness state (Merz and Blöschl, 2009a).
Similarly to Gaál et al. (2012) we found that the time scale of runoff events depends on properties
of rainfall events (Figure 2.6, ts). Weaker correlation in the Alpine Foreland catchments indicates
that the time scale of rainfall events is instead strongly altered by the storage capacity and mech-
anisms of water release of these catchments. Our results also suggest that the event rise time may
be governed by the spatial distribution of rainfall within the basin, which was not characterized
by the basin-averaged rainfall characteristics we used here.
The seasonal analysis of rainfall-runoff event characteristics and their potential drivers confirms
that event runoff response is directly defined by the properties of rainfall events (i.e., volume or
intensity) only in the western part of the Central Uplands and in the South German Scarplands
(Figure 2.8), while in the rest of the country seasonal event characteristics are defined by the
seasonality of the water balance components (i.e., ratio of precipitation and evapotranspiration)
and contribution of snowmelt (Figure 2.8). Interestingly, the analysis shows conflicting seasonality
of total precipitation amount (Figure 2.8, P) and runoff generating precipitation (Figure 2.8, Pvol
and Pint) in the Western part of Germany. Furthermore, in the Northeast German Plain and
Alpine Foreland the maximum of the runoff generating rainfall occurred in summer and spring
(Figure 2.8, Pvol), while event runoff coefficients (Figure 2.8, rc) were higher in winter, indicat-
ing a crucial role of pre-event saturation compared to event-fed saturation for runoff generation
processes in these regions. Alpine Foreland catchments noticeably exhibit almost no seasonality
of event characteristics (Figure 2.8). This can be explained by a seasonal change of the main
drivers of runoff, e.g., very wet conditions during winter, a strong contribution of snowmelt in
spring/summer and intensive rainfall events in the summer/autumn period.
Interestingly, while Merz and Blöschl (2009a) showed that in Austria the seasonality of event runoff
coefficients follows the seasonal pattern of soil moisture, these seem to be shifted in Germany (Fig-
ure 2.8, sm). The difference is possibly due to the existence of a pronounced winter runoff regime
in most of Germany (Beurton and Thieken, 2009) versus the spring and summer runoff regime of
Austria triggered by snow and glaciers melt from the Alps (Merz and Blöschl, 2009a). On the other
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hand, the long event time scales for German catchments during spring revealed by our analysis
can be explained (similarly to Austria, see Gaál et al. (2012)) by melting in mountainous regions
(Figure 2.8, melt), while in winter high values might be linked to long rainfall events with large
volumes (Figure 2.8, Pvol) resulting from westerly wind dynamics and Atlantic cyclones influences
(Beurton and Thieken, 2009).
The pronounced seasonality of event characteristics and drivers defines their season-specific long-
term changes (Figure 2.9-2.10). Seasonal indicators of wetness state (i.e., aridity index and soil
moisture) and snowmelt contribution especially display marked trends. Melt contribution is clearly
shrinking, whereas the total volume of precipitation mostly increases (Figure 2.9). According to
Blöschl et al. (2017), season-specific changes might be the result of changes in seasonal dynamic
of melting or in precipitation type (from solid to liquid). There is no clear consistency between
trends of runoff event characteristics and a single hypothesized driver (Figure 2.9-2.10), but hints
of consistency can be identified when several potential drivers are considered together. Changes in
total precipitation amount alone do not explain the magnitude of changes in event characteristics
(Figure 2.9-2.10). However, snowfall-to-rain transition can be a driving force of runoff response
change even when no trends in total precipitation exist (Dumanski et al., 2015). Our findings hint
at the existence of a complex interplay between changes in volume of rainfall events, soil moisture
and snowmelt contribution. In catchments where storage capacity is limited (e.g., Central Uplands,
South Scarplands) and infiltration excess or event-fed saturation dominates, a more pronounced
influence of rainfall volume changes on event characteristics is noticeable in most seasons (Figure
2.9). On the contrary, changes of the seasonal wetness state define trends in the North Plain
catchments characterized by large subsurface storages. Moderate changes of land use in most
catchments (less than 2% of their surface area) might explain the observed overwhelming role
played by climatic characteristics in driving the non-stationarity of the runoff response. In fact,
Martin et al. (2012) reported that the effect of urbanization on runoff response can be detected
only if more than 15% of the catchment area has been modified. Interestingly, land use change
mostly impacts event time scale and rise time, whereas no clear effects on normalized event peak
and runoff coefficient are observed. Difficulties to attribute changes of the hydrological response to
land use modifications were also reported by Sawicz et al. (2014), who found only minor evidence
of a consistent relation between land use change and long-term trends of runoff signatures derived
from water balance.
In this study we exploit observed temporal dynamics of runoff event characteristics derived from
readily available hydrological and meteorological time series to provide insights on regional pro-
cesses of runoff generation. By proposing an iterative procedure to objectively adjust separation
thresholds our study allows for comparison of event characteristics on multiple temporal and at
large spatial scales. Temporal dynamics of event characteristics reveal underlying regional pat-
terns of dominant runoff generation processes. Climatic and landscape drivers of these patterns
are examined in detail in a companion study by Tarasova et al. (2018a). Regional heterogeneity in
runoff generation processes also defines patterns of response to changes of rainfall event character-
istics and water balance components. Generally, catchments dominated by infiltration excess and
event-fed saturation (Figure 2.9, Central Uplands and South Scarplands) are more vulnerable to
changes of rainfall characteristics. In these catchments flow paths vary greatly among events and
eventually lead to erratic patterns of water and nutrients delivery to streams. Observed changes
of rainfall characteristics are instead buffered by the available catchment storage in catchments
where event runoff generation depends on pre-event saturation (Figure 2.9, North Plain and Alpine
Foreland). Here evapotranspiration might play a much more important role as it affects available
storage. Their characteristic gradual switching from “dry” to “wet” states might shape more con-
stant flow paths and thus results in a more persistent supply of water and nutrients to streams.
Identifying temporal dynamics of the hydrologic response and highlighting regional diversities of
runoff generation processes is therefore directly relevant for the management of water resources,
the mitigation of human impacts on water quality of rivers and on their aquatic ecosystems, as
well as for adaptation to changing flood hazard.
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2.6 Supporting Information

This Supporting Information give details on the test of distribution equality used in the iterative
procedure of multiple-peak event refinement described in the Chapter 2.3.1.4. Moreover additional
information on the long-term trends of event characteristics is presented.

2.6.1 Test of the distribution equality

Considerable differences in event characteristics between single-peak and multiple-peak events were
previously indicated by Mei and Anagnostou (2015) and Tang and Carey (2017). Therefore, we
assumed that the single-peak and multiple-peak events have significantly different distributions of
event runoff coefficients and we composed the empirical distribution of runoff coefficients of poten-
tially single events derived from multiple-peak events and the reference distribution of single-peak
events in order to decide if the current separation thresholds were suitable for the study catchment.
To assess the equality of the two distributions and hence the suitability of the chosen thresholds
we applied a non-parametric Kolmogorov-Smirnov test of the equality (Haan, 1977) at 5% signif-
icance level. The size of the samples used to estimate the distributions is crucial for the equality
test (Haan, 1977). To avoid accepting the hypothesis when it is in fact wrong we restricted the
application of the test to the sample sizes complying with the following rule of thumb:

(n1 ∗ n2)/(n1 + n2) ≥ 4 (2.1)

where n1 and n2 are sample sizes of the reference single-peak event group and of the group of
potentially single events.

2.6.2 Long-term trends of the event characteristics

Changes of the event runoff response in terms of event rise time and normalized peak discharge
and their relation with the long-term evolution of hydro-climatic characteristics and land use
are analyzed in Figures 2.11-2.12. To emphasize the regional patterns the results are grouped
according to the four major natural regions of Germany: North German Plain, Central Uplands,
South German Scarplands and Alpine Foreland (respectively yellow, green, blue and red markers
and ellipses in Figures 2.11-2.12). Evidences of consistency between detected changes of event
characteristics and their possible drivers (Merz et al., 2012) are investigated by plotting the relative
Sen’s slope of long-term seasonal trends in event characteristics versus trends in hydro-climatic
variables (total precipitation amount P, aridity index AI, soil moisture sm), properties of rainfall
(events’ volume Pvol, maximum rainfall intensity Pmax ) and snowmelt contribution (melt) (Figure
2.11-2.12). The relative Sen’s slope can be interpreted as the mean change per year in percent of
the long-term mean value of the considered variable within the analyzed period (1951-2013). The
significance of trends was defined at significance level for Kendall’s p-value. If there is evidence
of trend consistency between two variables the points in Figure 2.11-2.12 appear either in the top
right and bottom left quadrants (if the variables are directly proportional), or in the two remaining
quadrants (if the variables are inversely proportional). If points are dispersed along the y-axis but
constrained within a limited range on the x-axis, there is no evidence of consistency in trends.
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Figure 2.11: Long-term changes of the event rise time. Seasonal trends of rt in the period 1951-2013 were plotted against

seasonal trends of rainfall properties (volume of rainfall events Pvol, maximum intensity of rainfall events
Pmax) and hydro-climatic variables (total precipitation amount P, aridity index AI, soil moisture sm, contri-
bution of snow melt melt). Trends were quantified by means of the relative Sen’s slope that can be interpreted
as the mean change per year in percent of the long-term mean value of the considered variable. Each marker
represents a catchment belonging to a specific natural region differentiated by color. The marker’s shape
indicates the relative change of land use in the catchment from 1990-2012. Color-coded ellipses represent 95%
confidence interval of seasonal trends for each natural region. The number of catchments in each quadrant
was recorded in the corner of respective quadrant and color-coded according to a specific natural region. The
number of catchments with significant trends of event runoff coefficient (α = 0.1) was noted in brackets for
each quadrant and color-coded according to a specific natural region.
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Figure 2.12: Long-term changes of the normalized event peak discharge. Seasonal trends of peak in the period 1951-2013

were plotted against seasonal trends of rainfall properties (volume of rainfall events Pvol, maximum intensity
of rainfall events Pmax) and hydro-climatic variables (total precipitation amount P, aridity index AI, soil
moisture sm, contribution of snow melt melt). Trends were quantified by means of the relative Sen’s slope
that can be interpreted as the mean change per year in percent of the long-term mean value of the considered
variable. Each marker represents a catchment belonging to a specific natural region differentiated by color.
The marker’s shape indicates the relative change of land use in the catchment from 1990-2012. Color-coded
ellipses represent 95% confidence interval of seasonal trends for each natural region. The number of catchments
in each quadrant was recorded in the corner of respective quadrant and color-coded according to a specific
natural region. The number of catchments with significant trends of event runoff coefficient (α = 0.1) was
noted in brackets for each quadrant and color-coded according to a specific natural region.
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Abstract

This study unveils regional patterns of rainfall-runoff event characteristics in Germany and iden-
tifies their spatial controls. Characteristics describing mean value, variability and seasonality
of event runoff coefficient, time scale, rise time, and of the occurrence of multiple-peak events
are derived for a set of 196,073 rainfall-runoff events observed in 401 mesoscale German catch-
ments. Multi-objective performances of various variable selection methods are used to identify
hydrologically-relevant variables from a comprehensive set of 115 descriptors of climate, topogra-
phy, geomorphology, soil, land use, hydrogeology and geology for every catchment. Results show
that although event characteristics have relatively clear regional patterns due to the dominance of
climatic controls at regional scale, subsurface properties (i.e., catchment storage) play a consider-
able role for the prediction of event runoff response. Compared to other tested variable selection
methods the application of a backward elimination procedure allows for the most accurate pre-
diction of spatial patterns and regionalized values of event characteristics identifying soil depth,
hydraulic permeability and frequency, size and seasonality of wet spells as hydrologically-relevant
catchment descriptors. Climatic and hydrogeological descriptors outperform other generic groups
of catchment descriptors. The hydrological interpretation of the emergent regional pattern of
event characteristics, their variability and seasonality provides insight on archetypical catchment
behaviors and their controls.
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Chapter 3 Regional Patterns and Spatial Controls of Event Characteristics

3.1 Introduction

Understanding why certain functioning behaviors occur in given river basins sheds light on the ori-
gin of similarity and dissimilarity among catchments and is the key for understanding hydrological
processes at catchment scale (Sawicz et al., 2011). Event hydrographs are among the most de-
tailed signatures of how catchments behave, revealing aspects of their internal states and dynamics
(Blöschl et al., 2013b). Analyzing the immediate response of catchments to rainfall inputs allows
for deeper insights into the properties of triggering rainfall events, runoff generation mechanisms
and routing processes (Merz et al., 2006; Blume et al., 2007). Exemplary hydrological behaviors
of two contrasting catchments are displayed in Figure 3.1. A drier catchment with infrequent but
sometimes substantial rainfall events is shown on the left side. The subsurface storage capacity is
small and vegetation is sparse. Direct runoff is only generated in smaller parts of the catchment.
Hence sharp event hydrographs with lower on average but variable event runoff coefficients are
expected. The catchment on the right side represents instead a wetter densely vegetated catch-
ment with frequent rainfall events and substantial subsurface storage. Such catchment structure
may determine smooth event hydrographs with long rise time and time scale. Depending on the
frequency of rainfall, event hydrographs with multiple peaks may be observed. Larger on average
but less variable runoff coefficients result from larger saturated areas and low variability of soil
moisture conditions. In both cases inter-event drying of soils due to evapotranspiration and vertical
percolation into deeper subsurface layers control the antecedent soil moisture and therefore impose
a feedback on the variability of event characteristics. Moreover, if rainfall and evaporation have
strong seasonality, event characteristics may mirror this seasonality as well (Merz and Blöschl,
2009a). Furthermore, topography, vegetation cover, soil properties, hydrogeological settings and
many other physical attributes also shape runoff generation and hence event runoff characteristics
(Gaál et al., 2012). Hence, event hydrographs may also summarize patterns of catchment response
emerged from complex co-evolution of climate, topography, soil and vegetation, thus standing out
as valuable hydrological signatures of catchment behaviors Blöschl et al. (2013b).
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Figure 3.1: Example of two contrasting catchments with different climatic conditions (P – annual precipitation, E – annual

potential evaporation, physical characteristics (storage capacity, vegetation) (upper panel) and hydrological
response (lower panel). The extents of pre-event saturated areas (dark blue areas) represent typical runoff
generation conditions in each catchment. The hydrological response of each catchment is presented for two
different rainfall events (middle panel). Each event can be described by the event characteristics rc (event
runoff coefficient [-]), ts (event time scale [days]), rt (event rise time [-]) (lower panel)

Although the concept of event runoff dates back to the work of Sherman (1932), analyzing event
runoff generation processes is still an active research field in hydrology. Many of the studies pub-
lished in the literature, either based on field measurements (e.g., Weiler and McDonnell, 2004;
Tromp-Van Meerveld and McDonnell, 2006; Scherrer et al., 2006; dos Santos et al., 2016; Ries
et al., 2017) or hydrological modelling (e.g., Vivoni et al., 2007; Frei et al., 2010; Sinha et al., 2016;
Ala-aho et al., 2017), focus on runoff generation at small scales, such as irrigation plots, hillslopes
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or single catchments. These studies point to a great variability of the factors controlling runoff
generation during rainfall events, but results are site and scale specific.
In order to investigate catchment-scale generation of event runoff, individual events separated from
continuous streamflow time series (Blume et al., 2007) are attributed to their rainfall triggers and
characterized by means of dimensionless variables (e.g., event runoff coefficient, time scale and rise
time) (Merz and Blöschl, 2009a; Gaál et al., 2012). Links among event characteristics and climate
and landscape features are then searched to provide insights on the physical drivers of the event
runoff response.
However, a limited number of studies exist that analyze event characteristics of large samples
of river basins. A countrywide study of several hundred Austrian catchments ranging from high
alpine snow-dominated to drier lowland catchments by Merz and Blöschl (2009a) showed that
climate imposes a first-order control on the event runoff coefficient, whereas land use, soil types
and geological classes have minor importance. Norbiato et al. (2009) reported that although cli-
matic descriptors (e.g., long-term mean annual precipitation) are the most important explanatory
variables of the spatial variability of event runoff coefficients in alpine Italian catchments, also
geology (i.e., permeability index) plays an important role in drier catchments. Differences among
event runoff coefficients observed in 17 alpine Swiss catchments are instead primarily explained
by topographic characteristics, drainage density and geology (Gottschalk and Weingartner, 1998).
Finally, although event time scales are primarily a function of climate processes in most Austrian
catchments (Gaál et al., 2012), they were also found to be a byproduct of geological structure, soil
type and geomorphological properties in some cases.
Despite these studies provide a deeper insight on runoff controls in several catchments, they all focus
on the alpine region and therefore their results may be difficult to generalize for other landscapes
and climates. The presence in alpine environments of a clear topographically-induced precipitation
gradient coinciding with changes of subsurface storage capacity and land use is likely to result in
strong links of event characteristics with climatic or topographical variables. A wider and more
heterogeneous set of catchments and climate types is required for more comprehensive analyses
and sound results. Additionally, not only characteristic values but also variability and seasonality
of event runoff coefficients and time scales should be examined as hydrological signatures, since
they might help to clarify the role played by catchment storage capacity.
Identification of the settings that determine certain runoff responses usually involves the analy-
sis of landscape and climate descriptors of the considered catchments. The choice of the set of
catchment descriptors to be used in the analysis is a somehow subjective matter, often influenced
by data availability and by the researchers’ perspectives on what are the relevant variables. An
examination of 42 manuscripts published from 1989 to 2009 revealed the use of 66 unique cli-
matic variables, 72 topographic and geomorphologic characteristics, 15 land use classes and 98
soil properties (Ssegane et al., 2012a). The most frequently used variables were catchment area,
mean elevation and mean annual precipitation. The least used were soil properties, although their
importance is widely recognized (Oudin et al., 2010). The hydrological relevance of the selected
descriptors is then normally tested by the strength of their link with signatures of runoff behavior
and is quantified by means of different methods ranging from empirical inference (e.g., Sawicz
et al., 2011) to bivariate correlations (e.g., Merz and Blöschl, 2009a; Gaál et al., 2012), stepwise
regression models (e.g., Ssegane et al., 2012a) and cluster similarity (e.g., Di Prinzio et al., 2011;
Ley et al., 2011; Razavi and Coulibaly, 2013). It is worth to notice that a-priori choice of catch-
ment descriptors may significantly affect the conclusions of the studies (Ssegane et al., 2012a).
Reducing the dimensionality of the available set of catchment descriptors by means of multivariate
analysis (e.g., Principal Component and Canonical Component Analysis) and variable selection
methods (e.g., Olden and Poff, 2003; Di Prinzio et al., 2011) has the purpose of minimizing their
redundancy and identifying relevant catchment descriptors able to characterize regional hydro-
logic behaviors (Ssegane et al., 2012b). The performance measures used by the variable selection
methods largely depends on the scope of the application (i.e., process understanding, identification
of homogeneous hydrological regions, regionalization). Studies aiming at process understanding
often opt for simple one-dimensional correlation approaches applied to small sets of subjectively
pre-defined catchment descriptors (Ssegane et al., 2012b). This causes discrepancies among studies
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and may undermine accurate predictions (Olden and Poff, 2003), thus leading to fragmented and
contradictory information regarding spatial controls of runoff response.
The purpose of this study is to analyze regional patterns of runoff response in the whole of Ger-
many using event characteristics as hydrological signatures, and to identify their spatial controls.
Specifically, we address the following research questions:

• What are the spatial controls of event characteristics in a wide range of catchments encom-
passing different landscape and climatic regions?

• Which generic group of catchment descriptors (e.g., climate, topography, soil properties, land
use or hydrogeology) is the most informative for understanding spatial variability and predict-
ing event characteristics? Which variable selection method is appropriate for identification
of relevant catchment descriptors?

• Can emergent regional patterns of event characteristics be explained from a hydrological point
of view, and do they provide inference regarding dominant runoff generation mechanisms?

In this work we apply the concept of comparative hydrology. As Sivapalan (2009) suggested: “In-
stead of attempting to reproduce the response of individual catchments, research should advance
comparative hydrology, aiming to characterize and learn from the similarities and differences be-
tween catchments in different places, and interpret these in terms of underlying climate-landscape-
human controls.” To do so, we analyze event characteristics (Chapter 3.3.1) from 196,073 rainfall-
runoff events separated from hydro-climatic time series observed in 401 German catchments using
the event separation method described in Tarasova et al. (2018b) (Chapter 3.3.2). To reduce the
effect of subjective pre-defined choices of hydrologically-relevant climate and landscape character-
istics we select them from the widest possible set of catchment descriptors belonging to generic
groups usually adopted in regional studies (Chapter 3.2) by means of different variable selection
methods (Chapter 3.3.4.2) and performance measures (Chapter 3.3.4.3 and 3.4.3.2). Controlling
climate and landscape characteristics are assumed to be those which allow for reproducing spatial
clustering of catchments with similar event characteristics (Di Prinzio et al., 2011) and for predict-
ing values of event characteristics in a regionalization experiment. In Chapter 3.5.3 we merge and
interpret the results of the performed data-based analysis of emergent regional patterns of event
characteristics and their spatial controls with the findings of the companion study of Tarasova
et al. (2018b) on temporal dynamics of event runoff response, and illustrate archetypical catch-
ment structures and behaviors from a hydrological point of view.
In light of the discussion above, we believe that runoff event characteristics are a valuable finger-
print of catchment behavior that synthesizes internal states and dynamics of a catchment (Blöschl
et al., 2013b). Analyzing their spatio-temporal patterns might provide more insight into similarities
and dissimilarities of catchments’ response to rainfall, and hence help to improve regionalization
approaches based on physical similarity and regional conceptual rainfall-runoff modeling, where the
choice of model structure is challenged by simplicity and appropriate representation of the dom-
inant runoff processes in the study area (Fenicia et al., 2008). Moreover, understanding regional
heterogeneities of the runoff response and of its drivers might provide insights on the heterogeneity
of flood generation processes and on the physical controls of flood hazard (Rogger et al., 2013).

3.2 Data and study area

The study area is the whole of Germany. The western part of the country is influenced by maritime
climate with prevailing westerly circulation patterns. Their influence decreases toward the East,
where a more continental climate dominates. The orographic effect of the Central Uplands and the
Alps plays an important role in shaping spatial patterns of precipitation (Figure 3.2b). Germany
has four major landscape regions (Figure 3.2a): the North German Plain, Central Uplands, South
German Scarplands and Alpine Forelands. The North German Plain was formed by glacial and
periglacial geomorphologic processes which resulted in a very flat landscape with porous permeable
aquifers (Figure 3.2c). The eastern part of the lowlands has multiple lakes left behind during
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glaciers’ retreat, while the western part is intensively used for agricultural purposes (Figure 3.2d).
The Central Uplands belong to the oldest mountains in Europe and exhibit a wide variety of
forms due to the long-term effects of different erosion processes. Different types of aquifers (e.g.,
fractured, karstic) and aquitards can be found here (Figure 3.2c). The South German Scarplands,
adjacent to the Upper Rhine and Main Valley (Figure 3.2a), are characterized by escarpments.
Exposure of limestone due to the uplift led to considerable karstification (e.g., in the Black Forest).
The Alpine Forelands were shaped during the Ice Age and comprise different geologic formations
(Figure 3.2c). The south boundary of the Alpine Foreland is a narrow strip of the Bavarian Alps,
which are part of the Northern Limestone Alps with karstic aquifers (Figure 3.2c) and several lakes
of glacial origin (Figure 3.2a). Catchments of the Alpine Foreland drain through the Danube to
the Black Sea. All other German catchments drain either to the North or to the Baltic Sea.
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Figure 3.2: The study area is the whole of Germany, which is divided into four main landscape units (the North German

Plain, Central Uplands, South German Scarplands and Alpine Foreland region). The names of smaller natural
regions of Germany are also indicated. 401 catchments where daily flows are not affected by anthropogenic
modifications were selected based on data availability. Elevation (a), mean annual precipitation (b), aquifer
type (c) and land use (d) are indicated by the color of the background

All river catchments where runoff observations are available but flows are reported to be disturbed
by large reservoirs or control gates (Lehner et al., 2011) were removed from the dataset. Moreover,
catchments were removed from the dataset if visual examination revealed obvious flow disturbances
and if for them the performance (i.e., Kling-Gupta Efficiency (KGE)) of a simple hydrological
model modèle du Génie Rural à 6 paramèters Journalier (GR6J) was less than KGE = 0.7
(Poncelet et al., 2017). 401 German catchments were finally selected based on these criteria. The
area of the selected catchments ranges from 31 to 23,700 km2, with a median value of 476 km2.
Event separation was performed on the observed discharge data for the time period from 1979 to
2002 (22 years). Information about irrigation and groundwater abstraction was not available at
catchment scale. According to the Federal Institute for Geosciences and Natural Resources (BGR),
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groundwater abstraction countrywide accounts for about 12% of the annual recharge (48 km3), and
only 2000 km2 of agricultural areas (mostly in the North-East of the country) are irrigated (Siebert
et al., 2013). This makes daily losses of streamflow due to anthropogenic withdrawals irrelevant
for the purposes of rainfall-runoff analysis, as they do not affect the dynamics of rainfall-runoff
events at daily scale.
Apart from observed daily runoff time series, daily precipitation time series obtained from the
REGNIE dataset (Rauthe et al., 2013) provided by the DWD, and snowmelt time series simulated
by the mHM model (Samaniego et al., 2010; Kumar et al., 2013) and provided by Zink et al. (2017)
were used in this study.
A wide range of catchment descriptors (CDs) representing climate, topography, geomorphology,
land use, soil physical and soil water properties, hydrogeology and geology of every study catchment
(Table 3.1) was acquired and examined to identify potential spatial drivers of event characteristics.
These generic groups of descriptors are typically used for regionalization studies (Oudin et al., 2010;
Ssegane et al., 2012b; Blöschl et al., 2013b). Time-varying attributes were aggregated by computing
their mean or median values for every catchment (e.g., mean annual precipitation). Categorical
data (e.g., land use) were transformed to continuous variables, by deriving percent of catchment
area covered by specific land uses. The resolution of gridded data layers and the map scale of vector
data are summarized in Table 3.1 for each generic group of catchment descriptors. The potential
relevance of each group for event runoff response is presented in Table 3.2. A comprehensive list
of the catchment descriptors used in this study, their relevance for event runoff response and data
quality of respective layers is reported in the Supporting Information (Chapter 3.6, Table 3.3).

3.3 Methods

3.3.1 Event characteristics as hydrological signatures

Every rainfall-runoff event examined in this study is described by means of four event character-
istics described below and in Table 3.2. These characteristics provide information on short-term
runoff dynamics which might point at the nature of rainfall partitioning and storage in the catch-
ment as well as indicate dominant processes of water release from the river basin. Inter-catchment
differences of these characteristics thus provide essential information about spatial differences in
dominant runoff generation processes.
The event runoff coefficient (rc) [dimensionless] is defined as the ratio between the volumes of the
quick component [mm] of a particular runoff event and the respective rainfall and/or snowmelt
event [mm]. It characterizes the portion of rainfall immediately contributing to event runoff and
the portion that is instead stored in the subsurface or evaporatranspirated from the catchment.
The runoff event time scale (ts) [days] is the ratio between quick runoff volume [mm] and peak
discharge [mm/day] (Gaál et al., 2012), and characterizes the shape of the hydrograph and the
duration of events. The event time scale is an indicator of catchment flashiness and of the im-
portance of fast runoff generation processes, such as overland flow or fast subsurface storm flow.
Fast-reacting catchments will have small event time scales, while catchments with slower runoff
generation processes tend to have larger time scales.
The relative importance of fast and slow runoff generation processes within one event can be de-
scribed by the event rise time (rt) [dimensionless], which is the ratio of the duration [days] from
the beginning of the event till the day when peak discharge is observed (Bell and Om Kar, 1969)
and the overall duration of the event in days. It shows how fast the peak is reached. When an
event with mixture of runoff generation processes occurs, event rise can be an indicator of relative
importance of fast components.
Abundance or absence of multiple-peaks (multi) in the event hydrographs provides information
on the typical recurrence interval of rainfall and snowmelt events in a given catchment and is an
important indicator of possible event-fed saturation of the catchment.
In this study we use 11 metrics describing mean values, variability and seasonality of these four
event characteristics (Table 3.2) that comply with the guidelines for hydrological signatures pro-
posed by McMillan et al. (2017), i.e. they are characterized by identifiability, robustness, consis-
tency, representativeness and discriminatory power. The metrics were derived for each catchment
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Table 3.1: Metadata of catchment descriptors (CDs)

Group of CDs, data

source, resolution

and map scale

Description

Number of

continuous

CDs

Number of

categorical

CDs

Climate; DWDa(1-8 km
raster data)

Climatic settings (mean annual precipitation, air
temperature, evaporation) and their seasonality;

characteristics of wet spells (mean volume of
precipitation events, their seasonality and variation)

and dry spells (maximum and median duration)

12 -

Topography and
geomorphology; SRTM

(30 m raster data)

Basin area, topographical (elevation, slope, aspect,
topographic wetness index) and geomorphological
characteristics of the catchment (drainage density,
length and slope of the main channel, number of

junctions)

9 -

Land use; European
Environmental Agency
(EEA) (100 m raster

data)

Percent of catchment area covered by specific land
cover groups (artificial surfaces, agricultural
surfaces, different types of forest, shrub and

herbaceous vegetation, open surfaces, wetlands and
water bodies)

- 9

Soil physical properties;
HWSD (0.4-1km raster
data); BGR (1:1000000

map scale for vector
data)

Texture properties of topsoil and subsoil (percent of
clay, sand, silt and gravel), morphological properties

of soil (e.g., bulk density), soil depth, soil type
(based on soil genesis)

11 8

Soil water properties;
BGR (400 m raster

data); Zink et al. (2017)
(4 km raster data)

Soil properties affecting soil water movement such
as available water content, field capacity, presence
and location of impermeable layers within the soil

column, the ability of soil to drain water and
characteristics of soil wetness (mean annual soil

moisture state)

2 16

Hydrogeology; BGR (1
km raster data;

1:200000 map scale)

Hydrogeological settings (hydrostratigraphic units,
consolidation, yield, recharge) and hydraulic

properties of upper aquifer (hydraulic conductivity)

1 21

Geology; BGR
(1:200000 and 1:1000000

map scale)

Geologic setting of the catchment (rock origin and
types of geological formation)

- 26

a Web links of the data sources are provided in the Acknowledgement and Data Chapter. The source of data for
each individual catchment descriptor is provided in Table 3.3

from a large sample of rainfall-runoff events separated from continuous daily time series (Chapter
3.3.2), thus singling out possible short-term errors in streamflow and rainfall observations (iden-
tifiable) and reducing the effect of extreme events occurred (robust). Event characteristics used
in this analysis are dimensionless and do not require scaling (consistent). Moreover, they refer to
catchment-scale behavior and are not sensitive to exact gauge location (representative). Finally,
the chosen event characteristics have high discriminatory power as their differences directly imply
the difference in partitioning, storage and transport of precipitation water (Norbiato et al., 2009;
Gaál et al., 2012).

3.3.2 Event separation

To derive event characteristics continuous hydro-climatic time series were separated into rainfall-
runoff events by using the time-series-based method presented by Tarasova et al. (2018b), which
consists of the following steps:

i Base and quick flows are separated using a simple smoothing algorithm introduced by Insti-
tute of Hydrology (1980);
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ii Rainfall and snowmelt events are attributed to quick flow events if they occurred within the
season-specific median lag time of the catchment (Mei and Anagnostou, 2015);

iii Thresholds used to distinguish multiple-peak events from overlapping single-peak events
are identified by iteratively comparing the reference distribution of runoff coefficients of
single-peak events with the one obtained for single-peak components of multiple-peak events
(Tarasova et al., 2018b).

3.3.3 Identifying regions of homogeneous event runoff response

By identifying groups of catchments with similar event characteristics we aim to understand spa-
tial patterns of event runoff response. Catchments exhibiting similar event runoff response were
clustered using a data-driven classification method, (i.e., unsupervised artificial neural networks).
This technique, also known as Self-Organizing Maps (SOM), was previously used for catchment
classification (e.g., Di Prinzio et al., 2011; Ley et al., 2011) and proved to outperform standard
linear procedures (Razavi and Coulibaly, 2013). The SOM is a non-linear technique, which is able
to compress high-dimensional data into a low-dimensional output space while preserving the most
essential information (Kohonen, 2001). The size of the SOM is user-defined, and was set to the
desired number of clusters in this study. The number of clusters was chosen after comparing the
SOM quality of different neuron sizes. To avoid misclassification the clustering was repeated 100
times and the probability of a catchment to be assigned to a specific cluster was assessed.

3.3.4 Linking event characteristics and catchment descriptors

To understand spatial controls of event runoff response, event characteristics were related to catch-
ment descriptors. The flowchart of the methodology used for understanding spatial controls of
event runoff response in study catchments is presented in Figure 3.3. We used the widest possible
set of descriptors, encompassing generic groups typically used in regionalization studies (Chapter
3.2). First, the strengths of the relationships among individual event characteristics and catchment
descriptors were examined using bivariate correlation analysis (Chapter 3.3.4.1). Since catchment
descriptors are likely to show complex inter-correlations due to the co-evolution of climate and
landscape, further multivariate analyses were applied. Different variable selection methods were
utilized to identify highly informative and non-redundant catchment descriptors (Chapter 3.3.4.2)
and to reduce the impact of subjective pre-defined choices of climate and landscape character-
istics in the identification of the main controls on event characteristics. The variable selection
methods were evaluated through two independent approaches. First, we adopted the hypothesis
of Di Prinzio et al. (2011) and Ssegane et al. (2012b), namely that catchment classification using
hydrologically-relevant catchment descriptors would display the highest similarity to the reference
clustering obtained by using event characteristics. Following this hypothesis, we analyzed which se-
lection of CDs is superior in reproducing spatial patterns of event characteristics (Chapter 3.3.4.3).
In a second approach, we assessed each set of the CDs by its ability to predict event characteristics
in a regionalization experiment using multiple regression models. Additionally, the value of each
generic group of CDs (e.g., climate, geology, land use) for catchment classification was examined
in a similar fashion.

3.3.4.1 Correlation analysis A simple descriptive statistical analysis was used as starting point
for understanding the relationships among event characteristics and catchment descriptors. In
particular, pair-wise correlations between individual event characteristics and catchment descrip-
tors were calculated based on Spearman-rank correlation coefficient and summarized in a matrix.
To explore these interactions the correlation matrix was re-arranged and displayed as a heatmap,
which was used to highlight the groups of catchment descriptors that had similar effect on event
characteristics.
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Table 3.2: Summary of the rainfall-runoff event characteristics, the metrics used to describe them in this

study and the generic groups of catchment descriptors that are supposed to control them

Description and

metrics
Implication

Possible controlling catchment

descriptors

Event runoff coefficient (rc): shows how much of rainfall (snowmelt) becomes event runoff

Mean value (rc.mean)
[dimensionless]

Inference about dominant runoff
generation process

Wetness conditions (climate, soil water); subsurface
storage and flow conditions (soil, soil water,

hydrogeology, geology); infiltration capacity (soil,
land use); interception (land use)

Coefficient of variation
(rc.cv) [dimensionless]

Variability: sensitivity of runoff
response to wetness state and natural

variability of climatic forcing

Variability of precipitation events (climate);
variability of wetness conditions (climate);

subsurface storage (soil, geology)

Ratio of summer and
winter medians
(rc.sum2win)

[dimensionless]

Seasonality: origin of variability and
inference about the nature of its

drivers

Seasonality of precipitation events (climate);
seasonality of wetness conditions (climate); seasonal

cycle of vegetation (land use)

Event time scale (ts): it shows event duration and shape of the hydrograph

Mean value (ts.mean)
[dimensionless]

Inference about fast and slow runoff
generation mechanisms (Gaál et al.,

2012)

Characteristics of precipitation events (climate);
subsurface storage (soil, geology); interception (land
use); drainage network (topology, geomorphology)

Coefficient of variation
(ts.cv) [dimensionless]

Variability: sensitivity of runoff
response to wetness state and natural

variability of climatic forcing

Variability of precipitation events (climate);
variability of wetness conditions (climate);

subsurface storage (soil, geology)

Ratio of summer and
winter medians
(ts.sum2win)

[dimensionless]

Seasonality: origin of variability and
inference about the nature of its

drivers

Seasonality of precipitation events (climate);
seasonality of wetness conditions (climate); seasonal

cycle of vegetation (land use)

Event rise time (rt): it shows location of the peak within event (hydrograph’s skew)

Mean value (rt.mean)
[dimensionless]

Related to time of concentration and
travel time (Bell and Om Kar, 1969)
and dominance of fast/ slow runoff

components

Drainage network (topology, geomorphology);
wetness conditions (climate, soil water); subsurface

storage (soil, geology); infiltration capacity (soil,
land use)

Coefficient of variation
(rt.cv) [dimensionless]

Variability: sensitivity of runoff
response to wetness state and natural

variability of climatic forcing

Variability of wetness conditions (climate);
subsurface storage (soil, geology)

Ratio of summer and
winter medians
(rt.sum2win)

[dimensionless]

Seasonality: origin of variability and
inference about the nature of its

drivers

Seasonality of precipitation events (climate);
seasonality of wetness conditions (climate); seasonal

cycle of vegetation (land use)

Occurrence of multiple-peak events (multi): single-peak or multiple-peak structure of event hydrograph

Fraction of
multiple-peak events

among all events (multi)
[dimensionless]

Inference about possible runoff
generation processes

Characteristics of precipitation events (climate);
wetness conditions (climate, soil water); subsurface

storage (soil, geology); snowmelt occurrence
(climate, topography)

Ratio of summer and
winter medians

(multi.sum2win)
[dimensionless]

Seasonality: origin of variability and
inference about the nature of its

drivers

Seasonality of characteristics of precipitation events
(climate); seasonality of wetness conditions

(climate)

3.3.4.2 Variable selection methods We have tested the three independent methods described
below to reduce the dimensionality of data and select only highly informative and non-redundant
catchment descriptors:

• Information Gain (IG) – The information gain method compares pairs of correlated ex-
planatory variables based on their relevance (i.e., mutual information between variable and
response), redundancy (i.e., mutual information between variables) and conditional redun-
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Separation of events from TS 

Event characteristics: 
mean, cv, seasonality  
for each catchment 

Regional 
clustering 

Selection of catchment 
descriptors by different 

variable selection methods 

Selected catchment 
descriptors 

Hydrologically-
relevant catchment 

descriptors 

Interpretation  

Regional 
clustering 

streamflow 

physical characteristics 
of catchments 

Performance measures 

Results 

Operations using: 

Cluster similarity 

Validation of CDs-
based MLR 
predictions 

Fitting CDs-based 
MLR models to 
predict event 
characteristics 

Figure 3.3: Flowchart of the methodology used to identify hydrologically-relevant catchment descriptors based on their

predictive power and their ability to reproduce observed spatial patterns of event characteristics. TS – time
series; CD – catchment descriptor; MLR – multiple-regression models

dancy (i.e., the increase of mutual information between previously selected variables and the
response conditioned on the currently analyzed variable) (Brown, 2009). The variable with
the highest information gain is retained (Ssegane et al., 2012a). In this study, the informa-
tion gain was computed for the catchment descriptors exhibiting correlation coefficient higher
than 0.7 with any other catchment descriptor. The IG for predicting each event character-
istics was computed separately, and the average IG was then used to select the catchment
descriptors to retain.

• Principal Component Analysis (PCA) – The Principal Component Analysis is a statistical
technique that uses orthogonal transformation to translate original correlated variables into
uncorrelated Principal Component (PC) (Haan, 1977), thus revealing the underlying struc-
ture of data. The first PC explains the larger part of the variance of data; each following
component is orthogonal to the preceding one and contributes less to the total variance. The
PCA is often applied in hydrology to reduce data dimensionality (e.g., Razavi and Coulibaly,
2013) and select informative and non-redundant catchment descriptors (e.g., Olden and Poff,
2003), without however establishing physical relationship between explanatory and response
variables (Ssegane et al., 2012a,b). Significant principal components were identified in this
study by using a broken-stick method based on eigenvalues from random data (Frontier,
1976; Jackson, 1993). Since PCs are a linear combination of the original variables, the rel-
ative contribution of each catchment descriptor to each PC is known and can be compared
to the expected average contribution calculated as C = 1

n ∗
∑m

i=1Eigi, where Eigi is the
eigenvalue of each PC (i.e., the variance of the dataset in the direction i), n is the number
of the original variables, and m is the number of the significant PCs considered. Catchment
descriptors whose contributions to the significant PCs are higher than the expected average
were selected for further analysis.

• Backward Elimination (BE) – The approach is similar to the backward elimination procedure
used for stepwise regression model selection. However, the tool to select catchment descrip-
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tors was catchment clustering instead of multiple regression analysis. Initially, a benchmark
value of a metric of cluster similarity (i.e., Adjusted Rand Index (ARI)) (see Chapter 3.6.1)
was calculated by using all available catchment descriptors and the reference clustering ob-
tained from event characteristics. In a second step the deletion of each catchment descriptor
was tested and the ARI was re-calculated. The catchment descriptor, whose deletion loss
determined the largest improvement of the ARI, was eliminated from the subset and the
benchmark ARI was updated. The procedure was repeated until no more improvement
could be achieved.

3.3.4.3 Performance of variable selection methods The performance of the three variable selec-
tion methods (Chapter 3.3.4.2) and of each single (i.e., one at a time of the seven) generic groups
of catchment descriptors (Table 3.1) was assessed according to the following criteria:

• Cluster similarity – Alternative catchment classifications were performed through SOM using
all CDs and various subsets of the. The ARI (Hubert and Arabie, 1985) was adopted as a
measure of the similarity between the reference classification based on event characteristics
and each alternative classification. The ARI is an adjusted version of the Rand Index (Rand,
1971) that can assume negative values and is equal to 1 in case of random clustering with
the same number of objects in each class (see Chapter 3.6.1). ARI has higher discriminatory
power than the original Rand Index and is also less sensitive to the number of classes (Di
Prinzio et al., 2011). To avoid the effect of misclassification the mean ARI of 100 independent
classifications was used instead of the ARI of a single realization (Sawicz et al., 2011).

• Predictive potential – The effectiveness of the variable selection methods and individual
generic groups of catchment descriptors was assessed in terms of the predictive performance
of stepwise regression models. A regression model expresses the relation between dependent
variables (i.e., event characteristics) and independent variables (i.e., catchment descriptors).
The regression model is constructed by means of a multiple regression analysis comprising,
model selection, estimation of model parameters and assessment of errors (Haan, 1977). The
Akaike Information Criterion (AIC) (Akakike, 1974) was used for combined forward and
backward stepwise model selection. The performance of the selected model was assessed
by averaging the normalized Root Mean Squared Error (nRMSE) between predicted and
observed values of each event characteristic using “leave-one-out” cross-validation procedure.
Here we use cross-validation performance rather than statistics of model fit as an assessment
criterion since good performance in terms of the latter can be erroneous due to model over-fit
(Jobson, 1991). Two predictive performance measures were calculated: the performance of
a general model for all 401 German catchments and the performance of specific models for
each cluster catchments exhibiting of similar event runoff response (Chapter 3.3.3). The
frequency with which every CD was selected as an explanatory variable for the regression
model was recorded in order to identify hydrologically-relevant catchment descriptors.

3.4 Results

3.4.1 Event characteristics and their spatial patterns

In this study a total number of 196,073 events of various magnitudes and occurrence time during the
period 1979-2002 were separated from continuous hydro-climatic time series in 401 mesoscale Ger-
man catchments. An example of event separation for 6 representative catchments with contrasting
runoff regime is presented in Figure 3.10. The spatial distribution of mean value, variability and
seasonality of event characteristics obtained from the separated rainfall-runoff events is displayed
in Figure 3.4, which provides a first glimpse on the variability of event runoff response in Germany.

High event runoff coefficients are typical of mountainous regions of the Central Uplands (e.g.,
Harz, Ore Mountains, Thuringian Forest, and Rhenish Massif), the South German Scarplands
(e.g., Black Forest, Swabian Jura) and the Alps (Figure 3.4a). The smallest runoff coefficients are
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Figure 3.4: Spatial distribution of event characteristics: metrics describing a-c) event runoff coefficients (rc), d-f) event

time scale (ts), g-i) event rise time (rt) and j-k) fraction of multiple-peak events (multi) are displayed, together
with the; l) main natural regions of Germany. The top row (a, d, g, j) displays the average (mean) of the
respective event characteristics, the middle row (b, e, h, k) shows the ratio between summer and winter median
values (sum2win), whereas the bottom row (c, f, i) shows the coefficient of variation (cv) of the considered event
characteristic. Solid black lines represent the borders of the main natural regions of Germany (Figure 3.2a)

found for catchments in the Palatine Forest located in the Upper Rhine Scarplands. In the low-
lands, the wet western part of the North German Plain (see Figure 3.2b) is associated with higher
mean and lower variability of event runoff coefficients (Figure 3.4c), while the drier eastern part
has very low mean and generally highly variable runoff coefficients. Similarly, dry catchments of
the Main basin exhibit highly variable runoff coefficients. Three regions with different seasonality
of the runoff coefficients emerge (Figure 3.4b). Higher winter event runoff coefficients occur in
the Central Uplands, especially in their western part. The lowland catchments, especially in the
eastern part (e.g., the Loess belt), have weaker seasonality characterized by slightly higher runoff
coefficients in winter than in summer. No seasonal variability is observed in the Alpine Foreland.
Long event time scales are typical of catchments where runoff is strongly smoothed by the effect
of lakes (e.g., the Spree and Havel catchments in the eastern part of the North German Plain; the
Amper and Alz catchments in the Alpine Foreland) (Figure 3.4d). Larger catchments tend to have
longer event time scale as well. Also in the Thuringian Forest and the Harz Mountains events have
on average also long time scales, especially in summer when snowmelt occurs. In the lowlands of
the Loess Belt region events typically have long time scale. A clear difference is identified between
Alpine Foreland catchments with melt-dominated headwaters in the Alps and flatter catchments
of the lower Alpine Foreland. Small event time scales are instead typical of the South German
Scarplands (e.g., the Neckar River). The small mountainous catchments of the Central Uplands
also have high variability and seasonality of the event time scale (Figure 3.4e, f).
Short and variable event rise times in mountainous catchments contrast with long rise times char-
acterized by little variability in lowland catchments (Figure 3.4g, i). Longer summer rise times are
observed in almost all catchments (Figure 3.4h).
Multiple-peak events are very frequent in the Alpine Foreland especially in summer, when snowmelt
plays an important role in runoff generation (Figure 3.4j, k). Also in other mountainous regions
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(e.g., the Black and Bavarian Forests and the Rhenish Massif) summer multiple-peak events are
frequent. On the contrary, in lowland catchments of the western part of the North German Plain
multiple-peak events occur in winter. Finally, multiple events are extremely rare in the eastern
part of the North German Plain.

3.4.2 Regions with homogeneous event runoff response

Clustering of the derived event characteristics (Figure 3.5a) has reveals generally clear regional
patterns of event runoff response in Germany (e.g., catchments of the Loess Belt, Rhenish Massif,
Black Forest and Ore Mountains are clustered together respectively). On the other hand, there
are also evidences of regional inhomogeneity of runoff response (e.g., the runoff response of several
catchments of the Alpine Foreland is similar to that of catchments in the North German Plain;
catchments of the South Scarplands are split among several clusters).
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Figure 3.5: Linking event characteristics and catchment descriptors (CDs) through catchment classification: a) reference

classification obtained by using Self-Organizing Maps based on event characteristics (SOM.event); b) alternative
classification based on the CDs selected by the BE method (SOM.BE); c) alternative classification using all CDs
(SOM.ALL). The hexagonal topology of the output layer with cluster numbering is depicted in the top left corner
of the figure. The bottom panel represents the hexagonal topology of the output layer with node weight vectors
derived from normalized values of the original variables. Solid black lines represent the borders of the main
natural regions of Germany (Figure 3.2a)

Cluster 1 (Figure 3.5a) consists of the western mountainous catchments (the Rhenish Massif, Black
Forest, Swabian Jura) and the Bavarian Forest catchments. Catchments of this cluster are charac-
terized by very high and slightly variable runoff coefficients with higher values in winter, moderate
and slightly variable time scales with shorter events in summer and very short rise times especially
in winter. Multiple-peak events are very frequent, especially in winter.
Cluster 2 includes most of the catchments of the Alpine Foreland and the Alps, excluding small flat
catchments in the lower reaches of Danube tributaries (Figure 3.5a). For these catchments very long
event time scales and high runoff coefficients are typical, and events often exhibit multiple-peaks.
There is almost no seasonality and variability of event characteristics, although multiple-peak
events are more frequent in summer.
The catchments of the lower Central Uplands (with the exception of those belonging to their moun-
tain ranges) are aggregated into Cluster 3 (Figure 3.5a). Here runoff coefficients and rise times
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are moderate but variable, while both average values and variability of time scales are moderate.
In winter runoff coefficients and time scales are higher, while rise times are shorter. Multiple-peak
events are rare and usually occur in winter.
The lowland catchments of the North German Plain, flat lowland catchments of the Danube basin,
and dry hilly catchments of the Main basin constitute Cluster 4 (Figure 3.5a). In this cluster
runoff coefficients are small, have low variability and much higher values in winter. Time scales
are rather long and show almost no variability and no seasonality. Rise times are moderately long
with almost no variability or seasonality. There are almost no multiple-peak events in catchments
of this cluster.
Cluster 5 refers to the eastern part of the Central Uplands (the Ore Mountains and Thuringian
Forest) (Figure 3.5a), where event runoff coefficients and time scales are relatively high and vari-
able, while rise times are short and variable. Runoff coefficients, time scales and rise times are
much higher in winter. Infrequent multiple-peak events occur mostly in winter.
Finally, Cluster 6 (Figure 3.5a) combines catchments in the transition zone between lowlands and
uplands (e.g., the Loess Belt and Thüringen Basin), and noncontiguous catchments in the Rhine
Valley. Very low on average but very variable runoff coefficients and time scales with much larger
values in winter are typical of these catchments. Rise times are very long and variable with shorter
values in winter. There are almost no multiple-peak events.

3.4.3 Linking event characteristics and catchment descriptors

3.4.3.1 Correlation analysis Relationships among event characteristics and catchment descrip-
tors were first investigated by means of simple correlation analyses. Figure 6 summarizes the results
of these analyses by means of a heatmap. Strong inter-correlation among catchment descriptors,
indicated by the prevalence of intense colors, was detected. Metrics related to event runoff coeffi-
cients and the fraction of multiple-peak events, show strong correlations with climatic (e.g., mean
annual precipitation MAP, mean volume of precipitation events WS ) and topographical (e.g., el-
evation, slope) descriptors. The event time scales mostly correlates with soil physical (e.g., the
fraction of silt or sand in the subsoil) and soil water (e.g., soil drainage ability) properties, while the
event rise times shows complex relationships with different groups of CDs, including climatic (e.g.,
dryness index PET.P, temperature MAT ), soil physical (e.g., bulk density of the topsoil tbulk) and
soil water (available water content awc) properties. The seasonality of the event characteristics,
especially the runoff coefficient (rc.sum2win), is affected by the seasonality of precipitation (i.e.,
high correlation with seasonality of precipitation amount P.sum2win and volume of wet spells,
WS.sum2win). Finally, the variability of the event characteristics (rc.cv, ts.cv and rt.cv) is higher
in catchments with small subsurface storage, indicated by a high fraction of aquifers with low
hydraulic conductivity (kf.Low2ExtremelyLow), aquitards (aquitard), silty subsoils (ssilt) and low
groundwater yield (Yless150 ) (Figure 3.6).
The identified correlation among catchment descriptors can negatively impact the predictive power
and stability of regression models (Jobson, 1991) that use them as explanatory variables to predict
characteristics of runoff events. Therefore, variables selection methods were applied with the goal
of selecting only highly informative and non-redundant catchment descriptors.

3.4.3.2 Performance of variable selection methods and generic groups of CDs We applied
three different variable selection methods (IG, PCA and BE) to identify sets of highly informative
and non-redundant catchment descriptors controlling event characteristics out of all the available
descriptors. Variable selection methods were evaluated by considering how well the spatial cluster-
ing of event characteristics was reproduced by clustering driven by the selected sets of CDs (Figure
3.5 and 3.7a), and how well multiple regression models estimated from the selected sets of CDs
predicted event characteristics (Figure 3.7b, c). In a similar fashion, we examined performances
of clustering and regression models which only use a single generic group of CDs (e.g. geology or
climate) to understand the value of each of them. As a baseline we considered the performance
obtained by using all available CDs.
Different numbers of catchment descriptors (from 15 for the BE to 84 for the IG methods) were
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Figure 3.6: Heatmap of the correlations among event characteristics and catchment descriptors (CDs). The CDs are color-

coded according to their generic group. Only the principal CDs identified through the PCA are shown (for
details refer to Chapter 3.3.4.2). A detailed description of the CDs is available in Table 3.10

selected by the examined variable selection methods (Figure 3.7a, Table 3.3). Only seven CDs
(catchment area area, agricultural land cover agri, groundwater recharge recharge and 4 geological
classes, see Table 3.3) have never been chosen.
In terms of cluster similarity, the BE method (Figure 3.5b) outperformed the PCA and IG methods
(Figure 3.7a). This result was expected since the BE method was designed to reproduce clustering
of the event characteristics. Both the PCA and IG methods provided selections of catchment
descriptors that are able to reproduce the observed patterns of event characteristics slightly worse
than by considering all catchment descriptors (Figure 3.7a).
In terms of prediction potential of stepwise regression models only the PCA selection method is
comparable to considering all CDs, while the IG and BE methods perform slightly worse (i.e.,
they exhibited higher errors, see Figure 3.7b). When regression models are estimated for each
individual cluster of catchments (i.e., smaller but more homogeneous sets of catchments are used
for model estimation and subsequent prediction of event characteristics) the model selected from
all available CDs has the poorest performance (Figure 3.7c). Apparently, high inter-correlation
of the CDs together with smaller sample size of catchments lead to biased model selection and
multicollinearity. The BE selection method performs slightly better than the other variable selec-
tion methods. However, compared to other event characteristics the prediction of metrics of runoff
coefficient is still challenging similar to all other variable selection methods (Figure 3.7b, c).
Single generic groups of catchment descriptors show variable performances. The performances in
terms of cluster similarity of climatic and hydrogeological CDs are comparable to the performance
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Figure 3.7: Summary of the variable selection performance: a) classification performance based on cluster similarity eval-

uated by means of the ARI between the reference and alternative classifications. The numbers on the bars
indicates the number of CDs selected for catchment classification; b) prediction performance of stepwise regres-
sion models (normalized root mean square error (nRMSE) of “leave-one-out” cross-validation procedure) for
each event characteristic; c) prediction performance of cluster-specific stepwise regression models (nRMSE) for
each event characteristic

of all CDs and of the set of CDs selected by PCA and IG methods (Figure 3.7a). The group
of climatic descriptors performs better than other groups for regionalization of event character-
istics using general regression model (Figure 3.7). Hydrogeological and geological characteristics
perform better than soil physical and soil water properties, land use, topography and geomorphol-
ogy for reproducing spatially coherent patterns of event characteristics (Figure 3.7a). However,
our analysis shows that geological variables, as well as land use and soil characteristics perform
quite poorly for regionalization of event characteristics. Cluster-specific regression models selected
from climatic, topographical and soil water descriptors show the best performance and outperform
models estimated from the whole set of available CDs (Figure 3.7c).

3.4.3.3 Dominant controls of event characteristics within homogenous regions According to
the best-performing variable selection method (i.e., the backward elimination method, BE) the
emerged regional patterns of event characteristics can be described by using a set of 15 catchment
descriptors which includes indicators of catchment wetness (e.g., mean annual precipitation MAP,
dryness index PET.P), climate seasonality (e.g., seasonality of precipitation events WS.sum2win),
catchment storage (e.g., soil depth), soil hydraulic conditions (e.g., texture of the subsoil tsilt,
presence of clay layer in the subsoil soil.ClayEnrich), presence of karst systems (e.g., presence of
limestone geo.limestone) and hydraulic properties of aquifers (e.g., hydraulic conductivity of upper
aquifer kf.Moderate2Low) (Figure 3.5b).
The importance of each of these 15 CDs to explain the variability of all selected CDs and to repro-
duce event characteristics in each cluster of catchments is presented in Figure 3.8. The height of the
bars shows the contribution provided by each single CD for explaining the variability of the selected
CD dataset. CDs which contribute above average (horizontal dashed lines) are referred as the prin-
cipal (Razavi and Coulibaly, 2013). Hatched bars show CDs that are most frequently selected by
regression models (Ssegane et al., 2012a) used for prediction of event characteristics within each
homogeneous cluster. Wetness conditions (e.g., PET.P), the texture properties subsurface soil
(e.g., tsilt and tclay) and storage properties defined by soil depth and hydraulic conductivity (e.g.,
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soil.depth and kf.Moderate2Low) are frequently selected as explanatory variables of cluster-specific
regression models and constitute the principal CDs in all clusters (Figure 3.8). Climatic variables
are instead the most informative for spatially dispersed Cluster 6 (Figure 3.8f). Land use and de-
scriptors of geological settings appear to have less explanatory power, accounting only for a small
portion of the variability of the selected CDs dataset. Only for Cluster 3 (i.e., Central Uplands)
land cover seems to play an important role.
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Figure 3.8: Contribution (%) of individual catchment descriptor CDs (selected through the BE method based on cluster

similarity) to the significant Principal Components (PCs) of each cluster. The CDs that contributed above
the average expected contribution were referred as the principal CDs (Razavi and Coulibaly, 2013). Cluster
numbering refers to topology of the SOM output layer (see Figure 3.5). Hatched bars indicate the most
informative explanatory descriptors defined as the variables most frequently selected by regression models for
prediction of event characteristics within the cluster (Ssegane et al., 2012a)

3.5 Discussion and Conclusions

3.5.1 Regions of homogeneous event runoff response

Clear regional patterns of event runoff response are visible in Germany due to the dominant role
of climatic conditions. However, exceptions that provide an insight on the role played by other
controls exist. For example, despite considerable differences in elevation and precipitation amounts
(Figure 3.2a, b), the flatter catchments of the Alpine Foreland show event runoff response more
similar to catchments of the North German Plains (Figure 3.5a, cluster 4) than to their snow-
dominated neighbors with headwaters in the Alps (Figure 3.5a, cluster 2). The reason of this
similarity is to be found in soil and hydrogeological properties of the Alpine Foreland catchments:
deep soils, permeable porous aquifers provide large subsurface storage, analogously to lowland
catchments of the North Plain. On the other hand, the strong dominance of Atlantic cyclones
in Western Germany (Hofstätter et al., 2016) attenuates differences in topography and geology
among western catchments (Figure 3.5a, cluster 1) and results in distinct behaviors of otherwise
similar western and eastern catchments. For example, the mountain regions of the Ore Moun-
tains (the Eastern Central Uplands) and the Black Forest (the South German Scarplands) have
different event characteristics (Figure 3.5a, cluster 1 and 5) despite similar geologic formations
and elevation ranges. The behavior of catchments in the Black Forest is rather similar to those in
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the Rhenish Massif (the Western Central Uplands), which have much lower elevation and different
hydrogeological settings.

3.5.2 Linking event characteristics and catchment descriptors

In order to identify catchment descriptors that embody the spatial controls of event characteristics
we searched for CDs a) whose spatial clustering is the most similar to clustering based on event
characteristics and which b) have the highest predictive power in estimating event characteristics
with multiple regression models in a regionalization experiment. We avoided subjective a-priori
choices of catchment descriptors by employing several variable selection methods and two different
performance criteria. Our results show that the variables selected by the best performing method
(BE) do not necessarily have very high correlation with event characteristics (Figure 3.5b and 3.6).
The BE method selected only 15 catchment descriptors (which is much less than the other variable
selection methods did) (Figure 3.7a), performed better in terms of cluster similarity and compa-
rable in terms of predictive performance. Selected CDs belong to five different generic groups of
descriptors: climate, soil, land use, hydrogeology and geology. Thus, we found several pivotal con-
trols but, differently from other studies, we could not identify one dominant driver, probably due
to the heterogeneity of the study region and to the varied scale of influence of different physical
processes. At national scale climate and hydrogeological settings are the two primary controls
on hydrological similarity. In fact, catchment classification based on climatic or hydrogeological
CDs alone provides clusters similar to those obtained by the classifying catchments based on event
characteristics (Figure 3.7a).
Differently from the results of Gottschalk and Weingartner (1998), topographic CDs were not
explicitly required to reproduce the observed patterns of event characteristics. However, clusters
with similar event characteristics organized themselves according to dominant landscape units (i.e.,
high range mountains, medium range mountains, hills, plains). Combinations of climatic descrip-
tors, soil properties and land use (e.g., forested areas) are essentially substitutes for topographic
features. Compared to climate, soil and hydrogeological properties, land use descriptors can pre-
dict event characteristics of the studied mesoscale catchments only to a limited extent (Figure
3.7-3.8). Abundance of agricultural areas in Germany leads to low variability of the adopted land
use descriptor. Hence, its explanatory and discriminative power is low in this study. Our results
confirmed the findings of Merz and Blöschl (2009a) and Gaál et al. (2012) about the irrelevance of
catchment size as spatial control of event characteristics for mesoscale catchments (>10 km2). For
smaller catchments, however, the effect might still be considerable as reported by Cerdan et al.
(2004). Geological classes that were not selected by any of tested methods are confined to the
specific regions and therefore probably are not informative for prediction at regional scale. The
poor explanatory power of the groundwater recharge descriptor can be explained by deficiencies of
its derivation. Indeed, it was obtained by Jankiewicz et al. (2005) based on water balances of 106
German catchments and then interpolated countrywide by using slope, drainage, land use, depth
of groundwater table and effective field capacity.
In summary, our findings reveal that when all the available catchment descriptors are used the
performance in terms of cluster similarity and predictive potential of cluster-specific models is
lower than the one obtained by only using the selected CDs. The application of a backward
elimination procedure to select relevant catchment descriptors promises accurate prediction of
spatial patterns and regionalized values of event characteristics. Hence, prior identification of
hydrologically-relevant catchment descriptors is essential for improving the performance of region-
alization methods based on physical similarity.

3.5.3 Hydrological interpretation of the emerged regional pattern of event characteristics
and their spatial controls

In this Chapter a hydrological interpretation of the findings of our data-based analysis is pre-
sented. The spatial analysis of event runoff characteristics reveals the existence of six clusters
of different event runoff behavior in Germany (Figure 3.5a), which can be effectively explained
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by 15 catchment descriptors (Figure 3.5b). In Figure 3.9 we generalize the findings by showing
for each cluster an archetypical catchment, where the mean values of the 15 CDs are visualized
(Figure 3.9, legend bottom panel) together with cluster typical event runoff characteristics, such
as the cumulative distribution function of event runoff coefficients, the typical shape of the runoff
hydrograph (inferred from values of event time scale and rise time) and the relationships of event
runoff coefficients with event rainfall volume and soil moisture (top of each cluster panel). We
also visualize some hydrological reasoning resulting from the analysis. We assume that saturation
excess is the primary runoff generation mechanism since for most of the analyzed catchments only
a limited relationship between event runoff coefficient and rainfall intensity was observed (Tarasova
et al., 2018b), thus implying that infiltration excess plays only a minor role. Therefore, the higher
the event runoff coefficient the higher the portion of catchment area that contributes to runoff.
Accordingly, the lower quartile of the typical cumulative distribution of event runoff coefficients for
each cluster (Figure 3.9, upper panel) represents the portion of catchment area that permanently
contributes to runoff generation (i.e., the permanently saturated region). Adopting the formula-
tion of Rogger et al. (2013), the upper quartile of the distribution of runoff coefficients indicates
the spatial extent of the variably saturated region, whereas the difference between lower and upper
quartiles provides information on the modality of increase of the variably saturated area. Since our
lumped approach does not allow for explicitly identifying which parts of a catchment contribute
to runoff, we plotted the runoff contributing portion of the catchment around the riparian areas
in Figure 3.9. Characteristic time scales and rise times provide inference about the importance
of fast and slow interflow for event runoff generation. Accordingly, we plotted arrows of various
thicknesses, indicating the relative contribution of fast and slow interflow and base flow in the dif-
ferent clusters. Finally, the importance of snowmelt for runoff generation can be inferred from the
seasonality of time scale and the occurrence of multiple-peak events. Crucial physical attributes of
catchments and key hydrological processes occurring in each cluster are discussed in the following.

Cluster 1. Small storage, in-phase seasonality of soil moisture and rainfall According to its
typical cumulative distribution of event runoff coefficients (Figure 3.9a, upper panel), the lower
quartile is much lower than the median, indicating that only a small portion of the catchment
area permanently contributes to runoff generation. On the contrary, the upper quartile is very
high, indicating that the spatial extent of the variably saturated region encompasses most of the
catchment area. A substantial difference between the lower and upper quartiles of the distribution
of runoff coefficients denotes an instantaneous increase of the saturated area (Rogger et al., 2013).
The fast interflow component plays a dominant role in event runoff generation for the fast-reacting
catchments of this cluster. Melt is relatively important as well.
In this cluster runoff coefficients strongly depend on the volume of single rainfall events (Figure
3.9a, middle panel) (Tarasova et al., 2018b), implying possible event-fed saturation (Berghuijs
et al., 2016b). According to the findings reported in the companion study of Tarasova et al.
(2018b), this is the only region where a high correlation between event runoff coefficient and
precipitation intensity exists, thus implying that infiltration excess is a possible runoff generation
mechanism as well. Moreover, there is a distinct non-linear relationship between runoff coefficient
and antecedent soil moisture (Figure 3.9a, middle panel), which indicates two distinct functioning
states for catchments of this cluster (Grayson et al., 1997).
These catchments are characterized by small subsurface storage (i.e., shallow soils (Struthers and
Sivapalan, 2007) and impermeable bedrock (Pfister et al., 2017)) (Figure 3.9a, lower panel). Small
storage, high annual precipitation and volume of rainfall events explain the large extent of the
variably saturated region in these catchments. The presence of impermeable bedrock implies
the possible existence of bedrock depressions which must be filled to trigger the generation of
subsurface flow (Tromp-Van Meerveld and McDonnell, 2006). Large fractions of clay and silt in
the topsoil provide the condition for runoff generation caused by infiltration excess, as hypothesized
above based on the detected relation between runoff coefficients and intensity of rainfall events.
Corresponding seasonality of soil moisture and rainfall (i.e., substantial precipitation falls during
the winter season when evapotranspiration is low and soils are wet) is another indicator of a
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Figure 3.9: Archetypical behaviors of catchments from the identified clusters (Figure 3.5a). The cumulative distribution

function of event runoff coefficients for a representative catchment (Figure 3.10) of respective cluster (upper
panel of each cluster) informs about runoff coefficients for “dry” and “wet” states (and thus on the extent of the
variably and permanently saturated regions) and about the character of change between the states (i.e., distinct
switch or gradual increase). Typical shapes of hydrographs and their variability and seasonality (middle panel)
are derived from cumulative distributions of event time scales and rise times. Typical relationships between
runoff event coefficient (rc) and both volume of precipitation event (Pvol) and antecedent soil moisture (sm)
are schematically represented as well (middle panel). Typical catchment properties are presented using CDs
selected by the best-performing variable selection method. The thickness of the blue arrows indicates the relative
importance of the hypothesized fluxes. The texture of the topsoil is represented based on the proportion of
silt and clay. The thickness of the subsoil is related to the descriptor of soil depth. The presence of duplex
subsoil structure with one of the horizons enriched with clay is inferred from the abundance of Luvisol soil type
(soil.ClayEnrich). The permeability of the upper aquifer is derived from the two classes of the descriptor of
hydraulic conductivity (moderate and from moderate to low) and from the presence of sandstone, which can
be interpreted as an indicator of low conductivity. The presence of limestone is perceived as an indicator of
possible karstification. Land cover is presented in terms of abundance of coniferous and mixed forests. The
volume of precipitation events (symbolized by the size of clouds) is approximated as the mean volume of wet
spells, while the frequency of the events (number of clouds) is derived from the median duration of dry spells.
The seasonality of precipitation (relative sizes of snowflakes and flashes of lightning) is derived from the ratio
between the mean volumes of summer and winter precipitation. General climatic conditions (i.e., precipitation
and evaporation, represented with white arrows) are inferred from mean annual precipitation and dryness index.
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pronounced threshold behavior in this cluster (Sivapalan et al., 2005).

Cluster 2. Spatially variable storage, seasonal influence of melt, large rainfall events and soil
moisture The lower quartile of the distribution of runoff coefficients is relatively high (Figure 3.9b,
upper panel), indicating that a substantial portion of the catchment area permanently contributes
to runoff generation. The upper quartile is very high, denoting large spatial extent of the variably
saturated area. The increase between quartiles is almost linear, indicating a gradual filling of
the catchment’s variably saturated region (Rogger et al., 2013). A mixture of runoff generation
processes occurs in these catchments. However, snowmelt and fast components of runoff generation
are pivotal especially in summer. In this cluster runoff coefficients are largely independent from
the volume of single rainfall events (Figure 3.9b, middle panel), implying that event-fed saturation
is unlikely to occur (Tarasova et al., 2018b). A near-linear increase of runoff coefficients with
increasing antecedent soil moisture indicates a gradual transition from “dry” to “wet” states.
Due to variable landscape conditions catchments (Figure 3.9b, lower panel) of this cluster have
variable subsurface storage capacity. Spatial variability of soil depth and porosity (i.e., presence
of clay-enriched subsoil layers) explains the gradual and linear increase of the saturated area, as
the regions with shallow soils will be saturated first (Struthers and Sivapalan, 2007). Very high
annual precipitation and event volumes determine the existence of a large variably saturated area
(Rogger et al., 2013). Processes driving runoff generation appear to be seasonally interchangeable
in this cluster: in spring and early summer melt processes dominate, large rainfall events occur in
late summer and autumn, while soil moisture is very high in winter due to low evapotranspiration.
Although existent, threshold processes are in this cluster essentially averaged by the seasonal and
spatial interchange of different runoff generation mechanisms.

Cluster 3. Spatially variable storage, in-phase seasonality of soil moisture and rainfall Only
a relatively small portion of the catchment area contributes to runoff generation, since the lower
and the upper quartiles of the distribution of runoff coefficients are fairly low (Figure 3.9c, upper
panel). The difference between quartiles, sizable but much smaller than in cluster 1, indicates a
more gradual filling of the variably saturated area (Rogger et al., 2013). Fast interflow is especially
important in winter, but generally a mixture of processes occurs.
In this cluster runoff coefficients weakly depend on the volume of single rainfall events (Figure 3.9c,
middle panel), implying possible although infrequent event-fed saturation (Berghuijs et al., 2016b),
as the volume of precipitation events is rather moderate (Figure 3.9c, lower panel). Moreover, there
is a non-linear relationship between runoff coefficient and antecedent soil moisture (Figure 3.9c,
middle panel) (Tarasova et al., 2018b) which reveals two distinct functioning states for catchments
of this cluster (Grayson et al., 1997). It is worth to note that the transition between these two
states seems to be less pronounced than in cluster 1 (Figure 3.9a, middle panel).
Similar to cluster 1 these catchments have relatively shallow soils and impermeable bedrock, which
imply small subsurface storage (Figure 3.9c, lower panel). However, due to the presence of diverse
landscape forms varying from low-range mountains to hilly and flatter areas the soil depth is more
variable and the expansion of the variably saturated region might occur more gradually (Rogger
et al., 2013). Possible threshold behaviors in this cluster might be strengthened by the in-phase
seasonality of soil moisture and rainfall (Sivapalan et al., 2005).

Cluster 4. Very large storage, evaporation-controlled soil moisture Only a very small portion
of the catchment area contributes to runoff generation, as indicated by the very small values of the
lower and upper quartiles of the distribution of runoff coefficients (Figure 3.9d, upper panel). Their
difference is also very small, thus denoting a gradual filling of the catchment’s variably saturated
region (Rogger et al., 2013). Slow interflow is the dominant runoff generation process. Absence of
variability and seasonality of time scale and rise time (Figure 3.9d, middle panel) highlights the
catchment’s ability to effectively filter the variability of the climatic inputs.
In this cluster runoff coefficients are largely independent from the volume of single rainfall events
(Figure 3.9d, middle panel), implying that event-fed saturation is unlikely to occur. There is a
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very gradual increase of runoff coefficients with increasing soil moisture (Tarasova et al., 2018b).
These catchments are characterized by very large subsurface storage provided by deep permeable
soils and aquifers (Figure 3.9d, lower panel). The gradual increase of event runoff coefficients
and hence the increase of the variably saturated region is probably controlled by the variability of
groundwater interactions in the riparian zone of the catchment, because the subsurface storage (i.e.,
soil depth) appears to be uniformly distributed in space and therefore cannot explain a gradual
increase of the variably saturated region. High evapotranspiration control inter-event drying of
sandy topsoil, which have poor water-holding capacity. Since rainfall events are typically small,
their frequency and especially the intensity of inter-event evapotranspiration define the extent of
the variably saturated region and the event runoff response (Berghuijs et al., 2016b). In this cluster
threshold processes seem to affect catchment behavior only to a very limited extent.

Cluster 5. Small storage, frequent small rainfall events, antiphase seasonality of soil moisture
and rainfall The low value of the lower quartile in cluster 4 (Figure 3.9e, upper panel) resembles
the one observed in cluster 1 and cluster 3 and indicates a small extent of the permanently saturated
area. The value of the upper quartile is higher than in cluster 3 but lower than in cluster 1,
revealing an intermediate extent of the variably saturated region and a rapid increase of the area
contributing to event runoff generation (Figure 3.9e, upper panel). A mixture of runoff generation
processes occurs, but fast components play an important role especially in summer. Flashy summer
hydrographs indicate that snowmelt contributes to runoff generation only to a limited extent during
this season.
In this cluster runoff coefficients weakly depend on the volume of single rainfall events (Figure
3.9e, middle panel), implying that event-fed saturation is rather unlikely (Berghuijs et al., 2016b).
Similar to cluster 1 and 3, there is a distinct non-linear relationship between runoff coefficient and
antecedent soil moisture (Figure 3.9e, middle panel) (Tarasova et al., 2018b), revealing two distinct
functioning states of the catchment (Grayson et al., 1997).
These catchments are characterized by small subsurface storage (i.e., shallow soils). Possible
karstification (Figure 3.9e, lower panel) might be an additional source of threshold processes in this
cluster (Hartmann et al., 2013). Small but very frequent rainfall events together with a relatively
low dryness index indicate that runoff generation is controlled by the sequence of rainfall events
which modify the extent of the variably saturated region (Berghuijs et al., 2016b). Differently from
cluster 4, drying of soil moisture through evapotranspiration plays a minor role in this cluster as
indicated by the low ratio between overall evapotranspiration and precipitation amounts. The effect
of threshold processes observed in the catchment might be weakened by the antiphase seasonality
of soil moisture and large summer rainfall events (Sivapalan et al., 2005).

Cluster 6. Duplex (layered) subsoil structure, evaporation-controlled soil moisture Similar to
cluster 4, the lower and upper quartiles of the distribution of runoff coefficients (Figure 3.9f, upper
panel) are very small in this cluster, indicating that only a very small portion of the catchment area
contributes to runoff generation. The difference between quartiles is also very small and denotes
a gradual filling of the catchment’s variably saturated region (Rogger et al., 2013).
In this cluster runoff coefficients are largely independent from the volume of single rainfall events
(Figure 3.9f, middle panel), implying that event-fed saturation is unlikely to occur. There is a very
gradual increase of runoff coefficients with increasing soil moisture (Tarasova et al., 2018b). Fast
interflow is the dominant runoff generation process, especially in winter.
These catchments are characterized by large subsurface storage provided by deep soils and perme-
able aquifers (Figure 3.9f, lower panel). However, the subsoil of these catchments typically has a
pronounced duplex (layered) structure set by the presence of clay-enriched layers (i.e., Luvisols)
(FAO, 2006; Western et al., 2004). Such structure of the subsoil entails high spatial variability
of the available subsurface storage and determines a gradual increase of the variably saturated
region (Rogger et al., 2013) and the respective event runoff coefficients (Figure 3.9f, upper panel).
It restricts the depth of subsurface flow as well. Very small rainfall events with long dry spells
and intense evapotranspiration control the inter-event drying of the topsoil, which constitutes the
dominant control of event runoff response (Berghuijs et al., 2016b). However, high silt and clay
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contents in the topsoil of this cluster might buffer the drying effect compared to sandy topsoil
of cluster 4. Interestingly, intra-cluster predictability of event characteristics was dependent on
the portion of catchment covered by mixed forest (Figure 3.8f), supporting the hypothesis that
evapotranspiration-driven drying of soils is a major control for this cluster. Finally, threshold
processes seem to affect catchment behavior only to a very limited extent.

3.5.4 Concluding remarks: event characteristics as hydrological signatures

In this study we adopt event characteristics of separated rainfall-runoff events as hydrological
signatures of catchment behavior and analyze their regional pattern and spatial controls to shed
light on the heterogeneity of runoff generation processes. Linking observed event characteristics
and their temporal dynamics (Tarasova et al., 2018b) with event runoff generation mechanisms
(Berghuijs et al., 2016b) and the concept of threshold processes in catchments (e.g., Grayson et al.,
1997; Zehe and Sivapalan, 2009; Struthers and Sivapalan, 2007; Tromp-Van Meerveld and McDon-
nell, 2006; Rogger et al., 2013) allowed us to develop archetypes of distinct catchment behaviors
(Figure 3.9) that are supported by a set of objectively selected hydrologically-relevant catchment
descriptors.
Rainfall-runoff events appear to be a representative unit of runoff dynamics, which not only reflects
rainfall as the main driver, but also provides insights on the catchment sensitivity to pre-event
state (i.e., variability of available storage capacity). Pre-event catchment state (i.e., soil moisture)
is largely affected by evapotranspiration-controlled drying, thus temporal dynamics (i.e., variabil-
ity) of the event runoff response displays as well the effect of inter-event evapotranspiration.
In fact, strong relations between event characteristics and wetness state allow for direct inference
concerning the role of storage in catchment functioning. This makes dynamic event characteris-
tics advantageous compared to long-term water-balance-based signatures (e.g., long-term ratio of
runoff and precipitation Qtot/P tot, see Figure 3.9, upper panels), which assume no net change in
storage (Olden and Poff, 2003) and therefore rather refers to long-term partition of precipitation
into runoff and evaporation (i.e., they essentially relate to the dryness index defined as the ratio
of long-term potential evaporation and precipitation) and do not necessary capture differences in
catchment functioning (see e.g. cluster 1 and 2 in Figure 3.9, having similar Qtot/P tot but differ-
ent cumulative distributions of event runoff coefficients and runoff generation mechanisms).
Identified archetypes of catchment behavior are largely explained by characteristics of subsur-
face storage (e.g., soil depth, permeability, texture) and climatic attributes (e.g., duration of dry
spells, volume of wet spells, dryness index). The identified controls of event runoff response and
hydrologically-homogeneous regions can provide useful information for selecting relevant physi-
cal catchment descriptors for regionalization of hydrological metrics and improving the realism
of conceptual hydrological models by deriving regionally-coherent and physically-informed model
parameters for the whole of Germany. Although selected catchment descriptors might vary in
different settings and other regions, it is likely that descriptors expressing properties of subsur-
face storage, rainfall dynamics and evapotranspiration will define event runoff response elsewhere.
Land use might control dissimilarity of catchment behaviors within regions with relatively homo-
geneous climatic conditions and subsurface structure where evapotranspiration-controlled drying
of soil moisture largely defines pre-event wetness state.
The identified cluster-specific dominant drivers of event runoff response have important implica-
tions for understanding controls on threshold processes at catchment scale and their effects on
the predictability of catchment response and flood hazard (Zehe and Blöschl, 2004; Rogger et al.,
2013). Moreover, the derived catchment archetypes provide information on the sensitivity of certain
catchments to possible changes. For example, catchments dominated by event-fed saturation with
an instant increase of the variably saturated region are vulnerable to change of rainfall volumes,
whereas changes of temperature and frequency of rainfall events will be decisive in catchments
where the event runoff response is controlled soil moisture resulting from evapotranspiration. In
such catchments changes of land use might impose pronounced modifications of the event runoff
response as well. Finally, changes in the seasonality of rainfall, soil moisture and snowmelt can
additionally affect the emergence or intensity of non-linear catchment behaviors.

51



Chapter 3 Regional Patterns and Spatial Controls of Event Characteristics

3.6 Supporting Information

This Supporting information presents additional information in Table 3.3 on the catchment de-
scriptors used in this study and selected by different variable selection methods (grey filling of the
corresponding cells). An example of the event separation is presented in Figure 3.10. Moreover,
Chapter 3.6.1 gives details on Adjusted Rand Index used as the measure of similarity between two
catchment classifications.
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Figure 3.10: Examples of event separation and rainfall attribution for the hydrological year 1999-2000. The six catchments

shown exemplify the behaviors of the six clusters of catchments identified in Germany (Figure 3.5a). The
colors used for the catchments’ names match those of the clusters in Figure 3.5a.

Table 3.3: Summary of catchment descriptors (CDs)

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

Climate MAP mm
Long-term mean

annual precipitation
Climatic conditions

REGNIE
DWD

(Rauthe
et al., 2013),

1x1 km
raster

MAT ◦C

Long-term mean
annual temperature

aggregated from daily
fields interpolated by
external drift kriging

(Zink et al., 2017)

Climatic conditions
DWD, 8x8
km raster

PET mm

Long-term mean
annual

temperature-based
potential

evapotranspiration
(Oudin et al., 2005)

Climatic conditions

Temperature
from DWD,

8x8 km
raster

AET mm

Long-term mean
annual actual

evapotranspiration
simulated by mHM
model (Samaniego
et al., 2010; Kumar

et al., 2013)

Climatic conditions
(Zink et al.,
2017), 4x4
km raster

PET.T -

Aridity index
(Budyko, 1974) as

ratio of mean annual
potential evaporation

and mean annual
precipitation

Approximate
long-term water

balance

DWD, 8x8
km raster

Continued on next page
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Continued from previous page

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

P.sum2win -

Ratio of long-term
summer precipitation

and winter
precipitation

Seasonality of climatic
conditions

REGNIE
DWD

(Rauthe
et al., 2013),

1x1 km
raster

maxP mm/day
Long-term mean
maximum daily

precipitation

Extremeness of
climatic conditions

REGNIE
DWD

(Rauthe
et al., 2013),

1x1 km
raster

WS mm

Median volume of wet
spells (minimum 1 dry

day between two
spells)

Indicates average
magnitude of

precipitation events

REGNIE
DWD

(Rauthe
et al., 2013),

1x1 km
raster

WS.cv -

Coefficient of variation
of volume of wet spells
(minimum 1 dry day
between two spells)

Indicates variability of
precipitation events

REGNIE
DWD

(Rauthe
et al., 2013),

1x1 km
raster

WS.sum2-
win

mm

Ratio of median
volume of summer and

winter wet spells
(minimum 1 dry day
between two spells)

Indication seasonality
of precipitation events

REGNIE
DWD

(Rauthe
et al., 2013),

1x1 km
raster

medDS days

Long-term median
duration of dry spells
(minimum 1 wet day
between dry spells)

Indicates frequency of
precipitation event

occurrence

REGNIE
DWD

(Rauthe
et al., 2013),

1x1 km
raster

maxDS days

Mean of yearly
maximum dry spells
(minimum 1 wet day
between dry spells)

Extremeness of
climatic conditions

REGNIE
DWD

(Rauthe
et al., 2013),

1x1 km
raster

Topography
& geomor-
phology

elevation m asl Median elevation

Related to the
long-term

precipitation and
temperature, hence to
soil moisture and snow

processes as well
(Blöschl et al., 2013b)

DEM,
SRTM,

30x30 m
raster

slope % Median slope

Provides information
on partition of surface
and subsurface runoff

generation
mechanisms (Blöschl

et al., 2013b)

DEM,
SRTM,

30x30 m
raster

aspect ◦ Median aspect
Indicates the

prevailing orientation
of slopes

DEM,
SRTM,

30x30 m
raster

Continued on next page
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Continued from previous page

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

TWI -

Mean topographic
wetness index (Beven

and Kirkby, 1979)
defined as

ln(area/slope)

Defines location of
possible saturation

zones

DEM,
SRTM,

30x30 m
raster

area km2 Area
First-order indicator of

catchment storage
(Blöschl et al., 2013b)

DEM,
SRTM,

30x30 m
raster

DD km/km2 Drainage density

Indicator of water
availability, infiltration

characteristics of
topsoil and drainage
ability of underlying
geological formation

(Blöschl et al., 2013b)

DEM,
SRTM,

30x30 m
raster

LC2A km/km2
Length of main

channel to catchment
area

Indicates the shape of
the catchment
(elongated vs.

fan-shaped), affects
the shape of event

hydrograph (Dyck and
Peschke, 1995)

DEM,
SRTM,

30x30 m
raster

slope.ch %
Mean slope of main

channel

Affects the shape of
event hydrograph

(Dyck and Peschke,
1995)

DEM,
SRTM,

30x30 m
raster

STMFRQ
number/

km2

Number of stream
junctions over
catchment area

(Institute of
Hydrology, 1980)

Indicator of catchment
shape that influences

the shape of event
hydrograph(Dyck and

Peschke, 1995)

DEM,
SRTM,

30x30 m
raster

Land use shrub %

Percent of the
catchment covered
with shrubs and

herbaceous vegetation

Defines interception,
infiltration capacity

and
evapotranspiration

CORINE
2000, EEA,
100x100 m

raster

open.space %

Percent of the
catchment covered

with little or no
vegetation, and open

spaces

Defines interception,
infiltration capacity

and
evapotranspiration

CORINE
2000, EEA,
100x100 m

raster

agri %
Percent of the

catchment covered
with agricultural areas

Defines interception,
infiltration capacity

and
evapotranspiration

CORINE
2000, EEA,
100x100 m

raster

wetland %
Percent of the

catchment covered
with wetlands

Defines additional
catchment storage and
smoothing of response

CORINE
2000, EEA,
100x100 m

raster

artificial %
Percent of the

catchment covered
with artificial surfaces

Defines infiltration
capacity and

evapotranspiration

CORINE
2000, EEA,
100x100 m

raster

BL.forest %

Percent of the
catchment covered
with broad-leaved

forest

Defines interception,
infiltration capacity

and
evapotranspiration

CORINE
2000, EEA,
100x100 m

raster

CF.forest %
Percent of the

catchment covered
with coniferous forest

Defines interception,
infiltration capacity

and
evapotranspiration

CORINE
2000, EEA,
100x100 m

raster

Continued on next page
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Continued from previous page

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

MX.forest %
Percent of the

catchment covered
with mixed forest

Defines interception,
infiltration capacity

and
evapotranspiration

CORINE
2000, EEA,
100x100 m

raster

lake %
Percent of the

catchment covered
with lakes

Defines additional
catchment storage and
smoothing of response

CORINE
2000, EEA,
100x100 m

raster

Soil physi-
cal proper-
ties

ssilt %
Mean fraction of silt in

subsoil (30-100 cm)
Defines soil hydraulic

characteristics
HWSD, 1x1
km raster

ssand %
Mean fraction of sand
in subsoil (30-100 cm)

Defines soil hydraulic
characteristics

HWSD, 1x1
km raster

sclay %
Mean fraction of clay
in subsoil (30-100 cm)

Defines soil hydraulic
characteristics

HWSD, 1x1
km raster

sgravel %
Mean fraction of
gravel in subsoil

(30-100 cm)

Defines soil hydraulic
characteristics

HWSD, 1x1
km raster

tsilt %
Mean fraction of silt in

topsoil (0-30 cm)
Defines soil hydraulic

characteristics
HWSD, 1x1
km raster

tsand %
Mean fraction of sand
in topsoil (0-30 cm)

Defines soil hydraulic
characteristics

HWSD, 1x1
km raster

tclay %
Mean fraction of clay
in topsoil (0-30 cm)

Defines soil hydraulic
characteristics

HWSD, 1x1
km raster

tgravel %
Mean fraction of

gravel in topsoil (0-30
cm)

Defines soil hydraulic
characteristics

HWSD, 1x1
km raster

sbulk kg/dm3
SOTWIS bulk density
(Engelen et al., 2005)
of subsoil (30-100 cm)

Indicates subsoil
material (mineral

material has higher
bulk density than

organic matter) and
compaction of subsoil

HWSD, 1x1
km raster

tbulk kg/dm3
SOTWIS bulk density
(Engelen et al., 2005)
of topsoil (0-30 cm)

Indicates topsoil
material (mineral

material has higher
bulk density than

organic matter) and
compaction of topsoil

HWSD, 1x1
km raster

soil.depth dm Mean soil depth

Indicates available
subsurface storage and

possible depth of
subsurface flow

BÜK1000,
BGR,

250x250 m
raster

soil. %

Percent of catchment
with one of the 8 soil
groups based on the

classification of World
Reference Base for Soil

Resources (FAO,
2006):

Classification of soil
types based on their

genesis

BÜK1000,
BGR, map

scale
1:1000000

soil.OrgLayer: soils
with thick organic

layers

Peat soils, mainly
occur in the lowlands.

Presence of organic
matter indicates soil

ability for water
retention (FAO, 2006)

soil.Antropo: soils
with strong human

influence

Diverse soils modified
by human activity

(FAO, 2006)

Continued on next page
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Continued from previous page

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

soils.LimRoot: soils
with limited rooting

due to shallow
permafrost or

stoniness

Very shallow soils over
continuous rock and
extremely gravely
soils, common in

mountainous regions
(FAO, 2006)

soil.Water: soils
influenced by water,
either flood and tides

or
groundwater-affected

Wetland soils that are
saturated by

groundwater for
substantial time or
genetically young

alluvial soils (FAO,
2006)

soil.FeAl: soils set by
Fe/Al chemistry

Develop in humid
temperate and boreal
regions with flat and
hilly landscape and

under coniferous forest
(FAO, 2006)

soil.OrgAccum: soils
with accumulation of

organic matter

Presence of organic
matter indicates soil

ability for water
retention (FAO, 2006)

soil.ClayEnrich: soils
with a clay-enriched

subsoil

Reveals structure of
soil profile

(uniform/duplex) and
defines depth of lateral

flow (Western et al.,
2003). Presence of

finer texture indicates
soil ability for water

retention. Most
common in flat and

gently sloping
landscapes with

pronounced dry and
wet season (FAO,

2006)

soil.Young: relatively
young soils with little
profile development

Weakly developed soils
in unconsolidated

materials, typical for
mountainous regions

and extensively
eroding lands (FAO,

2006)

Soil water
properties

awc. %

Percent of catchment
with one of the 6

classes of available
water content (FAO,

2006):

Soil moisture

characteristic, shows
the amount of water
available for plants
(difference between
filed capacity and
permanent wilting
point) (sandy soils
have lowers awc
than clayey soils)
(FAO, 2006)

HWSD, 1x1
km raster

awc.150: 150 [mm/m]

awc.125: 125 [mm/m]

awc.100: 100 [mm/m]

awc.75: 75 [mm/m]

awc.50: 50 [mm/m]

awc.15: 15 [mm/m]

Continued on next page
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Continued from previous page

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

FC mm
Mean effective field
capacity in rooting

zone

Soil moisture
characteristic, shows

total amount of water
in the root zone after

initial percolation
(FAO, 2006)

BÜK1000,
BGR,

250x250 m
raster

imper. %

Percent of catchment
with one of the 4

classes. Indicates the
presence and the

location (depth from
the surface) of an
impermeable layer

within the soil profile:

Defines soil profile
(uniform/ duplex/

gradational) (Western
et al., 2004), thus
indicating possible

depth of lateral flow

HWSD, 1x1
km raster

imper.40:
impermeable layer

within 40 cm

Implies duplex soil
profile and possibility
of near surface lateral

flow

imper.no_150: no
impermeable layer

within 150 cm

Implies uniform soil
profile and possibility
of very deep lateral

flow

imper.40_80:
impermeable layer

between 40 and 80 cm

Implies duplex soil
profile and possibility
of shallow lateral flow

imper.80_150:
impermeable layer

between 80 and 150
cm

Implies gradational
soil profile and

possibility of deep
lateral flow

drainage. %

Percent of catchment
with one of the 6

classes. Soil drainage
classes are based on
the guidelines from

(FAO, 2006):

Reflect how fast

does soil drain
(coarse textured
soils drain faster
than the fine
textured soils)
(FAO, 2006)

HWSD, 1x1
km raster

drainage.excessive

drainage.well

drainage.moderate

drainage.imperfect

drainage.poor

drainage.very_poor

SM -

Long-term mean
annual soil moisture

within entire soil
column simulated by

mHM model
(Samaniego et al.,

2010; Kumar et al.,
2013)

Average soil moisture
characteristic of the

catchment

(Zink et al.,
2017), 4x4
km raster

Continued on next page
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Continued from previous page

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

Hydro-
geology

recharge mm/a

Mean groundwater
recharge from water

balance for 1961-1990.
The recharge is
estimated as the

difference between
total precipitation,

actual
evapotranspiration

and volume of direct
runoff. Total runoff is

separated to into
direct and base flow

by the empirical
method of (Kille,

1970). Base flow index
of 106 gauges is

interpolated to the
ungauged grids using
multiple regression

model. Slope, drainage
density, land use,

effective field capacity
and depth of ground

water table are chosen
as explanatory

variables (Jankiewicz
et al., 2005)

Portion of rainfall that
contributes to

generation of slow
runoff generation

component

HAD, BGR,
1x1 km
raster

Y. %

Percent of catchment
with one of 5

groundwater yield
classes. Measured

yield of groundwater
wells is regionalized

using hydrogeological
and geological

information about
aquifers:

Characterizes the
subsurface storage of a
catchment; depends on
aquifers material and

aquifer extent

HAD, BGR,
map scale
1:200,000

Yless150: yield less
than 150 m3/d

Yless500: yield less
than 500 m3/d

Y500-1300: yield from
500 m3/d to 1300

m3/d

Y1300-4000: yield
from 1300 m3/d to

4000 m3/d

Ymore4000: yield
more than 4000 m3/d

kf. %
Percent of catchment

with one of the 11
classes of permeability:

Hydraulic
characteristics of

subsurface

HÜK200,
BGR, map

scale
1:200,000

kf.VeryHigh2High
(>10-3 m/s)

kf.High (10-2-10-3

m/s)

kf.Medium (10-3-10-4

m/s)

Continued on next page
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Continued from previous page

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

kf.Medium2Moderate
(10-3-10-5 m/s)

kf.Moderate (10-4-10-5

m/s)

kf.Moderate2Low
(10-4-10-6 m/s)

kf.Low (10-5-10-7 m/s)

kf.Low2ExtremelyLow
(<10-5 m/s)

kf.VeryLow (10-7-10-9

m/s)

kf.ExtremelyLow
(<10-9 m/s)

kf.variable

firm %

Percent of catchment
with upper aquifer

built with firm
material

Indicates relatively
impermeable aquifers

HÜK200,
BGR, map

scale
1:200,000

loose %

Percent of catchment
with upper aquifer

built with loose
material

Indicates relatively
permeable aquifers

HÜK200,
BGR, map

scale
1:200,000

aquitard %
Percent of the

catchment with
aquitard

Indicates impermeable
subsurface formations
and accordingly poor

subsurface storage

HÜK200,
BGR, map

scale
1:200,000

porous %
Percent of the

catchment with porous
aquifer

Indicates highly
permeable aquifers

and accordingly high
subsurface storage

HÜK200,
BGR, map

scale
1:200,000

karst %
Percent of the

catchment with karst
aquifer

Indicates presence of
the karstification and
therefore possible very
variable permeability

HÜK200,
BGR, map

scale
1:200,000

fractured %
Percent of the

catchment with
fractured aquifer

Indicates possible
variable permeability

of upper aquifer

HÜK200,
BGR, map

scale
1:200,000

Geology geo. %

Percent of catchment
with one of the 23
groups of geologic

formation of bedrock:

It is related to
storage
characteristics as
the type of geologic
formation has a
specific drainage
characteristics
(Blöschl et al.,
2013a)

GÜK1000,
BGR, map

scale
1:1000000

geo.Limestone-
SandstoneMarlstoone:

bedrock formed by
limestone, sandstone

and marlstone

geo.Impactite:
bedrock formed by

impactites

geo.Peat: bedrock
formed by peats

geo.RiparianClay:
bedrock formed by

riparian clays

geo.Aeolian: bedrock
formed by aeolian

depositions

Continued on next page
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Continued from previous page

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

geo.Volcanic: bedrock
formed by volcanic

rocks

geo.Plutonite: bedrock
formed by plutonite

geo.Slate: bedrock
formed by slate

geo.Quarzite: bedrock
formed by quartzite

geo.Dolomite-
Marlstone: bedrock
formed by dolomite

and marlstone

geo.Metamorph:
bedrock formed by
metamorphic rocks

geo.Greywacke;
bedrock formed by
greywacke, siltstone

and sandstone

geo.Limestone:
bedrock formed by

limestone

geo.Claystone-
Siltstone: bedrock

formed by claystone
and siltstone

geo.Sandstone-
Conglomerate:

bedrock formed by
sandstone, claystone,

conglomerate and
partly by bitumous

coal

geo.Sandstone:
bedrock formed by

sandstone

geo.ClaySilt: bedrock
formed by clay and silt

geo.Boulder: bedrock
formed by boulder

clay and till

geo.SandGravelLoam:
bedrock formed by
sand, gravel and

partly loam

geo.SandClayCoal:
bedrock formed by

sand, clay and brown
coal

geo.Sand: bedrock
formed by sand

geo.Gravel: bedrock
formed by gravel

Continued on next page
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Continued from previous page

Group Label Units Description
Relevance for

runoff generation

Source and
resolution
of raster
data or

map scale
for vector

data

IG PCA BE

igneous %

Percent of catchment
with geological
formation with
igneous origin

It is related to storage
characteristics as the

type of geologic
formation has a
specific drainage

characteristics (Blöschl
et al., 2013b)

HÜK200,
BGR, map

scale
1:200,000

metamorph %

Percent of catchment
with geological
formation with

metamorphic origin

It is related to storage
characteristics as the

type of geologic
formation has a
specific drainage

characteristics (Blöschl
et al., 2013b)

HÜK200,
BGR, map

scale
1:200,000

sediment %

Percent of catchment
with geological
formation with

sedimentary origin

It is related to storage
characteristics as the

type of geologic
formation has a
specific drainage

characteristics (Blöschl
et al., 2013b)

HÜK200,
BGR, map

scale
1:200,000

3.6.1 Adjusted Rand Index

The Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) was used as a measure of similarity
between the reference and each alternative classification. The ARI is expressed as follows:

ARI =
N(a+ d)− [(a+ b)(a+ c) + (b+ d)(c+ d)]

N2 − [(a+ b)(a+ c) + (b+ d)(c+ d)]
(3.1)

where N is total number of catchment pairs; a is number of pairs, which belong to the same cluster
according to both methods; b is number of pairs placed in one group by the first method, but not
according to the second method; c is an opposite situation of b; and d is a number of pairs, which
do not belong to the same cluster according to both methods.
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Events: The Event Typology of Germany
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Abstract

This study proposes a new process-based framework to characterize and classify runoff events of
various magnitudes occurring in a wide range of catchments. The framework uses dimensionless
indicators that characterize space-time dynamics of precipitation events and their spatial interac-
tion with antecedent catchment states, described as snow cover, distribution of frozen soils and
soil moisture content. A rigorous uncertainty analysis showed that the developed indicators are
robust and regionally consistent. Relying on covariance- and ratio-based indicators leads to re-
duced classification uncertainty compared to commonly used (event-based) indicators based on
absolute values of metrics such as duration, volume and intensity of precipitation events. The
event typology derived from the proposed framework is able to stratify events that exhibit distinct
hydrograph dynamics even if streamflow is not directly used for classification. The derived typol-
ogy is therefore able to capture first-order controls of event runoff response in a wide variety of
catchments. Application of this typology to about 180,000 runoff events observed in 392 German
catchments revealed six distinct regions with homogeneous event type frequency that match well
regions with similar behavior in terms of runoff response identified in Germany. The detected
seasonal pattern of event type occurrence is regionally consistent and agrees well with the season-
ality of hydroclimatic conditions. The proposed framework can be a useful tool for comparative
analyses of regional differences and similarities of runoff generation processes at catchment scale
and their possible spatial and temporal evolution.
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Chapter 4 A Process-Based Framework to Characterize and Classify Runoff Events

4.1 Introduction

Understanding event runoff generation processes at catchment scale is crucial for gaining insights
about event-to-event variability of runoff response and solutes export from catchments (McGlynn
and McDonnell, 2003). This knowledge is instrumental in a wide variety of applications ranging
from hydrologically-sound flood frequency predictions (Merz and Blöschl, 2008a) to the derivation
of effective indicators for water quality assessment at management (i.e., catchment) scale (Minaudo
et al., 2019). In a changing world, understanding generation processes of runoff events is pivotal for
elucidating mechanisms behind intensification and shifts in the seasonality of river flows (Blöschl
et al., 2017), trends in long-term flood series (Slater and Wilby, 2017), and possible changes in the
magnitude of flood hazard in the future (Turkington et al., 2016). Therefore, the development of a
general framework for understanding and comparing typical runoff event generation processes and
event runoff response at large (i.e., from catchment to regional) scales is an important task. Such
a framework would be a valuable tool to link a wide variety of event runoff generation processes to
individual catchment responses at the event time scale. It would also enable a detailed analysis of
the transformation of dominant processes from small to large runoff events, thus unveiling possible
differences between processes responsible for the occurrence of unexpected extreme and ordinary
events (e.g., Rogger et al., 2012; Smith et al., 2018).
Classification frameworks are essential for reducing information into a manageable amount of
classes by grouping together similar objects, and are widely used in hydrological science (e.g., Wa-
gener et al., 2007; Sivakumar and Singh, 2012; Sawicz et al., 2014; Knoben et al., 2018). Process-
based classification of hydrological events, such as river floods and hydrological droughts, also
gained momentum in the last decades (e.g., Merz and Blöschl, 2003a; van Loon and van Lanen,
2012) as it provides a basis for understanding the observed variety of hydrological behaviors and
their causes. Large scale studies dealing with process-based classification of hydrological events
usually focus on large runoff events (e.g., maximum annual floods). Applications at regional (e.g.,
Hirschboeck, 1987; Diezig and Weingartner, 2007; Nied et al., 2014; Sikorska et al., 2015), country-
wide (Merz and Blöschl, 2003a; Berghuijs et al., 2016b), continental (Berghuijs et al., 2019) and
even global scales (Stein et al., 2019) exist. A comprehensive overview of existing causative flood
classification approaches is given by Tarasova et al. (2019). Yet, a consistent framework for process-
based characterization and classification of runoff events that, beside flood events, analyzes a wide
range of runoff magnitudes and is suitable for varied catchment sizes is still lacking.
Although the above mentioned flood classifications could theoretically be used to sort genera-
tion processes of a larger sample of runoff events (i.e., including small events), they mostly adopt
spatially and temporally lumped characteristics of precipitation events (e.g., catchment- and event-
averaged amount of rainfall), often neglect pre-event wetness states, and are therefore unsuitable
to capture the spatio-temporal interactions of rainfall and soil moisture (Tarasova et al., 2019).
This is, however, known to be a key driver of runoff generation. For example, Von Freyberg et al.
(2014) found that only a small fraction (1-26%) of the total catchment area generates streamflow
during rainfall events in a small pre-alpine catchment. Similarly, McGlynn and McDonnell (2003)
showed that contribution from riparian zones dominates runoff for smaller events, while hillslope
runoff generation increases for larger events in a New Zealand catchment. According to Seo et al.
(2012) and Mei et al. (2014), space-time dynamics might also be crucial to correctly mimic mag-
nitude and timing of flood events.
In recent decades, high-resolution observed and simulated hydrometeorological data sets became
available (e.g., Zink et al., 2017), thus providing tools to analyze variations of runoff generation
processes at catchment scale and their drivers (Woods and Sivapalan, 1999; Viglione et al., 2010a).
This advances aim to bridge the gap between small scale studies that investigate runoff genera-
tion processes by means of detailed observations (e.g., Tromp-Van Meerveld and McDonnell, 2006;
Jencso et al., 2009; Rinderer et al., 2019) and large scale studies which offer predictions of future
changes of these processes purely based on modeling approaches (e.g., Gosling et al., 2017; Don-
nelly et al., 2017).
Another drawback of most existing flood classification frameworks is the use of classification thresh-
olds that are only valid for specific regions. This limits the transferability of the frameworks to
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other regions and hinders their application at larger (e.g., global) scales. To overcome this issue,
Stein et al. (2019) introduced thresholds expressed as catchment-specific percentiles of the con-
sidered indicators. However, the application of percentiles might be less justified when a wider
sample of runoff events is considered and variability of indicators based on absolute values (e.g.,
maximum precipitation intensity and volume of precipitation events) are much higher than for
samples that include only maximum annual flood events. Therefore, it is important to develop
a framework that relies primarily on dimensionless indicators and is transferable across climatic
conditions and to catchments and events of different sizes (Tarasova et al., 2019).
The quality of data-based characterization and classification schemes largely depends on the qual-
ity of the available data and the robustness of the applied classification methods with respect to
several aspects of uncertainty (Tarasova et al., 2019). In fact, classification results are sensitive to
the uncertainty of input data from different sources (e.g., different observed temperature or pre-
cipitation data (Kampf and Lefsky, 2016), various soil moisture and snowmelt simulations (Stein
et al., 2019)), to the choice of indicators used to characterize event types, and to the values of
thresholds applied to attribute events to different classes (Sikorska et al., 2015; Stein et al., 2019).
All these aspects must be examined to provide a robust characterization framework and guidelines
for selection of input data, indicators and their corresponding thresholds.
Finally, existing automated event classification frameworks (e.g., Sikorska et al., 2015; Stein et al.,
2019) utilized pre-defined classification trees, whose structures were devised based on hydrological
reasoning about possible runoff generation processes. The underlying assumption is that simi-
lar hydrometeorological and catchment state conditions within an individual catchment (i.e., the
blocks of the classification tree) result in similar hydrological responses (Sikorska et al., 2015).
Although this assumption is rarely tested (Tarasova et al., 2019), proving its soundness would con-
firm the validity of the classification and lay the foundation for transferring classification results
to ungauged locations.
This study aims to amend gaps and limitations of the existing classification frameworks discussed
above. First, we propose a new multi-layer framework (Chapter 4.3.1) for process-based charac-
terization of runoff events of various sizes (i.e., a large numbers of events are analyzed in addition
to peaks over thresholds or events with large magnitude and recurrence intervals). The proposed
framework relies on a set of transferable dimensionless indicators which describe the nature of
the inducing meteorological event, its spatio-temporal dynamics and the interaction of precipita-
tion and catchment wetness state, and does not use streamflow data. We test the effects of the
uncertainty of input data and chosen indicators, as well as their sensitivity to the choice of clas-
sification thresholds, and compared their performance to that of traditional indicators relying on
absolute values and lumped characteristics of inducing events and catchment states (Chapter 4.3.3
and 4.4.1). By using the proposed characterization framework, we then derive an event typology
for Germany (Chapter 4.3.2). We investigate the adequacy of the hypothesized runoff generation
processes by testing whether the derived event types group events with similar hydrograph dy-
namics (Chapter 4.3.4). Finally, we examine spatial and temporal (seasonal) patterns of event
type occurrence in a wide set of German catchments (Chapter 4.3.5), and thus reveal spatial het-
erogeneity and temporal variability of dominant catchment-scale streamflow generation processes
across Germany (Chapter 4.5).

4.2 Data and study area

The event classification is performed on the set of 183,955 runoff events occurred in 392 German
catchments (Figure 4.1) during the course of 22 years (1979 -2002) of observations reported by
Tarasova et al. (2018a). Catchment sizes range from 36 km2 to 23,843 km2. The median area of
catchments in the data set is 494 km2. Runoff events were identified from continuous hydrocli-
matic time series using the procedure illustrated in Tarasova et al. (2018b). First we separated
base and quick flows using a simple smoothing algorithm (Institute of Hydrology, 1980). Then we
attributed precipitation to each quick flow event if it occurred within the seasonal lag time of the
respective catchment (Mei and Anagnostou, 2015). Finally, we identified single-peak components
of multiple-peak events by using a set of iteratively adjusted refinement thresholds. The iterative
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procedure is based on an equality test between the two distributions of event runoff coefficients
derived from a reference single-peak and a refined single-peak event groups. For a detailed de-
scription of the event separation procedure we refer the reader to Tarasova et al. (2018b).
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Figure 4.1: Study catchments (thin black outline) and four test river basins: the Sieg, Naab, Neckar and Weser Rivers.

Grey points indicate location of gauging stations. Red lines indicate the borders of four main German natural
regions: the North German Plain, Central Uplands, South German Scarplands and Alpine Forelands.

The initial rainfall-runoff event attribution described above essentially defines the lag time from the
starting point of the considered runoff event backwards within which rainfall events are searched at
each individual location (i.e., gauge). However, inducing events (i.e., precipitation) in the headwa-
ters might start earlier than the observed streamflow reactions at the outlet of large river networks
(Diederen et al., 2019). Therefore, precipitation events considered for the same runoff event at
upstream and downstream locations might differ when the start of the precipitation event lays
inside the search distance defined by the lag time for the upstream location, but is outside of this
distance for the downstream location (see Chapter 4.7.1 and Figure 4.10 for a visual explanation).
To remedy this issue in the case of nested catchments, individual runoff events were organized
along the river network they belong to and the starting points of runoff events at downstream
locations were adjusted in a way that the earliest starting date among upstream locations was
assigned to all the downstream locations. These starting dates of runoff events were then used
to search for the corresponding precipitation event for each individual catchment according to
the seasonal median lag time as described above (see also Figure 4.10b). The search time range
backwards was bounded by the starting date of the precipitation event at the upstream location.
The above described procedure ensures that no precipitation is accidentally discarded in larger
catchments, and allows for characterizing nested catchments consistently. We used the identified
beginning and end dates of the attributed precipitation event to subset daily gridded products
of hydrometeorological variables and compute event-based indicators according to the proposed
characterization framework.
We used daily gridded rainfall data (1 km grid) from the REGNIE data set (Rauthe et al., 2013)
provided by the DWD, and snowmelt and soil moisture time series (on a 4 km grid) simulated by
the mHM (Samaniego et al., 2010; Kumar et al., 2013) along with air temperature interpolated
using external drift kriging (Zink et al., 2017). For uncertainty analysis and robustness check
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we additionally used a precipitation data set interpolated by means of external drift kriging (as
reported in Zink et al. (2017)), a temperature data set interpolated by using the inverse distance
method, 100 equifinal realizations (i.e., 100 different simulations resulted from using 100 different
representative parameter sets) of the mHM model (Zink et al., 2017), as well as simulations of
the alternative distributed regionally-calibrated hydrological model ”The SAme Like The Others”
(SALTO) (Merz et al., 2020), which has a structure similar to the conceptual Hydrologiska Byr̊ans
Vattenbalansavdelning (HBV) model (Bergström, 1995).
The uncertainty analysis (Chapter 4.3.3) was performed in 75 catchments (19% of all study catch-
ments) belonging to four large river basins in Germany (i.e., the Sieg, Naab, Neckar and Weser
Rivers, Figure 4.1). Overall it considered 38,289 individual runoff events (21% of all runoff events
in the data set). The size of catchments ranges from 218 to 2825 km2 for the Sieg River (4 catch-
ments, 2462 events), from 588 to 5096 km2 for the Naab River (7 catchments, 2937 events), from
135 to 12,670 km2 for the Neckar River (19 catchments, 10,711 events) and from 36 to 21,583 km2

for the Weser River (45 catchments, 22,179 events). The selected catchments represent the whole
range of catchments sizes and hydroclimatic conditions in the German data set.
Similarity of hydrograph dynamics for each event pair in each individual catchment (Chapter 4.3.4)
was calculated for events that are at least 5 days long (see Chapter 4.7.3). In total 100,750 events
(55% of all runoff events) were analyzed through this procedure.

4.3 Methods

4.3.1 A process-based framework for characterization of runoff events

Here we propose a multi-layer framework for process-based characterization of runoff events based
on a consistent set of indicators which capture space-time dynamics of rainfall and snowmelt, spa-
tial organization of antecedent catchment wetness states, snow cover and soil freezing conditions as
well as the spatial interaction of precipitation and soil moisture within catchments (Figure 4.2a).
The idea underlying this characterization approach is that runoff events can be categorized by a
set of indicators, each describing a single aspect of the transformation of rainfall into runoff. For
example, one indicator characterizes the spatial extent of the precipitation field during the event,
while another describes the temporal evolution of the precipitation rate during the event. The set
of observed runoff events is split at each layer based on crisp predefined thresholds (e.g., Brunner
et al., 2018) applied to the layer-specific dimensionless indicators (Table 4.1), and runoff events are
labeled accordingly (Figure 4.2a). The combination of states categorized at each layer composes
the overall character of runoff generation processes during a given event.
In the proposed framework streamflow data are not utilized for characterization, but only used
to define start and end date of the events (see Chapter 4.2). In addition, we used streamflow
data to validate the proposed classification (Chapter 4.3.4) by analyzing the similarity of event
hydrographs of the derived event types (Chapter 4.3.2).
In the first layer of the characterization framework, we analyzed the nature of the meteorological
inducing event. An event was considered a pure snowmelt (Snowmelt) event if the volumetric ratio
of catchment-averaged event snowmelt and total precipitation is larger than a prescribed threshold
value (i.e., 0.95). Such high threshold value was selected to identify events that are solely triggered
by melting processes and where the contribution of rainfall is minimal. This choice as well as the
choice of later described thresholds is unavoidably subjective. The sensitivity of all thresholds was
therefore examined in a thorough uncertainty analysis (see Chapter 4.3.3 and 4.4.1). Similarly
to snowmelt events, we used the volumetric ratio between catchment-averaged event rainfall and
total precipitation to identify purely rainfall events (Table 4.1, Figure 4.2a). Among their mixtures
(i.e., when the volumetric portion of both rainfall and snowmelt in the total precipitation event
volume was higher than 0.05, Mixture of Rainfall and Snowmelt), Rain-on-snow events were iden-
tified by using the spatial covariance of pre-event snow water equivalent and event rainfall volume
normalized by the product of their average values (Table 4.1). Spatial covariance was calculated
as a grid-wise covariance of two gridded variables for a certain time step (i.e., in this case positive
values of spatial covariance indicate that, within a catchment more rainfall fell on the areas where
more snow water equivalent was accumulated before the beginning of the event).
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Rain-on-ice (e.g., Wendi et al., 2019) occurs when rain falls on frozen surfaces (e.g., frozen soils)
and was here distinguished from rainfall events using the spatial covariance of event-averaged rain-
fall volume and pre-event degree of soil freezing (SF0) defined as SF0 =

∑n
i=0 |Ti|, where T is air

temperature (◦C) of a snow-free pixel and n is the number of days with air temperature below
–2◦C during the 5 days preceding the start of a rainfall event (Flerchinger et al., 2004).
We also considered the temporal organization of the inducing event by analyzing the coefficient of
variation in time of the catchment-averaged precipitation rate and the ratio of maximum intensity
to total volume of the inducing event (rainfall, snowmelt or mixture depending on the nature of
the inducing event) (Table 4.1). For this ratio-based indicator the classification threshold was
set to its mean value (i.e., 0.5). When the ratio of maximum intensity to total volume of the
inducing event is higher than 0.5, it indicates that more than 50% of event precipitation volume
occurred in a single time step. Therefore, with regard to their temporal organization events can
be intensity-dominated or volume-dominated (Figure 4.2a), essentially corresponding to differ-
ent runoff generation mechanisms (i.e., infiltration-excess and saturation-excess) (Horton, 1933;
Dunne, 1978).
Moreover, we analyzed the space-time organization of the inducing event using the coefficient of
variation in space of precipitation volume and event-averaged spatial covariance of precipitation
fields between consecutive time steps (Table 4.1). Using these two indicators, an event can be
characterized as Local Steady, Local Unsteady, Extensive Steady and Extensive Unsteady (Figure
4.2a). For a Local event precipitation, volume is unevenly distributed in the catchment and mostly
concentrated in a small portion of it, thus possibly hinting towards local runoff generation. For an
Extensive event, precipitation volume is instead evenly distributed in the catchment, thus possi-
bly suggesting extensive runoff generation. For a Steady event, daily precipitation volume mostly
occurs in the same part of the catchment during consecutive days of a wet spell, with higher
likelihood of having saturated areas in this part of the catchment. On the contrary, the location
of the daily precipitation volumes during consecutive days of a wet spell varies (i.e., the centroid
of the precipitation moves) for an Unsteady event, thus suggesting that different portions of the
catchment are wetted.
The second characterization layer sorts events according to their corresponding pre-event catch-
ment wetness state (Figure 2a). We labeled event conditions as Wet or Dry based on catchment-
averaged antecedent soil moisture. By using simulated soil moisture we inevitably introduce model-
specific bias into the characterization framework. Simulated soil moisture essentially shows the
current state of the soil moisture storage unit according to accounting schemes that are widely
used in computational hydrology (e.g., Bergström, 1995). If the non-linear storage-discharge re-
lationship used in the model differs in different catchments (e.g., Figure 4.11), using percentiles
of soil moisture as threshold to define wet and dry states might be inappropriate. To properly
account for the non-linear behavior of the soil moisture storage reservoir, we used the measure of
maximum curvature κ (see e.g., Rogger et al., 2013) of a fitted exponential function that describes
the non-linear relation between event runoff coefficient (rc) and antecedent soil moisture (sm)
(Tarasova et al., 2018b, and Figure 4.11) as a classification threshold. For soil moisture states
below the point of maximum curvature, event runoff coefficients tend to increase slowly with in-
creasing soil moisture (representing dry catchment states), while beyond this point event runoff
coefficients increase rapidly with soil moisture (representing wet catchment states) (Rogger et al.,

2013). Curvature at each point of the function rc = f(sm) is calculated as κ = f(sm)′′

[1+(f(sm)′)2]
3
2

and

its maximum value is calculated for each catchment in the data set. More details on the threshold
used to define the wetness state of a catchment are provided in Chapter 4.7.2.
We also characterized the spatial interaction between inducing event and antecedent catchment
wetness state. We used the spatial coefficient of variation as an indicator of Uniform or Patchy
spatial organization of the soil moisture (Table 4.1), and in case of detected spatial inhomogeneity,
the spatial covariance of event precipitation volume and pre-event soil moisture state (Table 4.1)
was used to detect spatial overlapping of saturated areas and area wetted by the current precipi-
tation event. In terms of spatial interaction each event can be characterized as Uniform, Patchy
Overlap or Patchy No Overlap (Figure 4.2a).
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For all covariance-based indicators we set the threshold at zero, because positive values of spatial
covariance correspond to the occurrence of spatial overlap of the investigated hydrometeorological
variables. For indicators based on the temporal coefficient of variation the threshold was set to 1
(i.e., the case when the mean is equal to the standard deviation) for all catchments. The spatial co-
efficient of variation instead showed dependence on catchment size, with larger catchments always
having higher values of the spatial coefficient of variation compared to smaller ones. Therefore,
we selected the 2nd quartile (i.e., the median) as threshold for the indicators based on the spatial
coefficient of variation (Table 4.1).

Space-time organization

Temporal organization

Spatial interaction
 Patchy No Overlap

Rain-on-snow

Extensive
Unsteady

Extensive
Steady

Local
Steady

Local
Unsteady

Intensity-dominated Volume-dominated

WetDry

 Patchy Overlap Uniform

Rainfall Rain-on-ice SnowmeltMixture of Rainfall
and Snowmelt

a)

b)

Layer 1: Inducing event

Layer 2: Wetness state

Intensity

Steady Unsteady

Local

Local Extensive

Unsteady

Volume

Extensive ExtensiveLocal

Dry Wet

Volume

Extensive

Local

Intensity

Steady Patchy Uniform

No Overlap OverlapNo Overlap Overlap

Patchy Uniform

RainMixture Rain-on-snow Snowmelt Rain-on-ice

Event

Figure 4.2: a) A multi-layer framework for process-based characterization and categorization of runoff events. Indicators

and categorization thresholds used for each layer of the framework are summarized in Table 4.1; b) A decision
tree to perform hierarchical classification of runoff events. The amount of possible combinations (i.e., event
types) was reduced by lumping together hydrologically similar (i.e., by hypothesizing possible runoff generation
processes at catchment scale that correspond to each type of runoff events, see Table 4.2) and rarely occurring
combinations.
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Chapter 4 A Process-Based Framework to Characterize and Classify Runoff Events

4.3.2 Hierarchical event classification: the event typology of Germany

A goal of this study is to investigate the occurrence of different runoff generation processes, their
spatial patterns and seasonality in Germany. The combination of states categorized at each layer
of the proposed characterization framework (e.g., Rain.Intensity.Local.Steady.Dry.Uniform; Chap-
ter 4.3.1) thoroughly describes the runoff generation process occurring during a given event. Not
every possible combination occurred for each catchment in the data set (e.g., almost all rain-on-
snow events are volume-dominated events occurring on wet conditions). Therefore, we reduced
the amount of possible combinations of mechanisms by hypothesizing plausible runoff generation
processes at catchment scale (Table 4.2), and lumping together similar and rarely occurring com-
binations during the hierarchical classification (Figure 4.2b).
The classification tree derived in this study is referred in the following as event typology for Ger-
many (Figure 4.2b, Table 4.2). Notice that the complexity of the characterization framework can
be adapted for the specific task at hand, for instance if a certain sample size is required for each
event type (e.g., for deriving mixed distributions for flood frequency analysis) (e.g., House and
Hirschboeck, 1997), or if certain characteristics are crucial despite their rarity (as in the case of
sediment transport by intensity-dominated events (Basso et al., 2015)).

Table 4.2: Event types and corresponding hypothesized runoff generation processes at catchment scale

Event type Hypothesized runoff generation processes

Snowmelt Radiation-induced snowmelt (usually Wet.Volume.Steady)

Rain-on-ice
Frozen soils prevent infiltration of rainfall (usually
Wet.Intensity.Uniform)

Rain-on-snow

Several possible ways of runoff generation ranging from sit-
uations when snowpack prevents infiltration of rainfall or
instead either stores substantial portion of rainfall water
or is degraded due to rainfall-induced snowmelt (usually
Wet.Volume.Extensive.Steady.Uniform)

Mixture of Rainfall and Snowmelt
Radiation-induced snowmelt and simultaneous in time but not in
space rainfall (usually Wet.Volume.Local.Unsteady)

Rain.Wet.Intensity.Local
Local runoff generation; pre-event saturation or infiltration excess;
possible connectivitya

Rain.Wet.Intensity.Extensive
Extensive runoff generation; pre-event saturation or infiltration ex-
cess; possible connectivity

Rain.Wet.Volume.Local.No.Overlap Local runoff generation, event-fed saturation, possible connectivity

Rain.Wet.Volume.Local.Overlap
Local runoff generation, pre-event saturation, established connec-
tivity

Rain.Wet.Volume.Extensive.No.Overlap
Extensive runoff generation, event-fed saturation, possible connec-
tivity

Rain.Wet.Volume.Extensive.Overlap
Extensive runoff generation, pre-event saturation, established con-
nectivity

Rain.Dry.Intensity.Local.Steady
Local runoff generation; possible infiltration excess or event-fed sat-
uration; no connectivity

Rain.Dry.Intensity.Unsteady Local runoff generation; possible infiltration excess; no connectivity

Rain.Dry.Intensity.Exrtensive.Steady
Possible extensive runoff generation; possible event-fed saturation
and infiltration excess; possible event-induced connectivity

Rain.Dry.Volume.Local Local event-fed saturation; no connectivity

Rain.Dry.Volume.Extensive.Steady Extensive event fed-saturation; possible event-induced connectivity

Rain.Dry.Volume.Extensive.Unsteady
Extensive runoff generation; possible pre-event saturation; possible
event-induced connectivity

Note Due to the small number of events induced by snowmelt, rain-on-ice, rain-on-snow and mixtures of rainfall
and snowmelt compared to pure rainfall-induced events, no further splitting was performed (see Figure 4.2b),
but their most frequent attributes are noted in brackets.

a Here by connectivity we refer to a catchment state when a direct linkage between runoff source areas and the
stream is established (Jencso et al., 2009; Rinderer et al., 2019).
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4.3.3 Uncertainty analysis and robustness check of the proposed framework

The proposed characterization framework (Chapter 4.3.1) relies heavily on the quality of the ob-
served and simulated input data. Therefore, we performed a rigorous uncertainty analysis and
robustness check. We analyzed two different uncertainty aspects in the case of 75 test catch-
ments belonging to four river basins that represent the variety of climatic conditions, catchment
characteristics and sizes in the data set (see Chapter 4.2). First we quantified the input data un-
certainty by measuring the discrepancy (defined as the portion of inconsistently categorized events
among all events) in the characterization obtained at each layer when varying one of the following
components:

• Input data source (interpolation method): we used two Germany-wide gridded precipitation
products (i.e., Rauthe et al., 2013; Zink et al., 2017) that were produced through different
interpolation methods of station observations. The test was performed at 4 km resolution
due to the coarser resolution of the precipitation product provided by Zink et al. (2017). In
a similar fashion we analyzed effects on the results of the characterization due to different
interpolation methods applied in the considered temperature data sets. In both cases only
the interpolation method differed while the amount of data was not altered.

• Data resolution: the original spatial resolution of observed and simulated data used for event
characterization was upscaled by a factor of 2 (i.e., we analyzed the effect of a coarser spatial
resolution).

• Parameter set: we used snowmelt and soil moisture data simulated by 100 different repre-
sentative parameter sets (i.e., 100 equifinal realizations of parameters in terms of streamflow
efficiency for major German river catchments) of the mHM model (Samaniego et al., 2010;
Kumar et al., 2013; Zink et al., 2017).

• Model structure and calibration technique: we used simulated snowmelt and soil moisture of
two regionally-calibrated distributed conceptual hydrological models, namely the mHM and
SALTO (Merz et al., 2020) models. The comparison was performed at 8 km resolution due
to the coarser resolution of the latter model outputs. Both models were driven by the same
input data.

In a second step we focused on the uncertainty of the categorization itself (i.e., the results of binary
splits) evaluating the robustness of thresholds and selected indicators by means of Monte Carlo
experiments similar to the procedure described by Sikorska et al. (2015):

• Thresholds uncertainty: we performed a Monte Carlo experiment by substituting the for-
mer crisp thresholds (e.g., the original value of the threshold for the temporal coefficient of
variation of the precipitation rate, which was equal to 1, see Table 4.1) with random vari-
ables with probability density functions defined as truncated normal distributions (Sikorska
et al., 2015). The distribution was bounded at 0 for all thresholds since negative values are
physically not possible for ratio- and coefficient of variation-based indicators. For covariance-
based indicators negative values are possible, but disagree with the intended meaning of the
indicators (i.e., spatial coincidence) and therefore these thresholds were bounded at 0 as
well. The experiment was run 10,000 times and every time a new value for each thresh-
old was sampled randomly and used to perform the categorization based on the proposed
multi-layer framework. Different from Sikorska et al. (2015), we analyzed the uncertainty
at every characterization layer separately, since our framework is envisaged in a way that
overcompensation through other thresholds is not possible (i.e., once attributed to a group
within a characterization layer, an event cannot change its attribution). In this way we were
able to quantify robustness of each layer of the proposed framework.

• Uncertainty of indicator choice: We chose alternative indicators for each characterization
layer that potentially allows for similar stratification of events and that were previously used
for causative classification of river flood events (Tarasova et al., 2019). In particular, we
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compared ratio-based indicators with their counterparts based on absolute values (e.g., ratio
of snowmelt and rainfall is substituted by their absolute values) (Table 4.1). Covariance-
based indicators were instead compared with indicators based on the portion of overlap
(e.g., instead of normalized spatial covariance of precipitation volume and antecedent soil
moisture, the portion of overlapping precipitation fields and wet areas are used). In the
same fashion, indicators that were based on the spatial coefficient of variation are tested (e.g.,
instead of the spatial coefficient of variation of precipitation volumes we used extent of the
precipitation field relative to the catchment area) (Table 4.1). For indicators of catchment-
averaged wetness state we used the antecedent precipitation and snowmelt index (Kohler and
Linsley, 1951), which is often used as a substitute of soil moisture (Keller et al., 2018). To
avoid possible biases in the application of these absolute indicators in a wide set of catchments
their thresholds were defined as catchment-specific percentiles (Stein et al., 2019). First, we
compared the results of categorization using these alternative indicators and the original
indicators. In the following step, we performed analysis of their threshold uncertainty using
a Monte Carlo experiment as described above for the original indicators.

4.3.4 Validation of the derived event typology: similarity of hydrograph dynamics of event
types

The validity of the hypothesized runoff generation processes (Table 4.2) cannot be verified at catch-
ment scale (i.e., we cannot observe these processes at this scale). However, if a set of indicators
used for event characterization is able to capture distinct runoff generation processes, similarly
classified events should exhibit similar hydrological response (Sikorska et al., 2015). The proposed
framework is essentially runoff-free (i.e., runoff data are used only for identifying beginning and
end of events and in the regional calibration of the hydrological models which provide soil mois-
ture and snow cover datasets). Therefore, we can validate the derived event typology (Chapter
4.3.2; Figure 4.2b) by testing if the identified event types group events with distinct hydrological
response, which is comprehensively described by event hydrographs (Blöschl et al., 2013b).
To quantify and compare dynamics of event hydrographs within each study catchment we used
Cross Recurrence Plot (CRP) and recurrence quantification analysis (Marwan et al., 2007). CRPs
aim to describe the degree of similarity/dissimilarity between (non-linear and non-monotonic) time
series of complex environmental systems and their recurring patterns. They were successfully ap-
plied in several disciplines of environmental sciences (e.g., Eroglu et al., 2016; Aceves-Fernandez.
et al., 2012).
The CRP similarity quantification method is based on the time delay embedded phase space repre-
sentation of time series, in our case event discharge hydrographs (Wendi et al., 2019). Essentially,
every point of an event hydrograph (i.e., streamflow at every time step Q(t), Figure 4.3a) is rep-
resented in the m-dimensional phase space (e.g., a 3-dimentional phase space on Figure 4.3b) by
plotting the original values of event hydrograph separated by the time delay τ and connecting these
points as a trajectory (Figure 4.3b). Time delay embedding provides an opportunity to account
for the multidimensional relationships between different points in time within the events. This
means that temporal evolution of discharge including effect of antecedent conditions is accounted
for (Wendi et al., 2019).
Streamflow hydrographs are compared to each other based on the Euclidean distance of their phase
space trajectories (Figure 4.3b). In phase space domain two event hydrographs that have similar
temporal dynamics of streamflow have very close trajectories (Figure 4.3b, top panel). Instead the
trajectories of two hydrographs with disparate streamflow dynamics are far away from each other
in the phase space domain (Figure 4.3b, bottom panel). CRP is finally used to visualize the afore-
mentioned similar trajectories corresponding to their time of similarity occurrence (Figure 4.3c).
These are trajectories within the user-defined distance range/radius (ε), and when the condition
is met it is indicated as value 1 or otherwise 0 on a CRP. A CRP is a 2-dimensional binary matrix
with x and y - axis representing the time of two compared events. When two identical event hy-
drographs are compared (even if they are time shifted) a single diagonal line appears on the CRP
and indicates the time when two trajectories are similar (Figure 4.3c, top panel). Instead, when
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two dissimilar hydrographs are compared the line on the CRP plot becomes non-existent and/or
not diagonal (Figure 4.3c, bottom panel).
The resulting patterns within a CRP (Figure 4.3c) can be quantified by Recurrence Quantification
Analysis (RQA), which is essentially used as a similarity measure between two event hydrographs.
The chosen measure, called determinism (DET) (see Chapter 4.7.1, Figure 4.3c), intrinsically varies
between 0 and 1 and defines a range from low to high (or identical) similarity in the dynamics
of the two times series (Marwan, 2010). It is worth to note that CRP and RQA can effectively
compare pairs of event hydrographs regardless of their possibly different duration (Wendi et al.,
2019).
For detailed information on construction of CRP and performing RQA we refer the reader to the
work of Wendi et al. (2019). The parameterization of CRP used in this study is described in
Chapter 4.7.3.
To use DET as a similarity metric of hydrograph dynamics of event types, we calculated DET
for each event pair in every catchment separately. Once events were classified, we calculated the
average hydrograph similarity DETintra among event pairs belonging to the same type (e.g., Rain-
on-snow) in each individual study catchment. Similarly, we calculated the similarity DETinter
between event pairs belonging to different types (e.g., Rain-on-snow and Rain-on-ice). In each
catchment, DETintra shows how similar events of the same type are while DETinter shows how
similar are events classified into different types. If DETintra > DETinter, streamflow dynamics of
events that are classified into the same type are more similar than those of events that are classified
into different types. Fulfillment of this condition would support our assumption that the different
hypothesized runoff generation processes (Figure 4.2b, Table 4.2) determine distinct streamflow
dynamics.
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Figure 4.3: Cross recurrence plot (CRP) illustration for quantifying similarity of runoff dynamics between (a) event hydro-

graphs (Event A and B). Top panels illustrate how two identical hydrographs with different time of occurrence
(blue line and shaded area in top panel (a)) are compared in their 3-dimensional phase space where the axis
correspond to the original hydrograph values separated by the time delay τ and 2τ (top panel (b)) and CRP
(top panel (c)). The bottom panels illustrate the same comparison, but for two hydrographs with different
runoff dynamics. Any identical or similar piece of the phase space trajectory which falls within the distance
range/radius (ε) (displayed in yellow in the top panel) is converted into a diagonal line in the CRP. These
diagonal lines thus summarize the similarity of runoff dynamics between the compared hydrographs. Two per-
fectly identical runoff dynamics (top) have a DET of 1, while dissimilar dynamics yield low DET values (in our
example DET = 0). Portion of CRP shaded in red indicate the information loss resulted from the time delay
embedding method.
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4.3.5 Exemplary application of derived event typology in Germany

The event typology derived in Chapter 4.3.2 was applied to classify runoff events for the set of
German catchments (see Chapter 4.2). Here our goal was to analyze spatial patterns of event
type occurrence, their seasonality in Germany, and to obtain typical runoff characteristics for each
event type.
To identify regions with similar event type occurrence, we clustered all catchments in the data set
according to their distribution of event type occurrences. A simple k-mean clustering approach
(Hartigan and Wong, 1979) was used. The number of clusters was determined using silhouette
index (Rousseeuw, 1987).
We analyzed the seasonality of the dominant event types by defining the most frequent type within
the whole study period in a particular season (i.e., for summer (June-August), autumn (September-
November), winter (December-February) and spring (March-May)) and catchment. Additionally
we evaluated inter-annual variability of event type occurrence for each season using a variability
measure for categorical variables (Kader and Perry, 2007):

u2 = 1−
j∑
i=1

(
ki
n

)2

(4.1)

where u2 is called coefficient of unalikeability (Perry and Kader, 2005), which is a measure of
categorical variability for a variable that has j number of categories (i.e., number of possible event
types), n observations (i.e., total number of events in a certain season for the whole observation
period) and ki number of objects (i.e., events) within a category (i.e., event type) . Essentially,
the coefficient of unalikeability defines how often the category of observations varies and can be
interpreted as a portion of possible comparisons (i.e., event pairs) which are unalike (Kader and
Perry, 2007). When one event type dominates in a certain season the value of u2 is close to
0. When several event types are equally dominant for a certain season u2 increases towards the
maximum value of 1.
For each classified event, we derived typical event runoff characteristics that describe event runoff
response. Here we considered: event runoff coefficient (dimensionless), time scale (days), rise time
(dimensionless), peak discharge (mm/day) and total volume of runoff event (mm). These runoff
event characteristics are fundamentally different from the indicators of the proposed framework
and can be used to shed light on event runoff response (see e.g., Tarasova et al., 2018b) among
different event types. The event runoff coefficient is a volumetric ratio between event runoff and
event precipitation. It characterizes which portion of precipitation is stored and which portion
instead contributes to event runoff. The event time scale is a ratio between event volume and peak
discharge (Gaál et al., 2012). It is related to both the shape and duration of the event hydrograph.
Shorter event time scales are expected when fast runoff generation processes (i.e., overland flow,
fast subsurface stormflow) dominate, while longer time scales indicate the dominance of slow runoff
components. The event rise time characterizes the duration (in days) from the beginning of the
event till the day when peak discharge is observed (Bell and Om Kar, 1969) normalized by the
overall duration of the event in days. Therefore it indicates how fast the peak discharge is reached.
The peak discharge and total runoff event volume characterize the magnitude of the event. Since
these characteristics depend on size, landscape and climatic settings of each catchment (Tarasova
et al., 2018a), we scaled them to obtain zero mean and unit variance for their samples in each
catchment and thus make them comparable across settings.

4.4 Results and Discussion

4.4.1 Uncertainty analysis and robustness check of the proposed framework

We performed an uncertainty analysis and robustness check for four test river basins (75 catch-
ments in total) to evaluate possible regional inhomogeneity in the uncertainty of the results of the
proposed characterization framework (Figure 4.4). We quantified the uncertainty as the portion of
discrepancy (i.e., portion of events that is differently categorized) for each catchment among cases
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Figure 4.4: Quantification of input uncertainty and robustness of the characterization framework for four test river basins

(75 catchments in total): the Sieg, Naab, Neckar and Weser Rivers. Categorization discrepancy (i.e., portion
of all events that is differently categorized) was calculated for each layer of the framework (i.e., inducing event,
temporal organization, spatial organization, space-time organization, wetness state and spatial interaction;
see rows of the Figure). The portion of discrepancy may vary from 0 to 1. High discrepancy indicates that
categorization results are highly sensitive to the specific choice of the tested feature (i.e., input data, thresholds or
indicators). Different features were examined (see columns of the Figure): different precipitation (productP) and,
temperature (productT ) products, original spatial resolution of products upscaled by a factor of 2 (resolution),
set of 100 different soil moisture and snow water equivalent realizations simulated by 100 equifinal parameter sets
of the mHM model (parameters), simulations of soil moisture and snow water equivalent from the alternative
SALTO model instead of the original mHM run (model). We performed the robustness test for thresholds
(thresholds) by means of a Monte Carlo experiment, where values of thresholds were randomly sampled from
distributions assigned to the respective indicators (see Table 4.1). We averaged the categorization discrepancy
over 10,000 Monte Carlo runs. The grey background highlights categorization discrepancy when alternative
indicators listed in Table 4.1 (alternative indicators) were used instead of the original indicators. The robustness
test for their thresholds (alternative indicators thresholds) shows average categorization discrepancy of 10,000
Monte Carlo runs.

that use different input data, thresholds or indicators.
The choice of the precipitation product (i.e., the method used to interpolate data from rainfall
gauges) (Figure 4.4, productP) greatly affects categorization of events in terms of the space-time
organization, while their temporal organization and the nature of inducing events are only slightly
affected. These results are somehow expected, as interpolation methods largely decide the spatial
organization of precipitation (i.e., the data used in the space-time organization layer). However,
given the large density of rain gauges in Germany, different interpolation methods are likely to
provide similar results in terms of catchment-averaged precipitation rates (i.e., data used in the
inducing event and temporal organization layers, Table 4.1). Increasing availability of radar data,
which are believed to accurately detect the spatial structure of rainfall events (Rabiei and Haber-
landt, 2015), might improve consistency also for what concerns the space-time organization of
events. Conversely, the choice of the temperature product (i.e., interpolation model) (Figure 4.4,
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productT ) and the spatial resolution of input data (Figure 4.4, resolution) do not affect classifica-
tion results in the examined catchments.
Parametric uncertainty has minor effects on event characterization (Figure 4.4, parameters). In
case of wetness state characterization, the visible stability of the performance is an outcome of
the choice made to define the classification threshold specifically for each model simulation. We
set the threshold equal to the simulated soil moisture value that corresponds to the point of max-
imum curvature of the catchment-specific function describing the relation between soil moisture
simulated by a specific model parameter set and observed event runoff coefficients (see Chapter
4.3.1). Except for the spatial organization of pre-event catchment states, the uncertainty linked
to different hydrological models is comparable with the effect of parametric uncertainty of the
initially selected model (Figure 4.4, parameters and model).
There is also no evidence of regional differences in the framework, save for the temporal organi-
zation layer. Indicators of temporal organization in the Sieg and Naab River basins seem to be
sensitive to variations of their thresholds. A similar pattern of discrepancy is observed for the orig-
inal and alternative indicators, signaling that the problem probably does not lie in the indicators
themselves. However, we could not identify the exact reason of this discrepancy.
Covariance- and ratio-based indicators proved to be less sensitive to the choice of specific thresholds
than indicators based on coefficient of variations (Figure 4.4, thresholds). Generally, the choice of
indicators plays a crucial role for the characterization results, except for the temporal organization
of inducing events (Figure 4.4, alternative indicators). According to the Monte Carlo experiment,
the tested alternative indicators (which are based on absolute values and use catchment-specific
percentiles of these values as thresholds) are less stable than the original indicators (Figure 4.4,
alternative indicators’ thresholds). This means that selecting quartiles as thresholds, even if it
supports regional homogeneity of classification rules for indicators based on absolute values (Stein
et al., 2019), makes characterization results very sensitive to the choice of thresholds. In fact, this
behavior also emerges for the original (i.e., dimensionless) indicators in the space-time organiza-
tion layer (Local vs. Extensive), where a quartile of the spatial coefficient of variation was used as
threshold to avoid biases due to threshold selection in catchments of different sizes. This resulted
in the larger threshold sensitivity compared to other dimensionless indicators, which do not use
thresholds based on quartiles (Figure 4.4, thresholds).

4.4.2 Validation of the derived event typology: similarity of hydrograph dynamics of event
types

The results of the recurrence quantification analysis averaged for all catchments in the data set
show distinct differences in the event hydrographs generated during wet and dry conditions (Figure
4.5a, red pixels in the lower right corner). Events that occurred during dry conditions tend to have
more diverse intra-type dynamics than events occurred during wet conditions (i.e., wet events have
lower DETintra values on the diagonal of the matrix than the dry ones, Figure 4.5a). This can
be explained by the fact that during wet cases a larger portion of catchment is contributing to
runoff generation than during dry cases, thus resulting in more homogeneous runoff generation
conditions.
Generally, Local rainfall events show much more variability in runoff dynamics (i.e., on average
lower values of DET, Figure 4.5a) compared to their Extensive counterparts, indicating that the
exact location of rainfall in the catchment for Local events might be the dominant control of a
particular event runoff dynamic in both dry and wet cases.
Inter and intra type similarities are comparable for events that are generated during dry conditions,
indicating that events generated during dry conditions have somewhat similar dynamics which are
not affected by the space-time properties of rainfall events. This phenomenon is consistently
observed in most of the catchments (i.e., low coefficient of variation of DET values in the lower left
corner, Figure 4.5b). On the contrary a clear difference among intensity- and volume-dominated
events can be observed for events generated during wet conditions (i.e., large differences between
DETintra and DETinter values for Rain.Wet.Intensity and Rain.Wet.Volume than compared to
their dry counterparts, Figure 4.5a).
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Figure 4.5: Matrix of intra-type and inter-type value of determinism (DET , see Chapter 4.3.4, 4.7.3 and Wendi et al.

(2019)), which measures the similarity of hydrograph dynamics of event pair (DET = 0 corresponds to a low
similarity in the dynamics): a) mean and b) coefficient of variation of the average values of DETinter and
DETintra for all catchments. The diagonal shows DETintra (black outline), horizontal and vertical bars show
DETinter. Events of a certain type exhibit more similar runoff dynamics compared to other event types if
the value on the diagonal is higher than the values of the corresponding horizontal and vertical bars (these
conditions are indicated by hatched squares). The matrix of coefficient of variations shows the variability of
DETintra (diagonal values, black outline) and DETinter (values on horizontal and vertical bars) in the set of
study catchments. The hierarchical classification tree corresponds to the decision tree in Figure 4.2b.

Interestingly, very distinct characteristics also distinguish runoff events that are generated when
there is high or low spatial interaction between rainfall and wet areas (i.e., most of rainfall occurs
in the parts of catchment that is respectively wet or dry) as the DETinter between Overlap and
No Overlap events is rather low (i.e., dark orange colors, Figure 4.5a), while the corresponding
DETintra of these types are very high (i.e., light yellow colors on the diagonals, Figure 4.5a).
Rain-on-ice events have a very specific dynamics that is to some extent similar to Rain-on-snow
and Mixture of Rainfall and Snowmelt events. Pure Snowmelt events have even more specific
hydrograph dynamics that does not match any other event type, as evidenced by the presence
of light yellow colors (i.e., high DET) only in the diagonal of Figure 4.5a. However, in some
catchments the variability of runoff dynamics within Snowmelt event type can be higher than on
average for the whole data set (Figure 4.5b). Interestingly, there is more resemblance between
Rain.Wet.Volume.Extensive.Overlap and events that involve snowmelt (i.e., Rain-on-snow and
Mixture of Rain and Snowmelt) compared to other rainfall-induced events (i.e., yellow colors of
DETinter between these types, Figure 4.5a), indicating that the runoff generation conditions in
these cases (despite the differences in the nature of the inducing event itself) are controlled by
similar space-time dynamics of inducing event and wetness state of the catchment. This appears
to be consistent for most of the analyzed catchments in the data set (i.e., low values of coefficient
of variation of DETinter for these three event types, Figure 4.5b).

4.5 Exemplary application of event typology in Germany

In this Section we applied the event typology (Figure 4.2b, Table 4.2) derived for the set of
German catchments for investigating the spatial distribution of event type occurrence, the seasonal
variations of the dominant event types in Germany and their runoff characteristics. These are
exemplary applications, which are reported and discussed here to give a taste of the possible uses
of such a typology.
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4.5.1 Spatial patterns of event types

To analyze spatial patterns of event types in Germany, all catchments in the data set were clustered
according to the frequency of occurrence of their event types. We identified six clusters (Figure
4.6a) with distinct distributions of event types (Figure 4.6b). The resulting spatial clustering of
catchments resembles the one obtained by using event runoff characteristics (i.e., mean, variability
and seasonality of event runoff coefficient, time scale and rise time) that is in turn comparable to
the spatial variability of catchment and climatic descriptors (see Figure 3.5).
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Figure 4.6: Regional pattern of event type frequency in Germany: a) spatial distribution of six homogeneous clusters in

terms of frequency of event types; b) frequency of event types per cluster for all events.

The first cluster mostly consists of mountainous catchments of the Alpine Foreland, Black Forest
and Rhenish Massif (Figure 4.6a). Here almost 25% of events are either Rain-on-snow or Mix-
ture of Rainfall and Snowmelt (Figure 4.6b). A big portion of rainfall events occurs during wet
conditions and only less than 25% of events occurs during dry conditions. This can be explained
by the fact that this cluster largely corresponds to the group of catchments with small subsurface
storage and in-phase seasonality of soil moisture and rainfall (i.e., substantial rainfall amount falls
during the cold season when evaporation is low and soils are wet) (Tarasova et al., 2018a). This
explains the high portion of rainfall events on wet conditions (Figure 4.6, green and blue colors).
Around 5% of all events are volume-dominated rainfall events in wet conditions, when most of
rainfall occurs on less saturated soil (i.e., events categorized as No Overlap). This indicates that
the corresponding runoff events might be the result of event-fed saturation in these catchments.
Cluster 2 combines wet lowland catchments of the western North German Plain, mid-range catch-
ments of the western Central Uplands and the South German Scarplands. Here the role of events
involving snow, especially Rain-on-snow events, is lower than in the previous cluster as the eleva-
tions are limited. More than 40% of rainfall event occurs during wet conditions due to in-phase
seasonality of rainfall and soil moisture (Tarasova et al., 2018a). Volume-dominated rainfall events
clearly prevail during both dry and wet conditions. Event-fed saturation during wet conditions
when large portions of catchments are active and contribute to runoff generation is probably a
rare situation in these catchments as only a small portion of events is categorized as No Overlap
events. However, during dry conditions when the distribution of active runoff generation zones is
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very heterogeneous, local event-fed saturation is the most frequent runoff generation mechanism
(i.e., there is abundance of Rain.Dry.Volume.Local and Rain.Dry.Volume.Extensive.Steady event
types).
Cluster 3 encompasses mountainous catchments of the eastern Central Uplands (i.e., the Harz,
Ore Mountains and Thuringian Forest) and the Alpine Forelands. Similarly to Cluster 1 almost
25% of events are associated with Rain-on-snow and Mixtures of Rainfall and Snowmelt. However,
rainfall events are distributed almost equally between dry and wet conditions indicating large vari-
ability in the extent of area that actively contributes to streamflow generation in these catchments
compared to Cluster 1. Almost 25% of all events are generated by means of localized event-fed sat-
uration during dry conditions when the connectivity among active runoff generation areas is poor
(Rain.Dry.Volume.Local and Rain.Dry.Volume.Extensive.Steady events). During wet conditions
both extensive and local runoff generations are almost exclusively controlled by the spatial inter-
action between soil moisture state and rainfall amounts (i.e., Rain.Wet.Volume.Local.Overlap and
Rain.Wet.Volume.Extensive.Overlap prevail among events occurring in a wet catchment state).
The fourth cluster combines the catchments of the central parts of the North German Plain, the
hilly catchments of the Central Uplands and South German Scarplands and the lower Alpine Fore-
land. A larger portion of rainfall events occurs during dry conditions indicating that generally
only small portions of catchments contribute to streamflow generation. As in all other regions in
Germany, during wet conditions (that are usually in the cold period of the year) volume-dominated
events prevail. However, in this cluster both local and extensive volume-dominated rainfall events
are only generated when there is strong interaction with soil moisture (i.e., pre-event saturation is
necessary for runoff generation).
The fifth cluster consists of the dry lowland catchments in the east of the North German Plain
and the South German Scarplands. Here, only a small portion of events belongs to Rain-on-snow
or Mixture of Rainfall and Snowmelt types. Only few rainfall events occur during wet conditions,
as seasonality of soil moisture and rainfall is not synchronized. Around 25% of all events are
intensity-dominated rainfall events with prevailing local runoff generation and possible infiltration
excess. Most of volume-dominated rainfall events during dry conditions have local character (i.e.,
large portion of Rain.Dry.Volume.Local) possibly indicating very spatially heterogeneous runoff
generation patterns that largely depend on the intensity of inter-event evaporation controlling pre-
event soil moisture state.
The sixth cluster covers a large portion of the Alpine Forelands, as well as Loess Belt catchments
that drain mid-range Mountains of the Central Uplands (e.g., the Harz, Thuringian Forest). For
this cluster, Rain-on-snow and Mixtures of Rainfall and Snowmelt events play an important role
as their portion is the largest compared to other clusters. The portion of rainfall events during
wet conditions is rather small because rainfall and soil moisture are not seasonally synchronized.
Steady rainfall events during dry conditions are very frequent, potentially indicating the occur-
rence of orographic slow-moving storms, which are mainly volume-dominated but can occasionally
have an intensity-dominated structure. Almost 20% of all rainfall events are intensity-dominated
indicating that infiltration excess is a possible runoff generation mechanism in these catchments.
The above mentioned evidences of similarity among regions with homogeneous event type fre-
quency and archetypical catchment behavior in terms of event runoff response (as reported in
Tarasova et al., 2018a) indicate that on one hand the similarity of event runoff response might be
controlled by the occurrence of similar event types, and on the other hand that catchments with
similar physiographic and climatic conditions are likely to have similar distribution of event type
frequency.

4.5.2 Seasonality of dominant event types

Event type occurrence naturally varies throughout the year (Figure 4.7). In large parts of Ger-
many Rain-on-snow and Mixture of Rainfall and Snowmelt are the two most typical event types
in winter (Figure 4.7a). However, in the western part of the North German Plain, where snowfalls
seldom occur, extensive steady rainfall on wet conditions is the most common winter event type. In
spring the situation changes and extensive steady rainfalls on wet conditions dominate the whole
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Western part of Germany, indicating the dominance of Western cyclones and resulting synoptic
precipitation (Hofstätter et al., 2016). Similar rainfall events also prevail in the Eastern part of
Germany, but the catchment wetness state is generally lower (Figure 4.7a). The Southern part
of Germany (i.e., the Alpine Forelands and Bavarian Forest) and the eastern part of the Central
Uplands are still dominated by Rain-on-snow events in spring (Figure 4.7a), as snowpack is still
present in areas with higher elevation. In summer, the character of precipitation changes, leading
to dominance of local volume-dominated rainfall events on dry conditions. The frequent occurrence
of intensity-dominated events in the Eastern part of Germany indicates the importance of convec-
tive precipitation for runoff event generation in warm periods of the year. In autumn, increased
precipitation in mountainous catchments of the Alpine Foreland, Black Forest and Rhenish Massif
leads to abundance of rainfall events on wet conditions. Lower catchments still remain dry, but
rainfall events mostly have extensive coverage. The transformation from dry to wet state in most of
the catchments and the change from local to extensive rainfall events in autumn lead to increased
variability of event type occurrence (Figure 4.7b). Similarly, the variability is high in spring when
event types change from events which involve snow to rainfall-induced events. The variability of
event type occurrence is lower in summer when rainfall events on dry conditions dominate. Except
for the western part of the North German Plain, where air temperature is fluctuating around crit-
ical values for snowfall, the lowest variability is observed in winter when the bulk of events results
from processes which involve snow (Figure 4.7b).
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Figure 4.7: Seasonality of event types in Germany: a) dominant type (i.e., most frequent type in the season) and b)

variability of event type occurrence for each season defined as coefficient of unalikeability (see Chapter 4.3.5
and Kader and Perry (2007)). This metric defines the portion of all event pairs in the season that are unalike.
When one event type dominates in a certain season the value of the coefficient of unalikeability is close to 0.
When several event types are equally dominant for a certain season the value of the coefficient increases towards
the maximum value of 1.
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4.5.3 Runoff characteristics of event types

Here, we analyzed five runoff event characteristics (i.e., event runoff coefficient, time scale, rise
time, peak discharge and total event volume; see Chapter 4.3.5) of the derived event types. These
characteristics describe short-term runoff dynamics, which might shed light on the nature of pre-
cipitation partitioning and storage in the catchments and indicate principal mechanisms of water
release during events (Tarasova et al., 2018b). In addition to the set of all events, sub-samples of
larger (i.e., runoff events with peak discharge higher than the 3rd quartile) and smaller (i.e., runoff
events with peak discharge smaller than the 3rd quartile) events are also considered in this analysis
with the purpose to investigate possible differences among runoff generation mechanisms of small
and large events.
Generally, the majority of all runoff events in Germany and especially of small events results from
rainfall events occurring during dry soil moisture conditions (Figure 4.8a, c; warm colors). Rain-
fall during wet conditions (indicated by green and blue palette), and especially Rain-on-snow and
Mixtures of Rainfall and Snowmelt (violet colors), are much more common among larger events
(Figure 4.8b). Only a small portion of events was classified as Rain-on-ice and pure Snowmelt
event types (Figure 4.8a), indicating that these are rare runoff generation processes in Germany.
Nonetheless, a portion of larger events are generated by these processes (Figure 4.8b) indicating
that rare processes might still be responsible for generation of large flood events (e.g., Stein et al.,
2019).
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Figure 4.8: Hydrological response of event types in terms of their runoff event characteristics (i.e., event runoff coefficient,

time scale, rise time, peak discharge and volume): a) all events; b) events with Qpeak > Q75; c) events with
Qpeak < Q75. Runoff event characteristics are standardized by scaling all events to zero mean (by subtracting
the mean of the sample from the original values) and unit variance (by dividing them by the standard deviation)
for each catchment to make them comparable. Legend shows color coding of event types that is also valid for
Figure 4.9.

A clear increase of event runoff coefficients is observed from dry rainfall events to wet rainfall
events (Figure 4.8) indicating that a substantial portion of rainfall is stored during dry conditions.
The highest runoff coefficients are observed for Rain-on-ice and events which involve snow (i.e.,
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Mixtures of Rainfall and Snowmelt, Rain-on-snow and Snowmelt). These event types are often
characterized by very wet conditions (Table 4.2). Moreover, frozen soils and snow cover might also
hinder infiltration of rain water, which then immediately contributes to runoff. When events of all
sizes are considered a very similar pattern is revealed for peak discharges and runoff event volumes
(Figure 4.8a). Interestingly, when only larger events are considered smaller runoff volumes are
typical for intensity-dominated rainfall events, but there are little differences between event runoff
volumes of extensive rainfall events during wet conditions (dark blue colors) and all events which
involve snow. This can be explained by the fact that these events are indeed similar in terms of
space-time organization of the precipitation events and wetness state of the catchments (Figure
4.5a).
Differences in peak discharges among event types for larger events almost vanish compared to the
case when all events are considered. However, volume, intensity and duration of the corresponding
precipitation events (Figure 4.9b) indicate distinct differences among event types even for large
events. Intensity-dominated rainfall events on dry conditions are characterized by higher precipita-
tion intensities than their counterparts with wet conditions. Similarly, volume-dominated rainfall
events on dry conditions have higher precipitation event volume than their counterparts with wet
conditions (Figure 4.9b), but show little difference in the event runoff volumes (Figure 4.8b), likely
because the storage available in dry conditions is of the order of the difference between rainfall
amounts of the two states.
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Figure 4.9: Precipitation properties of event types that were not used for event characterization (i.e., maximum precipitation

intensity, total volume of precipitation event, duration of precipitation event): a) all events; b) events with
Qpeak > Q75; c) events with Qpeak < Q75. Maximum precipitation intensity, total volume of rainfall and
duration of precipitation events are standardized by scaling all events to zero mean (by subtracting the mean
of the sample from the original values) and unit variance (by dividing them by the standard deviation) for each
catchment to make them comparable. The color-coding of this Figure corresponds to the color key in Figure
4.8.

The event time scale of intensity-dominated rainfall events (yellow and green palette) is smaller
than the one of their volume-dominated counterparts (red and blue palette) (Figure 4.8). These
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differences are especially distinct for larger events (Figure 4.8b). Event time scale of Rain-on-snow
and Mixtures of Rainfall and Snowmelt are usually longer than for rainfall events (Figure 4.8a, c),
but this tendency is less pronounced for larger events (Figure 4.8b).
When events of different magnitudes are considered together (Figure 4.8a), no clear differences in
event rise time are detectable (Figure 4.8a). However, for larger magnitudes intensity-dominated
rainfall events seem to have shorter rise time than volume-dominated ones (Figure 4.8b), showing
that when runoff is generated by intensity-dominated events fast flow paths can be activated.
Distinct runoff characteristics of event types are valuable features for constructing event type-
based design hydrographs (e.g., Brunner et al., 2018). The above-mentioned disparate runoff and
precipitation characteristics of event types provide useful information on how runoff characteristics
might change in the future given the expected change in precipitation properties (e.g., if intense
rainfall events become more frequent in the future (Kendon et al., 2014)).

4.6 Conclusions and Outlook

A new process-based framework for characterizing runoff events and deriving event typologies was
proposed. The indicators used in the framework categorize runoff events based on space-time
dynamics of observed precipitation and simulated snowmelt and soil moisture and their mutual
interactions within river catchments. A rigorous uncertainty analysis shows that the indicators of
the proposed characterization framework are robust and regionally consistent. The adoption of
dimensionless covariance- and ratio-based indicators reduces classification uncertainty compared to
commonly used indicators relying on absolute values of metrics such as rainfall volume, duration or
intensity. This indicates that the proposed characterization framework is a reliable tool that could
be used for regional studies on runoff generation processes and for investigating their temporal
evolution in the past as well as in the future.
The analysis of cross recurrence plots showed that the event typology derived in this study proves
able to stratify events with distinct hydrograph dynamics, even though streamflow was not directly
used for classification. This indicates that the derived event typology effectively captures first-order
controls of event runoff response in a wide variety of catchments. Application of the derived event
typology to a country-wide dataset from Germany revealed six distinct regions characterized by
different dominant event types, which match well with the corresponding regions exhibiting similar
runoff response. Unveiled seasonal patterns of event type occurrence show high spatial coherence
that agrees with the seasonality of hydroclimatic conditions prevailing across Germany. These
are valuable findings for regionalization of hydrological signatures and prediction of the seasonal
character of the runoff response in ungauged locations.
The proposed framework, which allows for a consistent characterization and comparison of runoff
events of various sizes and recurrence intervals in a wide range of German catchments, is expected
to perform similarly well in regions where hydrometeorological data of comparable quality in terms
of density of observations, spatial and temporal resolution of the input data is available.
Instead, application of the framework to regions with extremely pronounced seasonality (e.g., snow-
or monsoon-dominated river regimes) might not be trivial, since the very definition of runoff event
in these areas differs from the one adopted for temperate climates (e.g., a runoff event can last
several months making computation of temporal and spatial organization of the corresponding
inducing event and wetness state ambiguous using the proposed indicators).
Thanks to the adaptive structure of the proposed characterization framework, the complexity of
derived event typologies can be adapted to specific applications or adjusted in case of known
problems in the reliability or availability of input data. The characterization framework and the
derived event typology can be further applied for understanding regional differences of runoff and
flood events and detect temporal changes of the dominant flood generation processes. This might
help explain previously detected disparate trends in unstratified floods. The same approach could
be also applied for disentangling the variability of solutes and particulates exports from catchments
during different runoff event conditions (as recently suggested by Karwan et al. (2018) and Knapp
et al. (2020)), thus providing additional insights on variability of water quality metrics observed
in streams.
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4.7 Supporting Information

4.7.1 Rainfall-runoff event attribution in nested river networks

Initial rainfall-runoff event attribution was performed using seasonal median lag time as proposed
by Mei and Anagnostou (2015). This lag time is used to set distance backwards from the starting
point of considered runoff event within which rainfall event is searched at each individual location
(i.e., catchment) (Figure 4.10a). However, in the headwaters, inducing events (i.e., precipitation)
might start much earlier than observable streamflow reactions at the outlet of large river networks
(Diederen et al., 2019). Therefore, the precipitation event considered for the same runoff event at
upstream and downstream location might be different when the start of the precipitation event
lays inside of the search distance defined by lag time for the upstream location, but is outside of
this distance for the downstream location (Figure 4.10b). To remedy this issue in the case of nested
catchments, individual runoff events were organized along the river network they belong to and
the starting points of runoff events at downstream locations are adjusted in a way that the earliest
starting date among all upstream locations is assigned to the corresponding downstream location.
This starting date of runoff events was then used to search for the corresponding precipitation event
for each individual catchment according to seasonal median lag time as described above (Figure
4.10b). The search time range backwards was bounded by the starting date of the precipitation
event at the upstream location. The above described procedure ensures that no precipitation
is accidentally discarded in larger catchments, and allows for characterizing nested catchments
consistently.
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Figure 4.10: Attribution of rainfall-runoff events at upstream and downstream locations on the example of the River Kyll: a)

at the upstream location using seasonal median lag time as a searching distance; b) at the downstream location
using seasonal median lag time as a searching distance from the starting point of local runoff event (black color;
compared to the upstream location the first precipitation pulse does not contribute to the considered runoff
event) and from the corrected starting that corresponds to the runoff event starting date at the upstream
location date (red color; similar to the upstream location the first precipitation pulse contributes to the
considered runoff event).

4.7.2 Definition of the threshold for catchment wetness state

The second characterization layer sorts events according to their corresponding pre-event catch-
ment wetness state (see Chapter 4.3.1 and Figure 4.2a). We labeled event conditions as Wet or
Dry based on catchment-averaged antecedent soil moisture. By using simulated soil moisture we
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inevitably introduce model-specific bias into the characterization framework. Simulated soil mois-
ture essentially shows the current state of the soil moisture storage unit according to accounting
schemes that are widely used in computational hydrology (e.g., Bergström, 1995). If the non-linear
storage-discharge relationship differs in different catchments (Figure 4.11a), using percentiles of
soil moisture as threshold to define wet and dry state might be inappropriate. To properly account
for the non-linear behavior of the soil moisture storage reservoir, we use the measure of maximum
curvature (Rogger et al., 2013) of a fitted exponential function that describes the non-linear re-
lation between event runoff coefficient (rc) and antecedent soil moisture (sm) (Tarasova et al.,
2018b, and Figure 4.11b) as a classification threshold. For soil moisture states below the point
of maximum curvature, event runoff coefficients tend to increase slowly with increasing soil mois-
ture (representing dry catchment states), while beyond this point event runoff coefficients increase
rapidly with soil moisture (representing wet catchment states) (Figure 4.11). Curvature at each

point of the function rc = f(sm) is calculated as κ = |f(sm)′′|
[1+(f(sm)′)2]

3
2

and its maximum value is

calculated for each catchment in the data set.
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Figure 4.11: Soil moisture as non-linear control of event runoff coefficient: a) Relationship between the observed event runoff

coefficients and pre-event soil moisture simulated by the mHM model on example of the Lippe at Haltern and
Ems at Einen and the fitted exponential function as described in Tarasova et al. (2018b).Circles correspond
to single-peak events. Crosses correspond to multiple-peak events; b) the average of the observed event runoff
coefficients corresponding to different simulated soil moisture conditions is presented for selected catchments as
an exponential function of simulated soil moisture fitted to them as described in Tarasova et al. (2018b). The
lines are color coded according to subsurface storage index defined as the ratio between Q90 and Q50 (ratio
between daily discharges which is exceeded 90% of the time and the median flow). The Figure is modified
from Tarasova et al. (2018b) with the permission from Wiley.

4.7.3 Cross Recurrence Plots and Recurrence Quantification Analysis

CRP is essentially a visualization in a form of pointwise similarity of two dynamical systems (see
Figure 4.3c), with matrix elements (i.e., recurrence points CRi,j) corresponding to times when two
phase space trajectories are similar (similarity distance is defined by threshold ε):

CRi,j(ε) =

{
1, |~xi − ~yi|2 < ε

0, otherwise
i = 1, ..., N, j = 1, ...,M (4.2)
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where N and M are the number of measured points in the compared phase space trajectories ~xi
and ~yi.
Three parameters are required to construct a CRP. These are the two parameters for the time
delay embedding, namely, the embedding dimension m and the time delay τ , as well as the phase
space distance threshold ε.
To balance embedding losses that result from the constructing of the high-dimensional phase space
trajectories with time delay τ , only events with duration longer than 5 days can be considered.
This was supported by interpolating each event time series into 8 points per day (3-hourly) using
shape preserving piecewise cubic interpolation method. The shortest possible τ = 12 [hours] was
therefore selected as time delay. We used m = 3 [-] embedding dimensions since an initial sensitivity
analysis showed that the results did not vary considerably when a higher number of dimensions
was used. Our choice of distance radius or threshold parameter is based on 10th percentile of all
Euclidian distances in the phase space of every pairwise comparison. That said, the procedure is to
first calculate the Euclidean distance matrix between two events, and then use the 10th percentile
of all distances as threshold to define CRP points. Further we only choose the points within
this threshold that happen to be local minima of the distances in reference to each compared
vector point in phase space (i.e., every row in the distance matrix), and that consequent local
minima have to be at least distanced of two discrete time points, in our case 6 hours minimum.
This method of further filtering CRP points with local minima and their minimum distance in
addition to threshold parameter ε avoids CRP pitfalls when noise might be present in the time
series (Wendi et al., 2019). When two identical time series are compared the CRP pattern will be
a single diagonal line (e.g., top panels of Figure 4.3). Thus, diagonal lines within the CRP matrix
are an indicator of similarity between two dynamical systems (Wendi et al., 2019).
The resulting patterns within a CRP can be quantified by RQA which is essentially used as a
similarity measure between two runoff event hydrographs. The selected RQA measure determinism
(DET) describes the similarity (or dissimilarity) of two dynamical systems using the distribution
of connected recurrence points that form diagonal lines, over all the points within the CRP (Wendi
et al., 2019):

DET =

∑N
l=lmin

lP (l)∑N
i,j CRi,j

(4.3)

where P (l) = {li; i = 1, ..., Nl} is the relative frequency of the lengths l of diagonal structures,
Nl is the total number of those diagonal lines in the CRP, and lmin is the minimum length of
diagonal lines in this case defined as the minimum of two connecting points. This quantification
based on the fraction of diagonal lines among all recurrence points (CRi,j) considers the influence
of scattered single recurrence points that occur by chance. DET varies between 0 and 1 and defines
a range from low to high similarity in the dynamics of the two times series (Marwan, 2010).
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5 Conclusions and Perspectives

The main results described in previous Chapters summarized here and potential future applications
and areas of research are presented.

5.1 Conclusions

The main goal of this thesis was to enable automated identification of rainfall-runoff event from
continuous hydrometeorological time series, to deepen the understanding of large scale controls of
runoff event characteristics and to develop a framework for event characterization and classification
that is able to distinguish events governed by different runoff generation processes.
The proposed automated time-series-based event separation algorithm (Chapter 2) with novel iter-
ative procedure for the adjustment of thresholds needed to identify and separate single-peak com-
ponents of multiple-peak events enabled the identification and attribution of more than 220,000
rainfall-runoff events in 185 German catchments for the period 1951-2013 and consistently ad-
dressed the issue of multiple-peak events refinement in catchments characterized by various runoff
regimes and different climatic and physiographic properties, thus allowing for a country-wide anal-
ysis of the event runoff response at different temporal scales.
Temporal dynamics (i.e., event-to-event variability, seasonality and long term changes) of runoff
event characteristics (e.g., event runoff coefficient, time scale, rise time, peak discharge) derived
from identified events reveal clear patterns of event runoff response in Germany (Chapter 2). In
mountainous catchments with poor storage event runoff response is strongly controlled by the char-
acteristics of rainfall. A distinct switch between Dry and Wet states occurs in these catchments.
A weak relation between rainfall and runoff event properties is instead observed in lowland and
hilly catchments with substantial storage, where a gradual transformation between functioning
states occurs and the response is driven by pre-event saturation. The seasonality of runoff event
characteristics is governed by the contribution of snowmelt and the seasonality of the aridity index
rather than of rainfall properties. Long-term changes of total precipitation amount alone do not
explain season-specific long-term changes of runoff event characteristics that are rather consistent
with changes of seasonal indicators of the wetness state. The effects of land use changes are de-
tectable only in a few cases and display themselves mostly in the characteristic response time of
catchments (Tarasova et al., 2018b).
Long-term aggregates of runoff event characteristics (i.e., their mean values, variability and sea-
sonality in each catchment) are essential hydrological signatures of catchment behavior. Their
regional patterns and relationship with climatic and catchment descriptors provide valuable infor-
mation spatial controls of event runoff response in Germany (Chapter 3). Although runoff event
characteristics have relatively clear regional patterns due to the dominance of climatic controls
at regional scale, subsurface properties (i.e., catchment storage) also play a considerable role for
the prediction of event runoff response. Compared to other tested variable selection methods
the application of the proposed backward elimination procedure based on SOM allows for the
most accurate prediction of spatial patterns and regionalized values of runoff event characteristics
identifying soil depth, hydraulic permeability and frequency, size and seasonality of wet spells as
hydrologically-relevant catchment descriptors (Tarasova et al., 2018a).
Linking the findings on temporal dynamics of runoff event characteristics (Chapter 2) and their
spatial controls (Chapter 3) with hypothesized runoff generation mechanisms and the concept of
threshold processes in catchments (e.g., Rogger et al., 2013) allowed us to develop archetypes of
distinct catchment behaviors in Germany (Figure 3.9). The identified controls of event runoff
response and hydrologically-homogeneous regions can provide useful information for selecting rel-
evant physical catchment descriptors for various hydrological applications (e.g., regionalization of
hydrological metrics). Although selected catchment descriptors might vary in different settings
and other regions, it is likely that descriptors expressing properties of subsurface storage, rain-
fall dynamics and evapotranspiration will define event runoff response elsewhere. Land use might
control dissimilarity of catchment behaviors within regions with relatively homogeneous climatic
conditions and subsurface structure where evapotranspiration-controlled drying of soil moisture
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largely defines the pre-event wetness state (Tarasova et al., 2018a).
These advances were the basis for development of a new process-based framework for character-
izing runoff events and deriving event typologies (Chapter 4). The indicators of the proposed
framework categorize runoff events based on space-time dynamics of observed precipitation and
simulated snowmelt and soil moisture and their mutual interactions within river catchments. A
rigorous uncertainty analysis showed that the indicators of the proposed characterization frame-
work are robust and regionally consistent. Dimensionless covariance- and ratio-based indicators
used in the proposed framework reduces classification uncertainty compared to commonly used
indicators relying on absolute values of metrics such as rainfall volume, duration or intensity and
allow consistent classification of runoff events of various magnitudes and recurrences. The val-
idation procedure based on CRPs showed that the event typology derived in this thesis is able
to stratify events with distinct hydrograph dynamics in most of study catchments, even though
streamflow was not directly used for classification (Tarasova et al., 2020). This indicates that the
derived event typology effectively captures first-order controls of event runoff response in a wide
variety of German catchments.

5.2 Outlook

The proposed framework for process-based event characterization and classification developed and
presented in this thesis proved robust and allowed consistent classification of runoff events in
different catchments encompassing a variety of climatic and physio-geographic settings in Germany.
Therefore, application of the proposed frameworks provides several interesting research avenues.
Some examples of application are discussed below.

Implications for flood frequency analysis and prediction of flood characteristics Flood events
exhibit a wide variety of process controls that determine their time of occurrence, duration, extent
and severity. However, the different generating mechanisms and characteristics of flood events are
often ignored in statistical analyses (Merz and Blöschl, 2003a). In fact, a principal hypothesis of
extreme value statistics is that observations are homogeneous and originate from the same distri-
bution (Gumbel, 1941). However, flood events observed in a catchment might be non-identically
distributed (due to their different origins) and non-stationary (because of the natural climatic vari-
ability or human interventions) (Hirschboeck, 1987; Merz et al., 2014). Joint analysis of floods that
are generated by different processes may result in uncertain predictions of flood estimates (Potter,
1958). Classifying flood events using the proposed framework can help address these issues.
Deriving event-type-based mixed distributions can help in improving at-site frequency estimates
(e.g., Hirschboeck et al., 2000; Alila and Mtiraoui, 2002). Application of process-based event clas-
sification for prediction of flood characteristics might also play a crucial role for strengthening the
hydrological basis of flood estimation and prediction procedures and aid shifting from statistical
flood frequency analysis to flood frequency hydrology (Merz and Blöschl, 2008a,b; Viglione et al.,
2013). Derivation of event-type-based compound distributions for at-site flood frequency analy-
sis can be used by practitioners to improve design flood values, as utilization of event types is
recommended in Germany’s and USA’s guidelines for estimating flood probabilities (DWA, 2012;
England et al., 2018).
The robustness of flood estimates directly depends on the length of the available observations (Merz
and Blöschl, 2008a). Additional causal information on flood generation mechanisms introduced
through classification of flood events from relatively short time series using the proposed frame-
work might be a valuable substitute for the information accumulated from the long unstratified
flood event series (e.g., Merz and Blöschl, 2003b). This can improve the robustness of predictions
in the places where the observations of streamflow started recently and only short time series are
at hand.
Regional flood frequency analysis can also benefit from stratifying flood samples, either through
the identification of homogeneous regions with same dominant flood generation mechanisms (see
Chapter 4.5.1) or through the regionalization of event-type-specific distribution parameters and
moments (Tarasova et al., 2019). Physical characteristics of catchments (e.g., climate, soil type,
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land use) are known to be poor regional predictors of flood moments (Merz and Blöschl, 2009a),
event-type-based regional flood frequency analysis might be a key to improve them (e.g., Jarrett
and Costa, 1988).
Developed event separation procedure and classification framework that apart from flood events
considers also a wide variety of runoff events of different magnitudes allows to increase the size of
event sample for flood estimations. By relaxing the assumptions of the traditional extreme value
theory and postulating that extremes emerge from ordinary events, the metastatistical approaches
(Zorzetto et al., 2016) can account for the full distribution of the runoff events and not only flood
events (Miniussi et al., 2020). Coupling of metastatistical approaches with the proposed event clas-
sification framework provides a unique opportunity not only to include a large sample of events
but also additional causal information to improve the accuracy and the robustness of the flood
frequency predictions.
Runoff events of different types have pronounced differences in runoff event characteristics (e.g.,
event time scales that corresponds to the relationship between event runoff volume and peak
discharge, see Chapter 4.5.3). Therefore, event typology can be also used to derive event-type
specific synthetic hydrographs (e.g., Brunner et al., 2018) that are constructed based on volume-
peak dependences for each individual event type. Accounting for event-type specific volume-peak
dependences might help to improve flood estimates especially in nonstationary conditions and
therefore contribute to more efficient design of hydraulic structures and flood protection measures
(Brunner et al., 2019).
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Figure 5.1: Frequency of occurrence of different states within the first layer (i.e., Inducing event) of event characterization

framework proposed in Chapter 4.3.1. The frequency of occurrence is calculated as the ratio between the number
of events attributed to each category of Inducing event (see Figure 4.2a and Table 4.1) and the number of all
events in the sample. Three different event samples are considered: all events identified by event separation
procedure; maximum annual floods (MAF); and flood events with the estimated return period of at least 30
years (HQ30). All three event samples were obtained from the continuous hydrometeorological time series for
the period 1951-2013 (see data reported in Tarasova et al., 2018b) and classified according to the framework
proposed by Tarasova et al. (2020). A similar procedure can be performed for other layers of the proposed
framework (e.g., Temporal organization, Space-time organization of inducing event or Wetness state)

Implications for understanding the origins of upper tail flood events Another interesting avenue
that can be examined using the proposed event classification framework is understanding the origins
of upper tail flood events (Villarini and Smith, 2010) and the emergence of unpredictable flood
events (e.g., Smith et al., 2018). It was noted by Rogger et al. (2012) based on the field evidences
from two Austrian catchments that there are distinct differences between generation processes of
ordinary runoff events and extreme floods. Smith et al. (2018) came to similar conclusions reporting
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that hydro-climatic drivers of upper tail flood events in the continental US are very different
from the annual floods implying that extreme flood events are in fact different from ordinary
ones. On the other hand, Miniussi et al. (2020) has showed that considering all runoff events
instead of only flood events allows more accurate and robust predictions of the latter implying
that extremes originate from ordinary events (Zorzetto et al., 2016). The proposed framework
is a well-suited tool to examine similarities and differences among small and large events. By
analyzing dominant generation mechanisms of different event samples it is possible to examine
transformation of processes from small to large events and to detect regional differences in these
transformations (e.g., Figure 5.1).

Evolution of event types Our limited understanding of regional flood generation mechanisms
hampers attribution of historical flood changes and curbs reliability of future flooding predictions
(Kundzewicz et al., 2014). Furthermore, observed discrepancy in changes of extreme precipitation
and extreme floods poses a challenge for understanding past and future flood changes (Berghuijs
et al., 2019). Changes of event types can provide essential information on future flood hazard, and
help to detect changes when no significant trends in classical flood characteristics (e.g., peak dis-
charge) are recognizable (Blöschl et al., 2017). Therefore, proposed event classification framework
might be a valuable tool for understanding and detecting possible changes or nonstationarities in
flood event series, the emergence of new event types and their implications for estimation.
Variations of event types can be analyzed for historic time series (e.g., Kampf and Lefsky, 2016;
Vormoor et al., 2015; Kemter et al., 2020; Sikorska-Senoner and Seibert, 2020) and for future runoff
time series generated using projections generated by climatic models (e.g., Turkington et al., 2016).
It would allow to answer the question whether a particular event type has become more frequent
over a number of decades instead of merely examining the magnitudes of all events in a lumped
way (Tarasova et al., 2019).
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Figure 5.2: Event-type-based diagnostic of the SALTO hydrological model (Merz et al., 2020) using two different perfor-

mance measures (Kling-Gupta Efficiency (KGE) and volumetric bias) calculated event-wise for two mesoscale
catchments (a) the River Sülz at Hoffnungsthal, 224 km2 and b) the River Freiberger Mulde at Berthelsdorf,
246 km2) for the period 1979-2002. KGEtot refers to a value of KGE calculated for the whole study period
without event stratification. Event types are assigned to the events according to the hierarchical classification
tree derived in Chapter 4, Figure 4.2b
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Event types as a diagnostic tool for hydrological models Event-type-based evaluation of model
performance can pinpoint particular deficiencies of hydrological models at use and enhance their
prediction and forecasting skill (e.g., Cullmann et al., 2008). The ability of state-of-the-art con-
ceptual hydrological models to represent streamflow dynamics of specific event types can be tested
using the developed event separation procedure and event classification framework. Comparing the
performance of the models in reproducing different event types provides an opportunity to deci-
pher which event types are especially difficult to simulate. This might hint on possible limitations
of current deterministic models and on the predictability of certain event types (e.g., Figure 5.2).
This additional process-informed evaluation of model performance increase the chance of selecting
a physically-sound model structure and parametrization for a particular region (Kirchner, 2009)
and hence increases the chances of producing more robust predictions in the uncertain future.

Event-driven solutes export at catchment scale The proposed event classification framework
can be also used for disentangling the variability in the mobilization and delivery of solutes and
particulates to the streams during different event conditions (e.g., Karwan et al., 2018). Due to
different generation mechanisms events of different types are expected to be responsible for different
concentration-discharge patterns (i.e., mobilization or dilution) in the long-term (e.g., Minaudo
et al., 2019) and at the event time scale(e.g., Knapp et al., 2020). Therefore, deciphering event
type controls on the export patterns of solutes and particulates might help in defining appropriate
water quality monitoring and management strategies at the catchment scale.
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Gaál, L., Szolgay, J., Kohnová, S., Parajka, J., Merz, R., Viglione, A., and Blöschl, G. (2012).
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