

D I SSERTAT ION

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Automated Extraction of Feature and Variability Information from
Natural Language Requirement Specifications

Doktoringenieur (Dr.-Ing.)

M.Sc. Yang Li

14.06.1987 Hebei, China

Prof. Dr. Gunter Saake
Prof. Dr. Andreas Nürnberger
Prof. Dr. Rick Rabiser

30.10.2020

ii

Abstract

Software Product Lines support structured reuse of software artifacts to realize the
maintenance and evolution of the typically large number of variants, which promotes
the industrialization of software development, especially for software-intensive prod-
ucts. Feature and variability information extraction from different artifacts is an
indispensable activity to support the systematic integration of single software sys-
tems and software product line. However, for a legacy system, it is non-trivial to gain
information about commonalities and differences of the variants. Beyond manually
extracting commonalities and variabilities, a variety of approaches, such as feature
location in source code and feature extraction in requirements, has been proposed
to provide automatic identification of features and their variation points. Compared
with source code, requirements contain more complete variability information and
provide traceability links to other artifacts from early development phases. In this
thesis, we provide a systematic literature review, which contains a multi-dimensional
overview of feature extraction approaches from natural language documents. Based
on the observations from studies, we provide feasible and accurate approaches to
improve the efficiency of feature extraction. To achieve this goal, we first explore
the application of deep learning technologies in feature extraction. Second, we pro-
pose a hybrid approach based on multiple natural language processing and data
mining techniques to extract features and variability information. Third, in order to
provide understandable notations for features, we propose an approach combining
keyword extraction and machine learning methods to predict feature-related terms.
Fourth, we apply the proposed feature extraction approaches to analyze the require-
ments from a real-world scenario in practice, where we adjust the framework and
combine other algorithms in terms of the specialities of real-world requirements. We
empirically present how our proposed approaches can be used to extract features
and variation points, while results show the usage of the proposed approaches can
benefit the extraction process.

Zusammenfassung

Software-Produktlinien unterstützen die strukturierte Wiederverwendung von Soft-
ware Artefakten, um die Wartung und Weiterentwicklung der normalerweise großen
Anzahl von Varianten zu realisieren, was die Industrialisierung der Softwareen-
twicklung insbesondere für softwareintensive Produkte fördert. Die Extraktion von
Feature und Variabilitätsinformationen aus verschiedenen Artefakten ist eine un-
verzichtbare Aktivität, um die systematische Integration einzelner Softwaresysteme
und Software-Produktlinie zu unterstützen. Für ein Altsystem ist es jedoch nicht
trivial, Informationen über Gemeinsamkeiten und Unterschiede der Varianten zu
erhalten. Neben dem manuellen Extrahieren von Gemeinsamkeiten und Variabil-
itäten wurden vielfältige Ansätze vorgeschlagen, z. B. die Position von Features im
Quellcode und die Extraktion von Features in Anforderungen, um Features und ihre
Variationspunkte automatisch zu identifizieren. Im Vergleich zum Quellcode enthal-
ten die Anforderungen umfassendere Variabilitätsinformationen und bieten Rück-
verfolgbarkeitsverknüpfungen zu anderen Artefakten aus frühen Phasen der Softwa-
reentwicklung. In dieser Arbeit bieten wir eine systematische Literaturrecherche, die
einen multidimensionalen Überblick über Ansätze zur Feature-Extraktion aus Doku-
menten in natürlicher Sprache enthält. Basierend auf den Beobachtungen aus dieser
Studie schlagen wir praktikable und genaue Ansätze zur Verbesserung der Effizienz
der Feature-Extraktion vor. Um dieses Ziel zu erreichen, untersuchen wir zunächst
die Anwendung von Deep-Learning-Technologien bei der Feature-Extraktion. Zweit-
ens schlagen wir einen hybriden Ansatz vor, der auf mehreren Techniken zur Verar-
beitung natürlicher Sprache und Data-Mining basiert, um Informationen von Fea-
ture und Variabilität zu extrahieren. Darüber hinaus präsentieren wir einen Ansatz,
der Schlüsselwortextraktion und Methoden des maschinellen Lernens kombiniert,
um feature-bezogene Termini vorherzusagen, damit verständliche Notationen für
Features bereitgestellt werden können. Schließlich wenden wir die zuvor präsen-
tierten Ansätze zur Feature-Extraktion an, um die Anforderungen aus einem realen
Szenario in der Praxis zu analysieren, wobei wir das Framework anpassen und andere
Algorithmen im Hinblick auf die Besonderheiten realer Anforderungen kombinieren.
Empirisch präsentieren wir, wie von uns gestellte Ansätze verwendet werden können,
um Features und Variationspunkte zu extrahieren. Zugleich zeigen die Ergebnisse,
dass die Verwendung dieser Ansätze dem Extraktionsprozess zugutekommen kann.

Acknowledgements

I would like to express my deepest gratitude to Gunter Saake. He gave me the op-
portunity to pursue my Ph.D. under his supervision, provided an excellent research
environment, and gave me the freedom to choose my research direction.

I would like to thank Sandro Schulze for his valuable and constructive suggestions
during the planning and development of my research. His attentive guidance, com-
ments, and feedback improved my academic writing skills. During the last four years,
we had numerous fruitful discussions that had a major impact on my research. His
willingness to give his time so generously has been very much appreciated.

I would like to offer my special thanks to all my colleagues in our team without
whom I could not achieve fruitful discussions. The advice given by them has been a
great help in my research. I am particularly grateful for the assistance given by Xiao
Chen, Sebastian Krieter, Jacob Krüger, Wolfram Fenske, David Broneske, Juliana
Alves Pereira, Mustafa Al-Hajjaji, Gabriel Campero Durand, Fabian Benduhn, Jens
Meinicke, and Anja Buch. They not only supported me in my research, but also
helped me solve the problems encountered in life.

I would also like to thank all the researchers I met on the path of my research. In
particular, I thank Thomas Fogdal, Helene Scherrebeck, Jiahua Xu, Stefania Gnesi,
and Laura Semini. The collaboration, feedback, and comments from them had a
great impact on my research. Moreover, I would like to thank Andreas Nürnberger
and Rick Rabiser for being the reviewers of my thesis.

Last but not least, I want to thank my girlfriend Bowen who brings a lot of joy and
happiness to our life. I am very grateful to my parents and brother for their selfless
support and love.

Contents

List of Figures xiv

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Goal of the Thesis . 2
1.2 Structure of the Thesis . 3

2 Background 5
2.1 Software Product Line Engineering 5

2.1.1 Domain Engineering . 5
2.1.2 Application Engineering . 8
2.1.3 Feature Model . 9
2.1.4 Gap between SPL and Traditional Software Reuse 10

2.2 Natural Language Processing . 11
2.2.1 Preprocessing . 11
2.2.2 Word Embedding . 13
2.2.3 Recognizing Textual Entailment 15

2.3 Summary . 16

3 Current Research on Feature and Variability Extraction 17
3.1 Review Methodology . 18

3.1.1 Need for a Review . 18
3.1.2 Research Questions . 18
3.1.3 Search Strategy . 19
3.1.4 Conducting the Review . 20

3.2 Results . 22
3.2.1 Results of Studies Search . 22
3.2.2 Answering Research Questions 26

3.3 Discussion . 35
3.4 Threats to Validity . 36
3.5 Related Work . 36
3.6 Summary . 37

4 An Initial Self-Learning Structure for Feature Extraction 39
4.1 Methodology . 41

x Contents

4.1.1 Overview . 41
4.1.2 Laplacian Eigenmaps . 42
4.1.3 Convolutional Neural Network 43
4.1.4 Clustering . 45

4.2 Preliminary Result . 45
4.2.1 Discussion . 45

4.3 Related Work . 47
4.4 Summary . 48

5 VarMine: Reverse Engineering Variability in A Hybrid Way 49
5.1 VarMine in a Nutshell . 50
5.2 Semantic Similarity Network . 51

5.2.1 Word Level Similarity . 51
5.2.2 Requirement Level Similarity 52

5.3 Feature and Variability Extraction 55
5.3.1 Feature Extraction . 55
5.3.2 Optionality and Group Constraints Detection 58
5.3.3 Cross-Tree Constraints Detection 59

5.4 Evaluation . 61
5.4.1 Research Questions . 62
5.4.2 Case Study Description . 62
5.4.3 Clustering Evaluation . 64
5.4.4 Feature Model Evaluation . 65
5.4.5 Comparison with SOVA and ArborCraft 71
5.4.6 Answering RQs . 74

5.5 Threats to Validity . 75
5.6 Related Work . 75
5.7 Summary . 77

6 The Inference of the Notions of Features 79
6.1 Methodology . 81

6.1.1 Dataset Generation . 81
6.1.2 Dataset Preprocessing . 85
6.1.3 Training Process . 87

6.2 Evaluation . 88
6.2.1 Research Questions . 88
6.2.2 Experiment Design . 89
6.2.3 Results . 91

6.3 Threats to Validity . 95
6.4 Related Work . 95
6.5 Summary . 96

7 Automated Extraction of Domain Knowledge in Practice 99
7.1 Methodology . 100

7.1.1 Preprocessing . 100
7.1.2 Feature Extraction . 101

7.2 Evaluation . 105
7.2.1 Subject System and Research Questions 105

Contents xi

7.2.2 Extraction Process . 106
7.2.3 Evaluation metrics . 107
7.2.4 Results . 108

7.3 Threats to Validity . 113
7.4 Related Work . 114

7.4.1 Traditional DSMs . 114
7.4.2 Requirement Parsing . 115
7.4.3 Miscellaneous Textual Documents 115

7.5 Summary . 116

8 Conclusion and Future Work 117
8.1 Conclusion . 117
8.2 Future Work . 118

Bibliography 121

List of Figures

2.1 An Overview of software product line engineering. 6

2.2 An exemplary feature model of smartphone. 9

2.3 An example of a parsed sentence with POS tags and dependencies
labels. 12

2.4 An example of tokens after conducting stemming and lemmatization. 13

2.5 An example for sketching the CBOW and Skip-gram models. 15

3.1 The distribution of primary studies from 2005 to 2019 by year from
each venue: symposium, workshop, journal, conference. 25

3.2 General process for applying techniques in reverse engineering vari-
ability from natural language documents. 27

3.3 Histograms of the NLP techniques used by the reviewed approaches. . 30

4.1 The flow chart of feature extraction. 42

4.2 An overview of the key techniques. 46

5.1 The flow chart of feature and variability extraction using VarMine. . . 50

5.2 Exemplary and simplified process of obtaining word vectors. 52

5.3 An example for computing semSim(w, r). 53

5.4 An example of feature and variability information extraction. 57

5.5 The ground truth of BCS and DH feature model. 63

5.6 Initial feature tree of BCS and DH. 66

5.7 Refined features and extracted parental relationships. 68

5.8 The initial E-Shop feature tree. 71

5.9 The refined E-Shop features and the extracted parental relationships. 73

6.1 The Overall workflow of our proposed approach. 81

xiv List of Figures

7.1 Overall workflow of our proposed approach for feature extraction. . . 101

7.2 An example of structural similarity. 103

7.3 The GUI for manual analysis with a feature tree view, a list of corre-
sponding requirements, and associated feature terms. 104

List of Tables

2.1 The exemplary pairs for textual entailment. 15

3.1 Research questions structured by PICOC criteria. 19

3.2 Overview of all reviewed papers, ordered by year of appearance. . . . 22

3.3 Overview of the NLP techniques used by the reviewed approaches. . . 28

3.4 Overview of the post-processing techniques used by the reviewed ap-
proaches. 31

3.5 Result of the qualitative analysis of primary studies. 34

5.1 Example of topic words. 53

5.2 Example of OR and XOR group relation extraction. 59

5.3 Mapping between TE and CTC. 59

5.4 Results of Clustering evaluation. 65

5.5 Feature extraction evaluation results. 67

5.6 Optionality and group constraints evaluation results. 69

5.7 The extracted cross-tree constraints. 70

5.8 The extracted features compared with SOVA and ArborCraft. 72

6.1 An example of requirements. 82

6.2 An example of how to use the three rules. 83

6.3 An example of the labeled data. 86

6.4 Results of the best parameter and F1 score in the training process. . 92

6.5 Results of feature term prediction in Digital Home and E-shop. 93

7.1 The results of extracted features by using two approaches. 109

7.2 The results of extracted features terms. 111

xvi List of Tables

List of Acronyms

AA Average Accuracy
BCS Body Comfort System
CAO Clone and Own
CNN Convolutional Neural Network
CTC Cross-Tree Constraint
DH Digital Home
DCNN Dynamic Convolutional Neural Network
DSM Distributional Semantic Model
DT Decision Tree
GNB Gaussian Naive Bayes
GUI Graphical User Interface
HAC Hierarchical Agglomerative Clustering
IDF Inverse Document Frequency
KNN K Nearest Neighbors
LE Laplacian Eigenmaps
LR Logistic Regression
LSA Latent Semantic Analysis
ML Machine Learning
MLP Multi-Layer Perceptron
NLP Natural Language Processing
NMI Normalized Mutual Information
POS Part of Speech
RF Random Forest
RTE Recognizing Text Entailment
SLR Systematic Literature Review
SPL Software Prodcut Line
SPLE Software Prodcut Line Engineering
SRL Semantic Role Labeling
SRS Software Requirements Specifications
SVM Support Vector Machine
TE Textual Entailment
TF Term Frequency
TF-IDF Term Frequency-Inverse Document Frequency
VSM Vector Space Model

xviii List of Acronyms

1. Introduction

Nowadays, software is subject to mass production, leading to business-critical aspects
such as reliability or time to market. However, developing software for the masses
is only one challenge in software development today. At the same time, the demand
for customization of software systems heavily increases [Kru01], and thus, requires
to tailor a software system according to the specific needs of a customer. Usually,
this demand for customization is impossible to estimate and foresee, and thus, is
accomplished in an ad-hoc fashion by adding new features as needed. While this
is a straightforward process that comes with almost no costs in the short term, it
exhibits possible severe consequences in the long term: with an increased number of
features (for different customers), the relations and dependencies between them are
usually not documented, thus giving rise to inconsistencies. Moreover, maintenance
tasks may be hindered as changes can not be propagated due to missing domain
knowledge. Finally, an overall domain model is absent, and thus, makes reasoning
or reuse across several parts of the software system impossible.

Software Product Line Engineering (SPLE) has been proposed as a large-scale de-
velopment methodology that enables the efficient development of related software
systems from a common set of core assets in a prescribed way [CN01, PBL05]. The
resulting Software Product Line (SPL) then comprises a set of software-intensive sys-
tems that can be distinguished by their commonalities and differences (also known as
variabilities) in terms of features. A feature in this context is a user-visible increment
in functionality [ABKS13]. Based on (de-)selecting features, a particular variant can
be tailored and generated based on the developed core assets. While SPLE has been
proven to be beneficial in practice [TCO00, FSK+16, HZS+16], it takes significant
efforts to introduce SPLE from scratch, as domain features and their relations must
be known, requiring a detailed domain analysis [KCH+90]. Also, setting up the
whole process usually implies a considerable overhead, as it must be ensured that
both domain and implementation artifacts are evolved together and exhibit clearly
defined variation points [PBL05]. Consequently, the decision for applying SPLE
is usually postponed to a tipping point, where this overhead is considered to be
beneficial in the long term [Kru01].

2 1. Introduction

Usually, software development does not start with an SPLE approach, because a) it
induces high upfront costs (e.g., domain analysis) and b) it is mostly unclear whether
a vast amount of variants is needed. Hence, traditional development approaches are
preferred with ad-hoc mechanisms used to introduce variability. In particular, it is
common practice in industry to apply Clone and Own (CAO), that is, replicating an
existing system and adapting it according to the new requirements [RR03, DRB+13].
Although this ad-hoc practice comes with low effort and is easy to use, information
about commonalities and differences amongst the cloned systems is lost, thus im-
peding the maintenance and evolution of the typically large number of variants.
At some point, the aforementioned procedure becomes impractical, and thus, an
SPLE approach is introduced, using either a reactive or extractive migration strat-
egy [Kru01]. A crucial point during this transition is to identify features and the
variation points among them, i.e., how they relate to each other (e.g., alternative
features or exclude/require relation between features). Especially for legacy systems
that have evolved over years, it is non-trivial to extract this information, and thus,
automation is needed to support this step. Hence, reverse engineering techniques
such as feature location and extraction are typically used to support the migration
process.

While feature location has been subject to intensive research [DRGP13], their ap-
plicability for reverse engineering in the context of software product lines has two
crucial limitations:

1. Existing feature location techniques predominantly focus on single software
systems, while information about variation points is missing. Hence, the ex-
tracted information is insufficient for migrating to an SPLE process.

2. Since existing techniques focus solely on source code, additional effort may be
required for feature extraction of other artifacts (e.g., requirements, models,
documentation) due to missing traceability links from the source code.

We argue that these limitations can be cured by focusing on Software Requirements
Specifications (SRS) as the primary artifact for feature and variability extraction.
Due to considerable progress in Natural Language Processing (NLP), a variety of
information, including variation points, can be extracted from such requirements,
thus addressing limitation 1. Moreover, requirements are the initial development
artifact and usually traceability links to all other artifacts in later development
phases, such as source code or test cases, are maintained. Hence, by extracting
variability information from SRS documents, we can exploit these links for mapping
of feature and variability information to other artifacts, thus resolving limitation 2.

1.1 Goal of the Thesis
The goal of this thesis is to investigate how to extract features and reason about
the relationships between them by means of requirements. To this end, we aim at
answering the following research questions:

RQ1: How do the current studies support the process of feature and variability
extraction from requirements?

The goal of this question is to investigate the current state-of-the-art of feature and
variability extraction from natural language documents by means of a comprehensive

1.2. Structure of the Thesis 3

literature survey. According to the result of this question, we can achieve the existing
gaps and challenges that can guide our research in this field.

RQ2: How to identify features and variation points from requirements automatically
with high accuracy?

This is the core question of this thesis. We intend to present a feasible framework
to automate the process of identifying features and variability information from
requirements. To answer this question, we provide techniques to extract features
and their corresponding requirements as well as the relationships between features,
resulting in the main contribution of this thesis.

RQ3: How can we speed up the process of figuring out the intention of a feature?

Although features with the corresponding requirements can be extracted automati-
cally, the intuition behind the extracted feature is usually unknown. That is to say,
it still lacks a brief description of a feature or a name of a feature that is pivotal
for domain engineers to achieve a complete view of features. Since features are the
indispensable concerns in SPLE, quickly understanding the extracted features can
further improve the work efficiency for domain engineers to analyze the extraction
results. Hence, we aim at providing an approach to infer the notion of a feature.

RQ4: How the feature and variability extraction techniques can benefit the software
product lines in a real-world scenario?

For this question, we focus on using the feature and variability extraction techniques
in practice. This includes choosing specific methods based on specific application
scenarios as well as how to combine different methods to form a user-friendly tool or
explicit procedures to improve the efficiency of domain engineers for analyzing the
commonalities and variabilities from natural language documents.

1.2 Structure of the Thesis

In order to present our contributions explicitly, we divide the thesis into the following
8 chapters:

In Chapter 2, we briefly introduce the necessary basics of SPLE including domain
engineering and application engineering. Although CAO is also targeted software
reuse, the development of variant-rich systems with CAO differs considerably from
what SPLE proposes. Hence, we make a comparison between software product lines
and CAO to further conclude the drawbacks of CAO. Moreover, we also introduce
the related NLP concepts and techniques used in this thesis.

In order to address RQ1–RQ4, the thesis presents four main contributions:

RQ1: In Chapter 3, we provide a multi-dimensional overview of approaches for fea-
ture and variability extraction from natural language documents by means of
a Systematic Literature Review (SLR). We selected 31 primary studies and
carefully evaluated them regarding different aspects such as techniques used,
tool support, or accuracy of the results. Moreover, we offer key insights and
observations that guide us to derive future challenges, arguing that more effort
needs to be invested in making such approaches applicable in practice.

4 1. Introduction

RQ2: In Chapter 4, we identify several potential shortcomings of previous research
in terms of insights derived from Chapter 3. In order to cope with these
shortcomings, we propose an initial approach with a self-learning structure
that aims at learning the linguistic characteristics of the requirements to re-
alize extracting features, reducing the usage of external tools for obtaining
the semantic and syntactic information. Initial results show that accuracy is
still limited, but that our approach allows us to automate the entire process.
In Chapter 5, we propose a general framework named VarMine to extract
features and variability information from requirements, integrating different
information retrieval, data mining and NLP technologies. The results reveal
that our approach identifies the majority of features correctly and also extracts
variability information with reasonable accuracy.

RQ3: In order to better understand the extracted features, we propose an approach
that combines machine learning and keyword extraction techniques to predict
feature-related terms in Chapter 6. These feature-related terms are used to
describe and indicate the notion of features. The results show that the feature-
related terms can provide key information for recognizing the meaning of the
extracted features.

RQ4: Although we propose approaches for extracting features and variation points
from natural language documents in Chapter 4, Chapter 5 and Chapter 6,
it is not clear whether these approaches can handle real-world requirements
documents from a particular industry. To this end, in Chapter 7, we focus on
applying, adjusting, and combining the proposed approaches to automatically
extract domain knowledge from requirements specifications from Danfoss to
assist domain engineers. We not only propose an improved approach to obtain
the feature tree, but also develop a Graphical User Interface (GUI) to support
the extraction process. The empirical evaluation presents that most of the
extracted features and terms are beneficial to improve the process of feature
extraction.

In Chapter 8, we summarize our contributions and discuss the potential directions
for future research.

2. Background

In this chapter, we present the basic information needed to be known of in advance.
Firstly, we introduce Software Product Line Engineering. Afterwards, we present
the fundamental concepts regarding Natural Language Processing.

2.1 Software Product Line Engineering

Software Product Line (SPL) aims at developing a whole family of related but dif-
ferent software systems by enabling systematic reuse among these systems, called
variants, and thus enable software customization at large scale. To this end, Soft-
ware Product Line Engineering (SPLE) has been proposed as a specific development
model, consisting of two parts [PBL05]: domain engineering, where the domain
model is created and reusable artifacts are created (e.g., source code, user cases, re-
quirements and so on); and application engineering, where based on a configuration
the domain artifacts are composed and complemented in order to derive a concrete
variant (e.g., an executable software system). Figure 2.1 presents an overview of
domain engineering and application engineering, and we introduce them in detail in
the following sub-sections.

2.1.1 Domain Engineering

In the process of domain engineering, the domain of a software product line is first an-
alyzed by domain engineers, and then the reusable artifacts are developed [ABKS13].
The input of domain engineering is the related domain knowledge, and the outputs
of it are the reusable artifacts that can be further configured to derive different prod-
ucts or applications of a software product line. Hence, domain engineering aims at
the development for reuse [LSR07]. It contains three key goals:

• The scope of the software product line should be outlined by analyzing the
collection of domain knowledge.

6 2. Background

Domain analysis

Domain scoping

Domain modeling

Feature model

Domain implementation

Reusable artifacts

Implementation strategies
Traceability

links

Product derivation

Product

Testing
Feature

selection

Requirement analysis

The selected features

Requirements

New requirements

Domain
knowledge

Customer
needs

Domain engineering

Application engineering

Figure 2.1: An Overview of software product line engineering.

• The commonality and the variability of the software product line should be
identified, and all the information is recorded systematically to form a feature
model (cf. Section 2.1.3).

• In order to achieve the desired variability, the reusable artifacts should be
defined and developed.

In order to achieve the goals above, domain engineering mainly consists of two parts:
domain analysis and domain implementation.

Domain analysis

Typically, domain analysis is a process of systematically analyzing the commonali-
ties and differences of related software systems based on the study of all the relevant
knowledge of a particular domain collected by domain experts [KCH+90], resulting in
a feature model to document and present the information about commonalities and
variabilities. In this process, the features that correspond to a particular product line
are determined. It first includes a domain scoping step that determines which fea-
tures should be supported by the software product line and implemented as reusable
artifacts. Then, domain engineers identify the relations between features, usually
resulting in a feature model presenting features and their relationships. Hence, it
comprises two basic tasks: domain scoping and domain modeling.

Domain scoping. In the process of domain scoping, the range of a product line is
defined, that is, domain experts decide what should be included and what should be
excluded in the software product line based on the goals of the company developing
a software product line [PBL05, ABKS13]. The scope describes all the common
and variable features that are desired for future products. In particular, taking into
account the evolution of the market demand and technology, some functionalities and

2.1. Software Product Line Engineering 7

related standards may also alter for future applications. Hence, domain experts need
to foresee the potential alteration when scoping the domain of the software product
line. Collecting the information regarding the target domain is an indispensable task
during domain scoping. Typically, the domain experts analyze existing products,
competitors’ products, handbooks, potential customers and so forth in order to
achieve enough domain knowledge [ABKS13].

Domain modeling. In the process of domain modeling, domain engineers identify the
information about commonalities and variabilities (i.e., differences) between desired
products, and establish a feature model to present all the information in terms of
features and the relations and constraints between features. Commonalities consti-
tute the basis of every product from a software product line. Usually, if the number
of commonalities are higher than the number of variabilities, it means that there
is less effort needed in design for flexibility. The commonalities are usually identi-
fied by exploring the common requirements and functionalities that will appear in
all the future products of a particular software product line. That is to say, the
common requirements and functionalities can be regarded as the proper candidates
for commonalities. Variability analysis aims at extracting and defining the variation
points by anticipating the potential variants and analyzing different requirements.
In particular, requirements from different customers’ demands or from the needs of
supporting different systems indicate the necessity that variation points and vari-
ants should be introduced. Nevertheless, it does not mean that the variation points
should be defined for all the differences. In this process, the stakeholders are involved
in carefully considering which variation points need to be introduced, since the con-
stituent of the variation points affects the core structure and design of the feature
model as well as the products in the software product line. In order to detect all the
necessary variability information, domain experts need to achieve enough domain
knowledge to analyze what the potential requirements and foreseen functionalities
will occur in all desired products of the software product line. For example, they have
to analyze which requirements present different functionalities in different products
and which requirements only appear in a subset of the products. Finally, all this
information about commonalities and variabilities is systematically documented and
usually to be used to construct a corresponding feature model (cf. Section 2.1.3).

Although domain analysis can be considered as a type of requirements engineering, it
is conducted for an entire software product line [ABKS13]. Hence, there exist obvious
differences between domain analysis for the software product line and requirements
engineering for single systems:

• Domain experts analyze not only the requirements from a specific customer
but also the collection of other existing products, competitors’ products, po-
tential customers. This way, the analysis can reveal the common requirements
that occur in all the foreseen products of the software product line and which
requirements are unique for some products.

• Meanwhile, the prospective changes in requirements should be foreseen, for
instance, market demands, technology and standards.

• Finally, all the commonalities and variabilities extracted from requirements
are clearly documented in a feature model.

8 2. Background

Domain implementation

After achieving the features, the reusable artifacts corresponding to the features
identified in the domain analysis can be implemented, which is called domain im-
plementation. The artifacts that can be reused and related to the software product
line are various, comprising design, test, documentation and source code. Hence, we
can obtain the traceability links between features in the feature model and imple-
mentation artifacts.

Domain implementation usually starts with the selection of the implementation
strategies, such as language-based variability mechanisms (e.g., parameters, frame-
works) and tool-driven variability mechanisms (e.g., preprocessors). Subsequently,
in terms of the selected implementation strategy, we need to figure out how to de-
sign and implement the common parts and variation points. Three key differences
between domain implementation and the single system implementation can be con-
cluded as follows:

• Domain implementation aims at designing and implementing reusable artifacts
in different contexts of a particular domain.

• In order to realize the variability, the configuration mechanism is involved in
domain implementation.

• Hence, after domain implementation, what we can achieve is the configurable
artifacts instead of a product.

2.1.2 Application Engineering

According to the demands of a particular customer, application engineering aims
at developing a specific software product line application [ABKS13]. Compared
with single application development in traditional software engineering, application
engineering can benefit from the reusable artifacts developed in the process of do-
main engineering. Hence, the goal of application engineering is development with
reuse [LSR07]. Here, we introduce the two main tasks in application engineering:
requirements analysis and product derivation.

Requirements analysis

Requirements analysis aims at investigating and analyzing the requirements of a
specific customer, which seems similar to requirement analysis in traditional software
development. However, the key difference is that we have already learned domain
knowledge during domain analysis, that is, some potential requirements have already
been identified and documented in a feature model. Since the corresponding feature
model has been already built during the domain analysis process, analysts can map
the customer’s requirements to existing features. In addition, it is likely that domain
analysis might not identify all features that satisfy the specific requirements of a
customer. If the analysts find new requirements that do not exist in the current
feature model, they can feed the new requirements back into the domain analysis,
which may result in modification of the feature model as well as the corresponding
implementation artifacts.

2.1. Software Product Line Engineering 9

Video_Call requires Front
Wireless_Charging excludes Metal

Figure 2.2: An exemplary feature model of smartphone.

Product derivation

After understanding the customer’s requirements and selecting the related features,
the implementation artifacts are combined to derive the desired product, which is
named product derivation. Depending on the selected implementation approach
(e.g., parameters, frameworks, preprocessors, etc.), this process can be more or
less automated in terms of the selected features and reusable artifacts. Moreover,
the activities of testing is necessary to validate and verify the product to meet
the specifications before delivering the resulting product to a customer. The key
difference between product derivation and traditional single system implementation
is that the majority of the artifacts are derived from domain implementation artifacts
in the process of product derivation rather than being created from scratch.

2.1.3 Feature Model

As part of this SPLE process, a Feature Model, as exemplarily shown in Figure 2.2,
is commonly used to specify commonalities and differences between the related sys-
tems, usually expressed by means of features and their relations (i.e, constraints
and dependencies) [ABKS13]. A feature usually denotes a unit of functionality of a
software system [AK09], namely, it is an end-user visible characteristic of a software
system [KCH+90]. Features play an indispensable role in a feature model, since
features can specify the commonalities and variabilities of products throughout the
entire software life cycle and each feature can meet a requirement and provide a
potential choice for configuration. By means of this feature model, variants can be
derived by (de)-selecting features that correspond to certain requirements, where the
feature selection must satisfy the feature dependencies presented in the correspond-
ing feature model. Hence, feature modeling is a pivotal step in SPLE as part of the
domain analysis, in which domain engineers manually analyze the requirements to
identify the commonalities and variabilities (i.e., differences) between products in a
domain.

Figure 2.2 shows an example of a feature model. If a parent feature is included in a
variant, the following types of parental relationships between parent-child features
exist:

• Mandatory - the sub-feature must be included in each config;

10 2. Background

• Optional - the sub-feature is possible to be included;

• OR - one or more sub-features can be included;

• Alternative (XOR) - exactly one sub-feature must be included.

In addition to the above relationships between parent-child features, cross-tree con-
straints (CTCs) express dependencies between features across the whole feature
model. The most common are:

• A requires B - The presence of feature A implies the presence of feature B;

• A excludes B - The presence of feature A implies the absence of feature B.

2.1.4 Gap between SPL and Traditional Software Reuse

Software product lines aim at systematic software reuse. Although the development
of a software product line is somewhat similar to the traditional software reuse,
software product lines are dedicated to more complicated, detailed, and organized
software reuse than traditional approaches. For example, Clone and Own (CAO) is
a software reuse method. The similarity between CAO and the software product line
is that CAO is also applied to a family of related software products. However, their
difference is that CAO is more focused on a single product rather than a family of
products, which means that information about the commonality and variability of a
family of related products has not been systematically retained. Usually, companies
build repositories in the process of developing different software products, and the
repositories contain some reusable components, modules, and algorithms. Therefore,
if CAO is used to develop a new product, the developers only need to find the one
most relevant to the new product from the other developed products, reuse all
reusable artifacts, adjust and add new functionalities. We can see that CAO can
greatly improve development efficiency because developers can start the development
with an already existing product. However, it still has three main shortcomings:

• In the process of using CAO, the development and reuse of software products
are focused on a particular product, and the commonalities and variabilities
of other related products are not taken into account. This shortcoming results
in satisfying the demand of customization is a time-consuming, costly and
labor-intensive process.

• CAO is mainly used for source code reuse without the ability to reuse other
non-code artifacts (e.g. design documents, requirements, use cases, class dia-
grams, etc.). However, in current software system development process, a large
part of the software systems is composed of non-code artifacts, and developers
also need to spend considerable effort on non-code artifacts [BLB+14].

• Using CAO approach makes the maintenance of products costly. This is be-
cause although the cloned products belong to a product family, there is no
direct connection between these products, which results in each product being
maintained separately.

2.2. Natural Language Processing 11

In contrast with CAO, SPLE can support the development of all core assets for reuse
in a particular domain, which means that it is not necessary to spend considerable
efforts to maintain each individual product but to maintain the core assets in a
unified manner, since all the products in the same domain share the core assets.
Moreover, in this process, the information about commonalities and variabilities is
systematically recorded, which makes increasing demand for customization easier to
achieve.

2.2 Natural Language Processing

Natural Language Processing (NLP) is a way for computers to analyze, understand,
and derive meaning from human language. By utilizing NLP, developers can orga-
nize and structure knowledge to perform tasks such as automatic summarization,
translation, or relationship extraction. Hence, NLP is very indispensable for ex-
tracting features and relations from requirements written in natural language. The
basic ideas and techniques of NLP used in this thesis are introduced as follows.

2.2.1 Preprocessing

Disregarding the concrete NLP tasks, the indispensable step to initialize the task is to
preprocess the input data in order to make them applicable to any subsequent NLP
technique. Basically, four parts can be involved: cleaning, tokenization, annotation,
normalization.

Cleaning

The original texts usually comprise various types of data, such as words, punctua-
tion, symbols, etc, while not all the data is helpful for a particular task. In order to
facilitate further analysis, we can just keep the key information of the texts. Some
representative operations are as follows:

Stop words removal. Stop words are usually the most commonly used words in
a particular language, such as “the”, “a”, “to”, and so forth. Moreover, any word
without enough semantic information to describe a topic in a particular NLP task
can be regarded as a stop word. Thus, for different NLP tasks, stop words are
usually different.

Lower case. Letters and words are often written in two different types (i.e., upper
case and lower case). For example, the letter at the beginning of the sentences is
capitalized. Usually, the words in lower case are regarded as the standard form in
order to simplify the analysis process.

Punctuation removal. For some specific NLP tasks, punctuation in the texts may be
useless. In terms of purposes of different tasks, either all or part of the punctuation
can be removed.

Tokenization

Tokenization is generally used in two ways: 1) splitting a text into sentences; 2)
splitting a sentence into words, phrases, symbols, or other meaningful elements. An
example of tokenizing a sentence is as follows:

12 2. Background

Figure 2.3: An example of a parsed sentence with POS tags and dependencies labels.

Sentence:

“When the alarm system is activated, this is indicated by the light of the LED.”

Tokens:

“When”, “the”, “alarm”, “system”, “is”, “activated”, “,”, “this”, “is”, “indicated”,
“by”, “the”, “light”, “of”, “the”, “LED”, “.”

According to the example above, the original sentence is transformed into a list of
tokens that can be seen as meaningful units for further analysis process. Moreover,
tokens are very significant for NLP, since the majority of NLP tasks are conducted
based on the tokens.

Annotation

Annotation is an action to assign a meaningful tag to each word in a sentence, while
the tag presents a certain kind of linguistic information of the word. The tag as
a sort of a priori knowledge helps the machines to process and understand natural
language.

Part-of-Speech tagging. The most popular annotation for preprocessing is Part-of-
Speech tagging (POS tagging). By using POS tagging, the part of speech of each
word or token can be assigned, for example, noun, verb, adjective, etc. In Figure 2.3,
the line under the sentence presents the POS tags of each word.

Dependency parsing. Except for POS, the syntactical information should not be
neglected. Dependency parsing plays an important role in achieving the grammatical
structure and the relations between words. The information above the sentence
in Figure 2.3 shows the corresponding syntactic dependency information of sentence.
For example, “nsubj” stands for a nominal subject that is the syntactic subject of a
clause and “dobj” denotes the direct object of a verb phrase [MM08].

Normalization

A word can be changed into different forms in terms of the way of being used, such
as presenting different tenses (i.e., the past, present and future tense). However,
different forms of a word (i.e., the inflected words) may increase the complexity of
processing a sentence for some specific NLP tasks, for example, the tasks that can
ignore the tense information. In NLP, normalization is usually applied to gain a
certain standard form of words in order to simplify the analyzing process.

2.2. Natural Language Processing 13

Original Tokens:

“The”

“computers”

“are”

“computing”

“.”

Tokens after stemming:

“the”

“comput”

“are”

“comput”

“.”

Tokens after lemmatization:

“the”

“computer”

“be”

“compute”

“.”

Figure 2.4: An example of tokens after conducting stemming and lemmatization.

Stemming. The inflected words are able to be reduced to their word stems by cutting
off the common prefixes and suffixes. It seems that stemming cuts off a word in terms
of how it looks into its root form, even if there is no dictionary meaning for this root
form.

Lemmatization. The process of resolving the inflected words to their dictionary
forms (i.e., lemma) is called Lemmatization, which takes the meaning of the word
in the sentence into account.

In Figure 2.4, we use the tokens from an exemplary sentence (i.e., “The computers
are computing.”) to present the difference between stemming and lemmatization
operation.

After preprocessing, there are various further processing steps for different NLP
tasks. We mainly introduce the related techniques for feature and variability ex-
traction from requirements in the following sections.

2.2.2 Word Embedding

In order to compute the semantic similarity of words, capture the context of words in
a document and obtain relations among words, the common way is to convert words
into vectors (i.e., embeddings). The vector representations of words are commonly
achieved in two different ways: traditional distributional semantic models (DSMs)
and neural word embedding.

Traditional DSMs

Traditional DSMs can be considered as “count models”, since they operate on co-
occurrence matrices to initialize the vector representations of words, such as counting
co-occurrences of words appearing in a specific corpus. Vector Space Model (VSM)
and Latent Semantic Analysis (LSA) are the common traditional DSMs applied
in the research area for feature extraction from requirements [KTWF12, ASB+08,
WCR09].

The foundation of VSM is simple, which simplifies the processing of text content
to vector operations in vector space, and uses spatial similarity (i.e., the similarity

14 2. Background

of vectors) to express semantic similarity of texts, which is intuitive and easy to
understand [SWY75]. When a document is represented as a vector, the similar-
ity between documents can be measured by calculating the similarity between the
vectors. The most commonly used measure of similarity in text processing is the
cosine distance. We briefly introduce how to gain the vector representation of the
requirements. Given a set of requirements R and a dictionary D, a requirement is
represented as the bag of its words (i.e., the bag-of-words model), and then a value
is calculated for each word according to the TF-IDF. Since the size of dictionary D
is m, the requirement is converted into an m-dimensional vector. If a word in the
dictionary does not appear in a particular requirement, the corresponding element of
the word in the vector is 0. If a word appears in the requirement, the corresponding
element value of the word in the vector is the TF-IDF value of the word. In this
way, the requirement is represented as a vector, and this is the vector space model.
Put it differently, the vector space model does not catch the relationship between
terms, since it assumes that terms are independent of each other.

LSA also presents the text as a document-term matrix and calculates the similarity
between documents by vectors (such as the angle), which is the same as VSM. The
difference is that LSA assumes that some latent structures exist in word usage to
express a topic, but these latent structures may be partially obscured by the vari-
ety of word selections. Hence, the LSA utilizes singular value decomposition to the
document-term matrix and takes the first k largest singular values and correspond-
ing singular vectors to form a new matrix [Dum04]. The new matrix reduces the
ambiguity of the semantic relationship between terms and text, which is beneficial
to figure out the meaning of text.

Neural word embedding

Neural word embedding is a neural-network-based natural language processing ar-
chitecture which can be seen as prediction models, since the vector representations
of words or texts can be gained from a pre-trained language model trained on large
text collections. There are also various techniques supporting achieving accurate
neural word embedding models, such as word2vec [MSC+13], GloVe [PSM14] and
FastText [BGJM16].

Word2vec applies a two-layer neural network to train a large size of corpus, which
results in a vector space where the words in the corpus are transformed into vector
representation. Its basic idea is that two words with similar context (i.e., surround-
ing words) should have similar word vectors. According to the difference of using
the context, word2vec provides two methods to achieve the representations of lan-
guages: the Continuous Bag-of-Words (CBOW) and Skip-gram models. As shown
in Figure 2.5, the CBOW predicts the target word based on the context, while given
the word, Skip-gram predicts the target context.

Word2vec is trained on the local corpus (i.e., the surrounding words of a word), and
its text characteristic extraction is based on sliding windows, while GloVe’s sliding
windows are used to build a co-occurance matrix, which is based on global corpus.
It can be seen that GloVe needs to count the co-occurrence probability in advance.
FastText treats each word as a bag of n-grams rather than the word itself. For
example, the n-gram representation of word “apple” is “<ap”, “app”, “ppl”, “ple”,

2.2. Natural Language Processing 15

A software requirements specification document encompasses all the necessary

requirements for project development.

: Context words (window =2)

CBOW model: The inputs are the context words, while the output is the center word .
Skip-gram model: The input is the center word, while the outputs are the context words.

: Center word

Figure 2.5: An example for sketching the CBOW and Skip-gram models.

“le>” with boundary symbols “<” and “>”, if we assume that n is three. Therefore,
we can use these tri-grams to represent the word “apple”. Subsequently, the sum
of these five tri-grams vectors can be used to represent the word vector of “apple”.
Furthermore, FastText can learn the vector of the character n-grams in a word and
sum these vectors to generate the final vector of the word itself, thereby generating
a vector for a word that does not appear in the training corpus.

Since the semantic similarities of words, sentences or texts are obtained in terms
of a numeric representation learned from the semantic information of large text
collections, it is also called corpus-based similarity. In our case, the corpora can be
any text collections regarding the products or systems in a specific domain, such as
requirements specifications.

2.2.3 Recognizing Textual Entailment

Recognizing Textual Entailment is a very challenging task of determining whether
a natural language snippet can be inferred from another natural language snippet,
which is an essential problem in natural language understanding that needs the ca-
pabilities to extract and analyze both syntactic and semantic information in natural
language.

Table 2.1: The exemplary pairs for textual entailment.

Premise Hypothesis Gold Label

A man is walking away from
tents with the word Camden
on them.

The man is walking. entailment

A man is walking away from
tents with the word Camden
on them.

The tents do not have any-
thing written on them.

contradiction

A man is walking away from
tents with the word Camden
on them.

The man works for the
campy supply company
“Camden”.

neutral

Textual entailment is defined as a directional relationship between pairs of state-
ments, denoted by “Premise” (P) and “Hypothesis” (H) [DRSZ13]. Given these two

16 2. Background

statements P and H, and a human reading and comprehending them, the relation-
ship between them could be one of the following:

• Entailment: If P provides explicit information that can be used to infer that
H is most likely true, we can say that P entails H.

• Contradiction: If P provides explicit information that can be used to infer
that H is most likely false, we can say that P contradicts H.

• Neutral: If P can not provide explicit information that can be used to infer
whether H is true or false, we can say that P is unrelated to H.

Table 2.1 shows the three example pairs with labels for representing relations, taken
from the Stanford Natural Language Inference (SNLI) corpus [BAPM15].

2.3 Summary

In this chapter, we introduced the prerequisite knowledge for reading this thesis.
Our research is conducted in the context of software product line which allows you
to develop a family of systems that share common functionality but are still not
identical with less effort by systematically reusing the artifacts of the systems. Fea-
ture model is widely used in the process of software product line engineering to be
a central place to hold not only the information of commonality and variability but
also the information of dependency. However, creating a feature model for a legacy
system in the process of domain engineering from scratch needs upfront investment,
especially taking a large legacy system and engineers lacking enough domain knowl-
edge of this legacy system into account. To address this, we proposed to analyze
the requirements documents of the legacy systems to extract features and variation
points. The extracted information is expected to be a starting point for domain
engineers to create a feature model in an efficient way. Hence, natural language
processing is an indispensable topic in this thesis, and we also introduced the main
natural language processing techniques that we used in the following chapters.

3. Current Research on Feature
and Variability Extraction

We presented a systematic literature review on feature and variability
information extraction from natural language documents at SPLC 2017
[LSS17]. In this chapter, we extend the systematic literature review and
present more details on current research in reverse engineering variability
from natural language documents.

Identifying features and their relations (i.e., variation points) is crucial in the pro-
cess of migrating single software systems to software product lines (SPLs). Various
approaches have been proposed to perform feature extraction automatically from
different artifacts, for instance, feature location in legacy code. Usually such ap-
proaches a) omit variability information and b) rely on artifacts that reside in ad-
vanced phases of the development process, thus, being only of limited usefulness
in the context of SPL. In contrast, feature and variability extraction from natural
language documents is more favorable, because a mapping to several other artifacts
is usually established from the very beginning.

In this chapter, we investigate the current state-of-the-art of feature and variability
extraction from natural language documents by means of a comprehensive literature
survey. To this end, we not only focus on existing techniques that have been adopted
for SPL, but also on the maturity of these approaches, that is, to what extent they
could be applicable in practice. In particular, we make the following contributions
in order to answer RQ1:

• A comprehensive study of existing reverse engineering approaches, used in-
put formats, employed NLP techniques and further algorithms for feature &
variability extraction.
• A qualitative analysis regarding multiple criteria, such as accuracy, complete-

ness, and their evaluation, which allow to compare the reviewed approaches at
a reasonable level of detail.

18 3. Current Research on Feature and Variability Extraction

• We provide key observations, identified within our detailed comparison, and
derive shortcomings and challenges that are beneficial to identify future re-
search directions.

3.1 Review Methodology

A Systematic Literature Review (SLR) is an accepted method for evaluating and in-
terpreting all available research relevant to a particular research question, topic area,
or phenomenon of interest [Kit07]. In particular, we apply the proposed guidelines
by Kitchenham et al. [Kit07] in order to identify, classify, compare, and evaluate
existing techniques for reverse engineering variability from natural language docu-
ments. In this section, we provide information about all steps we performed for
planning the review.

3.1.1 Need for a Review

In recent years, the application of NLP techniques for aiding the software engineering
process by reverse engineering information from several artefacts has been increased
considerably. Our literature review aims to complement recent efforts by providing
an overview of how NLP techniques are used to infer features from natural language
documents [BKS15]. In particular, we extend the review by Bakar et al. [BKS15]
by a) focusing also on how variability information is extracted and b) by a compre-
hensive qualitative evaluation of the approaches regarding aspects such as accuracy,
automation, and tool support. As a contribution, we provide detailed insights for
both researchers and practitioners, in the current state and maturity of extracting
detailed variability information from natural language documents. Moreover, we not
only highlight promising approaches, but also identify gaps and formulate derived
challenges that have to be addressed in the future, thus, paving the way for more
efforts in these research directions.

3.1.2 Research Questions

The focus of this SLR is to identify, compare, and evaluate existing approaches
for feature and variability extraction from natural language documents. In order
to answer RQ1 mentioned in Chapter 1, we formulate three sub-research questions
based on the PICOC method (Population, Intervention, Comparison, Outcome,
and Context) [HG11] and present the respective criteria in Table 3.1.

While our overall question targets the applicability of current approaches in practice,
we guide our systematic literature review in terms of the following concrete research
questions:

RQ1.1: What approaches of feature and variability extraction from natural lan-
guage documents have been proposed for SPL?

With this question, we aim at summarizing all relevant techniques that contribute
to the goal of our literature review. Although feature extraction is also subject to
research in software engineering, we are mainly interested in approaches focusing on

3.1. Review Methodology 19

Table 3.1: Research questions structured by PICOC criteria.

PICOC Description

Population Literature in reverse engineering variability from natural
language documents.

Intervention Mechanisms, i.e., techniques, methods, tools, approaches
that realize such a reverse engineering process.

Comparison Techniques together with their performance, evaluation
and tool support proposed by each primary study.

Outcome Several observations regarding applicability and quality of
current approaches and major gaps and open challenges in
this field.

Context The SPLE process, in particular the reverse engineering
step to enable a systematic product-line development (e.g.,
in an extractive way).

SPL and how these approaches tackle the challenge of extracting variability infor-
mation. Finally, we aim at identifying which kind of natural language documents
have been used as input for feature extraction.

RQ1.2: How are the techniques supported regarding tools and automation?

We are interested, whether the techniques, obtained through RQ1, are supported
by robust tools or just implemented as prototypes. This is of special importance in
the context of applicability in practice, such as in real-world systems or industry.
Similarly, we evaluate to what extent the process of extracting features is automated.

RQ1.3: How reliable are the approaches proposed for feature extraction in SPL?

With this question, we focus on the quality of the proposed approaches. In particu-
lar, we are interested in two aspects. First, the completeness, that is, to what extent
do the approaches also extract variability, thus, providing information for creating
a complete picture of the SPL (e.g., by means of a feature model). Second, the
accuracy, that is, how precisely do the proposed approaches extract features (and
variability) from natural language documents. As a result of this research question,
we analyze to what extent the proposed approaches can be applied in practice or
need to be revised and evaluated more thoroughly. Moreover, we derive limitations
and open challenges from answering these research questions.

3.1.3 Search Strategy

To identify relevant literature and extract the important information, we set up a
search strategy that consists of three steps. First, we specify scientific databases
to search for our initial set of candidate papers. In particular, we search in the
databases of ACM Digital Library, IEEE Xplore, SpringerLink, ScienceDirect, Sco-
pus, dblp, and Google Scholar for studies published in journals, conferences, and
workshops between the year 2000 and 2019. We have chosen these libraries as they
are renowned scientific databases that index the most important publications in

20 3. Current Research on Feature and Variability Extraction

the field, such as from ACM, IEEE, or Elsevier. As a second step, we implement
a review process to exclude duplicate studies or studies that are not relevant for
other reasons (cf. Section 3.1.4). Afterwards, as a third step, we apply snowballing
to complement the initial search [WRH+12]. In particular, we analyze references
and citations of retrieved studies and secondary studies (i.e., existing surveys), thus,
identifying relevant literature not covered by the aforementioned databases. Finally,
we merge the results from our initial searching and snowballing to obtain the final
set of primary studies.

3.1.4 Conducting the Review

Basically, we conduct our systematic review based on the protocol defined in the pre-
vious subsection. For instantiating this protocol, we have to take concrete actions
as follows; (i) define the concrete search term, (ii) define inclusion and exclusion
criteria for identifying relevant literature, and (iii) specify a concrete and systematic
process for extracting the data needed to answer our RQs.

Search Criteria: To construct our search string, we derived keywords from our re-
search questions based on the population, intervention, and outcome. Additionally,
we checked for possible synonyms, related terms and alternative spellings. Finally,
we used boolean logic; an“OR”to combine alternative terms/spellings and an“AND”
to connect the major terms in our string. The resulting search string is as follows:

(”feature extraction” OR ”feature identification” OR ”feature mining” OR ”feature
detection” OR ”variability extraction” OR ”variability identification” OR ”variabil-
ity mining” OR ”variability detection”) AND (”natural language” OR ”requirement
specification” OR ”textual requirement” OR ”product specification” OR ”product de-
scription” OR ”product review”) AND (”software product lines” OR ”product family”
OR ”software family” OR ”feature-oriented software development”)

Our search string comprises three parts: 1) the extraction and analysis of the partic-
ular information or artifacts; 2) the types of documents analyzed; and 3) the context
of the research being surveyed. In spite of the fact that all the relevant keywords
within each part are of similar meanings, they differ somewhat. For the first part,
“feature extraction” is the most frequent term in this topic used to describe the pro-
cess of extracting features from natural language documents. Although the search
terms such as “feature identification”, “feature mining” and “feature detection” are
all used as synonyms for feature extraction, “feature detection” is highly relevant to
detect dead features. We regard “feature detection” as one of the search terms, since
feature extraction related techniques may also be applied in the process of detecting
dead features by means of analyzing requirements. There also exist several search
terms that seem to be related to the topic of feature extraction but are not included
in the search string nevertheless, for example, “feature selection” and “feature lo-
cation”. “Feature selection” usually means selecting a good feature set to achieve
customer requirements, which focuses on the problem of optimization, while “feature
location” predominantly concentrates on locating features in source code. We find

3.1. Review Methodology 21

that although the papers retrieved by using these terms may also contain the anal-
ysis of the textual comments in the source code, it lacks a systematic method that
focuses on extracting features from requirements, thereby resulting in lots of useless
search results. Likewise, for variability extraction, we use the same wording as the
search terms of feature extraction. For the second part, “natural language” is used
to describe the types of the documents. And, “requirement specification”, “textual
requirement” and ”product specification” are all applied as synonyms for a detailed
and formal description of a system or product to be developed with its functional
and non-functional requirements. “Product description” can be regarded as a kind
of informal description of a product that can be collected on the internet, while
“product review” denotes the review of a particular product from their customers.
Obviously, for the third part, the search terms that are either related or similar to
each other are used for finding the papers that are focused on research on software
product lines. Understanding the small difference among these keywords, the study
selection can be conducted more efficiently and comprehensively.

Inclusion and Exclusion Criteria: We created a set of inclusion (IC) and
exclusion (EC) criteria to identify potential primary studies. While initially intended
to be applied on the title and abstract, it turned out that this is insufficient for most
of the papers to decide on their relevance. Hence, we also scanned introduction
and conclusion to make a more reliable decision. The inclusion criteria we finally
created, based on the analysis scope, are as follows:

IC01 Articles matching the search string mentioned above and within the scope
of our analysis, i.e., they propose a technique or mechanism for feature &
variability extraction from natural language documents.

IC02 Articles published between January 1st 2000 to December 31st 2019, since
research on automatic feature & variability extraction from natural language
documents in SPL began in 21st century.

Moreover, we consider studies irrelevant if they meet at least one of the following
exclusion criteria:

EC01 Articles not focusing on feature and variability extraction from natural lan-
guage documents in SPL, i.e., feature extraction from legacy code, approaches
improving feature modeling, functional requirements extraction, etc;

EC02 Articles not written in English;

EC03 Articles not belonging to research papers, i.e., proposals, summaries of con-
ferences, lecture notes, etc;

EC04 Articles not pertaining to firsthand research, namely, related literature review
or survey papers.

Data Extraction: First of all, we applied our search string to scientific databases.
Afterwards, we applied inclusion and exclusion criteria to the result. Along with
this process, we extracted and stored the following information in a spreadsheet:

22 3. Current Research on Feature and Variability Extraction

• Date of search, scientific database, study identifier

• Publication information, author, title, publication year, source, publication
type (Journal/Conference)

• Inclusion criteria IC01–IC02 (and which one applies)

• Exclusion criteria EC01–EC04 (and which one applies)

The author of this thesis initially applied the data extraction process. For all ex-
cluded papers, a brief reason was specified and double-checked by the second au-
thor of the original paper [LSS17]. In the case of non-agreement, the paper has
been discussed by both of us to find a consensus. Once we finally decided on
the primary studies, we performed a further retrieval by applying the snowballing
method [WRH+12]. In particular, we took all primary studies and papers excluded
due to EC04 into account. For papers, found by snowballing, the same extraction
process as above was applied and if we decided on their relevance, it was added to
the list of primary studies.

For the final list of primary studies, we read the full paper and captured and ex-
tracted additional data, required to perform our analysis and answer our research
questions. In particular, we extracted the following data:

• Input and Output of the corresponding approach.

• Methodology, i.e., which NLP techniques are used and which further techniques
are possibly applied in a post-processing step. Moreover, we noted the degree of
automation and how much of the variability (i.e., the relation between features)
can be recovered by a particular approach.

• Evaluation: to what extent a particular approach has been evaluated and what
is the result of the evaluation, especially regarding accuracy

• Tools: whether there is any tool available, implementing the proposed ap-
proach and NLP techniques.

3.2 Results

In this section, we present the results of our literature review. First, we briefly
report on the results of our systematic literature search, described in Section 3.1.
Then, we provide detailed answers to our formulated research questions.

3.2.1 Results of Studies Search

Table 3.2: Overview of all reviewed papers, ordered by year of appearance.

ID Title Year Input Acc Output

P01 An Approach to Constructing Feature
Models Based on Requirements Cluster-
ing [CZZM05]

2005 SRS Yes FM

3.2. Results 23

P02 An Exploratory Study of Information
Retrieval Techniques in Domain Analy-
sis [ASB+08]

2008 SRS No FM

P03 A Framework for Constructing Semantically
Composable Feature Models from Natural
Language Requirements [WCR09]

2009 SRS No FM

P04 On-demand Feature Recommendations De-
rived from Mining Public Product Descrip-
tions [DGH+11]

2011 PD Yes FM

P05 Supporting Commonality and Variability
Analysis of Requirements and Structural
Models [KTWF12]

2012 SRS No RTL

P06 On Extracting Feature Models From Product
Descriptions [ACP+12]

2012 PD Yes FM

P07 Decision Support for the Software Product
Line Domain Engineering Lifecycle [BEG12]

2012 PD No FM

P08 Mining Commonalities and Variabilities from
Natural Language Documents [FSD13]

2013 PB No FL

P09 Supporting Domain Analysis through Min-
ing and Recommending Features from Online
Product Listings [HCHM+13]

2013 PD Yes FM

P10 Mining and Recommending Software
Features across Multiple Web Reposito-
ries [YWYL13]

2013 PD Yes FL

P11 Feature Model Extraction from Large
Collections of Informal Product Descrip-
tions [DDH+13]

2013 PD Yes FM

P12 A Systems Approach to Product Line Re-
quirements Reuse [NSN+14]

2014 SRS No OVM

P13 Analyzing Variability of Software Product
Lines Using Semantic and Ontological Con-
siderations [RBIW14]

2014 SRS No SS

P14 Generating Feature Models from Require-
ments : Structural vs . Functional Perspec-
tives [IRB14]

2014 SRS Yes FM

P15 Detecting Feature Duplication in Natural
Language Specifications when Evolving Soft-
ware Product Lines [KBA15]

2015 SRS No DF

P16 Improving the Management of Product
Lines by Performing Domain Knowledge Ex-
traction and Cross Product Line Analy-
sis [RBWH15]

2015 FD Yes FM

P17 Recommending Features and Feature Rela-
tionships from Requirements Documents for
Software Product Lines [HW15]

2015 SRS Yes FM

24 3. Current Research on Feature and Variability Extraction

P18 Semantic Information Extraction for Soft-
ware Requirements using Semantic Role La-
beling [Wan15]

2015 SRS No SI

P19 CMT and FDE: Tools to Bridge the Gap
between Natural Language Documents and
Feature Diagrams [FSGD15]

2015 PB No FM

P20 Automatic Semantic Analysis of Software
Requirements Through Machine Learning
and Ontology Approach [Wan16]

2016 SRS No SI

P21 Extracting Features from Online Soft-
ware Reviews to Aid Requirements
Reuse [BKSJ16]

2016 OR Yes FL

P22 Variability Analysis of Requirements: Con-
sidering Behavioral Differences and Reflect-
ing Stakeholders’ Perspectives [IRBW16]

2016 SRS No FM

P23 Mining Feature Models from Functional Re-
quirements [MBBA16]

2016 SRS No FM

P24 Automated Extraction of Product Compari-
son Matrices from Informal Product Descrip-
tions [NBA+17]

2017 PD Yes PCM

P25 Extracting Software Features from On-
line Reviews to Demonstrate Requirements
Reuse in Software Engineering [BKSH17]

2017 OR Yes FL

P26 Ambiguity Defects as Variation Points in Re-
quirements [FGS17]

2017 SRS Yes VI

P27 Extracting software product line feature
models from natural language specifica-
tions [SKPC18]

2018 SRS Yes FM

P28 Requirement Engineering of Software Prod-
uct Lines: Extracting Variability Using
NLP [FFGS18]

2018 SRS Yes VP

P29 Behavior-Derived Variability Analysis: Min-
ing Views for Comparison and Evalua-
tion [RBSA19]

2019 SRS Yes VV

P30 Towards Complex Product Line Variability
Modelling: Mining Relationships from Non-
Boolean Descriptions [CHN19b]

2019 PD Yes FM

P31 Modelling equivalence classes of feature mod-
els with concept lattices to assist their extrac-
tion from product descriptions [CHN19a]

2019 PD Yes FM

Acc: Accessibility.

SRS: software requirements specifications; PD/PB: product description/brochure; OR: online software reviews;
FD: feature diagrams.

FM: feature model; OVM: Orthogonal Variability Model; FL: feature list; RTL: recommendation traceabil-
ity links; SS: SRS similarity; DF: duplicated features; SI: semantic information; PCM: product comparison
matrices; VI: variability indicators; VP: variation points; VV: variability views.

3.2. Results 25

0

1

2

3

4

5

6

2005 2008 2009 2011 2012 2013 2014 2015 2016 2017 2018 2019

R
e
tr
ie
ve
d
 p
ri
m
ar
y
st
u
d
ie
s

Publication year

Journals

Conferences

Workshops

Symposiums

Figure 3.1: The distribution of primary studies from 2005 to 2019 by year from each
venue: symposium, workshop, journal, conference.

In order to obtain the primary studies, we initially used the predefined search string
on the selected databases mentioned (cf. Section 3.1.3). As a result, we retrieved an
initial list of relevant studies comprising 251 papers (ACM: 43, IEEE: 6, Springer-
Link: 94, ScienceDirect: 69, Scopus: 17, dblp: 22). Note that in this step, we
already applied our inclusion criteria to the papers found, thus, all non-relevant pa-
pers have already been filtered out. Next, we applied our exclusion criteria to this
initial list. After applying EC01, a majority of the papers could be discarded, as
they propose relevant approaches, but on different artifacts than we are interested
in. Further papers have been discarded, because they adhere to EC03 and EC04.
Finally, we removed duplicated papers from our list, which eventually results in a
list of 12 papers.

Based on these selected papers and on the papers excluded due to EC04 (i.e., con-
stituting secondary studies), we then performed snowballing as an additional step
to retrieve relevant papers we may have missed so far. In particular, we performed
three iterations of backward (i.e., analyzing the reference list of selected papers)
and forward (i.e., screening papers on Google Scholar that cite our selected papers)
snowballing [WRH+12]. In the first iteration, we found 522 papers (backward:341,
forward:181), from which we excluded 504 papers due to our exclusion criteria and
removal of duplicates. Hence, 18 papers have been considered to be relevant, and
thus, added to our list of primary studies. For these papers, we again applied the
snowballing technique, resulting in 1280 papers, from which one paper remained
after applying exclusion criteria and duplicate elimination. Finally, we also applied
snowballing for the paper retrieved in the previous iteration, but from initially 58
potential papers all have been discarded (excluded or duplicated).

As a result, given our list of 12 papers from the initial search, we were able to identify
19 further papers with snowballing that we found worth being added to our primary
studies. Hence, we found 31 papers as primary studies that are subject to further
analysis in order to answer our research questions. Figure 3.1 presents that 19% of

26 3. Current Research on Feature and Variability Extraction

the studies were found in workshops (4) and symposiums (1), whereas the majority
(∼ 81%) were published in conferences (15) and journals (11). Moreover, we provide
an overview of all papers, together with the extracted information, in Table 3.2 and
answer our research questions in the following.

3.2.2 Answering Research Questions

The main goal of this SLR is to provide detailed insights of techniques used, degree
of maturity achieved, shortcomings, and challenges ahead for extracting feature and
variability information from natural language documents. To this end, we formulated
three research questions in Section 3.1.2, which we answer in the following.

RQ1.1: What approaches of feature extraction from natural language
documents have been proposed for SPL?

With this research question, we shed light on techniques used for the extraction
process and which kind of natural language documents are considered as input for
the respective approaches.

Techniques used: Natural language processing techniques are widely used and in-
dispensable for extracting features and variability information from natural language
documents. Besides natural language processing techniques, various techniques of
information retrieval and machine learning are considered to be helpful in this re-
search direction. We briefly introduce how these techniques are generally used, with
a specific focus on feature identification and variability extraction in SPL. The gen-
eral process is shown in Figure 3.2.

As a first step, natural language documents are transformed into types of words
that can be identified and analyzed easily by computers. This step is called Text
Pre-processing. In particular, natural language documents are divided into words,
phrases, symbols, or other meaningful elements (e.g., using tokenization). Addition-
ally, these elements can be tagged with their type of word (e.g., noun, verb, object,
etc.) using Part-of-Speech tagging (POS tagging). In addition, stop words which
usually refer to the most common words in vocabulary (e.g., “the”, “at”) are removed
in this phase, as they lack any linguistic information.

A second (optional) step is Term weighting which can be adopted to estimate the
significance of terms in natural language documents by calculating the frequency
of their occurrence in different natural language documents. For instance, Term
Frequency-Inverse Document Frequency (TF-IDF) and C-NC value are two com-
monly used techniques. With TF-IDF, the term is considered important if it ap-
pears frequently in a document, but infrequently in other documents. C-NC value
is a more sophisticated statistical measure that combines linguistic and statistical
information.

Another optional step is Semantic Analysis that is typically used to gain semantic
information. Several techniques can be employed in this step, for example, Vector
Space Model (VSM) and Latent Semantic Analysis (LSA) are widely used to con-
duct a semantic analysis. With VSM, preprocessed documents are represented as

3.2. Results 27

Text Pre-processing

Tokenisation

POS tagging

Term Weighting
TF-IDF

C-NC Value

Semantic Analysis

VSM

LSA

...

Post-processingClustering

Association Rule Mining

...

...

Feature List Feature Model...

NLP

...

Figure 3.2: General process for applying techniques in reverse engineering variability
from natural language documents.

vectors. Through calculating the cosine between the vectors, the similarity between
documents can be determined. LSA utilizes a term-document matrix to analyze the
similarity of documents and can be combined with Singular Value Decomposition to
reduce the dimension of the textual documents.

Additionally to the NLP process, the transformed data can be further analyzed by a
post-processing step in order to identify features and extract variability information.
Certainly, various methods can be used in this step, such as Clustering Approaches
and Association Rule Mining. Cluster approaches are adopted to group similar
features with a feature being a cluster of tight-related requirements. Association rule
mining is used to discover affinities among features across products, and to augment
and enrich the initial product profile. After post-processing, various outputs can be
obtained, such as a feature list or feature model.

28 3. Current Research on Feature and Variability Extraction

Table 3.3: Overview of the NLP techniques used by the reviewed approaches.

NLP Techniques ID

Text Pre-processing

Tokenisation
P07 P09 P12 P15 P18
P19 P20 P24 P25 P27

Part of Speech Tagging

P02 P03 P05 P07 P08
P11 P12 P13 P14 P15
P17 P18 P19 P20 P21
P22 P24 P25 P27 P29

Lemmatization P18 P20 P21 P24 P25
Stemming P04 P09 P10 P11 P25

Term Weighting

TF-IDF
P04 P09 P10 P11 P13
P14 P22 P23 P25 P27

P29
C-NC Value P08 P19 P24

Semantic Analysis

Vector Space Model P02 P05

Latent Semantic Analysis
P02 P03 P13 P14 P21

P22 P25
Contrastive Analysis P08 P21 P24
Syntactical Heuristics P24

Latent Dirichlet Allocation P09 P10

Semantic Role Labeling
P13 P14 P18 P20 P22

P29
Semantic Model P23

Lexical Database

WordNet
P07 P13 P14 P16 P20

P21 P22 P23 P29
SemCor P20

PropBank P18 P20
FrameNet P18 P20

3.2. Results 29

First of all, our analysis reveals that all the phases, outlined in Figure 3.2, have been
employed by the considered approaches. In Table 3.3, we provide a detailed overview
of NLP techniques used by the particular approaches. For text pre-processing, the
majority performs POS tagging (∼ 65%) to decompose the documents in their build-
ing blocks, shown in Figure 3.3 (a). Moreover, tokenization was applied frequently
(∼ 32%), yielding to a similar result. Beyond preprocessing, Figure 3.3 (b) presents
that term weighting with different techniques is quite common amongst the ap-
proaches (∼ 45%). Our inspection reveals that this technique is mainly used to
identify meaningful terms that resemble possible features. Meanwhile, TF-IDF is a
very popular method to achieve this goal. An interesting observation we made, is
that most approaches employ more than one technique, either from preprocessing
only or in combination with term weighting.

Observation 1. For extracting features and variability, a diverse selection of
NLP techniques is employed, indicating that a) different approaches may lead to
the desired result and b) applying multiple NLP techniques increases the quality
of the result.

While the above-mentioned approaches focus mainly on syntactical aspects, many
approaches also make use of the (optional) built-in mechanisms of NLP for semantic
analysis (∼ 52%). In particular, latent semantic analysis (LSA) and semantic role
labeling (SRL) are preferred techniques, where the latter is combined with using a
proper lexical database. If we take quality criteria such as accuracy or completeness
into account (cf. Table 3.5), we observe a slight tendency that an additional semantic
analysis improves the overall result. In addition, the usage of a lexical database
(∼ 32%) benefits automatically analyzing and understanding the natural language
documents to extract features and variation points.

Observation 2. Semantically understanding the natural language documents is
a crucial aspect for successfully reverse engineering features and variability.

Finally, many approaches (∼ 81%) perform an additional post-processing step on the
top of previously mentioned NLP mechanisms (cf. Figure 3.2), while Table 3.4 shows
a detailed overview of post-processing techniques used by the particular approaches.
Our analysis reveals that especially clustering algorithms are preferably used in
this stage of the extraction process (∼ 45%). The reason is that clustering is able
to find relations between the previously identified concepts or terms. Hence, such
algorithms are especially beneficial to finding related and unrelated features, and
thus, enable the search for groups of features and even other relationships among
them such as hierarchies.

Observation 3. Clustering algorithms are well-suited to complement the NLP
process, as they facilitate the detection of the specific relationships between fea-
tures such as groups or parent-child relations.

Besides clustering, a variety of other techniques are employed for post-processing
(∼ 61%), mainly from the domain of heuristics and machine learning. The par-
ticular algorithms we identified are especially able to learn specific patterns in the

30 3. Current Research on Feature and Variability Extraction

0%

10%

20%

30%

40%

50%

60%

70%

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Text Pre-processing Term Weighting Semantic Analysis Lexical Database

(b)

Figure 3.3: Histograms of the NLP techniques used by the reviewed approaches.

preprocessed and enriched data from the NLP process. In this way, even complex
dependencies can be inferred, which is hardly possible with NLP mechanisms only.
Types of documents: As natural language documents may occur in various forms,
we are also curious about which kind of documents are subject to feature/variability
extraction. According to Table 3.2, our review indicates that software requirements
specifications (SRS) are used predominantly (> 54%) as input, usually based on
standards such as IEEE-STD-830. Interestingly, the structure (e.g., hierarchies) of
such documents is only rarely employed, though it may contain valuable information
such as for grouping features or establishing parent-child relationships. Moreover,
only a few data sets for SRS are provided, thus, preventing from replicating most of
the studies. Next frequently, product descriptions (PD) are used (∼ 29%), mainly
due to their availability (e.g., via web pages such as softpedia.com) and the rich
information, they contain. For instance, features are likely to appear more explicit
in such documents and sometimes even bullet lists are provided. Finally, product
brochures (PB), i.e., documents used for marketing reasons, are sometimes used.

softpedia.com

3.2. Results 31

Table 3.4: Overview of the post-processing techniques used by the reviewed ap-
proaches.

Post-processing Techniques ID

Clustering

K-Means P09 P10 P11 P21 P25
K-Medoids P10
SPK-Means P04 P09 P11

Fuzzy C-Means P09 P21
Self Organizing Map Clustering P21

Hierarchical Agglomerative Clustering
P01 P02 P03 P10 P14

P16 P22 P29
Incremental Diffusive Clustering P04 P09 P10

Graph Clustering P01 P24

Miscellaneous

Formal Concept Analysis P23 P30 P31
Association Rule Mining P04 P09 P10 P11

Decision Tree P18
K-nearest Neighbors P04 P09 P19 P20

Maximum Entropy Method P20
Propositional Logic P06

Heuristics
P02 P06 P17 P23 P24
P26 P27 P28 P29 P30

Edmonds’ Algorithm P11 P16
Implication Graph P06 P11

Usually, they highlight main features of a product, thus, making it easy to extract
them. However, due to their limited purpose (e.q, acquiring new customers), they
are usually incomplete and contain very little or no variability information.

Observation 4. Software requirements specifications are frequently used as in-
put for feature and variability extraction from natural language documents. How-
ever, the reviewed papers provide no or only limited (i.e., small, artificial) SRS
documents, thus, impeding replicability and making applicability in practice ques-
tionable.

RQ1.2: How are the techniques supported regarding tools and automa-
tion?

Since the process of extracting features & variability is pretty complex and tedious,
sophisticated tool support and a high degree of automation are inevitable. We use
both aspects as quality criteria for the reviewed papers, and thus, evaluate them
using a 3-point scale. The results are presented in Table 3.5 (last two columns),
with tool support further divided into tools for NLP which is indispensable on the
basis of Figure 3.2 and tools for feature & variability extraction (FVE) developed
based on the proposed approaches.
For tool support, means that comprehensive tool support exists and is available.

32 3. Current Research on Feature and Variability Extraction

Accordingly, G# indicates that tool support is described, but not available. Finally,
if tool support is neither provided nor described, the approach is rated with #. We
use the same symbols for the degree of automation, indicating that an approach is
fully automated, semi-automated, or only minor/not automated.

Tool support: Our analysis reveals that some approaches do not provide any tool
support (∼ 20% for NLP & ∼ 45% for FVE). In most of these cases, only algorithms
used are mentioned, but neither their origin nor how multiple algorithms are put
together is elaborated. This, in turn, makes it hard to reason about the respective
approaches, thus, mitigating the trust in the applicability of them. For another
minority of approaches (∼ 13%), the NLP tools are not accessible. Besides, in a
fairly large amount of approaches (∼ 42%), the FVE tools are described, but not
provided or not available anymore (e.g., [WCR09]). This is especially surprising,
as in some of these cases researchers invested considerable effort in building whole
frameworks to automate the extraction process. Even worse, the non-availability
also questions the sustainability of such approaches, that is, whether they have been
created for practical usage or just for theoretical evaluations. Finally, only for a
minor amount (∼ 13%), the FVE tools are available online, for instance on Github,
usually complemented by examples and further material. In some cases, the tools
appear to be mature, stable, and designed to be used by a wide range of researchers
and practitioners (e.g., [FSGD15, NBA+17]). By contrast, the third-party NLP tools
are usually available online which support the majority of the studies (∼ 67%).

Observation 5. When tools are available, they make a stable, maintained, and
reliable impression, and thus, are likely to be applicable in practice. However, in
most cases, no FVE tools are described or even exist, thus, mitigating trust in
applicability and reliability of the corresponding approaches.

Automation: The vast majority of approaches (> 90%) foster a semi-automated
approach, where at least some manual adjustment is required. Most commonly, pa-
rameters and thresholds need to be specified (e.g., [WCR09, DGH+11, ACP+12])
or domain analysts have to interact with the described tool in order to correct or
validate the information. Approaches that provide full automation refrain from tak-
ing user input into account, although this may influence the results, e.g., regarding
feature names. Moreover, our analysis reveals that these approaches usually exhibit
a rather low accuracy (cf. Table 3.5).

Observation 6. Most approaches provide a high degree of automation, whereas
full automation is an exception (but possible in general). This is mainly due to
the complex extraction process, which requires manual assessment and domain
knowledge to achieve a satisfactory result.

RQ1.3: How reliable are the approaches, proposed for feature extraction
in SPL?

With this research question, we investigate the result quality of the extraction pro-
cess. In particular, we focus on two quality criteria; accuracy, that is, to what

3.2. Results 33

extent the identified feature & variability information is correct; and completeness,
that is, whether and to what extent feature & variability information is extracted.
Moreover, we assess how comprehensive the approaches have been evaluated.

We present the results in Table 3.5, using the same 3-point scale as in the previous
RQ, having the following meaning. For accuracy, the means that the approach
is very accurate, i.e., features (and variability) are reverse engineered correctly. Ac-
cordingly, the G# means that the approach is sufficiently accurate, that is, the main
information is correct but contains minor inconsistencies (e.g., wrong/missing fea-
tures or variability). Finally, the # means that the approach is inaccurate, thus,
only capable of providing a very high-level overview of separated concerns. For com-
pleteness, the means that the complete information (i.e., features & variability)
is extracted explicitly, most likely in form of a feature model. In contrast, the G#
indicates that variability information is only partially extracted. Consequently, the
means that no variability information can be extracted by the approach, thus, the
result is only a list of features. For the evaluation, indicates that a comprehen-
sive and also reproducible revaluation is provided that allows for detailed reasoning
about the proposed approach. Likewise, the G# means that the evaluation has some
limitations, for instance, only a small or artificial case study is used or the case study
is not reproducible, thus, the results of the study can not be verified. Finally, the #
refers to approaches that provide no or only a weak evaluation.

Accuracy: Our analysis reveals that many approaches (∼ 55%) are inaccurate,
however, for various reasons. While some of them perform rather bad in correspond-
ing metrics (e.g., precision, recall; [CZZM05, KBA15, HW15]), other approaches
simply do not provide any information about it. For the latter, the reason is that
they focus on other aspects such as usefulness for guiding developers, thus, the eval-
uation does not provide any quantitative measures (e.g., [IRB14, IRBW16]). Next,
some approaches (∼ 42%) provide relatively accurate results, which can be seen as
a starting point for further, manual refinement. Finally, only one approach (∼ 3%)
is highly accurate, and thus, can be used out-of-the-box (i.e., without manual ad-
justment).

Observation 7. The accuracy is one of the most critical problems that needs
to be improved for achieving practical applicability. However, it seems that even
with less or unknown accuracy, several approaches perform well in supporting
developers in manual domain analysis or even extraction processes.

Completeness: Generally, many approaches extract partial variability information
(∼ 45%). However, in most of these cases, only some relations (e.g., mandatory,
optional) are extracted, and thus, important information is missing. For a simi-
lar amount of approaches, only features are identified, but not their relationships
(∼ 35%), which means that they are of limited usefulness for the SPLE process.
Finally, only a minor proportion (∼ 20%) provides complete and explicit variabil-
ity information that makes it possible to generate a complete feature model with
detailed relationships.

34 3. Current Research on Feature and Variability Extraction

Table 3.5: Result of the qualitative analysis of primary studies.

ID Accuracy Completeness Evaluation Tool Support Automation
NLP FVE

P01 # G# G# # # G#
P02 #/G# # # # G#
P03 #/G# G# # G# G#
P04 G# G# G# # # G#
P05 # # # # # G#
P06 G# G# G#/ # G#
P07 G# G# G# G# G#
P08 # G# # G# # G#
P09 G# G# G#/ # G#
P10 G# # #/G# G# G#
P11 G# G#/ #/G# #
P12 G# G# G# # G#
P13 # G# G# G#
P14 # #/G# G# G#/
P15 # # # # G#

P16* # # # #
P17 # G# # G# G#
P18 # # # # G#
P19 # G# # G# G#
P20 # # G# # G#
P21 G# #/G# G# G# G#
P22 # G# G# G#/
P23 G# #/G# G# G# G#
P24 G# # G#/ # G#
P25 # G# # G# G#
P26 # # G# G# G#
P27 G#
P28 # # G# G# G#
P29 G# G# G# G# G#
P30 G# G# # G#
P31 # # # # G#

FVE: feature & variability extraction; *this approaches has been negatively evaluated, because it takes
already existing feautre diagrams as input, thus, being partially out of scope.

3.3. Discussion 35

Observation 8. When features and variability information are complete and
explicit, they constitute a feature model with detailed relationships. However,
in most cases, the approaches are incomplete wrt. variability information, thus,
requiring increased manual effort for recreating this information.

Evaluation: Surprisingly, many of the reviewed approaches (∼ 55%) provide a
weak or even no evaluation. In some cases, the approaches are just sketched, but
fail to evaluate it in any sense, while others lack important information such as study
design or sound evaluation criteria. Furthermore, certain approaches (∼ 35%) pro-
vide a basic evaluation, but lack reproducibility due to missing access to tools and/or
data sets. Finally, only a minor proportion (∼ 10%) presents a comprehensive and
reproducible evaluation that gives valuable insights into benefits and limitations of
the respective approaches, thus, making their claimed contribution convincing.

Observation 9. A comprehensive and reproducible evaluation makes an ap-
proach more reliable and allows for reproducibility. However, in most cases,
evaluations are performed either in a weak and unsound manner or lack im-
portant resources to reproduce them. Especially the latter aspect impedes an
objective comparison.

3.3 Discussion

Based on our detailed analysis, we summarize and discuss our observations. In par-
ticular, we elaborate on aspects that constitute challenges and need to be improved
in future research.

Input format matters. In our survey, we found SRS and product descriptions to
be the most common input for feature & variability extraction. While SRS provide
the most detailed information, representing the domain, we identified a lack of ac-
cess to SRS, which impedes the progress in developing approaches for information
extraction from such documents. On the other hand, product descriptions are freely
available, but only reflect an incomplete overview of a domain. For future research,
we see two challenges. First, a detailed comparison (by means of a sound evalu-
ation) to what extent product descriptions can be used for domain analysis as an
alternative for SRS. Second, to design reverse engineering approaches so that they
can be used flexibly with different input formats, in particular, supporting SRS and
product descriptions.
Extracting variability is challenging. Extracting variability information is by
far the most challenging task, indicated by the rather low proportion of accurate
and complete approaches. Depending on the kind of input documents, different ap-
proaches are used to extract variation points. However, most of them need manual
intervention, i.e., the result of the automated extraction is not accurate and com-
plete enough to get rid of domain analysts’ correcting. The reason is that variability
extraction from natural language documents is a process of understanding natural
language, which is usually full of ambiguities. Thus, the challenge is to improve
existing approaches, either by new combinations of existing techniques or by devel-
oping new techniques. Also, we see great potential in taking additional information

36 3. Current Research on Feature and Variability Extraction

(e.g., domain knowledge) into account, which poses the challenge of integrating it
in an automated extraction process.
Rethinking sustainability. Tool support and a coherent evaluation are mostly
missing, due to several reasons. For making progress in extracting features & vari-
ability, especially regarding its applicability in practice, these aspects need to be
addressed in the future. First, establishing a ground truth (e.g., a gold standard)
is inevitable for assessing future approaches. This not only allows us to compare
approaches with each other, but also to draw a conclusion about their performance
(in terms of accuracy) and robustness. Second, reusing existing approaches for re-
producibility and improvement is of superior importance for making the next step.
This, in turn, requires a common sense of tool building, which may go beyond the
scope of pure research. Nevertheless, we argue that one of the challenges is that
fundamental ideas are backed by tools that can be accessed by others. This way,
the researcher can join forces, and thus, push the boundaries for extracting features
& variability.

3.4 Threats to Validity

Construct Validity: Our search string may be incomplete, and thus, limit the
diversity of information from digital engines. We addressed this issue by diversifying
search terms, extending to their synonyms, and elaborating on the different meanings
between them. In addition, we carefully derived the search term based on our
research questions.

Internal Validity: First, we may have overseen important papers to be included
in the survey, due to bias of primary study selection or negligence. We addressed
this issue by an independent repetition of the literature search by another researcher,
according to the presented methodology (cf. Section 3.1). Second, the assessment
of the approaches, regarding our proposed quality criteria, is prone to be subjec-
tive, thus, introducing bias in the overall evaluation. We addressed this issue as
follows: Two researchers independently assessed all primary studies regarding the
criteria given in Table 3.5. Afterwards, we compared our results; in case our opinion
diverged, we discussed the reasons for our assessment and, finally, made a common
decision.

External Validity: We did not expand the primary study selection to books,
which possibly affects the generalizability of our study.

Conclusion Validity: The data extraction may be of bias. To tackle it, the one
researcher initially extracted data complying with the predefined data extraction
form, then double-checked by the second researcher and discussed whether the data
was accurate and appropriate to answer the research questions.

3.5 Related Work

In this section, we discuss related literature reviews addressing reverse engineering
techniques for extracting features and analyzing the commonality and variability of
products.

3.6. Summary 37

Dit et al. conducted a systematic review of feature location techniques in source
code, including case studies and tools, and then, presented a taxonomy for classifi-
cation along nine key dimensions [DRGP13]. However, although encompassing NLP
and Information Retrieval techniques, the considered techniques address source code
comments, identifiers, etc., rather than textual requirements.

Khurum et al. presented a systematic review of domain analysis solutions to ana-
lyze the level of industrial application and/or empirical validation of the proposed
solutions [KG09]. Moreover, they investigate the usability and usefulness of the pro-
posed approaches. However, this review does not present the specific approaches,
used to identify features and their relationships from the primary studies, especially
targeting natural language documents.

Lisboa et al. conducted a systematic review of domain analysis tools that sup-
port the domain analysis process to identify and document common and variable
characteristics of systems in a specific domain [LGL+10]. This review covers large-
scale tools analyzing different sources, instead of only focusing on natural language
documents, thus being less comprehensive.

Berger et al. presented a systematic review of variability modeling practices in
industrial SPL to provide insights into application scenarios and perceived benefits
of variability modeling, notations and tools used, the scale of industrial models, and
experienced challenges and mitigation strategies [BRN+13]. However, this review
focuses on notations and related tools employed in variability modeling rather than
on approaches for extracting features & variability.

Alves et al. conducted a systematic review of requirements engineering for SPL to
suggest important implications for practice and identifying research trends, open
problems, and areas for improvement [ANAV10]. This review also provides a survey
of semi-automatic or automatic tools used. However, it was conducted in 2009,
leading to a lack of the latest tools. The types of surveyed requirements artifacts
include not only natural language documents, but also requirements in various forms,
e.g., features and orthogonal variability models. In addition, it does not focus on
approaches for feature & variability extraction.

Bakar et al. presented a systematic review of feature extraction approaches from
natural language requirements for reuse in SPL [BKS15]. This review provides a
detailed survey of approaches used for identifying features and analyzing their rela-
tionships from textual requirements, e.g., NLP techniques and clustering approaches,
and also specifies the evaluation approaches. However, this review just contains 13
studies, which can not offer a comprehensive survey and does not provide sufficient
evidence of the available tools supporting the variability information extraction.

3.6 Summary

Feature and variability information extraction from natural language documents can
obtain an explicit mapping of feature and variability information to other artifacts.
However, there are few systematic literature reviews providing a comprehensive and
detailed survey of approaches and tools used for extracting features and their rela-
tionships from natural language documents. In this chapter, we present the results

38 3. Current Research on Feature and Variability Extraction

of our systematic literature review of 31 papers that propose approaches to extract
features and variability and which we compared and analyzed qualitatively based
on several criteria.

Based on our review, we made several observations and derived implications and
challenges for current but also future research in this field. Among others, our
key findings are that: a) Software requirements and product descriptions are the
most common natural language documents, but exhibit differences with respect to
the information used for extraction; b) Many approaches are neither accurate nor
complete, and thus, of limited use in practice due to increased manual effort or simply
wrong information; c) Tool support is rather sparse, which impedes reproducibility,
and thus, makes a fair comparison and reasoning impossible; d) Full automation
is hard to achieve and, based on several evaluations, may even not be wanted or
possible, because some amount of domain knowledge is only manually available or
expressible.

Based on our findings, we suggested several actions to overcome current limitations,
but also to provide more solid foundations for future research in this direction. In
the following chapters, we intend to tackle some of the mentioned challenges by
ourselves.

4. An Initial Self-Learning
Structure for Feature
Extraction

This chapter is based on and shares material with the SANER’18 pa-
per “Extracting Features From Requirements: Achieving Accuracy and
Automation with Neural Networks” [LSS18a] and the SPLC’18 doctoral
symposium paper “Feature and Variability Extraction from Natural Lan-
guage Software Requirements Specifications” [Li18].

As introduced in Chapter 3, reverse engineering techniques are common means to
support automatic extraction of features and, in some cases, even their variability
information. Feature extraction techniques play an important role to automati-
cally identify features by analyzing natural language documents. Recently, vari-
ous approaches that focus on requirements to recover features have been proposed
(cf. Chapter 3), because:

1. Requirements contain more comprehensive information about commonalities
and variability;

2. Requirements establish traceability links to other artifacts of later development
phases (e.g., source code).

In previous research, diverse natural language processing and data mining tech-
niques have been applied to analyze semantic information and cluster similar fea-
tures. However, the majority of the existing approaches lack either accuracy of
extracting feature and variability information or a sufficient degree of automation,
thus, requiring extensive manual intervention. And, we observe that the syntac-
tic and semantic information of the requirements is analyzed and applied to fur-
ther achieve features and variation points. For example, some of these approaches
highly depend on the syntactic information of sentences (i.e., parse trees) [RBIW14,

40 4. An Initial Self-Learning Structure for Feature Extraction

IRB14, Wan15, Wan16, IRBW16, HW15], which requires manual intervention at
the very beginning to preprocess the original requirements according to some spe-
cific rules (e.g., requirement parsing), even though external tools such as Stanford
Parser [MSB+14] are integrated. Other approaches rely on similarity of each pair
of sentences in requirements. One part of these approaches apply external knowl-
edge databases such as WordNet [Mil95] to identify synonyms and compute the
similarity [IRB14, Wan15, Wan16, IRBW16]. Meanwhile, another part utilizes tra-
ditional distributional semantic models (DSMs), for instance Vector Space Model
(VSM) [KTWF12] and Latent Semantic Analysis (LSA) [ASB+08, WCR09], to cal-
culate the similarity.

The potential disadvantages of the aforementioned techniques used for feature and
variability information extraction can be summarized in the followings:

D1 If external tools for achieving syntactic information are used, the accuracy
of results from external tools highly affect the accuracy of feature and vari-
ability information extraction. That is to say, the error from external tools
will be introduced into the subsequent analysis process for feature extraction.
Moreover, this kind of external error is unpredictable and uncontrollable.

D2 For requirement parsing, it not only takes a significant amount of time for pre-
processing, but also requires experienced domain engineers who should know
well about the syntactic-related rules specially designed for requirement pars-
ing.

D3 The shortcoming of applying WordNet or other external lexical database of
structured semantic knowledge is that the high quality of the resources is not
available for all words, especially for domain-specific technical terms.

D4 Moreover, traditional DSMs can be considered as “count models” [BDK14],
since they count co-occurrences among words by operating on co-occurrence
matrices. Consequently, they usually achieve worse results than neural-network-
based natural language processing architectures which can be seen as prediction
models [BDK14].

Since features provide a general overview of the software product line in terms of
user-visible functionalities, extracting features is usually the first step for analyzing
the commonalities and variabilities in the software product line. To overcome these
limitations and achieve accurate features, we propose a technique based on an un-
supervised learning structure to extract features. Basically, our technique consists
of three parts, 1. a Convolutional Neural Network (CNN), 2. an unsupervised di-
mensionality reduction function, and 3. a clustering algorithm. Using this technique
allows us to make use of a compressed binary representation of the requirements
and to apply word embedding models as prediction models, which have shown to
outperform common “count models” [BDK14]. And, we also avoid applying exter-
nal tools for achieving syntactic information and external structured database for
obtaining semantic knowledge.

4.1. Methodology 41

In this chapter, we focus on the above mentioned the combination of CNN and the
unsupervised dimensionality reduction function, thus, making the following contri-
butions:

• We propose a technique to extract features from requirements that 1. utilizes
an unsupervised learning structure without relying on syntax information and
external structured knowledge resources, and 2. integrates a prediction model
to process raw text requirements and generate word vectors instead of using
traditional distributional semantic models (DSMs).

• We provide insights in a preliminary feasibility study, discuss current results
and possible improvements, and find key techniques that can be used in the
following research.

4.1 Methodology

In this section, we introduce the proposed self-learning structure in detail, including
an overview of the approach, Laplacian Eigenmaps, Convolutional Neural Network
and Clustering.

4.1.1 Overview

We provide an overview of our approach and introduce the particular techniques and
how they are applied in our context. We provide an overview of the entire process
in Figure 4.1.

Initially, the input documents (i.e., textual requirements specifications) are pre-
processed, that is, we decompose the documents into sentences and then remove
stop words in these sentences.

Subsequently, the pre-processed requirements are further processed in two ways:
First, by applying Laplacian Eigenmaps algorithm to obtain a low dimensional rep-
resentation, which is then converted into binary codes. And by applying a word
embedding model that creates a word vector for each word in the requirements.
Next, requirements are projected into a matrix representation, by employing the
pre-trained word embedding set, and fed into a CNN.

Finally, the output of CNN is compared with the binary codes to evaluate the
goodness of CNN. This process is executed repeatedly and eventually, the result
can be used to utilize clustering algorithms, such as k-means, to extract features
based on the characteristic representation. In the context of feature extraction
from requirements, we regard features as domain artifacts, and thus, we assume
that several requirements, related to the same functionality, belong to a particular
feature. Next, we explain each step in more detail, with the clustering being out of
scope for this subsection.

42 4. An Initial Self-Learning Structure for Feature Extraction

Laplacian
Eigenmaps

Binarize Function

Word Embedding

Low Dimensional
Vectors

Binary Codes

Dynamic kmax Pooling

Dynamic kmax Pooling

Wide Convolutional Layer

Folding

Characteristics Representation

Output

...

Clustering

Features

PreProcessing

Textual
Requirements

: Method; : Artifact/Data.

Wide Convolutional Layer

Figure 4.1: The flow chart of feature extraction.

4.1.2 Laplacian Eigenmaps

Laplacian Eigenmaps (LE) is applied to compute a low-dimensional representation
of the input dataset (i.e., requirements) that optimally preserves local neighborhood
information in a certain sense [BN03]. The foundation of this technique is the
laplacian matrix, which resembles a graph, based on the input data. Hence, LE
constitute a dimensionality reduction function based on graphs with nodes being
data points and edges connecting nodes that exhibit a particular similarity (for a
given similarity definition). Moreover, the edges have associated weights, indicating
the degree of similarity between the connected nodes, and the similarity of any two
nodes can be measured by the distance between them. Given these properties, the
goal of applying LE is to reduce dimensionality by keeping similar nodes with a
short distance, as they are likely to exhibit a relation as well in the original data.

4.1. Methodology 43

To achieve a graph representation, we first create a vector of each sentence by
TF-IDF and then use K Nearest Neighbors (KNN) algorithm to link each vector
to its k nearest vectors. The similarity matrix A is computed by applying heat
kernel algorithm, that is, A is the adjacency matrix of the KNN graph for the raw
requirements. Given a diagonal n × n matrix D (i.e., Dii =

∑n
j=1Aij), the graph

Laplacian L can be calculated by D − A. The matrix D denotes the requirement
significance: the bigger the value of Dii is, the more significant is the i-th requirement
which is strongly connected by neighbours. The optimal low dimensional matrix Y
can be obtained by solving the following objective function:

arg min
Y

trace(Y LY T)

subject to Y DY T = I
Y D1 = 0

(4.1)

arg min denotes arguments of the minimum which are elements that let a function
get its smallest value. In order to match the output of neural network in the train-
ing process, we convert the low dimensional matrix Y into a set of binary codes
B [ZWCL10].

4.1.3 Convolutional Neural Network

For our purposes. we utilize a specific kind of CNN, that is, a Dynamic Convolutional
Neural Network (DCNN), which has been proposed for modeling sentences [KGB14].
By using this model, the order of words in the sentences is preserved and word
relations of varying size can be captured. In particular, the DCNN captures word
relations independent of their distance in a sentence without any prior knowledge.

In Figure 4.1 (right part), we illustrate how we employ the DCNN model for feature
extraction from requirements. Initially, we transform our requirements into a word
vector representation using the already mentioned word embedding. As a result, we
obtain a set of word vectors E, each one characterizing a word in our requirements
(i.e., the similarity wrt. all other words).

Next, we employ the word vectors E to transform each sentence si from the re-
quirements into a matrix S ∈ Rdw×s, where dw is the dimensionality of the word
vector and s is the length of a sentence. We then feed this matrix S into our
DCNN, where it is processed consecutively by different layers (e.g., in Figure 4.1 we
show two exemplary convolutional layers). Finally, the output of one iteration of our
DCNN is compared with the binary codes from our LE reduction. The result is then
propagated back to adjust weight matrices inside our DCNN model.This process is
repeated several times in order to learn an accurate characteristic representation of
the requirements. The particular layers of our DCNN model work are as follows.

Wide Convolutional Layer

In our DCNN, the convolution is a matrix computation between a weight matrix,
called filter, and our input matrix S. We apply a one-dimensional convolution to
each row of matrix S, that is, we use a one-dimensional filter to scan each sentence
in order to detect its latent semantic and structure information.

44 4. An Initial Self-Learning Structure for Feature Extraction

There are two types of convolution: narrow convolution and wide convolution. For
instance, given a sentence with seven words and a filter of length five, we can exe-
cute the narrow convolution operation only three times, because the filter must be
entirely inside the sentence. In contrast, for wide convolution, the filter is allowed
to be partially outside the sentence with all elements out of range being zero (i.e.,
zero padding). As a result, we can execute the wide convolution operation eleven
times. Consequently, wide convolution is capable of gaining more information at the
margins of the sentence, because it make sure that each weight in the filter scans all
the words in the sentence.

More formally, in our wide convolutional layer(s), a filter f ∈ Rf slides over each
row of the requirement matrix S ∈ Rdw×s, eventually resulting into a matrix C ∈
Rdw×(s+f−1), where f is the width of the filter and s is the length of the sentence.
The matrix C is called the characteristic map of the requirement matrix S.

Folding

So far, the filter is only applied to each row of the requirement matrix S inde-
pendently, thus, neglecting the relation between different rows. To overcome this
drawback, Folding is a method to detect latent relationships between adjacent rows:
At each folding layer, every two rows in a characteristic map are summarized colum-
nwise. Consequently, for a characteristic map with dw rows, folding returns a map
Ĉ ∈ R(dw/2)×(s+f−1) with only dw/2 rows.

Dynamic K-max Pooling

K-max pooling is a downsampling strategy in CNN to reduce the dimensionality of
the intermediate layer output matrix (i.e., our characteristic map). This technique
helps to avoid over-fitting by providing an abstracted form of our charateristic map.
As a consequence, it reduces the computational costs since it reduces the parameters
that are subject to computation (i.e., the entries of the map). The traditional k-
max pooling operation is to pool the k most active characteristics (i.e., the most
important characteristics) in a given sequence. Given a preset k, the sub-matrix
C̄ ∈ R(dw/2)×k of the k highest values in each row of the matrix Ĉ are chosen
by k-max pooling. However, we apply dynamic k-max pooling, where the pooling
parameter k is dynamically selected. As a result, we achieve a smooth extraction
of higher-order and longer-range characteristics. Given a fixed, predefined pooling
parameter ktop for the topmost convolutional layer, the parameter k of k-max pooling
in the l-th convolutional layer can be computed as a function:

kl = max(ktop, [
L− l
L

s]) (4.2)

where L is the total number of convolutional layers in the network.

Output

The output layer is a key step to complete the learning process by fitting the binary
codes B, and thus,realizing the unsupervised learning process. The output layer of
DCNN is a function:

O = WOh (4.3)

4.2. Preliminary Result 45

with (i) h being the characteristic representation, (ii) O ∈ Rq being the output
vector, and (iii) WO ∈ Rq×r being the weight matrix. Finally, we train the DCNN
model by back-propagation and speed up training by using Adam optimization al-
gorithm [KB14].

4.1.4 Clustering

Given the linguistic characteristic representation of the requirements, learned by
the DCNN, the result can be used with clustering algorithms, such as traditional
K-means algorithm, to group sentences which describe similar functionality into a
cluster based on the characteristic representation. In particular, our intuition is that
the requirements, represented by a particular cluster together, belong to the same
feature.

4.2 Preliminary Result

To demonstrate the general feasibility of our approach, we implemented a prototype
and applied it to a small set of requirements. In this section, we briefly state on the
dataset used, the setting for our study, elaborate on initial results, and discuss them
regarding accuracy and automation.

Dataset: We use the requirements from the Body Comfort System (BCS) [LLLS13].
BCS is a case study from a real-world scenario that takes variability into account,
and it includes 98 concrete functional requirements.

Experiment setting and evaluation metrics: We use an API from gensim [ŘS10]
that implements the word2vec technique, to implement word embedding, and keep
all default parameters. In order to obtain pre-trained word vectors of high quality,
we apply Wikipedia dumps (https://dumps.wikimedia.org/), an open source corpus
with three billion words, to train word embedding. We apply cross-entropy loss func-
tion to evaluate the training process to gain the expected DCNN model [GDN13].

Preliminary result: Up to now, we don not use clustering algorithm to cluster fea-
tures in terms of the characteristic representation from current DCNN model. The
key problem is that the output of DCNN does not match the binary code very ac-
curately. The loss value, which is used to evaluate DCNN model’s performance,
remains around 0.5 instead of continuously decreasing after approximately 1500
training steps. Clustering features based on a bad performance model makes no
sense for the accuracy of extracted features.

4.2.1 Discussion

We discuss the results from above with respect to the second goal (RQ2), i.e., to
achieve high accuracy and full automation.

1) For the accuracy part, we obtain a DCNN model with high loss, which means that
we initially fail to achieve this goal. However, even if this is not the desired result,
it was somewhat expected at this stage of our research. Basically, we identified
two reasons for the rather low accuracy. First of all, our DCNN model has several
parameters in the particular layers, such as weights or size of the convolution filter,

https://dumps.wikimedia.org/

46 4. An Initial Self-Learning Structure for Feature Extraction

that need to be tuned. While there are numerous other approaches that elaborate
on these parameters, none of these approaches focus on requirements or feature
extraction therein. Hence, these parameters need to be determined experimentally
and based on a sufficiently large data set. Consequently, our initial parameters serve
only as a baseline (i.e., lower bound), and thus, need to be refined by applying it to
more requirements and gain insights on characteristics that may affect the parameter
setting. In order to optimize the model, we need to adjust some preset parameters,
for example, the dimensionality of word vectors in word embedding training, size of
filter in DCNN, or even the number of layers in DCNN. Another reason leading to
the high loss is that the self-learning structure we designed is somewhat irrational
so that it cannot learn the semantic characteristics existing in the requirements.
For example, word2vec is capable of learning the meaning of a word in terms of its
surrounding words. By contrast, our approach might lack the ability to capture the
semantic information of requirement documents in the learning process. Moreover,
LE is more likely to provide a sparse matrix representing the original requirements
rather than semantic or syntactic information. Usually, CNN requires a sufficiently
large dataset for the training phase to achieve reasonable results. Although the
relatively small size of the dataset we used may have a bad effect on the results,
we deem that it is not the main reason. The interaction of DCNN and LE in our
approach does not achieve our expectations, and the structure needs to be further
adjusted. Nevertheless, we argue that even with the current accuracy our approach
has the potential to perform better than some other approaches with the same
objective, as stated in Chapter 3.

Word Embedding Clustering

Mixed Techniques

Feature Extraction

Variability Information Extraction

Heuristics

Figure 4.2: An overview of the key techniques.

4.3. Related Work 47

2) For the automation part, we propose an unsupervised learning structure without
syntactic information of sentences, because this often imposes manual analysis and
correction. Neglecting the setup of parameters, we argue that the entire learning
process is automatically conducted by DCNN model. Although we currently fail to
obtain sufficient accuracy by our DCNN model, and thus, do not apply a clustering
algorithm, the process of feature clustering can be fully automated as well. Never-
theless, some manual semantic analyses may still be needed to gain the final features
in some cases. For instance, this may be necessary when the sentences in a cluster
belong to non-functional requirements or even are not related to a certain software
(e.g., sentences w.r.t. stakeholders).

Although we do not give a complete answer for RQ2 in this chapter, the first ex-
ploration inspires our following research. We find the key techniques that can be
used to form a general framework, shown in Figure 4.2. First, we focus on us-
ing software requirements specifications as the input, since software requirements
specifications contain complete information about functionality. Second, the neural-
network-based word embedding techniques is capable of capturing the semantic in-
formation of words, and we can also obtain a model trained on a dataset from a
particular software product line to achieve the domain knowledge of some domain-
specific terms. The accurate extracted knowledge can benefit the clustering process
to enhance the accuracy of feature extraction. Finally, we use heuristics to identify
the variation points based on different NLP techniques, resulting in a feature model.
In Chapter 5, we use these key techniques we identified during the first exploration
of this initial self-learning structure to offer a complete framework for extracting
features and variability information.

4.3 Related Work

Dependency on syntax and external knowledge database: Reinhartz-Berger et al.
proposed an approach for analyzing features and variability by combining semantic
similarity with similarity of software behavior as manifested in requirement state-
ments [RBIW14]. To this end, they applied Semantic Role Labeling (SRL) tech-
nique that highly relies on syntactic information. Itzik et al. also used SRL to
transform each sentence into six roles and computed similarity of each pair of se-
mantic roles by applying WordNet [IRB14]. Afterwards, Hierarchical Agglomerative
Clustering (HAC) is applied to these roles to cluster features. Based on the papers
above [RBIW14, IRB14], Itzik et al. proposed an approach named semantic and
ontological variability analysis (SOVA) to analyze variability of functional require-
ments [IRBW16]. This approach uses ontological and semantic considerations to
automatically analyze differences between initial states, external events, and final
states of behaviors, and thus, identify features [IRBW16]. Wang proposed a method
to build semantic frames for frequent verbs appearing in requirements by applying
SRL with the assistance of Stanford Parser and WordNet [Wan15, Wan16]. How-
ever, Wang’s research only extracted semantic information of requirements and did
not extract features in the context of SPL.

All of these approaches require syntactic information and external knowledge re-
sources to obtain accurate semantic information of requirements. In contrast, we

48 4. An Initial Self-Learning Structure for Feature Extraction

utilize an unsupervised learning structure (i.e., a CNN) to gain linguistic characteris-
tic representation without assistance of syntactic information and external structured
knowledge database.

Traditional DSMs: Alves et al. conducted an exploratory study on leveraging infor-
mation retrieval techniques for feature and variability extraction [ASB+08]. They
presented a framework by employing LSA and VSM techniques to measure the sim-
ilarity between sentences and also applied HAC to cluster features based on this
similarity. Weston et al. proposed a tool suite for processing requirements into can-
didate feature models, which can be refined by domain engineers [WCR09]. They
applied LSA to measure similarity and HAC to cluster similar texts into the same
feature groups to create a feature tree. Moreover, they built a variability lexicon
and grammatical patterns to detect latent variability information. Tsuchiya et al.
proposed an approach to recommend traceability links between sentences in require-
ments and design-level UML class diagrams as structure models [KTWF12]. They
used VSM to determine the similarity between sentences in requirements. However,
their research direction is not to discover features based on the similarity.

In contrast to the research above, we utilize word embedding instead of using tra-
ditional DSMs to gain word vector representation of the requirements. Also, we
apply CNN to learn the linguistic characteristic representation rather than directly
computing the similarity of each pair of sentences.

4.4 Summary

In this chapter, we proposed an unsupervised learning structure to extract features
from requirements. To this end, we combine CNN and LE to detect the linguis-
tic information of requirements. Then, features can be extracted from the learned
linguistic information by applying a clustering algorithm. In particular, we aim at
improving current limitations regarding accuracy and automation without any de-
pendency on syntactic information and external knowledge database. To this end,
we apply a prediction model to build word vectors, which outperforms traditional
distributional semantic models, and introduce a CNN technique for modeling sen-
tences and to learn their linguistic characteristics. While we are struggling with the
accuracy of our approach, we achieve a mostly automated process, thus, minimizing
manual intervention for extracting features from requirements. Moreover, the first
exploration also inspires our following research.

5. VarMine: Reverse Engineering
Variability in A Hybrid Way

This chapter is based on and shares material with the SPLC’18 paper
“Reverse Engineering Variability from Requirement Documents based on
Probabilistic Relevance and Word Embedding” [LSS18b], and the SPLC’18
doctoral symposium paper “Feature and Variability Extraction from Nat-
ural Language Software Requirements Specifications” [Li18].

In Chapter 3, we observe that current approaches are rather immature, that is, they
are lacking accuracy (regarding the features identified), suffer from incomplete vari-
ability information and fail to achieve a relatively high degree of automation (i.e.,
they need a lot of manual interventions), which hinders the applicability in practice.
As introduced in Chapter 4, we also explore an initial approach to automatically
learn the latent characteristics of requirements in order to solve the existing disad-
vantages (i.e., D1–D4) for traditional methods. Although the usage of external NLP
tools may introduce unexpected errors in subsequent analysis, stable and available
NLP tools can provide indispensable support for feature extraction tasks in terms
of observation 5 in Chapter 3, which is also the reason that most studies have used
external NLP tools. Therefore, in this chapter, we do not exclude the use of external
tools, and we use the tools implemented by using the state-of-art techniques in order
to minimize errors from external tools.

Hence, we propose an approach named VarMine, integrated with different machine
learning and natural language processing techniques to extract features and infer
the variability information. Our approach is mainly comprised of : 1) a neural
word embedding model as a prediction model [BDK14] to obtain word level seman-
tic information; 2) a probabilistic relevance framework of information retrieval to
obtain requirement level semantic similarity; 3) a clustering algorithm to extract
the initial feature tree; 4) a mixed method including heuristics and Recognizing
Text Entailment (RTE) techniques to detect variability information. We aim to
create a generic framework to identify features and extract variation points from

50 5. VarMine: Reverse Engineering Variability in A Hybrid Way

Requirements

Word Weighting

Word Level Similarity
(word Embedding)

Requirement Level Similarity
(Probabilistic Relevance)

Requirement Similarity
Matrix

Clustering

Refined Feature Tree

1. Semantic Similarity Network 3. Variability Extraction

Final Feature Model

2. Feature Extraction

Manual Analysis

Initial
Feature Tree

FV Traceability

FR Mapping

RV
Mapping Crosstree

Constraints
Detection

Text
Entailment

Optionality
&

Group
Constraints
Detection

Criteria

Preprocessing

Initial Feature Tree

: Method; : Artifact/Data.

Figure 5.1: The flow chart of feature and variability extraction using VarMine.

textual requirements in order to improve the work efficiency for domain analysis. In
particular, we make the following contributions to answer RQ2:

• We implement a semi-automated approach which is capable of extracting fea-
tures and variability information.To this end, we integrate a prediction model
into a probabilistic relevance framework to process the raw requirements in-
stead of using DSMs.

• Meanwhile we firstly introduce recognizing text entailment technique into SPL
for variation points detection.

• We conduct a case study with product requirements and also provide a com-
parison of our technique with other approaches. In a nutshell, we show that
our approach is capable of achieving relatively high accuracy and minimizes
manual intervention regarding the extracted features and variability informa-
tion.

5.1 VarMine in a Nutshell

Our proposed approach is able to convert natural language requirements specifica-
tions into features and mine the variability information. In this section, we briefly
introduce the particular techniques we use in VarMine and how they are applied in
our context. We provide an overview of the entire process in Figure 5.1.

Initially, we utilize a semantic similarity network to obtain the similarity for each
pair of requirements by three steps: First, the input documents (i.e.,textual re-
quirements specifications) are pre-processed, that is, we remove stop words in these
requirements and implement lemmatization operation, which usually aims to remove
inflectional endings and to return the base or dictionary form of a word. Moreover,

5.2. Semantic Similarity Network 51

note that, the requirement specifications we used as input not only contains the tex-
tual information about functionalities, but also includes the information regarding
which variants the requirements belong to. That is to say, the input documents
includes a mapping between requirements and variants (R-V Mapping). Second, we
utilize a pre-trained word embedding model (word2vec in our current approach) to
obtain the word level similarity of requirements (cf. Section 5.2.1). Third, we extend
a probabilistic relevance framework (Best Match 25+ in our current approach) to
achieve the requirement level similarity, based on the word level similarity and word
weighting (cf. Section 5.2.2). The output of this step is a requirement similarity
matrix.

Subsequently, we feed the requirement similarity matrix into a clustering algorithm
(Hierarchical Agglomerative Clustering in our current approach), resulting in an ini-
tial feature tree structure without variability information (cf. Section 5.3.1). More-
over, we obtain a mapping between features and requirements (F-R Mapping). Based
on the R-V Mapping and F-R Mapping, we can deduce a traceability link between
features and variants (F-V Traceability). We don not directly extract the variability
information from the initial feature tree. The reason is that the automated extracted
feature tree cannot achieve 100% accuracy, and the variability information among
the false positive features makes no sense. Hence, the initial feature tree will be ana-
lyzed by domain engineers to achieve the refined feature tree without false positives.
Subsequently, we use our technique to extract the variation points from the refined
feature tree.

Finally, after achieving the refined feature tree, based on four pre-defined criteria
that take advantage of F-V Traceability link, the parental relationship (i.e., manda-
tory, optional, OR, XOR) between features can be extracted (cf. Section 5.3.2).
Moreover, we are able to infer cross-tree constraints by applying recognizing textual
entailment techniques (cf. Section 5.3.3). The final feature model is formed by both
the extracted features and variability information.

In the context of feature extraction from requirements, we regard features as domain
artifacts, and thus, we assume that several requirements, related to the same func-
tionality, belong to a particular feature. Next, we explicate the specific techniques
in greater detail (cf. Section 5.2 and Section 5.3).

5.2 Semantic Similarity Network

In this section, we provide details how we integrate word embedding and topic
words into a probabilistic relevance framework. Our goal is to achieve a semantic
similarity network of requirements that takes both, word level as well as requirement
level similarity into account.

5.2.1 Word Level Similarity

Inspired by the work of Mikolov et al. [MSC+13], we use word2vec, a neural-
network-based technique that is used to produce word embeddings (i.e., vectors), to
obtain the word semantic similarity. The input of word2vec is a text corpus. Given
enough text data and contexts, word2vec can achieve highly accurate meanings

52 5. VarMine: Reverse Engineering Variability in A Hybrid Way

z

y

x

Word vector 1

Word vector 2

Word vector 3

... ...

...

Input layer

Hidden layer

Output layer

Training Model

Euclidean distance

𝜃

Figure 5.2: Exemplary and simplified process of obtaining word vectors.

of the words appearing in the corpus and establish a word’s association with other
words. The output is a set of vectors, that is, vectors of words are grouped together
in a semantic vector space. Hence, by using word2vec, we can achieve a neural
word embedding model (i.e., prediction model) to gain the more accurate vector
representations of words, compared with using LSA and VSM. We measure cosine
distance (also used in [MSC+13]) between two word vectors to evaluate the similarity
of each pair of words, which means the word similarity is actually measured by
the cosine value of angle between two vectors. The smaller the angle, the higher
is the similarity. In Figure 5.2, we show an example of the simplified process of
obtaining 3-dimensional word vectors, and we assume that the word vectors are
three-dimensional vectors, because it is convenient to visualize them in a three-
dimensional coordinate system. More formally, the word similarity is defined by:

wordSim(w1, w2) = cosine(~w1, ~w2) (5.1)

There are different metrics that can be used to compute the similarity of require-
ments. For example, Euclidean distance measures the distance between two points
in the vector space. However, using Euclidean distance might lead to a problem,
that is, even if two requirements are really similar, they may be of a large Euclidean
distance, especially for the large size of requirements. In this case, Euclidean dis-
tance is not able to represent the similarity of requirements accurately. However, if
we use cosine similarity, there is still a chance that the angle between the two vec-
tors is small (e.g., “word vector 1” and “word vector 2” in Figure 5.2). As a result,
cosine similarity is capable of properly calculating the similarity of different sizes of
requirements.

5.2.2 Requirement Level Similarity

After obtaining the word level similarity, we extend it into requirement level simi-
larity based on BM25+, an extension of Best Match 25 (BM25)[RZ09]. BM25+ is a
so called probabilistic relevance framework for document retrieval, which improves
the accuracy of processing very long requirements compared with BM25 [LZ11] and
eventually results into a semantic similarity network for all pairs of requirements
(from the input document).

In a nutshell, BM25+ utilizes Term Frequency - Inverse Document Frequency (TF-
IDF) weighting technique to measure how much a word contributes to the relevance

5.2. Semantic Similarity Network 53

Table 5.1: Example of topic words.

ID Requirements Topic Words

r1 If the finger protection has not been
triggered, the LED does not light up.

finger, protection,
LED

r2 When the alarm system is activated,
this is indicated by the light of the
LED.

alarm, system, this,
light, LED

𝒘𝒓𝟏\𝒘𝒓𝟐 alarm system activate indicate light led

finger 0.12 0.06 0.19 0.05 0.03 0.02

𝒘𝒓𝟐\𝒘𝒓𝟏 finger protection trigger led light

alarm 0.12 0.13 0.22 0.15 0.12

semSim(finger, r2) = 0.19, finger ∈ 𝑟1

semSim(𝑎𝑙𝑎𝑟𝑚, 𝑟1) = 0.22,𝑎𝑙𝑎𝑟𝑚 ∈ 𝑟2

(b)

(a)

Preprocessed 𝑟1 and 𝑞𝑟1 = 5

Preprocessed 𝑟2 and 𝑞𝑟2 = 6

word similarity between “finger”
and each word in 𝑟2

word similarity between “alarm”
and each word in 𝑟1

𝑤1
𝑟1

2
1
rw

𝑤1
𝑟2 𝑤2

𝑟2 𝑤3
𝑟2 𝑤4

𝑟2 𝑤5
𝑟2 𝑤6

𝑟2

𝑤1
𝑟1 𝑤2

𝑟1 𝑤3
𝑟1 𝑤4

𝑟1 𝑤5
𝑟1

Figure 5.3: An example for computing semSim(w, r).

of two short texts, taking the quantity of words in the text into account. However,
the technique exhibits two limitations: 1. Term Frequency (TF) lacks the seman-
tic information of words, since it just records the occurrence of a particular word
in a document. 2. Inverse Document Frequency (IDF) can not entirely represent
the significance of words in a text, since it is a statistic index without linguistic
information.

Basic function

In order to improve the original BM25+, we first replace TF by using word2vec
to gain the word level similarity, thus, resolving limitation (1). In detail, using the
two requirements r1 and r2 in Table 5.1 as an example, we compute the semantic
similarity (represented by semSim(w, r) in Equation 5.2) between each word in
r1 and the requirement r2 rather than the TF of each word in r1 appearing in r2.
For achieving these semantic similarity values, we search for the maximum word
similarity between a word in r1 and each word in r2, as indicated by the example
in Figure 5.3. This word level similarity is introduced to replace term frequency
used in original BM25+, and thus, contributes to gain more semantic information.

Moreover, we establish a combination of topic words in the requirement documents
and IDF in order to measure the significance of words (represented by Weight(w)
in Equation 5.2) more precisely, thus, addressing limitation (2). Specifically, we

54 5. VarMine: Reverse Engineering Variability in A Hybrid Way

apply two kinds of methods: First, traditional IDF as it is widely used to handle
this weighting problem and is also utilized in BM25+. Second, we analyze the
requirement documents to extract topic words that are the smallest units of domain
knowledge representing and describing a certain software product line. Here, we
argue that the subject and object in the sentences of requirements are of more topic
information and domain knowledge. To this end, we use dependency parser [HJ15]
to automatically extract all subjects and objects of each sentence and clause in the
requirement documents as topic words. For example, in Table 5.1, the word ”this”
also can be regarded as a topic word, in case it is a subject or object of a sentence.
However, this kind of pronouns usually belong to stop words as it provides less
information than other words. Thus, we remove stop words (e.g., the, this, a, etc)
from topic words, which enhances the degree of automation, as no manual filtering
has to be applied. Moreover, words with very low IDF value are also excluded from
topic words. In a nutshell, if a word belongs to the set of topic words, we assign a
high preset weight value to it; otherwise, the word is weighted by IDF algorithm.

Consequently, the basic function used to compute the similarity of each pair of
requirements based on BM25+ is as follows:

bmSim(r1, r2) =

qr1∑
i=1

Weight(wr1
i)× (

semSim(wr1
i , r2)× (k1 + 1)

semSim(wr1
i , r2) + k1 × (1− b+ b× qr2

avgqr
)

+ δ)

(5.2)

with

• qr1 and qr2 are the quantity of words in r1 and r2 respectively;

• semSim(wr1
i , r2) = max(wordSim(wr1

i , w
r2
1), ... , wordSim(wr1

i , w
r2
qr2

)), where
wr1 and wr2 denote each word in r1 and r2 respectively;

• Weight(w1) =

{
Preset V alue, w1 ∈ Topic words;
IDF (w1), otherwise.

• b ∈ [0, 1], k1 ∈ [1.2, 2], δ ∈ [0, 1.5];

• avgqr is the average quantity of words in all individual requirements. For
example, we assume that there is a requirement document only containing two
individual requirements shown in Table 5.1. r1 includes 14 words, while r1

contains 15 words, thereby resulting in the fact that avgqr is 14.5.

Our basic function inherits the main characteristics of BM25+. In detail, we also
apply k1 to get a much smoother function, utilize b together with lr2 and avgqr to
perform requirement length normalization (i.e., the normalization of the quantity of
the words in the requirements), and use δ to avoid very long documents being overly
penalized [RZ09, LZ11]. However, the key differences are that we introduce word
level similarity based on word2vec and topic words for weighting into BM25+.

5.3. Feature and Variability Extraction 55

Ultimate function

With Equation 5.2, we can observe that the results of bmSim(r1, r2) and bmSim(r2, r1)
are different. The reasons are that:

(1) When computing bmSim(r1, r2), it would not take weight values of (topic)
words in r2 into account (as indicated by Equation 5.2), and vice versa.

(2) And, each semSim(wr1
i , r2) in bmSim(r1, r2) is obviously different from each

semSim(wr2
j , r1) in bmSim(r2, r1) (cf. Figure 5.3).

(3) Moreover, the quantity of the words in the two requirements is also different
(cf. Figure 5.3).

Hence, we conclude that if we just use bmSim(r1, r2) to present the final similarity
of r1 and r2, the result is inaccurate due to a loss of semantic information and signif-
icance information of words in r2. Thus, to mitigate the impact which requirement
is chosen as reference and to obtain an unique and accurate similarity value, we cal-
culate the average of bmSim(r1, r2) and bmSim(r2, r1), taking the weights of words
into account. As a result, the final function for requirement similarity calculation is
as follows:

reqSim(r1, r2) =
1

2
× (

bmSim(r1, r2)∑qr1
i=1 Weight(wr1

i)
+

bmSim(r2, r1)∑qr2
j=1Weight(wr2

j)
) (5.3)

By applying Equation 5.3, we achieve a semantic similarity network (i.e., a symmet-
ric matrix) which encompasses the similarity values for each pair of requirements.

5.3 Feature and Variability Extraction

After obtaining the semantic similarity network of requirements, we apply a cluster-
ing algorithm and four pre-defined criteria to extract feature and variability infor-
mation which is crucial for constructing a complete feature model. In the following
subsection, we provide details about the techniques used to extract the respective
information.

5.3.1 Feature Extraction

To extract the tree-like structure of a feature model, we apply Hierarchical Ag-
glomerative Clustering (HAC) [RM05]. In a nutshell, similar requirements (i.e.,
requirements with similar functionality) are grouped into the same cluster that is
considered as a feature, and we reuse the hierarchical structure produced by HAC
to form a feature tree.

First, we utilize the similarity values for each pair of requirements as clustering
criterion, taking the semantic similarity network of requirements as input for HAC.
Second, the pairwise distance (i.e., dissimilarity) of requirements is measured to find

56 5. VarMine: Reverse Engineering Variability in A Hybrid Way

the closest pair of requirements and merge requirements with shortest distance into
a single new group, that is, a set of requirements. Then, we compute distances
between the newly created group and other requirements. Afterwards, the process
of calculating distance and merging requirements is repeated until all requirements
are assigned to a group, resulting in a hierarchical clustering tree. Third, we flatten
the hierarchical tree to merge clusters based on an inconsistency coefficient [JD88].
More precisely, we compute an inconsistency value between a cluster node and all
its descendants in the hierarchical clustering tree. If this value is less than or equal
than an inconsistency threshold, then all its leaf descendants belong to the same
feature. Finally, we inherit the hierarchical tree from the node with the longest
distance in extracted features up to root node rather than the whole hierarchical
tree by HAC, which reduces the complexity of the feature tree. In detail, similar
features are grouped together again to simplify and generate the tree structure.

Inconsistency threshold selection

How to define an appropriate threshold plays a crucial role in feature extraction
by HAC, since the inconsistency threshold makes a huge difference regarding the
number of features and the accuracy of the extraction process. In clustering the-
ory, internal validity indices are utilized to evaluate the clustering results when the
ground truth of clusters is unknown. Hence, in order to achieve an optimal incon-
sistency threshold, we apply internal validity indices to estimate the accuracy of
the extracted features by HAC in terms of different candidate inconsistency thresh-
olds. To this end, firstly we use an arithmetic sequence to obtain the candidate
inconsistency thresholds, as shown in Equation 5.4.

ITn = IT1 + (n− 1)× d (5.4)

with

• IT1 is the first candidate inconsistency thresholds;

• ITn is the n-th candidate inconsistency thresholds;

• d is the common difference.

After determining the IT1 and d, the other successive candidate inconsistency thresh-
olds can be computed. And then, we apply every candidate inconsistency threshold
in HAC to extract features. In this process, the number of features extracted by
HAC decreases, when the value of the inconsistency threshold increases. Hence,
the biggest inconsistency threshold is the one which results into the number of
extracted features being two, since just one feature being extracted in a certain
software product line is unreasonable. After obtaining all the candidate inconsis-
tency thresholds and the corresponding features, we use two internal validity indices,
Dunn index [Dun74] and Calinski Harabaz index [CH74], to evaluate the goodness
of features (i.e., clustering structure). For a given set of features extracted by the
clustering algorithm, a higher Dunn and Calinski Harabaz index indicates better fea-
ture extraction. In our case, Dunn Index is regarded as main internal index, while

5.3. Feature and Variability Extraction 57

Feature A R1,R2

Feature C R3

Feature D R4

Feature A V1,V2,V3

Feature C V2,V3

Feature D V1,V3

FR Mapping

FV Traceability

Feature A

Feature C Feature D

Feature B

RootR1 V2,V3

R3 V2,V3

R4 V1,V3

RV Mapping

R2 V1

Features tree

Feature A

Feature C Feature D

Feature B

Root

Features model

S(Rm,Rn): smilarity value of Requirment m and Requirement n;
IT: inconsistency threshold; DI: Dunn index; CHI: Calinski Harabaz index;
RT: require threshold.

R1 R2 R3 R4

R1 1 S(R1,R2) S(R1,R3) S(R1,R4)

R2 S(R2,R1) 1 S(R2,R3) S(R2,R4)

R3 S(R3,R2) S(R3,R2) 1 S(R3,R4)

R4 S(R4,R1) S(R4,R2) S(R4,R3) 1 Root

Feature A

Features

Feature B

Feature A Feature C Feature D

Similarity Matrix

R1,R2,R3,R4

R1,R2 R3,R4

IT DI CHI

0.5 0.1 11
1.0 0.8 22

1.5 0.5 15

R3 R4R1,R2

IT selection in HAC

Requirements

6.0
2

175.0
2

252.0
2

3231

3231

3231

=
+

=

=
+

=

=
+

=

NNN

CCC

EEE

RRRR
ac

RRRR
ac

RRRR
ac

reqreq
fea

reqreq
fea

reqreq
fea

175.0
2

251.0
2

7.0
2

2313

2313

2313

=
+

=

=
+

=

=
+

=

NNN

CCC

EEE

RRRR
ca

RRRR
ca

RRRR
ca

reqreq
fea

reqreq
fea

reqreq
fea

1)

1.0,52.0

15.0,1.0

57.0,65.0

2313

2313

2313

==

==

==

NN
CC
EE

RRRR

RRRR

RRRR

reqreq

reqreq

reqreq

Requirement Entailment

Feature Entailment

2)

Feature C entails Feature A, and RT = 0.58

Feature A

Feature C Feature D

Feature B

Root

Features model

65.0,55.0

1.0,25.0

25.0,2.0

3231

3231

3231

==

==

==

NN
CC
EE

RRRR

RRRR

RRRR

reqreq

reqreq

reqreq

2.0

R3 R4R1 R2

Figure 5.4: An example of feature and variability information extraction.

Calinski Harabaz index is an auxiliary index. We only employ this index if the Dunn
index values for two or more features are equal (though inconsistency thresholds are
different) to estimate the goodness of features with same Dunn index value, and
thus, to select the appropriate inconsistency threshold. If the Calinski Harabaz in-
dex makes no difference, we use the mean value of inconsistency thresholds resulting
in the same internal validity index as the final inconsistency threshold.

As an example, we explain the process of feature and variation points extraction
in Figure 5.4 using four requirements (R1–R4) and three variants (V1–V3). The
similarity matrix of requirements is firstly fed into HAC to cluster similar require-
ments. And then, the optimal inconsistency threshold is achieved (i.e., IT = 1),
since the value of the corresponding Dunn index is the largest one (i.e., DI = 0.8).
Meanwhile, as there is just one largest Dunn index, we do not take the Calinski
Harabaz index into account. After clustering, we can achieve 1. an initial feature
tree containing three concrete features (i.e., Feature A, C, D) and an abstract feature
(i.e., Feature B); and 2. a mapping between concrete features and requirements (i.e.,
F-R Mapping). The concrete features are directly extracted from functional require-

58 5. VarMine: Reverse Engineering Variability in A Hybrid Way

ments, while the abstract feature is detected by inheriting the hierarchy from HAC.
Moreover, the input requirement documents we used contain the mapping between
requirements and variants (i.e., R-V Mapping). Hence, the traceability link between
features and variants (i.e., F-V Traceability) which is used to detect optionality and
group constraints (cf. Section 5.3.2) can be inferred from the aforementioned two
mappings. Additionally, in terms of F-R Mapping, the cross-tree constraints can be
detected by using textual entailment technique (cf. Section 5.3.3). Note that, this
example is used to simply illustrate the proposed methodology with few features,
which ignores the redundant constraints. In general, if removing one constraint
does not have any influence on commonalities and variabilities presented in a fea-
ture model, this constraint is redundant. That is to say, the removal of redundant
constraints does not change the validity of configurations [KAT16]. For example,
the cross-tree constraint (i.e., require) between Feature A and Feature C is actually
redundant, since Feature A is mandatory for Root.

5.3.2 Optionality and Group Constraints Detection

Detecting variation points between features is a non-trivial task without having in-
depth domain knowledge. Thus, we rely on heuristics to decide whether and how a
feature is related to other features. To this end, we make use of the F-V Traceability
link (cf. Figure 5.4) between features and variants and define the following four
criteria to extract variation points for features:

1. A feature is Mandatory if (a) this feature covers Nmo percent of all the vari-
ants from input requirement documents; or (b) all its sub-features covers Nmo

percent of the variants. Nmo is a threshold, while 0 < Nmo 6 100.

2. Consequently, a feature that has not been identified as mandatory feature is
Optional.

3. Features under a same parent node form an OR group, if there are at least
(n − 1) pairs of these features which appear in the same variant, where n is
the number of features under the same parent node. Moreover, (a) every pair
of features must be different and unique, (b) these (n − 1) pairs of features
must include all the features under this same parent node, and (c) these n
features are able to cover Nor percent of the variants from input requirement
documents. Nor is a threshold, while 0 < Nor 6 100.

4. Features under a same parent node form an XOR group, if the union of these
features covers Nxor percent of the variants, and these features never occur in
the same variant simultaneously. Nxor is a threshold, while 0 < Nxor 6 100.

The four criteria are created mainly based on the proportion of the variants cov-
ered by certain features to all the variants appearing in the documents. Next, we
illustrate the application of our criteria by means of two abstract examples, denoted
in Figure 5.4 and Table 5.2, where we assume Nmo = Nor = Nxor = 100. In Fig-
ure 5.4, feature A cover all three variants (V1–V3), thus, rendering feature A as
mandatory. Feature B contains two sub-features: feature C and D. Since the union

5.3. Feature and Variability Extraction 59

Table 5.2: Example of OR and XOR group relation extraction.

Feature V1 V2 V3

Feature F × ×
Feature G × ×
Feature H × ×
Feature I × ×

Feature J × ×
Feature K ×

Table 5.3: Mapping between TE and CTC.

TE Relation Probability CTC

Entailment 71.9% Require
Contradiction 1.4% Exclude

Neutral 26.7% Non-CTC

of feature C and D covers all three variants, feature B is mandatory. Obviously,
Feature C and D are optional.

In Table 5.2, we assume that features F, G, H, I belong to the same parent feature
as well as features J, K belong to the same parent node. According to our criteria,
feature F, G, H, I are or-grouped; feature J, K are xor-grouped.

5.3.3 Cross-Tree Constraints Detection

Inspired by the research on Recognizing Text Entailment (RTE) [AM09, PTDU16],
we propose a mixed method by using RTE technique with pre-defined rules to detect
the cross-tree constraints. RTE technique is used to predict Textual Entailment (TE)
that is defined as a directional relation between two statements named premise and
hypothesis, which is able to present the probability of whether the facts in the premise
implies the facts in the hypothesis. There are three different relations - entailment,
contradiction, neural — between premise and hypothesis in TE for the general NLP
purpose. Although cross-tree constraints are used to present the dedicated relations
between features in SPL context, we can observe that these relations constitute a
similar meaning compared with TE. Hence, we make mapping between these two
kinds of relations and illustrate the general idea of using this technique with the
example below.

Premise: Violent opening of a door causes an alarm to be triggered when the
alarm is active.
Hypothesis: When an alarm is triggered, this is signaled by the light of the LED.

In the above example, there are two requirements which are regarded as premise and
hypothesis respectively. Based on Parikh et al. research [PTDU16], we achieve three
different TE relations (i.e., entailment, contradiction and neutral) with different

60 5. VarMine: Reverse Engineering Variability in A Hybrid Way

probabilities, shown in Table 5.3. For the sake of the latent relevance of TE and
Cross-Tree Constraints (CTCs), we regard entailment as require, contradiction as
exclude and neutral as non-ctc, inheriting the probability from TE. Hence, we can
observe that the requirement in the hypothesis requires the requirement in premise,
because of entailment with the highest probability.

Feature entailment. However, in our case, a feature may contain several re-
quirements. Hence, we need to analyze all the TE relations between requirements
belonging to features in order to achieve feature entailment relations. For ex-
ample, we assume that there are two features, Fa and Fb. In terms of the F-R
Mapping, we can achieve two sets of requirements, Fa = {ra1, ra2, ra3, ..., ram} and
Fb = {rb1, rb2, rb3, ..., rbn}. The feature entailment relations between Fa and Fb are
computed by the following equation:

feaEab =

∑rbm
rbj=rb1

∑ran
rai=ra1

reqErairbj

m× n
, rai ∈ Fa and rbi ∈ Fb

feaCab =

∑rbm
rbj=rb1

∑ran
rai=ra1

reqCrairbj

m× n
, rai ∈ Fa and rbi ∈ Fb

feaNab =

∑rbm
rbj=rb1

∑ran
rai=ra1

reqNrairbj

m× n
, rai ∈ Fa and rbi ∈ Fb

(5.5)

with

• feaEab, feaCab and feaNab are the entailment, contradiction and neutral prob-
ability respectively between feature Fa (premise) and feature Fb (hypothesis);

• reqErairbj , reqCrairbj and reqNrairbj are the entailment, contradiction and neu-
tral probability respectively between requirement rai (premise) and require-
ment rbi (hypothesis).

Then, we define two criteria to determine the reasonable entailment relations be-
tween features:

(1) If

{
feaEab = max(feaEab, feaCab, feaNab)
feaNba = max(feaEba, feaCba, feaNba)

, Fa entails Fb.

Explanation: feaEab = max(feaEab, feaCab, feaNab) means when Fa is the
premise and feature Fb is the hypothesis, entailment is the main relation be-
tween Fa and feature Fb, since feaEab obtains maximum value compared with
feaCab and feaNab. However, we cannot directly determine that Fa entails
Fb just in terms of the fact above. It is necessary to double check the rela-
tion after we switch the role of the features. That is to say, we should know
what the main relation is, if Fb is the premise and feature Fa is the hypothe-
sis. Moreover, if the two main relations are not logically contradictory to each
other, we consider that the two relations are meaningful and valid to be used
to further infer the final relation between the two features. In this case, if Fa

5.4. Evaluation 61

entails Fb, it must satisfy two conditions simultaneously: (a) feaEab should
be the maximum, when Fa is the premise and feature Fb is the hypothesis;
(b) feaNba should be the maximum (i.e., the main relation is neutral), when
Fb is the premise and feature Fa is the hypothesis.

(2) If

{
feaCab = max(feaEab, feaCab, feaNab)
feaCba = max(feaEba, feaCba, feaNba)

, Fa and Fb contradict each other.

Explanation: Likewise, in order to identify whether Fa and Fb contradict each
other, we have to take the two main relations into account. That is to say, if
we determine that Fa and Fb contradict each other, it must satisfy two con-
ditions simultaneously: (a) feaCab should be the maximum (i.e., the main
relation is contradiction), when Fa is the premise and feature Fb is the hy-
pothesis; (b) feaCba should be also the maximum (i.e., the main relation is
also contradiction), when Fb is the premise and feature Fa is the hypothesis.

Finally, we utilize two thresholds to filter the results of feature entailment in order
to identify the reasonable cross-tree constraints for different SPLs.

(3) If Fa entails Fb and (feaEab OR feaNba) > require threshold, Fb requires Fa.

Explanation: The magnitude of feaEab and feaNba indicates the strength
of the entailment relationship between Fa and Fb. Hence, we use a require
threshold to detect the require relation between features. If (a) Fa entails Fb

(i.e., criterion (1) is satisfied.), and (b) either feaEab or feaNba is larger than
the require threshold, we say that Fb requires Fa.

(4) If Fa contradicts Fb and (feaCab OR feaCba) > exclude threshold, Fa ex-
cludes Fb each other.

Explanation: Likewise, the magnitude of feaCab and feaCba indicates the
strength of the contradiction relationship between Fa and Fb. Thus, we also
use an exclude threshold to identify the exclude relation between features. If
(a) Fa contradicts Fb (i.e., criterion (2) is satisfied.), and (b) either feaCab or
feaCba is larger than the exclude threshold, we say that Fb and Fa exclude
each other.

Figure 5.4 contains a running example of CTCs extraction between Feature A and
Feature C.

5.4 Evaluation

To demonstrate applicability and benefits of VarMine, we conducted two case stud-
ies. In this section, we present the research questions to be answered, subject sys-
tems, and evaluation metrics and report on the overall methodology of our evalua-
tion. Moreover, we present results of a comparison with other, related approaches.
All data of our evaluation are available online1.

1https://git.iti.cs.ovgu.de/yangli/varmine alpha

https://git.iti.cs.ovgu.de/yangli/varmine_alpha

62 5. VarMine: Reverse Engineering Variability in A Hybrid Way

5.4.1 Research Questions

The RQ2 mentioned in Chapter 1 is focused on the improvement of the accuracy
and automation for the feature and variability information extraction, which affects
applicability of the proposed approaches in practice. For evaluating the quality
of our feature and variability extraction process, we formulate the following three
sub-research questions:

RQ2.1: How accurate is the extracted feature and variability information?

For this research questions, we aim at determining the accuracy of the identified
features and the variation points in order to assess whether our approach provides
relatively accurate results.

RQ2.2: In what ways can our approach improve the work efficiency of domain
analysis?

For this research question, we put emphasis on how our technique can decrease
manual intervention in the process of identifying features and extracting variability
information in order to solve time-consuming and labor cost problem.

RQ2.3: Does the proposed approach work properly for different domains?

For this research question, we put emphasis on the applicability of our approach to
different domains. If the approach would be sensitive for a certain domain, it lacks
generalizeability for different domains in practice, and thus, would have a limited
applicability.

5.4.2 Case Study Description

In this section, we provide details about the subject system and the general process
for conducting our case study.

Dataset

In order to evaluate our approach, two datasets from different domain are used: 1)
the requirements (i.e., software requirement specifications) from the Body Comfort
System (BCS) [LLLS13], a case study from a real-world scenario that takes vari-
ability into account, comprising 98 concrete functional requirements; 2) The Digital
Home (DH) [HT07] requirements including 38 individual requirements. The com-
mon characteristics of these two datasets are that a) they both provide the R-V
Mapping and b) each requirement in the datasets is short text with one or two sen-
tences specifying the corresponding functionality of the system. Figure 5.5 presents
the feature models of BCS and DH used as ground truth. The BCS feature model
comes from the paper [LLLS13]. For the DH feature model, two senior researchers
and the author of this thesis independently analyzed the DH requirements document
and then reached a consensus to form the ground truth before the evaluation.

Experimental setting

Since all the data and implementation are already reachable via the aforementioned
link, we just briefly introduce the key parameters setting here. For word level similar-
ity, we are confronted with two limitations in this case study: 1) A word embedding

5.4. Evaluation 63

(a) BCS

(b) DH

Figure 5.5: The ground truth of BCS and DH feature model.

model trained with a large corpus is supposed to be of high quality. However, the
BCS and DH datasets are both small datasets, which leads to a lack of enough
data for training a word embedding model with high quality. 2) Although we can
achieve an accurate word similarity with the word embedding model, it still exhibits
the limitation that a vector space is not capable of gaining the association of all
words we consider, since the size of a single text corpus is limited. That is to say,
even if the size of one corpus is large enough, it hardly contains all relevant words
for different SPLs, especially for domain-specific terms. Hence, the similarity value
of a pair of words can not be determined, if one of these words does not occur in
the corpus that is used to train the word vector space. The common method to
handle out-of-vocabulary words is to assign a random vector for out-of-vocabulary
words [Kim14]. Unfortunately, a random vector not only lacks the ability to vector-
ize a word accurately but also leads to an uncertainty of the results. To overcome
these limitations, we use two different models for computing word level similarity.
First, we use the pre-trained model from Mikolov et al. [MSC+13] trained on Google
News dataset2 including 100 billion words as our main model. Second, we also train
a complementary model on the requirements of each software product line that is
subject to our variability mining analysis. The main model is utilized to gain the
general meaning of a word. If a word is absent in the main model, the word prob-
ably belongs to domain-specific terms and the vector representation of this word is
obtained by applying the complementary model.

2https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

64 5. VarMine: Reverse Engineering Variability in A Hybrid Way

For requirement level similarity, according to parameter setting in [LZ11], we denote
k1 = 1.2, b = 0.75 and δ = 1 when computing Equation 5.2 in our experiments.
The preset weight value for topic words is 1, which means the topic words are
more important than the common words, when computing the similarity. For HAC,
we use euclidean metric to measure the distance between pairs of requirements,
while ward linkage criterion is applied to determine the distance between sets of
requirements. For feature extraction, the IT1 (i.e., the first candidate inconsistency
threshold) and d in Equation 5.4 are both preset as 0.01, in order to achieve a
sequence of fine-grained candidate inconsistency thresholds. For optionality and
group constraints extraction, Nmo and Nxor both equals 100, while Nor is 70. For
cross-tree constraints extraction, the require threshold equals 0.58, while exclude
threshold is preset to 0.8. Moreover, our implementation depends on spaCy [HM18],
gensim [ŘS10], SciPy [VGO+20], scikit-learn [PVG+11] and AllenNLP [GGN+18].
After gaining the features and variability information by our proposed technique,
we employ FeatureIDE [TKB+09] as graphical and textual editor to visualize the
extracted feature model, which we show in Figure 5.6 and Figure 5.7.

Evaluation processes.

In order to achieve a comprehensive evaluation of our technique, we have to consider
three processes in our technique to be evaluated:

• First, we implement clustering evaluation, which is used to estimate whether
a reasonable clustering is selected based on how well the clusters produced by
HAC match the ground truth. In detail, this evaluation step is to measure
whether the similar requirements are grouped in correct features and the dis-
similar requirements are separated well enough. Moreover, it also presents the
accuracy of the F-R Mapping.

• Second, we implement feature model evaluation to measure how accurate we
extracted the features and variability information, namely, whether the clusters
can be regarded as features and whether the extracted variability information
(e.g., optionality, group constraints, and cross-tree constraints) is meaningful.
To this end, we measure how well our the extracted feature model complies
with the original feature model (i.e., ground truth).

• Third, we make a comparison between our approach and the state of the art
for feature extraction from requirement specification.

5.4.3 Clustering Evaluation

We use two external validation techniques to estimate the clustering performance:
Average Accuracy (AA) [LKYW05] and Normalized Mutual Information (NMI)
[SG03]. By using two different validity techniques, we prevent our evaluation form
being biased when evaluating the accuracy of clusters.

Evaluating clustering performance with AA relies on how many documents with the
same topics are in the same cluster and also how many documents with different
topics are in different clusters, which actually is a mean value of positive and negative

5.4. Evaluation 65

accuracy. Based on value of AA, we can obtain general understanding regarding the
accuracy of requirements clusters. NMI is an information theoretic measure to scale
the mutual information of requirements between clusters [SG03]. Based on value of
NMI, we know about how related two requirements are and whether the requirements
are well separated or grouped, respectively. The larger the values of AA and NMI
are, the better the clustering performance of our approach is.

Table 5.4: Results of Clustering evaluation.

Dataset AA NMI

BCS 0.80 0.83
DH 0.81 0.88

We evaluate the clustering results of our approach by comparing them with the
ground truth. In Table 5.4, we show results for AA and NMI metrics. Both are
around 0.8 which is close to 1, and thus, indicate a relatively accurate clustering
result. Moreover, the result reveals that the majority of the requirements is assigned
to the correct features, which matches the ground truth accurately. Namely, the F-R
Mapping is relatively accurate.

5.4.4 Feature Model Evaluation

Although, we obtain a relatively accurate matching between our predicted clusters
and the ground truth, the results of clustering evaluation can not completely reveal
the rationality and applicability of the extracted features, considering that manually
extracting feature and variability may pose the risk of uncertainty and bias due to
differences between the results from two (or more) domain engineers.

In order to achieve a quality analysis of the results, we mainly utilize the common
measures precision, recall, and F1 score to evaluate the accuracy of the extracted
features and variability information, shown in Equation 5.6, Equation 5.7 and Equa-
tion 5.8, respectively. In this context, precision is used to determine how many
features and variation points have been extracted correctly. Consequently, recall is
employed to measure the proportion of correctly identified and extracted features
and variation points compared with all features and variability information in truth
sets. Finally, to put precision and recall in relation, we use F-measure as a harmonic
average of both of these measures. To this end, we denote 1) the true features and
variation points extracted by our approach as true positives, 2) features and varia-
tion points generated by our approach but absent in the ground truth set as false
positives, and 3) the pertinent features and variation points in truth set which are
absent in the feature models generated by our process as false negatives.

Precision =
Extracted Information ∩Ground Truth

Extracted Information

=
True Positive

True Positive+ False Positive

(5.6)

66 5. VarMine: Reverse Engineering Variability in A Hybrid Way

Recall =
Extracted Information ∩Ground Truth

Ground Truth

=
True Positive

True Positive+ False Negative

(5.7)

F1 score = 2× Precison×Recall
Precison+Recall

(5.8)

Given this definition of evaluation metrics, we take two situations into consideration:

(i) We regard the feature model generated by domain engineers as the only ground
truth, not considering the possible bias of manual analysis.

(ii) The extracted features and variation points are analyzed, taking the uncer-
tainty and bias of manual analysis into account. If some extracted features
are recognized as relevant properties and represent variability, we also regard
them as true positives.

(a) BCS (b) DH

Figure 5.6: Initial feature tree of BCS and DH.

Feature.

Figure 5.6 presents the results of our feature extraction method on BCS and DH
datasets, while Table 5.5 shows the evaluation results in both situation (i) and (ii).

In BCS dataset, 26 features including 23 concrete features and three abstract features
are extracted automatically, while in situation (i) 19 of them belong to true positives
(e.g., AF1, CF1, CF4, CF6, CF7, CF11, AF2, CF12, CF13, CF15, CF16, CF17,

5.4. Evaluation 67

AF3, CF18, CF19, CF20, CF21, CF22, CF23). In situation (ii), another six features
also presenting variability are recognized as true positives (e.g., CF5, CF8, C10).
For example, CF8 is the feature presenting the functionality of status led of interior
monitoring, while the Status LED of interior monitoring is included in the LED
Alarm System in ground truth (cf. Figure 5.5a). Moreover, in some cases, if there are
multiple features that denote the similar functionality, we just take one of them into
account. For example, although CF1, CF2, and CF3 are somewhat different with
each other in functionality, they are all related to “led exterior mirror heating”. CF1
and CF2 describe the activation of Status LED of exterior mirror heating, while CF3
specifies the deactivation of Status LED of exterior mirror heating. Compared with
ground truth, the granularity of these three features is too fine, which is unnecessary.
Therefore, in this case, we just take CF1 into account in the calculation of precision
and recall.

In DH dataset, there are 17 extracted features containing 14 concrete features and
three abstract features. In situation (i), 12 of the 17 features are true positive
(e.g., AF1, CF2, CF4, AF2, CF5, CF6, CF7, CF8, CF9, CF12, CF13, CF14),
while another one feature, CF3, is also regarded as true feature in situation (ii).
In the DH case, the granularity of several features is too coarse, such as CF11,
resulting in the fact that requirements with different functionality are tangled up.
Hence, the intention of this kind of feature is inexplicit. We find that although some
requirements describe different functionality, they contain many similar words. This
is the main factor that has a bad effect on the accuracy of feature extraction in the
DH case.

Table 5.5: Feature extraction evaluation results.

Dataset Situation Precision Recall F-measure

BCS (i) 0.73 0.76 0.75
(ii) 0.85 0.82 0.84

DH (i) 0.71 0.71 0.71
(ii) 0.76 0.72 0.74

Table 5.5 shows we have achieved relatively accurate feature extraction results com-
pared with ground truth. In situation (i), the values of precision and recall for both
BCS and DH are close to each other, reaching 70%. But, in situation (ii), more
potential true features also representing variability are mined from BCS than DH.

Variability information.

Variability information is subject to features, which means the accuracy of variability
information extraction is prone to be affected by the accuracy of feature extraction.
The errors from feature extraction will be accumulated in the process of extracting
variation points, which will reduce the accuracy of the extracted variability infor-
mation to a great extent. Moreover, it is meaningless to extract the relationship
between false features. Hence, the features extracted automatically are further an-
alyzed and refined by manual work. This process includes three main steps: 1)

68 5. VarMine: Reverse Engineering Variability in A Hybrid Way

(a) BCS

(b) DH

Figure 5.7: Refined features and extracted parental relationships.

Feature merging, which merges several features with similar functionality into one
feature; 2) Feature partition, which divides one feature up into several sub-features;
3) F-R Mapping correction, which puts the wrongly grouped requirements into the
correct feature; 4) Renaming features, which adjusts the names of features to fit
the revised feature model. All these analysis steps are simplified and assisted by
a graphical user interface (GUI) of manual analysis via drag and drop operations,
introduced in Chapter 7.

Afterwards, the variability information is detected in terms of the refined features
presenting in Figure 5.7, while the evaluation results is shown in Table 5.6.

Optionality and group constraints. Mandatory, optional, or-group and xor-group
can be regarded as the parental relationships between features, shown in Figure 5.7.
Hence, each feature is of only one parental relation, which means the number of
parental relationships is equal to the number of features. We also take both situation
(i) and (ii) into consideration.

In the refined BCS feature model, compared with ground truth (cf. Figure 5.5a),
we find 22 true positives (e.g., AF1, CF1, CF3, CF4, CF16, AF2, AF3, AF5, CF12,
CF9, CF13, CF14, CF15, AF3, AF6, CF17, CF20, CF11, CF8, CF19, CF21, CF10).

5.4. Evaluation 69

In situation (ii), the features absent in the ground truth are analyzed to make sure
whether the parental relationships of these features are correct or not. Then, another
three features are recognized as true positives with the right parental relationships
(e.g., CF5, CF18, CF6).

In the refined DH feature model, there are 14 features with right parental relation-
ships (e.g., AF1, CF8, CF13, CF15, CF2, CF4, CF7, CF12, AF2, CF5, CF6, CF10,
CF14, CF16) in situation (i) compared directly with ground truth (cf. Figure 5.5b).
Moreover, another feature CF3 is regarded as a true positive with correct parental
relationship in situation (ii).

Table 5.6: Optionality and group constraints evaluation results.

Dataset Situation Precision Recall F-measure

BCS (i) 0.81 0.88 0.84
(ii) 0.96 0.93 0.94

DH (i) 0.78 0.82 0.80
(ii) 0.83 0.83 0.83

Table 5.6 gives a positive answer that the extraction of optionality and group con-
straints between features is doable by analyzing the F-V Traceability. It shows
that the distribution of features in different variants reflects the potential relations
between features. Certainly, we still cannot achieve all the optionality and group
constraints correctly by only analyzing the F-V Traceability. For example, in the
ground truth of BCS feature model, CF2 and CF7 should be or-grouped with other
sub-features of AF1. However, by using our approach, CF2 and CF7 are both identi-
fied as mandatory features, since these two features appear in all variants. Moreover,
in the ground truth of DH feature model, CF1 is mandatory and CF11 is optional,
while they are or-grouped by using our approach. However, the extracted relations
with high accuracy provide a very good starting point to improve the process of
further manually analyzing the relations between features.

Cross-tree constraints. In order to evaluate to what extent the extracted CTCs can
assist domain analysis, we divide each detected CTC into four parts: pair, relation,
direction, redundancy.

For pair, we intend to analyze whether the pair of features in an extracted CTC is
meaningful. If the two features in an extracted CTC also belong to the CTCs ground
truth, they are matched each other. In some cases, although the two features are not
totally matched with the CTCs ground truth, they are correlated with each other
and still able to provide hints to finally find the real matched pair. For example,
feature A and feature C belong to the pair in the extracted CTCs, while there
actually exists a real constraint between feature A and B. Moreover, feature C is a
sub-feature of feature B with high relatedness. Hence, the feature A and feature C
are marked as related. If the two features are neither matched nor related, they are
marked as irrelated.

For relation, we plan to check whether the relation between the extracted pair of
features is correct or not. Since there are only two constraint keywords, require

70 5. VarMine: Reverse Engineering Variability in A Hybrid Way

and exclude, in each CTC, the relation is either require or exclude. if the identified
constraint keyword is correct, the relation is marked as correct ; otherwise, it is
marked as reverse.

For direction, we consider to make sure that the direction between the two features
with require relation is correct, since require is a directional relation. For example,
if the detected relation between feature D and feature E is that feature D require
feature E and the true relation between is the same, the direction is marked as
correct. But, if the true relation is that feature E require feature D, the direction
is marked as reverse.

For redundancy, we intend to identify whether the extracted CTCs are redundant
constraints compared with the extracted parental relationships shown in Figure 5.7.
For example, there is an extracted CTC between CF6 and CF15 (i.e., CF6 require
CF15) from DH dataset. However, CF15 is a mandatory sub-feature of the root
feature, which means CF15 must be selected. Hence, ”CF6 require CF15” is a
redundant constraint.

Table 5.7: The extracted cross-tree constraints.

Dataset CTCs Pair Relation Direction Redundancy

CF2 require CF14 Matched Correct Correct Yes
CF3 require CF12 Related Correct Correct No
CF4 require CF18 Related Correct Correct No

BCS CF4 require CF19 Irrelated - - -
CF5 require CF18 Related Correct Correct No
CF10 require CF20 Related Correct Reverse No
CF18 require CF19 Irrelated - - -

CF4 require CF12 Related Reverse Correct Yes
CF6 require CF5 Related Correct Correct Yes
CF6 require CF12 Related Correct Correct Yes
CF6 require CF15 Related Correct Correct Yes
CF7 require CF12 Related Correct Correct Yes
CF8 require CF9 Related Correct Reverse Yes

DH CF8 exclude CF16 Irrelated - - -
CF13 require CF9 Related Correct Reverse Yes
CF13 require CF10 Irrelated - - -
CF13 require CF11 Related Correct Reverse Yes
CF13 require CF12 Related Correct Reverse Yes
CF14 require CF12 Related Correct Reverse Yes
CF12 exclude CF16 Related Reverse Correct Yes
CF15 exclude CF16 Irrelated - - -

Table 5.7 presents the extracted CTCs results from BCS and DH. Although only
one CTC with perfectly matched features, correct relation and direction is identified
in BCS, we observe that the majority of the CTCs is with related pairs (71%).
Meanwhile, 67% and 48% of the extracted CTCs are of correct relation and direction,

5.4. Evaluation 71

respectively. Our approach does not extract CTCs with high accuracy, which means
RTE is not suitable for every pair of requirements. For example, in BCS ground
truth, “Manual Power Window” and “Control Automatic Power Window” exclude
each other. But, the requirements belonging to them are not of textual entailment
relations. The requirements below is a typical example:

Manual Power Window: Pressing the button to open the window will cause the
window to open as long as the print is running or the window has reached the
bottom.
Control Automatic Power Window: Pressing the remote control button to open
the window causes the window to open for opening.

Even if we read them directly, it is very difficult to get the textual entailment
relation between them. In this case, domain knowledge plays a vital role in the
process of extracting CTCs. Furthermore, in DH case, all the extracted CTCs are
redundant compared with the extracted parental relationship. This result indicates
that additional CTCs are unnecessary for presenting the variation points in DH
feature model, which is consistent with its ground truth. Although our approach
cannot provide CTCs with high accuracy for every case, the extracted information
can assist domain engineers to carefully further adjust the structure of feature model
on demand, forming the final feature model.

5.4.5 Comparison with SOVA and ArborCraft

In this subsection, we make a comparison between our approach and the approaches
described in [IRB14]. Itzik et al. proposed an approach named SOVA [IRB14] and
two feature models for a structural perspective profile and a functional perspec-
tive profile were generated respectively by SOVA, compared with the feature model
created using ArborCraft Tool [WCR09]. In order to make a convincing compari-
son and verify whether our approach can process requirements in different domains,
we use the same requirements of E-shop from paper [IRB14], while we apply the
same experiment setting described in Section 5.4.2. Then, we implement qualitative
analysis, since the ground truth is not provided in paper [IRB14].

Figure 5.8: The initial E-Shop feature tree.

72 5. VarMine: Reverse Engineering Variability in A Hybrid Way

T
ab

le
5.

8:
T

h
e

ex
tr

ac
te

d
fe

at
u
re

s
co

m
p
ar

ed
w

it
h

S
O

V
A

an
d

A
rb

or
C

ra
ft

.

V
ar

M
in

e
S
O

V
A

(s
tr

u
ct

u
ra

l
p

er
sp

ec
ti

ve
)

S
O

V
A

(f
u
n
ct

io
n
al

p
er

sp
ec

ti
ve

)
A

rb
or

C
ra

ft

C
on

fi
rm

P
u
rc

h
as

e
S
h
ip

m
en

tD
et

ai
ls

-A
1,

S
h
ip

p
in

gC
ar

t-
B

5
C

on
fi
rm

P
u
rc

h
as

e
A

1,
B

5

C
an

ce
l

O
rd

er
P

ay
m

en
t-

B
9,

P
ay

m
en

t-
B

10
C

an
ce

lO
rd

er
fe

at
u
re

27

P
ay

m
en

t

P
ay

m
en

t-
A

2,
A

ir
M

ai
lS

h
ip

-A
5,

L
an

d
S
h
ip

p
in

g-
A

7,
P

ay
m

en
tI

n
fo

rm
at

io
n
-B

6

P
ay

W
it

h
C

re
d
it

C
ar

d
-A

2,
B

u
y
S
m

al
lP

ro
d
u
ct

-A
5,

P
ay

W
it

h
G

if
tC

ar
d
-A

7,
P

ay
W

it
h
P

ay
P

al
-B

6

A
2,

A
5,

A
7,

B
6

O
rd

er
ed

P
ro

d
u
ct

S
h
ip

p
in

g
S
h
ip

p
in

gD
o
cu

m
en

ts
-A

3,
S
h
ip

p
in

gD
o
cu

m
en

ts
-A

4,
P

ro
d
u
ct

D
el

iv
er

y
S
ta

tu
s-

B
4

S
h
ip

O
rd

er
ed

P
ro

d
u
ct

fe
at

u
re

26

T
ra

ck
S
ta

tu
s

P
ro

d
u
ct

D
el

iv
er

y
S
ta

tu
s-

A
8,

S
h
ip

m
en

tD
et

ai
ls

-B
7

T
ra

ck
S
ta

tu
s

A
8,

B
7

P
ro

d
u
ct

R
ev

ie
w

P
ro

d
u
ct

R
ev

ie
w

R
ev

ie
w

P
ro

d
u
ct

,
R

et
u
rn

D
am

ag
ed

P
ro

d
u
ct

-
B

8
A

11
,

B
8,

B
11

E
n
te

r
N

ew
P

ro
d
u
ct

C
at

al
og

E
n
te

rN
ew

P
ro

d
u
ct

fe
at

u
re

22

U
p

d
at

e
In

ve
n
to

ry
In

ve
n
to

ry
-A

9,
In

ve
n
to

ry
-B

3
R

et
u
rn

P
ro

d
u
ct

-A
9,

P
u
rc

h
as

eP
ro

d
u
ct

-B
3

fe
at

u
re

24

A
va

il
ab

le
P

ro
d
u
ct

In
ve

n
to

ry
-A

6,
S
h
ip

p
in

gC
ar

t-
B

2
B

u
y
P

ro
d
u
ct

-
A

6,
P

u
rc

h
as

eP
ro

d
u
ct

-B
2

A
6,

B
2

5.4. Evaluation 73

Features.

Figure 5.8 presents the extracted feature model by our approach, which contains 12
features (3 abstract features and 9 concrete feature). Compared with feaure models
generated by SOVA and ArborCraft, we found that every single requirement was
regarded as a concrete feature in terms of the features from SOVA and ArborCraft.
In contrast, our approach groups requirements with similar functionality into a same
feature.

In order to make a detailed comparison, we made a mapping of features (cf. Ta-
ble 5.8) produced by our approach and the other two approaches based on our con-
crete features, since concrete features which are directly extracted from requirements
represents real functionality and applicability. Compared with the features from
SOVA (structural perspective), two pairs of features matches perfectly with each
other (Product Review and Update Inventory). In terms of features from SOVA
(structural perspective), five pairs of features fit perfectly with each other. And
we also have four pairs of features match accurately with each other based on the
features of ArborCraft. Except for these perfectly matching features, other features
also are capable of presenting the specific functionalities of E-shop. In detail, Pay-
ment feature consists of all the payment method by using credit card, gift card or
PayPal. Update Inventory feature presents customers’ behaviors leading to updat-
ing inventory. Available Product feature shows system’s operation which is caused
by customers’ buying behavior, when available products are displayed.

We argue that the feature tree generated by our approach is more applicable than
the feature tree by ArborCraft, since the hierarchical structure is more explicit. The
key difference between our approach and the compared approaches is that we avoid
any manual intervention in the process of extracting initial feature trees.

Variability information.

One analyst refined the extracted features and structure, shown in Figure 5.9. Then,
based on the four criteria we proposed, we found eight mandatory features and three
optional features, while three features are or-grouped. Moreover, one extracted CTC
(CF3 require CF12) is further identified to have related pair of features, which can
be finally revised to ”CF12 require CF3”. This potential CTC indicates If a customer
returns a damaged product, the system sends a negative review on the product to
the supplier.

Figure 5.9: The refined E-Shop features and the extracted parental relationships.

74 5. VarMine: Reverse Engineering Variability in A Hybrid Way

5.4.6 Answering RQs

For RQ2.1, firstly, in terms of quantitative analysis of the BCS case study, our ap-
proach (VarMine) provides relatively high precision and recall of extracted features,
especially taking situation (ii) into account. Although the precision and recall of fea-
ture extraction in the DH dataset are a little bit lower than the values in the BCS
case study, we can observe that VarMine is capable of extracting applicable features
from legacy requirements documents. For variability information, we achieved rela-
tively high precision and recall of the extracted parental relationships in both BCS
and DH dataset. Although the extracted CTCs do not match the ground truth
perfectly, we can observe that these potential constraints are able to be used to
further detect the true CTCs between features from the natural language inference
perspective.

For RQ2.2, VarMine has been used for, both BCS and DH case study and the com-
parison with SOVA and ArborCraft. In this process, we can see that: 1) the original
textual requirements can be directly processed by using VarMine, which means there
is no need to manually parse the requirements with a specific rule; 2) we utilize the
same preset parameters and experimental settings for processing all the data in three
domains and the key parameter for clustering (i.e., inconsistency threshold) can be
determined automatically in terms of different datasets, which means VarMine is
capable of reducing the workload for selecting suitable parameters. Hence, in the
process of achieving the initial feature tree, we successfully avoid manual interven-
tion not only in BCS and DH case study, but also in the comparison with two related
research. The manual analysis is mainly focused on refining the initial feature tree,
since extracting variability information among false positive features makes no sense.
Thus, 3) for feature extraction, VarMine is capable of providing potential features
for domain engineers, which means they do not need to analyze the requirement
from scratch. Meanwhile 4) the extracted F-R Mapping provides the opportunities
and hints for domain engineers to refine the feature tree in terms of some specific
needs. After feature extraction, 5) VarMine can also assist domain engineers to de-
tect the optionality, group, and cross-tree constraints among features. Consequently,
although manual analysis is essential especially to determine the final feature model,
domain engineers do not necessarily spend plenty of time figuring out the features
and variation points from scratch, assisted by VarMine.

For RQ2.3, comparing the results of three different SPLs, we evaluate whether our
approach works properly for different domains. We first conduct the BCS and DH
case study with both quantitative and qualitative analyses which reveal the relatively
accurate result of our approach. Second, although there is no ground truth in
SPL of E-shop, the feature model generated by our approach is of applicability
to assist domain engineers based on the comparison of results between the other
two tools. Taking both qualitative and quantitative analysis of the results in three
SPLs into account, VarMine is of relative universality for different SPLs. Although
we obtain both relatively reasonable results in three different SPLs, there are still
many challenges needed to be overcome to make the generated feature model more
applicable.

5.5. Threats to Validity 75

5.5 Threats to Validity

Construct Validity: We apply semantic similarity of requirements to extract
feature by clustering algorithm, regarding requirements with similar functionality as
a feature. Although this method may lead to bias of identifying features, we still
achieve relatively accurate features compared with ground truth and feature models
produced by other tools.

Internal Validity: Firstly, there are many preset parameters in VarMine affecting
the result of feature and variability information extraction. For example, the weight
values for topic words used in requirements level similarity are predefined values.
If the topic words and the corresponding weighting values are not appropriate, it
will bring bad impact on the result. Hence, we evaluate our approach in three
domains, BCS, DH and E-shop. Based on evaluations, most results are relatively
precise. Secondly, We define four criteria to extract variability information, which
lacks more domain knowledge support and may not be satisfied with all situations.

External Validity: Many texts in requirements may not be related to features at
all, for example non-functional requirements, organizational constraints, the objec-
tive of the software, etc, while some texts are even not related to the software at all
(e.g., stakeholders, problem statements, potential customers). Hence, in these cases,
some manual semantic analyses may still be needed to gain the final features. Our
approach is capable of extracting features from short text requirements. However,
if a requirement describing a functionality is of too many sentences, our approach
maybe can not provide an accurate result.

Conclusion Validity: In order to verify the applicability of our approach for
different domains, we apply our approach in three SPLs. However, the results from
just three domains may be not enough to support the conclusion.

5.6 Related Work

With advances in NLP, information retrieval, and data mining techniques, the devel-
opment of feature and variability extraction from textual requirements is flourishing.
The research of Chen et al. belongs to one of the first explorations of pursuing auto-
mated techniques for feature identification and variability modeling. They applied
clustering to identify and organize features in an undirected graph presenting the
requirements relation [CZZM05]. Although variability identification highly depends
on manual analysis of basic relationships of requirements, the clustering part is one
of the foundations for feature identification from requirements also inspiring our
research.

Reinhartz-Berger et al. proposed an approach to extract features and variability
information based on combining semantic similarity of requirements with the sim-
ilarity of behavioral aspects of requirement statements [RBIW14]. They applied
Semantic Role Labeling (SRL) technique that highly relies on syntactic information
to extract different roles which are of special importance to functional requirements
and then classify these roles into the initial state, external events, and final state of
software behavior. However, both SRL technique and software behaviors highly rely
on accurate syntactic information, which leads to substantial manual interventions

76 5. VarMine: Reverse Engineering Variability in A Hybrid Way

to parse the requirements in order to achieve the accurate behavioral vectors of each
requirement.

Itzik et al. proposed an ontological approach that calculates the semantic similarity,
extracts features and variability, and generates feature models that represent struc-
tural (objects-related) or functional (actions-related) perspectives [IRB14]. They
also used SRL to transform each sentence into six roles and computed similarity of
each pair of semantic roles by applying WordNet [IRB14], focusing on objects (or
components) and actions (or functions), respectively. Afterwards, HAC is applied
to these roles with different weights to cluster features. However, they manually
define a fixed distance threshold to extract features in HAC, which lacks applica-
bility for different domains. In contrast, we utilize internal validity indices to select
the inconsistent values automatically for different datasets. Besides the limitation
of SRL and HAC they used, WordNet as an external knowledge database is not
capable of containing all word meanings of high quality. Moreover, it suffers from
out of vocabulary words, especially for domain-specific words, which results in a bad
effect on feature and variability extraction. In contrast, we applied the neural word
embedding techniques to achieve a word vector space of the words appearing in the
requirements, which is able to tackle the problem regarding out of vocabulary words.

Based on the papers above [RBIW14, IRB14], Itzik et al. proposed an approach
named semantic and ontological variability analysis (SOVA) to analyze the vari-
ability of functional requirements [IRBW16]. This approach uses ontological and
semantic considerations to automatically analyze differences between initial states,
external events, and final states of behaviors, and thus, identify features, consider-
ing different perspectives that reflect stakeholders’ needs and preferences [IRBW16].
Hence, SRL technique is also used to extract semantic roles, which causes manual
analysis. They apply two different ways, LSA and MCS technique by Mihalcea, Cor-
ley, and Strapparava, to compute similarity. Compared word2vec model we used,
LSA is a traditional DSMs with lower accuracy. And, MCS is a weighted calculation
of words regardless of structure information of requirements, for example, the length
of the requirements.

Wang proposed a method to gain semantic information of requirements by apply-
ing machine learning and SRL techniques. In this process, the semantic frames for
frequent verbs appearing in requirements were built by applying SRL with the as-
sistance of Stanford Parser and WordNet [Wan15, Wan16]. Subsequently, in terms
of the frames, some sentences from requirements specifications were labeled manu-
ally, while the labeled sentences were fed into the decision tree or maximum entropy
algorithm for training. However, Wang’s research only extracted semantic informa-
tion of requirements and did not extract features in the context of SPL. Moreover,
besides the cost of manual annotation, the training set just comes from one domain
(i.e., E-commerce), which affects the generalization ability for different domains.

Other approaches focus on traditional DSMs techniques. Alves et al. conducted
an exploratory study on leveraging information retrieval techniques for feature and
variability extraction [ASB+08]. They presented a framework by employing LSA
and VSM techniques to measure the similarity between sentences and also applied
HAC to cluster features based on this similarity. Weston et al. proposed a tool suite
for processing requirements into candidate feature models, which can be refined by

5.7. Summary 77

domain engineers [WCR09]. They applied LSA to measure similarity and HAC to
cluster similar texts into the same feature groups to create a feature tree. Moreover,
they built a variability lexicon and grammatical patterns to detect latent variability
information. Tsuchiya et al. proposed an approach to recommend traceability links
between sentences in requirements and design-level UML class diagrams as structure
models [KTWF12]. They used VSM to determine the similarity between sentences in
requirements. However, their research direction is not to discover features based on
the similarity. In contrast to the research above, we utilize word embedding instead
of using traditional DSMs to gain word vector representation of the requirements,
which contains more semantic information.

There are also related works focusing on extracting features by analyzing the domain-
specific terms [FSD13, NBA+17]. However, in Ferrari et al.’s research, they only
detected mandatory and optional features, while Sana et al. aimed at extracting
features from informal product description to synthesize a product comparison ma-
trix rather than detecting the variation points. Moreover, Fantechi et al. explored
the feasibility of extracting variability from the ambiguity defects mainly based on
the occurrence of the word with different meanings in requirements [FGS17].

5.7 Summary

In this chapter, we proposed an approach to identify features and extract variability
information from software requirements specifications. In order to improve the accu-
racy of feature extraction, semantic information of both the words and requirements
is analyzed and used for computing the similarity in order to improve the accuracy
of feature extraction. Moreover, we take topic words regarding the requirements
of a domain into account, while topic words can be seen as the smallest unit of
domain knowledge. We use this knowledge to assign weight values to our similarity
measures, and thus, improve the accuracy. We then apply hierarchical clustering
to extracted initial features which will be refined by manual analysis to remove the
false positives. Finally, we make use of predefined criteria to identify the optionality
and group constraints and utilize the RTE based method to infer the CTCs. To
evaluate the accuracy of our approach, we conduct a case study from a real-world
scenario and evaluate the results qualitatively and quantitatively. Meanwhile, we
make a comparison with the other two related approaches in a different domain. Our
results reveal that we gain relatively accurate features. Although our approach is
not capable of detecting all the variability information, the majority of the extracted
relationships between features are reasonable.

78 5. VarMine: Reverse Engineering Variability in A Hybrid Way

6. The Inference of the Notions of
Features

This chapter is based on and shares material with the EASE’20 paper
“Feature Terms Prediction: A Feasible Way to Indicate the Notion of
Features in Software Product Line” [LSX20].

Software Requirements Specifications (SRS), as the initial software development
artifacts, are a suitable source for exploring domain knowledge (here: features)
as they capture what the system should do and also provide traceability links to
other artifacts. According to Chapter 3, a series of research on feature extraction
from requirements has been introduced, and we also proposed approaches to extract
features from requirements, resulting in mappings between features and requirements
in Chapter 5.

However, there still exists a “last mile” problem to be solved in order to achieve a
more comprehensive view on the extracted features, that is, the intuition behind the
feature by means of functionality or some other kind of semantics. While this could
be solved by analyzing the corresponding requirements manually, this is a time-
consuming task that does not scale for dozens or even hundreds of requirements per
feature. In order to tackle this problem, we propose to use terms that occur in the
requirements and are highly related to the intention of the feature. We argue that
such feature terms can support domain engineers to understand what a feature is
about as well as serve as suggestions for feature names.

Different approaches have been proposed for identifying feature terms from textual
documents. For example, in some research [SKPC18, BKSJ16, BKSH17], various
heuristics are predefined in terms of the linguistic information, such as, lexical and
syntactic information of the requirements, to find all the candidate terms from re-
quirements matching some specific rules. After obtaining the candidate terms, sev-
eral techniques can be used to further analyze these terms. For instance, word
weighting methods can be applied to measure the importance of each term by as-
signing a weight value to terms [SKPC18]. In terms of the weights, feature terms can
be filtered by certain thresholds or fed in a clustering algorithm to obtain groups

80 6. The Inference of the Notions of Features

of similar terms [BKSJ16, BKSH17]. Although the methods based on predefined
rules are useful for certain cases, not all the terms extracted by using these rules
can correctly indicate the intention of features even with the assistance of certain
word weighting methods. Among others, the amount of requirements that are used
for feature term extraction or the domain may lead to terms that are incorrectly
identified. A different approach that has been proposed is to label the true feature
terms in the raw requirements and then use this information to train a model to
predict feature terms [BEG12]. Even though this avoids defining dedicated rules for
different scenarios, it may suffer from insufficient data in the training process, and
thus, result in a rather poor prediction model. The reason is that simply labeling
the terms is not enough to provide characteristic information of terms that can be
learned in the training process.

Hence, for extracting feature terms, there exist two main limitations in current
research:

1. The limited heuristics and rules based on linguistic information lack the ability
of generalization for different scenarios.

2. With supervised Machine Learning (ML), the labeled data is of low quality,
thus leading to a rather inaccurate (learned) model.

In order to overcome these limitations, we propose a supervised machine learning
based approach to identify feature terms from requirements, integrated with basic
rules used to extract candidate terms. In particular, we analyze different attributes
of each term, where an attribute actually represents a certain characteristic of a
term, such as the linguistic characteristic, statistical characteristic and other po-
tential characteristics that may affect whether a candidate term is a feature term
(cf. Attributes extraction in Section 6.1.1). As a result, we can train the prediction
model on these attributes rather than on the terms directly, which allows to abstract
away specialties that are, for instance, domain-dependent.

In this chapter, we make the following contributions to answer RQ3:

• We identify six representative attributes of terms to create the labeled data
with relatively high quality for supervised machine learning.

• We propose an approach that combines rule-based and learning-based feature
terms extraction in order to increase accuracy.

• We utilize seven different machine learning algorithms within our approach
to obtain the best prediction model for each algorithm trained on the labeled
data, and thus, to assess the influence of the ML algorithm on the accuracy.

• We present an empirical study to evaluate our approach including the com-
parison of the performance of different prediction models across datasets from
different domains.

6.1. Methodology 81

Terms ExtractionRequirements

Attibutes Scaling

Attributes
Extraction

Candidate
Terms

Labeling

Labeled Terms

Terms with
Attributes

KFold
CrossValidation

Grid SearchML Algorithms

Prediction
Models

1. Dataset Generation

2. Dataset Preprocessing

3. Training Process

: Method; : Artifact/Data.

Figure 6.1: The Overall workflow of our proposed approach.

6.1 Methodology

In this section, we explain our proposed approach for identifying feature terms.
In Figure 6.1, we show an overview of the methodology. Initially, we need to create
a labeled dataset for training the prediction model. To this end, we must extract the
candidate terms from requirements, analyze the attributes of each candidate term
and assign labels to these terms. Subsequently, the raw data need to be preprocessed.
Finally, the preprocessed data are fed into seven different machine learning algo-
rithms to train prediction models. In particular, we use Logistic Regression (LR),
Support Vector Machine (SVM), Decision Tree (DT), K Nearest Neighbors (KNN),
Random Forest (RF), Gaussian Naive Bayes (GNB) and Multi-Layer Perceptron
(MLP). Based on the obtained prediction models, we then can predict feature terms
and evaluate their accuracy.

6.1.1 Dataset Generation

The labeled dataset is indispensable for supervised learning methods. Here, we
introduce how the labeled dataset for training is created in detail.

Running example

In order to specify how the labeled dataset is created, we use two features and the
corresponding requirements from the Body Comfort System (BCS) as a running ex-
ample, shown in Table 6.1. BCS is a case study from a real-world scenario [LLLS13].
It encompasses 98 concrete functional requirements and also contains a complete

82 6. The Inference of the Notions of Features

Table 6.1: An example of requirements.

F-ID R-ID Requirements

1

1
When the alarm system is activated, this is indicated by the
light of the LED.

2 If the alarm is deactivated, the LED does not light up.

3
When an alarm is triggered, this is signaled by the light of the
LED.

4 If no alarm is triggered, the LED does not light up.

5
When the interior monitoring is activated, this is signaled by
the light of the LED.

6
If the interior monitoring is not activated, the LED does not
light up.

7
The LED, which signals the triggered alarm, can only be reset
by pressing the reset button, which is next to the LED. The
key has only one effect when the ignition key is in the ignition.

2

8
Two temperatures are defined: a minimum temperature and
a maximum temperature.

9
If the temperature measurement on the exterior mirror falls
below the minimum temperature, the exterior mirror heating
is activated.

10
Switching off the vehicle leads to the switch-off of the exterior
mirror heater.

11
When the exterior mirror heating is activated and the maxi-
mum temperature is exceeded, the exterior mirror heating is
deactivated.

12
If the LED is present and the exterior mirror heating is acti-
vated, the LED is lit.

13
If the LED is present and the exterior mirror heater is not
activated, the LED does not light up.

F-ID: Feature ID; R-ID: Requirement ID.

feature model generated by domain engineers. Hence, we can obtain the mappings
between features and requirements, and thus, we know which feature an individual
requirement belongs to.

Terms extraction

We define three rules to extract all the candidate terms in the requirements belong-
ing to a particular feature based on Part-of-Speech (POS) patterns that take the
linguistic information into account:

1. We just focus on nouns and phrases that end with nouns which are identified
by POS patterns. The rationale behind this idea is that nouns and phrases that
end with nouns are usually used to indicate functionalities in the requirements.

2. We remove single-word terms that have already occurred in a phrase (i.e.,
multi-word terms) from terms extracted by the predefined POS patterns, since

6.1. Methodology 83

we argue that such phrases convey more explicit information than single-word
terms.

3. Similarly, we also remove the multi-word terms that have never been used
independently, i.e., that always occur as part of larger multi-word terms, in
order to filter out the redundant terms, which can improve the quality of the
extracted terms.

Table 6.2: An example of how to use the three rules.

POS Pattern Exemplary Terms Candidate Terms

[PROPN] LED Yes
[Noun] system No
[Noun+Noun] alarm system Yes
[Noun+Noun] mirror heating No
[ADJ+Noun] exterior mirror Yes
[ADJ+Noun+Noun] exterior mirror heating Yes

PROPN: Proper noun. ADJ: Adjective.

Table 6.2 shows partial POS patterns together with the corresponding exemplary
terms extracted from the requirements in Table 6.1 based on rule (1). Note that
proper noun is a noun starting with a capitalized letter, no matter where it appears
in a sentence. Moreover, the table contains information of whether an exemplary
term is a candidate term or not, based on rule (2) and (3). For instance, the single-
term “system” has already occurred in the multi-word term – “alarm system” in
feature 1, and thus, “system” is not a candidate term based on rule (2). Moreover,
based on rule (3), “mirror heating” cannot be regarded as a candidate term, since
it is always used in the phrase – “exterior mirror heating”. Meanwhile, “exterior
mirror” is applied independently in requirement 9 of feature 2. So, “exterior mirror”
can be regarded as a candidate term.

In summary, we use the three predefined rules to obtain meaningful candidate terms
and filter out redundant terms, such as “system” and “mirror heating”.

Attributes extraction

After obtaining all the candidate terms, we identify six different attributes of terms
belonging to a particular feature: Proper Noun (PN), Sub-Term (ST), Term Fre-
quency – Inverse Document Frequency (TF-IDF), TextRank (TR), C-Value (CV)
and Ratio of Terms (RT). We explain the rationale of each term in the following.

PN: Proper Noun is a kind of special noun and it is usually utilized to describe a
specific thing in natural language. We regard proper noun as one of the attributes,
since proper nouns widely occur in different requirements and they might represent
specific functionalities. If the term contains a proper noun, we regard its attribute
of PN as true (i.e., PN = 1). Otherwise, it is false (i.e., PN = 0).

ST: Sub-Term is the term that is part of another, longer term. This kind of sub-term
information provides meaningful hints about how terms are used in the requirements

84 6. The Inference of the Notions of Features

for describing a feature. For instance, either the terms might occur independently to
specify a concrete functionality, or they appear together with other words to describe
the details of a functionality. In order to take this information into consideration
for feature term extraction, we use the attribute of ST to record this information
for each term in a feature. If a candidate term from a particular feature is used as a
sub-term of another candidate term of this feature, its attribute of ST is true (i.e.,
ST = 1). Otherwise, it is false (i.e., ST = 0).

TF-IDF, TR and CV: TF-IDF, TextRank and C-Value are different techniques
that can be used to measure the statistical significance of the words appearing in
documents. However, each technique computes the importance value of words (i.e.,
the weight of each word in documents) from different perspectives.

TF-IDF not only focuses on the frequency of each word appearing in one document,
but also analyzes the information that how many times the words appear in all
other documents simultaneously. TextRank builds a graph to rank the importance
of words, where nodes represent words and edges represents the co-occurrence of the
linked words [MT04]. Finally, C-Value is designed to measure the significance of
multi-word terms (i.e., phrases), taking the frequency of both, a phrase and its sub-
phrase, into account [FAT98]. In order to take all these three different methods for
measuring the significance into account, we apply all the attributes of TF-IDF, TR
and CV to specify the importance of each candidate term, respectively. The obtained
values of these three attributes for each term are actually the corresponding weights
measured by using TD-IDF, TextRank and C-Value.

Since TF-IDF and TextRank are initially used for measuring the significance of
single-word term only, we have to adapt them for multi-word terms. To this end, we
calculate the mean value of the importance values of all words appearing in a term
for both, TF-IDF and TextRank, as follows.

TFIDF (t) =

∑n
i=1 TFIDF (wi)

n
(6.1)

TR(t) =

∑n
i=1 TR(wi)

n
(6.2)

where,

- TFIDF (t) is the mean TF-IDF value of the multi-word term t, while TR(t)
denotes the mean TextRank value of the multi-word term t;

- n denotes the number of words in term t;

- TFIDF (wi) is the TF-IDF value of the word wi in the requirements belong-
ing to a particular feature; Note that TFIDF (wi) not only counts the term
frequency of wi appearing in all requirements of a particular feature, but also
takes the occurrence of wi in the requirements of other features into account;

- TR(wi) is the TextRank value of the word wi in the requirements belonging
to a particular feature.

6.1. Methodology 85

Finally, CV is just applied to measure the weights of multi-word terms. Conse-
quently, the CV value for a single-word term is 0.

RT: We use Ratio of Terms to indicate how many requirements belonging to a
particular feature contain a certain candidate term, and we intend to know whether
a candidate term occurs in the majority of the requirements in a feature or not. To
this end, we use the equation below to calculate the RT value for each term:

RT (t) =
m

n
(6.3)

where,

- m denotes the number of the requirements containing a specific term t of a
particular feature;

- n denotes the number of all the requirements of this particular feature.

Labeling

After obtaining the attribute information for each term in a feature, we obtain the
complete dataset by assigning label to each candidate term. Labels are used to
denote whether a candidate term is a feature term or not. In order to provide
accurate label information, we do the following steps:

a) We firstly take the feature name into account. If a candidate term is sim-
ilar/related to the feature name, this candidate term can be regarded as a
feature term labeled as 1.

b) Moreover, we further analyze the requirements belonging to the features. If we
find that a candidate term can also provide pivotal information of the intention
of a particular feature, we regard this candidate term as a feature term labeled
as 1.

c) The rest of the candidate terms that do not satisfy a) and b) are not feature
terms labeled as 0.

Table 6.3 shows the labeled candidate terms mined from Table 6.1. In the BCS
feature model, the feature name of feature 1 is LED Alarm System, while the name
of feature 2 is Exterior Mirror Heating.

6.1.2 Dataset Preprocessing

The original data need to be further processed before training in order to improve
the performance of the trained model. In what follows, we will introduce why the
data must be preprocessed and how to do the preprocessing.

86 6. The Inference of the Notions of Features

Table 6.3: An example of the labeled data.

F-ID Terms PN TF-IDF TR CV ST RT Label

1

interior
monitoring

0 0.2107 0.0353 2.0000 0 0.2857 1

triggered alarm 0 0.3372 0.0653 1.0000 0 0.1429 1
alarm system 0 0.2518 0.0567 1.0000 0 0.1429 1
ignition key 0 0.2150 0.0528 1.0000 0 0.1429 0
reset button 0 0.1492 0.0544 1.0000 0 0.1429 0

LED 1 0.4396 0.1104 0.0000 0 1.0000 1
light 0 0.3487 0.0519 0.0000 0 0.4286 0
effect 0 0.0745 0.0419 0.0000 0 0.1429 0

2

exterior mirror
heating

0 0.3985 0.0768 6.3399 0 0.5000 1

exterior mirror 0 0.4438 0.0864 4.0000 1 0.8333 1
exterior mirror

heater
0 0.3544 0.0704 3.1699 0 0.3333 1

minimum
temperature

0 0.3510 0.0872 2.0000 0 0.3333 0

maximum
temperature

0 0.3402 0.0794 2.0000 0 0.3333 0

temperature
measurement

0 0.3071 0.0782 1.0000 0 0.1667 0

LED 1 0.1606 0.0581 0.0000 0 0.3333 1
switch 0 0.1539 0.0550 0.0000 0 0.1667 0
vehicle 0 0.0634 0.0407 0.0000 0 0.1667 0

F-ID: Feature ID.

Attribute scaling

From Table 6.3, we can observe that the values of different attributes vary consider-
ably in range and magnitudes. For some machine learning algorithms (e.g., KNN)
using Euclidean distance to compute the distance of two points, the attributes with
high magnitudes will have higher weights in the distance calculations than attributes
with low magnitudes. This makes these machine learning algorithms pay more at-
tention to the attributes with high magnitudes (e.g., CV), neglecting the attributes
with low magnitudes (e.g., TR). In order to reduce this bias, we have to normalize
these values to the same level of magnitudes.

To this end, we utilize Min-Max Scaling to normalize the range and magnitudes of
three attributes (e.g., TF-IDF, TR and CV). By using Equation 6.4 below, each
original value is converted into the corresponding normalized value between 0 and
1.

v′ =
v −min(v)

max(v)−min(v)
(6.4)

where,

6.1. Methodology 87

- v′ denotes the normalized value;

- v denotes the original value of a specific attribute in a particular feature;

- min(v) and max(v) denotes the minimum and maximum values of a specific
attribute in a particular feature, respectively.

We use the candidate term – “interior monitoring” in Table 6.3 as an example to
specify how v′ can be computed, such as, we calculate the v′ of its TF-IDF. The
original TF-IDF value of “interior monitoring” is 0.2107. The minimum TF-IDF
value in feature 1 is 0.0745, while the maximum TF-IDF value in feature 1 is 0.4396.
Hence, the normalized value of TF-IDF for “interior monitoring” is 0.3730 (keep four
decimal places).

Afterwards, the normalized data are fed into different machine learning algorithms
for training.

6.1.3 Training Process

We utilize seven common and established ML algorithms to train the prediction
models. This allows us to eventually compare the results among all of these al-
gorithms, and thus, to identify the most suitable one(s). In order to achieve a
convincing comparison, we use K-Fold Cross-Validation for performance evaluation
and apply Grid Search for parameter selection for each machine learning algorithm.

K-Fold Cross-Validation

Usually, the subject dataset is separated into the training set and test set in the
traditional machine learning process, where the former is applied to train the model
and the latter is used to evaluate the performance of the trained model. However,
the performance of the trained model is highly affected by how the dataset is split.
As a result, the performance of the model may exhibit considerable differences if
training and test datasets differ. This situation becomes even worse in case of a
relatively small dataset. Moreover, splitting a dataset into just two subsets (for
training and test, respectively) is also prone to lead to overfitting problem. In order
to overcome these problems, we use K-Fold Cross-Validation that divides a dataset
into k folds (i.e, k sets). Afterwards, the training and testing process is repeated k
times, while at each time k − 1 sets are used for training and the remaining set is
applied for testing [RTL09]. Additionally, each set must be used at least once for
training and once for testing. Finally, the performance of the trained model is the
mean value of all k results.

Grid Search

For each machine learning algorithm, there are different hyperparameters that have
to be specified. This step is crucial as these hyperparameters have a huge impact
on the performance of the algorithm for a given problem. For example, assume
that an algorithm A with a specific parameter setting outperforms algorithm B.
However, when changing one parameter of the algorithm A, it might produce worse
results than B. As a consequence, it may hinder to compare the performance of

88 6. The Inference of the Notions of Features

different algorithms, if the optimal parameter selection for each algorithm is un-
known. To overcome this problem, Grid Search has been proposed to tune the
hyperparameters in order to select the optimal values for a machine learning algo-
rithm [PVG+11, BBBK11]. In a nutshell, Grid Search is an exhaustive search based
on a grid of parameters (i.e., a manually predefined subset of the hyperparame-
ters). The performance of each combination of the hyperparameters is evaluated via
K-Fold Cross-Validation using a certain performance metric (cf. Evaluation metric
in Section 6.2.2). As a result of applying Grid Search, the combination of hyper-
parameters providing the highest performance value is considered being the best
parameters, and thus, can be used for the respective ML algorithm. This way, we
can ensure that we compare different algorithms with their best setup, and thus,
that they produce the best prediction model (as far as the data allows).

Consequently, in our training process, we apply both K-Fold Cross-Validation and
Grid Search to select hyperparameters, and thus, achieve the best prediction model
for each machine learning algorithm.

6.2 Evaluation

In this section, we present the evaluation of our approach, using the seven ML
algorithms introduced in the previous section. First, we propose three research
questions regarding what we want to answer with this evaluation. Afterwards, we
present the design of our experiment with details of datasets, parameters setting,
and evaluation metrics. Finally, we present our results and discuss the performance
and robustness of the prediction models.

6.2.1 Research Questions

The research demonstrated in this chapter is used to explore the answers of RQ3
mentioned in Chapter 1. To evaluate our proposed approach of combining rule-
based with learning-based feature term extraction, we are interested in the following
sub-research questions :

RQ3.1: To what extent are the six attributes we propose for learning prediction
models applicable to the task of feature term extraction?

For RQ3.1, we intend to figure out whether the six attributes we identified make
sense for training a prediction model. We apply seven widely used machine learning
algorithms to train models on the six attributes in order to reduce the bias caused
by only using one or two machine learning algorithms.

RQ3.2: How accurate can our trained model predict (true) feature terms in another
domain (i.e., on another dataset)?

For RQ3.2, we intend to apply the prediction models trained from one labeled dataset
in a particular domain to predict the feature terms in another domain. Particularly,
we aim at evaluating the accuracy of extracted feature terms via precision and recall.

RQ3.3: What can we learn from the comparison among seven different machine
learning algorithms?

6.2. Evaluation 89

For RQ3.3, we intend to gain insights into the comparison of seven different machine
learning algorithms based on the performance for both training and test process,
which can indicate the direction for future research.

6.2.2 Experiment Design

In order to answer the proposed research questions, we design a dedicated experiment
as follows.

Dataset

The dataset we used to train the prediction models was created from the software
requirement specifications of BCS (cf. Section 6.1.1).

Moreover, we utilized two other existing datasets, E-shop1 and Digital Home [HT07],
to test whether the prediction models trained on the BCS dataset can identify feature
terms in different domains. Although E-Shop and Digital Home were developed
by using a traditional software development approach, it is able to use automated
feature extraction techniques to extract features from their requirements. However,
the automatically extracted features are not completely accurate. To avoid the
impact of inaccurate features from automated extraction on this experiment, we
manually analyzed the 62 functional requirements of E-shop and the 38 functional
requirements of Digital Home to identify features and created the mappings between
features and requirements, respectively.

Experiment Process

We conducted this experiment by using our proposed approach as introduced in
Section 6.1 on the BCS, Digital Home and E-shop datasets. Next, we briefly describe
each step and several parameter settings.

1. In order to achieve the prediction models, we used the predefined rules based
on POS patterns to extract 132 candidate terms from BCS requirements. Sub-
sequently, we computed the six attributes of each term automatically. Next,
based on the BCS feature model, we created a labeled dataset of the 132 can-
didate terms, with true feature terms labeled as 1 and all other terms labeled
as 0. The implementation of the POS patterns was based on spaCy [HM18],
which is an open-source library for advanced natural language processing.

2. As next step, we preprocessed the three attributes, TF-IDF, TR, and CV to
scale the original values into a range between 0 and 1. As a result, we obtained
the preprocessed labeled dataset.

3. Subsequently, we fed the preprocessed labeled data into seven different ma-
chine learning algorithms to train the prediction models. In this setup, our
implementation was based on scikit-learn [PVG+11] that is an open-source
toolkit for machine learning. For K-Fold Cross-Validation, we preset k as 3

1https://www.utdallas.edu/˜chung/RE/Presentations07S/Team 1 Doc/Documents/SRS4.0.
doc

https://www.utdallas.edu/~chung/RE/Presentations07S/Team_1_Doc/Documents/SRS4.0.doc
https://www.utdallas.edu/~chung/RE/Presentations07S/Team_1_Doc/Documents/SRS4.0.doc

90 6. The Inference of the Notions of Features

and 10, since we intend to test whether different k values (i.e., 3-fold and 10-
fold) affect the results or not. Moreover, it can also reduce the bias, compared
to results with one k value only. In the process of Grid Search, we adjusted
several key hyperparameters for each algorithm to achieve an optimal combi-
nation of them. In detail, 1) for LR, we selected three parameters, “penalty”,
“C” and “solver”; 2) for SVM, we adjusted “C”, “kernel”, “gamma”; 3) for DT,
“criterion” and “splitter” were selected; 4) for KNN, “n neighbors”, “weights”
and “algorithm” were adjusted; 5) For RF, we selected “n estimators”, “cri-
terion” and “bootstrap” to be adjusted; 6) for GBN, we did not specify any
hyperparameters, such as “priors” that was adjusted automatically according
to the training data (cf. Table 6.4 for details); 7) for MLP, “activation” and
“hidden layer sizes” were adjusted. For the rest of the parameters of each
algorithm, we used the default values in scikit-learn. Moreover, in order to
determine the best hyperparameter of each algorithm, we used F1 score (cf.
Evaluation metric) to evaluate the performance of the trained model. As a
result, we considered the hyperparameters of the trained model with the high-
est F1 score as best parameters, and thus, selected them for our evaluation.
After the training process, we obtained the seven best prediction models, one
for each ML algorithm.

4. Finally, we used the prediction models to identify feature terms in the E-shop
and Digital Home dataset. In order to extract the candidate terms, we used
the same rules as for BCS. Eventually, we obtained 89 and 138 candidate
terms with the six attributes for each term from E-shop and Digital Home
dataset, respectively. Moreover, we also assigned labels for each term in order
to evaluate the prediction results.

Evaluation Metric

In order to allow for the quantitative analysis of the results, we use F1 score to
determine the best prediction model for each algorithm. Moreover, we compute
precision, recall and F1 score to evaluate the results of using our prediction models
to predict feature terms from another domain and also to analyze the robustness in
terms of F1 score.

F1 score. The F1 score is computed based on precision and recall as follows.

F1 = 2× Precision×Recall
Precision+Recall

(6.5)

Precision =
The number of correctly predicted feature terms

The number of all predicted feature terms
(6.6)

Recall =
The number of correctly predicted feature terms

The number of all true feature terms
(6.7)

where,

6.2. Evaluation 91

- Predicted feature terms denote the terms with a predicted label as 1 by using
the trained model;

- Correctly predicted feature terms means the predicted label is right.

- All true feature terms denotes all the terms labeled as 1 in the test set.

Robustness. If a prediction model is robust, this model exhibits the property that
the performance on the test dataset is close to the performance on the training
dataset [XM12]. Since we mainly use F1 score to evaluate the performance, we
simply apply the following equation to compute the robustness:

R = F1train − F1test (6.8)

where,

- The closer R is to zero, the more robust the prediction model is;

- F1train denotes the best F1 score for training prediction models on the BCS
dataset (cf. Table 6.4).

- F1test denotes the average F1 score for predicting the true feature terms from
E-shop and Digital Home dataset, using the prediction models (cf. Table 6.5);

6.2.3 Results

Next, we present the results of our evaluation, based on our research questions.
While for the sake of brevity, we just provide the main insights, all data is available
in our supplementary material2.

RQ3.1 - Appropriateness of attributes prediction model

We use the BCS dataset to create the prediction models for each machine learning
algorithm. By using Grid Search, we obtain the best prediction models via 3-fold
and 10 fold Cross-Validation for each algorithm with a certain parameter setting,
measured by F1 score.

As our results in Table 6.4 reveal, most ML algorithms achieve a relatively high F1
score between 0.8 and 0.9. We argue that this not only indicates an acceptable setup
regarding hyperparameters, but also that the six attributes we used for learning the
model are appropriate for feature term extraction. As an exception, GBN only
achieved an F1 score of ≈ 0.65 for both 3-fold and 10-fold, and thus, must be
considered of rather low appropriateness. The reason may be that it can not learn
the interactions between attributes.

Based on the results, we answer RQ3.1 as follows: Different prediction models
trained on terms with the six attributes can be achieved. Although not all prediction
models provide high performance, the six attributes we identified are suitable for
training a model to predict true feature terms.

2https://zenodo.org/record/3577855#.XfdiqdOqQSM

https://zenodo.org/record/3577855#.XfdiqdOqQSM

92 6. The Inference of the Notions of Features

Table 6.4: Results of the best parameter and F1 score in the training process.

Algorithm k-fold Best Parameter Best F1 Score

LR
3-fold

‘C’: 0.1, ‘penalty’: l2, ‘solver’: li-
blinear

0.9002

10-fold
‘C’: 0.1, ‘penalty’: l2, ‘solver’: li-
blinear

0.8918

SVM
3-fold

‘C’: 2.9, ‘gamma’: scale, ‘kernel’:
sigmoid

0.8788

10-fold
‘C’: 2.4, ‘gamma’: auto, ‘kernel’:
rbf

0.8936

DT
3-fold

‘criterion’: entropy, ‘splitter’:
random

0.8214

10-fold
‘criterion’: gini, ‘splitter’: ran-
dom

0.8424

KNN
3-fold

‘algorithm’: auto, ‘n neighbors’:
6, ‘weights’: distance

0.8890

10-fold
‘algorithm’: auto, ‘n neighbors’:
8, ‘weights’: distance

0.9162

RF
3-fold

‘bootstrap’: True, ‘criterion’: en-
tropy, ‘n estimators’: 30

0.8683

10-fold
‘bootstrap’: True, ‘criterion’: en-
tropy, ‘n estimators’: 35

0.8753

GBN
3-fold – 0.6509
10-fold – 0.6529

MLP
3-fold

‘hidden layer sizes’: 20, ‘activa-
tion’: tanh

0.8792

10-fold
‘hidden layer sizes’: 20, ‘activa-
tion’: tanh

0.8974

RQ3.2 – Apply the prediction models to the other datasets

After obtaining the prediction models, we applied these models to predict the true
feature terms from E-Shop and Digital Home dataset. We show the results in Ta-
ble 6.5.

Our data reveal that 1. the recall is generally slightly higher than the precision,
2. the F1 score only slightly deviates from the one in Table 6.4, and 3. that all
models exhibit a relative high robustness

The first observation could indicate that our attributes, while applicable in general,
still may contain some domain-dependent aspect that hinders a higher precision.
However, given the second observation, the differences are really small, and thus,
we argue that in general, these models are applicable across datasets. This is also
supported by the third observation, which confirms that all models have high ro-
bustness, and thus, perform similarly on training and test set.

6.2. Evaluation 93

T
ab

le
6.

5:
R

es
u
lt

s
of

fe
at

u
re

te
rm

p
re

d
ic

ti
on

in
D

ig
it

al
H

om
e

an
d

E
-s

h
op

.

A
lg
or
it
h
m

k
-f
ol
d

D
at
as
et

P
re
ci
si
o
n

R
ec
a
ll

F
1
S
co
re

A
ve
ra
g
e
F
1
S
co
re

R

L
R

3-
fo
ld

D
ig
it
al

H
o
m
e

0
.6
7
4
2

0
.9
3
7
5

0
.7
8
4
3

0
.7
7
8
9

0
.1
2
1
3

E
-s
h
o
p

0
.6
8
3
3

0
.8
9
1
3

0
.7
7
3
6

10
-f
ol
d

D
ig
it
al

H
o
m
e

0
.6
7
4
2

0
.9
3
7
5

0
.7
8
4
3

0
.7
7
8
9

0
.1
1
2
8

E
-s
h
o
p

0
.6
8
3
3

0
.8
9
1
3

0
.7
7
3
6

S
V
M

3-
fo
ld

D
ig
it
al

H
o
m
e

0
.6
9
0
5

0
.9
0
6
3

0
.7
8
3
8

0
.7
6
5
6

0
.1
1
3
2

E
-s
h
o
p

0
.6
9
8
1

0
.8
0
4
3

0
.7
4
7
5

10
-f
ol
d

D
ig
it
al

H
o
m
e

0
.6
6
2
8

0
.8
9
0
6

0
.7
6
0
0

0
.7
4
2
7

0
.1
5
0
9

E
-s
h
o
p

0
.6
6
0
7

0
.8
0
4
3

0
.7
2
5
5

D
T

3-
fo
ld

D
ig
it
al

H
o
m
e

0
.7
0
1
3

0
.8
4
3
8

0
.7
6
6
0

0
.7
5
4
1

0
.0
6
7
2

E
-s
h
o
p

0
.7
0
5
9

0
.7
8
2
6

0
.7
4
2
3

10
-f
ol
d

D
ig
it
al

H
o
m
e

0
.6
7
4
7

0
.8
7
5
0

0
.7
6
1
9

0
.7
5
2
1

0
.0
9
0
3

E
-s
h
o
p

0
.7
0
5
9

0
.7
8
2
6

0
.7
4
2
3

K
N
N

3-
fo
ld

D
ig
it
al

H
o
m
e

0
.6
7
4
4

0
.9
0
6
3

0
.7
7
3
3

0
.7
5
4
0

0
.1
3
5
0

E
-s
h
o
p

0
.6
9
2
3

0
.7
8
2
6

0
.7
3
4
7

10
-f
ol
d

D
ig
it
al

H
o
m
e

0
.6
8
2
4

0
.9
0
6
3

0
.7
7
8
5

0
.7
6
0
4

0
.1
5
5
8

E
-s
h
o
p

0
.7
0
5
9

0
.7
8
2
6

0
.7
4
2
3

R
F

3-
fo
ld

D
ig
it
al

H
o
m
e

0
.7
4
0
3

0
.8
9
0
6

0
.8
0
8
5

0
.7
7
5
4

0
.0
9
2
9

E
-s
h
o
p

0
.7
0
5
9

0
.7
8
2
6

0
.7
4
2
3

10
-f
ol
d

D
ig
it
al

H
o
m
e

0
.6
9
0
5

0
.9
0
6
3

0
.7
8
3
8

0
.7
7
0
5

0
.1
0
4
7

E
-s
h
o
p

0
.6
8
4
2

0
.8
4
7
8

0
.7
5
7
3

G
B
N

3-
fo
ld

D
ig
it
al

H
o
m
e

0
.6
9
3
9

0
.5
3
1
3

0
.6
0
1
8

0
.6
2
4
4

0
.0
2
6
5

E
-s
h
o
p

1
.0
0
0
0

0
.4
7
8
3

0
.6
4
7
1

10
-f
ol
d

D
ig
it
al

H
o
m
e

0
.6
9
3
9

0
.5
3
1
3

0
.6
0
1
8

0
.6
2
4
4

0
.0
2
8
5

E
-s
h
o
p

1
.0
0
0
0

0
.4
7
8
3

0
.6
4
7
1

M
L
P

3-
fo
ld

D
ig
it
al

H
o
m
e

0
.7
1
0
8

0
.9
2
1
9

0
.8
0
2
7

0
.8
0
1
4

0
.0
7
7
8

E
-s
h
o
p

0
.7
7
5
5

0
.8
2
6
1

0
.8
0
0
0

10
-f
ol
d

D
ig
it
al

H
o
m
e

0
.7
1
0
8

0
.9
2
1
9

0
.8
0
2
7

0
.7
9
5
3

0
.1
0
2
1

E
-s
h
o
p

0
.7
3
5
8

0
.8
4
7
8

0
.7
8
7
9

N
o
te

:
A

v
er

a
g
e

F
1

S
co

re
=

(F
1

sc
o
re

fo
r

D
ig

it
a
l

H
o
m

e
+

F
1

sc
o
re

fo
r

E
-s

h
o
p

)
/

2

94 6. The Inference of the Notions of Features

Similar to RQ3.1, the GBN algorithm is an outlier. While it has a very high precision
(1.0) for E-shop dataset, its recall is very low for both E-shop and Digital Home
dataset, which eventually results in a low F1 score. Hence, even though it leads to
very good robustness, we consider this algorithm as not applicable to our kind of
problem and dataset.

Based on the results in Table 6.5, we answer RQ3.2 as follows: Although the perfor-
mance for predicting true feature terms in both E-Shop and Digital Home is mod-
erate (0.75± 0.05), it provides domain engineers with a very good starting point to
identify potential feature terms by using a pre-trained prediction model, especially
taking the results of MLP into account.

RQ3.3 – Comparison of ML algorithms

According to Table 6.5, we can see that the RF prediction model trained by using 3-
fold cross-validation achieves both the highest precision and F1 score for the Digital
Home dataset, while its performance for the E-shop dataset decreases. That is to
say, the RF prediction models lack the ability to achieve stable results for data
from different domains. Although the majority of the prediction models suffer from
the same problem, the MLP prediction model (3-fold) produces results of Digital
Home and E-shop with the smallest difference, which indicates that it is of better
generalization ability than the other models.

Further, our data reveal that the LR prediction model (3-fold and 10-fold) has
the highest recall for both Digital Home and E-shop. However, the relatively low
precision impedes a higher average for the F1 Score. In contrast, the MLP prediction
model (3-fold) neither achieves the highest precision nor recall, but comes with a
better trade-off between both measures. Consequently, the MLP prediction model
(3-fold) achieves the highest average F1 score.

Moreover, according to the R value in Table 6.5, the models trained by using 3-fold
cross-validation are slightly more robust than the models trained by using 10-fold.
The reason is that 10-fold means there are more data for training and fewer data
for testing, which easily leads to higher training performance than 3-fold models.
That is to say, although the 10-fold models fit the training data better than 3-
fold models, it results in the worse ability to predict the unknown data than 3-fold
models in terms of average F1 score. However, the difference of average F1 scores
from prediction models trained by using 3-fold and 10-fold is very small, especially
for the probabilistic approaches (i.e., LR and GBN).

Given the insights above, we answer RQ3.3 as follows: The ability to achieve a suit-
able balance between precision and recall as well as the robustness of the prediction
models is vital for using them to identify feature terms in different domains in prac-
tice. Obviously, the MLP prediction model (3-fold) is proven to be the best one in
this experiment.

In summary, the supervised machine learning approach integrated with the prede-
fined rules is capable of identifying true feature terms from requirements. However,
different ML algorithms present different performance and robustness. In order to
achieve the best prediction model, we make a comparison among seven ML algo-
rithms and the neural-network-based MLP prediction model outperforms others.

6.3. Threats to Validity 95

Certainly, more experiments need to be conducted to prove this conclusion, for ex-
ample, using more requirements from different domains to test the prediction models
and retraining the models by using a training dataset of more requirements. We will
focus on improving the current research in future work.

6.3 Threats to Validity

Construct validity. Our proposed feature terms extraction method is able to
predict true feature related terms from the candidate term extracted by using certain
rules based on POS patterns from requirements. Although the candidate terms are
extracted by rules, we approach is actually not sensitive to how these candidate
terms are extracted. That is to say, the prediction models can be trained on the
candidate terms extracted by any other different methods, since the algorithms are
focused on learning the six attributes of terms rather than the terms themselves.
However, our prediction models can only be used to identify the true feature terms
from the candidate terms, which means they cannot provide a true feature term that
does not belong to the candidate terms.

Conclusion validity. The results are predicted by using the prediction models
trained on a relatively small dataset. This might affect the accuracy of results,
since a small dataset probably can not provide enough data for learning. However,
the dataset we use for training a model is generated from a case study of real-world
scenario including a feature model used as ground truth, which means we can achieve
a training dataset of relatively high quality and reduce the bad effect of the small
size of data. Certainly, only using Digital Home and E-shop dataset may be not
enough to support the conclusions regarding the robustness of prediction models
and applicability of prediction models in different domains.

6.4 Related Work

In this section, we categorize the research on terms extraction in SPL in terms of
the basic methods they used: unsupervised methods and supervised methods.

Unsupervised Methods

Sree-Kumar et al. proposed a framework named FeatureX to automate the pro-
cess of feature model generation by analyzing the terms extracted from require-
ments [SKPC18]. However, the main method they used for extracting terms is
based on some extraction rules from research [ASBZ17] and [ASBZ16]. The idea
behind these extraction rules is actually using existing natural language processing
tools, such as NLTK [LB02] and OpenNLP to obtain text chunks following some
predefined rules or POS patterns. Niu et al. extracted terms from requirements as
conceptual information by using a two-word unit named lexical affinity proposed in
research [MBK91]. However, they also generated the domain vocabulary for one-
word unit rather than only extracting the two-word units which belong to verb-DO
pairs. In Sree-Kumar et al.’s research, they directly regarded the terms extracted
by rules as features and created feature models based on these terms, while Niu
et al. used limited rules to identify the domain-specific terms. This may cause a

96 6. The Inference of the Notions of Features

problem that for a large size of requirements, there must be a huge number of terms
and the features created by the group of these terms lack the key information of
the mapping between features and raw requirements. The enormous terms and the
lack of key information may impede the applicability in practice. Moreover, just
using one word weighting method (i.e., TF-IDF) in research [SKPC18] may lead to
bias. In contrast, our approach focus on predicting the true feature terms from the
candidate terms extracted from the requirements belonging to features. We take
different attributes of each term containing three weighting methods into account
to train prediction models.

Besides extracting feature related terms from requirements, there is also some re-
search focusing on identifying terms information from other types of textual docu-
ments. Ferrari et al. also utilized POS patterns to extract candidate domain-specific
terms from online product descriptions [FSD13]. And then, they applied C-NC value
to weight the terms and predefined a threshold to filter the terms. Finally, the terms
are re-ranked by using contrastive analysis. In addition, in research [BKSJ16] and
[BKSH17], authors focused on extracting terms from online reviews. They also used
POS patterns to identify candidate terms. However, the extracted terms will be
grouped using clustering algorithms to form features. Compared with requirements,
this kind of informal documents can only provide limited information of features.

Supervised Methods

Bagheri et al. utilized Named Entity Recognition (NER) technique to not only
extract potential features, but also identify integrity constraints [BEG12]. They
applied the conditional random field-based NER method to train a labeled dataset,
resulting in a learned NER model that can be used to identify the features and
integrity constraints. And, they directly labeled the raw requirements rather than
identifying some specific attributes, which may lead to needing numerous labeled
data to train a model of high performance. The reason is that the algorithm has
to learn the characteristics of the terms by itself and adjusts the parameters and
weights in the learning process. If the dataset is not large enough, the algorithm
can not learn enough characteristic information of terms.

We can observe that POS patterns are widely used for extracting candidate features
terms from textual documents in the context of SPL and the majority of the related
works are based on unsupervised methods. Although we also apply POS patterns to
extract candidate terms, the key difference is that we further analyze the potential
attributes of these terms, which makes our approach insensitive to how the candidate
terms are extracted. Moreover, we utilize supervised machine learning techniques
to avoid defining many detailed rules that might be only suitable for certain cases.

6.5 Summary

In order to figure out the intentions of features, we intend to provide feature terms
of high quality that contain pivotal information of functionality and what a feature
is. To this end, we firstly extract all the candidate terms in terms of the predefined
rules. Secondly, we identify six attributes of each term and generate a labeled dataset
to train prediction models by using seven different machine learning algorithms.

6.5. Summary 97

Subsequently, we apply K-fold Cross-Validation and Grid Search to select the best
prediction model for each algorithm based on F1 score. Finally, we utilize the
prediction models trained on one dataset to predict feature terms from the other
two datasets in the different domains. We analyze the performance and robustness
of the prediction models and the results present that our approach is capable of
identifying feature terms from requirements.

98 6. The Inference of the Notions of Features

7. Automated Extraction of
Domain Knowledge in Practice

This chapter is based on and shares material with the SPLC’20 paper
“Automated Extraction of Domain Knowledge in Practice: The Case of
Feature Extraction from Requirements at Danfoss” [LSSF20].

In previous chapters, we have shown that 1. Software Requirements Specifications
(SRS) are suitable artifacts to extract such information (cf. Chapter 3) and 2. pro-
posed approaches that make use of advanced Natural Language Processing (NLP)
techniques to reliably extract features and variability from SRS (cf. Chapter 4, Chap-
ter 5 and Chapter 6). So far, our technique has been only evaluated with a small
set of rather artificial requirements, and thus, it is unclear whether it can cope with
specialities of real-world requirements as well as scales up to a large amount of SRS
documents.

In this chapter, we address this problem by analyzing software requirements specifi-
cations from Danfoss, which is a Danish company with more than 28,000 employees
worldwide. The company does businesses within power solutions, cooling, heating
and drives, of which the latter has existed for more than half a century. In order
to automate the process of domain analysis, we utilize machine learning and NLP
based techniques to process and analyze the requirements. In particular, we apply
Doc2Vec to train a language model on the requirements, use a clustering algorithm
to group the similar requirements in terms of the information from the pre-trained
language model and take advantage of feature terms prediction techniques (cf. Chap-
ter 6) to present the key information of a particular feature. Moreover, we present a
GUI that supports domain engineers to visualize and adjust the extracted features
in practice.

We make the following contributions to answer RQ4:

• We present a study that applies automated (domain) feature extraction and
feature tree creation on a large amount of real-world requirements, since the

100 7. Automated Extraction of Domain Knowledge in Practice

ability to process massive requirements is necessary to make feature extraction
techniques practicable in practice.

• We present and discuss peculiarities in real-world requirements that may be
challenging by such automated approaches. These insights can be used by
others for future research on analyzing natural language requirements.

• We propose a refined technique (compared to the technique in Chapter 5)
combined with the technique in Chapter 6 to form a complete approach for
automated feature extraction that addresses the identified specialities of real-
world SRS.

• We provide an empirical evaluation and a qualitative analysis of our technique
to discuss its applicability in practice.

7.1 Methodology

The overall goal of our technique is to extract feature information from requirements
(i.e., which requirements belong to which domain feature), put these features into
relation by means of a domain model (here: a feature tree), and to provide semantic
information what a feature is about (i.e., which functionality it encompasses). In
Figure 7.1, we show an overview of our proposed approach. First of all, we extract
the initial feature tree mainly based on Doc2Vec and Hierarchical Agglomerative
Clustering (HAC) combined with the information about the structure and names of
requirements (cf. Section 7.1.1 and Section 7.1.2). Second, we identify feature terms
to provide key information of a feature by using a prediction model that analyzes
different attributes of words and phrases in the requirements (cf. Chapter 6). Finally,
we propose a GUI that can present the initial feature tree and feature terms, and
thus, support domain engineers in revising the generated features.

Note: since the requirements from Danfoss are confidential, in this section we use
requirements from Body Comfort System [LLLS13] and Digital Home [HT07] as
running examples to illustrate our approach.

7.1.1 Preprocessing

The indispensable step to initialize automated feature extraction is to preprocess
the requirements in order to satisfy the demands of different NLP-based sub-tasks.

Text extraction

Usually, there is no uniform format for requirements that describe different function-
alities. Taking the development of a large number of product variants into account,
diverse requirements with multiple types of data and formats are written to meet
different customers. Although SRS contain various types of data, such as texts,
tables, and figures, the textual information is the main medium to convey the con-
crete specifications between customers and suppliers on how the products should
function. In order to obtain all the natural language texts from SRS, we initially
process the requirements and extract any textual information by removing the non-
textual data such as figures. Moreover, textual information should be preserved as

7.1. Methodology 101

Doc2Vec

PreprocessingRequirements

Similarity
Matrix

HAC
Initial

Feature Tree

Attribute
Analysis

Feature
Terms

Prediction
Model

GUI

1. Feature extraction

2. Feature term extraction

Manual
Analysis

Final
Feature Tree3. Manual analysis

RS
Similarity

Similarity
Threshold

RB
Similarity

RN
Similarity

Candidate
Terms

POS Patterns

RB: Requirement Body; RN: Requirement Name; RS: Requirement Structure.

RB Vectors

RN Vectors

RS
Information

Cosine
Similarity

: Method; : Artifact/Data; : Highlight.

Figure 7.1: Overall workflow of our proposed approach for feature extraction.

much as possible, not only from the plain texts but also from tables that contain
plenty of textual data that describe the functionalities. Hence, texts in tables are
also extracted in order to achieve more information regarding feature extraction.

After achieving the pure textual requirements, further techniques will be used to
process the requirements. For example, tokenization, stop words removal, and
lemmatization. Moreover, we also find that there are some non-functional terms
in the requirements specification, such as some specific titles. The high frequency
of the occurrences of these non-functional terms has a bad effect on the further
process of grouping requirements with similar functionality. Hence, we add these
non-functional terms into a blacklist to remove them.

7.1.2 Feature Extraction

For feature extraction, we compute the similarity of requirements including the
similarity of the structure, name, and body of the requirements. Note that: in
the following sections, we use the requirement structure, requirement name, and
requirement body to denote the structural information of a requirement, the name
of a requirement, and the body of a requirement, respectively. Then, we use HAC
to create a feature tree based on these similarities.

Vectors of requirement bodies.

Doc2Vec is a neural-network-based, but unsupervised learning algorithm to generate
a vector space of documents [LM14]. Thus, by using Doc2Vec, each document can
be converted into a vector representation. One of the advantages of Doc2Vec is
that the size of the document can be variable. Hence, Doc2Vec can cope with
requirements that encompass different numbers of sentences. In our context, we
regard each individual requirement as a document. After training the preprocessed
requirements by using Doc2Vec, we obtain a vector ~v for each requirement that is
regarded as a vector of requirement bodies.

102 7. Automated Extraction of Domain Knowledge in Practice

Vectors of requirement names.

Besides the vectors of the body of each requirement, we can also achieve the vec-
tor representation of each word in the requirements by using the same pre-trained
Doc2Vec model for requirement bodies. However, in the case of requirements in
Danfoss, the name of a requirement usually comprise several words rather than only
one word, and the average number of the words in the names is around three. In the
process of analyzing the requirements in Danfoss, we find that although the length
of a requirement name (i.e., the number of words in a requirement name) affect the
similarity of each pair of the requirement names, the most important influence on
similarity comes from some important words. Hence, we do not take advantage of
the similarity calculation method in Chapter 5, in which the length of a text will
make a big difference to the similarity. In order to achieve the reasonable similarity
of each pair of requirement names, we need to acquire the suitable vector repre-
sentation of requirement names. To this end, we obtain the vectors of requirement
names by averaging the weighted vectors of each word in a requirement name, while
we use Inverse Document Frequency (IDF) to weigh the vectors of words [ZLT15].

V ector(rn) =

∑n
i=1 IDF (wi)× V ector(wi)

n
(7.1)

where,

- V ector(rn) is the vector representation of a requirement name rn;

- IDF (wi) denotes the IDF value of word wi, while V ector(wi) is the vector
representation of word wi derived from the pretrained Doc2Vec model; And,
wi belongs to rn;

- n is the number of words in rn.

Similarity of requirement bodies and names.

Given all the vectors of requirement bodies, we use cosine similarity to measure
the similarity value between two requirement bodies. In the same way, we can also
compute the similarity between each pair of requirement names. Since Doc2Vec is a
technique of distributional semantic models based on neural network, we can regard
the cosine similarity based on Doc2Vec as distributional semantic similarity.

Similarity of requirement structures.

Moreover, we also take the structural information of requirements specifications into
account, in particular, the hierarchical structure of such documents. For instance,
functionalities are usually decomposed into different sub-functionalities described
by different requirements. This way, requirements are physically grouped together
according to the functionality they describe/specify. Hence, although these groups
of requirements might not be semantically similar to each other measured by cosine
similarity, they all describe some specific functionalities that are correlated to each
other. Hence, this structural correlation can also be used to adjust the similarity of

7.1. Methodology 103

R1: 1
R2: 2
R3: 2.1
R4: 2.1.1
R5: 2.1.2
R6: 2.1.2.1
R7: 2.1.2.1.2

Level 1
Not structuralcorrelated

(Level 0)

Level 2

Level 3

Level 4

Structuralcorrelated

“R1, R2 , ..., R6”: requirement id; “1, 2, 2.1, ..., 2.1.2.1.2”: requirement structure.

Figure 7.2: An example of structural similarity.

requirements. We use an example shown in Figure 7.2 to illustrate the structural
correlation. The numbers, such as “1”, “2”, “2.1”, are used to represent the hierarchy
of the requirements. We can see the structures of R1 and R2 are not correlated,
since the numbers of the corresponding requirement structures (i.e., “1” and “2”) are
totally different. In contrast, R3, R4, R5, R6, and R7 are sub-requirements of R2
(i.e., the numbers of all these six requirement structures start from“2”), which means
that these six requirements are structurally correlated. In our example, we apply five
levels to measure how much the requirements are related. If the first number of the
two requirement structures is not the same, the corresponding requirements are not
structurally related, and thus they are at level 0 (e.g., R1 and R2). If the first number
of the requirement structures is identical, the corresponding requirements are at
level 1 (e.g., R2 and R3). If both, the first and second number of the requirement
structures are equal, the corresponding requirements are at level 2 (e.g., R3, R4,
R5). Likewise, requirements of the first three identical numbers belong to level 3,
while requirements of the first four equal numbers are at level 4. And then, we
preset different thresholds for structural similarity of the requirements at different
levels.

Similarity Matrix.

As a result, we compute the similarity of a pair of requirements using both, distribu-
tional semantic similarity and structural similarity, according to Equation 7.2. We
compute this similarity for all pairs of requirements, and thus, obtain a similarity
matrix of all the requirements in terms of Equation 7.3.

simReq(ri, rj) = wb× SB(ri, rj) + wn× SN(ri, rj) + ws× SS(ri, rj) (7.2)

simMatrix =
n∑

i=1

n∑
j=1

simReq(ri, rj) (7.3)

where,

- n is the number of requirements, while r denotes an individual requirement.

104 7. Automated Extraction of Domain Knowledge in Practice

AF: Abstract feature; CF: Concrete feature; PN: Proper Noun; ST: Sub-Term; TF-IDF: Term Frequency –
Inverse Document Frequency; TR: TextRank; CV: C-Value; RT: Ratio of Terms;

Figure 7.3: The GUI for manual analysis with a feature tree view, a list of corre-
sponding requirements, and associated feature terms.

- SB(ri, rj) is the similarity of two requirements bodies. Moreover, SB(ri, rj) =
cosine(~vi, ~vj), in which ~v is the vector representations of the body of the re-
quirement r. SN(ri, rj) denotes the similarity of two requirements names
which can be computed in the same way.

- SS(ri, rj) denotes the structural similarity of requirements. It is a threshold
predefined based on different levels that represent the extent of the structural
correlation (cf. Section 7.2.2).

- wb, wn, and ws stand for the weights of the similarity of requirement body,
name, and structure, respectively. In addition, the sum of these three weights
is 1 (i.e., wb+ wn+ ws = 1).

After achieving the similarity matrix, we rely on the same technique as we intro-
duced in Chapter 5 to obtain the initial feature tree. Based on the result of feature
extraction, we can achieve the Feature-Requirement mapping (i.e., F-R mapping)
in terms of which we know which the requirements belong to a particular feature.
Furthermore, we select a prediction model from Chapter 6 to identify the feature-
related terms that can provide hints to understand the intentions of features. As
the last step, not directly related to the actual extraction, our technique includes a
GUI to assist domain engineers to analyze the extracted features and adjust them
if necessary. In Figure 7.3, we present a screenshot of this GUI. The initial feature
tree is visualized on the left side of the figure, while the requirements belonging
to a feature are also listed in terms of F-R mapping at the top right of the figure.
Moreover, the candidate terms extracted from features are also presented with six
attributes at the bottom right of the figure. TF-IDF, TR, and CV are normalized
by using Min-Max Scaling. Furthermore, if the “Prediction” of a candidate term is
marked as 1, this term is regarded as a feature-related term (e.g., “finger protection”
and“led”). Domain engineers can further revise, name, add and remove the features,
while the structure is also able to be adjusted by using the GUI.

7.2. Evaluation 105

7.2 Evaluation

In this section, we provide details about the empirical evaluation of our feature
extraction technique. In particular, we present our research questions and details
about the subject system, briefly describe how we applied our technique for the
extraction process, and eventually present the results. For the latter, we focus on
not only the accuracy of the extracted features but also the applicability of the
extracted terms and the effectiveness of our approach in order to assist domain
engineers for extracting features in practice.

7.2.1 Subject System and Research Questions

Dataset

The requirements we used for our evaluation come from drives, also known as fre-
quency converters, which convert incoming power, usually 50 or 60 Hz, into a dif-
ferent output frequency. Being able to control this makes it possible to adjust the
shaft speed or torque of an electrical motor. This may prolong the lifetime of the
motor and help on saving both energy and money. Frequency converters are used
within a wide range of applications, spanning from simple fan control to complex
crane and bottle plant applications. Being able to cover these different applications
requires an enormous amount of software, originating from an extensive requirement
specification that evolves for years.

Overall, our dataset contains 2389 individual requirements from Danfoss, which sums
up to 409 339 words (459 567 tokens). Moreover, the format of the requirements is
not uniform. The size of each individual requirement ranges from dozens of words
to hundreds of words. Finally, the requirements came with some specialities that
we did not expect and had to address in our extraction process. First, each re-
quirement was similarly structured in paragraphs, each with a dedicated name such
as ”description” or ”Rationale”. Obviously, this would falsify our results, as these
words would be considered as important and key terms by our technique. Thus,
we introduced the blacklist in the preprocessing part. Second, the requirements are
structured hierarchically, and thus, come with some kind of context. This additional
information has finally lead us to the decision, to include the structural similarity,
described in Section 7.1.2.

Research Questions

For our study, in order to answer RQ4, we formulate the following sub-research
questions.

RQ4.1: What is the accuracy of the automatically extracted features?

Only with relatively high confidence in the extracted features, our technique is prac-
tically applicable. Hence, with this research question, we aim at measuring the
accuracy by means of precision.

RQ4.2: Do the extracted feature terms provide hints for domain engineers to iden-
tify the extracted features?

106 7. Automated Extraction of Domain Knowledge in Practice

To evaluate our feature term extraction part, we use a quantitative indicator to
show whether the extracted terms constitute some important characteristics of the
functionally related feature. To this end, we also calculate the precision of the
meaningful terms.

RQ4.3: How can our proposed approach improve the process of domain analysis?

While accuracy is a fundamental aspect of our technique, it is also of superior interest
whether and how this information can assist domain engineers in recreating domain
knowledge, which is a tedious and time-consuming task when done manually. To
address the question, we go beyond quantitative measures and aim at qualitatively
discuss how much our GUI for presenting the results to domain engineers can assist
them in the process of domain analysis based on the automatically extracted results.

7.2.2 Extraction Process

We performed feature extraction according to our technique, described in Section 7.1
on all of the 2 389 requirements. Next, we briefly describe each step and its output.

1. As the first step, we applied preprocessing to all raw requirements in order
to reduce the complexity. In this process, apart from applying basic NLP
techniques, we also removed null requirements and requirements with very
few words (i.e., less than five words), eventually resulting in 2231 processed
requirements that we could use for the actual feature extraction. The reason for
removing the requirements with very few words is that: a) these requirements
do not contain specific descriptions of functionality; or b) some requirements
are documented through plenty of figures without enough textual information.

2. Second, a language model was trained by using Doc2Vec on the preprocessed
requirements dataset, where we used the distributed memory version of para-
graph vector and the vector size was 150. Based on the pre-trained Doc2Vec
language model, we obtained the vector representation of each requirement
body and name. We then use these vectors to compute the pairwise cosine
similarity, according to Section 7.1.2, and thus, to achieve the distributional
semantic similarity of each pair of requirement bodies and names. Moreover,
based on the structural correlation (i.e., levels), we preset the overall threshold
for the structural similarity of the requirements at the same level, for example,
0 at level 0, 0.3 at level 1, 0.5 at level 2, 0.7 at level 3 and 1.0 at level 4.
We used five levels to calculate the structural similarity, since we intended to
achieve features of moderate granularity. The specific threshold for each level
was determined in order to achieve a proper ratio between structural similarity
and distributional semantic similarity. Moreover, in Equation 7.2, wb, wn and
ws are equal to 0.2, 0.2 and 0.6, respectively. According to Equation 7.3, a
2231× 2231 similarity matrix was achieved.

3. As a third step, the similarity matrix was fed into HAC to extract the initial
feature tree. In order to provide comparative results to show that the refined
approach is capable of improving the accuracy, we also use the original VarMine
introduced in Chapter 5 to analyze the requirements from Danfoss. Moreover,

7.2. Evaluation 107

the value of inconsistency threshold affects the granularity of the features. In
order to achieve a moderate granularity and reasonable comparison, we set the
inconsistency threshold to 1.1 for both the original VarMine and the refined
approach. After HAC, we achieved 499 features resulting in the initial feature
tree. Furthermore, we selected MLP prediction model (3-fold) (cf. Chapter 6)
to identify feature terms.

4. Finally, one domain engineer used the GUI to visualize the extracted fea-
tures and check whether the extracted features are applicable in practice and
whether the feature terms could assist engineers to identify a feature. This
process obeys the evaluation metrics in Section 7.2.3.

Then, the results were double reviewed by another engineer in order to reduce bias.
The final results are used to answer the research questions.

7.2.3 Evaluation metrics

In order to achieve the quantitative analysis of the results, we use precision to
measure the extracted domain knowledge. Since there is no ground truth (i.e., no
domain model exists so far), we had to ask domain engineers to evaluate whether the
extracted information is meaningful or not. This information about validity includes
both, features and feature terms, and the process and metrics are described in the
following.

Metric for RQ4.1

In order to address the accuracy of extracted features, all the extracted features are
checked by engineers to determine whether the extracted feature is reasonable and
useful. In particular, an extracted feature is considered meaningful, if it represents a
certain functionality of the system. Moreover, we distinguish between three different
kinds of a meaningful feature:

1. whether a particular meaningful feature exactly represents a particular kind
of functionality;

2. whether a meaningful feature can be merged with another meaningful feature,
which means several meaningful features, representing related functionality,
can be converted into a single feature.

3. whether a meaningful feature can be separated into some fine-grained features,
which means a meaningful feature with relatively related functions can be
separated into several sub-features.

The equation of calculating the precision of meaningful features is as follows:

Precision =
The number of meaningful features

The number of extracted features
(7.4)

108 7. Automated Extraction of Domain Knowledge in Practice

Metric for RQ4.2

We use a prediction model to extracted feature terms, taking both linguistic and
statistical information into account. In order to measure how much useful feedback
engineers can achieve from these terms, we evaluate the extracted feature terms
following the rules below:

1. The extracted feature terms are reviewed by domain engineers to determine
whether the feature terms are meaningful. Meaningful terms describe a specific
functionality and are highly related to the extracted feature, which means that
engineers can easily get an idea of what the extracted feature is about based
on the meaningful terms.

2. We only measure the meaningful terms in meaningful features. The reason
is that requirements belonging to meaningless features are wrongly grouped,
and thus, the terms do not describe the obvious intention of the meaningless
feature.

The equation of calculating the precision of meaningful terms in one feature is as
follows:

Precision =
The number of meaningful feature terms

The number of extracted feature terms
(7.5)

Based on the precision of meaningful terms for each feature, we then can compute
the precision of all meaningful features.

7.2.4 Results

In this section, we present the results and answer the research questions by means
of both quantitative analysis and qualitative analysis. In particular, two domain
engineers from Danfoss are involved in analyzing the results, providing particular
perspectives on the Danfoss case in practice.

RQ4.1: the accuracy

In order to present a comparative result, we not only apply the refined approach (Ap-
proach I) proposed in this chapter, but also use the original VarMine (Approach II)
in Chapter 5 to process the requirements to extract features, shown in Table 7.1.
As presented above, the information about the body, name and structure of the
requirements is analyzed by using the refined approach. Meanwhile, approach II
only processes the body of the requirements. According to Table 7.1, we achieve
higher precision (0.783) by using approach I than the precision (0.627) obtained by
using approach II. This shows that analyzing different information in the require-
ments can extract meaningful features more accurately than only taking one type
of information into account.

We further analyze the granularity of meaningful features that have been extracted.
The MMEF and SMEF (cf. Table 7.1) that are a subset of the overall meaningful
extracted features indicate whether the granularity of meaningful features is appro-
priate. By using approach I, 12.8% of the meaningful extracted features can be

7.2. Evaluation 109

Table 7.1: The results of extracted features by using two approaches.

Approach No. of
All EF

No. of
MEF

No. of
MMEF

No. of
SMEF

Precision

I 499 391 50 27 0.783
II 649 407 127 58 0.627

EF: extracted features; MEF: meaningful extracted features; MMEF: the meaningful extracted features
that should be merged with other features; SMEF: the meaningful extracted features that should be
separated into several sub-features.

merged with each other and 6.9% of them are able to be separated into more sub-
features. Compared with using approach II, the corresponding ratios are 31.2% and
14.2%, respectively. Both ratios of approach I are smaller than the corresponding
ratios of approach II, which shows that the results of approach I tend to provide
features with appropriate granularity.

We observe that approach II is prone to group the requirements with a similar
writing style. However, there may be a slight difference in the functionality they
specify. This difference affects the accuracy of feature extraction and the granularity
of the extracted features. We illustrate this problem by means of two requirements
from Digital Home [HT07]:

R1: The thermostats shall be used to monitor and regulate the temperature of
an enclosed space.

R2: The humidistats shall be used to monitor and regulate the humidity of an
enclosed space.

R1 and R2 specify the functionalities about thermostats and humidistats, respec-
tively. Since the writing style of these two requirements is similar (i.e., the majority
of the words in these two requirements are identical), they are prone to be grouped
into one feature by using approach II to form a coarse-grained feature “thermostats
and humidistats”. If the goal is to achieve fine-grained features, manual analysis is re-
quired to separate feature “thermostats and humidistats” into feature “thermostats”
and feature “humidistats”. Certainly, these two requirements are still functionally
related to each other to a certain extent. Hence, the obtained coarse-grained feature
is also meaningful to identify the main functionality. However, let us assume that
if there are two requirements written in a similar style, but the meanings expressed
are completely different, it would have a bad impact on the precision of feature
extraction.

However, the requirements are clearly structured in the case of Danfoss. Hence,
approach I is designed to take requirement name and structure into account to
capture the specialties of the requirements in Danfoss. We have re-edited R1 and
R2 according to the format of the requirements in Danfoss. We use the re-edited R1
and R2 as an example to illustrate approach I, shown below:

110 7. Automated Extraction of Domain Knowledge in Practice

R1: 1 - Thermostats - The thermostats shall be used to monitor and regulate
the temperature of an enclosed space.

R2: 2 - Humidistats - The humidistats shall be used to monitor and regulate
the humidity of an enclosed space.

The first, second, and third parts denote the structure, name, and body of the
requirements, respectively. Due to the difference of the structure information (e.g.,
“1” and “2”) of the two requirements, the overall similarity will be reduced, which
leads to the fact that these two requirements tend to be split into two features. For
the names (e.g., “Thermostats” and “Humidistats”) of R1 and R2, if only R1 and
R2 are considered and analyzed, the position of the word vectors of “Thermostats”
and “Humidistats” may be very close in the vector space because their surrounding
words are the same. In other words, the angle between the two vectors is very
small, which causes the two names to have high similarity. However, in the entire
requirements document, these two words appear not only in these two individual
requirements with a very similar writing style but also in other requirements written
with different surrounding words. Therefore, the distribution of these two words in
the vector space is different, which reduces the similarity of the two words and
further affects the results of feature extraction.

RQ4.1: Although the precision of the extracted features is not very high, three-
quarters of the extracted features can be regarded as a reliable basis for engineers
to further refine the true features. And, the additional information about the
structure and name of requirements is beneficial to capturing the specialties of
the requirements, thus improving the accuracy.

RQ4.2: hints from feature terms

We use the technique presented in Chapter 6 to identify feature-related terms from
each extracted by using the refined approach (approach I). The number of the fea-
ture terms extracted from each feature ranges from 2 to 262. Overall, we identify
13078 feature terms from all meaningful features, and 8196 of them are meaningful,
resulting in an overall precision of 0.627.

Since the number of feature terms extracted from each feature is different, the overall
precision cannot reflect how this difference affects the accuracy of the results. In
order to provide multiple perspectives, we divide the results of extracting feature
terms into six categories according to the number of terms extracted from each
feature. We use No. of Terms to denote the number of feature terms extracted
from a feature. The six categories (C1-C6) are shown below:

C1: If 0 < No. of Terms 6 20 , the results belong to C1;

C2: If 20 < No. of Terms 6 40, the results belong to C2;

C3: If 40 < No. of Terms 6 60, the results belong to C3;

7.2. Evaluation 111

C4: If 60 < No. of Terms 6 80, the results belong to C4;

C5: If 80 < No. of Terms 6 100, the results belong to C5;

C6: If No. of Terms > 100, the results belong to C6;

Table 7.2: The results of extracted features terms.

Category Range Precision

C1 0 < No. of Terms 6 20 0.705
C2 20 < No. of Terms 6 40 0.657
C3 40 < No. of Terms 6 60 0.639
C4 60 < No. of Terms 6 80 0.606
C5 80 < No. of Terms 6 100 0.596
C6 No. of Terms > 100 0.552

From Table 7.2, we can see that the precision gradually decreases as the number of
feature terms extracted from a feature increases. The potential reason is that the
prediction model we used is trained on a small dataset, which limits its ability to
process a relatively large number of terms. However, the feature terms are intended
to help domain engineers to understand the intention of the feature at a glance.
Therefore, the feature terms are used as an optional reference when the engineers
analyze the extracted feature. That is to say, engineers do not need to check whether
every feature term is meaningful and all they need to do is get some hints from the
feature terms when dealing with some complex features. Consequently, even in cases
where high accuracy is not achieved, the relatively accurate feature terms are still
helpful for analyzing the intention of features.

RQ4.2: We achieve relatively accurate feature terms from features, especially
for C1, while these meaningful feature terms are capable of providing useful hints
to assist domain engineers to have a quick overview of an extracted feature in
the process of further analyzing the extraction results.

RQ4.3: improvement in the process of domain analysis

Domain analysis is a form of requirement engineering aiming at identifying features
as reusable artifacts in the context of SPL [KCH+90]. However, feature extraction
from a legacy system by domain engineers is time-consuming from scratch. In or-
der to improve the process of domain analysis, especially requirement analysis for
extracting features, we intend to present the effectiveness of the combination of
automated feature and key terms extraction with the assistance of a dedicated GUI.

According to the specialty of Danfoss requirements, we propose an improved ap-
proach, in which we not only analyze the main content of the requirements, but also
consider the impact of the structure and name of the requirements on feature ex-
traction. In addition, we design weights for the similarity calculations for the body,
name, and structure of the requirements. Domain engineers can adjust the three

112 7. Automated Extraction of Domain Knowledge in Practice

weights according to the characteristics of the requirements and the specific needs
when constructing the feature model to obtain the features of different perspectives
(e.g., perspectives of the body, name, and structure). The adjustment of weights re-
quires domain engineers to have a certain understanding of the target requirements,
which can make the results of feature extraction in line with expectations, that is,
more meaningful features are extracted. For example, in the Danfoss case, we focus
on obtaining features from the perspective of requirement structure, that is to say,
the weight (i.e., ws) for requirement structure is higher than another two. As a
result, the automated extracted domain knowledge can be used as the first step to
generate a domain model, while increasing the efficiency compared with creating a
domain model from scratch, especially for processing large size of requirements.

When analyzing features extracted from requirements with a name, the names of
the requirements can be used as the first clue to suggest the notion of the extracted
feature. However, we observe that the meaning of a feature sometimes can not
be obtained intuitively from the requirement names. For example, in an extracted
feature, the names of each requirement are so different that we cannot directly
comprehend the commonality of the requirements. In this case, the feature terms
can provide a reference for identifying the meaning of the feature. In the case that
features are extracted from the requirements without names, the feature terms can
play an important role in providing the main clue for inferring the intention of
features.

Apart from the automatically extracted domain knowledge, we provide a GUI specif-
ically designed for analyzing the requirements and extracted features, and thus, to
improve the generated domain models. The majority of previous approaches (cf.
Chapter 3) do not provide a tool for further visualizing and revising the extrac-
tion results, resulting in a lack of applicability in practice. A part of the previous
researches used FeatureIDE [TKB+09] to visualize the extracted feature tree. Al-
though FeatureIDE is a very applicable tool for domain engineers to manually build
a feature model by analyzing the requirements, it lacks the ability to present the
key information (i.e., feature terms) which can support engineers to adjust the au-
tomated extraction results. By contrast, our dedicated GUI not only can directly
show the extracted feature tree with the mapped requirements, but also integrate
the feature terms extraction function for each feature in order to provide hints for
engineers to understand the intention of features. Figure 7.3 presents the GUI with
an example of the extraction results. The feature terms included in each feature are
obtained by analyzing the six attributes of the candidate terms through a predic-
tion model. However, considering that the extracted feature terms are not accurate
enough in some cases, the GUI not only displays the extracted feature terms but also
displays the corresponding six attributes for manual analysis. We find that these
attributes also play a role in analyzing the intention of the features. For example, in
the case of Danfoss, terms with higher statistical significance values (e.g., TF-IDF,
TR and CV) are usually more capable of representing the meaning of the extracted
features. Moreover, when the number of feature terms exceeds 80, the terms with
the higher RT value or ST marked as 1 can better refer to the notions of features.
Besides showing the extraction results, the extracted initial feature tree is editable
in the GUI. In detail, 1) the F-R mapping can be easily adjusted by drag and drop

7.3. Threats to Validity 113

operation; 2) features can be deleted and new features can be added; 3) names of
the features can be edited; 4) the tree structure also can be freely adjusted.

The domain engineers, reviewing results for this study, used our tool and confirmed
that this was very useful in understanding the intention of features, thus, being able
to assess their semantics and validity. Moreover, having access to the requirements
belonging to a feature was also considered useful, as it allows quickly reviewing
the scope of a feature. Furthermore, during the process of using our techniques
in analyzing real-world requirements, we found that a particular approach could
not accurately analyze different types of requirements documents. When dealing
with each specific type of requirements document, the specialty of the requirements
should be taken into account. To this end, we conclude the general process of ap-
plying feature extraction techniques to identify features from requirements in the
following: 1) domain engineers initially check the requirements to identify key spe-
cial points in the requirements, for example, whether the requirements are structured
well in terms of functionality; 2) Then, data analysts analyze other characteristics of
the requirements, for example, the number of words contained in the requirements,
the characteristics of the requirement names and the writing format of the require-
ments; 3) The data analysts determine the appropriate algorithm and corresponding
parameters (e.g., thresholds) to extract features based on the feedback from domain
engineers; 4) Domain engineers work on the extracted results to achieve the final
feature tree/model via a tool (e.g., the GUI proposed in this chapter).

RQ4.3: Based on the feedback, we argue that only providing a complete frame-
work that combines an automated extraction process together with a guided
and graphical presentation for manual adjustment can help domain engineers in
practice to recreate domain knowledge from requirements.

7.3 Threats to Validity

Construct validity. We regard that the requirements with related functionality
can be grouped into the same feature, which is actually based on the similarity
of the requirements. We not only achieve the distributional semantic similarity of
the requirement names and bodies by using Doc2Vec, but also take the structural
similarity into consideration. Although our similarity-based method might result in
a bias for identifying features, it is usually a kind of parametric bias, since changing
the parameters can affect the results of feature extraction. However, manual analysis
is also prone to produce bias and different engineers can establish different feature
models from different perspectives or personal experiences. Moreover, this manual
bias can be hardly measured or parameterized, and thus, is out of control. The
empirical evaluation results reveal that our proposed approach is capable of providing
features from the perspective of similarity of a certain combination of parameters
for domain engineers as a reference or starting point for generating the final feature
model.

Internal validity. In the process of automated feature extraction, there are several
parameters needed to be predefined, such as inconsistency threshold and structure

114 7. Automated Extraction of Domain Knowledge in Practice

similarity. The inconsistency threshold for clustering affects the granularity of the
extracted features. Domain engineers can reduce the inconsistency threshold to
achieve fine-grained features and increase it to gain coarse-grained features. We
selected a relatively appropriate inconsistency threshold in order to achieve features
with moderate granularity, taking the case study in Chapter 5 into account. For the
structure similarity, the number of levels also affects the granularity of the extracted
features, while the weights for structure, name, and body similarity impact on the
ratio of the structural similarity to the distributional semantic similarity in the
final similarity matrix. We preset the structural similarity and weights based on
our prior experience of requirement analysis and the observations from the Danfoss
requirements to achieve features with moderate granularity. The results reveal that
the preset parameters are relatively appropriate. We cannot say the fixed parameters
in our case study fits all other different datasets only in terms of the results of our
empirical evaluation. However, the parameters are flexible to be changed by domain
engineers on the demands of different domains.

Conclusion validity. Our evaluation results were conducted by manual analysis,
which means bias from engineers exists in this process. In order to reduce the
bias, two engineers participated in the analysis, while one engineer finished the
overall results and another engineer double checked them to reach a consensus.
Moreover, although we used the real-world requirements to verify the applicability
of our approach, we are still not sure whether the proposed approach can cope with
the real-world requirements in different domains. However, based on our insights,
adjustments to algorithms and corresponding parameters are necessary, when dealing
with requirements in different domains.

7.4 Related Work

In this section, we discuss prior research in feature extraction from three differ-
ent perspectives: 1) the different Distributional Semantic Models (DSMs) used for
achieving similarity; 2) the application and effect of requirement parsing; 3) the
analysis of different types of textual documents for feature extraction.

7.4.1 Traditional DSMs

There exist some previous research focusing on applying traditional DSMs to achieve
the similarity of the requirements. Alves et al. utilized Latent Semantic Analysis
(LSA) and Vector Space Model (VSM) respectively to compute the similarity of
each pair of the requirements, and then, applied Hierarchical Agglomerative Clus-
tering (HAC) to achieve the initial feature tree in terms of the similarity of the
requirements [ASB+08]. Weston et al. proposed a tool named ArborCraft to iden-
tify features from requirements also based on applying LSA and HAC [WCR09].
Kumaki et al. applied VSM to measure the similarity of each pair of sentences in
requirements and also calculate the similarity between classes of design-level UML
class diagrams to support the analysis of commonality and variability [KTWF12].

By contrast, we use neural-network-based technique, Doc2Vec that is an extension
of word2vec [MSC+13], to achieve the vector representation of requirement rather
than applying traditional DSMs. Doc2Vec can be regarded as a prediction model,

7.4. Related Work 115

while the traditional DSMs are the “count models” [BDK14]. In terms of Baroni
et al.’s research, prediction models have been proven to outperform common “count
models” [BDK14]. Although we also use HAC to extract the initial feature tree,
we apply a different metric to gain clusters and simplify the hierarchical clustering
tree. In addition, we not only compute the distributional semantic similarity of
the requirements, but also take the structural information of the requirements into
account.

7.4.2 Requirement Parsing

Besides directly applying traditional DSMs to gain similarity, some approaches firstly
parse the requirement in terms of different rules. The purpose of parsing the re-
quirements is to extract the potential semantic roles or behaviors with respect to
functionality from requirements. And then, features are identified further based on
the semantic roles or behaviors information. In research [Wan15, Wan16], the se-
mantic frames of frequent verbs in requirements are built in order to extract the
structured semantic information. The concept of semantic frames comes from Se-
mantic Role Labeling (SRL), while authors applied Stanford Parser [MSB+14] and
WordNet [Mil95] to assist the process of analysis. Although the semantic informa-
tion was identified, they did not propose a complete approach to use semantic frames
to extract features in the SPL context. Itzik et al. analyzed the requirements based
on SRL and parsed each sentence in the requirements in terms of different semantic
roles they predefined [IRB14]. And then, the similarity of requirements is computed
based on the similarity of each pair of semantic roles by utilizing WordNet. After
that, HAC is also used to extract features. In research [IRBW16], authors extended
their prior research [RBIW14, IRB14] to apply the ontological and semantic consid-
erations to analyze requirements based on the behavior-oriented extraction method.
In detail, SRL is also applied to extract semantic roles from requirements, and HAC
is used to identify features in terms of the similarity computed by applying LSA.

Even though parsing the requirements improves the process of feature extraction,
it takes extra efforts to parse the requirements by manual analysis even with the
assistance of NLP tools, such as Stanford Parser. This is mainly because 1) require-
ment parsing relies on accurate syntactic information of sentences that needs to be
checked by manual analysis and 2) the parsing task usually follows several particular
pre-defined rules which need to be mastered by engineers. Both of them increase
the cost for domain engineers to have the usable parsed requirements. In addition,
requirement parsing is usually used to process the requirements with only one or two
sentences. However, in the Danfoss case, one individual requirement may contain
many sentences. It is unrealistic to parse the requirements with many sentences,
since it is very hard to obtain uniform semantic roles.

7.4.3 Miscellaneous Textual Documents

Except for requirements specifications, some researches are focused on extracting fea-
tures from other types of textual documents, for example, informal product descrip-
tions [ACP+12, DGH+11, DDH+13, NBA+17] or online software reviews [BKSJ16,
BKSH17]. They also used different techniques, such as K-means [BKSH17], Fuzzy
C-Means [BKSJ16], Association Rule Mining [DDH+13], to aid feature extraction.

116 7. Automated Extraction of Domain Knowledge in Practice

However, informal product descriptions and online software reviews just contain a
very small part of the information regarding features, compared with requirements
specifications. Hence, the features extracted from these informal textual documents
are really limited. By contrast, we analyze the requirements specifications that
contain complete information regarding functionality to extract features.

The majority of the aforementioned research was conducted on small datasets each
of which is less than 100 individual requirements to be used to explore the methods
to automate the process of feature extraction from requirements. However, fea-
ture extraction in practice may face a large dataset of requirements and automated
extraction is impossible to provide a result with 100% accuracy. Hence, manual
analysis is indispensable for finally correct the feature extraction results in practice.
In contrast with previous researches, we provide a practical framework that not only
can produce the recommended features from real-world requirements of relatively
large size, but also offers a GUI that is able to visualize all the extracted features
and restructure them based on some key information.

7.5 Summary

In this chapter, we refined and combined the approaches in Chapter 5 and Chapter 6
to improve the process of domain analysis. Especially, 1) we used neural document
embedding techniques to gain an accurate language model of the requirements; 2)
we achieve the similarity of the requirements taking both distributional semantic
similarity and structural similarity into account; 3) HAC was applied to gain the
initial feature tree; 4) we developed a dedicated GUI used as a tool to visualize the
automated extracted results and support engineers in the process of domain analysis.
However, The large size of the requirements and the lack of the mapping between
requirements and variants lead to the fact that the method proposed in Chapter 5
cannot be used to extract the variability information in the Danfoss case. This is
the first exploration that the technique of feature extraction from requirements is
used to improve the process of domain analysis in practice. Our study demonstrated
that our approach is capable of assisting domain engineers to extract features.

8. Conclusion and Future Work

In this chapter, we first conclude this thesis. Among them, we summarize the main
approaches, results, and contributions of each chapter referring to the corresponding
research questions proposed in the introduction. Then, based on the insights in our
research, we discuss potential future work from different directions.

8.1 Conclusion

Natural language requirement documents contain the original and complete informa-
tion of products, especially for software requirements specifications as the primary
artifacts in the development of software products. Meanwhile, feature and the varia-
tion points extraction from requirements documents can provide an explicit mapping
of features and variants to other artifacts. In order to realize a viable approach to
automate the extraction process, this thesis is focused on the following four phases.

First, in order to systematically understand the research status in the field of fea-
ture and variability information extraction from natural language documents, we
performed a systematic literature review (cf. Chapter 3), in which we investigate
the technologies that have been used as well as their applicability, reliability and
degree of automation. As a result, we achieve the first goal of this thesis. The
obtained multi-dimensional overview and key insights of current research status not
only form the contributions answering research question RQ1, but also result in an
explicit guideline for our follow-up research.

Second, we present an initial self-learning structure to extract features (cf. Chap-
ter 4). In particular, we apply Laplacian Eigenmaps, an unsupervised dimension-
ality reduction technique, to embed text requirements into compact binary codes.
And, requirements are transformed into a matrix representation by looking up a
pre-trained word embedding. Then, the matrix is fed into Convolutional Neural
Network (CNN) to learn linguistic characteristics of the requirements. Furthermore,
we train CNN by matching the output of CNN with the pre-trained binary codes.
We conduct preliminary experiments and discuss the results. Although the self-
learning structure has not yet reached a usable accuracy, it has the potential to

118 8. Conclusion and Future Work

realize automatic information capture. Moreover, it provides valuable experience
for the following research. We show a feasible approach called VarMine to extract
features and variation points from software requirements specifications (cf. Chap-
ter 5). We integrate probabilistic relevance and neural word embedding techniques to
achieve the similarity of each pair of requirements. Then, the hierarchical clustering
is used to group features, and we utilize heuristic and recognizing textual entailment
based method to detect variation points between identified features. We perform a
case study to evaluate the usability and robustness of VarMine and to compare it
with the results of other related approaches. The results show that VarMine not
only has the ability to accurately extract features, but also recognizes meaningful
variability information. In summary, we achieve the second goal of this thesis and
our contributions answer the RQ2.

Third, we present an approach to train prediction models by using machine learning
techniques to identify feature terms, since feature terms as the smallest units in a
feature can be regarded as vital indicators for describing a feature (cf. Chapter 6).
To this end, we extract the candidate terms from requirement specifications in one
domain and take six attributes of each term into account to create a labeled dataset.
Subsequently, we apply seven commonly used machine algorithms to train predic-
tion models on the labeled dataset. We then use these prediction models to predict
feature terms from the requirements belonging to the other two different domains.
Our results show that a) feature terms can be predicted with high accuracy within
a domain; b) prediction across domains leads to a decreased but still good accu-
racy; and c) machine learning algorithms perform differently. This answers the RQ3
regarding figuring out the intention of an extracted feature.

Fourth, we integrate the technologies presented in Chapter 5 and Chapter 6, and
apply to analyze the requirements from Danfoss (cf. Chapter 7). In order to solve
the specialities of the Danfoss requirements, we not only use Doc2Vec to obtain the
similarity of the requirement name and body, but also take the structure of the re-
quirements into account. Moreover, we utilized feature terms prediction techniques
to provide key information to domain engineers for further analyzing the extraction
results. In particular, we developed a GUI to visualize the entire process for support-
ing to analyze the extracted features. We empirically demonstrate the accuracy of
the results of applying the combined approach for analyzing the real-world software
requirements specifications, and discusses how the proposed approach can improve
the extraction process. As a consequence, we argue the integration is a reasonable
structure that can be used to provide a starting point for extracting features from
legacy requirements documents, thereby answering RQ4.

8.2 Future Work

We provide an overview of potential directions for future research. We identify and
discuss not only feature work on automatically generating a feature model in domain
engineering but also open challenges related to using extracted domain knowledge
in application engineering.

8.2. Future Work 119

Feature descriptions

Features refer to the abstraction of domain knowledge. A complete feature contains
a lot of potential information. In our current research, we have applied different
techniques to extract features and the corresponding requirements, and we provide
feature-related terms to refer to the intention or name of each extracted feature. In
future work, we plan to apply automatic text summarization technology to gener-
ate a summary of the requirements documents corresponding to the feature, which
can be regarded as a description of the extracted feature. Automatic text sum-
marization technology can shorten a long text to form an accurate summary that
can contain concise and important information [GG17], which can benefit extracting
features in tremendous requirements. The reason is that in the feature extraction
with numerous requirements, an accurate and fluent summary of the requirements
in each feature can allow the domain engineer to quickly understand the meaning
of the extracted feature. Moreover, compared with the extracted feature terms, a
summary of the requirements in a feature can more fluently convey and pass the
intended information to domain engineers. In addition, automatic text summariza-
tion technology can also be applied in the process of the initial feature extraction.
Therefore, in future work, we will pay more attention to the application of automatic
text summarization technology in the field of software product lines.

Different artifacts

Currently, we are focusing on extracting features and variation points from natural
language requirements. However, in the process of software development and evolu-
tion, there exist many artifacts, such as requirements, user cases, source code, class
diagrams, etc. These artifacts not only describe the functionalities of a software
system, but they are also related to each other. Therefore, all these artifacts contain
potential information about commonality and variability, which can help improve
the extraction process. For example, feature location technology supports identify-
ing the initial location of functionality in the source code of a software system. It
also analyzes source code comments that are a type of textual information to obtain
a mapping between source code of the implementation of a function and textual
description of the function [DRGP13]. Therefore, in future work, we plan to analyze
different artifacts to extract features and variation pints to obtain more compre-
hensive information. Moreover, the information extracted from different artifacts
can complement and be connected with each other, which can not only improve the
accuracy of extracting feature and variability information but also form a feature
model with a more comprehensive perspective than extracting information only from
requirements.

Product configuration

As presented in previous chapters, natural language processing techniques are ben-
eficial to extracting features and variation points from textual requirements in do-
main engineering of software product lines. We are considering applying natural
language processing techniques in other phases of software product lines. For in-
stance, in application engineering, engineers need to analyze the requirements from
a particular customer to select existing features to derive a particular variant that

120 8. Conclusion and Future Work

satisfies the customer’s needs from an existing software product line. Although ex-
perienced engineers are involved in the activity of the analysis, this process is still
time-consuming, especially confronted with numerous requirements. In future work,
we plan to improve the feature extraction technology to automatically learn the do-
main knowledge of an existing product line. The learned domain knowledge can be
used to analyze customers’ needs to improve the efficiency of engineers in feature
selection and product configuration.

Bibliography

[ABKS13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines. Springer, 2013. (cited on Page 1, 5, 6,

7, 8, and 9)

[ACP+12] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans,
Charles Vanbeneden, Philippe Collet, and Philippe Lahire. On extract-
ing feature models from product descriptions. In Proceedings of the
International Workshop on Variability Modeling of Software-Intensive
Systems, pages 45–54. ACM, 2012. (cited on Page 23, 32, and 115)

[AK09] Sven Apel and Christian Kästner. An overview of feature-oriented
software development. Journal of Object Technology, 8:49–84, 2009.
(cited on Page 9)

[AM09] Ion Androutsopoulos and Prodromos Malakasiotis. A survey of para-
phrasing and textual entailment methods. Journal of Artificial Intel-
ligence Research, 38:135–187, 2009. (cited on Page 59)

[ANAV10] Vander Alves, Niu Niu, Carina Alves, and George Valença. Require-
ments engineering for software product lines: A systematic literature
review. Information and Software Technology, 52:806–820, 2010. (cited

on Page 37)

[ASB+08] Vander Alves, Christa Schwanninger, Luciano Barbosa, Awais Rashid,
Peter Sawyer, Paul Rayson, Christoph Pohl, and Andreas Rummler.
An exploratory study of information retrieval techniques in domain
analysis. In Proceedings of the International Software Product Line
Conference (SPLC), pages 67–76. IEEE, 2008. (cited on Page 13, 23, 40,

48, 76, and 114)

[ASBZ16] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zim-
mer. Extracting domain models from natural-language requirements:
Approach and industrial evaluation. In Proceedings of the Conference
on Model Driven Engineering Languages and Systems, pages 250–260.
ACM, 2016. (cited on Page 95)

[ASBZ17] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zim-
mer. Automated extraction and clustering of requirements glossary
terms. IEEE Transactions on Software Engineering, 43(10):918–945,
2017. (cited on Page 95)

122 Bibliography

[BAPM15] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christo-
pher D. Manning. A large annotated corpus for learning natural lan-
guage inference. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 632–642. ACL,
2015. (cited on Page 16)

[BBBK11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Al-
gorithms for hyper-parameter optimization. In Proceedings of the Inter-
national Conference on Neural Information Processing Systems, page
2546–2554. Curran Associates Inc., 2011. (cited on Page 88)

[BDK14] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count,
predict! a systematic comparison of context-counting vs. context-
predicting semantic vectors. In Proceedings of the International Con-
ference on Association for Computational Linguistics (ACL), pages
238–247. ACL, 2014. (cited on Page 40, 49, and 115)

[BEG12] Ebrahim Bagheri, Faezeh Ensan, and Dragan Gasevic. Decision sup-
port for the software product line domain engineering lifecycle. Auto-
mated Software Engineering, 19:335–377, 2012. (cited on Page 23, 80,

and 96)

[BGJM16] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Enriching word vectors with subword information. Transac-
tions of the Association for Computational Linguistics, pages 135–146,
2016. (cited on Page 14)

[BKS15] Hasrina Bakar Bakar, Zarinah M. Kasirun, and Norsaremah Salleh.
Feature extraction approaches from natural language requirements for
reuse in software product lines: A systematic literature review. Journal
of Systems and Software, 106:132–149, 2015. (cited on Page 18 and 37)

[BKSH17] Noor Hasrina Bakar, Zarinah Mohd Kasirun, Norsaremah Salleh, and
Azni Haslizan Ab Halim. Extracting software features from online re-
views to demonstrate requirements reuse in software engineering. In
Proceedings of the International Conference on Computing and Infor-
matics, pages 184–190. Sintok: School of Computing, 2017. (cited on

Page 24, 79, 80, 96, and 115)

[BKSJ16] Noor Hasrina Bakar, Zarinah M. Kasirun, Norsaremah Salleh, and
Hamid A. Jalab. Extracting features from online software reviews to
aid requirements reuse. Journal of Applied Soft Computing, 49:1297–
1315, 2016. (cited on Page 24, 79, 80, 96, and 115)

[BLB+14] Luca Bigliardi, Michele Lanza, Alberto Bacchelli, Marco DAmbros, and
Andrea Mocci. Quantitatively exploring non-code software artifacts.
In Proceedings of the International Conference on Quality Software,
pages 286–295. IEEE, 2014. (cited on Page 10)

Bibliography 123

[BN03] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimen-
sionality reduction and data representation. Neural Computation,
15(6):1373–1396, 2003. (cited on Page 42)

[BRN+13] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Mar-
tin Becker, Krzysztof Czarnecki, and Andrzej Wa̧sowski. A survey
of variability modeling in industrial practice. In Proceedings of the
International Workshop on Variability Modeling of Software-Intensive
Systems, pages 1–8. ACM, 2013. (cited on Page 37)

[CH74] Tadeusz Caliński and JA Harabasz. A dendrite method for cluster
analysis. Journal of Communications in Statistics, 3(1):1–27, 1974.
(cited on Page 56)

[CHN19a] Jessie Carbonnel, Marianne Huchard, and Clémentine Nebut. Mod-
elling equivalence classes of feature models with concept lattices to
assist their extraction from product descriptions. Journal of Systems
and Software, 152:1–23, 2019. (cited on Page 24)

[CHN19b] Jessie Carbonnel, Marianne Huchard, and Clémentine Nebut. Towards
complex product line variability modelling: Mining relationships from
non-boolean descriptions. Journal of Systems and Software, 156:341–
360, 2019. (cited on Page 24)

[CN01] Paul C. Clements and Linda M. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Professional, 2001. (cited on

Page 1)

[CZZM05] Kun Chen, Wei Zhang, Haiyan Zhao, and Hong Mei. An approach to
constructing feature models based on requirements clustering. In Pro-
ceedings of the International Conference on Requirements Engineering
(RE), pages 31–40. IEEE, 2005. (cited on Page 22, 33, and 75)

[DDH+13] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu Acher,
Jane Cleland-Huang, and Patrick Heymans. Feature model extraction
from large collections of informal product descriptions. In Proceedings
of the European Software Engineering Conference/Foundations of Soft-
ware Engineering (ESECFSE), pages 290–300. ACM, 2013. (cited on

Page 23 and 115)

[DGH+11] Horatiu Dumitru, Marek Gibiec, Negar Hariri, Jane Cleland-Huang,
Bamshad Mobasher, Carlos Castro-Herrera, and Mehdi Mirakhorli.
On-demand feature recommendations derived from mining public prod-
uct descriptions. In Proceedings of the International Conference on
Software Engineering (ICSE), page 181–190. ACM, 2011. (cited on

Page 23, 32, and 115)

[DRB+13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski,
Martin Becker, and Krzysztof Czarnecki. An exploratory study of

124 Bibliography

cloning in industrial software product lines. In Proceedings of the Eu-
ropean Conference on Software Maintenance and Reengineering, pages
25–34. IEEE, 2013. (cited on Page 2)

[DRGP13] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshy-
vanyk. Feature location in source code: A taxonomy and survey. Jour-
nal of of Software: Evolution and Process, 25:53–95, 2013. (cited on

Page 2, 37, and 119)

[DRSZ13] Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto.
Recognizing Textual Entailment: Models and Applications. Morgan &
Claypool Publishers, 2013. (cited on Page 15)

[Dum04] Susan T. Dumais. Latent semantic analysis. Annual Review of Infor-
mation Science and Technology, 38(1):188–230, 2004. (cited on Page 14)

[Dun74] J. C. Dunn. Well-separated clusters and optimal fuzzy partitions. Jour-
nal of Cybernetics, 4(1):95–104, 1974. (cited on Page 56)

[FAT98] Katerina T. Frantzi, Sophia Ananiadou, and Junichi Tsujii. The c-
value/nc-value method of automatic recognition for multi-word terms.
In Proceedings of the European Conference on Research and Advanced
Technology for Digital Libraries, pages 585–604. Springer, 1998. (cited

on Page 84)

[FFGS18] Alessandro Fantechi, Alessio Ferrari, Stefania Gnesi, and Laura Sem-
ini. Requirement engineering of software product lines: Extracting
variability using nlp. In Proceedings of the IEEE International Re-
quirements Engineering Conference (RE), pages 418–423, 2018. (cited

on Page 24)

[FGS17] Alessandro Fantechi, Stefania Gnesi, and Laura Semini. Ambiguity
defects as variation points in requirements. In Proceedings of the In-
ternational Workshop on Variability Modelling of Software-Intensive
Systems, page 13–19. ACM, 2017. (cited on Page 24 and 77)

[FSD13] Alessio Ferrari, Giorgio O. Spagnolo, and Felice Dell’Orletta. Min-
ing commonalities and variabilities from natural language documents.
In Proceedings of the International Software Product Line Conference
(SPLC), pages 116–120. ACM, 2013. (cited on Page 23, 77, and 96)

[FSGD15] Alessio Ferrari, Giorgio O. Spagnolo, Stefania Gnesi, and Felice
Dell’Orletta. Cmt and fde: Tools to bridge the gap between natural
language documents and feature diagrams. In Proceedings of the In-
ternational Software Product Line Conference (SPLC), pages 402–410.
ACM, 2015. (cited on Page 24 and 32)

[FSK+16] Thomas Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker,
and Bo Zhang. Ten years of product line engineering at danfoss:
Lessons learned and way ahead. In Proceedings of the International

Bibliography 125

Systems and Software Product Line Conference (SPLC), pages 252–
261. ACM, 2016. (cited on Page 1)

[GDN13] Pavel Golik, Patrick Doetsch, and Hermann Ney. Cross-entropy vs.
squared error training: a theoretical and experimental comparison. In
Proceedings of the International Conference on Speech Communication
Association, pages 1756–1760. ISCA, 2013. (cited on Page 45)

[GG17] Mahak Gambhir and Vishal Gupta. Recent automatic text summa-
rization techniques: a survey. Artificial Intelligence Review, 47:1–66,
2017. (cited on Page 119)

[GGN+18] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep
Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke
Zettlemoyer. Allennlp: A deep semantic natural language processing
platform. In Proceedings of Workshop for NLP Open Source Software
(NLP-OSS), pages 1–6. ACL, 2018. (cited on Page 64)

[HCHM+13] Negar Hariri, Carlos Castro-Herrera, Mehdi Mirakhorli, Jane Cleland-
Huang, and Bamshad Mobasher. Supporting domain analysis through
mining and recommending features from online product listings. IEEE
Transactions on Software Engineering, 39:1736–1752, 2013. (cited on

Page 23)

[HG11] Julian PT Higgins and Sally Green. Cochrane Handbook for Systematic
Reviews of Interventions. John Wiley & Sons, 2011. (cited on Page 18)

[HJ15] Matthew Honnibal and Mark Johnson. An improved non-monotonic
transition system for dependency parsing. In Proceedings of the Inter-
national Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1373–1378. ACL, 2015. (cited on Page 54)

[HM18] Matthew Honnibal and Ines Montani. spacy 2: Natural language un-
derstanding with bloom embeddings, convolutional neural networks
and incremental parsing. To appear, 2018. (cited on Page 64 and 89)

[HT07] Thomas B. Hilburn and Massood Towhidnejad. A case for software
engineering. In Proceedings of the International Conference on Soft-
ware Engineering Education and Training, pages 107–114. IEEE, 2007.
(cited on Page 62, 89, 100, and 109)

[HW15] Mostafa Hamza and Robert J. Walker. Recommending features and
feature relationships from requirements documents for software prod-
uct lines. In Proceedings of the International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering, pages 25–31.
IEEE, 2015. (cited on Page 23, 33, and 40)

126 Bibliography

[HZS+16] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf
Leßenich, Martin Becker, and Sven Apel. Preprocessor-based variabil-
ity in open-source and industrial software systems: An empirical study.
21(2):449–482, 2016. (cited on Page 1)

[IRB14] Nili Itzik and Iris Reinhartz-Berger. Generating feature models from
requirements: Structural vs. functional perspectives. In Proceedings
of the International Software Product Line Conference (SPLC), pages
44–51. ACM, 2014. (cited on Page 23, 33, 40, 47, 71, 76, and 115)

[IRBW16] Nili Itzik, Iris Reinhartz-Berger, and Yair Wand. Variability analysis of
requirements: Considering behavioral differences and reflecting stake-
holders’ perspectives. IEEE Transactions on Software Engineering,
42:687–706, 2016. (cited on Page 24, 33, 40, 47, 76, and 115)

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, Inc., 1988. (cited on Page 56)

[KAT16] Matthias Kowal, Sofia Ananieva, and Thomas Thüm. Explaining
anomalies in feature models. In Proceedings of the International Con-
ference on Generative Programming: Concepts and Experiences, page
132–143. ACM, 2016. (cited on Page 58)

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. ArXiv e-prints, Dec 2014. (cited on Page 45)

[KBA15] Amal Khtira, Anissa Benlarabi, and Bouchra El Asri. Detecting feature
duplication in natural language specifications when evolving software
product lines. In Proceedings of the International Conference on Eval-
uation of Novel Approaches to Software Engineering (ENASE), pages
257–262. IEEE, 2015. (cited on Page 23 and 33)

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
and A. Spencer Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-21, Software En-
gineering Institute, 1990. (cited on Page 1, 6, 9, and 111)

[KG09] Mahvish Khurum and Tony Gorschek. A systematic review of domain
analysis solutions for product lines. Journal of Systems and Software,
82:1982–2003, 2009. (cited on Page 37)

[KGB14] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A con-
volutional neural network for modelling sentences. 2014. (cited on

Page 43)

[Kim14] Yoon Kim. Convolutional neural networks for sentence classification. In
Proceedings of the International Conference on Empirical Methods in
Natural Language Processing (EMNLP), page 1746–1751. ACL, 2014.
(cited on Page 63)

Bibliography 127

[Kit07] Barbara A. Kitchenham. Guidelines for performing systematic litera-
ture reviews in software engineering. In EBSE Technical Report, 2007.
(cited on Page 18)

[Kru01] Charles W. Krueger. Easing the transition to software mass cus-
tomization. In Proceedings of the International Workshop on Software
Product-Family Engineering, pages 282–293. Springer, 2001. (cited on

Page 1 and 2)

[KTWF12] Kentaro Kumaki, Ryosuke Tsuchiya, Hironori Washizaki, and Yoshiaki
Fukazawa. Supporting commonality and variability analysis of require-
ments and structural models. In Proceedings of the International Soft-
ware Product Line Conference (SPLC), pages 115–118. ACM, 2012.
(cited on Page 13, 23, 40, 48, 77, and 114)

[LB02] E. Loper and S. Bird. Nltk: The natural language toolkit. In Proceed-
ings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics,
pages 63–70. ACL, 2002. (cited on Page 95)

[LGL+10] Liana Barachisio Lisboa, Vinicius Cardoso Garcia, Daniel Lucrédio,
Eduardo Santana de Almeida, Silvio Romero de Lemos Meira, and Re-
nata Pontin de Mattos Fortes. A systematic review of domain analysis
tools. Information and Software Technology, 52:1–13, 2010. (cited on

Page 37)

[Li18] Yang Li. Feature and variability extraction from natural language soft-
ware requirements specifications. In Proceedings of the International
Systems and Software Product Line Conference (SPLC), page 72–78.
ACM, 2018. (cited on Page 39 and 49)

[LKYW05] Luying Liu, Jianchu Kang, Jing Yu, and Zhongliang Wang. A compar-
ative study on unsupervised feature selection methods for text cluster-
ing. In Proceedings of the National Conference on Natural Language
Processing and Knowledge Engineering, pages 597–601. IEEE, 2005.
(cited on Page 64)

[LLLS13] Sascha Lity, Remo Lachmann, Malte Lochau, and Ina Schaefer. Delta-
oriented software product line test models - the body comfort system
case study. Technical report, TU Braunschweig, 2013. (cited on Page 45,

62, 81, and 100)

[LM14] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In Proceedings of the International Conference on
Machine Learning, pages II–1188–II–1196. JMLR.org, 2014. (cited on

Page 101)

[LSR07] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software
Product Lines in Action: The Best Industrial Practice in Product Line
Engineering. Springer-Verlag, 2007. (cited on Page 5 and 8)

128 Bibliography

[LSS17] Yang Li, Sandro Schulze, and Gunter Saake. Reverse engineering vari-
ability from natural language documents: A systematic literature re-
view. In Proceedings of the International Systems and Software Product
Line Conference (SPLC), pages 133–142. ACM, 2017. (cited on Page 17

and 22)

[LSS18a] Yang Li, Sandro Schulze, and Gunter Saake. Extracting features from
requirements: Achieving accuracy and automation with neural net-
works. In Proceedings of the International Conference on Software
Analysis, Evolution, and Reengineering, pages 477–481, March 2018.
(cited on Page 39)

[LSS18b] Yang Li, Sandro Schulze, and Gunter Saake. Reverse engineering vari-
ability from requirement documents based on probabilistic relevance
and word embedding. In Proceedings of the International Systems and
Software Product Line Conference (SPLC), pages 121–131. ACM, 2018.
(cited on Page 49)

[LSSF20] Yang Li, Sandro Schulze, Helene Hvidegaard Scherrebeck, and
Thomas Sorensen Fogdal. Automated extraction of domain knowledge
in practice: The case of feature extraction from requirements at dan-
foss. In Proceedings of the International Systems and Software Product
Line Conference (SPLC), pages 1–11. ACM, 2020. (cited on Page 99)

[LSX20] Yang Li, Sandro Schulze, and Jiahua Xu. Feature terms prediction:
A feasible way to indicate the notion of features in software product
line. In Proceedings of the International Conference on Evaluation
and Assessment in Software Engineering (EASE), pages 90–99. ACM,
2020. (cited on Page 79)

[LZ11] Yuanhua Lv and Chengxiang Zhai. Lower-bounding term frequency
normalization. In Proceedings of the International Conference on In-
formation and Knowledge Management, pages 7–16. ACM, 2011. (cited

on Page 52, 54, and 64)

[MBBA16] Mariem Mefteh, Nadia Bouassida, and Hanêne Ben-Abdallah. Mining
feature models from functional requirements. The Computer Journal,
59:1784–1804, 2016. (cited on Page 24)

[MBK91] Yoelle Maarek, Daniel Berry, and Gail Kaiser. An information retrieval
approach for automatically constructing software libraries. IEEE
Transactions on Software Engineering, 17:800–813, 1991. (cited on

Page 95)

[Mil95] George A. Miller. Wordnet: A lexical database for english. Commu-
nications of the ACM, 38(11):39–41, 1995. (cited on Page 40 and 115)

[MM08] Marie-Catherine De Marneffe and Christopher D. Manning. Stanford
typed dependencies manual, 2008. (cited on Page 12)

Bibliography 129

[MSB+14] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose
Finkel, Steven Bethard, and David McClosky. The stanford corenlp
natural language processing toolkit. In Proceedings of the Inter-
national Conference on Association for Computational Linguistics
(ACL), pages 55–60, 2014. (cited on Page 40 and 115)

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their com-
positionality. In Proceedings of the National Conference on Neural
Information Processing Systems (NIPS), pages 3111–3119. Curran As-
sociates, Inc., 2013. (cited on Page 14, 51, 52, 63, and 114)

[MT04] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into texts.
In Proceedings of the International Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 404–411. ACL, 2004.
(cited on Page 84)

[NBA+17] Sana Ben Nasr, Guillaume Bécan, Mathieu Acher, João Bosco Fer-
reira Filho, Nicolas Sannier, Benoit Baudry, and Jean-Marc Davril.
Automated extraction of product comparison matrices from informal
product descriptions. Journal of Systems and Software, 124:82–103,
2017. (cited on Page 24, 32, 77, and 115)

[NSN+14] Nan Niu, Juha Savolainen, Zhendong Niu, Mingzhou Jin, and Jing-
Ru C. Cheng. A systems approach to product line requirements reuse.
IEEE Systems Journal, 8:827–836, 2014. (cited on Page 23)

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer, 2005. (cited on Page 1, 5, and 6)

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the Inter-
national Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543. ACL, 2014. (cited on Page 14)

[PTDU16] Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit.
A decomposable attention model for natural language inference. In
Proceedings of the International Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2249–2255. ACL, 2016.
(cited on Page 59)

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830, 2011. (cited on Page 64,

88, and 89)

130 Bibliography

[RBIW14] Iris Reinhartz-Berger, Nili Itzik, and Yair Wand. Analyzing variabil-
ity of software product lines using semantic and ontological consider-
ations. In Proceedings of the International Conference on Advanced
Information Systems Engineering (CAiSE), pages 150–164. Springer,
2014. (cited on Page 23, 39, 47, 75, 76, and 115)

[RBSA19] Iris Reinhartz-Berger, Ilan Shimshoni, and Aviva Abdal. Behavior-
derived variability analysis: Mining views for comparison and evalu-
ation. In CAiSE, pages 675–690. Springer International Publishing,
2019. (cited on Page 24)

[RBWH15] Iris Reinhartz-Berger and Ora Wulf-Hadash. Improving the manage-
ment of product lines by performing domain knowledge extraction and
cross product line analysis. Information and Software Technology,
59:191–204, 2015. (cited on Page 23)

[RM05] Lior Rokach and Oded Maimon. Clustering methods. In Data Mining
and Knowledge Discovery Handbook, pages 321–352. Springer US, 2005.
(cited on Page 55)

[RR03] C. Riva and C. Del Rosso. Experiences with software product family
evolution. In Proceedings of the International Workshop on Principles
of Software Evolution, pages 161–169. IEEE, 2003. (cited on Page 2)

[ŘS10] Radim Řeh̊uřek and Petr Sojka. Software framework for topic mod-
elling with large corpora. In Proceedings of the International LREC
Workshop on New Challenges for NLP Frameworks, pages 45–50.
ELRA, 2010. (cited on Page 45 and 64)

[RTL09] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-validation. In
Encyclopedia of Database Systems, pages 532–538. Springer US, 2009.
(cited on Page 87)

[RZ09] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance
framework: Bm25 and beyond. Foundations and Trends in Information
Retrieval, 3(4):333–389, 2009. (cited on Page 52 and 54)

[SG03] Alexander Strehl and Joydeep Ghosh. Cluster ensembles - a knowledge
reuse framework for combining multiple partitions. Journal of Machine
Learning Research, 3:583–617, 2003. (cited on Page 64 and 65)

[SKPC18] Anjali Sree-Kumar, Elena Planas, and Robert Clarisó. Extracting soft-
ware product line feature models from natural language specifications.
In Proceedings of the International Systems and Software Product Line
Conference (SPLC), pages 43–53. ACM, 2018. (cited on Page 24, 79, 95,

and 96)

[SWY75] Gerard M Salton, Andrew Wong, and Chungshu Yang. A vector
space model for automatic indexing. Communications of the ACM,
18(11):613–620, 1975. (cited on Page 14)

Bibliography 131

[TCO00] Peter Toft, Derek Coleman, and Joni Ohta. A cooperative model
for cross/divisional product development for a software product line.
In Proceedings of the International Software Product Line Conference
(SPLC), pages 111–132. Springer, 2000. (cited on Page 1)

[TKB+09] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. Featureide: A tool framework for
feature-oriented software development. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages 611–614.
IEEE, 2009. (cited on Page 64 and 112)

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. Scipy 1.0: Funda-
mental algorithms for scientific computing in python. Nature Methods,
17:261–272, 2020. (cited on Page 64)

[Wan15] Yinglin Wang. Semantic information extraction for software require-
ments using semantic role labeling. In Proceedings of the Conference on
Progress in Informatics and Computing (PIC), pages 332–337. IEEE,
2015. (cited on Page 24, 40, 47, 76, and 115)

[Wan16] Yinglin Wang. Automatic semantic analysis of software requirements
through machine learning and ontology approach. Journal of Shanghai
Jiaotong University, 21:692–701, 2016. (cited on Page 24, 40, 47, 76,

and 115)

[WCR09] Nathan Weston, Ruzanna Chitchyan, and Awais Rashid. A framework
for constructing semantically composable feature models from natural
language requirements. Proceedings of the International Software Prod-
uct Line Conference (SPLC), pages 211–220, 2009. (cited on Page 13,

23, 32, 40, 48, 71, 77, and 114)

[WRH+12] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn
Regnell, and Anders Wessln. Experimentation in Software Engineering.
Springer, 2012. (cited on Page 20, 22, and 25)

[XM12] Huan Xu and Shie Mannor. Robustness and generalization. Machine
Learning, 86:391–423, 2012. (cited on Page 91)

[YWYL13] Yue Yu, Huaimin Wang, Gang Yin, and Bo Liu. Mining and recom-
mending software features across multiple web repositories. In Proceed-
ings of the Asia-Pacific Symposium on Internetware, pages 1–9. ACM,
2013. (cited on Page 23)

132 Bibliography

[ZLT15] Jiang Zhao, Man Lan, and Junfeng Tian. Ecnu: Using traditional sim-
ilarity measurements and word embedding for semantic textual sim-
ilarity estimation. In Proceedings of the International Workshop on
Semantic Evaluation (SemEval), pages 117–122. ACL, 2015. (cited on

Page 102)

[ZWCL10] Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu. Self-taught hashing
for fast similarity search. In Proceedings of the International Confer-
ence on Research and Development in Information Retrieval, pages
18–25. ACM, 2010. (cited on Page 43)

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich
nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte
haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:
- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,
- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
 Weise zu interpretieren,
- fremde Ergebnisse oder Veröffentlichungen plagiiert,
- fremde Forschungsergebnisse verzerrt wi dergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und
Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die
Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als

Magdeburg, den

30.10.2020

Yang Li

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Goal of the Thesis
	1.2 Structure of the Thesis

	2 Background
	2.1 Software Product Line Engineering
	2.1.1 Domain Engineering
	2.1.2 Application Engineering
	2.1.3 Feature Model
	2.1.4 Gap between SPL and Traditional Software Reuse

	2.2 Natural Language Processing
	2.2.1 Preprocessing
	2.2.2 Word Embedding
	2.2.3 Recognizing Textual Entailment

	2.3 Summary

	3 Current Research on Feature and Variability Extraction
	3.1 Review Methodology
	3.1.1 Need for a Review
	3.1.2 Research Questions
	3.1.3 Search Strategy
	3.1.4 Conducting the Review

	3.2 Results
	3.2.1 Results of Studies Search
	3.2.2 Answering Research Questions

	3.3 Discussion
	3.4 Threats to Validity
	3.5 Related Work
	3.6 Summary

	4 An Initial Self-Learning Structure for Feature Extraction
	4.1 Methodology
	4.1.1 Overview
	4.1.2 Laplacian Eigenmaps
	4.1.3 Convolutional Neural Network
	4.1.4 Clustering

	4.2 Preliminary Result
	4.2.1 Discussion

	4.3 Related Work
	4.4 Summary

	5 VarMine: Reverse Engineering Variability in A Hybrid Way
	5.1 VarMine in a Nutshell
	5.2 Semantic Similarity Network
	5.2.1 Word Level Similarity
	5.2.2 Requirement Level Similarity

	5.3 Feature and Variability Extraction
	5.3.1 Feature Extraction
	5.3.2 Optionality and Group Constraints Detection
	5.3.3 Cross-Tree Constraints Detection

	5.4 Evaluation
	5.4.1 Research Questions
	5.4.2 Case Study Description
	5.4.3 Clustering Evaluation
	5.4.4 Feature Model Evaluation
	5.4.5 Comparison with SOVA and ArborCraft
	5.4.6 Answering RQs

	5.5 Threats to Validity
	5.6 Related Work
	5.7 Summary

	6 The Inference of the Notions of Features
	6.1 Methodology
	6.1.1 Dataset Generation
	6.1.2 Dataset Preprocessing
	6.1.3 Training Process

	6.2 Evaluation
	6.2.1 Research Questions
	6.2.2 Experiment Design
	6.2.3 Results

	6.3 Threats to Validity
	6.4 Related Work
	6.5 Summary

	7 Automated Extraction of Domain Knowledge in Practice
	7.1 Methodology
	7.1.1 Preprocessing
	7.1.2 Feature Extraction

	7.2 Evaluation
	7.2.1 Subject System and Research Questions
	7.2.2 Extraction Process
	7.2.3 Evaluation metrics
	7.2.4 Results

	7.3 Threats to Validity
	7.4 Related Work
	7.4.1 Traditional DSMs
	7.4.2 Requirement Parsing
	7.4.3 Miscellaneous Textual Documents

	7.5 Summary

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	Bibliography

