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Abstract

Title:Task rule and choice are reflected by layer-specific processing in rodent auditory

cortical microcircuits

Author:Maria Zempeltzi

Keywords: auditory cortex, rodents, sensory processing, learning, behavior, cortical

microcircuits, current source density (CSD) analysis

The primary auditory cortex (A1) is an essential node in the integrative brain network

that encodes the behavioral relevance of acoustic stimuli, predictions, and auditory-guided

decision making. Previous studies have revealed task-related information being present

at both the single-unit and population activity. However, its realization with respect to

the cortical microcircuitry is less well understood. In this study, we used chronic, lam-

inar current source density (CSD) analysis from the A1 of behaving Mongolian Gerbils

(Meriones unguiculatus) in order to characterize layer-specific, spatiotemporal synaptic

population activity. Animals were trained to first detect and subsequently to discrimi-

nate two pure tone frequencies in consecutive training phases in a Go/NoGo shuttle-box

task.

We demonstrate that not only sensory but also task- and choice-related information is

represented in the mesoscopic neuronal population code distributed across cortical layers.

Based on a single-trial analysis using generalized linear-mixed effect models (GLMM),

we found infragranular layers to be involved in auditory-guided action initiation during

tone detection. Supragranular layers, particularly, are involved in the coding of choice

options during tone discrimination. Further, we found that the overall columnar synaptic

network activity represents the accuracy of the opted choice. Moreover, cognitive flexi-

bility was represented in the A1 during multiple reversal of choice-outcome contingency
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task. During those cognitive processes, the infragranular layer VI continuously updates

the network in order to optimize of the discrimination performance, while the supragran-

ular layers promote the choice accuracy, especially at states with higher task-engagement

and performance.

Our study thereby suggests a multiplexed cortical representation of stimulus features

in dependence of the task, action selection, and the behavioral options of the animal in

preparation of correct choices. The findings expand our understanding of how individ-

ual layers contribute to the integrative circuit of the A1 in order to code task-relevant

information and guide sensory-based decision making.
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Zusammenfassung

Title:Schichtspezifische Repräsentation der Aufgabe und Entscheidung in Schaltkreisen

des primären auditorischen Cortex bei Nagetieren

Author:Maria Zempeltzi

Strichwoerter: auditorischer Kortex, Nagetiere, sensorische Verarbeitung, Lernen,

Verhalten, kortikale Schaltkreise, Analyse der Stromquellendichte (CSD)

Der primäre auditorische Kortex (A1) ist eine zentrale Integrations-Schaltstelle des

Hirns bei der Kodierung der Verhaltensrelevanz akustischer Reize, der Vorhersagen und

akustisch bedingter Entscheidungsfindungen. Frühere Studien haben gezeigt, dass auf-

gabenbezogene Informationen sowohl auf Ebene von Einzelaktivität, als auch in der Pop-

ulationsaktivität reflektiert sind. Die mechanistische Realisierung in Bezug auf die ko-

rtikalen Mikroschaltkreise ist jedoch bisher wenig verstanden. In der vorliegenden Ar-

beit wurde mittels chronischer Ableitungen die laminare Stromquellendichte (CSD) in

A1 bei sich verhaltenden Wüstenrennmäusen (Meriones unguiculatus) die schichtspezi-

fische, raumzeitliche synaptische Populationsaktivität charakterisiert. Die Tiere wurden

in aufeinander folgenden Trainingsphasen in einer Go/NoGo-Shuttle-Box-Aufgabe darauf

trainiert, zunächst zwei Reintonfrequenzen zu erkennen und anschließend zu diskrim-

inieren.

Die Arbeit konnte zeigen, dass nicht nur sensorische, sondern auch aufgaben- und

wahlbedingte Informationen im mesoskopischen neuronalen Populationscode, der über

kortikale Schichten verteilt ist, repräsentiert werden. Auf der Grundlage von Single-trial

Analysen konnte mittels generalized linear-mixed effect models (GLMM) gezeigt werden,

dass die Aktivität in infragranulären Schichten an der auditorisch ausgelösten Motor-

reaktion bei der Tondetektion eine zentrale Rolle spielen. Des Weiteren konnte gezeigt
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werden, dass insbesondere die supragranularen Schichten an der Kodierung von Wahlop-

tionen während der komplexeren Tonunterscheidung beteiligt sind. Ferner fanden wir her-

aus, dass die gesamte kolumnäre synaptische Netzwerkaktivität in A1 bei der Kodierung

der Antwortgenauigkeit eine zentrale Rolle spielt. In einem letzten Schritt wurde un-

tersucht, wie die Schaltkreise in A1 während der mehrfachen Umkehr der Kontingenz in

einer Diskriminationsaufgabe involviert sind. Während der Änderung der Kontingenz und

einem erzwungenen Strategiewechsel zeigt sich vor allem ein wichtiger Beitrag der Aktiv-

ität in der infragranularen Schicht VI. Die supragranularen Schichten hingegen waren

bester Prädiktor für die korrekte Verhaltensauswahl vor allem während Phasen höherer

genereller Leistung. Die vorliegende Arbeit zeigt damit auf, dass der auditorische Kortex

eine multiplexe Darstellung von Reizmerkmalen in Abhängigkeit von der Aufgabe, der

Handlungsauswahl und den Verhaltensoptionen eines Tieres zur Vorbereitung korrekter

Entscheidungen und der Anpassung von Verhaltensstrategien ermöglicht. Die Ergebnisse

erweitern unser Verständnis darüber, wie einzelne Schichten zum integrativen Schaltkreis

in A1 beitragen, um aufgabenrelevante Informationen zu kodieren und sensorisch basierte

Entscheidungsfindung zu steuern.
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Dedicated to my grandmother, in memoriam.

"Brick walls are there for a reason. And once you get over them—even if someone has

practically had to throw you over—it can be helpful to others to tell them how you did it."

— Randy Pausch, The Last Lecture
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1 | Introduction

"Since we perceive that we are seeing and hearing, it is necessary that one perceives that

one sees either by sight or by some other sense. . . Further, if the sense which perceived

sight were to be other than sight, then either this will carry on into infinity or there will

be some sense which will be of itself, with the result that one should grant this in the case

of the first sense."

— Aristotle, De Anima, 425b22 ff, trans. Shields

1.1 Sensory processing: From auditory perception to

action

Awareness of perception and sensory processing is not recent; it has been described at least

as early as Aristotle’s treatise ’De Anima’ (c. 350 BCE). In the De Anima passage above,

Aristotle said that there are no perceptions of perceptions. Perception exists as such and

does not carry its own awareness. On this understanding the first perception would be

how an organism perceives an object, while the second perception would be the organism’s

awareness of the perception of the object. One can recognize that with this Aristotle sets

the ground basis of the modern neuroscientific theories regarding sensory perception with

the bottom-up and top-down processing, as we know them today. Bottom-up processing

refers to processing sensory stimuli as they come from our environment and they built up

the sensory information. Top-down processing, on the other hand, is the cognition-driven

perception, the internal representation of environmental key aspects/features relevant

for the organism, and its consequential action-selection. Organisms must be capable of

adapting their responses to sensory stimuli and developing proper behavioral strategies

in order to survive and evolve. In recent years, there has been an increasing amount of
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literature emphasizing that sensory cortices can facilitate such required flexibility. In fact,

there is still considerable uncertainty with regard to the representation of task-relevant

and choice-related information in the sensory cortices. In this doctoral thesis, I will

be focusing on a data driven approach to find layer-specific activity patterns from the

primary auditory cortex region and their involvement in auditory learning and flexible

decision-making processes.

1.1.1 The auditory pathway and laminar organization of the primary

auditory cortex

Overview of the auditory pathway

Sounds are one of the main external stimuli into our environment. To perceive sounds

and initiate behaviors, for instance movements towards the source of the sound, the

auditory system needs to transform the sound waves into neuronal activity patterns.

The auditory pathway consists of several stations of transformation starting with the

external and middle ears which collect the sound waves (Figure 1.1, anatomical details

are described in Purves). Then, the amplified sound pressure is transmitted via the

inner ear’s fluid, wherein the signal characteristics (frequency, amplitude, and phase)

are decomposed. Biomechanical processes at the sensory hair cells result in the signal

decomposition and then it reaches the auditory nerve to get encoded. As next, the signal

arrives to the cochlea where it is represented by its frequency, a phenomenon known as

tonotopy.

The next station is the cochlear nucleus which is the merging point of the peripheral

auditory information into central pathways. Further, the outputs of the cochlear nucleus

are the superior olivary complex and the inferior colliculus of midbrain. At the first branch

the signal of two ears interacts and it contributes to the proper sound localization. The

second branch is one of the crucial locations where integration of auditory and motor

system happens. From this station the auditory signal is forwarded to the thalamus

(specifically the medial geniculate body (MGB)) and to the auditory cortex. The auditory

cortex consists of the core area, with the primary and secondary areas. The primary

auditory cortex (A1), the main part of the core area, plays an important role in integration

of neuronal signals from multiple brain areas. Compared to other sensory systems, the
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auditory has the largest numbers of stations from periphery to the cortex (Purves). The

pivotal role of auditory processing in survival and development of all the mammals, as

well as, the large numbers of stations makes sound perception a highly interesting neural

phenomenon.

Figure 1.1: The auditory pathway. A schematic illustration (adapted from Patterson,
1999) of the primary components of the auditory pathway: the cochlea (or inner ear); the
three brainstem structures - the cochlear nucleus (CN), the superior olivary complex (SOC) and
the inferior colliculus (IC); the auditory thalamus or medial geniculate body (MGB); and the
auditory cortex (AC).

First cortical station: The primary auditory cortex’s microcircuits

The A1 is the first cortical station of auditory representation and it is tonotopically orga-

nized. This means that neurons found in several locations of the A1 respond differently at

specific sound frequencies (Figure 1.2, b). Although the exact tonotopic gradient shows

species-related differences, the principle mechanism is similar across species. In the last

decades an increasing volume of published studies describe the complexity of the A1 and

its multi-functionality. For example, the A1 is crucial for sound processing and auditory

scene analysis, but also it contributes to learning-related functions (Bizley and Cohen,

2013; Francis et al., 2018b; King et al., 2018)

Like all the other sensory cortices, the primary auditory cortex is also columnar, into

the 3-dimensional volume of the temporal neocortex. The auditory cortex consists of the

classical six-layer architecture forming a specific microcircuitry between layers (Winer,

1992). The columnar organization allows neurons to get connected via synapses verti-

cally and horizontally creating a functional unit called cortical column (Mountcastle VB,
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1955; Haueis, 2016; Hawkins et al., 2017). Understanding the function of the cortical col-

umn(s) under certain conditions is a major area of interest within the field of neuroscience

(Markram et al., 2015).

The focus of the present study is the cortical column of the A1 area (Figure 1.2, c),

which consists of the layers I/II called supragranular, layer III/IV are the granular and

layers Va, Vb and VI, which are the infragranular layers (Budinger and Kanold, 2018;

Happel et al., 2014a). The first bottom-up driven input, from the tonotopically organized

lemniscal pathway via the ventral division of the ventral MGB (MGBv), goes to layer IV.

From this point, the neural information flows then to other layers of the same column and

subsequently to next columns and cortical areas.

Additionally, there are descending projections mainly from the deeper layers of A1 to

the thalamus (Figure 1.2, c). This corticothalamic feedback loop in A1 is important

for shaping the receptive field properties of the neurons in the ventral auditory tha-

lamus (MGBv) (He, 1997; Hackett et al., 2011). Recently, it has been also reported

that the corticothalamic feedback loop plays a crucial role in perception of complex

sounds and scene analysis (Homma et al., 2017). Further, the supragranular layers (I/III)

consist of a complex, non-homogeneous subdivision of the microcircuitry which is in-

volved in cortico-cortical communication and offers a diverse functionality (Meng et al.,

2017).

The tonotopic and laminar organization of the A1 has been investigated by using a va-

riety of mammals’ brains (Figure 1.2), from rodents or cats to primates, and their features

show many homologies anatomically, histologically, but also fascinatingly functional dif-

ferences. One of the best examples is the auditory cortex of the echolocating bats, which

has been extensively studied due to its highly specialized functions (Suga, 1984). Bats

are the only taxon among all other mammals whose auditory cortex shows a chronotopy.

Chronotopy is an innate feature which enable the cortical neurons to respond in specific

time points using the echo-delay information from the surrounding environment (Kössl

et al., 2012; Hechavarría et al., 2013). Such cortical features and complex hippocam-

pal navigation systems are natural benefits dedicated to help bats preying and surviving

(Geva-Sagiv et al., 2015; Moss and Surlykke, 2010).
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Figure 1.2: The primary auditory cortex across species: tonotopical and columnar
organization. a. Illustration of the organization of the A1 across different species. b. Example
of a tonotopic gradient where neurons respond differently along the rostocaudal axis depending
on the preferred frequency. c. Schematic overview of the A1 cortical column, which consists
of the layers I-VI. Cortico-thalamic and cortico-cortical interactions happen and generate a
specific microcircuritry with the involvement of different types of cells. (adapted from a.Bizley
and Cohen, b.Castro and Kandler, 2010 and c.Happel et al., 2014a)

Comparative studies across animal systems and modalities may help to deepen our

understanding of basic neuronal mechanisms during the multiple interactions with the

external or natural environments. Studying the A1 area allows us to understand more

about the sound perception, the analysis of the acoustic scene, the formation of the

auditory objects, but also other complex cognitive processes such as learning and decision

making (King et al., 2018).

1.1.2 The role of the primary auditory cortex in learning and

decision-making

In the history of auditory neurophysiology, the A1 has been often described as the key

factor for auditory scene analysis (Bizley and Cohen, 2013; King et al., 2018). Many

studies have shown that the A1 is crucial for analyzing the spectral, spatial, or temporal

features of sounds (Fishman et al., 2014; Teki et al., 2013; Shiell et al., 2018).Thus,

the formation of perceptual representations from the acoustic environment leads to the

creation of auditory objects. For example, the receiver of a visual stimulus is able to

directly extract information about the features of an object (eg. shape, size, color etc.),

while in the auditory modality a prior experience to the auditory stimulus is required
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in order to assign the semantics and adapt behaviors (Scheich et al., 2011). Much of

the early research on how sound is encoded in the A1 has been explored by cortical

inactivation (lesions) and observation on its effects to the behavior of the subjects (Ohl

et al., 1999).

Existing research recognises that learning and behavioral engagement play a critical

role in shaping the tuning properties – either by shifting the best frequency of neurons

towards the task-relevant frequency or by increasing the slope of the tuning curve near

to that specific frequency (Weinberger and Weinberger, 2007; Ohl and Scheich) – and

expanding the tonotopic maps of the A1 (Guo et al., 2017a; Bao et al., 2004; Carcea

et al., 2017a). Moreover, an increasing amount of literature reports the importance of

A1 neuronal networks beyond tonotopy in a more learning-related fashion. In a recent

report, Bagur et al. (2018) examine the extent to which task-engagement is encoded in

the A1 using spike recordings in behaving ferrets. They found task-engagement-induced

changes in cortical activity, which also depend on the task-design (appetitive or aversive).

Moreover,they conclude that A1 and frontal cortex responses share strong similarities on

a population level. By now more evidence supports the idea that the central function of

the A1 is the integration of auditory stimulus features (eg. pitch, frequency etc.) and

cognitive aspects of behavioral contexts, especially via connections between the A1 and

other higher cortical areas such as the prefrontal cortex (Caras and Sanes, 2017; Polley

et al., 2006; Rodgers and DeWeese, 2014; Runyan et al., 2017; Steinmetz et al., 2019;

Plakke and Romanski, 2014; Fritz et al.). However, the underlying integrative circuit

mechanisms are still only partially understood.

To date, several studies have demonstrated that the A1 integrates sensory information

with other contextual and motor signals. Those studies highlight that such an integrative

network enables subjects to facilitate higher cognitive demands, which are related to

the prediction (Kamarajan et al., 2015; Parras et al., 2017; Town et al., 2018), choice

accuracy (Caras and Sanes, 2017; Niwa et al., 2012) and auditory-guided decision-making

(Ohl and Scheich, 2005; Brosch et al., 2005; Tsunada et al., 2015; King et al., 2018).

Similarly, such integrative task-dependent coding and motor feedback have been reported

in other sensory cortical areas across different species, as the primary visual cortex (V1)

(Pakan et al., 2018; Henschke et al., 2020; Tajima et al., 2017) and the somatosensory

cortex (S1) (Yang et al., 2015; McNiel et al., 2016).
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Until today, the exact role of sensory cortices for sensory-guided decision-making has

been subject to considerable discussion. In a recent review, Romo and Rossi-Pool (2020)

argue that decision-making is not represented directly within the primary sensory areas.

For example, during a tactile experiments in monkeys they did not find decision-related

activity in the S1. They support the idea that primary sensory cortices, including the A1,

promote decision-making by transforming the sensory information into a percept, which

is represented mainly in higher frontal areas, such as the mPFC. However, a very recent

report has implicated considerable recurrent feedback processing between prefrontal and

auditory cortical areas suggesting cross-regional distributions of complex task-dependent

representations (Yin et al., 2020).

Additionally, the salience of behaviorally relevant sounds critically depends on the exact

reinforcement regimes and task rules (Bagur et al., 2018; Huang et al., 2019; David et al.,

2012), which renders the auditory cortex a multifarious integrative circuit. In cases of

novelty learning, uncertainty, task rule changes or other cognitive complex processes, A1

activity appears to be positively related with the dopamine release and cortical plasticity

at cellular level (Stark et al., 2004; Happel et al., 2014c).

Under such circumstances, the columnar microcircuit of the A1 is an excellent integra-

tive system to explore combined bottom-up and top-down processes, from pure auditory

perception to cognitively demanding action-selection (Figure 1.3). However, the afore-

mentioned and other studies have described corresponding neural correlates on the level

of single neuron or population activity recordings. Some studies have suggested layer-

specific differences in the representation of auditory information along the vertical axis

of the auditory cortex, with granular layers revealing more accurate tonotopic response

properties due to the dominant lemniscal inputs compared to supragranular and infra-

granular layers (Bandyopadhyay et al., 2010; Li et al., 2014; Tischbirek et al., 2019).

Recently, Francis et al. (2018b) examined the layer-specific differences during task per-

formance using 2-photon imaging technique. They found that behavior-relevant stimuli

enhanced particularly the activity in supragranular layers and the formation of small neu-

ronal networks helped in decoding precise behavioral choices. In addition, a growing body

of human imaging studies has shown attention and task-related modulation of auditory

processing in the A1 (Petkov et al., 2004; Puschmann et al., 2017; Deike et al., 2015) based

on gross neural or metabolic response measures. However, how the canonical principles of
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the columnar processing are reflected in the aforementioned multiplexed function of the

A1 remain unclear (King et al., 2018; Ohl, 2015).

Figure 1.3: Cortical column: from auditory perception to action. Marr’s three levels of
analysis (Stevens, 2012): a mouse listens to a warning sound via its ears, after auditory processing
(algorithmic realization) attempts to run away from the source of sound (goal) by using its limbs
and muscles (physical implementation). This reality conceptual framework consists of bottom-
up and top-down processes (middle). We propose the cortical column and its integrative function
as a realistic model to explore such multifarious processes for the auditory modality. (illustration
inspired by Krakauer et al. and Frégnac et al., 2015, mouse image adapted from E.Tyler and
L.Kravitz SciDraw.io).

1.2 Approaches to explore the relationship between the

primary auditory cortex and cognitive flexibility

Central to the entire discipline of neuroscience is the concept of understanding neuronal

structure and function. However, in a perspectives review, Yuste (2015) discusses the

challenges and strategies for shifting neuroscientific investigations from the single-neuron

doctrine to neural ensembles and networks - the so-called mesoscopic level. Recent ad-

vances in neurophysiological recording methods have facilitated investigation of multiple

neurons in multiple areas of the brain (eg. multi-array electrodes and neuropixels). Ac-

cording to Yuste (2015), focusing on the mesoscopic level will help us to understand how

neurons and neuronal circuits give rise to specific behaviors, cognition and mental dis-

orders. The ability to record from multiple neurons is a tremendous technological step

forward. In addition, to understand the relationship ’brain-behavior’ there is a neces-

sity of well-designed behavioral paradigms (Krakauer et al.; Gomez-marin et al., 2014).
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Hypothesis-based behavioral experiments are crucial because they help us establishing

conceptual frameworks where we can link neuronal activity to behavior and learning. In

this vein, to explore the relationship between the A1 cortical circuit and flexible behav-

iors, we combined an auditory, 2-way avoidance shuttle-box task with chronic cortical

recordings from the A1 using Mongolian gerbils.

1.2.1 Model system: Mongolian gerbil in a shuttle-box auditory task

Key ethological characteristics

In the present study, the model system of choice is the Mongolian gerbil (Meriones unguic-

ulatus). The Mongolian gerbil is a rodent who belongs to the family Muridae, subfamily

Gerbillinae, which is a native of Mongolia and northern China. A gerbils’ size is roughly

between the size of mice and rats (60-100 g). In the wild, gerbils live in desert or steppe

environments in family groups. They build extended burrow systems and a vast net-

work of tunnels with nest-champers for specific functions eg. pups, sleeping, or food nest

(Hurtado-Parrado et al., 2015; Waiblinger and König, 2004). Under laboratory condi-

tions animals usually develop stereotypies such as extensive digging and gnawing cage

lids. Waiblinger and König (2004) examined the impact of housing to gerbil’s behav-

ior and they proposed a cage refinement with burrows, tunnels and chewable cardboard

tubes. Further, gerbils show individual behaviors in their way of communication such as

noise bursts or frequency-modulated syllables in vocalization or foot-stomping as a warn-

ing signal during arousal states. In our experiments we considered those species-specific

needs and we adapted the housing conditions in accordance to the existing literature.

The Mongolian gerbil in auditory research

The Mongolian gerbil is a popular animal model with a long history in multiple research

topics such as animals’ social cognition (Tchabovsky et al., 2019), neurological diseases

- epilepsy (Cutler and Mackintosh, 1989), auditory processing and hearing loss (Scheich,

1991; Otto and Jürgen, 2011). The Mongolian gerbil has become one of the key species

in auditory research (Scheich, 1991; Ohl and Scheich, 1997; Deliano et al., 2009a; Happel

et al., 2010b; Wrobel et al., 2018). One of the main reasons is its excellent sensitivity

to low frequency sounds similar to humans. In comparison, other laboratory animals

(mice and rats) show hearing sensitivity in much higher frequencies (Otto and Jürgen,
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2011; Figure 1.4). Additionally, gerbils have large middle ear cavities through which the

cochlea can be reached easily. This is extremely beneficial for experimental interventions.

Their cochlea shows a frequency range from 200Hz to 50 kHz which are represented in

the tonotopically organized auditory cortex (Thomas et al., 1993; Gerd and Frank, 2016).

Furthermore, previous research has proved that gerbils are able to adapt in experimen-

tal conditions and learn complex auditory behavioral tasks (Ohl and Scheich, 1997; Ohl

et al., 2001a; Deliano et al., 2009b; Happel et al., 2014b). Besides those physiological

features, the Mongolian gerbils are convenient laboratory animas due to their small size,

easy breeding, and low cost. Considering all those advantages, and especially the transla-

tional perspectives to human research, Mongolian gerbil and its primary auditory cortex

was selected as a suitable model system for our experiments.

Figure 1.4: A comparative audiogram among species. Audiograms of several laboratory
species including gerbils and humans. The lower the threshold (y-axis) is, the higher the sen-
sitivity is to a particular frequency of the sound (x-axis). Gerbils’ audiogram (yellow line) is
very similar to human’s (red line), which shows high sensitivity at frequencies below 4 kHz, low
frequencies. For comparison, the normal human voice range (100 Hz - 2 kHz) is shown at the
grey shaded area. (image adapted from https://med.fsu.edu/wangyuanlab/research).

Two-way active avoidance learning in the shuttle-box

For the purpose of this hypothesis-driven research, we designed a new auditory experi-

mental protocol which takes place in a well-established behavioral arena: the shuttle-box

(Stark et al., 2008; Ohl et al., 2001a; Deliano et al., 2009b; Happel et al., 2014b; Hap-

pel et al., 2015). The shuttle-box provides an ideal environment to carry out operant

conditioning experiments and study behavior and learning with rodents. The shuttle-box

consists of two identical compartments separated by a middle hurdle, allowing the animals

to move from one side to the other depending on the presented stimuli (conditioned or
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unconditioned). In fact, this apparatus is designed to investigate behavioral concepts as

active avoidance (instrumental learning). Usually, shuttle-box paradigms are described

as negative reinforcement regimes where avoidance occurs.

Avoidance conditioning is a two-part process; first, subjects learn a neutral stimulus (eg.

a tone) and second, they associate it with an aversive stimulus (eg. foot-shock), based

on the Two-factor theory (Mowrer, 1951). Active avoidance learning is the outcome of

such processes, meaning the subjects develop certain behavioral strategies and learn to

prevent an aversive stimulus. Usually, a prior stage of avoidance learning is the escaping

behavior where subjects learn to just terminate the noxious stimuli (Wadenberg, 2010;

Krypotos et al.). Especially, in the 2-way active avoidance procedure subjects are able to

shuttle back and forth in the equal compartments of the box because they learn that they

have to cross upon a stimulus presentation or o not cross upon upon another stimulus

(eg. Go/NoGo paradigms). Additionally, the shuttle-box arena is often combined with

stimulus emitters (eg. loudspeakers) to allow neurobiological investigations in relation to

specific modalities (eg. auditory) and neuronal systems. Over the past decades, 2-way ac-

tive avoidance protocols have been used broadly as they are unique and useful to examine

attention, memory, perceptual learning, and decision making. In the following chapters,

it will be discussed how auditory avoidance learning paradigms can be adapted in order

to address questions related to cognitive flexibility (eg. auditory discrimination and con-

tingency reversal learning, subsection 2.3.2). This dissertation seeks to explore the dipole

’brain-behavior’, and more specific the link between A1 microcircuits and the auditory-

guided behavior. Therefore, we combine the shuttle-box task with chronic multichannel-

recordings from the A1 (subsection 2.2.3) aiming to investigate the neuronal observables

of learning on a mesoscopic level (Happel et al., 2015).

1.2.2 Mesoscopic observations: local field potentials and chronic

current source density profiles from A1

Traditionally, neural activity has been assessed by recording either single neuron or multi-

neuron spike activity. Besides those measures, over the last decade local field potential

(LFP) recordings have gained importance in the field of in vivo electrophysiogy. LFPs

are generated by transmembrane current flow in ensembles of neurons with synchronous
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activity. Those signals are related to processes and events that are causal to action

potentials (Kajikawa and Schroeder, 2011). Therefore, LFP-based recordings provide a

means of investigation at a larger scale of the mesoscopic level as they describe excitatory

and inhibitory synaptic processes (Einevoll et al., 2013).

For example, in the A1 cortical column, ensembles of neurons are activated after an au-

ditory event. Consequently, at the neuron’s cellular membrane positive currents leave the

extracellular space (influx of positive ions) - named sinks - whereas positive ions entering

the extracellular medium and are called current sources (Einevoll et al., 2013). Those

LFPs can be measured by micro-electrodes implanted intracortically, along the laminar

space. Furthermore, it is known that LFPs are sensitive to sub-threshold integrative pro-

cesses, which allows us to draw conclusions about the state of local cortical network and

neuromodulatory pathways under specific circumstances (eg. sensory stimulation or be-

havioral context). However, direct LFP measurements do not portray spatial information

until extracted by using current source density (CSD) analysis (Mitzdorf, 1985; Freeman

and Nicholson, 1975; Mazzoni et al., 2013).

Current source density analysis was developed in the 1950s, and over the last decades

have neuroscientists started using it more often (Schroeder, 1998; Lakatos et al., 2005;

Happel et al., 2010b; Schaefer et al.). Briefly, CSD is a second spatial derivative trans-

formation of the LFP signal (Mitzdorf, 1985; Freeman and Nicholson, 1975, see details

in subsection 2.4.3). This approach is advantageous because it eliminates the effects of

volume conduction and it allows direct interpretations regarding the synaptic activity in

the local cortical networks (Schroeder, 1998). Another, major advantage of CSD analysis

is that it contains high spatiotemporal information about the neuronal activity at the

recording location (Kajikawa and Schroeder, 2011). Therefore, it is possible to relate the

recorded neuronal activity to specific anatomical information, such as the cortical layers

of the A1. Those activity readouts enable us to describe the synaptic circuits within

the distinct cortical layers (Happel et al., 2010a; Szymanski et al., 2009). In the present

study, chronically implanted electrodes in the A1 allow us to implement a long-term CSD

analysis (subsection 2.2.3) . The investigation of chronic CSD profiles was chosen to al-

low a deeper insight into the layer-specific processing during auditory cognitive complex

tasks.
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Figure 1.5: Current source density distributions along the cortical column. Illustra-
tion of a local postsynaptic event of excitatory synaptic neuronal populations along the cortical
column. Transmembrane currents generate dipoles of sources (red) and sinks (blue), which can
be recorded and measured by CSD analysis. (Neuron image items adapted from J. Shin and
J.Chilton SciDraw.io).

1.3 Aims and objectives of the study

The aim of this thesis is to explore the role of the primary auditory cortex of Mongo-

lian gerbils during their engagement in a complex auditory decision-making task. This

study attempts to expand our knowledge of how individual cortical layers contribute to the

integrative circuit in the A1, in order to code task-relevant information and guide sensory-

based decision making. The main focus is to achieve a deeper understanding of the un-

derlying neuronal observables on a mesoscopic level. The current dissertation is designed

in four main parts, which reflect the specific objectives:

1. The first part investigates the behavioral aspects of the newly established, long-term,

auditory Go/NoGo shuttle-box task. This allows the combination of a behavioral

training paradigm with simultaneous in-vivo chronic LFP recordings from the A1

of Mongolian gerbils. During this protocol, the animals are required to learn the

behavioral relevance of the two conditioned stimuli (pure tones: 1 kHz and 4 kHz)

which change their contingencies (Go or NoGo) in the respective blocks of training

(detection, discrimination and multiple reversals). In this section, I systematically

review the behavioral data to better understand the learning strategies of the ani-

mals, aiming to provide more evidence on the ability of the gerbils to re-adapt their

strategies even after several reversals of the choice outcome contingency. Also, the
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new approach suggests an important tool to study multiple aspects of sensory-guided

decision-making processes in combination with neurophysiological recordings.

2. The second part focuses on the chronic CSD recordings, a mathematical tool to

gain further insights into auditory cortical circuits and the plastic changes over

the learning progress in the shuttle-box Go/NoGo task. Due to the novelty of

this approach, explicit evidence about the quality and stability of the chronic CSD

recordings are provided. Further, I attempt to broaden the current understanding

on a circuit level, on how changes in the task rule are represented in the A1. For

this I will apply statistical tests of variance in order to quantify existing differences

of the overall columnar activity strength based on the stimuli, contingencies and

choices for several time windows of the trials.

3. The third main objective is to determine whether the relative contribution of cortical

layers to the canonical columnar response is modulated by task-dependent features

such as the behavioral relevance of the stimulus, its particular contingency and

required action, as well as direct decision variables and the choice accuracy. In order

to achieve that I will analyze the electrophysiological data of binary classes (1kHz vs

4kHz, Hit vs Miss, Correct vs Incorrect etc.) on a single-trial level using generalized

linear-mixed effect models (GLMM) in relation to the observed behavioral effects

for several time windows within the trials. Evaluation of the applied models will

allow us to draw conclusions about the contribution of the cortical layers to the

observed behavior, especially in relation to the actual decisions.

4. Besides the aforementioned objectives, the established experimental paradigm with

the chronic CSD recordings provides the frame for numerous other analytical ap-

proaches. In the later parts of the thesis, I will discuss about the ongoing collabora-

tive projects and perspectives which will help us to to better understand the cortical

mechanisms underlying auditory learning and decision making. For example, I have

worked closely with scientists from the Computer Science faculty in order to apply

machine learning algorithms to the obtained CSD data. This project was set out to

investigate whether a linear support vector machine classifier, which was trained for

targets reflecting either stimulus-related aspects of auditory processing or processing

of task-dependent information is able to separate the layer-specific and time-limited

subsets of the CSD profiles.
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2 | Materials and methods

In this study, we used chronic, laminar current source density (CSD) analysis of the

primary auditory cortex (A1) of behaving Mongolian gerbils (Meriones unguiculatus) in

order to characterize layer-specific, spatiotemporal synaptic population activity. Animals

were trained to first detect and subsequently to discriminate two pure tone frequencies in

consecutive training phases in a Go/NoGo shuttle-box task. A following block of training

with multiple reversals of the choice-outcome contingency allows us to investigate cortical

circuit mechanisms underlying flexible auditory guided behaviors.

2.1 The animal model: Mongolian gerbil

Experiments were carried out with adult male Mongolian gerbils (4 to 8 months of age, 70-

90 g body weight, total n=9, in-house breeding). All experiments presented in this study

were conducted in accordance with ethical animal research standards defined by the Ger-

man Law and approved of an ethics committee of the State of Saxony-Anhalt.All animals

were housed at a temperature 25◦C and humidity 30-50% under a 12-hr dark/light non-

inverted cycle. We used conventional cages (Type IV) with raised wire lids, which allows

nesting. Their cages were filled with hay, woodchips and paper-based bedding. For the

enrichment of their environment we used tunnels and wheels. All animals had free access

to food and water. Due to the gerbil’s genetic tendency to develop epileptic seizures a 3-

days behavioral screening protocol (established by Gonzalo Arias Gil and Dr.Dr.Kentaroh

Takagaki at the SPL Department - LIN, based on Seto-Ohshima et al., 1992) was taking

place before the start of surgery and training. Only animals that did not show an epileptic

seizure during those tests were used for the experiments.
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2.2 Neural recordings from the area A1

2.2.1 Surgical preparation and electrode chronic implantation

Surgery - right A1 area

For chronical in vivo electrophysiological recordings a multichannel electrode (Neuronexus,

A1x32-6 mm-50-177_H32_21mm) was surgically implanted into the A1.Gerbils were

initially anesthetized by an intraperitoneal (i.p.) injection (0.004 ml/g) consisting of

45% ketamine (50 mg/ml, Ratiopharm GmbH), 5%xylazine (Rompun 2%, Bayer Vi-

tal GmbH) and 50%of isotonic sodium-chloride solution (154 mmol/1, B. Braun AG).

Anesthesia during the surgery was maintained with around 0.15 ml/g*h i.p. infusion.

Anesthetic status was regularly checked (10-15 min) by the paw withdrawal-reflex and

breathing frequency. Body temperature was continuously measured and kept stable at

34◦C.

The primary field A1 of the right auditory cortex was exposed by a small trepanation

through the temporal bone (Ø 1mm). This avoids tissue damage and guarantees stable

fixation of the implanted electrode on the skull. The positioning of the electrode array

is indicated based on the characteristic vascularization pattern formed by the ascending

branches of the inferior cerebral vein (icv) and the descending branches of the middle

cerebral artery (mca). The primary cortical field A1 is typically located at a charac-

teristic area between them (Ohl et al., 2000). Another small hole for the reference wire

(stainless steel, Ø 200-230 μm) was drilled into the parietal bone on the contralateral side.

Animals were head-fixed with a screw-nut glued to the rostral part of the exposed nasal

bone plate by UV-curing glue (Plurabond ONE-SE and Plurafill flow, Pluradent) that

was temporally attached to a metal bar. The recording electrode with a flexible bundle

between shaft and connector was inserted perpendicular to the cortical surface into A1

via the small hole (cf. Figure 2.1)

Chronic fixation of the multichannel probes

Before enclosing the exposed A1 with UV-glue an antiseptic lubricant (KY-Jelly, Reckitt

Benckiser-UK) was applied to the exposed cortex. After the surgery, the wounds were

treated with a local antiseptic tyrothricin powder (Tyrosur, Engelhard Arzneimittel GmbH
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& Co.KG). Directly after the surgery and over the next 2 days, animals received analgesic

treatment with Metacam (i.p. 2mg/kg bw; Boehringer Ingelheim GmbH) substituted by

5% glucose solution (0.2 ml). Animals were allowed to recover for at least 3 days before

the first session of awake electrophysiological recording (Figure 2.1).

Figure 2.1: Implantation and chronic fixation of the multichannel electrodes in A1.
a. Dorsal view of the brain (adapted from Luigi Petrucco, SciDraw.io): Animals are fixated
via a screw nut (gray hexagon) and a metal bar. The blue circle illustrates the implantation
position to reach the right A1 field. The position of the reference electrode is shown by the green
circle, at the left side of the skull. To increase the stability of the fixated implant we use two
small screws, indicated by the yellow circles. b. Lateral view of the brain (adapted from Ann
Kennedy, SciDraw.io): The multichannel (32 channels) Neuronexus silicon probe was inserted
perpendicular to the cortical surface (A1). The electrode together with the flexible bundle
and the connector are chronically fixated onto the skull by using UV-glue. Before the start of
the behavioral experiment the dry UV-glue is painted with a bright magenta colour which is
detectable for later video analysis and tracking of animals ′ movements. Over the course of the
behavioral experiment the headstage is connected via the Neuronexus pre-amplifier to acquire
LFP signals.

2.2.2 Verification and characterization of the recording location A1

A very crucial step of this experiment was to verify and characterize the recording loca-

tion. Therefore, during the implantation and before the chronic fixation of the electrode

animals were placed in a Faraday-shielded acoustic soundproof chamber. Sounds were

presented from a loudspeaker (Tannoy arena satellite KI-8710-32) in 1 m distance to the

animal.

For verification of the implantation site in A1, a series of pure-tones covering a range

of at least 7 octaves were presented (0.25–32 kHz; tone duration 200 ms, inter-stimulus-
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interval (ISI) 800 ms, 50 pseudorandomized repetitions, sound level 65 dB SPL). Stimuli

were generated in Matlab (MathWorks, R2006b), converted into an analog signal by a data

acquisition card (sampling frequency 1 kHz, NI PCI-BNC2110, National Instruments),

rooted through an attenuator (gPAHGuger,Technologies), and amplified (Thomas Tech

Amp75). A measurement microphone and conditioning amplifier were used to calibrate

acoustic stimuli (G.R.A.S. 26AM and B&K Nexus 2690-A, Bruel&Kjaer, Germany). By

the end of the acoustic stimulation protocol the recording signal was evaluated and the

best frequencies were identified. Finally, the chronic fixation of the multichannel probe

took place (see above).

2.2.3 The shuttle-box apparatus combined with electrophysiology

Operant conditioning was trained in a two-way avoidance shuttle-box task (Figure 2.2 and

Figure 2.3). The shuttle-box (E15, Coulbourn Instruments) was placed in an acoustically

and electrically shielded chamber and contained two compartments separated by a hurdle

(3 cm height).

Conditioned stimuli (CS). The auditory stimuli were generated in Matlab (Math-

Works, R2012b), converted into an analog signal by a data acquisition card (NI PCI-6733,

National Instruments), rooted through an attenuator (gPAH Guger, Technologies), and

amplified (Black Cube Linear, Lehman). Two electrostatic loud speakers positioned 5cm

at both sides of the shuttle-box (Figure 2.2). A measurement microphone and condition-

ing amplifier were used to calibrate acoustic stimuli (G.R.A.S. 26AM and B&K Nexus

2690-A, Bruel& Kjaer, Germany).

Unconditioned stimuli (US). The mild foot-shock (US) was conditionally delivered

by a grid floor and generated by a stimulus generator (STG-2008, Multi-Channel Systems

MCS GmbH, Figure 2.2). Depending on the individual animal sensitivity and performance

the shock intensity was adjusted (starting at 200 μA) in steps of 50μA until the escape

latencies were below 2s, in order to achieve a successful association of conditioned stimuli

(CS) and US (?).

Chronic LFP recordings during training. Multichannel recordings were per-

formed with connecting the head-connector of the animal to a preamplifier (20-fold gain,
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band-pass filtered, HST/32V-G20; Plexon Inc.) and a data acquisition system (Neural

Data Acquisition System Recorder Recorder/64; Plexon Inc.). The cable harness was

wrapped by a metal mesh for bite protection. Tension of the cable was relieved by a

spring and a turnable, motorized commutator (Plexon Inc.) that permits free movement

and rotation of the animal in the box. Broadband signals were recorded continuously

using a preamplifier (Plexon REC/64 Amplifier; 1Hz-6 kHz) during the training with a

sampling frequency of 12 kHz. Local field potentials were sampled with 2 kHz, visualized

online (NeuroExplorer, Plexon Inc. Recording Controller) and stored offline for further

analysis (Figure 2.2). To avoid ground loops between recording system, shuttle-box and

the animal we ensure proper grounding of the animal via its common ground and leave

the grid floor on floating voltage (?).

Figure 2.2: Schematic representation of the the setup for chronic electrophysiological
recordings in behaving animals. The gerbil is placed at one side of the box and connected
with the pre-amplifier. Due to the commutator the animal can freely move into the shuttle-
box. Broadband signals are recorded continuously during the training session. The behavioral
experimental settings, acoustic and electric stimuli, are controlled via the stimulation computer.
During the training session video is recorded continuously. The collected data (Ephys, behavioral
and video) are saved in proper formats for further offline analysis.
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2.3 The experimental design

2.3.1 The awake passive listening condition

After the recovery period, animals were placed in a 1-compartment box in an electrically

shielded and sound-proof chamber in order to re-characterize the tuning properties of the

chronically implanted electrode. Acoustic stimuli were presented in a pseudo-randomized

order of pure-tone frequencies covering a range of 7 octaves (0.25-16kHz; tone duration:

200 ms, ISI 800 ms, 50 pseudo-randomized repetitions, sound level 70 dB SPL), while

laminar LFP signals were recorded. After each training phase (detection, discrimination,

reversals) the frequency response tuning was recorded again.

2.3.2 The auditory Go/NoGo behavioral task

The animals (max. n=9) were trained twice a day with a break of at least 5 hours in

between both training sessions. In each training session subjects were allowed to habituate

for 3 minutes within the shuttle-box. In the first training phase two pure tones with

frequencies 1 kHz and 4 kHz were presented both as ‘Go’ conditioned stimuli (CS+).

Subjects needed to detect any tone event and respond with a compartment change in

order to avoid a mild foot shock (200-500 μA) presented as the unconditioned stimulus

(US). We therefore call this phase the detection phase.

Within each trial (12-15s), the CS+ tones were repeatedly presented (tone duration

200 ms, ISI of 1.5 s, 70 dB SPL) in a 6 s observation window during which subjects are

required to change the compartment in order to make a correct ‘hit’ response. When

subjects shuttled into the other compartment in response to the CS before US onset,

this was counted as conditioned response (CR). In case animals did not show a CR

within the 6 s observation window this defined a so-called miss trial. Here, the animal

received an overlapping presentation of the CS+ and the US until an escape to the other

compartment terminated the US/CS presentation. Subjects thereby learned to escape the

aversive foot shock within a couple of trials. In each session we presented each CS+ for

30 times in a pseudo-randomized order.The time point at which we changed the task rule

from detection to discrimination and afterward to the first reversal was oriented at the

behavioral performance of each subject individually. Later reversal discrimination blocks
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lasted one week (9 sessions) per block.

Once animals reached a stable detection performance (threshold critirion d ′ , see be-

low) for 3 consecutive training sessions, we introduced a change of the task rule and

switched to a discrimination task by assigning the former 4 kHz ‘Go’ tone with a ‘NoGo’

(CS-) contingency (n=8; one subject excluded due to epileptic seizure during training).

Subjects needed to report on the ‘NoGo’ condition by staying within the compartment

to avoid an US, which we call a ‘correct rejection’ (Corr. Rej.). In ‘NoGo’ trials, animals

had to stay in the compartment for 12-15 s, while the CS- was continuously played with

an ISI of 1.5 s to prevent animals from developing a time estimate of the observation

window length over the long training period. If subjects incorrectly crossed within this

12-15 s, the behavioral choice was counted as ‘false alarm’ (FA).When animals achieved

high discrimination performance we reversed the rule of the choice-outcome contingencies

(Go vs NoGo) of the two stimuli over consecutive training phases.

Figure 2.3: Experimental design of the auditory Go/NoGo task.a. Illustration of the
two-way avoidance shuttle-box training with chronic recordings in behaving Mongolian gerbils.
Subjects were trained to respond to two different pure tone frequencies (1 kHz and 4 kHz;
conditioned stimulus - CS) in a Go/NoGo task design to avoid an unconditioned stimulus (US
- mild foot shock). During the discrimination phase the contingency of the CS can be either
‘Go’ (CS+) or ‘NoGo’ (CS-) leading to four possible behavioral outcomes (hit, miss, correct
rejection – Corr. Rej., false alarm - FA). Right, Illustration of consecutive CS within a trial,
length of the observation window (6 s), inter-stimulus interval (1.5 s) and behavioral choices.
b. Task design separated in blocks of different training tasks-rules. The initial block is the
detection phase (both stimuli have ‘Go’ contingency), as next comes the discrimination phase
(only 4kHz changes contingency to ‘NoGo’), and finally the multiple reversals of choice-outcome
contingencies blocks took place over several weeks.

37



2.3.3 The experimental timeline

To investigate the role of the A1 during a Go/NoGo auditory task with multiple reversal

of choice-outcome contingencies a precise protocol has been introduced (?. The exper-

imental protocol is represented in a Gantt chart (Figure 2.4) with all crucial steps and

training blocks. All the animals (n=9) were behaviorally screened for three consecutive

days. Only animals showed normal behavior, in terms of epilepsy, underwent the surgery

and chronic implantation of the electrode. Three days of post-operative treatment and

recovery followed.

Before the start of the training phase gerbils were habituated in the shuttle-box for 10

-20 minutes and then the first passive listening recording session started.Following the

active training phases with the blocks of detection (1 week), discrimination (1-2 weeks)

and multiple reversals (1 week per block). Eventually, after the end of each block a passive

listening session was taking place. Finally, all animals were sacrificed and the brains were

extracted in order to perform histology. Most of the animals underwent the complete

protocol, but three of them not due to technical difficulties (training phase starts with

n= 9 and it ends n= 7).

Figure 2.4: Timeline of the experimental protocol. The Gantt chart represents the time-
line of the experimental protocol. The pre-training phase consisted of the behavioral screening,
surgery and the recovery period. The training phase started with habituation and the passive
listening recording (into the shuttle-box), which is shown with the yellow triangle. Followed by
the fist session of the detection block (grey box) in the next day. Next, blocks of discrimination
and reversal tasks (red and dark green boxes) were following. Animals were trained twice per
day. Almost all animals underwent the complete protocol (training phase start: n= 9; training
phase end n= 7). The end point was the histology.
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2.4 Data analyses

2.4.1 Data storage and analysis pipeline

Two types of raw data : were acquired: the behavioral data in text format (.txt) and

the electrophysiological recording dat in plexon format (.plx). The size of the raw signals

reaches 178 GB. To reduce the complexity and to combine the two types of data of each

session, a conversion step is needed. The converted matlab file (.mat, ∼ 37GB) contains

information about the epochs of interest at the LFP level and a complete description

of the behavioral variables. The converted data structure is stored in a 3-dimensional

matrix (32x12400x60): first the spatial domain (channel index); second, the temporal

domain (time from the beginning to the end of the trial) ; and third, the index of each

individual trial.

As next, preprocessing of each single-session converted .mat file is executed via a custom

made Graphical User Interface (GUI) for a trial-by-trial inspection of the signal quality

and definition of the cortical layers. Once the LFP signal is manually evaluated and the

layers are assigned, data are saved. A following conversion routine creates a data container

with information for all animals, all sessions and all the variables that we are interested

in. The size of this output data file depends on whether we save the CSD matrices (∼ 80

GB) or not (∼ 41 MB). In the end, those data containers can be feed in the custom made

scripts in Matlab, R studio or Python for further different analysis approaches Figure 2.5.

All data are stored at LIN′s servers and backed-up in multiple hard drives.
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Figure 2.5: Schema of the workflow and data pipeline. The arrow illustrates the workflow
and the coloured circles the individual process steps from the acquisition of the data (left) to the
final evaluation steps (right). The final output data are used in a variety of analysis methods
using Matlab, R studio or Python programming languages.

2.4.2 Behavioral analysis

The behavioral training data output (.txt/ files) includes all the required information to

investigate and reconstruct the behavior of each animal during the shuttle-box Go/NoGo

paradigm. For example, all compartment changes, reaction time, escape latencies, spon-

taneous inter-trial shuttles are recorded.

Reaction Time. First important behavior-related factor is the reaction time, which

is defined as the time period between the CS (+/-) onset and the animal ’s decision to

jump over the shuttle-box hurdle - complete compartment change. Single-trial reaction

time calculations help the experimenter to understand if the animal is under shock control

(escaping or avoiding) and adapt the intensity of the US during the session. Additionally,

given the fact that the reaction time / motor response is the outcome of a decision, it is cru-

cial to look at the neuronal observables in relation to that.

Conditioned Responses. A first approach to evaluate the learning progress and

dynamics is the session-wise calculation of the conditioned response rates for the CS+

and the CS-:

Hit rate= hits/ number of CS+ trials

False alarm rate= false alarms/ number of CS- trials

Signal Detection Theory. Since the animals in this paradigm have the choice of

responding to two different stimuli, another tool to quantify the behavioral sensitivity

independent of experimental conditions and bias is the d ′ values based on Signal Detec-
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tion Theory (SDT) (Green and Swets, 1966 ; Carandini and Churchland, 2013). For the

detection phase the d ′ was calculated as the differences of the z-transforms of the hit rate

and the z-transform of the relative inter-trial shuttles (ITS) derived from the inverses of

a standardized normal distribution.

d′ = Z(hits)− Z(ITS) (2.1)

For the next phases (discrimination and reversals) the d ′ was calculated as the differences

of the z-transforms of the hit rate and the z-transform of the false alarm rate, similarly

(Figure 2.6).

d′ = Z(hits)− Z(FA) (2.2)

The learning threshold criterion was defined as the perceptual signal strength being one

standard deviation above noise, meaning having values of d ′ above 1 for at least 3 con-

secutive sessions (in detection and discrimination phase).

Figure 2.6: Signal Detection Theory for the Go/NoGo paradigm.. a. The table shows
the four possible behavioral outcomes after the presentation of an auditory stimulus in the
shuttle-box, depending on the contingency ‘Go’ or ‘NoGo’ and the response, eg. crossing the
hurdle ‘Yes’ or ‘No’. b. Illustration of Signal Detection Theory (SDT) in this experimental
design. The ‘Correct Rejection’ responses are treated as ’noise’ or true negative (in light blue)
and the ‘Hit’ responses as ’signal and noise’ or true positive (in red). The sensitivity d ′ measures
the ability of one animal to discern signal from noise. The criterion is set by the experimenter
and defines the decision tendency (our criterion was d ′ = 1). The effect of training could be to
make the subjects increase discrimination sensitivity, by separating the two distributions to the
sides, by increasing correct choices and minimizing incorrect choices.
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Strategy plane - ROC curves. In the interest of characterizing individual learning

strategies over the course of the training I have used a method that combines the condi-

tioned response rates and the SDT - d ′ information. Specifically, every session is plotted

as a unique point consisting of hit response (x-axis) and false alarm response (y-axis).

All the session points are placed onto a Receiver Operator Characteristic (ROC) space

(Fawcett), where the ROC curves represent the d ′ levels with the diagonal being d ′ = 0.

The ROC space is divided in four sub-spaces (squares) that describe the strategy the ani-

mal shows at a given session:"conservative", "liberal", "correct" or "wrong". By connecting

the unique session points, we get a trajectory which allows us to observe the strategy shifts

and the learning dynamics individually and for each phase separately (cf. Figure 2.7).

Thus, throughout this thesis, the term ‘strategy plane’ will refer to this specific approach.

The ultimate goal of such a detailed behavioral analysis is to correlate the perceptual

decisions with the recorded the neuronal activity.

Figure 2.7: Behavioral strategies: Receiver operator curve (ROC). Example receiver
operator characteristic (ROC) curve based on the discrimination performance placed in a be-
havioral strategy plane, grey dots show the different sessions in one single phase of training.
Sequential decisions form a strategy trajectory on a plane with four equal quarters describing a
characteristic behavior: optimal (in green); liberal (in yellow); wrong (in red); and conservative
(in gray).

Video material. Finally, a valuable source of information regarding the entire behav-

ior can be acquired by the video analysis and tracking of the animal in the shuttle-box.

In a next data set of a similar experiment (data not shown here), we have developed

an accurate tracking technique as well as synchronization with the electrophysiological

recordings (Auer et al., in preparation).
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2.4.3 Current Source Density (CSD) analyis

Based on the recorded laminar local field potentials, the second spatial derivative was cal-

culated yielding an estimate of the current-source density distribution, as seen in equation:

− CSD ≈ δ2Φ(z)
δz2 = Φ(z + n∆z)− 2Φ(z) + Φ(z − n∆z)

(n∆z)2 (2.3)

where φ is the field potential, z is the spatial coordinate perpendicular to the cortical

laminae, ∆z is the spatial sampling interval, and n is the differential grid (Mitzdorf, 1985).

LFP profiles were smoothed with a weighted average (Hamming window) of 9 channels

which corresponds to a spatial kernel filter of 400 μm (Happel et al., 2010a).

CSD distributions reflect the local spatiotemporal current flow of positive ions from extra-

cellular to intracellular space evoked by synaptic populations in laminar neuronal struc-

tures. CSD activity thereby reveals the spatiotemporal sequence of neural activation

across cortical layers as ensembles of synaptic population activity (Mitzdorf, 1985 ; Hap-

pel et al., 2010a).

One advantage of the CSD transformation that it is reference-free and hence less affected

by far-field potentials and referencing artifacts. It allows to observe the local synaptic

current flow with high spatial and temporal precision (Kajikawa and Schroeder, 2011).

Current sinks thereby correspond to the activity of excitatory synaptic populations, while

current sources mainly reflect balancing return currents. The CSD thus provides a func-

tional readout of the cortical microcircuitry function, encompassing a wider, mesoscopic

field of view than for instance single- or multi-unit approaches26. Early current sinks in

the auditory cortex are therefore indicative of thalamic input in granular layers III/IV

and infragranular layers Vb/VI (Happel et al., 2010a ; Szymanski et al., 2009). In order to

describe the overall columnar processing, the CSD profiles were transformed by averaging

the rectified waveforms of each channel:

AV REC(t) =
∑n
i=1 |CSDi| (t)

n
(2.4)

where n is the number of recording channels and t is time. The AVREC reflects the

temporal overall local current flow of the columnar activity (Givre et al., 1994 ; Schroeder,

1998).
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2.4.4 Data preprocessing

subsection:Data preprocessing) Single-trial data were analyzed via a custom-written graph-

ical user interface (MathWorks, R2016a & R2017b) that visualized the LFP, CSD and

behavioral parameters to inspect and mark two types of artifacts: 1) affected recording

channels and 2) foot-shock or movement induced signal clipping and distortions. Affected

channels were substituted by a linear interpolation method across neighboring, unaffected

channels on the level of the LFP (Happel et al., 2010a). Shock induced clipping was re-

jected from the overall signals. Trials with artifacts were also discarded from further

analysis.

2.4.5 Extraction of signal parameters

Cortical layers were assigned to the recording channels based on the averaged auditory-

evoked spatiotemporal CSD current flow in response to the first CS presented during

a session and compared to the awake measurement before the training (Figure A.1).

Identification of cortical layers was based on previous studies by Happel et al., 2010a and

Szymanski et al., 2009, where the early dominant current sinks in the auditory cortex are

indicative of thalamic input in granular layers III/IV and infragranular layers Vb/VI and

allow to identify supragranular layers I/II and infragranular layers Va and VI in the CSD

recordings (Figure 2.8).

In this study, we determined trial-by-trial root-mean-square (RMS) values of averaged

CSD traces within each of the five cortical depths from tone onset of each CS presentation

in a time window of 500 ms. Also, the RMS value of the AVREC was calculated within

the same time windows for the corresponding overall columnar response. We did not

inspect the time-points after a CR, as the CS presentation was terminated. For statistical

analysis, single-trial values were z-normalized across trials.
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Figure 2.8: Chronic CSD recordings from the A1 in awake behaving gerbils. In vivo
multichannel LFP recordings were obtained by single-shank (32 channels) silicon probes chroni-
cally implanted perpendicular to the surface of the auditory cortex targeting all cortical layers (I
– VI). From laminar LFP signals single-trial current source density (CSD) distributions were cal-
culated offline (here shown is a CSD averaged over 30 repetitions). During CS-presentation (200
ms, black frame) tone-evoked CSD components appeared as current sink (in blue) and source
(in red) activity reflecting the well-known feedforward information flow of sensory information
in the A1 (Happel et al., 2010a). Activity from 500ms (red frame) after the CS-presentation
was used for the following analysis. A simplified schematic illustration of the cortical column
and its layers is shown at the right part of the figure.

2.4.6 Statistics - Test of variance

Statistical test of variance. Statistical difference between groups was tested by one-

factorial repeated measures ANOVA (rmANOVA) to account for the hierarchical structure

of the data using R Studio (R 3.5.1.). We used an overall significance level of α = 0.05 and

paired-sample t-tests with a Holm-adjusted significance level (Holm, 1979) for post-hoc

testing. Before testing, data was generally z-normalized within each animal and session.

The generalized eta squared η2
gen is reported as measure of effect size calculated using

the R package DescTools (Bakeman, 2005 ; Olejnik and Algina, 2003). In general, we

interpret effect sizes to be small for η2
gen ≤ 0.1, as medium for 0.1 < η2

gen<0.25, and large

for η2
gen ≥ 0.25 (Bakeman, 2005).

2.4.7 Generalized linear mixed model

Mixed-effects logistic regression. For statistical comparison between two-choice

classes, parameters of interest were analyzed on a single-trial level using generalized linear-

mixed effect models (GLMM) with a logistic link function (Chang et al., 2018) GLMM cal-

culation in in R Studio (R 3.5.1) was done with the lme4 package for model estimation and

ggplot2 and sjplot for plotting. Logistic regression was used for predicting the probability

of the binary (0/1) dependent variables πi = E (yi). The predictions were then wrapped
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by the logistic link function: g(x) = 1
1+exp(−x) to map the predictions of the model to the

interval between 0 and 1. In the mixed-effects logistic regression, random effects were ad-

ditionally introduced to model subject-specific variance by:

g (E (yi)) = X iβ +Zivi (2.5)

where ψi is the vector of all responses of the ith animal, X i and Zi are design matri-

ces, β the fixed effects and vi the animal-specific random effects. The parameters of the

estimated model can be interpreted as logarithmic odds ratios log
(

πij

1−πij

)
, where πij cor-

responds to the probability of the outcome to be 1 for animal i in trial j. The GLMM thus

allows for an intuitive interpretation of its predicted values (choice probabilities) and its

estimated coefficients (logarithmic odds ratios). As such, GLMMs are optimally suited to

compare data on a trial-by-trial-level while accounting for within-subject variability. Ran-

dom intercepts were introduced to account for the general variability in overall activity

across subjects and random slopes to allow for the fixed effect to vary between animals.

We z-normalized the AVREC RMS values for the GLMM to facilitate the estimation

procedure.

Evaluation of the model. Calculation of the marginal (R2m) and conditional

(R2c) coefficient of determination was done using the MuMIn package (Barton, 2019).

The R2m represents the variance in the dependent behavioral variable (on the logistic

link scale) explained by the fixed effect of the respective CSD variable (across subjects),

while the R2c reflects the total variance explained by the model’s fixed and random effects,

respectively (Muff et al., 2016). In a binary GLMM, the R2m is independent of sample

size and dimensionless, which allows comparing fits across different data-sets (Nakagawa

and Schielzeth, 2013). An R2m of 0.2 thus means that 20% of the variance in the binary

outcome can be explained by the cortical activity variable, which was used as the model’s

predictor. If the corresponding R2c is 0.35, the whole model explains 35% of the variance,

meaning that an additional 15% of the variance in the outcome can be explained by the

variability between animals. The R2m can hence be used to estimate the effect size,

which we did in accordance with the η2
gen from rmANOVA tests and report small effects

for R2m ≤ 0.1, as medium for 0.1 < R2m < 0.25, and large for R2m ≥ 0.25 (Bakeman,

2005).
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3 | Results

The present work has investigated the role of the primary auditory cortex (A1) in the en-

coding of behaviorally relevant acoustic stimuli, predictions, and auditory-guided decision

making. For this, chronic laminar CSD analysis from the A1 was used in order to charac-

terize layer-specific, spatiotemporal synaptic population activity while freely moving ger-

bils were performing a Go/NoGo auditory learning task in a shuttle-box.

This chapter contains two sections. The first section summarizes the findings on the

level of the behavioral training and several learning estimates while animals perform

cognitively demanding tasks. The second section, describes the stability of our new es-

tablished method and the findings on how individual layers contribute to the integrative

circuit of the A1 in order to code task-relevance and guide sensory-based decision mak-

ing.

Based on the learning curves and careful examination of the results, I have decided

to investigate the electrophysiological results in two parts. In the first part (Part I ) ,

results from the detection and first discrimination phase are shown. While, in the second

part (Part II ) results from the multiple reversals are shown. To draw conclusions for the

cortical microcircuits, a plethora of electrophysiological parameters have been extensively

analysed. However, due to the quantity and complexity of the data, here the focus is the

neuronal observable AVREC, which is a robust measure of the overall columnar activity.

Additionally, in order to investigate the layer-specific changes during learning, the RMS

values of the single layer (I/II, III/IV,Va, Vb, VI) cortical traces were used. These results

go beyond previous reports, showing that by using generalized linear-mixed effect models

(GLMM) on a single-trial level we can predict cortical layer-specific contributions during

an auditory-guided action initiation and choice accuracy.
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3.1 Auditory decision making with multiple reversals of

the choice-outcome contingency in a shuttle-box -

behavioral analysis

Mongolian gerbils were trained in an auditory cued two-way active avoidance shuttle-

box task to respond to two pure tones (1 and 4 kHz) presented as conditioned stimuli

(Figure 2.3). Gerbils were trained in six separate phases: detection, discrimination, and

four reversal phases. First, in a detection training phase, both CS were assigned with

a ‘Go’ contingency and required subjects to change the compartment to actively avoid

the unconditioned stimulus (mild electric foot shock). The animals were trained over

consecutive sessions until they reached a stable detection of both stimuli significantly

above chance level Figure 3.1. In the subsequent training phase - discrimination, the

contingency of the 4 kHz pure tone was changed to a ‘NoGo’ stimulus (CS-), while 1

kHz was maintained as CS+ (‘Go’ stimulus). Following, in the first reversal phase the

contingencies of the two pure tones were switched, meaning that 1 kHz was a ‘NoGo’

stimulus (CS-) and 4 kHz was a CS+ (‘Go’ stimulus). Another three consecutive blocks

of reversal tasks followed. During the phases of discrimination and multiple reversals,

animals needed to discriminate the two pure tones in order to avoid the US. As it is

mentioned in the Methods chapter, we classified behavioral choices depending on the

response of the animal and the contingency as hit, miss, correct rejection, or false alarm

(Figure 2.3).

3.1.1 Learning curves - Conditioned response rates

In the interest of describing the development of learning and cognitive flexibility during

the auditory experiment in the shuttle-box, we used learning curves based on the con-

ditioned response rates. Averaged conditioned response curves across training sessions

for all training phases showed gradual and significant improvement of task performance

Figure 3.1. During the detection phase averaged hit rates reached almost 80% for both

‘Go’-stimuli (1 kHz and 4 kHz). During the initial discrimination phase, conditioned re-

sponse rates dropped significantly for both stimuli (<10% hit rate). This indicates lack

in the transferal of behavioral choice for the 1 kHz pure tone from the detection phase,
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but the animals completely abandoned their detection-based avoidance strategy. Despite

the significant drop, they quickly re-associated the 1 kHz CS with a ‘Go’ contingency by

showing increasing hit responses within 1-2 sessions, while false alarm rates in response

to the ‘NoGo’ 4 kHz tone were significantly lower (10-20%). When the contingency of the

two pure tone stimuli was reversed for first time (Reversal 1), hit rates dropped signifi-

cantly (<10% rate) while the false alarm rates were at the first session about 45-50% and

reduced gradually. The following reversal phases showed a similar learning pattern. Usu-

ally lasted three to four sessions until animals were able to re-associate the conditioned

stimuli with the respective contingency in each block of reversal training. Over the course

of the long training, gerbils were adapted in the shuttle-box environment and they showed

an increased avoidance behavior, which will be discussed in the next section. Hence, al-

though the reversal is a quite demanding task, finally subjects were able discriminate the

two pure tone frequencies even over four reversals of the contingency (Figure 3.1, above).

3.1.2 Learning curves - Sensitivity index d ′

The learning progress can be evaluated by the averaged d ′ values (Figure 3.1, below)

calculated based on the SDT (see Methods). As it is described above, high learning

performance is defined when animals show increased conditioned responses for the ‘Go’

contingency and less for the ‘NoGo’ contingency. The threshold value to be reached for

the detection and discrimination criterion was selected as d ′ > 1. During the initial de-

tection phase the d ′ values are defined session-wise, as the difference of the z-transformed

values for the responses to the Go stimulus and the spontaneous inter-trial jump rates.

Animals were able to reach d ′ > 1 within four sessions. For the rest of the training

phases d ′ values are defined as the difference of the z-transformed values for the jumps

to the Go stimulus and the jumps to the NoGo stimuli. When the ‘NoGo’ 4 kHz tone

was introduced for the first time during the discrimination phase, animals dropped their

performance with d ′ = 0 but increased and reached d ′ > 1 already in the second session.

It is interesting to note that d ′ values for the initial sessions of the reversal phases are

very low, even d ′ < 0 and gradually reach the criterion threshold level. This implies there

is a cognitive effort to re-adapt the learning strategy and finally to reach good discrimi-

nation performance in such auditory paradigm. At this point, consider that the number
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of animals decreased (n=9, at initial phase till n=7 at the last phase, Figure 3.1 ) due to

technical challenges to guarantee high-quality recordings over such long time periods.

Figure 3.1: Learning curves during the multiple reversal Go/NoGo auditory task.
Averaged conditioned responses to both CS in the detection, discrimination and reversal phases
(top) and averaged sensitivity index d ′ (bottom) as a function of the individual training sessions.
During detection phase (grey area, n=9), hit rates (shown in black lines) reach almost 80% for
both ‘Go’-stimuli (1kHz and 4kHz) and d ′ > 1 (shown in blue lines) after the fourth session.
At the beginning of the discrimination phase (first yellow area, n=8), conditioned responses
dropped for both stimuli (<10% hit rate). The performance gradually increased reaching again
almost 80% for the hit rates and significantly decreased and stayed around 20% for the false
alarm rates (grey lines). During reversal 1 and at least for two sessions, hit rates are <20% and
false alarm rates are 40-50%, which gives also d ′ values under criterion threshold. After four
sessions, the discrimination ability is re-acquired. Similarly, for the subsequent three reversal
phases (n=8/7) but with reduced d ′ values.
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3.1.3 Reaction time and learning progress

In the current shuttle-box Go/NoGo experiment, the reaction time is calculated as the

time period between the presentation of the auditory stimulus and the animal ’s decision to

show a response with a complete compartment change. Specifically, conditioned responses

were counted in time bins of 250ms and the distributions of reaction times over all animals

and trials for each training phase (Detection to Reversal 4) were plotted in histograms

(Figure 3.2, a). Due to the fact that the observation time window is 6 seconds (from

the tone onset) we are mainly interested for the reaction times below 6 seconds, which

correspond to hit (shown in red) and false alarm choices (shown in blue). From these

results, it is clear that during the detection and discrimination phase (left part) the

correct behavioral choices (Hits) are generally executed after the 2nd to 4th tone, and

less frequent already after the first tone, while the reaction time of the wrong choices

(FA) are equally distributed over the trial duration. Note, that the tones are presented

four times within the observation time window (delayed conditioning). This suggests

that the task design allows the subjects to use at least the presentation of a second

CS to evaluate their planned behavioral choice. The results from the reversal phases

demonstrate two things. First, again the reaction times were found to be mainly after

the second CS was presented within a trial in an equally distributed manner. Second, the

conditioned responses showed a reduction, which can be explained either by the decrease

of group size (n = 8/7) and sessions compared to the previous phases (detection and

discrimination) or by the tendency of the animals to switch their strategy from avoidance

to escaping after the long training protocol. The latter is in line with the results we

get from the learning curves based on conditioned response rates and the sensitivity

index.

Another way to illustrate the possible switch of animal ’s behavior from active avoidance

to escaping strategy is to count all possible behavioral choices (hit, miss, false alarm and

correct rejections) over the course of the complete trial duration (Figure 3.2, b) for each

training phase separately. This test revealed that indeed most of the conditioned responses

happened during the first two phases of training. The number of false alarm responses

stays always relative low. However, during the multiple reversal tasks there is an increase

of the miss responses comparing to the number of hit trials of the same phase. This is a
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clear indicator for an escaping behavior. Because of this potential limitation, in later sec-

tions of this thesis the electrophysiological analysis will be treated in two parts. The first

part will include CSD analysis of the detection and discrimination phase, while the second

will deal with CSD data from the multiple reversal tasks.

Finally, in order to prove the exact relationship between the reaction time and the

discrimination performance Pearson ’s correlation coefficient was used. In this case, each

data point in x-coordinate represents the d ′ values from each session during the discrim-

ination phase, while each data point in y-coordinate represents the mean reaction time of

each particular session. This allows us to plot the data from all animals in a scatter-plot

and to calculate the correlation coefficient of those two variables (Figure 3.2, c). This

analysis showed that when the mean reaction time tends to decrease, the sensitivity index

d ′ variable increases. Therefore, there is a significant negative correlation between dis-

crimination learning performance and the reaction time, which is in line with the existing

literature (Donders, 1969; Young, M.E. & *Crumer, 2006).
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Figure 3.2: Correlation of reaction time with the learning progress. a. Histograms
with distributions of the conditioned responses - reaction times over all trials of the phases
detection, discrimination (left part) and reversal 1-4 (right part). The observation window is 6s
and each tone (CS+/CS-) is presented 4 times with ISI 1.5s, if there is no conditioned response
before that period. The responses are counted in relation to the tone presentation and in time
bins of 250ms. Hits responses are shown in red bars and false alarms in blue bars. b. Histograms
with distributions of the relative count of behavioral choices: hit (red); miss (orange);false alarm
(FA, dark blue);and correct rejection (Cor.Rej., light blue) over the course of the complete trial
duration and per training phase. c. Scatter-plot represents the relationship of the variables d ′

values (x-axis) and mean reaction time (y-axis) of each session in discrimination phase (n = 8).
There is a significant negative correlation between the variables with Pearson ’s r = 0.56 and
p<0.001.

3.1.4 Characterization of individual learning strategies

In order to distinguish between individual learning strategies, the receiver operator curves

(ROC) were placed on a strategy plane (see, 2.4.2, Strategy plane - ROC curves) for each

animal and phase separately. Representative examples of two different subjects are shown

in Figure 3.3. The one animal (Figure 3.3, a) could be characterized as a "quick learner".

During the first session of the discrimination task (light grey dot- start) it showed low

jumping rate for both stimuli (Go and NoGo) with d ′ < 0, a strategy that can be
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described as conservative (grey plane).

However, by following the trajectory on the graph, one can observe that the animal very

quickly (2 sessions after) achieved d ′ > 1 (on ROC lines) with an optimal performance

(green plane). This strategy remained till the end of this phase. As it is mentioned above,

the task switch (reversal 1) caused drop in performance. In this case, at the start point

the animal kept the strategy that developed during the previous task, which is now wrong

due to different contingencies. It took, again, only two sessions till the new meaning of the

stimuli was re-associated and the discrimination performance became optimal. In con-

trast, the graph shown in the Figure 3.3 and panel b (left) illustrates a completely different

learning strategy from another gerbil. This animal showed increased amount of condi-

tioned responses for both stimuli (Go and NoGo) in the beginning of the discrimination

phase (start point). This strategy can be characterized as liberal (yellow plane) because

the animal seemed to generalize the given conditions.

In next sessions, the jump rates were reduced and his strategy changed to a more con-

servative. Looking at the ROC curve trajectory it is obvious that although this animal

reached d ′ > 1 there were many fluctuations in its discrimination performance. Interest-

ingly, after the contingency reversal, its strategy changed again. The reversal task caused

a significant reduction to the jumping rates (conservative plane - start) and it lasted

for two sessions. Finally, the animal achieved the optimal discrimination performance

(d ′ > 1, dark gray dots- end) within three consecutive training sessions. Hence, it can be

concluded that although the animals reach the criterion threshold to learn the Go/NoGo

paradigm the way they do it differs from subject to subject.
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Figure 3.3: Behavioral variability and unique learning strategies (ROC). Representa-
tive examples of receiver operator characteristic (ROC) curves based on discrimination and first
reversal learning performance placed in a behavioral strategy plane. The diagonal and ROC
lines indicate the d ′ value levels. The grey dots show the different sessions. The initial session
(start) is shown with the lightest gray dot while the final session (end) with the darkest grey dot.
Each point represents the total amount of conditioned responses to the Go (y-axis) and NoGo
(x-axis) stimuli at that session. Based on the relationship of those two variables, the behavior
can be characterized as "conservative" (gray plane), "wrong"(red plane), "liberal" (yellow plane),
and "optimal" (green plane). a. The single subject learning trajectory during discrimination re-
vealed a quick (within 2 sessions) transition from the conservative to the optimal state (d ′ > 1).
Task switch caused a drop in performance. Initially, the animal showed a "wrong" strategy
which changed to the "optimal" after two sessions. b. Trajectories from another single subject
revealed a different learning strategy. It started from the "liberal" and reached the "optimal"
state but after many fluctuations during the training. The reversal task reduced dramatically
the conditioned responses but the animal re-acquired the task quickly, after two consecutive
sessions reaching again the "optimal" state.
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3.2 Chronic CSD recordings during the auditory learning

paradigm in the shuttle-box - a cortical circuit

analysis.

The first set of analyses examined the impact of the designed auditory Go/NoGo paradigm

on the behavior of the animals and it focused on the behavioral parameters. Turning

now to the experimental evidence on how task-related information is represented in the

cortical microcircuitry in the A1, the results from the chronic LFP/CSD recordings will

be described in the following sections.

3.2.1 Establishment of stable chronic CSD recordings.

The ability to chronically record LFP/CSD signals from the A1 during the long-term

experiment is one of the advantages of this newly established method (Happel et al., 2015).

In order to prove the stability of the long-term recordings, averaged CSD profiles (n=1)

across 30 trials from the first and 30 trials from the last training sessions (after 6 weeks) are

compared, qualitatively (Figure 3.4, a). In this representative example, the CSD quality

remains stable, allowing the detection of physiological sink-source activity patterns across

the cortical layers of the trained animal. Based on the relationship of cortical depth with

the sink-activity patterns, identification of the cortical layers (I-VI) was possible and it

was controlled over the course of the complete training.

Despite the stable CSD quality, in a long-term experiment, which combines electro-

physiological data with behaving, freely-moving animals, the sources of artifacts cannot

be ignored. As it is mentioned in the methods section, data preprocessing on a trial-by-

trial level is an important step to get artifact-free data. One common type of artifacts

is the distortions on the recording channels, which generate non-physiological signals. In

order to eliminate such channel-dedicated artifacts, the method of linear interpolation was

used (??). To quantify the quality of the recordings in respect to the channels, averages

(n=9/7) of the interpolated recording channels are shown per session over the course of

the training protocol (multiple reversals, Figure 3.4, b - top). From the Figure 3.4, b

can be seen that the maximum number of affected channels is 10 out of the 32 recording
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channels. Even after the long-term use of the recording sites only a few channels needed

to be interpolated. Similarly, Figure 3.4, b - bottom illustrates the averaged (n=9/7)

number of trials which were excluded from the analysis due to non-physiological signals.

The maximum number of excluded trials was 5 out of 60 trials per session and it hap-

pened in the later phases of the training. Furthermore, the quality of the data can be also

controlled in respect to the artifacts caused by the conditioned responses (CR or no CR)

during a session. Thus, in Figure 3.4, c the y-axis represents the percentage of the affected

signal per session (100% corresponds to all trials of that session) while the x-axis shows

the training sessions. Trials with CR (purple line) are plotted separately from the trials

with no CR (green line). Interestingly, at least until the end of phase 3 (reversal 1) there

is no significant difference in the amount of artifacts between trials with or without CR.

In later phases, indeed, CR-trials showed an increased amount of artifacts compared to

no-CR trials. However, what stands out from the Figure 3.4, c is that even in later phases

about 80% of the data in each session can be used as they are artifact-free. Thus, despite

the existing cases of non-physiological data, the newly established techniques enable us to

control the data quality and perform valuable data analysis.
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Figure 3.4: Long-term stable CSD recordings from all cortical layers in A1. a.
Representative example of an averaged (across 30 trials) CSD profile from one subject of the
first training session (detection; left) and the last discrimination session (right), after 6 weeks of
training. Based on the averaged auditory-evoked activity in response to the first presentation of
the conditioned stimuli within a trial (time window: 500ms; tone duration: 200 ms; indicated
by the black frames) we assign the cortical input layers (I/II-VI) to the respective recording
channels (indicated with the dashed lines). The example illustrates the stability of the electrode
positioning over the course of the training. b. Averaged number of interpolated channels (top,
blue line) and affected trials (bottom, orange line) over the course of multiple-phase training
(n=9/7 animals,error-bars show the SEM). c. Example of a single animal data (n=1) showing
the percentage of artifacts on trials with conditioned responses (CR - in purple) and those
without conditioned responses (no CR- in turquoise) over the course of the training.

58



Part I

3.2.2 Task rule impacts on the columnar representation of sound

frequency

Previous research has established that in an averaged CSD trace, the tone-evoked activity

in response to the repetitive CS presentation, reflects the spatiotemporal feedforward flow

of sensory information across cortical layers in the A1 (Happel et al., 2010a; Sakata and

Harris; Hickmott and Merzenich, 1998). This is marked as the most prominent laminar

response pattern. To compare the difference between different conditions of the experi-

ment, we used the averaged CSD trace information. For example, during the detection

phase, the two pure tones (both ‘Go’ stimuli) generated highly similar CSD patterns with

respect to the spatiotemporal current flow (Figure 3.5, a). Initial current sink activity

was observed within granular layers III/IV and infragranular layer Vb, reflecting cortical

depths of main thalamocortical inputs from the ventral medial geniculate body. Sub-

sequent synaptic activity is then routed to supragranular layers I/II and infragranular

layers Va and VI (Happel et al., 2010a; Szymanski et al., 2009; Schaefer et al.). Given

the fact that the pure tone duration was 200ms, the overall columnar response showed

a prolonged activation. In awake passive listening subjects CSD profiles were generally

also very similar in response to both pure tones (Figure A.1). This is due to considerably

similar and flat frequency tuning properties across the entire group of animals measured

(Figure A.1).

In contrast, during the discrimination phase, the two physically identical stimuli evoked

considerably different CSD patterns. While the overall tone-evoked columnar activity in

Go-trials showed a marked increase, the activity in NoGo-trials was rather unchanged or

slightly decreased (Figure 3.5, a). More evidence is provided after quantification of the

overall columnar activity strength. For this, I compared the root mean square values of

the AVREC (AVREC RMS; z-normalized) calculated for the entire trace in each trial

(Figure 3.5, b). The applied one-way repeated-measures ANOVA (rmANOVA) revealed

that, during the detection phase, the overall activity over the trial between the two CS+

did not differ (F1,8 = 0.20, p = 0.668). During discrimination, the CS+ evoked significantly

more cortical overall current flow compared to the CS- (F1,7 = 143.63, p < 0.001). Thus,
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these findings show that the activation strength of the auditory cortex in response to pure

tones depends on the task rule (Figure 3.5,b in grey insets, find full AVREC traces at

Figure A.2).

Figure 3.5: Stimulus-related activity during different training phases. a. Representa-
tive example of an averaged CSD profile across all trials of the detection (left) and discrimination
(right) phase of one subject. The CSD profiles show the tone-evoked activity after the first pre-
sentation of both conditioned stimuli within a trial (top: 1 kHz, bottom: 4 kHz; tone duration:
200 ms; indicated by dashed bar in upper left panel). Evoked CSD patterns between the two
pure tones frequencies showed no obvious differences during the detection phase but yielded
considerably different CSD patterns during discrimination for the CS+. b. RMS values of the
AVREC (time window of 500 ms beginning at each tone presentation and z-normalized) shown
for each of the four consecutive CS and separated by the different behavioral outcomes dur-
ing the two task phases(detection/discrimination= 9/8). Box plots represent median (bar) and
interquartile range, and bars represent full range of data. Significant bar indicate differences
revealed by pairwise testing. Schematic illustration of the evoked cortical activity in dependence
of stimulus frequency and task rule are shown in grey inserts (see Figure A.2).
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3.2.3 The auditory cortex represents decision and choice accuracy

The next question asked was whether the decision made by the animal is represented

within the A1 and how the cortical recruitment depends on that. For this, we compared

the AVREC RMS values during a 500 ms window beginning with each CS onset. In

a first step, we tested the dependence of the animals’ choice options and the time bins

throughout the trial, by a 2-way rmANOVA with the main factors outcome and tone order

(Figure 3.6). Significant effects were found for both main factors, outcome and tone order,

as well as their interaction in both the detection and discrimination phase (Detection:

outcome F3,24= 40.63, p < 0.001, η2
gen= 0.66;tone order F3,96= 26.58, p < 0.001, η2

gen= 0.25;

interaction F9,96= 10.05, p < 0.001, η2
gen= 0.27; Discrimination: outcome F3,21= 31.67, p <

0.001, η2
gen= 0.68; tone order F3,84= 26.39, p < 0.001, η2

gen= 0.23; interaction F9,84= 17.52,

p < 0.001, η2
gen= 0.38). In order to test the differences of the behavioral outcomes at each

time point separately, we used restricted Holm-corrected post-hoc comparisons at each of

the CS+ presentations. During detection training, post-hoc tests revealed that the evoked

AVREC RMS values (z-norm.) after the first CS presentation are similar for hit and miss

trials. Consecutive CS+ presentations evoked significantly higher RMS values during hit

trials compared to miss trials (Figure 3.6, a-left, Table A.1).

These findings were independent of the actual stimulation frequency (1 or 4 kHz). In

the discrimination phase, we found a significantly different recruitment of auditory cortex

columnar activity depending on frequency and choice of the subjects at the second and

ongoing CS presentations throughout a trial (Figure 3.6, a-right). Cortical activation

in the 500 ms time window around the first CS showed only minor differences. Dur-

ing later CS presentations, we found a stable pattern of columnar activity. During hit

trials, cortical activation was significantly highest compared to all other classes. Cor-

rect rejections showed the lowest cortical recruitment. In contrast, cortical activation

during miss and false alarm trials did not differ at any CS presentation throughout the

trial.

Note that cortical recruitment was generally stronger during trials in which animals

reported a compartment change (hits > misses; false alarms > correct rejections), com-

parable to findings in the detection phase. However, as the cortical activity during miss

and false alarm trials did not differ significantly, the variability of cortical activation in
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our data cannot be explained by a mere correlate of motor responses or motor planning,

but must also depend on the contingency of a stimulus. Indeed, the strongest difference

observed was between the two correct choice options of the animal, namely between hits

and correct rejections. Hence, cortical recruitment during detection was influenced to

a larger degree by the behavioral action taken by the animal, rather than the physical

stimulus. During discrimination, cortical recruitment was influenced by the frequency,

coding for the contingency of the stimulus, and the choice accuracy of the taken action

(Figure 3.6, b).

In addition, data from a time window of 500-1000 ms after each stimulus presenta-

tion (stimulus duration: 200 ms) were analyzed. The reason behind it was to sepa-

rate the relative modulation of cortical layer activity by sensory-driven effects from the

task-related, but potentially temporally distributed information. This analysis revealed

a similar pattern of cortical activity being modulated by the choice accuracy, which is

hence present also independently from the stimulus-dominated auditory response (Fig-

ure A.3).

Figure 3.6: Behavioral choices and contingency are both reflected in population ac-
tivity of the A1. Averaged AVREC RMS values (500 ms window at CS onsets) plotted with
respect to the conditioned stimuli and behavioral choice. a. Left, During the detection phase
evoked activity was significantly higher during hit trials compared to miss trials independent
of the stimulation frequency (detection/ discrimination: n=9/8). Right, In the discrimination
phase, cortical activity was strongest during correct hit trials and lowest during correct rejec-
tions. During trials of incorrect behavioral choices (miss/false alarm) tone-evoked activity was
characterized by intermediate amplitudes and did not differ. Box plots represent median (bar)
and interquartile range, and bars represent full range of data.Dots represent outliers. Significant
bars indicate differences revealed by a 2-way rmANOVA and corresponding posthoc tests with
Holm-corrected levels of significance (see Table A.1) b. In summary, cortical activity was gen-
erally higher in trials in which animals showed a conditioned response in comparison to trials
where animals stayed in the compartment. Cortical activity differed strongest between correct
behavioral choices, namely hits and correct rejections.
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3.2.4 Representation of contingency is layer-specific and differs with

task rule

Further steps of the analysis were concerned with examining the contribution of corti-

cal layers to the observed effects. In order to investigate this, I analyzed binary classes

on a single-trial level using generalized linear-mixed effect GLMM (Chang et al., 2018;

Bakeman, 2005). The GLMM analysis revealed that in the detection phase, the AVREC

trace RMS (z-norm.) was not dependent on the presented frequency of the two condi-

tioned stimuli (left, R2m = 0, ns.; Figure 3.7, left). During the discrimination phase,

an increase in the AVREC trace RMS was a reliable predictor that the 1kHz ‘Go’ stim-

ulus was presented (R2m = 0.17, p < 0.001; Figure 3.7, right). Hence, the columnar

activity in the auditory cortex in response to the same conditioned stimuli differed in

dependence of the task and was only separable when both had contrasting contingen-

cies.

We further applied the GLMM to the RMS value measured over the entire trace activity

within single cortical layers (I/II, III/IV, Va, Vb, VI) in order to reveal the source of the

aforementioned results on a layer-specific level (Figure 3.7). In the detection phase, the

two CS+ used as binary class in the GLMM could not be predicted significantly for any

particular cortical layer. Then, the GLMMs were applied for the two conditioned stimuli

during the discrimination phase. Remember that in discrimination, the two stimuli reflect

two distinct contingencies (CS+ and CS-). In this case, a moderate prediction of the model

with an R2m of 0.12 for only the granular input layers was observed. Detailed results for

each model are reported in Table A.2.
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Figure 3.7: Representation of contingency, not frequency revealed in synaptic pop-
ulation activity of granular input layers. Parameters of interest were analyzed on a single-
trial level using generalized linear-mixed effect models a. Logistic regression curves show the
probabilities of the presented CS (1kHz and 4kHz as the dependent variable) for individual sub-
jects (gray) and as an average (blue). The boxplots above and below the curves represent the
mean (bar), interquartile range (box) the full range of data (whiskers). The AVREC trace RMS
did not predict the frequency of the conditioned stimuli (1 kHz and 4 kHz) during the detec-
tion phase (left, R2m=0, R2c=0, ns.). During discrimination an increase in the AVREC trace
RMS significantly indicated that the 1 kHz ‘GO’ stimulus was played (R2m=0.16, R2c=0.30,
p<0.001). Hence, auditory cortical activity in response to the same conditioned stimuli differed
in dependence of the task. b. GLMMs were applied to RMS values measured within single
cortical layers (I/II, III/IV, Va, Vb, VI). The illustration of the cortical column below indicates
the GLMM predictability based on data from corresponding layers to the binary behavioral
choice combinations. The color illustrates the effect size for the model-based R2m (grey= no
effect to red=strong effect). The top R2m value (R2max) depicts the best fit result for all layers
tested. In the detection phase, the two CS+ used as binary class in the GLMM revealed no
significant prediction for any particular cortical layer. During the discrimination phase we ob-
served a moderate prediction of the model with R2m = 0.12 for the granular input layers. The
detailed results for each GLMM are reported in Table A.2.

Following, the GLMMs were used to predict the behavioral choices rather than the

stimulus frequency (Figure 3.8). Therefore, the AVREC RMS values (z-norm.) of the 500

ms windows around the tone presentation that preceded an active avoidance response of

the animal (hit/false alarm) or around the last CS in the observation window in trials

without a CR (miss/correct rejection) were used. During the detection phase, a higher

AVREC RMS was a robust predictor for trials with a correct hit response compared
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to miss trials with lower overall cortical activity (R2m = 0.32, p < 0.001; Figure 3.8,

left). In order to test the contribution of distinct cortical layers to the coding of different

behavioral choices, GLMMs predictions were calculated for the RMS values of each layer

separately.

Those results demonstrate that during the detection phase, cortical activity in infra-

granular layers was a good predictor (R2m = 0.2 – 0.25, p < 0.001), while supragranular

and granular layers were less accurate (R2m = 0.11 – 0.19, p < 0.001; Figure 3.8, left;

cf. Table A.3). Again, during the discrimination phase the AVREC RMS also predicted

choice outcome during ‘Go’-trials (hits vs. misses) with a moderate effect size (R2m =

0.18, R2c =0.38, p < 0.001; Figure 3.8 a, right). Additionally, for the ‘NoGo’-trials the

GLMM was able to predict the outcome with a high effect size: false alarms were effec-

tively predicted by stronger cortical recruitment than measured during correct rejections

(R2m = 0.27, p < 0.001; Figure 3.8 a, right). During discrimination, granular and supra-

granular layers appear to be important for the differential representation of the behavioral

choice in ‘Go’-trials (R2m = 0.14-0.18). During ‘NoGo’-trials, the RMS value of all corti-

cal layers except of layer VI were good predictors for the trial outcome (R2m =0.10-0.17,

p<0.001), while supragranular layers were also the best predictor between false alarms

and correct rejections (see Table A.3).

65



Figure 3.8: Layer-specific contribution to behavioral choice. a. GLMM and logistic
regression analysis was used to predict the behavioral choice of the subjects. Left, During the
detection phase RMS values of the AVREC (z-norm.) in the 500 ms time window around the CS
presentation which was initiating a hit response was significantly higher compared to the fourth
CS during miss trials (R2m=0.32, p<0.001). Middle, this was also true for the discrimination
phase, although with only a moderate effect size (R2m=0.18, p<0.001). When comparing data
from ‘NoGo’ trials, false alarm and correct rejections could be predicted with a high effect size
(R2m=0.27; p<0.001). b. The illustration of the cortical column below indicates the GLMM
predictability based on data from corresponding layers to the binary behavioral choice combi-
nations. The color illustrates the effect size for the model-based R2m (grey/red scale). GLMM
predictions for each layer showed that cortical activity from all layers were good predictors
(R2m=0.1-0.25), especially higher effect we observed at deeper layers Va, Vb, and VI, for the
two possible choices (hit/miss). This finding was independent of the actual spectral content of
the presented stimulus (1 kHz/4 kHz; see Figure 3.6). During the discrimination phase, gran-
ular and supragranular layers appear to be important for the differential representation of the
behavioral choice in ‘Go’-trials (R2m=0.14-0.18). For ‘NoGo’-trials, the GLMM revealed that
false alarms are accompanied by significantly higher activity in all cortical layers except of layer
VI compared to correct rejections (R2m=0.17, p<0.001). Supragranular layers were also the
best predictor between false alarms and correct rejections classes. The detailed results for each
GLMM are reported in Table A.3.
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3.2.5 Choice accuracy is robustly represented throughout cortical

layers

Finally, in order to obtain more evidence regarding the A1 cortical recruitment during

decision-making, data from accurate and inaccurate choices were compared. To test this,

similar analysis with GLMM was done but this time with binary class being the correct

and incorrect choice options of the subjects.

From this analysis, it can be seen that only correct choices lead to a distinguishable

cortical circuit activation (Figure 3.9). The AVREC RMS could predict the outcome in

correct trials with a high effect size: Correct ‘hit’ responses can be predicted by higher

RMS values of the AVREC trace in the time window before the actual decision compared

to the time window at the trial end during correct rejections (R2m = 0.45, p<0.001). On

the other hand, the two incorrect choices ‘false alarms’ and ’miss’ were not predictable by

the GLMM (R2m = 0.04; n.s.; Figure 6A). The layer-specific analysis further revealed that

particularly supragranular layer activity contributed to the differential cortical activation

between the correct choice classes (R2m = 0.18-0.51; p<0.001; cf. Table A.4; Figure 3.9,

left).

Nevertheless, all cortical layers were recruited in a distinct way, so that the whole

cortical column differs in activity during correct hit and correct rejection choices. In

accordance with the insignificant GLMM result on the overall columnar activity measured

by the AVREC RMS, also no cortical layer activity could predict the two incorrect choices

(false alarm/miss; Figure 3.9, right).
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Figure 3.9: Representation of choice accuracy across layer-specific population activ-
ity in A1. a. Predictability of correct (left) and incorrect (right) choices during the discrim-
ination phase were modelled by GLMM and logistic regression. Correct ‘hit’ responses can be
predicted by higher RMS values of the AVREC trace in the time window before the actual deci-
sion compared to the time window at the trial end during correct rejection responses (R2m=0.45,
p<0.001). In contrast, the two incorrect choices ‘false alarms’ and ’miss’ were not predictable
by the GLMM (R2m=0.04; n.s.). b. The illustration of the cortical column below indicates the
GLMM predictability based on data from corresponding layers to the binary behavioral choice
combinations. The color illustrates the effect size for the model-based R2m (grey/red scale).
Activity from all cortical layers contributed to the differential cortical activation between the
correct choice classes, while the largest effect size was found for supragranular layers (R2m=0.51;
p<0.001). In accordance with the insignificant GLMM result on the overall columnar activity
measured by the AVREC, also no cortical layer activity could predict the two incorrect choices
(false alarm/miss). The detailed results for each GLMM are reported in Table A.4.

3.2.6 Accumulating evidence of task-related information across

auditory cortical layers

Another set of analyses examined the build-up of evidence for behavioral choices along

the trial duration and how this can be predicted based on the layer-specific adaptations

we observe with the use of GLMMs. In order to reveal the temporal accumulation of

such task-dependent information during a trial, we further analyzed time-resolved R2m

values for the four behavioral choices, which generally increased over the trial duration

preceding an animal’s reaction (Figure 3.10).
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While infragranular layers Va-VI showed moderate R2m values even 2 – 3 CS+ pre-

sentations before the actual response (up to 3 – 4.5 seconds), layers III/IV and I/II only

allowed moderate predictions of the animal’s choice. During discrimination, activity in

cortical layers I/II and III/IV, however, allowed us to correctly predict the occurrence of

correct rejections up to 3 CS-presentations before the animal’s reaction. This is partic-

ularly pronounced in contrast to false alarm trials. The largest effects were found when

comparing hit vs. correct rejections, revealing the accumulating evidence of choice accu-

racy over the trial duration.

Figure 3.10: Time-resolved GLMM-based effect sizes of behavioral outcomes re-
flecting accumulating evidence over the trial duration. GLMM-based R2m values for
behavioral choices are plotted for time bins before an animal’s reaction (small inset top left).
Dashed lines indicate small, moderate and large effect sizes, while the color of circles indi-
cates the corresponding p-value of each GLMM (black: p<0.001, dark grey: p<0.01, light grey:
p<0.05 and white: n.s.). We found R2m values to generally increase over the trial duration until
a behavioral choice option was made. During detection, infragranular layers Va - VI showed
moderate R2m values even at 2-3 CS+ presentations before the actual response was commuted.
Layers III/IV and I/II only allowed moderate predictions of the animal’s choice at the CS+
presentation preceding the reaction. During discrimination, the predictability between hits and
misses were considerably less pronounced and time-resolved. Activity in cortical layers I/II and
III/IV, however, allowed to correctly predict the occurrence of correct rejections of up to 3 CS-
presentations before the animal’s reaction. Such temporally dispersed evidence was particularly
pronounced in upper layers in contrast to false alarm trials. Largest effects were found when
comparing hit vs. correct rejection responses revealing the accumulating evidence of choice
accuracy over the trial duration. For incorrect decisions, the model showed no change of low
predictability over the trial length.
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Part II

3.2.7 Cortical recruitment in A1 during the multiple reversals of

choice-outcome contingencies

In this section, I illustrate some experimental results related to the multiple reversals

of choice-outcome contingencies (Part II: Reversal 1-4). As it is shown in Figure 3.1

subjects showed similar CR-based behaviors across all blocks of reversals. The question

then was how the cortical adaptations during those multiple behavioral switches can be

investigated. Initially, we compared averaged CSD activity patterns (800ms after the

4th stimulus presentation of both conditioned stimuli) from one representative example

animal (n=1). The CSD patterns are placed in a chronological matrix showing the level

of performance based on the sensitivity index d ′ (low to high, x-axis) and the phases of

experimental training (early to late reversal phase, y-axis) so that they can be compared

in Figure 3.11, a , qualitatively. In all cases clear tone-evoked activation patterns with

stable layer indications were observed.

During the early phases of the reversal training, the tone-evoked columnar activity

in low performance sessions showed a similar pattern to that of the high performance

stage, with only sightly stronger prolonged layer VI sink (Figure 3.11, a, top). If we now

turn to the late reversal phases (eg. reversal 4) reduced infragranular (layer VI) activity

was observed (Figure 3.11, b, bottom). While there was stable CSD activity between

the different levels of performance, supragranular layers I/II appeared to be stronger

during later reversals with low performance. One can recognize that in general the CSD

profiles are stable and our analysis targets to find out those small difference between

conditions. Therefore our approach was to pool the data of all phases of reversals and

split them again based on the performance level (d ′) creating three different subsets:

low, medium and high performance. Due to the fact that the pure tones (1 kHz and 4

kHz) were switching their contingencies in each block of reversal, before pooling the data

we tested and verified that there is no statistical difference in cortical activity caused

by the frequency itself but rather by the contingency and the task-rule (Figure A.5 and

Figure A.4).

Following, the three performance level-based pooled data were used for further investi-
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gation. The choice-related columnar activity strengths were compared as in the analysis

at the subsection 3.2.3. This means that we compared for each of the three subsets (low,

medium and high performance) the AVREC RMS values during a 500 ms window be-

ginning of each CS onset testing the dependence of the animals’ choice options and the

time bins throughout the trial, by a 2-way rmANOVA with the main factors the choice

outcome, the tone order and the interaction (with restricted Holm-corrected post-hoc

comparisons at each of the CS presentations). For simplification reasons, I demonstrate

here the rmANOVA plots only after the 4th CS onset where we found the most promi-

nent effects for the three performance states (Figure 3.11, b). The interpretation does

not change by restricting ourselves to the last stimulus as seen in the 2-way rmANOVA

in the appendix (Figure A.6).

During sessions with low discrimination performance (d ′ < 0) the evoked AVREC

RMS values (z-norm.) during only incorrect responses (miss and false alarm) were sig-

nificantly different from those induced by correct rejection trials (Low performance -

outcome: F3,21= 30.39, p < 0.001, η2
gen= 0.57; tone order: F3,84= 5,24, p < 0.001, η2

gen=

0.1; interaction: F9,84= 2.57, p = 0.001, η2
gen= 0.14). Averaged choice-related cortical

columnar activity during medium performance stage (0 < d ′ < 1) revealed significant

differences between all behavioral choices except of trials where animals showed condi-

tioned responses (hit and false alarm, medium performance - outcome: F3,21= 76.98, p

< 0.001, η2
gen= 0.68; tone order: F3,84= 12.04, p < 0.001, η2

gen= 0.23; interaction: F9,84=

6.3, p < 0.001, η2
gen= 0.32). This changed at the state of high discrimination performance

(d ′ > 1) where during hit trials, the cortical activation was significantly highest compared

to all other classes while correct rejections showed the lowest cortical recruitment (High

performance - outcome: F3,21= 152.41, p < 0.001, η2
gen= 0.86; tone order: F3,84= 47.80,

p < 0.001, η2
gen= 0.45; interaction: F9,84= 28.11, p < 0.001, η2

gen= 0.59). Now, these

results provide even more evidence to the hypothesis of choice-related representation in

the A1 which seems to be also related with the level of the engagement to the task.

(Table A.8).
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Figure 3.11: Cortical CSD activity during multiple reversal tasks at different perfor-
mance levels. a. Representative example averaged CSD profiles across all trials of all reversal
phases (Reversal 1-4) of one subject (n=1) placed in a matrix of performance level (low or high
based on d ′) and phase of the reversal training (early or late). The CSD patterns show a stable
layer-specific activity. The CSD profiles show the tone-evoked activity after the 4th presentation
of both conditioned stimuli across multiple sessions and trials with RT > 4.5 s (tone duration:
200 ms; indicated by dashed bars). At early stages of the reversal training evoked CSD patterns
show a prolonged layer VI sink and only minor qualitative differences between the performance
levels (averaged trials from : top left - early averaged trials with low performance d ′ < 1, top
right - high performance d ′ > 1). At later stages of the multiple reversals CSD sink activity was
considerably different comparing to the early stages (averaged trials from:bottom left - late low
performance d ′ < 1,bottom right - late high performance d ′ > 1). b. Averaged AVREC RMS
values (500 ms window at the 4th CS onsets) plotted with respect to the behavioral choices
(n=8) after pooling the data of all reversal blocks (Reversal 1-4) and split them again based on
the sensitivity index d ′. In the low performance stage (left: d ′ < 0), only miss and false alarm
trials were significant different from the correct rejection trials. During the medium performance
stage (middle: 0 < d ′ < 1) cortical activity differs significantly across all behavioral choices
except of hit versus false alarm trials. When animals perform highly (right: d ′ > 1) cortical
activity was strongest during correct hit trials and with a significant difference comparing to
all other behavioral choices. Box plots represent median (bar) and interquartile range, and
bars represent full range of data. Dots represent outliers. Significant bars indicate differences
revealed by a 2-way rmANOVA and corresponding posthoc tests with Holm-corrected levels of
significance. The complete (at all the 4 CS onsets) 2-way rmANOVA plots are shown in the
appendix (Figure A.6)
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3.2.8 Strategy switch and performance level are reflected in

layer-specific activity during multiple reversals

In the final part of the analysis, data were investigated according to the procedures de-

scribed in the subsections 3.2.3 , 3.2.5, and 3.2.6, employing GLMMs to explore the layer-

specific adaptations in A1 across different conditions and time points over the course of

the trial. All analysis related to the multiple reversal phases were carried out exactly as

described above by using GLMM on a single trial level to predict the behavioral choices

(binary classes) for the complete cortical column (AVREC RMS) and for each cortical

layer separately. The difference here is that the GLMMs were applied three times be-

cause of the three different pooled data subsets (low, medium and high performance, as

described in subsection 3.2.7). To streamline the major effects of the layer-specific analy-

sis and the cortical plastic changes during the multiple reversal training, I have used only

the illustrations of the time-resolved GLMM-based effect sizes of behavioral outcomes

at the three levels of discrimination performance (similar to Figure 3.12). Nevertheless,

it is important to note that each point at each of the lines presented in the following

figures corresponds to one logistic regression curve with the probabilities of the binary

choices.

Looking at the three different levels of performance it is obvious that the time-resolved

R2m values for the four behavioral choices increased over the trial duration preceding an

animals’ reaction (Figure 3.12) providing support to the hypothesis of accumulating evi-

dence over the trial duration. A first striking observation is that during the sessions with

low sensitivity index d ′ < 0 (Figure 3.12, a), the infragranular layer VI showed extremely

large R2m (0.35 to 0.8) values even 2–3 CS presentations before the actual response (up

to 3–4.5 seconds) when comparing the correct (hit) with the incorrect (miss/false alarm)

conditioned responses. Supragranular layers appeared also important to predict the oc-

currence of the same behavioral choices. Also, only during the low performance stage the

other cortical layers allowed large effect predictions even 2 CS presentations before the

response (for hit vs miss, correct rejection vs false alarm and hit vs correct rejection).

Cortical layers were not able to predict the incorrect behavioral choices (false alarm vs

miss).
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Next, when animals showed medium discrimination performance with 0 < d ′ < 1, a

global activation of the cortical column (all layers) allowed us to correctly predict the

occurrence of correct rejections up to 3 CS presentations before the animals’ reaction.

However, the highest was the activity of cortical layers I/II. In general, here the time-

resolved GLMM effect sizes showed similar trends as those form the discrimination phase

(Figure 3.10).

Finally, it can be seen that again during the high performing stage (d ′ > 1), infra-

granular layer VI showed large R2m values only 1 CS presentations before the actual hit

responses. Therefore, in highly trained states the R2m curves showed a steeper slope

towards the decision time point (RT). Moreover, largest effects were found for layers I/II

when comparing hit vs. correct rejection trials. Interestingly, for the incorrect decisions

(false alarm vs miss), the model showed almost no change of low predictability over the

trial length at any of the three levels of learning performance. These are important find-

ings in the understanding of the cortical layer-specific synaptic activation patterns during

learning, decision-making and choice accuracy.
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Figure 3.12: Time-resolved GLMM-based effect sizes of behavioral outcomes at
the three different performance stages during multiple reversal training. GLMM-
based R2m values for behavioral choices are plotted for time bins before animals reaction (as
described in Figure 3.10) after pooling the data across all reversal blocks and splitting them
according to the three performance levels based on d ′: a. Low performance : layer VI allowed
to predict with extremely large R2m the occurrence of hit responses, b. Medium performance:
the effect appear similar as those from discrimination phase, and c. High performance: layer VI
showed large R2m values but smaller than in low performance level at 2-3 CS+ presentations
before the actual response was commuted.
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4 | Discussion

"We have our strategy in place. A behavior has occurred — one that is reprehensible, or

wonderful, or floating ambiguously in between. What occurred in the prior second that

triggered the behavior? This is the province of the nervous system. What occurred in the

prior seconds to minutes that triggered the nervous system to produce that behavior? This

is the world of sensory stimuli, much of it sensed unconsciously."

— Robert Sapolsky1

Evolution has enabled organisms to perceive their environments by sensory means. As

a consequence, the organisms internally coordinate a range of responses (actions or in-

actions) to internal and/or external stimuli. The latter is one of the most recent definitions

of the term ’behavior’ suggested by Levitis et al. (2009). However, defining and under-

standing the mechanisms underlying behavior has a long history in the fields of philosophy,

psychology, ethology, behaviorism, and recently in neuroscience.

Over the past decades, major advances in neuroscience have allowed researchers to

combine technologies and discover more about the enigma of behavior. Awareness of the

need to look at the brain under the prism of the behavior has been very nicely described

by Krakauer et al.. Therefore, examining the brain on microscopic (synapses), mesoscopic

(neural circuits) and macroscopic (behavior) level by creating combinatorial experimental

protocols will help us to get a holistic interpretation of multiple phenomena related to

the behavior (Buzsáki and Christen). One can appreciate that we have now arrived in

an era wherein we can explore ethograms in relation to concrete brain activity. In this

vein, the overarching goal of my study was to determine how cortical layers contribute to

the integrative circuit in the primary auditory cortex (mesoscopic level) in order to code

bottom-up and top-down processes (macroscopic level).

1From the book "Behave - The biology of humans our best and worst, Chapter 1 - The behavior"
Sapolsky
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4.1 Combined shuttle-box auditory task with chronic

cortical recordings as a tool to study perception and

learning

The first question in this study sought to determine whether gerbils are able to readapt

their learning behaviors multiple times in a 2-way avoidance auditory Go/NoGo shuttle-

box paradigm. The shuttle-box apparatus is well-established and has been used exten-

sively in the past to study animals’ behavior on concepts such as detection and categorical

discrimination learning, mainly with the aim to better understand the functionality and

plasticity of the auditory cortex (Ohl et al., 1999; Wetzel et al., 1998; Weinberger, 1993;

Ohl et al., 2001b; Stark et al., 2004; Stark et al., 2008 Deliano et al., 2009b; Happel et al.,

2014b).

In those seminal studies the shuttle-box training was combined with various interven-

tions such as lesions, microdialysis, electric mincrostimulation and enzymatic manipula-

tion in order to investigate the role of the A1 in auditory learning. Together, these studies

indicate that the A1 plays a crucial role in learning and they provide a great substrate to

study even more demanding phenomena, such as reversal learning, decision-making, set

shift, and extinction. They also serve to expand our knowledge on the neural correlates

of behavioral flexibility. The experimental work presented here provides one of the first

shuttle-box long-term protocols (over several weeks) which combines multiple reversals

of the choice outcome contingency with parallel in-vivo chronic CSD recordings in freely

moving gerbils (Happel et al., 2015).

4.1.1 Gerbils are able to discriminate auditory stimuli even after

several reversals of choice-outcome contingencies

First, in respect to the behavioral results, learning curves based on the averaged condi-

tioned response rates (Wagner et al., 1989) and the sensitivity index d ′ (SDT) were used

to describe the overall learning progress during the multiple blocks. Additionally, I used

the variable reaction time or response latency (Figure 3.2) which have been extensively

studied as an appropriate variable to interpret behavioral choices and learning progress
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in decision making experiments (Young, M.E. & *Crumer, 2006; Donders, 1969). Ac-

cording to those, reaction times decrease with the increase of the performance which is

in agreement with what I had observed here (Figure 3.2, c). One of the most interesting

findings is that after successful detection of the two pure tone frequencies, gerbils had

to abandon their initially learned strategy and ‘re-associate’ one of the two CS with a

new meaning during the discrimination phase. This finding was unexpected and suggests

that a switch of the task rule caused the animals to completely abandon the previous

but still valuable ‘knowledge’ about parts of the stimulus representation, i.e. the CS

which kept the same meaning. Therefore, gerbils had to re-learn a new set of behav-

ioral action-outcome contingencies already from the first task switch (Figure 3.1, Part

I).

Similarly, during the multiple reversal tasks, the subjects were re-adapting their learn-

ing strategies each time the meaning of the tone was reversed and were finally able to

discriminate the two conditioned stimuli (Figure 3.1, Part II). In the beginning of each

reversal block — for 1 to 4 initial training sessions — animals were performing poorly and

showing a ’perseverative error’ (higher false alarm than hit responses) due to previously

learned strategies. The phenomenon of ’perseverative error’ has been explored broadly

in respect to other brain areas (e.g. mediodorsal nuclei of thalamus, striatum, prefrontal

cortex, locus coeruleus, and nucleus accumbens core) and certainly under the light of

reward systems, dopaminergic, and noradrenergic modulation in a big range of studies

from rodents to humans (Block et al., 2007; Waelti et al., 2001; Jarvers et al., 2016; Glen-

non et al.). Also, Stark et al. (2004) showed that dopamine was increased in the medial

prefrontal cortex (mPFC) while gerbils were actively avoiding the aversive stimulus (US,

footshock) by initiating a behavior (locomotion) and establishing the avoidance strategy,

in a similar shuttle-box Go/NoGo paradigm. It can thus be suggested that the reward

signal in the present experiment is the avoidance of the US. Even so, this thesis does not

focus on the prediction/perseverative error theories; the established experimental pro-

tocol offers the opportunity to further investigate those highly cognitive aspects in the

future.

To the best of my knowledge, this is the first study showing that rodents can complete

four consecutive reversals. Particularly, in a recent review, Izquierdo et al. (2017) reported

a large volume of published studies regarding the neural basis of reversal learning. They
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providing evidence on the function of multiple brain circuits of several species during

reversal learning. Finally, one must be cautious with the interpretations due to the

huge diversity of the modalities, task-designs, brain areas and neuromodolatory systems

(Hamilton and Brigman, 2015).

4.1.2 Learning dynamics and strategy adaptations during shuttle-box

training

It is interesting to note that after several reversal blocks, the majority of animals followed

a more probabilistic strategy by increasing the miss responses (escaping) (Figure 3.2, b)

but they still reached the learning performance criterion (d ′ = 1) (Figure 3.1, Figure 3.2)

and successfully discriminated between the two pure tones. The reason for the switch to a

escaping-like behavior is not clear but it may have something to do with the development of

a rapid defensive behavior to the - already known - aversive stimuli and the establishment

of an ’economic’ way to solve the task (Evans et al., 2018; Evans et al., 2019). Other

reasons might be the level of engagement and the sensitization to the aversive stimulus

after the long-training protocol.

From the presented data, it can be inferred that the animals were able to reach good dis-

crimination performance in each phase, even after multiple reversals of the choice-outcome

contingencies. Nevertheless, the way each animal solves the task and finally reaches our

pre-defined learning performance threshold varies from subject to subject. This behav-

ioral variability may be associated with changes in animals ’ natural environment (eg.

interaction with the experimenter, odors, noises etc.) and the natural tendency to avoid

behaviors with high computational effort (Renart and Machens, 2014). Following the tra-

jectories on the ROC strategy planes (Figure 3.3), one can conclude that gerbils show very

unique learning strategies and can easily switch them (i.e. from conservative to liberal or

from wrong to optimal state etc.). Hence, those findings highlight that animals trained in

the exact same tasks in the shuttle-box develop individual learning strategies. One type of

learning strategies can have characteristics of an economic and deterministic model, while

others can be described as more exploitative and stochastic.

The rationale of this behavioral analysis is to correlate the cognitive and motivational

status of the animal from session to session with the recorded cortical activity (data not
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shown). This idea reflects that of Berditchevskaia et al. (2015) who also suggest that there

are unique motivation levels already within a training session during a Go/NoGo visual

task with mice and confirmed by simulations with a new computational model (Motivated

Actor-Critic Model). They observed that animals’ over-motivation in the beginning of the

session was basically driven by Pavlovian mechanisms while at the end of the session a

more goal-directed behavior was reported. The optimal performance was noticed during

the middle parts of the session, where there was a balance of learning elements (Pavlo-

vian, instrumental and task engagement). Thus, by averaging d ′ across trials we might

underestimate the learning performance of the animals. This view of handling behavioral

data on a single-trial level is supported by Deliano et al. (2016), as well. They proposed

a random-effects model of the learning process, which consists of multiple stages even in

simple tasks and it is based on the estimation of a state-space and history of the trials.

Further research on these questions would be a useful way to acquire a full picture of the

learning dynamics and the related cortical activity.

4.2 Unraveling the role of the A1 and its integrative

function in bottom-up and top-down processes

4.2.1 Beyond tonotopy - Task rule shapes the cortical columnar

activity in A1

One of the research questions of this dissertation was to identify if and how the switches

in the task rule, for example from detection to discrimination task, impact on the cortical

columnar network in A1. Based on the overall columnar AVREC responses, we could show

that during discrimination, stimulus-dependent features between Go- and NoGo-stimuli

are represented differently as the sound frequency attained a behavioral relevance due to

the shift of the task rule.

As expected, it was possible to qualitatively detect some differences between the CSD

profiles from several conditions (Figure 3.5,a). The evoked CSD patterns between the

two pure-tone stimuli (both CS+) showed no differences during the detection phase. But,

when one CS+ switched to CS- (discrimination) considerably different CSD activity was
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detected. The observed difference in spatiotemporal current flow was a first, strong hint

that the same physical auditory stimulus (4 kHz in this case) involves different corti-

cal circuits when the contingency of that stimulus changes. Further, statistical tests

on a group level (AVREC RMS, n=9/8) confirmed our initial hypothesis regarding the

stimulus-related activity (Figure 3.5,b). Interestingly, we did not observe any statistical

difference merely explained by the tone frequency during detection, which is in line with

our qualitative observations.

Based on the existing literature one might argue that the observed effects are due

to the tuning properties after training in an auditory task. For example, Guo et al.

(2017b) showed that, during sound detection, the A1 tone-evoked responses were enhanced

and the tuning was wider. In contrast, the improved discrimination performance was

correlated with suppressed A1 responses and sharper frequency tuning. Moreover, the

tonotopic map expansion appears to be positively related to the involvement in an auditory

behavioral training and to the engagement to the task level (Bao et al., 2004; Carcea

et al., 2017b). However, the aforementioned studies investigate the tuning effects on a

single-neuron level while we focus on the population mesoscopic network in the present

study.

In order to offer other possible explanations, I compared the tuning curves obtained

during the passive listening recording sessions before and after each training phase (Fig-

ure 2.4, yellow squares). From these measurements, a rather flat frequency tuning (Fig-

ure A.2,b) of the dominant early synaptic inputs was observed. In our laboratory we

have recently published a study, where we compared CSD-based frequency tunings in the

awake A1 and under ketamine anesthesia from animals of the same data set (Deane et al.,

2020). The comparison revealed stronger frequency tuning under ketamine anesthesia

compared to awake recordings, which might also explain the flat frequency tuning shown

in Figure A.2,b. Thus, the findings of this experiment can be explained beyond tonotopic

plastic adaptations in A1 (Figure A.1).

In addition, the present results are in line with the opinion from David et al. (2012),

who suggested that by keeping identical auditory stimuli and only changing the task rule

from an avoidance to a reward structure, the representations in the A1 were differentiated.

In my experiment, when the NoGo contingency was introduced for the first time during

the discrimination, the task difficulty increased. The task became more aversive (namely,

82



increased occasions to get the shock, at least during the initial training sessions of each

new phase) and the animals had to inhibit their previous jumping behavior. Therefore, it

is likely that the differences we observed in the overall CSD cortical activity are related

to the changes of task-rule but also to the behavioral inhibition, which promotes states

of higher engagement.

This hypothesis seem to be consistent with other research which found that A1 spec-

trotemporal receptive fields (STRF) in ferrets change in relation to the behavioral perfor-

mance and increasing task difficulty leads to weaker STRF patterns (Atiani et al., 2009).

Furthermore, similar findings were also reported recently by Bagur et al. (2018) by using

spike recordings from A1 in a Go/NoGo licking paradigm with ferrets. They showed that

task engagement induces a shift in stimulus encoding from sensory to a behaviourally

driven representation, which enhances specifically the target stimulus. They concluded

that the A1 is important for extracting task relevant information during a behavioral task.

Hence, it could conceivably be hypothesised that the observed adaptive changes in CSD

cortical recordings are task-related and not only sensory-related.

4.2.2 Supragranular layer activity better classifies the stimulus

contingency than the presented tone frequency

There is a growing body of literature that recognises the importance of the A1 in sensory-

guided behaviors and learning. However, we still know very little about the association

between the layer-specific changes in the A1 during those top-down processes. The ma-

jority of previous studies are based on single unit or multi-unit recordings (MUA) (Buran

et al., 2014; Bagur et al., 2018; Parras et al., 2017; Pachitariu et al., 2015) which lack the

information we get from the chronic cortical depth recordings and the synaptic current

flow plastic adaptations. A number of recent studies have begun to examine the role of

sensory cortices in learning and decision-making. This can be done either on the level of

single and multi-unit recordings (Fritz et al., 2005; Yin et al., 2020) or on a population and

layer-specific manner by implementing two-photon imaging techniques (Henschke et al.,

2020; Pakan et al., 2018; Francis et al., 2018b). Despite the valuable information we

get from those population measurements, these studies have their specific methodological

limitations. While unit recordings lack a certain degree of resolution within which specific
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layers’ activity is measured, two-photon imaging targets mainly the upper cortical lay-

ers. Therefore, the present study contributes to fill the gap in better understanding the

representation of such task-related information on the level of layer-specific processing in

the A1 complementing our knowledge on the multifactorial role of cortical microcircuits

during cognitive tasks.

In respect to the main aim of this dissertation, I have applied GLMMs to find out the

layer-specific changes while animals perform in the shuttle-box task. The first obvious

finding to emerge from the GLMM analysis is that the representation of two different

pure tone frequencies is distinguishable on the level of the A1 population activity only

if there is the behavioral need to discriminate between stimuli. Thus, the model seems

to confirm the findings from the statistical tests of variance (rmANOVA, Figure 3.7). It

is necessary at this point to mention the reasons I preferred to use the GLMMs in order

to test the relationship of a dependent variable of cortical layer-specific activity with the

behavioral outcome of the animal. The corresponding R2m value of each GLMM model

allowed us to evaluate how well the respective synaptic activity can explain the variation

in the behavioral outcomes of the animals. With this approach, it is possible to investigate

the underlying circuit mechanisms of the relationship between the physiological data and

behavioral outcomes by utilizing statistical models. These models help us to evaluate

the usefulness of different physiological variables in this prediction (with the R2m), while

accounting for within-animal variability (Bakeman, 2005).

More specifically, during the initial detection phase, the initiation of the active avoid-

ance response was reflected in all cortical layers (Figure 3.8,b - left). The task-irrelevant

sound frequency was not differentially represented on a columnar response level (Fig-

ure 3.7,b - left). On the other hand, after switching to the more demanding discrimina-

tion task employing the same pure tone stimuli, synaptic circuits within mainly granular

input layers and supragranular layers reflected the behaviorally observed discriminabil-

ity between the stimulus classes ‘Go’ and ‘NoGo’ (Figure 3.7, Figure 3.8,a). Hence,

the task structure affected the columnar representation of auditory information to oth-

erwise identical pure tones. These task-dependent representations emerge as accumu-

lating evidence throughout the trial and are most strongly represented right before a

behavioral choice of the animal, based on the reaction time (see Figure 3.6 and Fig-

ure 3.10).
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By switching to a more cognitively demanding task, e.g. the discrimination phase,

the animals needed to re-adapt their strategy and differentially represent the sound fre-

quency of the two conditioned stimuli to successfully perform the task. It is possible,

therefore, that spectral integration was behaviorally more important during phases with

higher task difficulty (eg. discrimination). Here, it seems that thalamic input layers

III/IV and supragranular layers I/II were particularly strongly recruited during trials

that led to an active conditioned response. Activity during hits and false alarms was

higher compared to misses and correct rejections, respectively. This might reflect the

need for more crosscolumnar communication within supragranular layers in order to inte-

grate the spectral content of a presented conditioned stimulus, and its behavioral relevance

in auditory-guided action selection (eg. motor initiation) (Happel et al., 2014a; Francis

et al., 2018b).

Furthermore, we found that the cortical activity was modulated in supragranular layers

well before a behavioral choice was made (Figure 3.10). This observation may support

the hypothesis that the representation of stimulus features in the sensory cortex, such

as tone frequency in the A1, does not depend only on the transmission process of the

sensory information via the primary sensory pathways, but it is significantly modulated

by the behavioral need and the behavioral relevance of a stimulus. Data from several other

studies suggest that such influence is based on the recurrent circuitry between auditory

cortex and higher order top-down regions e.g. parietal and frontal areas (Caras and Sanes,

2017; Polley et al., 2006; Rodgers and DeWeese, 2014; Runyan et al., 2017; Steinmetz

et al., 2019; Plakke and Romanski, 2014; Fritz et al.). This might reflect a neuronal basis

for auditory response properties of frontal lobe neurons (Romanski and Goldman-Rakic,

2002), its involvement in auditory detection and discrimination (Poremba et al; Zatorre

et al., 2004), and fast top-down response modulation of A1 neurons during behavior via

the frontal cortex (Winkowski et al., 2018).
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4.2.3 Correlates of motor initiation dominate A1 population activity

during detection

Most early studies as well as current work suggest an association between motor initiation

and other primary sensory cortices depending on region, system, and task-engagement

(Steinmetz et al., 2019; Busse et al., 2017). For example, in this recent study Steinmetz

et al. prove, by using the Neuropixels probe recordings in the mouse brain, that although

the responses to sensory stimuli are confined to a restricted sensory pathway, the neural

correlates of action initiation are essentially global.

According to the presented data, we can infer that during the detection, the tone-

evoked activity in the primary auditory cortex may be modulated by auditory-guided

motor initiation. These results support previous research on spiking activity from the A1

area of macaque monkeys which links the motor initiation and sensory-guided behavior

in auditory experiments (Huang et al., 2019; Brosch et al., 2015; Niwa et al., 2012). The

distinct sound frequency of a pure tone seems less determining on the activity strength.

Deep output layer activity (layers Va-VI) showed a significant increase of activity during

hit trials. This is in accordance with the findings that neurons in these layers convey

information to downstream motor centers, as the basal ganglia or the striatum, which play

an important role for the control of motor decisions by the sensory cortex (Znamenskiy

and Zador, 2013; Xiong et al., 2015; Ayaz et al., 2019).

Additionally, the selection of an appropriate action might also be conveyed directly

to motor cortex via direct anatomical projections (Huang et al., 2019; Matyas et al.,

2010). Ample evidence argues that our findings reflect a motor-related modulation of

the cortical physiology, rather than a movement artifact. In the described data, auditory

cortex activity reflected the initiation of motor actions during detection learning most

prominently in deeper layers. Hence, motor-related signals were reflected on a layer-

specific level while showing a conserved spatiotemporal profile of the tone-evoked CSD,

which is in strong favor of a motor-related modulation of the cortical physiology. A muscle

artifact would affect the LFP across all the recording channels in a similar manner. Hence,

the reference-free CSD transformation, as the 2nd spatial derivative over the artifact on

the LFP level, would be less affected. Nevertheless, we controlled this by a trial-by-trial

analysis excluding such trials (Figure 3.5,a).
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Moreover, during discrimination the cortical activity was less accurate in predicting

motor response initiation but was more accurate in predicting correct choice options

(Figure 3.6 and Figure 3.9). Cortical population activity did not differ during false alarm

and miss trials. Also, cortical activity was elevated between the consecutively presented

CS during hit trials. This argues for an accumulative evidence about the stimulus con-

tingency that the animals kept persistently over the trial, which was instructive for an

auditory-guided action (Figure 3.10). Differences between hit and false alarms argue that

the motor-related preparatory signal cannot fully explain the variability in our data set.

Rather, we find a combinatorial representation of stimulus contingency, task rule, selec-

tion accuracy, and motor initiation that accumulates in its richness over the duration of

a trial until the actual decision (Figure 3.10).

The question that then naturally arises is whether other movements, such as gerbils’

grooming or thumping during task performance, is related with the decision making. An

interesting answer to this comes from a recent study on mice using neuropixel recordings,

wide-field one photon imaging and video tracking shows that the uninstructed movements

or ’fidgets’ during a task were better predictors for the trial-by-trial neural variance and

dynamics but there was a clear task-related modulation for the stimulus locked time

windows (Musall et al.). Finally, this promising line of research approaches would be useful

in the future to find out more about the relationship between multiplexed representations

in sensory cortices and the motion.

4.2.4 Choice accuracy is represented throughout the cortical column

A recent study by Francis et al. (2018b) suggests that layer II/III activity in mice A1

is highly correlated, not only with sensory processing, but also with the attentional gain

and behavioral choices during a tone detection paradigm. By using in vivo 2-photon

imaging and functional connectivity via Granger causality they were able to show that

during the sensory-based decision-making a small clustered neural network was formed

in A1 layers II/III. To our knowledge, this is the first study proposing that A1 subnet-

works can be modulated separately and contribute to several behavioral aspects (eg.choice

accuracy).

In this vein, the current study focuses on the A1 layer-specific subnetworks and their

contribution to sensory-guided decision-making. An important finding was that the mod-
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ulation of the cortical activity by contingency and motor initiation reflects a cortical cor-

relate of choice accuracy. For example, in the discriminant auditory Go/NoGo-paradigm

all cortical layers were more strongly activated during correct hits compared to correct

rejections (Figure 3.9 and Figure 3.10). In contrast, the cortical activity recorded in

any layer during false alarms and miss responses did not differ. This result now pro-

vides evidence that the cortical representation of spectral information during discrimi-

nation training (see Figure 3.6) was dependent on the accuracy of the promoted behav-

ior.

In accordance with these findings, previous studies have demonstrated an enhanced

representation of target stimuli that initiated an auditory-guided motor response in var-

ious Go/NoGo discrimination tasks (Bagur et al., 2018; Gold et al., 1999; Fritz et al.,

2003). We found that the cortical activity during correct rejection trials was lower than

the activity during other choices. This result ties well with previous studies wherein rats

and humans were trained in a Go/NoGo paradigm and lower activity during correct re-

jections was observed (Nanda et al., 2020; Smith et al., 2008). A possible explanation for

this is that cortical activity during those trials might reflect an active inhibition of motor

or cognitive responses during a Go/NoGo task. On the other hand, others found higher

cortical recruitment during correct rejections compared to hit trials in a Go/NoGo task

in the macaque A1 (Huang et al., 2019). This discrepancy could be attributed to the

task design, aversive or appetitive reinforcing regimes, or stimulus characteristics (David

et al., 2012; Osmanski and Wang, 2015). Further studies, which take these variables into

account, will need to be undertaken.

Another relevant aspect to take into account is the temporal relation of the observed ef-

fects to the repetitive tone presentation throughout the trial in our task design. The time

windows of 500 ms around the consecutively presented CS covered the sensory-dominated

columnar response (Figure 3.5,a). The results of that analysis are in accord with other

studies indicating that representation of the choice-related activity in the auditory cortex

during discrimination of tone events also accumulates until the animal’s decision (Niwa

et al., 2012; Bizley and Cohen). Further, we have analysed the data for 500-1000 ms

after each stimulus presentation so as to separate the relative modulation of cortical

layer activity by sensory-driven effects from the task-related, but potentially temporally

distributed, information. This additional analysis found evidence for a comparable mod-
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ulation of the columnar cortical activity (Figure A.3). From this standpoint, it can be

considered that choice accuracy is represented across all cortical layers as accumulating

evidence across the entire trial length independent of the stimulus-dominated auditory

response.

In order to evaluate how these representations emerge over the trial duration, in agree-

ment with the concept of accumulating evidence in sensory cortex we used a time-resolved

analysis based on the GLMMs (Figure 3.10). These results reflect those of Jaramillo and

Zador (2011) who found a clear enhancement of activity evoked by stimuli close to a task-

relevant moment by using single-unit tetrode recordings from the primary auditory cortex,

of behaving rats. In short, it seems that the primary auditory cortex encodes predictions

of "what" and "when" sensory events are going to occur and accumulates sensory evidence

which lead to a behavioral choice (Jaramillo and Zador, 2011; Tsunada et al., 2015; Bizley

and Cohen). A similar conclusion was reached in a computational study by Cone and

Shouval (2020). They suggest a layer-specific model for sensory cortices which is able to

learn temporal sequences and afterwards increases the corticocortical connections within

the same module. Together with these, the presented results provide further support for

the hypothesis that there is a multiplexed representation of stimulus- and task-related

features distributed across cortical layers.

4.2.5 Cognitive flexibility is correlated with activity in infragranular

cortical layers

In a world full of stimuli and rapidly changing environments, cognitive flexibility is a

crucial skill for the organisms to shift associations, adapt their behaviors, and survive.

In humans, cognitive flexibility is often examined in the context of development and

pathology of neurological disorders eg. ADHD (Gelfo, 2019; Dajani and Uddin). Recent

advantages in brain imaging techniques (eg. fMRI) allow researchers to design proper

experiments in order to study the neural basis of cognitive flexibility (Armbruster et al.,

2012).

To asses cognitive flexibility in rodents, reversal learning or attention set-shifting tasks

are usually used (Brigman et al.; Nilsson et al.). Although, the reversal learning-related lit-

erature has increased in the last years (Talpos and Shoaib, 2015), much uncertainty still ex-
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ists about the relationship between a flexible behavior and its neural substrates.

Research to date has associated reversal learning with functions mainly in the prefrontal

cortex, the orbitofrontal cortex but also the amygdala and the striatum of rodents (Kesner

and Churchwell; Izquierdo et al., 2017; Costa et al., 2015; Hamilton and Brigman, 2015).

It has been shown that the A1 is involved in re-associating same physical stimuli with

new contingencies (Rothe et al., 2009) and that A1 plasticity is fundamental providing

the neural substrate for cognitive flexibility of strategy change (Happel et al., 2014c).

However, how the corresponding neuronal circuits of the A1 are actually reflecting the

behavioral flexibility during strategy change remains unclear. One purpose of this thesis

was to assess the extent to which cortical layers are involved in such highly cognitive

behaviors. The presented results go beyond previous reports, showing that during the

multiple reversal of choice-outcome contingency task, behavioral choices affect the global

cortical recruitment based on the level of discrimination performance. Namely, it is pos-

sible that the increasing performance enhances the cortical activity, especially for the

correct active responses (hit trials) (Figure 3.11).

What stands out in this analysis is that, from the A1, there emerges a clear layer-

specific modulation over the different states of reversal learning (Figure 3.12). During

high uncertainty phases (eg. start of each reversal block, d ′ < 0, Figure 3.12, a) with

high perseverative error rates, certainly the infragranular layer VI appeared vastly im-

portant to predict the occurrence of correct behavioral choices (Hit). Interestingly, layer

VI could predict largely the behavioral outcomes even up to 3-4.5 seconds before the

CS presentation. A possible explanation for these findings might be that, at this stage

of learning, cognitive flexibility is determining because the animals need to inhibit the

previous successfully learned strategies.

It is known that neocortical layer VI consists of two distinct patterns of neuronal cir-

cuits: the excitatory and the inhibitory (Zhou et al., 2010; Thomson, 2010). Zhou et

al.(2010) highlight that during conditioning, rodents’ layer VI can be strongly inhibitory

by activating a feedback loop which consequently initiates the thalamic plasticity. There-

fore, it may be hypothesised that the reported strong infragranular activity (layer VI)

is related not only with the excitatory circuits, but also with the inhibitory in order to

suppress the previous learned motor responses and re-learn the task-rule. It has been

demonstrated that frontal dopamine increases during novel learning and strategy estab-

90



lishment of a Go/NoGo auditory task in the shuttle-box (Stark et al., 2004). Further, it

is proved that dopaminergic neurons lay in the deeper cortical layers and electrical stim-

ulation in deeper layers causes enhanced tone detection performance during shuttle-box

training (Happel et al., 2014a). Thus, we hypothesize that observed higher infragranualar

activity during the low performing state might be related to the dopamine release during

predictive coding and high perseverative errors.

Furthermore, during the intermediate level of discriminability in the reversal learning

(0 < d ′ < 1, Figure 3.12, b), a more global circuitry activation was observed. Never-

theless, supragranular layers (I/II) were able to predict the occurrence of the behavioral

choices with larger effect sizes comparing to other cortical layers. At this stage, ani-

mals were re-acquiring the task by increasing their correct responses and reducing the

false alarms. Thus, during this ’eureka’ moment and re-establishment of a new rule,

we observed that cortical circuits in A1 are highly activated. There was a network re-

arrangement and especially the supragranular layer appeared the strongest in activity even

some seconds before a behavioral choice was executed. This finding connects well with the

ideas of crosscolumnar communication via supragranular synaptic activation and the cor-

ticocortical integrative signals from other high brain areas (eg.mPFC, dPFC), as they are

already described in the section 4.2.2, when animals were performing in the first discrimi-

nation task (Happel et al., 2014a; Happel, 2016; Francis et al., 2018b; Kato et al.; Rodgers

and DeWeese, 2014; Fritz et al.; Berditchevskaia et al.).

Next, at trials with high learning performance (d ′ > 1, Figure 3.12, c) again the

infragranular layer VI activity contributes most to the prediction of almost all behav-

ioral choices. It is important to mention that during the low performance stage the

infragranular layer activity was highlighted because it was the only layer predicting the

behavioral choices and longer before the actual response. In contrast during high discrim-

ination performance sessions, while animals were already engaged to the task, all layers

seem to be important in the prediction of hit versus miss trials. Especially, layer VI

showed high effect only right before the active response. This observation may support

the hypothesis that while animals learned the new rule, there is still the need of layer

VI involvement to constantly update the network during predictive coding of the two

tone frequencies. At the same time, a global cortical activation with strong supragranular

power is required in order to facilitate the choice-accuracy (Hit vs Miss) (Francis et al.,
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2018b).

During the reversal phases, gerbils showed a more probabilistic behavioral, reflecting

the recent and long-term history of stimulus-specific reinforcement regimes, which led to

a generally pronounced avoidance behavior. As final point, we speculate that this phe-

nomenon might be related to this probabilistic behavioral strategy and, hence, the corti-

cal layers in A1 may continuously optimize the discrimination learning (Chéreau et al.).

Several reports have shown that there is a bidirectional modulation of A1 sensory repre-

sentations wherein inhibitory neurons –somatostatin-expressing (SOM) and paralvumin

(PV)– are highly involved in auditory-guided learning behaviors (Kato et al.; Aizenberg

and Geffen, 2013; Aizenberg et al., 2015). Nevertheless, this is an important issue for

future research.
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4.3 Conclusion

Previous research and the current study show that neuronal activity in the primary au-

ditory cortex encodes sounds in ways that are directly relevant to behavior (King et al.,

2018). The current work has revealed how the specific synaptic circuits across cortical

layers in the A1 cooperate on a mesoscopic level to code task-relevant information of the

stimulus features, the task rule, and the consequential behavioral choice. One key finding

of the present study is that the cortical contribution to auditory-guided decision-making

is not only circuit-specific, but also depends on learning. During phases of learning and

re-learning, the A1 activity is more involved in the promotion of flexible behaviors. This

might help to integrate former studies that often investigated cortical processing during

decision-making in highly trained animals (cf. Francis et al., 2018a). Therefore, we can

derive a better understanding of the instructive role of the auditory cortex for complex

auditory-guided decision-making and learning.

We observed that infragranular layers dominated the cortical processing modes dur-

ing action selection within a detection context while supragranular layers gained rele-

vance when stimulus features needed to be integrated during discrimination. Moreover,

cognitive flexibility was reflected during the multiple contingency reversal of the pure

tone stimuli. In such highly cognitive processes, the infragranular layer VI steadily con-

tributes to the optimization of the strategy switches and discrimination performance,

while supragranular layers promote the choice accuracy, especially at states with higher

task-engagement and performance. Our study thereby expands our understanding of the

layer-specific cortical circuit processing modes which code task-relevant information in

order to guide sensory-based decision making and behavioral adaptation during strategy

change. Future studies will enunciate the more widespread brain networks for mediat-

ing perceptual decision making, in which the A1 circuitry reflects only one important

hub.
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4.4 Perspectives and outlook

This doctoral project was undertaken to design a novel experimental approach, which

combines the auditory shuttle-box paradigm with chronic, long-term CSD recordings using

the animal model Mongolian gerbil. The ultimate goal of this novel approach was to

evaluate how individual cortical layers contribute to the integrative circuit in the sensory

auditory cortex (A1) in order to code task-relevant information and guide sensory-based

decision making (Happel et al., 2015; Zempeltzi et al., 2020). The present study has gone

some way towards enhancing our understanding of the role of the A1 during auditory-

guided and cognitively flexible behaviors. The new established experimental pipeline and

outcomes of the study open a fruitful area for further work and collaborative projects

(Figure 4.1).

Figure 4.1: Ongoing work and perspectives of the current project. (Convolutional
Neural Network clipart source: https://www.hiclipart.com)

These large-scale in vivo recordings of neuronal population activity during complex

task-designs and decision making provides a large amount of labeled (by the experi-

menter) data which can be used to run machine learning algorithms, such as linear sup-

port vector machines (SVM). In a collaborative project, we have applied linear SVM

classifiers to layer-specific, time-binned subsets of CSD data (Figure 4.1, top-right and

middle). Targets of the classifiers were reflecting either stimulus-related aspects of au-
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ditory processing, or processing of task-dependent information. We could demonstrate

significant class separation of distinct layer-specific CSD distributions over time with re-

spect to the presented tone frequency, the learning rule or the ultimate decision made

by the animal. The SVM-based information can be used to add more evidence in the

hypothesis of a differential representation of auditory stimulus processing (bottom-up)

and task- and choice-related information (top-down) via the synaptic population activ-

ity distributed across cortical layers in the A1. In particular, we found that classifiers

were most accurate at tone onset with a peak reaching around 80% accuracy. At tone

offset (200 ms) 70% accuracy was observed. Additionally, classifiers trained on data

from individual layers showed pronounced differences depending the specific (bottom-up)

and (top-down) targets (eg. ’correctness’,’performance’ etc.). Thus, we are able to draw

conclusions upon the role of individual cortical layers during learning the auditory task.

[Collaborators: S.Maurya and Prof. Dr. M. Spiliopoulou - Faculty of Computer Sci-

ence, Otto-von-Guericke University (OvGU), Magdeburg), Maurya*,Zempeltzi* et al. -

in preparation.]

Additionally, according to reinforcement learning theories, goal-directed behavior re-

quires the estimation of the reward expected from a particular stimulus or action. Such

value estimates can be identified by the prediction error: the difference between expected

reward and reward actually obtained (Schultz et al.). Therefore, more modelling work

will have to be conducted in order to evaluate the synaptic patterns representing option

values and their temporal dynamics underlying choice. We have now started using a re-

inforcement learning model developed for human data (Klein et al.) to the layer-specific

rodent data. The model is based on a relative value Q-learning algorithm and can be used

to model the discrimination behavior of the animals. Further, by using the time-resolved

multiple regression with behavioural and CSD data, we will gain more insights about

the relative value representation within the auditory cortex and the temporally aligned

decision of the animal (Figure 4.1, bottom-right). [Funding: SFB779, Collaborator: Prof.

Dr. G. Jocham - Heinrich Heine University, Düsseldorf]

Furthermore, a greater focus on the video recordings could produce interesting findings

that account more for the individual explorative behaviors within subjects, which results in

goal-oriented strategies. By synchronizing the video files with the corresponding electropy-

siological data will be able to unravel new insights of behavioral influence within the corti-
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cal recordings. To achieve this we have established a new pipeline based on video tracking

algorithms eg. Blob fusion (Arroyo et al.) for detecting the temporal trajectory of the ani-

mal’s head and body position on a trial-by-trial manner (Figure 4.1, bottom-left). We are

now at the initial stage of visualizing the acquired videos together with the CSD data of

each corresponding trial per session. As next, we could integrate signals of an accelerom-

eter (included in NeuroNexus probes) as a qualitative marker of head 3D-movements, e.g.

attentional responses. [Collaborators: B. Auer and M. Brunk - LIN, Magdeburg | project

funded by the institutional grant LIN-seeds]

Next, we envisage the inclusion of deep neural networks for the classification of cer-

tain behavior, such as waiting, approaching, and grooming, based on feature extraction

(Mathis et al., 2018). Another perspective is to apply the the brand-new algorithm Vari-

ational Animal Motion Embedding (VAME) (Luxem et al., 2020) to properly associate

ethograms within the corresponding large scale recordings. Another fascinating tech-

nique that could be used is the depth imaging to show the 3D animals’ pose dynamics

structured at the sub-second time-scale (Wiltschko et al.). Altogether, these methods

are a new era wherein by identifying individual behavioral strategies we could predict

phenotypes caused by genes or neuronal functions. The ultimate diversity of ethologically

complex behaviors is of uttermost importance to expand our understanding of individual

behavioral decision making and learning strategies in animal models (Baguette et al.).

Only then we might be closer to a holistic understanding of the brain mechanisms during

behavior or as R. Dawkins vividly describes "the neurophysiologist’s nirvana"2(Gris et al.,

2017; Gomez-marin et al., 2014;). [Collaborators: B. Auer, P. Bauer - LIN, A. Enaya,

A. Hashaam, Dr. F. Kramer Farahat - Initos, Magdeburg, Prof. Dr. Stober - OvGU,

Magdeburg]

A natural progression of this work is to establish an ’upgraded’ version of the task

design, but with the same animal model and type of recordings. In order to increase the

complexity in sensory processing, as well as in learning and decision-making, we designed

a new paradigm with frequency modulated (FM) tones and sequential blocks of cogni-

tive complex tasks. The upgraded design aims to assess the layer-specific modulations

during FM tone discrimination, categorial discrimination, set-shift, reversal and extinc-

tion learning, all very central concepts for the discipline (Ohl et al., 2001a; Wetzel et al.,
2Dawkins, R. (1976). Hierarchical organisation: A candidate principle for ethology. In Growing Points
in Ethology, P. Bateson and R.A. Hinde, eds. (Cambridge University Press), pp. 7–54
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1998). The new data-set has been already acquired and it will undergo similar analysis

with the one described in this thesis. The major reason of delaying the analysis lies in

the fact that the enormous amount of new data (n=10, 75.000 trials) need to be labeled

(layer assignment) and then controlled for artifacts on a trial-by-trial level. Till now, this

time consuming procedure has been done by the experimenters manually. Only recently

we started using deep neural network methods (eg. Autoencoder) to semi-automatize the

process, which will allow faster execution of our analysis pipelines. [Experimenters:S.Aksit

- LIN and F.Abela - University of Piza, Italy | Collaborators: A. Faraht, A. Enaya, A.

Hashaam, Dr. F. Kramer - Initos, Magdeburg, A. Ofner, Prof. Dr. Stober - OvGU,

Magdeburg]

Finally, to acquire more information on the exact neuromodulatory systems and cellular

types during auditory-guided behavior, it would be helpful to make causality interpreta-

tions and establish a greater degree of accuracy on the matter. For example, we know

from studies in anesthetized gerbils that dopaminergic modulation induced a stimulus

specic and layer-dependent phase-resetting in granular input layers, which might be a

key step in the recruitment of cortical activity modes interpreting sensory input (Deliano

et al., 2018). Also, in an experiment using optogenetic stimulation of the ventral tagmen-

tal area (VTA), it is shown that value-related modulation of auditory signal processing in

the auditory cortex is relayed via a gain modulation of thalamic inputs in infragranular

layers Vb and VIa (Brunk et al., 2019), which subsequently strengthened cross-columnar

corticocortical processing via supragranular circuits (Happel et al., 2014a). A key policy

to describe the neuromodulation and the precise cortical cellular types would be either via

pharmacological, c-fos blocking, or optogenetic manipulations while animals performing

in the shuttle-box (de Hoz et al., 2018; Ceballo et al., 2019; Kuchibhotla et al., 2017;

Aizenberg et al., 2015).
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A | Appendix

A.1 Results - Supplementary information

Figure A.1: Characterization of tuning properties in primary auditory cortex in
recordings from individual animals. a. Representative example of an averaged CSD pro-
file during the first awake, but passively listening measurement before the actual start of the
behavioral training. CSD activity is shown for the two pure tone frequencies also used during
the later training, namely 1 kHz (left) and 4 kHz (right; tone duration: 200 ms, ISI 800 ms,
50 pseudorandomized repetitions, sound level 70 dB SPL). b. Individual tuning curves of mean
CSD RMS values from dominant early synaptic inputs (averaged over 50 trials per frequency)
are plotted as a function of stimulation frequency (n=9). We found a generally broad frequency
tuning in awake, passively listening subject (cf.?). We repeated measuring passively recorded
tuning curves after the consecutive detection and discrimination phase (grey curves). Associa-
tive training with two pure tone frequencies, hence, did not lead to systematic changes of the
general tuning properties.
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Figure A.2: Representative example of raw AVREC traces for the detection and
discrimination phase. Averaged AVREC traces (z-norm.) across all trials of the detection
(left) and discrimination (right) phase of the same subject shown in (Figure 3.5,a). The AVREC
traces show the activity after the presentation of the two Go-stimuli (1kHz in yellow and 4kHz
in brown) during the detection phase (left) and the Go/NoGo stimuli (1kHz in yellow and 4kHz
in blue, respectively) during the discrimination phase (right). The shaded error bars indicate
the standard error of mean (± s.e.m) of the averaged AVREC traces. The raw traces between
the two pure tones frequencies showed no obvious differences during the detection phase, but
considerably different activity between CS+ and CS- trials during discrimination. Simplified
illustrations of the raw data are shown the grey insets and are used as insets.

Figure A.3: Behavioral choices and contingency are represented in population activ-
ity of the A1 during time windows after the stimulus presentation. Averaged AVREC
RMS values (at 500-1000 ms window after CS presentation) plotted with respect to the con-
ditioned stimuli and behavioral choice. Left, During the detection phase evoked activity was
significantly higher during hit trials compared to miss trials independent of the stimulation fre-
quency (detection/ discrimination: n=9/8). Right, In the discrimination phase, cortical activity
was strongest during correct hit trials and lowest during correct rejections. During trials of
incorrect behavioral choices (miss/false alarm) tone-evoked activity was characterized by inter-
mediate amplitudes and did not differ. These results show a very similar pattern with those
from Figure 3. Box plots represent median (bar) and interquartile range, and bars represent
full range of data. Dots represent outliers. Significant bars indicate differences revealed by a
two-way rmANOVA and corresponding post-hoc tests with Holm-corrected levels of significance
(see Table A.5)
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Figure A.4: Contingency is represented in population activity of the A1 during
the multiple reversal of choice-outcome contingency. RMS values of the AVREC (time
window of 500 ms beginning at each tone presentation and z-normalized) shown for each of the
four consecutive CS and separated by the two different tone-frequencies after pooling all Go-trials
(yellow-range colors) and all NoGo-trials (blue-range colors) from the reversal phases (reversal
1-4, n=8/7). Box plots represent median (bar) and interquartile range, and bars represent
full range of data. Significant bars indicate differences revealed by a two-way rmANOVA and
corresponding post-hoc tests with Holm-corrected levels of significance (see Table A.6).
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Figure A.5: Contingency-related activity during several performance levels of the
reversal learning. RMS values of the AVREC (time window of 500 ms beginning at each
tone presentation and z-normalized) shown for each of the four consecutive CS and separated
by the different contingencies (CS+ and CS-) during the combined reversal phases(n=8/7) and
the performance level based on the d ′ values. In all cases, cortical activity after the 1st CS
presentation remains same irrelevant of the contingency and the the differences emerge during
trial duration. a. During the low performance stage (d ′ < 0) cortical activity differ slightly
between the two contingencies, only after the last CS presentation.b. During the medium
performance stage (0 < d ′ < 1) cortical activity appeared significant higher at Go trials
comparing to the NoGo trials c. During the high performance stage (d ′ > 1) cortical activity
showed increased amplitudes and remained significantly stronger at Go trials comparing to the
NoGo trials. Box plots represent median (bar) and interquartile range, and bars represent
full range of data. Significant bars indicate differences revealed by a two-way rmANOVA and
corresponding post-hoc tests with Holm-corrected levels of significance (see Table A.7).
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Figure A.6: Representations of behavioral choices in population activity of the A1
during reversal learning at multiple performance levels. Averaged AVREC RMS values
(at 0-500 ms window after CS presentation) plotted with respect to the conditioned stimuli and
behavioral choice (n=8/7). a. During the low performance stage (d ′ < 0) cortical activity was
strongest during correct hit trials and lowest during correct rejections. b. During the medium
performance stage (0 < d ′ < 1) cortical activity was emerging during the trial duration and
significant differences were observed within almost all behavioral choices. c. During the high
performance stage (d ′ > 1) cortical activity was strongest during correct hit trials and lowest
during correct rejections. During trials of incorrect behavioral choices (miss/false alarm) tone-
evoked activity was characterized by intermediate amplitudes and differ only after the fourth
CS presentation. Box plots represent median (bar) and interquartile range, and bars represent
full range of data. Dots represent outliers. Significant bars indicate differences revealed by a
two-way rmANOVA and corresponding post-hoc tests with Holm-corrected levels of significance
(see Table A.8). The dashed-line box indicates the extracted plots used for the (Figure 3.11, b),
as a simplified version of the figure.
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A.2 Statistical Tables

Choice-related contingencies AVREC RMS (cf. Figure 3.6)
Detection

Outcome F3,24= 40.63 p < 0.001 η2
gen= 0.66

Tone order F3,96= 26.58 p < 0.001 η2
gen= 0.25

Interaction F9,96= 10.05 p < 0.001 η2
gen= 0.27

Discrimination
Outcome F3,21= 31.67 p < 0.001 η2

gen= 0.68
Tone order F3,84= 26.39 p < 0.001 η2

gen= 0.23
Interaction F9,84= 17.52 p < 0.001 η2

gen= 0.38

Table A.1: 2-way from rmANOVA of choice-related contingencies AVREC RMS

GLMM applied to the CS 1 kHz vs 4 kHz (cf. Figure 3.7,b)
Detection
Layer I/II R2m = 0 R2c = 0 p = 0.549
Layer III/IV R2m = 0 R2c = 0 p = 0.649
Layer Va R2m = 0 R2c = 0 p = 0.703
Layer Vb R2m = 0 R2c = 0 p = 0.836
Layer VI R2m = 0 R2c = 0 p = 0.754
Discrimination
Layer I/II R2m = 0.065 R2c = 0.080 p < 0.001
Layer III/IV R2m = 0.121 R2c = 0.219 p < 0.001
Layer Va R2m = 0.095 R2c = 0.175 p < 0.001
Layer Vb R2m = 0.076 R2c = 0.118 p < 0.001
Layer VI R2m = 0.034 R2c = 0.058 p = 0.001

Table A.2: Layer-wise GLMM applied to the conditioned stimuli 1 kHz vs 4 kHz
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GLMM applied to the behavioral choices (cf. Figure 3.8,b)
Detection ’Hit vs Miss’

Layer I/II R2m = 0.113 R2c = 0.537 p < 0.001
Layer III/IV R2m = 0.190 R2c = 0.406 p < 0.001
Layer Va R2m = 0.242 R2c = 0.512 p < 0.001
Layer Vb R2m = 0.258 R2c = 0.569 p < 0.001
Layer VI R2m = 0.200 R2c = 0.396 p < 0.001

Discrimination ’Hit vs Miss’
Layer I/II R2m = 0.144 R2c = 0.240 p < 0.001
Layer III/IV R2m = 0.188 R2c = 0.361 p = 0.001
Layer Va R2m = 0.086 R2c = 0.214 p = 0.216
Layer Vb R2m = 0.049 R2c = 0.152 p = 0.001
Layer VI R2m = 0.033 R2c = 0.212 p = 0.118

Discrimination ’False alarm vs Correct Rejection’
Layer I/II R2m = 0.164 R2c = 0.465 p < 0.001
Layer III/IV R2m = 0.170 R2c = 0.318 p < 0.001
Layer Va R2m = 0.118 R2c = 0.234 p < 0.001
Layer Vb R2m = 0.105 R2c = 0.263 p < 0.001
Layer VI R2m = 0.096 R2c = 0.239 p < 0.001

Table A.3: Layer-wise GLMM applied to the behavioral choices

GLMM applied to the choice accuracy (cf. Figure 3.9,b)
Discrimination ’Hit vs Correct Rejection’

Layer I/II R2m = 0.517 R2c = 0.607 p < 0.001
Layer III/IV R2m = 0.435 R2c = 0.573 p < 0.001
Layer Va R2m = 0.380 R2c = 0.509 p < 0.001
Layer Vb R2m = 0.378 R2c = 0.479 p < 0.001
Layer VI R2m = 0.193 R2c = 0.287 p < 0.001

Discrimination ’Miss vs False alarm’
Layer I/II R2m = 0.028 R2c = 0.184 p = 0.004
Layer III/IV R2m = 0.049 R2c = 0.202 p = 0.047
Layer Va R2m = 0.039 R2c = 0.225 p = 0.058
Layer Vb R2m = 0 R2c = 0.21 p =0.98
Layer VI R2m = 0.015 R2c = 0.178 p = 0.322

Table A.4: Layer-wise GLMM applied to the choice accuracy

Offset(500-1000ms) choice-related AVREC RMS (cf.Figure A.3
Detection

Outcome F3,24= 34.95 p < 0.001 η2
gen= 0.60

Tone order F3,96= 18.75 p < 0.001 η2
gen= 0.23

Interaction F9,96= 6.03 p < 0.001 η2
gen= 0.22

Discrimination
Outcome F3,21= 30.82 p < 0.001 η2

gen= 0.66
Tone order F3,84= 19.88 p < 0.001 η2

gen= 0.21
Interaction F9,84= 10.28 p < 0.001 η2

gen= 0.29

Table A.5: 2-way from rmANOVA of choice-related contingencies AVREC RMS
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Stimulus-related activity during reversal learning (cf. Figure A.4)
Low performance

Contingency F1,7= 51.77 p < 0.001 η2
gen= 0,84

Tone order F3,42= 3.13 p = 0.035 η2
gen= 0.04

Interaction F3,42= 90.78 p < 0.001 η2
gen= 0.59

Table A.6: 2-way rmANOVA of stimulus-activity during reversal learning

Contingency-related activity during reversal learning (cf. Figure A.5)
Low performance

Contingency F1,7= 0.44 p = 0,524 η2
gen= 0,02

Tone order F3,42= 0.012 p = 0.998 η2
gen= 0.00

Interaction F3,42= 14.88 p < 0.001 η2
gen= 0.36

Medium performance
Contingency F1,7= 65.16 p < 0.001 η2

gen= 0.83
Tone order F3,42= 1.01 p = 0.396 η2

gen= 0.03
Interaction F3,42= 38.76 p < 0.001 η2

gen= 0.55
High performance

Contingency F1,7= 64.77 p < 0.001 η2
gen= 0.86

Tone order F3,42= 12.88 p < 0.001 η2
gen= 0.17

Interaction F3,42= 108.10 p < 0.001 η2
gen= 0.63

Table A.7: 2-way rmANOVA of contingency-related activity during reversal learning

Choice-related activity during reversal learning (cf. Figure A.6)
Low performance

Outcome F3,21= 30.39 p < 0,001 η2
gen= 0,57

Tone order F3,84= 5.24 p = 0.002 η2
gen= 0.10

Interaction F9,84= 2.57 p = 0.001 η2
gen= 0.14

Medium performance
Outcome F3,21= 76.98 p < 0.001 η2

gen= 0.68
Tone order F3,84= 12.04 p < 0.001 η2

gen= 0.23
Interaction F9,84= 6.30 p < 0.001 η2

gen= 0.32
High performance

Outcome F3,21= 62.10 p < 0.001 η2
gen= 0.63

Tone order F3,84= 7.37 p < 0.001 η2
gen= 0.15

Interaction F9,84= 6.82 p < 0.001 η2
gen= 0.34

Table A.8: 2-way rmANOVA of choice-related activity during reversal learning
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