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Abstract

This thesis deals with the development of scale-bridging methods for the simulation
of proton conduction and an e�cient approach for the calculation of inter-molecular
electrostatic interactions.

The starting point for the investigation of long-range proton transfer is the com-
bined Molecular Dynamics/Lattice Monte Carlo (cMD/LMC) approach. In order to
benchmark the cMD/LMC approach and to examine the e�ect of the rotational reori-
entation rate of the anions on the di�usion coe�cient, ab initio molecular dynamics
simulations of the solid acid family CsHyXO4 (X= S, P, Se, y = 1, 2) were performed in
this thesis. It is clearly demonstrated that only the dynamical updating of the lattice
in the cMD/LMC method allows for the simulation of the high proton conductivities
within the solid acid family. In addition, the cMD/LMC approach is re�ned in this
thesis by introducing a cut-o� angle for the calculation of proton transfer probabilities
in order to avoid unphysical proton jumps within the oxygen grid.

By neglecting the explicit proton correlation in the cMD/LMC approach, a further
drastic reduction in the dimensionality becomes possible. The resulting Molecular
Dynamics/Matrix Propagation (MDM) method condenses the dynamic information
on proton transport within an entire molecular dynamics simulation into an M ×
M matrix where M is the number of oxygen atoms. This enormous reduction in
dimensionality allows for analytical (instead of numerical) analysis of the model. A
thorough mathematical discussion resulted in the veri�cation of the uniqueness of
the solutions of the MDM approach and provided the proof of its correct asymptotic
behavior, i.e. all protons are equally distributed across the (chemically equivalent)
oxygen atoms for large time scales. In order to highlight the increase in the length
and time scales, the MDM approach is used to explicitly compute proton dynamics in
CsH2PO4 on the micrometer length scale and in a nanoporous network in agreement
with experimental results.

The second part of this thesis is dedicated to the investigation of low-dimensional
representations of the linear density-density response function (LDDRF). The LDDRF
o�ers a tool to calculate the fully self-consistent density response of a molecule to ar-
bitrary potentials (in practice: the electrostatic �eld arising from nearby molecules),
corresponding to the exact polarization at all multipolar orders. In this thesis, a
thorough derivation of the mathematical foundations of an e�cient representation -
the direct moment expansion - of the LDDRF is presented. A description of this
representation in terms of a QR and a Cholesky decomposition allowed for its gen-
eralization to other self-adjoint, compact and positive linear operators. In a further
development step, a modi�ed representation - the reduced eigensystem representation
- is derived that allows us to de�ne a trivial criterion for the convergence of the ap-
proximation to the density response. As a consequence of its novel eigensystem-like
structure, the signi�cant reduction in dimensionality becomes apparent for the calcu-
lation of the density-density response function. In order to facilitate the application
of the LDDRF in a molecular dynamics simulation, the dependence of the e�cient
representation on changes in the molecular geometry is investigated.
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Chapter 1

Preface

The �eld of (theoretical) physics aims to answer the fundamental questions of life:
What is the origin of everything? What are the underlying rules of the universe?
Much more applied, but still just as important is the central subject of (theoretical)
chemistry: the understanding and the prediction of formation of molecules or crystals
from atoms. The �ght against the permanent scourges of humanity including diseases
such as cancer or conditions such as hunger, the search for a sustainable supply of
resources and the halting of global warming will only be successful with decisive
contributions from molecular explanations and predictions of reactions or compound
properties.

But in contrast with physics, the toolbox for answering the central questions in
chemistry has been essentially complete since the dawn of quantum mechanics. This
was expressed by Dirac back in 1929:4

The fundamental laws necessary for the mathematical treatment of a large
part of physics and the whole of chemistry are thus completely known, and
the di�culty lies only in the fact that application of these laws leads to
equations that are too complex to be solved.

This quotation of Dirac points also to a fundamental problem which has not been
resolved in the last 90 years, namely that the required computational resources for
the calculation of large systems are not available. Two reasons contribute to this
problem: �rst of all, the scaling of quantum chemistry methods is often far from
linear; secondly, the dimensions of systems that can be accounted for with current
ab initio methods (a few nanometers and less than a nanosecond) are several orders
of magnitude apart from the system sizes of interest for problems in material or life
sciences (e.g. millimeters and milliseconds for micro-structured materials).

Even if it were possible to systematically improve the scaling behavior of elec-
tronic structure methods towards linearity, the increase in length and time scales for
the macroscopic dimensions mentioned in the last sentence would require about a
1012-fold increase in computational e�ort compared to the system sizes that are fea-
sible nowadays. Over the past century, a computational chemist could hope that the
exponential growth of computational resources would help to overcome this problem
with the passage of time. However, this idea turned out to be incorrect because the
development of more powerful computers is also dependent on the laws of physics and
it is not possible to further minimize the dimensions of the circuits on a computer
chip without enormous e�orts.

Therefore, a new class of algorithms is necessary to achieve progress with time and
length scales. One possible solution is provided by multiscale methods. It is immedi-
ately apparent that the entire set of atomistic information of a large system provided
by quantum chemical methods is not necessary to answer the questions concerning
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a single macroscopic property. This thesis deals with two general approaches for the
creation of multiscale models.

The �rst approach identi�es the characteristic length and time scales of the prop-
erty of interest and develops a coarse-grained model for its calculation. The input
parameters of this large-scale model are obtained from a much smaller and shorter
simulation. Following this line of approach, a multiscale method for long-range pro-
ton transfer is constructed in this thesis. The second approach for the construction
of multiscale methods makes use of the �divide and conquer� principle. This principle
can be utilized for the reduction of the computational costs if the original algorithm
possesses a poorer scaling compared to linear (which is the case for quantum chemical
calculations). The e�ciency gain is obtained by dividing the system into N parts
and applying the original algorithm to the smaller subsystems. In a �nal step, the
overhead costs have to be taken into account for the calculation of the property of
interest from the N subsystems. In this thesis, a fragmentation approach of this type
is employed for the calculation of the electrostatic interaction energy of condensed
phase systems.

This cumulative thesis is composed of a number of articles,5�16 which can be
grouped into three parts: the investigation of e�cient representations of the linear
density-density response function,5�8 the development of a scale bridging approach
for the simulation of long-range proton transfer9�13 and the explicit simulation of
proton conduction in solid acids by means of ab initio molecular dynamics.14�16 In
the following, a brief overview of these topics is presented as a condensed summary of
the introductions of the constituent articles.

Linear Density-Density Response Function

From a microscopic point of view, condensed phase systems are described by a large
number of interacting particles. In principle, all properties of these large condensed
matter systems are accessible from the many-particle wave function. However, the
determination of the many-particle wave function (as the solution of the Schrödinger
equation) is constrained to rather small systems because the scaling behavior of the
quantum chemistry approaches is far from linear. For the speci�c case of interacting
molecules, we can use a fragmentation approach in order to overcome this �curse of
dimensionality�. This is already demonstrated by methods such as multipole expan-
sions,17�23 density �tting24�27 or perturbation theories.28�33 Two interacting molecules
disturb the ground state density of each molecule. Thus, accurate electrostatic inter-
action energies should also take polarization e�ects into account. In this thesis, the
static linear density-density response function (LDDRF) is used as a tool to calcu-
late the fully self-consistent density response of a molecule to arbitrary potentials (in
practice: the electrostatic �eld arising from nearby molecules), corresponding to the
exact polarization at all multipolar orders (cf. section 3.2).34�37

The calculation of molecular density responses becomes trivial once the LDDRF
is explicitly known. Due to the high dimensionality of this function, the direct calcu-
lation of the LDDRF for a large system is not possible. In order to circumvent this
problem, e�cient representations of the LDDRF are derived and analyzed in this the-
sis. It is also demonstrated how to predict these e�cient representations for distorted
molecular geometries to enable the principal applicability of the LDDRF scheme for
the calculation of electrostatic intermolecular interaction including all orders of po-
larization.

Compared to the static LDDRF, which is an explicit subject of this thesis, the
dynamic variant of the LDDRF is perhaps the most important response function
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from the time-dependent density functional theory (TDDFT) point of view.38,39 It
gives the linear frequency dependent response of the density to an external scalar
potential. After its explicit determination, it can then be utilized to obtain the �rst-
order response of all properties derivable from the density with respect to any scalar
�eld, e.g., polarizability or magnetic susceptibility.40 The calculation of the poles
of the dynamic LDDRF opens up a direct approach for the calculation of electronic
excitations. In the theory part of this thesis, the transition from the dynamic to the
static LDDRF is discussed. The decisive analytical properties for the application of
the e�cient transformations (derived for the static LDDRF) also hold for the dynamic
LDDRF. Thus, an attempt to apply e�cient representation to the dynamic LDDRF
is a realistic prospect.

A Scale-Bridging Approach for the Simulation of Long-range Proton Trans-
fer

Proton conduction is a process of fundamental scienti�c interest and has been ex-
tensively studied by chemists and physicists.41�51 For simulation of proton transfer,
the system size is constrained to a small number of atoms, because the simulation
of covalent bond breaking requires the application of ab initio molecular dynamics
(AIMD).15,52�60 While we are restricted to this expensive simulation technique, the
complete transfer of a proton and the relaxation of the environment occurs typically
only a few times per nanosecond within the system sizes tractable with AIMD. Fol-
lowing this line of approach, AIMD simulations will not lead to converged descriptors
of proton conduction such as di�usion coe�cients. This underlines the urgent need
for scale-bridging approaches within this �eld.61�63

In order to speed up molecular dynamics, a multitude of methods such as coarse
graining, replica exchange, and adaptive molecular dynamics schemes were devel-
oped.64�66 One promising approach is the use of neural network potentials which are
trained using AIMD trajectory data.67�70 Once trained, fully atomistic dynamics can
be generated for very long time scales. The successful application of neural networks
was already demonstrated for various systems such as NaOH solutions,71 n-alkanes,72

or water on ZnO surfaces.73

Within the multiscale approaches, the combination of molecular dynamics (MD)
simulations and a Markov model74�79 or a Monte Carlo method80,81 is widely used.
A combination of an MD and a Monte Carlo (MC) algorithm was already applied
to a broad range of systems/problems such as polymer materials,82�85 semiconduc-
tors,86 surface phenomena87�89 and the folding of proteins.90�92 The coupling of the
two techniques can be achieved through various approaches such as the alternating
application of MD and MC steps, the application of di�erent approaches to di�erent
spatial subsystems and the algorithmic mixture of the MD and MC methods.80,81

In particular, Markov models constructed from MD simulations are well estab-
lished for the description of dynamical processes of large molecular (often biomolec-
ular) systems.74�79,93�103 The applicability of Markov state models has been demon-
strated for a huge variety of systems, e.g. the prediction of protein folding,104,105 the
binding of small molecules to proteins,106�114 and the RNA folding kinetics.96,115,116

In this thesis, a multiscale Markov model for the simulation of long-range proton
dynamics for extended systems and time scales is derived (section 3.1). Within this
approach, the proton dynamics information of an entire molecular dynamics simu-
lation can be condensed into a single M ×M matrix (M is the number of oxygen
atoms in the simulated system). As a result of this drastic reduction in complexity,
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the non-equilibrium molecular dynamics of protons in the solid acid CsH2PO4 can be
calculated on the micrometer length scale.

Proton Conduction in Solid Acids

In particular, the solid acid CsH2PO4 and in general the members of the family
XHyZO4 (where X= K, Rb, Cs, NH4; y= 1,2; Z= P, S, Se, As) has attracted con-
siderable interest in recent years as alternative high temperature, water-free proton
exchange fuel cell membrane materials.117�122 A �rst fuel cell based on CsH2PO4 is
already commercially available.123 In this thesis, di�erent solid acids are investigated
by means of AIMD to elucidate di�erences in proton conduction mechanism (section
3.3) and to generate a benchmark set for the general applicability of the scale bridging
approach for long-range proton conduction.
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Chapter 2

Theoretical Framework

2.1 Molecular Dynamics

Molecular Dynamics (MD) is a numerical simulation method for the solution of the
classical many-body problem, i.e. the motion of several interacting bodies in a poten-
tial. The solution to this problem is obtained by numerically integrating the (Newto-
nian) equations of motion. Molecular dynamics is applicable to an immensely broad
range of problems from crystalline and amorphous solids through to liquids and solu-
tions. Because of its versatility, it has become indispensable in both pure and applied
research.124,125

The equations of motion can only be integrated analytically for special cases.
In order to tackle this problem, the time is discretized and the problem is solved
successively for each time step.

2.1.1 Classical vs. Ab Initio Molecular Dynamics

Since we wish to predict the evolution of a system, the obvious approach is to start
from the equations of motion. Neglecting the quantum nature, Newton's second law
describes the propagation of a particle I according to

mIR̈I(t) = FI(t) = −∇V (R1(t),R2,(t), ...,RN,(t)), (2.1)

where mI denotes the mass of the particle I and RI(t) its spatial coordinates at
the time t. V denotes the potential energy of the system with respect to all spatial
coordinates of theN particles. The forces FI(t) acting on the particles can be obtained
as the gradient of the potential V .

Several di�erent methods can be employed for the calculation of the forces FI(t),
which lead to di�erent types of MD simulations. In classical MD, the energy of a
molecular system is decomposed into di�erent contributions and the individual con-
tributions are parameterized with respect to the nuclear positions. Following this line
of approach, the total energy of the system (and thus also the forces) is obtained as
the sum of the individual contributions. The use of pre-parameterized potentials is
computationally very e�cient and allows for the calculation of several thousand atoms
for up to hundreds of nanoseconds.

An alternative approach for the calculation of the forces acting on the atomic
nuclei is the approximate solution of the Schrödinger equation. This type of method is
computationally much more expensive and restricts the system size to several hundred
atoms and the time scale to typically less than one nanosecond. This type of MD
is referred to as ab initio MD (AIMD). While the dimensions of the investigated
systems are much more limited in AIMD, it has powerful predictive ability because
the forces are obtained from an electronic structure method. In contrast, in classical
MD simulations, only previously parameterized processes contribute to the evolution
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of the system. This means that the force �elds used in classical MD simulations are
speci�cally optimized for certain classes of compounds (and properties) and can not
be transferred to other compound classes.

2.1.2 Numerical Integration of the Equations of Motion

Equation (2.1) de�nes a set of coupled second-order partial di�erential equations,
which can be solved by various methods. The standard approach for the solution
of such a set of coupled partial di�erential equations is �nite-di�erence integration.
Not all algorithms for �nite-di�erence integration ful�ll conditions such as time-
reversibility and conservation of energy and momentum. An appropriate method for
the numerical integration of the equations of motion is given by the Verlet algorithm:

The Verlet algorithm

We start with a Taylor expansion up to the second order for the position of a particle
at time t+ ∆t:

ri(t+ ∆t) ≈ ri(t) +
dri(t)

dt
∆t+

1

2

d2ri(t)

dt2
∆t2. (2.2)

Utilizing Newton's second law, we can replace the acceleration according to:

ri(t+ ∆t) ≈ ri(t) +
dri(t)

dt
∆t+

Fi(t)

2mi
∆t2. (2.3)

The velocity term in equation (2.3) can be eliminated by introducing a similar expres-
sion for ri(t−∆t):

ri(t−∆t) ≈ ri(t)−
dri
dt

∆t+
Fi(t)

2mi
∆t2. (2.4)

Adding up equations (2.3) and (2.4) yields:

ri(t+ ∆t) ≈ 2ri(t)− ri(t−∆t) +
Fi(t)

mi
∆t2. (2.5)

Equation (2.5) is the well-known Verlet algorithm.126 Starting from an initial state,
equation (2.3) can be used to generate a set of coordinates at the time ∆t, which can
then be propagated along a trajectory of arbitrary length using equation (2.5). The
velocities are not explicitly calculated by the Verlet algorithm. They are accessible
by post-processing of the particle positions of the trajectory according to

vi(t) =
dri
dt

=
ri(t+ ∆t)− ri(t−∆t)

2∆t
. (2.6)

The Velocity-Verlet algorithm

The velocity-Verlet algorithm circumvents a disadvantage of the Verlet algorithm and
provides explicit formulas for both positions and velocities. We start from the time
reversibility of Newton's equations of motion and perform a Taylor expansion of ri(t+
∆t) for a time step −∆t as follows:

ri(t) ≈ ri(t+ ∆t)− dri(t+ ∆t)

dt
∆t+

1

2

d2ri(t+ ∆t)

dt2
∆t2. (2.7)
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Inserting this expression to (2.3) yields:

vi(t+ ∆t) = vi(t) +
Fi(t) + Fi(t+ ∆t)

2mi
∆t. (2.8)

The velocity-Verlet algorithm is obtained by combining equations (2.3) and (2.8).
This algorithm propagates positions and velocities simultaneously, and direct access
to these quantities is useful when employing a constant temperature algorithm.

2.1.3 Controlling the Temperature: Thermostats

The numerical integration of the classical equations of motion using an appropriate
algorithm conserves the total Hamiltonian. Employing these algorithms and starting
with a number of particles N in a �xed volume V , the energy is a constant of motion.
This situation corresponds to an NVE ensemble.

However, it is desirable to sample from other ensembles (constant temperature
(NVT) or constant pressure (NPT) ensemble) as MD simulations usually have to be
performed under experimental conditions. This requires the coupling of the simulation
system to an external thermostat or barostat.

A case in point is the Nosé-Hoover thermostat. The discussion of this thermostat
will follow ref. 127. The Nosé-Hoover dynamics are de�ned by the following set of
dynamical equations:

q̇i =
pi
m
, (2.9)

ṗi = −∂V (q)

∂qi
− pi

pη
Q
, (2.10)

ṗη =
N∑

i=1

p2
i

mi
−NkT, (2.11)

η̇ =
pη
Q
. (2.12)

Here pi and qi denote one-dimensional positions and momenta, respectively, and mi

denotes the mass of the i-th particle. V (q) is the potential acting on the particles.
The basic idea of the Nosé-Hoover thermostat is to use a friction factor ξ :=

pη
Q

(introduced in equation (2.10)) to control the particle velocities. From equation (2.11),
it is immediately apparent that the change in the friction factor ξ is coupled with
the di�erence between the system temperature and the target temperature. This
coupling is opposed to the temperature di�erence and counteracts excessively large
deviations from the target temperature. It can be shown that equations (2.9) - (2.12)
conserve the Hamiltonian in equation (2.13) for the system (q,p, pη, η). Thus, the
system (q,p, pη, η) evolves in a microcanonical ensemble (NVE), while the positions
and momenta (q,p) can be sampled in a canonical ensemble (NVT).

H(p,q, η,pη) = V (q) +

N∑

i=1

p2
i

2mi
+
p2
η

2Q
+NkTη (2.13)

Equation (2.13) supports the interpretation of ξ =
pη
Q as the scaled velocity of an

additional and dimensionless degree of freedom. In this regard, we can consider the
variable Q as the mass of a �ctitious particle and pη = Qξ as its momentum.
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The choice of the mass Q of the �ctitious particle is important. If very large
masses are chosen, a distribution consistent with the microcanonical ensemble may
result. If very small masses are chosen, �uctuations in the momenta may be greatly
inhibited.127

The presented approach only generates a canonical ensemble for ergodic systems.
Ergodicity is a strong property and, particularly for small or sti� systems, the correct
distributions of positions and moments are not generated with the Nosé-Hoover ther-
mostat. A possible attempt to overcome this problem is to couple the variable pη to
another Nosé-Hoover-like thermostat using a new set of variables η̃ and p̃η. By con-
necting N Nosé-Hoover thermostats using this scheme, a Nosé-Hoover chain of length
N is obtained. Even for large systems, the addition of extra thermostats is relatively
inexpensive as they form a simple one dimensional chain. Only the �rst thermostat
interacts with N particles.

2.1.4 Ab Initio Molecular Dynamics (AIMD)

The limiting factor for the e�ciency of molecular dynamics simulations is the chosen
level of theory for the calculation of the forces acting on the atoms. By employing
pre-parametrized potentials for the calculation of the forces, classical MD constitutes
a computationally inexpensive variant. In contrast, AIMD is computationally much
more demanding due to the solution of the Schrödinger equation for each time step.

This thesis will use AIMD because a more realistic description of the electronic
structure is needed. In particular, the description of formation and cleavage of covalent
bonds is only possible with the truly predictive power of AIMD.

We use the term AIMD to refer to Born-Oppenheimer MD. In Born-Oppenheimer
MD, the static electronic structure problem is solved in each MD step for a set of �xed
nuclear positions at an instant in time (cf. eq. (2.15)). The nuclei are propagated
according to the classical equations of motion whereas the forces are obtained as
the gradient of the potential resulting from the solution of the electronic structure
problem. The electronic contribution to the total force on atom I is given according
to equation (2.14).

MIR̈I(t) = −∇IminΨ0{〈Ψ0,HelΨ0〉} (2.14)

HelΨ0 = E0Ψ0 (2.15)

In equation (2.15), Hel denotes the electronic Hamiltonian,Ψ0 denotes the ground
state wave function, and E0 denotes the ground state energy.

In the next section, we derive equation (2.15) from the time-independent Schrödinger
equation and we discuss e�cient numerical approximation schemes for the solution of
this equation.

2.2 Electronic Structure Methods

Electronic structure methods are used in the calculation of many-body properties,
in particular many-body energies, from the bare postulates of quantum physics. A
many-body particle system is completely described by its many-body wave function.
Neglecting relativistic e�ects and assuming time-independent external potentials, the
many-body wave function can be obtained from the stationary many-body Schrödinger
equation:

HΨ = EΨ (2.16)
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Here, the time-independent Hamiltonian H is de�ned as:

H =
N∑

i=1

−1

2
∇2
i +

M∑

I=1

− 1

2MI
∇2
I +

N∑

i=1

N∑

j>i

1

|~ri − ~rj |
+

M∑

A=1

M∑

B>A

ZAZB

|~RA − ~RB|
+

N∑

i=1

M∑

A=1

− ZA

|~ri − ~RA|
(2.17)

where the indices i, j are used for electrons and A, B are used for atomic nuclei. MI

denotes the nuclear masses. ~RA and ~ri stand for the nuclear and electron positions,
respectively, and ZA refers to the atomic number.

Equation (2.17) is given in atomic units, i.e. e, ~, m and 4πε0 are considered to
be equal to one.

The Hamiltonian H can be grouped into contributions from the electron and the
nuclear kinetic energy operator, respectively,

T̂e =
N∑

i=1

−1

2
∇2
i , T̂n =

M∑

i=1

−1

2
∇2
I , (2.18)

the electron-electron repulsion and the nucleus-nucleus repulsion, respectively,

V̂ee =
N∑

i=1

N∑

j>i

1

|~ri − ~rj |
V̂nn =

M∑

A=1

M∑

B>A

ZAZB

|~RA − ~RB|
, (2.19)

and the electron-nucleus interaction

V̂ne =
N∑

i=1

M∑

A=1

− ZA

|~ri − ~RA|
. (2.20)

Additionally, another time-independent external potential υext can be included in the
Hamiltonian. This case is discussed in section 2.2.3. Here, we will use a Hamiltonian
of the type presented in (2.17), as we wish to solve the electronic structure problem
arising from Born-Oppenheimer Molecular Dynamics given by equation (2.14).

The exact quantum mechanical treatment of a many-body system is only possible
for very small system sizes. The Born-Oppenheimer approximation achieves a reduc-
tion in complexity by decomposing the full many-body wave function Ψ(r,R) into
the product of an electronic wave function Ψel(r, {R}) and a nuclear wave function
φnuc(R)

Ψ(r,R) = Ψel(r, {R})φnuc(R), (2.21)

where r denotes the degrees of freedom of the electronic subsystem and R denotes
the degrees of freedom of the nuclear subsystem. As a consequence of equation (2.21),
electron and nuclear states can be treated separately. Thus, it is possible to calculate
the electronic part of the wave function with respect to �xed nuclear positions, which is
denoted by the parametric dependence of Ψel(r, {R}) on the nuclear coordinates {R}.
The theoretical justi�cation of the Born-Oppenheimer approximation is the di�erence
of around 3 orders of magnitude between the masses of nuclei and electrons. As a
result, the electrons adapt to the position of the slowly moving cores instantaneously
and can be assumed to be completely relaxed at any moment of atomic movement.

Instead of calculating the full many-body wave function, one can reduce the many-
body problem to a problem of electrons moving in an external �eld which is due to
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static nuclei. The time-independent Hamiltonian assigned to this problem reads as:

Hel =
N∑

i=1

−1

2
∇2
i +

N∑

i=1

N∑

j>i

1

|~ri − ~rj |
+

N∑

i=1

M∑

A=1

− ZA

|~ri − ~RA|
(2.22)

with

HelΨel = EelΨel (2.23)

In the following, we will focus on the electronic part of the total Hamiltonian. Even
for very small systems, the electron-electron term still prevents the analytical solution
of the eigenvalue problem associated with the rede�ned operator Hel.

Various methods have been developed for the construction of approximate solu-
tions of equation (2.23). A short introduction to a wave-function based (Hartree-Fock)
and a density based (density functional theory) approach is given in the next section.

From now on, we will use H, E and Ψ instead of Hel, Eel and Ψel.

2.2.1 Hartree-Fock Approach

For the derivation of the Hartree-Fock approach, we start from the construction of
an antisymmetrized N -electron wave function as a Slater determinant of one-particle
spin orbitals χ(xi)

ΨSD(x1,x2, ...,xN ) =
1√
N !

N !∑

i=1

(−1)piPi {χa(x1)χb(x2) . . . χk(xN )} , (2.24)

where the vector xi contains both positional coordinates ri and a spin coordinate σ.
Decomposing the Hamiltonian H into contributions from the one-particle operator O1

and two-particle operator O2 according to

H =O1 +O2 =
N∑

i=1

hi

︸ ︷︷ ︸
O1

+
N∑

i=1

N∑

j>i

1

rij
︸ ︷︷ ︸

O2

(2.25)

and

hi =− 1

2
∇2
i +

M∑

A=1

− ZA

|~ri − ~RA|
, (2.26)

yields the following expression for the expectation value of the energy with respect to
the Slater determinant ΨSD(x1,x2, ...,xN ):

E = 〈ΨSD,HelΨSD〉 =

N∑

a=1

∫
χ∗a(x1)h1χa(x1)dx1 +

1

2

N∑

a=1

N∑

b=1

[Jab −Kab] . (2.27)
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In equation (2.27) the term Jab is referred to as the Coulomb integral, whereas the
term Kab is referred to as the exchange integral

Jab =

∫
χ∗a(x1)χ∗b(x2)

1

r12
χa(x1)χb(x2)dx1x2, (2.28)

Kab =

∫
χ∗a(x1)χ∗b(x2)

1

r12
χb(x1)χa(x2)dx1x2. (2.29)

While the Coulomb term Jab describes the classical Coulomb repulsion between the
charge densities |χa|2 and |χb|2, the exchange term does not have a classical equivalent
and is a purely quantum mechanical phenomenon.

The next step is to �nd an optimal wave function by minimizing the expectation
value from equation (2.27) with respect to the spin orbitals χa(xi). To do this, we
make use of the variation principle, which means that the expectation value of the
Hamiltonian for any trial wave function is always equal to or greater than the ground-
state energy. Following this line of approach, the �optimal� set of these spin orbitals
in the Slater determinant is the one which minimizes the electronic energy. The
minimization is carried out under the constraint that the spin orbitals are orthonormal,
which can be achieved by means of the Lagrange multiplier method, and the result is
a new eigenvalue equation for each orbital:

f̂i|χa〉 = εa|χa〉, (2.30)

where f̂ is the Fock-operator:

f̂ = hi +
∑

a6=b
Jb −

∑

a6=b
Kb

︸ ︷︷ ︸
νHF

. (2.31)

Instead of determining an N -electron wave function, we now have to solve a set of
N e�ective single electron Schrödinger equations. According to equation (2.31), it
is apparent that the wave function of the i-th electron is calculated within the �eld
generated by the remaining N − 1 electrons. Thus, the essence of the Hartree-Fock
approximation is to replace the complicated many-electron problem by a one-electron
problem in which the electron-electron repulsion is treated in an average manner (mean
�eld approach).128 According to equation (2.31), the Fock-operator is dependent on
the one-particle wave function and the one-particle wave functions are obtained from
the diagonalization of the Fock-operator. This relationship turns the Hartree-Fock
equations into a set of non-linear equations which have to be solved iteratively.

The Slater determinant obtained from the optimized spin orbitals yields the best
single-determinant approximation for the exact ground state wave function. The
di�erence between the exact electronic energy and the Hartree-Fock energy of a many-
particle system is termed correlation error. According to the variational principle, this
correlation error could be systematically reduced by adding �excited� determinants to
the space of possible solutions. This type of post-Hartree-Fock approach is known
as con�guration interaction method. Another ansatz for the incorporation of the
correlation error is density functional theory.

2.2.2 Density Functional Theory

Wave function based methods in particular su�er from the �curse of dimensions�.
While native Hartree-Fock calculations scale with the fourth power with respect to
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the number of involved particles, more sophisticated methods such as con�guration
interaction calculations display even worse scaling behavior.

A possible attempt to overcome this problem is Density Functional Theory (DFT).
This method uses the electron density from equation (2.32) as a basic quantity which
drastically reduces the number of spatial variables for an N -electron system from 3
N to only 3.

n0(r) = N
∑

i

〈Ψ0(r1, r2, ..., rN), δ(r− ri)Ψ0(r1, r2, ..., rN)〉 (2.32)

A more comprehensive presentation of DFT can be found in in ref. 38 which we
follow in this section.

Hohenberg-Kohn Theorem

Modern DFT is based on the theorems formulated by Hohenberg and Kohn. One
theorem states that the entire information of the electronic ground state is contained
in its electronic density.

First Hohenberg-Kohn Theorem:38 In a �nite, interacting N -electron sys-
tem with a given particle-particle interaction, there exists a one-to-one corre-
spondence between the external potentials υ(r) and the ground-state density
n0(r). In other words, the external potential is a unique functional of the
ground-state density, υ[n0](r), up to an arbitrary additive constant.

The Hamiltonian H for a given system is �xed up to the external potential. Using
the Hohenberg-Kohn theorem, it is possible to express the full many-particle ground
state as a unique functional Eυ0 [n] of n0. This total-energy functional Eυ0 [n], associ-
ated with a given external potential υ0(r), can be written as:

Eυ0 [n] = 〈Ψ[n],HΨ[n]〉 (2.33)

Here, n(r) is a density of an N -particle system, and Ψ[n] is the unique ground-state
wave function which produces this density.

Another corollary formulated in the original work of Hohenberg and Kohn129 states
that the ground state energy can be obtained according to the Rayleigh-Ritz varia-
tional principle,130 i.e. only the exact ground state density n0 minimizes the total
energy functional Eυ0 [n]. The latter can be written as:

Eυ0 [n] ≥ E0 ∀n (2.34)

and Eυ0 [n] = E0 if and only if n = n0. From now on, we will omit the subscript υ0 in
Eυ0 [n].

The Hohenberg-Kohn theorem was derived for v-representable densities, that is,
those that can be represented by a real physical potential.131 It is in general not
possible to decide for a given density whether it is v-representable or not. However,
it is possible to circumvent this need by using the Levy-Lieb constrained search for-
malism.132,133 Levy and Lieb provided a similar functional as Hohenberg and Kohn,
but which requires a weaker condition for the density (N -representability) compared
to being v-representable. An electron density is N -representable if it stems from an
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N -electron antisymmetric wave function. This ensures the general applicability of
DFT.

From a theoretical point of view, the total-energy E[n] functional can be decom-
posed into contributions from the kinetic energy functional T [n] and the functionals
of energy due to electron-electron and electron-nuclei interaction:

E[n] = T [n] + Een[n] + Eee[n]. (2.35)

The presented concept of a total energy functional is exact. Unfortunately, the shape
of this functional remains unknown.

One problem appears in terms of a density formulation of the kinetic energy: there
is no adequate approximation for the kinetic energy functional of the electronic ground
state density.134 Kohn-Sham DFT can be utilized to overcome this problem.

Kohn-Sham DFT

The Kohn-Sham (KS) ansatz provides a practical approach for the determination of
the electronic ground state density. Kohn and Sham introduced a non-interacting
single determinant reference system of KS orbitals φm, which ful�lls the condition
that the electron density of the Kohn-Sham auxiliary system nKS is equal to the
ground state density n0 obtained from the fully interacting wave function:

n0(r)
!

= nKS(r) =
∑

m

(
φKSm (r)

)∗
φKSm (r). (2.36)

By replacing the many-body system with a system of N non-interacting electrons, we
can write within KS-DFT for the total-energy functional:

EKS [{φKSm }] =
∑

m

〈φKSm ,−1

2
∇2φKSm 〉

︸ ︷︷ ︸
Ts[{φKSm }]

+Een[n] + EH [n] + Exc[n], (2.37)

where Ts[{φKSm }] is the kinetic energy funtional. Ts[{φKSm }] is an explicit function of
the Kohn-Sham orbitals, but an implicit functional of the density: Ts[n] = Ts[{φKSm [n]}].
Here, [{φKSm }] denotes functional dependence on the set of occupied orbitals. In equa-
tion (2.37), Een[n] refers to the functional due to nucleus-electron repulsion

Een[n] =

∫ ∫
υen(r)n(r) d3r. (2.38)

The functional arising from electron-electron interaction can be split into contributions
from the classical Hartree potential VH , the energy functional EH [n] and the exchange-
correlation functional Exc[n]

Eee[n] = EH [n] + Exc[n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′| d
3r′ d3r + Exc[n] (2.39)

=
1

2

∫ ∫
υH(r)n(r)d3r′ d3r + Exc[n]. (2.40)

The exchange-correlation functionalExc[n] contains the di�erence between the independent-
electron system and the real system of interacting electrons. Formally, we can de�ne:

Exc[{φKSm }] = T [n]− Ts[{φKSm }] + Eee[n]− EH [n]. (2.41)
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An exact expression of the exchange-correlation functional would allow for the calcula-
tion of the exact ground state energies. Unfortunately, the exact shape of Exc[n] is not
known and considerable e�orts have been made to search for e�cient approximations
to the exchange-correlation functional. Many approximations have been developed
so far, ranging from simple local approximations based on the homogeneous electron
gas to generalized gradient approximations and hybrid functionals incorporating ex-
act Hartree-Fock exchange. These approaches can be grouped into a hierarchy that
can be described as a Jacob's ladder of successive approximations climbing up to the
�heaven of chemical accuracy�.135

It should be noted that the variation principle with respect to ground-state energies
and densities does not hold true for approximated energy functionals. Nevertheless, for
practical applications the variational principle is still applied for current state-of-the-
art approximated energy functionals, and the obtained electron density is considered
to be an approximation for the true ground-state density.

Di�erentiation of equation (2.37) with respect to the φKSm eventually yields the
KS equations:

(
−~2

m
∇2 + υne(r) + υH(r) + υxc(r)

)

︸ ︷︷ ︸
HKS

φKSm (r) = εmφ
KS
m (r), (2.42)

where the Kohn-Sham potential υKS is de�ned as:

υKS(r) = υne(r) + υH(r) + υxc(r). (2.43)

The structure of the KS equations is similar to the Hartree-Fock equations (cf.
eq. (2.30)). Like the Hartree-Fock equations, the KS equations have to be solved in
a self-consistent manner, since the Kohn-Sham potential υKS represents an e�ective
potential which depends on the density itself.

2.2.3 Density Functional Perturbation Theory

Many physical properties of solids and molecules can be considered as the response of
the system to an external perturbation. In standard perturbation theory, a small per-
turbation operator λH(1) is added to the Hamiltonian H of a system and its action is
evaluated. Instead of the conventional Hamiltonian formulation of perturbation the-
ory of DFT,136�138 a more general variational approach is presented in this section.139

The starting point is KS-DFT. The variational principle states for an unperturbed
system in the electronic ground state that the ground state KS orbitals are those that
minimize the KS energy. Perturbing a KS ground state system, the electronic struc-
ture adjusts in such a way that the perturbed energy is minimized again. Thus, the
perturbed states are also accessible by a variational approach. This theoretical con-
cept is referred to as density functional perturbation theory (DFPT). The discussion
of the DFPT equations in this section is taken from ref. 139, which can be consulted
for detailed information.

We start from the density matrix formed by non-orthogonal KS orbitals:

ρ(r, r′) =
∑

i,j

φ∗i (r) (S)−1
ij φj(r

′), (2.44)
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where (S)−1 is the inverse of the overlap matrix Sij = 〈φi, φj〉. The KS density
functional from equation (2.37) reads now as:

εKS [ρ(r, r′)] =
1

2

∫
dr

∫
dr′δ(r− r′)∇2

rρ(r, r′) +
1

2

∫
dr
|ρ(r, r′)|2
|r− r′| + εxc[ρ] + εext[ρ],

(2.45)

where the density n(r) is simply:

n(r) = ρ(r, r). (2.46)

The minimum of the functional εKS is ε(0)
KS [{|φ(0)

i 〉}] = ε(0), assuming that (at the

minimum) the orbitals are orthogonal (〈φ(0)
i , φ

(0)
j 〉 = δij).

Starting from ε
(0)
KS [{|φi〉}], we add a perturbation functional of arbitrary form

εpertKS [{|φi〉}] multiplied by a small perturbative parameter λ :

εtotKS [{|φi〉}] = ε
(0)
KS [{|φi〉}] + λεpertKS [{|φi〉}]. (2.47)

This is meant to represent the interaction with a static, but otherwise arbitrarily
complex external �eld. The perturbation parameter λ is an in�nitesimally small
auxiliary variable that helps separate di�erent orders of the response with respect
to the perturbation and does not occur in the �nal expressions.

The total functional εtotKS [{|φi〉}] will have a minimum which we shall expand per-
turbatively:

EtotKS = E(0) + λE(1) + λ2E(2) +O(λ3) (2.48)

Similarly, the KS orbitals that minimize EtotKS [{|φi〉}] can be expanded in terms of λ

φi = φ
(0)
i + λφ

(1)
i + λ2φ

(2)
i + . . . . (2.49)

Inserting equation (2.48) and (2.49) into (2.47) yields:

εtotKS [{|φi〉}] =ε
(0)
KS [{φ(0)

i + λφ
(1)
i + . . .}] + λεpertKS [{φ(0)

i + λφ
(1)
i + . . .}] (2.50)

Following the derivations of ref. 139, we obtain an expression for the second order
energy correction for the limit of orthogonal orbitals (Sij = δij):

E(2) =
∑

m

∑

m′

[
〈φ(1)
m ,
(
Ĥ(0)
KS δmm′ − 〈φ(0)

m′ , Ĥ(0)
KSφ

(0)
m 〉
)
φ

(1)
m′ 〉
]

+
1

2

∫ ∫
d3r d3r′ K(r, r′)n(1)(r)n(1)(r′)

+
∑

m

〈
φ(1)
m ,

(
δEpert

δ〈φ(0)
m |

+
δEpert

δ|φ(0)
m 〉

)
φ(1)
m

〉
, (2.51)

with the Hartree-exchange correlation kernel K(r, r′) = δ(VH(r)+Vxc(r))
δn(r′) , and the un-

perturbed KS Hamiltonian Ĥ(0)
KS according to equation (2.42). In case of canonical

orbitals

〈φ(0)
m′ , Ĥ(0)

KSφ
(0)
m 〉 = ε(0)

m δmm′ (2.52)
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equation (2.51) reads as

E(2) =
∑

m

〈φ(1)
m ,
(
Ĥ(0)
KS − ε(0)

m

)
φ(1)
m 〉+

1

2

∫ ∫
d3r d3r′ K(r, r′)n(1)(r)n(1)(r′) (2.53)

+
∑

m

〈
φ(1)
m ,

(
δEpert

δ〈φ(0)
m |

+
δEpert

δ|φ(0)
m 〉

)
φ(1)
m

〉
. (2.54)

In order to retain the normalization of the wave function, the perturbed φ(1) and
the unperturbed φ(0) wave functions have to ful�ll the following orthogonality relation:

〈φ(0)
i , φ

(1)
j 〉 = 0 ∀i, j. (2.55)

Minimization of the second order energy E(2) with respect to this orthogonality condi-
tion using the methods of Lagrange multiplier leads to the following set of Sternheimer-
like equations:139

−
(
Ĥ(0)
KS − ε(0)

m

)
|φ(1)
m 〉 = P̂e

(∫
d3r′ K(r, r′)n(1)(r′)|φ(0)

m 〉+
δεpert

|φ(0)
m 〉

)
, (2.56)

where Pe = 1 −∑j |φ
(0)
j 〉〈φ

(0)
j |. This set of equations has to be solved iteratively

because also the right-hand side depends on the {|φ(1)〉} via the perturbation density
n(1). Introducing the variations of the Hartree potential V (1)

H and the exchange-

correlation potential V (1)
xc induced by the change of the density
∫
d3r′ K(r, r′)n(1)(r′) = V

(1)
H (r) + V (1)

xc (r), (2.57)

and inserting this expression into (2.56) yields

−
(
Ĥ(0)
KS − ε(0)

m

)
|φ(1)
m 〉 = P̂e

(
V

(1)
H (r)|φ(0)

m 〉+ V (1)
xc (r)|φ(0)

m 〉+
δεpert

|φ(0)
m 〉

)
. (2.58)

In summary by combining equations (2.51) and (2.58), we obtain the second order
corrections to the energy by applying the variation principle to the {|φ(1)〉} under the
constraints from equation (2.55). This is a special case of the more general �2n + 1�
theorem which states that using a variatonal approach the (2n)-th and the (2n+1)-th
order energy are accessible from the n-th order wavefunction.137



2.3. The Linear Density-Density Response Function (LDDRF) 17

2.3 The Linear Density-Density Response Function (LD-
DRF)

From a microscopic point of view, condensed phase systems are described by a large
number of interacting particles. As a result of these interactions, the electron density
of the individual molecules is disturbed and di�ers from the ground state density of an
isolated molecule. Following this line of approach, the calculation of accurate electro-
static interaction energies should take these polarization e�ects into account.37,140�142

The static linear density-density response function (LDDRF) from equation (2.60)
provides a tool to calculate the fully self-consistent density response of a molecule to
arbitrary potentials (in practice: the electrostatic �eld arising from nearby molecules),
corresponding to exact polarization at all multipolar orders.34�37

T̂ : Vpert 7→ nresp (2.59)

with nresp(r) =

∫
χ(r, r′)Vpert(r

′)d3r′ (2.60)

A diagram illustrating the principle of the distortion of the electron density of a
molecule due to the perturbing potential arising from a neighboring molecule is pre-
sented in Figure 2.2. The calculation of molecular density responses becomes trivial,
once the kernel χ(r, r′) is explicitly known. However, the explicit calculation of the
six-dimensional kernel χ(r, r′) is not possible due to the storage limitations of real-
world computing systems. A representation of χ(r, r′) on a grid with only 100 grid
points in each dimension would already result in the necessity to store 1012 �oating
point numbers. More sophisticated approaches are necessary to allow for e�cient
representation of χ(r, r′).

The following three chapters will highlight important aspects of the LDDRF. The
next section provides an overview of a recently published e�cient representation of the
LDDRF. In addition, a careful derivation of equation (2.60) (including a discussion
of the properties of the LDDRF) is given. The articles that constitute this thesis
make extensive use of the matrix representation of linear operators with respect to
di�erent (non-orthogonal) bases of the domain and the image. For this reason, the
fundamentals concerning the change-of-basis and the basis representation of operators
and vectors are summarized in the last chapter of this part of the introduction.

2.3.1 Di�erent Representations of the LDDRF

From a mathematical point of view, equation (2.60) constitutes an operator T̂ which
is a linear, self-adjoint, positive and compact integral transform with kernel χ(r, r′).1

Such operators can be represented by their eigensystem (i.e. the entire set of eigen-
values λi and eigenfunctions χi(r)) according to

T̂ =

∞∑

i=1

|χi〉λi〈χi|. (2.61)

In section 2.3.4, it is shown that T̂ is a Hilbert-Schmidt operator. For this rea-
son, the sequence of the squared eigenvalues of this operator decays fast enough
to zero (limi→∞ λi = 0), ensuring that the sum of eigenvalues does not diverge

1See section 2.3.3 for the derivation of the properties of the operator T̂.
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(
∑∞

i λi)
2 < ∞). Thus, the eigensystem representation of the LDDRF can be trun-

cated to the desired numerical precision of the molecular density response. Scher-
rer and Sebastiani demonstrated that for the case of water, 5000 eigenfunctions are
su�cient for the calculation of converged response densities. The eigenvalues and
eigenfunctions can be obtained using a Lanczos algorithm (cf. section 2.3.4). In this
approach, a self-consistent solution of a Sternheimer-like equation using density func-
tional perturbation theory (cf. section 2.2.3) has to be performed for each eigenstate.
For details, see references 141 and 139 and section 2.3.4.

E�cient representations

This thesis aims to answer the question of how to derive and understand a more ef-
�cient representation of the LDDRF. The key to the dimensional reduction of the
eigensystem representation emerges from the mismatch between the physically mean-
ingful description and the formal mathematical description of the domain and image
of the linear operator T̂. From a mathematical point of view, T̂ is a self-adjoint
operator. This means that both the domain and the image are isometrically isomor-
phic. This becomes immediately apparent from the eigensystem decomposition (cf.
eq. (2.61)), because both the image and the domain of T̂ are generated by the set of
the eigenfunctions. Assuming the kernel χ(r, r′) ∈ L2[X×X] to be a square-integrable
function with compact support X ×X ⊂ R3 × R3, domain and image can be identi-
�ed as the vector space of square-integrable functions D(T̂) := L2[X] with compact
support X ⊂ R3.

From a physical point of view, the entity of meaningful perturbing potentials
generates the domain P and the entity of possible response densities due to Vpert ∈ P
generates the image Z. It is immediately apparent that perturbing potentials and
molecular response densities are quite di�erent functions. While molecular response
densities are highly oscillating functions which resemble linear combinations of atomic
basis functions, the perturbing potential arising from a non-overlapping charge density
can be expressed e�ciently by rather smooth functions, e.g. by an Taylor expansion
using monomials.143

Figure 2.1: Domain and image of the linear operator T̂, and domain
P and image Z of the restriction T := T̂|P . Please note that P and

Z have a trivial intersection (P ∩ Z = ∅).

The mismatch of the vector spaces is illustrated in Figure 2.1. In this �gure, the
vector spaces of physically relevant perturbing potentials P and response densities Z
are subspaces (with trivial intersection) of the overall domain and image of T̂.

Two principal choices of a basis are now possible:

1. We can attempt to express vectors from the two di�erent vector spaces P and Z
within a single basis. This is done within the eigensystem representation given
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by equation (2.61). In this case, a large number of basis functions is required to
describe the perturbing potentials and the molecular response densities.

2. Using information concerning the shape of the perturbing potentials and re-
sponse densities, we can choose an especially adapted basis for the e�cient rep-
resentation of these functions. Only a small number of basis functions (compared
to the �rst case) is necessary to describe perturbing potentials and molecular
response densities alone. Instead of the calculation of an in�nite-dimensional
operator T̂, we can con�ne ourselves to the calculation of the restriction of the
linear operator T̂ between the two low-dimensional vector spaces P and Z.

The second item is the starting point for all attempts in this thesis to identify an
e�cient representation of the LDDRF. In this regard, we wish to formalize the idea
of the second item in a more rigid mathematical framework. Perturbing potentials
generated by a non-overlapping charge density can be straightforwardly expanded in
a few terms within a multipole expansion (schematic illustration in Figure 2.2).143 As
a result, we assume that every perturbing potential can be expanded using N basis
functions {|P1〉, |P2〉, ..., |PN 〉} to a desired precision:

Vpert(r) ≈
N∑

n=1

cnPn(r). (2.62)

This assumption will be veri�ed for speci�c examples in the article [Dreÿler et al., J.
Comput. Chem., 2019.]6 in this thesis, and special choices of {|P1〉, |P2〉, ..., |PN 〉}
are discussed in this reference.

In order to emphasize that the vector space of the physically meaningful perturbing
potential is spanned by a small numberN of basis functions, we will replace the symbol
P by P[N].

The vector space of all possible response densities due to Vpert ∈ P[N] is spanned
by the images {|ñ1〉 := T̂|P1〉, |ñ2〉 := T̂|P2〉, ..., |ñN 〉 := T̂|PN 〉} and is at the most
N -dimensional, which motivates the renaming of Z as Z[N].

Figure 2.2: Schematic illustration of the response density of the
water molecule (right) due to a perturbing water molecule (left). The
potential originating from the left water molecule can be expanded at
the responding (right) water molecule using a few basis functions. This
�gure is reproduced from article [Dreÿler, Sebastiani, Int. J. Quantum

Chem., 2020.] in this thesis.
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The underlying idea of all attempts in this thesis to achieve a more e�cient rep-
resentation of the LDDRF is to consider the operator T̂ not as an (in�nite) endomor-
phism D(T̂) → D(T̂) but rather an (N -dimensional) homomorphism T : P[N] →
Z[N]. In other words T := T̂|P[N] is the restriction of T̂ to P. Taking into account
the small dimension of P[N] and Z[N] compared to the dimension of D(T̂) = L2[X],
the signi�cant reduction of the dimensionality is apparent.

Starting from this mathematical representation, the calculation of molecular re-
sponse densities seems to be very simple: the density response due to perturbing
potentials Vpert ∈ P[N]⇔ Vpert(r) =

∑N
n=1 cnPn(r) can be calculated via:

T̂|Vpert〉 =
N∑

i=1

ci T̂|Pi〉︸ ︷︷ ︸
:=|ñi〉

=
N∑

i=1

ci|ñi〉. (2.63)

Knowledge of the density response |ñi〉 due to a speci�c perturbing potential |Pi〉 is
the limiting factor for the application of equation (2.63). The calculation of these
density responses |ñi〉 is possible via an explicit single self-consistent solution of a
Sternheimer-like equation in terms of DFPT (cf. section 2.2.3).

However, it is not straightforward to use this approach for the calculation of molec-
ular density responses. While the formal mathematical representation is correct and
provides a versatile tool to understand the basic idea of the dimensionality reduction,
special care has to be taken with the choice of the basis of the perturbing potentials
{|P1〉, |P2〉, ..., |PN 〉}.

The vector space of the physically meaningful perturbing potentials P[N] is a
subspace of the domain D(T̂) of T̂ and hence a subspace of the vector space generated
from the eigenfunctions D(T̂) = span(|χ1〉, |χ2〉, ...). Thus, the support supp(P) ⊂ R3

of the set of functions {|P1〉, |P2〉, ..., |PN 〉} has to be a subset of the support X ⊂ R3

of the set of eigenfunctions {|χ1〉, |χ2〉, ...}.2
However, the shape of the kernel χ(r, r′) (and hence also the support of the

eigenfunctions) is di�erent for every molecule. In contrast with this, the set of ba-
sis functions {|P1〉, |P2〉, ..., |PN 〉} can be chosen freely from suitable candidates such
as Racah-normalized regular solid harmonics or other polynomials, but we want to
keep this set of basis functions �xed for all molecules, i.e. the perturbing poten-
tial is (independently from the speci�c molecule) always described by the same set
of basis functions. This means that the support supp(P) is �xed and constant for
all molecules, while the support X of the eigenfunctions {|χ1〉, |χ2〉, ...} is individual
for each molecule. As a result, P[N] = {|P1〉, |P2〉, ..., |PN 〉} can not be a subspace of
D(T̂) = span(|χ1〉, |χ2〉, ...). Expanding the perturbing potentials in a di�erent vector
space compared to the eigenspace of the linear operator T̂ will lead to altered response
densities. For this reason, equation (2.63) is not suited for actual calculations of the
response density.

However, the problems induced by the mismatch of the supports can be circum-
vented by the moment expansion of the LDDRF, which was �rst introduced by Scher-
rer and Sebastiani in 2016.144 They utilized a unitary transformation of the eigen-
functions {|χi〉 | i ∈ N} which condenses the physically relevant information into a
few moment generating states {|ξ1〉, |ξ2〉, ..., |ξN 〉}. The transformed states - denoted
as moment-expanded states - ful�ll the following partial orthogonality condition with

2We de�ne the support supp({|χ1〉, |χ2〉, ...}) of a set of functions as the union of the supports

∪i=1 supp({|χi〉}) of the sole functions .
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respect to the basis functions of the perturbing potential {|P1〉, |P2〉, ..., |PN 〉}:

〈ξi, Pn〉 = 0 ∀ i > n (2.64)

Due to the partial orthogonality relation, onlyN moment-expanded states {|ξ1〉, |ξ2〉, ..., |ξN 〉}
have a non-zero overlap with the N -th basis function |PN 〉 of the perturbing potential.
Thus, the full density response due to perturbing potentials Vpert ∈ P[N] is reduced
to a sum over N terms:

T̂|Vpert〉 =
N∑

i=1

|ξi〉〈ξi, Vpert〉. (2.65)

The moment expansion does not use a speci�c basis expansion of the perturbing poten-
tials. Only the overlap of the moment-expanded states and the perturbing potential
contributes to the sum in equation (2.65). The overlap integral is taken automatically
at the vector space with correct support, because the moment-expanded functions are
only non-zero within the support of the eigenfunctions.

2.3.2 Derivation of the LDDRF

The LDDRF is also known as electronic susceptibility, non-local electronic density
susceptibility and the screened electronic dielectric response function. The LDDRF
is a very complex and sophisticated subject and it is perhaps the most important
response function from the time-dependent density functional theory (TDDFT) point
of view.38,39 It gives the linear frequency dependent response of the density to an
external scalar potential. After its explicit determination, it can then be utilized to
obtain the �rst-order response of all properties derivable from the density with respect
to any scalar �eld e.g., the polarizability.40 The calculation of the poles of the LDDRF
enables a direct approach for the calculation of electronic excitations.

The LDDRF is also important for the adiabatic-connection �uctuation-dissipation
theorem and symmetry adapted perturbation theory.145�149 It is employed in G0W0,150�152

�uctuation-dissipation density functional theory,153�155 van-der-Waals156�159 or ran-
dom phase approximation160�163 and beyond random phase approximation164�167 cal-
culations. In addition, polarization e�ects were included in QM/MM free-energy cal-
culations.168�170 In a complementary manner it is used for the qualitative prediction
of properties such as aromacity171 and charge delocalization172,173 within the context
of conceptual chemistry.174,175 The LDDRF was also used to investigate alchemi-
cal derivative evaluations.176�178 In the next subsection, we will demonstrate how to
derive the LDDRF from general linear response theory.

General linear response theory

Linear response theory is a commonly used method that is applied when considering
the response to a weak perturbation, such as the density response due to the perturbing
�eld arising from the electron density of a neighboring molecule.

The discussion of general linear response theory in this section will closely follow
reference 38. We start from the expectation value of a quantum mechanical operator
α̂:

α0 = 〈Ψ0, α̂Ψ0〉, (2.66)



22 Chapter 2. Theoretical Framework

where Ψ0 is the ground-state many-body wavefunction, which ful�lls Ĥ0Ψ0 = E0Ψ0

where Ĥ0 is the static Hamiltonian and E0 the lowest eigenvalue.
Let F (t) be an external �eld that couples to an observable β̂. At time t0, we switch

on a time-dependent perturbation according to

Ĥ1(t) = F (t)β̂, t ≥ t0, (2.67)

which leads to a perturbed system and a time-dependent expectation value of α̂:

α(t) = 〈Ψ(t), α̂Ψ(t)〉, t ≥ t0. (2.68)

The response α(t)−α0 of α̂ to the perturbation from equation (2.67) can be expanded
in terms of powers of the �eld F (t):

α(t)− α0 = α1(t) + α2(t) + ..., (2.69)

where α(t) is the linear response, α2(t) is the quadratic (second-order) response, α3(t)
is the third-order response and so on. By introducing a linear response function
χαβ(t − t′) it is demonstrated in Appendix A that the linear response α1(t) can be
calculated using the integral equation

α1(t) =

∫ ∞

−∞
dt′χαβ(t− t′)F (t′), (2.70)

where the lower integration limit t0 is replaced by −∞ since the external �eld F (t) is
zero for all times before t0. By replacing the time t with the frequency ω via a Fourier
transformation, the linear-response equation in frequency space is derived as

α1(ω) = χαβ(ω)F (ω). (2.71)

As a �nal result of Appendix A, an explicit representation of the frequency-dependent
response function χαβ(ω) is obtained according to

χαβ(ω) = lim
η→0+

∞∑

n=1

{
〈Ψ0, α̂Ψn〉〈Ψn, β̂Ψ0〉

ω − Ωn + iη
− 〈Ψ0, β̂Ψn〉〈Ψn, α̂Ψ0〉

ω − Ωn + iη

}
. (2.72)

Equation (2.72) describes a representation of the linear response function χαβ(ω) as
a sum over states. We call this expression Lehmann representation. This is an impor-
tant part of response theory because it explicitly shows how a frequency-dependent
perturbation couples to the excitation spectrum of a system. Please note that the
response function χαβ(ω) depends only on properties of the system in the absence of
the probe.

Lehmann Representation of the LDDRF

The most important response function in the context of TDDFT, namely the density-
density response, is obtained by setting α̂ and β̂ to the density operator, which is
de�ned for an N -electron system as

n̂(r) =

N∑

l=1

δ(r− rl). (2.73)
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In this case, the external perturbation is a scalar potential υ1(r′, t), switched on at t0,
which is coupled with the density operator from equation (2.73)

Ĥ1 =

∫
d3r′υ1(r′, t)n̂(r′). (2.74)

Then, in analogy with equation (2.70), the linear response of the density is given by

n1(r, t) =

∫ ∞

−∞
dt′
∫
d3r′χnn(r, r′, t− t′)υ1(r′, t′). (2.75)

To relate equation (2.75) to the general expression (2.70), we note that the linear
responses to di�erent perturbations can simply be added independently. Taking this
into account, we can relate equation (2.75) to the general expression (2.70). The
perturbing Hamiltonian from equation (2.74) can be viewed as a sum of perturbations
υ1(r′, t′)n̂(r′) that are of the form of equation (2.67). Each of these perturbations gives
rise to a retarded density response at all r, and all of these are then integrated over
space in equation (2.75). The frequency-dependent density response can be obtained
again by Fourier transformation in analogy with equation (2.71)

n1(r, w) =

∫
d3r′χnn(r, r′, ω)υ1(r′, ω). (2.76)

The Lehmann representation (cf. (2.72)) is given for the special case of the density-
density response function by

χnn(r, r′, ω) = lim
η→0+

∞∑

n=1

{〈Ψ0, n̂(r)Ψn〉〈Ψn, n̂(r′)Ψ0〉
ω − Ωn + iη

− 〈Ψ0, n̂(r′)Ψn〉〈Ψn, n̂(r)Ψ0〉
ω − Ωn + iη

}
.

(2.77)

2.3.3 Basic Symmetries and Analytic Properties of the LDDRF

We start this discussion of the properties of the LDDRF by considering basic symme-
tries. The density response n1(r, t) has to be real, which also implies that χ(r, t, r′, t′)
is a real function. As a consequence, we �nd from the Lehmann representation from
equation (2.77):

χnn(r, r′, ω) = χ∗nn(r, r′,−ω), (2.78)

which implies that the real part of χnn(r, r′, ω) is an even function of the frequency
whereas the imaginary part is an odd function.

In addition, the following symmetry expression is immediately apparent from sum-
over-states representation in equation (2.77)

χnn(r, r′, ω) = χ∗nn(r′, r, ω). (2.79)

In the following, we will con�ne ourselves to the static density response function
χ(r, r′) := χ(r, r′, ω = 0) by setting ω to zero. In contrast with its dynamic variant,
the static density response function does not possess poles. From the Lehmann repre-
sentation, we can suppose χ(r, r′) ∈ L2(X ×X) for X ⊂ R3 to be a square-integrable
function.

The physical origin for the distortion of a charge density due to a perturbing
potential is the minimization of its energy. The energy di�erence due to polarization
∆Epol is always negative (or always positive by the opposing de�nition) and can be
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calculated as:

0 ≥ ∆Epol =

∫
d3r υpert(r)nresp(r) =

∫
d3r υpert(r)

∫
d3r′ χ(r, r′)υpert(r

′)

= 〈υpert, T̂υpert〉 (2.80)

The last equation holds for all perturbing potentials υpert ∈ L2(X). As a result, the
linear operator T̂ de�ned in equation (2.60) is negative-de�nite (or positive-de�nite
by the opposing de�nition).

2.3.4 Iterative Spectral Decomposition of the Static LDDRF

This thesis uses the static LDDRF χ(r, r′) := χ(r, r′, ω = 0). Its explicit non-
local real-space representation has only been the subject of a small number of stud-
ies.141,179�181

The analytical properties of the LDDRF are discussed in section 2.3.3. ForX ⊂ R3

and a square-integrable kernel χ(r, r′) ∈ L2[X ×X], equation (2.60) de�nes a linear
Hilbert-Schmidt operator T̂ : L2[X]→ L2[X], which is compact.182,183

The assumption of Vpert and nresp as a square-integrable function is a very weak
restriction and includes all physically meaningful perturbing potentials or response
densities with support X ⊂ R3.

In section 2.3.3, we showed that the kernel is also symmetric (χ(r, r′) = χ(r′, r) ∀r, r′ ∈
X) and positive-de�nite (

∫ ∫
χ(r, r′)f(r′)f(r)d3r d3r′ ≥ 0 ∀ f(r) ∈ D(T̂)), which also

makes the linear operator T̂ from equation (2.60) a self-adjoint and positive-de�nite
one.

According to the spectral theorem for self-adjoint, positive and compact operators,
the operator T̂ can be expressed by its eigensystem given in equation (2.61). The
calculation of the eigenvalues λi and the eigenfunctions χi(r) of the linear operator T̂
is possible via an iterative diagonalization of the static response function. Reference
141 provides a detailed description of the underlying Hermitian Lanczos algorithm
for the spectral decomposition. Formally, the numerical problem to be solved is the
determination of the eigenvectors for the largest eigenvalues of a Hermitian operator
T̂ with only its action on a vector available.

From a conceptual point of view, the key for the application of the Hermitian
Lanczos algorithm is the possibility of calculating the explicit density response to
arbitrary static perturbing potentials. This can be done in terms of DFPT.136�139 In
this regard, the density response can be calculated via a self-consistent solution of a
Sternheimer-like equation:

(Ĥ(0) − ε(0))φ
(1)
i = −P̂e

(
V (1)φ

(0)
i

)
, (2.81)

where V (1) is an arbitrary perturbing potential. A detailed derivation and explanation
of equation (2.81) is given in section 2.2.3.

In principle, the iterative spectral decomposition can also be used to calculate the
representation of the full frequency-dependent response function, which enables an
e�cient pathway for RPA151,163,184,185 and post-RPA calculations.167

2.3.5 Representation of Linear Operators

The e�cient representations of the static LDDRF presented in this thesis can be un-
derstood in terms of their representing matrices. By careful analysis of the shape of
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these matrices, the properties of the e�cient representations become immediately ap-
parent. In the next section, we will derive the framework for calculating the transition
matrix elements of a linear operator with respect to non-orthogonal basis sets. First,
we discuss how to calculate the coordinates of a vector according to an arbitrary basis.
In this section, we will follow references 6 and 5.

Resolution of the identity and coordinate vectors

From now on, we de�ne V and W to be vector spaces with a scalar product 〈 · , · 〉.
Let {|u1〉, |u2〉, ...} be a (not necessarily orthogonal) basis of V such that every v ∈ V
can be expressed as

v = a1|u1〉+ a2|u2〉+ ... =
∑

i=1

|ui〉ai, (2.82)

with unique expansion coe�cients {a1, a2, ...}. We also refer to |a〉 = (a1, a2, ...)
T as

the coordinate vector. Multiplying equation (2.82) by 〈ui| from the left, we obtain a
system of coupled linear equations

〈ui, v〉 = a1〈ui, u1〉+ a2〈ui, u2〉+ ... ∀i. (2.83)

This set of equations corresponds to the following matrix-vector multiplication:

|ṽ〉 = S|u〉|a〉, (2.84)

with

|ṽ〉 =




〈u1, v〉
〈u2, v〉
〈u3, v〉
...


 , S|u〉 =




〈u1, u1〉 〈u1, u2〉 〈u1, u3〉 ...
〈u2, u1〉 〈u2, u2〉 〈u2, u3〉 ...
〈u3, u1〉 〈u3, u2〉 〈u3, u3〉 ...
... ... ... ...


 , |a〉 =




a1

a2

a3

...


 .

S|u〉 is the Gramian matrix of the linear independent {|u1〉, |u2〉, ...} and its inverse
matrix S−1|u〉 exists. Thus, the coordinate vector |a〉 is given according to:

|a〉 =
(
S−1|u〉

)
|ṽ〉. (2.85)

For a single coordinate ai, we have:

ai =
∑

j=1

(
S−1|u〉

)
ij
|ṽ〉j =

∑

j=1

(
S−1|u〉

)
ij
〈uj , ṽ〉. (2.86)

Combining equations (2.86) and (2.82), we can express a vector v ∈ V with respect
to the basis {|u1〉, |u2〉, ...} as:

|v〉 =
∑

i=1

|ui〉ai =
∑

i=1

|ui〉
∑

j=1

(
S−1|u〉

)
ij
〈uj , v〉 =


∑

i=1

|ui〉
∑

j=1

(
S−1|u〉

)
ij
〈uj |


 |v〉.

(2.87)
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So we can write for the resolution of the identity:

Îd|u〉 =
∑

i=1

|ui〉
∑

j=1

(
S−1|u〉

)
ij
〈uj |, (2.88)

and for the special case of an orthonormal basis, we have:

Îd|u〉 =
∑

i=1

|ui〉〈ui|. (2.89)

By specifying a basis {|u1〉, |u2〉, ..., |uN 〉}, a coordinate vector a = (ai)i≤N is uniquely
assigned to every vector v ∈ V according to equation (2.82). The isomorphism between
the N -dimensional vector space V and the N -dimensional Cartesian vector space RN
formed by the coordinate vectors is given by the operator Îd|u〉 : RN → V de�ned in
equation (2.88).

Îd|u〉 : RN → V (2.90)

(ai)i≤N 7→ v =

N∑

i=1

|ui〉ai (2.91)

Our considerations are not limited to the special case of �nite-dimensional vector
spaces. An important special case within this thesis is the in�nite-dimensional, sep-
arable Hilbert space L2[X] formed by the square-integrable functions with support
X ⊂ R3. By choosing an appropriate basis (e.g. expansion within a Fourier se-
ries), a separable, in�nite-dimensional vector space formed by the coordinate vectors
is obtained. The coe�cients of the coordinate vectors are square-summable and the
coordinate vector space is denoted by `2. The connection of the vector space of
square-integrable functions and square-summable series is based on the Riesz repre-
sentation theorem, which states that all separable, in�nite-dimensional Hilbert spaces
are isometrically-isomorphic.

Change-of-basis matrix

Let {|u1〉, |u2〉, ...} and {|p1〉, |p2〉, ...} be two orthonormal bases of the vector space
V . For |v〉 ∈ V , we obtain by inserting the resolution of the identity twice (cf. eq.
(2.89)):

|v〉 = Îd|p〉Îd|u〉|v〉 =
∑

i=1

|ui〉
∑

j=1

〈ui, pj〉〈pj , v〉
︸ ︷︷ ︸

ai

, (2.92)

where ai is the i-th coe�cient of the coordinate vector a := (a1, a2, ...)
T of |v〉 with

respect to the basis {|u1〉, |u2〉, ...}. We can write for ai:

ai =
∑

j=1

〈ui, pj〉︸ ︷︷ ︸(
W

{|u〉}
{|p〉}

)
ij

〈pj , v〉︸ ︷︷ ︸
ãj

(2.93)

Equation (2.93) describes the element-wise matrix-vector multiplication of a matrix
W
{|u〉}
{|p〉} and a vector ã = (ã1, ã2, ...)

T . In this context, we identify ã as the coordinate

vector of |v〉 with respect to the orthonormal basis {|p1〉, |p2〉, ...}. The matrix W
{|u〉}
{|p〉}
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describes the transformation between the two coordinate vectors. We call W
{|u〉}
{|p〉} the

change-of-basis matrix.

An orthogonal matrix
(
W
{|u〉}
{|p〉}

)
ful�lls:

(
W
{|u〉}
{|p〉}

)−1
=
(
W
{|u〉}
{|p〉}

)T
. The following

calculation proves that W
{|u〉}
{|p〉} is an orthogonal matrix, by checking element-wise that

(
W
{|u〉}
{|p〉}

)T (
W
{|u〉}
{|p〉}

)
= Id:

∑

j

(
W
{|u〉}
{|p〉}

)
ij

(
W
{|u〉}
{|p〉}

)T
jl

=
∑

j

(
W
{|u〉}
{|p〉}

)
ij

(
W
{|u〉}
{|p〉}

)
lj

=
∑

j

〈ui, pj〉〈pj , ul〉 (2.94)

= 〈ui|


∑

j

|pj〉〈pj |




︸ ︷︷ ︸
Îd|p〉

|ul〉 = 〈ui, ul〉 = δil (2.95)

Here, we used 〈pj , ul〉 ∈ R and 〈pj , ul〉 = 〈ul, pj〉.
We de�ne a linear operator Û which describes the change of basis from {|u1〉, |u2〉, ...}

to {|p1〉, |p2〉, ...}. The essence of the presented scheme for the matrix representation
of a change-of-basis operator Û is summarized in the following commutative diagram:

V V

KN KN

Û

W
{|u〉}
{|p〉}

Îd|p〉 Îd|u〉

with Îd|p〉 =
∑

i=1 |pi〉〈pi| and Îd|u〉 =
∑

i=1 |ui〉〈ui|. The change-of-basis matrix

W
{|u〉}
{|p〉} is given by (2.96). KN is used as a symbol for the vector spaces formed by

the coordinate vectors.
Our considerations are not limited to the special case of �nite-dimensional vector

spaces. An important special in�nite-dimensional case in this thesis is V ∼= L2[X]
with X ⊂ R3 and KN ∼= `2.

The elements of the change-of-basis matrix for orthonormal bases are as follows
(cf. eq. (2.93)):

(
W
{|u〉}
{|p〉}

)
ij

= 〈ui, pj〉. (2.96)

For the general case of (not necessarily orthonormal) bases {|w1〉, |w2〉, ...} and {|q1〉, |q2〉, ...},
we obtain in a completely analogous manner by using the resolution of the identity
de�ned by equation (2.88):

(
W
{|w〉}
{|q〉}

)
ij

=
∑

l

(
S−1|w〉

)
il
〈wl, qj〉 (2.97)

where Sij = 〈wi, wj〉.
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Representation of linear operators

If two vector spaces V and W are �nite-dimensional vector spaces and a basis is
de�ned for each of the vector spaces, then every linear transformation from V to W
can be represented by a matrix. In�nite-dimensional, compact, linear operators can
also be viewed as continuous generalizations of matrices. Here, we will derive formulas
for the transformation matrix elements of linear operators with respect to arbitrary
bases.

Let T̂ : V → W be a linear map with Ψ 7→ Φ := T̂(Ψ). First, we con�ne
ourselves to orthonormal basis sets. Later, we will generalize our results to arbitrary
bases. Let {|p1〉, |p2〉, ...} be the orthonormal basis of the image and {|p̃1〉, |p̃2〉, ...}
the orthonormal basis of the domain. We expand the image vector Φ and the domain
vector Ψ with respect to the chosen basis by inserting the resolution of the identity
from equation (2.89):

|Ψ〉 = Îd|p̃〉|Ψ〉 =
∑

i

|p̃i〉〈p̃i, ψ〉 (2.98)

|Φ〉 = Îd|p〉|Φ〉 =
∑

i

|pi〉〈pi,Φ〉 =
∑

i

|pi〉〈pi, T̂Ψ〉. (2.99)

Inserting equation (2.98) into equation (2.99), we obtain:

|Φ〉 =
∑

i

|pi〉〈pi, T̂
∑

j

|p̃j〉〈p̃j , ψ〉〉 (2.100)

=
∑

i

|pi〉
∑

j

〈pi, T̂p̃j〉︸ ︷︷ ︸(
T

|p〉
|p̃〉

)
ij

〈p̃j , ψ〉︸ ︷︷ ︸
ãj

︸ ︷︷ ︸
ai

. (2.101)

According to equation (2.82), we can de�ne ai as the i-th coe�cient of the coordinate
vector a = (a1, a2, ...)

T of |Φ〉 with respect to the basis {|p1〉, |p2〉, ...}.

ai =
∑

j

〈pi, T̂p̃j〉︸ ︷︷ ︸(
T

|p〉
|p̃〉

)
ij

〈p̃j , ψ〉︸ ︷︷ ︸
ãj

(2.102)

Equation (2.102) describes the element-wise matrix-vector multiplication of a matrix
T
|p〉
|p̃〉 and a vector ã = (ã1, ã2, ...). In this context, we identify ã as the coordinate

vector of |Ψ〉 with respect to the basis {|p̃1〉, |p̃2〉, ...}. T
|p〉
|p̃〉 corresponds to the matrix

representation of the operator T̂. We call T|p〉|p̃〉 the transformation matrix (with respect
to the basis {|p1〉, |p2〉, ...} of the image and the basis {|p̃1〉, |p̃2〉, ...} of the domain).

We can express the action of the linear operator T̂ to a vector |Ψ〉 in two equivalent
ways:

a = T
|p〉
|p̃〉ã ⇔ |Φ〉 = T̂|Ψ〉 (2.103)

with |Φ〉 =
∑

i |pi〉ai and |Ψ〉 =
∑

i |p̃i〉ãi. We can write explicitly (cf. eq. (2.102))
for the ij-th transformation matrix element:

(
T
|p〉
|p̃〉

)
ij

= 〈pi, T̂p̃j〉. (2.104)
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The essence of the presented scheme for the matrix representation of linear oper-
ators is summarized in the following commutative diagram:

V W

KM KN

T̂

T
|p〉
|p̃〉

Îd|p̃〉 Îd|p〉

with Îd|p̃〉 =
∑

i |p̃i〉〈p̃i| and Îd|p〉 =
∑

i |pi〉〈pi|. The transformation matrix T
|p〉
|p̃〉 is

given by (2.104). KM and KN are the vector spaces formed by the coordinate vectors
of V and W , respectively. Our considerations are not limited to �nite dimensional
vector spaces. An important special in�nite-dimensional case in this thesis is V =
W = L2[X] with X ⊂ R3 and KM = KN = `2.

The generalization of the derivation of the transformation matrix elements to
arbitrary bases is straightforward. Let {|q1〉, |q2〉, ...} be a (not necessarily orthogonal)
basis of the image and {|q̃1〉, |q̃2〉, ...} the (not necessarily orthogonal) basis of the
domain.

For the general case, the resolution of the identity is given by equation (2.88).
Expanding the image vector |Φ〉 and the domain vector |Ψ〉 with respect to the cor-
responding bases yields:

|Ψ〉 = Îd|q̃〉|Ψ〉 =
∑

i

|q̃i〉
∑

j

(
S|q̃i〉

−1
)
ij
〈q̃j ,Ψ〉 (2.105)

|Φ〉 = Îd|q〉 |Φ〉︸︷︷︸
|T̂Ψ〉

=
∑

i

|qi〉
∑

j

(
S|qi〉

−1
)
ij
〈qj , T̂Ψ〉 (2.106)

Equations (2.107) and (2.108) can be obtained in a completely analogous manner for
the general case.

|Φ〉 = T̂Ψ =
∑

o

|qo〉
∑

n

(
S−1|q〉

)
on

∑

m

〈qn, T̂q̃m〉
∑

s

(
S−1|q̃〉

)
ms
〈q̃s,Ψ〉

︸ ︷︷ ︸
ao

(2.107)

ao =
∑

n

(
S−1|q〉

)
on

∑

m

〈qn, T̂q̃m〉
︸ ︷︷ ︸(

T
|q〉
|q̃〉

)
om

∑

s

(
S−1|q̃〉

)
ms
〈q̃s,Ψ〉

︸ ︷︷ ︸
ãm

, (2.108)

with the transformation matrix element:
(
T
{q}
{q̃}

)
om

=
∑

n

(
S−1|q〉

)
on
〈qn, T̂q̃m〉. (2.109)

2.4 Markov Chains

A Markov chain is a mathematical system that undergoes transitions from one state
to another according to certain probabilistic rules. Markov chains are a common,
and relatively simple, way to statistically model the evolution of certain systems such
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as animal populations and tra�c �ows and they are applied in �elds such as eco-
nomics, game theory, queueing (communication) theory, genetics, and �nance.186,187

In contrast with other stochastic models Markov chains describe a sequence of possible
events in which the probability of each event depends only on the previous state. In
general, Markov chains can be grouped according to continuous or discretized time
and a countable or continuous state space. Here, we will focus on a discrete-time
Markov chain with a countable state space S. A discrete-time Markov chain is a se-
quence of random variables Y = (Xt)t∈N where Xt are elements of a countable state
space S = {s1, s2, s3, ...}. The sequence of states satisfy the Markov property, i.e. the
probability of the transition to the next state depends only on the present state and
not on the previous states. This central property is also referred to using the term
"memorylessness". More formally, this condition can be expressed as

P{Xn+1 = sjn+1 |X0 = sj0 , ..., Xn = sjn} = P{Xn+1 = sjn+1 |Xn = sjn}. (2.110)

where P{Xn+1 = sjn+1 |X0 = sj0 , ..., Xn = sjn} and P{Xn+1 = sjn+1 |Xn = sjn} are
conditional properties.

For a �nite state space, the transition probability distribution can be represented
by a matrix Q, which we call the transition matrix. The elements of the quadratic
transition matrix are formally given as

Qij = P{Xn+1 = si|Xn = sj}. (2.111)

From the de�nition of the elements of the transition matrix as probabilities given by
equation (2.111), it is apparent that

1. the transition matrix is stochastic (sum of the rows of the matrix equal to one)

2. the matrix elements are greater than or equal to zero.

A transition matrix which ful�lls the condition that the sum of the columns and the
sum of the rows are both equal to one is called doubly stochastic.

For a time-independent transition matrix, a Markov chain {X1, X2, X3, ...} is ob-
tained by successive application of the transition matrix to the state vectors

Xn+1 = QXn (2.112)

The n-step transition probability between the i-th state at t = 0 and j-th state at the
n-th step is given by

pnij := P (Xn = sj |X0 = si). (2.113)

From equation (2.112), it follows that this n-step transition probability pnij is given
by the ij-th element of the n-th power of the transition matrix (Qn)ij .

The connection between discrete Markov chains and the transition matrix further
expand the toolbox available for the investigation of Markov models by the methods for
matrix investigation and characterization provided by linear algebra. Graph theory
can also be utilized for the characterization of Markov chains. In that case, the
elements of the state space are considered as nodes within a directed graph. The nodes
are then connected by the non-zero transition probabilities (which can be directly
obtained from the elements of the transition matrix).

In the following discussion, the important properties of Markov chains are pre-
sented and the e�ect of these properties on the elements of the transition matrix is
also highlighted.
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Reducibility/Irreducibility A Markov chain is said to be irreducible if it is
possible to get to any state from any state (possibly in more than one time step).
A state j is said to be accessible from a state i if a system started in state i has a
non-zero probability of transitioning to state j at some point. Formally, state j is
accessible from state i if there exists an integer nij ≥ 0 such that

P{Xnij = i|X0 = j} = p
nij
ij > 0. (2.114)

This integer is allowed to be di�erent for each pair of states, hence the subscripts in
nij .

We derived from equation (2.112) and (2.113) that pnijij = (Qnij )ij . As a result,
the irreducibility of the Markov chain corresponds to the condition that every element
of the M -th power of the M ×M transition matrix is greater than zero.

Periodicity/Aperiodicity A state i has period k if any return to state i must
occur in multiples of k time steps. Formally, the period of state i is de�ned as

gcd{n > 0 : P (Xn = i|x0 = i) > 0}, (2.115)

where gcd is the greatest common divisor and it is assumed that the set is nonempty.
If k = 1, then the state is said to be aperiodic. Otherwise (k > 1), the state is said to
be periodic with period k. A Markov chain is aperiodic if every state is aperiodic. An
irreducible Markov chain only needs one aperiodic state to imply that all states are
aperiodic. As a consequence of the latter observation, a transition matrix is aperiodic
if at least one diagonal element is greater than zero.

Convergence behavior of Markov models

In this thesis, a discrete Markov model for long-range proton transfer is constructed.
In this section, we wish to examine the impact of certain properties of the transition
matrix - such as being irreducible, aperiodic and doubly stochastic - on the qualitative
properties of the Markov model. This section closely follows article [Dreÿler et al., J.
Chem. Phys., 2020, 152(11):114114.] in this thesis.

Let Q ∈ Rn×n be a transition matrix of a Markov chain i.e. all entries are non-
negative and the sum of each column vector of Q is equal to one (Q is a stochastic
matrix). The orbit or trajectory of Q is the set {Qnx0 | x0 ∈ Rn, n ∈ N}. Fixed
points or stationary distributions of Q are those vectors x ∈ Rn with Qx = x, whose
orbit is the one-element set {x}. This is equivalent to limn→∞Qnx = x. In this
section, we wish to answer the following three questions:

� Under which conditions does a unique stationary distribution or a �xed point
of Q exist?

� Which x ∈ Rn is the �xed point of Q?

� For which initial vectors x0 ∈ X do we encounter this �xed point?

The following theorem from the literature will assist us in this regard:188

Theorem 1 (A part of the �rst ergodic theorem)

Every stochastic, irreducible and aperiodic matrix Q has a unique �xed point or

stationary distribution x. This �xed point is positive (i.e. all elements xi ≥ 0) , and
the sequence of the distributions Qnx0 converges to x for every initial distribution x0.
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It follows from this statement that a Markov matrix Q always has 1 as an eigenvalue.
The absolute value of all other eigenvalues are less than 1. The eigenvector x for the
eigenvalue 1 is called the stationary distribution of Q.

We are even able to predict the �xed point for symmetric or double-stochastic
transition matrices Q:188

Theorem 2 The uniform distribution at Rn, that is, the vector x ∈ Rn with x(0) =
x(1) = .. = x(n), is the stationary distribution of the stochastic transition matrix Q
if the sums of the columns and of the rows of Q are both equal to one (i.e. Q is

double-stochastic).

2.5 Dynamical Systems

If one is interested in the simulation of dynamic processes, starting from the formal
mathematical de�nition of a dynamical system is a much more obvious approach
compared to the concept of Markov chains. However, this contradiction can easily be
resolved because a discrete Markov chain can always be considered as a dynamical
system.

From a formal mathematical point of view, a discrete dynamical system is a 3-
tuple (T,X,Φ) consisting of a set T = N0 or Z (indexing the temporal evolution), a
non-empty set X (the state space or the phase space), and an evolution function of
the dynamical system Φ: T × X → X, so that for all states x ∈ X and all times
t, s ∈ T we have:

I : Φ(0, x) = x (2.116)

II : Φ(s,Φ(t, x)) = Φ(s+ t, x) (semigroup action). (2.117)

With respect to the time t ∈ T , the function Φ(t, x) maps every point x ∈ X to
a unique image. For �xed x ∈ X, the function βx : T → X, t 7→ βx(t) := Φ(t, x) is
called the �ow through x. The set O(x) := {βx(t) | t ∈ T} is called the trajectory (or
orbit or phase curve) and describes the (temporal) evolution of an initial state vector
x. By specifying an elementary physical time step ∆s, we can assign a physical time
to our discrete time via the relation t ∈ T ↔ t ·∆s.

We wish to restrict ourselves to a speci�c dynamical system that ful�lls the fol-
lowing conditions:

� The phase space X is isomorphic to a Euclidean vector space RM .

� The evolution function Φ(n, x) of the state vector x ∈ RM (corresponding to n
elementary time steps) can be expressed by the n-fold application of a matrix
P ∈ RM×M to the state vector x:

Φ(n, x) = Pnx (2.118)

with

Pn = P×P× ...×P (n times). (2.119)

For this speci�c evolution function, the semigroup property can be expressed by matrix
multiplication:

Φ(s,Φ(t, x)) = Ps(Ptx) = Ps+tx = Φ(s+ t, x). (2.120)
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Relation between Markov chains and dynamic models

By comparing equations (2.118) to (2.120) with equation (2.112), it becomes apparent
that the terms discrete Markov chain and discrete dynamical system are synonyms.
Starting from a state x at t = 0, an appropriate constructed evolution function Φ(n, x)
(cf. eq. (2.118)) yields the same state compared to the n-fold application of the tran-
sition matrix P. Conversely, the following calculation highlights the Markov property
of a dynamical system induced from the semigroup action: Let xt+∆t be the future
state of a dynamical system, let xt be the present state of the system and let x0 be
the inital state of the system (at t = 0). According to

xt+∆t = Φ(t+ ∆t, x0)
eq.(2.117)

= Φ(∆t,Φ(t, x0)) = Φ(∆t, xt) (2.121)

the future state of a dynamical system is only dependent on the current state of the
system.

2.6 Asymmetric Simple Exclusion Process

The Asymmetric Simple Exclusion Process (ASEP) is a simple model that allows for
the simulation of particles moving on a grid.189 The simplicity of the ASEP model
has made it the default stochastic model for transport phenomena.190 This method
was introduced as a mathematical model in 1970 and several variants exist nowadays.
The ASEP in its original version is too simple to study real world systems, but it
can be regarded as an abstraction of complex processes - as demonstrated in the case
of protein bio-synthesis, for example.191 The ASEP method can be used to derive
fundamental relations between the microscopic scale and macroscopic ensembles in
these systems. In contrast with other more realistic simulation methods, the ASEP
principle allows for (at least partial) analytical treatment.

All variants of the ASEP principle model transitions of particles between lattice
sites. These lattice sites can be occupied by either one or zero particles. If a particle
already resides at a lattice site, no further jumps to this site are possible. In a simple
version of the ASEP principle, particle movement along a one-dimensional lattice
was simulated in continuous time.192 An �alarm clock� was used that rang after an
exponentially distributed random time with mean value τ = 1/(p + q). The alarm
initiated a particle jump with a probability of Pl = p/(p + q) to the next lattice site
to the left and a particle jump with a probability of Pr = q/(p+ q) to the next lattice
site to the right. The jump was only possible if the corresponding adjacent lattice site
was unoccupied.

In this work, a method based on the ASEP principle will be used to model the
movement of protons on a (dynamically evolving) grid of oxygen atoms. A detailed
description of how to derive the exact transition probabilities and the positions of the
lattice sites is presented in section 2.8.

2.7 Monte Carlo Methods

Monte Carlo (MC) methods are employed for numerical integration, global optimiza-
tion, queuing theory, structural mechanics and the solution of large systems of linear,
partial di�erential or integral equations.124 In this section, the basic idea of the MC
method is introduced. In statistical physics and chemistry, MC methods are utilized
to study the behavior of complex systems of thousands of atoms in space and time. In
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MC methods, a sequence of points in phase space is generated from an initial geome-
try by adding an appropriate random perturbation to the coordinates of a randomly
chosen particle (atom or molecule). The core components of an MC algorithm are a
random number generator and the ability to calculate the energy of the system for a
given set of coordinates.193 Generated �random� numbers are typically pseudo-random
because a deterministic recursion rule is used to generate a sequence of numbers start-
ing from an initial seed. A pseudo-random number generator produces a sequence of
seemingly random numbers, but the sequence is repeated after a certain period. A
good pseudo-random number generator is characterized by a very long periodicity and
within this periodicity the numbers do not show any systematic correlation with each
other.

In the following discussion, a condensed description of the Metropolis algorithm
is presented that follows the approach in reference 124. We denote the collective
position vector as X. The Metropolis algorithm provides an e�cient simple procedure
for the sampling of the canonical ensemble. It generates a chain of molecular states
{X1, X2, X3, ...}. From a mathematical point of view, this chain can be considered
as a Markov chain since the generation of a new state Xi+1 solely depends on the
current state Xi. The Metropolis algorithm o�ers one possibility to calculate the
transition matrix for this Markov chain and thus enables the construction of a phase
space trajectory in the canonical ensemble.

We start from a chain of states {X1, X2, X3, ...} which is prolonged by means
of the Metropolis method using the following protocol: Starting from the i-th state
Xi, a trial X̃i+1 is generated by an appropriate random perturbation and accepted
if the corresponding energy is lower. If, however, the energy of the state X̃i+1 is
larger than the energy of the state Xi (E(X̃i+1) > E(X̃i), then the new state state is
accepted with a probability of p = exp (−β∆E), with ∆E = E(X̃i+1) − E(Xi) > 0
and β = 1/(kBT ). This is achieved by comparison of p with a uniformly-generated
number on the interval (0,1). If p is greater than the random number, the new state
X̃i+1 is accepted, otherwise another trial X̃i+1 is constructed but Xi is recounted in
the chain of states. The result of this procedure is the acceptance probability at step
i of:

pacc,MC = min[1, exp (−β∆E)] (2.122)

In this manner, states with lower energies are always accepted but states with higher
energies have a non-zero probability of acceptance too. Consequently, the sequence
tends towards regions of the con�guration space with low energies, but the system
can always escape to other areas of the energy surface.

In the work carried out for this thesis, a modi�ed protocol of the Metropolis
algorithm is used for the simulation of proton transfer. In the standard algorithm
probabilities derived from the energy di�erences (p = exp (−β∆E)) are used, whereas
the probability of proton transfer is directly accessible in the method derived in this
thesis. Thus proton transfer only takes place if the uniformly-generated number on
the interval (0,1) is less than the probability calculated for proton transfer between
the two oxygen atoms.

In general, the Metropolis algorithm does not simulate the temporal evolution
of the system. However, in the method derived in this thesis a time-dependency is
introduced indirectly by relating the probabilities for proton transfer to a certain time
interval. The details of this approach are given in the next section.
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2.8 The Combined Molecular Dynamics/Lattice Monte
Carlo (cMD/LMC) Approach for Long-range Proton
Transfer

The simulation of proton conduction is a computationally challenging task.61�63 On
the one hand, we are forced to use ab initio MD simulations because we have to
simulate the cleavage and formation of covalent bonds. On the other hand, proton
transfer is a rare event at the AIMD time scale and only a few proton transfer events
can be observed in an entire trajectory.

From a formal point of view, molecular kinetics derived from an MD simulation
can always be described in terms of a Markov model. The evolution of a state in
an MD simulation is obtained by the numerical solution of the equations of motion
(cf. equation (2.1)). These equations depend only on the current state of a system
(positions, velocities and accelerations at time t) and thus ful�ll the Markov property.

There are at least two crucial reasons why the construction and application of
Markov models is hindered in practice:

1. An appropriate discretization of the phase space is needed.

2. The underlying transition matrix could be determined by brute force sampling,
i.e. counting of interesting events from an MD trajectory. However, in order to
obtain an e�ciency gain for the simulation of molecular kinetics, more sophisti-
cated methods should be employed for the calculation of the transition matrix
of the Markov model.

In the following, a detailed description of the cMD/LMC method is given. We will
demonstrate that the two crucial factors are implicitly ful�lled by the cMD/LMC
approach. Proton transfer has been an area of interest of the group of Prof. Se-
bastiani for many years. A careful analysis of the AIMD trajectory of hexa(p-
phosphonatophenyl)benzene (HPB) revealed an interesting Gaussian-shaped depen-
dency between the O-O distance and the frequency of proton transfer. This functional
shape of the O-O distance/proton transfer frequency relationship was con�rmed for
several O· · ·H-O hydrogen bonded compounds (poly(vinylphosphonic acid) (PVPA),
CsHSO4, CsHSeO4, CsH2PO4) and is shown in Figure 2.3. This �gure presents the
histogram of the proton jumps with respect to the oxygen-oxygen distance within an
AIMD trajectory (normalized to 100 ps and 16 protons for reasons of comparability).
In this context, we de�ne a proton jump as a change in the next oxygen neighbor of
a hydrogen atom (in two subsequent AIMD steps). All compounds share the same
center (dOO ≈ 2.4 Å) for the Gaussian-shaped functions of the proton jumps with
respect to the O-O distances.

Figure 2.3 suggests that the positions of the oxygen atoms are decisive for the
description of proton movement. In addition, the protons do not di�use freely within
a condensed matter system. They are always attached to an oxygen atom for the
proton conducting systems within the scope of this thesis. As a result, the positions
of the oxygen atoms provide an apparent discretization for the simulation of long-range
proton transfer. In the Lattice Monte Carlo part of the cMD/LMC method, we reduce
the system to the position of the oxygen atoms. These oxygen atoms are referred to
as �sites�. A site can be occupied by one proton at the most, which corresponds to
the situation of a covalently bonded proton to this oxygen atom.

In the cMD/LMC model, the movement of the protons among this oxygen lattice is
governed by the oxygen-oxygen distances. In contrast with other lattice gas models,
the positions of the oxygen atoms (i.e. the positions of the lattice sites) are not
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Figure 2.3: Number of proton jumps with respect to the O-O dis-
tance (histogram) occurring in a 100 ps simulation of a box containing
16 protons. Details concerning the high temperature (HTP) and low
temperature phases (LTP) of CsHSO4, CsHSeO4, CsH2PO4 are given
in section 2.9. Reproduced with permission from Dreÿler, Sebastiani,

Phys. Chem. Chem. Phys., 2020, 22, 10738-10752.

�xed. Instead, the positions are updated from an AIMD trajectory. The articles that
constitute this thesis clearly demonstrate that only the updating of the lattice enables
the simulation of long-range proton transfer by incorporating relaxation processes of
the atomistic environment (for details see section 3.1).

The actual proton dynamics are performed by the Monte Carlo part �on top� of
the dynamically evolving molecular structure. In addition to the positions of the
oxygen atoms and their occupations by protons, the Monte Carlo routine requires the
transition probabilities for a proton between the oxygen sites. A schematic illustration
of the cMD/LMC model is presented in Figure 2.4.

Figure 2.4: The combined Molecular Dynamics/ lattice Monte Carlo
approach. Reproduced with permission from Dreÿler et al., J. Chem.

Phys. 153, 114114 (2020). Copyright 2020 AIP Publishing LLC.

In order to obtain a Markovian model, the transition probabilities for a proton
should only depend on geometric criterion derived from the current oxygen positions.
In line with our discussion of Figure 2.3, the following protocol is used for the con-
struction of the jump rate function ω(dij) from an AIMD trajectory: The jump rate
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(a) Histograms of O-O distances and of O-O dis-

tances at a proton jump.
(b) Jump rate function ω(d) of CsH2PO4.

Figure 2.5: O-O distance histograms and jump rate function ω for
the sepci�c example of CsH2PO4. The jump rate function ω (right) is

obtained as point-wise quotient of the two histograms (left).

function ω is the conditional probability of a proton jump at a given O-O distance.
The value of this function for a certain oxygen-oxygen distance is calculated as the ra-
tio of the number of proton jumps at a given oxygen-oxygen distance and the number
of absolute occurrences of that oxygen-oxygen distance. Both dividend and divisor
can be obtained by detecting and counting these events from the AIMD trajectory.
The connection between the jump rate function ω, the overall histogram of oxygen-
oxygen distances and the histogram of the oxygen-oxygen distances at a proton jump
is illustrated in Figure 2.5 for the special case of the compound CsH2PO4. The jump
rate function ω (green) is quotient of the two histograms (blue and red points). The
resulting function ω depends only on the oxygen-oxygen distances dij and is �tted to
a Fermi function:

ω(dij) =
a

1 + exp(
dij−b
c )

, (2.123)

where dij is the distance between the oxygen atoms Oi and Oj and a, b, c are the �t
parameters.

The existence of a jump rate function for the description of proton transfer which
only depends on the current state of the system is comprehensible. However, the
speci�c functional form of ω obtained from the above protocol is arbitrary. It is only
motivated by the conclusions from Figure 2.3 and the empirical justi�cation from the
application of the cMD/LMC scheme to a variety of compounds. Other approaches
and modi�cations of the protocol presented above for the calculation of ω were also
investigated in the articles that constitute this thesis (for details see section 3.1).

The unit of the proton jump rate is probability per time. According to this rate
function a physical time can be assigned to the LMC steps. The probability of proton
transfer pij between the i-th and the j-th lattice site within the interval ∆t is given
by:

pij = ω(dij)∆t. (2.124)

For a system of N sites with �xed positions, the transition probabilities can be stored
in an N ×N jump matrix.

As the positions (and hence the distances dij) are updated from the AIMD tra-
jectory, the jump matrix becomes also time-dependent. The cMD/LMC approach
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employs a variation of the Asymmetric Simple Exclusion Process (ASEP) principle
(cf. section 2.6) for the stochastic propagation of the protons. The proton movement
is modeled on a discrete lattice given by the oxygen positions and each lattice site can
either be occupied or unoccupied. At each Monte Carlo step, a pair of oxygen atoms
Oi and Oj is chosen randomly. If Oi is occupied by a proton, and site Oj is empty,
the proton is moved to Oj with the probability pij as obtained from equation (2.124).

Simulating a system of N oxygen atoms, there are a total number of N(N − 1)
connections between the oxygen atoms. Therefore, N(N − 1) Monte Carlo steps
(denoted as a sweep) are associated with the time step ∆t in (2.124). The interval ∆t
corresponds to the AIMD time between the updates of the atomic positions. Thus,
the time step of the AIMD simulation is an obvious choice for ∆t in (2.124).

A general scheme of the cMD/LMC approach, illustrating the connection between
the updating of the molecular structure and the Monte Carlo part is presented in
Figure 2.6.

MD Trajectory

Distance Routine

Jump Rate Calculation

LMC Scheme

Positions

Distances

Jump Rates

Current time t,
Time of last jump tjump,

Lattice position

Figure 2.6: Flow chart diagram of the cMD/LMC approach. This
�gure is taken from ref. 1.

2.9 Solid Acids

Proton conduction is a process of fundamental scienti�c interest and has been exten-
sively studied by chemists and physicists.41�51 If we focus on the �eld of energy con-
version, the core component of a hydrogen fuel cell is the proton exchange membrane.
This membrane has to be chemically stable, durable and a good proton conductor.

Solid, inorganic acid compounds (or simply solid acids) of the type XHyZO4 (X
= K, Rb, Cs, NH4; y = 1,2; Z = P, S, Se, As) often undergo a super-protonic phase
transition at higher temperatures.3,120,194 This super-protonic phase transition leads
to an increase in the proton conductivity by several orders of magnitude.195�203 The
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�rst super-protonic phase transition was reported more than 30 years ago.204 Since
that time, solid acids have been under constant investigation, which has resulted in
novel proton-conducting membrane materials for fuel cell applications. The potential
use of solid acids as fuel cell membranes materials has also been demonstrated outside
of the laboratory:205 a �rst fuel cell based on CsH2PO4 is already commercially avail-
able.123 The most common fuel cell membrane material is Na�on, a per�uorinated
sulfonic acid.206 Water molecules are involved in the conduction mechanism, which
limits the operating temperature of Na�on based fuel cells to 100◦C.

Up to the early 2000s, there was an ongoing discussion about the existence of a
super-protonic phase transition in CsH2PO4. The idea that water traces or thermal
decomposition products are responsible for proton conduction at higher temperatures
was widely discussed.207�209 Several reviews and further experimental studies �nally
con�rmed the existence of the high-temperature, super-protonic phase of CsH2PO4,
thus avoiding the requirement for a non-genuine conduction mechanism.205,210�214

This water free proton conduction in solid acids is a fundamental advantage compared
to other proton conducting materials, such as Na�on.

The origin of the extraordinarily high proton conductivity in the super-protonic
phases of the solid acids is a dynamically disordered hydrogen bond network.3,215,216

Although these compounds are still solid crystalline materials, the reorientation dy-
namics of the tetrahedral anions can be characterized as �liquid�-like. The latter
property is of utmost importance, as proton transfer can only take place in these crys-
talline materials via the Grotthuss mechanism, which involves proton transfer events
between neighboring anions followed by structural relaxation of the molecular envi-
ronment (rotation of the anions).3,215,216 The super-protonic phase is always observed
at elevated temperatures.3,120,194,205,217 Surprisingly, this is associated with a formal
increase in the symmetry of the crystal structures, e.g. transition from the monoclinic
to the tetragonal or cubic crystal system. In fact, this increase in symmetry enables
the dynamically disordered hydrogen bond network due to the increased disorder of
the oxygen atoms indicated by only partial occupation of sites in the crystal struc-
ture. A case in point is the transition of the monoclinic phase of CsH2PO4 to the
high-temperature phase of CsH2PO4.2,205 The orientational disorder of the phosphate
groups in the super-protonic phase arises from the mismatch of the tetrahedral sym-
metry of the anion and the octahedral symmetry of the center of the primitive cubic
cell constituted from the Cs+ ions. An alignment of the P-O bonds along the < 111 >
direction of the crystal structure would in principle retain the cubic symmetry. How-
ever, the Cs-P distance is too short for this alignment (4.30 Å).

Thus, twenty-four possible partially occupied sites of the oxygen atoms are re-
ported in the crystal structure (cf. Figure 2.8), resulting in six di�erent orientations
of the phosphate group. At the elevated temperature of the phase transition (503 K),
the di�erent orientations are frequently inter-converted, leading to a highly dynami-
cally disordered or �liquid�-like hydrogen bond network.205,215,216

Within the scope of this thesis, the focus is predominantly on a series of solid
acid compounds: the super-protonic (cubic or tetragonal) and monoclinic phases of
CsHSO4, CsHSeO4 and CsH2PO4. The temperature of the super-protonic phase
transition and the space group of involved crystal structures are shown in Table 2.1.
In the following, the term low-temperature phase (LTP) refers to the monoclinic phase
just below the super-protonic phase transition and the term high-temperature phase
(HTP) refers to the tetragonal or cubic phase just above the phase transition.
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Table 2.1: Characteristic crystal structure parameters for the high-
and low-temperature phases (HTP/LTP) of CsH2PO4, CsHSeO4 and

CsHSO4
3

CsH2PO4 CsHSO4 CsHSeO4

HTP Pm3̄m I41/amd I41/amd
cubic tetragonal tetragonal

LTP P21/m P21/c P21/c
monoclinic monoclinic monoclinic

λc 503 K 414 K 384 K

Crystal structures of the HTP and LTP of CsH2PO4

The following �gures and descriptions of the crystal structures are taken from the
article [Dreÿler, Sebastiani, Phys. Chem. Chem. Phys., 2020.] in this thesis.

Figure 2.7: Eight unit cells of the crystal structure of the monoclinic
phase (LTP) of CsH2PO4 are shown with di�erent lattice orientations.
Red: oxygen, green: caesium, gray: hydrogen. Reproduced with per-
mission from Dreÿler, Sebastiani, Phys. Chem. Chem. Phys.,

2020, 22, 10738-10752.

The crystal structure of the monoclinic phase (LTP) of CsH2PO4 is shown in
Figure 2.7.218 The hydrogen bond network in this phase consists of two di�erent
types of hydrogen bonds.218 Symmetric double-minima hydrogen bonds (2.48 Å)
form one-dimensional chains of oxo-anions in the b direction. These chains are linked
by asymmetric single-minimum hydrogen bonds (2.54 Å) leading to two-dimensional
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layers of hydrogen bonded tetrahedra. Hydrogen atoms involved in the symmetric
hydrogen bond with the double potential well undergo rapid exchange between two
di�erent oxygen sites.217,219,220

Figure 2.8: One unit cell of the crystal structure of the cubic phase
(HTP) of CsH2PO4 is shown. Partial occupancies are indicated by
partial coloring of the atoms.2 Red: oxygen, green: caesium, lilac:
phosphorus. Reproduced with permission from Dreÿler, Sebastiani,

Phys. Chem. Chem. Phys., 2020, 22, 10738-10752.

One unit cell of the crystal structure of the cubic phase (HTP) of CsH2PO4 is pre-
sented in Figure 2.8.2 The large number of partially colored atoms (partial occupation
of the crystal sites) indicates a strong disorder of the oxygen atoms. Twenty-four par-
tially occupied oxygen sites are reported, resulting in six di�erent orientations of the
phosphate tetrahedra. The PO4 groups reside in the center of the cubic unit cell. The
reoriental disorder is caused by the mismatch of the tetrahedral oxo-anion unit and
the octahedral symmetry of the cubic center. An alignment of the P-O bonds with
the < 111 > body diagonal would retain the overall cubic symmetry while removing
the octahedral symmetry from the center. In fact, this is not possible due to the small
phosphorus-caesium distance of 4.30 Å in this direction. Displacing the oxygen atoms
from this diagonal retains the cubic symmetry and results in six di�erent orientations
of the phosphate anions depicted in Figure 2.8.205 Besides a strong (single minimum)
hydrogen bond of 2.46 Å, other hydrogen bonds of 2.76 Å, 2.85 Å and 3.03 Å length
are possible from the crystal structure.

Crystal structures of the HTP and LTP of CsHSO4 and CsHSeO4

The low- and the high-temperature phases of CsHSO4 and CsHSeO4 are isostructural.
Thus, only the crystal structure of CsHSO4 will be discussed.

Three di�erent phases of CsHSO4 (phases I, II, and III) are reported within the
temperature range between room temperature and approximately 500 K.221�223 In this
thesis, we are interested in the proton conduction mechanism just above and just be-
low the super-protonic phase transition. As a result, we restrict our investigations to
phase II (LTP) and phase III (HTP). The crystal structures of the monoclinic (LTP)
and the tetragonal (HTP) phase of CsHSO4 are presented in Figures 2.9 and 2.10.
While the monoclinic phase forms in�nite chains of hydrogen-bonded sulfate tetra-
hedra, cyclic dimers linked by hydrogen bonds are reported for the tetragonal phase.
These structural motifs are also known from other solid acids and the hydrogen bonds
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Figure 2.9: Four unit cells of the crystal structure of the monoclinic
phase (LTP) of CsHSO4 are shown with di�erent lattice orientations.
red: oxygen, green: caesium, gray: hydrogen. Reproduced with per-
mission from Dreÿler, Sebastiani, Phys. Chem. Chem. Phys.,

2020, 22, 10738-10752.

within zigzag chains tend to be stronger than hydrogen bonds formed by the cyclic
dimers.217 For CsHSO4, this also holds for the monoclinic and the tetragonal phase,
and hydrogen bond lengths of 2.63 Å (monoclinic phase) and 2.79 Å (tetragonal
phase) can be observed from the crystal structures. Slightly di�erent crystal struc-
tures of the tetragonal phase were proposed by Jiraak et al.,224 Merinov et al.225 and
Belushkin et al.226 These structures di�er in terms of the number and the sites of the
partially occupied oxygen positions. In Figure 2.10, we present the crystal structure
with two possible orientations of the oxygen tetrahedron reported by Jiraak et al..

2.9.1 Open Questions Concerning the Conduction Mechanism in
Solid Acids

Solid acids have been extensively studied from both the experimental and the theoret-
ical perspectives. The structure and the phase transition were characterized by X-ray
di�raction and calorimetry. The proton dynamics were investigated with the help of
PFG-NMR techniques, neutron scattering and impedance spectroscopy.205,207,208,210�213,227�229

From the theoretical point of view, static calculations of the electronic structure
as well as classical and ab initio molecular dynamics were used to study the solid
acids.16,117,118,228,230�237

There is a strong consensus in the scienti�c community that proton conduction
in the high-temperature phases of these systems follows a general Grotthuss mech-
anism enabled by a dynamically disordered hydrogen bond network.3,120,194,205,217

However, a large amount of (isolated) studies produced contrary �ndings regarding
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Figure 2.10: Four unit cells of the crystal structure of the tetragonal
phase (HTP) of CsHSO4 are shown with di�erent lattice orientations.
red: oxygen, green: caesium, gray: hydrogen. Reproduced with per-
mission from Dreÿler, Sebastiani, Phys. Chem. Chem. Phys.,

2020, 22, 10738-10752.

speci�c parts of the proton conduction mechanism in some cases: the proton conduc-
tion mechanism in these compounds can be decomposed into contributions from two
underlying sub-processes: the proton transfer rate between anions and the structural
reorientation rate of the molecular environment (rotation rate of the anions). For the
high-temperature phase of CsH2PO4, it was reported that the anion reorientation rate
(1 · 1011 s−1) compared to the proton transfer rate (7 · 1011 s−1) is the rate limiting
step for proton conduction.117,238

Several experimental226,239�242 and theoretical research groups16,230�233 have re-
ported that the situation for CsHSO4 is the opposite: the proton conductivity in the
HTP of this compound is limited by the proton transfer rate compared to the fre-
quency of the anion rotation. However, an NMR study and a more recent ab initio

molecular dynamics (AIMD) study by Wood et al. proposed that the anion rotation
rate of CsHSO4 constitutes the limiting factor for the proton conductivity in this
compound.118,243

Each of the low-temperature phases has a drastically reduced proton conductivity
compared to its high-temperature phase equivalent. Nevertheless, the proton conduc-
tion mechanism in the low-temperature phase of CsH2PO4 was recently investigated
by several NMR studies.2,219,220,244 The reorientation rate of the anion seems to
be crucial for the long-range proton transfer mechanism. The rotation rates of the
H2PO−4 anion are not isotropic and two types of rotations were reported, di�ering
in their correlation with long-range proton transfer. While for the faster rotational
process only local �uctuations of the hydrogen atoms within a hydrogen bond are
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involved, the slower rotation enables the long-range transfer of a proton.219 Indepen-
dently of the speci�c rotational process, the frequency of phosphate rotations in the
LTP is reduced compared with the frequency in the disordered HTP.117,219,238

Many previous theoretical investigations focused on CsHSO4. A variety of methods
ranging from static quantum chemical calculations by Te and Kanka237 to classical
molecular dynamics studies by Munch et al. or Haile et al. were conducted.230�232

In particular, it is noteworthy that the classical MD simulations of Haile et al. were
not only able to compute the structure and dynamics of CsHSO4, but that they could
even predict the transition itself, without any a priori knowledge of the existence of
the super-protonic phase.232 More recent studies focus on the importance of speci�c
e�ects for the simulations of the monoclinic phase of CsH2PO4, such as dispersion
corrections or nuclear quantum e�ects.228,234

If theoretical calculations are designed to elucidate the proton conduction mecha-
nism, the underlying method has to be capable of simulating bond breaking. Conse-
quently AIMD has to be used for the investigation of the proton conduction mechanism
by means of MD, as only this technique demonstrates a truly predictive ability. This
predictive ability is achieved by an approximate solution of the Schrödinger equation
for the investigated system in every time step, which makes AIMD a computationally
demanding method and typically restricts the simulations to system sizes of several
hundred of atoms and the timescale to less than a nanosecond. This timescale is
comparable to the timescale of long-range proton transfer in many systems. Thus,
long-range proton transfer is generally a rare event in AIMD simulations and the
convergence of descriptors of protonic motion (such as di�usion coe�cients) obtained
from AIMD simulations is often questionable.61�63,245,246 Also, the AIMD studies
already published on CsH2PO4 and CsHSO4 are a�ected by these problems.117,118

While the experimental di�usion coe�cient of CsH2PO4 has been reproduced within
a factor of two, a ten-fold increased value of the di�usion coe�cient of CsHSO4 has
been reported.
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3.1 Multiscale Approaches for Long-range Proton Trans-
fer

A detailed introduction in the combined Molecular Dynamics/Lattice Monte Carlo
(cMD/LMC) approach is presented in section 2.8. The cMD/LMC method is a scale-
bridging method for the simulation of long-range proton transfer. This approach
uses the atomistic information from an AIMD simulation to model microscopic pro-
ton transfer probabilities, and the Monte Carlo part takes the dynamically evolving
molecular structure into account and performs actual proton dynamics �on top� of
that dynamical structure.

In 2014, Kabbe et al. introduced the idea of the cMD/LMC approach and demon-
strated its applicability in principle for the compound hexa(p-phosphonatophenyl)benzene.247

A further benchmark of the cMD/LMC method is presented in the article [Dreÿler,
Kabbe, Sebastiani, J. Phys. Chem. C, 2016.] in this thesis. In this article, the
cMD/LMC approach is applied to the solid acids CsH2PO4 and CsHSO4, which are
extraordinarily good proton conductors and promising candidates for fuel cell mem-
brane materials. CsH2PO4 and CsHSO4 undergo a super protonic phase transition at
elevated temperatures that is accompanied by signi�cantly increased proton conduc-
tivity. The cMD/LMC approach was able to reproduce this enormous change in the
proton mobility as well as the moderate increase in the conductivity due to simple
variations of the temperature. Phase transitions and temperature variations are both
re�ected by only moderate changes in the positions of the atoms in the trajectory,
but lead to a wide range of proton conductivity responses for these compounds. It is
in particularly noteworthy that this variety in proton conductivity responses is com-
pletely captured by the cMD/LMC approach without any reparameterization. This
mainly results from the fact that the positions of the oxygen atoms (i.e. the posi-
tions of the lattice sites) are not �xed. Instead, the positions of the oxygen atoms
are periodically updated from an AIMD trajectory. In the article [Dreÿler, Kabbe,
Sebastiani, J. Phys. Chem. C, 2016.] in this thesis, it is clearly demonstrated that
only the updating of the lattice enables the simulation of long-range proton transfer
by incorporating relaxation processes of the atomistic environment. Several other ap-
proaches using a �xed oxygen lattice (e.g. positions from crystal structure or averaged
positions from an AIMD trajectory) were tested. None of them was able to reproduce
the high proton conductivity in the super-protonic phases.

Despite the reproduction of the di�usion coe�cients, the mechanism of proton
transfer can also be investigated using the cMD/LMC method, which is presented in
the article [Dreÿler, Kabbe, Sebastiani, J. Phys. Chem. C, 2016.]. The investigation
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of the proton conduction mechanism in this article is the reason why it is formally
listed in section 3.3. Proton conduction in CsH2PO4 and CsHSO4 follows a general
Grotthuss type mechanism, which can be understood in terms of the proton transfer
frequency between the anions and the reorientation rate of the HSO−4 /H2PO−4 anions.
While the proton transfer frequency itself is a central parameter of the cMD/LMC
method (via the jump rate function), the rotation of the anions is re�ected by the pe-
riodic updating of the molecular structure from the AIMD trajectory. For CsH2PO4,
the anion rotation frequency is the limiting step for the proton conductivity and a
similar limitation holds for the proton transfer frequency and CsHSO4. This can be
identi�ed by careful analysis of the AIMD trajectories - for example, as done in arti-
cle [Dreÿler, Sebastiani, Phys. Chem. Chem. Phys., 2020.] in this thesis. However,
the cMD/LMC approach is also able to cross-check this assumption from a di�erent
point of view. The cMD/LMC method allows for the direct simulation of proton dif-
fusion with respect to variations of the proton jumprate. This can be used to verify
the sensitivity of the proton mobility as a function of the proton transfer rate. The
dependency of the proton mobility on the anion rotation rate can also be investi-
gated within the cMD/LMC approach by means of appropriate modi�cations of the
underlying trajectory.

The jump rate function ω is a very important parameter in the cMD/LMC ap-
proach. The existence of such a function, which describes the probability of proton
transfer and which is only dependent on the current positions of the oxygen atoms, is
logical. However, the suggested functional form from section 2.8 with sole dependence
on the oxygen-oxygen distance is quite arbitrary. In article [Kabbe, Dreÿler, Sebas-
tiani, J. Phys. Chem. C, 2016.] an additional dependency of the jump rate function
on the hydrogen bond angle is investigated. As a result, a (rather large) cut-o� angle
was introduced in order to avoid unphysical proton transfer events. A case in point
for such unwanted events is the intramolecular proton transfer within a phosphate or
sulfate anion.

The jump rate can be determined from an AIMD trajectory according to the
protocol given in section 2.8. A desirable aim in order to reduce the computational
e�ort is the application of the cMD/LMC approach without the necessity of an un-
derlying (rather short) AIMD trajectory. In this scenario, the dynamical structure
update could be carried out based on a classical MD trajectory (assuming the ex-
istence of an accurate force �eld parametrization for the investigated system). A
solution of the remaining open question for the direct calculation of the jump rate
function is presented in the article [Kabbe, Dreÿler, Sebastiani, J. Phys. Chem. C,
2016.]. This article demonstrates that the jump rate function for CsH2PO4 and
hexa(p-phosphonatophenyl)benzene can be derived from static calculations of the ac-
tivation energies for a proton transfer between hydrogen phosphate anions.

Article [Kabbe, Dreÿler, Sebastiani, Phys. Chem. Chem. Phys., 2017.] follows
this line of approach and its aim is the calculation of the proton di�usion coe�cient
of bulk-water from a classical MD trajectory. Liquid water is a special case because
changes in the solvation shell (coordination number and coordination pattern and
not just the oxygen-oxygen distance) are decisive for proton transport. In water, the
symmetrization of the local hydrogen bond topology between the proton-donating
and proton-receiving oxygen atoms is the key step for the initialization of a proton
transfer event. This symmetrization requires equalization of the local coordination
numbers.248,249 In the article [Kabbe, Dreÿler, Sebastiani, Phys. Chem. Chem. Phys.,
2017.], the di�erent proton conduction mechanism in water is re�ected by rescaling
the oxygen-oxygen distances in the vicinity of an excess charge. The characteristic
time scale for the relaxation of the oxygen-oxygen distances and the actual function
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for the rescaling of the distances were derived from an AIMD simulation of an excess
charge in water.

By coupling an MD simulation to the Lattice Monte Carlo part for the propagation
of the protonation state, the scale-bridging character of the cMD/LMC simulation
becomes apparent. After the calculation of the input parameters from a short AIMD
trajectory, several nanoseconds of proton dynamics can be simulated within the Monte
Carlo part on a single desktop PC in several hours. However, the propagation of the
protonation state within a time step in the LMC part requires M(M − 1) single
Monte Carlo steps for a system containing M oxygen atoms. This translates into at
least linear scaling behavior with signi�cantly reduced (compared to AIMD) but not
negligible computational costs for a single time step. Questions arising from various
�elds of material science, such as nano- or micro-structured materials, require answers
at the micrometer and millisecond time scale, which is far beyond the scope of the
cMD/LMC approach.

Figure 3.1: Schematic illustration of the Molecular Dynamics/ Ma-
trix propagation (MDM) approach. Reproduced with permission from
Dreÿler et al., J. Chem. Phys. 153, 114114 (2020). Copyright 2020

AIP Publishing LLC.

The cMD/LMC method is a Markovian model, because the propagation of the
protonation state depends only on the current positions of the oxygen atoms and
their current occupation by protons. The explicit correlation of the protons (i.e.
the dependency of the jump matrix on the current proton distribution) hinders the
calculation of an overall transition matrix (in terms of a Markov model) for more than
one time step or even the entire trajectory.

The condensation of the information concerning proton dynamics of an entire
trajectory into a single transition matrix allows for a further signi�cant increase of
the length and time scale of the evolution of the protons. The scaling behavior is
still linear, but a single (transition) matrix - (state) vector multiplication propagates
the system for a duration corresponding to several hundred thousand MD steps. The
articles [Dreÿler et al., J. Chem. Phys., 2020, 152(16):164110.] and [Dreÿler et al., J.
Chem. Phys., 2020, 152(11):114114.] follow this line of approach in order to further
extend the length and time scale of the cMD/LMC approach. The new approach
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obtained by the modi�cation of the cMD/LMC approach is referred to as the Molecular
Dynamics/Matrix propagation (MDM) method. This model condenses the dynamic
information about proton transport within an entire molecular dynamics simulation
into an M x M matrix PMD where M is the number of oxygen atoms. The system
is again reduced to the position of the M oxygen atoms and the proton distribution
is described by an M -dimensional state space. In contrast to the cMD/LMC method,
the state vector does not describe whether the oxygen atoms are occupied (or not)
by exclusively one proton. In the MDM model, the i-th coordinate of the state
vector corresponds to the fraction of a proton (from a statistical point of view) that
is covalently bound to the i-th oxygen atom. A schematic illustration of the MDM
model is given in Figure 3.1. The temporal evolution of the distribution of proton
probabilities is achieved by means of (time-dependent) transition matrices. These
transition matrices are constructed from an underlying AIMD trajectory, such that
the evolution of the supramolecular structure in the molecular dynamics simulation is
also re�ected within the MDMmodel (in complete analogy to the cMD/LMCmethod).
Thus, the relaxation of the atomistic environment induced by a proton jump is retained
in the MDMmodel. A detailed protocol for the calculation of the elementary transition
matrices (obtained from each frame of the trajectory) and their combination in order
to obtain the overall transition matrix PMD of the entire MD simulation is given
in article [Dreÿler et al., J. Chem. Phys., 2020, 152(11):114114.]. Starting from
common topology features of the hydrogen bond network of good proton conductors,
this article derives the fundamentals of the MDM approach in terms of a dynamic
model for long-range proton transfer. The MDM approach enables the condensation
of the proton dynamics information of an entire molecular dynamics simulation into
a single M x M matrix (M is the number of oxygen atoms in the simulated system).
This large reduction in dimensionality allows for the analytical (instead of numerical)
analysis of the model using the toolbox provided by several �elds such as graph theory,
Markov chains and linear algebra. The article [Dreÿler et al., J. Chem. Phys., 2020,
152(11):114114.] presents a thorough mathematical discussion of the MDM approach,
in particular highlighting the implications of a positive, aperiodic and irreducible
transition matrix. The linking of these properties of the transition matrix to common
topological features of the hydrogen-bond network of good proton conductors allowed
for the veri�cation of the uniqueness of the MDM approach and facilitated the proof
of its correct asymptotic behavior - i.e. for large time scales all protons are equally
distributed to the (chemically equivalent) oxygen atoms. An aperiodic, positive and
irreducible matrix is called ergodic. The relationship between the ergodicity of the
transition matrix and ergodicity of the MD simulation is further discussed in article
[Dreÿler et al., J. Chem. Phys., 2020, 152(11):114114.].

While proton correlation was explicitly incorporated in the cMD/LMC method via
the ASEP principle (oxygen atoms can only be occupied or unoccupied), this feature
is lost in the MDM approach. In this regard, the state vector describes fractional
occupations of the oxygen atoms by protons in a statistical sense.

The article [Dreÿler et al., J. Chem. Phys., 2020, 152(16):164110.] incorporates
the correlation of protonation dynamics with the protonation state of the neighboring
proton sites into the MDM method. Although the elements of the transition matrix
are modi�ed, it is illustrated in this article that this modi�cation conserves the Markov
character of the MDM method.

On the one hand, the removal of the explicit proton correlation enables the con-
struction of an overall transition matrix of the entire MD simulation, and hence a
signi�cant increase in the length and time scales. On the other hand, the implicit
treatment of the proton correlation within the MDM approach is only approximate
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and thus proton dynamics are altered compared to the cMD/LMC approach. An
illustration of this interplay of accuracy and e�ciency is presented in Figure 3.2.

Figure 3.2: Comparison of the AIMD, cMD/LMC and MDM ap-
proaches.

By calculating the di�usion coe�cients and other descriptors of protonic motion,
article [Dreÿler et al., J. Chem. Phys., 2020, 152(16):164110.] demonstrates that the
relevant part of the proton dynamics is still retained within the MDM approach for
at least two speci�c compounds .

In order to highlight the increase in the length and time scale, the MDM approach
is used to explicitly compute non-equilibrium molecular dynamics of protons in the
solid acid CsH2PO4 on a micrometer length scale. It is shown that an excess proton
distribution initially localized within a few nanometers di�uses through an 8 µm sized
system within 5 ms, in full agreement with the common di�usion laws.

Alongside this proof-of-principle example, the scale-bridging approach for the sim-
ulation of long-range proton transfer is used in article [Wagner et al., J. Mater. Chem.

A, 2019.] (still referred to as cMD/LMC there) to explain the experimentally mea-
sured conductivity trend of the solid acid electrolyte CsH2PO4 in a composite solid
acid fuel cell electrode. In order to increase the electrochemical activity of the fuel
cell electrode, nanoporous CsH2PO4 is used to maximize the surface for platination.
The scale-bridging approach for the simulation of long-range proton transfer was uti-
lized to simulate the proton conductivity of these CsH2PO4 networks with respect to
varying degrees of porosity.
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3.1.1 Article I: Exploring Non-equilibrium Molecular Dynamics of
Mobile Protons in the Solid Acid CsH2PO4 at the Micrometer
and Microsecond scale

Christian Dreÿler, Gabriel Kabbe, Martin Brehm, and Daniel Sebastiani.
Exploring non-equilibrium molecular dynamics of mobile protons in the solid acid
CsH2PO4 at the micrometer and microsecond scale.
The Journal of Chemical Physics, 152(16):164110, 2020.

In this article, I derived the theory and performed all calculations. G. Kabbe con-
tributed with valuable discussions and developed the preceding cMD/LMC method,
which was used as the starting point for the derivation of the MDM method. I wrote
the manuscript. M. Brehm proofread the manuscript and contributed with valuable
discussions. D. Sebastiani supervised the project and provided me with valuable ad-
vice while I was writing the manuscript.
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ABSTRACT

We explicitly compute the non-equilibrium molecular dynamics of protons in the solid acid CsH2PO4 on the micrometer length scale via a
multiscale Markov model: The molecular dynamics/matrix propagation (MDM) method. Within the MDM approach, the proton dynamics
information of an entire molecular dynamics simulation can be condensed into a single M ×M matrix (M is the number of oxygen atoms in
the simulated system). Due to this drastic reduction in the complexity, we demonstrate how to increase the length and time scales in order
to enable the simulation of inhomogeneities of CsH2PO4 systems at the nanometer scale. We incorporate explicit correlation of protonation
dynamics with the protonation state of the neighboring proton sites and illustrate that this modification conserves the Markov character of
the MDM method. We show that atomistic features such as the mean square displacement and the diffusion coefficient of the protons can be
computed quantitatively from the matrix representation. Furthermore, we demonstrate the application potential of the scheme by computing
the explicit dynamics of a non-equilibrium process in an 8 μm CsH2PO4 system during 5 ms.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002167., s

I. INTRODUCTION

Within theoretical chemistry and computational physics, there
is a constant challenge to increase the system size and time scale for
the calculation of the dynamics of (supra)-molecular systems.

Molecular dynamics (MD) is a very common approach for the
simulation of the structure and dynamics of microscopic systems.
Within this method, forces on every atom are calculated and subse-
quently used for the propagation of the atoms for a short time inter-
val according to Newton’s second law. By repeated application of this
elementary molecular dynamics step, the length of the simulation
can be systematically increased. While this concept is in principle
suited for the simulation of arbitrary time scales, it suffers in practice
from its enormous computational effort, because every single atom
has to be considered as an elementary particle within the calcula-
tions. The bottleneck for the efficiency of the molecular dynamics
simulations is the chosen level of theory for the calculation of the
forces acting on the atoms. By the term ab initio molecular dynamics
(AIMD), we refer to the calculation of the forces by the approximate
solution of the Schrödinger equation (using, for example, density

functional theory), which is computationally expensive and restricts
the system size to several hundreds of atoms and the time scale to
typically less than 1 ns. While the dimensions of the investigated
systems are limited within AIMD, it possesses a truly predictive
power. This becomes important if the simulation should incorporate
breaking or formation of covalent bonds (e.g., simulation of proton
transfer).

Many attempts were developed, are in constant development,
and will also be developed in the future in order to overcome the
restrictions of molecular dynamics concerning system sizes and time
scales.

One could think of, e.g., coarse graining, replica exchange,
or adaptive/multiple time scale molecular dynamics schemes.1–7

Another promising direction is the use of neural network poten-
tials which are trained on AIMD trajectory data.8–11 Once trained,
fully atomistic dynamics can be generated for very long time scales.
The successful application of neural networks was already demon-
strated for various systems such as NaOH solutions,12 n-alkanes,13

or water on ZnO surfaces.14 Another common ansatz is the devel-
opment of explicit scale bridging approaches, which make use of the

J. Chem. Phys. 152, 164110 (2020); doi: 10.1063/5.0002167 152, 164110-1
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combination of two different methods. While a molecular dynamics
simulation is often used to obtain atomistic information, the effi-
cient evolution of the system can be done via coupling to a Monte
Carlo15,16 or a Markov method.17–22 The specific combination of a
molecular dynamics simulation and a Monte Carlo algorithm was
employed for the investigation of questions arising from the fields of
polymer materials,23–26 semiconductors,27 surface phenomena,28–30

and the folding of proteins.31–33

In general, a process whose evolution relies only on the cur-
rent state of the system is called a Markov process. The combination
of molecular dynamics simulations and a Markov model becomes
immediately apparent if we recall that the calculation of new atomic
positions within molecular dynamics depends only on the current
positions and velocities of the atoms.34 However, the construction
of a Markov model involving the entity of molecular degrees of free-
dom will not reduce the dimensionality of the problem. A crucial
point for the setup of the Markov model is the careful discretiza-
tion of the phase space, reflecting only the molecular processes of
interest.17,34–36

Concerning the combination of molecular dynamics simula-
tions and Markov models, dynamical processes of large molecular
(often biomolecular) systems were addressed in the past,17–22,34–45

in particular the prediction of protein folding46,47 or the binding
of small molecules to proteins48–56 as well as the RNA folding
kinetics.40,57,58

For the simulation of proton transfer, the system size is con-
strained to a small number of atoms because the simulation of cova-
lent bond breaking enforces the employment of AIMD.59–69 While
we are restricted to this expensive simulation technique, the com-
plete transfer of a proton and the relaxation of the environment
occur typically only a few times within a nanosecond within the sys-
tem sizes tractable with AIMD. Following this line, the simulations
will not lead to converged descriptors of proton conduction such
as diffusion coefficients, which underlines the urgent need of scale
bridging approaches within this field.70–72

In a recent publication,73 we derived the theoretical founda-
tions of a Markov model—the molecular dynamics/matrix propa-
gation (MDM) approach—for the description of long range proton
transfer (cf. Figs. 1 and 2). This model condenses the dynamic infor-
mation on the proton transport within an entire molecular dynamics
simulation into an M ×M matrix, where M is the number of oxygen
atoms. We reduce the system to the position of the M oxygen atoms,
and the proton distribution is described by an M-dimensional state
space. The ith coordinate of a vector from this state space corre-
sponds to a fraction of a proton (from a statistical point of view),
which is covalently bound to the ith oxygen atom. The temporal
evolution of the distribution of proton probabilities is achieved by
means of (time dependent) transition matrices. The construction
of these matrices is the crucial element of the MDM approach and
makes use of an underlying ab initio molecular dynamics trajec-
tory of the proton conducting compound under investigation. While
other multiscale approaches rely on static transition matrices, our
transition matrix PMD within the MDM method is obtained from the
elementary transition matrices P(n ,n+1), which are constructed from
the current oxygen positions from an ab initio molecular dynam-
ics trajectory at the nth time step and, thus, represent a dynamic
quantity. Thus, the evolution of the supra-molecular structure in the
molecular dynamics simulation is transferred to our MDM model

FIG. 1. The combined molecular dynamics/matrix propagation (MDM) approach.
Reproduced with permission from Dreßler et al., J. Chem. Phys. 153, 114114
(2020). Copyright 2020 AIP Publishing LLC.

and enables the incorporation of the relaxation of the environment
after a proton jump.

We assume that the probability of a proton transfer between
two oxygen atoms is determined by the current atom positions of the
system. The ijth element of the elementary transition matrix P(n ,n+1)

yields the probability of a proton transfer between the two oxygen
atoms (Oi and Oj) within the elementary time step of the MDM
approach. We calculate the elements of the elementary transition
matrix P(n ,n+1) using a jump rate function ω, which is dependent
on the distance dij between the ith and the jth oxygen atoms at the
nth time step. This jump rate function possesses the shape of a Fermi
function and is directly accessible via post processing of the underly-
ing ab initio molecular dynamics simulation. A detailed description
of this function is given elsewhere.73–75

FIG. 2. Comparison of ab initio molecular dynamics and the combined molecular
dynamics/matrix propagation (MDM) approach.

J. Chem. Phys. 152, 164110 (2020); doi: 10.1063/5.0002167 152, 164110-2
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The elements of the elementary transition matrix P(n ,n+1) are
calculated according to

(P(n, n + 1))
ij
= ω(dij) ∀i ≠ j. (1)

The diagonal elements are determined by the condition that the
overall number of protons should remain constant,

(P(n, n + 1))
jj
= 1 − ∑

i=1,i≠j(P(n, n + 1))
ij
. (2)

The proton distribution vector can be propagated by successive
multiplication with the elementary transition matrices P(1 ,2), P(2 ,3),
. . ., P(N−1 ,N ). An equivalent protocol would be obtained if the ele-
mentary transition matrices are multiplied in beforehand, and sub-
sequently, the resulting matrix PMD is used to propagate the proton
distribution,

PMD = P(1,N) = P(N−1,N) ⋅ ⋯ ⋅ P(2,3) ⋅ P(1,2). (3)

The transition matrix obtained from the successive multiplica-
tion of all N elementary transition matrices resulting from N frames
of the molecular dynamics trajectory will be denoted as PMD, and
its application to a proton distribution vector corresponds to a time
interval of the entire length of the underlying molecular dynam-
ics simulation. By repeated application of the transition matrix
PMD ∈ RM×M to an initial proton distribution x0 ∈ RM , we obtain
a Markov chain (also referred to as trajectory) {(PMD)νx0∣ν ∈ N},
which describes the temporal evolution of the proton distribution.
Each time step corresponds to the entire length of the underlying
molecular dynamics simulation.

In addition to the enormous reduction in the dimensionality
of the entire proton dynamics of the molecular dynamics trajectory
to M × M matrix elements, the MDM method benefits (in con-
trast to other Markov models) from the physical meaning of the
M-dimensional discretization of the phase space (which translates
into the statistical occupation of the M oxygen atoms by protons).
Thus, we can relate the non-zero elements of the transition matrix
to the topology of the hydrogen bond network, because we assume
that the proton transfer between oxygen atoms does only occur for
small oxygen–oxygen distances (which correspond to the forma-
tion of a hydrogen bond). On the one hand, this interplay of the
topology of the hydrogen bond network and the transition matrix
enables the analytical interpretation of the shape of the transition
matrices so that they can also be used to investigate the qualita-
tive picture of proton movement in these materials. On the other
hand, it is possible to derive information concerning the shape of the
transition matrix from the knowledge of the structure and dynam-
ics of the hydrogen bond network. The qualitative picture of an
efficient proton long range transfer is (at least partially) governed
by the Grotthuss mechanism, i.e., a proton transfer between oxy-
gen atoms is followed by structural reorientation of the atomistic
neighborhood. This involves a strong as well as fluctuating hydro-
gen bond network. For sufficient long simulation times, we can
assume that all oxygen atoms are connected via a chain of hydro-
gen bonds (at different times). This translates into the picture of
an irreducible (as well as doubly stochastic and aperiodic) transi-
tion matrix. A detailed derivation of the general properties of the
transition matrix of a good proton conductor from the topology

of the hydrogen bond network is given in Ref. 73. An irreducible
as well as aperiodic transition matrix is called ergodic, and the
shortest duration of the underlying molecular dynamics simulation
which leads to ergodicitiy of the transition matrix can be used to
determine the effective equilibration time scale of the systems as a
whole.

For all “good” proton conducting systems, there is a unique
stationary distribution of the protons to all chemically equivalent
oxygen atoms: the uniform distribution. In Ref. 73, we show that
the transition matrices within the MDM model, obtained from suffi-
cient long molecular dynamics trajectories, have only one stationary
distribution (or fixed point): the uniform distribution. This cor-
rect asymptotic behavior confirms the conceptual consistency of the
MDM method. In this article, we put this approach to the next level.
We will demonstrate that the MDM model is able to predict descrip-
tors of long range proton transfer such as the mean square displace-
ment as well as the diffusion coefficient for the real proton conduct-
ing materials hexakis(p-phosphonatophenyl)benzene (HPB) and
CsH2PO4. Furthermore, we will make use of the low dimensionality
of our approach in order to give an example for the extended system
sizes and time scales which are accessible within our scale bridging
method. Therefore, we will simulate the micrometer and millisec-
ond proton dynamics of a CsH2PO4 lattice, which will give us access
to the investigation of inhomogenities at the nanometer scale. In a
first step, we explain how to obtain observables from the Markov
chain constructed within our model, and we benchmark the MDM
approach for ideal test systems.

II. MEAN SQUARE DISPLACEMENT
FROM THE TRANSITION MATRIX

While we reduce the system to the positions of the oxygen
atoms, it is more challenging to calculate the macroscopic observ-
ables within the MDM approach compared with the analysis of stan-
dard MD simulations because we can no longer explicitly follow a
particular atom.

An important descriptor for the long range proton conduction
is the diffusion coefficient. Using the Einstein relation, the diffu-
sion coefficient can be obtained as the asymptotic slope of the mean
square displacement (MSD) as

D = 1
6

lim
t→∞

d
dt

MSD(t). (4)

In the following, we outline how to derive the diffusion coefficient
from our MDM model. Two types of information are available to
calculate the diffusion coefficient within the MDM method: the
probability (P(0, t))ij for a proton transfer from the ith to the jth
oxygen atom within the time interval t and the positions of the oxy-
gen atoms. As a first approximation, we identify the positions of
the protons with the positions of the corresponding oxygen atoms
because the exact proton positions cannot be retrieved from the pro-
posed model. This introduces displacements that are too large for
small time intervals of the proton evolution because the smallest
movement is the entire distance between two oxygen atoms. Never-
theless, the intermediate behavior of the mean square displacement
remains untouched, which should be used to determine the diffu-
sion coefficient. For relatively long proton evolution periods, the
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proton motion seems too slow because the transition matrix only
describes proton transfer within the given oxygen grid and does not
take into account periodic boundary conditions. In Sec. VI, we will
demonstrate that it is straightforward to increase the size of the tran-
sition matrix. Thus, in order to obtain a uniform slope of the mean
square displacement, we can systematically enlarge the intermediate
regime.

In an explicit molecular dynamics simulation, the numerical
value of the mean square displacement depends on (a) the exact
initial conformation R(t = 0) and (b) the exact evolution of the
trajectory, which is formally deterministic albeit in practice always
chaotic/random. In such an explicit simulation, the diffusion is,
therefore, always computed on the basis of an averaged mean square
displacement, using many different initial configurations [which
implies an averaging over both R(t) for different times t and the
actual trajectory evolution].

In the context of our MDM approach, this double averaging is
automatically incorporated by considering (a) a probability vector
for the initial configuration, i.e., an initial state which contains prob-
abilities for having a particular oxygen site protonated, and (b) using
transition probabilities instead of the deterministic integration of the
equation of motion, i.e., using the fluxes (P(0, t))ij.

The mean square displacement at a macroscopic time t can
be decomposed into contributions from every possible pair of oxy-
gen sites (i, j). Each of these pairs contributes the squared distance
between the two oxygen atoms dij = ΔR(Oi, Oj), weighted with the
integrated flux (P(0, t))ij between those sites since t = 0,

[MSD(t)]ij = (P(0, t))ij ⋅ (dij)2. (5)

Summing over all elementary proton fluxes (i.e., all matrix ele-
ments) and dividing by the number of particles, we obtain the overall
mean square displacement MSD(t) for the interval t,

MSD(t) = 1
M

M∑
i,j=1
[MSD(t)]ij. (6)

III. APPLICATION OF THE MDM TRANSITION MATRIX
TO MODEL SYSTEMS

A. Description of the test systems

Before we apply our dynamic model to calculate diffusion coef-
ficients of real proton conducting materials, we study two well-
defined model systems of proton conductors in order to better
understand the properties of our approach. For each test system,
fictitious trajectories were created, with typical oxygen–oxygen dis-
tances resulting in typical jump probabilities for the protons (when
compared to real proton conducting materials):● Test system 1: A single O–O dimer with a fixed distance.● Test system 2: A dynamically evolving, two-dimensional

oxygen lattice with periodic boundary conditions consist-
ing of 10 × 10 oxygen atoms. The evolution of the posi-
tions of the oxygen atoms is repeated periodically after four
frames of the artificial trajectory (see Fig. 3). Each oxygen
atom has four neighbors at different distances. For each time
step, there is only one neighbor that is sufficiently close to

FIG. 3. The four periodically repeated frames of the trajectory of test system 2. In
each frame, any given site has only one neighbor that is sufficiently close to allow
proton transfer.

allow proton transfer. This nearest oxygen neighbor, how-
ever, changes in the next time step, imitating a fluctuating
hydrogen bond network.

Since the fictitious trajectories of our test systems were not gen-
erated by ab initio molecular dynamics, a reference for the compari-
son of the results obtained by the MDM approach is required. There-
fore, we used a simple Metropolis algorithm for the description of
explicit stochastic jumps between the sites i and j. In this reference
calculation, the sites can be occupied or unoccupied by protons.
Proton jumps are only possible between pairs of an occupied and
an unoccupied site, and the probability of a jump is determined by
the distance between the sites. This type of calculation can be done
within a recently developed program package in our group, pub-
lished as the combined molecular dynamics (cMD)/lattice Monte
Carlo approach (LMC).74–77 We will refer to the reference calcu-
lations by the term “Metropolis reference.” Furthermore, we will
denote our MDM method (as described in the Sec. I) as the “native
MDM method.”

B. Results of the (native) MDM transition matrices

In Fig. 4, we show the mean square displacement for the
oxygen–oxygen dimer with a fixed distance, calculated with the
Metropolis reference and the (native) MDM approach using the
transition matrices obtained by Eqs. (1) and (2). Both methods yield
the same mean square displacement.

In Figs. 5 and 6, we show the mean square displacement for
the fluctuating oxygen lattice calculated with the Metropolis refer-
ence and the (native) MDM approach using the transition matrices
obtained by Eqs. (1) and (2). For one proton, both methods agree.
If 50 protons are distributed among the oxygen atoms, the slope of
the mean square displacement calculated with the Metropolis refer-
ence is significantly lower compared to the slope obtained with the
MDM method. The probabilistic description of the protonation state
and protonation dynamics of the MDM scheme lacks any explicit

J. Chem. Phys. 152, 164110 (2020); doi: 10.1063/5.0002167 152, 164110-4

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. Mean square displacement of a single proton for a fixed oxygen dimer.

FIG. 5. Mean square displacement of a single proton for a dynamically evolving
10 × 10 oxygen lattice.

FIG. 6. Mean square displacement of 50 protons for a dynamically evolving
10 × 10 oxygen lattice.

correlation between actual particles. The probability for the transfer
of a proton from one oxygen atom to another is independent of the
(partial) occupation number of either oxygen atom. This is different
from the situation in the reference simulation. Here, any oxygen site

is either occupied or unoccupied, and a jump can only occur between
a pair of an occupied and an unoccupied site.

IV. INCORPORATION OF PROTON CORRELATION
WITHIN THE MDM APPROACH
(CORRELATION-CORRECTED MDM)

In order to include proton correlation into our model, it is suf-
ficient to modify the matrix elements of the transition matrix with
the current occupation of the respective oxygen sites. In each time
step, the probability (P(n, n + 1))

ij
of a proton transfer between the

jth and ith oxygen atoms (i ≠ j) has to be weighted by the factor(1 − x(n)i ),
(P̃(n, n + 1))

ij
= (P(n, n + 1))

ij
⋅ (1 − x(n)i ). (7)

The diagonal elements are determined by the condition that the
overall number of protons should remain constant,

(P̃(n, n + 1))
jj
= 1 − ∑

i=1,i≠j(P̃(n, n + 1))
ij
. (8)

A. Application of the correlation-corrected MDM
transition matrix to model systems

In Figs. 5 and 6, we show the mean square displacement for the
fluctuating oxygen lattice, calculated with the Metropolis reference
and the correlation-corrected MDM approach obtained by Eqs. (7)
and (8).

For a single proton, both methods still agree. If 50 protons are
distributed among the oxygen atoms, only the correlation-corrected
MDM approach yields a mean square displacement in agreement
with the results of the Metropolis reference. The native MDM vari-
ant results in a far too diffusive behavior. This result illustrates the
importance of considering explicit correlations between the charge
carriers, which effectively limits their mobility when the occupation
density is increased.

In Fig. 4, we show the mean square displacement for the
oxygen–oxygen dimer with a fixed distance, calculated with the
Metropolis reference and the correlation-corrected MDM approach
obtained by Eqs. (7) and (8). The inclusion of proton correlation
leads to a decrease in the slope of the mean square displacement.
Here, the results for the first generation of the MDM approach were
already correct, and thus, the results for the correlation-corrected
MDM approach are somewhat less accurate. This is expected
because the transfer of a single proton within the oxygen dimer is
trivially uncorrelated. However, in the correlation-corrected MDM
approach, any proton density reduces the probability of a proton
jump to an oxygen atom, regardless of whether this density orig-
inated from the original proton itself. This residual error which
can be characterized as a kind of “self-correlation” could in princi-
ple be corrected in order to bring also the single-proton-diffusion
value to an agreement with the Metropolis reference simulation.
For simulations containing essentially uncorrelated charge carri-
ers at high occupation densities (in this example, one proton and
two sites, yielding 50% density), this should actually be done. How-
ever, our aim is to address more “crowded” situations in which the
protons are actually correlated so that the correlation correction is
essential.
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B. Properties of the correlation-corrected MDM
transition matrix

In order to incorporate the proton correlation, we slightly
changed the protocol for the determination of the elements of the
transition matrix [cf. Eqs. (7) and (8)]. In this section, we verify
formally that these modifications do not deteriorate the qualitative
properties of the MDM model such as its asymptotic behavior.

Within the correlation-corrected MDM approach, the elements
of the transition matrices are scaled/modified. However, no zero
entries are added or removed from the matrix. Thus, properties of
the transition matrix such as being irreducible, non-negative, and
aperiodic are transferred from the native to the correlation-corrected
MDM model. The correlation-corrected transition matrices are also
stochastic by construction [cf. Eqs. (7) and (8)]. These properties
ensure the existence of a stationary distribution.

Adding the condition of being doubly stochastic to the transi-
tion matrix enforces the stationary distribution (or fixed point) to be
the uniform distribution of the protons.

Within the native MDM approach, the elementary transition
matrices were stochastic and symmetric (and, thus, also doubly
stochastic) due to the definition of the matrix elements according to
Eqs. (1) and (2). In contrast, the elementary correlation-corrected
transition matrices are neither symmetric nor doubly stochastic,
and thus, their successive products are also not doubly stochas-
tic for arbitrary initial proton distributions x0. Therefore, it is not
clear if the correlation-corrected transition matrices also possess the
uniform distribution as stationary distribution.

In order to answer this question, we will prove by an explicit
calculation that the Markov chains generated from the elementary
native transition matrices P(n ,n+1) and the elementary correlation-
corrected transition matrices P̃(n, n + 1) are identical. To do so, we
will apply the two different matrices to an arbitrary vector x(n) ∈
RM of the proton distribution to the oxygen atoms at the nth time
step,

x(n+1) = P(n, n + 1)x(n), (9)

x̃(n+1) = P̃(n, n + 1)x(n). (10)

By the following calculation, we will show that the difference
Δx(n+1) ∶= x̃(n+1) − x(n+1) between the two resulting proton distri-
butions is equal to zero:

Δx(n+1) = P̃(n, n + 1)x(n) − P(n, n + 1)x(n) = [P̃(n, n + 1) − P(n, n + 1)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
PΔ

x(n).

(11)

The off-diagonal elements of the matrix PΔx(n) are read as

(PΔ)
ij
= (P̃(n, n + 1))

ij
− (P(n, n+1))

ij
(12)

Eq.(7)= [(P(n, n + 1))
ij
⋅ [1 − (x(n))

i
]] − [(P(n, n + 1))

ij
]

= −(P(n, n + 1))
ij
(x(n)i ). (13)

For the diagonal elements, we have

(PΔ)
jj
= (P̃(n, n + 1))

jj
− (P(n, n + 1))

jj
(14)

Eq.(2)=
Eq.(8)

⎡⎢⎢⎢⎢⎢⎢⎣
1 − M∑

i=1
i≠j
(P(n, n + 1))

ij
⋅ [1 − (x(n))

i
]
⎤⎥⎥⎥⎥⎥⎥⎦

−
⎡⎢⎢⎢⎢⎢⎢⎣

1 − M∑
i=1
i≠j
(P(n, n+1))

ij

⎤⎥⎥⎥⎥⎥⎥⎦
, (15)

= M∑
i=1
i≠j
(P(n, n + 1))

ij
(x(n))

i
. (16)

Now, Eq. (11) reads in element form as

(Δx(n+1))
i
= M∑

j=1
(PΔ)

ij
(x(n))

j
= (PΔ)

ii
(x(n))

i
+

M∑
j=1
j≠i
(PΔ)

ij
(x(n))

j

(17)

Eq.(13)=
Eq.(16)

M∑
j=1
j≠i
(P(n, n + 1))

ji
(x(n))

j
(x(n))

i

− (P(n, n + 1))
ij
(x(n))

i
(x(n))

j
= 0. (18)

In the last step, we used the symmetry of the elementary native

transition matrices [(P(n, n + 1))
ji
= (P(n, n + 1))

ij
]. We have shown

that the proton distributions obtained by the propagation of the ini-
tial proton distribution by the elementary native transition matrices
P(n ,n+1) and the elementary correlation-corrected transition matri-
ces P̃(n, n + 1) are equal. It is worth noting that we obtain the same
Markov chain regardless of the changes in the transition matrix
introduced by the correlation correction. Thus, the stationary dis-
tribution (obtained by repeated applications of the elementary tran-
sition matrices) is the same for the native as well as the correlation-
corrected MDM model: the uniform distribution.

The rescaling of the off-diagonal elements of the native tran-
sition matrix [cf. Eq. (7)] does not alter the evolution of the pro-
ton distribution but represents a direct rescaling of proton fluxes
between oxygen atoms, which are decisive for the calculation of the
mean square displacement [cf. Eq. (5)].

V. APPLICATION OF THE MDM METHOD TO REAL
PROTON CONDUCTING COMPOUNDS

We have applied our new MDM simulation scheme to two dif-
ferent compounds which represent a “soft” and a “hard” proton
conductor: Hexakis(p-phosphonatophenyl)benzene and the high-
temperature cubic phase of CsH2PO4 (an inorganic crystal). Both
compounds are interesting from an application perspective, as they
combine high proton conductivity with interesting structural fea-
tures, and are suitable candidates for future low-humidity mem-
brane materials for proton-exchange membrane fuel cells. Snap-
shots of the local molecular structure for both systems are shown
in Fig. 7. The proton dynamics in both systems have been previously
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FIG. 7. Potential membrane materials for proton-exchange
membrane fuel cells. (a) CsH2PO4. (b) Hexakis(p-
phosphonatophenyl)benzene. Figure 7(a) is reproduced
with permission from Dreßler et al., J. Chem. Phys. 152,
114114 (2020). Copyright 2020 AIP Publishing LLC.

FIG. 8. Assembled transition matrices. (a) Visualization of the transition matrix PMD of CsH2PO4 for an underlying 850 ps AIMD simulation. (b) Visualization of the transition
matrix PMD of hexakis(p-phosphonatophenyl)benzene for an underlying 115 ps AIMD simulation. Figure 8(a) is reproduced with permission from Dreßler et al., J. Chem.
Phys. 152, 114114 (2020). Copyright 2020 AIP Publishing LLC.

simulated by means of conventional ab initio molecular dynamics
(AIMD) simulations.78,79 We already combined these calculations
with the explicit Monte Carlo variant of our stochastic long-range
simulation method (termed cMD/LMC).74–76 Thus, they represent
ideal candidates for the quantitative validation and transferabil-
ity demonstration of the MDM approach. Computational details
of the underlying AIMD simulations are given in Appendixes A
and B. Assembled transition matrices for the investigated com-
pounds obtained by the MDM method are shown in Fig. 8.

We use the MDM and the Monte Carlo reference cMD/LMC
method to simulate the proton dynamics of hexakis
(p-phosphonatophenyl)benzene and CsH2PO4. The resulting mean
square displacement functions are depicted in Figs. 9 and 10. Com-
paring the mean square displacement obtained from the MDM
method and that from the reference Monte Carlo propagation
(cMD/LMC), we observe a certain offset for CsH2PO4, which orig-
inates from the initial simulation period (t = 0–25 ps). Apart from
this offset, the time evolution agrees well, corresponding to a good
reproduction of the diffusion constant, as illustrated in Table I. The
same holds true for the organic compound (Fig. 10). In comparison
to the diffusion constants obtained in the explicit AIMD simula-
tions, the agreement is again very good, the deviations stay within
a factor of two. Similarly, the final comparison to experimental

reference data confirms the good overall agreement and, thus, illus-
trates that all levels of coarse graining are within the acceptable
range. The diffusion coefficient obtained from an AIMD simulation
is highly sensitive to the length of the trajectory and the actual proto-
col for the determination of the diffusion coefficient (e.g., the fitting

FIG. 9. Comparison of the mean square displacement of CsH2PO4 for AIMD,
MDM, and cMD/LMC methods.
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FIG. 10. Comparison of the mean square displacement of hexakis
(p-phosphonatophenyl)benzene for AIMD, MDM, and cMD/LMC methods.

procedure to the MSD). Details for the calculation of the diffusion
coefficients from the AIMD trajectory are given in Appendixe B.

Apart from the diffusion coefficient, another observable of the
proton dynamics can be extracted from the MDM model. The ith
diagonal element of the transition matrix corresponds to the frac-
tion of the protons which remain at the ith oxygen atom within
the corresponding time interval described by the transition matrix.
Hence, the trace of the transition matrix describes the overall num-
ber of protons which remain at their initially covalently bound oxy-
gen atoms. By successive multiplication of the elementary transition
matrices P(1 ,2), P(2 ,3), . . ., P(N−1 ,N), we obtain transition matrices
P(1 ,N) which describe the integrated proton dynamics for N ele-
mentary time steps, i.e., for total times of N ⋅ Δt. The trace of
these matrices yields the autocorrelation function of the covalent
O–H bonds, which describes the fraction of O–H bonds that remain
intact during a period of N ⋅ Δt.74 Thus, we have an easy access to
this autocorrelation function of the covalent O–H bonds using the
MDM approach. In Fig. 11, we show the time dependent trace of
the transition matrix obtained by the MDM method and the cor-
responding autocorrelation function of the covalent O–H bonds
calculated using the reference cMD/LMC approach. Both functions
are similar to each other, and their long term decay matches very
well.

In this section, we have calculated several quantitative descrip-
tors of long range proton transfer (diffusion coefficients and

TABLE I. Diffusion coefficients [10−3 Å2/ps] from AIMD, cMD/LMC, and MDM.

CsH2PO4 Hexakis(p-phosphonatophenyl)
510 K benzene 600 K

Dk cMD/LMC 6.0 29.8
Dk MDM 4.0 37.1
Dk AIMD 2.1 18.7
Experimental 2.9–25a

0.5–6.5b

aReference 107.
bSee Refs. 80–84.

FIG. 11. Comparison of covalent O–H bond autocorrelation functions of CsH2PO4
for the MDM and the cMD/LMC methods.

covalent O–H bond autocorrelation functions) for the compounds
hexakis(p-phosphonatophenyl)benzene and CsH2PO4. The MDM
approach yields the same results compared to the reference
cMD/LMC method and AIMD simulations. While we have illus-
trated the correct asymptotic behavior of our model previously,73

we have demonstrated here the general applicability of our model
toward the prediction of proton dynamics in real proton conducting
compounds. The MDM approach further condenses (compared to
the cMD/LMC approach) the entire proton dynamics of the under-
lying molecular dynamics trajectory into an M ×M matrix. Here, we
verified that despite this considerable coarse graining, the method
still yields a similarly accurate description. All important features
of proton transfer are integrated at high accuracy within the MDM
propagation model.

VI. INCREASING THE SYSTEM SIZE AND TIME SCALE
USING THE MDM METHOD

In this section, we demonstrate how to use the remarkable
reduction of the dimensionality within the MDM model to increase
the system size and time scale of the simulations. The MDM
approach enables the storage of the proton dynamics of the entire
underlying ab initio molecular dynamics simulation within a sin-
gle transition matrix PMD. The application of the transition matrix
PMD to a proton distribution vector x will correspond to the evolu-
tion of the proton distribution for a time interval of the full length
of the underlying molecular dynamics simulation. It is immediately
apparent that we can simulate huge periods of proton movement
by repeated application of the transition matrix PMD, i.e., repeated
simple matrix–vector multiplications.

Due to the limitations of the system sizes to the nanometer
scale within ab initio molecular dynamics simulations, only inho-
mogeneities at the subnanometer scale can be incorporated in such
simulations. However, the properties of many systems interesting for
material sciences or engineering are governed by inhomogeneities
at the micro- or nanometer scales. Within the MDM approach,
the information about the proton dynamics of the entire underly-
ing ab initio molecular dynamics simulation can be stored within
M × M elements of the transition matrix PMD (M is the number of
oxygen atoms of the system under investigation). This allows for a
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drastic increase in the system size. The MDM method is capable of
handling several hundred thousands of atoms instead of several hun-
dred. Assuming the length of the entire ab initio molecular dynamics
as an elementary time step of the MDM approach, proton transfer
will only occur in a nanoscopic environment with respect to the
initial proton positions, which will be reflected by a sparse tran-
sition matrix. Due to this sparsity, the storage and application of
transition matrices describing several millions of atoms is now pos-
sible, which corresponds to characteristic lengths in the millimeter
scale.

The remaining crucial point for the construction of transition
matrices of much larger systems is the determination of the positions
of the oxygen atoms. These positions serve as a basis for the con-
struction of the hopping rate function and, thus, directly determine
the values of the propagation matrices P(n ,n+1). The straightforward
idea of using ab initio molecular dynamics simulations (as done
here for the proof-of-principle validations) quickly reaches its lim-
its when large-scale inhomogeneities are involved. A natural further
choice is atomistic force field based simulations, which can extend
the length scale by several orders of magnitude. A complementary
way is the fragmentation of the entire system into (partially overlap-
ping) domains whose atomistic dynamical structure can be deter-
mined individually. The resulting fragment trajectories can then be
re-assembled for use within the MDM method, yielding a natural
path toward actual microporous systems.

VII. SIMULATION OF PROTON DYNAMICS FOR
THE REAL WORLD SYSTEMS AT THE MICROMETER
AND MICROSECOND SCALES

We give a proof-of-principle example for the extension of the
time and size scales within the MDM method. To do so, we resort

to a bulk system of the high-temperature cubic phase of CsH2PO4
constructed from about 500 000 atoms. This results in cell parame-
ters of 8 μm × 1 nm × 1 nm. The transition matrix was constructed
using the following protocol, which is also illustrated in Fig. 12:
First, we construct the transition matrix PMD of the small system
from the originally ab initio molecular dynamics simulation (con-
taining 16 ion pairs/64 oxygen atoms/system size: 2 × 1 × 1 nm3).
According to the periodic boundary conditions used for the ab initio
molecular dynamics (AIMD) simulation, we can decompose the
large bulk phase system into repeated periodic images of the orig-
inal simulated small AIMD system. By adapting this translational
symmetry, we construct the transition matrix of the larger system
as a block matrix with block sizes according to the number M of
oxygen atoms in the original AIMD simulation (M = 64). The ele-
ments of the diagonal blocks describe the proton transfer within the
subsystems corresponding to the size of the original systems. The
elements of the off-diagonal blocks of the block matrix correspond
to proton transfer between the sole subsystems. The entire protocol
for the construction of the large transition matrix is also illustrated
in Fig. 12.

The initial distribution was built by setting about 64 (0.02%)
of the accessible oxygen sites to “occupied.” We used the resulting
transition matrix to propagate a specific initial proton distribution
for several microseconds. The evolution of this initial proton dis-
tribution vector is presented in Fig. 13. The proton distributions
for the different evolution intervals correspond to the broadening
of a Gaussian function and can be described mathematically by the
diffusion distribution,

P(rt , t) = (4πDt)(−3/2) exp(−(rt − r0)2

4Dt
). (19)

FIG. 12. Construction of huge transition matrices by assem-
bling the propagation matrices from smaller fragments of
the oxygen topology.
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FIG. 13. Distribution of protons with respect to time and position in a 8 μm × 1 nm× 1 nm CsH2PO4 bulk system. The resulting distributions were fitted according to
the diffusion equation [Eq. (19)] in order to determine the diffusion coefficient.

Herein, P(rt , t) denotes the probability to find a particle with the
initial position r0 at position r1 at time t. Via fitting Eq. (19) to the
resulting proton distributions of the MDM model, we determined
the diffusion coefficient of the protons to be 5.9 ⋅ 10−3 Å2/ps.

The time dependent mean square displacement ⟨(r⃗t − r⃗0)2⟩
[see Eq. (4)] can be derived from the diffusion distribution
[Eq. (19)] via

⟨(r⃗t − r⃗0)2⟩ = ∫ P(rt , t) (r⃗t − r⃗0)2 dr⃗t . (20)

There is an alternative expression for the determination of the
diffusion coefficient, which is derived from the Kubo transform,
involving the velocity–velocity autocorrelation function,

D = 1
3 ∫

∞
0
⟨v⃗(τ), v⃗(0)⟩ dτ. (21)

In principle, all discussed approaches (fitting to the diffusion equa-
tion, taking the slope of the mean square displacement as well as the
integration of the velocity autocorrelation function) are equivalent
methods for the calculation of the diffusion coefficients and should
yield the same value.85,86 However, due to the limitation to short
time scales, which arise from the AIMD simulations, the diffusion
coefficients obtained by the mean square displacement and veloc-
ity autocorrelation function may differ. The MDM method enables
the determination of the diffusion coefficient via a third approach:
the direct fit of the numerically obtained proton distribution to the
analytical diffusion distribution [cf. Eq. (19)]. The resulting value
can be employed in order to judge which of the diffusion coeffi-
cients obtained by the other two methods is more trustworthy. For
the specific case of the very long AIMD simulation of CsH2PO4, the
diffusion coefficients obtained from the mean square displacement
of the AIMD and the MDM method (cf. Table I) and the diffusion
coefficient obtained from the fit to the diffusion equation agree quite
well.

A. Limitations of the MDM model

In its present form, the MDM model is not capable of simu-
lating proton transport in more complex hydrogen bonded systems
such as liquid water. In such systems, the proton transfer probabil-
ity is not a function of a simple (local) geometric criterion alone.
In the particular case of water, changes in the solvation shell (coor-
dination number and coordination pattern) of the molecules are
decisive for proton transport. In water, the symmetrization of the
local hydrogen bond topology between the proton-donating and
proton-receiving oxygen atoms is the key step for the initializa-
tion of a proton transfer event. This symmetrization requires equal-
ization of the local coordination numbers.87,88 In fact, the hydro-
gen bond length between hydronium ions and water, for example,
tends to be between 2.4 Å and 2.5 Å; however, the proton gener-
ally cannot hop until the proton-receiving oxygen atom reduces its
coordination number from four to three. Several studies on kinetic
models for proton transport in aqueous systems have already been
published, based, for example, on population correlation functions
of the protonic defect.63,89,90 However, these models are only suit-
able for rather short time scales (i.e., shorter than a typical AIMD
simulation length).

In the future, we are planning to extend our model to the
description of more complex hydrogen bonded systems such as liq-
uid water. The criteria based on coordination numbers (as described
above) can fortunately be incorporated into the construction of the
transition matrix.

At the moment, the construction of the transition matrix is
based on ab initio molecular dynamics simulations and, there-
fore, does not take into account any nuclear quantum effects. One
approach to account for such effects would be to construct the tran-
sition matrix from path integral molecular dynamics (PIMD) sim-
ulations, which would, however, significantly increase the required
computational time. Another alternative is to include the contribu-
tion of nuclear quantum effects via post-processing of the transition
matrix. We are planning to investigate this in future studies.

VIII. CONCLUSION AND OUTLOOK

In this work, we explicitly computed the non-equilibrium
molecular dynamics of protons in the solid acid CsH2PO4 on the
micrometer length scale on a quasi-atomistic level based on a proba-
bilistic matrix propagation approach. We have shown that an excess
proton distribution which is initially localized within a few nanome-
ters diffuses through the 8 μm sized system within 5 ms, in full
agreement with the common diffusion laws. The probabilistic prop-
agation scheme utilizes an M × M transition matrix whose dimen-
sion equals the number of possible proton sites in the system,
which can be of the order of several millions due to the sparsity
of the matrix. This allows the realistic (quasi-atomistic) treatment
of nanometer-sized morphological inhomogeneities within a limited
computational effort.

The use of ab initio molecular dynamics simulations as a basis
for the probabilistic transition matrix ensures a highly accurate
description of elementary chemical facets such as hydrogen bond
structure and hydrogen bond network dynamics. A special method-
ological focus of the present work is the incorporation of explicit cor-
relation between the instantaneous protonation states of the system
during the propagation.
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Our new approach allows the explicit simulation of non-
equilibrium phenomena in systems of direct experimental inter-
est, touching the length and time scales of real proton conducting
devices such as advanced fuel cell proton exchange membranes.91
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APPENDIX A: COMPUTATIONAL DETAILS

We applied Born–Oppenheimer Molecular Dynamics (BOMD)
using the CP2K92 program package to simulate the proton trans-
fer in the solid acid CsH2PO4 and hexakis(p-phosphonatophenyl)-
benzene (HPB). We utilized the Quickstep module93 and orbital
transformation94 for faster convergence. The electronic structure
was calculated with density functional theory utilizing the PBE95–97

functional for CsH2PO4 and BLYP98,99 for HPB. A basis set of the
type DZVP-MOLOPT-SR-GTH100 and GTH pseudopotentials101,102

were applied. Furthermore, we used the empirical dispersion cor-
rection (D3) from Grimme.103 The temperature was set by using
a Nosé–Hoover chain thermostat104–106 (NVT ensemble). The time
step was chosen as 0.5 fs. A system of 16 formula units (128 atoms)
of the high-temperature cubic phase of CsH2PO4 was investigated
at 510 K for 900 ps. Concerning the HPB system, 816 atoms were
calculated for 115 ps at 600 K. The dimensions of the simulation
box and the starting configurations of the CsH2PO4 system were
obtained from crystal structure data.83 For the high-temperature
structure of CsH2PO4, partial occupancies of the oxygen atoms have
been reported in the literature. From the set of partial occupan-
cies, we chose one possible set of coordinates and used them as the
initial structure for the geometry optimization. Afterward, we per-
formed a 10 ps equilibration run using massive and global thermo-
stating. It turned out that the choice of the initial set of coordinates
from the partial occupancies did not affect the resulting trajectory
due to the large amount of orientational disorder of the oxygen
tetrahedra.

APPENDIX B: CALCULATION OF DIFFUSION
COEFFICIENTS FROM AIMD TRAJECTORIES

The diffusion coefficient obtained from an ab initio molecular
dynamics simulation is highly sensitive to the length of the trajec-
tory and the actual protocol for the determination of the diffusion
coefficient (e.g., the fitting procedure to the mean square displace-
ment). According to Eq. (4), the diffusion coefficient is obtained
from the slope of a linear equation which is fitted to the linear regime
of the mean square displacement. On the one hand, it is often hard
to judge (for a short ab initio molecular dynamics simulation) if the
linear part of the mean square displacement is reached. On the other
hand, the statistics of particle displacements (in particular, for pro-
ton transfer as a rare event) is not sufficient for larger times of the
mean square displacement.

Following this line, special care has to be taken in order to
report proton diffusion coefficients. In awareness of these prob-
lems, we applied the following protocol for the determination of
the diffusion coefficients for CsH2PO4. We calculated the diffusion

coefficients for several lengths of the trajectory and monitored
its convergence behavior: For a 60 ps trajectory, we reported a
diffusion coefficient of 5.9 ⋅ 10−3 Å2/ps in a previous article.76

With increasing trajectory length, we observed a decrease in the
diffusion coefficient (e.g., 3.2 ⋅ 10−3 Å2/ps for 200 ps trajec-
tory length). For trajectory lengths between 700 ps and 950 ps,
the diffusion coefficients remained constant at 2.1 ⋅ 10−3 Å2/ps.
We used this value as the diffusion coefficient of CsH2PO4 in
Table I. We performed a linear fit of the mean square displace-
ment between 25 ps and 50 ps for all trajectory lengths of more
than 150 ps.
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ABSTRACT

We derive a matrix formalism for the simulation of long range proton dynamics for extended systems and timescales. On the basis of
an ab initio molecular dynamics simulation, we construct a Markov chain, which allows us to store the entire proton dynamics in an
M × M transition matrix (where M is the number of oxygen atoms). In this article, we start from common topology features of the hydro-
gen bond network of good proton conductors and utilize them as constituent constraints of our dynamic model. We present a thorough
mathematical derivation of our approach and verify its uniqueness and correct asymptotic behavior. We propagate the proton distribu-
tion by means of transition matrices, which contain kinetic data from both ultra-short (sub-ps) and intermediate (ps) timescales. This
concept allows us to keep the most relevant features from the microscopic level while effectively reaching larger time and length scales.
We demonstrate the applicability of the transition matrices for the description of proton conduction trends in proton exchange membrane
materials.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5140635., s

I. INTRODUCTION

In mathematics, a dynamical system is a system in which a
fixed rule or function describes the evolution of a point (state) in
a geometrical space (state space). One could think of the swing-
ing of a pendulum or the predator–prey equations for the sim-
ulation of population dynamics.1,2 Typically, such a dynamical
system is low-dimensional and possesses a rigorously determined
behavior.

In physics or chemistry, a dynamical system is described as
a “particle or ensemble of particles whose state varies over time
and thus obeys differential equations involving time derivatives.”3

An example is molecular dynamics (MD) simulations in which a
set of Newtonian equations of motion is integrated for a multi-
atomic system. Typically, these high-dimensional problems have
only numerical solutions (trajectories).

Our present work is an attempt to reconcile the properties of
these two extremal cases of dynamical systems. We aim at keep-
ing as many atomistic details as possible (corresponding to the high
dimensionality of the problem) while establishing a mathematical
framework with a highly rigorous character.

We start from the ab initio molecular dynamics (AIMD)
method, which can be used to simulate the dynamics of atomistic
processes including covalent bond formation or breaking, such as
proton diffusion via a Grotthus mechanism. Due to the approx-
imate solution of the Schrödinger equation in each time step,
ab initio molecular dynamics is a computationally very demanding
approach, which limits the simulations to several hundreds of atoms
and picoseconds.

In order to speed up molecular dynamics, a multitude of meth-
ods such as coarse graining, replica exchange, or adaptive MD
schemes were developed.4–6 A promising direction is the use of
neural network potentials, which are trained on AIMD trajectory
data.7–10 Once trained, fully atomistic dynamics can be generated
for very long time scales. The successful application of neural net-
works was already demonstrated for various systems such as NaOH
solutions,11 n-alkanes,12 or water on ZnO surfaces.13

For the speed up of MD simulations, multiscale methods also
play an important role. They make use of the atomistic details from a
molecular dynamics simulation and bridge the scale toward a signif-
icantly increased system size/simulation time by employing a second
approach.

J. Chem. Phys. 152, 114114 (2020); doi: 10.1063/1.5140635 152, 114114-1
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Within the multiscale approaches, the combination of molecu-
lar dynamics simulations and a Markov model14–19 or a Monte Carlo
method20,21 is widely used. A combination of MD and a Monte Carlo
algorithm was already applied to a broad range of systems/problems
such as polymer materials,22–25 semiconductors,26 surface phenom-
ena,27–29 and the folding of proteins.30–32 The coupling of the two
techniques can be done via different approaches such as the alter-
nating application of MD and MC steps, the application of differ-
ent approaches to different spatial subsystems, or the algorithmic
mixture of the MD and the MC methods.20,21

In particular, for the description of dynamical processes of
large molecular (often biomolecular) systems, Markov models con-
structed from MD simulations are well established.14–19,33–43 The
applicability of Markov state models has been demonstrated for a
huge variety of systems, e.g., the prediction of protein folding44,45 or
the binding of small molecules to proteins46–54 as well as the RNA
folding kinetics.36,55,56

It was shown that MD simulations can be understood, under
certain conditions, as a discrete model of continuous dynamic
processes, which depend only on the current degrees of free-
dom (positions and velocities).39 The latter corresponds to the
Markov property such that the combination of a Markov state
model and MD simulations becomes immediately apparent. Thus,
after an appropriate discretization of the relevant dynamic pro-
cesses, the important part of the long term kinetics can be
extracted from an MD simulation within a discrete Markov state
model.14,37,39,57

In this work, we aim toward a new discrete Markov state mul-
tiscale model, which is presently focused on describing condensed-
phase ion diffusion, in particular, proton transport. First, we discuss
the important properties of proton conductors, which are used as
initial prerequisites for our model. In a second part, we review a
recently developed scale bridging approach for proton transfer from
a conceptual perspective. Finally, we present a thorough mathemat-
ical derivation of our new Markov model and verify its uniqueness
and correct asymptotic behavior.

A. General properties of proton conductors

In contrast to the transport of other types of ions, the trans-
port of hydrogen ions, i.e., individual protons, can often not be
understood as the diffusion of an independent particle within a
homogeneous medium. A proton possesses a high charge-to-volume
ratio compared to other ions. It is, therefore, strongly polariz-
ing and has only extraordinary short lifetimes as a free particle.
Proton transport is either bound to other particles (e.g., vehicle dif-
fusion in the H3O+ ion) or takes place via a Grotthuss-type mech-
anism.58–60 By the term Grotthuss-like mechanism, we refer to a
two-step process: protons transfer between molecules (“proton
jumps”) with subsequent relaxation of the molecular environment.
By means of the Grotthuss mechanism, a very high diffusivity of the
protons is achieved, since the transport of the protons is indepen-
dent of the displacement of the surrounding particles. Thus, such
proton conductors are of particular interest for applications in engi-
neering or material science (e.g., for proton conducting fuel cell
membranes).

In any case, the Grotthuss mechanism requires a strong
(to facilitate the proton transfer) but also fluctuating (to allow

the structural relaxation of the environment) hydrogen bond
network.58–62

The prerequisite of strong as well as fluctuating hydrogen
bonds leads to the following qualitative topological picture of the
hydrogen bond network of a good proton conductor:62 We assume
that only oxygen atoms occur as hydrogen bond donors and accep-
tors. Then, at any point in time, the oxygen atoms are involved in
a (strong) hydrogen bond, but after a certain time interval (gov-
erned by the relaxation time), the hydrogen bonds break and the
oxygen atoms form new hydrogen bonds with (other) neighbor-
ing oxygen atoms. For larger timescales, any pair of oxygen atoms
is linked together (via a sequence of hydrogen bonds at different
times).

While this general description of the evolution of the hydro-
gen bond networks holds for many hydrogen bonded systems,
there are specific other systems for which special additional care
will be necessary. Here, a case in point is liquid water, where
changes in the solvation shell (coordination number and coordi-
nation pattern) of the molecules are decisive for proton transport.
In water, the symmetrization of the local hydrogen bond topology
between the proton-donating and proton-receiving oxygen atoms
is the key step for the initialization of a proton transfer event.
This symmetrization requires equalization of the local coordina-
tion numbers.63,64 Kinetic models for proton transport in aqueous
systems have already been introduced based, for example, on pop-
ulation correlation functions of the protonic defect.58,65,66 In sum-
mary, the most relevant single factor for the possibility of proton
transfer in water is the coordination number and not a geometric
criterion.

A computational approach for the simulation of proton transfer
has to be able to take bond breaking into account. Under this prereq-
uisite (for the usage of molecular dynamics), a quantum chemical
method is, in principle, necessary for the calculation of the forces
acting on the nuclei (ab initio MD). However, in this case, the sim-
ulation time and the system size are drastically restricted and only
partial aspects of the proton transport can be described. Charac-
teristic observables that describe the proton transport as a whole,
such as diffusion coefficients, can only be roughly estimated by using
ab initio MD.67–69

B. Review of a recently developed scale bridging
approach for proton transfer

In order to compensate for the drastic restriction of system size
and simulation time, an attempt was made in our group to develop
a hybrid simulation method, which is based on the data from an
AIMD simulation of a proton conductor. The resulting combined
Molecular Dynamics/Lattice Monte Carlo (cMD/LMC) approach
uses the atomistic information from the MD simulations to model
the microscopic proton transfer probabilities, and the Monte Carlo
part takes the dynamically evolving molecular structure into account
and performs the actual proton dynamics “on top” of that dynamical
structure (for a graphic scheme of the method, see Fig. 1).70–73

The cMD/LMC method requires a short AIMD simulation
of the proton conductor as an initial requirement. The result-
ing trajectory is then reduced to the evolution of oxygen coor-
dinates, which can be either unoccupied or occupied by protons.
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FIG. 1. The combined molecular dynamics/lattice Monte Carlo approach.

The probability for a proton transfer is described by a distance-
dependent jump rate, which itself can also be determined directly
from the AIMD trajectory. The probability of a proton transfer at a
certain oxygen–oxygen distance and per time step of the AIMD tra-
jectory is determined as the ratio of the number of proton jumps at
a given oxygen–oxygen distance and the number of absolute occur-
rences of that oxygen–oxygen distance. Both the dividend and divi-
sor can be obtained by detecting and counting these events from the
AIMD trajectory. The dynamics of the proton motion is then sim-
ulated using the Monte Carlo method on the dynamically updated
oxygen grid. The current oxygen grid is obtained from an MD tra-
jectory. The simulated time scale of the proton dynamics can exceed
the length of the underlying MD simulation because we can pass sev-
eral times through the trajectory. The length of the Monte Carlo
time step is related to the length of the MD time step. For each
oxygen atom and each time step, the algorithm checks all jump
possibilities to neighboring oxygen atoms in a certain radius. This
procedure still scales at least linearly with the number of atoms
in the system but comes along with a drastic reduced computa-
tional effort for the elementary step in the Monte Carlo part (com-
pared to an elementary MD step). Following this protocol, the pro-
ton dynamics can be simulated for many nanoseconds on a single
desktop PC (instead of several 100 ps on a large computing clus-
ter). We already demonstrated that the cMD/LMC approach allows
the description of long range proton transfer in several potential
proton exchange membrane (PEM) materials for fuel cell applica-
tions [hexakis(p-phosphonatophenyl)benzene, CsH2PO4, CsHSO4,
and H2O].70–73

In this work, we develop a model in which the overall dynamics
of the proton motion of a molecular dynamics simulation is con-
solidated in a single M × M matrix (where M is the number of
oxygen atoms). As a further simplification, correlation between pro-
ton occupation numbers and proton hopping probabilities is treated
implicitly. This allows the simulation of even larger time scales and
a drastic reduction of storage requirements, which, in turn, enables
an analytical interpretation of the high dimensional trajectory. Of
course, the level of atomistic detail of the new method is not equiv-
alent to the underlying AIMD simulation, but all important parts
of the information governing the long range proton transfer are
conserved in the new method.

We will first construct a heuristic model describing pro-
ton dynamics in good proton conductors. Afterward, we confirm
that our model is well defined and we point out under which
conditions our model predicts the long range proton dynamics
accurately.

II. DERIVATION OF A MARKOV MODEL FOR PROTON
TRANSFER

A. Definition of a dynamical system and Markov
chains

Here, we review the general mathematical model for the
description of a discrete dynamic process using (operator) semi-
groups: A discrete dynamical system is a 3-tuple (T, X, Φ) consisting
of a set T = N0 or Z (indexing the temporal evolution), a non-empty
set X (the state space or the phase space), and an evolution function
of the dynamical system Φ: T × X→ X so that for all states x ∈ X and
all times t, s ∈ T we have

I : Φ(0, x) = x, (1)

II : Φ(s,Φ(t, x)) = Φ(s + t, x) (semigroup action). (2)

With respect to the time t ∈ T, the function Φ(t, x) maps
every point x ∈ X to a unique image. For fixed x ∈ X, the function
βx: T → X, t ↦ βx(t) ∶= Φ(t, x) is called flow through x. The set
O(x) ∶= {βx(t)∣t ∈ T} is called the trajectory (or orbit or phase curve)
and describes the (temporal) evolution of an initial state vector x. By
specification of an elementary physical time step Δs, we can assign a
physical time to our discrete time via the relation t ∈ T↔ t ⋅Δs.

We want to restrict ourselves to a specific dynamical system,
which fulfills the following conditions:

● The phase space X is isomorphic to an Euclidean vector
space RM .● The evolution function Φ(n, x) of the state vector x ∈ RM

(corresponding to n elementary time steps) can be expressed
by the n-fold application of a matrix P ∈ RM×M to the state
vector x,

Φ(n, x) = Pnx (3)
with

Pn = P × P ×⋯ × P (n times). (4)

For this specific evolution function, the semigroup property can
be expressed via matrix multiplication,

Φ(s,Φ(t, x)) = Ps(Ptx) = Ps+tx = Φ(s + t, x). (5)

B. Relation between Markov chains
and dynamic models

A discrete Markov chain is a stochastic model of a discrete
dynamical process. It describes a sequence of possible events that
fulfill the Markov property. A process satisfies the Markov property
if the probability of each event depends only on the current state of
the system and is not dependent on previous events.

The Markov property corresponds to the semigroup action of
the dynamical system: Let xt+Δt be the future state of a dynamical
system, let xt be the present state of the system, and let x0 be the
initial state of the system (at t = 0). According to

xt+Δt = Φ(t + Δt, x0) Eq.(2)= Φ(Δt,Φ(t, x0)) = Φ(Δt, xt), (6)

the future state of a dynamical system is only dependent on the
present state of the system.
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C. Discrete dynamical model for proton transfer

The choice of an appropriate discretization of the phase space
is a crucial point for many mesoscale simulation methods. A proton
in a hydrogen bonded system is covalently attached to an oxygen
atom at an initial time t0. At another time t1 > t0, the covalent
bond has remained intact or the proton has changed its covalently
bonded partner. The possible pathways for the evolution of the pro-
ton position are determined by the hydrogen bond network, which
can be described by the positions of the oxygen atoms. Following
this line, we obtain the discretization of the phase space by reducing
the chemical structure of the proton conductor to the coordinates
of the oxygen atoms or, more generally, to the donors and acceptors
involved in the hydrogen bonds, hereinafter referred to as “sites.”
Each site can be assigned a number between zero and one, which is
the probability for the occupation of the site by a proton. Thus, if M
is the number of sites, the model has an M-dimensional state space
X = [0, 1]M ⊂ RM .

The temporal evolution of the occupation of the oxygen atoms
or sites by protons, starting from an initial proton distribution
x, is described by an M x M transition matrix. This approach
would constitute a formal discrete dynamical model as defined
by Eqs. (3)–(5).

The actual elements of the transition matrix are determined
from the molecular dynamics simulation of the proton conductor
by extracting the positions of the M oxygen atoms from the MD tra-
jectory. Following the evolution of that trajectory, these positions
are updated periodically, which relates the time step of the MD and
the time step of our dynamical model. Thus, our oxygen topology
will also dynamically evolve and incorporate atomistic fluctuations
of the hydrogen bond network as simulated via MD.

Based on the information from the current MD step, the tran-
sition matrix P(n,n+1) follows as an explicit representation of the
transformation

P̂(n,n+1) : X → X, (7)

x ↦ P̂(n,n+1)(x), (8)

which describes the evolution of the proton distribution from
the nth to the (n + 1)th step of the dynamical model. Here,
P̂(n,n+1) : X → X with X = RM maps a point x of the phase space
back into the phase space and can thus be understood as an M× M matrix P(n,n+1). The matrix element (P(n,n+1))ij describes the
probability of a proton transfer from the jth to the ith oxygen atom
within the time interval from the nth to the (n + 1)th time step. An
illustration of this matrix formalism is given in Fig. 2.

Two consecutive temporal evolution processes are represented
by multiplying the elementary transition matrices P(n+1 ,n+2) and
P(n,n+1),

P(n,n+2) = P(n+1,n+2) ⋅ P(n,n+1). (9)
Thus, the transition matrix P(n ,n+2) describes the proton dynamics
for the sum of the elementary time intervals. Eventually, the transi-
tion matrix corresponding to the full length of the MD simulation
(N MD steps) can be obtained by successive multiplication of every
transition matrix corresponding to an elementary time step,

PMD = P(1,N) = P(N−1,N) ⋅ ⋯ ⋅ P(2,3) ⋅ P(1,2). (10)

FIG. 2. The molecular dynamics/matrix propagation (MDM) approach. The tran-
sition matrix P, which is obtained from the current position of the oxygen atoms,
links the proton distribution xn in the n-th step and the proton distribution xn+1 in
the (n + 1)th step.

With this procedure, it is possible to describe the entire dynamics
of the proton transport of an MD simulation via a single M x M
matrix PMD (cf. Fig. 3). By applying this transformation matrix of
the entire molecular dynamics simulation (of duration N ⋅Δt) to the
vector of the distribution of the protons xν ∈ X, a new state vector
xν+1 ∶= PMD(xν) is obtained, which describes the proton distribution
after a time interval corresponding to the length of the entire molec-
ular dynamics simulation. Note that the index n describes single MD
time steps, while ν enumerates the passes of the entire trajectory
(N ⋅Δt).

FIG. 3. Condensation of the proton dynamics of the entire MD trajectory into a
single matrix.
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By iterated application of the transition matrix PMD on x0 ∈ X,
we obtain a dynamical model {(PMD)νx0 ∣ ν ∈ N} according to
the initial (mathematical) definition from Eqs. (3)–(5). The associ-
ated elementary time step of this dynamic model corresponds to the
entire length of the MD. A scheme of the propagation of the proton
distribution state via the transition matrix PMD is presented in Fig. 4.
We refer to this hybrid simulation framework for the evolution of
the proton dynamics as the molecular dynamics/matrix propaga-
tion (MDM) approach. Using a shorter associated time step of the
dynamic model, e.g., the elementary time step of the MD simulation,
we obtain a different model, which does not fulfill the regular evolu-
tion function from Eq. (3). In the supplementary material, we discuss
an adapted evolution function Φ̃(tI ,Δt, x), which would circumvent
this problem.

Up to now, we claimed a formal mathematical model for the
description of proton transfer, which is dependent on the current
positions of the oxygen atoms updated from an MD trajectory. The
question if such transition matrices for the description of proton
transfer exist and if we can calculate them in an efficient manner is

FIG. 4. A scheme of the dynamic model for the propagation of the proton
distribution using the length of the entire MD trajectory as elementary time step.

completely open. In Sec. II D, we present a concrete protocol for the
construction of these matrices and apply this protocol to the AIMD
trajectory of a typical proton conductor.

D. Calculation of the transition matrix—A
concrete protocol

In order to calculate the elements (P(n,n+1))ij of the elementary
proton transition matrix P(n,n+1) at time step n, we have to specify
a relation that links the positions of the ith oxygen atom Oi and jth
oxygen atom Oj to the probability of a proton transfer between these
atoms.

Within the framework of our cMD/LMC approach, we have
recently developed a protocol for the calculation of the proton
transfer probability as a function of the oxygen–oxygen distance
(referred to as “jump rate function”).70–72 The distance dependent
jump rate function is obtained point-wise (i.e., for a list of discrete
distances) from post-processing of an AIMD trajectory of the proton
conductor.

The determination of this function for a certain oxygen–oxygen
distance is based on the following idea: The frequency of occurrence
of proton jumps (i.e., changes of the nearest oxygen neighbor of a
proton) at a given oxygen–oxygen distance is divided by the overall
frequency of occurrence of that oxygen–oxygen distance.

We fit the point-wise calculated jump rate function to a Fermi
function according to

ω(dij) = a

1 + exp( dij−b
c ) , (11)

with dij being distance between the oxygen atoms Oi and Oj, and a,
b, c being the fit parameters. Detailed information concerning the
jump rate function is given in our previous publications.70–72

Now, the matrix element (P(n,n+1))ij of the transition matrix
P(n,n+1) is given by the product of the jump rate function ω(dij) at
the current distance dij between the oxygen atoms Oi and Oj and the
Heaviside step function Θ(α − α0) with α being the X–O⋯O angle
(with X = P in CsH2PO4, for example),

(P(n,n+1))
ij
= ω(dij)Θ(α − α0), ∀i ≠ j, (12)

with α0 = π/2. The Heaviside step function Θ(α − α0) is zero for
α < α0 and one for α ≥ α0. This modification avoids nonphysical pro-
ton transfer events and suppresses any proton jumps between oxy-
gen pairs with a geometry that does not allow for a linear hydrogen
bond. In a previous paper, we have already demonstrated the neces-
sity of this cut-off value in order to obtain realistic proton transfer
rates between the oxygen atoms.71

Employing Eq. (12), we can assign a jump probability to every
non-diagonal element of the transition matrix P(n ,n+1). The total
number of protons must also be preserved after a proton transfer, so
the sum of the rows of the transition matrices must be equal to one.
This condition is enforced by setting the diagonal transition matrix
elements according to

(P(n,n+1))
jj
= 1 − ∑

i=1,i≠j
(P(n,n+1))

ij
∀j. (13)
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E. Transition matrices of the real proton
conductor CsH2PO4

The high-temperature phase of CsH2PO4 is an excellent proton
conductor.74 We have already performed an AIMD simulation with
an elementary MD time step of 0.5 fs of this compound (and applied
our cMD/LMC approach for the calculation of long range proton
transfer).70–73 Therefore, the jump rate function for CsH2PO4 is
already known (and shown in the supplementary material). Details
on the preparation of the 900 ps AIMD simulation and processing
of the data are given in the Appendix. In the following, we restrict
the processing of the AIMD trajectory to every 100th frame, i.e.,
the elementary time step of the MDM model is 50 fs. We calculate
explicitly elementary transition matrices from the 900 ps trajectory
of CsH2PO4 via Eq. (12). Two representative elementary transition
matrices for an early (t = 5 ps) and a late (t = 450 ps) time are shown
in Fig. 5.

We can report the following observations from the entity of
elementary transition matrices:

1. By construction [cf. Eq. (13)], the transition matrices for the
elementary time steps are stochastic (sum of the rows of the
matrix equal to one) and the matrix elements are greater than
or equal to zero.

2. Due to the symmetry of the O–O distances (the distance
between Oi and Oj is equal to the distance between Oj and Oi),
the transition matrices are also symmetric. Symmetric stochas-
tic matrices are also doubly stochastic (the sum of the columns
and the sum of the rows of a matrix is equal to one).

3. The elementary transition matrices are sparse. Only 1.7% of the
oxygen atoms are involved in more than one hydrogen bond,
i.e., in 98.3%, there is at the most one non-zero matrix element
per row or column besides the diagonal element.

FIG. 5. Elementary transition matrices of CsH2PO4. (a) Elementary transition matrix obtained from the oxygen positions after 5 ps of the AIMD simulation. (b) Elementary
transition matrix obtained from the oxygen positions after 450 ps of the AIMD simulation. (c) The same transition matrix as in (a), but using a smaller cutoff for the color
scale, thus amplifying smaller transition probabilities. (d) The same transition matrix as in (b), but using a smaller cutoff for the color scale, thus amplifying smaller transition
probabilities.
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4. Each of the diagonal elements of the elementary transition
matrices is greater than zero.

5. The elementary transition matrices are reducible. This prop-
erty will be explained in the next paragraph.

Considering proton transfer in a hydrogen bonded system dur-
ing short periods, the first four properties are confirmed by chemical
intuition. While the fifth property is rather formal, it becomes appar-
ent if we take another interpretation of a transition matrix of the
protons into account: The term transition matrix within our MDM
approach is a synonym for the Markov matrix. The repeated applica-
tion of the Markov matrix to an initial vector constitutes a Markov
chain. It is a known property that a Markov matrix is reducible if
there is least one transition from a single state to another single state
with probability equal to zero for an arbitrary length of the Markov
chain.

A non-zero probability for a transition between two oxygen
atoms corresponded to a small oxygen–oxygen distance [cf. Eq. (11)]
and, hence, the formation of a hydrogen bond. Then, the reducibil-
ity of the transition matrix translates into the picture that not all
oxygen atoms are connected via hydrogen bonds, which again fits
to the chemical intuition for the short period of proton dynamics
described by an elementary transition matrix. Vice versa, an irre-
ducible transition matrix is equivalent to a non-zero probability for
every transition from any state to any other state (even if in more
than one step). This translates into the picture that all oxygen atoms
are connected via a chain of hydrogen bonds (which may, of course,
exist at different times). In Secs. III A and III B, we will demon-
strate that the property of being reducible/irreducible is of great
importance for the asymptotic convergence behavior of our dynamic
model.

First, we want to focus on the properties of transition matri-
ces, which corresponds to larger time intervals compared to the
elementary time step of the MD.

According to Eq. (10), by successively multiplying the elemen-
tary transition matrices, transition matrices are obtained for the

description of larger time intervals. We want to refer to such a transi-
tion matrix as assembled transition matrix. We calculated assembled
transition matrices from the CsH2PO4 trajectory corresponding to
intervals ranging from the initial time step of the MD (50 fs) to the
entire length of the MD simulation (900 ps). These calculations con-
firm that properties 1 and 4 of the elementary transition matrices
also hold for assembled transition matrices. Surprisingly, assembled
transition matrices are no longer symmetric. The chemical interpre-
tation of this observation is that transition processes, which occur
on the timescale of the evolution of the heavy-atom conformation,
are no longer reversible because of the corresponding change in
lattice topology leading to a modified transition matrix [Eqs. (11)
and (12)].

In Fig. 6, specific assembled transition matrices are shown for
the interval of 25 ps and 850 ps (obtained by the multiplication of 500
and 17 000 elementary transition matrices). The transition matrix
according to the time interval of 25 ps is less sparse compared to the
elementary transition matrix, and the same holds for the compari-
son of the transition matrices according to the time interval of 25 ps
and 900 ps. This is the expected behavior because more and more
oxygen atoms are connected via hydrogen bonds (at different times)
when considering increasing periods of the trajectory. The last prop-
erty motivates the hypothesis that, for sufficient long intervals, the
transition matrix may become irreducible. Therefore, we checked
the assembled transition matrices for reducibility/irreducibility. For
the compound CsH2PO4, we can state that transition matrices cor-
responding to a time interval of 60 ps or more are indeed irreducible.
The details of determination of the reducibility/irreducibility are
discussed in Sec. IV B.

The results of the evaluation of the AIMD transition matrices
of CsH2PO4 are consistent with the atomistic picture that we expect
for a good proton conductor, and it is in accordance with the Grot-
thuss mechanism: The oxygen atoms act as hydrogen-bond donors
and acceptors and are involved in one (strong) hydrogen bond at
any time. As the evolution period of the system is increased, the
topology/connectivity of the hydrogen bond network changes, i.e.,

FIG. 6. Assembled transition matrices of CsH2PO4. (a) Assembled transition matrix for a 25 ps interval of the underlying MD trajectory. (b) Assembled transition matrix for a
850 ps interval of the underlying MD trajectory.
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hydrogen bonds break and the oxygen atoms form new hydrogen
bonds with (other, newly) adjacent oxygen atoms. Over a very long
period of time, the hydrogen bond network evolves in such a way
that all the oxygen atoms are “linked” together (via hydrogen bonds
at different times).

From this extensive description of the specific proton con-
ductor CsH2PO4, we want to generalize a set of properties of the
transition matrices of good proton conductors:

F. General properties of the transition matrix

Property 1. The transition matrices are always stochastic
matrices and have only positive entries.

The (ij)th matrix element of the transition matrix describes
the probability of a proton transfer from the jth to the
ith oxygen atom within the associated time interval. These
probabilities are always greater than zero. Furthermore, the total
number of protons must remain constant, i.e., the sum of each col-
umn has to be equal to one, so that the transformation matrix is
stochastic.

Property 2. The transition matrices for elementary time steps
are sparse and determined by the hydrogen bond network.

Proton transfer takes place only along small oxygen–oxygen
distances, i.e., hydrogen bonds. Thus, the elementary transition
matrices (corresponding to short periods of proton dynamics) are
sparse, i.e., there are only a few non-zero entries in each row and
column of the matrix. In particular, in most cases, the number of
non-zero entries per column or row will be two because a hydro-
gen bond typically involves only two oxygen atoms (bifurcations are
rare).

Property 3. After a sufficiently long simulation time, the
hydrogen bond network links all oxygen atoms.

After a sufficiently long period of proton dynamics, the hydro-
gen bond network interconnects all oxygen atoms (via a series of
hydrogen bonds at different times). This corresponds to the irre-
ducibility of the transition matrix associated with sufficiently large
time intervals.

If this condition is not fulfilled, the investigated compound
cannot be considered as a good proton conductor in terms of the
Grotthuss mechanism.

Furthermore, we demand the following:

Property 4. The transition matrices for elementary time steps
are symmetric.

The probability of a proton transfer within an elementary time
step from oxygen atom i to oxygen atom j should be the same as that
of oxygen atom j to oxygen atom i.

If these four properties constitute a reasonable model of proton
transfer, any compound that fulfills these properties will exhibit a
high proton conductivity. For such a compound, it is immediately
apparent that

Hypothesis 5. The protons, regardless of their initial position,
should be distributed uniformly to the “chemically identical” oxygen
atoms after an infinite period of evolution of the proton dynamics.

This statement is equivalent to the existence of a unique fixed
point of the proton distribution (the uniform distribution) and will
be formally derived in Sec. III. Chemically, it reflects the well-known

thermodynamic relationship between population distribution and
chemical potential,

xi = exp(−βμi)∑i exp(−βμi) , (14)

since, in our case, all proton sites were assumed to be of the same
species, thus having equal chemical potential μi = μj ∀i, j.

In Sec. III, we will demonstrate that Hypothesis 5 is correct for
all compounds that fulfill the first four general properties listed in
this section.

III. ANALYSIS OF THE ASYMPTOTIC BEHAVIOR
OF THE DYNAMICAL MODEL

A. Convergence behavior and fixed points
of transition matrices

Let Q ∈ RM×M be a transition matrix of a Markov Chain, i.e.,
all entries are non-negative and the sum of each column vector of
Q is equal to one (Q is a stochastic matrix). The orbit or trajectory
of Q is the set {Qνx0 ∣ x0 ∈ RM , ν ∈ N}. Fixed points or stationary
distributions of Q are those vectors x ∈ Rm with Qx = x, whose orbit
is the one-element set {x}. This is equivalent to limν→∞Qνx = x. In
this section, we want to answer the following three questions:

● Under which conditions exists a unique stationary distribu-
tion or a fixed point of Q?● Which x ∈ RM is the fixed point of Q?● For which initial vectors x0 ∈ X do we encounter this fixed
point?

The following theorem from the literature will help us:75

Theorem 1. (A part of the first ergodic theorem)
Every stochastic, irreducible, and aperiodic matrix Q has a

unique fixed point or stationary distribution x. This fixed point is pos-
itive (i.e. all elements xi ≥ 0), and the sequence of the distributions
Qνx0 converges to x for every initial distribution x0.

It follows from this statement that a Markov matrix Q always
has an eigenvalue 1. All other eigenvalues are in absolute value
smaller than 1. The eigenvector x to the eigenvalue 1 is called the
stationary distribution of Q.

We are even able to predict the fixed point for symmetric or
doubly stochastic transition matrices Q:75

Theorem 2. The uniform distribution at RM , that is the vector
x ∈ RM with x(0) = x(1) =⋯ = x(M ), is the stationary distribution of the
stochastic transition matrix Q, if the sums of the columns as well as of
the rows of Q are equal to one (i.e., Q is doubly stochastic).

A stochastic matrix, which is also symmetric, is always doubly
stochastic.

B. Transfer of the results to the discrete dynamic
model for proton transfer

We want to apply the theorems for a general transition
matrix Q to the assembled transition matrix PMD of the MDM
approach, which describes the largest possible time interval, i.e., the
assembled transition matrix that corresponds to the entire MD
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length. Therefore, we have to check if the transition matrix PMD
fulfills the prerequisites of the first theorem from Sec. III A:

First of all, the transition matrix PMD is stochastic and positive
according to property one in Sec. II F. Second, the transition matrix
PMD is irreducible for a sufficiently long length of the underlying MD
simulation, as we discussed in detail in “property three” in Secs. II E
and II F. Third, we mentioned in Sec. II E that the diagonal elements
are always greater than zero. Thus, the transition matrix PMD is also
aperiodic.

In conclusion, the transition matrix PMD based on sufficiently
long intervals of the underlying MD simulation is stochastic, ape-
riodic, and irreducible, which ensures the existence of a stationary
distribution, and this fixed point can be reached from every initial
vector.

Unfortunately, the transition matrix PMD is not symmet-
ric, and hence, it is not clear if the stationary distribution of
our dynamic model is equal to the uniform distribution (sec-
ond theorem of Sec. III A). However, we can show that PMD
is doubly stochastic by recalling the construction of PMD by the
successive multiplication of the elementary transition matrices
P(1 ,2), P(2 ,3), . . . , P(N−1 ,N) according to Eq. (10). The elementary
transition matrices are by construction stochastic and symmetric
[cf. Eqs. (13) and (12)] and, thus, also doubly stochastic. The sym-
metry is not retained by multiplication of two symmetric matrices,
but the product of two doubly stochastic matrices is again doubly
stochastic. Thus, PMD is [as a product of doubly stochastic matrices,
cf. Eq. (10)] a doubly stochastic matrix. Hence, we can also apply the
second theorem from Sec. III A to the transition matrix PMD and
the Markov chain, constructed by repeated applications of PMD to
an initial proton distribution will always converge to the uniform
distribution of the protons (to the oxygen atoms).

Following this line, the four general properties (see Sec. II F)
of the transition matrix are sufficient to uniquely define the MDM
framework, which possesses the correct physical asymptotic behav-
ior for the simulation of proton transfer.

In summary, we can answer the three questions listed at the
beginning of Sec. III A:

● The general properties of a transition matrix PMD listed in
Sec. II F are sufficient to ensure the existence of unique
stationary distribution of the protons.● This stationary distribution is the uniform distribution.● The uniform distribution of the protons is encountered for
any initial proton distribution.

An aperiodic, irreducible, and double stochastic matrix (such
as PMD) is called ergodic. The ergodicity of the transition matrix and
the ergodicity of the MD trajectory are not equivalent, but they are
connected in a certain point of view. We discuss their relationship in
the supplementary material.

IV. INVESTIGATION OF THE PROTON CONDUCTION
MECHANISM OF CsH2PO4 AND HPB
WITH THE DYNAMIC MODEL

A. Insights from AIMD simulations

In addition to the extended AIMD simulations of CsH2PO4
(128 atoms, 900 ps, 510 K), we also performed MD simulations

FIG. 7. Snapshot from the MD simulation of CsH2PO4.

of Hexa(p-phosphonatophenyl)benzene (HPB) (816 atoms, 115 ps
at 600 K and 33 ps at 400 K). A snapshot from the simulation of
CsH2PO4 is shown in Fig. 7, and a snapshot from the simulation
of Hexa(p-phosphonatophenyl)benzene (HPB) is shown in Fig. 8.
We have previously analyzed the mechanism of proton transfer
within these compounds, which turns them into ideal testcases for
our dynamic model.72,76 CsH2PO4 is an inorganic salt, and HPB is
a disk-shaped organic compound that possesses a supramolecular
columnar structure. Despite their different chemical nature, the rele-
vant groups for proton transfer (hydrogen phosphate anions, respec-
tively, phosphonic acid groups) are immobile at our timescales and
do not diffuse. Thus, the proton conduction mechanism is simi-
lar within both compounds and can be understood in terms of the
Grotthuss mechanism.74 It can be decomposed into two parts: rapid
proton transfer (proton rattling) between the hydrogen phosphate
anions/phosphonic groups and slow rotations of the hydrogen phos-
phate anions/phosphonic groups, which enables the long range pro-
ton transfer. In the supplementary material, we report the jump rate
functions of CsH2PO4 and HPB, which describe the rapid proton
transfer (proton rattling). The jump rate functions do not differ sig-
nificantly for both compounds, and hence, the frequency of proton
transfer between adjacent oxygen atoms is the same. The second part
of the proton transfer mechanism (reorientation of the hydrogen
phosphate anions or phosphonic groups) can be studied by the auto-
correlation function of the P–O vector of the hydrogen phosphate

FIG. 8. Snapshot from the MD simulation of Hexa(p-phosphonatophenyl)benzene
(HPB).
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FIG. 9. Autocorrelation functions of the P–O vector.

anions or phosphonic groups. In Fig. 9, we present the autocorre-
lation function of these P–O vectors. For CsH2PO4, this function
decays somewhat faster than for HPB at 600 K.

Nevertheless, from the analysis of the AIMD trajectory, we
obtain a very similar qualitative picture for proton conduction in
CsH2PO4 at 510 K and HPB at 600 K. The quantitative descriptors of
the contributing processes of the proton transfer slightly favor pro-
ton conduction in CsH2PO4. In order to verify our predictions, we
calculated the diffusion coefficients for CsH2PO4 and HPB directly
from the AIMD trajectories via the slope of the mean square dis-
placements. It turns out that both diffusion coefficients are quite
large: D[CsH2PO4] = 23 pm2

ps and D[HPB] = 180 pm2

ps . The signifi-
cantly higher diffusion coefficient of HPB is in contradiction to the
trend expected from the slower decay of the autocorrelation func-
tion of the P–O vector of HPB compared to CsH2PO4. Thus, the
simple decomposition of the proton conduction mechanism into
rapid proton transfer (proton rattling) between the hydrogen phos-
phate anions/phosphonic groups and slow rotations of the hydrogen
phosphate anions/phosphonic groups provides an useful pictorial
understanding of the proton dynamics in these materials but is not
able to explain differences for the diffusion coefficient. In Sec. IV B,
we demonstrate that the last building block for the understanding of
the proton dynamics is provided by the transition matrix obtained
within the MDM model.

B. Insights from the transition matrix

Our dynamic model can also be understood in terms of graph
theory. In this case the set of oxygen atoms is interpreted as an
undirected graph. Then, the (assembled) transition matrix obtained
from the dynamic model corresponds to an adjacency matrix (of
oxygen atoms that are connected by a possible proton transfer
events). The adjacency matrix can be used to derive connected com-
ponents of the graph. These connected components correspond to
sets of oxygen atoms that are connected by hydrogen bonds (at dif-
ferent times). A criterion for a good proton conductor is that all
oxygen atoms will be connected by hydrogen bonds (at different
times) for a sufficiently long period of proton dynamics. The assem-
bled transition matrix describing this period will possess only one
connected component, consisting of the entire set of oxygen atoms.
Thus, the following two statements concerning an adjacency matrix
and an undirected graph are equivalent:

FIG. 10. Averaged number of connected components obtained from the assem-
bled transition matrices.

● The undirected graph possesses only one connected compo-
nent.● The transition matrix is ergodic.

In Fig. 10, we show the number of connected components
obtained from assembled transition matrices. The abscissa of Fig. 10
indicates the period of proton dynamics described by the assem-
bled transition matrices. The number of connected components
decays much faster for the assembled transition matrices of HPB at
600 K compared to the connected components of assembled tran-
sition matrices of CsH2PO4. After 25 ps, HPB possesses only one
connected component (which corresponds to an ergodic transition
matrix), whereas this is the case for CsH2PO4 after 60 ps. Now, we
can correlate the increased diffusion coefficient of HPB at 600 K
compared to CsH2PO4 with the faster evolution of the hydrogen
bond network.

In addition, we also show the number of the connected com-
ponents obtained from assembled transition matrices of HPB at
400 K in Fig. 10. The decay of connected components for HPB
at 400 K is drastically slower compared to 600 K or the decay for
CsH2PO4 at 510 K. The transition matrix of HPB at 400 K does not
become ergodic for the whole period of proton transfer described
by the underlying AIMD simulation. Using the specific example
of HPB at 400 K, we want to demonstrate that only systems with
extraordinary high proton conductivities possess fast decays of the
number of connected components comparable to HPB at 600 K
or CsH2PO4.

Although the analysis of the connected components enabled us
to explain the quantitative trend of the proton diffusion coefficient
in HPB at 600 K and CsH2PO4, it does not make use of the entire
information contained in the transition matrix. The connected com-
ponent analysis takes only into account if a matrix element is greater
than zero but does not make use of its magnitude.

Following this line, we want to extract another descriptor of the
proton dynamics from the transition matrix, which takes also into
account the magnitude of transferred protons.

We start from the interpretation of the νth power (PMD)ν of
the transition matrix PMD obtained from an AIMD trajectory with
N time steps. The j-th element of the i-th column of (PMD)ν gives
the fraction of a proton at the j-th oxygen at the time ν ⋅N ⋅Δt if a
single proton was at the i-th oxygen atom at the time t = 0. Thus,(PMD)ν will converge to a matrix, where every element has the same
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value, (PMD)ν ν→∞ÐÐÐ→ J; Jij = 1/M. (15)

We recall that this specific uniform matrix J is only adequate for
chemical systems in which all proton acceptor sites have identical
chemical potential; otherwise, J will be non-uniform.

Setting ∥ ⋅ ∥ as the Frobenius norm, we obtain for a matrix A,

∥A∥ =√∑
i,j
(aij)2. (16)

Using Eq. (15), we have ∥(PMD)ν − J∥ → 0 for ν→∞. At time t = 0,
each proton is bonded to an oxygen atom, which can be expressed by(PMD)0 = Id with Id being the identity matrix. Now, we can define
a descriptor O[ν],

O[ν] = ∥(PMD)ν − J∥∥(PMD)0 − J∥ = ∥(PMD)ν − J∥∥Id − J∥ , (17)

which fulfills O[0] = 1 and limν→∞O[ν] = 0. The new descriptor
O[ν] is a measure for the relaxation time of any proton distribu-
tion to the uniform distribution. While we derived the descrip-
tor O[ν] via a rather formal definition, it has an important phys-
ical interpretation originated from the statistical interpretation of
entropy: The application of the ν-th power of PMD corresponds
to mixing of “pure states” (protons remaining on a single oxygen
atom). Mixing of “pure states” increases the entropy. According to
the second law of thermodynamics, the entropy of a system will
increase with increasing time until it has reached a maximum. This
state with maximal entropy does not change any more and is the
equilibrium state. The state of a maximal entropy of the proton
distributions is the state of maximal mixing of the protons and cor-
responds to the uniform distribution of the protons among all oxy-
gen atoms. We already demonstrated that this relaxation behavior
is ensured for any initial proton distribution by the general prop-
erties of the transition matrix (cf. Sec. III B). Thus, O[ν] describes
(for any initial proton distribution) the length of the interval (relax-
ation time) for reaching the equilibrium regarding the proton
distribution.

In Fig. 11, we show the relaxation of the proton distribution
to the uniform distribution for the investigated systems. The relax-
ation times are at least several nanoseconds for all investigated

FIG. 11. Relaxation of the proton density obtained by repeated applications of the
assembled transition matrix PMD.

compounds. It is immediately apparent that only the drastic con-
densation of the entire proton dynamics into an M × M matrix
PMD enables the simulation of such very large timescales (by simple
matrix multiplications).

The decay of O[ν] is much faster for HPB at 600 K compared to
CsH2PO4. Thus, the relaxation of the proton distribution of HPB at
600 K is significantly faster compared to the simulation of CsH2PO4.
We can correlate the increased diffusion coefficient of HPB at 600 K
compared to CsH2PO4 with the faster relaxation of the proton distri-
bution, i.e., the more efficient long range proton transfer. Due to the
short underlying AIMD length of the simulation of HPB at 400 K,
the transition matrix is not yet ergodic and the relaxation behavior
is very slow compared to CsH2PO4 or the simulation at increased
temperatures.

V. CONCLUSION AND OUTLOOK

In this article, we have presented a new dynamic model—the
molecular dynamics/matrix propagation (MDM) method—for the
simulation of long range proton transfer, which condenses the entire
proton dynamics into an M x M matrix (where M is the number of
the oxygen atoms of the system). We reduce the proton conducting
system to the M coordinates of the oxygen atoms and describe the
proton distribution by an M-dimensional state vector. This proton
distribution vector is evolved by means of a transition matrix, which
is constructed (with respect to different intervals of proton dynam-
ics) from the positions of the oxygen atoms obtained from an ab
initio MD of the proton conductor.

We calculated transition matrices for the excellent proton
conductor CsH2PO4 and verified our conceptual assumptions for
the MDM model. Within a thorough mathematical discussion, we
proved that our MDM model is well defined and possesses the
correct asymptotic behavior for the distribution of the protons.
We elucidated the relation between the ergodicity of the transi-
tion matrix and the ergodicity of the underlying MD simulation.
Furthermore, we demonstrated the usage of the transition matri-
ces in order to understand and predict quantitatively proton con-
duction trends in the promising proton exchange membrane mate-
rials for fuel cell reactions hexakis(p-phosphonatophenyl)benzene
and CsH2PO4.

The MDM model allows the condensation of the proton
dynamics of an entire MD simulation into a small matrix. Our over-
all attempt is to use the drastically reduced dimensionality of our
approach to increase the system size and timescales of the simu-
lation of long range proton transfer. So far, we have focused on
the validation. Now, our tool can be used to compute protonation
dynamics on micrometer/microsecond length- and time-scales for
realistic compounds including nanoscale inhomogeneities.77

Toward a more realistic description of long range proton trans-
fer, we are also planning to include the contribution of nuclear quan-
tum effects via post-processing of the transition matrix in our MDM
scheme.

SUPPLEMENTARY MATERIAL

See the supplementary material for the jump rate functions of
CsH2PO4 and hexa(p-phosphonatophenyl) benzene, a discussion of
the relationship between ergodicity of the transition matrix and the

J. Chem. Phys. 152, 114114 (2020); doi: 10.1063/1.5140635 152, 114114-11

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ergodicity of the MD simulation, and an alternative scheme of the
dynamic model for the propagation of the proton distribution.
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APPENDIX: COMPUTATIONAL DETAILS

We applied Born–Oppenheimer Molecular Dynamics (BOMD)
using the CP2K78 program package to simulate the proton trans-
fer in a superconducting phase of the solid acid CsH2PO4 and
Hexa(p-phosphonatophenyl)benzene (HPB). We utilized the Quick-
step module79 and orbital transformation80 for faster convergence.
The electronic structure was calculated with density functional the-
ory utilizing the PBE81–83 functional for CsH2PO4 and BLYP84,85 for
HPB. A basis set of the type DZVP-MOLOPT-SR-GTH86 and GTH
pseudopotentials87,88 were applied. Furthermore, we used the empir-
ical dispersion correction (D3) from Grimme.89 The temperature
was set by a Nosé–Hoover chain thermostat90–92 (NVT ensemble).
The time step was chosen as 0.5 fs. A system of 16 formula units (128
atoms) of CsH2PO4 were investigated at 510 K for 900 ps. Concern-
ing the HPB system, 816 atoms were calculated for 38 ps at 400 K
and 115 ps at 600 K.
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Mechanism of ion conductivity through polymer-
stabilized CsH2PO4 nanoparticular layers from
experiment and theory†

Maximilian Wagner,a Christian Dreßler,b Felix P. Lohmann-Richters, ac

Kevin Hanus,a Daniel Sebastiani, b Aron Vargaa and Bernd Abel *a

Electrodes are currently the primary performance-limiting component in low and intermediate temperature

fuel cells. A proven method for improving electrode performance in solid acid fuel cells is to create ever

finer nanostructures and thus increase the electrochemically-active surface area. However, this

performance enhancement is limited by issues of long-term stability, as well as increasing both the

electronic and ionic conduction pathways. Here, we combine a systematic experimental study with

a computational model to quantify the effect of (1) the stabilizing polymer polyvinylpyrrolidone as well as

(2) the porosity and electrode layer thickness on the average ionic conductivity of the solid acid

electrolyte CsH2PO4 in a composite solid acid fuel cell electrode. With a multiscale simulation approach

using a combined molecular dynamics and lattice Monte Carlo method, proton conduction through

a porous electrode is simulated at mesoscopic timescales while retaining near-atomistic structured

evolution. Electrochemical impedance spectroscopy is used to evaluate the porous electrodes obtained

via spray drying. Both approaches reveal a similar and significant contribution of the porous electrolyte

layer to the overall cell resistance. This indicates that geometrical parameters, as well as stabilizing

materials may play an essential role when designing a high-performance solid acid fuel cell.

Introduction

As environmental awareness increases, fuel cells are attracting
growing interest due to their high energy conversion efficiency.
Fuel cells based on solid acid proton conductors, known as
solid acid fuel cells (SAFCs), are a relatively new technology that
carry several fundamental advantages.1 An intermediate oper-
ating temperature of 513 K, at which the electrolyte CsH2PO4

exists in its super protonic phase, allows for fuel exibility and
excellent resistance to catalyst poisoning.2 To improve the
performance of such devices, it has been shown that increasing
the density of catalytically-active sites by reducing the size of
both the catalyst and electrolyte particles leads to a signicant
decrease in electrode impedance.3–6 The impedance spectros-
copy of symmetrical electrochemical cells in a symmetric gas
conguration of humidied hydrogen atmosphere is oen
employed to analyze anodic processes.3,7–9 However, since the

oxygen reduction reaction is the rate limiting step, using the
results from such a symmetrical measurement to predict
performance under fuel cell conditions should be treated
carefully. To compare the key characteristics of fuel cells, the
United States Department of Energy (DOE) regularly publishes
guidelines for direct hydrogen fuel cells.10 Platinum group
metals (PGMs) are an important cost driver and the DOE goal
for 2020 is a PGM utilization of 0.125 g kW�1. Since Haile et al.
introduced SAFCs in 2001 as promising intermediate tempera-
ture models, PGM utilization in a sintered powder electrode
improved from 37 g kW�1 to 3.2 g kW�1 in 2011 by reducing the
platinum loading and improving its spatial distribution using
metal–organic chemical vapor deposition (MOCVD).5,11,12 Fairly
recently, further improvement, to 2.5 g kW�1, was accom-
plished by using carbon nanotubes as the support material.13–15

These advances are attributed to the increasing fraction of
electrocatalytically-active Pt particles through nanostructuring,
showing an impressive but still insufficient improvement to
meet the 2020 DOE goal. So far, research has mainly focused on
enhancing the activity and interconnectivity of the catalyst,
overlooking the resistance of the electrolyte network within
a porous powder electrode. Which, however, may be limiting
the performance, independent of the catalyst utilization. In this
combined computational and experimental study, we explore
the inuence of porous electrodes on cell performance. There-
fore, we synthesize three-dimensional, nanostructured, porous
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electrodes with varying thicknesses using a combination of
spray drying and sputtering techniques to determine the impact
of a porous electrolyte structure on cell performance. The
inuence of the stabilizing polymer additive on the average
ionic resistivity is then evaluated. AC impedance measurements
enable us to observe the impact of a CsH2PO4 network on
electrode impedance. Measurements in a symmetric hydrogen
atmosphere and under fuel cell conditions have been con-
ducted and the results compared. Based on an analytical model
developed through scanning microscope imaging, we adopted
a combined molecular dynamics and lattice Monte Carlo
approach to the specic morphological situation.

Experimental
Materials

The solid acid electrolyte CsH2PO4 was synthesized as previ-
ously described.16 In brief, 25 g of H3PO4 (Roth, Stk# 6366.1,
85 wt%) was diluted with 80 ml of methanol (Alfa Aesar, Stk#
E30Z829, 99.9%). A stoichiometric quantity of Cs2CO3 (Alfa
Aesar, Stk# J02Z042, 99.9%) was then dissolved in 300 ml of
methanol and quickly added to the H3PO4–methanol mixture.
Rapid precipitation occurred and the suspension was stirred for
20 minutes until the reaction was complete. The reaction
product, CsH2PO4, was ltered through a glass frit (pore size:
0.45 mm) and washed three times with 100 ml of methanol to
remove residual water and reactants. The CsH2PO4 powder was
then dried overnight at 353 K. The crystal structure of the
product was subsequently conrmed by X-ray powder diffrac-
tion measurements.

Cell and electrode fabrication

Solid, dense electrolyte disks (20 mm in diameter, 1 mm in
thickness) were pressed from the as-synthesized CsH2PO4

powder with an automatic, uniaxial hydraulic press (GS25440-
AtlasTM Automatic 15T) at 250 MPa in a ‘maintain load’
setting for 5 minutes. DC magnetron sputtering (Edwards Auto
306) was used to deposit 10, 20 and 30 nm Pt lms on polished
electrolyte disks. To synthesize the porous nanostructured
electrodes, a spray dryer (Büchi B90) was used. During the spray
drying process, a previously optimized precursor solution,
consisting of CsH2PO4, methanol (Alfa Aesar, E30Z829, 99.9%),
DI-water and polyvinylpyrrolidone (PVP, Alfa Aesar, F06Z045,
1 300 000 g mol�1), (ESI, S1†), was vaporized by a piezoelectric
spray head. The aerosol was transported by a hot gas stream
(mixture of N2 and CO2) towards a deposition area for electro-
phoretic deposition. During transport, the solvent evaporates
and the solid acid electrolyte material precipitates along with
the PVP, forming dry, stabilized nanoparticles. Before entering
the deposition area, the gas stream is concentrated by a funnel
for an increased deposition rate on the electrolyte disk. A
custom-made pellet holder allows the deposition of nano-
particles on both sides of the electrolyte without modifying the
other. The deposition time was varied between 5 and 120 min in
order to achieve different porous layer thicknesses. DC
magnetron sputtering was used to deposit a 30 nm Pt thin lm

on the porous electrolyte nanostructures, creating a symmet-
rical electrochemical cell (Pt-thin lm +
CsH2PO

porous
4 rCsH2PO4rCsH2PO

porous
4 + Pt thin-lm). The

thickness d of the porous electrolyte layers was varied between
0 mm and 18 mm for characterization in a symmetric cell
measurement using anodic conditions and between 5 mm and 6
mm for characterization under fuel cell conditions. In both
cases, the platinum group metal (PGM) content was calculated
using the nominal Pt layer thickness set during sputter depo-
sition to be 0.064 mg cm�2 for each electrode. To determine the
layer thickness and area coverage of the porous electrolyte layer
for each cell, four cross section as well as top view SEM pictures
were taken from different points: three relatively close to the
edge and one from the middle of the cell. The area coverage was
check by SEM top view pictures prior to the cell splitting. The
standard deviation given in Fig. 6 is based on these measure-
ments. To measure the effect of PVP on the average ionic
conductivity of the spray-dried CsH2PO4–PVP structure,
a composite pellet was fabricated in two steps. First, a 2 cm-
diameter, 500 mm-thick pure CsH2PO4 pellet was pressed as
previously described. Then, a spray-dried CsH2PO4 + PVP
powder, obtained from the deposition area, was pressed on top,
forming an additional 100 mm-thick uniform layer. Neat carbon
paper (Toray Inc. TGP-H-60) was used as the electrode on both
sides, creating a cell for impedance measurements (carbon
paperrCsH2PO4rCsH2PO4 + PVPrcarbon paper).

Physical and electrochemical characterization

The electrode morphology was characterized using scanning
electron microscopy (Ultra 55 SEM, Carl Zeiss Ltd.). Thermog-
ravimetric measurements (Pyris 1-TGA, PerkinElmer) were per-
formed on mixtures of CsH2PO4, PVP and Pt nanoparticles
(Sigma Aldrich, MKBL4444, heat rate: 10 K min�1) in a nitrogen
atmosphere as well as in air. An overview of samples and their
composition can be found in the ESI, S2.† Electrochemical
measurements were recorded with a potentiostat (Biologic VSP
300). Biologic EC-Lab soware V10.33 was used for the data
analysis. All measurements were carried out at the solid acid
fuel cell operating temperature of 513 K. Symmetrical imped-
ance measurements were conducted in a humidied hydrogen
atmosphere (owrate of 75 sccm, dew point of 353 K) and 10 mV
perturbation amplitude over a frequency range of 1 MHz to 100
mHz. The cells (diameter of 20 mm) were placed between two
carbon paper spacer rings (Toray Inc. TGP-H-60) and stainless
steel gas diffusion layers (PACOPOR ST 60 AL3, PACO Paul
GmbH und Co. KG). Dry argon gas (owrate of 100 sccm) was
supplied whenever the temperature was below 423 K to avoid
water condensation. Prior to the measurements a 12 h stabili-
zation period was waited aer reaching operating temperature.
For simplicity and ease of comparison, the electrolyte resis-
tance, observed as a shi of the impedance arc along the real
axis in a Nyquist plot, was subtracted in all impedance
measurements. The width of the impedance arcs was taken as
the electrode resistance. As the external resistance of 0.025 U

cm2 can be neglected, the electrolyte resistance is obtained from
the high frequency intercept of the real axis. Fuel cell

27368 | J. Mater. Chem. A, 2019, 7, 27367–27376 This journal is © The Royal Society of Chemistry 2019
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measurements were performed following the same heat up
procedure with humidied hydrogen (owrate of 75 sccm, dew
point of 353 K) at the anode and humidied oxygen (owrate of
75 sccm, dew point of 353 K) at the cathode. The cells (diameter
¼ 20 mm) were placed between two carbon paper discs (Toray
Inc. TGP-H-60) and stainless steel gas diffusion layers (PACO-
POR ST 60 AL3, PACO Paul GmbH und Co. KG).

Each cell was investigated following a repeated testing
protocol of three steps. (1) a 15 s relaxation period to the open
circuit voltage (2) measuring a potentiostatic electrochemical
impedance spectra (PEIS) in a frequency range of 1 MHz to 100
mHz at an open circuit voltage (OCV) with a single sine
perturbation amplitude of 10 mV; and (3) scanning the working
electrode potential with a scan speed of 10 mV s�1 from OCV to
a cell potential of 0 V to record a polarization curve. To obtain
iR-free polarization curves, the voltage was corrected for ohmic
resistance as determined from the high frequency intercept in
the impedance spectra.

Computational modeling – the cMD/LMC approach

Kinetic rate model for proton conduction in nano-porous
systems. Our description of proton conduction is based on
atomistic structural details, covering mesoscopic length and
time scales. We selected a recently developed simulation tech-
nique, a combined molecular dynamics and lattice Monte Carlo
approach cMD/LMC, which is described in detail by Kabbe
et al.17,18 With this technique, the molecular dynamics trajectory
provides an accurate atomistic picture and its temporal evolu-
tion, while the Monte Carlo section models the long-range
motion of the acidic protons. The suitability of the approach
for the modeling of proton transfer has already been demon-
strated for the bulk phase of CsH2PO4.19,20 Here, we use the
cMD/LMC approach to calculate the average proton resistivity of
a nano-porous composite CsH2PO4 system and compare it to
experimental data. For the validation, the model system's size
has a dimension of 1 � 1 � 100 nm. To simulate the actual
nanostructured network, a system size of 8 � 8 � 20 nm was
used. The total system was represented by 1 � 1 � 2 nm
CsH2PO4 boxes, each containing 16 formula units of CsH2PO4.
The boxes could be removed separately to achieve different
porosities. Within each box, proton dynamics are simulated in
the atomistic model based on the existing cMD/LMC scheme,
while the proton ux in the total system is constructed by
coupling the proton rates of the adjacent box surfaces. In the x-
and y-dimensions, we used periodic boundary conditions.
Summation of all proton uxes between the boxes leads to the
total resistivity of the system. The approach is rst reported by
Dreßler et al. and described in detail.20 To provide an accurate
atomistic structure and its temporal evolution, an ab inito-
molecular-dynamics simulation (AIMD) is necessary for the
application of the cMD/LMC model. We applied Born–Oppen-
heimer Molecular Dynamics (BOMD), using the CP2K21

program package, to simulate the proton transfer in CsH2PO4.
The electronic structure was calculated with density functional
theory utilizing the PBE functional.22–24 A basic set of the type
DZVP-MOLOPT-SR-GTH45 and GTH pseudo potentials was

applied.25–27 Furthermore, we used the empirical dispersion
correction (D3) from Grimme et al.28 The temperature was set by
a Nosé–Hoover chain thermostat (NVT ensemble)29–31 and a time
step of 0.5 fs chosen. AIMD simulations of a 1 � 1 � 2 nm box
were then executed for 450 ps.

Details of the cMD/LMC method. While a molecular
dynamics simulation provides a representative conformational
ensemble of the supramolecular structure at the accuracy level
of density functional theory (DFT) under periodic boundary
conditions, the Monte Carlo part models the long-range
mobility of the acidic protons considering the dynamically-
evolving molecular structure of the system. In the Lattice
Monte Carlo (LMC) part, the system is reduced to a lattice of
oxygen atoms that are treated as nodes and can hold one
proton. Proton jumps between the oxygen atoms occur,
according to a distance-dependent jump rate u(dij), as in Fig. 1.
The jump rate is obtained from the CsH2PO4 AIMD trajectory
and is a physical rate for the frequency of a proton transfer
between two oxygen atoms. Therefore, it is dependent on the
O–O distance. The actual network of transition rates between all
LMC lattice sites is obtained from the specic molecular
geometry of the system at a given snapshot of the MD trajectory.
The propagation of the LMC state is then followed by an update
of the transition/jump rate matrix corresponding to the evolu-
tion of the MD trajectory. The details of this simulation tech-
nique are extensively described by Dreßler et al.20 As a result of
the application of the cMD/LMC method we obtain proton
uxes between the AIMD simulation box and its neighboring
images. Using these boxes (1 � 1 � 2 nm) as the smallest
building block, we can construct the nano-porous models for

Fig. 1 Schematic of the applied cMD/LMC approach. The molecular
dynamics trajectory provides an accurate atomistic structure and its
temporal evolution, while the Monte Carlo part models the long-term
motion of the acidic protons. The combination enables proton
transport calculations for large systems.

This journal is © The Royal Society of Chemistry 2019 J. Mater. Chem. A, 2019, 7, 27367–27376 | 27369
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the investigation of proton conduction. The proton uxes for
the entire nano-porous system are accessible by combining all
elementary proton uxes from the AIMD boxes. For a nonbiased
simulation, CsH2PO4 possess 0.5 protons per oxygen atom. To
simulate the proton current during operation, we insert excess
protons on one side of the system (anode) and remove them on
the opposite side (cathode). The number of excess protons per
oxygen atom at the proton insertion area (anode) is denoted by
the excess proton fraction (EPF). The EPF can vary between
0 and 0.5, referring to a neutral simulation or maximally
protonated oxygen atoms. The nal proton current is controlled
by the gradient of the excess protons within the system. An
increased excess proton gradient leads to an increased proton
current. A summary of the system sizes and excess proton
fractions of the performed calculations for this work is provided
in Table 1.

Results and discussion
Experimental characterization of porous electrodes

Representative SEM micrographs of CsH2PO4 electrolyte discs
at various stages of sample preparation are presented in Fig. 2.
The surface roughness decreased signicantly from before
polishing (a) to aerwards (b), providing a smooth surface for Pt
deposition via sputtering. Fig. 2(d) shows CsH2PO4 particles
deposited onto an electrolyte pellet via spray drying without the
stabilizing polymer PVP. The particles agglomerate rapidly,
even in ambient conditions. In contrast, the CsH2PO4 structure
can be effectively stabilized by adding PVP to the precursor
solution, as reported previously.16 Fig. 2(e and f) shows a PVP
stabilized nanostructure on a dense CsH2PO4 electrolyte pellet.
In general, particle loading on the surface of the electrolyte
pellet increases linearly with the duration of spray drying, with

Table 1 Parameters for calculations carried out using the cMD/LMC approach

Excess proton fraction

System size

x-Dimension y-Dimension z-Dimension

EPF vs. current density 0.001 to 0.5 1 nm 1 nm 100 nm
Current vs. system size 0.5 1 nm 1 nm 12 nm to 2044 nm
Impact of porosity 0.5 8 nm 8 nm 20 nm
Impact of PVP 0.5 8 nm 8 nm 20 nm

Fig. 2 Scanning electron micrographs of: (a) as pressed; and (b) a polished CsH2PO4 electrolyte pellet; (c) a cross section of a sputtered Pt thin
film; (d) agglomerated pure CsH2PO4 nanostructure deposited via spray drying; (e) a cross section; and (f) a top view of a scanning electron
micrograph showing a nanostructured CsH2PO4 electrode with thickness d, stabilized by the polymer PVP and deposited on a dense CsH2PO4

electrolyte pellet.
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a slight variation across the pellet. In the initial stage, only the
deposited particle density increases on the pellet surface, as
depicted in Fig. 3(a). Here, we dene the area coverage of the
electrolyte surface as the ratio of the projected area of the
deposited particles and the free surface area (between 0, for no
coverage and 1 for full coverage). Aer a mixed stage, when both
incomplete coverage and growth of the layer thickness d occurs,
a thick porous layer is established, as can be seen in Fig. 3(b and
c), respectively. To quantify all stages of nanoparticle deposi-
tion, the area coverage was measured with SEM and multiplied
with the average thickness of deposited particle clusters,
yielding the effective layer thickness. The thermal stability of
PVP and mixtures of PVP with CsH2PO4 and Pt nanoparticles
was conrmed using TGA measurements (S2) for temperatures
below 600 K in both air and nitrogen atmospheres.

Representative impedance spectra in the Nyquist form are
shown in Fig. 4 for a symmetrical cell with an effective layer
thickness of 2.5 mm and a Pt lm thickness of 30 nm. The width
of the impedance arcs is taken as the electrode resistance. The
electrolyte resistance, observed as a shi of the impedance arc
along the real axis, is subtracted. For ease of comparison, the
results are converted to area-normalized electrode resistances
(ANRs). To verify the setup used and ensure comparability to the
literature, Pt thin lm electrodes were fabricated and charac-
terized as described (ESI, S3†). The electrode resistances of the
thin lm electrodes are in good agreement with the data pub-
lished by Louie and Haile.7 Symmetric measurements in

a hydrogen environment have oen been employed to evaluate
electrode structures, since they require less construction effort.3

However, the rate-limiting step for a hydrogen-powered fuel cell
is the oxygen reduction reaction at the cathode. We compare
structured and thin lm cells in symmetrical and fuel cell
measurements to analyze whether the structuring is yielding
similar activity increases for both techniques. Therefore two cell
types, differing only by the electrode type, are compared. “Thin
lm cells” have 30 nm platinum thin lm electrodes on both
sides whereas “porous cells” have two structured electrodes
with platinum sputtered on top. All cells have the same

Fig. 3 Schematic drawing (side and top view) of CsH2PO4 particles deposited onto a dense CsH2PO4 pellet and corresponding scanning
electron micrographs at (a) low; (b) intermediate; and (c) high particle loading.

Fig. 4 Electrode impedance arcs as a function of time for a repre-
sentative symmetric electrochemical cell: Pt thin-film + CsH2-
POporous

4 |CsH2PO4|CsH2PO
porous
4 + Pt thin-film showing good stability

over a 60 h time period. The Pt film thickness was 30 nm and the
effective layer thickness, 2.5 mm. The electrolyte impedance is sub-
tracted and the area normalized electrode resistance, RElectrode, is
indicated as the width of the impedance arc.
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platinum content of 0.128 mg cm�2. Fig. 5 compares the IR-
corrected polarization plots for cells with Pt thin lm elec-
trodes, as well as porous electrodes under fuel cell conditions.
The cells show high reproducibility among themselves. To
roughly compare the two characterization techniques, the
current density at a voltage of 0.5 V is taken for the fuel cell
measurements and the mass normalized activity (MNA) is
calculated for the symmetric measurement, which represents
only the hydrogen oxidation reaction. Both the current densities
as well as the MNA depend directly on the catalyst utilization.
Table 2 compares the average current density at 0.5 V obtained
in fuel cell measurements and the increase of theMNA obtained
from symmetrical measurements in hydrogen for both elec-
trode types. The standard deviation of the relative increase of
the MNA was calculated as described in Table 2(b). First it
becomes clear that structuring an electrode considerably
increases its activity. Through an area increase, the sputtered
platinum is distributed over a larger area, increasing the active
site density. As mentioned earlier, it is widely assumed, but not
proven, that structure-induced improvements of the anode

performance observed under symmetrical conditions are
equally viable for the cathode. Since the reaction mechanism of
the oxygen reduction is not yet fully understood, this assump-
tion is not trivial. Second, a similar percental increase resulting
from structuring can be seen for both the MNA and current
densities. This implies that the electrode structure affects the
anodic hydrogen oxidation and rate-limiting cathodic oxygen
reduction in a similar way, conrming symmetric impedance
measurements as well-suited method for analyzing improve-
ments to the electrode due to spray drying. The ANR for cells
with varying effective layer thicknesses and constant 30 nm Pt
thin lms, are shown in Fig. 6. The obtained effective layer
thickness depends on the spraying time and the exact position
of the sample within the deposition section relative to the gas
inlet. Therefore, the deposited layer thickness varies from cell to
cell, as well as over each sample's surface. The layer thickness of
each cell shown in Fig. 6 was measured at four different points
and the standard deviation was calculated as described in the
experimental section. With the increasing amount of spray
dried particles, the electrode impedance decreased sharply as
a result of the increase in the absolute electrochemically-active
surface area. However, aer reaching the lowest ANR at a layer
thickness of about 5 mm and complete area coverage, electrode
resistance increased rapidly. One should keep in mind that this
represents only the optimum for these model cells which can't
compete with high platinum loading state of the art cells in
terms of power density. As reported by Suryaprakash et al., the
platinum deposition via sputtering only penetrates the top 5 mm
of the structure.16 It seems that the porous layer signicantly
increases the ANR, given the fact that a maximum 18 mm-thick
layer was applied. As CsH2PO4 itself serves as a frequency-
independent ohmic resistor within the measurement condi-
tions employed, the contribution of the porous electrolyte layer
to the ANR is surprising. A detailed equivalent circuit based
description is available in the ESI S5.† In the following sections,
an analytical and cMD/LCM model is introduced showing that
the observed effect is mainly caused by the porosity and stabi-
lizing agent PVP. By generating constrictions between the
sprayed particles, the porous layer develops a frequency
depending resistance affecting the ANR rather than the purely
ohmic electrolyte resistance.

Fig. 5 IR-free polarization plots, as well as the corresponding power
density, are shown for three Pt thin film cells (dotted lines) and three
cells with ca. 5 mm-thick structured electrodes (solid lines). The plat-
inum content is the same in all presented cells. The results for both
electrode types are very well reproducible and a significant increase in
the power density by means of electrode structuring is evident. For the
porous electrodes, no peak power maximum is reached due to the
high electrolyte resistance.

Table 2 Comparison of MNA and current density (j) of the thin film and
porous cells with the same PGM loading at IR-free voltages of 0.5 V,
rounded to two decimal places. The margin of error represents the
standard deviation

Thin lm cell Porous cell Relative increase

j@0.5 V (mA cm�2) 13 � 0.7 79 � 2.3 6.1 � 0.5
MNA (S mgPt

�1) 3.9 � 0.1 21a 5.5 � 0.3b

a For the MNA at a layer thickness of 5 mm, no standard deviation can be
calculated due to a lack of data points. b The standard deviation was
calculated using the relative error of the current density for the MNA
of the porous cell.

Fig. 6 Area-normalized electrode resistance (ANR) obtained via AC
impedance spectroscopy plotted vs. electrode layer thickness d,
showing an optimal layer thickness of ca. 5 mm, followed by an
unexpected increase for larger thicknesses. All electrodes had a 30 nm
Pt thin film catalyst layer deposited via DC magnetron sputtering.
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Analytical model

For increasing layer thicknesses a rise in the electrode resistance
from 0.75 U cm2 to 7 U cm2 is observed, Fig. 6. Based on SEM
images of the porous structure, an analytical model is developed,
not to provide precise data but to estimate the impact of the
induced porosity on the resistivity of the electrode. It will be shown,
that the resistance of a pure CsH2PO4 electrolyte network while
taking into account the porosity and constriction effects fails to
explain the observed resistance increase by one order ofmagnitude.
For this model, a constant resistivity for CsH2PO4 at 513 K of r ¼
45.45 U cm is assumed.3 A 20 mm-thick dense electrode therefore
has a resistance of 0.09U cm2. For a porous structure, the tortuosity
as well as the porosity inuences the resistance.

Analyzing SEM micrographs of the two highest layer thick-
nesses shown in Fig. 6, the porosity was estimated to be around
0.5 and the extended proton pathway due to tortuosity to be 1.4
times the layer thickness. For this rough estimate four different
regions were analyzed as described in the experimental section.
Based on this, a 20 mm-thick porous structure is modeled by
circular columns with a total area lling of 50%. According to
eqn (1),

Rarea ¼
r
20 mm

ACol

NCol

xt ¼ 0:25 U cm2 (1)

the resulting area normalized resistance is 0.25 U cm2. With the
resistivity “r”, the area of a single column “ACol”, the number of
columns per cm2 “NCol” and the estimated tortuosity “xt” (ESI,
S4†).

Geometric constrictions created between two adjoining
particles of different sizes increase the area-normalized resis-
tance. Taking Fig. 7 as a representative image, the smallest
constrictions have a diameter of around 300 nm. Assuming ten
spherical 300 nm diameter constrictions within a 20 mm layer as
an upper limit, the layer resistance increases to 0.56U cm2, as in
eqn (2),

Rarea ¼
r
�20 mm

ACol

xt þ lconst

Aconst

10

�

NCol

¼ 0:56 U cm2 (2)

with the length of the constriction “lconst” and the area of the
constriction “Aconst”. The calculations conducted represent
a worst-case estimation for a porous system without PVP, based
on a SEM characterization of the structure. The extent of the
measured increase in electrode impedance from 0.75 U cm2 to 7
U cm2, as seen in Fig. 6, cannot be explained by mere electrode
structuring and would rather be a result of the used polymer
PVP.

Suryaprakash et al. report the essential effect of the PVP for
the structure's stabilization, which forms a visible shell around
the CsH2PO4 particles during the spraying process for a very
high PVP concentration of 10 g l�1.16 As PVP is not proton
conducting, such a shell would act as a barrier obstructing
proton transport. To prove the signicance of PVP for the overall
resistivity, the electrolyte resistances of 500 mm-thick pure
CsH2PO4 pellets are compared to a composite cell containing
a 500 mm-thick pure CsH2PO4 layer and a 100 mm-thick dense
layer of spray-dried CsH2PO4-PVP (ESI, S6†). The electrolyte
resistance increases from 2.5 U cm2 for the pure CsH2PO4 pellet
to about 7.2 U cm2 for the composite CsH2PO4 pellet. The
resistivity of the additional 100 mm thick PVP-containing layer is
thus 5.0 U cm, representing an almost 11 times increase
compared to pure CsH2PO4. Assuming this increased resistivity
for the calculation according to eqn (2), we achieve a resistance
increase comparable to the observed. This shows that the ANR's
increase of 6.25 U cm2 in Fig. 6 between an effective layer
thickness of 5 mm and 20 mm can be caused by the additional
effect of the PVP stabilized porous electrolyte network. It
becomes clear that the porous structure itself makes a signi-
cant contribution to the cell's performance, especially when
stabilized with PVP. Although further investigations are neces-
sary, it is important to take the thickness of the porous structure
into consideration when engineering a high-performance cell.
As spectroscopic analysis of a thin polymer lm on a nano-size
powder is highly challenging, a computational cMD/LMCmodel
was used to understand the nature of the observed PVP
restrictions.

Theoretical description of a porous CsH2PO4 network using
a cMD/LMC approach

Using a cMD/LMC approach, the current density was calculated
as a function of rst, the proton insertion rate and second, the
system length. The excess proton fraction (EPF) scales with the
amount of additional hydrogen atoms attached to near-surface
O atoms. Higher EPF therefore represents a more active surface.
For CsH2PO4, the possible number of protons per oxygen atom
range from 0.5 to 1, resulting in a maximum EPF value of 0.5.
Within this range, the current density shows a linear depen-
dence, depicted in Fig. 8. According to Ohm's law, the current
density is proportional to the inverse length of the system. The
calculated data ts well (R¼ 0.9992) to the expected behavior, as
in Fig. 8.

Porous systems are generated randomly by removing single 1
� 1 � 2 nm boxes from an 8 � 8 � 20 nm CsH2PO4 system until
a dened porosity is reached. The random removal is restricted
in such a way that no percolation interruption is generated.

Fig. 7 Representative SEM micrographs of the generated porous
CsH2PO4 electrode network: (a) the dotted lines indicate possible
pathways trough the porous network. The length is roughly 1.4 times
the linear distance. (b) Top view on the porous network. The space
between CsH2PO4 particles, which are in roughly the same plane, are
colored in red. The area of CsH2PO4 particles compared to the void in
one plane is about 50%.
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Examples for CsH2PO4 systems with different porosities are
depicted in Fig. 9. The conductivity simulations are performed
for a xed EPF, corresponding to a constant platinum surface and
voltage. Periodic boundary conditions in x and y directions were
used for all calculations. For every porosity, three different
calculations of randomly obtained systems were performed and
the standard deviation for both the conductivity and resulting
porosity calculated. In the analytical model, the resistance triples
for a porosity of 0.5 without additional geometric constrictions,
and an eight-fold increase is observed with these constrictions,
keeping inmind that the number of geometric constrictions were
set as an upper limit. The cMD/LMC model shows a relative
increase in the ohmic resistance of 4-fold for a porosity of 0.5, as

in Fig. 9. The analytical model was closely aligned to the observed
porous structure, whereas the cMD/LMC approach aimed at
random porous structures. Geometrical constrictions are the
main reason for the large error, due to the strong negative effect
on the resistivity. It can be concluded that the computational
model is able to sufficiently characterize a porous system, as used
in this work within the given margin of error.

Analyzing the effect of PVP on CsH2PO4 using a cMD/LMC
approach

As mentioned previously, the PVP was found to have a high
negative impact on the resistivity of CsH2PO4. Suryaprakash
et al. reported the tendency of PVP to form a shell around the
CsH2PO4 particle during the spray drying process.16 With
a concentration ratio of 1 : 33 g l�1 between PVP and CsH2PO4,
it is reasonable to conclude that PVP does not form a uniform
outer layer around the CsH2PO4 particles but reduces the
contact area between two adjoining CsH2PO4 particles. The
obstructing effect caused by the PVP was modelled by selecting
four layers of CsH2PO4 along the z axis in an 8 � 8 � 20 nm
system and randomly removing boxes to simulate the area of
CsH2PO4 covered by the PVP. For every surface-coverage in
Fig. 10, three different calculations of randomly obtained
systems were performed and the averaged values are shown.
The resulting proton currents are shown in Fig. 10, using the
cMD/LMC approach. An increase of the CsH2PO4 surface
coverage of PVP leads to an exponential increase in the resis-
tance. According to this model, the increase of the resistivity by
a factor of over 10, as observed in our cells, would represent
a PVP surface coverage of 94%. Following this argumentation, at
the boundary between PVP and CsH2PO4, a chemical double
layer can develop, generating a frequency-dependent resistance.
Such a resistance develops an own arc in an impedance spec-
trogram. In our case the impedance arc of the charge transfer
reaction at the platinum–CsH2PO4 interface and from the PVP
induced constrictions overlap, leading to a attened overall

Fig. 8 Calculated current density as a function of system length. The
exponent of �0.92 is in good agreement with Ohm's law. Inset:
computational model based on a cMD/LMC approach, showing the
corresponding current density of a 100 nm-long system as a function
of the excess proton fraction (EPF) inserted into the system per time.

Fig. 9 Porous model cells with varying porosity are generated by randomly deleting single boxes. No dead ends were generated in this way,
taking into account the periodic boundary conditions. The relative resistance, calculated by the cMD/LMCmodel, is plotted against the porosity
with the associated margin of error shown for each system. The dashed line is a visual guideline.
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impedance arc (ESI S5†). This effect is shown in Fig. 11, where
the impedance arc symmetry of platinum thin lm electrodes
and porous electrodes are compared. All arcs are normalized for
better comparison. While thin lm electrodes show an almost
semicircle like symmetry, the arc's associated with the porous
electrodes are deformed due to the additional frequency
dependent resistance.

Conclusion

Solid acid fuel cell electrodes consisting of a CsH2PO4 nano-
structured layer and a Pt thin lm were fabricated via spray
drying and DC magnetron sputtering. The porous layer thick-
ness was systematically varied between 0 and 18 mm, while the
Pt thin lm was kept constant at 30 nm. The applicability of
symmetric impedance measurements in hydrogen as a method
to determine the activity of an electrode under fuel cell condi-
tions was conrmed. The electrode impedance for different

layer thicknesses was determined via AC impedance spectros-
copy in a humidied hydrogen environment, showing a fast
decrease when increasing the layer thickness to 5 mm which is
associated with an increase of the active site density. Aer
complete area coverage and a layer thickness above 5 mm,
magnetron sputtering couldn't penetrate the whole porous
structure anymore resulting in a constant active site density.
The followed steep increase of the measured electrode imped-
ance for thicknesses greater than 7.5 mm therefore results from
the negative impact of the PVP containing porous CsH2PO4

network. The lowest symmetrical electrode impedance corre-
sponds to a layer thickness of about 5 mm, resulting in a 5.5-fold
increase in the Pt-mass normalized activity compared to thin
lm electrodes. The impact of a polymer-stabilized porous
CsH2PO4 network was investigated using a multiscale simula-
tion approach (cMD/LMC) as well as an analytical model.
Especially for highly porous systems, a signicant increase in
the resistance was shown. Even if a high porosity is favorable in
terms of active site optimization, the resulting electrolyte
network resistance can quickly become rate limiting.

To develop a deeper understanding of the polymer induced
resistance increase, a partial proton blocking layer was imple-
mented in the cMD/LMC approach, simulating the incomplete
PVP cover around the sprayed CsH2PO4 particles. It was shown
experimentally that the stabilizing agent PVP reduces the
conductivity by a factor of more than ten, corresponding to
a PVP surface coverage of 94% in the cMD/LMC model. Beyond
the presented data, our results may enable researchers to
further improve the performance of solid acid fuel cells. Current
state-of-the-art SAFC electrodes work with electrodes as thick as
100 mm, possibly limited by the proton conduction resistance of
the porous CsH2PO4 electrode network.
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Fig. 10 To simulate the area of CsH2PO4 covered by PVP, four layers of CsH2PO4 boxes with equidistant spacing along the z axis were randomly
removed to different degrees from an 8 � 8 � 20 nm CsH2PO4 system. The relative resistance calculated by the cMD/LMC model is plotted
against the percentage of the area covered by PVP with the associated margin of error shown for each system. The dashed line is a visual
guideline and shows exponential growth for a high degree of coverage.

Fig. 11 Normalized impedance arcs of platinum thin film electrodes
and porous electrodes are compared. While thin film electrodes
generate an almost semi-circle like symmetry, the symmetry of the
porous electrode arcs is significantly deformed due to PVP introduced
constrictions which obstruct the proton movement.
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3.1.4 Article IV: Proton Mobility in Aqueous Systems: Combining
ab initio Accuracy with Millisecond Timescales

Gabriel Kabbe, Christian Dreÿler, and Daniel Sebastiani.
Proton mobility in aqueous systems: combining ab initio accuracy with millisecond
timescales.
Physical Chemistry Chemical Physics, 19(42):28604�28609, 2017.

For this publication, I provided ab initio molecular dynamics trajectories of H3O+

in water. G. Kabbe incorporated the dielectric relaxation e�ects that can be observed
within the �rst solvation shell of H3O+into the cMD/LMC scheme. D. Sebastiani
supervised the project and gave valuable advice during the development and while G.
Kabbe was writing the manuscript.
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Proton mobility in aqueous systems: combining
ab initio accuracy with millisecond timescales†

Gabriel Kabbe, Christian Dreßler and Daniel Sebastiani *

We present a multiscale simulation of proton transport in liquid water, combining ab initio molecular dynamics

simulations with force-field ensemble averaging and kinetic Monte-Carlo simulations. This unique Ansatz

allows for ab initio accuracy incorporating the femtosecond dielectric relaxation dynamics of the aqueous

hydrogen bonding network, and bridges the time-scale gap towards the explicit simulation of millisecond

diffusion dynamics.

1 Introduction

Proton transfer in water plays an important role in many chemical
and biological processes.1–3 Especially with regard to Proton
Exchange Membrane (PEM) fuel cells, the high conductivity of
water is a desirable property and the reason for the efficiency of
Nafion-based membranes.4–8 These membranes enclose water
channels, in which proton conduction is possible. In this context,
a lot of research has been conducted to further clarify the proton
conduction mechanisms both experimentally and theoretically.

A model picture of the underlying mechanisms which
explain the anomalously high proton conduction in water was
actually first proposed by Grotthuss more than 200 years ago.9

It comprises two main elements: a hopping step, which is later
followed by reorientation. The hopping step can actually happen
as a series of proton transfers along a chain of water molecules,
or rather ‘‘water wire’’,10,11 which leads to the propagation of the
excess charge along the chain without any diffusive motion of
the molecules themselves, and a simultaneous reversal of the
chain’s dipole moment. Consequently, the subsequent rotation
of the water molecules is necessary in order to enable further
proton transfer along the same ‘‘water wire’’.

In recent years, this idealized model picture has been
refined further. In particular, the water reorientation by rotation
is believed to be an oversimplification as a water molecule in
bulk water is hydrogen-bonded to four neighbor molecules,
which hinders free rotation. Instead, the breaking of a hydrogen
bond, which is necessary to reduce the hydrogen-bond coordination

number of an accepting H2O from four to three, is considered
the rate-determining step.12,13

With the continuously increasing computing capabilities,
ab initio calculations of proton transfer in water have become
feasible. It is now possible to investigate proton transfer on the
atomistic level.13–19 However, while offering a high accuracy, these
methods are still computationally expensive and give only access to
timescales of tens to hundreds of picoseconds. Especially with
regard to the simulation of macroscopic properties of proton
exchange membranes, they often do not allow statistically relevant
sampling of the excess proton movement in a reasonable amount
of time. Similarly, the adequate incorporation of co-solvents,
geometric confinement, effects, or the influence of functional
interfaces is computationally challenging.

In this work, we present a coupled Molecular Dynamics/
Lattice Monte Carlo (cMD/LMC) approach, which aims at
simulating large-scale excess charge diffusion in aqueous systems.
This combined method has already been applied successfully to
PEM materials20,21 and solid acids.22 Based on structural dynamics
calculated from molecular dynamics (MD), it builds a time-
dependent excess charge transition matrix for the Lattice
Monte Carlo (LMC) scheme. The mapping between the topology
of the system and the resulting excess charge transfer rate is
determined with statistical analysis from ab initio MD.

On the basis of a neutral classical MD trajectory of water,
we show that our cMD/LMC scheme is able to determine
dynamical quantities of the excess charge in best agreement
with ab initio methods over large time scales.

2 Method

For the propagation of an excess proton through a liquid water
system, we have developed a hybrid scheme which combines
aspects from molecular dynamics (MD), and lattice/kinetic
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Monte Carlo methods.23–25 Protons can jump between lattice
sites with transfer rates which are extracted on-the-fly from an
underlying MD simulation (see also ref. 20–22). Each lattice site
represents an oxygen atom of the considered system and can be
in one of two states: occupied or unoccupied. The trajectory-
based evolution of the pairwise oxygen distances in the MD
results in a change of the proton transition rate in the LMC
scheme. This scheme has been shown to yield a realistic picture
of condensed-phase systems.

In order to take the characteristic hydrogen-bond network of
H3O+ in liquid water into account, we construct the LMC
topology such that each oxygen site is connected to its closest
three neighbors.

2.1 Lattice Monte Carlo scheme

The LMC system consists of a discrete range of states and is
described by a master equation with time-dependent transition
rates:

dpiðtÞ
dt
¼
X
j

pjðtÞojiðtÞ � piðtÞoijðtÞ
� �

(1)

where pi(t) is the probability to find the system in state i, and oij

is the transition rate from state i to state j.
The scheme first translates the transfer rate

P
j

oij from a

lattice site i into a ‘‘lifetime’’ of this very site. In this context,
the lifetime is defined as the duration t, after which the excess
charge at lattice site i is transferred to an adjacent site. In our
specific algorithm, this lifetime is calculated by drawing a
random number x in the interval (0, 1] and solving the
equation

� lnðxÞ ¼
ðt
0

X
j

oijðt 0Þdt 0 (2)

for t.
Once this specific lifetime has passed, the algorithm deter-

mines the target site for the excess charge by drawing another

random number x from the interval 0;
P
j

oi0;jðtÞ
" #

and choos-

ing the second oxygen site with index j0 such that

Xj0�1
0

oi0 ;jðtÞ � xo
Xj0
0

oi0 ;jðtÞ (3)

For a more detailed mathematical explanation, see Prados et al.23

2.2 Determination of the excess charge diffusion

The challenge in determining the excess charge motion from
an atomic trajectory is the fact that there is no ‘‘labeled’’ excess
charge particle whose position can be tracked. Instead, similar
to the Grotthuss picture, a multitude of protons are involved
during a (long-range) excess charge transfer.

Within the ab initio molecular dynamics (AIMD) simula-
tions, the excess charge diffusion is therefore determined by

means of a collective variable specifically designed for this task,
with an effective coordinate given by:

Rexcess ¼ �2
X
O

RO þ
X
H

RH (4)

RO and RH in eqn (4) stand for the positions of the oxygen
atoms and hydrogen atoms, respectively. Rexcess has the property
that it is invariant under translations of neutral H2O molecules
while being sensitive to the motion of single (excess) protons and
H3O+ complexes. This effective variable can easily be adjusted for
more complex chemical systems (as has been demonstrated for
R-PH2O3/R-PH3O3

26).
In contrast to MD, the cMD/LMC scheme represents the

excess charge position explicitly as an overprotonated molecular
state that is assigned to a water molecule at each time step. It is
therefore trivial to follow the excess charge over time and
determine its diffusion.

Unlike MD, the proton motion in the cMD/LMC scheme is
not continuous: when a water molecule transfers its excess
charge to another nearby molecule, the excess charge position
changes instantaneously from the position of the donor mole-
cule to the position of the acceptor molecule. As a consequence,
the mean squared displacement function is discontinuous and
changes stepwise by the full oxygen–oxygen distance.

2.3 Excess charge transfer rate determination

In order to obtain a realistic transfer rate matrix between individual
lattice sites for the cMD/LMC scheme, the instantaneous atomic
geometry around a protonated water molecule must be mapped
onto the probability of an excess charge transfer for a given
constellation of the H3O+’s surroundings. We determine this map-
ping by statistically analysing the excess charge transfer events
within the ab initio MD trajectory and determining the transfer rate
as a function of the oxygen–oxygen distance between H3O+ and the
surrounding H2O molecules by means of the following algorithm
for each time step t:

(1) Determine the distance distribution rOO(dOO,t) of
potential H+ acceptor water molecules around the H3O+.

(2) Lookup the distance distribution rjump(dOO,t) of actual
H+ acceptor molecules, i.e. consider only those waters to which
a proton jump has actually occurred in the next MD step at
t + Dt.

(3) The proton jump rate at time t is determined via

ojump dOO; t
� �

¼ 1

Dt
rjump dOO; t

� �
rOO dOO; tð Þ (5)

The final jump rate is obtained by averaging over all time steps

ojump(dOO) = hojump(dOO,t)it (6)

We fit this jump rate to a function of the form

f ðdÞ ¼ a

1þ exp
d � d0

c

� � (7)

The resulting fit parameters, from our ab initio molecular
dynamics simulation are listed in the ESI.†
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3 Results
3.1 Analysis of ab initio molecular dynamics of protonated water

3.1.1 Trajectory setup. For this work, ab initio trajectories
of protonated H2O and a classical trajectory of neutral H2O
were simulated. We used the software CP2K27,28 for the ab initio
simulations, and Gromacs29–31 for the classical MD simulation.

While the ab initio trajectories are used both as a reference
system and for analysis of the dynamical properties of H3O+, the
classical trajectory provides the underlying topology for calculating
the excess charge jump rates of the cMD/LMC scheme.

AIMD trajectories of 100 water molecules and an excess
proton in a periodic box of length 14.405 � 14.405 � 14.405 Å3

were used to determine the proton jump rates and analyze the
radial distribution function (RDF) between hydronium and neutral
water. In order to investigate the temperature dependence of the
observables, three trajectories at 300 K, 350 K and 400 K were run.
We used the BLYP functional32,33 with a DZVP-MOLOPT-SR-GTH
basis and the GTH pseudopotential.34 The DFT-D3 dispersion
correction was used.35 The molecular dynamics simulation was
run with a timestep of 0.5 fs using the Nosé–Hoover thermostat.36

At the force field level, an MD trajectory consisting of 216 water
molecules in a periodic box of length 18.626 � 18.626 � 18.626 Å3

was run on a simulation time scale of 10 ns at 350 K. For the classical
MD, we used the TIP4P water model with the Amber force field.37

3.1.2 Ab initio excess charge diffusion. We determine the
mean squared displacement (Fig. 1) from R(t) (see Section 2.2).
After about 5 to 10 ps, the mean squared displacement (MSD)
reaches an almost linear regime. The remaining fluctuations
are due to the limited statistics (only one excess proton is
present in the water box). From a linear fit we get a diffusion
coefficient D = (1.48 � 0.01) Å2 ps�1. We use this value as a
reference to judge the results of the cMD/LMC approach.

3.1.3 Excess charge transfer rate. We determine the excess
charge transfer rate according to Section 2.3 from the available
AIMD trajectories at 300 K, 350 K and 400 K. The resulting transfer
rates as functions of the donor–acceptor distance are shown in the
ESI.† We observe a noisy development of the jump rates at the

borders of the distance axis. This is due to the fact that only few
O–O distances in these regions are sampled within the AIMD
trajectories. In the middle region, on the other hand, the better
sampling leads to a more steady course. We take the varying sampling
into account by weighting the jump rate results with the number of
observed hydronium–H2O pairs NOO. All three jump rates yield very
similar results, which is in agreement with previous studies.20 In the
following sections, the trajectory at 400 K will be used.

3.2 Dielectrical relaxation following an elementary proton
hopping step

The presence of an excess proton in water leads to considerable
electrostatic forces, which influence the structure of water
molecules in the vicinity of the H3O+ ion. This effect is incorpo-
rated automatically by AIMD, which is known to yield a precise
description of both structure and femto/picosecond dynamics
around a solvated charge,15,16,38 but is missing within the cMD/
LMC scheme, as the excess charge state within the LMC is not
returned as feedback to the MD simulation. As a result, the
acceptor–donor distances in the LMC scheme are overestimated,
which leads to a diminished proton hopping rate and therefore
an underestimation of the overall excess charge diffusion.

We propose a scheme which adjusts the trajectory data to
take into account this dielectric response of the water upon
protonation changes. Specifically, we analyze how the presence
of an excess charge in the AIMD influences the RDF of the first
solvation shell. This change is subsequently used to construct a
conversion function that provides a mapping between the
pairwise oxygen distances of an uncharged water system and
those of a protonated system within the first solvation shell.

3.2.1 Construction of a conversion function. The micro-
solvation of an H3O+ cation differs in two ways from that of a
neutral H2O molecule: first, the three donor hydrogen bonds are
shorter, and second, the acceptor bridge is elongated. Since our
force-field MD only contains H2O molecules, we have to consider
the different solvation structure within the Monte Carlo part, in
order to yield more realistic excess charge transfer rates.

To address this issue, we construct a conversion function
which maps the distance distribution of an uncharged water
and its first solvation shell to the distance distribution of a
hydronium ion and its first solvation shell. This allows us to
take the structural effect of a charged particle within the LMC
scheme into account by effectively rescaling the distances
between an occupied oxygen site and its neighbors.

For the construction of the conversion function, we use the
integrated RDF, which yields the number of particles within a
radius r. It is defined as

nðrÞ ¼
ðr
0

4px2rgðxÞdx (8)

with the particle density r and the radial distribution function
g(x).

We also define nhydronium(r) as the integrated RDF of the
desired distribution (i.e. the hydronium–H2O distribution), and
nneutral(r) as the integrated RDF of the original distribution in
the neutral H2O system.

Fig. 1 Mean squared displacement of the excess charge within the
ab initio trajectory. The slope of the linear fit is used to determine the
diffusion coefficient.

PCCP Paper

Pu
bl

is
he

d 
on

 1
0 

O
ct

ob
er

 2
01

7.
 D

ow
nl

oa
de

d 
on

 8
/1

/2
01

8 
1:

36
:1

7 
PM

. 

View Article Online



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 28604--28609 | 28607

The conversion function c(d) is then defined as:

c(d) = nhydronium
�1(nneutral(d)) (9)

using the inverse function of nhydronium. The lower picture of
Fig. 3 shows the resulting conversion.

In our implementation, we calculate the conversion function
at discrete points, and use a linear interpolation scheme to
provide a continuous mapping.

Note that the conversion function effectively shortens the
donor hydrogen bonds by around 0.25 Å in the range between
2.5 Å and 3 Å. This agrees well with the distance of the peaks of
the H3O+–H2O versus the H2O–H2O (see Fig. 2).

3.2.2 Modeling relaxation time within the LMC scheme.
Upon the jump of a proton from one water to another, the
hydrogen bond network responds in the way described above
(Section 3.2.1). However, this response is not instantaneous,
but has a characteristic relaxation time. In order to simulate
this relaxation of the water molecules in the vicinity of the
newly emerged H3O+ ion, we rescale the O–O distances when an
excess proton has just jumped (at time t0) linearly in time from
the unrescaled (du) to the rescaled (dr) distances.

dOOðtÞ ¼ dOO
neutralðtÞ þ

t� t0

trelax
dOO
hydroniumðtÞ � dOO

neutralðtÞ
h i

(10)

with t0 o t o t0 + trelax.
The choice of the dielectric relaxation time parameter trelax

determines the time span, in which the linear rescaling takes
place. It turns out that an adequate range for trelax is found
between 2 and 10 ps.

3.3 Proton dynamics in the cMD/LMC approach

In the following, we investigate how the cMD/LMC scheme
reproduces dynamical quantities such as MSD and the excess
charge autocorrelation. For this, we compare the dynamical
properties of the LMC scheme with the reference AIMD calcula-
tion and experimental results.

3.3.1 Diffusion coefficients. Table 1 lists the resulting
diffusion coefficients of the LMC scheme with different para-
meters, the reference AIMD trajectory, and experimental data.
Ab initio and experimental results differ by about a factor of
two. This is a good agreement, as routinely factors between 0.1
and 10 are reported.40,41

Next, we compare the results of the cMD/LMC scheme, and
ab initio results. Fig. 4 shows the variation of the excess charge
diffusion coefficient with respect to the relaxation time para-
meter. We see that the diffusion coefficient is in best agreement
with the reference AIMD for values trelax between 4 and around
12 ps. Values of trelax below 2 ps, on the other hand, lead to
unrealistically high diffusion coefficients which differ by an order
of magnitude. Using the oxygen distances of the neutral water
system yields a lower diffusion coefficient (around 1 Å2 ps�1) than
our reference AIMD. The reason for this behavior can be seen
from Fig. 2: the neutral oxygen–oxygen distances lie around a
distance of 1.7 Å, which corresponds to a proton jump rate of less
than one jump per ps. It should be noted that the lowest possible
diffusion rate in our scheme occurs, if the excess charge does not

Fig. 2 Comparison of the radial distribution functions between neutral water
molecules, and between a hydronium ion and water. The dotted blue line with a
peak at 2.5 Å shows the radial distribution function of a hydronium ion and water.
The dashed green line and the dashdotted red line show the radial distribution
functions of water from our ab initio and classical MD simulations.

Fig. 3 Upper picture: Cumulative distribution functions of the oxygen–
oxygen distribution for neutral water, and for neutral water and a hydronium
ion. The arrows indicate how, given an unrescaled distance of a neutral
system dOO

neutral, one arrives at the corresponding rescaled distance dOO
hydronium.

Lower picture: Resulting conversion function, which maps a distance dOO
neutral

from the oxygen distance distribution of uncharged water molecules onto
the distance dOO

hydronium from a distance distribution between an H3O+ and a
neutral water molecule.
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jump at all. In this case, only the oxygen diffusion contributes
with D = 0.6 Å2 ps�1.

While the concept of the relaxation time parameter trelax is
physically motivated, the range of 4 to 12 ps obtained by
comparison of the final diffusion coefficient to the reference
AIMD simulation may appear a quasi-empirical choice. How-
ever, this range can also be derived from an analytical con-
sideration: assuming an activation energy of 2.6 kcal mol�1 for
the cleavage and reformation of two hydrogen bonds,42 and
using a wavenumber of 170 cm�1 for the hydrogen bond
stretching frequency,43 application of the Arrhenius equation
yields an average time of around five picoseconds before a
hydrogen bond breaks. This quantitative agreement validates
the choice of trelax = 5 ps as a universal value (for liquid water).

3.3.2 Excess state lifetime. A complementary parameter for
the characterization of the dynamics of the excess proton is the
lifetime of an (excess) protonation state of a water molecule. In
order to compare our LMC scheme against our reference AIMD
simulation, we first define a state function i+(t), which yields
the oxygen index of the current H3O+ ion at time t. We then
define the excess charge autocorrelation function Z as

Z(t) = hdi+(t0),i+(t0+t)it0
(11)

where d is the Kronecker delta. The excess charge autocorrela-
tion function can be interpreted as the probability that an
oxygen atom that was threefold protonated at time t0 is still
threefold protonated at time t0 + t.

Fig. 5 shows the results for the reference AIMD and LMC the
scheme for a range of values for trelax. Qualitatively, the results are
similar to the diffusion coefficients: the best agreement with the
reference ab initio trajectory is found for values of trelax between 2 and
8 ps. The LMC scheme with unrescaled distances shows the lowest
decline of Z, caused by the larger oxygen–oxygen distances and the
resulting decreased excess charge transfer rates. The LMC scheme
with instantaneous relaxation, on the other hand, shows the fastest
decline.

4 Conclusion

We have investigated proton dynamics in liquid water on
extended time scales using a multiscale scheme which combines
ab initio and classical molecular dynamics with kinetic Monte-Carlo.
By virtue of deriving all relevant energetic/kinetic parameters needed
for the KMC part from ab initio calculations, we are able to reach an
accuracy comparable to quantum chemical methods on mesoscopic
time scales.

The diffusion constants and the excess state lifetimes obtained
from our multiscale Ansatz agree quantitatively with reference AIMD
simulations. Our studies show that the dielectrical relaxation of the
immediate surroundings of the hydronium ion needs to be explicitly
incorporated into the scheme for a realistic description of the excess
proton diffusion process. The typical relaxation time in our scheme
agrees well with hydrogen bond lifetimes, which we see as a
confirmation of the importance of hydrogen bond cleavage as the
rate determining step for excess proton transfer.

Our approach is easily applicable to more complex multi-
component systems such as Nafion, water channels in proteins,
and other nano structured molecular systems.

Conflicts of interest

There are no conflicts to declare.

Table 1 Comparison of the diffusion coefficients of the cMD/LMC
scheme and a reference AIMD simulation

Method D/Å2 ps�1

LMC (w/rescaling, trelax = 0 ps) 10.5(3)
LMC (w/rescaling, trelax = 4 ps) 1.69(6)
LMC (w/rescaling, trelax = 6 ps) 1.72(5)
LMC (w/o rescaling, (trelax - N)) 1.01(3)
Reference AIMD (this work) 1.48(1)
Experimental 0.86539

Fig. 4 Diffusion coefficients of the cMD/LMC scheme against the relaxation
time parameter trelax(x). The dashdotted line shows the diffusion coefficient of
the cMD/LMC scheme with unrescaled distance (representing the limiting case
for trelax - N). The dashed line represents the diffusion coefficient of the
ab initio simulation at 1.48 Å2 ps�1 as a reference.

Fig. 5 Autocorrelation of the H3O+ state for different values of trelax. The
upper triangular line shows the autocorrelation of the cMD/LMC scheme
with unrescaled distances as the limiting case for trelax - N. The dotted
line shows the autocorrelation for trelax = 0. The solid line shows the
autocorrelation of the ab initio simulation as a reference.
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3.1.5 Article V: Toward Realistic Transfer Rates within the Coupled
Molecular Dynamics/Lattice Monte Carlo Approach.

Gabriel Kabbe, Christian Dreÿler, and Daniel Sebastiani.
Toward realistic transfer rates within the coupled Molecular Dynamics/Lattice Monte
Carlo approach.
The Journal of Physical Chemistry C, 120(36):19905�19912, 2016.

Several aspects of the coupled Molecular Dynamics / Lattice Monte Carlo scheme
were re�ned within this publication. I provided the AIMD trajectories of CsH2PO4

and benchmarked the in�uence of the additional cut-o� parameter for the hydrogen
bond angle on the proton conductivity. G. Kabbe derived proton transfer rates from
separate quantum chemical calculations and extended the functional form of the pro-
ton jump rates used within the cMD/LMC scheme. D. Sebastiani supervised the
project and gave valuable advice during the project work and while G. Kabbe was
writing the manuscript.



Toward Realistic Transfer Rates within the Coupled Molecular
Dynamics/Lattice Monte Carlo Approach
Gabriel Kabbe, Christian Dreßler, and Daniel Sebastiani*

Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany

*S Supporting Information

ABSTRACT: We refine our recently developed coupled molecular
dynamics/lattice Monte Carlo (cMD/LMC) scheme for the simulation of
protonation dynamics in complex hydrogen-bonded solids in view of
improving the resulting transport processes. The distance dependency of
the proton jump rate between lattice sites and its dependence on additional
geometric criteria (bond angles) are derived in a systematic and consistent
way. The distance dependency follows an accurate potential energy surface
(PES) scan from quantum chemical calculations. The novel geometric
criterion takes into account that proton hopping occurs almost exclusively
along linear hydrogen bonds. We illustrate the capabilities and the versatility
of our scheme on the example of two chemically quite different condensed phase systems: a crystalline solid acid compound and
a liquid crystal. Surprisingly, we find that our cMD/LMC scheme yields converged mobility parameters even when based on
underlying ab initio molecular dynamics (AIMD) trajectories which themselves are not fully converged. Our method yields more
accurate values for the mean square displacement, the OH bond autocorrelation function and the proton jump frequencies in
agreement with both reference AIMD simulations and experimental values.

■ INTRODUCTION

Atomistic simulations play an important role for the
determination of dynamical properties and structural features
of complex materials. The observation of mesoscale phenom-
ena, however, is often hindered by the limited time scales
accessible to these methods, which necessitates the use of
sophisticated scale-bridging approaches.
The simulation of proton transport in proton exchange

membrane (PEM) fuel cells is a typical example of a
phenomenon that needs a high level of structural accuracy
over a large time interval in order to sufficiently sample the
relevant processes. High level ab initio methods such as density
functional theory (DFT) can provide the structural accuracy
needed for a quantitative description of the transport processes,
but are computationally expensive. Nevertheless, proton
transport is a phenomenon which has been studied under
quantum chemical aspects before.1−9 Lower level methods on
the other hand allow the exploration of time scales several
magnitudes above those of DFT, but they often deliver either
unsatisfactory results or need additional fine-tuning (e.g., force
field parametrization) specifically for this observable.
Our cMD/LMC approach10 aligns with several methods that

have combined molecular dynamics and Monte Carlo like
schemes in order to extend the accessible time scales in diverse
fields such as solid state physics,11−15 polymer sciences16−19 or
biophysics.20−23 The general vision is the simulation of ion
transport phenomena on mesoscopic time scales while
preserving the structural accuracy delivered by high level
methods of theory. For this, we combine AIMD with a Lattice
Monte Carlo (LMC) scheme, which is discrete both in time

and space. The AIMD delivers the structural features of the
examined system, whereas the LMC algorithm is responsible
for the simulation of the ion transport over significantly
extended time scales compared to pure AIMD simulations. In
this work, we considerably enhance the accuracy of the cMD/
LMC scheme by incorporating additional parameters for the
structure dependent jump rates that dynamically adapt to the
constantly changing molecular structure. Our enhanced scheme
is able to predict the response of ionic conductivity to phase
transitions and chemical substitutions in organic and inorganic
proton conducting compounds.24

■ METHODS

Summary of the cMD/LMC Method. Our cMD/LMC
method consists of an LMC-based propagation of protons on
lattice sites which are extracted on-the-fly from an underlying
molecular dynamics simulation.10 Lattice Monte Carlo in this
context refers to a random walk Monte Carlo method, which
comprises a discrete lattice whose sites can be in one of two
states: occupied or unoccupied. In contrast to Kinetic Monte
Carlo schemes like the residence time algorithm, where the
KMC time is incremented by drawing Δt from an exponential
distribution, our scheme evolves the occupation states of the
lattice in discrete time steps Δt = const.. In our case, the lattice
sites correspond to the oxygen atoms of the considered system.
Their distances fluctuate during the MD run, and so does the
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corresponding hopping rate within the LMC run. The specific
details of the implementation have been reported previously.10

Here, we review only specific aspects which are relevant for our
improvements.
Kinetic Monte Carlo methods often employ predefined

reaction rates,25−27 which are suitable in solid state physics
thanks to the fixed atomic structure in a solid state lattice. The
higher flexibility of soft matter systems, however, demands a
scheme that adapts dynamically to changes in the molecular
structure over time. In general, the jump rate of a proton (or
any other particle) is determined by the energy barrier, which it
needs to overcome, in order to move to another site. The free
energy on the other hand, depends on the locations of the
remaining atoms, which “form” the potential energy surface, on
which the proton moves. Thus, a realistic jump rate between
two sites requires (a) sufficient supramolecular sampling to
incorporate entropic contributions and (b) an adequate way to
determine the energy barriers for a given molecular geometry.
In our approach, the entropy contribution is taken into account
implicitly by means of the atomic/molecular motion within the
MD simulation.
Determination of Accurate Proton Jump Rates. The

matrix of jump rates between the proton acceptor sites is the
most critical input parameter of the cMD/LMC scheme. In our
approach, this matrix is repeatedly derived from the
instantaneous molecular geometry of the system.
There exist two distinct ways to determine a rate function

that links the molecular geometry with the jump rate matrix:
Postprocessing of the AIMD trajectory directly results in a
distance dependent jump rate.10 More information on this
method can be found in the Supporting Information. The other
method, on which we will focus here, obtains the proton jump
rates from quantum chemical PES scans of a proton transfer
reaction.
The proton transfer from one site to another is the reaction

whose activation energy we want to determine. The systems
considered in this work contain hydrogen bonds of type P−O−
H···OP. Hence, we have chosen a phosphoric acid dimer to
compute the PES via quantum chemical calculations.
Calculating the activation energy for a proton transfer at

different oxygen distances allows us to determine the proton
transfer activation energy Ea

PES(dOO) as a function of the O−O
distance dOO, which in turn allows us to determine a distance-
dependent proton jump rate as a function of the oxygen
distance and temperature via the Arrhenius law:

ω = −
⎛
⎝⎜

⎞
⎠⎟d A

E d
k T

( ) exp
( )aPES

OO

PES
OO

B LMC (1)

It should be noted that the temperature parameter TLMC in eq 1
is an additional temperature, which is formally independent of
the temperature at which the MD simulation has been
performed. The coexistence of these two temperatures and
their impact on protonation dynamics will be discussed further
down in the Results.
Simulation Time and Box Size in the LMC Scheme.

Thanks to the parametrically determined hopping probabilities
in the LMC scheme, the cMD/LMC approach reaches a
number of proton propagation steps which is several orders of
magnitude larger than the corresponding number of MD steps.
As our LMC scheme uses an underlying AIMD trajectory to
generate the proton jump rates, the cMD/LMC algorithm

needs to sample the jump rates and oxygen positions multiple
times from the trajectory.
The LMC algorithm updates its jump rates during its run by

loading the next frame from the trajectory. As soon as the
trajectory has reached its end, it starts from the beginning again.
We have deliberately chosen this continuous update scheme, as
previous studies showed that it generates the most accurate
proton dynamics, compared to other schemes such as random
update schemes.10

The cMD/LMC algorithm allows the simulation of
considerably larger boxes compared to AIMD. In our cMD/
LMC scheme, we exploit this by replicating the MD box along
its periodic axes. Figure 1 shows a schematic drawing, where the
MD box is duplicated along two axes, still allowing different
protonation patterns in the four replica.

Proton Conducting Compounds as Benchmark Sys-
tems. We have chosen two chemically very different
compounds for the cMD/LMC based simulation of proton
conduction: a cesium type solid acid CsH2PO4 (see Figure 2),
and a discotic liquid crystal Hexakis(p-phosphonatophenyl)-
benzene (p-6 PA-HPB) (see Figure 3), both containing a
phosphate/phosphonic acid group. Computational details of

Figure 1. Schematic picture of the LMC box enlargement. The
oxygens of the AIMD trajectory (red circles) are copied along the
periodic axes, whereas the LMC protons (black circles) can move
individually in the newly created large box.

Figure 2. Crystal structure of CsH2PO4, a solid acid compound, in the
high temperature phase. Note the three-dimensional hydrogen bond
network.
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the previously performed simulations are given in24 and.28 The
dimensions of the simulation box and the starting config-
urations of the systems were obtained from crystal structure
data from the literature.29,30

■ RESULTS
Jump Rate Determination from Energy Surface Scans.

The central input for the MC part of the cMD/LMC scheme is
the jump rate ω(dOO), which defines the proton hopping
frequency between a pair of oxygens, as a function of their
distance dOO. Using the Arrhenius law (eq 1), we can write it in
terms of the activation energy Ea(dOO) a proton needs to
overcome to move between the two corresponding oxygens
atoms.
For both parameters A and Ea we will show two independent

ways of calculation. The activation energy Ea can be determined
statistically from AIMD trajectories at different temperatures
(denoted here as Ea

aimd) or from PES scans (denoted as Ea
PES).

The Arrhenius prefactor A can be determined both from
theoretical considerations (denoted as Avibrational) and from
statistical analysis of the jump rates in AIMD simulations
(denoted as Aaimd).
Determination of the Activation Energy. We determine the

activation energies for a proton transfer between two
phosphoric acids for different distances of the donor and
acceptor oxygens in a range between 2.2 and 3.5 Å by means of
constrained geometry optimizations. The potential energy
surface (PES) were determined using the ab initio quantum
chemistry program Orca31 with closed shell SCF and the
DEF2-TVZP basis set32,33 with the BLYP functional.34,35 Fixing
the distance dOO between donor and acceptor, a PES scan is
conducted by varying the OH distance dOH. Figure 4 shows the
resulting potential energy surfaces (PES) for dOO = 2.6 Å. We
obtain a very low barrier of only 6 kcal/mol, corresponding to
about the energy of a hydrogen bond.
We determine the energy barrier the proton has to overcome

by calculating the difference between the left PES minimum
and the local maximum in the center. This procedure is
repeated for values of dOO in the range between 2.2 and 3.5 Å.
Figure 5 shows the resulting activation energy of a proton

transfer within the phosphoric acid dimer as a function of the
distance dOO between donor and acceptor oxygen. The black
crosses show the results from the PES scans of the phosphoric
acid dimer, whereas the red circles show results from a
statistical analysis of the AIMD trajectories (for a detailed

description see Supporting Information and ref 10). Both
methods are in good agreement, which we believe is a good
indication of their validity.
It turns out that the distance dependence of the activation

energy can be fitted with good accuracy to a function of the
form

=
≤

−
+

>
−

⎧
⎨
⎪⎪

⎩
⎪⎪

E d

d d

a d d

b
d d( )

0

( )

d d

a

0

0
1

( )

0

0
2

(2)

Note that the function Ea(d) has a quadratic increase when d is
close to d0 and becomes linear for large d.
The resulting fit parameters for Ea

PES(dOO) are listed in Table
1. The functional form of Ea

PES(dOO) is shown in Figure 5 as a
solid blue line.
Additionally, we determined the fit parameters for a PES scan

of a proton transfer in a sulfur dimer, and between a
phosphorus monomer and a sulfur monomer. The results can
be found in the Supporting Information.
Finally, we want to make some remarks about the reasoning

behind this procedure. For the geometry optimizations, only
the two internal coordinates dOO and dOH are constrained. As a

Figure 3. Sketch of the local structure of hexakis(p-
phosphonatophenyl)benzene (p-6 PA-HPB). The disk shaped
molecules form columns, which assemble in a hexagonal lattice
structure. Hydrogen bonds form between the columns enabling three-
dimensional proton transport.

Figure 4. Upper picture: Phosphoric acid dimer used for the quantum
chemical calculation of the activation energy at different distances
between the donor and acceptor oxygens. Lower picture: Potential
energy surface of a proton transfer within the phosphoric acid dimer.

Figure 5. Calculated activation energies for the proton transfer
between phosphonate groups. Black crosses: Results from the energy
surface scan of the phosphoric acid dimer (Figure 4). Red circles:
Statistical determination from jump rates in an AIMD simulation.10
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consequence, we observe that during the proton scan, a second
proton moves from one phosphoric acid to the other,
conserving the charge neutrality of the two molecules. We
believe that allowing this (inverse) proton transfer is the correct
approach because we observe in our MD simulation that the
lifetime of a P(OH)3

+ group (see Supporting Information) is
below 70 fs in 90% of all occurrences. Therefore, we conclude
that in the vast majority of proton transfers, a protonation event
will almost immediately be followed by deprotonation at the
same phosphonic group.
Actually, an almost identical PES is obtained in the case of a

phosphoric acid dimer with an additional excess proton, which
hinders the transfer of a second proton (see Supporting
Information).
Arrhenius Prefactor. According to eq 1, the determination of

the activation energy for a proton jump is not yet sufficient to
determine an absolute jump rate; in addition, the Arrhenius
prefactor A needs to be determined. There are two distinct
ways: one is a statistical determination from AIMD trajectories,
and the other one an estimation from the vibrational frequency
of the relevant proton.
The statistical approach yields a jump frequency ωT

AIMD via an
explicit counting of hopping events (see Supporting Informa-
tion and10). The resulting rates ωT

aimd can be used to fit the free
parameter A of ωPES by minimizing the sum of the squared
deviations Δ between ωPES and ωaimd with respect to A:

∑ ω ωΔ = −A d A d T( ) ( ( ) ( , , ))
i T

T i i
,

aimd PES 2

(3)

We find the minimum of Δ for A = 0.0753 fs−1. This value has
been used for all of the following calculations.
The Arrhenius prefactor A in eq 1 can also be estimated in an

alternative way from a simple physical consideration: the
Arrhenius equation for a proton hopping event can be
interpreted by an escape-attempt frequency and a success
probability factor. The former corresponds to to the Arrhenius
prefactor, while the latter is represented by the Boltzmann
factor exp(−βEa). Within this interpretation, it is straightfor-
ward to use the vibrational frequency (of the stretch mode) of
the mobile proton as the attempt frequency. Hence, we use the
experimentally determined frequency of phosphoric acid
(2280−2380 cm−1),36 which yields a value Avibrational ≈ 0.07 fs−1.
It is reassuring that the Arrhenius prefactor obtained via the

statistical analysis of the AIMD trajectory and the Arrhenius
prefactor obtained from the vibrational frequency show such
good agreement.
Figure 6 shows a comparison of the jump rates ωPES (dOO)

with the AIMD jump rates for CsH2PO4 at 510 K and p-6 PA-
HPB at 500 K. The statistical errors of ωaimd are of the order σ
= 0.1 fs−1, but are not shown in Figure 6 for a better overview
(The jump rate comparison including error bars can be found
in the Supporting Information). ωPES shows a good agreement
with ωaimd in the range from 2.3 and 2.6 Å. Most O−O
distances occur in this range, and therefore the proton jump
rates are more converged there. Below 2.3 Å, the sampling

worsens, however. In this range, ωPES shows a considerably
smoother line.

Angular Dependence of the Jump Rate. For a realistic
description of proton transfer between hydrogen bonds within
the LMC scheme, a purely distance-based description of the
proton jump rate is not sufficient, as it allows proton jumps for
hydrogen bonds of arbitrary geometry. We therefore improve
our LMC algorithm by refining the criterion that is used to
determine the probability of a proton jump for a given
molecular structure. While the purely distance-dependent jump
criterion in the LMC scheme already results in a reasonable
description of the proton dynamics on longer time scales, it
tends to overestimate jump rates between certain oxygen pairs
that show little to no proton jumps at all in the AIMD.
Therefore, we integrate an angle criterion that filters out
fictitious OH bonds that only fulfill the distance criterion.
While the existence of an H-bond can be verified in an MD

simulation by geometric examination, this is not possible within
the LMC scheme because of the nonatomistic nature of the
protons: they are modeled as particles “sitting” on an oxygen,
but do not have a real position in space. We therefore use the
angle α = ∠PO1O2 between the phosphorus atom P next to
oxygen O1, which hosts a proton, and O2, which is an
unoccupied oxygen atom, from the MD trajectory as an
additional geometric parameter for the LMC.
The previous distance-dependent jump rate function is then

modified with a Heaviside step function Θ(α − α0), according
to

ω α ω α α= Θ −d d( , ) ( ) ( )0 (4)

As angle cutoff parameter, we choose α0 = π/2, as an analysis of
the angle dependency of the proton jump rate showed that
nonzero probabilities for proton jumps are mostly found at
angles α > π/2. This modification suppresses any proton jumps
between oxygen pairs with a geometry that does not allow for a
linear hydrogen bond.

Table 1. Functional Parameters for the Activation Energy
Function Ea

PES(dOO) (See eq 2) for a Phosphoric Acid Dimer

parameter value unit

a (36 ± 5) kcal/mol/Å2

b (−0.7 ± 0.5) Å−2

d0 (2.22 ± 0.02) Å

Figure 6. Comparison of proton jump rates obtained from AIMD
(crosses) and the new jump rates obtained from quantum chemical
activation energy calculations. Upper picture: jump rates of CsH2PO4
at 510 K. Lower picture: jump rates of p-6 PA-HPB at 500 K.
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We benchmark the results of the newly introduced angle
criterion by calculating the mean squared displacement and the
covalent OH bond auto correlation function of the compounds
CsH2PO4 and p-6 PA-HPB from the cMD/LMC method
without angle criterion and the cMD/LMC method with angle
criterion, and comparing it with the AIMD results.
For the determination of the LMC diffusion coefficients, we

average each run over 100 intervals with length 500000 sweeps
(=̂250 ps MD time).
Figure 7 shows the resulting diffusion parameters of p-6 PA-

HPB at 600 K. The cMD/LMC algorithm strongly over-

estimates the MSD without the angle criterion. Enabling it
reduces the MSD and the resulting slope. Similarly, the
covalent OH bond auto correlation function shows a strong
decline with the angle criterion turned off, whereas the LMC
run with activated angle criterion produces an auto correlation
in much better agreement with the AIMD results. Table 2
shows the resulting diffusion coefficients for all compounds and
temperatures. All further graphical comparisons can be found in
the Supporting Information.

Convergence Behavior in Length and Time. On the
basis of a trajectory of CsH2PO4 at 510 K, we investigate the
convergence behavior of the cMD/LMC algorithm as well as
the AIMD upon variation of the length of the AIMD
trajectories, and compare the resulting proton diffusion
coefficients of the cMD/LMC scheme with the corresponding
AIMD results. Complementary to this, we have analyzed the
convergence in terms of simulation box size within the cMD/
LMC approach.
Figure 8 shows the results for trajectory lengths from 30 to

150 ps. Starting at an AIMD trajectory length of 30 ps, the

diffusion coefficient of the AIMD (black crosses) is at about 15
× 10−3 Å2/ps. At this point, the AIMD trajectory has not
converged yet, as its diffusion coefficient declines quickly for
simulation times up to 150 ps, and approaches a value of about
6 Å2/ps.
The cMD/LMC method, on the other hand, is much less

affected by the length of the underlying AIMD trajectory,
showing reasonably converged results when applied on top of
an AIMD trajectory of 30 ps total duration. It should be
recalled that the cMD/LMC algorithm loops continuously

Figure 7. Comparison of the proton movement in p-6 PA-HPB at 600
K using the cMD/LMC algorithm without an additional angle
criterion (crosses), with angle criterion (squares), and the AIMD
(circles) as reference. Upper picture: Comparison of the mean squared
displacement. Lower picture: Comparison of the covalent O−H bond
auto correlation function.

Table 2. Diffusion Coefficients of the Proton Motion in the Two Compounds p-6 PA-HPB and CsH2PO4 for Different
Temperaturesa

compound cMD/LMC w/o cutoff cMD/LMC w/cutoff AIMD result

p-6 PA-HPB 400 K (3.0 ± 0.2) × 10−1 (4 ± 1) × 10−3 (1.3 ± 0.2) × 10−2

p-6 PA-HPB 500 K (6.1 ± 0.3) × 10−1 (1.0 ± 0.2) × 10−2 (1.5 ± 0.3) × 10−2

p-6 PA-HPB 600 K (1.05 ± 0.05) (4.6 ± 0.4) × 10−2 (3.8 ± 0.5) × 10−2

CsH2PO4 510 K (1.6 ± 0.2) (9 ± 2) × 10−3 (5 ± 3) × 10−3

CsH2PO4 560 K (1.9 ± 0.2) (1.4 ± 0.3) × 10−2 (1.2 ± 0.4) × 10−2

aMiddle column: cMD/LMC with angle cutoff. Right column: cMD/LMC without angle cutoff. All values in Å
ps

2
.

Figure 8. Comparison of the diffusion coefficients obtained from
AIMD and LMC for different trajectory lengths.
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through copies of the underlying AIMD trajectory, yielding
much larger effective time scales for the protonation dynamics.
We further analyzed the convergence of the diffusion

coefficients for the oxygens versus hydrogens, respectively
(Figure 9). The data shows that the oxygen diffusivity

converges considerably faster (after around 50 ps of AIMD
sampling) than that of the protons (after around 100 ps). This
illustrates why the cMD/LMC approach is able to yield
converged proton diffusivities earlier than a corresponding
explicit AIMD simulation. On a more technical level, we
observe that the oxygen−oxygen radial distribution function is
virtually constant during the entire trajectory (see Figure 34 in
the Supporting Information), which in turn results in a
practically constant proton hopping rate at the LMC level
and thus a very quick convergence of the LMC proton diffusion
constant.
Regarding the influence of the simulation box size, Figure 8

shows that the protonation dynamics are already uncorrelated
at distances of 10−20 Å.
In summary, the cMD/LMC is able to yield stable values of

the diffusion coefficient, even when the diffusive dynamics in
the underlying AIMD trajectory have not fully converged yet.
Relevance of MD versus Lattice Monte Carlo (LMC)

Temperature to Proton Conduction. A special aspect of
our cMD/LMC scheme is the coexistence of two formally
independent temperatures: TMD of the underlying AIMD
simulation, and TLMC used in the Arrhenius factor for the LMC
proton jump rate. Naturally, both temperatures have their
specific influence on the outcome of a cMD/LMC run.
While TMD determines the temperature of the degrees of

freedom associated with the heavy atom structure, TLMC affects
the local hopping dynamics of the protons only.
We have computed the proton diffusion coefficients for

CsH2PO4 and p-6 PA-HPB at different values of TMD and TLMC.
The results are shown in Figure 10 and Figure 11. For each data
point, 1000 cMD/LMC runs were conducted over a time of
250 ps and averaged.
For a fixed MD temperature TMD, the diffusion coefficient

shows a linear increase with TLMC. In all observed cases, an
increase of TMD leads to a higher increase of the diffusion
coefficient than an equal increase of TLMC. This initially appears
surprising. Actually, we observe in all cases that the diffusion
coefficient is more sensitive to TMD than it is to TLMC. This
shows that the dynamics of the heavy atom structure play a
larger role for the proton transport than the local proton
dynamics, at least for all systems considered here.
The simultaneous variation of both TMD and TLMC leads to a

conventional Arrhenius-like temperature behavior of the

diffusion coefficient. Experimentally, the diffusion coefficient
of dehydrated p-6 PA-HPB is available for T = 300 K.37 Hence,
we have extrapolated our cMD/LMC simulations to ambient
temperature (see Figure 12), yielding almost quantitatively the
corresponding experimental diffusion coefficient.

■ CONCLUSION
In this paper, we have presented an important step in the
development of our cMD/LMC algorithm in view of its general
applicability to proton conduction in complex disordered
condensed phase systems.
The proton jump rate function, which is the most important

aspect of the LMC part, has been improved in two aspects: We
show, how to derive its distance dependency from ab initio
calculations on the specific example of a discotic organic and a

Figure 9. Comparison of the diffusion coefficients of the proton and
oxygen atoms obtained from AIMD.

Figure 10. Diffusion coefficient of CsH2PO4 in the cMD/LMC
scheme for varying LMC temperatures.

Figure 11. Diffusion coefficient of p-6 PA-HPB in the cMD/LMC
scheme for varying LMC temperatures.

Figure 12. Comparison of the diffusion coefficient of p-6 PA-HPB
determined via cMD/LMC simulations and extrapolated from
experimental results.
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crystalline anorganic compound containing phosphonic and
phosphoric acid groups. Further, a geometric cutoff criterion for
the proton jump rates in the LMC scheme has been added to
account for the fact that most proton jumps occur only along
linear hydrogen bonds. Benchmarks of the improved cMD/
LMC scheme show good agreement with conventional AIMD
simulations.
The cMD/LMC scheme has enabled us to decompose the

proton diffusion rates from heavy atom motion and (more
local) proton hopping phenomena, respectively. In our context,
we are able to assign independent characteristic temperatures to
these separate degrees of freedom, providing new insight into
their competition as rate-determining processes. Our results
indicate that for both considered systems, slow modes (i.e.,
heavy atom motion) are more relevant than the local proton
mobility.
We have shown additionally that the cMD/LMC scheme is

able to yield a converged diffusion coefficient even if only a
short AIMD trajectory is available.
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Klapper, M.; Müllen, K. Phosphonated Hexaphenylbenzene: a
Crystalline Proton Conductor. Angew. Chem., Int. Ed. 2009, 48,
9951−9953.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.6b05821
J. Phys. Chem. C 2016, 120, 19905−19912

19912



106 Chapter 3. Summary of the Peer-reviewed Articles

3.2 E�cient Representations of the Static LDDRF

A central aim of this thesis is the derivation and investigation of e�cient representa-
tions of the linear density-density response function (LDDRF). The LDDRF is given
in equation (3.2) and links arbitrary perturbing potentials Vpert to molecular response
densities nresp via a linear integral transform. We describe this transformation using
the linear operator T̂ : Vpert 7→ nresp.

T̂ : Vpert 7→ nresp (3.1)

with nresp(r) =

∫
χ(r, r′)Vpert(r

′)d3r′ (3.2)

In section 2.3 of the theory part of this thesis, a detailed derivation of equation
(3.2) and a discussion of the properties of the linear operator T̂ are presented. It
was shown that the LDDRF essentially possesses an in�nite-dimensional eigensystem
representation according to

T̂ =
∞∑

i=1

|χi〉λi〈χi|, (3.3)

with eigenvalues λi for the eigenfunctions χi(r).
The starting point of the investigations in this thesis is a much more e�cient rep-

resentation of the LDDRF that was published in 2016 by Scherrer and Sebastiani:144

the moment expansion.
The assumption that a signi�cant part of the perturbing potential (caused by

neighboring molecules) can be expanded at the responding molecule using only a few
basis functions {|P1〉, |P2〉, ..., |PN 〉} (e.g. in terms of a multipole or Taylor expansion)
is a crucial prerequisite of the moment expansion. Thus, we assume for the perturbing
potential at the responding molecule:

Vpert(r) ≈
N∑

n=1

cnPn(r). (3.4)

Article [Dreÿler et al., J. Comput. Chem., 2019.] in this thesis demonstrates that
this assumption is a very good approximation for the speci�c case of water. It is
demonstrated there that the perturbing potential arising from a neighboring water
molecule at di�erent chemically relevant distances can be described with high ac-
curacy using 34 monomials or Racah-normalized regular solid harmonic functions.
From here on, P[N] := Span(P1, P2, ..., PN ) denotes the vector space spanned by
{|P1〉, |P2〉, ..., |PN 〉}.

Scherrer and Sebastiani converted the eigenstates {χi | i ∈ N} into a new set of
states {ξi | i ∈ N} by using unitary transformations. We refer to these functions
ξi as moment-expanded states. These states ful�ll a partial orthogonality relation
with respect to the basis functions {|P1〉, |P2〉, ...} of the expansion of the perturbing
potential:

〈ξi, Pn〉 = 0 ∀ i > n (3.5)

Due to the partial orthogonality relation, onlyN moment-expanded states {|ξ1〉, |ξ2〉, ..., |ξN 〉}
have a non-zero overlap with the N -th basis function |PN 〉 of the perturbing potential.
The full density response due to perturbing potentials Vpert ∈ P[N] is reduced to a
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sum over N terms:

T̂|Vpert〉 =
N∑

i=1

|ξi〉〈ξi, Vpert〉. (3.6)

In article [Dreÿler et al., J. Comput. Chem., 2019.], a thorough mathematical deriva-
tion of the moment expansion and a careful investigation of its properties is pre-
sented. The moment expansion of the LDDRF using N moment-expanded states
is equivalent to a restriction T̂|P[N] of the operator T̂ to the vector space P[N] :=
span(P1, P2, ..., PN ). The article [Dreÿler et al., J. Comput. Chem., 2019.] starts

from the (in�nite) matrix representation T
{
√
λkχk}

{Pk} of the linear operator T̂ with re-
spect to the {Pn | n ∈ N} as the basis of the domain and the eigenvalue-weighted
eigenfunctions {

√
λiχi | i ∈ N} of T̂ as the basis of the image. Utilizing this ma-

trix formalism, it is proved that the moment expansion can be interpreted as a QR
decomposition of the (in�nite) matrix representation T

{
√
λkχk}

{Pk} of T̂:

T
{
√
λkχk}

{Pk} = QR. (3.7)

The orthogonal matrix Q is the change-of-basis matrix that describes the unitary
transformation of the eigenfunctions {χi | i ∈ N} to the moment-expanded states
{ξi | i ∈ N}:

ξi =
∞∑

l=1

Qli

√
λlχl, (3.8)

The elements Rij of the matrix R are obtained as the overlap integrals Rij = 〈ξi, Pj〉
of the moment-expanded states ξi and the basis functions of the perturbing potential
Pj . Taking into account that R is an upper triangular matrix, we can directly deduce
the partial orthogonality condition from equation 3.5.

The description of the moment expansion in terms of an (in�nite) QR decompo-
sition includes the initially published algorithm of the moment expansion, which is
based on the calculation and transformation of thousands of eigenstates.144

In the article [Ahlert et al., Eur. Phys. J. B, 2018.], another algorithm based
on the initial idea of Scherrer is published that allows for the calculation of the
�rst N moment-expanded states within only N self-consistent DFPT calculations,
instead of several thousands to reach the same level of accuracy. We refer to this
algorithm, which enables the calculation of the moment expansion itself with a sig-
ni�cantly reduced computationally e�ort, as direct moment expansion. A more so-
phisticated understanding of the algorithm of the direct moment expansion is pro-
vided in the article [Dreÿler et al., J. Comput. Chem., 2019.] in this thesis. It is
proved here that the �rst N basis functions of the expansion of the perturbing poten-
tial {|P1〉, |P2〉, ..., |PN 〉} and their explicitly calculated associated density responses
{|ñ1〉 := T̂|P1〉, |ñ2〉 := T̂|P2〉, ..., |ñN 〉 := T̂|PN 〉} are related via the overlap matrix
R (which was calculated in terms of the QR decomposition). It is also proved that
the matrix R can also be obtained by a Cholesky decomposition of a matrix Θ:

Θ =
(
RTR

)
, (3.9)

where Θ is a (small) N ×N matrix with elements Θij = 〈Pi, ñj〉.
Following this line of approach, we can formulate an e�cient protocol for the

calculation of the �rst N moment-expanded states {|ξ1〉, |ξ2〉, ..., |ξN 〉}:
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� calculate {|T̂P1〉︸ ︷︷ ︸
|ñ1〉

, |T̂P2〉︸ ︷︷ ︸
|ñ2〉

, ..., |T̂PN 〉︸ ︷︷ ︸
|ñN 〉

} via N explicit self-consistent solutions of a

Sternheimer-like equation using DFPT (cf. section 2.2.3).

� calculate the N ×N matrix Θ with elements Θij = 〈Pi, ñj〉

� calculate R using a Cholesky decomposition Θ = RTR (using library algo-
rithms, e.g. lapack)

� the inverse matrix R−1 transforms the set {ñi | i ≤ N} into the moment-
expanded states {ξi | i ≤ N} via

|ξi〉 =
i∑

j=1

|ñj〉
(
R−1

)
ji
. (3.10)

In conclusion, the numerical determination of the �rst N moment-expanded states
requires of the order of N applications of T̂ (and linear algebra operations with neg-
ligible e�ort). The matrix R is an upper triangular matrix, which ensures that all
equations used in the protocol for the determination of the �rst N moment-expanded
states are exact and can be truncated for every N ∈ N without the loss of any informa-
tion. The description of the moment expansion and the direct moment expansion in
terms of a QR decomposition and a Cholesky decomposition, respectively, puts these
approaches on a solid mathematical foundation and allows for their generalization to
other self-adjoint, compact and positive linear operators.

The derivation of another e�cient representation of the LDDRF is motivated by
a comparison of the domain and the image of the restriction T := T̂|P[N ] of the
linear operator T̂ to P[N]. It is immediately apparent that perturbing potentials and
molecular response densities are quite di�erent functions. While molecular response
densities are highly oscillating functions which resemble linear combinations of atomic
basis functions, the perturbing potential arising from a non-overlapping charge density
can be expressed e�ciently by smooth functions, e.g. by a Taylor expansion using
monomials. The eigensystem representation resolves this mismatch of the domain
and the image of T by means of a large number of basis functions (eigenfunctions)
resulting in a high-dimensional matrix representation. In contrast, the dimensionality
of the moment expansion in equation (3.6) is signi�cantly reduced, but molecular
response densities and perturbing potentials have to be expressed by a small number
of N moment-expanded states. This contradiction is resolved by the fact that the
moment-expanded states only form a basis for the response densities. According to
equation (3.6), only the overlap of the non-orthogonal moment-expanded states and
the perturbing potential is taken into account for the calculation of the response
densities. The overlap of two functions can be non-zero even if the functions are from
distinct vector spaces with trivial intersection. In the article [Dreÿler, Sebastiani, Int.
J. Quantum Chem., 2020.], it is proved that the expression of perturbing potentials
within a basis of the moment-expanded states does not retain the functions. However,
these �wrong� perturbing potentials expanded in moment-expanded states can still be
inserted as |Vpert〉 into equation (3.6) without any loss of information concerning the
molecular responses densities. While the expression of the perturbing potentials in
the moment-expanded states will alter the function itself, it retains the overlap with
the moment-expanded states which corresponds to unchanged response densities.
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Starting from this idea, it is straightforward to create a new representation with
even more desirable properties compared to the moment expansion. By diagonaliza-
tion of the overlap matrix of the moment-expanded states, it is possible to obtain a
new representation with orthonormal eigenstates and eigenvalues that possesses the
same dimensionality and contains the same information for the calculation of response
densities compared to the moment expansion.

T̂|P[N] =
N∑

n=1

|χ̃i〉λ̃i〈χ̃i|. (3.11)

We refer to this new representation obtained from the reconstructed eigenstates and
eigenvalues as the reduced eigensystem representation. The convergence behavior of
this reduced eigensystem representation is now apparent from the decay of the eigen-
values because the eigenstates are orthonormal. In the article [Dreÿler, Sebastiani,
Int. J. Quantum Chem., 2020.], it is demonstrated that the eigenvalue spectrum de-
cays very fast for small molecules, which in turn allows for a further reduction of the
dimensionality of this representation by neglecting the eigenfunctions corresponding
to small eigenvalues.

The e�cient representation of the LDDRF is particularly useful for the repeated
calculation of molecular density responses due to varying perturbing potentials. As a
result, molecular dynamics simulation is an ideal candidate for the application of the
e�cient representations of the LDDRF. In molecular dynamics, the electron density
of a molecule is perturbed by the potential of the charge density from neighboring
molecules. Due to the �uctuation of the atomic coordinates, the perturbing poten-
tials are constantly changing for subsequent MD steps. In the article [Scherrer et al.,
J. Chem. Phys., 2016.], the geometry dependence of the moment-expanded states
is investigated by means of a Taylor expansion. Employing the e�cient representa-
tion of the LDDRF, it is possible to calculate polarizabilites of water molecules by
post processing of an MD trajectory. The Raman spectra are accessible by means
of autocorrelation and Fourier transformation of these polarizabilities. These spectra
were compared to Raman spectra obtained from explicit AIMD simulations for the
validation of our approach.

3.2.1 Article VI: Reduced Eigensystem Representation of the LD-
DRF

Christian Dreÿler and Daniel Sebastiani
Reduced eigensystem representation of the linear density-density response function.
International Journal of Quantum Chemistry, 120(3):e26085, 2020.

In this article, I derived and implemented the theory. I prepared the manuscript.
D. Sebastiani supervised the project and provided me with valuable advice during the
derivation of the equations and while I was writing the manuscript.



F U L L P A P E R

Reduced eigensystem representation of the linear density-
density response function

Christian Dreßler | Daniel Sebastiani

Institute of Chemistry, Martin-Luther-

University Halle-Wittenberg, Halle, Germany

Correspondence

Daniel Sebastiani, Institute of Chemistry,

Martin-Luther-University Halle-Wittenberg,

Von-Danckelmann-Platz 4, 06120 Halle

(Saale), Germany.

Email: daniel.sebastiani@chemie.uni-halle.de

Abstract

The linear density-density response function represents a formulation of the generalized

density response of a molecular (or extended) system to arbitrary perturbing potentials.

We have recently established an approach for reducing the dimension of the (in principle

infinite) eigenspace representation (the moment expansion) and generalized it to arbitrary

self-adjoint, positive-definite, and compact linear operators. Here, we present a modified

representation—the reduced eigensystem representation—which allows to define a trivial

criterion for the convergence of the approximation to the density response. By means of

this novel eigensystem-like structure, the remarkable reduction of the dimensionality

becomes apparent for the calculation of the density-density response function.

K E YWORD S

density-density response function, density functional perturbation theory, eigensystem

representation, molecular interaction

1 | INTRODUCTION

For the description of large systems, quantum mechanical electronic structure methods suffer from the “curse of dimensionality,” because their

scaling behavior is far from linear. The decomposition of large systems into interacting smaller subsystems is an obvious attempt in order to solve

this problem. Following these ideas, many embedding or subsystem density functional theory methods[1] like frozen density embedding[2–8] or

embedded correlated wave functions methods[8–11] were developed in the literature.

For the specific case of interacting molecules, a fragmentation approach which considers the individual molecules as elementary subsystems is

suited. Then, the intermolecular interaction energy has to be obtained via post processing of the results for the isolated molecules. In particular

for the electrostatic interaction energy, methods like multipole expansions,[12–18] density fitting,[19–22] or perturbation theories[23–28] are utilized.

Accurate electrostatic interaction energies should take polarization effects into account. The linear density-density response function from

Equation (2) offers a tool to calculate the fully self-consistent density response of a molecule to arbitrary potentials (in practice: the electrostatic

field arising from nearby molecules), corresponding to the exact polarization at all multipolar orders.[29–32]

T̂ :Vpert ↦ nresp ð1Þ

with nresp rð Þ=
ð
χ r,r0ð ÞVpert r0ð Þd3r0 ð2Þ

A less formal access to the linear density-density response function is possible by comparison of the unperturbed and perturbed Schrödinger

equation. For an isolated molecule the Schrödinger equation is given by:
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Ĥ jΨi= E jΨi ð3Þ

n rð Þ= Ψ rð Þj j2 ð4Þ

Subsequently, we have for an additional external potential:

Ĥ+ V̂pert

� �
jΨpolarizedi= Epolarized jΨpolarizedi ð5Þ

npolarized rð Þ= Ψpolarized rð Þ
�� ��2 ð6Þ

nresp rð Þ= npolarized rð Þ−n rð Þ ð7Þ

On the one hand, Equation 2 is the shorthand notation for applying this protocol (Equations 3-7). On the other hand it enables a possibility to

drastically speed up calculations of the response density: Once the electronic susceptibility χ(r, r
0
) is known, the computation of the density

response breaks down to integration according to Equation (2).

Following this line, the density-density response function can be seen as a formalism to express the specific response to any specific perturbing

potential in an abstract way. Due to its non-locality, any straightforward representation of χ(r, r
0
) on a grid would require excessive storage dimensions.

In this publication, we aim toward a novel representations (reduced eigensystem ~χ i) of the regular density-density response function. Before

we start to derive the reduced eigensystem representation, we have to discuss the properties of the regular eigensystem decomposition using the

regular eigenvalues λi and eigenstates χi:

2 | GENERAL PROPERTIES OF THE LINEAR DENSITY-DENSITY RESPONSE FUNCTION

For X ⊆ R3 and χ(r, r0) ∈ L2[X × X] we have T̂ : L2 X½ �! L2 X½ � and Equation (2) defines a (compact) Hilbert-Schmidt operator.[33] The operator T̂ is

self-adjoint due to the symmetry of the kernel: χ(r, r
0
) = χ(r

0
, r)8 r, r

0
∈X.[29,30]

Furthermore, the kernel χ(r, r
0
) is positive definite because the energy due to the polarization of a molecule is always positive. Hence the fol-

lowing condition is fulfilled:

ð ð
χ r,r0ð ÞVpert r

0ð ÞVpert rð Þd3r d3r0 ≥0 8 Vpert rð Þ∈ L2 X½ � ð8Þ

and the operator T̂ is positive-definite. According to the spectral theorem for self-adjoint and compact operators, there exists an eigensystem rep-

resentation of the operator T̂:

nresp rð Þ= T̂ Vpert rð Þ½ �=
X∞
i=1

χ i rð Þλi χ i,Vperth i ð9Þ

with eigenvalue λi to the eigenfunction χ i(r). The function χ(r, r
0
) can be written as follows:

χ r,r0ð Þ=
X∞
i=1

χ i rð Þλiχ i r0ð Þ ð10Þ

The eigensystem can be computed using an iterative Lanczos diagonalization technique for the Operator T̂ within density functional perturba-

tion theory (DFPT).[32,34–39] For a detailed description, see References 29 and 30.

Since the sequence of eigenvalues converges to zero (limi ! ∞λi = 0), the eigensystem representation can be truncated according to the

desired numerical precision at a finite index.[29–31,40–46] In particular, the sequence of eigenvalues is square summable (
P∞

i=1 λið Þ2 <∞), since the

Operator T̂ belongs to the second shadow class as a Hilbert-Schmidt operator.[33] This ensures the fast decay of the eigenvalues. Nevertheless,

thousands of scalar products with the eigenstates have to be determined in Equation (9) for each perturbing potential, which turns the eigen-

system into an inefficient representation.
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The spatial origin of the perturbation in Equation (9) is determined by the geometry of the specific system. But independent of the origin of

the perturbation, it is often possible to expand the perturbing potential at the position of the responding molecule (as opposed to the location of

the perturbing object, cf. Figure 1). In particular a multipole expansion is suited for this because it can often be truncated, meaning that only the

first few terms need to be employed for a good approximation to the regular function. We can employ Racah normalized solid har-

monics ~R
m
l j l ∈ N, m∈ − l, − l+1,…, l−1, lf g

n o
[47]

Vpert rð Þ=
X∞
l=0

Xl

m= − l

~R
m
l ,Vpert

D E
~R
m
l rð Þ=

X∞
l=0

Xl

m= − l

Vm
l
~R
m
l rð Þ: ð11Þ

for such an expansion. Note that the two indices l and m of the ~R
m
l can be converted into a single index n by the unique assignment n = (l2 + l) +m.

We define the space spanned by the first N (:= L2 + 2L) Racah normalized solid harmonics as ℛ N½ � ≔ span ~R
m
l j l≤ L ∈ N, m ∈ − l,…, lf g

n o� �
ffiRN.

In a recent article, we demonstrated that the perturbing potential jVperti (originated from a neighboring molecule) at a responding molecule can be

approximated using only 35 Racah normalized solid harmonics as basis functions (jVperti∈ℛ[N] with N = 35).

With respect to this basis of the pertubing potential, Scherrer presented in 2016 an algorithm for a transformation of the eigenstates, which

condenses the full information of the linear map into a few moment generating states.[47] We refer to the new set of states

ξml j l∈N, m∈ − l,…, lf g
� �

, which are obtained by a transformation of the {χi(r)| i∈N}, as moment expanded states.

Then, the full density response due to Vpert ∈ ℛ[N] (with N = L2 + 2L) can be expressed as:

nresp rð Þ=
XL
l=1

Xl

m= − l

ξml rð Þ ξml ,Vpert
� �

: ð12Þ

The moment expanded states are in general not normalized, as opposed to the regular eigenfunctions χ i(r) of T̂. Hence there is no trivial quan-

tity which characterizes the numeric convergence of this expansion. The ξml j l∈N, m∈ − l,…, lf g
� �

fulfill:

ξml ,R
m0

l0

D E
=0 8 l> l0 ð13Þ

Scherrer already demonstrated the use of the ξml j l∈N, m∈ − l,…, lf g
� �

for the efficient calculation of the response density of a water mole-

cule disturbed by neighboring water molecules.[47] Also the dependency of the ξml j l∈N, m∈ − l,…, lf g
� �

on geometric distortions was investigated

for the application of the linear density-density response function toward molecular dynamics simulations.[48] The principal applicability for the

calculation of Raman spectra resulting from a post processed ab inito molecular dynamics trajectory was demonstrated.[48]

The transformation of the eigenstates into the ξml j l∈N, m∈ − l,…, lf g
� �

is algorithmically involved and takes place by iterative Givens rota-

tions of thousands of eigenstates. The calculation of eigenstates (without transformations) requires an ab initio perturbation calculation per

eigenstate.[47] In order to tackle this problem, we developed a more efficient, iterative algorithm (referred to as direct moment expansion), which

needs a single DFPT calculation per moment expanded state.[49,50]

F IGURE 1 Principal illustration of the response density of the
water molecule (right) due to a perturbing water molecule (left). The
potential originated from the left water molecule can be expanded at
the responding (right) water molecule within a few basis functions
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In this article, we present the reduced eigensystem representation as a completion of our development effort toward an efficient representa-

tion of the static linear density-density response function. The reduced eigensystem representation will allow to define a trivial criterion for the

convergence of the approximation to the density response. Due to its truncated eigensystem like shape, the enormous reduction of the dimen-

sionality will become apparent in comparison to the regular eigensystem representation.

3 | REPRESENTATION OF LINEAR OPERATORS WITHIN NON-ORTHOGONAL BASIS
FUNCTIONS

In this section, we recall the specific notation for the expression of linear operators that we recently introduced.[50] The derivation closely follows

the previous version, but differs in the final expression because the basis functions are now allowed to be non-orthogonal for the image as well as

the domain of the linear operator.

The Dirac notation is a standard tool in quantum chemistry in order to express manipulations of linear operators and wave functions in an

abstract formalism. In particular it allows the efficient transformations of the representation with respect to different bases. The theoretical

justification of the Dirac notation is the Riesz representation theorem, which states that all separable infinite Hilbert spaces are isometric

isomorph.

We defined the operator T̂ as linear map between two infinite separable Hilbert spaces, which justifies the use of the Dirac notation even

through the physical meaning of a bracket vector differs from the conventional one (potentials and densities as opposed to wave functions). Here

we will briefly review the Dirac notation, in particular highlighting deviations from standard notation for non-orthogonal basis sets.

The resolution of identity Idjpi can be expressed for an orthogonal basis set {| pni|n ∈ N} as:

Idjpi =
X
n

j pnihpn j ð14Þ

and for a non-orthogonal basis {| qni|n ∈ N} we have to write:

Idjqi =
X
n

j qni
X
m

S−1
jqi

� �
nm
hqm j ð15Þ

with Sjqi being the overlap matrix with the elements (Sjqi)nm = hqn, qmi. The matrix Sq is known as Gramian matrix of the vectors {| qni|n ∈ N} and it

is a non-singular matrix, if the {| qni|n ∈ N} are linearly independent. Thus the existence of the inverse S−1
jqi is always ensured. A derivation of Equa-

tion (15) and an explanation of the treatment of non-orthogonal basis sets is given in the Supporting Information.

Within an orthogonal basis {| pni|n ∈ N}, the linear operator T̂ can be expressed as

T̂= IdjpiT̂Idjpi =
X
n

X
m

jpnihpn, T̂pmihpmj ð16Þ

with the element of the transformation matrix:

T pkf g
pkf g

� �
nm

= pn, T̂pm
D E

: ð17Þ

Herein, T pkf g
pkf g

� �
nm

is the (n, m)-th element of the transformation matrix. The elements of the transformation matrix depend on the choice of

the basis of the domain as well as of the basis of the image of the linear operator T̂. In order to distinguish transformation matrices expressed in

different bases, we assign the super-/subscript indices to the transformation matrix T pkf g
pkf g to define the basis {pk}≔ {| pki| k∈N} of the image/

domain. The index k in {pk} will only be used to refer to the entity of basis vectors {| pki| k∈N}, but is not for a specific indexing.

Within an non-orthogonal basis {| qni|n ∈ N} of the image as well as the domain the linear operator T̂ can be expressed as

T̂= IdjqiT̂Idjqi =
X
n

X
m

X
o

X
s

j qoi S−1
jqi

� �
on

qn, T̂qm
D E

S−1
jqi

� �
ms
hqs j ð18Þ

with the transformation matrix element:
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T qkf g
qkf g

� �
om

=
X
n

S−1
jqi

� �
on

qn, T̂qm
D E

: ð19Þ

4 | DERIVATION OF THE REDUCED EIGENSYSTEM REPRESENTATION

We recently generalized the moment expansion to any compact, self-adjoint, and positive-definite linear operator T̂ : L2 X½ �! L2 X½ �.[50] Assuming a

finite (orthonormal) basis {| P1i, | P2i,…, |PNi} for a subspace of the domain of T̂, we showed recently that there is a specific basis set {| ξ1i, | ξ2i,

…, | ξNi} for the (finite) image of T̂ which fulfills a partial orthogonality condition with respect to the domain basis:

ξi ,Pnh i=0 8 i> n ð20Þ

with the interesting property that the restriction T ≔ T̂
���
P N½ �

of T̂ to the subspace P N½ � ≔ span P1,P2,…,PNð Þ can be expressed according to

T ≔ T̂
���
P N½ �

=
XN
i=1

j ξiihξi j : ð21Þ

Now, we use the expression for the transformation matrix element T ξkf g
ξkf g

� �
om

from Equation (19):

T ξkf g
ξkf g

� �
om

=
XN
n=1

S−1
jξi

� �
on

ξn,T ξmh i=
XN
n=1

S−1
jξi

� �
on

	
ξn,

XN
i=1

jξii ξi,ξmh i



ð22Þ

=
XN
n=1

XN
i=1

S−1
jξi

� �
on

ξn ,ξih i ξi ,ξmh i=
XN
n=1

XN
i=1

S−1
jξi

� �
on

Sjξi
� �

ni Sjξi
� �

im: ð23Þ

The last equation yields in matrix notation:

T ξkf g
ξkf g = S

−1
jξi SjξiSjξi = Sjξi: ð24Þ

The transformation matrix T ξkf g
ξkf g = Sjξi is symmetric and finite, which in turn always allows its diagonalization:

U†SjξiU=D ð25Þ

with an unitary matrix U and a matrix D=diag ~λiji≤N
� �� �

with ~λi being the i-th eigenvalue. We apply the unitary matrix U to the moment

expanded states {| ξ1i, | ξ2i,…, | ξNi}:

~χ j rð Þ=
XN
i=1

Uijffiffiffiffi
~λ j

q ξi rð Þ ð26Þ

yielding a new set of functions ~χ1 rð Þ,~χ2 rð Þ,…, ~χN rð Þf g. It can be shown (see Supporting Information for the full derivation) that these

~χ1 rð Þ,~χ2 rð Þ,…, ~χN rð Þf g and {~λ1, ~λ2, …, ~λN} are actually eigen-functions/-values of T ≔ T̂
���
P N½ �

such that

T =
XN
n=1

j ~χ ii~λih~χ i j : ð27Þ

Thus, we denote the ~χ1 rð Þ, ~χ2 rð Þ,…, ~χN rð Þf g as reduced eigenstates and the {~λ1, ~λ2, …, ~λN} as reduced eigenvalues of T̂. The reduced eigenstates

are orthonormal ( ~χ i , ~χ j

� �
= δij). The convergence behavior of the reduced eigensystem representation given by Equation (27) is controlled by the

decay of the eigenvalues {~λ1, ~λ2, …, ~λN}.
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4.1 | Chemical interpretation of the symmetrized representation

While the derivation of the symmetrized representation (Equation (27)) appears mathematically straightforward, we have so far ignored a subtle

issue: Our starting point was the expansion of the perturbing potential jVperti in Racah normalized harmonics, that is, within the space

P N½ � ≔ span P1ijP2i,…jPNið Þ. In the eigensystem-like representation (Equation (27)), however, this has become an expansion within

Z N½ � ≔ span ξ1ijξ2i,…jξNið Þ, because the j ~χ ii j i ∈ 1,2,…,Nf gf g in Equation (27) are obtained by a unitary transformation of the moment expanded

states {jξii j i∈ {1, 2, …, N}}, cf. Equation (26). The two spaces P N½ � and Z N½ � are in general not identical (despite their equivalence in rank and the

partial orthogonality condition in Equation (20)).

Chemically, this corresponds to the different nature of potential functions and electronic densities: Perturbing potentials may have (remote)

singularities but are spatially smooth, while densities tend to oscillate locally (think of orthogonality wiggles, for instance). Note that this corre-

sponds to our choice for the treatment of the respective basis functions: The {jPii j i ∈ {1, 2, …, N}} which span P N½ � can be chosen freely (guided

by chemical intuition), while the functions {jξii j i∈ {1, 2, …, N}} that span Z N½ � are determined intrinsically by the actual result of the quantum

chemical response calculations for the specific molecule under consideration. The conceptual aim of our approach is to use an optimized set

{|P 1i, | P2i,…} that is tuned for optimal representation of the space of physically meaningful perturbation potentials.

However, the two spaces Z N½ � and P N½ � being mathematically disjunct does not prevent the actual functions contained within them to have a

large overlap. This is because the overlap is actually determined in the (much larger) underlying function space L2[X] with X�R3. In the end, it is

only this overlap which determines the actual density response to a perturbation. Actually, our previous work[47,49,50] shows that the overlap

matrix Θξ with elements (Θξ)ij≔ hξi,Pji is an upper triangular matrix and hence possess full rank. Therefore, the (small) part of a function from P N½ �
which exceeds the support of Z N½ � does actually not contribute any response density (within Z N½ �). Hence, it is accurate to restrict the represen-

tation of the perturbation potential to the space Z N½ �. In the Supporting Information, we demonstrate (using a detailed calculation) that the over-

lap integral hξn,V pert i of jVperti with jξni is not effected by the expansion of a perturbing potential within the non-orthogonal {| ξni| n∈ {1,…,N}}.

5 | DENSITY RESPONSE OF A H2O DIMER

We have computed the moment expanded states and the reduced eigenstates of a water molecule, and subsequently used those once-computed

states to determine the density response of that water molecule to the perturbing potential of an adjacent second water molecule. For comparison, the

exact density response was also computed for the dimer in the conventional self-consistent framework of density functional perturbation theory.

Three selected moment states and reduced eigenstates of the first water molecule are plotted in Figure 2. Neither representation bears any

resemblance to the common molecular orbital shapes, and the moment expanded functions also do not appear to follow the spatial symmetry that

is intuitively expected from the form of the underlying molecule. The reduced eigenstates exhibit a slightly more apparent symmetry, which how-

ever is lost for higher orders. It must be concluded that even for the comparably simple case of a water molecule, no intuitive understanding of

the density-density response functions along the lines of frontier molecular orbitals is possible.

In a recent paper, we demonstrated that the density response of a molecule due to the perturbing potential of a neighboring molecule can be

described within a few moment expanded states.[50] In this article, we reuse the design of the experiment in order to compare the convergence of

the density response with respect to different numbers of employed moment expanded and reduced eigenstates: We choose the perturbative

effect of one water molecule on an adjacent one as an elementary example. For simplicity, we use the Hartree potential using the partial charges

of one of the most common force field water models (TIP3P) as perturbation. The Hartree potential of the TIP3P partial charges reads[51]:

Vfrag
TIP3P rð Þ=

XNn

λ=1

Qpartial
λ

j r−Rλ j
erf

j r−Rλ jffiffiffi
2

p
σ

� �
: ð28Þ

We created 12 water dimer configurations by placing the perturbing TIP3P water on six octahedral coordinates around the responding water

molecule for two oxygen-oxygen distances of 2.5 Å and 2.75 Å. These distances were chosen because they represent typical hydrogen bonding

distances, with 2.5 Å being virtually the closest possible distance that is thermodynamically relevant at common molecular dynamics simulation

temperatures. At both distances, the density response was computed with our density-density response function formalism (in moment expansion

and reduced eigensystem representation and using different numbers of states), as well as conventional self-consistent density functional pertur-

bation theory calculations.

The overlap O[N,dOO] of functions jδnNi and jδnrefi was taken according to:

O N,dOO½ �= δnN,δnrefh i
δnref,δnrefh i ð29Þ
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with jδnNi the calculated response density employing reduced eigenstates:

δnN rð Þ=
XN
j=1

~χ j rð Þ~λ j ~χ j,Vpert
� �

: ð30Þ

or moment expanded states:

δnN rð Þ=
XN
j=1

ξ j rð Þ ξ j,Vpert
� �

: ð31Þ

F IGURE 3 Convergence of the density response employing
moment expanded states (ξi) and reduced eigenstates (~χ i) (with respect
to different number N of states). The explicit density response was
obtained from density functional perturbation theory (DFPT)
calculations. dOO denotes the oxygen-oxygen distance of the
perturbing and the responding molecule

F IGURE 2 Comparison of the moment expanded states and the
reduced eigenstates of a water molecule
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The convergence of the calculation of δnN with respect to the number of employed (moment expanded or reduced eigen-) states N is shown

in Figure 3. We deduce two important statements from this graph:

Both the moment expansion and the reduced eigensystem representation of the density-density response function formalism have a similar

convergence behavior, with the reduced eigensystem variant performing gradually better. Only 34 reduced eigenstates instead of 54 moment

expanded states are necessary in order to obtain converged response densities. For the smaller distance (2.5 Å), which represents an already quite

repulsive hydrogen bond configuration, the deviation from the explicit density functional perturbation theory calculation is about 7% to 8%, which

improves to only 5% for the relaxed hydrogen bond conformation. Thus, both representations also yield a very accurate density response.

In order to determine how the reduced eigenvalues spectrum changes for different molecules, we calculated the reduced eigensystem repre-

sentation of the linear density-density response function for H2O, NH3, CH2O, and HF. The resulting reduced eingenvalues are presented in

Figure 4. We can report an exponential decay of the reduced eigenvalues for all investigated molecules, which motivates a further reduction of

the number of significantly contributing states by around 50%.

6 | SUMMARY: ON THE DIFFERENT FLAVORS OF THE DENSITY-DENSITY RESPONSE
FUNCTION

In this publication, we have introduced a new representation (the reduced eigensystem representation) of the linear density-density response func-

tion. The new representation is strongly connected to our recently developed moment expansion of the linear density-density response function.

In order to facilitate a better understanding of the overall framework of this tool, we give a scheme of the underlying theory of the moment

expansion and the reduced eigensystem representation in Figure 5. Starting from the regular (infinite) eigensystem representation, we derived the

moment expansion which allowed a drastic reduction of the dimensionality (theorem 1 in Figure 5). By diagonalization of the overlap matrix of

the moment expanded states, we developed the reduced eigensystem representation within this publication (theorem 2 in Figure 5). Both of these

novel expansions originally required the calculation of several thousands of eigenstates, followed by adequate transformations. The introduction

of the direct density expanded states allowed the calculation of the first N moment expanded /reduced eigenstates within N self-consistent DFPT

calculations (theorem 3 in Figure 5).

The regular eigensystem representation as well as theorem 1 and 3 were recently published by our group.[29,30,47–50] In particular, we general-

ized these theorems to arbitrary linear, self-adjoint, positive-definite, and compact operators.[50] Within this article, we derived the reduced eigen-

system representation as a completion of our development effort toward an efficient representation combined with an efficient determination of

the static linear density-density response function. Due to its truncated eigensystem like shape, the enormous reduction of the dimensionality

becomes obvious in comparison to the regular eigensystem representation. With this increased applicability, together with its more controlled

convergence behavior, governed by the decay of the eigenvalues, we believe that the density-density response function formalism can soon be

applied to “real” extended molecular systems.

7 | REMARKS FOR PRACTICAL APPLICATION OF THE REDUCED EIGENSYSTEM
REPRESENTATION

Once the reduced eigensystem representation is calculated, the calculation of actual molecular response densities boils down to calculation of

simple overlap integrals of reduced eigenfunctions and the perturbing potential. The computational costs of this procedure are typically two to

three orders of magnitude smaller compared to a single self-consistent quantum chemistry calculation.

F IGURE 4 Decay of the reduced eigenvalues with respect to different
molecules
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The computational bottleneck for the calculation of the reduced eigensystem representation itself is the efficient calculation of the moment

expanded states. In a recent article we stated an algorithm, which allows the calculation of the first N moment expanded states within N ab intio

quantum chemistry calculations.[49,50] The accuracy of the reduced eigensystem representations can be adapted to the level of electronic struc-

ture theory utilized for the calculation of the moment expanded states.

A repeated application of the reduced eigensystem representation leads to the maximal efficiency gain. The core application for this approach

will be in the field of molecular dynamics simulations, where the same kind of intermolecular interactions has to be computed multiple times at

every single MD time step.

8 | CONCLUSION

In a previous article,[47,50] we demonstrated that the perturbing potential originated from neighboring molecules can be expressed within a few

basis functions {|P 1i, | P2i, …, |P Ni} (choosing for example a polynomial expression of the potential) to a very high precision. In this article, we

have started from an efficient representation of the electronic susceptibility (the moment expansion) for the calculation of molecular density

responses due to perturbing potentials spanned by the {|P 1i, | P2i, …, | PNi}. Here, we presented a modified representation—the reduced eigen-

system representation—, which allows the calculation of molecular response densities due to arbitrary perturbing potentials at the same very low

storage and computational requirements compared to the moment expansion. The reduced eigensystem representation includes now a trivial cri-

terion for the convergence of the approximation of the density response and by the eigensystem like structure of our new representation, the

remarkable reduction of the dimensionality becomes immediately apparent for the calculation of the density-density response function. We dem-

onstrated the exponential decay of the reduced eigenvalues for several molecules and we have illustrated our approach for the calculation of the

response density on a simple water dimer, where 34 reduced eigenfunctions are sufficient to represent the density response due to the inter-

molecular interaction within an accuracy of a few percent. Employing the moment expanded states, we would need 54 moment expanded states

in order to obtain the same accuracy.

F IGURE 5 A scheme of the structure of the underlying theory of
the moment expansion ξi and the reduced eigensystem
representation ~χi
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APPENDIX

COMPUTATIONAL DETAILS

The moment expansion has been implemented in our development version of the CPMD[52] electronic structure package. The transformation of

the moment expanded states into the reduced eigenstates was done using own python scripts. The calculations have been performed using Den-

sity Functional Perturbation Theory[37–39,53,54] with Troullier-Martins[55] pseudo potentials in the Becke,[56] and Lee-Yang-Parr[57] approximation

for the exchange correlation kernel. The perturbing potential was expressed by a polynomial expansion. The basis was formed by the set of poly-

nomials xlymzn with l, m, n ∈ N, which fulfill the condition l + m + n ≤ imax. The largest basis set consisted out of 54 polynomials (imax = 5). The cal-

culation of the reference density response with CPMD was done for a relaxed water geometry. We used a plane wave basis for all involved

quantities, be it the electronic density, the perturbing potentials or the moment expanded states. The real space representation naturally gives rise

to a regular grid. For our chosen parameters, the grid increment is about 0.08 Angstroms, whereas the spread of the Gaussians in Equation (28) is

chosen as σ = 0.5a0.

DREßLER AND SEBASTIANI 11 of 11



3.2. E�cient Representations of the Static LDDRF 121

3.2.2 Article VII: E�cient Representation of the LDDRF

Christian Dreÿler, Arne Scherrer, Paul Ahlert, and Daniel Sebastiani.
E�cient representation of the linear density-density response function.
Journal of Computational Chemistry, 40(31):2712�2721, 2019.

In this article, I generalized the concept of the moment expansion to arbitrary
compact, positive and self-adjoint linear operators. By means of a thorough math-
ematical investigation, I proved that the moment expansion can be understood in
terms of a QR decomposition of a matrix. I derived that a computationally cheaper
algorithm for the calculation of the moment-expanded representation of the linear
density-density response function can be explained within a Cholesky decomposition
of a small matrix. I prepared the manuscript. D. Sebastiani supervised the project
and provided me with valuable advice during the derivation of the equations and while
I was writing the manuscript. Arne Scherrer contributed the initial derivation of the
(Direct-) moment expansion and Paul Ahlert helped to prepare the manuscript.



Efficient Representation of the Linear Density-Density
Response Function
Christian Dreßler , Arne Scherrer, Paul Ahlert, and Daniel Sebastiani*

We present a thorough derivation of the mathematical founda-
tions of the representation of the molecular linear electronic
density-density response function in terms of a computationally
highly efficient moment expansion. Our new representation
avoids the necessities of computing and storing numerous
eigenfunctions of the response kernel by means of a consider-
able dimensionality reduction about from 103 to 101. As the
scheme is applicable to any compact, self-adjoint, and positive
definite linear operator, we present a general formulation,

which can be transferred to other applications with little effort.
We also present an explicit application, which illustrates the
actual procedure for applying the moment expansion of the lin-
ear density-density response function to a water molecule that
is subject to a varying external perturbation potential. © 2019
The Authors. Journal of Computational Chemistry published by
Wiley Periodicals, Inc.

DOI: 10.1002/jcc.26046

Introduction

Almost any situation in physics and chemistry can be described
by a state function and its temporal evolution. The latter is gen-
erally governed by a differential equation, for example, the
Newton equation of motion, the time-dependent Schrödinger
or Dirac equation, the Navier–Stokes equation, the Maxwell
equations, and others. In many of these situations, a viable
strategy for simplifying the numerical solution of the underlying
differential equations is the separation of both equation and
solution into two parts of “large” and “small” amplitudes,
respectively, which are then technically easier to deal with. The
formal framework of this idea is commonly called perturbation
theory, and the formal solution to this type of problem is often
called Green’s function.

The standard perturbation theory ansatz is based on the
assumption that there is one given “large” part and one given
“small” contribution of the differential operator, so that two
new specific differential equations result from this large/small
separation. However, there are situations in which a whole vari-
ety of “small” contributions exists (but only one “large” differen-
tial equation). Examples for these situations from molecular
quantum chemistry are the calculation of vibrational modes,
where there is one perturbation Hamiltonian for the displace-
ment of each atom in each Cartesian direction or molecular
dynamics simulations within embedding schemes, that is,
where a given molecule is subject to varying chemical environ-
ments. In such situations, the same perturbation theory equa-
tion has to be solved repeatedly for numerous different
perturbations.

In the specific case of quantum chemistry, the formal solu-
tion to this problem is called the density-density response func-
tion, which means a linear operator that acts on the
perturbation and yields the electronic density response to that
perturbation. This function is very general, as it yields the
response density for any perturbation potential, but in turn, it is
not readily available explicitly in numerical form. Nevertheless,

there is a path for the explicit calculation of this complex quantity
by means of a particular mathematical representation (using the
eigenfunctions and eigenvalues of the density-density-response
function seen as a matrix operator).[1,2] The straightforward
calculation has been shown to be accurate yet computationally
cumbersome. Here, we provide a mathematical study of a
recently developed, considerably more efficient variant for the
computation and the storage of this quantity (called the moment
representation of this response function [3,4]).

Compact linear operators often appear as integral transforms
and can be viewed as continuous generalizations of matrices,
where the corresponding integral kernel fulfills some weak con-
ditions, that is, the kernel must not be singular and must decay
to zero fast enough at infinity. The compactness of these opera-
tors ensures that the matrix elements are well defined.

For X � R3 and χ(r, r0) 2 L2(X × X) eq. (1) defines a linear

Hilbert-Schmidt operator T̂ : L2 Xð Þ! L2 Xð Þ, which is in particular
compact. [5]

T̂ : f rð Þ↦
ð
χ r,r0ð Þf r0ð Þd3r0 ð1Þ

If the kernel is furthermore symmetric (χ(r, r0) = χ(r0, r) 8 r, r 0

2 X) and positive
(
Ð Ð

χ(r, r0)f(r0)f(r)d3r d3r 0 ≥ 0 8 f(r) 2 L2[X]) the operator is

self-adjoint and positive.
The properties of this class of operators are well-understood

from a mathematical point of view. In physics or quantum
chemistry, these integral transforms are often derived from the
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inverse Hamiltonian Ĥ
−1

and have many applications, for exam-
ple, the Lippmann-Schwinger equation for the calculation of
scattering in quantum mechanics. The Lippmann-Schwinger
equation relates the scattered wave function with the interac-
tion that produces the scattering (the scattering potential).
Another example is the frequency dependent density-density
response function, which includes an externally defined energy
shift of the molecular orbital spectrum (originating from a pho-
ton of given frequency), which in turn leads to a breakdown of
the linear response regime when the photon energy matches
an electronic excitation energy. While this latter situation is
within our view, we are still working on how to adapt the pre-
sent representation of the linear density-density response func-
tion to this energy-dependent version.

In this article, the operator defined by the static linear

density-density response function T̂ : Vpert rð Þ↦nresp rð Þ will be
considered as an example for the illustration of our theorems
for linear, self-adjoint and positive definite operators.

For any given specific perturbation potential Vxy
pert rð Þ the

corresponding electronic response density nrespxy rð Þ can be calcu-

lated via standard quantum chemical approaches, for example,
by means of a perturbation-theory based calculation. [6–12] The
challenge, however, is to develop a formalism for any (arbitrary)
perturbation potential to a level where no explicit quantum
chemical calculation is needed any more once the perturbation
potential is specified. The core application for this approach will
be molecular dynamics simulations, where the potential experi-
enced by a given molecule varies slightly from any molecular
dynamics step to the next.

Once the kernel χ(r, r0) is calculated, the calculation of
molecular response density breaks down to integration
according to eq. (1). The computational costs of this pro-
cedure are negligible compared to a single quantum
chemistry calculation.

Unfortunately, there is no closed expression for the calcula-
tion of the kernel χ(r, r0) and hence for the calculation of den-
sity responses. The (molecular density-density) response
function is a six dimensional nonlocal kernel χ(r, r0) and its stor-
age on a grid would also require excessive storage dimensions,
which decrease the efficiency of any real application.

A possible attempt to overcome these problems is to apply
the spectral theorem of compact and self-adjoint operators.

Thus, we can express the action of the operator T̂ to a vector
f(r) as:

T̂ f rð Þð Þ=
X∞
i =1

χ i rð Þλi χ i , fh i ð2Þ

using eigenvalues λi and eigenfunctions χ i(r), which can be
stored without difficulties.[1,2,13,14] The eigenfunctions and

eigenvalues satisfy T̂χ i rð Þ= λiχ i rð Þ. hχ i, fi denotes, the inner
product of functions χ i(r) and f(r) in L2(X) and is defined

as χ i , fh i= ÐXχ i rð Þf rð Þd3r.
According to the spectral theorem, the sequence of the

eigenvalues converges to zero (limi!∞λi = 0), which allows

approximation of eq. (2) via a finite sum, that is, the truncation
of the eigensystem representation at a finite index to the
desired numerical precision. In particular, the sequence of

eigenvalues is square summable, as the operator T̂ belongs to
the second shadow class as a Hilbert-Schmidt operator. [5] Thus
the eigenvalues decay fast enough to satisfy the condi-

tion
P∞

i = 1 λið Þ2 <∞.

For our specific example of T̂ : Vpert rð Þ↦nresp rð Þ with χ(r, r0)
equal to the molecular density-density response function, there
is a suitable way to compute and store the most significant
subset of eigenvalues and eigenfunctions. We were able to cal-
culate the eigensystem representation and could already show
that the calculation of converged response densities would
require several thousand eigenvalues and eigenstates.[1,2] We
want to emphasize that we furthermore have to calculate sev-
eral thousand scalar products for the evaluation of each single
perturbing potential. This is a computationally demanding
protocol.

In this article, we present a transformation of this subset of
eigenstates, which condenses the physically relevant informa-
tion into a new set of states of considerably reduced dimen-
sionality (moment expansion). Our aim in this manuscript is to
provide a thorough mathematical basis for this transformation
by means of two theorems.

For the specific case of the static linear density-density
response function and a specific basis of the perturbing poten-
tial, we recently published a recipe for the calculation of the
eigensystem representation[1,2] as well as the moment expan-
sion.[3,4] Here, we generalize these results to an entire class of
linear operators and arbitrary basis sets.

Conditions/Restrictions for the Application of
the Theorems

In this article, we focus on linear operators defined by integral
transforms according to eq. (1). Thus, both domain and
image consist of square integrable functions. A closer inspec-
tion of eq. (2) reveals that only domain vectors f(r)with an
nonvanishing overlap with the eigenstates (9 i 2 N : hχ i,
fi 6¼ 0) will contribute to the image vector. Unfortunately, we
do not have any information about the shape of the
eigenstates in general.

However, we assume the linear operator T̂ will have compact
support, that is, 8 i2N : χ i(r)2 L2[X] with X�R3. Thus, we are
only interested in a local expansion of the domain vectors on a
compact subspace X�R3.

For concrete evaluations of the operator T̂, we have to
choose a basis {Pn(r)| n2N} for the representation of a domain
vector f(r):

f rð Þ=
X∞
n= 1

cnPn rð Þ ð3Þ

with cn being the n-th basis expansion coefficient.
A precise approximation of a function f(r) in a local environ-

ment (at a compact subspace) is often possible within a finite
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number of basis functions. For example, an analytic function
can always be expanded within a Taylor series (using the
monomials as basis of the vector space). The terms of the Tay-
lor expansion are ordered with respect to descending impor-
tance and it is even possible to approximate the introduced
error by a truncated expansion.

We can validate, if the conditions for the domain vectors are

fulfilled for a specific choice of T̂, for example, for the operator

T̂ : Vpert rð Þ↦nresp rð Þ obtained by setting the kernel χ(r, r0) to the
molecular density-density response function. This operator links
an arbitrary perturbing potential to the resulting molecular
response density. Due to the locality of the quantum mechani-
cal Hamilton operator, these response densities occur only in
the vicinity of a molecule, which corresponds to the condition
of compact support. Thus, we are only interested in an (approx-
imate) representation of the perturbing potential in an area
around the responding molecule, that is, in particular not
around the physical origin of the perturbation.

A truncated multipole expansion (e.g., in terms of Racah nor-
malized irregular solid harmonics [15,16]) allows such a finite rep-
resentation of the perturbing potential.

A demonstration of the truncated expression of the per-
turbing potential of a water molecule is presented in the last
section of this article.

Non-Orthogonal Basis Functions

The Dirac notation is a standard tool in quantum chemistry
in order to express manipulations of linear operators and
wave functions in an abstract formalism. In particular, it
allows the efficient transformations of the representation
with respect to different bases. The theoretical justification of
the Dirac notation is the Riesz representation theorem, which
states that all separable infinite Hilbert spaces are isometric
isomorph.

We defined the operator T̂ as linear map between two infi-
nite separable Hilbert spaces, which justifies the use of the
Dirac notation even through the physical meaning of a bra/ket
vector differs from the conventional one (potentials and densi-
ties as opposed to wave functions). Here we will briefly review
the Dirac notation, in particular highlighting deviations from
standard notation for non-orthogonal basis sets.

The resolution of identity Idjpi can be expressed for an
orthogonal basis set {| pni | n 2 N} as:

Idjpi =
X
n

j pnihpn j ð4Þ

and for a non-orthogonal basis {| qni | n 2 N} we have to
write:

Idjqi =
X
n

j qni
X
m

S−1
jqi

� �
nm
hqm j ð5Þ

with Sjqi being the overlap matrix with the elements
(Sjqi)nm = hqn, qmi. The matrix Sq is known as Gramian matrix of
the vectors {| qni | n 2 N} and it is a non-singular matrix, if the

{| qni | n 2 N} are linearly independent. Thus, the existence of

the inverse S−1
jqi is always ensured. A derivation of eq. (5) and an

explanation of the treatment of non-orthogonal basis sets is
given in the Supporting Information.

Within an orthogonal basis {| pni | n 2 N}, the linear opera-

tor T̂ can be expressed as

T̂= IdjpiT̂Idjpi =
X
n

X
m

j pni pn, T̂pm
� �hpm j ð6Þ

with the element of the transformation matrix:

T pkf g
pkf g

� �
nm

= pn, T̂pm
� �

: ð7Þ

Herein, T pkf g
pkf g

� �
nm

is the (n,m)-th element of the transforma-

tion matrix. The elements of the transformation matrix
depend on the choice of the basis of the domain as well as

of the basis of the image of the linear operator T̂. In order to
distinguish transformation matrices expressed in different
bases, we assign the super/subscript indices to the transforma-

tion matrix T pkf g
pkf g to define the basis {pk}≔ {| pki| k2N} of the

image/domain. The index k in {pk} will only be used to refer to
the entity of basis vectors {| pki| k2N}, but is not for a specific
indexing.

Within a non-orthogonal basis {| qni | n 2 N} of the image
and an orthogonal basis {| pni | n 2 N} of the domain, the lin-

ear operator T̂ can be expressed as

T̂= IdjqiT̂Idjpi =
X
o

X
n

X
m

j qoi S−1
jqi

� �
on

qn, T̂pm
� �hpm j ð8Þ

with the element of the transformation matrix:

T qkf g
pkf g

� �
om

=
X
n

S−1
jqi

� �
on

qn, T̂pm
� �

: ð9Þ

Derivation of the Moment Expansion

Theorem 1: Moment Expansion.

Let T̂ : L2 Xð Þ! L2 Xð Þ with X�R3 be a compact, positive-
definite and self-adjoint linear operator with eigensystem repre-
sentation from eq. (2). Further, let {Pn | n2N} be an orthonor-

mal basis of the domain of T̂. Then:
1) 8 {Pn | n 2 N} 9 a unique transformation Q with

j ξni≔
P∞

i = 1Qin j
ffiffiffiffi
λi

p
χ ii, such that

ξi ,Pnh i= 0 8 i > n ð10Þ

and

T ξkf g
Pkf g

� �
in
= ξi ,Pnh i: ð11Þ
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2) The operator T̂ can be expressed as

T̂=
X∞
i =1

j ξiihξi j : ð12Þ

The restriction T̂
��
P N½ � of T̂ to P N½ �≔Span P1,P2,…,PNð Þ is

given by

T̂
��
P N½ � j f i=

XN
i = 1

j ξii ξi , fh i 8f 2P N½ �: ð13Þ

Proof:
Proof of sub-item 1:

The overlap matrix Sj ffiffiffiffiλkp
χki defined by Sj ffiffiffiffiλkp

χki
� �

ij
=

ffiffiffiffiffiffiffi
λiχ i

p
,

�
ffiffiffiffiffiffiffi
λjχ j

p i= λiδij is a diagonal matrix with inverse S−1
j ffiffiffiffiλkp

χki:

S−1
j ffiffiffiffiλkp

χki
� �

ij
=
1
λi
δij: ð14Þ

We choose the non-normalized
ffiffiffiffi
λi

p
χ i j i 2N

� 	
as basis of

the image and the orthonormal {Pi | i2N} as basis of the

domain of T̂. According to eq. (9) we can express the elements
of the infinite transformation matrix as following:

T
ffiffiffiffi
λk

p
χkf g

Pkf g


 �
jn
=
X
j =1

S−1
j ffiffiffiffiλkp

χki
� �

ij|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
λ−1j δij

ffiffiffiffi
λj

p
χ j , T̂Pn

� �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
T̂ s:a: and T̂χ j = λjχ j

= λ−1j λj
ffiffiffiffi
λj

p
χ j ,Pn

� �

=
ffiffiffiffi
λj

p
χ j ,Pn

� �
ð15Þ

As the transformation matrix of T̂ represents a bounded lin-
ear operator on the separable Hilbert space ℓ

2, there is a QR

decomposition of T
ffiffiffiffi
λk

p
χkf g

Pkf g into the product of an orthogonal

matrix Q and an upper triangular matrix R:[17,18]

T
ffiffiffiffi
λk

p
χkf g

Pkf g =QR , R=Q−1T
ffiffiffiffi
λk

p
χkf g

Pkf g : ð16Þ

Equation (16) reads element-wise:

Rij =
X∞
l =1

Q−1
 �
il T

ffiffiffiffi
λk

p
χkf g

Pkf g


 �
lj

: ð17Þ

With (Q−1)il = Qli and T
ffiffiffiffi
λk

p
χkf g

Pkf g


 �
lj

=
ffiffiffiffi
λl

p
χ l ,Pj

� �
we obtain:

Rij =
X∞
l = 1

Qli

ffiffiffiffi
λl

p
χ l ,Pj

D E
=
X∞
l =1

Qli

ffiffiffiffi
λl

p
χ l ,Pj

* +
: ð18Þ

We define

ξi =
X∞
l =1

Qli

ffiffiffiffi
λl

p
χ l , ð19Þ

so that Rij = hξi, Pji. The fact that R is an upper triangular matrix
implies that: hξi, Pji = 0 8 i > j. The last expression proves equa-
tion (10) from sub-item 1.

In the next step, we prove equation (11) from sub-item
1. Equation (19) shows that Q represents a change-of-basis

matrix which we will denote by W
ffiffiffiffi
λk

p
χkf g

ξkf g ≔Q. This matrix trans-

forms the {ξi | i2N} into the
ffiffiffiffi
λi

p
χ i j i 2N

� 	
. We can write for

the inverse basis transformation:

W ξkf gffiffiffiffi
λk

p
χkf g = W

ffiffiffiffi
λk

p
χkf g

ξkf g


 �−1

ð20Þ

On the one hand, applying the basis transformation to

T
ffiffiffiffi
λk

p
χkf g

Pkf g yields by definition (compare commutative diagram of

standard basis transformations in the Supporting Information):

W ξkf gffiffiffiffi
λk

p
χkf gT

ffiffiffiffi
λk

p
χkf g

Pkf g = T ξkf g
Pkf g ð21Þ

and on the other hand, the result of the transformation can be
obtained from eqs. (16) and (20):

W ξkf gffiffiffiffi
λk

p
χkf gT

ffiffiffiffi
λk

p
χkf g

Pkf g = W
ffiffiffiffi
λk

p
χkf g

ξkf g


 �−1

T
ffiffiffiffi
λk

p
χkf g

Pkf g =Q−1 T
ffiffiffiffi
λk

p
χkf g

Pkf g =R:

ð22Þ

Combining eqs. (21) and (22) we get: T ξkf g
Pkf g =R with

T ξkf g
Pkf g

� �
ij
= ξi ,Pj
� �

: ð23Þ

Proof of sub-item 2:
We choose the non-orthonormal {ξi | i 2 N} as basis of the

image and the orthonormal {Pi | i 2 N} as basis of the

domain of T̂. According to eq. (11) we can express the operator

T̂ as:

T̂=
X∞
i = 1

X∞
n=1

j ξii T ξkf g
Pkf g

� �
in
hPn j =

X∞
i =1

X∞
n=1

j ξii ξi ,Pnh ihPn j ð24Þ

=
X∞
i =1

j ξiihξi j
X∞
n= 1

jPnihPn j
 !
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

IdjPni

=
X∞
i = 1

j ξiihξi j ð25Þ

For arbitrary elements jfi of the domain of T̂, we can write:

T̂ j f i=
X∞
i =1

j ξii ξi , fh i ð26Þ

Finally, we have to show: the restriction T̂
��
P N½ � is obtained by

truncating eq. (26) after N terms. For an arbitrary vector j f i 2
P N½ � with j f i=PN

n=1 j Pni Pn, fh i, we have:
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T̂
��
P N½ �

h i
j f i=

XN
i = 1

j ξii ξi , fh i

=
XN
i = 1

j ξii
XN
n=1

ξi ,Pnh i Pn, fh i =
eq: 10ð ÞX∞

i =1

j ξii
XN
n=1

ξi ,Pnh i Pn, fh i
ð27Þ

=
jf i2P N½ �X∞

i = 1

j ξiihξi j
X∞
n= 1

jPnihPnj
 !
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

IdjPni

j f i=
X∞
i = 1

j ξii ξi , fh i= T̂ j f i: ð28Þ

□

General Remarks:

1. Sub-item 2 of this theorem corresponds to the following
statement: The complete image due to domain vectors from
the restriction f 2P N½ � can be calculated using eq. (13)
within N terms.

2. The results of Theorem 1 do also hold for non-
orthogonal bases of the domain. Starting from an expan-
sion of the domain vectors in non-orthogonal basis func-
tions (involving the Gramian matrix for the expansion
coefficients) the same proof can be used to derive the
desired properties of the moment expansion. Formal
expressions involving non-orthogonal basis sets for
image as well as domain are given in the Supporting
Information.

Remarks for the special case of T̂ : Vpert↦nresp:

1. For the specific choice of Racah normalized irrgelular solid
harmonics as basis functions for the expression of the per-
tubing potential, Scherrer et al. [3] showed in 2016, the exis-
tence of the moment expansion. In this article, we put the
moment expansion on a more solid mathematical funda-
ment and generalize it to arbitrary self-adjoint, positive, and
compact operators (and arbitrary bases of the domain of
these operators).

2. The set {Pn| n 2 N} denotes the basis functions for the

domain of T̂, which is different for every molecule. For
practical application we aim to use standard basis sets of
quantum chemistry such as solid harmonics or polynomials.
The support of these standard basis sets is in general differ-

ent from the compact support of the linear operator T̂.
Thus inner products hPi, Vperti are taken on the wrong vec-
tor space, which introduces some problems for actual cal-
culations of the response density. The problem can be
circumvented by expressing Vpert within the set of {P1, P2,
…,Pn} and employing eq. (13), because the ξi vanish out-

side the domain of T̂. The overlap ξi ,Vpert
� � 8 Vpert 2P N½ � is

automatically taken at the correct subspace. A detailed dis-
cussion of this problem is given in the Supporting
Information.

Direct Moment Expansion

Ahlert et al.[4] developed already an idea how to obtain the
moment expanded states without calculation of thousands of
eigenstates. In the next theorem we put this approach to the
next level and show how to obtain the first N moment expand
states within N ab inito calculations (by means of the a cholesky
decompostion of a N × N matrix):

Theorem 2: Let T̂ be the linear operator, {| Pni | n2N} the

orthonormal basis of the domain of T̂ and {| ξni | n2N} the
moment expanded states from Theorem 1. We define

j ~nii≔T̂ j Pii ð29Þ

and two matrices (Θξ) and Θ~n
 �
with the elements:

Θξ

 �

ij≔ ξi ,Pj
� � ð30Þ

Θ~n

 �

ij≔ ~ni ,Pj
� �

: ð31Þ

Then:

1Þ j ξii=
Xi

j = 1
Θξ

 �−1� �

ji
j ~nji

2Þ Θ~n = Θξ

 �T Θξ


 �
Proof:
Proof of the first sub-item:
We start with the definition from eq. (29):

j ~nii= T̂ j Pii =
eq: 26ð ÞX∞

j = 1

j ξji ξj ,Pi
� �

=
eq: 10ð ÞXi

j = 1

j ξji ξj ,Pi
� �

=
eq: 30ð ÞXi

j =1

j ξji Θξ

 �

ji:

ð32Þ

Equation (32) shows that Θξ is a change-of-basis matrix. The
inverse of the change-of-basis matrix is the change-of-basis
matrix of the inverse basis transformation:

j ξii=
Xi
j = 1

j ~nji Θξ

 �−1� �

ji
: ð33Þ

Θξ is an upper triangular matrix (compare eq. (10) and
eq. (30)), which in turn ensures the full rank of the matrix and
hence the existence of the inverse (Θξ)−1.

Proof of the second sub-item:

The symmetry of Θ~n is obtained from:

Θ~n
 �
ji =
eq: 31ð Þ

Pj , ~ni
� �

=
eq: 29ð Þ

Pj , T̂Pi
� �|fflfflfflffl{zfflfflfflffl}

T̂s:a:

= T̂Pj ,Pi
� �

=
eq: 29ð Þ

~nj ,Pi
� �

=
eq: 31ð Þ

Θ~n
 �
ij ð34Þ

Multiplying eq. (32) from the left with hPjj we obtain:
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Θ~n
 �
ji

Pj , ~ni
� �|fflfflffl{zfflfflffl}=

�
Pj ,
Xi
n=1

j ξni ξn,Pih i
�
=
Xi
n=1

Pj ,ξn
� �

ξn,Pih i

=
eq: 10ð Þ Xmin i, jf g

n=1

Pj ,ξn
� �

ξn,Pih i ð35Þ

=
eq: 30ð Þ Xmin i, jf g

n= 1

Θξ

 �

nj Θ
ξ


 �
ni =

Xmin i, jf g

n=1

Θξ

 �T

jn Θξ

 �

ni ð36Þ

This is equivalent to the following matrix equation:

Θ~n = Θξ

 �T Θξ


 � ð37Þ

Equation (37) actually defines a Cholesky decomposition of the
symmetric matrix (Θξ) into a product of an upper triangular
matrix (Θξ) and its transposed (Θξ)T. This upper triangular
matrix is nothing but the moment matrix of the moment
expanded states.

□

Remarks:

1. A Cholesky decompostion is a decomposition of a symmet-
ric, positive-definite matrix into the product of a lower trian-

gular matrix and its transpose. We assumed T̂ as positive
operator. Thus we can obtain the symmetry as well as the

positive definiteness of Θ~n from Θ~n
 �
ij = ~ni ,Pj
� �

= Pi , T̂Pj
� �

.

2. In general Θ~n and Θξ are infinite matrices. In the next
remark, we show that only the N × N restrictions of these
matrices are necessary for the calculation of the first
N moment expanded states {| ξ1i, | ξ2i,…, | ξNi}.

3. According to the last theorem, we want to summarize the
effort for the calculation of the first N moment expanded
states {| ξ1i, | ξ2i, …, | ξNi}. We have to calculate:

• N evaluations of T̂ according to

j ~n1i
j T̂P1i|fflffl{zfflffl},

j ~n2i
j T̂P2i|fflffl{zfflffl},…,

j ~nNi
j T̂PNi|fflffl{zfflffl}

8><
>:

9>=
>;

• the N × N restriction of the inverse of (Θξ). This N × N
restriction can be calculated by the Cholesky decomposi-

tion of the N × N restriction of Θ~n. The formation of Θ~n 2
RN×N requires only the ~n1ij~n2i,…j~nNif g (mentioned in
the first item).
The numerical determination of the first N moment
expanded states requires of the order of N applications of

T̂ (and linear algebra operations with negligible effort).

Algorithm of the direct moment expansion

Based on the second theorem, we want to report an explicit
protocol for the calculation of the moment expanded states:

• Choose a basis {| Pki | k 2 N} for the domain of the linear

operator T̂.

• Compute the set of functions j ~nii≔T̂ j Pii j i 2 1,…,Nf g� 	
.

• Calculation of an N × N matrix with elements Θ~n
 �
ij = ~ni ,Rj
� �

.

For the actual transformation two steps are necessary:
First step: Cholesky decomposition (via library algorithms

e.g., lapack) of Θ~n = Θξ

 �T Θξ


 �
.

Second step: The inverse of the N × N moment expanded
moment matrix (Θξ)−1 transforms the set {ñi|i ≤ N} into the
moment expanded states {ξi|i ≤ N} according to eq. (33).

A schematic representation of the direct moment expansion
is given in Figure 1.

Application of Theorem 1 and 2 to the Linear
Density-Density Response Function

General description

The calculation of the electronic response due to a perturbation
potential is common to numerous important applications from
spectroscopy to intermolecular interactions (Figure 2). One
example is fragmentation methods, where a large system is

Figure 1. Schematic representation of the calculation of the first N moment
expanded states using the Direct Moment Expansion. [Color figure can be
viewed at wileyonlinelibrary.com]
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partitioned into smaller fragments that are more efficient to com-
pute. The mutual interaction between the fragments can be real-
ized via a perturbation theory approach, where each fragment
perturbs the other ones via its electrostatic potential (acting as a
perturbation potential).[19–26] Following these ideas, many embed-
ding or subsystem density functional theory (DFT) methods[27]

like frozen density embedding [28–34] or embedded correlated
wave functions methods [34–37] were developed in the literature.

For the specific case of interacting molecules, a fragmenta-
tion approach, which considers the individual molecules as ele-
mentary subsystems is suited. Then, the intermolecular
interaction energy has to be obtained via post processing of
the results for the isolated molecules. In particular for the elec-
trostatic interaction energy, methods like multipole
expansions,[38–44] density fitting [45–48] or perturbation theories
[19–26] are utilized.

Accurate electrostatic interaction energies should take polari-
zation effects into account. For the specific choice of the molec-
ular linear density-density response function as kernel χ(r, r0)
the integral transform in eq. (1) constitutes an operator T̂ :
Vpert rð Þ↦nresp rð Þ which maps perturbing potentials Vpert(r) to
response densities nresp(r). These response densities fully incor-
porates polarization effects.

In Theorem 1 and 2 we prove the validity of an efficient pro-
tocol for the calculation of the density response due to
approximated/truncated perturbing potentials Vpert rð Þ 2
P N½ �≔Span P1 rð Þ,P2 rð Þ,…,PN rð Þð Þ using the operator T̂. We pre-
sent a generalized representation (i.e., independent of the spe-
cific shape of the perturbing potential) of the response density,
which can be computed and stored with a reasonable compu-
tational effort by means of the moment expansion. The latter is
designed to optimally reflect the shape of physically meaning-
ful (yet arbitrary) perturbation potentials which will be gener-
ated by nearby molecules.

Efficiency gain due to moment expansion

The quantum chemical calculation of the (linear) response of a
molecule to an external perturbation potential can be done
(1) via a conventional self-consistent perturbation theory calcu-
lation [6–12] or (2) via application of the generalized density-
density reponse function χ(r, r0). For the determination of a
single response density for one given perturbation potential
(or at least a limited number of such perturbations), the direct
calculation (1) is more efficient than our approach (2) due to

the comparably high computational cost of obtaining χ(r, r0)
explicitly. The actual application of χ(r, r0) to any specific pertur-
bation potential in turn is quite small, because only a limited
number of scalar products of the specific perturbation potential
function with the basis functions for χ(r, r0) is necessary
(in particular, no self-consistency cycle is involved any more).
Thus, the advantage of using an explicit representation of the
density-density response lies in repeated applications of
response calculations for numerous different perturbation
potentials for the same molecule, that is, when only one initial
determination of χ(r, r0) is required. For the original eigen-
system formulation of χ(r, r0), the break-even point depends on
the number of eigenstates that are needed for an accurate rep-
resentation, typically around 1000–5000 (e.g., for a water mole-
cule). The number of required self-consistent perturbation
theory cycles for the initial determination of χ(r, r0) roughly
equals the number of desired eigenstates.

The efficiency gain of the moment expansion stems from
the reduction of that number (the number of eigenstates
required for an accurate representation of χ(r, r0) by about
two orders of magnitude. In our new representation, the focus
is shifted from optimally representing the local properties of
χ(r, r0) toward optimally adapting the representation to the
shape of the perturbation potential Vpert(r). Hence, our
moment expansion shifts the break-even point compared to
conventional self-consistent perturbation theory calculations
from 1000 to 5000 toward a number of about 10–100 conven-
tional calculations. While this figure of course still means that
for a small number of response calculations, the conventional
path is more advantageous, the perspective changes when a
very large number of response calculations for the same mole-
cule is required. A case in point for this situation is molecular
dynamics simulations of a molecular liquid. From the perspec-
tive of a given molecular in the liquid, each new molecular
dynamics frame constitutes a new chemical environment, to
which the molecular density will respond. This response is cur-
rently computed self-consistently (Born-Oppenheimer molecu-
lar dynamics) or iteratively (Car-Parrinello scheme). Our
approach could be used to switch the determination of the
density response to a new molecular dynamics step to a non-
self-consistent way at considerably reduced computational
cost without sacrificing quantum chemical accuracy.

What is the physical interpretation of this dimensionality
reduction? The spatial shape of the eigenstates of the density-
density response function resembles a kind of symmetrized set
of molecular orbitals. The eigenstates often appear like atom-
centered (or bond-centered) functions of localized nature and
strong nodal structure, that is, strong local oscillations. Further-
more, subsequent eigenstates often cover the same spatial area
but just show a higher nodal structure. From a more general
perspective, an analogy to fitting a function via a polynomial
interpolation comes into mind: Fitting N data points yields an
interpolation polynomial of order N, which however is rarely
the optimal choice for a relatively smooth function. This prob-
lem of the original eigensystem representation of the density-
density response function is cured by the moment expansion
formulation.

Figure 2. Principal illustration of the response density of the water molecule
(right) due to a perturbing water molecule (left). [Color figure can be viewed
at wileyonlinelibrary.com]
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The specific impact of the two theorems for the linear
density-density response function is discussed in the following.

Relevance of Theorem 1

The eigensystem representation offers a straightforward but
inefficient possibility for the calculation of the density response.
The infinite expansion in eq. (2) can be truncated after M
eigenstates to the M largest eigenvalues (M ~103 − 104),[1,2] as
the sequence of the eigenvalues decays to zero. In order to
obtain the response density due to a perturbing potential
Vpert(r) 2 Span(P1(r), P2(r), …, PN(r)), the calculation of M dot
products/projections between the eigenstates and the specific
perturbing potential Vpert(r) is necessary in eq. (38).

nresp rð Þ=
XM
i =1

χ i rð Þλi χ i ,Vpert
� � ð38Þ

Utilizing the moment expanded states resulting from Theo-
rem 1, a drastic reduction of the dimensionality of the expres-
sion of the response density is achieved. The full density
response due to Vpert(r) 2 Span(P1(r), P2(r), …, PN(r)) can be cal-
culated within N moment expanded states with N < < M (sub-
item 2 of Theorem I):

nresp rð Þ=
XN
n=1

ξn rð Þ ξn,Vpert
� �

: ð39Þ

Relevance of Theorem 2

The second theorem gives rise to a much more efficient algo-
rithm for the calculation of the moment-expanded states
(referred to as direct moment expansion). For the brute force
construction of the transformation Q derived in theorem 1
(which corresponds to the algorithm of the moment expansion
published in 2016 [3]) a large number of M eigenstates are cal-
culated, followed by M × N Givens rotations to condense the
physically information.

Via the direct moment expansion, we are able to calculate
the first N moment expanded states from the first N direct den-
sity expanded states (by a Cholesky decomposition of a N ×
N matrix). Each direct density expanded state can be computed
via a single quantum chemical perturbation theory calculation.
A concrete, step-by-step protocol for the calculation of the
direct moment expansion is given in the previous section.

Numerical Example: Density Response of a
Water Molecule

In this section, we will demonstrate that the linear operator
defined by the linear density-density response function fulfills
the conditions for the application of the moment expansion,
that is, we will show that the relevant domain vectors (per-
turbing potentials arising from neighboring molecules) can be
expressed within a finite number of basis functions.

We choose the perturbative effect of one water molecule
on an adjacent one as an elementary example (Figure 2). For

simplicity, we use the Hartree potential using the partial char-
ges of one of the most common force field water models
(TIP3P) as perturbation, while the perturbed water molecule is
represented within standard density functional theory, comple-
mented with the density-density response function computed
using density functional perturbation theory calculations

(as practial realizations of the operator T̂). The Hartree potential
of the TIP3P partial charges reads:[49]

Vfrag
TIP3P rð Þ=

XNn

λ= 1

Qpartial
λ

j r−Rλ jerf
j r−Rλ jffiffiffi

2
p

σ


 �
: ð40Þ

For 10 different distances to the origin of the TIP3P water
molecule, we choose six representative points (spanning an
octahedron) and expanded the perturbing potential around
these positions using up to 54 monomials. Subsequently, we
calculated the overlap of the polynomial approximated poten-
tial and the Hartree potential on a 4 Å × 4 Å × 4 Å cube cen-
tered at the origin of the potential expansion—note, that the
origin of the perturbing potential (center of mass of a TIP3P
water molecule) and the origin of the potential expansion (cen-
ter of the responding water molecule) do not coincide—The

overlap Oj~f i
jf i of a function j ~f i and jfi was taken according to:

Oj~f i
jf i =

~f , f
D E
f , fh i ð41Þ

Finally, we averaged the six overlaps of the Hartree potential
and the expanded potential for each distance to the origin and
presented the results with respect to different numbers of basis
functions in Figure 3.

Furthermore, we demonstrated that we can use the moment
expansion in order to express the full density response of water

Figure 3. Averaged and normalized overlap of the Hartree potential and the
potential obtained from the expansion in monomials. The different colors
refer to different number of basis functions. Please note, that the origin of
the perturbing potential (center of mass of a TIP3P water molecule) and the
origin of the potential expansion do not coincide! The overlap was taken at
a 4 Å × 4 Å × 4 Å cube centered at the origin of the expansion of the
perturbing potential. For each distance to the spatial origin of the potential
expansion, we averaged over six overlaps (corresponding to six different
spatial origins of the expansion of the perturbing potential, which span an
octahedron). [Color figure can be viewed at wileyonlinelibrary.com]
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molecule within a few moment expanded states. For each dis-
tance to the perturbing TIP3P water molecule, we reused the
octahedral alignment of the origins of the expansion of the per-
turbing potentials from the previous paragraph as center of
masses of a responding water molecule.

Due to the perturbing potential, we calculated the response
density of these water molecules via the moment-expanded
states and via Density Functional Perturbation Theory (DFPT)
(as reference calculations).

We calculated the overlap of the resulting densities and aver-
aged all overlaps corresponding to the same distance to the
perturbing TIP3P water molecule. The obtained values are
depicted in Figure 4. From Figure 3 and Figure 4, we can
deduce that already within nine states we can obtain reason-
able good approximations of response densities or perturbing
potentials. For small intermolecular distances, we can systemati-
cally improve the approximation by addition of further moment
expanded states/basis functions. Within 54 states we obtain
more than 90% of the response density/ the perturbing poten-
tial, even in the regime of the first maximum of the water–
water radial distribution function (~ 2.5 Å). This is a remarkable
reduction compared the employment of several of thousands
eigenstates of the linear density-density response function.

Conclusion

In this article, we generalize the concept of the moment expan-
sion to arbitrary compact, positive and self-adjoint linear opera-

tors T̂. This class of linear operators includes all integral
transforms with a positive, symmetric and continuous kernel
χ(r, r0). We show that only comparably weak conditions have to
be fulfilled (such as functions of the domain has to be Taylor
expandable in an local environment) in order to allow for an
efficient explicit representation (i.e., calculation and memory

storage) of the linear operator T̂, which enables the evaluation

of T̂ with a drastically reduced costs compared to its eigen-
system representation.

We have demonstrated that the moment expansion can be
considered as a QR decomposition of the transformation
matrix. The straightforward calculation of the infinite orthogo-
nal matrix Q would in particular include the calculation of thou-
sands of eigenvalues and eigenstates. We presented an
efficient version of the moment expansion (termed as direct
moment expansion), which allows the calculation of the first
N moment expanded states at the computational costs of

about N evaluations of T̂.
For the specific case of the linear density-density response

functions as kernel χ(r, r0), we presented a numerical example
for the efficient calculations of converged molecular response
densities via the moment expansion. We demonstrated that
perturbing potentials from neighboring molecules could be
truncated within a few (ffi 34) basis functions.

The actual scope of our work exceeds far beyond this specific
example. All Green’s-function based formalisms in physics and
chemistry have the problem that the Green’s function itself can
rarely be expressed/computed explicitly because of its dimen-
sionality. In most cases, it is merely considered as a handy
nomenclature for formally expressing that a linear differential
equation can be solved (inverted) for a specific right-hand-side
function. Our work shows that this problem can possibly be
overcome in many situations. While we do not believe that we
have a comprehensive overview of all possible applications our-
selves, an indicative list of quantum chemical problems would
include (a) fragmentation/embedding approaches, (b) van-der-
Waals interaction energies via a Lundqvist expression[50] and
correlation energies within the random phase approximation,
and (c) resolution of identity approaches. Possible fields of
application beyond this directly related area are (d) polarizable
force fields, (e) optimal control theory, and (f) signal processing
(impulse response function). However, we believe that our
Ansatz may also find applications in the wider area of “funda-
mental solutions” (in mathematical terms) where spectral theo-
ry/Fredholm integral equations are applicable.

Keywords: density-density response function � molecular inter-
action � density functional perturbation theory � linear compact
operator
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Appendix
Computational details

The moment expansion has been implemented in our develop-
ment version of the CPMD [51] electronic structure package. The
calculations have been performed using Density Functional

Figure 4. Averaged normalized overlap of the response density (of a water
molecule) from the moment expansion and a reference DFPT calculation
(due to the perturbing potential generated by the TIP3P water). The different
colors refer to different number of moment-expanded states. We averaged
over six density overlaps for each distance between the perturbing TIP3P
water molecule and the responding water molecule. The six positions of the
responding water molecules span an octahedron for each distance. Please
note, that we compare the density differences (ffi response densities) due to
a perturbation and not the resulting overall densities. [Color figure can be
viewed at wileyonlinelibrary.com]
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Perturbation Theory [8,11,12,52,53] with Troullier-Martins [54]

pseudo potentials in the Becke [55] and Lee-Yang-Parr [56] approx-
imation for the exchange correlation kernel. The perturbing
potential was expressed by a polynomial expansion. The basis
was formed by the set of polynomials xlymzn with l, m, n 2 N,
which fulfill the condition l + m + n ≤ imax. The largest basis set
consisted out of 54 polynomials (imax = 5). The calculation of the
reference density response with CPMD was done for relaxed
water geometry. We used a plane wave basis for all involved
quantities, be it the electronic density, the perturbing potentials
or the moment-expanded states. The real space representation
naturally gives rise to a regular grid. For our chosen parameters,
the grid increment is about 0.08 Angstroms, whereas the spread
of the Gaussians in eq. (40) is chosen as σ = 0.5a0.
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3.2.3 Article VIII: Iterative Approach for the Moment Representa-
tion of the LDDRF.

Paul Ahlert, Arne Scherrer, Christian Dreÿler, and Daniel Sebastiani.
Iterative approach for the moment representation of the density-density response func-
tion.
The European Physical Journal B, 91(6):94, 2018.

A. Scherrer developed the idea of using symmetry-adapted starting functions for
the iterative response calculation scheme and implemented the code. P. Ahlert and I
were responsible for benchmarking and application calculations. D. Sebastiani ini-
tiated and supervised the project. While P. Ahlert wrote the main part of the
manuscript, I was responsible for section 3 of the article.
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Abstract. The linear density-density response function χ(r, r′) can be transformed from its Eigensystem
representation into a computationally more efficient moment expansion representation using a suitable
unitary transformation. Here, we propose an iterative approach for the direct calculation of this moment
representation without resorting to either the direct-space or the conventional Eigensystem representation.

1 Introduction

When atoms and molecules are exposed to various per-
turbations from the environment, e.g. electric fields from
sorrounding molecules, they react to this external pertur-
bation with a response of their electronic quantum state.
For many small perturbations, perturbation theory can
be applied to determine the linear response to the pertur-
bation. This linearity also applies to the electron density
in density functional theory (DFT) [1–3], giving rise to
density functional perturbation theory (DFPT) [4–9]. The
central quantity within linear response theory is the linear
density-density response function χ, which connects the
(arbitrary) perturbing potential to the induced electronic
response density:

nresp(r) =

∫
χ(r, r′)Vpert(r

′)d3r′, (1)

where nresp(r) denotes the response density and Vpert(r
′)

denotes the perturbing potential. One possible representa-
tion of χ(r, r′) is its spectral decomposition in eigenvectors
χi(r) and eigenvalues λi [10]:

χ(r, r′) =
∞∑

i

χi(r)λiχi(r
′) (2)

The spectral decomposition can be obtained numerically
by a Lanczos diagonalisation technique [10–15].

? Contribution to the Topical Issue “Special issue in honor
of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira,
A. Rubio, and M.A.L. Marques.

a e-mail: daniel.sebastiani@chemie.uni-halle.de

The sum in equation (2) can be expressed in the form
of a matrix product according to

χ(r, r′) = QΛQT (3)

with a vector of functions Q = [χ1(r), χ2(r), . . .] and a
diagonal real matrix Λ = [λ1, λ2, . . .].

Although the sum in equation (2) is in principle infinite,
the spectrum decays, so that it can be truncated after
a sufficient number of states. Nevertheless, several thou-
sand states are necessary in order to obtain a converged
response density even for small molecules, as we and oth-
ers have reported [10–16]. This large number of eigenstates
presents two problems: it makes, firstly, the computa-
tion of the eigenstates very demanding and, secondly, the
evaluation of equation (1) rather cumbersome. The latter
problem can be solved by a change of representation of the
linear density-density response function, generating new
states that allow to seperate the contributions from differ-
ent multipole moments of the perturbing potential to the
response density. As a consequence, the physical informa-
tion of the linear density-density response function is con-
densed in few states [16]. This moment expanded represen-
tation provides also a means to solve the former problem,
which shall be shown in this paper. A condensed, compu-
tationally efficient representation of the density-density
susceptibility tensor is crucial for potential applications
of intermolecular interactions in the form of polarizable
force fields [17–22], but could be of equal interest for the
calculation of intermolecular dispersion energies [23–25].
Complementary relevance stems from the area of sum-
frequency spectroscopy [26–32], and recently also from
“alchemical” morphing between elements [33,34].

The change of representation is achieved by a unitary
transformation of the eigenstates that yields irreducible
representations of the linear density-density response
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function with respect to rotations in SO(3). In the fol-
lowing, we first give a brief summary of the moment
expanded representation of the linear density-density
response function and show afterwards how this rep-
resentation drastically reduces the computational effort
necessary for the calculation of the response function.

2 Moment expansion

The central idea of the transformation of the density den-
sity response function into its moment expansion is that it
is possible to determine a unitary transformation for the
spectral decomposition of the response function (“Eigen-
system representation”) which yields a representation that
condenses its physical information in only a few states [16].

In the first step, we expand the perturbing potential
in a Laplace series using solid harmonic functions [35].
While other choices such as non-polynomial radial func-
tions (Gaussian, exponential, . . . ) or a direct cartesian
Taylor expansion) are equally possible, we have found
solid harmonics to be the most suitable option thanks to
their mathematical properties, in particular the existence
of a fast and stable method for rotating them in space [35]
and the fact that their multipole moments are traceless.

Vpert(r
′) =

∞∑

l=0

l∑

m=−l
V m
l Rm

l (r′), (4)

where

V m
l = 〈Vpert|Rm

l 〉. (5)

Insertion of equations (2) and (4) in (1) yields:

nresp(r) =
∞∑

i=1

χi(r)

(
√
λi

∞∑

l=1

l∑

m=−l
V m
l Θlm

i

)
, (6)

where we have defined multipole moments

Θlm
i =

√
λi〈χi|Rm

l 〉. (7)

In the next step, we introduce a new representation of
χ(r, r′) by a unitary transformation of the eigenstates in
equation (3):

χ(r, r′) = QΛ
1
2UUTΛ

1
2QT =: RRT (8)

where R = [(ξ1(r), ξ2(r), . . .)] with transformed states

ξi(r) :=
∞∑

j

Uji

√
λjχj(r). (9)

The elements of the transformation matrix U are yet to
be determined. The aim of this step is to obtain a new
set of states {ξi(r)} which exhibit symmetries of angular
momenta with adequate quantum numbers (l,m). As we

have shown previously [16], it is possible to assign a suit-
able couple i 7→ (l,m) to each ξi(r) so that a new set of
functions {ξml (r)} emerges which satisfies

Ξmm′
ll′ := 〈ξml |Rm′

l′ 〉 = 0 if l > l′ or m > m′. (10)

This property means that a given {ξml (r)} has only con-
tributions from solid harmonics with quantum numbers
larger than its own ones (l,m). The new representation of
χ(r, r′) in terms of the ξml (r), analogous to equation (2),
follows from equation (8):

χ(r, r) =
∞∑

l

l∑

m=−l
ξml (r)ξml (r′). (11)

Insertion of this new representation for χ(r, r) into equa-
tion (1) and using the Laplace expansion of Vpert according
to equation (4) yields the response density

nresp(r) =
∞∑

l′=1

l′∑

l=1

l′∑

m′=−l′

l∑

m=−l
ξml (r)Ξmm′

ll′ V m′
l′ , (12)

where Ξmm′
ll′ from equation (10) has been substituted. The

condition expressed in equation (10) has been exploited to
reduce the summation limits for l in equation (12) from
(1→∞) to (1→ l′). Hence, the algorithmic efficiency of
the representation of (12) compared to the original one
(combining Eqs. (1) and (2)) now depends on a different
criterium: it does no more depend on the convergence of
the susceptibility spectrum, i.e. the decay of its eigenvalue
series (λi), but instead on the quantum number l

′
max nec-

cessary to expand the perturbing potential in terms of
solid harmonics functions.

Physically, the coefficients V m
l represent the (l,m)-

components of an external potential expanded at the
position of the perturbed molecule/fragment, which is
generally several Ångstroms away from the position of the
perturbing object. Hence, the spatial variation of Vpert(r)
at this distance is likely to be weaker, and the angular
moment expansion might be truncated at moderate values
of (l,m):

nresp(r) =

lmax∑

l′=1

l′∑

l=1

l′∑

m′=−l′

l∑

m=−l
ξlm(r)Ξmm′

ll′ V m′
l′ . (13)

We have demonstrated this for the hydrogen bond
interaction in a water dimer[16]: it turns out that
lmax = 4 delivers an accurate response density of one water
molecule to the perturbing potential of the other one.

The spatial shape of these moment expanded states
ξml (r) for water are discussed in detail in [16] as well. The
number of moment expanded states for a maximal angular
momentum channel lmax grows with O(l2max). Thus, a con-
verged response density can be obtained by a number of
moment expanded states which is very small compared to
the several thousand states of the spectral decomposition.
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The algorithm for obtaining them according to (8), how-
ever, still requires the initial determination of virtually
the full spectrum of χ̂, i.e. several thousands of couples
(λi, χi(r)), plus the unitary transformation matrix Uij . In
the following section, we will derive an algorithm which
allows to compute the moment expanded states directly.

3 Computation of the ξml (r)

In this section, we will present an algorithm which allows
to compute the moment expanded states ξml (r) iteratively,
without the need to obtain the spectral decomposition
beforehand. In the first step, we determine the response
density to a perturbing potential which is equal to the first
solid harmonic, i.e.

Vpert(r
′) = R−11 (r′). (14)

This is equivalent to setting V −11 = 1 in the Laplace

expansion and all other coefficients V m6=−1
l 6=1 = 0.

The response density to such a potential is given by
equation (13):

nresp(r) =

l∑

m=−l
ξml (r)Ξm−1

l1 (15)

= n−11 (r) = ξ−11 (r)Ξ−1−111 . (16)

Projection on the solid harmonic R−11 (r′) yields

〈R−11 |n−11 〉 = |Ξ−1−111 |2. (17)

Eventually, the first moment expanded state ξ−11 (r) can
be obtained by

ξ−11 (r) =
n−11 (r)√
〈R−11 |n−11 〉

. (18)

The response density to the perturbing potential (14) can
be calculated directly by means of an explicit DFPT run,
yielding ξ−11 (r) by equation (18). In order to obtain the
state of next higher symmetry ξ01(r), the response den-
sity to a perturbing potential equal to the second solid
harmonic has to be determined:

Vpert(r
′) = ξ01(r′). (19)

The response density is then given by equation (13) as

nresp(r) = ξ−11 (r)Ξ−1011 + ξ01(r)Ξ00
11 , (20)

so that follows

ξ01(r)Ξ00
11 = nresp(r)− ξ−11 (r)Ξ−1011

=: n01(r).
(21)

Ξ00
11 can be obtained analogous to equation (17), eventu-

ally leading to

ξ01(r) =
n01(r)√
〈R0

1|n01〉
. (22)

The total response density to a perturbating potential

Vpert(r
′) = R1

1(r′) (23)

is given as:

nresp(r) = ξ−11 (r)Ξ−1111 + ξ01(r)Ξ01
11 + ξ11(r)Ξ11

11 . (24)

It follows

ξ11(r)Ξ11
11 = nresp(r)− ξ−11 (r)Ξ−1111 − ξ01(r)Ξ01

11 =: n11(r)
(25)

and

ξ11(r) =
n11(r)√
〈R1

1|n11〉
. (26)

The above algorithm can be generalized for the calcula-
tion of any moment expanded state ξml (r) with specific
(l,m), which shall be shown in the following. The total
response density to a perturbation potential equal to the
solid harmonic Rm

l (r′) is

nresp(r) =

∫
χ(r, r′)Rm

l (r′)d3r′. (27)

It follows from equations (10) and (13) that

nresp(r) =
l−1∑

l′=1

l′∑

m′=−l′
ξm

′
l′ (r)Ξm′m

l′l +
m∑

m′=−l
ξm

′
l (r)Ξm′m

ll .

(28)
Furthermore, it follows

ξml (r)Ξmm
ll = nresp(r)−

l−1∑

l′=1

l′∑

m′=−l′
ξm

′
l′ (r)Ξm′m

l′l

−
m−1∑

m′=−l
ξm

′
l (r)Ξm′m

ll =: nml (r). (29)

If all the moment expanded states of lower symmetry
(l′,m′) are known, ξml (r) can be easily calculated:

ξml (r) =
nml (r)√
〈Rm

l |nml 〉
. (30)

Since the explicit calculation of a single state using DFPT
requires only one additional perturbation calculation,
only l2 + l + m perturbation calculations are necessary
to compute a moment expanded state of order (l,m).
This drastically reduces the computational effort and the
required storage in comparison to the computation of sev-
eral thousand eigenstates for the spectral decomposition
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according to equation (2). In the case of a water dimer, the
corresponding numbers are about 5000 DFPT iterations
(one for each Lanczos step) and 3000 retained Eigenfunc-
tions χi(r) for the original scheme using equation (2),
compared to 25 DFPT calculations for all new states up
to lmax = 4 and the same number of 25 retained functions
ξml (r).

4 Conclusion

We have derived an iterative method for the efficient
and direct computation of the linear density-density
response function in its moment expanded representation.
Our novel method does not rely on the convergence of
the Lanczos-based diagonalisation of the response tensor
χ(r, r′) and the determination of the subsequent transfor-
mation of the spectral decomposition into the moment
expanded states. Instead, the moment expanded states
ξml (r) are obtained directly from the elementary iterations
of the response function.

The moment expanded representation of the density-
density response function allows new insight into the
nature of the reaction of a complex set of molecular
orbitals to external perturbations such as intermolecular
interactions.

The considerable increase in algorithmic efficiency
relies on the possibility to expand the perturbing poten-
tial in a comparably small number of solid harmonics
functions, i.e. to truncate the sum in equation (4) at
low values of l. While in principle, this truncation does
not depend on the size of the molecule (rather on the
spatial variation of the perturbing potential), it is clear
that for a large molecule, this variation will most likely
be larger. Hence, the algorithmic advantage of our new
scheme may somewhat shrink. However, for a large
molecule, the decay of the regular Eigenvalue spectrum
of the susceptibility tensor will be much slower than for
a small molecule. Hence, the new scheme will again be
more advantageous compared to the direct Eigensystem
representation according to equation (2).

It should be noted that neither the increase in efficiency
nor the accuracy do not rely on the properties (size, molec-
ular symmetry, . . . ) of the molecule under consideration,
but instead on the variability of the external potential in
the region of that molecule. In turn, this means that for
an external potential that has a very anisotropic shape
in the region of the considered molecule, the expansion of
the potential in terms of solid harmonics may be difficult
to converge and the response calculation via equation (13)
may become inaccurate for small values of lmax. We believe
that many common intermolecular interaction types such
as hydrogen bonds and polarization effects due to polar
and ionic groups can be represented with a very modest
quantum number of about lmax = 4.
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We generalize the explicit representation of the electronic susceptibility χ[R](r,r′) for arbitrary molec-
ular geometries R. The electronic susceptibility is a response function that yields the response of the
molecular electronic charge density at linear order to an arbitrary external perturbation. We address
the dependence of this response function on the molecular geometry. The explicit representation of
the molecular geometry dependence is achieved by means of a Taylor expansion in the nuclear coordi-
nates. Our approach relies on a recently developed low-rank representation of the response function
χ[R](r,r′) which allows a highly condensed storage of the expansion and an efficient application
within dynamical chemical environments. We illustrate the performance and accuracy of our scheme
by computing the vibrationally induced variations of the response function of a water molecule and
its resulting Raman spectrum. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945372]

I. INTRODUCTION

The accurate evaluation of intermolecular electrostatic
interactions is of great importance for large scale molecular
dynamics simulations. In many cases a fragmentation
approach can be used to increase the efficiency of such
calculations. Common methods employed are based on
multipole expansions,1–6 density fitting,7–9 or perturbation
theories.10–13 Provided that polarization effects are taken into
account, this involves the calculation of response properties
of the fragments, e.g., in the simplest case the dipole-dipole-
polarizability α.

Wave function and density functional theory based
perturbation theories are very successful in providing chem-
ically accurate intermolecular interaction energies yielding
instructive energy decomposition schemes.10–13 However,
their power comes at the price of a high computational
complexity. In view of their application to molecular dynamics
simulations, the dependence of the involved quantities on the
atomic configuration R = {Ri} has to be considered explicitly.

The orbital based calculation of the linear electronic
response density via density functional perturbation the-
ory14–18 (DFPT) requires a self-consistent solution of the
Sternheimer equation

−

Ĥ (0)

KS
(R) − ϵ (0)o (R)


P̂[R]e

���φ(1)[R]o



= P̂[R]eĤ (1)
KS

[{φo}] ���φ(0)[R]o


, for o = 1 . . . N, (1)

nresp
[R] (r) = 2

Ne

o=1

Re

φ
(0)
[R]o
∗(r)φ(1)[R]o(r)


, (2)

where P̂[R]e = 1 −Ne
o=1 |φ[R]o⟩⟨φ[R]o | is a projector on the

manifold of unoccupied states.
We have explicitly included the parametric dependence of

the involved operators and orbitals on the molecular geometry

a)Electronic mail: daniel.sebastiani@chemie.uni-halle.de

R. The perturbation Hamiltonian on the right hand side
Ĥ (1)

KS
[{φo}] depends on the electronic density response and

hence implicitly on the perturbed orbitals on the left hand side,
which necessitates a self-consistent solution of the equations.

During a molecular dynamics simulation, an orbital-
based evaluation of the electronic response corresponds to
solving the unperturbed ground state electronic structure
H (0)

KS
(R), ϵ (0)o (R), φ(0)[R]o(r) for each fragment and configuration

R and subsequently a series of self-consistent solutions of
the perturbation equations φ(1)[R]o(r), nresp

[R] (r) for each pairwise
interaction Vpert(r) of the fragments. This is evidently a very
costly undertaking, limiting its applicability to comparatively
small system sizes.

Density based methods provide a considerable reduction
of dimensionality. The long-range regime of the electrostatic
interaction is elegantly described by the (distributed) point
multipole approximation, which drastically simplifies the
interaction.1–4,19,20 For larger molecules, distributed point
multipoles have proven to work even if the single point
multipole approximation diverges.19,21 A further generaliza-
tion allowing for polarization effects is the distributed polar-
izability method which attributes multipole polarizabilities
to different sites of the molecules.22–25 By construction, point
multipoles give a poor description of the short range regime of
the interaction.26 Strategies to overcome this problem employ
a spatial representation of the electronic density via Gaussian
charge distributions27,28 or Gaussian multipoles.6,29–31

Our work aims to push this approach to the next
level, combining the advantages of a reduced computational
complexity for the evaluation of the response density while
keeping the response density in its full non-local spatial
dependence and not only its multipole moments. In analogy to
Gaussian multipole moments6,31 (as a generalization of point
multipoles), our representation of the electronic susceptibility
χ(r,r′) provides a generalization of the multipole-multipole-
polarizabilities.22–25,32,33

0021-9606/2016/144(14)/144111/7/$30.00 144, 144111-1 © 2016 AIP Publishing LLC
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FIG. 1. Density response nresp(r) of a water molecule (right) due to the
perturbation potential Vpert(r) generated by the electrostatic potential of a
hydrogen bond donor (left water molecule).

Here, we make a step towards a higher usability of
the approach without the need of solving Eqs. (1) and (2)
self-consistently for each

(a) novel external perturbation potential and
(b) new molecular conformation R.

The first aspect (a) is achieved by our recently devel-
oped explicit representation of the electronic susceptibility
χ[R](r,r′) within a low-rank approximation.32–37 The elec-
tronic linear response density nresp

[R] (r) due to a perturbation
potential Vpert(r′) then is determined by the linear electronic
susceptibility χ[R](r,r′) via

nresp
[R] (r) =


χ[R](r,r′)Vpert(r′)d3r ′. (3)

The specific example of the density response nresp
[R] (r) within

a water molecule due to a hydrogen bond is illustrated
in Fig. 1. Here, the specific perturbation potential Vpert(r)
=
 n

H2O
left (r′)
|r−r′| d3r ′ was used to compute nresp

[R] (r) via Eq. (3).
In principle, however, Eq. (3) defines a response function
which is formally independent of the perturbation potential.
The simultaneous incorporation of the implicit geometry
dependence (b) requires in principle an explicit representation
of the susceptibility χ[R](r,r′) on the nuclear coordinates R
which is nontrivial. In this article we show that this explicit
representation of the full non-local response function on the
molecular geometry can be achieved by means of a Taylor
expansion in the nuclear coordinates. Our approach relies on
the very condensed representations32,33 of the full response
function which provides an efficient way to address this
problem.

II. MOLECULAR GEOMETRY EXPANSION

Formally, there is no obstacle to explicitly calculate the
response function χ[R](r,r′) for different configurations R.
This allows to analyze the dependencies of the electronic
susceptibility on the molecular geometry and it will be used
for comparison in the following. However, its brute force
tabulation for all relevant configurations is no practicable way
to approach problem (b).

An obvious approach to explicitly express the geometry
dependence of the response function is a multi-dimensional
Taylor expansion around the geometry of interest, e.g., the

equilibrium geometry R0

χ[R](r,r′) =
∞

|a |≥0

(R − R0)a
a!

∂a χ[R0](r,r′), (4)

where we have used multi-index notation. This involves the
calculation of derivatives of the high-dimensional response
function, i.e., for the displacement of nucleus ν in Cartesian
direction k we obtain

χ
(νk)
[R0]

(r,r′) = ∂ χ[R](r,r′)
∂Rν

k

���R=R0
, (5)

where the superscripts in parenthesis (νk) denote the deriv-
ative. Its direct calculation, i.e., an explicit diagonalization
of the analytical derivative χ(νk)[R0]

(r,r′) might be possible.
Prior work on the non-local polarizability density has
expressed its analytical derivative in terms of the non-local
hyperpolarizability density.38,39 This nicely illustrates the
physics underlying the derivative of the response function
but barely provides a numerically practical scheme for its
computation.

An evident way to calculate the derivatives in Eq. (4) is
the numerical derivative of the response function via finite
differences, e.g., via forward difference for the first order. For
a geometry Rν

k
with nucleus ν displaced in direction k, i.e.,

Rν′
l
= Rν′

l,0 + ∆δklδνν′, this gives

χ
(νk)
[R0]

(r,r′) =
χ Rν

k

(r,r′) − χ[R0](r,r′)
∆

. (6)

However, this operation is computationally very inconvenient
due to the extremely high dimensionality of the involved
objects. Therefore, the direct difference of the response
function will not be used in this work. In order to obtain
a feasible expression for the derivative of the total response
function, its spectral decomposition is used32,34

χ[R](r,r′) =
∞

i=1

χ[R]i(r)χ[R]i χ[R]i(r′). (7)

The full response function is represented as a weighted outer
product over eigenvalues χ[R]i and eigenfunctions χ[R]i(r).

The direct derivation of Eq. (7) gives via the product rule

χ
(νk)
[R0]

(r,r′) =


i

(
χ
(νk)
[R0]i

(r)χ[R0]i χ[R0]i(r′)

+ χ[R0]i(r)χ
(νk)
[R0]i
χ[R0]i(r′)

+χ[R0]i(r)χ[R0]i χ
(νk)
[R0]i

(r′)
)
, (8)

where derivatives are taken at R = R0.
This suggests that the numerical derivative can be

performed on the eigenstates χ[R0]i(r) and eigenvalues χ[R0]i
of the spectral decomposition

χ
(νk)
[R0]i

(r) =
χ Rν

k


i(r) − χ[R0]i(r)
∆

, (9)

χ
(νk)
[R0]i
=
χ Rν

k


i − χ[R0]i

∆
. (10)

At first glance, this appears to solve the problem. In particular,
the representation and the subtraction of the states are
technically feasible.
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FIG. 2. Eigenstates 13 and 14 for H2O in equilibrium geometry ((a) and
(b)) and in slightly displaced geometry ((c) and (d)). The sign and order of
the states have changed. This illustrates that small changes of the system
can lead to completely different eigenstates. (a) χ[R0]13(r), (b) χ[R0]14(r),
(c) χ 

Rν
k


13(r), (d) χ 

Rν
k


14(r).

However, a closer look at the eigenstates for different
geometries reveals an additional complication. In Fig. 2 we
show the eigenstates χ[R]13(r) and χ[R]14(r) of an isolated water
molecule for different geometries.

The change of symmetry of the eigenstates stems from
the intermixing of near degenerate eigenstates. If the system
changes gradually, e.g., due to a different configuration, some
eigenstates shift their eigenvalues. This reveals itself via a
change of the ordering eigenvalues and eigenstates. If two
states have near degenerate eigenvalues, this change can lead
to an intermixing or swap of the eigenstates. The eigenstates
with the same index i for different configurations may, even
if the displacement is very small, have completely different
symmetry. This applies in particular if the displacement breaks
a molecular symmetry. Furthermore, only the absolute values
of the eigenstates are well defined, their signs have no physical
relevance since they cancel themselves in the symmetric outer
product in Eq. (7). This means that eigenstates are in general
not continuously differentiable and Eq. (8) provides no feasible
way for the calculation of the derivative. Hence, an additional
theoretical step is necessary.

III. DIFFERENTIABILITY THANKS
TO SYMMETRY DECOMPOSITION

We look for a decomposition of the response function
in states that are generally continuously differentiable and
hence suited for finite differences. That is, the states should
be continuously differentiable in the nuclear coordinates.

For electronic systems far from conical intersections, the
overall response function should fulfill this property. For the
eigenstates, this condition is not fulfilled. Therefore, a change
of representation is needed that yields transformed states with
the desired properties.

We have very recently derived a new representation of the
full electronic susceptibility via a moment expansion.33 In this
very condensed representation, the total response function is
given as a sum of the outer products of transformed states,
partitioned in orders of the angular momentum expansion

χ[R](r,r′) =
∞

l=1

χl[R](r,r′), (11)

χl[R](r,r′) =
l

m=−l
ξm[R]l(r)ξm[R]l(r′). (12)

The transformed states ξm[R]l(r) are labeled by their
corresponding multipole moment and fulfill the property

⟨ξm[R]l |Rm′
l′ ⟩ =


Ξmm′
[R]l l′ if l ≤ l ′

0 if l > l ′
, (13)

where Rm′
l′ (r) are real Racah normalized regular solid

harmonic functions and Ξmm′
[R]l l′ are multipole moments of

the states and in general non-zero. In other words, the new
representation {ξm[R]l(r)} yields states for which the subset
{ξm[R]l(r)|l ≤ lmax ∧ m ∈ {−l, . . . , l}} comprises the complete
χ response up to an angular momentum channel of lmax.

The derivation of the change of representation as well
as its properties is not in the scope of this article and is
discussed extensively elsewhere.33 Important for this work are
the new properties of the moment expanded states ξm[R]l(r). For
each angular momentum channel l of the moment expansion
χl[R](r,r′), the new decomposition in Eq. (11) is uniquely
defined, i.e., the derivative of the whole response function
can be split into a sum of derivatives of angular momentum
contributions

χ
(νk)
[R0]

(r,r′) =
∞

l=1

χ
l(νk)
[R0]

(r,r′). (14)

For a given choice of the coordinate system, also the
decomposition of each angular moment contribution χl[R](r,r′)
in moment expanded states ξm[R]l(r) according to Eq. (12) is
well defined. Therefore, the physically observable contribution
of one transformed state to the total response is uniquely
determined by its symmetry

nresp
[R] (r) =

∞

l=1

nl
[R](r), (15)

nl
[R](r) =


χl[R](r,r′)Vpert(r′)d3r ′ (16)

=

l

m=−l
ξm[R]l(r)⟨ξm[R]l |Vpert⟩. (17)

This property is the key difference to the eigenstates: the
partition of the total response into physically observable
contributions of distinct symmetry guarantees that the
underlying states are also continuously differentiable. It is
this property that prohibits a discontinuous intermixing of
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FIG. 3. (a) First moment-expanded state ξ−1
[R0]1(r) for H2O in equilibrium

geometry. (b) Derivative state ξ
−1(νk )
[R0]1 (r) for OH-bond elongation.

different states and hence guarantees that the finite-difference
method gives well-defined derivatives

χ
l(νk)
[R0]

(r,r′) =
l

m=−l

(
ξ
m(νk)
[R0]l

(r)ξm[R0]l
(r′) + ξm[R0]l

(r)ξm(νk)
[R0]l

(r′)
)
.

(18)

In contrast to Eq. (8) where only the total sum is continuously
differentiable, in Eq. (18) all single terms in the sum are
continuously differentiable on their own.

Therefore, the numerical finite difference calculation of
the derivatives of moment expanded states is possible

ξ
m(νk)
[R0]l

(r) =
ξm

Rν
k


l
(r) − ξm[R0]l

(r)

∆
. (19)

In Fig. 3 we show a moment expanded state ξm[R0]l
(r) and

its corresponding bond-elongation derivative state ξm(νk)
[R0]l

(r).

IV. NUMERICAL VERIFICATION

The theoretical implication of continuous differentiability
of the moment expanded states can be verified numerically.
We have calculated the spectral decomposition and the
corresponding moment expanded representation for different
nuclear configurations R. As a benchmark system we use an
isolated water molecule and vary the nuclear configuration.
For the time being we truncate the Taylor expansion in
Eq. (4) after the second order and restrict ourselves to the first
two angular momentum channels of the moment expansion
l = 1,2,

χ[q](r,r′) ≈
2

l=1

(
χl[q0]

(r,r′) +
Nint

n=1

χ
l(n)
[q0]

(r,r′)∆qn

+
1
2

Nint

n,n′=1

χ
l(nn′)
[q0]

(r,r′)∆qn∆qn′
)
, (20)

with ∆qn = qn − qn0. The superscript (n) denotes the
derivatives with respect to the internal coordinate qn and
Nint is the number of internal coordinates, Nint = 3N-6 for
a nonlinear isolated molecule. It is important to note that
the systematic extension of this approach to higher orders
in the Taylor expansion or the moment expansion poses no
conceptual difficulties. For the second order traced moment
expansion altogether 9 states have to be considered, 3 for the
linear order and 5 + 1 for the second order.33

FIG. 4. Overlap between the explicitly calculated and the extrapolated states
ξm
l

for a single water molecule according to Eq. (22). The displacements
roughly correspond to temperatures of 2000 K. Also the second order states
show a well defined dependence on the nuclear displacement (a.u. refers to
atomic units).

To quantify the errors of the expansion for finite
displacements qn′ = qn′0 + δnn′∆qn we can compare the
extrapolated states with the exact explicitly calculated state at
the displaced geometry ξm[q]l by means of their overlap

ϵ lmξ (∆qn) =
⟨ξm[q]l |ξm[q0]l

+ ξ
m(n)
[q0]l
∆qn⟩

⟨ξm[q]l |ξm[q]l⟩
, (21)

where ideally ϵ lmξ (∆qn) = 1 for an exact finite order expansion.
As a more significant measure, we look at the corresponding
relative errors for the displacement induced changes of the
states

ϵ lm∆ξ (∆qn) =
⟨ξm[q]l − ξm[q0]l

|ξm(n)
[q0]l
∆qn⟩

⟨ξm[q]l − ξm[q0]l
|ξm[q]l − ξm[q0]l

⟩ . (22)

The relative errors of the moment expanded states
for different nuclear displacements are shown in Fig. 4.
The deviation of the extrapolated states from the explicitly
diagonalized states shows a smooth and continuous behavior.
Its relative error is of the order of a few percent in the
displacement range typical for nuclear vibrations. (Also the
relative error of the change of the state is at most two
percent over the relevant range.) These results confirm the
validity of the first order expansion of the molecular geometry
dependence of the electronic susceptibility for geometries
expected within an ambient temperature MD trajectory
(∆q = 0.045 Å).

V. FINITE TEMPERATURE RAMAN SIGNATURE
OF A WATER MOLECULE

A first important application of the geometry dependence
of the molecular polarizability tensor α[R] is the calculation
of an anharmonic Raman spectra.40–46 By construction of
the moment expanded representation, the full polarizability
can be determined from the first order l = 1 angular moment
contribution χl=1

[q] (r,r′) of the susceptibility. This requires only
three moment expanded states for m ∈ −1,0,1
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α[q]i j =
1

m=−1

Mm
[q]iM

m
[q] j, (23)

where Mm
[q]i =


riξm[q]1(r)d3r is the linear order Cartesian

multipole moment in direction i of state l = 1,m.32,33 In
analogy to Eq. (20) the polarizability tensor can be expanded
in terms of derivatives of the first moments

α[q]i j ≈ α[q0]i j +

Nint

n=1

α
(n)
[q0]i j
∆qn +

1
2

Nint

n,n′=1

α
(nn′)
[q0]i j
∆qn∆qn′.

(24)

Plugging Eq. (23) into Eq. (24) yields for the first and second
order,

α
(n)
[q0]i j
=

1

m=−1

(
Mm(n)

[q0]i
Mm

[q0] j
+ Mm

[q0]i
Mm(n)

[q0] j

)
, (25)

α
(nn′)
[q0]i j
=

1

m=−1

(
Mm(nn′)

[q0]i
Mm

[q0] j
+ Mm(n)

[q0]i
Mm(n′)

[q0] j

+Mm(n′)
[q0]i

Mm(n)
[q0] j
+ Mm

[q0]i
Mm(nn′)

[q0] j

)
. (26)

The evaluation of the moment derivatives can be done either
via calculation of the moments of the derivative state or
equivalently via finite difference derivative of the moments
for the different geometries.

In Fig. 5 we show the correlation of the first and
second order moments for nuclear displacements along an
internal coordinate (O–H distance). The first and second
order moments, derived from extrapolated values and explicit
calculations, are in excellent agreement.

We can calculate the change of the polarizability tensor
from the change of the linear moments of the moment
expanded states according to Eq. (25) or Eq. (26). This
change of the polarizability for nuclear displacements along
different internal coordinates is shown in Fig. 6. We would like
to stress that these results are a verification and benchmark of
our method, that is, the explicit geometry dependence of the
general response function. Of course, a simple interpolation

FIG. 5. Correlation of the vibrationally induced variations of ∆Ξmm′
l l′ ob-

tained from explicit calculation and extrapolation. The ∆Ξmm′
l l′ are depicted

for all moments up to Ξ2,2
2,2 over a representative range. The displacements

correspond to temperatures of 2000 K.

FIG. 6. Correlation of the geometry dependence of the polarizability for
nuclear displacements along the O–H-bond q1 and the H–O–H-angle q3.
Explicit calculations for the corresponding geometry are correlated with
interpolated values via second order Taylor expansion Eq. (26).

and tabulation of the polarizability tensor is much easier to
achieve, this is however not our primary goal.

In order to obtain an estimate for the deviation of our
approach from the exact calculation we have so far resorted
to the comparison with the explicitly calculated susceptibility
at the displaced geometry of interest. By construction, the
deviation is zero for the equilibrium geometry and increases
for larger displacements, especially if individual Cartesian
coordinates are far from equilibrium.

For the application we are aiming at, i.e., spectroscopic
sampling along molecular dynamics simulations or molecular
dynamics simulations via fragmentation, the actual error
of our method has to be weighted with the probability
of the corresponding configuration during the simulation
under ambient conditions. An explicit calculation of the
polarizability via diagonalization of the non-local electronic
susceptibility for many configurations along a molecular
dynamics is far to expensive, which is the motivation for
this work after all. We therefore compare the polarizability
changes in our approach to direct DFPT calculations of the
polarizability.

We have determined an average deviation of our method
from direct DFPT calculations for the change of the
polarizability along a molecular dynamic simulation. As a
benchmark system we choose again a water molecule at
350 K. The average relative error of the induced changes of
the polarizability using a first order Taylor expansion is 4.43%
for the trace and 7.47% for the full tensor. Correcting with
second order terms including mixed derivatives we obtain a
mean relative deviation of 1.69% for the trace and 3.74%
for the full tensor. These results nicely confirm our idea
that the explicit geometry dependence for relevant vibrational
displacements can be obtained via first- or second order Taylor
expansion of the electronic susceptibility.

A direct illustration of the applicability of these results
is the calculation of a Raman spectrum, which is obtained by
Fourier-transform autocorrelation of the vibrationally induced
polarizability changes.47,48 In Fig. 7 we show the Raman
spectrum of an isolated water molecule at 350 K. Our explicit
geometry dependence of the electronic susceptibility can
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FIG. 7. Raman scattering intensities from vibrationally induced polarizabil-
ity changes. The red line shows the explicit DFPT calculation as a reference.
The first order (green) and second order (blue) Taylor expansion of the
electronic susceptibility can reproduce all the features of the spectrum with
systematic convergence to the reference.

reproduce all the features of the total spectrum and show
only minor deviations of the intensity at the bending peak.

VI. CONCLUSION

In this work we validate the accuracy of a first and
second order Taylor expansion of the molecular geometry
dependence of the full non-local electronic susceptibility. Our
long-term motivation is to work towards a new generation
of fragmentation based molecular dynamics, which requires
an efficient calculation of electronic response properties. The
calculation of electronic response properties requires a much
higher initial (once for all) effort but has a considerable
better scaling for repeated application (e.g., along an AIMD
trajectory) compared to trajectory sampling with an explicit
DFPT approach. The key step enabling a Taylor expansion
of the geometry dependence of the susceptibility is to resort
to an explicit representation via a spectral decomposition of
the response function. Combined with our recently developed
moment expanded representation, this yields an efficiently
differentiable representation of the response function. We
validated our method numerically for an isolated water
molecule, yielding a quantitative agreement for the Raman
spectrum of water in the gas phase. We could show that a first
order Taylor expansion is sufficient to reproduce moments
and states within an error of two percent for molecular
displacements corresponding to ambient temperatures.

VII. COMPUTATIONAL DETAILS

The presented theory was implemented in our devel-
opment version of the CPMD49 electronic structure package.
The calculations have been performed using density functional
perturbation theory15–18,50,51 with Troullier-Martins52 pseudo
potentials in the Becke53 Lee-Yang-Parr54 approximation for
the exchange correlation kernel. We have employed a plane
wave cutoff of 70 Ry and used the optimized geometry of an
isolated water at this level of theory for all our calculations. In
practice, the infinite space of the eigenfunctions is restricted

to a subspace of 5000 converged eigenstates. The molecular
dynamics was generated with the CP2K55,56 program package
using the TZV2P-MOLOPT-GTH basis57 and GTH pseudo
potentials58–60 with a 0.5 fs time step. The temperature was
set to 350 K by a Nosé-Hoover chain thermostat.61,62 For the
comparison of polarizability tensors we employ the Frobenius
norm, i.e., ϵ = |αref − α|F/|αref|F.

1A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).
2A. J. Stone, Chem. Phys. Lett. 83, 233 (1981).
3G. Naray-Szabo and G. G. Ferenczy, Chem. Rev. 95, 829 (1995).
4J. G. Angyán, C. Chipot, F. Dehez, C. Hättig, G. Jansen, and C. Millot, J.
Comput. Chem. 24, 997 (2003).

5D. Elking, T. Darden, and R. J. Woods, J. Comput. Chem. 28, 1261 (2007).
6R. J. Wheatley, Mol. Phys. 79, 597 (1993).
7G. G. Hall and C. M. Smith, Int. J. Quantum. Chem. 25, 881 (1984).
8K. Eichkorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs, Chem. Phys.
Lett. 240, 283 (1995).

9G. A. Cisneros, J.-P. Piquemal, and T. A. Darden, J. Chem. Phys. 123, 044109
(2005).

10B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. 94, 1887 (1994).
11D. M. Benoit, D. Sebastiani, and M. Parrinello, Phys. Rev. Lett. 87, 226401

(2001).
12A. Heßelmann and G. Jansen, Chem. Phys. Lett. 367, 778 (2003).
13A. J. Misquitta, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 91, 033201

(2003).
14X. Gonze, Phys. Rev. A 52, 1086 (1995).
15X. Gonze, Phys. Rev. A 52, 1096 (1995).
16A. Putrino, D. Sebastiani, and M. Parrinello, J. Chem. Phys. 113, 7102

(2000).
17S. Baroni, S. de Gironcoli, A. dal Corso, and P. Giannozzi, Rev. Mod. Phys.

73, 515 (2001).
18T. Watermann, A. Scherrer, and D. Sebastiani, in Many-Electron Ap-

proaches in Physics, Chemistry and Mathematics, edited by V. Bach and L.
Delle Site, Mathematical Physics Studies (Springer International Publish-
ing, 2014), pp. 97–110.

19A. J. Stone and M. Alderton, Mol. Phys. 56, 1047 (1985).
20J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998),

pp. 145–151.
21A. J. Misquitta, A. J. Stone, and F. Fazeli, J. Chem. Theory Comput. 10, 5405

(2014).
22A. J. Stone, Mol. Phys. 56, 1065 (1985).
23C. R. L. Sueur and A. J. Stone, Mol. Phys. 78, 1267 (1993).
24C. R. L. Sueur and A. J. Stone, Mol. Phys. 83, 293 (1994).
25A. J. Misquitta and A. J. Stone, J. Chem. Phys. 124, 024111 (2006).
26A. Stone, The Theory of Intermolecular Forces, 2nd ed. (Oxford University

Press, 2013).
27R. Chelli, R. Righini, S. Califano, and P. Procacci, J. Mol. Liq. 96-97, 87

(2002).
28P. Paricaud, M. Predota, A. A. Chialvo, and P. T. Cummings, J. Chem. Phys.

122, 244511 (2005).
29D. Martin and G. G. Hall, Theor. Chem. Acc. 59, 281 (1981).
30R. J. Wheatley and J. B. O. Mitchell, J. Comput. Chem. 15, 1187 (1994).
31D. M. Elking, G. A. Cisneros, J.-P. Piquemal, T. A. Darden, and L. G.

Pedersen, J. Chem. Theory Comput. 6, 190 (2010).
32A. Scherrer, V. Verschinin, and D. Sebastiani, J. Chem. Theory Comput. 8,

106 (2012).
33A. Scherrer and D. Sebastiani, J. Comput. Chem. 37, 665 (2016).
34S. Hamel, A. J. Williamson, H. F. Wilson, F. Gygi, G. Galli, E. Ratner, and

D. Wack, Appl. Phys. Lett. 92, 3115 (2008).
35D. Lu, F. Gygi, and G. Galli, Phys. Rev. Lett. 100, 147601 (2008).
36H. F. Wilson, D. Lu, F. Gygi, and G. Galli, Phys. Rev. B 79, 245106 (2009).
37A. C. Ihrig, A. Scherrer, and D. Sebastiani, J. Chem. Phys. 139, 094102

(2013).
38K. L. C. Hunt, J. Chem. Phys. 90, 4909 (1989).
39K. L. C. Hunt, Y. Q. Liang, R. Nimalakirthi, and R. A. Harris, J. Chem. Phys.

91, 5251 (1989).
40J. S. Bader and B. J. Berne, J. Chem. Phys. 100, 8359 (1994).
41J. Borysow, M. Moraldi, and L. Frommhold, Mol. Phys. 56, 913 (1985).
42P. L. Silvestrelli, M. Bernasconi, and M. Parrinello, Chem. Phys. Lett. 277,

478 (1997).
43R. Iftimie and M. E. Tuckerman, J. Chem. Phys. 122, 214508 (2005).
44M.-P. Gaigeot and M. Sprik, J. Phys. Chem. B 107, 10344 (2003).



144111-7 Scherrer et al. J. Chem. Phys. 144, 144111 (2016)

45J. Neugebauer, M. Reiher, C. Kind, and B. A. Hess, J. Comput. Chem. 23,
895 (2002).

46D. A. A. McQuarrie, Statistical Mechanics (University Science Books,
2000).

47M. Thomas, M. Brehm, R. Fligg, P. Vohringer, and B. Kirchner, Phys. Chem.
Chem. Phys. 15, 6608 (2013).

48R. Futrelle and D. McGinty, Chem. Phys. Lett. 12, 285 (1971).
49CPMD, Computer code, http://www.cpmd.org/, 2016.
50P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
51W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
52N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

53A. D. Becke, Phys. Rev. A 38, 3098 (1988).
54C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
55G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477 (1997).
56J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and

J. Hutter, Comput. Phys. Commun. 167, 103 (2005).
57J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).
58S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
59C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).
60M. Krack, Theor. Chem. Acc. 114, 145 (2005).
61S. Nosé, J. Chem. Phys. 81, 511 (1984).
62W. G. Hoover, Phys. Rev. A 31, 1695 (1985).



146 Chapter 3. Summary of the Peer-reviewed Articles

3.3 Proton Conduction in Solid Acids

In the article [Dreÿler, Sebastiani, Phys. Chem. Chem. Phys., 2020.] in this thesis,
the low-temperature phase (LTP) and high-temperature phase (HTP) of CsH2PO4,
CsHSO4 and CsHSeO4 are investigated by means of ab initio molecular dynamics sim-
ulations (AIMD) in order to obtain a general picture of the proton transfer mechanism.
The following questions are addressed by the article:

� How can we explain the big di�erence in proton conductivity between the high-
and low-temperature phases?

� How can we describe the general mechanism for proton conduction in the CsHyXO4

(X= S, P, Se, y = 1, 2) family by means of AIMD simulations?

� Can we qualitatively and quantitatively explain the trend of high proton con-
ductivity in the high-temperature phases of CsHSeO4, CsHSO4 and CsH2PO4?

Our treatment of the �rst two questions will contribute three speci�c examples to
overall knowledge of proton motion in the solid acids family, while our work on ques-
tion number three will shed light on new aspects of the long-range proton transfer
mechanism.

In the article [Dreÿler, Sebastiani, Phys. Chem. Chem. Phys., 2020.] in this
thesis, the Grotthuss-type proton conduction mechanism in these compounds is an-
alyzed in terms of the proton transfer rate and the relaxation rate of the molecular
environment (rotation rate of the anions). It is demonstrated that only the balanced
interplay of both contributing processes enables e�ective long-range proton transfer.
While (massive) proton rattling is observed for the low-temperature phases investi-
gated within this work, the oxo-anions do not rotate in these compounds at the time
scale of the AIMD simulations. Due to this highly ordered hydrogen bond network, no
long-range proton transfer can be observed for the LTPs of the solid acids CsH2PO4,
CsHSO4 and CsHSeO4.

A high di�usion coe�cient can be reported for all HTPs of the solid acids
(1.4 · 10−3� 1.5 · 10−2 Å2/ps). While the di�erences in the di�usion coe�cients of
CsH2PO4 and CsHSO4 are within the uncertainty of the results of the AIMD simu-
lations, CsHSeO4 possesses the highest proton conductivity. Among the three HTPs,
the highest proton transfer rate and the lowest anion reorientation frequency is ob-
served for CsH2PO4. For CsHSO4, the relation between the two rates is opposed. The
highest proton conductivity in CsHSeO4 can be explained by the combination of in-
termediate proton transfer and anion reorientation rates, enabling e�ective long-range
proton transfer.

In addition to ab initio molecular dynamics, the importance of the proton trans-
fer frequency and relaxation rate of the molecular environment was also studied
within our scale-bridging combined Molecular Dynamics/Lattice Monte Carlo ap-
proach (cMD/LMC) for the simulation of long-range proton transfer (the cMD/LMC
method is described in detail in sections 2.8 and 3.1). In this approach, the system
is reduced to the oxygen sites. Each of these sites can be occupied by a maximum
of one proton. While the evolution of the oxygen topology is obtained from the un-
derlying molecular dynamics simulation, the long-range proton motion is modeled in
the Monte Carlo part by proton jumps on the oxygen grid according to a distance-
dependent jump rate. This jump rate yields the oxygen-oxygen distance-dependent
probability for a proton transfer event within a certain time interval. The jump rate
can be directly determined from an AIMD trajectory (for details cf. sections 2.8 and
3.1).
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Following these explanations, the proton transfer frequency and relaxation rate
of the molecular environment are re�ected within the cMD/LMC method by the two
fundamental parameters of the approach: the proton jump rate and the update of the
oxygen topology from an MD trajectory. The two parameters are only linked as they
are determined from the same AIMD trajectory of an underlying compound. The
combination of proton jump rates and oxygen trajectories from di�erent compounds
appears to be arbitrary, but opens up new possibilities for the investigation of the
proton conduction mechanism.

In the article [Dreÿler, Kabbe, Sebastiani, J. Phys. Chem. C, 2016.] in this the-
sis, the limiting factor of the proton conduction mechanism in CsHSO4 and CsH2PO4

is investigated by exchanging the jump rates and trajectories of the oxygen atoms
between these two compounds. The results of these cMD/LMC studies con�rm that
the proton transfer frequency is decisive for long-range proton transfer in CsHSO4,
while the e�ciency of proton transfer is limited in CsH2PO4 by the relaxation rate of
the molecular environment.

Furthermore, it is demonstrated in the article [Dreÿler, Kabbe, Sebastiani, J. Phys.
Chem. C, 2016.] that the cMD/LMC approach is able to reproduce (in a black box
manner) the very high proton di�usion coe�cient in the high-temperature phases
of CsHSO4 and CsH2PO4 and the very low proton di�usion coe�cient in the low-
temperature phases of CsH2PO4. In contrast with other lattice site jump models,250

the key factor achieving a correct simulation of the di�usion coe�cients is the period-
ical updating of the oxygen sites from a molecular dynamics trajectory, which re�ects
the evolution of the underlying supra-molecular structure. The di�usion coe�cients
were calculated with the cMD/LMC scheme using the dynamically updated oxygen
grid and from various �xed oxygen grids (oxygen positions from crystal structure,
geometry optimization or averaged positions from the MD). All calculations based on
�xed oxygen topologies yielded di�usion coe�cients that were several magnitudes too
small.

In the article [Dreÿler, Kabbe, Sebastiani, Fuel Cells, 2016.] in this thesis, theo-
retical �ndings with regard to proton transfer in aqueous media and water-free proton
conductors are reviewed.

3.3.1 Article X: E�ect of Anion Reorientation on Proton Mobility
in the Solid Acids Family CsHyXO4 (X = S, P, Se; y = 1, 2)
from AIMD

Christian Dreÿler and Daniel Sebastiani.
E�ect of chemical environment on proton mobility in the solid acids family CsHyXO4

(x = S, P, Se; y = 1, 2) from ab initio molecular dynamics simulations.
Physical Chemistry Chemical Physics, 22:10738�10752, 2020.

In this article, I performed all AIMD simulations. I designed and conducted all
analysis of the AIMD trajectories. D. Sebastiani supervised the project and pro-
vided me with valuable advice during the project work and while I was writing the
manuscript.
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Effect of anion reorientation on proton mobility in
the solid acids family CsHyXO4 (X = S, P, Se, y = 1, 2)
from ab initio molecular dynamics simulations†

Christian Dreßler and Daniel Sebastiani *

The high temperature phases of the solid acids CsHSeO4, CsHSO4 and CsH2PO4 show extraordinary

high proton conductivities, while the low temperature phases do not conduct protons at all. We

systematically investigate proton dynamics in the low and high temperature phases of these compounds

by means of ab initio molecular dynamics simulations in order to develop a general picture of the

proton transfer mechanism. For all of these compounds, proton conduction follows a Grotthuss

mechanism via a combined proton transfer and subsequent structural reorientation of the environment.

We demonstrate that the drastically reduced conductivity of the low temperature phases is caused by a

highly ordered, rigid hydrogen bond network, while efficient long range proton transfer in the high

temperature phases is enabled by the interplay of high proton transfer rates and frequent anion

reorientation. Furthermore, we present a simple descriptor for the quantitative prediction of the diffusion

coefficient within the solid acids family. As a side result, we show that the rate of the most elementary

proton hopping reaction depends on the heavy-atom configuration of the nearest atoms in a ubiquitous

manner, and is in turn almost independent from the global nature of the compound, i.e. whether it is

organic or inorganic, ordered or disordered.

1 Introduction

Molecular dynamics (MD) simulations are the most common
tool for the investigation of the dynamics of atomistic processes.
The temporal evolution of a system of particles is obtained by
numerical integration of the Newtonian equations of motions
constituted by the forces acting on each particle. The quality of
the results of an MD simulation is highly dependent on the
quality of the calculated forces. The most accurate approach for
the calculation of the forces is the approximate solution of the
Schrödinger equation. This computational demanding ansatz is
known as first principle or ab initio molecular dynamics (AIMD).
Using the truly predictive power of the ab initio techniques,
unknown systems can be studied and theoretical challenging
effects starting from polarization up to the breaking of covalent
bonds are intrinsically included within the simulation. Thus
electrochemical phenomena1,2 and surface interactions,3–8 ion
transport in condensed phases,9–14 chemical reactions15 as well
as solvation in novel complex liquids such as ionic liquids16–18

are investigated by AIMD simulations.

In this work, we will use AIMD to study proton conduction in
solid acids. Solid acids have been an object of high interest for
chemists and physicists in the last years, as these compounds
show extraordinarily high proton conductivities.19–28 Compared
to other state of the art proton conductors like Nafion, residual
water is not a prerequisite for the proton conduction.29 In
particular members of the CsHyXO4 (X = S, P, Se, y = 1, 2) family
are promising candidates for application as proton exchange
membrane materials (PEM) in fuel cells.27,30–32 For CsH2PO4 the
successful usage in a fuel cell was already demonstrated.33 The
solid acids of the CsHyXO4 (X = S, P, Se, y = 1, 2) family undergo
at least one phase transition at higher temperature (often
between 400 and 500 K), corresponding to a drastic increase of
the proton conductivity.34

In this article, we will focus on CsH2PO4, CsHSO4 and CsHSeO4.
Table 1 provides the temperature of the phase transition as well as
the space groups of the low temperature phases (LTP) and high
temperature phases (HTP) of these compounds.

1.1 Crystal structures of the HTP and LTP of CsH2PO4

The crystal structure of the monoclinic phase (LTP) of CsH2PO4

is shown in Fig. 1.35 The hydrogen bond network within this
phase is constituted by two different types of hydrogen bonds.35

Symmetric double-minima hydrogen bonds (2.48 Å) form one
dimensional chains of oxo-anions in b direction. These chains
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are linked by asymmetric single-minimum hydrogen bonds
(2.54 Å) leading to two dimensional layers of hydrogen bonded
tetrahedra. Hydrogen atoms involved in the symmetric hydro-
gen bond with the double potential well undergo rapid
exchange between two different oxygen sites.36–38

One unit cell of the crystal structure of the cubic phase (HTP) of
CsH2PO4 is presented in Fig. 2.39 The large number of partially
colored atoms (partial occupation of the crystal sites) indicates a
strong disorder of the oxygen atoms. Twenty-four partial occupied
oxygen sites are reported resulting in six different orientation of the
phosphate tetrahedra. The PO4 groups reside in the center of
the cubic unit cell. The reoriental disorder is originated by the
mismatch of the tetrahedral oxo-anion unit and the octahedral
symmetry of the cubic center. An alignment of the P–O bonds with
the h111i body diagonal would retain the overall cubic symmetry
while removing the octahedral symmetry from the center. In fact,
this is not possible due to the small phosphorus–caesium distance of
4.30 Å in this direction. Displacing the oxygen atoms from this
diagonal, retains the cubic symmetry and results in six different
orientations of the phosphate anions depicted in Fig. 2.40 Besides a
strong (single minimum) hydrogen bond of 2.46 Å other hydrogen
bonds of 2.76 Å, 2.85 Å and 3.03 Å length are possible from the
crystal structure.

1.2 Crystal structures of the HTP and LTP of CsHSO4 and CsHSeO4

The low as well as the high temperature phase of CsHSO4 and
CsHSeO4 are isostructural. Thus, we are only discussing the
crystal structure of CsHSO4.

Three different phases of CsHSO4 (phase I, II, and III) are
reported within the temperature range between room tempera-
ture and approximate 500 K.41–43 Within this article, we are

interested in the proton conduction mechanism just above and
just below the super protonic phase transition. Therefore, we
restrict our investigations to phase II (LTP) and phase III (HTP).
The crystal structures of the monoclinic (LTP) and the tetra-
gonal (HTP) phase of CsHSO4 are presented in Fig. 3 and 4.
While the monoclinic phase forms infinite chains of hydrogen
bonded sulfate tetrahedra, cyclic dimers linked by hydrogen
bonds are reported for the tetragonal phase. This structural
motifs are also known from other solid acids and the hydrogen
bonds within zigzag chains tend to be stronger than hydrogen
bonds formed by the cyclic dimers.38 For CsHSO4 this also
holds for the monoclinic and the tretragonal phase and hydro-
gen bond lengths of 2.63 Å (monoclinic phase) and 2.79 Å
(tetragonal phase) can be observed from the crystal structures.
Slightly different crystal structures of the tetragonal phase were
proposed by Jiráak et al.,44 Merinov et al.45 and Belushkin
et al.46 These structures differ by the number and the position
of the partially occupied oxygen positions. In Fig. 4, we present
the crystal structure with two possible orientations of the
oxygen tetrahedron reported by Jiráak et al.

1.3 High proton conductivity in the high temperature phases
of the solid acids

Solid acids were studied extensively and sometimes controver-
sially by experiment and theory.40,47–55 The structure and the

Table 1 Characteristic crystal structure parameters for the high and low
temperature phases (HTP/LTP) of CsH2PO4, CsHSeO4 and CsHSO4

34

CsH2PO4 CsHSO4 CsHSeO4

HTP Pm%3m I41/amd I41/amd
Cubic Tetragonal Tetragonal

LTP P21/m P21/c P21/c
Monoclinic Monoclinic Monoclinic

lc 503 K 414 K 384 K

Fig. 1 Eight unit cells of the crystal structure of the monoclinic phase (LTP) of CsH2PO4 are shown with different lattice orientations. Red: oxygen, green:
caesium, gray: hydrogen.101

Fig. 2 One unit cell of the crystal structure of the cubic phase (HTP) of
CsH2PO4 is shown. Partial occupancies are presented by partial coloring of
the atoms. Red: oxygen, green: caesium, lilac: phosphorus.39,101
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phase transition were characterized by X-ray diffraction and
calorimetry. The proton dynamics were investigated with the
help of PFG-NMR techniques, neutron scattering and impedance
spectroscopy.34,56–61 The general proton conducting mechanism
for all high temperature phases of the solid acids is already
known and follows a Grotthuss mechanism: The combination of
intra hydrogen bond proton transfer and subsequent relaxation
of the environment (anion rotation) enables the high conductivity
of these compounds.62,63 While the phase transition from the low
(monoclinic) to the high temperature phase (tetragonal or cubic)
leads to an increase in the symmetry, it results in disorder for the
oxygen sites. A case in point is CsH2PO4. Here, the orientational
disorder of the oxygen tetrahedra arises from the incompatibility

of the tetrahedral oxo-anion with the octahedral symmetry of the
cubic center. Thus, the oxygen atoms in the high temperature
phases are free to vibrate and librate between crystallographic
identical positions. The hydrogen bond network corresponding to
such fast tetrahedral dynamics can be characterized as dynami-
cally disordered and the dynamics of the oxo-anions is often
described as ‘‘liquid like’’. The disordered structure of the high
temperature phases (in comparison to the low temperature phase)
is illustrated in Fig. 5 for the specific example of CsHSeO4.

Despite this consensus regarding the general picture of
proton conduction in the high temperature phase, the relative
importance of the different processes which are contributing to
the Grotthuss mechanism is not clear. For CsH2PO4, theoretical

Fig. 3 Eight unit cells of the crystal structure of the monoclinic phase (LTP) of CsHSO4 are shown with different lattice orientations. Red: oxygen, green:
caesium, gray: hydrogen.101

Fig. 4 Four unit cells of the crystal structure of the tetragonal phase (HTP) of CsHSO4 are shown with different lattice orientations. Red: oxygen, green:
caesium, gray: hydrogen.101

Fig. 5 Snapshots from the simulation of the HTP and LTP of CsHSeO4. Hydrogen atoms are shown in white, oxygen in red, selenium in yellow and
caesium in blue. Hydrogen bonds are represented by dashed lines.

PCCP Paper

Pu
bl

is
he

d 
on

 0
5 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

ts
bi

bl
io

th
ek

 L
ei

pz
ig

 o
n 

4/
6/

20
20

 4
:1

0:
59

 P
M

. 

View Article Online



Phys. Chem. Chem. Phys. This journal is©the Owner Societies 2020

studies suggested that the rotation of the anions (rather than
the proton transfer rate between the anions) is the limiting step
for the proton diffusion.59,64,65 On the one hand, the same
relationship of tetrahedral dynamics and proton transfer along
hydrogen bonds was proposed for CsHSO4.66 On the other hand,
computational simulations65,67–70 as well experiments46,57,60,71,72

suggested instead that the proton transfer rate (rather than the
rotational anion dynamics) is limiting the proton diffusion.

From the theoretical point of view, static calculations of the
electronic structure, classical and ab initio molecular dynamics
were used to study the solid acids.64,66,68,69,73–76 The focus of
these investigations was on CsHSO4. Ke and Tanaka calculated
activation energies for proton jumps in CsHSO4 and showed
that inter-anion proton transfer was forbidden.75,77 Several
classical MD studies of CsHSO4 were conducted.67–69 We want
to point to the study of Chisholm et al. who investigated the
phase transition from monoclinic to tetragonal CsHSO4.69

Remarkably, they could predict the correct temperature of the
phase transition. While the classical MD studies lacks the
ability to simulate bond breaking, leading to fixed covalent
O–H bonds/connection topology through the entire simulation,
ab initio molecular dynamics (AIMD) allow to overcome these
drawbacks and enable the simulation of real proton transfer
events. Due to their high computational costs, AIMD methods
can only be used to simulate several hundred atoms for several
picoseconds. This timescale is comparable to the timescale of
proton transfer itself. Thus, proton transfers are rare events in
AIMD simulations, which becomes evident in the AIMD studies
of CsH2PO4 by Lee and Tuckerman and of CsHSO4 by Wood
and Marzari.64,66 Tuckerman could reproduce the proton diffu-
sion coefficient of CsH2PO4 by a factor of two, whereas Marzari
obtained a ten times larger diffusion coefficient compared with
the experimental value.

Until now, the focus of the AIMD studies was on the high
temperature phases.64–66,78 The proton conductivity of the low
temperature phases is drastically reduced compared with the
proton conductivity of the high temperature phases. Nevertheless,
the mechanism of proton conductivity in the paraelectric (or low
temperature) phase of CsH2PO4 were studied from the experi-
mental side by 17O, 1H and 31P NMR measurements.36,37,39,79 This
studies characterized the hydrogen bond network and proposed
that H2PO4

� anion rotation plays a crucial role for the proton
conduction. Kim et al. reported two different time constants for
the hydrogen phosphate rotation corresponding to different
strengths of the hydrogen bonds along the conduction path.36

While the faster rotational process is enabled by local fluctuations
of the protons within a hydrogen bond, the slower rotational
process enforces the long range transport of a proton. In this
work, we will shed light on the question of the timescale of the
tetrahedral dynamics of the oxo-anions in the low temperature
phases of the solid acid compound family.

The previous isolated pure AIMD studies of solid acids
investigated only a single phase of a single compound
(CsH2PO4 and CsHSO4), neglecting the comparison between
the different compounds. It is in particular important for the
quantitative comparison of the contributing processes to the

overall conduction mechanism (short range proton transfer vs.
tetrahedral dynamics) to define these processes in an identical
manner. A case in point is the determination of the proton
transfer rates between the anions, because there is no exact
definition of a proton jump (‘‘real’’ long range proton transfer vs.
proton rattling). Thus, different protocols for the determination
of the number of proton jumps can lead to different results.
Within this work, we tackle this problem by the parallel simula-
tion and analysis of different phases of different solid acids in
order to draw a coherent picture of proton motion within this
compounds.

We present the first AIMD study covering the LTP and the
HTP phases of three different members of the CsHyXO4 (X = S,
P, Se, y = 1, 2) family (CsHSeO4, CsHSO4 and CsH2PO4). We
want to highlight, that neither the HTP of CsHSeO4 nor the LTP
of CsHSeO4 and CsHSO4 were investigated by AIMD simula-
tions up to now. Only the combination of the entity of the AIMD
trajectories will enable us to draw and intuitive as well as
extended picture of proton diffusion in these compounds,
highlighting the overall similarities as well as the smaller
differences for different compounds. The comparison of differ-
ent compounds within one study is necessary, because many
years of research on solid acids lead to a large amount of
isolated articles with partial contrary results (cf. discussion of
rate determining step of proton conduction in CsHSO4). In this
article, we will answer the following questions:
� How can we explain the big difference in proton conduc-

tivity between high and low temperature phases?
� How can we describe the general mechanism for proton

conduction in the CsHyXO4 (X = S, P, Se, y = 1, 2) family from
AIMD simulations?
� Can we explain (qualitatively and quantitatively) the trend

of the high proton conductivity of the high temperature phases
of CsHSeO4, CsHSO4 and CsH2PO4?

While the answers to the first two questions will add three
specific examples to the overall known picture of proton motion
in the solid acids family, the answer to question number three
will shed light on new aspects of the long-range proton transfer
mechanism.

2 Computational details

We applied Born–Oppenheimer Molecular Dynamics (BOMD)
using the CP2K80 program package to simulate the proton
transfer in a series of solid acids. We utilized the Quickstep
module81 and orbital transformation82 for faster convergence.
The electronic structure was calculated with density functional
theory utilizing the PBE83–85 functional. A basis set of the type
DZVP-MOLOPT-SR-GTH86 and GTH pseudopotentials87,88 were
applied. Furthermore, we used the empirical dispersion correc-
tion (D3) from Grimme.89 The temperature was set by a Nosé–
Hoover chain thermostat90–92 (NVT ensemble). The timestep
was chosen as 0.5 fs. The dimensions of the simulation box and
the starting configurations of the systems were obtained from
crystal structure data from the literature35,39,44,93,94
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For the high temperature structures, partial occupancies of
the oxygen atoms were observed in the literature. From the set of
partial occupancies, we chose one possible set of coordinates and
used them as initial structure for the geometry optimization.
Afterwards, we performed a 10 ps equilibration run using massive
and global thermostating. It turned out, that the choice of the
initial set of coordinates from the partial occupancies did not affect
the resulting trajectory due to the large amount of orientational
disorder of the oxygen tetrahedra. The crystal structure of the HTP
of CsH2PO4 is presented in Fig. 2. In Fig. 6, we show the resulting
geometry optimized structure of CsH2PO4 and a snapshot from the
trajectory after the equilibration procedure.

Systems of 16 formula units of CsH2PO4/CsHSeO4/CsHSO4

were investigated above (510/500/500 K) and below (490/385/
385 K) the phase transition. All production runs were performed
for 250 ps.

2.1 Processing of the trajectory

A snapshot of the simulation of the HTP and LTP of CsHSeO4 is
presented in Fig. 5. We calculated the mean square displacement
of the protons in order to obtain the diffusion coefficients. The
diffusion coefficient is accessible from the linear part of the
mean square displacement (MSD) via the Einstein equation:

Ds ¼
1

6

d

dt
½MSDðtÞ� (1)

Diffusion coefficients, radial distribution functions (RDFs),
vector-autocorrelation functions and combined distributed
functions (CDFs) were created by Travis.95 Histograms of the
proton jumps and the covalent OH-bond autocorrelation func-
tion were calculated by own scripts. A detailed explanation of

the functions or scripts is given within the Result section,
accompanying the corresponding plots.

3 Results
3.1 AIMD vs. experimental diffusion coefficients

In Table 2, experimental diffusion coefficients and diffusion
coefficients obtained by AIMD simulations are depicted. From
the experimental side, many different methods can be used to
determine the diffusion coefficient (PFG-NMR, neutron scatter-
ing, impedance spectroscopy). None of these techniques alone
is able to cover the whole range of protonic motion. Thus, we
obtain for each method a different range of values for the
diffusion coefficient corresponding to a specific aspect of long
range proton transfer. A point in case is CsH2PO4. A diffusion
coefficient of 25 � 10�3 Å2 ps�1 obtained by quasi elastic
neutron scattering as well as a diffusion coefficient of 2.9 �
10�3 Å2 ps�1 obtained by PFG-NMR and impedance measure-
ments were reported within the same study.59 The authors of
this study assigned the first diffusion coefficient to the (short
range) proton motion within a hydrogen bond (proton rattling)
and the second diffusion coefficient to the long range proton
transfer. In addition, several other studies of CsH2PO4 reported
its conductivity.39,49,53,56,96 Using the Nernst–Einstein
equation,34 we can also derive the diffusion coefficient from
these values. From the variety of articles, we obtain diffusion
coefficients within the range of 0.5–6.5 � 10�3 Å2 ps�1.

For the sake of comparability, all simulations of the HTPs
were conducted at the same temperature (500–510 K). No
experimental data is available for CsHSO4 and CsHSeO4 at this
temperature. Thus, the diffusion coefficients were extrapolated

Fig. 6 Geometry optimized structure of CsH2PO4 and a snapshot from the trajectory after equilibration. Hydrogen atoms are shown in white, oxygen in
red, phosphorus in lilac and caesium in green. Hydrogen bonds are represented by dashed lines.

Table 2 Diffusion coefficients for several solid acids

CsH2PO4 HTP CsH2PO4 LTP CsHSeO4 HTP CsHSeO4 LTP CsHSO4 HTP CsHSO4 LTP

Temperature [K] 510 490 500 385 500 385
Diffusion coefficient from AIMD [10�3 Å2 ps�1] 2.3 {0.01 13.6 {0.01 1.8 {0.01
Diffusion coefficient from experiment [10�3 Å2 ps�1] 2.9–25a {0.01 B9.6b {0.01 B5.2b {0.01

0.5–6.5c

a Ishikawa, Maekawa, Yamamura, Kawakita, Shibata, Kawai, Solid State Ionics, 2008, 179, 2345–2349. b Blinc, Dolinsek, Lahajnar, Zupancic,
Shuvalov, Baranov, Phys. Status Solidi B, 1984, 123, K83–K87. c See ref. 39, 49, 53, 56 and 96.
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from data at lower temperatures.55 For CsHSeO4 diffusion coeffi-
cients from 400 to 444 K and for CsHSO4 diffusion coefficients
from 420 to 455 K were used to extrapolate the diffusion coeffi-
cients at 500 K. Our equation for extrapolation derived from data of
ref. 55 is shown in the ESI.†

All AIMD diffusion coefficients in Table 2 agree with the
experimental diffusion coefficients within a factor of 3. The low
temperature phases show no proton conductivity at all. The
drastic increase of the proton diffusion coefficient for the phase
transition from the low to the high temperature phase is clearly
demonstrated for every compound (e.g. CsHSeO4 from less than
0.01 � 10�3 Å2 ps�1 (LTP) to 13.6 � 10�3 Å2 ps�1 (HTP)). The
HTP of the CsHSeO4 shows the largest diffusion coefficient
(13.6� 10�3 Å2 ps�1) compared with the HTPs of CsH2PO4 (2.3�
10�3 Å2 ps�1) and CsHSO4 (1.8 � 10�3 Å2 ps�1). The diffusion
coefficients of the HTPs of CsH2PO4 and CsHSO4 deviate by 25%,
which is within the range of uncertainty for the diffusion
coefficients obtained by AIMD simulations.

3.2 Characterization of hydrogen bonds and protonic motion

A careful inspection of the distribution of oxygen–oxygen and
oxygen–hydrogen distances is important for the characteriza-
tion of the hydrogen bonds in these systems.

Intermolecular oxygen–oxygen RDFs. The intermolecular
oxygen–oxygen radial distribution functions (RDF) for the solid
acids are depicted in Fig. 7. The RDFs show only small
differences between the HTP and LTP of a given compound.
Comparing the different compounds, it turns out that the RDFs
of CsHSO4 and CsHSeO4 resemble each other but differ from
the RDF of CsH2PO4. The first maximum of the O–O RDF of
CsH2PO4 is observed at 240 pm, while the first maximum of the
O–O RDF of CsHSO4 and CsHSeO4 is observed at 260 pm.
Furthermore, the first peak of the O–O RDF of CsH2PO4 is
much broader compared with the first peak of the O–O RDF of
CsHSO4 and CsHSeO4.

The grouping of the RDFs into two different types (CsH2PO4 vs.
CsHSO4/CsHSeO4) is expected from the crystal structures of these
compounds. While the low as well as the high temperature phases

of CsHSO4 and CsHSeO4 are isostructural, the crystal structures of
the corresponding phases of CsH2PO4 are different (cf. discussion
of crystal structures in the Introduction). First of all, the hydrogen
bonds lengths detected from the crystal structures are shorter in
CsH2PO4 (indicating stronger hydrogen bonds) compared to
CsHSO4/CsHSeO4. Second, the distribution of the hydrogen bond
lengths (mainly originated by the number of possible orientations
of the oxo-anions in the crystal structures) is broader for CsH2PO4

compared to CsHSO4/CsHSeO4, which explains the much broader
first peak of the O–O RDF of CsH2PO4.

A discussion of the intermolecular oxygen–hydrogen RDFs is
given in the ESI† yielding the same conclusion regarding the
proton diffusion mechanisms in the LTPs and HTPs: concerning
the RDFs, there are no (significant) differences of the HTPs and
LTPs. HTPs and LTPs form hydrogen bonds in a similar amount
and strength.

Distinction between proton conductors and insulators: com-
bined distribution functions (CDF). Considering the similarity
of the RDFs between the HTP and LTP of a given compound, we
could not distinguish whether long range proton transfer takes
place within a compound or not. We will show in the following
that combined distribution functions (CDFs) of the solid acids
fill this gap, enabling a clear distinction between a proton
conductor or insulator.

In a 2d-CDF plot, the values of two distribution functions are
combined via CDF(d1,d2) = RDF(d1)�RDF(d2).95 It turns out
that the H–Oinitial donor (:=d1) and the H–Oinitial acceptor (:=d2)
distances (cf. Fig. 8) are ideal parameters for (d1,d2) within
the CDF(d1,d2). The CDFs shown in Fig. 9 are calculated by the
application of the following protocol: at the initial frame of the
trajectory, we created a list of distances of covalently bonded
hydrogen–oxygen pairs. The oxygen atoms, involved within this
covalent bond were termed as Oinitial donor (cf. Fig. 8) and the
distances as H–Oinitial donor distance. An RDF of these distance
is used as y-axis in Fig. 9. The remaining oxygen atoms (not
covalently bound to the hydrogen atom at the initial frame of
the trajectory) are considered as hydrogen bond acceptors,
denoted by Oinitial acceptor. The RDF obtained from the distance
of Oinitial acceptor and the hydrogen atom is used as x-axis in
Fig. 9 (H–Oinitial acceptor distance).

Please keep in mind two important features of this protocol:
first, we determine the initial donor oxygen atom Oinitial donor

for a hydrogen atom within a hydrogen bond at the initial
frame of the trajectory (and do not update this assignment,
even in case of a proton jump). This definition will lead to the
appearance of considerably larger Oinitial donor–H distances as
soon as the initially chosen proton diffuses away from its
originally donor oxygen. Second, while there is only one unique
initial Oinitial donor oxygen atom, all the other oxygen atoms of
the oxo-anions are considered as potential hydrogen accepting
oxygen atoms Oinitial acceptor. Thus, very large distances for
Oinitial acceptor and the hydrogen atom are already observe at
the initial time frame.

In Fig. 8 three different sub-processes (A–C) of a proton
transfer step are defined. Each of this sub-processes corre-
sponds to a specific area in a CDF. We highlight these areas

Fig. 7 RDF of the intermolecular oxygen–oxygen distances for the solid
acids.
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by black ellipses in Fig. 9 (top, left). In the following, we give a
brief description of the three sub-processes:
� Configuration A refers to a hydrogen bond. No proton

rattling or long range proton transfer can be observed. This
state is represented by the dashed lines in Fig. 8.
� Configuration B refers to a proton, which is oscillating

between two oxygen atoms (proton rattling). Proton rattling is
characterized by equal H–Oinitial donor and H–Oinitial acceptor dis-
tances (cf. area B in Fig. 9).
� If long range proton transfer is observed, some intensity can

be found in region C of Fig. 9 (top, left). This area corresponds to a
H–Oinitial donor distance greater then 200 pm and a H–Oinitial acceptor

distance in the range of a covalent H–O bond. From such a distance
tuple, the proton is transferred from the donor-oxygen to an
acceptor-oxygen and moved afterward at least 100 pm.

In Fig. 9 the CDF of the HTPs (left) and LTPs (right) of
CsH2PO4, CsHSeO4 and CsHSO4 are shown. The HTP and LTP
of all compounds possess intensity in area A and B, while only
the HTPs show intensity in area C. Thus, proton rattling can be
reported for all compounds and phases but long range proton
transfer takes only place in the HTPs.

For the comparison of the LTPs of the different compounds, it
turns out that the ‘‘rattling’’ part of the CDF is almost symmetric for
CsH2PO4 whereas the H–Oinitial donor distances are only shorter or
equal to the H–Oinitial acceptor distances (and not vice versa) for
CsHSeO4 and CsHSO4. Thus, proton rattling seems to be more
extensive in CsH2PO4 compared with CsHSeO4 and CsHSO4. This
finding can be explained by referring to the crystal structures
(which we discussed in the Introduction). The LTP of CsH2PO4

posses two crystallographic different types of protons: the first type
of protons forms localized asymmetric hydrogen bonds and the
second type of protons undergoes rapid exchange between two
oxygen atoms in a hydrogen bond with a symmetric double
potential well. This fundamental difference arising from the hydro-
gen bond topology is able to explain the more frequent ‘‘proton
rattling’’ within the LTP of CsH2PO4.

For the interpretation of our CDFs we have to keep in mind,
that they represent only a non-converged snapshot of proton
motion. Following this line, only qualitative (signal positions
and signal shapes) instead of quantitative features (i.e. the
intensity) should be derived from the CDF. Thus, the intensity
of the peaks from area C can not be used to explain differences
of diffusion coefficients in the HTPs.

Summarizing the results obtained from the CDFs, we can state
that long range proton transfer could only be observed in the
HTPs in agreement to their high proton conductivities. For the
LTPs proton rattling can be stated from the CDFs, explaining

the similarities in the single H–O and O–O radial distance distribu-
tion functions. CDFs are a powerful tool to decide via the char-
acteristic pattern of the peaks, if long range proton transfer takes
place i.e. if the compound is a (potentially good) proton conductor.

3.3 Proton transfer rates

Proton conduction in solid acids follows a general Grotthuss
mechanism.62,63 Thus, the overall proton conductivity is a
function of the proton jump rate between oxo-anions and the
rotational relaxation of the oxygen tetrahedra.

In order to explain the different proton conductivities, we start
to investigate the frequency of proton jumps in the solid acids. The
number of proton jumps per 1 ps and 1 proton for the solid acids
CsH2PO4, CsHSO4 and CsHSeO4 are depicted in Table 3. We define
a proton transfer as change of the next oxygen neighbor of an
hydrogen atom (in two subsequent AIMD steps). Thus, also ‘‘proton
rattling’’ between two oxygen atoms of a hydrogen bond does
contribute to the number of proton transfers.

For CsH2PO4, the HTP and the LTP possess an extraordinary
high proton transfer rate. The proton transfer rate of the HTP of
CsHSeO4 respectively CsHSO4 is smaller by a factor of 7 and 15,
respectively, to the proton transfer rate of CsH2PO4. The proton
transfer rate of the LTPs of CsHSeO4 and CsHSO4 is even smaller
by one magnitude compared with the transfer rate of the corres-
ponding HTPs. The larger number of proton jumps in the LTP of
CsH2PO4 compared with the LTPs of the other compounds can be
explained by a symmetric hydrogen bond with a double potential
well (cf. description of crystal structures in the Introduction).
Protons within this hydrogen bond undergo rapid exchange
between two oxygen atoms. Hence, we conclude that the
frequency of proton jumps as a solely parameter is not suited
in order to describe the trend of the diffusion coefficients.
Concerning only the proton transfer rate, CsH2PO4 should possess
the largest diffusion coefficient among all investigated solid acids
and the conductivity of the LTP of CsH2PO4 should be similar to
the conductivity of the HTP. Both statements are wrong. The HTP
of CsHSeO4 exhibits the largest diffusion coefficient and the LTP
of CsH2PO4 does not show any proton conductivity at all.

3.4 Rotational dynamics of the anions

In order to investigate the rotational dynamics of the anions
(HSO4

�, HSeO4
�, H2PO4

�) of the solid acids, we prepared vector
autocorrelation functions (VCF) of the X–O (X = P, S, Se) vector.
The X–O vector is defined as the difference between the posi-
tion vector of the atom X and the position vector of one of its
covalently bonded oxygen atoms. The autocorrelation of a
vector -

ai is defined as the normalized sum over the dot product

Fig. 8 Explanation of three different sub-processes (A–C) of a long-range proton transfer step. We denote the H–Oinitialdonor distance by d1 and the H–Oinitialacceptor

distance by d2. The special nomenclature using the terms Oinitialacceptor and Oinitialdonor is only important for the understanding of the CDFs in Fig. 9.
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between the vector at some time t and the same vector at some
later time t + t for all starting times t:95

VCF½t� ¼ N
XT�t
t¼0

~aiðtÞ �~aiðtþ tÞ
* +

i

(2)

In eqn (2), T denotes the total simulation time, i the index of
a specific X–O vector and N a normalization constant. The final
autocorrelation function is obtained by taking the average over
all X–O vectors within the system. The vector autocorrelation
function starts at one and shows a decay with increasing t. The
decay time of the autocorrelation function corresponds to the

Fig. 9 Combined distribution function (CDF) of the HTPs and LTPs of CsH2PO4, CsHSeO4 and CsHSO4. Explanations of the H–Oinitial acceptor distance
and the H–Oinitial donor distance as well as the interpretation of the regions A–C are given in Fig. 8. We are only interested in relative intensities of the CDFs.
For the sake of completeness, we show the color bars associated with the CDFs in the ESI.†
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rotational frequency of the anion. The resulting autocorrelation
functions are shown in Fig. 10. The autocorrelation functions of
all LTPs do not show a decay at all. This translates to the
conclusion that anion rotation is not observed within the LTPs
at the time scale of our AIMD simulations. In contrast, the
autocorrelation functions of the HTPs possess a significant
decay corresponding to the fast orientational dynamics of the
oxygen tetrahedra in these compounds. The decay of the
autocorrelation functions of the HTPs increases in the order
CsH2PO4, CsHSeO4, CsHSO4.

4 General mechanism of proton
conduction in the solid acid family

Combining the proton transfer rates (cf. Table 3) and rotational
rates (cf. Fig. 10), we are now able to explain the qualitative
trend of the diffusion coefficients (cf. Table 2).

The anions in the LTPs do not rotate at all. This prevents
long range proton transfer (and hence proton conduction),
because even if protons are transferred between the anions
(cf. high proton transfer rate in the LTP of CsH2PO4) they will
only ‘‘rattle’’ between two oxygen atoms. Opposed to that, the

HTP of CsH2PO4 combines a very high proton transfer rate with
a low rotational rate of the anion, whereas the HTP of CsHSO4

combines a low proton transfer rate with a very high rotational
rate of the anion. Both opposed combinations of rates lead to
the same (intermediate) diffusion coefficient. The HTP of
CsHSeO4 possess neither the highest proton transfer rate
(CsH2PO4) nor the highest rotational rate of the anion
(CsHSO4). Nevertheless it is the best proton conductor among
the three investigated compounds, because it combines an
intermediate rotational rate of the anion and an intermediate
proton transfer rate. The results of this discussion are summarized
in Table 4. It turns out that we can explain the trend of the
diffusion coefficient in terms of the proton transfer rates and rates
of anion rotation. Each of this rates can limit the diffusion
coefficient. Only a combination of a high proton transfer rate
and a high rotational rate of the anion will lead to the optimal
proton conductivity. This conclusion is in accordance with the
overall chemical picture that proton conductivity in the solid acid
family CsHyXO4 (X = S, P, Se, y = 1, 2) follows a Grotthuss-type
mechanism, which requires both proton transfer between different
anions and subsequent relaxation of the environment (rotation of
the anions).34,40,62,63 A high proton transfer rate without relaxation
of the environment only leads to proton rattling between two
oxygen atoms and will not enable long range proton transfer.

In a last step, we want to propose a chemical explanation for
the observed trend of the proton conductivity. As already
indicated in this article, a strong as well as fluctuating hydro-
gen bond network is a prerequisite for a good proton conduc-
tor. The hydrogen bond acceptor strength increases in the
series sulphate, selenate, phosphate.97 Stronger hydrogen
bonds in CsH2PO4 compared to CsHSeO4 and CsHSO4 are also
observed from the crystal structure (cf. Introduction) as well as
the RDFs (cf. Fig. 7). For CsHSO4 the proton jump frequency is
the limiting factor, indicating too weak hydrogen bonds and
too high activation energies for the proton jumps for efficient
long range proton transfer. For CsH2PO4 the frequency of anion
reorientation limits the conductivity. While hydrogen bonds
have to be broken in order to enable anion rotations, this
indicates too strong hydrogen bonds in CsH2PO4 for efficient
long range proton transfer. The hydrogen bond strength of
HSeO4

� seems to be in between the strength of HSO4
� and

H2PO4
�, which balances best the opposing requirements for

proton transfer between anions and anion rotation.

4.1 A quantitative predictor of the diffusion coefficient trend

O–H-bond autocorrelation functions. In this section, we
want to develop a quantitative descriptor of proton dynamics
which enables the explanation of the diffusion coefficients
trends in the solid acids family. First, we state a criterion for

Table 3 Number of proton transfers per 1 ps and 1 proton

CsH2PO4 CsHSeO4 CsHSO4

High temperature phases
Proton jumps per ps and proton 11.6 1.61 0.75

Low temperature phases
Proton jumps per ps and proton 12.0 0.20 0.09

Fig. 10 Autocorrelation function of the P–O, S–O or Se–O vector.

Table 4 Qualitative explanation of diffusion coefficient trends

CsH2PO4 HTP CsHSeO4 HTP CsHSO4 HTP CsH2PO4 LTP CsHSeO4 LTP CsHSO4 LTP

Proton transfer rate Very high Medium Low Very high Very low Very low
Anion rotation frequency Low Medium Very high No rotation No rotation No rotation
Diffusion coefficient Medium Very high Medium No diffusion No diffusion No diffusion
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the formation of a covalent bond between hydrogen and oxygen
atoms: we assume a covalent bond is formed between a hydrogen
atom and its next oxygen neighbor. Starting from this definition,
we obtain the autocorrelation function of the covalent HO-bonds
from an AIMD trajectory according to the following protocol: at the
initial time step (t = 0), we determine the next oxygen neighbor of
every hydrogen atom and assume a covalent bond between these
pairs of atoms. At time t a 0, an initial covalent OH-bond
remained intact if the next oxygen neighbor of a hydrogen atom
did not change (compared with t = 0). Each intact initial covalent
bond at time t contributes a value of one to the autocorrelation
function of the covalent HO-bonds, while every hydrogen atom
with a new next oxygen neighbor contribute a value of zero. Finally,
we divide the number of intact covalent H–O bonds by the overall
number of initial O–H covalent bonds in order to obtain a
normalized function. Thus the covalent HO-autocorrelation func-
tion describes the fraction of protons which are still bonded to
their initial covalent bond partner. From a pictorial/qualitative
point of view it is apparent that the decay of the covalent HO-
autocorrelation function and the diffusivity are related.

The autocorrelation functions of the covalent HO-bond
autocorrelation function for the solid acids are shown in
Fig. 11. We performed a bi-exponential fit of the covalent HO-
bond autocorrelation function according to:

f (t) = c1�e�k1�t + (1 � c1)�e�k2�t (3)

We choose k1 4 k2 and define t1 = 1/k1 as short-term and t2 = 1/k2 as
long-term relaxation time. The relaxation times for the investigated
compounds are listed in Table 5. We have verified that a
bi-exponential target function from eqn (3) yields a good fit
for our simulation data, indicating that the underlying physical
process can indeed be considered a two-step mechanism.

We will now demonstrate two different correlations concerning
the short- as well as long-term relaxation times of the covalent HO-
bond autocorrelation function.

First, we will correlate the long-term relaxation times and
proton conductivity: it turns out (from Fig. 11) that covalent
HO-bond autocorrelation functions of all LTPs remain almost

constant (beside a very short and fast decay of the HO-bond
autocorrelation function of the LTP of CsH2PO4). Thus the
number of intact initial covalent O–H bonds is constant and
no long range proton transfer among different oxygens atoms is
observed. An infinite long-term relaxation time of the covalent
HO-bond autocorrelation functions (cf. Table 5) fits well to the
negligible proton conductivity of the LTPs. The long-term
relaxation times of the HTPs of CsH2PO4 and CsHSO4 are
almost equal. Opposed to that, the long-term relaxation times
of the HTP of CsHSeO4 is drastically decreased compared with
the long-term relaxation times of the HTPs of CsH2PO4 and
CsHSO4. Keeping in mind, that the difference of the diffusion
coefficients of CsH2PO4 and CsHSO4 was within the error of the
AIMD simulations, the long-term relaxation time of the covalent
HO-bond autocorrelation function is able to predict the quantita-
tive trend of the diffusion coefficients (compare Tables 2 and 5).

In a second step, we want to correlate the short-term
relaxation times and the proton transfer rates from Table 3:
compared to the LTPs of CsHSeO4 and CsHSO4 only the LTP of
CsH2PO4 possesses a short and fast decay from 1 to 0.64. This
different behavior can be explained from the crystal structure
(cf. crystal structure discussion in the Introduction): two types
of hydrogen bonds are observed within the LTP of CsH2PO4.
While the first type of protons within an asymmetric hydrogen
bond do not change their next oxygen neighbor, the other
protons ‘‘rattle’’ extensively within the double minimum
potential well of the symmetric hydrogen bond.36

We reported the highest proton jump rates for the HTP and
LTP of CsH2PO4 which fits well to the smallest short-term
relaxations times (o 0.5 ps). Also the reduced number of jumps
within the series CsH2PO4, CsHSeO4 and CsHSO4 is reflected by
the increasing trend of the short-term relaxation times for these
compounds (0.31 ps o 0.57 ps o 2.5 ps).

In conclusion, the covalent HO-bond autocorrelation func-
tion combines the information of the proton transfer rate and
the overall proton conductivity into a single function. For short
timescales, the number of initially formed and still intact
covalent O–H bonds is dominated by the rattling/hopping
frequency of the protons, while the number of remaining
covalent bonded H–O pairs for longer timescales is connected
to the overall proton conductivity. For solid acids, we haveFig. 11 Autocorrelation function of the covalent O–H bonds.

Table 5 Short-term relaxation time t1 and long-term relaxation time t2 of
the covalent HO-bond autocorrelation function obtained from eqn (3) with
k2 o k1 and ti = 1/ki. The infinity symbol means that the covalent HO-bond
autocorrelation function is virtually constant. The LTP of CsH2PO4 is a special
case. Its covalent HO-bond autocorrelation function possesses a fast decay at
the beginning (t1 oN) and remains afterwards constant (t2 = N). Therefore,
we performed for this system a mono-exponential fit

CsH2PO4 CsHSeO4 CsHSO4

High temperature phases
Relaxation time t1 in ps 0.31 0.57 2.5
Relaxation time t2 in ps 248 82 322

Low temperature phases
Relaxation time t1 in ps 0.19 N N

Relaxation time t2 in ps N N N
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demonstrated that the anion reorientation dynamics is the
missing link between the proton transfer frequency and the
proton conductivity, and hence can be indirectly deduced from
the covalent HO-bond autocorrelation function. Compared to the
diffusion coefficient, the covalent HO-bond autocorrelation func-
tion as a single descriptor allows a direct atomistic interpretation
and its relation to the proton transfer rate and anion rotation rate is
immediately apparent for the case of the solid acids.

5 A fundamental invariant of proton
transfer

The overall aim of an AIMD simulation is to gain atomistic insights
into the structure and the dynamics of an investigated system. This
information can be used to construct models of atomistic processes
and the comparison (of these models) to existing experimental
data. On this occasion, we can use the predictive power of ab initio
simulations not only for evaluation but also for an explicit state-
ment of an invariant of proton transfer in O� � �H–O hydrogen
bonded systems, which is relevant for the question how materials
science can benefit from theoretical investigations.

In our group, proton transfer is an object of interest since
many years and beside the inorganic solid acid family in this
article, we have also investigated proton transfer in an organic
polymer (poly(vinylphosphonic acid) (PVPA)) and columnar discotic
compound (hexa(p-phosphonatophenyl)benzene (HPB)).98–100 We
have performed a careful analysis of the trajectories of these
compounds (CsHSO4, CsHSeO4, CsH2PO4, HPB, PVPA), in order
to discover similarities and differences of proton transfer. In
Fig. 12, we present the histogram of the proton jumps with respect
to the oxygen–oxygen distance within an AIMD trajectory (normal-
ized to 100 ps and 16 protons for reasons of comparability). We
define a proton jump as change of the next oxygen neighbor of a
hydrogen atom (in two subsequent AIMD steps).

The histogram illustrates that all systems exhibit the same
shape of the dependence of the jump number on the O–O

distance: in the logarithmic plot, the function resembles a
negative parabola, which corresponds to a Gaussian depen-
dence of the jump function on O–O distance. This Gaussian
function has the same center (dOO E 2.4 Å) for all compounds.
However, the jump functions vary considerably in absolute
amplitude: every system has a specific prefactor (corresponding
to a vertical shift of the function in the logarithmic plot).

This similarity between the systems is quite notable, especially
when considering that the jump function is a product of the
probability for a given O–O distance (i.e. the radial distribution
function, see Fig. 7) and the conditional probability for a jump at
that given O–O distance. None of these contributions, however, has
a real Gaussian shape, and the radial distribution functions clearly
have different centers (see Fig. 7).

In conclusion, we obtain a common Gaussian shape of the
actual number of proton jumps as function of the acceptor–
donor distance, with a common center at 2.4 Å and a system-
specific (but distance-independent) prefactor which depends
on the exact chemistry of the constituents and can only be
reported numerically.

Thus, we conclude from Fig. 12 that a necessary but not
sufficient prerequisite of efficient proton transfer is the high
probability of O–O distances of about 2.4 Å.

6 Conclusion

In this article, we investigated systematically proton dynamics
in the low and high temperature phases of CsHSeO4, CsHSO4

and CsH2PO4 by AIMD simulations. While the high temperature
phases are excellent proton conductors, the low temperature
phases do not conduct protons at all. We demonstrate that the
drastic reduced conductivity of the low temperature phases is
caused by a highly ordered, rigid hydrogen bond network, while
efficient long range proton transfer in the high temperature phases
is enabled by the interplay of high proton transfer rates and
frequent anion reorientation. We have shown that the relaxation
time of the OH-bond autocorrelation function is a simple, one-
dimensional quantitative descriptor for the prediction of the diffu-
sion coefficient trend within the solid acids family.

Finally, we reported a fundamental invariant of proton transfer
in O� � �H–O hydrogen bonded systems obtained by analysis of the
trajectories of several proton conducting materials, namely the
acceptor–donor distance at which the proton hopping rate is
maximum. From this invariant, we deduced a design rule for the
development of new proton conductors: a prerequisite of efficient
proton transfer is the presence of O–O distances of about 2.4 Å.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft
(Project-ID 435886714).

Fig. 12 Number of proton jumps with respect to the O–O distance
observed in a 100 ps simulation of a system containing 16 protons.

PCCP Paper

Pu
bl

is
he

d 
on

 0
5 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

ts
bi

bl
io

th
ek

 L
ei

pz
ig

 o
n 

4/
6/

20
20

 4
:1

0:
59

 P
M

. 

View Article Online



Phys. Chem. Chem. Phys. This journal is©the Owner Societies 2020

References

1 J. Cheng, M. Sulpizi and M. Sprik, Redox potentials and pKa

for benzoquinone from density functional theory based
molecular dynamics, J. Chem. Phys., 2009, 131(15), 154504.

2 J. Cheng, X. Liu, J. VandeVondele, M. Sulpizi and M. Sprik,
Redox potentials and acidity constants from density func-
tional theory based molecular dynamics, Acc. Chem. Res.,
2014, 47(12), 3522–3529. PMID: 25365148.

3 J. Cheng and M. Sprik, Acidity of the aqueous rutile
TiO2(110) surface from density functional theory based
molecular dynamics, J. Chem. Theory Comput., 2010, 6(3),
880–889. PMID: 26613315.

4 C. Zhang, J. Hutter and M. Sprik, Coupling of surface
chemistry and electric double layer at TiO2 electrochemical
interfaces, J. Phys. Chem. Lett., 2019, 10(14), 3871–3876.
PMID: 31241948.

5 I. L. Geada, I. Petit, M. Sulpizi and F. Tielens, Unravelling
the Gly-Pro-Glu tripeptide induced reconstruction of the
Au(110) surface at the molecular scale, Surf. Sci., 2018, 677,
271–277.

6 M. Gierada, F. De Proft, M. Sulpizi and F. Tielens, Under-
standing the acidic properties of the amorphous hydro-
xylated silica surface, J. Phys. Chem. C, 2019, 123(28),
17343–17352.

7 M.-P. Gaigeot, M. Sprik and M. Sulpizi, Oxide/water inter-
faces: how the surface chemistry modifies interfacial water
properties, J. Phys.: Condens. Matter, 2012, 24(12), 124106.

8 M. Mangold, L. Rolland, F. Costanzo, M. Sprik, M. Sulpizi
and J. Blumberger, Absolute pKa values and solvation
structure of amino acids from density functional based
molecular dynamics simulation, J. Chem. Theory Comput.,
2011, 7(6), 1951–1961. PMID: 26596456.

9 M. Hellström, V. Quaranta and J. Behler, One-dimensional vs.
two-dimensional proton transport processes at solid–liquid
zinc-oxide–water interfaces, Chem. Sci., 2019, 10, 1232–1243.

10 M. Hellström and J. Behler, Concentration-dependent
proton transfer mechanisms in aqueous NaOH solutions:
From acceptor-driven to donor-driven and back, J. Phys.
Chem. Lett., 2016, 7(17), 3302–3306. PMID: 27504986.

11 V. Quaranta, M. Hellström and J. Behler, Proton-transfer
mechanisms at the water–ZnO interface: The role of pre-
solvation, J. Phys. Chem. Lett., 2017, 8(7), 1476–1483. PMID:
28296415.

12 M. Hellström and J. Behler, Proton-transfer-driven water
exchange mechanism in the Na+ solvation shell, J. Phys.
Chem. B, 2017, 121(16), 4184–4190. PMID: 28375608.

13 M. Brehm, H. Weber, A. S. Pensado, A. Stark and
B. Kirchner, Proton transfer and polarity changes in ionic
liquid–water mixtures: a perspective on hydrogen bonds
from ab initio molecular dynamics at the example of 1-
ethyl-3-methylimidazolium acetate–water mixtures–part 1,
Phys. Chem. Chem. Phys., 2012, 14, 5030–5044.

14 A. Stirling, M. Bernasconi and M. Parrinello, Ab initio
simulation of water interaction with the (100) surface of
pyrite, J. Chem. Phys., 2003, 118(19), 8917–8926.

15 A. Stirling, T. Rozgonyi, M. Krack and M. Bernasconi,
Prebiotic NH3 formation: Insights from simulations, Inorg.
Chem., 2016, 55(4), 1934–1939. PMID: 26831570.

16 J. Ingenmey, S. Gehrke and B. Kirchner, How to harvest
Grotthuss diffusion in protic ionic liquid electrolyte systems,
ChemSusChem, 2018, 11(12), 1900–1910.

17 E. Perlt, P. Ray, A. Hansen, F. Malberg, S. Grimme and
B. Kirchner, Finding the best density functional approxi-
mation to describe interaction energies and structures of
ionic liquids in molecular dynamics studies, J. Chem. Phys.,
2018, 148(19), 193835.

18 B. Kirchner, F. Malberg, D. S. Firaha and O. Hollóczki, Ion
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determination of the electrochemically active platinum

Paper PCCP

Pu
bl

is
he

d 
on

 0
5 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

ts
bi

bl
io

th
ek

 L
ei

pz
ig

 o
n 

4/
6/

20
20

 4
:1

0:
59

 P
M

. 

View Article Online



This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys.

surface area: key to improvement of solid acid fuel cells,
J. Mater. Chem. A, 2018, 6, 2700–2707.

29 Q. Li, R. He, J. O. Jensen and N. J. Bjerrum, Approaches
and recent development of polymer electrolyte membranes
for fuel cells operating above 1001, Chem. Mater., 2003,
15(26), 4896–4915.

30 S. M. Haile, D. A. Boysen, C. R. Chisholm and R. B. Merle,
Solid acids as fuel cell electrolytes, Nature, 2001, 410,
910–913.

31 D. A. Boysen, T. Uda, C. R. I. Chisholm and S. M. Haile,
High-performance solid acid fuel cells through humidity
stabilization, Science, 2004, 303, 68–70.

32 C. R. I. Chisholm, D. A. Boysen, A. B. Papandrew, S. Zecevic,
S. Y. Cha, K. A. Sasaki, A. Varga, K. P. Giapis and S. M. Haile,
From laboratory breakthrough to technological realization: The
development path for solid acid fuel cells, J. Electrochem. Soc.
Interface, 2009, 18, 53–59.

33 http://www.safcell.com/.
34 A. I. Baranov, Crystals with disordered hydrogen-bond net-

works and superprotonic conductivity. review, Crystallogr.
Rep., 2003, 48, 1012–1037.

35 A. Preisinger, K. Mereiter and W. Bronowska. The phase
transition of CsH2PO4 (CDP) at 505 K. European Powder
Diffraction 3, volume 166 of Materials Science Forum. Trans
Tech Publications Ltd, 1994, vol. 7, pp. 511–516.

36 G. Kim, J. M. Griffin, F. Blanc, S. M. Haile and C. P.
Grey, Characterization of the dynamics in the protonic
conductor CsH2PO4 by 17O solid-state NMR spectroscopy
and first-principles calculations: Correlating phosphate
and protonic motion, J. Am. Chem. Soc., 2015, 137(11),
3867–3876. PMID: 25732257.

37 G. Kim, F. Blanc, Y.-Y. Hu and C. P. Grey, Understanding
the conduction mechanism of the protonic conductor
CsH2PO4 by solid-state NMR spectroscopy, J. Phys.
Chem. C, 2013, 117(13), 6504–6515.

38 P. Colomban and C. Philippe, Proton Conductors: Solids,
membranes and gels-materials and devices, Cambridge
University Press, 1992, vol. 2.

39 K. Yamada, T. Sagara, Y. Yamane, H. Ohki and T. Okuda,
Superprotonic conductor CsH2PO4 studied by 1H, 31P NMR
and X-ray diffraction, Solid State Ionics, 2004, 175(1), 557–562.
Fourteenth International Conference on Solid State Ionics.

40 S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boysen and
T. Uda, Solid acid proton conductors: from laboratory
curiosities to fuel cell electrolytes, Faraday Discuss., 2007,
134, 17–39.

41 A. M. Balagurov, A. V. Belushkin, I. D. Dutt, I. Natkaniec,
N. M. Plakida, B. N. Savenko, L. A. Shuvalov and J. Wasicki,
Neutron scattering studies on structural phase transitions
of superionic conductor CsHSO4, Ferroelectrics, 1985, 63(1),
59–67.

42 A. V. Belushkin, I. Natkaniec, N. M. Pakida, L. A. Shuvalov
and J. Wasicki, Neutron scattering studies of vibrational
spectra and structural transformations in the superionic
conductors CsHSO4 and CsHSeO4, J. Phys. C: Solid State
Phys., 1987, 20(5), 671–687.

43 P. Colomban, M. Pham-Thi and A. Novak, Thermal history
and phase transitions in the superionic protonic conductors
CsHSO4 and CsHSeO4, Solid State Ionics, 1986, 20(2), 125–134.
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from a Coupled Molecular Dynamics/Lattice Monte Carlo (cMD/LMC)
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Proton Conductivity in Hydrogen Phosphate/Sulfates from a
Coupled Molecular Dynamics/Lattice Monte Carlo (cMD/LMC)
Approach
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ABSTRACT: The ionic conductivity of solid acids of CsHnXO4 type (X = P, S; n = 2, 1)
varies upon chemical substitution P ↔ S and between different crystal structures (Tc =
503 K for CsH2PO4). We apply a recently developed coupled molecular dynamics/lattice
Monte Carlo simulation approach (cMD/LMC1,2) to explain both the phosphate/sulfate
and temperature/phase-related variations of the proton conductivity on a molecular level.
Our simulation method elucidates the relative importance of the two key components of
the Grotthuss-type proton conduction mechanism, proton hopping and structural
reorientation, as a function of the chemical/thermodynamical conditions. We find that the
chemical substitution leads to a substantial change in the proton hopping rate, which
however results only in a modest variation of the proton diffusivity. The variation of the temperature of CsH2PO4 results in a
significant response of the anion rotation frequency, which turns out to be the rate-limiting process for proton conduction. In
particular, the dramatic conductivity response to the phase transition can be explained by a large change of the rotation
frequency. In contrast to this, our simulations show that for CsHSO4, the local proton hopping rate is the decisive mechanism
which controls long-range proton transport. These findings illustrate that the actually rate limiting factor of proton conduction in
such solid acids is clearly system-dependent. Our simulated results for the proton conductivities agree almost quantitatively with
experimental values, providing further evidence for the high predictive capabilities of our scale-bridging cMD/LMC simulation
approach.

1. INTRODUCTION
Proton conduction is a process of fundamental scientific
interest and has been extensively studied by chemists and
physicists.3−14 If we focus on the field of energy conversion, the
core component of a hydrogen fuel cell is the proton exchange
membrane. This membrane has to be chemically stable, durable
and proton conducting.15

In the specific field of proton exchange membranes, aqueous
proton transport is widely used but has an important drawback:
the operating temperature is limited to 100 °C.
Solid state proton conductors (or solid acids) of the type

CsHyXO4 (X = S, P, Se, As; y = 1, 2) have attracted
considerable interest in recent years as alternative high-
temperature, water-free proton exchange fuel cell membrane
materials.16−20 They have been shown to exhibit high ionic
conductivity [≈ 10−2 Ω−1 cm−1].17 Fuel-cell operation using
electrolytes based on CsHSO4 and CsH2PO4 has already been
successfully demonstrated in the laboratory.19−21

Unlike electrolyte solutions, where proton carriers show a
high degree of conformational freedom, and thus strongly
promote proton conductivity, hydrogen-bonded crystalline
systems exhibit a much more ordered structure, especially at
low temperatures, and therefore feature much lower proton
conductivity. These low temperature phases (LTP) are
characterized by highly ordered hydrogen bond networks,
which in some cases form 1-D chains. With increasing
temperature a phase transition toward a high temperature

phase (HTP) can be observed, at which the disorder increases
and the oxyanion groups are able to rotate almost freely. This
leads to a disordered hydrogen bond network and a strong
increase in proton conductivity. At temperatures above the
transition (400−500 K), the conductivity is about 10−2 S/cm,
approaching the value of aqueous systems.9 For increased
temperatures, a moderately increased conductivity of the HTP
is reported.22,23 The compounds CsH2PO4 and CsHSO4 are
subject to a superprotonic phase transition at 503 and 414 K
leading to an increase of proton conductivity by several orders
of magnitude. The involved phases are depicted in Table 1. The
geometry optimized crystal structures of the HTP of CsH2PO4

and CsHSO4 are depicted in Figure 1.
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Table 1. Characteristic Crystal Structure Parameters for the
High and Low Temperature Phases (HTP/LTP) of
CsH2PO4 and CsHSO4

22

CsH2PO4 CsHSO4

HTP Pm3m cubic I41/amd tetragonal
LTP P21/c monoclinic P21/c monoclinic
λc 503 K 414 K
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pubs.acs.org/JPCC

© 2016 American Chemical Society 19913 DOI: 10.1021/acs.jpcc.6b05822
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Several experimental22−28 and theoretical16,17,29−33 studies of
proton conduction suggested a proton conducting mechanism
in CsH2PO4 and CsHSO4 relying on the combination of two
fundamental processes: proton transfer between anions and
rotation of the anions, in complete analogy to the Grotthuss
proton conduction in liquid water.28,34 Only the interplay of
both processes enables the long-range proton transfer.
Considering frequent proton transfer processes without anion
rotation leads to a rattling motion of the proton between two
anions and no sustained proton conduction. Tuckerman stated
for CsH2PO4 a 10-fold higher frequency of proton jumps
compared to the frequency of anion rotations16,28 This
indicates that the anion rotation represents the rate limiting
step for proton conductivity. For the sulfate compound
(CsHSO4), Marzari also reported that proton jumps are more
frequent than anion rotations in CsHSO4. On the other hand,
many experimentalists25,27,35,36 and other theoretical stud-
ies32,33,37 claim a reduced frequency of proton transfers
between anions for CsHSO4 compared to CsH2PO4,

25,27

derived from quasielastic neutron scattering and rf-microwave
dielectric relaxation.
The determination of the diffusion coefficient is actually a

challenging task for experimentalists. The diffusion coefficient
can be derived by several methods, e.g., NMR relaxation times
or conductivity measurements. A quick survey of the
corresponding publications shows a surprisingly large variation
of the reported diffusion coefficients. Depending on the
experimental method deviations of up to a factor of 10 can
be observed.23,28,38 This large experimental uncertainty may at
least be partially attributed to the variety of complex
microscopic processes responsible for the diffusion phenomena
at different length and time scales. In this work, we attempt to

elucidate the mechanistic picture of diffusion with a scale
bridging simulation approach, which allows us to simulate
proton transport on large time scales while also incorporating
the atomistic details of the hydrogen bond network.
The comparatively high computational costs of purely ab

initio molecular dynamics (AIMD) based studies of the solid
acids typically restrict them to time scales of about 20−100 ps.
Regarding ion conduction, however, only few elementary
atomic hopping processes occur within several picoseconds. As
a consequence the statistical sampling of the proton translation
process can hardly be considered converged, leading to
considerable deviations from experiment. So far the predicted
theoretical values of CsHSO4 are too large by a factor of 10
compared to the experimental value.17,26,27

A scale bridging approach can overcome the limitations of
pure electronic structure methods. In this context we apply a
combination of first-principles molecular dynamics simulations
and a lattice Monte Carlo scheme (cMD/LMC approach).
The algorithmic details of this combined cMD/LMC

approach and its validation in terms of accuracy for the
reference systems have been published elsewhere.1 In this work,
we use a refined version of the cMD/LMC approach2 to
explain the changes in proton conductivity in a series of solid
acids, upon temperature variations, phase transitions, and
chemical variations.

2. METHODS

2.1. cMD/LMC Approach. We have designed a simulation
approach on the basis of a combination of first-principles
molecular dynamics simulations and a lattice Monte Carlo
scheme (cMD/LMC approach).1 While the molecular
dynamics simulation provides a representative conformational
ensemble of the supramolecular structure at the level of density
functional theory (DFT) under periodic boundary conditions,
the Monte Carlo part models the long-range mobility of the
acidic protons taking into account the dynamically evolving
molecular structure of the system.
In the LMC part, the system is reduced to a lattice of sites

which can be occupied or unoccupied, and correspond
chemically to the oxygen atoms in the system. These oxygen
atoms are treated as nodes and can hold one proton. Proton
jumps between the oxygen atoms occur, according to a distance
dependent jump rate. The basic idea behind the cMD/LMC
method is illustrated in Figure 2. The jump rate can be obtained
from an AIMD trajectory. It is a physical rate for the frequency
of a proton transfer between two oxygen atoms. Therefore, it is
dependent on the O−O distance. The unit of the proton jump
rate is probability per time. According to this rate function a
physical time can be assigned to the LMC steps.

Figure 1. Geometry-optimized crystal structures of the HTP of
CsH2PO4 and CsHSO4. Hydrogen atoms are shown in white, oxygen
in red, sulfur in yellow, phosphorus in orange, and cesium in blue.
Hydrogen bonds are represented by dashed lines.

Figure 2. Illustration of the basic cMD/LMC idea. Between the
oxygen atoms Oi and Oj proton jumps occur according to a distance
dependent jump rate ω(dij).
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Following these explanations, this distance dependent jump
rates constitutes one of the fundamental input parameter of the
LMC scheme. The actual network of transition rates between
all LMC lattice sites, is obtained from the specific molecular
geometry of the system at a given snapshot of the MD
trajectory. The propagation of the LMC state is then followed
by an update of the transition/jumprate matrix corresponding
to the evolution of the MD trajectory. A crucial aspect of our
model is the coupling between MD and the LMC algorithm,
i.e., the way the LMC model obtains its topology from the MD
trajectory. The LMC loads the atomistic structure from the MD
trajectory at a time T. In each LMC time step, every proton
held by an oxygen atom is considered for a jump to all
neighboring unprotonated oxygen atoms with a probability
given by the jump rate. The length of a LMC step is
determined by the temporal unit obtained from the jump rates.
For the subsequent LMC step, the coordinates of the next
AIMD-trajectory-frame are loaded into the program. It is
particular noteworthy that LMC steps do not alter the topology
of the system.
The atomic nuclei are treated as classical particles in our

AIMD simulations (Born−Oppenheimer molecular dynamics).
Therefore, no quantum effects are included in our cMD/LMC
scheme, which neglect the contribution of the tunneling effect
to the proton transfer. For increased temperatures the influence
of proton tunneling is rather small.
There are essentially only two fundamental input parameters

required for a LMC/MD simulation: the distance dependent
proton jump rate and the supramolecular structure (heavy atom
structure from MD snapshots). Both parameters can be
obtained from a AIMD simulation. By applying the LMC
approach to a system, as an advantage, the proton conduction
mechanism is automatically decomposed into contributions
from the proton jump rate and the heavy atom structure. This
allows us to explain the proton conducting mechanism in term
of the two important cMD/LMC parameters and to compare
the cMD/LMC results to mechanistic studies from atomistic
simulations. As a result from a single cMD/LMC run of a
system, the mean square displacement and the H−O-bond−
autocorrelation function for several nanoseconds can be
obtained on a single CPU.
2.2. Diffusion Coefficients. The diffusion coefficient is

accessible from the linear part of the mean square displacement
via the Einstein equation (eq 1).

=D
t

t
1
6

d
d

(MSD( ))s (1)

Long trajectories are necessary to observe the linear regime of
the MSD. These time scales can only hardly be reached by
AIMD simulations. In particular for a short given AIMD
trajectory, the diffusion coefficient can not be uniquely
determined, because none or more than one linear regimes of
the MSD can be identified.
We obtained the MSD from the AIMD by applying a

multiinterval processing of the trajectory. For the determination
of the MSD in the cMD/LMC method, we choose a time
interval from 50 to 250 ps. The diffusion coefficient is
computed by taking the slope of the linear function obtained by
fitting the MSD in this interval. The error for the diffusion
coefficient was obtained by regarding the calculated standard
deviation of the MSD during the fitting process.
2.3. Computational Details. AIMD. We applied Born−

Oppenheimer Molecular Dynamics (BOMD) using the

CP2K39 program package to simulate the proton transfer in a
series of solid acids. We utilized the Quickstep module40 and
orbital transformation41 for faster convergence. The electronic
structure was calculated with density functional theory utilizing
the PBE42−44 functional. A basis set of the type DZVP-
MOLOPT-SR-GTH45 and GTH pseudopotentials46,47 were
applied. Furthermore, we used the empirical dispersion
correction (D3) from Grimme48 The temperature was set by
a Nose−́Hoover chain thermostat49−51 (NVT ensemble). The
time step was chosen as 0.5 fs. The dimensions of the
simulation box and the starting configurations of the systems
were obtained from crystal structure data from the
literature.52−54

For the initial equilibration we performed a geometry
optimization of the systems followed by 10 ps AIMD using
massive and global thermostatting. The SCF convergence
parameter was set to 10−7. The SCF convergence parameter is
calculated as the matrix norm of the difference of the density
matrices between two SCF steps. Systems of 16 formula units
of CsH2PO4 were investigated above (610, 510 K) and below
(490 K) the phase transition. A system of 16 formula units of
tetragonal CsHSO4 was investigated at 420 K (6 K above the
phase transition). All production runs were performed for 120
ps.

cMD/LMC. Each Monte Carlo run was performed for the
equivalent of 250 ps following the recently improved version of
our cMD/LMC scheme.2 The heavy atom structure was
updated in the continuous mode.1 An angular cut off criterion
for the P−O−O and S−O−O angle of 90° was used for the
proton jumps (for explanation see ref 2). Before starting the
production run, every MC simulation was equilibrated for 125
ps.

3. RESULTS

3.1. Diffusion Coefficients from cMD/LMC Simulations
vs AIMD and Experimental References. We have
computed the proton diffusion coefficients for a series of
solid acids (different compounds, phases and temperatures)
with the combined lattice Monte Carlo (cMD/LMC) and the
ab initio molecular dynamics (AIMD) method (see Figure 3).
The four investigated systems represent the full range of proton
conductivities including very strong proton conductors (10−2

Å2/ps) as well as insulators. Figure 3 depicts the correlation
between the diffusion coefficients obtained by the two different

Figure 3. Correlation plot of the diffusion coefficients Dk [Å2/ps]
obtained from the AIMD method and the cMD/LMC approach for
the systems listed in Table 2. The ideal correlation is indicated by the
dotted line.
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methods. The diffusion coefficients do not differ more than by
a factor of 2.
We validate our simulations by comparing the theoretical

diffusion coefficient to experiment (Table 2). Discussing only
one representative example from Table 2, the diffusion
coefficient of CsH2PO4 (HTP) at 510 K obtained from an
AIMD trajectory is 8.3 × 10−3 Å2/ps. The diffusion coefficient
determined from the cMD/LMC method was 5.9 × 10−3 Å2/
ps. This value matches well the broad range of diffusion
coefficients (0.5 × 10−3 to 6.5 × 10−2 Å2/ps) published by
experimentalists. Also all other diffusion coefficients calculated
with the cMD/LMC method are in good agreement with the
diffusion coefficient from experimental investigations. The
cMD/LMC diffusion coefficients do not differ more than by a
factor of 2 compared to AIMD and by a factor of 3 compared
to experimental diffusion coefficients.
The difficulty of benchmarking our method lies in the fact

that reported values of diffusion coefficients vary by an order of
magnitude. Tuckerman compared in his ab initio study of
CsH2PO4 the theoretically obtained proton conductivity to
other methods.16 He found proton conductivities ranging from
0.002 to 0.025 S/cm for the experimental values (correspond-
ing to diffusion coefficients from (0.5−6.5) × 10−3 Å2/
ps).24,38,55−57 These “indirect” studies for the determination of
the diffusion coefficient use the Nernst−Einstein equation (eq
2) to extrapolate the diffusion coefficients from conductivity
measurements. In eq 2, Np is the number of protons in the unit
volume and Dk is the proton diffusion constant.

σ = e N D

k T
p k

b

2

(2)

A recent study from Kawai publicated in 2008, investigating
the diffusion coefficient of CsH2PO4 with quasi-elastic neutron
scattering (QENS) and pulse field gradient nuclear magnetic
resonance (PFG-NMR), stated a broad range of the
experimental diffusion coefficient of 2.9 to 25 × 10−3 Å2/ps
(temperature: 511−513 K).23 The study of Kawai is very
reliable, because they combined and compared direct and
indirect methods within the same publication. The translational
diffusion coefficient of 2.9 × 10−3 Å2/ps was confirmed by
direct (PFG-NMR) and indirect (ac impedance) methods and
is in good agreement with our theoretical value obtained by
AIMD or the cMD/LMC method.
Proton diffusion is an activated process and therefore it is a

challenging task to determine diffusion coefficients with AIMD.
Earlier studies, using standard trajectory processing techniques,
could often only compute the diffusion coefficient with a 10-
fold deviation.17,26,27 The large calculated errors for the
diffusion coefficient in Table 2 underline the uncertainty for
the determination of diffusion coefficients. Regarding proton
conduction, the large error of the AIMD method can be
explained, because only few elementary proton hopping

processes occur within a whole simulation. In particular
simulations of materials with smaller conductivities lead to
statistically not converged MSDs and large errors for the
diffusion coefficient (compare Table 2, CsHSO4). Other
factors, which could hinder the comparability of theoretically
diffusion coefficients, are effective pressure differences between
the calculations.
Keeping in mind the widespread range of the diffusion

coefficients obtained from experimental and ab inito methods,
the agreement of the cMD/LMC results with the other
methods is noteworthy.

3.2. Importance of Structure Update in the cMD/LMC
Method. The evolution of the underlying supramolecular
structure has a major influence on the proton dynamics. In
contrast to other scale-bridging methods,58 the cMD/LMC
approach takes this into account via an update of the oxygen
positions.
In order to clarify the importance of the update of the oxygen

position from the AIMD, we set up four LMC runs, which
differ only by the underlying oxygen structure (see Figure 4). In

the first LMC run, the standard cMD/LMC approach is used,
updating the oxygen positions continuously (second bar Figure
4). In the second run, we used fixed oxygen positions, averaged
from the MD run (fourth bar Figure 4) whereas in the third run
fixed oxygen positions, obtained from the first geometry
optimized initial frame of the MD (third bar Figure 4) are used.
Finally we set up an LMC run with fixed oxygen positions,
obtained from a randomly picked AIMD trajectory time frame
(fifth bar in Figure 4).
From Figure 4, we can conclude that the diffusion

coefficients for LMC runs with static oxygen positions are
drastically decreased, compared to the LMC runs relying on a
continuously updated AIMD trajectory. For the fixed oxygen-
position-based LMC simulations, the diffusion coefficients
collapse to values on the order of an insulator.

Table 2. Diffusion Coefficients [Å2/ps] from Different Compoundsa

CsH2PO4 cubic (HTP) 510 K CsH2PO4 monoclinic (LTP) 490 K CsH2PO4 cubic (HTP) 610 K CsHSO4 tetragonal (HTP) 420 K

Dk cMD/LMC (5.9 ± 1.0) × 10−3 ∼0.0b (2.1 ± 0.2) × 10−2 (2.0 ± 0.5) × 10−3

Dk AIMD (8.3 ± 1.5) × 10−3 ∼0.0b (2.0 ± 0.3) × 10−2 (1.8 ± 1.5) × 10−3

experimental (0.5−6.5) × 10−3c ∼0.0c ∼5.5 × 10−2d ∼1 × 10−3d

Dk (2.9−25) × 10−3e (560 K)
aAIMD diffusion coefficient and cMD/LMC diffusion coefficients rely on a 60 ps AIMD trajectory. bDk very small (≤3 × 10−5) and error larger than
the value itself cReference 24. dReference 27. eReference 23.

Figure 4. cMD/LMC diffusion coefficients calculated with different
structure update methods. Using a fixed supramolecular structure
during the whole LMC run, a drastically decreased diffusion coefficient
is obtained. In such a fixed setup, the excellent proton conductor
CsH2PO4 exhibits conductivities in the range of an insulator.
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3.3. Atomistic Explanations of Diffusion Coefficient
Trends. A very interesting aspect is the dependence of the
proton diffusion coefficients on the chemical nature of the
investigated systems. Here, we explain the trend of the diffusion
coefficients in terms of the central cMD/LMC input paramters:
jump rate and supramolecular structure.
Figure 5 depicts the diffusion coefficient for different

temperatures and phases of CsH2PO4 and for the HTP of

CsHSO4 obtained by the cMD/LMC approach. Two questions
arise from this figure:

1 Why does a temperature shift influence only moderately
the proton conductivity, whereas a phase shift causes
drastic changes of the diffusion coefficient?

2 CsHSO4 and CsH2PO4 are different compounds but the
diffusion coefficient of the HTP of CsHSO4 at 420 K
could be extrapolated from the temperature trend of the
HTP of CsH2PO4. Can we therefore conclude the same
proton conduction mechanism?

CsH2PO4: Impact of Crystal Structure and Temperature. A
challenging question is the response of proton diffusion to
phase transitions and temperature changes (compare Figure 5).
We investigate the proton transfer mechanism in terms of the
two basic cMD/LMC parameters: jump rate and heavy atom
structure (supramolecular structure).
The jump rates for the simulation of the monoclinic (390 K)

and the two cubic (510 and 610 K) CsH2PO4 systems are
depicted in Figure 6. The graphs of the jump rates for these
three compounds are nearly the same. To exclude a jump rate
dependency of the diffusion coefficients for temperature shifts

and phase transitions, we simulated three diffusion coefficients
with the cMD/LMC approach obtained from one supra-
molecular structure and three different jump rates. For the
calculation of these diffusion coefficient we used the supra-
molecular structure of the cubic CsH2PO4 at 510 K combined
with the jump rates obtained from the other simulations. The
resulting diffusion coefficients differ most by 1%. Hence the
jump rates of the different compounds are not able to explain
the trend of the proton conductivity.
The second important parameter in terms of the cMD/LMC

approach is the supramolecular structure obtained from a
comparatively short AIMD trajectory. For investigation of the
supramolecular structure, vector autocorrelation functions (vec-
acfs) of the P−O vector for the monoclinic phase (490 K) and
the cubic phase (510 and 610 K) were computed. The vector
autocorrelation functions of CsH2PO4 are depicted in Figure 7.

The vec-acf of the cubic phases show an exponential decay.
This decay is faster for the simulation at increased temperature.
The vec-acf of the monoclinic phase shows a short decay from
1.0 to 0.95 in the first picosecond. After this short decay the
vec-acf remain constant.
The relaxation time of the vec-acf of the P−O vectors

characterizes the frequency of the phosphate rotation. Figure 7
shows, that phosphate rotation in the monoclinic phase is
strongly reduced compared to the cubic phase. This is
correlated with a much more ordered hydrogen bond network
(HBN): The monoclinic phase has a tight 1D network and the
cubic phase has a fluctuating HBN due to a variety of stable
oxygen positions and corresponding hydrogen bond orienta-
tions. This has previously already been reported by Tucker-
man.16

Characteristic frames from the AIMD trajectory of the
monoclinic and the cubic phase are depicted in Figure 8. The
figure underlines in an intuitive way the different properties of
the hydrogen bond network.
Now we can combine the results from the investigations of

the jump rate and the supramolecular structure. On the one
hand, we observe for the monoclinic phase a high proton jump
rate and no reorientation of the phosphate anions, leading to a
very low proton diffusion coefficient. On the other hand, we
observe for the cubic phase a high proton jump rate and a
comparably fast reorientation of the phosphate anions, leading
to a large proton diffusion coefficient.
While both phases exhibit frequent proton jumps thanks to

the high hopping rates, the slow phosphate rotation in the
monoclinic phase leads only to a rattling motion of the proton
between the same two neighboring oxygen atoms. In contrast

Figure 5. CMD/LMC diffusion coefficients for CsH2PO4 and
CsHSO4 at different temperatures are shown in this figure. The
numerical values of the diffusion coefficients were already shown in
Table 2.

Figure 6. Distance dependent jump rates for CsH2PO4 determined
from the AIMD trajectory.

Figure 7. Vector autocorrelation function of the P−O vector
determined from an AIMD trajectory.
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to this, the fast phosphate rotation in the cubic phase enables a
considerably larger final diffusion coefficient. This effectively
constitutes a Grotthuss-type motion, in complete analogy to
proton conduction in liquid water.
In summary, we compared the proton dynamics of CsH2PO4

in its cubic and its monoclinic phase. By decomposing the
proton jump mechanism into contributions of a distance
dependent jump rate and contributions of the supramolecular
structure with our cMD/LMC approach, we could show that
the latter limits the overall proton conduction. In particular, a
variation of the jump rate parameters could not significantly
alter the overall MSD. The model of proton transfer based on
these two processesproton jumps and phosphate rotations
is widely discussed in the literature (Grotthuss mechanism). In
particular for the CsH2PO4-based system we can state, in
coincidence with the ab inito study of Tuckerman16 and some
experimental results,22−24,28,38 that the rotation of the
phosphate group is the rate-determining step of proton
diffusion for the CsH2PO4 compound. The experimental
study of Kawai23 stated two different diffusion coefficients,
that can be interpreted as a librational (25 × 10−3 Å2/ps) and
translational (2.9 × 10−3 Å2/ps) diffusion coefficients. In our
picture of the proton conducting mechanism, we can identify
the large librational diffusion coefficient with the fast proton
jumps between the phosphate anions, whereas the smaller
translational diffusion coefficient corresponds to the resulting
overall diffusion coefficient, which is limited by the slow anion
rotation.
CsH2PO4: HO-Bond Autocorrelation Function. We used the

cMD/LMC approach to investigate the covalent bond

dynamics of the HO bonds. For this we define a vector H(t),
which holds the index of its covalent bonding partner for each
acidic proton in the system at time t. In the case of the AIMD
trajectories, we store the indices of each proton’s nearest
oxygen neighbor, whereas for the cMD/LMC model, the
indices of the oxygen sites at which the protons are residing, are
saved.

∑η δ= ⟨ ⟩+t( )
i

H t H t t tcov ( ), ( )i i
cov

0
cov

0 0
(3)

The quantity reduces the multidimensional vector H(t) to a
scalar value by counting the covalent bondings that have not
changed since time t0.
The upper graph in Figure 9 describes the HO-bond-

autocorrelation function of the monoclinic phase of CsH2PO4.

After a short decay, the autocorrelation function remains
constant for this compound. The short decay corresponds to
the proton rattling between two oxygen atoms. Also in the
monoclinic phase, frequent proton transfers are observed, but
the lack of phosphate rotation leads to a constant HO-bond-
autocorrelation function for longer time scales. The constant

Figure 8. Snapshots of HTP and LTP CsH2PO4 simulation boxes
during the simulation run. Hydrogen bonds are represented by dashed
lines. Note that the HBN in the cubic phase (a) is three-dimensional
but less ordered compared to the one-dimensional HBN of the
monoclinic phase (b).

Figure 9. O−H bond autocorrelation functions for CsH2PO4. The
maximum number of H-bonds in the system is 32.
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HO-bond-autocorrelation functions for the monclinic phase fits
well to the low diffusion coefficient of this material. In contrast
to that, an exponential decay of the HO-bond-autocorrelation
function is observed for the super protonic phase (HTP) of
CsH2PO4 (Figure 9, middle). The decay of the HO-bond-
autocorrelation function at 610 K (Figure 9, bottom) is faster
compared to 510 K. The stronger exponential decay at higher
temperatures corresponds with the increased diffusion co-
efficient. For the comparison of the AIMD and cMD/LMC
method, the HO-bond-autocorrelation functions for different
phases and temperatures for CsH2PO4 are in good agreement
(see Figure 9). The underlying jump rate is nearly the same for
all three CsH2PO4 simulations. That means that a similar jump
rate can lead to a wide range of HO-bond-autocorrelation
functions.
Anion Driven Changes for the Proton Conduction

Mechanism. Up to this point we only investigated trends of
the proton diffusion coefficient caused by phase and temper-
ature changes. We are also interested in changes of the diffusion
coefficient due to chemical modifications, e.g., upon the
exchange of the anion. For this purpose, we prepared an
AIMD trajectory of the CsHSO4 (HTP) system, which was
subsequently fed into the cMD/LMC approach. The AIMD
and cMD/LMC diffusion coefficients were in good agreement
(compare Figure 3 and Table 2). Therefore, we can conclude
that the proton conduction mechanism can be described quite
accurately in terms of the cMD/LMC method: proton hopping
and subsequent relaxation of the involved supramolecular
structure (Grotthuss-type process).
For CsH2PO4, we already showed that the anion rotational

dynamics is the rate limiting step for proton conduction. From
previous AIMD studies, it is known that CsHSO4 exhibits a
significantly faster anion rotational dynamics compared to
CsH2PO4.

16,17 Nevertheless, the final diffusion coefficients of
CsHSO4 and CsH2PO4 are almost equal, if we assume ideal
behavior with respect to the temperature (compare Figure 5).
To explain these findings, we compare the jump rates of the

different high temperature phases. The magnitude of the jump
rate of CsHSO4 is 2 orders smaller compared to CsH2PO4. The
detailed graph for the distance dependent jump rate is shown in
the Supporting Information. This result is remarkable, because
the jump rate of the other systems investigated in this work and
also of hexakis(p-phosphonatophenyl)benzene from an earlier
publication59 were in the same range. The big deviation of the
jump rates of CsH2PO4(HTP) and CsHSO4(HTP) is a first
hint toward a jump rate dependency of the diffusion coefficient.
These observations give rise to the question, whether the

diffusion coefficients of the compounds CsHSO4(HTP) and
CsHSO4(HTP) are more sensitive to differences in the
supramolecular structure, or rather to the differing jump
rates. To address this aspect we set up a fictitious cMD/LMC
simulation using the supramolecular structure of CsH2PO4 with
the jump rate parameters of CsHSO4 and vice versa. The results
of these cMD/LMC runs are depicted in Table 3.

Utilizing the large jump rate of CsH2PO4 in combination
with the heavy atom structure of CsHSO4, we obtained a
diffusion coefficient of 2.4 × 10−2 Å2/ps. This diffusion
coefficient is five times larger compared to the diffusion
coefficient obtained by the standard cMD/LMC run for
CsH2PO4 (5.4 × 10−3 Å2/ps). If we use the small jump rate
of CsHSO4 in combination with the supramolecular structure
of CsHPO4 for a cMD/LMC run, a diffusion coefficient of 1.6
× 10−3 Å2/ps is observed. This diffusion coefficient is close to
the small diffusion coefficient obtained by the standard cMD/
LMC run for CsHSO4 (2.6 × 10−3 Å2/ps). From these
observations, we conclude that the diffusion coefficient of
CsHSO4 is more sensitive with respect to the jump rate
compared to the diffusion coefficient of CsH2PO4. For
variations of the anion (HSO4

− instead of H2PO4
−), the

magnitude of the diffusion coefficient is mostly driven by the
jump rate.
Compared to standard simulation methods only the cMD/

LMC approach enabled us to figure out this jump rate
dependency of the diffusion coefficients via the simulation with
exchanged jump rates. Our findings explain the apparent
contradiction between previous experimental and computa-
tional studies on CsHSO4, where the computational side argued
that the number of proton transfers in CsHSO4 is comparable
to CsH2PO4,

16,17 while experimental studies indicated a
reduced jump rate.25

4. DISCUSSION
The main feature of the cMD/LMC scheme is the coupling of
microscopic structural and dynamical data from accurate
molecular dynamics simulations with long time scales within
the lattice Monte Carlo part. A particular advantage of our
implementation is that almost the entire chemistry is contained
in the first part (the MD run), which in turn renders the LMC
part system-independent. This feature allows to apply our
cMD/LMC algorithm to a variety of systems without the need
to perform a manual analysis and decomposition of the
protonation dynamics mechanisms beforehand, as it is required
for other approaches. In our scheme, only the molecular
dynamics simulation contains system-specific parameters (i.e.,
the force-field parameters), which already exist for a large
variety of systems.
A particularly encouraging success of the cMD/LMC scheme

is the accurate prediction of the dramatic conductivity response
of the CsH2PO4 crystal upon the transition from its cubic to the
monoclinic phase. Similarly, the (considerably weaker)
thermally induced changes in protonation dynamics are well
reproduced. In both cases, no input other than the crystal
structure (and temperature) was required for the cMD/LMC
approach. In this context, it is interesting to note that the
relative importance of heavy-atom structure and proton rattling
between oxygen acceptors can vary considerably between
different systems.
Finally, we consistently observe a significantly better

convergence behavior of the cMD/LMC scheme on the
duration of the underlying molecular dynamcis trajectory,
compared to the direct extraction of dynamical parameters
from the trajectory itself. This means that the combination of a
short MD trajectory (in our case: about 30 ps) with the LMC
part yields diffusion properties which are much better
converged than the diffusion coefficient obtained directly
from that (short) trajectory. A longer molecular dynamics
trajectory will improve the directly calculated diffusion

Table 3. Diffusion Coefficients [Å2/ps] from Different
Combinations of Supramolecular Structure and Jump Rates

CsHSO4 structure CsH2PO4 structure

CsHSO4 jump rate (2.6 ± 0.5) × 10−3 (1.6 ± 0.5) × 10−3

CsH2PO4 jump rate (2.4 ± 0.3) × 10−2 (5.4 ± 1.0) × 10−3
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coefficient, while the results from the cMD/LMC scheme are
virtually unaffected (for more details see Supporting
Information). This phenomenon is caused by the fact that
the actual proton transfer processes in the MC run are rare
events. During a 30 ps run, only very few processes (other than
proton rattling) occur within the picosecond time scale. In turn,
the heavy atom structure is statistically converged to a much
better degree. Since only the latter is used in the LMC part
(together with accurate geometry-dependent hopping rates),
the cMD/LMC scheme does not suffer from the insufficient
proton transfer statistics in the molecular dynamics trajectory.
In case of the solid acids the rotation of the anions

(supramolecular structure) is slow and the bottleneck for the
convergence of the diffusion coefficient obtained by the cMD/
LMC approach. In the future our overarching goal is to utilize
classical MD for the update of the supramolecular structure.
Under the assumption that the positions of the oxygen atoms
are well reproduced compared to AIMD, we can easily simulate
the supramolecular structure for several ns. Using this new
supramolecular structure update we can assume to obtain a
converged diffusion coefficient with drastically reduced
computational effort.
Beside the incorporation of classical molecular dynamics

trajectories, we are planning to investigate the pressure
dependency of the proton transfer mechanism in the future.
Toward a realistic description of long-range proton transfer, we
are also planning to include the contribution of proton
tunneling via post processing of the jump rates in our cMD/
LMC scheme.

5. CONCLUSION

We have investigated the proton dynamics in several solid acid
structures with very similar chemistry and very different proton
conductivity. Using a recently improved simulation approach
(combining MD and MC techniques) we elucidate the
microscopic origin of the conductivity changes between
different phases/structures. The observed mechanism of proton
transfer in CsH2PO4 and CsHSO4 can be described in terms of
a general Grotthuss-type process: proton hopping and
subsequent reorientation of the involved particles (anion
rotation). We illustrate that the drastic change in proton
conductivity between the monoclinic and cubic phase of
CsH2PO4 (at the same temperature) is caused by the different
rotation ability of the phosphate groups due to a different
hydrogen bonding network. In turn, gradual temperature
variations for a given crystal phase yield moderate shifts of
the proton conductivity due to increasing/decreasing rotation
rates of the phosphates. In opposite to that the proton
conductivity for the variation of the anion (hydrogen phosphate
to hydrogen sulfate) is limited by the jump rate. We could show
that, depending on the simulated systems, the proton jump rate
(exchange of anions) or the time evolution of the supra-
molecular structure (thermodynamic changes) can limit the
proton conductivity. Considering only one of these parameters
could lead to contrary conclusions. The interplay of a high
proton jump rate and a suited heavy atoms structure are
required to enable efficient long-range proton transfer.
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Abstract

In this paper, we give an overview of the role of molecular
dynamics (MD) simulations in the field of proton exchange
membranes. We focus on structural and dynamical findings
regarding the topology of hydrogen bond networks and proton
diffusion. On the one hand, findings about water-containing
polymer electrolyte membrane fuel cell materials, such as

Nafion and liquid containing pore materials are discussed. On
the other hand, proton conduction in water-free systems is elu-
cidated. Here, the focus lies on phosphonic acids, which possess
a rigid structure, and polymers based on phosphonic acids.

Keywords: Model Calculations, Molecular Dynamics Simula-
tions, Numerical Simulation, Proton Exchange Membrane,
Theoretical Model

1 Introduction

Proton exchange membrane or polymer electrolyte mem-
brane (PEM) fuel cells have become an important topic as their
light weight and compactness make them a good choice for
portable applications, in particular in the automobile sector. In
view of this range of application, certain criteria must be met
by the proton exchange membrane in order to become a viable
alternative to current technologies. Especially chemical stabli-
lity, durability and proton conductivity need to be ensured [1].
Two central mechanisms enable proton conduction: proton
hopping (also known as Grotthuss or structural diffusion)
among solvent molecules such as water, and vehicular trans-
port, where an excess proton can travel through the solvent
with the help of a host molecule, to which it attaches. The
Grotthuss-mechanism is characterized at the atomistic scale by
two coupled processes: proton hopping and subsequent
relaxation of the involved supramolecular structure. While
both transport principles have been extensively studied, there
is still an ongoing discussion regarding the nature of the
underlying atomistic processes, even in relatively simple and
uniform systems like liquid water [2–6].

In the specific field of proton exchange membranes, aque-
ous proton transport is very common but has an important
drawback: the operating temperature is limited to 100 �C. Con-
sequently, there is a quest for finding water-free high-tempera-
ture proton conductors [7], in order to increase the working

temperature and reduce the amount of catalysts needed. State-
of-the-art material is Nafion, which relies on water channels
for the proton conduction. Due to their high proton conductiv-
ity, complementary compounds like solid, phosphonic and
sulfonic acids or imidazole based compounds seem to be suit-
able candidates for water-free proton conduction in fuel cells
[8–13].

Promising candidates of solid acids for fuel cell applications
are those formed by sulfate, phosphate and selenate anions.
The anions are linked together by hydrogen bonds and are
charge balanced by large alkali cation species [13, 14]. Unlike
electrolyte solutions, where proton carriers show a high
degree of freedom, and thus strongly promote proton conduc-
tivity, hydrogen-bonded crystalline systems exhibit a much
more ordered structure, especially at low temperatures, and
therefore, feature much lower proton conductivity. With
increasing temperature, however, the disorder increases and
the oxyanion groups are able to reorder almost freely. This
leads to a strong increase in proton conductivity (up to four
orders of magnitude for superprotonic CsH2PO4). At tempera-
tures above the phase transition, the conductivity is about
10–2 S cm–1, close to the value of aqueous systems [10, 15].

Phosphonic acids represent another class of high-tempera-
ture water-free proton conductors. In these proton conductors,
the concentration of the phosphonic acid groups should, how-
ever, be high enough to ensure efficient proton transport

–
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[16, 2–4]. Finally, the spatial arrangement of these functional
groups should form percolating pathways for protons moving
through the membrane. Both issues can be addressed by using
self-organizing supramolecular assemblies, such as recently
proposed organic phosphonated molecules (see section 4.3.2)
or by using new polymeric phosphonic acid materials with
intrinsic proton conductivity [8, 9]. Theoretical methods can
help to gain a deeper understanding of the proton conduction
mechanisms in these new materials. The results of such sim-
ulations can be used to improve present materials and to
develop new proton conducting materials. However, one must
differentiate between the different kinds of theoretical
approaches, which are used to describe fuel cell performances.
A good overview can be found in [17]. The key phenomenon
that a multitude of methods in this field try to elucidate, is the
mechanism of proton conduction, which has been studied
extensively [18]. While many heuristic approaches based on
fluid dynamics exist, we focus here on the atomistic picture of
proton transport.

2 Method Overview

In theoretical chemistry, a multitude of methods exist for
the simulation of atomistic motion and the determination of
molecular structures. Here, we focus in particular on molecu-
lar dynamics approaches, that is the explicit propagation of
the atom cores in time caused by the forces of their surround-
ing environment. While the propagation is simply calculated
via the integration of Newton’s second law, the determination
of the forces is the crucial point, and depends on the method
used.

2.1 Classical Force Field Molecular Dynamics

In force field based molecular dynamics, the topology of
the molecular system to be simulated needs to be specified in
advance. This means, bond distances, angles between triples
of atoms, and dihedral angles need to be known beforehand.
For bonds and angles, a quadratic, harmonic oscillator like
potential is assumed, whereas the torsional potential is mod-
eled by a sum of cosine functions.

Several parametrized force fields exist [19–21] which are
suited for different molecule types. The low computational
cost of calculating the forces allows classical molecular
dynamics simulations to explore time scales up to the order of
microseconds with ten thousands of atoms [22–25]. For the
simulation of chemically active materials, however, classical
MD is unsuited because of the predefined bond topology
between atoms, which does not allow bond breaking or form-
ing. Even though reactive force fields exist, which allow bond
breaking, they still need knowledge of the possible reaction
paths beforehand.

2.2 Ab Initio Molecular Dynamics

For the simulation of chemical reactions, quantum chemical
methods need to be employed, which are able to simulate
bond breaking and formation.

In most quantum methods presented here, only the elec-
tronic structure is treated quantum mechanically, whereas the
atom cores are treated like classical particles. By solving the
Schrödinger equation of the electrons, Eel.Yel.(r) = EYel.(r), the
electron density of a molecular system, and consequently the
forces acting on each atom core, can be determined.

In contrast to classical MD, ab initio MD (AIMD) needs no
predetermined bond specifications, as the bonds are deter-
mined from the calculated electronic densities. The drawback
are the high computational costs associated with the determi-
nation of the electronic structure. Typical AIMD simulations
are usually in the picosecond range with up to several hun-
dred atoms.

2.3 Quantum-Mechanics/Molecular-Mechanics Methods

At the densitiy functional theory (DFT) level, simulations of
large systems are computationally several orders of magni-
tude more expensive than classical MD simulation, which
limits their accessible time scales severely. But in many
cases, the parts of a system, in which the relevant chemical
reactions occur, are confined only to a partial volume of the
system. Therefore, combined quantum-mechanics/molecular-
mechanics (QM/MM) methods [26–29] have been developed
that speed up the simulation considerably while still maintain-
ing the benefits of the high level method. While one part of the
system, often a surrounding solvent, is modeled with a classi-
cal force field, the other part is modeled with a quantum
mechanical level of theory (often in a relatively small and con-
fined region). One of the difficulties of this hybrid approach,
however, is the interface region between the two different
regions. If one of the atoms is located in the quantum (QM)
region and the other one in the classical (MM) part, then a
chemical bond is ‘‘broken’’ as a consequence. Similar problems
arise when MM atoms are located near a QM region, because
the QM and MM descriptions are not genuinely compatible.

2.4 Empirical Valence Bond Approach

Another method that can be considered a mixture of classi-
cal and quantum mechanical methods is the empirical valence
bond (EVB) approach [30, 31]. In this approach, the wave func-
tion of a chemical system is written as a linear combination of
a few selected valence bonds, which are considered essential
states during some reaction. From this basis set of states the
EVB Hamiltonian can be constructed. Diagonal elements are
constructed using classical force fields, whereas the off-diago-
nal elements, which describe the transition between states, are
obtained from quantum chemical calculations [32]. Special
care must be taken for the initial selection of elementary
valence bond states in order to fully describe the possible reac-
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tions that can occur. Several extensions of the original EVB
model were developed (two-state EVB [33–35], multistate-
EVB [36]), which improve the method further. The multistate
empirical valence bond model (MS-EVB) for example con-
stantly redefines the EVB states according to the close environ-
ment of the reactive species. This makes it feasible to combine
MS-EVB with MD (MS-MD) for the simulation of chemically
active systems. In order to do an MD simulation using the
(MS-)EVB approach, the EVB Hamiltonian needs to be diago-
nalized in each time step. Using the Hellmann-Feynman theo-
rem for the lowest eigenstate, the resulting forces can be calcu-
lated, and thus the trajectory can be propagated to the next
time step. A disadvantage of MS-EVB models of the first gen-
erations was that the computational effort increased exponen-
tially with number of excess protons [37]. By now, methods
have been developed that show only linear increase of the
computation time with the number of excess protons [38].

3 Proton Transfer Along Water Channels

3.1 Sulfonated Hydrophobic Materials: Nafion

The simulation of a Nafion membrane requires a large sys-
tem size because of the complex structure of the chains, and
the large amount of water molecules included in a hydrated
membrane. Therefore, classical MD is often the preferred
method. While it cannot simulate the actual proton transport,
it can give insight into structural properties of materials.
Accordingly, the following papers mostly focus on structural
features and their dependence on different parameters.

Paddison et al. investigated the structure of Nafion by
means of static ab initio calculations and classical MD simula-
tions [41]. The systems examined were isolated triflic acid
(CF3SO3H), a triflic acid molecule with an additional water
molecule (CF3SO3H + H2O), and di-trifluoromethane ether
with a water molecule (CF3OCF3 + H2O) and the complete
side chain. Furthermore, a classical MD simulation of the side
chain was conducted for 20 ns at a temperature of 300 K. From
their results they concluded that the ether part of the side
chain is hydrophobic and stiff, whereas the SO3

– is strongly
hydrophilic and more flexible. Both the static calculations and
the MD simulation of the side chain resulted in a folded con-
formation.

A stronger focus on the effects of the environment upon the
Nafion structure is found in a paper by Vishnyakov et al. [42].
They conducted geometry optimizations of a ten-unit per-

fluorosulfate oligomer in vacuum and did MD simulations of
a four-unit oligomer in water and methanol at T = 298 K. In
both solvents, the CCCC dihedrals always preferred trans
positions, but solvation in water led to a more strongly folded
structure than in methanol. For the determination of hydrogen
bonds in the system, a geometric criterion was used: the dis-
tance between two oxygens must not be larger than 3.4 Å, and
the O-H-O angle must not exceed 120�. Both solvents formed
strong hydrogen bonds with the sulfonic acid groups. The
Nafion side chain was shown to be rather stiff, and both sol-
vents formed stable hydrogen bonds with the SO3

– groups.
The rest of the side chain showed hydrophobic behavior. In
water, an SO3

– group formed five hydrogen bonds with the
surrounding solvent, whereas in methanol, only four hydro-
gen bonds were formed.

In a similar vein, the same authors studied the effect of a
water-methanol mixture on Nafion [43]. They found out that
in the mixture, the skeleton folding was similarly strong to
that in pure water. At the same time, the conformational tran-
sitions of the skeleton in the mixture were three times as high
as in pure water. However, the side chains showed a high
stiffness, as they did not change their conformation during the
500 ps simulation. The formation of a first solvation shell
around the SO3

– groups of the side chain could be observed,
but no second solvation shell. The number of water and
methanol molecules in the first solvation shell was found to be
almost equal.

In the same year, Vishnyakov et al. investigated the behav-
ior of Nafion membranes at different hydration levels [44].
The simulations showed microphase segregation in the
hydrated membranes. Density and water diffusion coefficient
were in good agreement with experimental results. The sim-
ulations also revealed that at high water content, isolated
water clusters formed containing around 100 water molecules.
During the simulation, bridges between clusters emerged for a
short time with a frequency of around 0.01 ps–1.

Fig. 1 Chemical structure of Nafion [39].

Fig. 2 Structure of a Nafion pore for varying water content. Reprinted
(adapted) with permission from [40]. Copyright (2015) American Chem-
ical Society.
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Similarly to the aforementioned paper, Urata et al. investi-
gated the effect of the hydration level on the dynamical and
static properties of water and the side chain in a swollen mem-
brane that consists of poly(tetrafluoroethylene) backbones and
perfluosulfonic pendant side chains [45]. They did MD simula-
tions for a percentage of water between 5 wt.% and 40 wt.% at
360 K. The results showed that water is mainly bound to the
sulfonic acid. Therefore, the neighboring side chains arrange
perpendicular to the hydrophilic and hydrophobic interfaces.
From 20 wt.% upwards, stable water clusters form, whereas in
lower hydrated settings, water paths form and break dynami-
cally. Free water can be observed from a humidity of 20 wt.%
or more, but only in 40 wt.% membranes, it forms continuous
paths. In less hydrated membranes, water interacts strongly
with the acidic sites, which leads to a restricted mobility.

Cui et al. investigated in a classical MD simulation, how
the water content in Nafion determines its structural and
dynamical properties [46]. Varying the humidity from 5 to
20 wt.%, they could show that Nafion forms hydrophobic
regions consisting of the polymer backbone, and hydrophilic
regions where water clusters formed. With larger amounts of
H2O, more hydrophilic regions connected, forming a large
water cluster. At a humidity of 5 wt.%, most hydronium ions
were found to be hydrated by only up to two water molecules.
With increasing water content, the hydration of the hydro-
nium ions also increased. They conclude, that the experimen-
tally observed drop of conductivity at around 5 wt.% can be
due to the insufficiently hydrated hydronium ions, as well as
the disrupted water channel network.

Focussing more on the role of the polymer backbone, Jang
et al. studied via classical MD the nanophase segregation and
diffusion in Nafion using two different polymer structures
consisting of 70 nonpolar tetrafluoroethylen (TFE) segments
and 10 polar perfluorosulfonic vinyl ether (PSVE) segments
[47]. In the dispersed structure, the PSVE segments are evenly
distributed along the backbone with one PSVE segement after
every 7 TFE segments. In the ’blocky’ structure all 10 PSVE
segments are clustered at one end of the backbone. The simu-
lation showed that the ’blocky’ structure gives rise to larger
channels and therefore, a higher diffusion, compared to the
dispersed structure, where the PSVE groups are evenly dis-
tributed. From these results they suggest that the actual struc-
ture of Nafion resembles the ’blocky’ structure.

Paddison et al. investigated how the number of difluoro-
methylene groups affect the connectivity of the SO3

– groups in
a short-side-chain perfluorosulfonic acid membrane [48]. Geo-
metric optimizations showed that under dry conditions with
more than four difluoromethylene (CF2) groups, no hydrogen
bonds were formed between neighboring SO3

– groups on the
same backbone. In order to form a continuous hydrogen bond
network between the SO3

– groups, one (two, three) water mol-
ecules were needed if the chains were separated by five
(seven, nine) CF2 groups. The amount of water needed to
observe proton dissociation to the first hydration shell also
depends on the separation of the side chains: In the case of five
CF2 groups separating the side chains, after adding five water

molecules, proton dissociation occurred on both SO3
– groups.

On the other hand, in the case of seven (nine) CF2 groups
separating the side chains, only one proton dissociation could
be observed with five (six) added water molecules. Paddison
et al. see in these results the importance of the Zundel ion in a
minimally hydrated setting, as it may suggest that proton
transport via structural diffusion can still occur, even though
the water molecules are hydrogen bonded to the SO3

– groups.
Several studies focus on the water diffusion within the

Nafion membrane by means of classical MD. The authors
often try to bypass the lack of bond breaking within classical
MD, by manually including H3O+ ions within the simulation
box.

In an attempt to elucidate the mechanisms of water diffu-
sion, Venkatnathan et al. conducted classical MD simulations
of a Nafion membrane including hydronium ions [40]. Figure 1
shows the structure of the system in the MD simulation. They
showed that at low hydration levels, hydronium ions form
hydrogen bonds with water molecules between the SO3

–

groups. The diffusion coefficient for water agrees well with
experimental data, but that of the hydronium ions is underes-
timated. The reason for this is probably that the Grotthuss
mechanism cannot be modeled by classical MD. Furthermore,
at low hydration levels, Nafion loses its ionic form when pro-
tons attach chemically to the SO3

– groups. This feature cannot
be modeled by classical MD, either.

Brandell et al. conducted classical MD simulations on water
diffusion in Nafion, as well as Dow and Aciplex systems
(which have different side chain lengths compared to Nafion)
for two levels of hydration (5 and 15 water molecules per
HSO3 group) [49]. Their results show that Nafion has the high-
est side-chain mobility compared with the two other com-
pounds. They give two possible reasons for this: one reason is
that Nafion has the optimal ratio of hydrophobic and hydro-
philic regions, which results in an ideal water channel net-
work. On the other hand, the side chain motion may give rise
to higher ion mobility via a ‘‘paddle-wheel’’ mechanism. At
the same time, however, the highest water diffusion can be ob-
served in the middle of the water channels, where the influ-
ence of the side chains is negligible. Therefore, they also point
out that the Grotthuss mechanism is not modeled in their sim-
ulation, which might alter the presented results.

Devanathan et al. investigated the change of the Nafion
nanostructure via MD simulations [50]. Their simulations
revealed that low hydration of the Nafion pore leads to hydro-
nium ions being strongly bound to the sulfonate groups,
which in turn prevents the vehicular proton transport.
Furthermore, at low hydration levels, a single hydronium ion
is surrounded by multiple SO3

– groups, which opposes struc-
tural diffusion of protons. Variation of the hydration level
showed that the number of hydronium ions being in a bridg-
ing configuration is in excellent agreement with results from
neutron scattering experiments.

Devanathan et al. also determined the time H2O molecules
and H3O+ ions reside within the first solvation shell of the
SO3

– groups [51]. Variation of the number of water molecules
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per sulfonic group (denoted as l) showed that the mean resi-
dence time of water is at about 1 ns at l = 1, and decreases to
around 75 ps at l = 20. The residence times of H3O+ are larger
by a factor of 2.5 to 4.5.

Even though the investigations of water diffusion via classi-
cal MD does yield information about diffusion processes in
Nafion, quantitative comparisons with experimental data
often reveal deviations, which are due to the lack of the Grot-
thuss type proton hopping within those simulations.

Hofmann et al. addressed this issue by developing a reac-
tive force field for the modeling of the Grotthuss mechanism
in classical MD [52]. From the MD simulation they conclude
that proton transfer in membranes under low hydration is a
second order reaction, whose time step is limited by the time a
pair of one hydronium ion and one water molecule needs to
form. They report that the self-diffusion coefficients of water
are underestimated from 30% to 40% compared to experimen-
tal data. The temperature dependence of the self-diffusion, on
the other hand, shows good agreement. Nevertheless, they
state that their method does not reach ab initio quality.

Besides classical MD, several publications investigate the
nature of proton conduction by means of the EVB approach.

Petersen et al. investigated via an EVB model the role of
vehicular and Grotthuss type proton transport within the
Nafion membrane [53]. By decomposing the mean squared
displacement into a contribution from the vehicular mecha-
nism and from the Grotthuss type charge transport, they could
observe that there is actually a negative correlation of these
two effects, resulting in an overall diffusion, which is smaller
than the sum of the contributions from Grotthuss and vehicu-
lar mechanism. Interestingly, this effect is not observed in bulk
water, where almost no negative correlation of the two mecha-
nisms occurs.

Feng et al. [54] investigated proton transport in hydrated
Nafion by means of an MS-EVB model. They could show that
the distance to a sulfonate group plays an important role for
the formation of Zundel- and Eigen-cations. On transport
times over 1.27 ps, proton hopping was shown to be an impor-
tant factor.

Seeliger et al. simulated proton transport in Nafion using
an EVB model and purely classical MD [55]. They investigated
both structural changes of Nafion and proton transport prop-
erties for a dry (l = 5) and a wet (l = 10) membrane. The domi-
nant proton transfer mechanism observed for dry and wet
membrane is the Grotthuss type mechanism. From this the
authors conclude that the increased activation energy of the
proton transfer at low hydration levels is not due to surface
conduction mechanisms. Instead they suggest a fluctuative
bridging mechanism as described by Vishnyakov and Nei-
mark [44]. They add, however, that because of the simulation
lengths (up to 30 ns) the existence of such bridges cannot
unambiguously be proven.

Actual ab initio simulations of Nafion were done by Deva-
nathan et al. [56]. They modeled a Nafion membrane for
hydration levels 3, 9 and 15 (water molecules per acid group).
The simulated Nafion system consists of 680 atoms, and addi-

tional 20 to 40 water molecules (depending on the hydration
level). The simulations were run between 75 ps (l = 9, 15) and
130 ps (l = 3). Whereas in the dry setting, the hydrated proton
is mostly bound to the SO3

– group, a percolating water cluster
is formed at higher hydration levels making it possible for the
proton to move through the water network. For the hydration
levels l = 9 and l = 15, H5O2

+, H7O3
+ and H9O4

+ cations can
be observed, which agrees with experimental observations. At
the highest hydration level, the proton diffusion coefficient is
0.9 � 10–5 cm2 s–1. This agrees with experimental results and
shows that in Nafion, proton hopping is the more important
mechanism for proton transport compared to vehicular trans-
port.

Several studies have investigated the importance and
mechanisms of surface proton transport. In view of the perfor-
mance of PEM fuel cells, this aspect is especially important for
low hydration levels, where the role of proton transport in
bulk water diminishes, and the contribution of the proton
transport along the Nafion-water-interface increases.

Roudgar et al. simulated proton transport at an array of
sulfonic acid terminated surface groups [57]. They determined
the minimum energy paths of a proton transfer and found that
there is an accompanying rotation and tilt of accepting and
donating surface groups during the proton transfer.

Vartak et al. investigated interfacial proton transport via ab
initio MD at sulfonic acid terminated surface groups [58]. On a
hexagonal grid of surface groups of type CF3SO3H with one
water molecule per surface group, proton transport was ob-
served at minimal hydration. The authors distinguish between
two types of transitions: a local defect-type, where the donor
sulfonic group loses a hydrogen bond and the acceptor sulfo-
nic group gains a hydrogen bond; the other type is a concerted
hydronium ion transition, in which the number of interfacial
hydrogen bonds stays constant. The resulting activation/reac-
tion Helmholtz energies are 0.6 eV/0.5 eV for the local defect-
type and 0.3 eV/0.0 eV for the concerted type (with a compu-
tational error of 0.1 eV). Compared to the energy barrier in
bulk water, the activation energy for the concerted movement
is two to three times higher.

In conclusion, proton transport in sulfonated hydrophobic
materials has been elucidated from different angles including
both parameterized methods (MD, EVB) as well as ab initio cal-
culations. Even though many questions regarding the mecha-
nism of proton transport have been answered, a unified
description featuring both atomistic quantum mechanical pro-
cesses and processes on mesoscopic time scales still poses a
challenge. Nevertheless, the understanding of the different
atomistic mechanisms involved in the proton transport pro-
cess within Nafion can serve as a basis for more abstract mod-
els, such as coarse-grained approaches or statistic models. For
example a phenomenological description of the transport pro-
cesses involved within a PEM fuel cell was developed by
Eikerling et al. [59].

R
EV

IE
W

686 ª 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim FUEL CELLS 16, 2016, No. 6, 682–694www.fuelcells.wiley-vch.de



Dreßler et al.: Insight from Atomistic Simulations of Protonation Dynamics at the Nanoscale

3.2 Stiff Nano-sized Pores

Similar to Nafion, pore materials trap the solvent in a con-
fined region, in which bulk water-like conditions prevail.

Habenicht et al. investigated the proton transfer and disso-
ciation of water confined in carbon nanotubes (CNT), which
were functionalized with perfluorosulfonic acid (PFSA)
groups via ab initio MD [5]. They showed that a decrease of the
distance between sulfonic acid groups leads to a strong
increase of the proton dissociation. Furthermore, fluorination
of the CNT walls led to an increased occurrence of hydronium
ions compared to Zundel ions.

In another paper, Habenicht et al. investigated the impor-
tance of a hydrophobic environment in CNT functionalized
with PFSA groups [61]. It was found that an increase of the
sulfonic acid groups led to an increased dissociation of the
acidic protons. However, this can sometimes lead to trap
states, where a hydronium ion forms hydrogen bonds to two
sulfonic acid groups, which then hinders the full solvation of
the acidic proton. Addition of fluorine to the CNT walls led to
a stabilization of the hydrogen bonds, and an enhanced disso-
ciation of acidic protons.

Allolio et al. investigated the characteristics of bulk water
confined in an amorphous silica pore (see Figure 3) [60]. They
found that the tetrahedral structure of H2O was distorted up
to the second solvation shell because of the partially broken
hydrogen bond network at the walls. While the diffusion
behavior slowed down near the walls, it showed bulk charac-
teristics in the middle of the pore.

Adeagbo et al. simulated confined bulk water between
layers of a-quartz to observe transport phenomena and chemi-
cal processes at the interface by means of ab initio a-quartz
MD [62]. The surfaces were Si-terminated and O-terminated.
Within two picoseconds, dissociation of the water molecules
on the Si-terminated quartz surface could be observed, which
finally leads to a complete hydroxylation of both surfaces.

Compared to bulk water, the confinement reduces the water
diffusion by one third.

Marschall et al. simulated the behavior of water confined
within a mesoporous silica material functionalized with SO3H
(Si-MCM-41) [63]. Experiments showed a continuous increase
of the proton conductivity with temperature. Their simula-
tions indicate that the interplay between water content and
group density is decisive for the resulting proton conductivity:
whereas for small densities of the SO3H groups, the proton
mobility will strongly depend on the amount of water mole-
cules inside the pore, pores with a higher SO3H density show
less dependence on the water amount.

3.3 Bulk Liquid Water

Proton transfer in bulk water constitutes an important part
of the overall conductivity of Nafion-like PEM fuel cells. While
proton transport along the surface regions of a pore depends
on the composition of the fuel cell material, the bulk water
mechanism can be investigated separately. Duo to the
involved bond breaking between proton and oxygen atoms,
quantum chemical methods need to be employed.

Laasonen et al. did an ab initio simulation of water using
DFT [64]. They were able to reproduce several quantities such
as RDF, dipole moment, ionization energy, and the diffusion
coefficient of water in good agreement with experimental
results,

Silvestrelli et al. investigated structural and electronic prop-
erties of water liquid water by means of ab initio MD [65].
Compared to the gas phase, the liquid phase shows a more
spherically distributed electronic charge density around the
oxygen atoms, and an increased intramolecular O–H distance,
which leads to a 60% larger dipole moment than in the gas
phase.

Going one step further, Marx et al. observed the behavior
of a hydrated excess proton in water, treating all nuclei as
quantum mechanical particles [66]. They could show that the
intermediate steps during a proton transfer cannot solely be
described by the formation of HO3

+ or H9O4
+ complexes.

Instead, complexes occur, where the proton is shared equally
between two water molecules.

Tuckerman et al. then investigated the behavior of the
shared proton in hydrogen bonds [67]. They found out, that
the OH– complex can be described classically, whereas for the
Eigen-/Zundel-cation hydrogen bond, quantum zero-point
motion needs to be considered even at room temperature.
They also investigated the characterization of OH– and H+ ion
movement in water by means of ab initio simulation [68]. Their
results show that the behavior of OH– and H+ differs strongly.
Even though protons are not treated quantum mechanically,
and nonadiabatic electron dynamics are neglected, they find
good agreement with experimental data, which leads them to
believe that these effects play only a negligible role.

Besides the aforementioned purely quantum chemical cal-
culations of bulk liquid water, several papers have been pub-

Fig. 3 Bulk water confined within a silica pore [60].
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lished that determine bulk water properties using the EVB
approach.

James et al. used an EVB model to determine global minima
geometries of water clusters [32], Vuilleumier et al. developed
an EVB model of an excess proton in water, which they used
to compute the forces in an MD run [69]. Their results show
good agreement with pure ab initio results.

Sagnella et al. used a two-state EVB model to describe pro-
ton transfer in a H5O2

+ cluster [35]. They fitted the parameters
of the EVB potential to ab initio data (at the Hartree Fock and
MP2 level) and used it for both classical and path integral MD.

Several papers exist which have incrementally refined the
EVB method. For example, polarizable water models were
investigated in conjunction with EVB by Lefohn et al. [70] and
Walbaran et al. [71]. Wick used a polarizable EVM model to
investigate the hydronium behavior at the air-water interface
[72]. Proton transfer in bulk water by means of an anharmonic
water force field was employed by Park et al. [73].

4 Water-free Proton Conduction

4.1 Solid Acids

Solid acids represent a complementary membrane material
to polymers. Their ion lattice is rigid and cannot relax during
a proton transfer. Therefore, fluctuations of the local structure
are even more important. As an immediate consequence, dif-
ferent phases of a given system can show a totally different
behavior. Particular examples are CsHSO4 and CsH2PO4.

Ke et al. [74, 75] studied the electronic structure and the pro-
ton-transfer mechanism in monoclinic (CHS-II, no proton con-
ductor) and cubic (CHS-I, super protonic) CsHSO4 phases.
They determined proton transfer paths and energy barriers
using first-principles methods. They observed that in both
phases proton transfer within the sulfate tetrahedron is not
possible because of the high energy barrier, and the protons
can jump forwards and backwards within the hydrogen bond.
Proton transfer to the next neighboring sulfate tetrahedron is
feasible for CHS-I, whereas it is almost forbidden for CHS-II.
The arrangement of the hydrogen bond is responsible for this
difference. In CHS-I, the hydrogen bond network is disor-
dered, which enables the formation of a new hydrogen bond
by rotating one tetrahedron without breaking other hydrogen-
bonds. In contrast to this observation, the hydrogen bond net-
work of CHS-II is highly ordered and therefore, anion rotation
is not possible. Consequently, protons cannot be transferred to
the next neighboring anion in this case. Ke et al. extrapolated
from their calculations, that reorientations of the sulfate tetra-
hedron in CHS-I can take place very frequently, which is in
accordance with the experimental observation.

The reorientation and proton transfer rate in CsHSO4

(super protonic phase) was studied explicitly by Münch et al.
[76] using classical molecular dynamics (MD) simulations. The
proton transfer rate was calculated indirectly from the distri-
bution of the O-O distances and a semi-empirical model
potential. They reported a 100 times faster reorientation rate

(1011 s–1) compared to the proton transfer rate (109 s–1). These
values are in the same order of magnitude as experimental
results. The activation energy for the proton transfer was de-
termined as 0.35 eV.

In a second classical MD study, Münch et al. [77] simulated
proton transfer by treating the proton as an independent
entity. This way, they could describe the dynamics by means
of an adequate intermolecular potential. The authors charac-
terized the proton motion in CsHSO4 (super protonic phase)
as largely uncorrelated, which is found to be in reasonable
agreement with randomly distributed protons. The protonic
motion was, therefore, considered to be rather liquid-like. The
macroscopic transport properties, such as the proton diffusion
coefficient and the protonic conductivity, were also deter-
mined from the simulation. Both, proton diffusion coefficient
and protonic conductivity, were found to be in agreement
with experimental data.

Haile et al. [78] utilized classical MD to take a closer look at
the phase transition between CHS-II and CHS-I. They studied
the structure as a function of temperature from 298 to 723 K,
and reproduced the phase transition to the expected tetrago-
nal phase, even though the simulated temperature of 598 K
deviated from the experimental temperature (414 K). It is par-
ticularly noteworthy that they confirmed a drastic change of
the rotational dynamics of the anions at the transition. The
authors suggested that the increased conductivity is caused by
the rapid reorientation occurring in the high temperature
phase. Phase transitions in similar systems are known to be
associated with an order-disorder transition of the proton
positions in the O-H-O bonds. The successful observation of
the phase transition in this system led Haile et al. to the con-
clusion that in this phase transition only a heavy atom transfer
is involved.

Wood et al. [79] explicitly investigated the proton dynamics
of CsHSO4 in the high temperature phase at three different
temperatures (500, 650, 750 K) via ab initio molecular dynamics
(AIMD). They confirmed that the Grotthuss mechanism is the
dominant picture, characterized by very frequent proton
jumps with a high reversal rate. For the sulfate tetrahedra,
they stated a reorientation behavior in terms of small angular
jumps. A proton jump leads to lattice stress, which is followed
by a fast relaxation in terms of the reorientation of the anion.
Previous experimental and theoretical investigations sug-
gested a higher rotational frequency of the anions compared
to the frequency of the proton jumps. Surprisingly, Wood et al.
reported, that the timescale of hydrogen bond dynamics is the
same for proton transfer. The AIMD proton diffusion coeffi-
cient deviates by a factor of ten from the experimental value.
A common explanation is that AIMD diffusion coefficients are
suffering from the short trajectories and therefore, limited sta-
tistics.

In 2008, Lee et al. [80] published an ab initio MD study of
the superprotonic phase of CsH2PO4. They benchmarked their
simulations by comparison of calculated infra-red spectra to
experimental ones. They stated that proton diffusion in this
compound follows a general Grotthuss mechanism. After a
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slow reorientation of the phosphate anion a fast proton hop-
ping to a neighboring phosphate ion was observed. The small-
er frequency of phosphate reorientation appeared to be the
bottleneck for proton diffusion, compared to the greater pro-
ton hopping rate. In agreement with the investigation of the
high temperature phase of CsHSO4 (CHS-I), the origin of high
proton conductivity seems to be the dynamical disorder of the
cubic system. In Figure 4, a snapshot from the disordered
cubic phase is shown in comparison to the ordered monoclinic
phase of CsH2PO4. Due to the short timescales accessible by
AIMD (20 ps), a full phosphate rotation was not observed.
Nevertheless, the diffusion coefficient was reproduced in good
agreement with experimental values [80]. The reduced phos-
phate rotation frequency of CsH2PO4, compared to the sulfate
rotation frequency of CsHSO4, can be explained in terms of
the increased number of hydrogen bonds that have to be bro-
ken to enable anion rotation.

The AIMD studies of Lee et al. [80] and Wood et al. [79]
revealed a detailed direct view on the proton dynamics.
Besides the classical Grotthuss diffusion motion, including
proton jumps and relaxation of the anions, both studies
reported a second diffusion mechanism, which does not
require phosphate reorientation. This Grotthuss type struc-
tural diffusion mechanism occurred on a magnitude faster
time scale.

4.2 Molecular Liquids

4.2.1 Phosphoric Acid

Neat liquid phosphoric acid has the highest intrinsic proton
conductivity of any known substance [11]. Therefore, it is a

suited compound as a starting point towards the investigation
of more complex proton conductors containing functional
groups based on phosphorus. Vilčiauskas et al. [81] investi-
gated binding energies of small clusters (two to six molecules
of phosphoric acid) as a function of the cluster size. The
authors calculated via static quantum mechanic methods
increasing binding energies with respect to the increasing
number and strength of hydrogen bonds formed for larger
cluster sizes. Consequently, they estimated that the largest
cluster size was still too small to describe the binding in the
condensed phase of the phosphonic acid. For larger cluster
sizes they stated a higher degree of charge delocalization and
therefore, a facilitated proton transfer.

Vilčiauskas et al. [11] prepared an AIMD simulation to fully
encompass the proton dynamics in bulk phosphoric acid.
They reported strong, polarizable hydrogen bonds in phos-
phoric acid, leading to the formation of extended hydrogen-
bonded chains. The formation of ordered structures is in
contrast to the expected situation in an excellent proton con-
ductor. Nevertheless, the interplay of these chains (solvent
interactions) and a sufficient degree of disorder (caused by a
frustrated hydrogen-bond network), enable the high concen-
tration of diffusive protons.

4.2.2 Phosphonic Acid

Phosphonic acid derivatives are used widely as low humid-
ity proton conducting electrolytes in fuel cells. For instance,
the polyphosphonic compounds Hexakis-(p-phosphonatophe-
nyl)benzene and Poly(vinylphosphoric acid) (PVPA) are dis-
cussed later in this article. Joswig et al. [82] utilized semi-
empirical density functional based method (DFT-B) to investi-
gate proton transfer in liquid phosphonic acid via molecular
dynamics. Proton transfer was only observed in the case of an
excess/defect proton. They reported that local geometric con-
straints, corresponding to a strong hydrogen bond (O-H-O
angle of 180� , O-O distances lower than 2.5 Å), are necessary
to enable proton transfer. In many cases, a Zundel-like species
(an excess proton is shared between two phosphonic acid mol-
ecules) prevents efficient proton conduction. For the Zundel-
ions, the same geometric criterion was observed as for the
proton transfer events. So the authors concluded a nonlocal
contribution to the mechanism of proton transfer. The self-dif-
fusion coefficient obtained from the trajectories was one mag-
nitude smaller compared to experimental values. The authors
suggested finite size effects as an explanation.

4.2.3 Sulfonic Acid and Imidazole Based Compounds

Sulfonic acid and imidazoles, representing sulfur and nitro-
gen containing proton conductors, were also investigated as
model compounds via theoretical methods. Paddison et al. [12]
studied imidazole, sulfonic and phosphonic functionalized
heptane with first principles based electronic structure calcula-
tions. They calculated torsional barriers and reported that imi-
dazole is clearly the most labile when used as a substituent in
an alkyl chain. By simulating minimum energy conformations

Fig. 4 Snapshots of cubic and monoclinic CsH2PO4 simulation boxes
during the simulation run. In the cubic phase, the hydrogen bond network
shows dynamical disorder, whereas in the the monoclinic phase a highly
ordered hydrogen bond network is observed.
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of the methyl dimers of imidazole, sulfonic and phoshphonic
acid, they figured out that binding of the pairs is greatest in
the phosphonic acids and lowest for the imidazoles. Also, in-
teractions of the methyl compounds with a single water mol-
ecule were studied. They reported that the magnitude of the
interaction of methyl phosphonic and sulfonic acid were in the
same range. The interaction energy for the imidazole-water
dimer was reduced. Their study suggested, that the oxoacids
will probably retain water better under very low humidity
conditions and the water molecules of the first hydration shell
will be stronger bound to phosphonic and sulfonic acid.

Via the combination of 1H-NMR measurements and theo-
retical calculations, Sebastiani et al. [83] and Goward et al. [84]
investigated proton conducting crystals formed from ethylene
oxide tethered imidazole heterocycles (see Figure 5). They cal-
culated 1H-NMR shifts in excellent agreement with experi-
mental investigations and characterized the microscopic
hydrogen bonding structure of this class of materials. The
authors reported the existence of highly ordered and disor-
dered domains in the crystal. The ordered domains do not
contribute to the proton conduction, due to their rigid hydro-
gen bond network.

To get a deeper insight into the proton dynamics in an imi-
dazole molecule chain, Münch et al. [85] prepared an AIMD at
390 K. The authors reported that proton conduction follows a
Grotthuss mechanism, involving proton transfer and a local
rather than a long-range cooperative reorientation of the imi-
dazole chain. The reorientation step was rate determining, as
proton transfer occurred within a time scale of 0.3 ps and the
reorientation time of the imidazole was extrapolated to values
of 30 ps. Due to the short total length of the AIMD trajectory
(6 ps), a full successful reorientation could not be observed.

Hanning et al. used an MS-EVB model to simulate proton
transfer in liquid imidazole [86]. Using ab initio PES from a
protonated imidazole in the gas phase, the authors found that

their results were in good agreement with experiments of liq-
uid imidazole. They observed that the first solvation shell of
protonated imidazolium molecules is highly ordered, due to
formation of hydrogen bonds. In contrast, the second solva-
tion shell is much more disordered. From this, they conclude
that proton hopping is highly localized in this compound, and
only molecules close to the excess proton play a role during
the hopping process.

To overcome the restrictions of electronic structure theory,
Maslowski et al. [87] used a simplified one-dimensional micro-
scopic model of the proton transport in benzimidazole
C7H6N2. They identified two important elementary steps (ben-
zimidazole rotation and proton jumps between the benzimida-
zoles) for the long range proton transfer and created a two-
stage Grotthuss proton migration mechanism. They reported
that the relative frequency of reorientation and diffusion pro-
cesses is crucial for the proton conductivity. The theoretical
proton currents for benzimidazole were found to be in very
good agreement with the experimental data. The authors
pointed out that the thermal lattice vibrations, which modify
the H-bond potential, play an essential role in the conduction
process.

To get insight into more realistic proton conducting materi-
als, Cavalcanti et al. [88] and Harvey et al. [89] utilized classi-
cal MD to study immobilized imidazole molecules tethered to
alkyl backbones. Cavalcanti et al. reported that a spacer length
of three –CH2-groups between imidazole and a solid surface is
most favorable to a proton-transfer reaction. In accordance
with these findings, Harvey et. al. stated for the exchange of
pentyl chains against methylene groups the tendency to form
percolating hydrogen-bond networks in combination with
dramatically decreasing imidazole ring reorientation times.

In order to study another kind of immobilization effects in
a complexer chemical environment, Eisbein et al. [90] investi-
gated confined imidazole in a metal organic framework

Fig. 5 (a) Molecular structure of paired Imi-2EO molecules and (b) segment of crystal structure of Imi-2EO. Labels are placed in crystal structure to
depict the positions of the protons according to the assignments determined from the calculations of the 1H resonance frequencies.

R
EV

IE
W

690 ª 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim FUEL CELLS 16, 2016, No. 6, 682–694www.fuelcells.wiley-vch.de



Dreßler et al.: Insight from Atomistic Simulations of Protonation Dynamics at the Nanoscale

(MOF) compound. Protonated imidazole molecules exhibit
stronger interaction with the carboxylate groups of the MOF
and showed therefore, a reduced diffusivity. In this system,
the most important contribution to the proton conductivity is
provided by the vehicle mechanism. In addition, hopping
events increase the overall transport.

4.3 Polymeric and Liquid Crystalline Compounds

State-of-the-art materials used in proton conducting fuel
cell membranes are mostly complex polymeric compounds.
Often, the polymeric matrix is functionalized by some imida-
zoles, triazoles, phosphonic or sulfonic acids. Before starting
studying these complex materials it is helpful to develop an
understanding of the basic proton conduction mechanism in
simpler systems.

4.3.1 Poly(vinylphosphonic acid)

Compared to other polymeric proton conducting materials,
poly(vinylphosphonic acid) (PVPA) is a rather simple com-
pound. But as a nontrivial polymer, simulation of its proton
dynamics is still a challenging task. Many of the proton con-
ducting materials, relying on phosphonic acids groups, suffer
from phosphonic acid condensation leading to anhydrides.
This anhydrid formation, which decreases the proton conduc-
tivity, was investigated by Lee et al. [91, 92]. They studied the
structure and the local proton mobility of poly(vinylphospho-
nic acid) in terms of a polymer model via first principle calcu-
lations. They prepared very short AIMD simulations in the
range of 1 ps to obtain relaxed structures for the calculation of
1H- and 31P-NMR shifts. Based on these calculations, two
different types of hydrogen bonded P-OH resonances were
observed (acidic protons and phosphonic acid anhydride). It
was reported, that formation of anhydride leads to a decrease
of proton conductivity via two different mechanisms: At the
one hand, charge transport pathways were blocked through
immobilization of charge carriers. On the other hand, rotation
of the anhydride group, as a prerequisite of Grotthuss proton
diffusion, was hindered.

Utilizing static quantum mechanic calculations, Heggen
et al. [93] studied the condensation behavior of organic phos-
phonic acid groups. They used phosphonic acid and methyl-
phosphonic acid as model compounds and calculated the reac-
tion energies for the formation of the dimer, the trimer, and
the cyclic trimer. They stated that the formation of dimers and
trimers is energetically possible both for unsubstituted phos-
phonic acid and for organic phosphonic acids. Due to the ring
strain, the formation of the cyclic trimer could be ruled out. A
direct mechanism for the dimerization of two molecules of
phosphonic acid or methylphosphonic acid was not observed,
due to high transition-state energies. Consequently, this leads
to the assumption, that anhydride formation in condensed
phase is a more complex process, at least involving proton
transfer with other proton donating and accepting groups.

From various experimental studies it is known that the
water molecules cannot be totally removed from the channels
of PVPA and that the residual water strongly influences the
proton conductivity. So, the simulations of Ludueña et al. [9]
addressed the question to which extent the proton conductiv-
ity is a function of the amount of residual water. The study
also shed light on the general conduction mechanism in PVPA.
They prepared AIMD trajectories of PVPA in a temperature
interval ranging from 100 to 600 K, suited to simulate the pro-
ton dynamics over several ps. As a result of the simulations,
the authors were able to show, that the residual water has a
local vehicle/carrier function for the excess protons. Proton
hopping events between adjacent acids were very frequently
observed. Nevertheless, they did not contribute to long range
proton conduction. Ludueña et al. stated, that the Grotthuss
style hopping mechanism must be supported by short dis-
tance transport of hydronium ions to the neighboring acids.
So the main role of water in the conduction mechanism is to
bridge the H-bond percolation path complementing Grotthuss
proton hopping between phosphonic acid groups. This proton
conduction mechanism in PVPA was termed carrier-mediated
Grotthuss mechanism.

4.3.2 Hexakis(p-phosphonatophenyl)benzene

Jiménez-Garcı́a et al. investigated the proton conductivity
of organic molecules containing phosphonic acid groups. They
could show that the supramolecular ordering of the molecules
plays a large role for proton conduction in PEM fuel cells.

Fig. 6 Molecular structure of poly(vinylphosphonic acid) (PVPA) and our
model system for PVPA. The arrows indicate the external force bias.

Fig. 7 Scheme of the suggested mechanism, where a Grotthuss-style
hopping mechanism is supported by short-distance transport of hydro-
nium ions to neighboring acids. We call this a carrier mediated Grot-
thuss mechanism.
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They concluded that molecules that self-assemble into
columns are the most promising candidates for proton
conducting materials [94]. One of the materials examined,
hexakis(p-phosphonatophenyl)benzene (p-6PA-HPB), showed
especially promising properties: a conductivity of 3.2 � 10–3 S cm–1,
which stays constant over a temperature range from 100 to
180 �C [95]. In X-ray experiments, a columnar stacking of the
individual p-6PA-HPB molecules could be observed.

Wehmeyer et al. simulated the proton conduction mecha-
nisms in p-6PA-HPB via ab initio MD under dehydrated condi-
tions [8]. The AIMD showed that in each center of three neigh-
boring columnar stacks, a quasi-one-dimensional channel is
formed, along which proton transfer is possible. In contrast to
membrane materials such as Nafion or PVPA, p-6PA-HPB
shows, an anisotropic behavior of the proton mobility, as
movement in z-direction, i.e. parallel to the columnar align-
ment, is preferred. Furthermore, spontaneous autodissociation
of the phosphonic acid groups could be observed, even
though no water molecules are present.

5 Conclusion

This overview has presented selected topics in the field of
proton transport in PEM fuel cells by means of atomistic sim-
ulations. On the material side, simulations of proton transport
in water-based membrane materials and water-free materials
have been reviewed. The majority of the studies presented
here find that the Grotthuss mechanism is the prevailing pro-
ton transport process. In general, two prerequisites are neces-
sary for Grotthuss-like proton conduction: proton transfer and
afterwards structural reorientation. Both prerequisites can be
fulfilled by a weak and fluctuating hydrogen bond network.
Water-free systems on the other hand, often exhibit a more
rigid topology.

MD methods can help in this regard to analyze the arrange-
ment of the hydrogen bond networks, and to determine, how
structural and thermodynamic changes influences can alter
them. For the observation of proton hopping, ab initio methods
are necessary, however, as they are able to simulate bond
breaking without any preliminary assumptions about the final
proton path.
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Chapter 4

Conclusion

This thesis deals with the development of scale-bridging methods for the simulation of
proton conduction and aims to establish an e�cient approach for the calculation of in-
termolecular electrostatic interactions. The investigation of proton conduction started
from ab initio molecular dynamics simulations of the solid acid family CsHyXO4 (X=
S, P, Se, y = 1, 2) to investigate the quantitative behavior of the di�usion coe�cients
in these compounds. Proton di�usion in this family of solid acids can be explained
in terms of the interplay of the proton transfer frequency between the anions and the
rotational reorientation rate of the anions . The ab initio molecular dynamics trajec-
tories of the CsHyXO4 (X= S, P, Se, y = 1, 2) family were also used to benchmark
the combined Molecular Dynamics/Lattice Monte Carlo (cMD/LMC) approach for
the simulation of long-range proton transfer.

For this compound class, the cMD/LMC method was able to reproduce the enor-
mous change in proton mobility due to phase transitions as well as the moderate
increase in the conductivity due to simple variations of the temperature. It is clearly
demonstrated that only the dynamic updating of the lattice allows for the simula-
tion of the high proton conductivities within the solid acid family. In addition, the
cMD/LMC approach is re�ned in this thesis by introducing a cut-o� angle for the
calculation of proton transfer probabilities in order to avoid unphyiscal proton jumps
within the oxygen grid.

By neglecting the explicit proton correlation in the cMD/LMC approach, a further
drastic reduction in the dimensionality becomes possible. The resulting Molecular
Dynamics/Matrix Propagation (MDM) method condenses the dynamic information
on proton transport within an entire molecular dynamics simulation into an M ×M
matrix where M is the number of oxygen atoms. The system is further reduced to
the positions of the M oxygen atoms and the proton distribution is described by an
M -dimensional state space. This enormous reduction in dimensionality allows for
analytical (instead of numerical) analysis of the model. A thorough mathematical
discussion resulted in the veri�cation of the uniqueness of the solutions of the MDM
approach and provided the proof of its correct asymptotic behavior, i.e. all protons
are equally distributed across the (chemically equivalent) oxygen atoms for large time
scales. With appropriate modi�cations of the transition matrix, proton correlation
can be implicitly incorporated into the MDM method. It is proved in this thesis that
these changes conserve the Markov character of the MDM method.

In order to highlight the increase in length and time scales, the MDM approach
was used to explicitly compute the non-equilibrium molecular dynamics of protons in
the solid acid CsH2PO4 on the micrometer length scale. It is shown that an excess
proton distribution initially localized within a few nanometers di�uses through a 8 µm
sized system within 5 ms, in full agreement with the common di�usion laws. Alongside
this proof-of-principle example, the scale-bridging approach for the simulation of long-
range proton transfer is also used to explain the experimentally measured conductivity
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behavior of a nanoporous network of CsH2PO4 in a composite solid acid fuel cell
electrode.

The second part of this thesis is dedicated to the investigation of e�cient rep-
resentations of the linear density-density response function (LDDRF). The LDDRF
provides a tool for the calculation of the fully self-consistent density response of a
molecule to arbitrary potentials (in practice: the electrostatic �eld arising from nearby
molecules), corresponding to the exact polarization at all multipolar orders. The mo-
ment expansion introduced by Scherrer and Sebastiani achieves a drastic reduction in
dimensionality compared to the eigensystem representation of the LDDRF. This thesis
provides a thorough derivation of the mathematical foundations of the moment ex-
pansion and allow for its generalization to arbitrary compact, positive and self-adjoint
linear operators. It is demonstrated that the moment expansion can be understood in
terms of a QR decomposition of an appropriate matrix representation of the LDDRF.
Unfortunately, the calculation of this initial matrix representation requires thousands
of ab initio calculations. To address this problem, a much more e�cient algorithm -
the direct moment expansion - for the calculation of the moment expansion itself was
developed. It is shown that the direct moment expansion can be explained in terms of
a Cholesky decomposition of a small matrix. In a �nal development step, a modi�ed
representation - the reduced eigensystem representation - is derived that allows us to
de�ne a trivial criterion for the convergence of the approximation to the density re-
sponse. Thanks to its novel eigensystem-like structure, the signi�cant reduction in the
dimensionality becomes apparent for the calculation of the density-density response
function.

When a very large number of response calculations for the same molecule is re-
quired, the e�ciency gain obtained from the application of the moment expansion
or the reduced eigensystem representation has a maximum. A case in point for this
situation is molecular dynamics simulation of a molecular liquid. The employment
of the e�cient representations of the LDDRF in classical molecular dynamics would
enable the incorporation of polarization at all multipolar orders. To facilitate this, the
geometry dependence of the moment expanded states by means of a Taylor expansion
is also investigated in this thesis.
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Appendix A

General Linear Response Theory

In this appendix, the Lehmann representation of a frequency-dependent response func-
tion is derived. The discussion will closely follow reference 38.

We start from the expectation value of a quantum mechanical operator α̂:

α0 = 〈Ψ0, α̂Ψ0〉, (A.1)

where Ψ0 is the ground-state many-body wavefunction, which ful�lls Ĥ0Ψ0 = E0Ψ0,
where Ĥ0 is the static Hamiltonian and E0 the lowest eigenvalue.

Let F (t) be an external �eld that is coupled with an observable β̂. At time t0, we
switch on a time-dependent perturbation according to

Ĥ1(t) = F (t)β̂, t ≥ t0, (A.2)

which leads to a perturbed system and a time-dependent expectation value of α̂:

α(t) = 〈Ψ(t), α̂Ψ(t)〉, t ≥ t0. (A.3)

The response α(t)−α0 of α̂ to the perturbation from equation (A.2) can be expanded
in terms of powers of the �eld F (t):

α(t)− α0 = α1(t) + α2(t) + ..., (A.4)

where α1(t) is the linear response, α2(t) is the quadratic (second-order) response,
α3(t) is the third-order response and so on.

In order to derive an explicit expression for the time-dependent linear response
α1(t), we have to start from the following two equations (A.5) and (A.9), which
arise from time-dependent many-particle theory. For a more detailed description, see
reference 38.

First, the time evolution of the operator β̂ is given in the interaction picture by

β̂(t̃) = eiĤ0 t̃β̂e−iĤ0 t̃. (A.5)

Second, the solution of the time-dependent Schrödinger equation

i
∂

∂t
Ψ(x1,x2, ..., t) = Ĥ(t)Ψ(x1,x2, ..., t), (A.6)

can be written in terms of the time evolution operator

Ψ(t) = Û(t, t0)Ψ(t0). (A.7)
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In time-dependent perturbation theory, the Hamiltonian can be expressed as:

Ĥ(t) = Ĥ0 + Ĥ1(t), (A.8)

which is used in reference 38 to obtain the �rst-order approximation to the time
evolution operator:

Û(t, t0) ≈ e−iĤ0(t−t0)

{
1− i

∫ t

t0

dt′F (t′)β̂(t′ − t0)

}
. (A.9)

Using equation (A.9) for the �rst-order approximation to the time evolution operator
and equation (A.5) for the interaction picture representation of the operators α̂ and
β̂, we obtain the linear response as:

α1(t) = −i
∫ t

t0

dt′F (t′)〈Ψ0, [α̂(t), β̂(t′)]Ψ0〉. (A.10)

The initial-state Hamiltonian Ĥ0 is time-independent. Thus, the commutator [α̂(t), β̂(t′)]
can be replaced by [α̂(t− t′), β̂] in equation (A.10). By introducing the step function
Θ(t−t′) (which is 1 for t ≥ t′ and 0 otherwise), a retarded response function is de�ned
as follows:

χαβ(t− t′) = −iθ(t− t′)〈Ψ0, [α̂(t− t′), β̂]Ψ0〉. (A.11)

In this context, the term �retarded� is used to express the fact that the response at
time t is due to a perturbation at an earlier time t′ ≤ t. The linear response α1(t) is
therefore given by

α1(t) =

∫ ∞

−∞
dt′χαβ(t− t′)F (t′), (A.12)

where we are allowed to replace the lower integration limit t0 by −∞ since the external
�eld F (t) is zero for all times before t0 . Please note that the response function does
not depend on the time t0 at which the perturbation is switched on.

Frequency dependent response

A Fourier transformation of a given function with respect to time t introduces fre-
quency as a basic variable. We will see that this modi�cation will allow us to obtain
excitation energies of a system from its linear response.

We de�ne the Fourier transform of the perturbing �eld, together with its inverse
(for simplicity we do not distinguish between the Fourier transform of a function and
the function itself, since the distinction can be inferred from the functional arguments
t and ω):

F (t) =

∫ ∞

−∞

dω

2π
F (ω)e−iωt, F (ω) =

∫ ∞

−∞
dtF (t)eiωt, (A.13)

and similarly for all other time-dependent quantities. In the next step, we will
make use of the relation

∫∞
−∞ expit(ω−ω

′) = 2πδ(ω − ω′). We insert equation (A.13)
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into equation (A.12) and obtain
∫ ∞

−∞

dω

2π
α1(ω)e−iωt =

∫ ∞

−∞
dt′
∫ ∞

−∞

dω

2π
χαβ(ω)e−iω(t−t′)

∫ ∞

−∞

dω′

2π
F (ω′)e−iω

′t′ (A.14)

=

∫ ∞

−∞

dω

2π
χαβ(ω)F (ω)e−iωt. (A.15)

A careful comparison of the right- and left-hand sides of the latter equation leads
to the following linear response equation in frequency space (since all exponentials
exp−itω are linearly independent):

α1(ω) = χαβ(ω)F (ω) (A.16)

A Fourier transformation of equation (A.11) formally yields an an expression for the
frequency-dependent response function

χαβ(ω) = −i
∫ ∞

−∞
dτ Θ(τ) 〈Ψ0, [α̂(τ), β̂]Ψ0〉 eiωτ (A.17)

The set of (orthonormal) eigenfunctions {Ψn|n = 0, 1, 2, ...}, where Ψ0 is the many-
body ground state, with energy E0, Ψ1 is the �rst excited state, with energy E1, and
so on can be used to obtain the resolution of the identity:

Îd =
∑

i=1

|Ψi〉〈Ψi|. (A.18)

Furthermore, we denote the n-th excitation energy of the system as Ωn := En − E0.
By inserting the completeness relation (eq. (A.18)) into equation (A.17) and using
the explicit form of the interaction representation from equation (A.5) of the operator
α̂, we obtain

χαβ(ω) = −i
∞∑

n=1

∫ ∞

−∞
dτ Θ(τ) eiωτ

{
〈Ψ0, α̂Ψn〉〈Ψn, β̂Ψ0〉e−iΩnτ − 〈Ψ0, β̂Ψn〉〈Ψn, α̂Ψ0〉eiΩnτ

}
.

(A.19)

The step function Θ(τ) can be expressed by the following integral representation

Θ(τ) = lim
η→0+

i

2π

∫ ∞

−∞
dω′

e−iω
′τ

ω′ + iη
. (A.20)

This relation is obtained by contour integration in the complex frequency plane.

Lehmann representation

Inserting equation (A.20) into equation (A.19) yields the Lehmann representation of
the linear response function

χαβ(ω) = lim
η→0+

∞∑

n=1

{
〈Ψ0, α̂Ψn〉〈Ψn, β̂Ψ0〉

ω − Ωn + iη
− 〈Ψ0, β̂Ψn〉〈Ψn, α̂Ψ0〉

ω − Ωn + iη

}
. (A.21)

Equation (A.21) is of great importance for the �eld of response theory because it
couples a frequency-dependent perturbation to the excitation spectrum of a system.
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zwei von drei Vordiplomsprüfungen mit Note 1,3 bestanden;
außerdem Teilnahme an weiteren Vorlesungen aus dem Hauptstudium

2013-2014 Wissenschaftlicher Mitarbeiter in der Theoretischen Chemie
an der Universität Leipzig

seit 2014 Wissenschaftlicher Mitarbeiter in der Theoretischen Chemie
an der MLU Halle-Wittenberg und Beginn der Promotion
im Arbeitskreis von Prof. Sebastiani

Stipendien

2009 - 2013 Stipendiat der Studienstiftung des deutschen Volkes

Betreuung von Abschlussarbeiten

2015 Masterarbeit Christopher Peschel: “Computational Investigation
of Properties of 1,2,3-Triazoles”

2018 Bachelorarbeit Christoph Kirsch: “Ab initio Molekulardynamik-
Simulationen der Mobilität von Lithium-Ionen in Festkörpern”

2020 Masterarbeit Thomas Kunze: “Molecular Dynamics Simulation
of Hybrid Protein Systems”



2020 Masterarbeit Christoph Kirsch: “Molekulardynamik-Simulationen
der Mobilität von Lithium-Ionen in Lithiumsiliciden”

2020 Bachelorarbeit Johnny Alexander Jimenez Siegert: “Investigation
of proton conduction in methanesulfonic acid using the combined
Molecular Dynamics/Lattice Monte Carlo (cMD/LMC) approach”

Lehrtätigkeit

2013 Seminarleiter für die Vorlesung “Einführung in die Theoretische
Chemie” (in Leipzig)

2014 Erstellung der Aufgabenserien für die Vorlesung “Physikalische
Chemie I” (in Halle)

2014 - 2016 Betreuer im Masterpraktikum für Physikalische Chemie für
den Versuch “Klassische Molekulardynamik” (in Halle)

2015 - 2020 Seminarleiter für die Vorlesung “Theoretische Chemie” (in
Halle) mit Unterbrechung 2018 wegen Elternzeit

2016 - 2017 Seminarleiter für die Vorlesung “Physikalische Chemie II für
Biochemiker” (in Halle)

2016 - 2020 Seminarleiter für die Vorlesung “Quantenchemie” (in Halle)

2017 Tutor für das Modul “Mathematik für Chemiker” im Fernstudiengang
Chemie des Springer-Verlages

Publikationen

12 Christian Dreßler and Daniel Sebastiani.
Effect of chemical environment on proton mobility in the
solid acids family CsHyXO4 (x = S, P, Se; y = 1, 2) from ab
initio molecular dynamics simulations.
Physical Chemistry Chemical Physics, 22:10738–10752, 2020.

11 Christian Dreßler, Gabriel Kabbe, Martin Brehm, and Daniel
Sebastiani.
Exploring non-equilibrium molecular dynamics of mobile protons
in the solid acid CsH2PO4 at the micrometer and microsecond
scale.
The Journal of Chemical Physics, 152(16):164110, 2020.

10 Christian Dreßler, Gabriel Kabbe, Martin Brehm, and Daniel
Sebastiani.
Dynamical matrix propagator scheme for large-scale proton
dynamics simulations.
The Journal of Chemical Physics, 152(11):114114, 2020.



9 Christian Dreßler and Daniel Sebastiani
Reduced eigensystem representation of the linear density-
density response function.
International Journal of Quantum Chemistry, 120(3):e26085,
2020.

8 Maximilian Wagner, Christian Dreßler, Felix P. Lohmann-
Richters, Kevin Hanus, Daniel Sebastiani, Aron Varga, and
Bernd Abel.
Mechanism of ion conductivity through polymer-stabilized
CsH2PO4 nanoparticular layers from experiment and theory.
Journal of Materials Chemistry A , 7:27367–27376, 2019.

7 Christian Dreßler, Arne Scherrer, Paul Ahlert, and Daniel
Sebastiani.
Efficient representation of the linear density-density response
function.
Journal of Computational Chemistry, 40(31):2712–2721, 2019.

6 Paul Ahlert, Arne Scherrer, Christian Dreßler, and Daniel
Sebastiani.
Iterative approach for the moment representation of the density-
density response function.
The European Physical Journal B, 91(6):94, 2018.

5 Gabriel Kabbe, Christian Dreßler, and Daniel Sebastiani.
Proton mobility in aqueous systems: combining ab initio
accuracy with millisecond timescales.
Physical Chemistry Chemical Physics, 19(42):28604–28609,
2017.

4 Arne Scherrer, Christian Dreßler, Paul Ahlert, and Daniel
Sebastiani.
Generalization of the electronic susceptibility for arbitrary
molecular geometries.
The Journal of Chemical Physics, 144(14):144111, 2016.

3 Christian Dreßler, Gabriel Kabbe, and Daniel Sebastiani.
Insight from atomistic simulations of protonation dynamics
at the nanoscale.
Fuel Cells, 16(6):682–694, 2016.

2 Christian Dreßler, Gabriel Kabbe, and Daniel Sebastiani.
Proton conductivity in hydrogen phosphate/sulfates from a
coupled Molecular Dynamics/Lattice Monte Carlo (cMD/LMC)
approach.
The Journal of Physical Chemistry C, 120(36):19913–19922,
2016.

1 Gabriel Kabbe, Christian Dreßler, and Daniel Sebastiani.
Toward realistic transfer rates within the coupled Molecular
Dynamics/Lattice Monte Carlo approach.



The Journal of Physical Chemistry C, 120(36):19905–19912,
2016.



215

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter Ver-
wendung der angegebenen Hilfsmittel und Quellen angefertigt habe. Alle Stellen,
die wörtlich oder sinngemäÿ aus Verö�entlichungen entnommen sind, habe ich als
solche kenntlich gemacht. Des Weiteren versichere ich, dass ich diese Arbeit an keiner
anderen Institution eingereicht habe. Mir ist bekannt, dass bei Angabe falscher Aus-
sagen die Prüfung als nicht bestanden gilt. Mit meiner Unterschrift versichere ich die
Richtigkeit dieser Angaben und erkenne die rechtlichen Grundlagen an.

Datum Unterschrift


	Abstract
	Acknowledgements
	Preface
	Theoretical Framework
	Molecular Dynamics
	Classical vs. Ab Initio Molecular Dynamics
	Numerical Integration of the Equations of Motion
	Controlling the Temperature: Thermostats
	Ab Initio Molecular Dynamics (AIMD)

	Electronic Structure Methods
	Hartree-Fock Approach
	Density Functional Theory
	Density Functional Perturbation Theory

	The Linear Density-Density Response Function (LDDRF)
	Different Representations of the LDDRF
	Derivation of the LDDRF
	Basic Symmetries and Analytic Properties of the LDDRF
	Iterative Spectral Decomposition of the Static LDDRF
	Representation of Linear Operators

	Markov Chains
	Dynamical Systems
	Asymmetric Simple Exclusion Process
	Monte Carlo Methods
	The Combined Molecular Dynamics/Lattice Monte Carlo (cMD/LMC) Approach for Long-range Proton Transfer
	Solid Acids
	Open Questions Concerning the Conduction Mechanism in Solid Acids


	Summary of the Peer-reviewed Articles
	Multiscale Approaches for Long-range Proton Transfer
	Article I: Exploring Non-equilibrium Molecular Dynamics of Mobile Protons in the Solid Acid CsH2PO4 at the Micrometer and Microsecond scale
	Article II: Dynamical Matrix Propagator Scheme for Large-scale Proton Dynamics Simulations
	Article III: Mechanism of Ion Conductivity Through Polymer-stabilized CsH2PO4 Nanoparticular Layers from Experiment and Theory.
	Article IV: Proton Mobility in Aqueous Systems: Combining ab initio Accuracy with Millisecond Timescales
	Article V: Toward Realistic Transfer Rates within the Coupled Molecular Dynamics/Lattice Monte Carlo Approach.

	Efficient Representations of the Static LDDRF
	Article VI: Reduced Eigensystem Representation of the LDDRF
	Article VII: Efficient Representation of the LDDRF
	Article VIII: Iterative Approach for the Moment Representation of the LDDRF.
	Article IX: Generalization of the Electronic Susceptibility for Arbitrary Molecular Geometries.

	Proton Conduction in Solid Acids
	Article X: Effect of Anion Reorientation on Proton Mobility in the Solid Acids Family CsHyXO4 (X = S, P, Se; y = 1, 2) from AIMD
	Article XI: Proton Conductivity in Hydrogen Phosphate/Sulfates from a Coupled Molecular Dynamics/Lattice Monte Carlo (cMD/LMC) Approach
	Review XII: Insight from Atomistic Simulations of Protonation Dynamics at the Nanoscale


	Conclusion
	General Linear Response Theory

