
Received May 26, 2020, accepted July 5, 2020, date of publication July 13, 2020, date of current version July 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008687

Fusion-Based Approach for Respiratory Rate
Recognition From Facial Video Images
MARC-ANDRÉ FIEDLER , MICHAŁ RAPCZYŃSKI , AND AYOUB AL-HAMADI
Neuro-Information Technology Group, Institute for Information Technology and Communications, Otto von Guericke University Magdeburg, 39106 Magdeburg,
Germany

Corresponding author: Marc-André Fiedler (marc-andre.fiedler@ovgu.de)

This work was supported by the Federal Ministry of Education and Research of Germany (BMBF) within the Zwanzig20 Alliance
3Dsensation Consortium (Project RoboAssist and Project HuBa) under Grant 03ZZ0448L and Grant 03ZZ0470.

ABSTRACT The respiratory rate is an important vital parameter that provides information about persons’
physical condition. In clinical practice it is currently only monitored using contact-based techniques, which
can have negative effects on patients. In this study, a new algorithm for remote respiratory rate recognition
is presented using photoplethysmographic signals derived from facial video images in the visible light
spectrum. The effects of different implementation steps in the presented algorithm are investigated in order
to optimize the approach and gain new findings in this research field. In addition, a detailed examination
of already implemented procedures is performed and the results are compared on two different databases.
We show that by fusing the results of seven different respiratory-induced modulations in combination with
other processing steps, very good estimates for the respiratory rate on both moving and non-moving data
are achieved. The obtained detection rates of 72.16 % and 87.68 % are significantly higher than those of the
best comparison algorithm with 37.37 % and 59.13 %. The comparison algorithms developed so far are not
competitive with the newly designed method, especially for video recordings involving persons in motion.
This paper provides important new findings in the field of facial video-based respiratory rate recognition for
the research community. A new method has been created that delivers significantly better estimates of the
respiratory rate than previously developed techniques.

INDEX TERMS Facial videos, non-contact monitoring, remote photoplethysmography, remote PPG,
respiratory rate, visible light spectrum, vital signs.

I. INTRODUCTION
The respiratory rate (RR) is an important diagnostic param-
eter that can provide information about persons’ physical
condition, notably because it contains prognostic information
and can point to initial indications of a later case of illness [1].
Therefore, it serves hospitals as a highly sensitive valuewhich
is capable of mapping a patient’s state of health [2].

It is oftenmeasured via the sensors of an electrocardiogram
on the test person’s upper body or via photoplethysmogra-
phy (PPG) techniques, e.g. a finger pulse oximeter. Both
signals contain the modulation of respiration activity, which
makes it possible to derive the target RR from them [3].
Respiration is linked to heart rate (HR) mainly through the
natural phenomenon of respiratory sinus arrhythmia (RSA).
This causes an increase in heart frequency during inhalation
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and a decrease during exhalation [4]. Spirometry, pneumog-
raphy or a chest belt are also used for measurement of RR.

Thus all conventionally used systems have in common that
their sensors must be attached directly to the person’s body.
This can have several negative effects on the health [5]–[7]
andwell-being [8], [9] of the person beingmonitored. In addi-
tion, they are only partially suitable for long-term monitoring
or early detection of disease symptoms [9].

In 2008, Verkruysse et al. [10] were able to show that PPG
signals can be captured non-invasively from a distance using a
digital camera. This opened up new possibilities for the acqui-
sition and monitoring of vital parameters, which extended
the classic concept of the original photoplethysmography by
a camera-based approach using photo sensors such as CCD
sensors [11].

This new approach allows to significantly increase the
available measurement periods [12], enabling early detection
and prevention of a wide range of diseases. As a result,
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a diagnostic device with great medical benefits can be cre-
ated. The need for such a system and ubiquitous health
surveillance is also rising due to chronic diseases and an
ageing population [8].

Due to this potential, research in the area has been heav-
ily intensified in the last few years. Researchers attempted
to improve the accuracy of vital parameter estimates using
various methods such as principal component analysis
(PCA) [13], independent component analysis (ICA) [14],
single-channel ICA (SCICA) [15], auto-regressive (AR)
models [9], wavelet filtering [16] or a combination of ICA
and AR models [17]. Also, methods for the conversion of
color channels into higher quality PPG signals have been
developed, such as an adaptive green red difference color
model [18], a chrominance-based method [19] or the use of
hue channels after an HSV color space transformation [20].

Most research papers which explore the extraction of
camera-based physiological vital parameters limit the meth-
ods and findings to the detection of HR frequencies. If res-
piratory signals were derived, these were often regarded as
‘‘by-products’’ and therefore not subjected to a more precise
analysis.

Additionally, there are research results from the neighbour-
ing field of RR detection from conventional PPG signals,
which do not originate from video images, but from contact
PPG recording devices.

The current state of the art in RR detection is based onmod-
ulations of various signal parameters that are influenced by
respiration. These respiration-induced variations are mainly
the amplitudes, intensities and frequencies of the PPG sig-
nal [1], [11], [21]. For example, Hernando et al. [22] extract
the amplitudes from the PPG signal, which are then modu-
lated using spline interpolation. After that the signal is filtered
and subjected to a frequency analysis to obtain the RR.

In this paper, the two research areas shall be brought
together and an overview of already developed methods will
be given. A new algorithm for the detection of the RR from
video sequences of human faces was designed. PPG mea-
surements can be realized on many parts of the body [23],
but the forehead and other facial areas are particularly well
suited for this purpose. Nilsson [24] were able to show that the
extracted respiratory energies on the forehead were six times
higher than those on the finger, because it has a high density
of blood vessels and the skull is covered by a comparatively
thin skin [8]. In addition, the face is exposed to occlusions
much less frequently than other body regions and is therefore
best suited for non-contact monitoring. This work therefore
focuses on this approach.

The designed algorithm will then be tested in combination
with multiple pre- and post-processing steps and its results
will be compared with four other algorithms from the litera-
ture on two available databaseswith a large amount of signals.
Thus, meaningful and generally valid results could be created.
Furthermore, to the best of our knowledge, this is the first
comprehensive examination and comparison of the methods
developed so far on a large amount of uniform data.

Section II first explains the proposed method starting
with PPG signal extraction from the videos. Then the fol-
lowing processing steps for RR estimation are delineated.
Finally, the comparison algorithms found in the literature are
described. Section III reports the used databases and experi-
mental results, which are discussed in section IV. In section V
a final conclusion is derived.

II. METHODS
This section describes first how the PPG signals are derived
from the video sequences. Then our proposed algorithm for
estimating the RR with is presented in detail. The processing
pipeline of a single modulation is shown in Fig. 1. At the
end the comparison algorithms used as a benchmark are
presented.

A. PPG SIGNAL EXTRACTION FROM VIDEO SEQUENCES
The extraction of the PPG signal from video sequences can
be broken down into two steps. First, a suitable Region-
of-Interest (ROI) in the face has to be selected and detected
over the entire duration of the video in every frame. The
desired signals can then be derived from the color information
of these ROIs. Often an RGB signal is first extracted and then
eventually converted into a PPG signal.

1) GENERATION OF RGB SIGNAL
First a ROI must be defined in the video frame. This specific
region is usually determined by a face tracking algorithm
and/or facial landmarks [25]. From this areas in the face,
for example the forehead [13], [26], can be calculated. Other
approaches used a skin detection algorithm, applying it on the
image or the detected face [19], [27].

Rapczynski et al. [25] comprehensively investigated the
impact of ROI on contact-free HR estimation. They tested
nine different algorithms on four different ROIs. The two
best ROIs (skin detection, forehead) of their study were used
for this paper because it can be assumed that the better the
estimation of the HR works, the more probable it is that a
correct RR can be derived due to the fact that the correct
derivation of the pulse signal is the basis for our algorithm.

The ROI using skin detection [27] performed best. They
use the lookup table approach from Jones and Rehg [28],
which provides for each color pixel c the relative frequency p:

p(c) =
n(c,Xskin)
n(c,X )

(1)

where n(c,Xskin) represents the number of observations of the
color c in the skin training dataset and n(c,X ) the number of
observations of the color c in the entire training dataset. After
calculating the lookup table, the relative frequencies can then
be used for segmentation of skin. To avoid a hard threshold
and binary clustering, they used the skin probability pi for
each pixel i from the total number of pixels in the image n as
a weighting factor. With this percentage, the respective color
value ci is now included in the mean value calculation of the
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FIGURE 1. Processing pipeline of a single modulation: Main processing steps (blue boxes) with possible options (light blue).

FIGURE 2. The (a) original image with (b) blue marked forehead and (c) detected skin probabilities.

PPG signal SPPG for each color channel:

SPPG =
1∑n
i=1 pi

·

n∑
i=1

pi · ci (2)

The forehead was used as another ROI. This is calculated
from the distance between the eye corners and is placed above
the eyebrows. Further information on the exact calculation of
the ROI can be found in [25]. The mean value of all pixels for
each color channel in the ROI for every frame is calculated to
generate the RGB signal.

The forehead and skin ROI are shown in Fig. 2.
The comparison algorithm of Van Gastel [29] additionally

uses a ROI of the face, which is divided into 30 subregions.

It is only used by the method itself (see description in
section II-C).

2) RGB TO PPG SIGNAL CONVERSION
The single RGB color channels can be used directly to cal-
culate the RR, but this is not necessarily achieving the best
results. For this reason, the research community has devel-
oped a variety of methods to make pulsatile and respiratory
components in the signal better accessible. These include
methods of image and signal processing. Several of these
techniques were implemented and their effects investigated.

The general knowledge is that the green (G) channel
contains the strongest photoplethysmographic information
[8], [10], [18], [30]. As the wavelength of light increases,
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it penetrates deeper into the human tissue, enabling more
accurate measurements. However, as the wavelength of light
increases, the signal also becomes more susceptible to move-
ment artifacts caused by changes in the inner tissue, such as
muscle movements [31]. Besides, the absorption coefficient
of the erythrocytes in the region of blue-green light is seven
times higher than for red light [32]. For these reasons, G light
has proven to be the best wavelength for remote PPG record-
ings [33]. This could also be verified in the results of this
work. Therefore, the conversion methods for the generation
of higher-quality PPG signals are evaluated to see whether
they can contribute to an improvement in the estimation of
RRs compared to the signal from G values.

Sanyal and Nundy [20] reported that a color space transfor-
mation from RGB to HSV color space produced better results
for both HR and RR estimation. They transformed the indi-
vidual pixels of the forehead into HSV values and then used
the averaged hue channel. In this work, the averaged RGB
signal is already calculated and is then converted afterwards.

In 2013, De Haan and Jeanne [19] introduced a chromi-
nance-based approach (CHROM) to enhance robustness in
HR detection from remote PPG. The reflected light captured
by the camera consists of two different components according
to the dichromatic reflection model. The first component is
the diffuse light reflected directly from the body’s surface,
which contains color changes in the skin that are periodically
associated with each heartbeat. The second is a reflective
component that mirrors the color of the light source and
contains no photoplethysmographic information. By adding
a white light specular fraction an equal change of the respec-
tive diffuse reflection component could be observed on all
RGB channels. This specular reflection component is now to
be eliminated by the calculation of differences of the color
channels, namely the chrominances. The final pulse signal S
results as follows:

S = 3(1−
α

2
)Rf − 2(1+

α

2
)Gf +

3α
2
Bf (3)

where Rf, Gf and Bf stand for the normalized filtered color
channels and α is used to equalize the chrominance ampli-
tudes. The signal S is used in this project for further process-
ing. More detailed information can be found in the original
paper.

Normalized green (normG) was used by Stricker et al.
[34] and Rapczynski et al. [27] as a signal extraction method.
The green channel is normalized by the sum of all channels
to compensate for different or changing spatial and temporal
light intensity levels in the video:

PPGi =
Gi

Ri + Gi + Bi
(4)

The variable i stands for each frame in the video. Due to the
significantly stronger weighting of the green value, the other
two color channels play a subordinate role in the function
and thus do not lead to a negative influence on the correctly
extracted signal components fromG. According to the theory,

a PPG signal can be constructed which is superior to the pure
use of G values.

Furthermore the methods PCA [13], ICA [14], JADE [35],
Inverse Fast Fourier Transformation (IFFT) [36] and adaptive
Green-Red-Difference (aGRD) [18] were tested. But com-
pared to the detection performance of the algorithm when
using the G channel, no improvements or even worsening
occurred. For this reason, they will not be further considered
in this article.

B. RR ESTIMATION
The proposed algorithm for estimating RR is based on the
modulation of respiration-induced variations in the signal
extracted from video sequences. The estimation of the RR is
divided into preprocessing, modulation, postprocessing and
fusion of results.

1) PREPROCESSING
The preprocessing prepares the signals for the modulation.
For the estimation of instantaneous RRs it is the norm to
divide the signal into smaller sections of a certain length and
to shift them for continuous calculation by a defined time
interval. So far there is no consensus in the literature what
length and step size of the signal window is to be regarded as
optimal. Most studies use window durations between 30 and
90 seconds [1]. However, the lower limit must be at least
20 seconds, assuming that the minimum possible respiration
of a normal person cannot fall below six breaths per minute
(bpm), even in extreme cases. In order to ensure detection for
this case, at least two complete breaths must be detectable in
the signal [20].

For this paper, the main window length was set to 30 sec-
onds. For testing and evaluation a length of 60 seconds was
added as a benchmark to analyse the performance of the
algorithms on longer windows. Depending on the application
and use, one of these twomay be themore suitable solution, e.
g. 30 seconds for an accurate instantaneous estimate of the RR
and 60 seconds for long-termmonitoring, where short change
periods should not be considered strongly. Shorter and longer
window lengths are in our view not appropriate for respiration
detection. The step length for both window sizes was set to
ten seconds. This fulfils the criterion that at a minimal RR of
six bpm at least one of them is completely captured.

The individual PPG signal windows are first filtered with
a second order zero-phase Butterworth bandpass. A lower
cut-off frequency of 0.5 Hz and an upper cut-off frequency
of 4 Hz are used. Atfer that all systolic maxima (max) and
minima (min) are detected.

2) MODULATIONS
The respiration signal modulates the PPG signal based on
different physiological causes and can be derived using the
PPG signals minima and maxima.

The amplitude modulation (AM) can be attributed to a
reduced stroke volume during inhalation caused by changes
in intrathoracic pressure, which causes a dropping of the pulse
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amplitude [37]. The baseline modulation (BM) is caused
by changes in tissue blood volume. These are a result of
changes in intrathoracic pressure and vasoconstriction of
the arteries during inhalation when blood flows into the
veins [38]. The frequency modulation (FM) is caused by the
natural phenomenon of RSA (see section I). This causes an
increase in the HR during inhalation and a decrease during
exhalation [4].

The signal parameters amplitude, baseline and frequency
are processed using three different modulations to estimate
the RR. In total seven varieties were implemented for this
purpose: one AM, three BMs, and three FMs.

The AM is based on changes in the peak-to-peak ampli-
tude. The coordinates of the amplitudes result from the dif-
ference between the two related extreme values and the mean
of their time distance:

yi, amplitude = yi, max − yi, min (5)

xi, amplitude =
xi, max + xi, min

2
(6)

where i is the number of the maxima and minima. This is
shown exemplarily in Fig. 3.

FIGURE 3. Example for the calculated amplitudes (red arrows) for the AM
of the PPG signal (blue).

Three different types of implementation of BM have been
developed (halfway, maxima, and minima). The y-coordinate
of the first one results in:

yi, baseline =
yi, max + yi, min

2
(7)

where the x-coordinate is the point on the original sig-
nal between the two extrema closest to the calculated y-
coordinate. In addition, once all maxima and once all minima
were used to modulate the baseline. The different BMs are
exemplarily pictured in Fig. 4.

FIGURE 4. Example for the calculated baselines (red) for the BMs of the
PPG signal (blue).

Different types of frequency-dependent parameters are
used to calculate three different FMs (time interval maxima,

time interval minima, and HR maxima). Two use the time
periods between successive extreme values once between the
maxima and once between the minima.

yi, frequency = xi+1, max − xi, max (8)

yi, frequency = xi+1, min − xi, min. (9)

The third FM is based on the instantaneous frequency of
the HR in beats per minute. For the estimation of the HR the
maxima are used:

yi, frequency = 60 ·
1

xi+1, max − xi, max
(10)

As x-coordinates the ones of the respective higher extrema
are adopted. Fig. 5 shows the period durations of the FM
exemplary.

FIGURE 5. Example for the calculated period durations (red arrows) for
the FMs of the PPG signal (blue).

The determined respiration-induced parameters are then
linear interpolated. As frequency their original frame rate is
used, which was 25 Hz for the videos of both databases.

At this point it should again be noted that the AM, the three
BMs and the three FMs run completely independend from
each other and have only the same pre- and post-processing
steps.

3) POSTPROCESSING
Postprocessing is performed in the last steps after modulation
to calculate the final RR. For this purpose, a normalization is
performed, in which the mean value of the entire signal µ is
subtracted from each data point yi of the signal to remove the
strong DC components from the signal, which remain in the
frequency spectrum after the bandpass:

yi, normalized = yi − µ (11)

After the normalization a method for removing artifacts
is performed and a differentiation of the signal is inserted.
Further information can be found in subsection II-B4.

The modulated signal is filtered again with a Butterworth
bandpass this time using the range of human respiratory fre-
quencies. Therefore a lower cut-off frequencywith 0.1Hz and
an upper one with 0.5 Hz is selected. There is no consensus
in research which range is optimal for determining plausible
respiratory frequencies, since these can also vary greatly
depending on the group of persons considered [17]. The RR
of adult healthy persons who are at rest and are not exposed
to physical exertion is normally between 12 and 18 bpm.
RR below 12 bpm are considered as slow, above 18 bpm as
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fast [39]. The selected range therefore allows to capture as
much of the RR of adults as possible at rest and duringmoder-
ate physical exertion without running into danger of capturing
pulsatile instead of respiratory frequencies, which can occur
with a further increase in the upper cut-off frequency.

Finally, a Fast Fourier Transformation (FFT) is used for
frequency analysis and the dominant frequency is deter-
mined, which is subsequently converted into the RR with the
unit bpm.

4) ARTIFACT REDUCTION
Over all modulation types a dominant frequency was occa-
sionally found in the lower range of the bandpass filtered
frequency spectrum, which overlaid the searched one of
the ground truth. The wrongly recorded RRs were mostly
between 6 bpm and 10 bpm, in few cases an incorrect rate
up to 12 bpm was detected. Thus the frequency range of
these repeatedly measured interference frequencies is in the
interval from 0.1 Hz to 0.2 Hz.

This type of interference can also be found in the literature.
Some researchersmentionmotion artifacts as the cause of this
phenomenon. Moraes et al. [40] and Lee et al. [41] write in
their work that movements performed by the test person often
have frequencies around 0.1 Hz or a bit higher. This theory
also agrees with the research results of Ram et al. [42], who
performed a comprehensive frequency analysis of human
movements. In particular, normal and natural body move-
ments, for example during speaking or due to changes in
facial features, were examined. The strongest frequency com-
ponent in their evaluation was a rate of approximately 0.1 Hz,
but minimally higher frequencies were also present on a large
scale.

As another hypothesis for the origin of these interferences,
Charlton et al. [1] named the Traube-Hering-Mayer waves.
These waves are constant in humans at a frequency value
of about 0.1 Hz. They are generated by the sympathetic
nervous system and enable a conscious regulation of organ
activity [43].

The exact origin and mode of formation of these frequen-
cies could not be finally clarified, but amethodwas developed
to suppress them in respiration detection. For this a differen-
tiation of the signal after the normalization and before the last
bandpass filtering is inserted. The gradients yi, gradient of the
normalized signal yi, normalized are calculated as follows:

yi, gradient =
yi+1, normalized − yi-1, normalized

2
(12)

where i represents the respective frame or element of the
signal vector.

5) FUSION OF RESULTS
The aim of the fusion of the results for the different modu-
lations in our proposed method (FuseMod) is to increase the
robustness of a final estimate of the RR bymerging the results
of several individual methods. In the literature this technique
is described as a useful tool to improve the results for the

detection of human RR [1], because the individual methods
show a too high susceptibility to interference, especially if
the test personsmove additionally duringmonitoring. In addi-
tion, the single respiration-induced variations are differently
strong depending on the person to be examined. Influencing
factors are e. g. individual RR [44], gender [45] or age [6].

The applied fusion strategies realize this combination by
calculating the mean or the median. In order to reduce the
influence of outliers in averaging, the α-trimmed mean was
additionally used. Here, the results are first sorted according
to the RR estimation and then the mean of the middle three
(for α = 0.29) or five elements (for α = 0.14) is calculated,
excluding possible outliers. More detailed explanations of the
α-trimmed mean can be found in [46].

C. COMPARISON ALGORITHMS
In the last few years several methods for HR detection from
video images have been developed, but only a handful num-
ber of methods for RR estimation. Four of themwere selected
for the validation of our method. This section gives a brief
overview of the re-implemented algorithms. Detailed expla-
nations of the exact implementation and all processing steps
can be found in the respective original paper. The algorithms
are listed hereafter.

Poh et al. [14] used an ICA based on Joint Approximation
Diagonalization of Eigen-matrices (JADE) [35] in combina-
tion with some other processing steps for the RR estimation.
As a small modification our skin and forehead ROI (for more
information see section II-A1) was utilized. This makes the
performance of the actually algorithm better comparable.

Sun [15] used every RGB channel as a single input and
utilized a SCICA to derive the RR. In divergence to the
original paper the green channel of our skin and forehead ROI
(see section II-A1) were used.

Van Gastel et al. [29] calculated the pixel differences
of 30 subregions of the ROI to derive the weights of the linear
combination for the pulse signal. These weights are then
applied to pixel differences which exclusively contain respi-
ratory frequencies and thus generate the respiratory signal.
For the calculation of the weights in our re-implementation
only the chrominance-based method [19] was used, because
this method achieved the best results in the original paper for
videos recorded in the visible light spectrum.

Sanyal and Nundy [20] used the forehead as ROI and
transformed the pixel RGB values into the HSV color space,
using only the hue channel and the pixels with values in the
range [0 0.1] to average the PPG signal. Then the signal is
bandpass filtered and the RR is determined.

III. RESULTS
Comparison of algorithms for RR estimation is difficult
because each study is tested on different datasets and often
uses varying statistical error measures. In order to be able to
compare the previous findings in this research field with the
developed method, four algorithms from the literature were
re-implemented and validated on the two available databases.
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In this section we first describe the used databases. Then the
error measures used with the associated results are presented.

A. DATABASES
Most papers in the area of respiration detection use their
own inaccessible datasets with often only a small number
of signals. The comparison algorithms used for validation
databases containing between 12 and 32 signals [14], [15],
[20], [29]. For better reproducibility two available databases
have been used in our study. But suitable databases are rare
and difficult to find. In addition, they must meet certain
standards for the application of non-contact vital signs moni-
toring, such as a low level of video compression, because the
small color changes that are required for the HR detection can
thus be reduced or even completely eliminated [47].

The first database we used is the BP4D+ by Zhang et al.
[48]. It was originally designed for emotion recognition and
therefore contains 2D videos and respiration signals as well
as many other ground truths. A total of 140 test persons were
recorded while they each had to complete 10 different tasks.
These tasks include interviews, physical activities or watch-
ing video clips. As the test persons move and speak without
restrictions, the database is challenging for non-contact mon-
itoring of vital parameters. This is also due to the fact that
the database contains only natural respiratory cycles and no
artificial ones. The respiration signals were recorded via a
chest belt. Further details on the data and their acquisition
can be found in the original paper.

As the ground truths of the respiratory signals were tem-
porarily very strongly affected by artefacts and disturbances,
some of them had to be sorted out because it was not possible
to determine exact estimates for the correctly underlying RR
with certainty (see Fig. 7). Therefore, the signals were prepro-
cessed with a Butterworth bandpass with cut-off frequencies
of 0.1 Hz and 0.5 Hz and then normalized to a value range of
[−1 1]. The peaks and troughs were then determined using
a designed peak detector. Two standard deviations were then
selected as parameters for estimating the quality of the respi-
ratory signal. Signals are rejected if the standard deviation
of the difference between the peak intervals of a signal is
greater than 1 second or the standard deviation of the heights
of the minima of a signal is greater than 0.2. In addition, all
videos shorter than 30 seconds are also rejected. This results
in 269 remaining signals, which are, comparatively to other
studies, a large number of signals on which the algorithms are
validated.

An example for each respiratory signal class is shown
below: Fig. 6 shows a remaining signal and Fig. 7 shows a
rejected signal where the ground truth cannot be determined.

The second database was acquired by ourselves. The goal
was to generate robust, uncompressed data with only few
errors in order to use them as a good benchmark for RR
detection. It includes recordings of 12 adults ages ranging
from 23 to 36 years. There are 10 men and 2 women. Four
videos per person were recorded with an RGB camera (model
Pike F-145) from a distance of about 1.5 meters for 3 minutes

FIGURE 6. Example for a remaining respiratory signal where the ground
truth can be determined.

FIGURE 7. Example for a rejected respiratory signal where the ground
truth cannot be determined.

per sequence with a frame rate of 25 frames per second. Four
different RR scenarios were recorded for every subject. In the
first scenario the spontaneous respiration of the test person
is recorded. For the next three measurements, the subjects
should try to follow a given respiratory pattern, which was
displayed on a monitor in front of them. The respiratory
frequencies for the single videos were 10, 15 and 20 bpm.
Over all measurements the participants were asked not to
move heavily. The reference signals were recorded via a chest
belt (model NB-RSP1A) with a sample rate of 512 Hz using
a trigger signal for synchronization with the camera.

Consequently, a large amount of data from a total
of 318 videos, which corresponds to over 7.5 hours of record-
ings, could be analyzed for the validation of the algorithms,
which cover both important types of conditions, including
and excluding movements of the test persons.

B. ERROR MEASURES AND RESULTS
Several error measures were used to compare the accuracy
of the different algorithms and implementation approaches.
The detection rate (DR) was introduced, which describes how
many percent of windows are correctly detected:

DR [%] =
ncorrect windows
nall windows

(13)

where n is the respective number of windows. A window is
assumed to be correct if the error between detected value
and ground truth is less or equal than 2 bpm. It is the most
important measure in our study and was similarly proposed
by Charlton et al. [1] as a statistical error measure for RR
detection.

In addition, the mean µ and the standard deviation σ of the
errors are given.

Fig. 8 shows an exemplary G signal, the resulting modu-
lated respiratory signals (prior to FFT analysis) for each of the
three modulation types (AM, BM, and FM) and the ground
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FIGURE 8. Exemplary illustration of (a) the G signal, (b) the resulting
modulated respiratory signals (prior to FFT analysis) for each of the three
modulation types and (c) the ground truth respiratory signal.

truth respiratory signal in order to illustrate the processed
signals.

An overview of the results of our FuseMod algorithm can
be found in Tables 1 - 4. For this purpose, two tables are
mapped for each database, each one for the skin and forehead
ROI. The results are shown for the different preprocessing
PPG conversions and fusion methods. The window length is
fixed to 30 seconds.

Tables 5 and 6 show the comparisons of the estimation per-
formance of the FuseMod algorithm (30s windows) with and
without artifact reduction. Only the results for the dominant
PPG conversion and fusion combinations with the best results
are listed.

An additional error measure was calculated to deter-
mine the percentage of incorrectly detected windows in
the low-frequency range, to assess the impact of the arti-
fact reduction. The false detection rate (FD) indicates the
number of incorrectly detected windows in percent, which
have a dominant low-frequency component in the area
between 0.1 Hz and 0.2 Hz compared to total number of
windows:

FD [%] =
nincorrect windows [0.1 0.2 Hz]

nall windows
(14)

where n is the respective number of windows. These
unwanted artifacts are caused by movement or Traube-
Hering-Mayer waves (see subsection II-B4).

Table 7 and 8 compare the results of our best FuseMod
implementations for facial video-based RR recognition with
those of the comparison algorithms, showing one table per
database. All were tested on a consistent window length
of 30 seconds for better comparison. To show the perfor-
mance of the implemented algorithms in the same way as
in the original papers, the results with their original window
specifications were calculated. For our methods a window
length of 60 seconds was additionally utilized to investigate
whether the window length has an influence on the detection
performance.

IV. DISCUSSION
This section discusses the achieved results. First, the different
specifications of the FuseMod implementations are consid-
ered. Then the influence of artifact reduction is examined and
finally the performance is benchmarked against the compari-
son algorithms.

A. FuseMod
For the FuseMod implementations there are numerous com-
binations of different parameters (see Tables 1 - 4).
Various PPG signal conversions have been tested. The

results show a clear improvement in detection performance
for hue, CHROM and normG compared to the G channel.
This is reflected in a significant increase in the DR of up to 19
%, a further approximation of the µ to zero and a reduction
of the σ . This increase is relatively constant on the BP4D+
database across all fusion types and both ROIs. For our
own database, the performance of the hue channel declines
compared to CHROM and normG, whereby CHROM again
performs best.

Procedures which combine the color values of all three
RGB channels in order to derive the final PPG signal achieve
better results in our experiments. The calculation steps of
all three methods (hue, CHROM and normG) have this in
common. The three approaches perform similarly well with
minimal advantages for CHROM, although it is also the most
computation-intensive method.

Of the fusion techniques, the median performs better than
the mean on both databases. This result can be attributed
to the fact that the individual modulations are temporarily
subject to strong variations, which are better eliminated by
the median. No significant differences can be seen between
0.14-trimmed mean and 0.29-trimmed mean. Averaging of
the middle results leads to a significant increase in DR com-
pared to the mean, but cannot compete with the detection
performance of the median.

When examining the influence of the ROI, clear advan-
tages can be seen for the use of the skin algorithm over the
forehead. A static ROI has certain weaknesses, as it is not
possible to ensure that the calculated area contains only of
human tissue. Part of the ROI can be covered by hair, a beard,
glasses or headgear, which leads to interfering pixels in the
calculation of the PPG signal. It is therefore useful to perform
an individual assessment for each pixel to determine whether
it is skin or not.
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TABLE 1. Results for FuseMod (skin ROI, 30s windows) using different PPG and fusion methods on the BP4D+.

TABLE 2. Results for FuseMod (forehead ROI, 30s windows) using different PPG and fusion methods on the BP4D+.

TABLE 3. Results for FuseMod (skin ROI, 30s windows) using different PPG and fusion methods on our own database.

TABLE 4. Results for FuseMod (forehead ROI, 30s windows) using different PPG and fusion methods on our own database.

TABLE 5. Results with and without artifact reduction for FuseMod with
best performing specifications using 30s window on the database
BP4D+.

The difference between the two ROIs is even more sig-
nificant on our own database than on the BP4D+. With the
skin ROI, our non-moving data shows improvements over
the BP4D+ moving data, but the opposite is the case for
forehead. This can be explained by the fact that the forehead
of the subjects in our database often showed occlusions by
hair and at times strong light reflections of the skin pixels
during the recording, causing them to become over-saturated.
In addition, one test person wore a headscarf reducing the
visible skin in the forehead ROI.

TABLE 6. Results with and without artifact reduction for FuseMod with
best performing specifications using 30s window on our own database.

Thus, the dominance of the skin ROI over other static ROIs
of different facial areas can be seen. These results are also
consistent with the findings of Rapczynski et al. [25].

B. INFLUENCE OF ARTIFACT REDUCTION
Artifact reduction is an fundamental part of the algo-
rithm we have designed. The impact of this is shown
in Tables 5 and 6, which compare the recognition of the
developed procedure with and without additional artifact
reduction.
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TABLE 7. Results for the best-performing FuseMod implementations (30s
and 60s windows) and the comparison algorithms (see section II-C) (30s
and the original proposed window) on the BP4D+.

Especially the database BP4D+ contains low-frequency
interference frequencies from movements or Traube-Hering-
Mayer waves on a large scale, which overlay the searched
ground truth frequency with their energy in the spectrum
and cannot be filtered without removing plausible respiratory
frequencies from the filter margins. This can be seen from
the µ which is heavily biased towards negative errors (see
Tables 5 and 6). In addition, the FD rates show that without
artifact reduction more than half of the windows are detected
incorrectly and instead are assigned to a frequency in the
lower range of the observed spectrum.

By inserting an additional step for differentiating the sig-
nal, this percentage can be reduced drastically to approxi-
mately 2 %. This phenomenon is thus effectively eliminated
increasing the DR by 40 % and resulting µ close to zero.
Our database contains less motion-induced interference

frequencies, but the DR can be also increased between 6 %
and 14 % depending on the PPG signal. The false detections
in the lower frequency region fall below 1 %.

For this reason, the artifact reduction procedure has
been included as standard in our implementations for RR
recognition.

The influence of artifact reduction on the frequency spec-
trum is illustrated in Fig. 9 using an AM as an example. The
issue is analog for BMs and FMs.

C. EVALUATION VERSUS COMPARISON ALGORITHMS
To validate the designed method for RR recognition, four
other algorithms from the literature were re-implemented.

TABLE 8. Results for the best-performing FuseMod implementations (30s
and 60s windows) and the comparison algorithms (see section II-C) (30s
and the original proposed window) on our own database.

FIGURE 9. Comparison of the frequency spectra after an AM (a) without
and (b) with artifact reduction with a ground truth frequency of 0.28 Hz.

For comparison a consistent window length of 30 seconds and
a step size of 10 seconds is used.

The results of all algorithms are shown in Tables 7 and 8.
An additional window length, as proposed in the respective
original paper was also calculated. A 60-second window was
also used for our implementations, as we considered that to
be another suitable length.

The results of the comparison algorithms on the BP4D+
database show how challenging the data is for correct RR
detection. This can be explained by the fact that the test
persons had no restrictions and move strongly. The method
by Poh et al. [14] still scores best out of the comparison
algorithms, as it detects 37 % of the windows correctly. The
others only achieve more than 20 %.

All algorithms can increase their DR on our database
with the exception of Sun [15], which remains at the
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same level. This was expected since the signals in the
new dataset are less affected by movements. Especially
Sanyal and Nundy [20] has to be highlighted at this point,
which increases DR by more than 30 % and thus per-
forms almost as well as the best comparison algorithm by
Poh et al. [14].

For the comparison algorithms, the skin ROI works again
better than the forehead ROI.

The changed window length has no negative effect on
the comparison algorithms, as their performance with orig-
inal window parameters is not higher. An exception is
Van Gastel [29] with a drop of the DR on BP4D+ of
almost 10 %.

The FuseMod algorithm increases its estimation rates on
our database when using 60-second windows across all PPG
signals and reaches a DR of 87.68 % for CHROM.

In summary, the comparison algorithms are not com-
petitive either on moving or non-moving data with the
new developed methods, which achieve a DR of over
70 % on the BP4D+ and over 80 % on our database.
In addition, the method is robust to changes in window
length, which does not result in a decrease in recogni-
tion performance. This is illustrated by the example of
60-second windows, where the values of the error mea-
sures remain almost identical or even increase to those
at 30 seconds.

V. CONCLUSION
We have shown that the photoplethysmographic informa-
tion in the PPG signal can be increased by the conver-
sion methods hue, CHROM and normG compared to the
green channel. In addition, an efficient technique has been
developed that greatly reduces artifacts caused by movement
and Traube-Hering-Mayer waves using the differentiation of
the signal prior to FFT analysis. Furthermore, the median
proved to be the best fusion technique for the results of
the single modulations. It was also shown that the use of
shorter windows for moving data and longer windows for
non-moving data is beneficial. Overall, 30-second windows
turned out to be the most appropriate length. The proposed
method was evaluated on two available databases with a total
of 318 videos. One database contains videos that are strongly
characterized by movements of the subjects and the other
one consists of videos of persons who were requested not to
move heavily. The achieved detection rates of our FuseMod
algorithm with 72.16 % and 87.68 % far exceed the rates
of the best-performing comparison algorithm of 37.37 %
and 59.13 %. This represents an important advance for the
research field of non-contact monitoring of respiratory rates.
By investigating various algorithms, PPG signal conversion
approaches, artifact reduction techniques, fusion procedures,
as well as other pre- and post-processing steps a compre-
hensive examination in the field of facial video-based res-
piratory rate recognition in the visible light spectrum has
been realized, including both existing and newly developed
methods.
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