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ABSTRACT Visual simultaneous localization and mapping (SLAM) is a key prerequisite for many mobile
robotic systems. A common assumption for SLAM methods is a static environment. The interference of
dynamic objects can lead to impairment of the camera pose tracking and permanent distortions of the map.
This limits the use of many visual SLAM systems in real world scenarios, where dynamic environments
are typical. We present a novel method for pixel-wise segmentation of dynamic image sequences based on
a scene flow model estimation. We detect and eliminate outlying pixels sparsely by evaluating each pixel
motion separately and maintain the most possible area of static scene background for SLAM. The evaluation
with the public TUM dataset demonstrates that our proposed method outperforms other comparable state-
of-the-art approaches for dynamic removal for SLAM systems.

INDEX TERMS Simultaneous mapping and localization, motion removal, dynamic environments, motion
segmentation.

I. INTRODUCTION
Simultaneous localization and mapping has been intensively
researched over the past decades and became a fundamental
capability for mobile robots. In visual SLAM the most sim-
plistic setup is a monocular camera, which is popular due
to its low cost, size and fast calibration. Its downside is a
prone initialization process and the unobservability of scale.
With the development of more complex sensors RGB-D
and stereo cameras gained extensive popularity for enabling
a metric scaling of the environment and led to improve-
ments of the robustness of SLAM algorithms. Recent SLAM
systems [1]–[3] achieve excellent accuracy results in static
scenes, but tend to forfeit accurateness in dynamic environ-
ments. A common reason is a flawed transformation estima-
tion of the camera motion, as the matching between a frame
with its previous reference is violated by dynamic objects.
This significantly limits the use of many visual SLAM sys-
tem in target applications, e.g. in mobile service robots and
autonomous vehicles, where multiple dynamic elements in
the environment are common.
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The handling of dynamic objects to improve the perfor-
mance of SLAM in non-static environments is therefore an
important problem. We tackle this by introducing a prepro-
cessing step that segments dynamic pixels based on a scene
flow derived projective transformationmodel. The scene flow
is generated from the dense optical flow estimation of a deep
neural network in combination with depth information of the
corresponding depth map pair from a RGB-D camera. A best
fitting projective transformation of the ego-motion induced
motion field reveals salient pixels and enables a detailed seg-
mentation. We show that our method of decoupling dynamic
elements from the static background is remarkably efficient
due its pixel-wise procedure and independence from further
semantic analysis of the images (See Fig. 1). The contribu-
tions of the proposed work are as follows:

• The creation of scene flow by combining optical flow
with depth map data

• A model for an iterative projective transformation esti-
mation by using a constrained RANSAC for pixelwise
segmentation of dynamic elements

• An extensive evaluation of the proposedmethod, embed-
ded as preprocessing step in a state-of-the-art SLAM
system, with a public benchmark dataset in comparison
to other dynamical removal algorithms
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FIGURE 1. Overview of the results: (a) Segmentation of a person walking
by. (b) Acceptance as static of its momentary static leg. (c) Selective
segmentation of a moving forearm. (d) Segmentation of a moved chair.

The paper is structured as follows: We review different
approaches for handling SLAM in dynamic environments and
analyze recent state-of-the-art methods in section II.

Section III gives details about our proposed approach and
is followed by a detailed result examination in section IV.
Section V presents the conclusion of our work and states
future directions for research.

II. RELATED WORK
Visual SLAM is typically classified in feature-based and
direct methods. Feature based SLAM uses salient image
points for matching while direct methods reconstruct the
pose and map by the minimization of the photometric error.
Both types commonly reject outliers using techniques such
as RANSAC or robust cost functions. Unfortunately, these
methods reach their limit when outliers increase from sin-
gle feature point mismatches or pixel intensity changes
to dynamic objects in form of image clusters. Multiple
approaches target the visual SLAM in dynamic scenes. Some
of the most relevant are:

• Alcantarilla et al. [4] propose, similarly to us, the detec-
tion of moving objects using dense scene flow from
stereo cameras. However, their approach differs in oper-
ating the Mahalanobis metric directly on the scene flow
to identify outliers. Jaimez et al. [5] calculate the scene
flow via K-Means Clustering and warp it with a camera
pose estimation.

• Kim and Kim [6] presented a background model-based
dense-visual-odometry (BaMVO) algorithm that rejects
dynamic objects by modeling a static background from
multiple consecutive depth images.

• Li and Lee [7] calculate the probability of dynamic
feature points using weighted depth edge points.

• Sun et al. [8] remove motion patches on RGB-D data by
tracking particles on ego-motion compensated images.

• Wang et al. [9] segment dynamic image areas by com-
bining epipolar constraints and clustered depth maps.

Many recent approaches use deep learning to enhance the
dynamic object segmentation. The most relevant are:

• Bescos et al.. [10] use Mask R-CNN [11] to segment
potential dynamic objects. Undefined dynamic objects
are detected by multi view geometry.

• Liu et al. [12] apply YOLO [13] to detect potential
dynamic objects. Target objects are further analyzed
for dynamic behaviour using optical flow. Similarly,
Yu et al. [14] construct a static background using
SegNet.

• Zhang et al. [15] determines dynamic pixels by warp-
ing PWC-Net [16] generated optical flow with an
ego-motion estimation.

All of this methods are tied to constraints that either influence
their robustness or the accuracy of the odometry estimation.
The ability of rejecting a priori dynamic image components
by object detection [10], [12], [14] requires the objects to
be known by the neural network in the first place. Secondly,
segmenting a potential dynamic object omits its possibility
of being scene-specific non-dynamic and therefore usable
as part of the static background. E.g. a scene showing a
crowded stand of an opera will likely cause a failure of the
tracking due to the segmentation of all the image area of the
spectators even though their overall movement is minimal.
[12], [14] address this problem by additionally calculating
the optical flow to examine a priori dynamic objects for frame
specificmovement. This can increase the robustness in scenes
with many potential but non-moving dynamic objects, but
doesn’t take into account that also commonly static objects
(e.g. books, chairs, desks) can bemoved and become dynamic
objects. A semantic based segmentation is therefore very tied
to scene specific applications.

Additionally, using only planary information for either
optical flow estimation [15], ego-motion estimation [8] or
feature matching lacks the ability of accurately detecting
motion of smaller image fragments that is orthogonal to the
image plane. Many SLAM algorithms [1], [17] use depth data
from IR sensors or stereo vision to enhance the ego-motion
estimation in 3-dimensional space and enable absolute dis-
tance scaling for the map. So, it is reasonable to use this
additional information channel also for dynamic scene anal-
ysis. Yet, the depth estimation tends to be noisy and become
imprecise with increasing distance, which makes the depth
based segmentation for motion removal very challenging,
especially when camera-induced motion and object motion
take affect in combination [6], [7].

Our proposal targets the frame specific and semi-dense
segmentation of dynamic motion in consecutive images
by calculating the reprojection error towards an estimated
3D homography. The transformation matrix is calculated
from a scene flow, that is generated from a neural network
backed optical flow and its corresponding depth maps. The
pixel-wise segmentation ensures to obtain the maximum
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FIGURE 2. Block diagram of our proposal. The process starts by calculating dense optical flow from a consecutive frame pair. After that the depth flow is
interpolated based on the optical flow and a depth pair for creation of a basic scene flow. In the next step a projective transformation matrix is robustly
estimated from the scene flow that projects the camera induced flow. Flow vectors from dynamic pixels can be segmented afterwards by evaluating its
reprojection error towards the transformation.

possible area of static background which retains optimal
robustness and odometry precision.

III. METHODOLOGY
The idea of our method is straightforward. We want to map
the precise motion field from the RGB-D sequence using
scene flow. We think it is reasonable to assume that there are
less dynamic pixels in the frame than static ones. Accord-
ingly, themajority of themotion field is defined by the camera
motion. We are therefore able to find a representative trans-
formation in the scene flow that reflects the camera motion
between the images pairs. Warping it with the scene flow
shows us based on the reprojection error which pixels have
an divergent motion flow towards the ego-motion and belong
to dynamic objects. Figure 2 illustrates the procedure and will
be further examined in the following.

A. SCENE FLOW ESTIMATION
Scene flow was introduced in [18] as three-dimensional
motion field of points and since then multiple times appro-
ached on stereo [4], [19] and RGB-D systems [5], [20]–[23].
By analogy with optical flow methods novel approaches for
scene flow [24]–[26] with high accuracy are based on deep
learning. Despite their leading performance these methods
suffer from high runtimes of between a few seconds and
plenty of minutes for a single image pair. We reduce the
complexity by combining similarly to Schuster et al. [27] a
top-performing optical flow method with depth data to esti-
mate the scene flow. As illustrated in Figure 2, we have two
time-consecutive input pairs. We estimate the dense optical
flow of the intensity image pair I1, I2 by a neural network,
such as FlowNet2 [28]. In respect to its accuracy it maps
the planary motion flow where the velocity vector fI1,I2 =
[vx vy]T describes the motion between the point x̃ = [x y]T

and its correspondence x̃ ′ = [x ′ y′]T . According to this we
can equate that x̃ ′ = x̃+ fI1,I2 . In the next step we use the cor-
responding depth map pairD1,D2 and extend the equation as
follows.We calculate zD1 (x̃) as depth value in pixel units from
the coordinates of x̃ and its depth correspondence z′D2

(x̃ ′).

As x̃ ′ is likely located in the subpixel area, we estimate z′

by bilinear interpolation. The uncertainty of the measured
depth grows with increasing distance to the camera.We factor
this into the equation with the depth weight µ following
Herbst et al. [21] who weight the depth against the optical
flow. We notate µ = σz(1)

σz(Z )
with σz(Z ) as depth resolution

at depth Z . The uncertainty grows around quadratic with the
distance in common RGB-D cameras such as Kinect [29].
As a result we receive a depth flow vector vz = δz = µ z′−µ z
and extend the optical flow f to scene flow

sI1,I2,D1,D2 =

vxvy
vz

 . (1)

The motion point correspondence relation between the scene
point pI1,D1 = [x y z]T and p′I2,D2

is therefore the following: x ′

y′

µ z′

 =
vxvy
vz

+
 x
y
µ z

 (2)

However, the resulting scene flow map contains gaps
where the optical flow vector exceeds the frame boundaries or
the depth sensor doesn’t provide any depth pixel information.
We therefore smooth the depth map with a median filter to
shrink or even close small gaps. As a result we receive a
semi-dense scene flow map.

B. EGO-MOTION ESTIMATION
The calculated scene flow represents the motion flow of the
scene in respect to the camera. It can be assumed that
the dynamic objects take up a smaller area in the frame
than the overall static background. If the velocity vectors
on the static background are greater than zero, they must be
induced by the ego-motion of the camera. Figure 3 illustrates
this coherence with the ego-motion induced motion flow in
green and themotion vectors from dynamic objects in orange.
We want to find an appropriate transformation matrix that
projects this ego-motion in respect to rotation and translation
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FIGURE 3. Geometric relation between the view of two spatial-temporal
consecutive frames. The three dimensional movement of the projected
points are estimated by a transformation matrix. Most scene flow vectors
are caused by the camera motion between ct and ct−1. Vectors from
dynamic objects (orange) tend to have conspicuous motion flows.

from the velocity vectors:

p′i = Hpi =


h11 h12 h13 h14
h21 h22 h23 h34
h31 h32 h33 h34
h41 h42 h43 h44



x
y
µ z
1

 (3)

H is a 4×4 transformation matrix with 15 degrees of freedom
(h44 = 1). It can be determined with a set P of 5 point
correspondences pI1,D1 ↔ p′I2,D2

with homogeneous point
coordinates [x y z 1]T . Regular least squares methods for
model estimations are very sensitive to outliers, in our case
velocity vectors from dynamic objects. We therefore use the
robust RANSAC method for rejecting outliers and make the
assumption that a least 55 percent of the observed background
is static. Considering that we use the minimum sample size of
s = 5 point correspondences and want to gain a probability
of p = 0.98 that we find a set without any outliers we come
to following minimum number of iterations:

n =
log(1− 0.98)

log(1− (1− 0.55)5)
≈ 75 (4)

We apply a preemptive RANSAC method with a time
constrain of n = 75 for n model estimations and thus gain
a chance of 98 percent for finding a valid sample from a
static background without any outliers from dynamic objects.
We verify the models by dividing the frame into 3·4 grid cells
and taking 10 random samples from each of them. This sums
up to an overall verifying set of 120 samples. The grid size is
chosen in consideration of getting a good indication from all
parts of the image while also sampling as sparsely as possible.
Each estimated model is evaluated against a threshold and
ranked according to their inlier count. First, the reprojection
error vector of the model candidat against the samples is
calculated:

ε = H · pI1,D1 − p
′
I2,D2

(5)

ε is the reprojection error vector between the model esti-
mated p̃′ and the given p′ from the point x ′ and can be

described as ε = [ṽx ṽy ṽz 1]T . Formulated as euclidean
distance this endpoint error (EPE) determines how close the
projected flow is to our scene flow map.

We use a simple judgment rule

J (si) =
{
inlier | ||εH (pI1,D1 ↔ p′I2,D2

)|| < τ (6)

to check if the tested flow vector is consistent with the
ego-motion velocity. The adaptive threshold T1 can be
described as

τ =

{
σ (Ŝ), if σ (Ŝ) ≥ γ
γ, otherwise

(7)

with Ŝ = {||s1||, ||s2||, . . . , ||sN ||}.
It consists of the standard deviation σ (Ŝ) of the scene flow

with respect to the median over all flow vectors in l2 norm.
We use the median instead of mean to diminish the influence
of outliers and to receive a good indication about the distribu-
tion of the camera flow velocities. The standard deviation can
reduce rapidly in scenes with low dynamic objects and minor
ego-motion. As a result even small reprojection errors rise
above the threshold that leads to the inlier rejection of many
static background flow vectors. Depending on the distance of
the objects in the scene the camera induced flow vectors can
vary in velocity. We therefore use a max function to obtain a
minimum threshold of the hyperparameter γ to ensure that
also flow vectors on the edge of the ego-flow distribution
retain as inliers.

The tested inliers are saved along with it transformation
model. After n tested models we refine the best one by
estimating it again with all its inliers using the single value
decomposition (SVD). We then receive an appropriate esti-
mation of the ego-motion scene flow on all levels from the
overdetermined system

P̂′ ≈ HP̂ (8)

with P̂ = [p1 p2 . . . pn] using all n inlier point
correspondences.

C. DYNAMIC PIXEL SEGMENTATION
With the last step of refining the transformation matrix we
calculate a general but precious projection model for the
ego-motion indicating scene flow. We can now generate a
projection error mask by calculating the reprojection error
for every scene flow vector in the image using equation (5).
The greater the error the more likely the corresponding flow
vector belongs to a dynamic object. Consequently, we can set
a threshold to distinguish between dynamic and static image
pixels to obtain a segmentation maskM .

Mt = {pt | ||εH (pI1,D1 ↔ p′I2,D2
)|| > T (9)

where

T = α · τ (10)

The threshold T is combination of our prior used τ and
the hyperparamter α. By tuning α the rigor of the judge-
ment can be regulated to choose what level of dynamics
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FIGURE 4. Qualitative results of our approach. Image pairs of normalized reprojection error maps and corresponding image masks.

is accepted. The lower the threshold themore pixels with even
little motion are rejected. On the other hand a low threshold
increases the risk of falsely declaring static pixels as dynamic.
In general an ideal scene only contains two planes, where
one plane belongs to one or multiple dynamic objects and the
other one is static. In this case all static scene flow vectors
would hold the same distance to the camera and therefore
consists of very similar velocities. The calculated homogra-
phy can project a very precise camera movement and would
enable to reject dynamic pixels with a very strict threshold.
The more static planes are in the scene the more general the
homography has to be estimated to cover all of them. This
can lead to a bad initial position for finding low-key dynamic
outliers.We empirically found that γ = 1.5 and α = 0.7 offer
the best trade off for rejecting dynamic velocities sensitively
while keeping falsely rejections of static parts to a minimum.

IV. EXPERIMENTAL RESULTS
We implemented our method as preprocessing step in the
high-performant ORB-SLAM2 [1] system and evaluated it in
the public TUM RGB-D dataset [30]. First, we examine the
influence of the RANSAC iteration number on the estima-
tion of a well fitting transformation matrix. In the next step
we show the influence of our method on ORB-SLAM2 by
performing it with and without our proposed method imple-
mented. In a third step we compare our results to other state-
of-the-art slam systems for dynamic environments. We chose
those that similarly perform adhoc segmentation of dynamic
image areas without making assumption about a priori poten-
tial dynamic objects by semantic interpretations. Finally we
will analyze a computational costs of our method.

All experiments are executed on the TUM RGB-D dataset
that contains 39 indoor sequences with varying dynamic envi-
ronments and ego-motion. The sequences are recorded with
a Microsoft Kinect camera and consist of RGB and depth
images along with the ground-truth trajectory provided by
a high accuracy motion capture system. 9 sequences con-
tain scenes with dynamic objects and can be categorised in
two different classes. Sequences titled with sitting show two
people are sitting at a desk causing only little motion by

gesturing and minor body movements. In walking scenes the
same two persons from the desk are walking around which
causes challenging dynamic motions. The camera motion is
categorized in four different types: static - the camera is held
in the hands statically, xyz - the camera moves along the x,y
and z axes, rpy - the camera performs a rotation along the
roll, pitch and yaw axes, halfsphere (hs) - the camera motion
forms a half sphere.

A. RANSAC ITERATIONS
In 4 we calculated the RANSAC iteration parameter n ≈ 75
based on theminimum sample set s = 5, the chance of finding
a valid sample p = 0.98 and the assumption that the inlier
ration is ps = 0.55. This approximation can become very
inaccurate, when dynamic objects get near the camera and
thus are able to capture more than the arbitrary 45 percent
of the frame. Given that the static background shrinks to
only half of image area the desired iteration number would
rapidly make n grow to 123. To get a better understanding
of the RANSAC’s behaviour towards the iteration number
and the finding of an appropriate setting we will further
analyse our RANSACmodel in multiple real world scenarios.
Figure 5 shows the results of running sequences from the
TUMRGB-D dataset with increasing iteration numbers from
n = 1 to n = 150 compared with its resulting average inlier
count per sequence run. The number of inliers can change
depending on the sequence. We therefore use normalized
inlier rates in respect to themax inlier count of each sequence,
which indicates the find of a best possible transformation
model. It shows that in the very dynamic scenes w-xyz and
w-halfsphere the inlier ratio is rapidly increasing from n = 1
to n = 30 and experiences a growing decline in the slope
afterwards. At n = 75 the best model receives support from
about 95% of the maximum number of inliers. The maximum
is reached between n = 85 and n = 90. In the walking-static
sequence with a low degree of ego-motion the first model
candidate receive already over 90% of the inlier support.
This ratio increase until it reaches its maximum at n = 15.
At the sample number of 22, the the inlier ratio is stable at its
maximum. In this scene a fixed n = 22 would be sufficient
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TABLE 1. Comparison of different RMSE of absolute trajectory errors [m] of different state-of-the-art methods compared to ours.

FIGURE 5. Inlier ratio towards different RANSAC iteration numbers n.

to gain the highest possibility of finding a valid sample that is
supported by a maximum number of samples from the veri-
fying set. The proposed n = 75 is therefore very conservative
in this specific scene. In sequences with more ego-motion
(w-hs, w-xyz) the chance of receiving a better fitting model
can increase slightly with n > 75 with a declining improve-
ment rate, but comes with a linear growing processing time
rate as drawback (further discussed in section IV-C). Thus,
we will retain the prior proposed RANSAC iteration number
of n = 75 for finding a well fitting model in a reasonable
time.

B. TUM RGB-D DATASET RMSE
Figure 4 shows qualitative results of our approach based
on the w-xyz sequence. We were able to precisely segment
dynamic image parts based on the visualized reprojection
error maps as shown e.g. in figure 4a with a moving body, but
static head and in figure 4b with remained static background
between the arms and the upper body. In figure 4e even
a far distant moving head could be segmented as dynamic
image area. Figure 4f shows a black gap under the head of
the successfully segmented person. In this area the depth
map doesn’t provide depth information and couldn’t therefore
analyzed for dynamic objects.

TABLE 2. RMSE of the absolute trajectory error [m] with and without our
method.

Table 2 shows the results for five sequences of the
open source ORB-SLAM21 [1] and in comparison with an
extended version with our method implemented as prepro-
cessing step. We use the median of ten iterations for each
sequence to reduce the non-deterministic impact from the
systems on the results. The used error metric is the commonly
used absolute trajectory root mean square error (RMSE)
and its standard deviation over ten iterations to examine the
robustness. The absolute trajectory error between the esti-
mated trajectory and the corresponding ground truth trajec-
tory at time i is defined as

Ei := Q−1i SPi, (11)

where S is a rigid-body transformation that maps the esti-
mated trajectory P onto the ground truth trajectory Q. The
error of the sequence is the average deviation from the ground
truth trajectory per frame:

ATErmse :=

(
1
n

n∑
i=1

||trans(Ei)||2
)1/2

. (12)

The results of the ORB-SLAM2 without motion removal
show a strong increase of the error rate in high dynamicwalk-
ing scenes towards the sitting sequences with a small degree
of dynamic motion. This effect is intensified by scenes with
high ego-motion rates such as halfsphere and rpy towards
more static camera scenes like static. The combination
of vigorous ego-motion and a dynamic environment leads
besides the inaccurate odometry estimation to short time
tracking losses and varying feature point tracking behaviour,

1https://github.com/raulmur/ORB_SLAM2
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which reduces the robustness and results in a higher standard
deviation.

The implementation of our proposed method leads to a sig-
nificant improvement of the RMSE in almost all sequences.
The best results are archived in scenes with low ego-motion
and very dynamic objects. The accuracy dispersion is mostly
improved in the same circumstances, but aggravates in scenes
with low degree of motions. The reason can be found by
the vanishing threshold that is induced by the low standard
deviation of the flow velocities. This demands a fine-tuning of
the γ parameter from (7). But due to the overall low dynamics
a loose setted γ will accept a lot of dynamic pixels which
results in a higher RMSE. A more tighter setting will squeeze
out dynamic elements, but also noisy static ones. In this case
the standard deviations of the results increase as shown in
table 2 in the sitting sequences. We achieve an improvement
of over 90% in all walking scenes except one, with two
improvement rates of over 95%. The reliability of getting the
same results in multiple iterations are enhanced in three of
five cases and only worsened in one case. Examining this
case showed us that the high standard deviation is caused by a
few frames from the scene where a person is walking straight
orthogonal towards the image plane. This motion is captured
by the interpolated depth vectors, but due to its weight factor
the velocity is reduced and lays right on the verge for getting
rejected as dynamic motion. As a result the feature points on
the walking person are accepted in a few iterations and lead
to strong distortion of the trajectory.

Table 1 shows our results compared to other state-of-the-art
motion removal approaches. In addition to the trajectory
error error rate we also consider the relative improvement
from each original SLAM system towards its motion detec-
tion (MD) enhanced version. Our method outperforms other
state-of-the-art algorithm in most cases and achieves higher
improvement rates in even more sequences. The most accu-
rate outcomes are attained in scenes with translational or few
ego-motion in combination with high dynamic environments.
The biggest benefit is achieved in w-xyz with a RMSE of
0.018 m, which denotes an improvement of 80.65 % towards
the second best motion removal approach [8] with 0.093 m.
In sequences with less dynamic objects we achieve similar
results as DynaSlam with its multi view geometry approach
as shown in s-halfsphere and w-static. In s-xyz we get a
slightly less accurate trajectory towards the state-of-the-art.
In this scene dynamic motions are very small and have no
impact on the trajectory estimation, which can be seen in the
results from the other state-of-the-art methods. An additional
preprocessing step for filtering is therefore not necessary and
even brings the risk for impairing the results.

C. TIMING
The average computation cost of finding amodel grows linear
towards the increasing iteration number. With the proposed
n = 75 the computational cost of the finding the transforma-
tion matrix is 60 ms. This refers only to the model estimation
and the calculating of the scene flow, which gets generated on

the fly. In case of a direct SLAM a segmentation map has to
be calculated afterwards. For featured based SLAMmethod it
might be more handy and quicker to analyze only those scene
flow vectors, that are laying on a feature point. The average
processing times for each step are the following:

• Model Estimation (n = 75): 60.0 ms
• Segmentation Mask: 15.7 ms
• Feature Rejection: 1.2 ms

Creating the segmentation mask consists of calculating the
reprojection error for every valid scene flow vector in the
frame. For dynamic keypoint rejection we analyze a 3 · 3
pixel patch around every feature point for dynamic behaviour.
As for ORB-SLAM2 with default 1000 feature points we can
reduce the computation time to averagely 1.19 ms. All pro-
cessing steps are done on an Intel i7-6850K (6 cores @
3.6GHz) with 32Gb RAM and optimized with the EIGEN
library [31]. Additional computation costs are coming from
generating the optical flow. The inference time depends on
the used model and hardware.

V. CONCLUSION
We presented a novel method for the pixel-wise segmentation
of dynamic elements to improve the robustness and accu-
racy of RGB-D SLAM systems. Our approach can be used
in environments without a priori knowledge about possible
dynamic objects and can be implemented in feature based
SLAM as well as in direct SLAM thanks to its pixel-wise
segmentation procedure. Our method outperforms almost any
other comparable motion removal approaches on the TUM
RGB-D dataset and achieves its best results in scenes with
a high challenging dynamic objects and translatory or few
ego-motion.

A limiting constraint is the choice of appropriate hyper-
parameters for the threshold calculation of 7 and 10, as an
optimal refinement would require a priori information about
the degree of the dynamics in the environment and of the ego
motion. The dynamic adjustment of the parameters based on
a measurement window of the rejection rates in recent frames
could be a possible future improvement to counteract against
over- and undersegmentation.

Another promising prospect is the integration of depth
information from stereo images instead of RGB-D, which
could increase the resolution and the accuracy of the scene
flow. This would enable to leverage the depth weighting fac-
tor to exploit potential for further improvements of the robust-
ness as discussed in section IV-B for the xyz(w) sequence.
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