
technologies

Article

Application-Specific SoC Design Using Core
Mapping to 3D Mesh NoCs with Nonlinear Area
Optimization and Simulated Annealing

Jan Moritz Joseph 1,* , Dominik Ermel 1, Lennart Bamberg 2, Alberto García-Oritz 2 and
Thilo Pionteck 1

1 Institut für Informations- und Kommunikationstechnik, Otto-von-Guericke-Universität Magdeburg,
39106 Magdeburg, Germany; dominik.ermel@ovgu.de (D.E.); thilo.pionteck@ovgu.de (T.P.)

2 Institute of Electrodynamics and Microelectronics, University of Bremen, 28359 Bremen, Germany;
bamberg@item.uni-bremen.de (L.B.); agarcia@item.uni-bremen.de (A.G.-O.)

* Correspondence: jan.joseph@ovgu.de

Received: 26 November 2019; Accepted: 21 January 2020 ; Published: 23 January 2020
����������
�������

Abstract: Core mapping, in which a core graph is mapped to a network graph to minimize
communication, is a common design problem for Systems-on-Chip interconnected by a
Network-on-Chip. In conventional multiprocessors, this mapping is area-agnostic as the cores
in the core graph are uniform and therefore iso-area. This changes for Systems-on-Chip because tasks
are mapped to specific blocks and not general-purpose cores. Thus, the area of these specific cores
is varying. This requires novel mapping methods. In this paper, we propose a an area-aware cost
function for simulated annealing; Furthermore, we advocate the use of nonlinear models as the area
is nonlinear: A semi-definite program (SDP) can be used as it is sufficiently fast and shows 20% better
area than conventional linear models. Our cost function allows for up to 16.4% better area, 2% better
communication (bandwidth times hop distance) and 13.8% better total bandwidth in the network in
comparison to the standard approach that accounts for both the network communication and uses
cores with varying areas as well.

Keywords: Network-on-Chip; core mapping

1. Introduction

Core mapping is one important design-time optimization problem for chips interconnected by
Network-on-Chips (NoCs). The target of this mapping problem is a better distribution of work among
the cores to improve data movement between them. Different objectives can be found in the literature
such as reducing power [1] or avoiding bandwidth limitations [2]. In this paper, the objective optimizes
the area of the chip, which is not commonly found in the literature so far because of the tacit assumption
of iso-area cores. However, this is not valid for all systems, as specific blocks will have different areas
in contrast to general-purpose cores. We extend our work from [3], in which we proposed a nonlinear
model to improve area, by incorporating this model in a simulated annealing cost function to solve
area-aware core mapping.

The problem of core mapping is defined as follows: The application’s data streams are modeled
using a core graph, in which nodes represent cores and edges with their edge weight model the
bandwidth of data stream between the cores. This core graph is mapped to a chip, typically a
multiprocessor interconnected by an NoC. The chip is represented by a network graph, in which
nodes model tiles that reserve space for an NoC router and a core, and edges model links between
tiles. The objective of this optimization is minimization of network latency, typically measured

Technologies 2020, 8, 10; doi:10.3390/technologies8010010 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
https://orcid.org/0000-0001-8669-1225
https://orcid.org/0000-0001-6518-1226
http://dx.doi.org/10.3390/technologies8010010
http://www.mdpi.com/journal/technologies
https://www.mdpi.com/2227-7080/8/1/10?type=check_update&version=2

Technologies 2020, 8, 10 2 of 14

in the cumulative hop distance × bandwidth (e.g., [2]), maximization of the throughput, typically
measured by the maximum bandwidth transmitted through single links (e.g., [4]), minimization of
energy consumption, measured in dynamic router activity (e.g., [1]) or minimization of execution
time, measured by the hop distance along the critical path (e.g., [5]). Core mapping is a very common
electronic design automation (EDA) task in NoC design and many approaches from exact analytical
solutions, e.g., [5], to heuristics such as simulated annealing (SA), e.g., [2], have been proposed.

Recently, Systems-on-Chip (SoCs) gained attention. There are two important differences to
multicore processors: First, the function and thus the area of cores varies in SoCs. Thus, the underlying
assumption of iso-area cores, which lead to disregarding the core area during core mapping, is not valid
anymore. Second, many SoCs such as vision chips [6] are application specific, while multiprocessors
are not. Thus, the application properties must be accounted for already during core placement to
exploit additional optimization potential. Using conventional approaches, each tile would have to
reserve area for the largest core, which is inefficient, naturally. An example is depicted in Figure 1,
in which cores of different sizes (orange) allocate less area than reserved (light gray). Therefore, novel
approaches are required.

Figure 1. Cores (orange) of different areas on an SoC, attached to a 2D-mesh NoC [3].

Ref. [3] introduced nonlinear models and compared them against linear models to optimize area
during core mapping. Here, we extend this work by proposing a cost function for simulated annealing
to optimize the core mapping and the chip area; Specifically, the nonlinear models are used to optimize
area within the simulated annealing. Since these nonlinear models are exact for area, we propose a
mixed-exact-approximate method to minimize communication and area in SoCs during design-time
core mapping.

The remainder of this work is structured as follows: A review of the state-of-the-art is given in
Section 2. Next, the area-aware simulated annealing is introduced in Section 3 that uses linear or
nonlinear models to optimize area. Both of these models are introduced in Section 4, which are based
on our preliminary paper [3] that this work extends. The results obtained with the simulated annealing
are reported in Section 5. The work is concluded in Section 6.

2. Related Work

As already explained, many works on core mapping exist. In general, there are two classes
of mapping methods: Exact approaches using an analytical model such as a mixed-integer linear
program (MILP), an extensive search of the solution space or heuristic approaches that approximate
the solution at better runtime, e.g., simulated annealing or particle swarm optimization. Within each
class, the approaches can be further classified by their objective functions that e.g., minimize power or
maximize performance.

In the first class of exact approaches, the vast majority of works use mixed integer linear
programming to solve core mapping: Ref. [7] allows for connecting multiple cores to a single router.
By that, energy consumption is minimized by up to 81.2% compared to one-to-one connections. Ref. [8]
optimizes mapping and topology selection to minimize bandwidth, area and network component
savings by a minimum of 50% each in comparison to traditional design approaches. Ref. [9] maximizes
the worst case throughput and also accounts for multi-threaded processes, i.e., mapping of multiple
cores to a single tile in the network graph. Ref. [10] minimizes communication energy using mapping;

Technologies 2020, 8, 10 3 of 14

it targets integration into frameworks that find optimal network voltage and frequency. In particular,
Ref. [2] is worth mentioning as it is the standard work core mapping in that cores have different
areas. The work uses MILP to synthesize an NoC topology from a core graph with area and power
annotations. In contrast to this paper, area reduction is not objective. Rather, Ref. [2] reduces power.
Different multimedia benchmarks [11] are used for evaluation. This paper is closely related to [2]
because of the consideration of area. Thus, we compare against the same benchmarks for a fair
comparison. As our objective function is different, we are able to achieve better area figures.

In the second class of heuristic approaches, many different algorithms have been explored, e.g.,
genetic algorithms (GA), in which solutions evolve, particle swarm optimization (PSO), in which agents
collaboratively find a good solution, or simulated annealing (SA), in which cooling processes are used
as inspiration to find optimal configurations. Ref. [12] uses GA to minimize the overall execution time
of the application. More recently, GA is rarely used due to lower runtime than PSO and SA: Ref. [13]
optimizes mapping for partially vertically-connected 3D NoCs to make best use of through-silicon
via (TSVs). The authors propose both and MILP and a PSO to improve network congestion, but the
MILP has too long of a runtime for realistic use cases. SA is one of the most-used EDA methods. It can
be used at many abstraction levels, from gate-level [14] to system-level optimization [15]. A reason
therefore lies in SA’s compelling performance, as we will show with a comparison against PSO in this
work. The performance for SA can be further by combination with different techniques: For example,
Ref. [16] shows that SA core mapping combined with cluster analysis allows for up to 30% better
runtime at the same quality of results in comparison to off-the-shelf SA. Ref. [17] shows that application
of further knowledge about the structure of the objective function allows for up to 66% better average
energy consumption in comparison to a blind search. Ref. [18] also focuses on reduction of energy
consumption. In this approach, the router allocation is done prior to voltage islanding, thus saving
up to 63% power and delay over Sunfloor [1]. Ref. [19] focuses on runtime reductions under thermal
constraints, which are specifically challenging in 3D NoCs. In their work, the authors formulate a
communication and thermal aware mapping problem and solve it using custom heuristics. They
achieve up to 43% better runtime than related works.

To summarize, there are many approaches in the literature on core mapping in NoC-based
multiprocessors. Only a small subset accounts for area because most of the works assume homogeneous
cores, which is not always valid for heterogeneous scenarios. As area is nonlinear, intrinsically, it is
not possible to model it exact through means of linear models. Thus, a novel approach is required as
proposed in this work.

3. Area-Aware Core Mapping with Simulated Annealing

3.1. Problem Definition

The problem of core mapping has been defined multiple times, e.g., [16,20]. The difference to our
definition lies in the annotation of the core graph with area. Even more, this area annotation enables
the definition of a new objective function including area. The problem of core mapping takes a core
graph and a network as input. These are defined as follows:

Definition 1 (Core Graph). The core graph models the area of cores as well as the bandwidth requirements for
communication between cores. It is digraph CG = (C, EC), in which the set C of vertices consists of all cores ci,
with i ∈ {1, . . . , |C|} as the set of core indexes. The set of directed edges ei,j ∈ EC models the communication
between cores ci and cj ∈ C. Cores are area-annotated by the function area : C → R+. The bandwidth between
nodes is given by the capacity function bandwidth : EC → R+.

Definition 2 (Network Graph). The network graph models the interconnection topology of the set of target
SoC architectures. The network graph is a undirected graph NG = (T, ET), in which the set T of vertices
consists of tiles ti, with i ∈ {1, . . . , |T|} the set of tile indexes, which implement one NoC router each and reserve

Technologies 2020, 8, 10 4 of 14

space for the area of a mapped core. The set of edges ei,j = ej,i ∈ ET models the connections between routers in
tiles ti and tj ∈ T.

The aim of the core mapping is to find a mapping that minimizes an objective function.

Definition 3 (Mapping Function). The mapping function assigns a core c ∈ C to a tile t ∈ T. It is defined as

map : C → T.

The mapping function is injective because each tile can only host one core.

We also define two auxiliary functions. First, the mapping of cores to tiles results in an area
requirement for each tile:

Definition 4 (Network Area Function). The area requirement of each tile is given by the function

F : T → R+

that is defined as F(tj) = area(map−1(tj)). Since the mapping function is injective, map−1 is well-defined on
the image set of map. Where map−1(tj) is not defined, we define F(tj) = 0 instead.

Second, we model the flow of packets in the network graph , i.e., the paths of packets based on the
routing algorithm, as a source-sink-flow in the network digraph.

Definition 5. We define the function f that gives the network flow for each pair of components:

f : ET →
⋃

(ci ,cj)∈EC

{
h | h is a ci-cj-flow in NG, value(h) = 1

}
. (1)

The value of the ci-cj-flow is denoted by value(f), following the convention used in [21]. Flows are a very
powerful concept, as they give a natural approach to the conversion of core flows to network flows. The function
f assigns a flow value to every edge in the network graph ET by considering the flow induced by all edges in
the core graph EC. Hence, a flow for a specific pair of cores is assigned to all links in the network, which will
be passed by its packets. Consequently, both deterministic and adaptive routing algorithms can be modeled.
As packets following deterministic routing algorithms only have one path through the network, the values of the
flows will be binary, i.e., the set of links passed by packets has a flow value of 1, while all other links have a flow
value of 0. In case of adaptive routing algorithms, the values of the flow along each link will be in the interval
of [0,1]. This flow value represents the probability that a packet from the pair of cores will pass this very link
when routed.

By that, the objective function of the area-aware core mapping can be defined:

Definition 6 (Objective Function).

O = w1Oarea + w2Olatency + w3Obandwidth. (2)

The heightened addends are defined as follows: The costs for area Oarea are the total area of the chip including
whitespace based in F for a given mapping. The calculation of area is strictly dependent on the network topology.
Here, we use a 2D mesh, as shown in Figure 1. The mesh reduces the spacial freedom and requires that cores are
located in a grid. Thus, the area of the chip is given by the width W and the height H of the floorplan for this
mapping. As the area WH is a product and difficult to calculate in linear models, we use the easy-to-linearize

Technologies 2020, 8, 10 5 of 14

maximum function to approximate area. This results in a model favouring squared chips. The objective for the
chip area thus is:

Oarea = max(W, H).

The costs for latency are measured by the hop distance × bandwidth for all data streams in the core graph:

Clatency = ∑
c∈EC

bandwidth(c)| f (c)|.

The costs for bandwidth are the maximum bandwidth of any link in the network graph for a given mapping:

Obandwidth = max
v∈ET

∑
c∈EC

bandwidth(c)
(

f (c)(v)
)
.

This objective function defines the novel problem of area-aware core mapping.

3.2. Simulated Annealing

We solve the area-aware core mapping using simulated annealing. We also implemented an exact
solution using an MILP. Since the runtime of this MILP is very poor and only allows for solving input
sets with up to seven components in reasonable time, we do not give a detailed definition. Therefore, a
heuristic such as a simulated annealing is required. The steps of the simulated annealing are shown in
Figure 2. An initial mapping is calculated from a core graph CG and a network graph NG. As depicted,
this mapping does not optimize area and therefore includes whitespace (here shown in gray), i.e.,
unused die area. The initial mapping can either be random or area-efficient, depending on the goals of
the optimization. Next, the simulated annealing is executed. The algorithm is initialized with this given
valid, but possibly inefficient solution. The solution candidate is modified iteratively by executing
the neighbor function that slightly changes the mapping map. As a novel feature, we optimize the
area analytically within the simulated annealing before calculating the objective function (“Minimize
Area” in Figure 2). This allows for a precise area optimization beyond the limitations of heuristics
approaches possible by the simulated annealing. We will explain the analytical optimization of area in
a separate Section 4. After this analytical step, the complete objective is calculated in that step of the
simulated annealing. The algorithm might accept the novel solution based on the value of the objective
function. Naturally, the simulated annealing is iterated and stopped when the terminating conditions
are met. The final solution returns a mapping function map that minimizes area and communication,
i.e., includes a floorplan for the given mapping. The initial solution and the neighbor function of the
simulated annealing are defined as follows:

Definition 7 (Initial Solution). There are two ways to generate an initial solution:

1. Randomly generated: The function map is generated such that each core ci is assigned to one random
tile tj.

2. Area-efficient: The floorplan will be packed area-efficiently, i.e., with minimal whitespace, if all tiles within
a row and a column have a similar area. Such a good candidate can be found using a greedy strategy:
The cores are sorted descending by area. The tiles are filled from the upper left corner. The cores are assigned
to the next free tile in the current row or column, while row and column assignment are alternating. If a
row/column is full, tiles will be assigned to the adjacent one. Figuratively speaking, the tiles are filled from
the upper left corner to the bottom right corner.

Definition 8 (Neighbor Function). The neighbor function (or move function) modifies a given mapping
function map such that it takes the function map as input and returns a modified function map′. Specifically,
it is modified by selection a core ci and a tile tj 6= map(ci) uniform randomly. The selected core is mapped to
the selected tile, i.e., position. If a core is already present there, the two mapped cores are swapped. Thus, the
modified mapping function map′ is defined as follows:

Technologies 2020, 8, 10 6 of 14

map′(c) =

tj for c = ci,

map(ci) for map−1(tj) is defined and c = map−1(tj),

map(c) else.

(3)

This concludes the definition of the simulated annealing. It remains to optimize the area for a
given mapping map, as explained in the next section.

Start

Initial Mapping

Simulated Annealing

Solution

Random Mapping

Area-efficient Mapping

Execute Neighbor Function

Externally Minimize Area
with an anlytical model

Calculate Objective
C=w1carea+w2clatency+w3cbandwidth

Stop?

NG CG
&

Figure 2. Simulated annealing algorithm.

4. Area Optimization for a Given Mapping Using Linear and Nonlinear Models

Conventionally, a mapping of tasks to (multiprocessor) cores would not require an optimization
of area since cores are assumed to be identical and thus equal in area. However, this assumption will
not be valid in SoCs since each task implements a different IP with varying size. Hence, tasks must also
reserve adequate area for their implementing IP. The optimization problem’s constraints and variables
are shown in Figure 3: Cores are mapped to a mesh of tiles. Each core has an area value, denoted by
Fi,j for a core in a given row i and column j. The height of all rows and width of all columns, denoted
by ci and rj respectively must be minimized. The multiplication of width and height is constrained by
the size of the mapped cores. By that, the white space (gray in Figure 3) is reduced.

F1,1

F1,2

F2,1

F2,2

. . .

. . .

. . .

. . .

.

F1,k

F2,k

Fl,1
Fl,2 Fl,k

c1 c2 . . . ck

r1

r2

...

rl

Figure 3. Variables and constraints of area optimization.

More specifically, the area optimization problem during core mapping is formulated as
follows [3]: Assume a given mapping of less than or equal of lk cores to tiles in a mesh of l rows
and k columns. Each core has the area Fi,j, for mapping to row i ∈ [l] := {1, . . . l} and column
j ∈ [k] := {1, . . . k}. For all empty tiles without a mapped core, Fi,j = 0 will be zero. The height of rows

Technologies 2020, 8, 10 7 of 14

is denoted by ri ∈ R for all i ∈ [l]. The width of columns is denoted by cj ∈ R for all j ∈ [k]. The area
of each tile is constrained by its mapped core:

ricj ≥ Fi,j for all i ∈ [l], j ∈ [k]. (4)

The objective function O2 minimizes the side length of a square that encloses all tiles (i.e., W =

∑j∈[k] cj, H = ∑i∈[l] ri):

O2 = max

∑
i∈[l]

ri, ∑
j∈[k]

cj

 −→ min. (5)

The objective function O2 is not linear due to the use of the max-function and hence must be
linearized. This can be done using an auxiliary variable F̃ ∈ R, which is constrained by the maximum
of the summed height and width of the SoC:

F̃ ≥ ∑
i∈[l]

ri, (6)

F̃ ≥ ∑
j∈[k]

cj. (7)

This relatively easy approach is possible because the linearized objective C̃ function minimizes F̃:

Õ = F̃ −→ min. (8)

The issue of modeling Equation (4) remains, which is not linear. We propose both a linear
approximation in Section 4.1, which is fast to calculate but does not yield an approximation error, and
a nonlinear model in Section 4.2, which is slower than the linear approximation but has no error.

4.1. Linear Model

Since the area of a rectangle Fi,j with edge length ri and cj cannot be calculated through means
of a linear model, a linear approximation is required. The approach from Lacksonen et al. [22]
for the factory layout problem can be applied here as well. Equation (4) is depicted in Figure 4:
The iso-area-hyperbola ricj = Fi,j is shown in red in the space of row-heights ri and column-widths cj.
Linearization of the iso-area-hyperbola is possible by introduction of an additional constraint for the
aspect ratio of each tile. The aspect ratio η ∈ (0, 1) limits the height and width of tiles for all i ∈ [l] and
j ∈ [k]: ri ≥ cjη and ri ≤ cjη

−1. The constraint aspect ratio is shown in Figure 4a in blue.

cj

ri

ri cj = Fi,j

ymax

xmax

ri = cjη
-1

ri = cjη

possible solutions for
the size of a tile

linearization
error

linearization of product
using aspect ratio η
and upper bound xmax

(a)

cj

ri

ri cj = Fi,j

ymax

xmax

ri = cjη
-1

ri = cjη

possibile solutions for
the size of a tile

linearization
errors

linearization of product with
multiple sampling points
and the aspect ratio η

(b)
Figure 4. Area linearization [3]. (a) Simple approximation with single linear equation. (b) Reduced
error through multiple linear approximations.

Technologies 2020, 8, 10 8 of 14

Figure 4a also shows the solution space as the red-shaded area. Following Equation (4), the area
rici of a tile i, j must be larger than its core with size Fi,j, i. e. , Fi,j ≤ rici. The iso-area-hyperbola is
the lower left bound for the solution space. The maximum edge length of the tile further limits the
solution space, given by the constraints: cj ≤ ymax and ri ≤ xmax. Finally, the solution space is limited
by the line equations for the aspect ratios η from Equations (10) and (11).

The iso-area-hyperbola is approximated by a line equation given by the intersections between
the lines for the aspect ratios and the maximum edge length. This line equation is shown in black in
Figure 4a. The resulting linearization error is plotted in green in Figure 4a. In general, it is possible to
reduce this error by using multiple equally-spaced knots as shown in Figure 4b. Each linear equation
connecting two adjacent knots intersected with the iso-area-hyperbola (ricj = Fi,j) is called a 1-spline.
While more 1-splines reduce the error, they also significantly increase the model complexity. Integer
inequalities are required to determine in which spline a given solution is located. There are at least three
additional integer inequalities per supporting point. Naturally, this reduces runtime performance.

To summarize, the linear optimization minimizes

C̃ = F̃ −→ min, (9)

subject to the following constraints with aspect ratio η ∈ (0, 1):

ri ≥ ηcj ∀i ∈ [l], ∀j ∈ [k], (10)

cj ≥ ηri ∀i ∈ [l], ∀j ∈ [k], (11)

ri + cj ≥
√

Fi,jη +
√

Fi,j/η ∀i ∈ [l], ∀j ∈ [k]. (12)

Equation (4) is approximated by Equation (12) for one single 1-spline as in Figure 4a. It can easily
be deducted from the intersections of the iso-area-hyperbola and Equations (10) and (11). The required
values for

√
Fi,jη +

√
Fi,j/η can be precalculated before starting the optimization and thus are constants

within the linear model.

4.2. Nonlinear Model

To remove the linearization error, SDPs can be used because they can express the red
iso-area-hyperbola in Figure 4. We set k l variables Xk(i−1)+j such that

Xk(i−1)+j =

[
ri

√
Fi,j√

Fi,j cj

]
� 0, ∀i ∈ [l], ∀j ∈ [k]. (13)

These matrices are premised to be positive semidefinite (i. e. , “� 0”); thus, each principal minor
is greater or equal to 0:

det
(

Xk(i−1)+j

)
≥ 0, (14)

⇔ ricj − Fi,j ≥ 0, (15)

⇔ ricj ≥ Fi,j, ∀i ∈ [l], ∀j ∈ [k]. (16)

We formulate a SDP. The objective function minimizes the linearized variable x ≥ max{∑ ri, ∑ ci}
using Equations (6) and (7):

x = F̃ −→ min, (17)

subject to the following constraints.

Technologies 2020, 8, 10 9 of 14

We assign the corresponding area values to each matrix using the Frobenius inner product:

2
√

Fij ≤
〈[

0 1
1 0

]
, Xk(i−1)+j

〉
≤ 2

√
Fij, ∀i ∈ [l], ∀j ∈ [k]. (18)

For each i ∈ [l], the upper left entry of the matrices Xk(i−1)+j has the same value for all j ∈ [k]
(this models ri):

0 ≤
〈[

1 0
0 0

]
, Xk(i−1)+1

〉
+

〈[
−1 0
0 0

]
, Xk(i−1)+j

〉
≤ 0. (19)

For each j ∈ [k], the lower right entry of the matrices Xk(i−1)+j has the same value for all i ∈ [l]
(this models cj):

0 ≤
〈[

0 0
0 1

]
, Xj

〉
+

〈[
0 0
0 −1

]
, Xk(i−1)+j

〉
≤ 0. (20)

We model the maximum variable x for the objective function (this models x ≥ ∑ ri and x ≥ ∑ ci):

0 ≤ x +
l

∑
i=1

〈[
−1 0
0 0

]
, Xk(i−1)+1

〉
, (21)

0 ≤ x +
k

∑
j=1

〈[
0 0
0 −1

]
, Xj

〉
. (22)

Again, areas of tiles are constrained by an aspect ratio η. Note that this aspect ratio is not violated
by the relation between ri and cj. Rather, a component can find a rectangle inside the bounding box
given by ricj. This rectangle has the size of the core. The aspect ratio of its edges is greater than η. We
formulate for all i ∈ [l] and for all j ∈ [k]:

√
ηFi,j ≤

〈[
1 0
0 0

]
, Xk(i−1)+1

〉
, (23)

√
ηFi,j ≤

〈[
0 0
0 1

]
, Xj

〉
. (24)

5. Results

5.1. Simulated Annealing (SA) vs. Particle Swarm Optimization (PSO)

Our approach is compared against [13], which uses PSO to map an application on a partially
vertically-connected 3D mesh NoC with cores of different sizes. It is one of the most recent works
on mapping in NoCs at the time of writing this paper, and it does account for cores of different
areas, but it does not optimize area. To compare against this work, we use our cost function with the
SA to map video object plane detection (VOPD) benchmark to a 3D-connected 4× 2× 2 NoC and
double video object plane detection (DVOPD) benchmark to a 4× 4× 2 NoC with a varying number
of vertical connections. The benchmark application graphs are from [23]. The other benchmarks
from [23] are smaller and thus a comparison is not useful because both the PSO and the proposed
heuristic algorithm using a simulated annealing will find the global minimum in a small design space
in a short time. We chose an arbitrary but identical initial mapping for both benchmarks and both
algorithms. We use 20 reruns for both PSO and simulated annealing so that both the algorithms have
approximately the same computation time budget. The parameters of the PSO are given by [13] (k1 = 1,
k2 = 0.04, k3 = 0.02). The parameters for the simulated annealing are: initial temperature 30, cooling

Technologies 2020, 8, 10 10 of 14

0.97, 1000 iterations. Both [13] and the our approach use the same objective function that minimizing
bandwidth times communication hop distance. We disregard area because it is not used in [13] and
therefore would skew the comparison. We change the TSV count in the NoCs to vary the mapping
difficulty. The results are shown in Table 1 for VOPD and in Table 2 for DVOPD. The proposed
heuristic algorithm allows for up to 15% improved performance with 2.564–3.125% better performance
in average.

Table 1. Comparison of simulated annealing (SA) vs. particle swarm optimization (PSO) from [13]
for VOPD benchmark. Network performance comparison (hop distance [HD] × bandwidth [Mb]).
Twenty reruns for PSO and simulated annealing with the same computational time budget for different
TSV counts.

Vertical Hop Distance × Bandwidth [Hd Mb]

DifferenceConnection PSO Proposed

Count mean std mean std

1 12,229 0 12,229 0 0%
2 10,591 581 9005 0 15%
3 8894 102 8659 0 3%
4 9013 364 8595 0 5%
5 8725 155 8595 0 1%
6 8723 148 8595 0 1%
7 8595 0 8595 0 0%
8 8595 0 8595 0 0%

Average Improvement 3.125%

Table 2. Comparison of SA vs. PSO from [13] for DVOPD benchmarks. Network performance
comparison (hop distance [HD] × bandwidth [Mb]). Twenty reruns for PSO and simulated annealing
with the same computational time budget.

Vertical Hop Distance × Bandwidth [Hd Mb]

DifferenceConnection PSO Proposed

Count mean std mean std

1 43,330 0 43,330 0 0%
2 38,274 163 37,954 395 1%
3 34,636 0 33,854 0 2%
4 34,217 674 32,382 0 5%
5 33,249 555 31,014 0 7%
6 32,351 699 30,168 0 7%
7 31,920 575 29,916 0 6%
8 30,767 679 29,744 0 3%
9 30,767 679 29,744 0 3%
10 30,318 453 29,712 0 2%
11 30,235 409 29,712 0 2%
12 29,764 69 29,712 0 0%
13 29,996 340 29,712 0 1%
14 29,805 208 29,712 0 0%
15 29,712 0 29,712 0 0%
16 29,712 0 29,712 0 0%

Average Improvement 2.563%

5.2. Linear vs. Non-Linear Model

We compare our linear and nonlinear models by generating results for the same inputs with
both the LP and the SDP. We implement our models in MATLAB R2018a and they are available from

Technologies 2020, 8, 10 11 of 14

Github [24]. The LPs use IBM CPLEX 12.8.0 [25] as optimization engine. The SDPs use Mosek 8.1 [26].
We generate three random input benchmarks as in [3]. Iso-area cores are used for a fair comparison
against conventional approaches:

1. A 3D SoC with two layers and five tiles, of which three tiles are in layer 1 and two tiles are in
layer 2.

2. A 3D SoC with four layers and 10 tiles per layer connected by a 2 × 5 mesh NoC.
3. A 3D SoC with four layers and 20 tiles per layer connected by a 4 × 5 mesh NoC.

Cores are set to be 10 mm2 large. Routers with five ports require 1 mm2. The router area is
linearly proportional to port count depending on the position of the router in the network. TSV arrays,
which vertically connect routers, are 2 mm2 large. The aspect ratio is limited by η = 0.1. We run
the optimization 50 times to average runtime on an Intel Core i7-6700 (eight cores at 3.4 GHz) using
Windows 10.

The results for performance, runtime and model properties are reported in Table 3:

• Performance. In benchmark 1, the summed chip area is 68.7 mm2 from the LP and 59.8 mm2 from
the SDP. In benchmark 2, the summed chip area is 832 mm2 from the LP and 695 mm2 from the
SDP. In benchmark 3, the summed chip area is 1272 mm2 from the LP and 1188 mm2 from the
SDP. Since in the lowest layer there is no TSV area required (there are no keep-out-zones using
via-middle-process-flow), this layer is smaller.

• Runtime. The difference in runtime between LP and SDP is between 6× and 31%. The LP loses
its runtime advantage for larger inputs.

• Model Properties. We also report inequality and variable count. The linear model requires 2kl + 2
inequalities and k + l + 1 variables. The nonlinear model requires (kl)2 + k + l + 2 inequalities
and kl + 1 variables. Thus, the SDP has considerably more variables and inequalities. However,
both models are very small in comparison to common use cases for LP and SDP solvers with
millions of variables and equations. Therefore, the models do not largely differentiate in terms of
memory usage.

Table 3. Area, runtime, inequality count and variable count comparison between linear and nonlinear
model (runtime average of 50 reruns) [3].

Layer

Area [mm2]

5 PEs 40 PEs 80 PEs

LP SDP ∆ LP SDP ∆ LP SDP ∆

1 43.0 36.8 −14.4% 211 178 −15.6% 364 301 −17.4%
2 25.7 23.0 −10.5% 222 180 −18.9% 379 313 −17.4%
3 — — — 214 183 −14.5% 378 313 −17.2%
4 — — — 185 154 −16.8% 316 261 −17.4%

Average Area
Reduction −12.5% −16.5% −17.3%

Average runtime [s]

0.4 2.9 +625% 3.9 7.5 +92.3% 12.2 16.0 +31.1%

Inequality count

16 31 +94% 88 436 +395% 168 1644 +879%

Variable count

9 21 +133% 32 112 +250% 40 200 +400%

Technologies 2020, 8, 10 12 of 14

5.3. SA for Area-Aware Core Mapping with Linear vs. Nonlinear Models

As introduced in the related work, Ref. [2] compares against our approach as it conducts core
mapping and accounts for varying area of cores. Only quadratic-shaped cores of are mapped to a 2D
mesh NoC in that work. The reference’s objective function does not target a low area but minimizes
transmission energy. We compare the results from our nonlinear model with results from linear models
from [2] using the three multimedia benchmarks provided, which cover video and audio decoder and
encoder. The data streams for the benchmarks are taken from [23] and the cores’ area from [2].

The results for area, hop distance × bandwidth and total bandwidth are reported in Table 4.
The three figures are measured following Def. 6. For our experiments, we take the mapping from [23]
as baseline. Next, we optimize this mapping with the SDP to demonstrate the advantages of nonlinear
models at a realistic benchmark. Then, we generate an area-efficient initial solution following the
greedy algorithm introduced in Section 3.2. Then, we conduct two separate experiments with our SA
cost function. First, we set the weight for area in our cost function (Equation (2)) w1 to zero, so that
only communication is minimized. This resembles the behavior of the objective function in [2]. Second,
the weights in the objective function (Equation (2)) are normalized such that area and communication
are accounted for simultaneously. The simulated annealing is executed 20 times with 15,000 iterations,
an initial temperature of 30 and a cooling of 0.98. The aspect ratio is limited by η = 0.1 in both these
experiments. The results of all runs are averaged and the standard deviation is calculated. A single run
of the SA terminates after 17 minutes on a Windows 10 workstation using an Intel i7-7740X processor
(8 cores at 4.3 GHz).

Table 4. Area and network performance comparison of mapping to a 2D-mesh NoC using the simulated
annealing (SA) from [2]. The SA is executed with 20 reruns, an initial temperature of 30, cooling of 0.98
and 15,000 iterations. The aspect ratio is limited by η = 0.1 [3].

Area [mm2] Hop Distance × Bandwidth Bandwidth [Bits]

mean std Ratio mean std Ratio mean std Ratio

H
25

6
de

c

m
p3

de
c

Baseline [2] 11,301 — — 19,858 — — 4060 — —
Baseline with SDP 10,178 — −9.94% 19,858 — 0.0% 4060 — 0.0%
Initial solution 7902 — −30.1% 33,707 — +69.7% 7994 — +96.9%
SA communication (w1 =0) 11,699 1598 +3.52% 20,449 404 +2.98% 4265 201 +5.05%
Normalized SA with SDP 8244 505 −27.1% 21,280 624 +7.16% 4452 674 +9.66%

H
26

3
en

c

m
p3

de
c

Baseline [2] 12,535 — — 255,324 — — 84,884 — —
Baseline with SDP 10,178 — −18.8% 255,324 — 0.0% 84,884 — 0.0%
Initial solution 6993 — −44.2% 525,537 — +106% 85,244 — +0.42%
SA communication (w1 =0) 15,762 1723 −25.7% 241,479 15,333 −5.42% 73,012 14,302 −14.0%
Normalized SA with SDP 10,474 2148 −16.4% 250,187 14,763 −2.0% 73,161 17,497 −13.8%

m
p3

en
c

m
p3

de
c

Baseline [2] 8568 — — 17546 — — 4085 — —
Baseline with SDP 8091 — −5.57% 17,546 — 0.0% 4085 — 0.0%
Initial solution 7281 — −15.0% 39,171 — +123.3% 6560 — +60.1%
SA communication (w1 =0) 10,779 1460 +25.8% 17,341 342 −1.17% 5065 906 +24.0%
Normalized SA with SDP 8516 796 −0.61% 17,572 487 +0.15% 4974 902 +21.8%

In the first experiment, the heuristic from [2] and the proposed cost function with SA produce
similar results: hop distance × bandwidth with between 5% better and 3% worse, while total
bandwidth shows more variation with 14% better to 24% worse. Since we do not optimize area,
the results are purely by chance. For the second experiment, our proposed algorithm shows the
following improvement: In the best case, the H263 enc mp3 dec, the proposed cost function for a
simulated annealing improves area by 16.4%, hop distance × bandwidth by 2% and total bandwidth
by 13.8%. Both experiments show that the quality of results depends on the structure of the input
data. While the H263 enc mp3 dec benchmark offers large optimization potential, the mp3 enc mp3
dec benchmark shows minor differences in area and hop distance × bandwidth. The H256 dec mp3
dec benchmark offers the large area improvement by 27%. However, this comes at a price of higher
communication costs by up to 9.66%.

Technologies 2020, 8, 10 13 of 14

6. Conclusions

To summarize our paper, we showed a cost function for a simulated annealing algorithm to
optimize area and communication during core mapping for NoC-based SoCs. As a novel feature, the
heuristic is area-aware, which is a new requirement from heterogeneous core and IP areas in modern
SoCs. We conducted experiments to compare the proposed algorithm against the state-of-the-art in
the subject areas. First, we justify the use of simulated annealing over other heuristic searches by
comparison against a recent work on core mapping using PSO. SA performs 2.5–3% better on average
for different benchmarks with the same computational time budget. Second, we compare linear
with nonlinear models to optimize area within the simulated annealing. We find that the nonlinear
SDP yields 12.5–17.3% reduced area for different randomly generated inputs, which is within the
expectations for the chosen linearization (Ref. [22] reports 20% area error for similar problems). In
addition, as expected, the runtime of the SDP is longer than of a linear model. However, even for the
largest example, the SDP only runs 3.6 seconds longer absolutely. This is a rather small price to pay for
17.3% better area. Third, our cost function is compared against the state-of-the-art mapping including
area. For a H263 enc mp3 dec benchmark, our approach generates 16.4% better area, 2% better hop
distance × bandwidth and 13.8% better total bandwidth. These three experimental setups show that
our approach is practical, as it reduces area and communication costs for real-world based benchmarks,
efficient, as it has runtime as state-of-the-art, and effective, as it allows for reduced area by elimination
of linearization errors. By that, we demonstrate the practical applicability of nonlinear models in EDA.

Author Contributions: Data curation, D.E.; Project administration, T.P.; Supervision, A.G.-O.; Validation, L.B.;
Writing—original draft, J.M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the German Research Foundation (DFG) project PI 447/8 and GA 763/7.
This work was supported by a fellowship within the Internationale Forschungsaufenthalte für Informatikerinnen
und Informatiker (IFI) programme of the German Academic Exchange Service (DAAD).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results’.

References

1. Murali, S.; Coenen, M.; Radulescu, A.; Goossens, K.; De Micheli, G. A Methodology for Mapping Multiple
Use-Cases onto Networks on Chips. In Proceedings of the Conference on Design, Automation and Test in
Europe, Munich, Germany, 6–10 March 2006. [CrossRef]

2. Srinivasan, K.; Chatha, K.S.; Konjevod, G. Linear-programming-based techniques for synthesis of
network-on-chip architectures. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2006, 14, 407–420. [CrossRef]

3. Joseph, J.M.; Ermel, D.; Drewes, T.; Bamberg, L.; García-Oritz, A.; Pionteck, T. Area Optimization with
Non-Linear Models in Core Mapping for System-on-Chips. In Proceedings of the 8th International
Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019.
[CrossRef]

4. Lin, L.-Y.; Wang, C.-Y.; Huang, P.-J.; Chou, C.-C.; Jou, J.-Y. Communication-driven task binding for
multiprocessor with latency insensitive network-on-chip. In Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC), Shanghai, China, 21–21 January 2005. [CrossRef]

5. Satish, N.; Ravindran, K.; Keutzer, K. A Decomposition-based Constraint Optimization Approach for
Statically Scheduling Task Graphs with Communication Delays to Multiprocessors. In Proceedings of the
Conference on Design, Automation and Test in Europe, Nice, France, 16–20 April 2007.

6. Zarándy, Á. Focal-Plane Sensor-Processor Chips; Springer: Berlin, Germany, 2011.
7. Rhee, C.-E.; Jeong, H.-Y.; Ha, S. Many-to-many core-switch mapping in 2-D mesh NoC architectures.

In Proceedings of IEEE International Conference on Computer Design (ICCD): VLSI in Computers and
Processors, San Jose, CA, USA, 11–13 October 2004. [CrossRef]

8. Murali, S.; Benini, L.; De Micheli, G.; De Micheli, G.; De Micheli, G. Mapping and Physical Planning of
Networks-on-chip Architectures with Quality-of-service Guarantees. In Proceedings of the 2005 Asia and
South Pacific Design Automation Conference, Shanghai, China, 18–21 January 2005. [CrossRef]

http://dx.doi.org/10.1109/DATE.2006.244007
http://dx.doi.org/10.1109/TVLSI.2006.871762
http://dx.doi.org/10.1109/MOCAST.2019.8742035
http://dx.doi.org/10.1109/ASPDAC.2005.1466126
http://dx.doi.org/10.1109/ICCD.2004.1347959
http://dx.doi.org/10.1145/1120725.1120737

Technologies 2020, 8, 10 14 of 14

9. Ostler, C.; Chatha, K.S. An ILP Formulation for System-level Application Mapping on Network Processor
Architectures. In Proceedings of the Conference on Design, Automation and Test in Europe, Nice, France,
16–20 April 2007.

10. Ozturk, O.; Kandemir, M.; Son, S.W. An ilp based approach to reducing energy consumption in nocbased
CMPS. In Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED),
Portland, OR, USA, 27–29 August 2007. [CrossRef]

11. Hu, J.; Marculescu, R. Energy-aware mapping for tile-based NoC architectures under performance
constraints. In Proceedings of the 2003 Asia and South Pacific Design Automation Conference, Kitakyushu,
Japan, 21–24 January 2003.

12. Tang Lei.; Kumar, S. A two-step genetic algorithm for mapping task graphs to a network on chip architecture.
In Proceedings of the Euromicro Symposium on Digital System Design, Belek-Antalya, Turkey, 1–6 September
2003. [CrossRef]

13. Manna, K.; Swami, S.; Chattopadhyay, S.; Sengupta, I. Integrated Through-Silicon Via Placement and
Application Mapping for 3D Mesh-Based NoC Design. ACM Trans. Embedded Comput. Syst. 2016, 16.
[CrossRef]

14. Cong, J.; Wei, J.; Zhang, Y. A thermal-driven floorplanning algorithm for 3D ICs. In Proceedings of
the IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Jose, CA, USA, 7–11
November 2004. [CrossRef]

15. Joseph, J.M.; Ermel, D.; Bamberg, L.; García-Ortiz, A.; Pionteck, T. System-level optimization of
Network-on-Chips for heterogeneous 3D System-on-Chips. arXiv 2019, arXiv:cs.AR/1909.13807.

16. Lu, Z.; Xia, L.; Jantsch, A. Cluster-based Simulated Annealing for Mapping Cores onto 2D Mesh Networks
on Chip. In Proceedings of the 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and
Systems, Bratislava, Slovakia, 16–18 April 2008. [CrossRef]

17. Zhong, L.; Sheng, J.; Jing, M.; Yu, Z.; Zeng, X.; Zhou, D. An optimized mapping algorithm based on
Simulated Annealing for regular NoC architecture. In Proceedings of the 9th IEEE International Conference
on ASIC, Xiamen, China, 25–28 October 2011. [CrossRef]

18. Kashi, S.; Patooghy, A.; Rahmatiy, D.; Fazeli, M.; Kinsy, M.A. Application Specific Networks-on-Chip
Synthesis: An Energy Efficient Approach. In Proceedings of the 2018 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), Hong Kong, China, 8–11 July 2018. [CrossRef]

19. Li, B.; Wang, X.; Singh, A.K.; Mak, T. On runtime communication- and thermal-aware application mapping
in 3D NoC. In Proceedings of the 11th IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
Seoul, Korea, 19–20 October 2017.

20. Murali, S.; Micheli, G.D. Bandwidth-constrained mapping of cores onto NoC architectures. In Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 16–20 February 2004.
[CrossRef]

21. Korte, B.; Vygen, J. Combinatorial Optimization: Theory and Algorithms, 5th ed.; Springer: Berlin, Germany,
2012.

22. Lacksonen, T.A. Static and Dynamic Layout Problems with Varying Areas. J. Oper. Res. Soc. 1994, 45, 59–69.
[CrossRef]

23. Sahu, P.K.; Chattopadhyay, S. A survey on application mapping strategies for Network-on-Chip design.
J. Syst. Archit. 2013, 59, 60–76. [CrossRef]

24. Joseph, J. System-level Optimization of NoCs for Hetergeneous 3D SoCs. 2019. Available online: https:
//github.com/jmjos/A-3D-NoC-DSE (accessed on 8 October 2019).

25. IBM. ILOG CPLEX Optimization Studio CPLEX User’s Manual 12.8; Armonk: New York, NY, USA, 2017.
26. Mosek ApS. Mosek User Manual; Mosek ApS: Kopenhagen, Denmark, 2018.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1283780.1283871
http://dx.doi.org/10.1109/DSD.2003.1231923.
http://dx.doi.org/10.1145/2968446
http://dx.doi.org/10.1109/ICCAD.2004.1382591
http://dx.doi.org/10.1109/DDECS.2008.4538763
http://dx.doi.org/10.1109/ASICON.2011.6157203
http://dx.doi.org/10.1109/ISVLSI.2018.00020
http://dx.doi.org/10.1109/DATE.2004.1269002
http://dx.doi.org/10.1057/jors.1994.7
http://dx.doi.org/10.1016/j.sysarc.2012.10.004
https://github.com/jmjos/A-3D-NoC-DSE
https://github.com/jmjos/A-3D-NoC-DSE
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Area-Aware Core Mapping with Simulated Annealing
	Problem Definition
	Simulated Annealing

	Area Optimization for a Given Mapping Using Linear and Nonlinear Models
	Linear Model
	Nonlinear Model

	Results
	Simulated Annealing (SA) vs. Particle Swarm Optimization (PSO)
	Linear vs. Non-Linear Model
	SA for Area-Aware Core Mapping with Linear vs. Nonlinear Models

	Conclusions
	References

