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Abstract: The American Cancer Society has recently stated that malignant melanoma is the most
serious type of skin cancer, and it is almost 100% curable, if it is detected and treated early. In this
paper, we present a fully automated neural framework for real-time melanoma detection, where a
low-dimensional, computationally inexpensive but highly discriminative descriptor for skin lesions
is derived from local patterns of Gabor-based entropic features. The input skin image is first
preprocessed by filtering and histogram equalization to reduce noise and enhance image quality.
An automatic thresholding by the optimized formula of Otsu’s method is used for segmenting
out lesion regions from the surrounding healthy skin regions. Then, an extensive set of optimized
Gabor-based features is computed to characterize segmented skin lesions. Finally, the normalized
features are fed into a trained Multilevel Neural Network to classify each pigmented skin lesion
in a given dermoscopic image as benign or melanoma. The proposed detection methodology is
successfully tested and validated on the public PH2 benchmark dataset using 5-cross-validation,
achieving 97.5%, 100% and 96.87% in terms of accuracy, sensitivity and specificity, respectively,
which demonstrate competitive performance compared with several recent state-of-the-art methods.

Keywords: computer-aided diagnosis; dermoscopy; skin cancer; melanoma skin cancer; Gabor-based
entropic features; level neural network; cross-validation

1. Introduction

A recent report issued by the National Cancer Institute (NCI) stated that skin cancer is the most
common cancer among people between the ages of 25 and 29 in the United States. The main types of
skin cancer are squamous cell carcinoma, basal cell carcinoma, and melanoma. Although melanoma
is much less common than the other types of skin cancer, it is much more likely to invade nearby
tissue and spread to other parts of the body. In other words, melanoma accounts for only about 1%
of skin cancers, but it causes a large majority of skin cancer deaths [1]. Moreover, melanoma is most
frequently diagnosed among people aged 65–74 and the greatest percentage of melanoma deaths occur
among people aged 75–84. An estimated 100,350 new cases of melanomas and 6850 deaths from the
disease are expected to occur in the United States in 2020. From a clinical point of view, melanoma is
a skin cancer type that harms DNA (mutations) in skin cells, causing uncontrolled growth of these
cells. It develops from the melanocyte, a melanin-producing cell located in the stratum basale of the
epidermis. Clinical evidence that melanoma typically occurs in the skin, but may rarely occur in the
eye, intestines, or mouth. The major known exogenous risk factor for melanoma is excessive exposure
to ultraviolet (UV) radiation. Meantime, a personal history of sunburn, giant congenital nevi, genetic
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mutations, and a case history of melanoma all increase the risk of developing melanoma. A crucial
method to assist within the diagnosis of melanotic lesions is Epiluminescence Microscopy (ELM),
also known as dermatoscopy [2] that allows for the magnification of lesions, while simultaneously
providing a polarized light source rendering the stratum cornea translucent. For experienced users,
dermoscopy is generally believed to be more accurate than clinical examination for the diagnosis of
melanoma in pigmented skin lesions. The diagnostic accuracy of dermoscopy is likely to be mostly
dependent on dermatology training.

An automated computer-aided diagnosis (CAD) system for diagnostic melanoma typically goes
through three basic steps or phases: (i) image preprocessing and skin lesion segmentation, (ii) extraction
and selection of the lesion features, and (iii) classification of the skin lesions. Fundamentally, the first
step involves preprocessing of the image data, such as image resizing, color space conversion, contrast
enhancement, noise reduction and hair removal. In the second step, segmentation of skin lesions
(i.e., regions of interest (ROIs)) is performed in order to separate pigmented skin lesions from the
healthy surrounding skin. During the feature extraction process, each skin lesion is processed
and a set of specific dermoscopic characteristics (i.e., visual descriptors) similar to those visually
recognized by expert dermatologists, such as color, asymmetry, border irregularity, differential
structures, is determined and computed from the segmented skin lesion to accurately describe a
melanoma lesion. Finally, the extracted features from the skin lesion are fed to the feature classification
module to classify each skin lesion into either benign or malignant class. The remainder of the paper
is organized as follows. Section 2 presents a summary of the related work. The proposed detection
method is described in Section 3. Section 4 is devoted to the experimental results and performance
evaluations. Finally, in Section 5, conclusions are drawn and some perspectives for future work
are given.

2. Related Work

In the past two decades or so, epidemiological data have revealed that a dramatic increase
in the incidence and mortality of melanoma skin cancer could be observed worldwide. Therefore,
many researchers in the fields of computer vision and medical image understanding have long
been interested in developing high performance automatic techniques for skin cancer detection from
dermoscopic images [3–7]. Thanks to the efforts of such researchers, several clinical decision rules
(CDRs) devised by dermatologists were established in an attempt to identify partial skin lesions.
Some of these algorithmic methodologies effectively incorporated in diagnosing pigmented lesions
from dermoscopic images include classical pattern analysis [8], ABCD rule [9], Menzies method [10],
and seven-point checklist [11].

Automatic skin lesion segmentation is a crucial prerequisite yet challenging task for CAD of
skin cancers. The segmentations challenge can be attributed to an interplay of a range of factors,
such as illumination variations, irregular structural patterns, the presence of hairs, as well as the
existence of multiple lesions in the skin [12–15]. As mentioned earlier, several different methods and
algorithms have been developed to automatically segment skin lesion images, including histogram
thresholding [16,17], clustering [18,19], active contours [20,21], edge detection [22,23], graph theory [24],
and probabilistic modeling [25]. Feature extraction to describe skin lesions is considered as the most
crucial task in the automatic classification and diagnosis of skin lesions.

The most common approach to identifying the physical characteristics of melanoma is a rule
mentioned as ABCD skin cancer [26]. In [27], an automated system for melanoma detection is proposed
using Support Vector Machines (SVMs) and a set of discriminating features extracted from the intrinsic
physical attributes of skin lesions such as asymmetry, border irregularity, color variation, diameter,
and texture of the lesion. Another most related work is presented in [28], where a real-time framework
for melanoma detection is proposed using an SVM classifier and a set of optimized HOG-based
features. Moreover, in [29], two hybrid techniques based on feed forward backpropagation artificial
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neural networks and k-nearest neighbors are proposed for skin melanoma classification. The obtained
results have shown that the proposed techniques are robust and effective.

3. Proposed Methodology

In this section, the proposed methodology for automatically detecting skin cancer is described.
A brief conceptual block diagram depicting the details of the proposed system operation is given
in Figure 1. The general structure of the proposed framework works as follows: As an initial step,
the skin lesion region that is suspected of being a melanoma lesion is segmented from the surrounding
healthy skin regions, by applying iterative automatic thresholding and morphological operations.
Then, an optimized set of local Gabor-based texture features is extracted from the skin lesion region.
A one-dimensional vector representation is generated from the extracted Gabor features and then fed
into a neural model for skin lesion classification. The details of each part of the proposed method are
described in the following subsections.

Lesion image

Segmentation

Skin lesion

Gabor feature extraction

MNN classification

malignant (+)

benign (–)

Figure 1. Block diagram of the proposed CAD system for melanoma detection.

3.1. Image Preprocessing

The image preprocessing step is basically responsible for detecting and reducing the amount
of artifacts from the image. In dermoscopy images, this step is necessary, since many dermoscopy
images include a lot of artifacts such as skin lines, air bubbles and hair that have to be removed
to diagnose skin cancer correctly. Incorrect segmentation of pigmented lesion regions can occur,
if such artifacts are not removed or inhibited. Here, the preprocessing involves three main processes:
(i) image resizing and grayscale conversion, (ii) noise removal by applying a simple 2D smoothing
filter, (iii) image enhancement.

3.2. Skin Lesion Segmentation

Skin lesion segmentation is a part of computer-aided skin cancer detection. Automated skin
lesion segmentation is the most crucial step toward the implementation of any computer-aided
detection system for skin cancer. For the segmentation of skin lesions in an input dermoscopy image,
the presented method involves iterative automatic thresholding and masking operations, which are
applied to the enhanced input skin lesion images. The segmentation procedure begins with applying
automatic thresholding proposed by the Otsu method [30] for each of the R, G and B planes in the
input image. Binary masks for each plane are then obtained and combined to create a final lesion mask.
We use a 3-plane masking procedure in order to increase segmentation accuracy.

The segmented image may contain some smaller blobs that are actually not skin lesions.
To overcome this problem, a common solution is to employ morphological-area opening on the
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segmented image. Finally, a finer segmented image that contains only the skin lesions can be obtained
by smoothing the binary image using a series of gradually decreasing filter sizes using an iterative
median filter technique (i.e., 7× 7, 5× 5 and 3× 3). Additionally, in order to avoid the detection of
extremely small non-skin lesions and to avoid confusion between isolated artifacts and objects of
interest, we take extra precautions by applying two additional filters to ensure that they correspond to
the skin lesions of interest. First, an adaptive morphological open-close filter is iteratively applied to the
resulting binary image to remove objects that are too small from the binary image, while maintaining
large objects in shape and size. This filter is ideally carried out using a cascade of erosion and dilation
operations using locally adaptive structuring elements.

Furthermore, the so-called size filter is applied as a second filter to remove objects of size less
than a specified threshold. Once the size filter is applied, almost all spurious artifacts of less than
5% of the image size will be erased from the binary image. However, all contours are detected by
applying a modified canny edge detector [31] after filtering out of all irrelevant image elements and
isolated objects. The segmentation results shown in Figure 2 demonstrate that the proposed method
can correctly and precisely segment the skin lesion from the surrounding normal skin tissues.

 (a)  (b) (c) 

Figure 2. Sample segmentation of skin lesions: (a) Original dermoscopy image, (b) Binary mask, (c)
Traced skin lesion.

3.3. Gabor Feature Extraction

Gabor wavelets are widely used to extract texture information from images at different frequencies
and orientations [32]. In this subsection, we show how to extract interpretative features for skin lesion
discrimination and how to derive a new texture descriptor, a so-called Gabor–Fisher descriptor (GFD),
which is invariant to scale, rotation and changes in illumination.

3.3.1. 2D Gabor Filters

Due to their unique distinctive properties, texture features based on Gabor wavelets have been
dominantly applied in many diverse application fields, such as pattern recognition, data clustering and
signal processing. Gabor kernels exhibit highly desirable characteristics of capturing spatial locality
and orientation selectivity and are optimally localized in the space and frequency domains [33,34].
Hence, they have the capacity to extract highly discriminative features to describe target objects in a
given image. A 2D Gabor filter is typically formulated as a Gaussian modulated sinusoid in the spatial
domain and as a shifted Gaussian in the frequency domain. The Gabor wavelet [35] representation of
an image allows description of spatial frequency structure in the image, while maintaining information
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about spatial relations. A family of Gabor wavelets (kernels, or filters) is formally expressed as a
product of an elliptical Gaussian envelope and a complex plane wave, as follows

ψj(z) =
|k j|2

σ2 e−
|kj |

2 |z|2

2σ2

[
e−ikjz − e−

σ2
2

]
(1)

where z = x + iy, i =
√
−1 and | · | denotes the norm operator. The wave vector k j is defined as follows,

k j = kve−iφµ , kv = 2−
v+2

2 π, φµ = µ
π

8
(2)

The index j = µ+ 8v, where µ and v denote the orientation and scale of Gabor kernels, respectively.
Figure 3 shows 2D plots of the real part of a set of Gabor kernels with 40 coefficients (5 spatial
frequencies and 8 orientations).

Figure 3. Real part of 40 Gabor kernels at 5 scales and 8 orientations.

3.3.2. Extracted Local Gabor Features

The set of complex coefficients for Gabor kernels of different frequencies and orientations at a
pixel is called a jet. A jet that holds the responses of Gabor convolutions at each pixel z in a given
image I can be defined based on a wavelet transform, as follows,

Jj(z) =
∫

I(ź)ψj(z− ź)d2ź (3)

Once a series of proper Gabor filters (i.e., kernels of Gaussian functions modulated by sinusoidal
plane waves) with different frequencies and orientations are determined and applied at different
locations of the image, Gabor features can be yielded by simply convolving the image with these
kernels, as given in Equation (5). In the presented work, we initially adopt a filter bank comprised of
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40 log-Gabor filters (5 scales and 8 orientations) to extract local texture features from skin lesions (i.e.,
ROIs) in a given dermoscopy image.

kv = 2−
v+2

2 π, v = 0, . . . , 4

φu =
π

8
u, u = 0, . . . , 7 (4)

More formally, the resultant Gabor features at (x, y) location include the output of the convolution
of a bank of all 40 Gabor filters with a pixel at (x, y) in the skin lesion (more precisely, ROI):

s = {Ψu,v(x, y) : u ∈ {0, . . . , 7}, v ∈ {0, . . . , 4}} (5)

Figure 4 shows the convolution results from the application of two Gabor filters on a sample skin
lesion at orientation angles of π

4 and π
2 , respectively. Strictly speaking, for a patch dermoscopy image

of size M× N, the final convolution of a patch dermoscopy image with a bank of 40 Gabor filters will
result in a feature vector of 5× 8×M× N = 40M× N.

Due to the fact that the parameters of Gabor filters are selected experimentally, it is likely that the
computed features contain a large number of irrelevant/redundant information (e.g., highly correlated
features), which can seriously degrade the performance of learning models in terms of accuracy and
computational time. To reduce the interference of redundant information contained in lesion features,
an efficient feature selection technique should be performed to de-correlate the extracted features and
to drastically reduce their dimensionality, while retaining a good learning performance.

In many object recognition and classification applications, the image-mean, image-standard
deviation, and/or image-energy are routinely employed to select the most useful features. Instead,
in the current work, we opt to follow a different approach that turns out to be a more effective
strategy for achieving the goals of feature reduction and selection of most relevant features. To this
end, the Gabor filter outputs are initially normalized to strengthen the convolved images having
spatially distributed maxima. Then, the so-called nonextensive entropies (e.g., Rènyi entropy and
Tsallis entropy) and Fisher information (FI) are calculated from the normalized Gabor filter magnitude
responses as follows,

H1(P) =
1

1− α
lg

[
∑

i
pα

i

]
, α ≥ 0, α 6= 1

H2(P) =
1

α− 1

[
1−∑

i
pα

i

]
, α ≥ 0, α 6= 1 (6)

F(P) = ∑
i

(pi+1 − pi)
2

pi

where P is a probability distribution estimation obtained from the histograms of Gabor filter responses,
H1 and H2 are the Rènyi and Tsallis formalisms [36] of generalized nonextensive entropies, respectively,
and F is the Fisher information measure. At this point it is worth mentioning that the primary
motivation for considering this effective feature selection scheme is not only to reduce computational
complexity of feature extraction, but also to guarantee a reasonably good learning performance.
Due to their robustness with respect to occlusion and geometrical transformations, there is widespread
agreement that local features provide much more stability than global features in most operational
applications, therefore they are generally perceived to be the most effective tool for object representation
and detection tasks [37,38].
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(a) (b)

∅ =
𝜋
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𝜋

4

Figure 4. Gabor filter responses of a sample skin lesion at orientation angles of (a) π
4 and (b) π

2 ,
respectively.

Figure 5 shows a sample of four skin lesion images along with the corresponding plots of their
local Gabor-based feature descriptors. The first two dermoscopy images are malignant melanoma
cases, while the other two images are benign lesions (from top to bottom, respectively). At this point,
it is worthy to emphasize that before concatenation, each attribute of the local features is normalized
into [0,1] to allow for equal weighting among each type of feature. The normalized features are then
fed to the evolved MNN for feature classification. Additionally, we would like to argue that the
normalized Gabor feature descriptors provide the potential for more accurate and reliable feature
extraction, that in turn has a significantly positive impact on the performance of the proposed CAD
system for melanoma detection.
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(a) (b)

Figure 5. A sample of four skin lesion images and the plots of its local Gabor descriptors: (a) Original
lesion image, (b) local Gabor descriptors; the first two dermoscopy images are malignant melanoma
cases, while the other two images are benign lesions (from top to bottom, respectively).

3.4. Skin Lesion Classification

The goal of this section is to describe the classification module, which we employ in the proposed
MNN architecture for diagnosing melanoma lesions. Generally, the main purpose of the classification
module in the proposed framework is to discern the Gabor-based features extracted from skin lesions in
order to classify the skin lesions in dermoscopic images into melanoma or benign nevus. The accuracy
and robustness of the classification module with a supervised learning strategy are primarily based on
the availability of sufficient labeled dermoscopic images (i.e., training set). Hence, the learning strategy
in this case, is simply referred to as supervised learning. In the existing literature, there are several
classification techniques that are exactly tuned to be reliably applicable for classifying skin lesions in
dermoscopy images, such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs),
Naïve Bayesian (NB), k-Nearest Neighbor (k-NN), and Conditional Random Fields (CRFs) [39–43].

In the current work, the detection task of skin lesions is formulated as a typical binary classification
problem, where there are two classes for skin lesions and our goal is to assign each skin lesion in
given dermoscopy images an appropriate diagnostic label (i.e., malignant melanoma or benign nevus).
There are plenty of existing supervised learning algorithms [44–46] that can potentially train an
effective detector for skin malignancy. Due to its good reputation as a highly accurate paradigm and
its excellent generalization capability, in the current diagnostic framework, we propose to employ an
evolved neural model (so-called Multilevel Neural Network) for the classification task.

The neural classification model offers several generic advantages over other competitive machine
learning. (ML) models, including, for example, the easiness of training, high selectivity, high rapidity,
realistic generalization capability and potential capability to create arbitrary partitions of feature space.
In its standard form, the traditional neural model, however, is limited by its low classification accuracy
and poor generalization properties, due to the dependence of its neural units on a standard bi-level
activation function that permanently produces a binary response. To cope with this restriction and
allow the neural units to produce multiple responses, a new functional extension for the standard
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sigmoidal functions should be created [44]. This functional extension is termed Multilevel Activation
Function (MAF), and hence the neural model employing this extension is termed as Multilevel Neural
Network (MNN).

There are various multilevel versions corresponding to several standard activation functions.
A multilevel version of an activation function can be straightforwardly derived from its bi-level
standard form as follows. Assuming the general form of a standard sigmoidal function f (x) depicted
in Figure 6a is defined as:

f (x) =
1

1 + e−βx (7)

where β > 0 is an arbitrary constant, i.e., the steepness parameter. Therefore, the multilevel versions of
the activation function can be directly derived from Equation (7) as follows,

ϕr(x)← f (x) + (λ− 1) f (c) (8)

where λ is an index running from 1 to r− 1, r is the number of levels, and c is an arbitrary constant.
Multilevel sigmoidal functions for r = 3 and 5 are depicted in Figure 6b,c, respectively.
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Figure 6. Standard sigmoidal function and its multilevel versions: (a) Sigmoidal function;
(b) Multi-level function for r = 3; (c) Multi-level function for r = 5.

At this point, it is worthwhile mentioning that it was experimentally reported that the neural
classifier employing multilevel functions is able to maintain a superior learning performance over its
neural counterpart employing traditional sigmoidal functions [44], as depicted in Figure 7. The evolved
MNN model is an effective diagnostic approach that is normally made up of three layers, namely input
layer, hidden layer and output layer, for which two nearby layers are fully-connected [47], see Figure 8.

In the proposed framework, the model parameters are learned via a second-order local algorithm
very similar to the well-known Levenberg–Marquardt (LM) algorithm [48]. Such an algorithm is
fast and most appropriate for training simpler structures under the Multilayer Perceptron (MLP)
architecture. Furthermore, the algorithm, which is a special combination of the error backpropagation
and Gauss–Newton algorithms, makes use of a conjugate gradient method by introducing the local
Jacobian matrix instead of the Hessian matrix. In the beginning of training, the weights are initialized
randomly. There will be known inputs and a desired output. The MNN model provides the actual
output that is compared to the desired output during each epoch. An error is produced when both
outputs are not equal. This error is propagated backward and weights are updated such that the
training is halted, when the difference between the desired output and the actual output is minimized.
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Figure 7. Averaged learning curve comparison between sigmoidal neural network (SNN) and
multilevel sigmoidal neural network (MSNN) models.

ROI 
skin lesion

Input layer

Hidden layer

Output layer

Gabor 
features

Figure 8. The MNN structure established for melanoma detection.

4. Experimental Results

In this section, the experimental results obtained are shown and discussed in order to demonstrate
the performance of the proposed malignant melanoma detector. The performance of the proposed
system is tested on the PH2 benchmark dataset [49] that consists of a total number of 200 8-bit RGB
dermoscopic images of melanocytic lesions with a resolution of 768× 560 pixels. The images include
different types of skin lesions: 80 common nevi, 80 atypical nevi, and 40 melanomas. The dermoscopic
images were created at the Dermatology Service of Hospital Pedro Hispano (Matosinhos, Portugal)
under the same conditions through the tuebinger mole analyzer system using a magnification of
20 times. Figure 9 shows a sample of the lesion images contained in the PH2 dataset.
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Figure 9. A sample of images from the PH2 dermoscopic dataset: common nevi (row 1), atypical nevi
(row 2) and melanomas (row 3).

For computational efficiency, all images are resized to a fixed dimension of 256 × 256 pixels,
as a preprocessing step prior to the feature extraction phase. The images in the dataset are then
split randomly into two subsets, one as a training set (80%) and the other as a test set (20%) and the
cross-validation procedure is performed in order to estimate how accurately the detection model will
perform in an independent test set.

In the current neural architecture, there are two hidden layers of 10 neurons each, while the
output layer has only one neuron (see Figure 8) that gives an output of 0 for non-cancerous (or benign)
or 1 for cancerous (or malignant). Each neuron employs a multilevel sigmoidal activation function.
The neural model is trained on the features extracted from lesion regions through backpropagation.
In the backpropagation algorithm, the training process iteratively proceeds until the Mean Square
Error (MSE) between the network output and desired output computed over entire epoch achieves
a minimum value (i.e., less than a pre-set threshold) or the number of iterations reaches a specified
value. To validate the proposed method, 5-fold cross-validation was used in our experiments. More
specifically, out of total image samples, in each K fold, 160 images are chosen for training and the
remaining 40 images are used for testing the performance of the trained neural model.

For performance evaluation of the proposed system, the obtained results are quantitatively
assessed in terms of three commonly used performance indices, namely, sensitivity (SN), specificity
(SP), and accuracy (AC). The three indices are defined as follows:

Accuracy is the probability that a randomly chosen instance (positive or negative, relevant or
irrelevant) will be correct. More specifically, accuracy is the probability that the diagnostic test yields
the correct determination, i.e.,

AC =
TP + TN

TP + TN + FP + FN
× 100% (9)
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Sensitivity (also called true positive rate or recall) generally refers to the ability to identify
melanoma case positively, i.e.,

SN =
TP

TP + FN
× 100% (10)

Specificity (also called true negative rate) refers to how well a test recognizes patients who do not
have a disease, i.e.,

SP =
TN

TN + FP
× 100% (11)

where TP (true positive) is the correctly predicted positive cases, TN (true negative) is the correctly
predicted negative cases, FP (false positive) is the incorrectly predicted negative cases, and FN (false
negative) is the incorrectly predicted positive cases. Table 1 presents the cross-classification table:
standard-of-reference benign/malignant vs. model’s prediction benign/malignant.

Table 1. Cross-classification: model’s prediction benign/malignant melanoma.

Malignant Benign

Test (+) 40 5

Test (–) 0 155

Based on the figures in Table 1, it can be calculated that the positive predictive value (PPV) and
negative predictive value (NPV) of the diagnostic model are 88.9% and 100%, respectively. Furthermore,
the performance of the proposed diagnostic model is appraised in terms of overall accuracy, sensitivity,
and specificity. The obtained results revealed that our diagnostic framework can achieve 97.50%, 100%
and 96.87% for overall accuracy, sensitivity and specificity respectively, for 5-fold cross-validation.
With regard to the confidence, the proposed diagnostic approach achieved an average ROC area
under the curve (AUC) of 0.94 (95% confidence interval: 0.92–0.96). Moreover, the approximated 95%
confidence intervals of sensitivity, specificity, PPV, and NPV are 100%, 95–99%, 86–90% and 100%,
respectively, where the confidence level was typically set to 95%.

In order to quantify the effectiveness of the proposed approach, a comparison of our framework
with other standard state-of-the-art works [28,29] has been conducted and analyzed. This comparison
is summarized in Table 2. The average time of the proposed method to detect a lesion image is about
150 ms, so that it runs sufficiently fast for real-time operation, since the additional computational costs
for the lesion segmentation are negligible besides the real-time Gabor based feature extraction and
classification. The proposed detector of malignant melanoma is designed and implemented for much
of its framework using Microsoft Visual Studio 2016 and OpenCV Vision Library to realize real-time
digital image processing and automatic detection. All tests and evaluations were carried out on a PC
with an Intel(R) Core(TM) i7 CPU—2.60 GHz processor, 8GB RAM, running a Windows 10 Professional
64-bit operating system.

Table 2. Comparison of our methodology with other state-of-the-art baselines.

Method SN (%) SP (%) AC (%)

Our Method 100 96.87 97.50

Bakheet [28] 98.21 96.43 97.32

Elgamal [29] 100 95.00 97.00

Limitations

It is worth mentioning that the comparison of the current diagnostic approach with the two
previous works in [28,29] seems to be only conditionally possible, since we used the benchmark
PH2 dataset consisting of 200 dermoscopic images (40 malignant and 160 benign), and a 5-fold
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cross-validation (CV) technique was applied. On the other hand, the method presented in [28] relied
on a different dataset (224 lesions in total, with 50% malignant), and a 4-fold CV technique was
applied, while the method in [29] used a dataset consisting of 40 images, and applied an n-fold CV
technique. Another limitation might be the lack of another independent dataset for validating the
diagnostic model, since a dataset of 200 images might be too small to retain an initial set of images as
an independent test set.

5. Conclusions

In this paper, a new CAD method for malignant melanoma detection has been proposed, using an
optimized set of Gabor-based features and a fast MNN classifier with improved backpropagation
based on the LM algorithm. On the publicly available PH2 dermoscopy imaging dataset, the proposed
method has achieved an accuracy of 97.50%, sensitivity of 100%, specificity of 96.87%, for 5-fold
cross-validation. The results provide evidence that the method is not only able to automatically discern
malignant melanoma from benign nevi successfully, but also achieves consistent improvement over
other state-of-the-art baselines. One of our future work is to develop a hybrid feature descriptor
obtained by combining different color and texture features via a classifier fusion scheme, so we can
further achieve a better approach for automatic lesion feature extraction. Another proposal for future
work is to apply the proposed CAD method to larger dermoscopic image datasets to examine the
consistency of its performance pattern.
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