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Abstract

Within the last decades, various types of magnetic skyrmions were experi-
mentally discovered, and their static and dynamical properties were inten-
sively studied. This trend continues, and the Zootopia of skyrmions is still
expanding. In this thesis, we investigated magnetic antiskyrmions in tetrag-
onal Heusler materials with the D2d structure, initiated with the first experi-
mental discovery of magnetic antiskyrmions above room temperature, as well
as several follow up studies, all performed during my Ph.D. study. Magnetic
antiskyrmions have a special chirality that originates from the underlying
D2d crystal structure. The in-plane magnetization of the anti-skyrmion ro-
tates in the opposite direction with respect to the coordinate azimuthal angle.
Such chiral structures give rise to a boundary of the antiskyrmion that has
alternating Bloch and Néel type walls with opposite chiralities. This spe-
cial structure of the anti-skyrmion leads to its high stability and its rich
dynamical behavior under current-induced spin Hall injection. These prop-
erties make anti-skyrmions highly interesting for next generation spintronic
devices.

This thesis is organized as follows. In the 1st chapter the background in-
formation of the development of skyrmions is introduced. In the 2nd and 3rd

chapters the basic theory of skyrmions, the micromagnetic simulation meth-
ods, and various experimental techniques (especially Lorentz transmission
electron microscopy (LTEM)) related to the skyrmion studies are summa-
rized. In the 4th chapter the first experimental work on the discovery of
magnetic antiskyrmions is discussed. A unique 4-spot LTEM pattern with
alternating black and white contrast confirms the existence of antiskyrmions.
The 5th chapter contains follow-up studies on the intrinsic stability of anti-
skyrmions. Due to the zero value of the Dzyaloshinskii–Moriya interaction
(DMI) along the [001] crystal direction, the thickness-dependent phase dia-
gram shows distinct behavior as compared to other skyrmion systems, e.g.,

5



Abstract

the B20 Bloch skyrmion system. In the 6th chapter our work on the wide-
range tunability of the antiskyrmion size and helix period is presented. Due
to the significant influence of both the DMI and magnetic dipolar interac-
tions, which is unique to theD2d material system, the size of the antiskyrmion
and the corresponding helix period can be tuned by up to one order of mag-
nitude when the thickness of the host lamella varies from ~100 nm to ~4 µm.
Finally, the 7th chapter presents the conclusion and outlook.
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Chapter 1

Introduction

The performance of information processing and data storage is one of the
critical indicators of the status of human technology development. Explor-
ing novel materials and physical mechanisms which enable next generation
information technology is incredibly demanding [1, 2]. For example, over the
last few decades, the rise of spintronics, especially the Giant Magnetoresis-
tance (GMR) effect [3, 4] has enabled a rapid increase in hard disk drive
storage density and the read-out speed. Recently, progress continues to be
made; for example, Magnetoresistive Random Access Memory (MRAM)
devices are already commercially available from mainstream companies in-
cluding Samsung [5].

Non-collinear nanometer-size magnetic structures are one of the major
candidates for next generation spintronics technologies. The simplest 1-
Dimensional non-collinear magnetic nanostructure is a magnetic domain wall
(DW) [6], which is the transition region between two magnetic domains.
With perpendicular magnetic anisotropy, the domain wall can have a width
as small as a few nanometers, which allows for today’s high density magnetic
data storage devices. Such 1D DWs can be moved under injected current
along magnetic conduits to allow them to be detected using a reading device
that is integrated at a given point along the conduit. This is in contrast
to today’s magnetic disk drives in which the static domain walls (that are
usually called ”transitions”) are embedded into a magnetic film on a disk
which is moved to the reading sensor which is on a moving mechanical arm.
This concept was proposed by Prof. Stuart Parkin who named it “Racetrack
memory” [1]. By integrating with novel physical effects such as DMI, perpen-
dicular magnetic anisotropy (PMA), Spin Hall effect (SHE), and synthetic
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1.1. Magnetic ordering

antiferromagnet structure (SAF), Racetrack memory is already in the 4th

generation. It gradually enters into the industrial application phase [7].
2-Dimensional magnetic structures are also of great interest. In early de-

velopments magnetic bubble memory was intensively investigated [6]. The
magnetic bubbles are round shaped magnetic structures in which the magne-
tization inside and outside has opposite directions. In the last two decades,
with the experimental and theoretical development of especially DMI, var-
ious types of magnetic skyrmions have been discovered [8, 9, 10]. Unlike
trivial magnetic bubbles, which are achiral, the chirality of a skyrmion is
determined by the DMI, which arises from the underlying crystal symmetry
[11, 12]. Under the influence of DMI, the skyrmions are topologically pro-
tected; thus, on the one hand, they are much more stable and, on the other
hand, enjoy a rich dynamical behavior, such as current induced motion in
the Racetrack memory [13]. Skyrmions have the advantages of small size
and low threshold currents for current-induced motion since they can move
around pinning defects rather than overcoming them [14]. Within the last
two decades, various types of skyrmions have been discovered. For exam-
ple, Bloch skyrmions were discovered in B20 materials, and Néel skyrmions
were discovered in Cnv and interface systems [10, 15]. The study of magnetic
skyrmions is not only interesting for understanding the fundamental under-
lying physical mechanisms of these nano-size chiral magnetic structures but
also will contribute to developments in technological applications, such as
Racetrack memory devices.

In this chapter, I will first introduce some magnetic skyrmion related basic
concepts and then summarize the progress made on research of skyrmions in
the past two decades.

1.1 Magnetic ordering
The origin of magnetization comes from how the magnetic moments of atoms
are aligned. Based on the ordering of atomic magnetic moments, the mag-
netic systems can be classified, such as diamagnetism, paramagnetism, ferro-
magnetism(FM), anti-ferromagnetism(AFM), and ferrimagnetism [16, 17,
18].

The phenomenon of having a magnetization in the opposite direction to
the external magnetic field is called diamagnetism. It occurs in materials
whose atoms have no net magnetic moment. The origin of diamagnetism is
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1.1. Magnetic ordering

that when the magnetic field is turned on, the change in the flux of the elec-
tron orbit will induce an electromotive force which acts to oppose the change
in flux, thus inducing the diamagnetic effect. This magnetism is quite weak
with a magnitude around 10−6 per unit volume. The magnetic susceptibility
is given by χ = −Nµ0Ze2

6me
⟨r2⟩av, where χ is the magnetic susceptibility, N is

number of atoms per unit volume, ⟨r2⟩av is the average value of all occupied
orbital radii and Z is the number of electrons.

Paramagnetism is also a kind of weak magnetism. Generally, the am-
plitude of χ is between 10−6 to 10−3. In paramagnetic materials, there is
no significant interaction between magnetic particles. Under external field,
the relationship between the Boltzmann factor and the magnetic moment
direction is e−

E
kbT = e

mHcosθ
kbT , where T is the temperature, m is the magnetic

moment, H is the external field and θ is the angle between magnetic mo-
ment to the applied field. Then the magnetization I = Nm(cotα− 1

α
), with

α = mH
kbT

, where N is the number of magnetic atom. When the external field
increases, so does α, thus all the magnetic moments tend to align in the
same direction. It can be deduced that χ = I

H
= Nm2

3kbT
, so that the magnetic

susceptibility is inversely proportional to the absolute temperature T .
Distinct from diamagnetism and paramagnetism, ferromagnetism is a

kind of strong magnetic behavior. In a ferromagnetic material, all the mo-
ments are almost aligned in the same direction, as shown in Fig. 1.1a. This
parallel alignment of the magnetic moments induces a spontaneous magne-
tization. In 1907 [16, 17], Weiss proposed a mechanism for this phenomena.
He assumed there is an internal “molecule field” Hm that exists between one
magnetic moment and the nearby moments. He assumes the strength of the
“molecular field” is proportional to the magnetization, Hm = ωI. Under
the influence of the external field and “molecular field”, the magnetization
is I = NmL(α), where L(α) is the Langevin function. Unlike in paramag-
netism, here α = m(H+I)

kbT
.

Antiferromagnetism is the counterpart of ferromagnetism, as illustrated
in Fig. 1.1b. In antiferromagnetism, the nearby magnetic moments are an-
tiparallel to each other. Thus the moments cancel each other. Above the
Néel temperature, the magnetic ordering disappears; thus, the behavior is
the same as paramagnetism. The critical temperature of the antiferromag-
netic and paramagnetic behavior is the Néel temperature point. Antiferro-
magnetism can further be divided into several types, such as A-type, C-type,
and G-type, depending on how the magnetic moments are aligned opposite to
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1.1. Magnetic ordering

each other [19]. In A-type antiferromagnetism, there are layers within which
the magnetic moments are aligned parallel and between which the magnetic
moments are antiparallel aligned. In C-type, in two directions of the crystal,
the moments are antiparallel and, in the other direction, are parallel. In
G-type, in all three directions, the moments are antiparallel aligned.

In ferrimagnetism, the magnetic moments are subdivided into two sub-
lattices, as illustrated in Fig. 1.1c. Within each sublattice, the magnetic
moments are ferromagnetically aligned. Between the two sublattices, the
magnetic moments have different amplitudes and are antiferromagnetically
aligned. In a ferrimagnet, the magnetic moments between the two sublattices
are not the same, thus resulting in a non-zero net magnetization. Sometimes,
ferrimagnetism can be simplified to be treated as ferromagnetism. However,
sometimes the more complex ferrimagnetic magnetic structure needs to be
considered. For example, the magnetization compensation temperature (the
temperature when the magnetic moments are the same in the two sublattices)
and the angular magnetic moment compensation temperature (the tempera-
ture where the angular magnetic moments, which are the magnetic moment
divided by the g factor, are the same in the two sublattices) usually is not the
same. The latter temperature is recently reported to have a high efficiency of
current-induced magnetic dynamics [20]. Magnetic antiskyrmions were also
discovered in a ferrimagnetic material, which will be discussed in detail in
later chapters.

Figure 1.1: Illustration of magnetic
ordering. (a) ferromagnetism, (b)
antiferromagnetism and (c) ferrimag-
netism.

In 1928, Heisenberg used a quantum mechanical-based concept of “ex-
change interaction” to explain the existence of the large-amplitude “molec-
ular field”. This effect comes from the exchange symmetry’s influence on

14



1.2. Magnetic domain

the wave function of indistinguishable particles. Due to the Pauli exclusion
principle, if the spins of two electrons are antiparallel to each other, they
share the same orbit. In contrast, if the two electron spins are parallel to
each other, then their orbit needs to be separated in order to decrease the
Coulomb interaction. The strength of the exchange interaction is related to
the overlap of the electron orbits. Depending on the sign of the exchange in-
tegral, ferromagnetic or antiferromagnetic ordering is established. The origin
of antiferromagnetism might also occur due to a superexchange interaction.
The detailed theory of exchange interaction in various crystal structures will
be discussed in chapter 2.1.2.

Besides the above magnetic ordering, there are other more complex mag-
netic order systems, such as helimagnetism, parasitic ferromagnetism, mic-
tomagnetism, and spin glass etc.

1.2 Magnetic domain
On the atomic scale, due to the exchange interaction, the magnetic moments
prefer to align parallel to each other in a ferromagnetic material. However,
on a larger scale, the sample might be separated into lots of small mag-
netic regions. Within these small regions, the magnetization is the same.
However, the directions of magnetization between these regions are different.
This small region is the magnetic domain. A similar situation happens in
ferrimagnetic and even antiferromagnetic materials.

The origin of the formation of the magnetic domain is that this lowers
the energy of the whole sample system. All the magnetic moments, that
are aligned in the same direction, is preferred by the exchange interaction;
however, not preferred by other energy terms such as the magnetic dipolar
interaction. The magnetic domain structure will be stable if it induces a
lower energy of other energy terms at the cost of not too much increase in
the exchange interaction energy term, thus the total energy of the system
decreases. Various sample properties and external parameters influence the
size of the magnetic domains. Some typical magnetic domain structures can
be found in the book [21].

If we cool down the sample from above the Curie temperature to below
without an external magnetic field (zero-field cooling, ZFC), it is more likely
to be in a multi magnetic domain state. However, if we apply large enough
field during the cooling procedure (field cooling, FC), it is more likely to be
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1.3. Magnetic domain wall

in a single magnetic domain state. For some material systems, applying an
AC magnetic field with a gradually decreasing field can also lead to a multi
magnetic domain state. Such behavior of the magnetic domain is complex
and is a result of a competition between various energy terms. The study of
these provides a way to understand the material and physical mechanisms
behind them in depth.

1.3 Magnetic domain wall
The magnetic domain wall is the transition region between different mag-
netic domains. As there are various type of magnetic domains, there are
also various type of magnetic domain walls. One of the simplest domain
wall structures is in a ferromagnetic exchange coupling system with PMA.
In this model, the ferromagnetic exchange interaction prefers the magneti-
zation to align in the same direction, which means the domain wall width is
infinitely long. On the other hand, the PMA prefers the magnetization to
be always along the perpendicular direction. Thus, the domain wall width
should be preferentially zero but the two energy terms compete with each
other, resulting in a final domain wall profile [6]: θ(y) = ±2 tan−1

(
e

y
∆

)
and ϕ(y) = ψ = const, where ∆ =

√
A/K is the width of the magnetic

domain wall, θ and ϕ are the polar and azimuthal angles of the magne-
tization, A is the exchange stiffness, and K is the anisotropy. Thus, the
total wall energy per unit area is σ = 4

√
AK. The detailed magnetic do-

main wall structure will be more complicated, for example, if we consider
local magnetostatic energies, an in-plane field Hp which has origin in the XY
plane at an angle ψH to the wall plane and in-plane anisotropy Kp which
has an easy axis with an angle ψp to the wall plane, the magnetic domain
wall width and energy will become ∆ =

√
A/κ and σ = 4

√
Aκ, where

κ = K + 2M2 sin2 ψ +Kp sin
2 (ψ − ψp)− (πMHp/2) cos (ψ − ψH).

1.4 Chiral magnetic domain wall
In a perpendicularly magnetized system, the Bloch type domain wall is pre-
ferred [22]. The stabilization of Bloch type DWs is due to long-range dipolar
effects. This Bloch type domain is achiral, which means the two types of
Bloch wall magnetic geometry, Left-hand (LH) type, and Right-hand (RH)
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1.4. Chiral magnetic domain wall

type, are degenerate in energy, as shown in Fig. 1.2a-b. However, recent
studies [23, 24] shows that in some systems, e.g., an interface system with a
heavy metal and a ferromagnetic metal heterostructure, a DMI energy term
is induced that not only forces the domain wall to have a Néel type geometry,
but also to have a fixed chirality, as shown in Fig. 1.2c-d.

Figure 1.2: Illustration of the magnetic structure of different types of mag-
netic domain walls. (a) Left-hand Bloch wall, (b) Right-hand Bloch wall, (c)
Left-hand Néel wall, and (d) Right-hand Néel wall.

As in my previous work [23, 24], we used a Spin-Polarized Low Energy
Electron Microscope to study the domain wall chirality. In the thin-film
structure of Fe (1.3ML)/Ni(10ML)/Cu(001), the domain wall is Bloch type,
whereas in the structure Fe (2ML)/Ni(7ML)/Cu(001), the domain wall is
Néel type with a Right-hand chirality, where ML is the abbreviation of the
monolayer. The physics origin is that: on the one hand, the energy terms such
as Heisenberg exchange, anisotropy (that have the same energy regardless of
the type and chirality of the domain wall); on the other hand, the long-range
dipolar interaction which prefers a Bloch wall and the interface DMI which
prefers specific type chirality of the Néel type domain wall are competing.
Thus, by controlling the film thickness, which corresponds to the dipolar
energy, the strength of the DMI can be estimated. We also presented an
experiment in which the sign of the DMI can be manipulated by thickness
control in Pt/Ir heterostructures, as shown in Fig. 1.3.

The chiral domain wall provides a promising platform for novel spintron-
ics applications, such as current-induced magnetization switching [25] and

17



1.4. Chiral magnetic domain wall

Figure 1.3: Chirality of magnetic domain wall as a function of Ir inserting
layer thickness in Ni/[Co/Ni]2/Ir/Pt(111) sample structure. (Material from:
Chen, G., Ma, T., N’Diaye, A. T., Kwon, H., Won, C., Wu, Y., & Schmid, A.
K., Tailoring the chirality of magnetic domain walls by interface engineering,
Nature communications, published 2013, Springer Nature. [24] )

current-induced domain wall motion in Racetrack Memory [1, 7].
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1.5. Magnetic bubble and stripe domain

1.5 Magnetic bubble and stripe domain
One type of material is called “bubble material”, where bubble shape mag-
netic domains are stabilized. The magnetization within the bubble points
up or down represents one bit of information as “0” or “1”. In the 1980s,
magnetic bubble material was a promising candidate for magnetic memory
devices. The “bubble material” is also named as “high-Q material” [6], where
Q is the “quality factor” defined as Q = K

2πM2 . For the bubble material, the
quality factor needs to be larger than 1, the coercivity field needs to be low
and the characteristic length needs to meet the size of the bubble, which
was usually in the micrometer range. In the bubble material, depending on
the external applied field, the magnetic structure can have several phases,
such as stripe domain phase, isolated bubble phase, hexagonal bubble lattice
phase, and mixtures of them.

Early research into magnetic bubble provides an important source of ref-
erence for the study of skyrmions. The stripe domain, bubble lattice, and
isolated bubble phase in bubble materials have their counterpart in the he-
lix, skyrmion lattice, and isolated skyrmion phase in skyrmion materials.
However, there are some important distinctions between these two concepts.
First of all, the magnetic bubble is achiral. Second, their size usually has
a significant dependence on the external field, and the bubble size is much
larger compared to the boundary wall width. These are usually not the
case in skyrmion systems. However, the boundary of bubbles and skyrmions
have some “gray zone”, thus the round shape magnetic domain has both the
properties of a bubble and a skyrmion. Thus it can be called an “skyrmion
bubble”. A typical example is the Néel skyrmion in interfacial DMI systems
[26].

1.6 Previous studies of skyrmions
The magnetic domain wall is a one-dimensional topological structure in which
the magnetization changes along one direction. The magnetic skyrmion is
topologically more complicated as the magnetization changes in two-dimensions.
Magnetic skyrmions usually have a bubble-like round shape. The boundary
region, defined as the region in between the magnetic region in and out of the
skyrmion, has a chirality preferred by the DMI. A skyrmion can be character-
ized by the topological skyrmion number asNsk =

1
4π

∫∫ # »

M ·
(

∂
# »
M
∂x

× ∂
# »
M
∂y

)
dx dy.
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1.6. Previous studies of skyrmions

This number is widely used in studies of the static and dynamical behavior
of skyrmions, such as the topological Hall effect [13, 27] and nucleation [14].

1.6.1 Early discovery of skyrmion
In 2009, the research group of Prof. C. Pfleiderer reported the observation
of a skyrmion lattice by the experimental method of neutron scattering [28].
Instead of observing in real space, the neutron scattering method can provide
the magnetization structure information in momentum space. They used a
bulk crystal of MnSi, which has the B20 crystal structure with the size scale
in millimeters. As shown in Fig. 1.4, the six peaks in the typical small-angle
neutron scattering(SNAS) intensity indicate a magnetic modulation along
all three crystal directions, thus confirming the skyrmion lattice structure.

Figure 1.4: Typical neu-
tron small-angle scatter-
ing intensity, which indi-
cating the stabilization of
skyrmion lattice. (From
[28]. Reprinted with per-
mission from AAAS.)

In 2010, the research group of Prof. Y. Tokura reported the real-space
observation of a two-dimensional skyrmion crystal [8]. The material they re-
port is a Fe0.5Co0.5Si single-crystal grown by the floating-zone technique. The
material also has a B20-type crystal structure, thus having the type of DMI
which supports Bloch-type skyrmions. The crystal is then shaped into a thin
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lamella with the thickness less than the helical wavelength. The real-space
measurement is performed by the LTEM technique, which will be introduced
in detail in Chapter 3. The analytical method of solving the transport-of-
intensity equation (TIE) is used to interpret the LTEM measurement to
obtain the local magnetization distribution. They also performed a Monte
Carlo simulation to reproduce the measured magnetic skyrmion structure.
The magnetic structure of a helix and a Bloch skyrmion is in good agree-
ment with the simulation results, as shown in Fig. 1.5.

Figure 1.5: Simulation and experiment result of magnetization distribution of
helix and skyrmion lattice. (Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Nature, [8] (Real-space
observation of a two-dimensional skyrmion crystal, X. Z. Yu et al.), COPY-
RIGHT (2010) )

Furthermore, they showed the temperature and field dependence of the
phase diagram of the magnetic structure. At low temperatures, the system is
in a helix state when there is no external field. As the field increases, the sys-
tem then gradually transitions into a helix/skyrmion mixed state, skyrmion
lattice state, skyrmion/ferromagnetic mixed state, and finally a pure ferro-
magnetic state, when the field is strong enough. When the temperature is
high enough, the skyrmion phase disappears. The simulation well reproduces
the experiment results, as shown in Fig. 1.6.

This work demonstrated in real space the magnetization of Bloch type
skyrmions. The experimental phase diagram behavior of skyrmions, as well
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Figure 1.6: Simulation and experiment
result of temperature and field depen-
dence of the magnetic structure phase
diagram. (Reprinted by permission
from Springer Nature Customer Ser-
vice Centre GmbH: Springer Nature,
Nature, [8] (Real-space observation of
a two-dimensional skyrmion crystal,
X. Z. Yu et al.), COPYRIGHT (2010)
)
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as the methodology used, inspired much follow-up research, including lots of
interesting work from their own group.

In 2013, researchers at the University of Hamburg reported the observa-
tion of skyrmions in the ultrathin film system by the method of spin-polarized
scanning tunneling microscopy (SP-STM) [29]. The SP-STM technique can
measure the magnetization distribution with atomic spatial resolution, which
enables the study of the fine structure of skyrmions. In the ultrathin film
system, the origin of the DMI is the interface structure, thus supporting the
Néel-type skyrmion instead of the Bloch-type skyrmion that was observed in
the B20 system. The spin spiral phase, skyrmion phase, and ferromagnetic
phase are measured in real space, as shown in Fig. 1.7. Furthermore, they
demonstrated that the skyrmions could be “write” and “delete” by using the
magnetic tip of the STM.

Figure 1.7: Skyrmion mag-
netic structures measured
by SP-STM technique.
(From [29]. Reprinted with
permission from AAAS.)

These early experiments unambiguously demonstrated the existence of
magnetic skyrmions of different types and their interesting phase change
behavior. The underlying physical mechanisms and rich application potential
resulted in great research interest and numerous follow-up works. In the next
few sections, I will briefly introduce some of these most interesting works.

1.6.2 Bloch skyrmion in B20 structure system
Following up on their previous study, the research group of Prof. Tokura
continued their research on skyrmions in B20 structure systems. In 2011,
they showed that the Bloch skyrmion could be found in the B20 material
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FeGe up to near room temperature [30]. They also studied the sample
thickness-dependent of the skyrmion phase and found that as the thickness
of the sample becomes larger, the skyrmion region shrinks dramatically in
the temperature and field phase diagram, as shown in Fig. 1.8. In 2013,
they showed that the size and chirality of the skyrmions could be tuned by
changing the material composition by varying x in Mn1-xFexGe [31]. In 2014,
they observed a thermally-induced unidirectional rotation of the microscale
skyrmion-crystal domains [32]. In 2015, they reported a study of the stability
of the skyrmion phase along various crystal directions [33].

Figure 1.8: Thickness depen-
dence of the skyrmion lat-
tice phase in the temperature-
field phase diagram in FeGe.
(Reprinted by permission from
Springer Nature Customer Ser-
vice Centre GmbH: Springer Na-
ture, Nature Materials [30] (Near
room-temperature formation of a
skyrmion crystal in thin-films of
the helimagnet FeGe, X. Z. Yu et
al.), COPYRIGHT (2010))

In 2012, Prof. Tokura’s group showed that skyrmion could also be sta-
bilized in a multiferroic material Cu2OSeO3 [34], as shown in Fig. 1.9. The
discovery of the skyrmion in a multiferroic material could enable the possi-
bility of manipulating a skyrmion by applying an external electric field.

The study and understanding of the B20 skyrmion went further in-depth.
Theory predicted that, as the thickness of the sample becomes thicker, the
Bloch skyrmion will have an increasing twist in the thickness direction, and
when up to a critical thickness, the tube-like structure will break into “chiral
bobber” [35, 36], as shown in Fig. 1.10.

In 2018, the chiral bobber was experimentally measured by the method
of off-axis electron holography [37], as shown in Fig. 1.11.

Besides using real-space experimental measurements and bulk samples,
the B20 type of Bloch skyrmion can also be detected by transport methods
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Figure 1.9: The discovery of
magnetic skyrmion in multifer-
roic material Cu2OSeO3. (From
[34]. Reprinted with permission
from AAAS.)

Figure 1.10: Schematic
drawing of the magnetiza-
tion and cross-section of
the (a) skyrmion tube,
and (b) chiral bobber.
(Reprinted figure with per-
mission from [35] Rybakov,
F. N., Borisov, A. B.,
Blügel, S., & Kiselev, N.
S., Physical review letters,
115, 117201 (2015)] Copy-
right (2015) by the Ameri-
can Physical Society.)
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Figure 1.11: Experimental confirmation of the existence of chiral bobber.
(Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, Nature Nanotechnology [37] (Experimental obser-
vation of chiral magnetic bobbers in B20-type FeGe, Fengshan Zheng et al.),
COPYRIGHT (2018))

and using thin film deposition techniques [27]. In this work, by studying the
temperature/field phase diagram and sample thickness dependence of the
measured Hall resistance, a similar phase diagram behavior to that found
in bulk single crystals was also found in thin film systems prepared by the
magnetron sputtering technique.

1.6.3 Néel skyrmion in Cnv crystal structure system
Besides the B20 system, there are also other crystal symmetries that can have
a DMI, and thus stabilize skyrmions. For example, in the crystal structure
with Cnv (where n=3, 4, 6), the Néel type of skyrmion can be stabilized.
In 2015, the material GaV4S8 with C3v structure was found to host Néel
skyrmions by the experimental method of magnetic force microscopy (MFM)
and small-angle neutron scattering [10]. In 2017, the tetragonal polar magnet
VOSe2O5 with the C4v crystal structure was also discovered to stabilize Néel-
type skyrmion lattices by the small-angle neutron scattering measurements
[15].

In 2020, we observed robust Néel skyrmions stabilized in metallic PtM-
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nGa crystals with C3v structure [38]. We used LTEM and MFMmeasurement
techniques, which will be briefly summarized in Chapter 3.

1.6.4 Skyrmion in interface system
In interfacial thin film systems, which are widely studied for current-induced
domain wall motion, the DMI originates from interface symmetry breaking
and results in Néel type domain wall structures. There, Néel type skyrmions
can also be stabilized. For example, such skyrmions have been detected by
the method of spin-polarized low-energy electron microscopy (SPLEEM)
technique in the multilayer thin film system of
Fe(2.5 ML)/Ni(2)/Cu(8.4)/Ni(15)/Cu(001) system [9]. The SPLEEM can
measure all three components of the magnetization, thus confirming the
skyrmions are of the Néel type, as shown in Fig. 1.12.

Figure 1.12: Experimental
confirmation of the ex-
istence of interface DMI
induced Néel skyrmion.
(Reprinted from [9], with
the permission of AIP
Publishing.)

In 2015, by the method of Kerr-microscopy, “skyrmion bubbles” were
observed using the magnetron sputtering grown thin-film structures with
Ta(5 nm)/Co20Fe60B20(1.1 nm)/TaOx(3 nm) trilayer [26]. They showed that
by applying current pulses under certain device geometries,that skyrmion
bubbles can be created.
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1.6.5 Other skyrmion systems
Besides the above introduced typical skyrmion systems, there are other types
of skyrmions that have been identified, which will be briefly introduced below.

In 2013, the research group of Prof. Tokura reported the observation
of magnetic biskyrmions [39]. The material is a bilayered manganese oxide
La2-2xSr1+2xMn2O7 with x = 0.35 and its crystal structure is centrosymmet-
ric. Due to the centrosymmetric space group, the system does not have DMI,
which is needed to stabilize a skyrmion with a well defined chirality as in-
troduced above. From the LTEM pattern, which shows two dots structure
with black and white contrast, they deduce the magnetic structure to have
two core structures, as shown in Fig. 1.13. In 2019, it was reported in the
material of MnNiGa that the LTEM pattern of biskyrmions might rather
correspond to type-II magnetic bubbles [40].

Figure 1.13: Magnetic struc-
ture of a biskyrmion and its
corresponding LTEM pattern.
(Reprinted by permission from
Springer Nature Customer Ser-
vice Centre GmbH: Springer Na-
ture, Nature Communications,
[39] (Biskyrmion states and their
current-driven motion in a lay-
ered manganite, X. Z. Yu et al.),
COPYRIGHT (2014))

In 2018, the research group of Prof. Tokura reported that in the B20
material structure, there might be a magnetically induced transformation of
a square (anti)meron lattice to a hexagonal skyrmion lattice in the (001)
plate of Co8Zn9Mn3 [41], as shown in Fig. 1.14.

Another kind of skyrmion is in a frustrated J1-J2-J3 ferromagnetic [42].
In this system, there is no DMI; however, the exchange interaction not only
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Figure 1.14: Magnetic struc-
ture of square (anti)meron lat-
tice, hexagonal skyrmion lattice,
and the transition state in be-
tween. (Reprinted by permis-
sion from Springer Nature Cus-
tomer Service Centre GmbH:
Springer Nature, Nature, [41]
(Transformation between meron
and skyrmion topological spin
textures in a chiral magnet, X. Z.
Yu et al.), COPYRIGHT (2018))

plays an essential role for the nearest-neighbor but also has a pronounced
value for the next nearest-neighbor and next next nearest-neighbor. By
the competition of these complex exchange interactions, various complex
skyrmions with different topologies can be stabilized, as shown in Fig. 1.15.

Figure 1.15: Magnetic structure of skyrmions in frustrated J1-J2-J3 ferro-
magnetic. (Reprinted from [42]. Link to the Creative Commons license:
https://creativecommons.org/licenses/by/4.0/)

The family of skyrmions already has lots of members, and the number is
still growing. The rich types of skyrmion enable the high potential of novel
magnetic textures as well as non-trivial dynamical prosperities.
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1.6.6 Current induced skyrmion motion
Besides research on the static properties of skyrmions, there are also lots of
reports on their dynamical behavior, especially their current-induced motion.
Due to the possibility of moving around defects, the critical current density
of motion should be low. In B20 materials, the critical current density to
trigger skyrmion motion can be as low as about 5A cm−2 [43]. Current-
induced skyrmion motion is also found in interface thin film systems [44], as
shown in Fig. 1.16.

Figure 1.16: Current-induced
skyrmion motion measured by
magnetic transmission soft X-
ray microscopy. (Reprinted by
permission from Springer Nature
Customer Service Centre GmbH:
Springer Nature, Nature Mate-
rials [44] (Observation of room-
temperature magnetic skyrmions
and their current-driven dynam-
ics in ultrathin metallic ferro-
magnets, Seonghoon Woo et al.),
COPYRIGHT (2016))

Moreover, when the current induced skyrmion motion is triggered by spin
currents generated from Spin Hall Effects in heavy metal layers, the skyrmion
will move along a trajectory at an angle to the electrical current direction:
this effects has been named the “skyrmion Hall effect”. The skyrmion Hall ef-
fect can be observed using Kerr microscopy mmeasurements [45] and scanning
transmission X-ray microscopy (STXM) [46] technique. It has also recently
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been reported that, in the ferrimagnetic sample, the skyrmion Hall angle
could be tuned and even vanish [47]. The above-mentioned current-induced
motion in various skyrmions shows promising potential for next generation
Racetrack memory applications [2].

1.7 Heusler material
Here, the concept of a Heusler Material, in which the antiskyrmion was dis-
covered, will be briefly introduced. The Heusler material [48] is the name of
a large family of materials with the general formula of X2YZ where X and Y
are transition metals and Z is a main group element (for half-heusler the for-
mula is XYZ). The Heusler materials show exciting properties in topics such
as spintronics, semiconductors, topological insulators, and even superconduc-
tivity. For magnetism, the interest of the Heusler compound started with
Cu2MnAl as a ferromagnetic material in which the elements involved are not
ferromagnetic themselves. Recently, novel magnetic properties have been
shown in several Heusler materials. For example, giant tunable exchange
bias can be introduced [49] or large noncolllinearity and spin reorientation
are found in novel Mn2RhSn Heusler magnet [50]. This material has a crysta
structure with a D2d point group symmetry, and thus has the potential for
hosting antiskyrmions.
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Chapter 2

Skyrmion theory and
micromagnetic simulation

In the first section of this chapter, I will introduce the basic theory of
skyrmions. I will start with a symmetry analysis of the DMI exchange inter-
action energy term. Then, I will show how the DMI energy term determines
the topology of possible non-collinear magnetic structures that the material
can host. In a second section, I will first introduce the working principle
of micromagnetic simulations, then, illustrate these principles with a few
typical micromagnetic simulations. Finally, a self-coded program for batch
calculation and analysis of the results will be presented.

2.1 Skyrmion theory

2.1.1 Exchange interaction between two atoms

The Dzyaloshinskii–Moriya interaction is named after Dzyaloshinskii and
Moriya for their pioneering work [11, 12], which introduced a vector exchange
interaction term in materials with a non-centrosymmetric crystal structure
that allows for the alignment of neighboring magnetic moments perpendic-
ular to each other rather than parallel/anti-parallel to each other as in con-
ventional exchange interactions. To begin with, let us discuss the exchange
interaction between two atoms.

For two arbitrary atoms: i and j, the most general exchange interaction
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Hamiltonian Hij can be written as:

Hij =
#»

SiJij
#»

Sj =
(
Six Siy Siz

)Jij,xx Jij,xy Jij,xz
Jij,yx Jij,yy Jij,yz
Jij,zx Jij,zy Jij,zz

Sjx

Sjy

Sjz

 (2.1)

Here, #»

Si and
#»

Sj are the vectors of spin in 3-dimensional coordinates, so
the most general form of exchange interaction Jij is a 3 by 3 second-order
tensor. This Hamiltonian can be decomposed into three parts as:

Hij =
(
Six Siy Siz

)Jij,xx 0 0
0 Jij,yy 0
0 0 Jij,zz

Sjx

Sjy

Sjz

+

(
Six Siy Siz

) 0
Jij,xy−Jij,yx

2

Jij,xz−Jij,zx
2

Jij,yx−Jij,xy
2

0
Jij,yz−Jij,zy

2
Jij,zx−Jij,xz

2

Jij,zy−Jij,yz
2

0

Sjx

Sjy

Sjz

+

(
Six Siy Siz

) 0
Jij,xy+Jij,yx

2

Jij,xz+Jij,zx
2

Jij,yx+Jij,xy
2

0
Jij,yz+Jij,zy

2
Jij,zx+Jij,xz

2

Jij,zy+Jij,yz
2

0

Sjx

Sjy

Sjz

 (2.2)

The first term corresponds to a simple exchange. Under the usual assump-
tion that the exchange interaction is isotropic, Jij,xx = Jij,yy = Jij,zz = Jij,Hei,
this term corresponds to the Heisenberg exchange model:

Hij,sim_Exc =
(
Six Siy Siz

)Jij,Hei 0 0
0 Jij,Hei 0
0 0 Jij,Hei

Sjx

Sjy

Sjz


=Jij,Hei

#»

Si ·
#»

Sj (2.3)

Let us define, Dij,z =
Jij,xy−Jij,yx

2
, Dij,y = −Jij,xz−Jij,zx

2
,Dij,x =

Jij,yz−Jij,zy
2

,
so the second term becomes:

Hij,DMI =
(
Six Siy Siz

) 0 Dij,z −Dij,y

−Dij,z 0 Dij,x

Dij,y −Dij,x 0

Sjx

Sjy

Sjz


=

#   »

Dij ·
#»

Si ×
#»

Sj (2.4)

where #   »

Dij =
(
Dij,x Dij,y Dij,z

)
is the DMI vector.
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The third term is a traceless symmetric part, which corresponds to energy
terms such as anisotropy [51]. The relative magnitude of the second and
third term to the first term is on the order of ∆g

g
and (∆g

g
)
2, where g is the

gyromagnetic ratio, and ∆g is its deviation from the value for a free electron
[12]. Their amplitudes are relatively small and thus can usually be neglected,
especially for the case of the third term.

Thus the Heisenberg and DMI exchange energy terms correspond to the
diagonal part and antisymmetric non-diagonal part of the general exchange
tensor. Based on this mathematical formalism, by applying the crystal sym-
metry, we can find the corresponding Hamiltonian for various crystal sym-
metry systems.

2.1.2 Exchange interaction under different crystal sym-
metries

Let us now consider the situation of the exchange interaction in a space group.
Due to the symmetry property of the space group, the exchange interaction
between atoms in the group is no longer completely independent. These
interactions are connected via relationships that depended on the detailed
crystal symmetry properties.

For the most general situation, let us consider two arbitrary atoms in the
space group i, 1 and j, 1. The coordinate of i, 1 and j, 1 are:

#  »ri,1 =
(
xi,1 yi,1 zi,1

)
#  »rj,1 =

(
xj,1 yj,1 zj,1

)
#    »rij,1 =

#  »rj,1 − #  »ri,1 =
(
xj,1 − xi,1 yj,1 − yi,1 zj,1 − zi,1

)
=
(
∆x ∆y ∆z

)
(2.5)

In this space group, there are Nsym general positions, which is also the
number of symmetry operations. So, atom i, 1 and j, 1 and their interactions
correspond to other Nsym atoms and interactions, as folllows:

#   »ri,α =
(
xi,α yi,α zi,α

)
= Rα

#  »ri,1
#   »rj,α =

(
xj,α yj,α zj,α

)
= Rα

#  »rj,1
#    »rij,α = #   »rj,α − #   »ri,α = Rα

(
∆x ∆y ∆z

)
= Rα

#    »rij,1 (2.6)

where Rα is the symmetry operation and α = 1 . . . Nsym.
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Then the total exchange energy for the system is:

Hij =

Nsym∑
α=1

(
Six,α Siy,α Siz,α

)Jij,xx,α Jij,xy,α Jij,xz,α
Jij,yx,α Jij,yy,α Jij,yz,α
Jij,zx,α Jij,zy,α Jij,zz,α

Sjx,α

Sjy,α

Sjz,α

 (2.7)

After Rβ, the original atom and associated spin component will corre-
spond to the new atom and spin component. Note that since the magnetiza-
tion is a pseudovector, an extra determinant of the symmetry matrix needs
to be multiplied.

#   »ri,α → Rβ
#   »ri,α

#   »rj,α → Rβ
#   »rj,α(

Sx Sy Sz

)
→ det(Rβ)Rβ

(
Sx Sy Sz

)
(2.8)

In the total exchange energy, replacing the spin component of a certain
atom by the one which afterRβ will be moved to, we will get the new exchange
energy term. After the symmetry operation, the energy of the system should
not be changed.

RβHij = Hij (2.9)
We then find the relationship between different exchange tensors.
For example, for the space group No. 111 (D1

2d), if we defineJij,xx,1 Jij,xy,1 Jij,xz,1
Jij,yx,1 Jij,yy,1 Jij,yz,1
Jij,zx,1 Jij,zy,1 Jij,zz,1

 =

Jij,xx Jij,xy Jij,xz
Jij,yx Jij,yy Jij,yz
Jij,zx Jij,zy Jij,zz


Dz =

Jxy − Jyx
2

, Dy = −Jxz − Jzx
2

, Dx =
Jyz − Jzy

2
(2.10)

then we can get for all the 8 general positions:
#     »rij,1 =

(
∆x ∆y ∆z

)
,

#       »

Aij,1 =
(
Jxx Jyy Jzz

)
,

#       »

Dij,1 =
(
Dx Dy Dz

)
#     »rij,2 =

(
−∆x−∆y ∆z

)
,

#       »

Aij,2 =
(
Jxx Jyy Jzz

)
,

#       »

Dij,2 =
(
−Dx −Dy Dz

)
#     »rij,3 =

(
∆y −∆x −∆z

)
,

#       »

Aij,3 =
(
Jyy Jxx Jzz

)
,

#       »

Dij,3 =
(
−Dy Dx Dz

)
#     »rij,4 =

(
−∆y ∆x −∆z

)
,

#       »

Aij,4 =
(
Jyy Jxx Jzz

)
,

#       »

Dij,4 =
(
Dy −Dx Dz

)
#     »rij,5 =

(
−∆x ∆y −∆z

)
,

#       »

Aij,5 =
(
Jzz Jxx Jyy

)
,

#       »

Dij,5 =
(
−Dx Dy −Dz

)
#     »rij,6 =

(
∆x −∆y −∆z

)
,

#       »

Aij,6 =
(
Jzz Jxx Jyy

)
,

#       »

Dij,6 =
(
Dx −Dy −Dz

)
#     »rij,7 =

(
−∆y −∆x ∆z

)
,

#       »

Aij,7 =
(
Jyy Jxx Jzz

)
,

#       »

Dij,7 =
(
Dy Dx −Dz

)
#     »rij,8 =

(
∆y ∆x ∆z

)
,

#       »

Aij,8 =
(
Jyy Jxx Jzz

)
,

#       »

Dij,8 =
(
−Dy −Dx −Dz

)
(2.11)
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From here, we can find, under the symmetry of this space group, the relation
of the exchange interaction between every pair of atoms.

Now, we make the assumptions that the magnetization changes contin-
uously, and that atoms i and j are close enough to each other. These as-
sumptions are usually satisfied nicely since the size of the skyrmion is usually
much larger compared to the lattice constant, and the exchange interaction
only is signiificant for nearby atoms. So, the magnetization on atom j can
be expanded to the first order as:

Sjx = Six +
∂Mx

∂x
∆x+

∂Mx

∂y
∆y +

∂Mx

∂z
∆z

Sjy = Siy +
∂My

∂x
∆x+

∂My

∂y
∆y +

∂My

∂z
∆z

Sjz = Siz +
∂Mz

∂x
∆x+

∂Mz

∂y
∆y +

∂Mz

∂z
∆z (2.12)

So, for simple exchange, assuming

A1 = −2Jxx(∆x)
2 − 2Jyy(∆y)

2

A2 = −2Jyy(∆x)
2 − 2Jxx(∆y)

2

A3 = −2Jxx(∆z)
2 − 2Jyy(∆z)

2

A4 = −2Jzz(∆x)
2 − 2Jzz(∆y)

2

A5 = −4Jzz(∆z)
2

D = 4Dx∆x− 4Dy∆y (2.13)
we can get

Hsim_Exc = A1

(
∂Mx

∂x

)2

+A2

(
∂Mx

∂y

)2

+A3

(
∂Mx

∂z

)2

+A2

(
∂My

∂x

)2

+A1

(
∂My

∂y

)2

+A3

(
∂My

∂z

)2

+A4

(
∂Mz

∂x

)2

+A4

(
∂Mz

∂y

)2

+A5

(
∂Mz

∂z

)2

HDMI = D

(
My

∂Mz

∂x
−Mz

∂My

∂x

)
−D

(
Mz

∂Mx

∂y
−Mx

∂Mz

∂y

)
(2.14)

Using this method, we can find the DMI energy terms foro ther crystal
symmetries. For example, in space group No. 195 (T 1), let D = 4Dx∆x +
4Dy∆y + 4Dz∆z, then

HDMI = D

(
My

∂Mz

∂x
−Mz

∂My

∂x

)
+D

(
Mz

∂Mx

∂y
−Mx

∂Mz

∂y

)
+D

(
Mx

∂My

∂z
−My

∂Mx

∂z

)
(2.15)
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2.1. Skyrmion theory

In the space group No. 75 (C1
4), let D1 = 2Dx∆x+ 2Dy∆y, D2 = 2Dx∆y −

2Dy∆x and Dz = 4Dz∆z, then

HDMI = D1

(
My

∂Mz

∂x
−Mz

∂My

∂x

)
+D2

(
My

∂Mz

∂y
−Mz

∂My

∂y

)
−D2

(
Mz

∂Mx

∂x
−Mx

∂Mz

∂x

)
+D1

(
Mz

∂Mx

∂y
−Mx

∂Mz

∂y

)
+D3

(
Mx

∂My

∂z
−My

∂Mx

∂z

)
(2.16)

The DMI energy term for all crystal structures is summarized in Appendix
A. These results agree with the previous literature [52, 53].

2.1.3 Magnetic topology of skyrmion under different
crystal symmetry

After obtaining the major Hamiltonian term, we can now derive the magnetic
topology of skyrmions for different crystal symmetries. We consider the
situation in a 2-dimensional situation here. A polar coordinate{

x = ρ cos η

y = ρ sin η
(2.17)

is used, whose origin is at the center of the skyrmion, and the magnetization
is defined as 

Mx =Ms sin θ cosφ

My =Ms sin θ sinφ

Mz =Ms cos θ

(2.18)

as shown in the Fig. 2.1.
For the single skyrmion which has a round shape, we can assume that:

{
θ = θ(ρ)

φ = φ(η)
and


∂θ

∂η
= 0

∂φ

∂ρ
= 0

(2.19)

Let us first derive the situation corresponding to the B20 crystal structure.
Considering the energy terms of exchange, DMI, and Zeeman energy, the
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2.1. Skyrmion theory

Figure 2.1: Coordinate def-
inition and typical mag-
netic topology of skyrmion.
(a) Coordinate definition,
(b-d) magnetic topology
of Bloch, Néel and anti-
skyrmion.

total energy is:

Htotal = Hsim_Exc +HDMI +HZeeman

= AM2
s

(
∂θ

∂ρ

)2

+ AM2
s sin

2θ

(
1

ρ

∂φ

∂η

)2

+DM2
s sin(η − φ)

(
∂θ

∂ρ
+ cos θ sin θ

1

ρ

∂φ

∂η

)
−HMs cos θ (2.20)

Thus, in order to minimize the total energy, when D > 0 and

θ =

{
0, ρ = 0

π, ρ = +∞
(2.21)

we obtain the magnetic topology below, as shown in Fig. 2.1b.

φ = η +
π

2
(2.22)

Using the same method, and using the DMI energy term for other crystal
structures, the typical magnetic topology of a Néel skyrmion in C3v material
and an antiskyrmion in D2d material are shown in Fig. 2.1c-d.
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2.1. Skyrmion theory

In order to solve the skyrmion magnetization geometry, we need to solve
the Euler equations by using functional derivatives [6]:

δHtotal

δθ
=
δHtotal

δφ
= 0 (2.23)

Thus,

∂Htotal

∂θ
− 1

ρ

∂

∂ρ

ρ∂Htotal

∂
(

∂θ
∂ρ

)
 = 0

∂Htotal

∂φ
− 1

ρ

∂

∂η

 ∂Htotal

∂
(

1
ρ
∂φ
∂η

)
 = 0 (2.24)

Solving the above equations, we have

D cos(η − φ)

(
∂θ

∂ρ
+

1

ρ
cos θ sin θ

)
+

1

ρ2
2Asin2θ

∂2φ

∂η2
= 0

A sin 2θ

(
1

ρ

∂φ

∂η

)2

+D sin(η − φ) cos 2θ
1

ρ

∂φ

∂η
+

H

Ms

sin θ − 1

ρ
2A

∂θ

∂ρ
− 2A

∂2θ

∂ρ2

− 1

ρ
D sin(η − φ) = 0 (2.25)

Solving Equ.(2.25) will provide us the magnetic structure. The solution
is usually complicated and does not have a closed-form expression so nicro-
magnetic simulations are very useful to find a numerical solution, as will be
discussed in the next section.

The skyrmion structure in 3-dimensions becomes yet more complicated.
For example, in a B20 material, due to the DMI having components in all 3-
dimensions, an additional twist will be induced in a skyrmion tube structure
[35]. As the thickness is increased, the parameter range for a skyrmion to be
stabilized will thus shrink [30] or the skyrmion can even break up into chiral
bobbers. In other materials, e.g., D2d antiskyrmions, the zero value of the
component of the DMI vector along the 3rd dimension leads to an intrinsic
stability, which will be discussed in detail in Chapter 5. Other energy terms,
such as the long-range magnetic dipolar interaction, will also induce addi-
tional magnetization structures such as vertical Bloch lines [6] or “Néel Cap”
[54]. These complicated 3D structures can hardly be described analytically
so that they have largely been studied via micromagnetic simulations.
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2.2. Micromagnetic simulation

2.2 Micromagnetic simulation
As discussed in the section above, analytical solutions to the magnetic struc-
ture or magnetization dynamics is complicated, if not impossible, to obtain
for lots of magnetic structures. So, numerical solutions play a crucial role in
spintronics research. Depending on the material parameters, the character-
istic size of the magnetic structure can have a wide range from nanometers
to even centimeters. Thus, the numerical calculation of the magnetic struc-
ture on the atomic scale in most of the situations is not necessary. Under
the assumption that the magnetization varies smoothly, the problem can be
turned into solving the Landau–Lifshitz–Gilbert (LLG) equation by using
finite element methods.

2.2.1 Working principle of micromagnetic simulations
In micromagnetic simulations, the goal is to fnd the magnetization as a func-
tion of space and time, # »

M (x, y, z, t). Typically, the calculation area is sepa-
rated into cuboid shaped unit cells ∆V = ∆x∆y∆z, where ∆x,∆y and ∆z,
are the step size in the XYZ coordinate directions. Within the unit cell, the
magnetization is considered to be aligned along one direction. The cell size
needs to be chosen so that it is small enough compared with the character-
istic size of the magnetic structure. The equation to be solved is the LLG
equation [55]:

d
# »

M

dt
= − γ

1 + α2

# »

M × #       »

Heff −
γα

(1 + α2)Ms

# »

M ×
(

# »

M × #       »

Heff

)
−γ # »

M × #»σ

√
2kBTα

γ(1 + α2)Ms∆V∆t
+ τSpin_Torque (2.26)

where, α is the damping factor, γ is the gyromagnetic ratio, #       »

Heff is the
effective field, Ms is the saturation magnetization and the third and fourth
terms on the right hand side of the equation correspond to a temperature
term and a spin torque related term, respectively. Once initial conditions
and boundary conditions are set, the calculation can be performed. The
effective field and spin torque terms need to be adopted to the finite element
formalism, as follows.
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2.2. Micromagnetic simulation

For example, the Heisenberg exchange interaction on the atomic scale is:

HHei = −
∑
<i,j>

J #»si · #»sj (2.27)

where J is the exchange interaction constant and < i, j > denotes the sum
over nearest neighbors.

In a continuum formalism, the exchange interaction can be written as:

HHei = A

∫∫∫
V

[(∇mx)
2 + (∇my)

2 + (∇mz)
2] dx dy dz (2.28)

where A is the exchange stiffness in Jm−1.
Finally, in the finite element method,

HHei =
∑
j∈Ni

Aij

# »mi · ( # »mi − #  »mj)

∆2
ij

(2.29)

where ∆ij is the step size between cell i and j.
Thus, an effective field corresponding to the exchange interaction can be

obtained. Similar methods can be used for the other energy terms, such as
the DMI energy and the magnetic anisotropy energy.

Another example is for the spin Hall effect induced torque, for which the
the torque term is given by:

−γ # »

M × # »

M × #          »

HSHE − αγna,SHE
# »

M × #          »

HSHE (2.30)

which corresponding to the field-like and damping-like parts of the torque,
where na,SHE is the parameter that determines the ratio between these two
parts.

The effective field corresponding to the Spin-Hall-effect is:

#          »

HSHE =
h̄θSHE

2|e|Ms∆
(− #»n × #»

J ) (2.31)

where #»

J is the current injected, |e| is the electronic charge magnitude, h̄ is
the Planck constant, θSHE is the spin Hall angle of the material, ∆ is the
thickness of the adjacent layer in which the current flows and #»n is the normal
direction of the interface.

The long range magnetic dipolar interaction is much more complicated to
include. Due to its long range interaction, the interaction between cells even
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far away from each other needs to be calculated, which is by contrast with
the exchange interaction where only nearest beighbor cells need to be consid-
ered. The demagnetizing tensor [56] and Fast-Fourier-Transformation(FFT)
methods [57] have been developed to take care of the long range interaction,
and this part of the energy calculation can be accelerated by using specialized
hardware, in particular, GPUs [58].

2.2.2 Popular micromagnetic simulation software
Although researchers can develop their own software to perform micromag-
netic simulations this is very time-consuming especially to eliminate ”bugs”
so in the spintronics community, it is now very common to use well-established,
often open-source, micromagnetic simulation software programs. On the one
hand, such software is more user friendly, e.g., including graphical user inter-
faces and tutorial documents; on the other hand, these software are usually
much more optimized, bug-free, and convenient for researchers to reproduce
results from each other. Here, I just briefly introduced the three most popular
micromagnetic simulation software.

OOMMF [59], short for object-oriented micromagnetic framework, is a
calculation platform developed by scientists at the National Institute of Stan-
dards and Technology, USA. It is the most used micromagnetic simulation
software. It takes advantage of the user interface of Tcl/Tk so that each step
of the calculation can be visualized. A big advantage of OOMMF is that the
software can be secondary developed and has a wide range of user commu-
nities. Contributions of new functions made by scientists from all over the
world makes OOMMF ever more powerful. Some of the earliest simulations
in skyrmion studies were performed by OOMMF [14].

Mumax3 [58] is another popular micromagnetic simulation software pro-
gram. It is developed by the group of Prof. Van Waeyenberge at Ghent
University. Comparing to OOMMF, Mumax3 takes advantage of GPUs so
that an acceleration of ~100 times might be achieved compared with using
CPU. Mumax also has an active community so that new features can be
added and shared by researchers. Another big advantage of the Mumax3
and OOMMF programs is that they are free to use.

LLG Simulator [55] is a commercial software programed by Michael R.
Scheinfein. It is one of the earliest simulation programs that included novel
physical concepts such as DMI, SHE injection, Rashba effect. It is also among
the earliest software that uses GPUs to accelerate the calculation speed.
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In this software, it separates the long-range dipolar magnetic interaction
to be calculated in GPU, and other calculations to be performed in CPU,
thus significantly increasing the calculation speed. Working together with
Michael R. Scheinfein, the general form of DMI was implemented into the
LLG simulator program in order to simulate antiskyrmions stabilized by the
D2d type of DMI.

2.2.3 Batch calculation and result analysis
Batch calculations are essential to carry out systematic research, such as
varying parameters and for the calculation of phase diagrams. On the one
hand, it can save time and effort to manually input the parameters and
avoid typos; On the other hand, disabling the GUI during batch calculation
can avoid wasting the calculation resource in displaying real-time results.
In order to perform batch calculations, a program is coded to generate the
parameter specific files (such as *.mif in OOMMF). Then the program sends
the files one by one to the micromagnetic software and only the magnetization
information needs to be analyzed.

For example, in order to calculate the field-dependent phase diagram
of the ground state of the magnetization structure, the following steps are
usually performed:

1. Start the calculation from a random state at a high temperature.

2. Perform the calculation for some time (e.g. 100 ns) at each tempera-
ture. The temperature is gradually decreased. The output magnetiza-
tion structure is used as input for the next calculation.

3. Finally perform the calculation at zero temperature until the stabilized
magnetization structure is found.

4. Repeat step 1-3 for different field amplitudes

Chapter 5 will discuss in detail a phase diagram calculation. Due to the
extensive calculation load, it took around half a month to calculate the phase
diagram. Such a type of systematic calculation can hardly be done manually.

The calculation results also need to be analyzed by software. Fig. 2.2
shows a self-programed program to analyze the current induced domain wall
(DW) motion. The DW position, motion speed, and tilting angle etc. can be
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analyzed automatically. Using the software to analyze the batch calculation
results can vastly increase the research efficiency.

Figure 2.2: Self-programmed software for Current-Induced Domain Wall Mo-
tion analysis.
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Chapter 3

Experimental techniques

In this chapter, several experimental techniques used in the discovery and
follow up studies of antiskyrmions will be briefly introduced.

3.1 Focused ion beam (FIB)
There are two major sources of samples in the research of skyrmions: bulk
materials [8] and thin film deposition [9]. Bulk materials are usually favored
for the discovery of a new type of skyrmion, since the high quality of the
single crystal, which is ensured in bulk crystal growth, is essential for the DMI
interaction. One of the most popular experimental techniques of skyrmion
research is LTEM, which will be introduced in the next section. Because the
electron beam needs to be transmitted through the thickness of the sample,
the thickness of the sample usually cannot be greater than ~300 nm. FIB
technique is used to fabricate a thin lamella from the bulk crystal for LTEM
studies.

The FIB technique, first developed in 1975 [60], has a commercial history
of ~20 years. Instead of using electrons such as in the technique of Scan-
ning Electron Microscopy (SEM), a beam of Ga ions is focused and used to
etch the sample with the help of computer-controlled sample surface scan-
ning. Nowadays, in a commercial FIB workstation, multiple functions are
integrated into the high vacuum chamber with a multi-axis tilt stage for the
TEM sample preparation, such as SEM, FIB etching, FIB imaging, FIB de-
position. The two FIB systems used for the studies presented in this thesis
in our institute are shown in Fig. 3.1. A typical FIB sample preparation
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3.1. Focused ion beam (FIB)

Figure 3.1: FIB workstations. (a) Model GAIA 3 Ga+ FIB from TESCAN
company with ultimate FIB spatial resolution <2.5 nm at 30 kV (b) Model
FERA 3 Xe plasma FIB from TESCAN company with FIB spatial resolution
<15 nm at 30 kV. Large scale milling speed ~50 times faster than Ga+ FIB.

procedure is shown in Fig. 3.2.
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3.2. Lorentz transmission electron microscopy (LTEM)

Figure 3.2: A typical FIB
lamella fabrication proce-
dure. (a) Bulk sample sur-
face before fabrication, (b)
deposit Pt protection layer,
(c) etching away material
using “stairs etching” tech-
nique, (d) etch away left
part of the lamella, (e) etch
away the bottom part of
the lamella, (f) deposit Pt
glue material (a different
color is used just to distin-
guish Pt used in different
steps), (g) etch away right
part of the lamella and (h)
final fabricated lamella.

3.2 Lorentz transmission electron microscopy
(LTEM)

The transmission electron microscope is one of the most powerful tools to
investigate a sample’s structure. Due to the much smaller wavelength of
electron compared to optical light, the spatial resolution of TEM is much
higher. TEM can also be used to study the magnetization structure in the
Lorentz mode [61]. When the electron wave passes through the sample, a
phase gain will be added due to the magnetization of the sample according
to the Aharonov–Bohm effect [62]. After propagating along the column axis,
the gained phase will form the LTEM pattern. The working principle will be
discussed below and in the next chapter.

Here, we only discuss the most widely used Fresnel mode of LTEM for
Chiral magnetic nanostructure (CMN) studies. Because of the Aharonov-
Bohm effect [62], when an electron passing along the LTEM column axis
(defined as z-axis) and penetrates through the sample, it gains a phase shift
of φm.
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3.2. Lorentz transmission electron microscopy (LTEM)

φm = − π

ϕ0

∫
Az dz (3.1)

, here ϕ0 = h
2e

= 2.068× 10−15Wb is the magnetic flux quantum and Az

is the z-component of the magnetic vector potential. The phase shift φm is
the measured physical object in this technique and basically determines the
final LTEM pattern. The magnetic vector potential can be obtained from
the magnetization distribution [63, 64]

#»

A( #»r ) =
µ0

4π

∫
# »

M ×
#»r −

#»

r′

| #»r −
#»

r′ |
3d

3 #»

r′ (3.2)

, where # »

M is the magnetization and µ0 is the vacuum permeability. Combined
with the relationship between magnetic field #»

B and magnetic vector potential
and by performing in the colum axis direction some integration, we can find:

#»

B =
#»∇× #»

A (3.3)∫
Bx dz =

∫
∂Az

∂y
dz − Ay

∣∣z=+∞
z=−∞ =

∂
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Az dz

∂y
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∂φm
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(3.4)∫

By dz = −
∫
∂Az

∂x
dz + Ax

∣∣z=+∞
z=−∞ = −

∂
∫
Az dz

∂x
=

π

ϕ0

∂φm

∂x
(3.5)

, where x and y-axis are the TEM coordinates in-plane. At a far away
distance with respect to the sample, the magnetic vector potential will be
zero. So, the measured phase shift actually corresponds to the magnetic field
#»

B integrated, rather than directly corresponding to the magnetization [64].
LTEM is one of the most favored techniques to study magnetic nanos-

tructures due to its several advantages. i) The measurement is in real-space,
which is more straightforward compared to reciprocal space techniques such
as small-angle neutron scattering [28]. ii) With high spatial resolution, the
acquisition time is short compared with scanning probe techniques such as
MFM [65]. iii) It can distinguish between several kind of skyrmions by the
corresponding different LTEM patterns.

Fig 3.3 shows the LTEM setup used in our work. It has a spatial resolution
~40 nm that depends on the defocus distance used. A magnetic field can be
applied of up to ~2.3T. A double tilting sample holder can be used to allow
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for tilting the sample in all the in-plane directions up to ~30◦ with respect to
the column axis. The measurement can be performed in liquid nitrogen or
liquid helium temperatures depending on the sample holder used. By using
another sample holder, it is also possible to inject current/voltage pulses to
measure the magnetization dynamical behavior.

Figure 3.3: Lorentz Transmission
Electron Microscopy with model Titan
from the company FEI.

3.3 Magnetic force microscope (MFM)
MFM [66] is a type of atomic force microscopy. By using a tip that is magne-
tized, thereby interacting with the stray field created by the magnetization
of the sample, the magnetization can be measured with a scanning probe
microscopy technique with a spatial resolution of the order of <40 nm.

Compared to the LTEM technique, the MFM method is relatively slow.
For a typical LTEM image, the acquisition time is less than 1min. However,
for MFM measurements, it is usually on the order of an hour. Due to the
shape of the tip, the MFM tip is usually sensitive to the out of plane com-
ponent of the magnetization, thus cannot distinguish the type of skyrmion
as is possible using LTEM. However, MFM can measure the sample with
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thicknesses higher than that is measurable in the LTEM. Thus, MFM and
LTEM are excellent complementary techniques to each other.

MFM experiments are carried out in a commercial variable temperature
system in our group, as shown in Fig. 3.4, equipped with a 2D vector su-
perconducting magnet, which can generate a magnetic field of 3T in plane
and 9T perpendicular to the sample surface. We typically use magnetic
tips purchased from Nanosensors (PPP-LM-MFMR). The soft coating on
the magnetic tip ensures a low disturbance of the magnetic samples so that a
higher spatial resolution (~20 nm) can be achieved. Before measuring, the tip
magnetization needs to be initialized by a small permanent magnet. The to-
pographic and magnetic contrast can be simultaneously measured. Typically,
the tip first interacts with the sample in the tapping mode to acquire the
surface topography and is then lifted to some distance, e.g. 80 nm, above the
sample surface to record the magnetic texture. We use the phase-detection
technique.

Figure 3.4: MFM setup with model AttoLiquid MFM I from the company
Attocube. (a) Chambers for low-temperature measurement and supercon-
ducting vector magnet. (b) Sample holder with the magnetic tip and piezo
stage.

3.4 Kerr microscope
The Magneto-optical Kerr effect (MOKE) was discovered in 1877 by John
Kerr [67]. When a liner-polarized light is reflected from a magnetic mate-
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rial, its plane of polarization and ellipticity will change, in a manner that
is proportional to the magnetization. The origin of MOKE is the spin-orbit
interaction that occurs within a magnetic material between the electron spin
and the electric field of the light. So, there is the antisymmetric component
of the non-diagonal component of the dielectric tensor. The incoming linear
light can be treated as a superposition of a left-handed and a right-handed
circularly polarized light. Due to the magnetization, the absorption and
refractive index for the left and right-handed circular polarized light is dif-
ferent, thus resulting in the rotation of the polarization plane and the change
in ellipticity.

By combining the MOKE and optical microscopy we have a Kerr mi-
croscope [21]. The Kerr microscope can measure in real-time the magnetic
structure at a spatial resolution in the micrometer range, limited by the
wavelength of light. We use a variable temperature Kerr microscope setup,
as shown in Fig. 3.5. In this Kerr microscope, a magnetic field of up to 3000
Oe can be applied along an arbitrary in-plane direction or up to 500 Oe along
the out of plane direction. The measurement temperature can be varied from
4K to 350K. By using an image analysis-based drift compensation feedback
algorithm, the sample can be stabilized within ~100 nm.
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Figure 3.5: Kerr microscope system
from EVICO GmbH and upgraded to
variable temperature capability.

3.5 Scanning transmission X-ray microscope
(STXM)

Besides electron and visible light, X-rays can also be used to measure a
magnetic signal. For a ferromagnetic material, the electron state density
around the Fermi suface for spin up and spin down is different. So X-rays
with left/right-hand polarization are absorbed differently due to the selection
rule. This effect is called X-ray Magnetic Circular Dichroism (XMCD) [68].
Since the absorbing edge for different materials corresponds to different en-
ergies, the XMCD technique is element-specific. By using the XMCD effect,
the measured contrast directly corresponds to the magnetization. This is
in contrast with LTEM where the contrast corresponds to the gained phase
shift, or MFM, where the contrast corresponds to the stray field, so XMCD
measurements are much more straightforward to interpret. By using a zone-
plate, which uses diffraction rather than refraction or reflection, the X-ray
beam can be focused down to ~20 nm in the beamline MAXYMUS (MAg-
netic X-ray Microscope with UHV Spectroscopy) in the synchrotron BESSY
in Berlin, Germany [69]. One disadvantage of this method is that the mea-
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surement beam time is quite limited.
In this beamline, the measurement temperature can range from room

temperature down to 80K. The magnetic field can be applied by the motor-
controlled rotation of 4 permanent magnets. In this STXM, not only static
measurements can be measured, but pump and probe time-resolved dynam-
ical measurements can also be performed by using a sample holder equipped
with a high-frequency capability to apply a microwave pump, which is syn-
chronized with the synchrotron radiation probe. Several studies of current-
induced skyrmion motion have been performed with this technique [44, 46].
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Chapter 4

Magnetic antiskyrmions above
room temperature in tetragonal
Heusler materials

As discussed in previous chapters, the stabilized magnetization structure
of skyrmions has been found in systems with broken inversion symmetry,
where the DMI prefers a swirling magnetic state [28, 70]. Two types of
skyrmions, Bloch [8, 28] and Néel types [10], where spin rotations by analogy
to the the two types of Bloch and Néel domain walls, have been found by
experiment. However, antiskyrmions had not been reported yet before our
work. Some previous work reported antiskyrmions in Co/Pt multilayers [71],
which are rather simply achiral spin textures or complex spin structures in
the B20 compound MnGe are, by simulation, to be arrays of skyrmions, and
antiskyrmions [72]. The crystal symmetries of these materials intrinsically
do not allow for the formation of antiskyrmions. In this chapter, we present
an LTEM study of antiskyrmions in a family of acentric tetragonal Heusler
compounds with D2d crystal symmetry.

In this work [73], our coworker Ajaya K. Nayak performed the LTEMmea-
surements using a sample synthesized by Vivek Kumar and Ajaya K. Nayak.
The neutron diffraction was performed by Ajaya K. Nayak and Roshnee Sa-
hoo. I worked on the micromagnetic simulations, LTEM image simulations,
LTEM image analysis, etc.

The figures included in this chapter are reprinted from [73], for which I am
one of the main authors. (Material from: Nayak, A. K., Kumar, V., Ma, T.,
Werner, P., Pippel, E., Sahoo, R., ... & Parkin, S. S., Magnetic antiskyrmions
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above room temperature in tetragonal Heusler materials, Nature, published
2017, Springer Nature.)

4.1 Material and its structure and magneti-
zation characterization

For the stabilization of antiskyrmions, the high quality of the single crys-
tal is a crucial requirement. The focus has been on the Heusler compound
Mn1.4Pt0.9Pd0.1Sn and Mn1.4PtSn. In a high-purity argon atmosphere, sto-
ichiometric amounts of the constituent elements are arc melted to produce
polycrystalline ingots of Mn1.4PtSn and Mn1.4Pt0.9Pd0.1Sn. Then, they were
annealed at 1073K for one week. Finally, they are quenched in an ice-water
mixture.

Various methods were used to characterize the sample.
Firstly, X-ray powder diffraction (XRD)technique was used. From the

Rietveld refinement of the experimental results the Mn1.4PtSn crystals are
found to have an acentric tetragonal structure corresponding to the space
group I 4̄2m (space group number 121) [73]. According to the analysis method
discussed in Section 2.1, this space group corresponds to the DMI type needed
for the stabilization of antiskyrmions.

Secondly, transmission electron microscope (TEM) technique was used
to study the sample structure. The TEM sample was prepared by Ga+ FIB
from a polycrystalline Mn1.4Pt0.9Pd0.1Sn ingot. A lamella with a thickness
of ~100 nm in the thick flat region and ~50 to 70nm at the thinner edge was
prepared. From the selected area diffraction patterns (SAED) and high-
resolution scanning transmission electron microscope (STEM) results, the
atomic arrangements and the crystal structure was clearly identified [73]. The
structure measured in the TEM studies agrees with the conclusions derived
from the XRD measurements, which together confirms the crystal structure
of the sample.

Thirdly, we use a vibrating sample SQUID magnetometer (MPMS 3,
Quantum Design) to perform magnetic hysteresis loop measurements for
Mn1.4PtSn and Mn1.4Pt0.9Pd0.1Sn under various temperatures. A soft mag-
netic behavior was found [73]. At 2K for both compounds which also show
similar saturation moments of ~4.5µB. For the compound of Mn1.4PtSn, the
Curie temperature (TC), is around 400 K with a second transition below
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~160K. Such behavior suggests there is a temperature-dependent reorienta-
tion of the moments in the Mn sub-lattices at the lower temperature. The
compound Mn1.4Pt0.9Pd0.1Sn displays a similar TC as Mn1.4PtSn. However,
the spin-reorientation transition at low temperatures is decreased to around
125K. Powder neutron diffraction measurements confirms a change in the
magnetic structure at this temperature [73].

4.2 Magnetic structure and LTEM pattern
The LTEM pattern is one of the most straightforward techniques to distin-
guish different types of CMN. For antiskyrmions a 4-spot pattern with al-
ternating black and white contrast is a unique signature, whereas the LTEM
patterns are very different for Bloch and Néel skyrmions. In the last chapter,
the method to calculate the phase shift is explained in detail. In this section,
we will calculate the LTEM pattern.

The magnetic structure of a Bloch, skyrmion, a Néel skyrmion, and an
antiskyrmion is shown in Fig. 4.1a-c. The corresponding helimagnetic struc-
turess are shown in Fig. 4.1d-f. In an antiskyrmion, cross-sectional schemat-
ics along four different crystal directions show both helicoid and cycloid spin
propagations (shown in Fig. 4.1b and Fig. 4.1e) . This unique rotation of
the spin will result in a distinct LTEM pattern.

Figure 4.1: Magnetic structure of skyrmions and antiskyrmions. Magnetic
structure of (a), Bloch skyrmion, (b), antiskyrmion, and (c), Néel skyrmion.
(d), Cross-section of a Bloch skyrmion as indicated by the dashed rectangle
in a), which shows a helix structure. (f), Cross-section of a Néel skyrmion as
indicated by the dashed rectangle in c), which shows a cycloid structure. (e)
Cross-section of an antiskyrmion as indicated by the dashed rectangle in b),
which shows both helix and cycloid structure.
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Figure 4.2: Simulated magnetic structure of skyrmions. Magnetization struc-
ture of (a) Bloch-skyrmions, (b) antiskyrmions and (c) Néel-skyrmions. The
size of the shown area is 280 nm×280 nm. The arrows represent the in-plane
magnetization, and the color shows the out of plane magnetization.

Micromagnetic simulated magnetization structures are used as input for
the LTEM pattern simulation. Typical Bloch, Néel, and antiskyrmion mag-
netization simulated structures are shown in Fig. 4.2. The details of the mi-
cromagnetic simulations will be discussed in the next section. From the above
magnetization texture, the LTEM image can be calculated [61, 63, 74, 75].
In reciprocal space, the magnetic phase component can be expressed as:

φ̃ =
iπµ0Mst

Φ0

(
m̃xky − m̃ykx

k2x + k2y

)
(4.1)

where µ0 is vacuum permeability, Ms is saturation magnetization, m̃x and
m̃y are the magnetization unit vector in reciprocal space. This calculation
method is in reciprocal space, considering the thin film structure with thick-
ness t. At the back focal plane of the objective lens, the deviation of the
electron beam can be expressed as:

g (kx, ky) =

∫∫
exp [iφ(x, y)] exp [−2iπ(yky + xkx)] dx dy (4.2)

here kx, ky are the x and y components of k-vector in reciprocal space. From
the back focal plane, the electrons propagate, thus we consider the “transfer
function” as:

t (kx, ky) = A (kx, ky) exp

{
−2iπ

([
Csλ

3
(
k2x + k2y

)
4

]
−

[
∆zλ

(
k2x + k2y

)
2

])}
(4.3)
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where the λ is electron wavelength, A(kx, ky) is the pupil function, Cs is
the spherical aberration of the objective lens. The defocus distance ∆z is
an important experimental parameter, which largely determines the final
LTEM contrast. Thus, by calculating the inverse Fourier transform, the
LTEM intensity can be obtained, as:

I (x′, y′) =

∣∣∣∣∫∫ g(kx, ky)t(kx, ky)exp [−2iπ(y′ky + x′kx)] dkx dky

∣∣∣∣2 (4.4)

Under different ∆z, the LTEM images calculated are shown in Fig. 4.3. The
LTEM images have the same feature as the phase shift. When in focus, there
is no LTEM contrast. As the defocus distance becomes larger, the contrast
gets larger and more divergent. When the defocus distance is rather reduced,
the LTEM contrast also becomes the opposite.

61



4.2. Magnetic structure and LTEM pattern

Figure 4.3: Simulated LTEM images as a function of ∆z. LTEM simulated
images of Bloch-skyrmions, antiskyrmions, and Néel-skyrmions as a function
of ∆z.
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4.3 LTEM measurement of antiskyrmion
In order to get rid of the ”bend-contour” effect and to better stabilize anti-
skyrmions, the LTEM measurements are performed under certain protocols
[73], since the temperature/field applied history is found to have a criticall
influence. LTEM measurements at room temperature and zero applied mag-
netic field are shown in Fig. 4.4a-b. In Fig. 4.4a, there is no LTEM contrast
since the measurement is performed in focus. In Fig. 4.4b, an underfocused
LTEM image gives an additional contrast modulation that can be observed
in the area of the sample with [001] orientation. The experimental result
under different defocus distances agrees well with the LTEM pattern simu-
lations shown in the previous section. These stripe-like contrasts correspond
to a helimagnetic magnetic structure. The sinusoidal variation of the LTEM
contrast has a period around ~135 nm, as shown in the inset of Fig. 4.4b.
By applying magnetic field along [001], the helimagnetic state evolves into
antiskyrmions, as shown in Fig. 4.4c.

Figure 4.4: LTEM contrast at room temperature. (a) In-focus LTEM image
with no LTEM contrast (b) under-focused LTEM image at zero field and (c)
with a field of 0.24T. Helical magnetic structure and antiskyrmions appears
in (b-c), respectively. The inset of b depicts the sinusoidal change of the
LTEM contrast with the period of the helix. The scanned region is marked
by a line.

Under a field of 0.29T field applied parallel to the [001] direction, a mag-
nified underfocused LTEM image of a single antiskyrmion is shown in Fig.
4.5a. Clearly, it shows two bright and two dark spots along the crystal direc-
tions of [010] and [100]. In the overfocused LTEM image, the LTEM contrast
is reversed, as shown in Fig. 4.5b. These pictures clearly matche the above-
calculated LTEM patterns, as shown in Fig. 4.3, confirming the stabilization
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of antiskyrmions. Fig. 4.5c shows an hexagonal lattice of antiskyrmions.
Due to a slight misorientation (≈ ±3◦) of the sample away from the [001]
direction, a slight distortion of the lattice might be induced by the small
in-plane magnetic field. Due to the tetragonal D2d symmetry, it is expected
that oblique fields will induce some antiskyrmion lattice distortions.

A micromagnetic simulation of the oblique field’s influence on the anti-
skyrmion lattice is shown in Fig. 4.5d. It can be straightforwardly under-
stood that the in-plane component of the magnetic field broadens the region
of the magnetization within the antiskyrmion along the field, whereas the
converse is the case of regions that are oppositely magnetized. A distortion
of the antiskyrmions can be seen in Fig. 4.5e when the magnetic field was
applied at an angle of about 20◦ with respect to the [001] direction. Up to
the maximum possible tilt angle allowed by the LTEM sample holder, we
find that the antiskyrmions are stable. The antiskyrmions appear as ellipti-
cal shapes in the Lorentz micrographs with the center of the antiskyrmions
off-centered. This distortion originates from both the tilting of the anti-
skyrmions themselves as well as from contributions to the Lorentz imaging
from the tilted magnetizations. The stability up to a large tilting angle is re-
produced by micromagnetic simulations. As the rotation decreases from Fig.
4.5e to Fig. 4.5g, the 4-spot LTEM pattern of the antiskyrmions becomes
clearer. A nearly perfect 4-spot pattern in a regular hexagonal lattice can
beseen in Fig. 4.5i, where 0.29T field is applied along the direction [001] (less
than ±3◦ misalignment). When the field is increased to 0.33T, the lattice
is no longer hexagonal (Fig. 4.5j). A mixed antiskyrmion lattice and field
polarized state start to emerge. In still higher fields, antiskyrmions start to
disappear in the thinner region of the sample, as shown in Fig. 4.5k. Finally,
above 0.49T, the lattice becomes an array of single antiskyrmions, as shown
in Fig. 4.5l. From the above measurements we show the high stability of an-
tiskyrmions, even up to room temperature, for a large magnetic field region,
and for large tilting angles.
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Figure 4.5: Room temperature antiskyrmions. (a) Under-focused LTEM im-
age of a single antiskyrmion. The insets show the LTEM intensity profiles
along the [010] and [100] directions, marked by lines. (b) Over-focused LTEM
image of the single antiskyrmion, where the LTEM contrast is reversed (c)
Under-focused LTEM of a hexagonal lattice of antiskyrmions. (d) Simulation
of an antiskyrmion lattice in a tilted field. (e-h) Under-focused LTEM im-
ages with 0.24T field under different rotation angle (θ). (i-l) Under-focused
LTEM images of different antiskyrmions phase taken under different field
amplitudes.
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4.4 Micromagnetic simulations of antiskyrmions
We use micromagnetic simulations to reproduce the above-measured helix to
antiskyrmion lattice to field polarized state with increasing applied magnetic
field. In order to obtain the ground state, a high-temperature energy term
is initially used in the OOMMF simulations, as mentioned in chapter 2.2.3,
to overcome local energy barriers. Then the magnetization is relaxed while
the temperature is gradually decreased to zero. The evolution of the anti-
skyrmion phase as a function of field is calculated. The following parameters
are used: exchange stiffness A =1.2× 10−10 Jm−1, DMI D =6× 10−3 Jm−2,
and saturation magnetization Ms =445 kAm−1. The calculated results are
shown in Fig. 4.6a-f, which reproduces the field-induced phase change behav-
ior. In the present simulation, Ms is measured by experiment. The values of
A and D are estimated based on the size of the antiskyrmion and the mag-
netic fields applied. Since we have not considered the dipolar interaction,
the estimated values of A and D used are only approximate as discussed in
later chapters.

OOMMF is also used to simulate the antiskyrmion lattice under a tilted
field. We keep a constant field amplitude of 0.24T, and adjust the field tilting
angle to 20◦, 10◦, 0◦, −10◦ and−20◦ with respect to the [110] direction, shown
in Fig. 4.7a-e. Initially, using the above-discussed field cooling calculation
method, the antiskyrmion phase at zero tilt angle was calculated. Then,
starting from this state, a tilt angle of −20◦ is applied in the simulation. The
tilt angle was changed in 2◦ increments. The resulting state of the previous
calculation is used as the initial state of the next calculation. These tilting
calculations are all performed at zero temperature.
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4.4. Micromagnetic simulations of antiskyrmions

Figure 4.6: Simulated antiskyrmion phase as a function of Hz. (a)
Hz =0.09T, helix+antiskyrmion phase, (b) Hz =0.15T, helix+antiskyrmion
phase, (c) Hz =0.21T, antskyrmion phase, (d) Hz =0.39T, antikyrmion
phase, (e) Hz =0.47T, antiskyrmion + spin polarized state (f) Hz =0.50T,
spin polarized phase state.

Figure 4.7: Simulated antiskyrmion lattice under tilt angle. The field ampli-
tude is 0.24T with a tilting angle of (a) 20◦, (b) 10◦, (c) 0◦ (d) −10◦ and (e)
−20◦ away from [001] to the [110] direction.
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4.5 Temperature and field dependent phase
diagram of antiskyrmions

After the measurement at room temperature, we further study the temperature-
field dependent phase diagram of the antiskyrmions. A typical result is shown
below. At 350K and 0.22T, the underfocused LTEM patterns show a lattice
of antiskyrmions (Fig. 4.8a). When the temperature is higher, lower fields
are needed to stabilize the antiskyrmion phase. Antiskyrmions at 100K and
0.33T along [001] are shown in Fig. 4.8b. Then, results when the field is
reduced to zero, are shown in Fig. 4.9: two symmetrical bright spots along
[010] can be observed; However, the black spots become unclear. This zero-
field antiskyrmion state could be a metastable state.

Figure 4.8: Antiskyrmions at 350K and 100K. Under-focused LTEM image
taken at (a) 350K in a field of 0.22T, (b) 100K and field of 0.33T and (c)
100K and zero field.

I programmed MATLAB software for the LTEM image analysis. The
software has a user-friendly GUI (Graphical User Interface). After loading
the image, the first left mouse click will determine the center of the anti-
skyrmion pattern, and the second mouse click will determine the outer edge
of the antiskyrmion. Thus the size of the antiskyrmion can be estimated. By
analyzing the position of the center of the antiskyrmion, the antiskyrmion lat-
tice constant and angle can be calculated. A typical analysis result is shown
in Fig. 4.9. Red circles show the antiskyrmions. The green lines indicate
a hexagonal lattice. The blue numbers are the lengths of the antiskyrmion
lattice (in nm). The red numbers indicate the angles of the antiskyrmion
lattice(in degree).

The result of the analysis is shown in Fig. 4.10. Fig. 4.10a, shows the
magnetization measurements at different temperatures of the bulk polycrys-
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Figure 4.9: Typical image analysis re-
sult of the antiskyrmion lattice. The
LTEM image used here is at 200K un-
der a field of 0.23T.

talline Mn1.4Pt0.9Pd0.1Sn [73]. It can be seen that M(H) curves for tempera-
tures down to 150K exhibit a kink type of behavior. For temperatures below
100K, the magnetization is still unsaturated up to 1T. The LTEM image
analysis results of the H − T phase diagram are shown in Fig. 4.10b. The
antiskyrmions can be found for the complete temperature region between
400K down to the lowest allowed temperature in the current setup 100K.

The antiskyrmion lattice spacing increases when H drives the system
towards the field-polarized phase (Fig. 4.10c) with a decrease in the density of
antiskyrmions (inset of Fig. 4.10c). The size of the antiskyrmions, however,
over a wide temperature range (Fig. 4.10d) doesn’t change much. The mean
lattice angle and its standard derivation are shown in Fig. 4.10e and its inset,
which is a good indication of the antiskyrmion lattice phase.
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Figure 4.10: Antiskyrmions phase diagram and analysis. (a) M (H), un-
der different temperatures for Mn1.4Pt0.9Pd0.1Sn. The magnetizationis nor-
malized with respect to the magnetization at 1T. (b) H-T phase dia-
grams for Mn1.4PtSn. The symbols used are: helical phase (H, big as-
terisk), antiskyrmions (skx, filled stars), mixed phase of helical and anti-
skyrmions (H+skx, asterisk), field polarized state (FP) and mixed phase of
antiskyrmions and field-polarized (skx+FP, open stars). (c) Antiskyrmion
lattice spacing at various temperatures and fields. The antiskyrmion den-
sity is shown in the inset. (d) Antiskyrmion size at various temperatures
and fields. (e) Antiskyrmion lattice mean angle at various temperatures and
fields. Standard deviation of the lattice angles are shown in the inset.
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4.6 Summary and outlook
In this chapter, we have demonstrated the stabilization of antiskyrmions in
Mn1.4Pt0.9Pd0.1Sn and it’s phase diagram over a wide range of temperature
and magnetic field. The antiskyrmion LTEM pattern, micromagnetic simu-
lations and phase diagram analysis are explained in detail. The large tunable
family of Heusler materials promises an even greater variety of skyrmionic
structures in furure studies. For example, the number of valence electrons,
the spin-orbit coupling, the symmetry of the crystal structure etc. can read-
ily be manipulated. In particular, the ferrimagnetic structure of the family
of tetragonal inverse Heusler materials makes it possible to tune the total
magnetic moment to zero [49], to potentially support antiferromagnetic an-
tiskyrmions. The most crucial condition in finding antiskyrmions in other
systems is to explore material structures which have the correct crystal sym-
metry (D2d) to stabilize antiskyrmions rather than skyrmion phases. Our
extensive studies of antiskyrmions are described further in the next two chap-
ters.
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Chapter 5

Thickness dependent phase
diagram: Intrinsic stability of
magnetic antiskyrmions in the
tetragonal inverse Heusler
compound Mn1.4Pt0.9Pd0.1Sn

The discovery of magnetic skyrmions in the B20 compound, such as MnSi,
by the experimental method of small-angle neutron diffraction was carried
out in bulk crystals. These experiments showed that skyrmions exist in three
dimensions as arrays of tubes oriented along the magnetic field direction [28].
However, more recent work suggests that the lengths of these tubes is limited
[76, 35, 37]. The skyrmion phase in bulk B20 compounds is found only for a
very small magnetic field (B)- temperature (T ) parameter range [28]. It also
has been found that in thin lamellae (~100 nm) of MnSi and FeGe, that the
B-T skyrmion stability region is much larger in very thin samples [30, 33]. In
short, Bloch skyrmions in B20 compounds are very sensitive to the thickness
of the host material.

After our experimental discovery of antiskyrmions, we were motivated to
study the thickness dependence of the phase diagram for antiskyrmion sys-
tems. Using LTEM we have shown that antiskyrmions are found over a wide
range of temperature and magnetic field in wedged lamellae formed from
single crystals of Mn1.4Pt0.9Pd0.1Sn for thicknesses ranging up to ~250 nm.
The temperature-field stability window of the antiskyrmions varies little with
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thickness, which is distinct from Bloch skyrmion systems. Using micromag-
netic simulations, we show that this intrinsic stability of antiskyrmions can
be accounted for by the symmetry of the crystal lattice, which is imposed on
that of the DMI. These distinctive behaviors and stability of antiskyrmions
makes them particularly attractive for spintronic applications.

In this work [77], the LTEM measurements were performed by Rana Saha
and Abhay K. Srivastava. I was intimately involved in the experiment design
and discussion, programed the LTEM analysis software, and performed the
micromagnetic simulations.

The figures used in this chapter are reprinted from our paper [77], for
which I am one of the authors. (Reprinted from [77]. Link to the Creative
Commons license: https://creativecommons.org/licenses/by/4.0/)

5.1 LTEM measurement
The wedged shape lamella for LTEM studies were prepared from single-
crystal grains within bulk polycrystalline Mn1.4Pt0.9Pd0.1Sn. The sample
has a thickness that varies from ~90 to ~250nm, a length of 8 µm and a
width of 7 µm. The [001] direction is perpendicular to the lamella.

Three regions of different thicknesses are chosen for analysis. To ensure
the precise position of these regions, I programmed an image analysis software
(as shown in Fig. 5.1) to achieve this function by the following steps:

(i) Load the LTEM image, together with other experimental parameters
(e.g., pixel to distance ratio)

(ii) Determine the boundaries of the lamella (shown as red/blue circles).
The linear fitting result gives two boundary lines (shown as red/blue
dashed lines).

(iii) The intersection of the two boundary lines determines the position of
the origin. Two perpendicular lines (rotated slightly, as needed, with
regard to the dashed lines) are determined as the X and Y coordinate
axes.

(iv) Use the coordinate information to find the LTEM image in each region.
The coordinates are: A (1.203 µm, 2.980 µm), B (4.123 µm, 3.053 µm)
and C (5.685 µm, 3.038 µm). The size of these regions is 1 µm× 1 µm.
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(v) Find the LTEM image under different temperatures and fields.

Figure 5.1: Determination of three
different thickness regions. (a) The
full LTEM image at 300K and
0.192T. (b-d) magnified LTEM
images of the regions A, B and C
shown in a. The thickness of them
are, A: 164 nm< t < 197 nm; B:
213 nm < t <229 nm and C: 246 nm
< t < 250 nm

Careful procedures are needed to ensure coherent thickness-dependent
magnetic phase diagrams. A typical LTEM result at 300K is shown in Fig.
5.2. Fig. 5.2a shows the helical phase in all the ranges of thickness at zero
field: magnified images of three regions are shown in Fig. 5.2b. Fig. 5.2c-l
shows LTEM imags with decreasing magnetic field strength. It can be found
that the antiskyrmion region is a little enlarged as the lamella thickness
becomes larger.

Figure 5.2: LTEM result at 300K as a function of magnetic field. (a) LTEM
image under zero magnetic field. (b-l) LTEM images as a function of mag-
netic field for the three thickness regions.

In Fig. 5.3, the temperature-dependence of the LTEM images under
0.16T is shown. At 100K, the helix state is seen for all thicknesses. At
150K, coexistence of the antiskyrmion lattice and the helical phase is seen
in regions A and B; while in region C, the helical state coexists with some
isolated antiskyrmions (Fig. 5.3b). At 200K, an antiskyrmion lattice is
stabilized in A, while in B and C, an antiskyrmion lattice and a helical phase
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coexist (Fig. 5.3c). At 250K and 300K, the antiskyrmion lattice state is
stabilized in all regions (Fig. 5.3d and Fig. 5.3e). At 350K, the antiskyrmion
lattice is found only in region C (Fig. 5.3f).

Figure 5.3: LTEM result as a function of temperature. The field applied is
0.16T.

5.2 Phase diagram analysis
Image analysis software, similar to that discussed in the last chapter, is used
to analyze the LTEM images in the selected regions. After loading the image
into the LTEM image analysis software, the antiskyrmions positions and
sizes are determined manually by mouse clicks. The antiskyrmions are then
shown by red circles, as shown in Fig. 5.4. From the total area within
the red circles divided by the total area size, the antiskyrmion area ratio is
calculated. Because the size of the antiskyrmions show some dependence on
the thickness of the lamella, the antiskyrmion area ratio is a better indication
of which phase the system is in. The size, distance, and angles between the
antiskyrmions can also be calculated, as discussed in the last chapter, as
shown in Fig. 5.4.

Results of the analysis of the temperature and field dependence of the
area ratio are shown in Fig. 5.5. Over a wide temperature up to above
room temperature, as well as a wide magnetic field range, the antiskyrmion
phase is found to be stable for all thicknesses. The antiskyrmion stability
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Figure 5.4: Area occupied ra-
tio of the antiskyrmion lattice.
Typical LTEM images analysed
at 300K for 4 different magnetic
fields: (a) 28% area ratio (FM
+ aSk) at 0.224T; (b) 53% area
ratio (aSk) at 0.128T; (c) 40%
area ratio (H + aSk) at 0.112T,
and (d) 33% area ratio (H + aSk)
at 0.048T. These images cor-
respond to region B. Here, ’H’
means the helical phase; ’aSk’
means the antiskyrmion phase;
’FM’ means the ferromagnetic
phase. The size of the above 4
LTEM images is 1× 1µm2.

phase range is qualitatively similar for all thicknesses with a tendency of a
wider range for thicker parts of the lamella. At low temperatures, there is a
greater difference between the ZFC and FC results. At 100K, for ZFC, only
a few isolated antiskyrmions can be seen (Fig. 5.5a-c), whereas for FC (Fig.
5.5d-f), many more antiskyrmions are found.

From the above LTEM phase diagram measurements, the antiskyrmion
phase in Mn1.4Pt0.9Pd0.1Sn clearly shows considerable stability over a wide
range of field and temperature, and which is not very sensitive to the thick-
ness of the lamella. This is in stark contrast to the B20 materials. To
explain the underlying physical origin of the very different antiskyrmion and
skyrmion phase diagrams as a function of thickness, the following microscopic
model is considered, which uses the Hamiltonians below for the D2d and B20
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Figure 5.5: Magnetic phase diagram of different thickness. The temperature-
field antiskyrmion area ratio of three regions A, B, and C of different thick-
nesses are analyzed, for both zero-field-cooling (ZFC) and field-cooling (FC)
protocols. The area ratio around 70% corresponds to a pure antiskyrmion
lattice. The white dots indicate where LTEM measurements were performed.
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systems, respectively,
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Sr+aŷ · ŷ
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where J is the exchange stiffness, #»

B is the external magnetic field, DB20

and DD2d
are the DMI coefficients of the B20 and D2d structures # »

Sr is the
magnetization at position #»r , whereas # »

Sr+ax̂ , # »

Sr+aŷ , # »

Sr+aẑ are the magne-
tization values of the nearest cells in the x, y and z directions. In each case,
the Heisenberg exchange and Zeeman energy terms are the same, but the
DMI terms differ according to the distinct B20 and D2d crystal structures
[52]. For the B20 system, the DMI vector amplitude is the same in all the
three directions , whereas in the D2d system, the DMI vectors in the x and
y directions have the same magnitude, but with opposite sign and the DMI
vector amplitude is zero along z. It should be noted that the simulations are
3-dimensional since both Heisenberg and DMI exchange interactions have
taken consideration of all the x, y, and z-directions. The influence of dipolar
interactions is not included. This is because the dipolar energy term had
been typically ignored in prior studies of skyrmions [78, 14]. The magnetic
anisotropy energy term is also not included, because it will not much influ-
ence the major conclusions.

In the cubic B20-type materials, the DMI vector component along the
thickness direction will give rise to a twisted structure of the magnetization
along the thickness. This twist structure will result in a strong thickness
dependent phase diagram as previously theoretically discussed [79, 35, 36, 78].
Experimentally, in both MnSi and FeGe materials, it has been shown that the
skyrmion phase range shrinks with increasing thickness [30, 33]. Recently,
experiments show that in FeGe, as the thickness increases to a critical value,
the skyrmion-tube structure will break up into chiral bobbers [35, 80]. On
the contrary, in the D2d system, there is no such kind of DMI induced twist
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strcuture, which results in the much weaker thickness dependence of the
phase diagram for antiskyrmions.

5.3 Micromagnetic simulation
Micromagnetic simulations based on the Hamiltonian above are performed,
with OOMMF, to compare and explore the phase of antiskyrmion and skyrmion
as a function of thickness. To ensure a controlled comparison, the same cal-
culation parameters are used for the B20 and D2d systems. The parameters
used are: stiffness constant J =1.2× 10−10 Jm−1, saturation magnetization
Ms =445 kAm−1, and DB20 = DD2d

=6× 10−3 Jm−2 for the DMI, where
the modified OOMMF code [81, 59] which allow for different kinds of DMI
is used. These values are the same as those used in the last chapter [73].
The simulation cell size used is 40 nm×40 nm×40 nm, since the calculation
load is heavy. The total simulated size is 2000 nm×2000 nm×40 nm×NLayer,
where NLayer is the layer number in the direction of the thickness. In-plane
periodic boundary conditions were used. To obtain the ground state globally,
an extremely high temperature is used at the beginning of the calculation to
ensure any previous magnetic structure disappears. Then the temperature
is decreased step by step to finally reach zero, where the calculation stops
until a stable global ground state is stabilized. The UHH_ThetaEvolve, a
extend class of OOMMF, is used as the temperature term. The temperature
used starts at 5000000 and decreases by 1000000 in each step. At non-zero
temperatures, 50000 calculation steps are performed, where each step corre-
sponding to 1 ps. The high temperature number used is also due to the cell
size used. Finally, when the temperature is decreased to zero, the calculation
carries on until dm

dt
reaches 0.0001 ◦ ns−1.

The behavior of single skyrmions/antiskyrmions could be very different
from a lattice. Since the simulation goal is arrays of skyrmion and anti-
skyrmion tube lattices, at least several tens of skyrmions should be calculated
to form a real lattice structure. So the in-plane size of the simulation must
be large. Since we wish to simulate the thickness dependent behavior, the
simulation in the thickness direction is also large. In order for the calculation
to be carried out in a reasonable time without losing accuracy, the size of the
minimum cell was increased compared to that used in the previous chapter.
Simulation results of different cell sizes of 40 nm, 20 nm and 10 nm are shown
in Fig. 5.6 . The exact details in the simulations show only small differences,
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but the main features stay the same.

Figure 5.6: Simulation with different cell sizes. The parameters used
are: 2000 nm×2000 nm×1 nm total size with ∆ × ∆×1 nm cell size,
A =120 pJm−1, Keff =0MJm−3, Ms =445 kAm−1, and Hz = 1800Oe.

Some examples of simulation results are shown in Fig. 5.7-5.9. In Fig.
5.7, the magnetization structure for a calculation with 7 layers and B =
2000Oe is shown. The color corresponds to the out-of-plane component of
the magnetization, and the black arrows show the in-plane magnetization.
Fig. 5.7a-c show layers 1, 4, and 7 of the simulation results for the B20
structure. A clear change of in-plane magnetization direction as a function
of the thickness is shown. The thickness-averaged result is shown in Fig.
5.7d. A skyrmion lattice is stabilized, however the in-plane magnetization
amplitude is reduced due to the twist along the thickness. Fig. 5.7e-h shows
the corresponding magnetization structures for the D2d case, where no twist
is found along the thickness. The thickness averaged result is the same as
any of the individual layers without any amplitude reduction.

Fig. 5.8 shows the calculation results of a 13 layer case under B =
2000Oe. The magnetization maps for the B20 case corresponding to the 1,
4, 7, 10, and 13 layers are shown in Fig. 5.8a-e. Pronounced in-plane mag-
netization twist as a function of the thickness is shown. And some of the
skyrmion tubes are broke in the middle. The thickness-averaged magnetiza-
tion is shown in Fig. 5.8f. Much less contrast is shown because of the twist
structure and a good skyrmion lattice no longer exists. Fig. 5.8g-l show
the results for the D2d case. There is no magnetization twist along the thick-
ness. The thickness-averaged magnetization is the same as each layer without
any reduction in the magnetization amplitude. And the antiskyrmion lattice
clearly still exists.

In Fig. 5.9, we show the calculation results with 13 layers under B =
300Oe. Fig. 5.9a-e show layer magnetizations for the 1, 4, 7, 10, and 13
layers of the B20 case. The helix struct is shown with a shift of position as
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Figure 5.7: Simulations result of 7 layers with B = 2000Oe. (a-d) Magnetiza-
tion structure of layers 1, 4, and 7 and thickness-average result in a B20-type
system. (e-h) Magnetization structure of layers 1, 4, 7 and thickness-average
result for a D2d system. A clear skyrmion/antiskyrmion lattice is stabilized
in both systems. Color code indicates the out-of-plane component of the
magnetization, and black arrows indicate the in-plane magnetization.

Figure 5.8: Simulations result of 13 layers with B = 2000Oe. (a-f) Magneti-
zation structure of layers 1, 4, 7, 10, and 13 and thickness-average result for
a B20 type system. (g-l) Magnetization structure of layers 1, 4, 7, 10, and
13 and thickness-average result in a D2d type system. The skyrmion lattice
disappears in the B20 situation but still remain in the D2d system. Color
code indicates the out-of-plane component of the magnetization, and black
arrows indicate the in-plane magnetization.
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a function of thickness. The thickness-averaged magnetization of the B20
system is shown in Fig. 5.9f. There is very little contrast. Fig. 5.9g-l shows
the results for the D2d system, where no modulation is observed as a function
of thickness. The thickness-averaged magnetization is the same as each layer
without any reduction in the magnetization amplitude, where a clear helix
structure is shown. These results are consistent with the DMI type that
in this thickness direction a B20 material has a non-zero DMI component,
whereas in the D2d material it is rather zero.

Figure 5.9: Simulations result of 13 layers with B = 300Oe. (a-f) Magneti-
zation structure of layers 1, 4, 7, 10, and 13 and thickness-average result for
a B20-type system. (g-l) Magnetization structure of layers 1, 4, 7, 10, and
13 and thickness-average result for a D2d system. Color code indicates the
out-of-plane component of the magnetization, and black arrows indicate the
in-plane magnetization.

In the above simulations, the antiskyrmion size and helix period do not
change with thickness, which is different from our experiments. The size
change is due to the dipolar interaction, which is not taken into consideration
in the above simulation, which will be discussed in the next chapter.

The micromagnetic simulation results for various thicknesses and fields
are summarized in Fig. 5.10, where the thickness-averaged out-of-plane mag-
netization is shown. The field range where skyrmions are stabilized in the
B20 material decreases as the thickness increases. At a critical thickness, the
skyrmion phase disappears, as reported previously [79, 35, 36, 78]. On the
contrary, the antiskyrmion stable field range is insensitive to the thickness,
which is in agreement with our LTEM results.

83



5.3. Micromagnetic simulation

Figure 5.10: Summary of micromagnetic simulations result of the phase di-
agrams of B20 and D2d systems. The simulation result is summarized into
a table, where magnetic fields and thicknesses increase along the two axis
direction. The thickness-averaged Mz is plotted, where the color indicates
the normalized Mz regarding to the saturation magnetization Ms. Red/blue
color corresponds to Mz/Ms = +1/ − 1. (a) In a B20-type material, the
field region of the skyrmion shink as the thickness increases and finally dis-
appears at acritical thickness. (b) In a D2d-type material, the field region of
the antiskyrmion phase is insensitive to the change in thickness.
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5.4 Summary
LTEM experiments were performed to determine the thickness-dependent
antiskyrmion phase diagram in a D2d structure inverse tetragonal Heusler
material. The field-temperature stability window of the antiskyrmion phase
is found to be largely insensitive to the sample thickness in contrast to pre-
vious studies of the B20 system. Micromagnetic simulations were performed
that reproduce our experiment results, from which we conclude that there are
important differences in the phase stability of antiskyrmions and skyrmons
that originates from the underlying symmetry of the DMI.

85



5.4. Summary

86



Chapter 6

Tunable magnetic antiskyrmion
size and helical period from
nanometers to microns in a D2d
Heusler compound

Following the studies of the thickness dependence of the stability of anti-
skyrmions as a function of temperature and field, we continue studies on
the size of antiskyrmions. In several B20 materials, the dependence of the
stability of skyrmions and helices on the host material thickness has been
studied, including FeGe [30, 37], Mn1-xFexGe of several compositions [31],
and Fe0.5Co0.5Si [82]. No significant thickness dependence of the helix period
or the skyrmion size was found in these studies. The characteristic length
scale is concluded to be determined by a competition between the Heisen-
berg exchange and the DMI energy term. On the contrary, in early studies
of the size and behavior of achiral magnetic bubbles, they are shown to be
strongly influenced by magnetic dipolar interactions [83, 84, 85]. Some types
of skyrmions termed “bi-skyrmions” and “skyrmions” in centrosymmetric
materials belong to this latter category [39, 86, 87].

In this chapter, we show the uniqueness of antiskyrmion systems in which
both long-range magnetic dipolar interactions as well as the DMI energy term
play a significant role. Due to their influence, the antiskyrmion system enjoys
a wide range of size tunability as well as an intrinsic stability. By performing
LTEM and MFM experiments, we find the helical period and the size of the
antiskyrmion correspond to one another and both of them can be tuned by
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up to one order of magnitude when the host material thickness is varied.
This size tunability is accounted for by an analytic model.

In this work [88] the LTEM measurements were performed by Rana Saha,
FIB lamellae preparation was carried out by Abhay K. Srivastava and MFM
measurements were performed by Ankit K. Sharma. I was involved in the
experiment design and discussion, programed the LTEM and MFM image
analysis software, and contributed to the theory part of this work.

The figures used in this chapter are reprinted from [88], for which I am
one of the authors. (Reprinted from [88]. Link to the Creative Commons
license: https://creativecommons.org/licenses/by/4.0/)

6.1 LTEM measurement
From a single crystal of Mn1.4PtSn, a uniform thickness lamella (L1), and
several wedge-shaped lamellae (L2-L4) were prepared by FIB.

Fig. 6.1a shows a schematic drawing of the antiskyrmion magnetization
structure. Bloch-like helicoids and Néel-like cycloidal magnetization struc-
tures are formed around the complex boundary of an antiskyrmion. Along
the [110] and [110] directions, are Néel domain walls with opposite chirality,
and along the [100] and [010] directions, are Bloch domain walls with op-
posite chirality. Without applying an in-plane magnetic field, the helix will
propagate along these Bloch type directions in the D2d system. The reason is
that the dipolar energy is lower for the Bloch type walls, as will be explained
in a later section.

It is found that the size of the spin textures in Mn1.4PtSn varies only a
little when changing the temperature, so we focused on room temperature
studies. A magnified LTEM image of a single antiskyrmion in L1 is shown
in Fig. 6.1b. It has the unique four-spot pattern with alternating black
and white contrast, which is the same as in Mn1.4Pt0.9Pd0.1Sn [73]. Thus, it
confirms the stabilization of antiskyrmions in Mn1.4PtSn. Fig. 6.1c shows
a SEM image of the wedge shape of L2. And Fig. 6.1d shows a schematic
diagram to define the coordinate axis and tilting angles. Fig. 6.1e shows a
LTEM measurement result at zero magnetic field. Importantly, it is found
that the helix period changes significantly as a function of the thickness of
the lamella. In the LTEM image, two representative regions A and B are
magnified as shown in Fig. 6.1 h-i. Region A and B are both 1 µm× 1 µm in
area, and the thicknesses of A is ~142 nm and B is ~206 nm. From region A
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to B, the helix period changes from ~108± 13nm (Fig. 6.1h) to ~185± 2nm
(Fig. 6.1i).

Figure 6.1: LTEM images of Mn1.4PtSn. (a) Antiskyrmion magnetization
structure and its chirality along different directions. (b) LTEM image of a
single antiskyrmion in L1. (c) SEM image of lamella L2, viewed from an
angle of 35◦ from the X axis in the XY plane. (d) Definition of coordinate
axis and tilt angles α and β. (e-g) LTEM images of L2 under fields of 0, 192
and 320mT. (h-i) Magnified LTEM image of the helix structure of regions
A and B in (e). (j-k) Magnified LTEM image of the antiskyrmion structure
of regions A and B in (f-g).

By applying a perpendicular field, the helical state changes into an an-
tiskyrmion state. Fig. 6.1f-g shows typical LTEM results under fields of
192mT and 320mT . It is clear that the antiskyrmion size, similar to the
helix period, also has a strong thickness dependence. To make this compari-
son clearer, Fig. 6.1j shows the LTEM image of region A under 192mT and
Fig. 6.1k shows the LTEM image of region B under 320mT. Clearly, the
antiskyrmion size is changed from ~128± 5nm to ~200± 4nm.
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6.2 MFM measurement
To explore larger lamella thicknesses, the MFM technique (in which the con-
trast corresponds to the stray field produced mainly by the out of plane
magnetization component, Mz) is used for two wedged lamellae L3 ( from
~630 to ~4260nm) and L4 (~60 to ~1600nm). Fig. 6.2a shows the SEM im-
age of the wedge-shaped L3. The inset shows the definition of the coordinate
axis and the field angle φH which is in-plane. First, a field of 1T is applied
at φH which saturates the magnetization. And then the field is reduced to
zero before taking the MFM image. The helix direction is found to be de-
pendent on φH . Shown in Fig. 6.2, when φH = 180◦, the helix propagates
mostly along [100]. When the field is applied along φH = 90◦, shown in
Fig. 6.2c, the helix propagation direction changes to be mostly along [010].
When φH = 135◦, as shown in Fig. 6.2d, a mixture of both helix propagation
directions is shown.

Fig. 6.2e shows a line profile taken from Fig. 6.2c. Fig. 6.2f shows a he-
lical region of a MFM result in L4 in a 3D colormap. Both these two figures
show a clear sinusoidal MFM signal of Mz along the direction of the wedge.
There is also a monotonic increase in the helix period and amplitude when
the lamella thickness increases. The resulting analysis of the helical period
as a function of thickness in these measurements is summarized in Fig. 6.2g.
The results from the LTEM and MFM measurements show good agreement
with one another. The inset in Fig. 6.2g shows the LTEM measured heli-
cal period as a function of thickness from wedge L2 compared to results in
the sister compound Mn1.4Pt0.9Pd0.1Sn [73]. The results are similar in both
compounds.

When applying a magnetic field, the helical phase will start to change
into an antiskyrmion phase, as shown in Fig. 6.3. Typical MFM results
under fields of 300, 420 and 480mT applied at an angle of 30◦ from the z-axis
to the [010] direction are shown in Fig. 6.5a-d. A gradual field dependent
transformation from the helical phase into an antiskyrmion phase and finally
into the ferromagnetic phase is shown, where the influence of the thickness is
clear. The critical transformation fields largely depend on the in-plane field
component. With the tilt field angle of ~30◦, antiskyrmions can be stabilized
over a large thickness range at the same time. A similar tilting angle is also
used in the LTEM measurements. When the field is increased to ~550mT,
the whole sample area becomes fully polarized.

The antiskyrmion phase is found to be stable for all thicknesses, which
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Figure 6.2: MFM images of the helical magnetization structure in Mn1.4PtSn.
(a) SEM image of L3. Inset defines the angle φH in-plane. (b-d) MFM
measurement results under different φH . The MFM measurement area is
8× 16µm2. From left to right, the thickness increases. (e) Line profile of
MFM result, ∆φ, taken from the white dashed line in (c). (f) 3D colormap
of MFM result, ∆φ for the wedge L4. (g) Summary of the analyzed thickness
dependent helix period. Inset shows the helix period comparison of two sister
materials, measured by LTEM.
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Figure 6.3: MFM measurements of the antiskyrmion phase. (a) At zero field,
only the helical phase is seen. (b-d) at the field of 300mT, (c) 420mT and
(d) 480mT, the antiskyrmion phase starts to appear. (e) Summary of the
analyzed antiskyrmion size as a function of thickness under different magnetic
fields in L4. Inset shows the thickness dependence of the antiskyrmion size
measured by LTEM in L2.

enabled us to determine the antiskyrmion size as a function of lamella thick-
ness. Analysis of these results is shown in Fig. 6.3e. The protocol used to
determine the antiskyrmion size is described below. Firstly, load the image
into an image analysis program. The antiskyrmions are obtained manually
by clicking the mouse in the center and at the boundary of each of the an-
tiskyrmions. Typical results are shown in Fig. 6.6, where the red circles
show the antiskyrmions. From the MFM images we can determine the posi-
tion of each antiskyrmion. The wedge-shaped sample was analyzed from the
AFM data and shown to have a linear dependence of thickness with position.
Thus the position of the antiskyrmion is used to determine the thickness at
the center of the antiskyrmion. The standard deviation in the sizes of anti-
skyrmions measured at a similar thickness is shown as the error bar in the
figure.

The analyzed results demonstrate clearly that field does not much influ-
ence the antiskyrmion size. However, the thickness’s influence is, by contrast,
very strong. When the thickness changes from 142 nm to 4.2 µm, the an-
tiskyrmion size changes by one order of magnitude from ~142 nm to nearly
1.2 µm. It was also found that the size of the antiskyrmion and the period
of the helix are very similar, as shown in Fig. 6.5.
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Figure 6.4: Antiskyrmion
size analysis. A typical an-
alyzed MFM image of the
antiskyrmion phase under
480mT of the lamella L3.
The size and position of
each antiskyrmion is shown
by the red circles.

Figure 6.5: Comparison
of helical period and anti-
skyrmion size in L3. The
helical period is plotted in
black symbols and line and
the antiskyrmion size is
plotted in orange symbols
and line.
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6.3 Model and calculation
In order to understand the physical mechanism of the thickness dependent
behavior of the helix period and the antiskyrmion size, we developed an
analytic model of the D2d system.

I assume that the helix has a magnetization structure that only changes
in the direction of the helix. It changes in a Bloch fashion following a sine
function whose period is λ. The model assumes an infinite size in the XY
plane and a thickness of t in the z direction. In a D2d system, since there is no
component of the DMI vector along the z-direction (which is the [001] crystal
direction), it is reasonable to assume the magnetization doesn’t change along
z. In the B20 system, since there the DMI vector has a component in three
dimensions, such an assumption is not valid.

6.3.1 EDip for a Bloch helix

The magnetization # »

M = (Mx,My,Mz) is expressed as:


Mx(x, y, z) = 0

My(x, y, z) =Ms sin(
2πx
λ
)

Mz(x, y, z) =Ms cos(
2πx
λ
)

for − Lz

2
< z <

Lz

2
(6.1)


Mx(x, y, z) = 0

My(x, y, z) = 0

Mz(x, y, z) = 0

for z < −Lz

2
or z >

Lz

2
(6.2)

The magneto-dipolar energy per volume EDip is calculated from:

EDip = − µ0

2V

∫
# »

M · #»

H dτ (6.3)

where V is the volume of the sample.
We first need to calculate the field

#»

H = −∇U (6.4)
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where U is a scalar potential. U should satisfy the following equations [89]:

∇2Uin =
#»∇ · # »

M inside the sample (6.5)
∇2Uout = 0 outside the sample (6.6)
Uin = Uout on the surface (6.7)
∂Uin

∂n
− ∂Uout

∂n
=

# »

M · #»n on the surface, where #»n is the unit

vector normal to the surface (6.8)

U can be calculated from the magnetization [89]:

U ( #»r ) =
1

4π

−∫ # »

∇′ ·
#          »

M(
#»

r′)

| #»r −
#»

r′ |
dτ ′ +

∫
#»n ·

#          »

M(
#»

r′)

| #»r −
#»

r′ |

 (6.9)

where
# »

∇′ contains derivatives with respect
#»

r′ .
From Equ. (6.1-6.2) and Equ. (6.9), we can get:

U(x, y, z) =
Msλ

4π
cos

(
2πx

λ

)(
e−

2π
λ
|z−Lz

2
| − e−

2π
λ
|z+Lz

2
|
)

(6.10)

It can be readily checked that Equ. (6.10) and Equ. (6.5-6.8) are consistent
with each other.

Then the field is found:
#»
H = − ∇U

=

(
Ms
2

sin
(

2πx
λ

) [
e
− 2π

λ

(
Lz
2

−z
)
− e

− 2π
λ

(
z+

Lz
2

)]
0 −Ms

2
cos

(
2πx
λ

) [
e
− 2π

λ

(
Lz
2

−z
)
− e

− 2π
λ

(
z+

Lz
2

)])
(6.11)

Based on Equ. (6.1-6.2, 6.11) and Equ. (6.3), we can calculate the final
result:

EDip =
µ0M

2
s λ

8πLz

(
1− e−

2πLz
λ

)
(6.12)

6.3.2 Numerical confirmation of the EDip

Numerical calculations are performed to check the validity of Equ. (6.12).
The dipolar energy between two atoms is given by:

EDip,ab =
µ0

4π

# »

Sa ·
#»

Sb|
# »

Pa −
#»

Pb|
2
− 3

# »

Sa ·
(

# »

Pa −
#»

Pb

)
· #»

Sb ·
(

# »

Pa −
#»

Pb

)
| # »

Pa −
#»

Pb|
5 (6.13)
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where # »

Pa and #»

Pb are the atom positions and # »

Sa and #»

Sb are the magnetic
moments of these atoms.

Summing up over the pairs of atoms within the sample, the total dipolar
energy can be calculated. This numerical method was used in my previous
work [23, 24] with modifications for the 3D case. In Fig. 6.6a, the numerical
calculation and the analytical formula are found to be match nicely. Simply
due to the different choice of zero-energy, there is a non-important constant
energy difference (µ0M2

s

6
) between the numerical and analytical mehods. Tiny

differences appear, as displayed in Fig. 6.6b-c, when the thickness or the pe-
riod of the helix is very small. Such differences come from the assumption
of a continuous change of magnetization that is not satisfied in the ana-
lytical method [89]. This parameter range is, however, not relevant to the
experimental situation.

Figure 6.6: Comparison
of numerical and analyti-
cal results. (a) Nice agree-
ment is found. At (b)
tiny helix periods or (c)
tiny thicknesses, small dif-
ferences are found.

6.3.3 EDip for other types of helices, cycloids or in-
between geometries

The situation of other types of structure: Néel cycloid, or in-between state
is calculated.
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The magnetization # »

M = (Mx,My,Mz) can be expressed by:
Mx(x, y, z) =Ms sin(

2πx
λ
) sin(φ0)

My(x, y, z) =Ms sin(
2πx
λ
) cos(φ0)

Mz(x, y, z) =Ms cos(
2πx
λ
)

for − Lz

2
< z <

Lz

2
(6.14)


Mx(x, y, z) = 0

My(x, y, z) = 0

Mz(x, y, z) = 0

for z < −Lz

2
or z >

Lz

2
(6.15)

When φ0 = 0, π a Bloch Helix structure propagates in the D2d [100]/[010]
directions; When φ0 = π

2
, 3π

2
a Néel cycloid propagates in the [110]/[110]

directions; Other φ0 values correspond to directions in between.
U can be calculated in a similar way as discussed in the last section. From

Equ. (6.9), we find that:
U(x, y, z) =

U1 =
1

4π
λMs cos

(
2πx

λ

)
e−

2π
λ

z
(
e

π
λ
Lz − e−

π
λ
Lz

)
(1− sinφ0) z >

Lz

2

U2 =
λMs

4π
cos

(
2πx

λ

)[
−2 sin(φ0) + sin(φ0)e

−π
λ
Lz

(
e

2π
λ

z + e−
2π
λ

z
)
+ e−

π
λ
Lz

(
e

2π
λ

z − e−
2π
λ

z
)]

−
Lz

2
< z <

Lz

2

U3 =
1

4π
λMs cos

(
2πx

λ

)
e

2π
λ

z
(
e−

π
λ
Lz − e

π
λ
Lz

)
(1 + sinφ0) z < −

Lz

2
(6.16)

In the calculation, the following equation is used:∫ +∞

0

cos(x)√
x2 + A

dx = K0

(√
A
)

(6.17)

where K0(x) is the zero order modified Bessel function of the second kind.

∫ +∞

0

K0

(
|a|

√
x2 + b2

)
dx =

π

2|a|
e−|a||b| (6.18)

Equ. (6.16) agrees with Equ. (6.5-6.8), thereby confirming its correctness.
Based on #»

H = −∇U , the field and dipolar energy density can be calcu-
lated:

EDip =
µ0M

2
s sin

2(φ0)

4
+
µ0M

2
s

8Lz

λ

π

(
1− e−

2π
λ
Lz

) (
1− sin2 φ0

)
(6.19)
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6.3. Model and calculation

Figure 6.7: Comparison of numerical calculations with an analytical formula
for various φ0 that correspond to distinct spin textures.
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6.3. Model and calculation

I also use numerical calculations to double check the validity of Equ.
(6.19), as shown in Fig. 6.7.

We now compare the energy difference for other structures compared to
a Bloch geometry. The energy difference is:

∆EDip = EDip,Bloch − EDip,Other =
sin2 φ0µ0M

2
s

4

[
λ

2πLz

(
1− e−

2πLz
λ

)
− 1

]
(6.20)

We define x = 2πLz

λ
, due to the positive value of Lz and λ, x > 0. Thus,

∆EDip =
sin2 φ0µ0M

2
s

4

(
1− e−x

x
− 1

)
≤ 0 (6.21)

Equ. (6.21) shows that, compared to other magnetic geometries, a Bloch
helix magnetic structure will always have the lowest dipolar energy. This
conclusion holds, regardless of the thickness and helix period. This explains
the experimental result that, when no external field is applied, the helix in
a D2d system will always prefer a Bloch geometry, which is locked to the
[100]/[010] directions.

6.3.4 Finite size effect of the dipolar interaction
In the calculations of the previous few sections, the sample was considered
to have an infinite size in the in-plane directions. The real sample being
measured in the experiments, however, is limited in size. For example, lamella
L1-4 prepared by FIB used in this work, have an in-plane size of a few
micrometres. To check the finite size’s influence, some calculations were
performed, where two methods are used.

In the first method, I use Equ. 6.13 with a finite size in the direction of
X. In the second method, I use micromagnetic simulations: the fixed helix
structure is used as input, and the internal energy calculator of OOMMF is
used to calculate the dipolar energy [59] . The results of the calculation are
shown in Fig. 6.8, where a nice agreement is found. An additional feature
of a thickness dependence oscillation is shown. This oscillation’s period and
amplitude increase together with the period of the helix structure.
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Figure 6.8: Model and OOMMF calculation of EDip as a function of λ. The
size of the sample is: (a) Lx =2000 nm, Ly =100 nm and Lz =5nm (b)
Lx =2000 nm, Ly =400 nm and Lz =50 nm.

6.3.5 Position dependence of the magnetic dipolar en-
ergy density

The averaged dipolar energy density is discussed in section 6.3.1. From the
model calculation the dipolar energy density has the following expression:

EDip,density(x, y, z) =
µ0M

2
s

4
cos2

(
2πx

λ

)[
e−

2π
λ (

Lz
2
−z) + e−

2π
λ (z+

Lz
2 )
]

(6.22)

Here, we plot the energy density as a function of position in the XZ cross-
section plane. This will be helpful in understanding the dipolar energy as a
function of thickness.

Dipolar energy density in a sample with a thickness of 200 nm is shown
in Fig. 6.9 . The helix period changes from 50 nm to 600 nm, as shown
in Fig. 6.9 a-l. Whereas in Fig. 6.10 the helix period is fixed at 500 nm.
The thickness changes from 100 nm to 650 nm, as shown in Fig. 6.10a-l.
From the expression of Equ. (6.22), the dipolar energy density is composed
of a cos2

(
2πx
λ

)
changing along the x direction and along the z direction two

exponentially decaying terms where the characteristic length is λ . Under the
situation that λ is much smaller compared to t, the dipolar energy is mostly
pronounced at the surfaces and decays rapidly to the middle of the layer’s
thickness. As λ is increased at a constant thickness of 200 nm (Fig. 6.9) the
dipole energy density increases at the surfaces of the slab. As the thickness of

100



6.3. Model and calculation

the slab is decreased for a constant λ of 500 nm (Fig. 6.10) the dipole energy
density increases at the surfaces and finally for thin layers in the middle
of the slab. The dipolar energy density decreases when λ becomes smaller
and/or the thickness becomes larger. This is due to the magnetic structure
with less twist will increase the so called ‘magnetic charge’ accumulated .

Figure 6.9: Position dependent dipolar energy density t =200 nm. (a-l) λ
changes from 50 nm to 600 nm.
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Figure 6.10: Position dependent dipolar energy density for λ =500 nm. (a-l)
t changes from 100 nm to 650 nm.

6.3.6 Helix wavelength calculation
After the above model preparation, we now calculate the helix wavelength.
The total energy density is described by:

ETot = EExc + EDMI + EAni + EDip =
4π2A

λ2
− 2π|D|

λ
+

K

2
+

µ0M
2
s λ

8πt

(
1− e−

2πt
λ

)
(6.23)

where A is the exchange stiffness in [Jm−1], K is the anisotropy energy in
[Jm−3], EExc is the exchange energy density in [Jm−3], EDMI is the DMI
energy density, EAni is the magnetic anisotropy energy density, EDip is the
magnetic dipolar energy density and ETot is the total energy density. Since
the exchange interaction, DMI, and anisotropy of this system all originate
from the bulk, there are no pre-factors regarding the thickness in the energy
terms.

The magnetic geometry is shown in Fig. 6.11a. The dipolar energy
density for various t with respect to the helix period are shown in Fig. 6.11b.
At very small film thicknesses (t≪ λ), EDip can be approximated by EDip =
µ0M2

s

4

(
1− πt

λ

)
, which changes very little within this thickness range. At large
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film thickness (t ≫ λ), EDip is approximated to EDip =
µ0M2

s λ
8πt

, which shows
a linear relationship with λ and the slope is very small. Under these two
extreme situations, as shown in Fig. 6.11b for t =1nm and t =2500 nm,
the dipolar energy does not depend on λ much. On the contrary, for the
intermediate thickness range (e.g. t =200 nm), the λ dependent EDip will
changes on the order of µ0M2

s

4
within the parameter range of interest.

The helix period corresponds to the value that gives the lowest energy
of ETot. The calculation results are shown in Fig. 6.11c-d for different pa-
rameters. In Fig. 6.11c, the A and Ms are set to a constant value, and the
thickness and DMI strength are varied. In Fig. 6.11d, A and D are fixed,
and the thickness and Ms are varied. When the DMI is very strong, shown
in Fig. 6.11c, λ has the value of 4πA

|D| . When the DMI strength becomes
weaker, λ drops first at small t then slowly increases to 4πA

|D| when t is large.
When Ms is becoming larger, as shown in Fig. 6.11d, λ becomes smaller.

The dipole energy density is mostly around the surfaces of the lamella
except when t is very small. EDip has the largest value at the surfaces, then
decays exponentially towards the middle of the lamella with a characteristic
length related λ. So, at large t, the helix wavelength is not much influenced by
the magnetic dipolar interaction, and is mostly determined by the ratio of the
Heisenberg and DMI energy terms. However, for the thickness range studied
here the dipole energy will influence λ a lot. This is due to the fact that the
twist of the helical structure will reduce the ‘magnetic charge’ at the surfaces.
In this range, due to the fact that the total dipolar energy density decreases
according to the form ~1

t
, the resulting λ will monotonically increase as the

thickness is increased. This is the origin of the experimental observation
that λ increases linearly as a function of thickness. This model nicely agrees
with the observed trend of the increase in λ with increasing thickness, but
an exact agreement is difficult to find. These deviations could originate
from the assumed pure helical Bloch-type structure that is a constant along
the thickness. MFM measurements show that the helix contrast is almost
sinusoidal. The MFM signal amplitude also increases linearly as a function
of thickness. However, the actual magnetic structure could be more complex
than our simple assumption.

The calculation of the magneto-dipolar energy density for the antiskyrmion
lattice structure is much more complicated. But the experimental results
show that the helix period and antiskyrmion size are very similar to one
other. So it is reasonable to make the assumption that the same mechanism,
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Figure 6.11: Calculation of helix period in D2d system as a function of thick-
ness. (a) Schematic diagram of the helical magnetization structure. (b)
Magneto-dipolar energy density as a function of λ at different t. (c) Calcu-
lated λ as a function of t and DMI strength. (d) Calculated λ as a function
of t and Ms.
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which is the thickness dependence of the dipolar energy density, also leads
to the size variation of the antiskyrmion.

Fig. 6.12, shows a comparison between the experimental results of the
thickness dependent helix period with a model calculation. The calculation
parameters used are A =30 pJm−1, D =0.1mJm−2 and Ms =445 kAm−1.
The trend of the experimental results are reproduced. The actual magnetic
structure may be distorted from the assumed simple sinusoidal Bloch-like he-
lix. Also, the calculated λ - t relationship results from a complex competition
between Heisenberg exchange, DMI and the dipolar and anisotropy energies
terms, so the extraction of the magnetic parameters is difficult. Thus, the
parameters used above are for a qualitative understanding.

Figure 6.12: Comparison
of the helix period λ as
a function of thickness
between experiment and
model. The parameters
used in this calcula-
tion are: A =30 pJm−1,
D =0.1mJm−2 and
Ms =445 kAm−1.

6.4 Discussion
The thickness-dependent antiskyrmion size and helix period reported in this
work are distinct from other material systems, because of the fundamental
differences in their physical origin. In systems that show magnetic bubbles
[83, 84, 85], there is no DMI, so the magnetic structure is achiral. For a
certain thickness, the size of the bubble will has a large dependence on the
external magnetic field amplitude. In a recent work from our group, we
reported the experimental observation of Néel skyrmions in PtMnGa, which
has a crystal structure belong to the C3v group [38]. The Néel skyrmion size
was also found to be dependent on thickness. However, LTEM measurements
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shown the boundary width of the Néel skyrmion is small compared to the
skyrmion size, so the thickness-size relationship in this system is more similar
to the conventional magnetic “bubbles”. In the system of interfacial DMI [23,
24], although some theoretical studies suggest that dipolar interactions could
play an important role [90, 91] as the magnetic layer thickness is changed,
the effective DMI strength also changes (decreases inversely with thickness)
so measurements in these systems is limited to a thickness range of just a
nanometer or so.

In B20 material systems [30, 37, 31, 82], in all the three coordinate di-
rections, the DMI has a non-zero value. Thus, a twist structure will exist
in the skyrmion tubes, as simulated in the last chapter. This twist struc-
ture could weaken the influence of the magnetic dipolar interaction. So, the
thickness’s influence on skyrmion size is also weak. Another type of twisted
magnetic structure, reported in magnetic multilayer systems [92, 93, 54], is
called ‘Néel Cap’. It can also be named as ‘horizontal Bloch line’ [6]. How-
ever, these dipolar induced structures are at the surface and will not influence
much as compared to those induced by DMI. Nevertheless, this effect may
be the reason for the small differences between our experimental results and
model calculations.

So, to date, the D2d antiskyrmion material is the only system that has
both a volume type DMI and magnetic dipolar interactions that together
have a large influence. This uniqueness results in the high stability of anti-
skymrions and the large size tunability shown in this chapter. Meanwhile,
the competition between the D2d volume DMI and magnetic dipolar interac-
tion energy terms can even lead to the stabilization of metastable elliptical
Bloch skyrmions [94, 95].

6.5 Summary
In conclusion, this chapter shows the importance of the magneto-dipolar
interaction which can influence the size of non-collinear magnetic structures,
depending on the crystal symmetry. The high tunability of the size of the
antiskyrmion and helical period in the D2d system is not only remarkable
but makes these materials of great interest for spintronic applications. These
results also clearly show how magnetization, instead of DMI, can tune the
size of antiskyrmions, thereby providing a new path for the manipulation of
non-collinear magnetic structures.
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Chapter 7

Conclusion and outlook

In this thesis, I have summarized our studies on the first experimental dis-
covery of antiskyrmions as well as subsequent work.

We have studied samples fabricated from high-quality crystals of Mn1.4PtSn
and Mn1.4Pt0.9Pd0.1Sn which exhibit the D2d crystal symmetry. Based on
unique LTEM contrast patterns, antiskyrmions are shown to exist in this
and related materials. From micromagnetic simulations and LTEM image
calculations, this unique LTEM contrast pattern is shown to indicate the
stabilization of antiskyrmions. Temperature and field-dependent phase dia-
grams are measured and analyzed to show the unusual and highly interesting
properties of antiskyrmions, especially when compared to skyrmions which
have been extensively studied in earlier work.

We studied the thickness-dependent temperature and field phase dia-
grams in wedged shape lamellae. The antiskyrmion shows much a much
larger stability than Bloch skyrmions in the heavily explored B20 material
systems. Micromagnetic simulations were carried out that shows that such a
large stability originates from the zero value of DMI along the [001] crystal
direction in the low symmetry D2d material system.

We further showed that not only antiskyrmions can be stabilized over a
large thickness range, but that the size of antiskyrmion can be widely tuned.
From LTEM and MFM measurements, the antiskyrmion size can be tuned
over one order of magnitude. A model was developed to show that such a
thickness-dependent size behavior originates from the competition between
the D2d type of DMI and long-range magnetic dipolar interactions, which is
unique to the D2d material system.

The discovery of skyrmions is continuing, and the number of members of
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7. Conclusion and outlook

the skyrmion Zootopia is still increasing. Till now, the well-known skyrmion
types are Bloch skyrmion in B20 systems, Néel skyrmion in Cnv or multi-
layer systems, antiskyrmions in D2d material systems and ‘bi-skyrmion’ in
centrosymmetric material systems. As shown in Chapter 2, lots of other
DMI types exist in other material systems so that other types of skyrmion
remain to be explored. The dynamical behavior of skyrmions, especially
their current-induced motion remains to be explored for many distinct types
of skyrmions. They have considerable potential for device applications and
are of great interest for both fundamental physics as well as many different
spintronics applications.
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Appendix DMI energy term
under various crystal

According to the derivations discussed in Chapter 2.2, generally, the DMI
energy term can be written as:

HDMI =Dxx

(
My

∂Mz

∂x
−Mz

∂My

∂x

)
+Dxy

(
My

∂Mz

∂y
−Mz

∂My

∂y

)
+Dxz

(
My

∂Mz

∂z
−Mz

∂My

∂z

)
+Dyx
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(A.1)

So, we use a matrix to present the DMI parameters

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (A.2)
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Appendix DMI energy term under various crystal

In a centrosymmetric crystal structure, the DMI term has a zero value.
Below is the list of DMI parameter matrixs for all point groups.

C2

D11 0 D13

0 D22 0
D31 0 D33

 Cs

 0 D12 0
D21 0 D23

0 D32 0

 D2

D11 0 0
0 D22 0
0 0 D33


C2v

 0 D12 0
D21 0 0
0 0 0

 C4

D11 −D21 0
D21 D11 0
0 0 D33

 S4

D11 D21 0
D21 −D11 0
0 0 0


D4

D11 0 0
0 D11 0
0 0 D33

 C4v

 0 −D21 0
D21 0 0
0 0 0

 D2d

D11 0 0
0 −D11 0
0 0 0


C3

D11 −D21 0
D21 D11 0
0 0 D33

 D3

D11 0 0
0 D11 0
0 0 D33

 C3v

 0 −D21 0
D21 0 0
0 0 0


C6

D11 −D21 0
D21 D11 0
0 0 D33

 C3h

0 0 0
0 0 0
0 0 0

 D6

D11 0 0
0 D11 0
0 0 D33


C6v

 0 −D21 0
D21 0 0
0 0 0

 D3h

0 0 0
0 0 0
0 0 0

 T

D11 0 0
0 D11 0
0 0 D11


O

D11 0 0
0 D11 0
0 0 D11

 Td

0 0 0
0 0 0
0 0 0

 (A.3)
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