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Abstract 

Computational methods have been proven to be shortcuts in developing novel lead compounds 

and drug candidates. They can cut down the cost as well as reduce the time involved. For 

example, computer-aided drug discovery (CADD) methods have been used to guide the 

discovery of histone deacetylase (HDAC) inhibitors. HDACs represent an interesting class of 

Zn-dependent enzymes and they have been demonstrated to play important physiological roles 

associated with genome functions that have been linked to several diseases. In this thesis, several 

computational methods were applied to suggest novel molecules that could target HDAC 

isoforms. First, a new class of HDAC small inhibitor (“reverse hydroxamate” as zinc-binding 

motif) was discovered by virtual screening and confirmed to inhibit Schistosoma mansoni 

HDAC8 (smHDAC8) with IC50 values in the low micromole range. Additional testing of the 

molecules indicated that they were equally potent inhibitors of human HDAC1, 6 and 8. The 

binding mode of the best hit could be confirmed by X-ray crystallography. Second, using virtual 

screening, a set of molecules with reverse HIV latency was discovered. They may act as a 

starting point in a structure-based design and/or in chemical optimization efforts to improve the 

HIV shock-and-kill-based strategy. Third, a procedure of using computed binding free energy 

was developed to generate quantitative structure-activity relationship (QSAR) models to 

optimize benzhydroxamates as smHDAC8 inhibitors based on in silico predictions. 

Simultaneously, screening of novel modulators of HDACs from natural sources was carried out. 

For this purpose, the current work contributed in constructing an online database for natural 

products (NPs) isolated from African source species (http://african-compounds.org/anpdb/). 

Analysis of the developed databases showed that African NPs occupy chemical spaces that were 

not previously reported in published NP databases and contain compounds similar to HDAC 

inhibitors. This renders the developed database as a possible source of novel HDAC modulators 

and compounds with other biological activities. Thus, the presented results demonstrate and 

support the idea that computational approaches can readily identify novel HDAC modulators 

(for example to treat parasitic diseases and HIV) as well as provide the digital source ready to 

search for such biologically active molecules. 

Keywords: African NP Database, CADD, Cheminformatics, Histone Deacetylase Inhibitor, 

Human Immunodeficiency Virus, Latency Reversal Agent, Molecular Dynamics, Natural 

Product, Pharmacoinformatic, QSAR, Schistosomiasis. 
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Kurzfassung 

Es hat sich gezeigt, dass computer-basierte Methoden eine Abkürzung für die Markteinführung 

neuer Arzneistoffe sind. Sie sind in der Lage, sowohl die Kosten als auch den Zeitaufwand für 

die Entwicklung neuer Wirkstoffe zu reduzieren. In ähnlicher Weise wurde in dieser Arbeit 

computergestütztes Wirkstoffdesign (CADD - Computer-Aided Drug Discovery) genutzt, um 

die Entdeckung von Histondeacetylase (HDAC)-Modulatoren zu beschleunigen. HDACs sind 

eine interessante Klasse von Zn-abhängigen Enzymen. Sie spielen wichtige physiologische 

Rollen im Zusammenhang mit Genomfunktionen, die mit verschiedenen Krankheiten in 

Verbindung gebracht werden. In der aktuellen Arbeit wurden mehrere computer-basierte 

Methoden angewandt, um neue Moleküle vorzuschlagen, die auf HDACs abzielen könnten. 

Erstens wurde eine neue Klasse von HDAC Inhibitoren ("Reverse-Hydroxamat" als 

zinkbindendes Motiv) durch virtuelles Screening entdeckt, die eine Hemmung von Schistosoma 

mansoni HDAC8 (smHDAC8) mit IC50-Werten zwischen 4,4 und 20,3 µM zeigte. Ein 

zusätzliches Screening der Moleküle zeigte, dass sie gleich starke Inhibitoren der menschlichen 

Isoformen HDAC1, 6 und 8 waren. Zweitens wurde eine Reihe von Molekülen mit umgekehrter 

HIV-Latenzzeit mittels virtuellem Screening entdeckt. Diese Verbindungen können als 

Ausgangspunkt für ein strukturbasiertes Design und/oder chemische Optimierungsbemühungen 

zur Verbesserung der auf dem ,,HIV-Schock-und-töten‘‘-basierten Strategie dienen. Drittens 

wurden berechnete freie Bindungsenergie zur Erzeugung quantitativer Struktur-Wirkungs-

Beziehungsmodelle (QSAR) benutzt, um Benzhydroxamaten als smHDAC8-Inhibitoren auf der 

Grundlage von in silico-Vorhersagen weiter optimierten zu können. Gleichzeitig waren wir an 

der Suche nach neuartigen Modulatoren von HDACs aus natürlichen Quellen interessiert. Zu 

diesem Zweck trugen wir zum Aufbau einer Online-Datenbank für Naturstoffe (NPs) bei, die 

aus Afrikanischen Ausgangsspezies isoliert wurden (http://african-compounds.org/anpdb/). Die 

Analyse der entwickelten Datenbank zeigte, dass die Afrikanische NPs chemische Räume 

besetzen, die bisher in anderen veröffentlichten NP-Datenbanken nicht erfasst wurde und dass 

sie Verbindungen enthalten, die beschriebenen HDAC-Inhibitoren ähnlich sind. Unsere 

Datenbank ist somit eine vielversprechende Quelle für die Suche nach neuen HDAC-

Modulatoren und auch Verbindungen mit anderen biologischen Aktivitäten.. Die vorgestellten 

Ergebnisse demonstrieren und unterstützen die Idee, dass computer-gestützte Ansätze sowohl 

neue HDAC-Modulatoren (z.B. zur Behandlung von parasitären Krankheiten und HIV) 

identifizieren können als auch die digitalen Quellen für die Suche nach solchen biologisch 

aktiven Molekülen bereitstellen können. 
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“All who have meditated on the art of governing mankind have been convinced that the 
fate of empires depends on the education of youth.” 

 
~ Aristotle 
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1.1 HDACs in Biology 

Epigenetic modifications such as the post-translational histone modifications by acetylation 

and/or deacetylation processes regulate gene expression via chromatin remodelling.1,2 The 

acetylation status of histones is controlled by histone acetyltransferases (HATs) and histone 

deacetylases (HDACs). An upset in this balance leads to hyperacetylation (gene overexpression) 

or hypoacetylation (gene suppression) by HATs or HDACs, respectively. This upset has been 

associated with the pathology of several diseases, including cancer, neurodegenerative 

disorders, as well as parasitic and viral infections.3-6 Hypoacetylation of lysine residues via the 

removal of acetyl groups by HDACs leads to positively charged histone lysine residues which 

then binds tightly to the negatively charged DNA phosphate group resulting in chromatin 

compaction (Figure 1).7-9 

 

Figure 1: The effect of acetylation and deacetylation of histone (figure reproduced with 

permission).10 
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1.1.1 Classification of HDACs 

Detailed biochemical studies show that 18 mammalian HDACs have been identified so far, and 

are divided into 4 classes, based on their sequence homology to yeast.11 The different classes 

have distinct and/or unique characteristics such as cofactor(s), subcellular localization, and 

tissue distribution.11-14 For instance, classes I, II, and IV HDACs require zinc ion as a cofactor, 

whereas class III HDACs (known as the sirtuins) are NAD+-dependent enzymes. In this study, 

our focus will be on the zinc-dependent HDACs (popularly referred to as the classical HDACs) 

which are grouped as follows: i) class I HDACs (HDAC1, 2, 3 and 8) are located mainly in the 

nucleus and are homologous to the Rpd3 yeast protein, ii) class II HDACs are homologous to 

the Hda1 yeast protein and can shuttle between cytoplasm and nucleus, they are further grouped 

into class IIa (HDAC 4, 5, 7, and 9) and class IIb (HDAC 6 and 10) and iii) class IV HDACs 

predominantly located in the nucleus is solely occupied by HDAC11. 

1.1.2 Structure of HDACs 

HDACs share a common structural similarity, although they are grouped into different 

subgroups, based on their sequence homology to yeast and their diverse functionality.11,15 

Members of the class I subgroup (HDAC1, 2, 3 and 8), for example,  have a high degree of 

sequence homology to yeast Rpd3 with approximately 80 % similarity and 66 % identity.16,17 

The proteins in this group consist of ~ 400 amino acid residues with short N- and C-terminii 

making up almost the entire catalytic domain.16,17 On the other hand, yeast Hda1 is the founding 

member of class II HDACs (class IIa: HDAC4, 5, 7 and 9; class IIb: HDAC6 and 10).18-22 Class 

II HDACs are characterized with about 600 to 1000 amino acid residues forming an extended 

N-terminus with regulatory functions  in addition to the C-terminus (class IIa)18,21,22 or they 

possess two deacetylase domains (Class IIb).19-21 It is noteworthy to mention that studies on the 

two deacetylase domains of HDAC6 remain indecisive if both domains are catalytically active 

although both domains might be required for the proper functioning of the enzyme.19 HDAC10 

similarly possesses two catalytic domains; one catalytic domain on its N-terminus functions as 

polyamine deacetylase while the putative second catalytic domain on the C-terminus lacks the 

conserved HDAC features and enzymatic activity.20 Finally, the youngest classified member of 

the HDAC family is HDAC11, which is the only representative of class IV, due to its overall 

low sequence similarity to class I and II HDACs or the SIR2 family.23 HDAC11 is estimated to 

be of similar length (347 amino acid residues) to class I HDACs and has a proven catalytic 

domain situated at the N-terminus. Conclusively, for every HDAC, there is at least one 

deacetylase domain present which represents a key structural feature of this protein family. 
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Figure 2: Representation of the general structure of HDACs using the crystal structure of 

smHDAC8 (PDB ID: 5FUE). A) The central β-sheets (green) sandwiched by α-helices (brown) 

and surrounded by loops (brown ribbons). B) Zoom-in of the catalytic pocket showing some 

of the conserved residues (yellow sticks). Coordination to zinc ion by the co-crystallized 

ligand is represented with light blue dashed lines while the hydrogen bond interactions  

between the ligand and the protein are shown as yellow dashed lines . In both figures, the 

ligand and the catalytic zinc ion are shown as cyan sticks and bluish-grey sphere, respectively.
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Resolved crystal structures of the deacetylase domain confirm that there is a conserved 

architecture (Figure 2A). The general structure of the deacetylase domain contains a central 

eight-stranded parallel β-sheet sandwiched between several α-helices connected by loops of 

varying lengths. The binding pocket (called the lysine-binding channel) found in all HDACs is 

located at the centre of the domain and adopts a funnel-shape. This pocket is characterized by 

conserved amino acid residues (His-141, His-142, Asp-186, His-188, Phe-216, Asp-285 and 

Tyr-341) (Figure 2B) organized around a catalytic zinc ion and participates in the catalytic 

process of enzymatically active HDACs. Two of the conserved residues (Asp-186 and Asp-285) 

plus an additional non conserved residue (His-188) coordinate the active site zinc ion. The 

binding pocket is around 11 Å deep and is surrounded by flexible loops at the rim.24-26 An 

interesting aspect of the binding pocket is the possibility of extending it by opening sub-pockets 

that are closed depending on the HDAC isoform. Examples of such pockets include the foot 

pocket present in class I HDACs and the lower pocket present in class IIa HDACs.24-26 

1.1.3 Catalytic Mechanism of the Classical HDACs 

The search for specific substrate for the classical HDACs remains challenging due to the 

difficulties associated with the low measurable HDAC activity after purification of HDACs to 

homogeneity as well as the functional redundancy (the compensation of activity of one classical 

HDAC by another) of many HDACs.27,28 For example, according to Hu et al.,29 HDAC8 

preferentially deacetylate H3 and H4 while HDAC11 might specifically deacetylate Histone H3 

Lysine 9 (H3K9) and Histone H3 Lysine 14  (H3K14). Similarly, the deacetylation of none 

histone proteins by HDACs have also been reported and this process controls several cellular 

process.27 However, since the class I, II and IV HDACs are Zn-dependent enzymes, they are 

thought to proceed through a similar catalytic mechanism.19,30 Conserved amino acid residues 

(two His-Asp dyads, Tyr) within the binding site control the catalytic process of the enzymes. 

Figure 3 illustrates the proposed mechanism within the active site of HDAC8.30 The process is 

activated when the catalytic Zn2+ ion and the Tyr-341 residue polarize the carbonyl group of the 

acetylated lysine tail by coordinating to the acetyl oxygen. A nucleophilic attack on this 

polarized acetyl carbonyl carbon by a water molecule activated by a His-141 residue results in 

a tetrahedral intermediate that is stabilized by the Zn2+ ion and the Tyr-341. Worthy to be noted 

is the reported reduced catalytic activity of class IIa HDACs, which is explained by the 

replacement of this Tyr-341 residue by a His residue in the binding site.28 The tetrahedral 

intermediate subsequently collapses when the protonated His-141 residue acts as the general 

acid to protonate the ε-amine leaving group, yielding acetate and lysine products. 
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Figure 3: Proposed catalytic mechanism of classical HDACs. 

1.2 HDACs in the Treatment of Diseases 

Illnesses and conditions have been with man for millennia, and is still, and will be an obvious 

challenge to human health as predicted by experienced observers.31-37 This is a serious burden 

to the scientific community, pulling the investment of more funds in the search of new drugs to 

treat them, especially the rare and globally threatening ones. In recent years, HDACs have been 

validated as promising targets for the treatment of several ailments.3-6 Interest in these HDACs 

has led to the approval of several HDAC inhibitors (HDACis) for the treatment of cancer while 

many other drug candidates are in clinical trials.38 Indeed, the successful targeting of HDACs 

for treating cancer has been extended to a multitude of diseases including neurodegenerative 

disorders, parasitic and viral infections which involve major modifications such as morphology, 

gene expression amongst others.3-6 Interestingly, several HDACis have been shown to manifest 

a broad spectrum antiprotozoal activity. This thesis focuses mainly on schistosomiasis and 

human immunodeficiency viruses (HIV); their implications, how they affect the community and 

new strategies to treat them by targeting HDACs. 

1.2.1 Schistosomiasis 

Schistosomiasis (bilharzia) is an intravascular parasitic infection in humans caused by 

Schistosoma spp. It is one of the neglected parasitic diseases ravaging hundreds of millions of 

humans in underprivileged communities (e.g. in parts of the Middle East, South America, 

Southeast Asia and, particularly, in sub-Saharan Africa) for many decades now.39,40 Parasites 

require a vector and one or more intermediate hosts to be carried around/transported as part of 

their life cycle. In the case of schistosomes (Figure 4),39,40 the miracidia (ciliated larvae within 

the schistosome egg) are hatched into water (usually slowly flowing water). The hatched 

miracidia incubate freshwater snails to develop and release fork-tailed cercariae that will swim 

up to the surface of the water and fall back towards the bottom until they find a human host. 

These fork-tailed cercariae access their host by penetrating the skin of humans paddling, bathing 
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and/or washing in the water. Although schistosomiasis is a preventable disease, it still affects 

millions of people with an estimated 290 million people requiring preventive treatment and 

about 98 million reported by WHO to have been treated in 2018.41 

 

Figure 4: The life cycle of Schistosoma mansoni (reproduced with permission from 

https://www.flickr.com/photos/gtzecosan/15893494112 (accessed 10 June 2020)) 

Chronic infection of schistosomiasis is associated with long-term under-nutrition, anaemia, 

organ scarring and fibrosis, resulting in disabling patient symptoms.42-44 Many programs 

(national and international) to control and/or prevent Schistosoma infections have been 

implemented. However, with no available vaccine and the only drug of choice “praziquantel” 

(a low-cost and highly effective orally administered drug against all Schistosoma spp as a single 

dose with no notable side effects45,46) is already having negative reports in terms of selectivity 

and resistance.47-49 Thus, there is a need to search for new small molecules to treat the 

disease.42,46,47,50 Interestingly, several studies in recent years have confirmed the emergence of 

HDACs as attractive therapeutic targets to target the parasite’s epigenome as a means to treat 

schistosomiasis amongst other parasitic ailments.3,6,51,52 

Interestingly, parasitic Zn- and NAD+-dependent HDACs have been identified and shown to 

play crucial roles in modulating the expression of genes in several major human-infecting 

parasites.6,52 Hence, parasitic HDACs have emerged as novel potential antiparasitic targets, 

because some of the gene expressions are pro-survival for several parasites under various 
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conditions.6,50-52 Downregulation of HDACs in Schistosoma mansoni, for example, is confirmed 

to reduce the survival chances of the pathogen in infected mice.53 Moreover, testing of several 

HDACis demonstrated that they do penetrate the parasite and induce mortality.54 Several 

research groups have, thus, embarked on this route to search for novel molecules to treat 

schistosomiasis.46,51,55,56 While looking for HDACis to treat parasitic infections, the pathogen’s 

HDACs become the focus (main target) and the human HDACs are treated as off-targets 

potentially causing unwanted side effects. The most studied and targeted isoform for S. mansoni 

is its HDAC8 (smHDAC8). This has been an interesting route so far in the search of new 

smHDAC inhibitors, because the human counterpart (hsHDAC8) is only expressed in a high 

amount within unhealthy/infected human cells.57-61 Thus, the development of small-molecule 

smHDAC8 inhibitors represents a promising approach for the treatment of schistosomiasis. 

1.2.2 Human Immunodeficiency Virus (HIV) 

The human immunodeficiency virus (HIV) is the causative agent of the acquired 

immunodeficiency syndrome (AIDS) which breaks down the immune system, thus paving the 

way to opportunistic infections affecting millions of persons.62,63 Transmission of HIV is mainly 

via the exchange of a variety of body fluids (e.g. blood, breast milk, semen and vaginal 

secretions) from infected people to healthy people.64,65 Although the survival rate from 

HIV/AIDS infections has increased due to the continuous efforts put in place to sensitize and 

educate people, the disease has claimed ~ 32 million lives so far.66,67 By the end of 2018, it was 

estimated that about 37.9 million people were living with HIV (with over two-thirds of these 

people residing in the WHO African Region).66,67 One of the key approaches in fighting 

HIV/AIDS infection is currently with the use of a highly active combination antiretroviral 

therapy (cART) to durably control/suppress HIV, thus, reducing the chances of infected 

individuals to infect others.68-70 A drawback to the use of only cART is that the patients are 

prone to take it for their whole life. This is because the cART does not act on resting CD4+ T 

cells containing latent proviral reservoirs which can reactivate at any time to produce infectious 

virus.71,72 Therefore, new approaches to eradicate HIV are needed.  

A recent strategy, “shock-and-kill”,71,73-75 has been proposed as a means of identifying and 

eliminating HIV reservoir-containing cells.76 This is a strategy to eradicate the pool of latently 

infected cells.71,73-76 The “shock-and-kill” strategy uses latency (period of non-productive 

replication) reversal agents (LRAs) to initially stimulate the virus production (i.e., “shock”) by 

activating cells harboring HIV.71,75 These identified cells are then eliminated through apoptosis 

or immune-enhancing mechanisms (“kill”), while concurrently using cART to prevent reservoir 



  

10 

 

re-seeding.68,72 An important functional class of the LRAs are inhibitors of class I 

HDACs.4,74,75,77-79 It has been presented with evidence that HDACs regulate the transcription of 

numerous cellular and viral genes, resulting in the removal of important docking signals that are 

required for binding of activating transcription factors.80 Remarkably, overexpression of class I 

HDACs in resting CD4+ T cells have been described.81,82 Hence, targeting proviral sites of the 

CD4+ T cells in HIV infected individuals with class I-selective and improved efficacy HDACis 

as potent inducers of the viral expression is a promising strategy. Indeed, several works in this 

regard have yielded the identification and crystallization of novel molecules such as the ethyl 

ketones (PDB ID: 6WBW, 6WBZ) acting on HDAC1 as LRAs.83 Thus, giving hopes to 

HIV/AIDS patient that the administration of cART might no longer be a life sentence anymore. 

1.3 HDAC Inhibitors (HDACis) 

Inhibitors have been successfully used to regulate the activity of HDACs. Interestingly, five 

HDACis (vorinostat (SAHA) (1),84 romidepsin (FK228) (2),85 belinostat (PXD-101) (3),86 

panobinostat (LBH-589) (4)87 and chidamide (5)88 (Figure 5)) have been approved for the 

treatment of several cancer types while several other drug candidates are in clinical trials.89,90 

Many of these drugs, which are pan HDACis also show unfavourable properties for drug 

development such as low potency and poor selectivity.91 Reported HDACis respect the widely 

accepted simple classical pharmacophore model proposed by Jung et al.92,93 This pharmacophore 

model consists of three main pharmacophoric features: the zinc-binding group (ZBG; to 

coordinate the catalytic zinc ion), the linker (placed in the hydrophobic substrate-binding tunnel) 

and the capping group (cap; to interact with amino acid residues at the rim of the pocket). 

 

Figure 5: Structural features of approved HDACis. For each molecular structure, blue, green 

and red colours indicate the cap, linker and ZBG group respectively . 

More insights into the HDAC structure has prompted new strategies that can be used to develop 

novel and/or isoform-selective HDACs. The exploration of target isoform-specific regions (such 

as Side Pocket,94 Lower Pocket,94 Foot Pocket95), which could either be closed or open within 
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and around the binding pocket are now being explored to generate more selective HDACis.96 

Curiosity to getting more insights into the effect of these molecules on HDACs has led to the 

crystallization of several complexes. 

1.3.1 Synthetic HDACis 

Chemically, most of the investigated HDACis as well as approved HDAC inhibiting drugs are 

synthetic molecules and an overview of these molecules and their synthetic routes have been 

provided by Peng et al.97 Some of these synthetic HDAC inhibiting molecules include the 

approved HDACi drugs compounds 1 - 4 (Figure 5). Vorinostat (SAHA) (1) was the first FDA 

approved HDACi in 2006 and is used for the treatment of cutaneous T-cell lymphoma.98 

However, it is reported to act as a pan-HDACi with relatively low Ki values on all eleven human 

isoforms in the range of 20 - 173 nM. Similarly, panobinostat (3), approved by the FDA in 2015 

for the treatment of multiple myeloma also inhibits a broad spectrum of HDACs with IC50 values 

ranging from 0.6 - 22 nM and is currently the most potent HDACi drug available in the 

market.99,100 Interestingly, in 2014, two synthetic HDAC molecules; belinostat (2) and 

chidamide (4) were both approved for the treatment of relapsed or refractory peripheral T-cell 

lymphoma by the FDA and the Chinese NMPA respectively. While belinostat (2) demonstrated 

pan-HDAC inhibitory activity (IC50 values in the range of 10-59 nM against all eleven HDAC 

isoforms),101 chidamide (4) on the other hand selectively inhibits HDACs 1, 2 and 3 with IC50 

of 95, 160 and 67 respectively.102,103  

 

Figure 6: Some synthetic HDACis. 

In a similar way, newly designed analogues (entinostat (6) and mocetinostat (7); Figure 6) of 

chidamide (4) with the same ZBG showed similar selectivity pattern. These analogues showed 

preferential inhibition towards HDAC1, 2, 3 and 11 with IC50 values of 250 - 2700 and 60 - 200 
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nM for 6 and 7, respectively. For both molecules, no significant inhibition up to 30 µM 

concentration was observed for HDACs 4 and 7.104,105 Interestingly, mocetinostat (7) is currently 

in phase III clinical trials for the treatment of lymphoma, urothelial carcinoma, relapsed and 

refractory, myelodysplastic syndrome and metastatic leiomyosarcoma. Another synthetic 

HDACi of interest is givinostat (ITF2357; 8), a potent inhibitor of both class I and II HDACs 

and already in phase III clinical trials for the treatment of polycythemia vera, juvenile idiopathic 

arthritis, Duchenne muscular dystrophy (DMD), chronic myeloproliferative neoplasms, and 

polyarticular-course juvenile idiopathic arthritis.106 

The thienyl benzamide (BRD 6929; 9) has also been reported to show high selective potency 

(greater than 100-fold selectivity) against HDAC1 and HDAC2 ((IC50 = 10-60 nM)) when 

compared to other HDACs (including HDAC3).107 The crystal structures of HDAC2 with 9 

(PDB ID: 4LY1) shows that the thiophene group attached in para-position of the anilide moiety 

occupies a pocket at the foot of the binding cavity. This pocket is not present in other HDAC 

isoforms and could be a possible explanation for its selectivity. It also coordinates the catalytic 

Zn-ion with similar groups of atoms like in compounds 4, 6 and 7. Specific potency towards 

class I HDACs has also been reported for scriptaid (10) and valproic acid (11). Scriptaid (10) 

was identified by Su et al.,108 via a high-throughput transcriptional screening and has the 

potential to be used for the treatment of one of the most challenging solid cancers; namely, 

glioblastoma multiforme (GBM), due to its ability to induce apoptosis in glioblastoma cells. 

Valproic acid (11) on the other hand has therapeutic mechanisms of actions that are still not well 

understood. Nevertheless, this branched short fatty acid inhibits HDAC1 (IC50 of 0.4 nM) and 

is being investigated for the treatment of  HIV and various cancers.109,110 Oxamflatin (12), a pan-

activity HDACi, was shown to have strong cytostatic effects and potential toxicity against a 

variety of tumour cell lines such as the ovarian cancer cells at nM concentrations.111 

1.3.2 Natural Products (NPs) as HDAC Modulators 

The diversity of NPs (structurally, chemically, biologically) developed over millions of years of 

evolution explains their use in traditional medicines such as the Indian Ayurveda,112 traditional 

Chinese medicine113 or African herbal medicines114 for centuries in primary health care 

system.115-118 Thus, revisiting of nature (NPs), which had worked in the past as seen by the 

multiple drugs obtained from natural sources (Figure 7), can revolutionize and lead to the 

discovery of novel and potent drug molecules.  
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Figure 7: Some of the approved NP molecules for the treatment of diseases. 

Even with the diminished focus on NPs by the major pharmaceutical companies, scientific 

studies show that NPs still account for about half of the drugs approved by the FDA, especially 

antibiotic and anticancer drugs (Figure 8).119-128 This undisputable fair share contribution of NPs 

in modern drug discovery is attracting heavy investments that are leading to the isolation, 

characterization and possible biological evaluations and establishment of the mechanisms of 

actions of many NP molecules.129-132 The bulkiness and complex structural representation of 

some NPs still challenges and inspires talented synthetic chemists of nowadays.130,133-138 Several 

studies have confirmed the advantages of NPs over combinatorially synthesized compounds as 

a promising source for drug discovery with biologically relevant and privileged scaffolds.139-146 

For example, principal component analysis (PCA) of compounds using simple descriptive 

features like lipophilicity, the number of chiral centres, molecular weight (MW), the prevalence 

of aromatic rings, the introduction of complex ring systems, number of rotatable bonds, the 

degree of the saturation of the molecule, as well as the number and ratios of different 

heteroatoms have been used to analyze the chemical space of these molecules.134,147-149 
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Figure 8: Distribution of natural, nature-inspired and non-natural drugs among all newly 

approved drugs from 1st January 1981 to 30th September 2019; n = 1881. A) Pie chart depiction 

for all source category and B) Bar graph by source/year (Figures reproduced with permission 

from ACS, https://pubs.acs.org/doi/10.1021/acs.jnatprod.9b01285).125 

Interestingly, NP inspired molecules constitute part of HDACis (Figure 9).38,85,90,150-156 These 

NP-based molecules have displayed modulating activities against several HDAC isoforms; 

although the inhibitory mechanisms are not clearly understood for all of them.157 Macrocyclic 

compounds represent one very important class of HDACis and have received a lot of attention. 

For example, the macrocyclic compound trapoxin A (13, Figure 9) isolated from the fungus 

Helicoma ambiens RF-1023 has been found to possess interesting HDAC inhibitory 

activity.152,158,159 Compound 13 is said to cause irreversible inhibition of the deacetylating 

enzymes leading to the accumulation of acetylated histones in various mammalian cell lines.160 

In vitro inhibitory assays confirmed this molecule to be very potent with a selectivity index of 

over 600-fold for HDAC1 when compared to HDAC6.161 Apicidin (14, Figure 9), also isolated 

from a fungus (Fusarium pallidoroseum) is another macrocyclic molecule which is very similar 

to trappoxin A (13).162 In vitro investigation of the inhibitory activity of apicidin also revealed 

that it is a potent and selective class I HDACi (IC50 of 1-2 nM) when compared to HDAC8 (IC50 

= 750 nM) and HDAC6 (IC50 ˃ 10 µM).163 

Other interesting macrocyclic compound is one of the first approved HDAC inhibiting drug, 

romidepsin (5, Figure 5).85 This depsipeptide, romidepsin (5), produced by Chromobacterium 

https://pubs.acs.org/doi/10.1021/acs.jnatprod.9b01285
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violaceum was reported to selectively inhibit HDAC1 and HDAC2 with IC50 values of 1.6 and 

3.9 nM, respectively, when compared with HDAC4 and HDAC6 with IC50 values of 25 and 790 

nM, respectively. Another depsipeptide compound of natural origin is largazole (15, Figure 9), 

which showed similar HDAC activities as romidepsin. Largazole (15) was isolated from the 

marine cyanobacterium Symploca sp. and was demonstrated to selectively inhibit HDACs.164,165 

For instance, picomolar range inhibitions of HDACs 1, 2 and 3 isoforms have been reported 

(IC50 = 0.4-0.9 nM) for largazole, while nanomolar range IC50 values were reported for HDAC6 

and HDAC8, but with no significant inhibition of HDAC5 at concentrations up to 1 µM. Both 

5 and 15 undergo in vivo activation to produce the active thiol forms of the molecules. The thiol 

group which is also well-represented in NPs is a well-explored ZBG towards the development 

of HDACis. Santacruzamate A (16, Figure 9) is a potent and selective inhibitor of HDACs 

isolated from the cyanobacterium Symploca sp.166 This molecule selectively inhibits HDAC2 

with IC50 value of 0.119 nM, while no observable effect against HDAC4 and HDAC6 for IC50 

values of ~ 1 µM and 434 nM was also reported. 

 

Figure 9: Examples of NP-based HDACis. 

Tropolones have also received some attention in the search of novel HDACis. For instance, the 

tropolone derivative (17, Figure 9) (inspired by beta-thujaplicin, 18, Figure 9),167 was developed 

as a novel and selective HDAC2 inhibitor with the potentials of inhibiting the growth of T-cell 

lymphocyte cell lines. Modification of the ZBG of tropolone led to the development of the 
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3‑hydroxypyridin-2-thione derivative (19, Figure 9) as a novel and selective HDACi (IC50 of 

0.681 and 3.675 μM for HDAC6 and HDAC8 respectively, but with no HDAC1 inhibitory 

activity.168 Trichostatin A (20 is one of the first discovered HDACi from nature (isolated from 

Streptomyces hygroscopicus). In vitro studies have proven the strong HDAC inhibitory activity 

of trichostatin A (20, Figure 9) against all the eleven HDAC isoforms with IC50 values in the 

range of 0.4-90 nM.169,170 Compound 20 is one of the first discovered HDAC from nature 

(isolated from Streptomyces hygroscopicus). Serpulanines are naturally occurring HDACis with 

a rare (E)-2-hydroxyimino hydroxamic acid functional group array. They have so far been 

isolated only from extracts of a rare Sri Lankan macrofungus Serpula sp. collected from a 

wooded area in the Monaragala District.171 Evaluation of the HDAC inhibitory activity of 

serpulanine A (21, Figure 9) confirmed that this compound could inhibit HDACs like other 

hydroxamic acid bearing molecules. Compound 21 was found to inhibit class I and II HDACs. 

Psammaplin A (22, Figure 9) is another very potent HDAC1 selective inhibitor (IC50 of 0.9 nM) 

that is found in several marine sponges.172-176 Compound 22 was reported to be 360-fold 

selective for HDAC1 over HDAC6 and more than 1000-fold less potent against HDAC7 and 

HDAC8.176  

1.4 Natural Products Databases as Digital Sources for Novel HDAC Modulators.  

Although significant progress has been made in the search of HDAC modulators from both 

synthetic and natural origin, challenges associated with potency, selectivity, pharmacokinetics 

and safety for the new molecules is still a problem to be solved. Thus, the exploration of new 

sources (such as NP libraries) and molecules bearing new scaffolds and pharmacophoric features 

with the help of rational design and de novo design is highly interesting. Nowadays, rational 

drug design-based methods to developed NP analogues with acceptable pharmacokinetics, 

pharmacodynamics properties, as well as low toxicity is gradually overtaking the use of pure 

NPs.131,136,137,139-141 However, the place of NPs remains unique because it is impossible to design 

such analogues from scratch without consulting NPs. NPs can therefore help, in answering 

questions about which compounds should be prepared and how should such a diversity-oriented 

synthesis be planned?131,139-141 The above listed successful stories and challenges prompted us 

to explore more NP sources to search for HDAC modulators. 

1.4.1 Natural Product Databases 

Modern drug discovery has seen a great interest in NPs.120,128,131,146,177 This, to a certain degree, 

is because of their diversity and advantage in providing new lead compounds and 

scaffolds.131,132,178-183 The growing interest in NPs has also invited huge investment in the search 
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(isolation, characterization, biological evaluation) of NPs in both academia and industrial 

sectors.177,184 A result of this investment is seen with the increased number of isolated NPs.177 

One way of documenting and making available this information/findings to the community is 

through the collection of available data into several public and commercial NP databases and 

repositories.185 A detailed review of existing NPs databases and where to find data in 2020 was 

recently provided by Sorokina and Steinbeck.185 There are many examples of these NP 

databases; from comprehensive (general; including compounds from terrestrial, marine and 

microbial organisms) to focussed ones (based on a particular disease, or compounds from 

specific geographical regions or organism types). However, studies also reveal that these 

collections of virtual NP databases which contain about ~ 250,000 NPs only have about 10 % 

of readily available purchasable samples.178 These databases were proven to be more diverse 

when compared with synthetic/combinatorial databases within the biologically relevant 

chemical space (Figure 10).134,178,186,187 Disappointment in large combinatorial databases left a 

clear message to drug discovery researchers to either increase the diversity of the combinatorial 

databases via the improvement of the diversity of synthetic reactions and/or shift to NPs which 

have worked in the past. 

1.4.2 Natural Products from African Sources 

The African continent is magnificently gifted with richness and diversity in flora and fauna. This 

gift, in turn, justifies how a significant proportion of the African population relies on diverse 

traditional means in treating ailments as their primary source of healthcare and needs. The 

dependence on traditional methods of treatment can be attributed to socioeconomic reasons, 

personal beliefs or the difficulty in accessing pharmaceutical products. Scientific exploration of 

the known traditional methods as well as the source species represents one of the possible means 

in documenting and safeguarding the information and/or standardizing and improving the 

quality of the products being consumed. In this line, several ethnopharmacological, 

pharmacoinformatic and chemoinformatic studies to validate claims from African source 

species have been reported.186-204 It was generally observed that most of the isolated molecules 

were of the alkaloid, flavonoid, phenolic, quinone and terpenoid compound classes.186,187,191-203 

One of the most investigated topics, are claims of African traditional medicine approaches for 

the treatment of malaria. 

Likewise, claims that many of the African medicinal plants have the potential to heal fevers and 

malaria in traditional medicine have been the most investigated.186,190,192-201 This confirms to an 

extent, how the indigenes are fighting against parasitic ailments which is a serious burden to the 

people claiming thousands of lives annually.205 Chemoinformatic analysis of available NP 
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databases using PCA revealed that only a small portion of the already annotated NPs originating 

from Africa occupy a similar chemical compared to the rest of the world. For example, 

comparative study to analyze the chemical space (Figure 10) between two focused NP 

databases; AfroCancer (compounds with demonstrated in vitro and/or in vivo anticancer, 

cytotoxic and antiproliferative activities from the African medicinal plants) and NPACT 

(Naturally Occurring Plant-based Anticancer Compound-Activity-Target) databases showed 

that their chemical spaces diverge in different directions.205  

 

 

Figure 10: 3D plot using the best 3 PCA to compare the chemical space occupied by the NPs 

in the AfroCancer (red) and those in the NPACT (cyan) databases (Figure reproduced with 

permission).205 

Taking into consideration the poor overlap between existing databases of natural compounds 

with those from African sources, it appears that new collections would greatly contribute to 

cover a broader chemical space. Such an information source could also contain HDACis of a 

novel origin. The multiple cases of natural compounds being discovered as HDACis and 

optimized into drugs or drug-like molecules also inspired us to develop a new database of 

African NPs as a possible source for new HDACis and other biologically active molecules.   
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2. The Objectives of the Work  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 “If you're not prepared to be wrong, you'll never come up with anything original.” 
 

~ Ken Robinson
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Overall Objective 

As described above, targeting HDACs has emerged as a promising therapeutic strategy to treat 

several ailments including cancer, parasitic diseases and viral infections.1,3,4,52,90 Fascinatingly, 

compounds of both synthetic and natural origin have provided considerable contribution in the 

search of novel HDAC inhibitors. The richness of the African fauna and flora stands as a good 

starting point for the search of novel HDAC inhibitors since the exploration of literature sources 

shows that the appropriate attention it deserved was not given. In this study, the main aim was 

to design a reliable and efficient computational approach to search for novel HDAC modulators 

for the treatment of schistosomiasis and HIV/AIDS as well as to develop a database of African 

NPs which could serve as a novel source for such compounds. To achieve the main aim of this 

project, the following specific objectives were applied. 

1. Studying of the classical HDACs and their inhibitors. This helped to identify structural 

similarities and differences, how HDACs function and their proposed catalytic mechanism, 

reported interactions that are conserved across particular classes of inhibitors. 

2. Designing and performing structure-based VS. This process was important to find novel hits 

for the parasitic HDAC8 (smHDAC8) and the human HDAC1 (hsHDAC1) targets. Selection 

of hits that can possess increased potency and selectivity was based on the knowledge 

gathered specifically from the previous objective. This is complemented with the evaluation 

of docking poses and stability of the small molecules within the active site of the targets of 

interest (smHDAC8 and hsHDAC1). 

3. Developing a quantitative structure-activity relationship to account for the inhibitory activity 

of smHDAC8 inhibitors of the benzhydroxamate type in order to suggest new molecules for 

synthesis that might have higher activity, based on the prediction. 

4. Developing a database consisting of NPs from African source species, by manual curation of 

information (such as source organisms, reported biological activities amongst others) from 

published peer-reviewed literature sources.  

5. VS of the newly developed African natural product database and the proposing of NPs that 

can act as modulators of smHDAC8. 

6. Biological screening of suggested molecules and resolving of a crystal structure. 

Interdisciplinary collaboration with other groups to validate theoretical results remains very 

important and indispensable in the drug discovery pipeline. 
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3. Results and Discussions  

The results of this thesis include the following scientific manuscripts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The fewer the hypotheses needed to explain existing observations  
and predict new phenomena, the more 'elegant' the theory.”  

 
~ Occam's razor
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“the research community is more and more enthused to address a certain class of HDACs or a
specific HDAC isoform by designing selective inhibitors”

For two decades, a classical pharmacophore model comprising a zinc binding group, a linker and a cap
group, has been used for the development of histone deacetylase (HDAC) inhibitors. However, some of the
recently reported selective HDAC inhibitors targeting additional, usually subtype specific, cavities in the
binding pocket show supplementary features which do not fit this classical pharmacophore. We, there-
fore, propose an extended pharmacophore model, which can describe almost all currently known HDAC
inhibitors. This pharmacophore consists of six pharmacophoric features and should be helpful for the
classification and design of selective HDAC inhibitors.

First draft submitted: 16 April 2018; Accepted for publication: 20 April 2018; Published online:
3 July 2018

HDAC inhibitors as drugs
Histone modifying enzymes epigenetically regulating gene expression have emerged as targets with good prospects
for cancer treatment. Especially promising are histone deacetylases (HDACs), since their activity is upregulated in
many types of cancer. The eleven human HDAC isoforms have been classified into four classes: I, IIa, IIb and IV
based on their homology with orthologs identified in yeast (class III, which is more commonly called sirtuins, is
structurally distinct and is not discussed in this paper) [1]. Several HDAC inhibitors have already been approved
for cancer treatment. The hydroxamic acid derivative vorinostat targeting multiple HDAC isoforms was the first
HDAC inhibitor approved in 2006 for the treatment of cutaneous T-cell lymphoma. Since then, three other HDAC
inhibitors, namely romidepsin, belinostat and panobinostat got approval for clinical use in the USA and chidamide
was approved for the treatment of peripheral T-cell lymphoma in China [2,3]. Besides the primary application as
anticancer drugs, HDAC inhibitors show potential for the treatment of other disorders such as neurodegeneration,
inflammation and parasitic diseases [1,2,4]. However, studies have shown that the above-mentioned pan-HDAC
inhibitor vorinostat may cause numerous unwanted side effects. Thus, the research community is more and more
enthused to address a certain class of HDACs or a specific HDAC isoform by designing selective inhibitors [1,5].
This remains a challenge due to the high sequence and structural similarity of the various HDAC isoforms and
because of missing information about structural data of some isoforms.

Classical pharmacophore of HDAC inhibitors
Back in the 90s when the first potent HDAC inhibitors were discovered and before the first crystal structure of
the bacterial HDAC-like protein was solved, a useful pharmacophore model of HDAC inhibitors was proposed
by Jung et al. [6–8]. This model, which was based on available information and highlighted common features of
known HDAC inhibitors, was widely accepted and was further developed by many authors. It introduced a new
terminology, which facilitated the design of inhibitors for many years. The currently used classical pharmacophoric
definition, which is supported by several released crystal structures of HDAC–inhibitor complexes, consists of the
zinc binding group (ZBG) coordinating the catalytic zinc ion, the linker placed in the substrate binding tunnel,
and the surface recognition domain also known as cap. Diverse research groups have embarked on modifying
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Abstract: This review classifies drug design strategies successfully 

implemented in the development of histone deacetylase (HDAC) 

inhibitors, which have many applications including cancer treatment. 

Our focus is on especially demanded selective HDAC inhibitors and 

their structure-activity relationships in relation to corresponding 

protein structures. The main part of the paper is divided into six 

subsections narrating how optimization of the six corresponding 

structural features can influence inhibitor selectivity. It starts with the 

impact of the zinc binding group on selectivity, continues with the 

optimization of the linker placed in the substrate binding tunnel as well 

as the adjustment of the cap group interacting with the surface of the 

protein, and ends with addition of groups targeting class-specific sub-

pockets – the side pocket targeting group, the lower pocket targeting 

group and the foot pocket targeting group. The review is enhanced 

with a conclusion and an outlook to the future of HDAC inhibitor design. 

1. Introduction 

Histone deacetylases (HDACs) and HDAC-like proteins are 

ancient enzymes found ubiquitously in various organisms from 

bacteria to mammals.[1] Among other functions, they participate in 

epigenetic regulation of gene transcription by removing the acetyl 

moieties from lysine residues of histones. Largely due to this 

important role, HDACs are engaged in multiple physiological 

processes and are promising drug targets for various pathological 

conditions, such as cancer, cardiac and neurodegenerative 

diseases, inflammation, metabolic and immune disorders, viral 

and parasitic infections.[1-2] Several HDAC inhibiting drugs have 

been approved for cancer treatment and novel HDAC inhibitors 

are intensively being developed. Since targeting multiple HDAC 

isoforms might simultaneously cause unwanted side effects as 

observed for the approved broad spectrum HDAC inhibiting drugs, 

isoform selective compounds are gaining more attention, 

especially in the field of non-cancer diseases.[1-2, 3]  

Human HDACs are represented in eighteen isoforms, 

subdivided into four classes: class I (HDAC1-3, HDAC8), class II 

(IIa: HDAC4-5, HDAC7, HDAC9 and IIb: HDAC6, HDAC10), class 

III (SIRT1-7) and class IV (HDAC11). Class III HDACs are mostly 

called sirtuins; they are structurally and biochemically different 

from other HDACs and do not fall within the scope of this paper. 

The HDACs discussed in this review (classes I-II and IV) are also 

known as classical HDACs or zinc-dependent HDACs, or simply 

HDACs (as they are referred to further). They vary in size, 

subcellular localization, expression patterns and substrate 

recognition.[1-2] For instance, class I HDACs (HDAC1-3 and 

HDAC8) as well as class IIb member HDAC6 are efficient 

deacetylases. Class IIa HDACs (HDAC4-5, HDAC7 and HDAC9) 

are weak deacetylases but readily accept non-physiological 

trifluoracetylated substrates. Class IIa HDACs have lost their 

essential catalytic tyrosine, replaced by a histidine, and are, 

therefore, thought to play mainly a scaffolding role in 

macromolecular complexes.[4] HDAC10 has been shown to 

mainly work as polyamine deacetylase, while HDAC11 is known 

as fatty acid deacylase.[5] It has been observed by several authors 

that the activity on HDAC10 and HDAC11 isoforms could not be 

measured using the peptide-based acetylated and 

trifluoracetylated substrates commonly used for other HDACs and 

suggested that previously measured activities might be influenced 

by co-purified HDACs.[5a-c, 6]. Despite the distinct substrate 

specificity and other mentioned differences of HDACs, they are 

structurally very similar and share a common catalytic domain.[1-

2] Thus, the intriguing question, which has been bothering many 

scientists working in the field of HDAC inhibitor development, is 

how to achieve selectivity among structurally similar HDAC 

isoforms. 

The architecture of the catalytic HDAC domain is conserved 

as seen in around two hundred solved crystal structures of human, 

zebrafish, parasitic, plant and bacterial HDACs and HDAC-like 

proteins stored in the Protein Data Bank (PDB), URL rcsb.org.[7] 

The fold of the domain consists of a central β-sheet surrounded 

by an ensemble of α-helices and interconnecting loops. Several 

loops form the catalytic pocket which contains the catalytic zinc 

ion (although some authors suggest that there might be another 

metal ion in physiological conditions).[8] The catalytic pocket can 

be subdivided into several parts (Fig. 1) : 1) the main pocket (A) 

consisting of the acetate binding cavity, the substrate binding 

tunnel and the rim of the pocket and 2) the sub-pockets, such as 

the side pocket (B), the lower pocket (C) and the foot pocket (D).[9] 

The main pocket is present in all crystal structures of HDACs, 

while the sub-pockets could either be opened or closed 

depending on the bound ligand and HDAC isoform.[10] In addition 

to the first catalytic domain, HDACs might have a second catalytic 

or pseudocatalytic domain (class IIb HDACs), C- or N-terminal 

extensions and other domains (e.g., a unique zinc-finger domain 

in HDAC6).[1-2, 5b]  

 

Figure 1. Extended pharmacophore model based on the plasticity of the HDAC 

binding pocket and the corresponding pharmacophoric features of bound 
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Abstract: A promising means in the search of new small molecules for the treatment of schistosomiasis
(amongst other parasitic ailments) is by targeting the parasitic epigenome. In the present study,
a docking based virtual screening procedure using the crystal structure of histone deacetylase 8 from
Schistosoma mansoni (smHDAC8) was designed. From the developed screening protocol, we were able
to identify eight novel N-(2,5-dioxopyrrolidin-3-yl)-n-alkylhydroxamate derivatives as smHDAC8
inhibitors with IC50 values ranging from 4.4–20.3 µM against smHDAC8. These newly identified
inhibitors were further tested against human histone deacetylases (hsHDAC1, 6 and 8), and were
found also to be exerting interesting activity against them. In silico prediction of the docking
pose of the compounds was confirmed by the resolved crystal structure of one of the identified
hits. This confirmed these compounds were able to chelate the catalytic zinc ion in a bidentate
fashion, whilst showing an inverted binding mode of the hydroxamate group when compared to
the reported smHDAC8/hydroxamates crystal structures. Therefore, they can be considered as new
potential scaffold for the development of new smHDAC8 inhibitors by further investigation of their
structure–activity relationship.
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Current antiretroviral therapies used for HIV management do not target latent viral
reservoirs in humans. The experimental “shock-and-kill” therapeutic approach involves
use of latency-reversal agents (LRAs) that reactivate HIV expression in reservoir-
containing cells, followed by infected cell elimination through viral or host immune
cytopathic effects. Several LRAs that function as histone deacetylase (HDAC) inhibitors
are reported to reverse HIV latency in cells and in clinical trials; however, none to date have
consistently reduced viral reservoirs in humans, prompting a need to identify new LRAs.
Toward this goal, we describe here a virtual screening (VS) approach which uses 14
reported HDAC inhibitors to probe PubChem and identifies 60 LRA candidates.
We then show that four screening “hits” including (S)-N-Hydroxy-4-(3-methyl-2-
phenylbutanamido)benzamide (compound 15), N-(4-Aminophenyl)heptanamide (16), N-
[4-(Heptanoylamino)phenyl]heptanamide (17), and 4-(1,3-Dioxo-1H-benzo[de]
isoquinolin-2(3H)-yl)-N-(2-hydroxyethyl)butanamide (18) inhibit HDAC activity and/or
reverse HIV latency in vitro. This study demonstrates and supports that VS-based
approaches can readily identify novel HDAC inhibitors and LRAs, which in turn may
help toward inhibitor design and chemical optimization efforts for improved HIV shock-
and-kill-based efforts.
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Abstract:
The development and application of computer-aided drug design/discovery (CADD) techniques (such as
structured-base virtual screening, ligand-based virtual screening and neural networks approaches) are on the
point of disintermediation in the pharmaceutical drug discovery processes. The application of these CADD
methods are standing out positively as compared to other experimental approaches in the identification of hits.
In order to venture into new chemical spaces, research groups are exploring natural products (NPs) for the
search and identification of new hits and more efficient leads as well as the repurposing of approved NPs.
The chemical space of NPs is continuously increasing as a result of millions of years of evolution of species and
these data are mainly stored in the form of databases providing access to scientists around the world to conduct
studies using them. Investigation of these NP databases with the help of CADD methodologies in combina-
tion with experimental validation techniques is essential to identify and propose new drug molecules. In this
chapter, we highlight the importance of the chemical diversity of NPs as a source for potential drugs as well
as some of the success stories of NP-derived candidates against important therapeutic targets. The focus is on
studies that applied a healthy dose of the emerging CADD methodologies (structure-based, ligand-based and
machine learning).
Keywords: CADD, drugs, ligand-based, machine learning, natural products, structure-based
DOI: 10.1515/psr-2018-0119

1 Introduction

A typical drug discovery and development process from concept to market takes about 13–15 years requiring
approximately $2–3 billion on average [1, 2]. However, the increasing cost of the drug discovery and devel-
opment process nowadays has not produced an exponential increase in the success rate of drugs approved
annually as it has remained relatively flat or decreased over the past decade [1, 3]. Nevertheless, the develop-
ment and application of new methodologies are on the point of disintermediation in the pharmaceutical drug
discovery processes. Thereby, reducing billions of dollars of the industry’s cost for the search of new drugs
and a cut down on the time taken to get new medicines approved to just a few processing cycles (few years).
The application of computational methodologies has been of tremendous importance at various stages of drug
discovery especially in the identification of hits as compared to experimental approaches alone [4–15]. Thus,
CADD methods have proven to be successful approaches for finding ligand hits, as well as in assisting in the
lead optimization steps in discovery projects.

Exploration of natural products (NPs) for the discovery of new and more efficient leads, repurposing of
known NPs, targeting of new targets on the basis of genome analysis, the revelation of mechanisms of action,
and optimization of lead compounds are being achieved via the application of some of the developed CADD
methodologies [16–24]. Humans had been using crude and/or pure medicinal plant extracts as well as isolated
NPs for millennia in the treatment of several ailments before the advent of synthetic medicinal chemistry [17,
21, 24–28]. With the development of novel methodologies for the identification, isolation, and characterization
of new and/or uniqueNPs [16], the chemical space has continuously increased as a result of millions of years of
evolution of species. Thereby, opening new avenues for the discovery of new molecules that can target several
ailments. The data for most of the identified NPs are made available as databases for usage in research and
development (R&D) projects including drug discovery procedures [18, 29–33]. Numerous research groups have
provided detailed reports on the growth of NP databases as well as insights into understanding some of the
complex molecular scaffolds unparalleled in function, chemical diversity, and sample availability for some of
Conrad V. Simoben is the corresponding author.
© 2020Walter de Gruyter GmbH, Berlin/Boston.
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Abstract

We present an overview of computational approaches for the prediction of metabolic 
pathways by which plants biosynthesise compounds, with a focus on selected very prom‐
ising anticancer secondary metabolites from floral sources. We also provide an overview 
of databases for the retrieval of useful genomic data, discussing the strengths and limita‐
tions of selected prediction software and the main computational tools (and methods), 
which could be employed for the investigation of the uncharted routes towards the bio‐
synthesis of some of the identified anticancer metabolites from plant sources, eventually 
using specific examples to address some knowledge gaps when using these approaches.

Keywords: anticancer, biosynthesis, computational prediction, natural products, plant 
metabolism

1. Introduction

An immense number of secondary metabolites (SMs) exist in nature, originating from plants, 
bacteria, fungi and marine life forms, serving as drugs for the treatment of many life‐threat‐
ening diseases, including cancer [1–4]. Taxol, vinblastine, vincristine, podophyllotoxin and 
camptothecin, for example, are typically well‐known drugs used in cancer treatment, which 
are of plant origin. The search for drugs against cancer has often resorted to plants and marine 
life for lead compounds. To illustrate this, Newmann and Cragg published a recent study in 
which it was shown that ~49% of drugs used in cancer treatment were either natural products 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Abstract
Parasitic diseases continue to represent a threat on a global scale, particularly among the poorest countries in the world.

This is particularly because of the absence of vaccines, and in some cases, resistance against available drugs, currently

being used for their treatment. In this review emphasis is laid on natural products and scaffolds from African medicinal

plants (AMPs) for lead drug discovery and possible further development of drugs for the treatment of parasitic diseases. In

the discussion, emphasis has been laid on alkaloids, terpenoids, quinones, flavonoids and narrower compound classes of

compounds with micromolar range activities against Schistosoma, Trypanosoma and Leishmania species. In each sub-

paragraph, emphasis is laid on the compound subclasses with most promising in vitro and/or in vivo activities of plant

extracts and isolated compounds. Suggestions for future drug development from African medicinal plants have also been

provided. This review covering 167 references, including 82 compounds, provides information published within two

decades (1997–2017).

Graphical Abstract

Keywords African medicinal plants � Leishmaniasis � Natural products � Parasitic diseases � Schistosomiasis �
Trypanosomiasis
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Abstract: Medicinal plants have widely been used in the
traditional treatment of ailments and have been proven
effective. Their contribution still holds an important place in
modern drug discovery due to their chemical, and bio-
logical diversities. However, the poor documentation of
traditional medicine, in developing African countries for
instance, can lead to the loss of knowledge related to such
practices. In this study, we present the Eastern Africa
Natural Products Database (EANPDB) containing the struc-
tural and bioactivity information of 1870 unique molecules
isolated from about 300 source species from the Eastern
African region. This represents the largest collection of
natural products (NPs) from this geographical region, cover-
ing literature data of the period from 1962 to 2019. The
computed physicochemical properties and toxicity profiles

of each compound have been included. A comparative
analysis of some physico-chemical properties like molecular
weight, H-bond donor/acceptor, logPo/w, etc. as well scaffold
diversity analysis has been carried out with other published
NP databases. EANPDB was combined with the previously
published Northern African Natural Products Database
(NANPDB), to form a merger African Natural Products
Database (ANPDB), containing ~6500 unique molecules
isolated from about 1000 source species (freely available at
http://african-compounds.org). As a case study, latrunculins
A and B isolated from the sponge Negombata magnifica
(Podospongiidae) with previously reported antitumour
activities, were identified via substructure searching as
molecules to be explored as putative binders of histone
deacetylases (HDACs).

Keywords: database · drug discovery · Eastern Africa · medicinal plants · natural products (NPs)

1 Introduction

Historically, natural products (NPs), i. e. compounds derived
from natural sources (bacterial, fungi, plants or animal
species) possessing biological activities; have been the
primary provenance of medicine globally.[1] Although the
approval rate of new drugs from nature has not increased
proportionally with the financial and technological invest-
ments on NP researches,[2] NPs still account for about half of
the FDA-approved drugs..[2a,d,3] Thus, seeing the remarkable
contribution of NPs as drugs, huge amounts of NPs are
being isolated and characterized daily. Also, the biological
evaluations of the isolated molecules are carried out in
order to confirm the therapeutic claims. Further studies on
the establishment of the mechanisms of actions of the
isolated biologically interesting NPs are being carried out
with the hope of getting the next generation lead
compounds for drug discovery.[4]

One of the magnificent beauties of the African continent
is its richness in flora and fauna. This richness offers the
African population diverse traditional means in treating
ailments based on what nature has presented to them.
However, due to poor documentation, some of this tradi-
tional information is being lost nowadays. This is one of the
main factors behind the scientific exploration of the known
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ABSTRACT: Natural products (NPs) are often regarded as sources of
drugs or drug leads or simply as a “source of inspiration” for the discovery of
novel drugs. We have built the Northern African Natural Products Database
(NANPDB) by collecting information on ∼4500 NPs, covering literature
data for the period from 1962 to 2016. The data cover compounds isolated
mainly from plants, with contributions from some endophyte, animal (e.g.,
coral), fungal, and bacterial sources. The compounds were identified from
617 source species, belonging to 146 families. Computed physicochemical
properties, often used to predict drug metabolism and pharmacokinetics, as
well as predicted toxicity information, have been included for each
compound in the data set. This is the largest collection of annotated natural
compounds produced by native organisms from Northern Africa. While the
database includes well-known drugs and drug leads, the medical potential of
a majority of the molecules is yet to be investigated. The database could be
useful for drug discovery efforts, analysis of the bioactivity of selected compounds, or the discovery of synthesis routes toward
secondary metabolites. The current version of NANPDB is available at http://african-compounds.org/nanpdb/.

Natural products (NPs) are known to play an important
role in drug discovery, as they often provide scaffolds as

starting points for hit/lead discovery.1,2 It has been verified
from recent surveys that NPs from Northern African sources
could constitute an important reservoir for the discovery of
drugs,3−5 due to the long history of the use of their source
organisms in traditional medicine, which dates back to
prehistoric and pharaonic times.6,7 However, data for the use
of the compound sources, collection points of compound
sources, biological activities of tested isolates, access to
compound samples for screening purposes, among others, are
often unavailable and/or scattered in the literature. Some of
these data are inaccessible to a majority of scientists. A smaller
proportion of these literature sources includes M.Sc. and Ph.D.
theses, which are often stored as hard copies in university
libraries and inaccessible to the wider community of scientists
working on natural products drug discovery. On the other
hand, many NPs that have been identified from Northern
African sources are known drugs or have been shown to have
clinical potential. As a representative, the microtubule

stabilizers should be mentioned; for example, taccalonomides
A, B, E, and N, derived from Tacca species, are known to have a
unique mode of action that does not involve direct binding to
tubulin.8

It is noteworthy that the geographical region of Northern
Africa differs significantly from the rest of the continent,
covering a land surface area of about 9 million km2,9 most of
which is occupied by the Sahara Desert (currently occupying a
surface area of >50% of the total area of the region and is
constantly expanding). The Northern African region includes
Algeria, Egypt, Libya, Morocco, Sudan, South Sudan, Tunisia,
Western Sahara, and parts of Northern Mali. It is therefore
expected that the natural products from this part of the world
will show some uniqueness with respect to structural diversity
and biological activities when compared with the rest of the
continent. The reason is that plants, animals, and fungi have
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4. Results Summary  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 “The computer is just a tool after all, 
the most important thing is the person sitting in front of the screen”  

~Robert Langridge 
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4.1 Identification, Design and Bioactivity Prediction of smHDAC8 Inhibitors using 

Computational Methods 

This part of the work focused on the development of antiparasitic smHDAC8 inhibitors using 

computer-based methods. First, the published smHDAC8 inhibitors and the crystal structures of 

the target were studied which became available over the several last years mainly as part of 

international collaborations with partners of the Medicinal Chemistry group. In addition, 

information on available hsHDAC inhibitors and crystal structures were analyzed to highlight 

structural similarities and differences, understand structure-activity relationships and classify 

existing data. The conclusion, summarized in the first two articles (sections 3.1 and 3.2), was 

helpful to find a successful strategy to discover novel inhibitors. Investigation of the deacetylase 

catalytic domain of the ~ 200 deposited HDAC crystal structure from different species revealed 

that the main catalytic pocket (consisting of the acetate binding cavity, the substrate-binding 

tunnel and the rim of the pocket) is present in all the reported crystal structures, although the 

dimension of this pocket is different in every isoform.24-26 Additional sites of interest that might 

be targeted for the development of selective HDAC inhibitors are the side pocket, the lower 

pocket and the foot pocket, which are not all present in every isoform and, in some cases, these 

pockets are closed due to the nature of the protein folding or depending on the bound ligand. In 

these studies, in combination with in vitro screening, several computational methods were 

applied to speed up the process of identifying and proposing novel smHDAC8 inhibitors. 

4.1.1 Identification of a Novel Class of smHDAC8 Inhibitor 

To identify novel smHDAC8 inhibitors (section 3.3), published crystal structures of smHDAC8 

(PDB ID: 4BZ8, 5FUE) were used to perform structure-based virtual screening of the 

Interbioscreen compound library comprising about 550,000 molecules. Filtration of the dataset 

e.g. removal of molecules with PAINS predicted endpoint, fragments with molecular weight < 

250 Da, functional groups (ZBGs that we had already explored such as classical hydroxamic 

acids –C=O-NH-OH) resulted in a smaller set of 80 molecules that were docked into the 

smHDAC8 binding pocket. Final selection of hits was based on docking scores and visual 

inspection of the predicted binding pose to confirm the presence of reported key interactions 

such as the ability of the molecules to coordinate the catalytic Zn2+-ion and hydrogen bonding 

with conserved amino acid residues amongst others. 

A series of N-(2,5-dioxopyrrolidin-3-yl)hydroxamate derivatives were selected because they 

possessed a ZBG that had not been previously investigated as HDACs inhibitor and were 

directed towards the foot pocket area. The predicted binding pose showed that this series of 
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molecules were able to chelate the catalytic Zn2+ in a bidentate fashion (Figure 11A), although, 

in an inverted manner when compared to the reported classical hydroxamate HDACis. The alkyl 

chain attached to the carbon atom of the hydroxamate could occupy the acetate-binding cavity 

while being stabilized by vdW interactions. The acetate binding cavity is situated near the area 

of the upper region of the foot pocket, which might be opened in smHDAC8 by bulkier 

derivatives of such compounds. This information led to the identification of nine N-(2,5-

dioxopyrrolidin-3-yl)-n-alkylhydroxamate derivatives (n-alkyl ranging from n-butyl to n-hexyl; 

Table 1) which were submitted to in vitro testing against smHDAC8, the human orthologue 

hsHDAC8 and the major human HDAC isoforms (HDAC1 and -6) to assess selectivity. It was 

observed that the molecules had IC50 values ranging from 4.4–20.3 µM against smHDAC8 and 

were equally active against hsHDAC1, 6 and 8. Also interesting, was the fact that, J1036 also 

induced dose dependent apoptosis on schistosomula. After 3 days at a dose of 100 µM, 67 % of 

larvae were affected. The interesting biological results prompted the necessity to crystallise one 

of our suggested compounds (J1036) with smHDAC8 (Figure 11B). Analysis of the crystal 

structure of the smHDAC8/J1036 complex shows that the inhibitor binds in the smHDAC8 

active-site pocket as predicted from the developed docking protocol. Similar binding modes 

were predicted by the docking experiment for human HDAC isoforms, explaining the lack of 

selectivity.  

 

Figure 11: Predicted versus experimental binding mode of J1036 in the smHDAC8 active-site 

cleft. A) Docking pose of J1036 in smHDAC8 (PDB ID: 4BZ8). B) Crystal structure of 

smHDAC8/J1036 complex (PDB ID: 6FU1). For both figures, protein backbones are shown as 

ribbon and amino acid residues within the active site are shown as white sticks . The catalytic 

zinc ion and conserved water molecule are respectively shown as an orange and red sphere. 

Coordinations to zinc ion by J1036 are shown with light blue dashed lines while the hydrogen 

bond interactions between the ligand and the protein are shown as yellow dashed lines. 
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Table 1: Summary of in vitro inhibitory activities of the N-(2,5-dioxopyrrolidin-3-yl)-N-

alkylhydroxamates against smHDAC8 and hsHDACs. 

Code Structure smHDAC8 hsHDAC

8 

hsHDAC1 hsHDAC

6 

IC50 (µM) IC50 (µM) IC50 (µM) IC50 (µM) 

J1036 

 

4.40 ± 0.17 0.49 ± 0.18 6.76 ± 0.97 5.02 ± 0.31 

J1057 

 

13.18 ± 1.85 2.62 ± 0.19 42.1 ± 2.20 6.20 ± 0.34 

J1058 

 

20.30 ± 2.78 3.99 ± 0.74 25.96 ± 2.40 6.20 ± 0.41 

J1060 

 

11.47 ± 0.91 1.80 ± 0.24 5.00 ± 0.42 0.86 ± 0.12 

J1061 

 

5.5 ± 0.7 7.69 ± 3.30 3.98 ± 0.45 2.65 ± 0.29 

J1063 

 

5.9 ± 1.6 7.72 ± 4.42 1.42 ± 0.13 0.77 ± 0.09 

J1064 

 

7.79 ± 0.28 2.08 ± 0.34 4.30 ± 0.46 0.60 ± 0.12 

J1065 

 

20.2 ± 2.7 3.96 ± 0.60 8.40 ± 0.28 1.57 ± 0.37 

J1066 

 

13% inhib. at 

25µM 
n.d. n.d. n.d. 

SAHA 

 

1.56 ± 0.20 0.40 ± 0.10 0.12 ± 0.01 0.10 ± 0.01 
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4.1.2 Prediction of Activity of Novel Benzhydroxamates as smHDAC8 

Inhibitors using Computational Methods 

Benzhydroxamate, which represents a class of molecules that have received a great deal of 

attention in the investigation of novel smHDAC8 inhibitors were optimized in this study 

(Section 3.4). For this purpose, in silico exploration of 34 previously reported smHDAC8 

inhibitors were used to generate predictive models. Initially, docking studies were performed to 

develop a docking protocol that would be able to reproduce the binding pose of the already 

crystallized molecules while suggesting the most probable binding pose for molecules with no 

crystal structures. Selection of binding pose for molecules with no reported crystal structure was 

based on confirmed interactions that have been reported and published for the chemical scaffold 

in question. The inability of the docking scores of the selected docking poses to explain the 

variation of the reported experimental activity of the molecules triggered us to perform more 

exhaustive calculations (binding free energy (BFE) calculations using different GB models, 

namely GBHCT (igb=1), GBOBC (igb=2), GBOBC2 (igb=5), and GBn (igb=8), as well as 

PB_mbondi (mbondi), PB_bondi (bondi), PB_Parse (PARSE)) to re-score the docking poses. 

 

Figure 12: Correlation plot between the experimentally reported pIC50 values (X-axis) and the 

calculated pIC50 values (Y-axis) for the training set molecules (blue points)  and test set (green 

points) molecules based on one Model 97. Red points represents molecules from the test set 

with poorly calculated activity. 

The computed BFEs were then used to generate 3D-QSAR models. Statistical methods were 

further used to validate and select models that were deemed good and reliable based on the 
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coefficient of determination (r2), cross-validation coefficient (q2), root mean squared error 

(rmse) and cross-validated mean square error (qmse) values. Selected models were then used to 

predict the activity of a new set of molecules that we designed. Our best model could explain 

~73 % variation of the reported experimental activity (Figure 12), as well as acceptable rmse, 

q2 and qmse of 0.19, 0.66 and 0.22 respectively. Predicted compounds were then synthesized 

and tested in vitro for their smHDAC8 inhibitory activity. The predicted activities of the newly 

designed molecules were in agreement to the experimentally determined activity. This 

demonstrates that CADD-based approaches like the use of QSAR methods can speed up the 

process of identifying novel smHDAC8 inhibitors. 

4.2 Application of a Large-Scale Structured-based Virtual Screening to Identify 

Novel Histone Deacetylase Inhibitors and HIV-1 Latency-Reversing Agents 

Our contribution to the search for novel HDACis and/or HIV latency reversal involved a 

structured-based VS process in collaboration with international partners for in vitro testing 

(Section 3.5). The initial VS library was a collection of 5,867 unique compounds from 2D 

similarity search on the PubChem website using 14 known class I HDACis (belinostat, 

entinostat, givinostat, mocetinostat, oxamflatin, panobinostat, psammaplin A, romidepsin, 

scriptaid, serpulanine A, thiophenyl benzamide, trichostatin A, valproic acid and vorinostat). A 

docking protocol able to reproduce the co-crystalized ligand pose with the reported interactions 

within the active site of PDB ID: 5ICN was used to dock the molecules (Figure 13 and 14). The 

docking poses/results were clustered using an average rmsd of 1.5 Å and only one representative 

structure per each cluster was kept based on the docking score. Visual inspection for conserved 

interactions (such as coordination to the conserved catalytic Zn2+ ion and hydrogen bond 

interactions) led to the selection of 60 compounds as hits. 

 

Figure 13: Chemical structures of commercially available screening hits  
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Figure 14: Docking poses of commercially available screening hits: (A) (S)-N-hydroxy-4-(3-

methyl-2-phenylbutanamido)benzamide, (B) N-(4-aminophenyl)heptanamide, (C) N-[4-

(heptanoylamino)phenyl]heptanamide and (D) 4-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-

yl)-N-(2-hydroxyethyl)butanamide. For all the figures, protein backbones are shown as ribbon 

and amino acid residues within the active site are shown as white sticks  while the co-

crystallized is depicted as yellow stick. The catalytic zinc ion and conserved water molecule 

are respectively shown as an orange and red sphere. Coordinations to zinc ion are shown with 

light blue dashed lines while the hydrogen bond interactions between the ligand and the protein 

are shown as yellow dashed lines. 

Of the 60 suggested molecules, the four compounds depicted in Figure 13 were purchased and 

tested in vitro. Two of the four purchased compounds showed HDAC1 inhibition, (S)-N-

Hydroxy-4-(3-methyl-2-phenylbutanamido)benzamide demonstrated interesting inhibitory 

activity against HDAC1 and acted as an HIV LRA too. These results were following the 

previously published finding of Mates et al.206 and Chen et al.207 N-(4-

aminophenyl)heptanamide and N-[4- (heptanoylamino)phenyl]heptanamide, on the other hand, 
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showed limited HDAC1 inhibition, however within the same range of efficacies observed for 

valproic acid (an established HDACi used in similarly designed assays). 

4.3 Contribution to the Development of the African Natural Product Database 

(ANPDB) 

NPs derived from diverse organisms have proven to be a potential starting source for the search 

of pharmacologically active compounds against several ailments, including cancer, bacterial, 

parasitic and viral infections. Interestingly, application of CADD methods can facilitate the 

identification of potential hits from nature for these ailments. For this section, we, first of all, 

looked into the various CADD methods that can be used to study the biosynthesis and 

identification of potential hits from nature (Sections 3.6 and 3.7). Our focus was based on NPs 

from Africa which have till now not received the attention they deserve. A good portion of 

studies from this area on NPs is linked to neglected tropical diseases (Section 3.8). This, 

however, confirms the effort made by the locals via folkloric medicine to treat themselves. In 

this regard, part of my PhD project (Sections 3.9 and 3.10) was intended to show our 

contribution towards the development of a new database of NPs from African source species 

which would be of relevance in NP related research studies especially in the area of drug 

discovery.  

Data collected for this purpose was introduced to a wider scientific community electronically 

via our online platform http://african-compounds.org/anpdb/. Updating the content in our 

databases is done based on the quantity and/or quality of new information outsourced. Currently, 

the online version of the African NP database (ANPDB) has ~ 6500 unique molecules after the 

merging of ~ 4950 and ~ 2000 unique molecules from the Northern African database 

(NANPDB) and Eastern African database (EANPDB) respectively. The comparison of the 

chemical structures from the African NP database with one of the World´s biggest available 

collection of published compounds and their biological activities PubChem revealed a poor 

overlap. The presence of ~ 3500 unique molecules (more than half of the database) were found 

in the newly developed African NP database, showing that it covers an uncharted chemical space 

of natural compounds. Additionally, our online platform is designed with several search 

methods including search by source species name, compound name, biological activity, 

compound structure and substructure search etc.  

http://african-compounds.org/anpdb/
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Figure 15: Distribution of scaffold similarity between EANPDB and NANPDB using A) CSR 

and B) SSE10 with the frequency of some of the corresponding cyclic scaffolds.  

Cheminformatics and pharmacoinformatics analysis of the content of the ANPDB was also 

performed. Such analysis included the comparison of the scaffold diversity between molecules 

isolated from source species collected from East Africa against those collected from Northern 

Africa (Figure 15) using the cyclic system recovery (CSR) and scaled shannon entropy (SSE) 

methods. From the data collected, the most abundant compound classes were terpenoids, 

flavonoids, quinones, alkaloids and phenolics contributing to about 75% of the total molecules. 

In the same line, the most investigated biological activity was anti-malarial/anti-plasmodial 

related evaluations. This observation is quite in line with the fact that malaria and other parasitic 

diseases remain a serious burden to the people in this region. Therefore, the validation of the 

traditional methods in treating these diseases via scientific standards goes into confirming the 

usage of such traditional practices and can help in regulating the quality of the products being 

consumed. 

Furthermore, the distribution of the drug-like properties (such as molecular weight (MW), 

predicted LogP octanol-water partition coefficient (LogPo/w), the number of hydrogen bond 

donor/acceptor atoms and Lipinski’s “Rule of Five” violation) and in silico toxicity predictions 

for molecules in our collection was also analyzed in comparison to other popular published 

databases like DrugBank (Figure 16). From the figures presented below, it can be observed that 

the molecules within the NANPDB and the EANDB were mainly cyclic with relatively similar 

cyclic scaffold diversity. Also, the content of our databases had a similar distribution of major 

drug-like properties when compared to the approved drugs (the content of the DrugBank 

dataset). For example, approximately 85 % of the molecules contained in the analysed datasets 

had MW less than 500 Da while ~ 80 % of the molecules in the datasets respected the conditions 
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of donor/acceptor HB in the rule of five. In summary, the molecular enumeration showed that a 

majority of molecules in the African databases did not show any Lipinski’s violation.  

In silico toxicity predictions also revealed that most of the compounds in the current version of 

our database are likely non-toxic and would not interfere with the inhibition of the potassium 

ion (K+) channels (encoded by hERG I). Also of interest to us was the fact that very few (about 

10 %) of the molecules we present here do have reactive groups and/or toxicophores that can 

interfere with readouts in assays. This was confirmed after we screened our database collections 

to see how many molecules contain scaffolds that would be predicted with an endpoint as 

PAINS. All in all, analysis of the database showed that it contains a significant number of novel 

natural drug-like molecules.  

4.4 Access to the ANPDB 

Accessibility to the ANPDB is free of charge online (see Sections 3.9 and 3.10 for more details). 

The NANPDB and the EANPDB are stored as part of the African NP database hosted at the 

Albert-Ludwigs-University Freiburg, which can be accessed via http://african-

compounds.org/anpdb/. The platform is updated based on the quantity and quality of new 

information in hand. Curated information from literature sources is grouped into different SQL 

tables. For each molecule entry, we assigned the same unique ID across all the SQL tables; 

which is used to link information across the different tables. This platform represents the first 

database collection of African NPs and the most extensive collection available at the moment. 

The platform is built with an array of search fields including biological activity, compound 

name, source species, families and authors/reference. Similarity search and substructure search 

have also been implemented on the online platform. The structural similarity search uses the 

tanimoto coefficient of similarity (a number between 0 and 1; with 1 being the highest and 

referring to an exact match) to measure the 2D similarity between the query molecule and the 

database entries. The Morgan Fingerprints (Circular Fingerprints) used for the structural 

similarity search are pre-calculated for all database molecular entries and stored as blob objects 

in the PostgreSQL-database. For each query structure, calculations are made during the search. 

The platform also provides users with an option to download the entire content as 2D or 3D .SD 

files or SMILES. There is also a help page to guide new users through our platform which also 

answers technical questions that might arise. Thus, our overall vision from this project is to see 

that some of the promising preliminary results collected from peer-reviewed literature as well 

as what we have provided can be used to enhance NP driven drug discovery projects from 

African source species

http://african-compounds.org/anpdb/
http://african-compounds.org/anpdb/
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Figure 16: Distribution of drug-like properties between EANPDB, NANPDB and DrugBank. A) Molecular weight, B) Hydrogen bond donor, C) 

Hydrogen bond acceptor, D) Violation of Lipinski’s “Rule of Five” and E) predicted lipophilicity.  
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4.5 ANPDB as a Digital Source for Novel HDAC Modulators  

4.5.1 Virtual Screening of the ANPDB 

In the quest to search for HDAC modulators, several NP-based molecules were seen as 

interesting. Our contribution to propose novel HDACis from the ANPDB started with a 

structured-based VS process followed by the visualization of binding poses and evaluation of 

their stability. This was done following similar procedures as reported in our previous 

publications.55,56,208 For this study, VS using the smHDAC8 crystal structure with PDB ID: 

5FUE led to the selection of 17 compounds (Figure 17, Table 2). However, due to the difficulty 

in getting physical samples, unavailability and the high prices of the molecules, only 3 

compounds could be obtained for experimental testing (compounds 14, 15 and 17) 

 

Figure 17: Structure of proposed NP hits from the ANPDB collection. 

 

 



  

58 

 

Table 2: Summary of proposed hits from the ANPDB. 

Mol # Name Source species Reported activity Traditional use of source species 

1 moloka'iakitamide Pseudoceratina 

arabica 

antimicrobial activities; 

parasympatholytic effect 

Not reported 

2 hydroxymoloka'iamine Pseudoceratina 

arabica 

antimicrobial activities Not reported 

3 diosmetin 7-O-beta-D-

apiofuranoside 

Phoenix dactylifera antidiabetic activity in the Middle East, it is believed that eating date fruits, particularly in the morning on an empty 

stomach, can reverse the actions of any toxic material that the subject may have been exposed to. 

Different parts claimed to be used for the treatment of a broad spectrum  

4 karatavicinol Ferula sinaica Not reported used as food additives (spice). Extracts of Ferula assa-foetida L. are used as an anti-spasmodic, a 

diuretic, a vermifuge and an anti-algetic 

5 byakangelicol    

6 tenuazonic acid Alternaria species Not reported Not reported 

7 5-O-methyl-D-gluconic acid 

dimethylamide 

Apis species  used in folk medicines in many regions of the world for diverse reasons such as the treatment of 

bacterial and viral infections 

8 heliosupine Paracaryum 

rugulosum 

Not reported Not reported 

9 ivalbin Pulicaria undulata antiinflammatory activity to treat inflammation, as an insect repellent and as a herbal tea. 

10 adenosine Oligomeris linifolia Not reported Not reported 

11 (+)-vasicine Galega 

battiscombei 

Not reported Not reported 

12 calystegine N1 Hyoscyamus albus Not reported Not reported 

13 4'-ethyl-4-methyl-2,3',5',6-

tetrahydroxy[1,1'-biphenyl]-

4,4'-dicarboxylate 

Schinus 

terebenthefolus 

Not reported Not reported 

14 methyl phloroglucinol iB Hagenia abyssinica Not reported female flowers are widely used as taenicide against tapeworm. 

15 (+)-2,3-dihydroxy-1-(4-

hydroxy-3-methoxyphenyl)-1-

propanone 

Anastatica 

hierochuntica 

anticancer activity treatment of fatigue and uterine haemorrhage in Egyptian folk medicine 

16 2-hydroxytomentosin Xanthium pungens Not reported Not reported 

17 2,4'-dihydroxy-3'-

methoxyacetophenone 

Anastatica 

hierochuntica 

Not reported treatment of fatigue and uterine haemorrhage in Egyptian folk medicine 

Not reported: Information not available on the ANPDB online platform. This was either not provided in the literature source or has not yet been investigated. 
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Figure 18: Proposed binding mode of some of the suggested hits  in smHDAC8 (PDB ID: 

5FUE). A) Compound 2, B) Compound 12, C) Compound 14 and D) Compound 15. For all the 

figures, coordinations to the catalytic Zn-ion are shown with light blue dashes while yellow 

dashes represent hydrogen bonds.  

4.5.2 Analysis of Binding Mode and Stability of Hits 

The predicted binding modes of compounds 2, 12, 14 and 15 are shown in Figure 18. Although 

the compounds are not structurally similar to each other, the predicted binding pose for these 

compounds within the active site of the smHDAC8 crystal structure (PDB ID: 5FUE) was 

attractive for further evaluation. Interestingly, coordination to the catalytic Zn-ion alongside 

reported hydrogen bonds between the compounds and conserved amino acid residue within the 

binding site were observed. Equally, at least one aromatic contact and/or vdW interaction was 

additionally observed. For example, analysis of the predicted binding mode of compound 2 

(Figure 19 A) showed that it coordinated the catalytic Zn-ion in a bidentate fashion while several 

hydrogen bonds with conserved amino acids were observed. Concerning compound 14 (Figure 
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19 B), it was observed that it coordinates the catalytic Zn-ion in a bidentate manner too, as well 

as forming a π–π interactions with the aromatic ring of His-188. Meanwhile, the commonly 

observed hydrogen bond interaction between the conserved His-141 and the carbonyl-oxygen 

atom coordinating the catalytic Zn-ion was also observed. 

 

Figure 19: Interaction diagrams for A) compound 2 and B) compound 14. 

The 17 ligands predicted to be strong-binders were selected and short molecular dynamic 

simulations were performed to check the stability of the interactions between the ligands while 

observing if they maintain their interactions with the catalytic Zn2+ ion throughout the MD 

simulation. Stability plot after 1 ns MD simulation for compounds 2, 12, 14 and 15 are shown 

in Figure 20. In the analysis of the stability of the compounds, it was observed that during the 

MD simulation process, most of the compounds maintained their predicted pose and their 

coordination to the catalytic Zn2+ ion. However, for some molecules e.g. compound 15, the 

molecule lost its interactions with the catalytic Zn-ion from the very onset of the MD simulation 

run. 
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Figure 20: C-alpha rmsd plots for some of the selected hits. A) compound 2, B) compound 

12, C) compound 14 and D) compound 15.  

4.5.3 In Vitro HDAC Inhibitory Assay 

In this study, the smHDAC8 inhibitory activity of the 3 purchased compounds (compounds 14, 

15 and 17) was measured using an enzymatic assay (in house, P. Zeyen). In brief, procedures to 

express and purify the recombinant smHDAC8 used in this study for inhibition assays are 

described in a previous publication.223 Inhibition of smHDAC8 was performed using the 

commercial Fluor de Lys kit (BML-KI178); a two-step assay based upon the Fluor de Lys®-

Green substrate and Fluor de Lys® developer combination (Figure 21). The sequence of peptide 

used in Fluor de Lys can be either Ac-Arg-His(Ac)-Lys(Ac)-methylcoumarin (for peptide 

representing p53) or Ac-Lys-Gly-Gly-Ala-Lys(Ac)-methylcoumarin (for peptide representing 

H4). Incubation of compounds, Fluor de Lys-HDAC8 substrate (50 µM) and enzyme was 

performed for 90 mins at 37 °C. 50 µL of Developer II (BML-KI176) was subsequently added 

in the reaction batch and further incubated for 45 mins at 30 °C. Similarly, Trichostatin A (2 

µM) was used to stop the reaction while fluorescence was measured in a plate reader (BMG 

Polarstar).  
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Figure 21: Schematic representation of the detection principle of the trypsin assay. 

Based on the performed in silico results, it was expected that the purchased compounds are 

modulators of smHDAC8. However, all the molecules showed only very weak inhibitory 

activity against smHDAC8 being 25-40 % inhibition even at a concentration of 100 µM (Table 

3). While no significant inhibition was observed for the compounds 14, 15 and 17, it is still 

evident that they could bind to HDAC. The inhibitory activity of the tested molecules are low 

and may be due to several causes such as the small molecular sizes, tautomeric transformations, 

etc. Hence, the search of novel NP-inspired molecules as modulators of HDACs via the testing 

of the other proposed hits would be a desirable approach.  

Table 3: Summary of in vitro inhibitory activities of the purchased NPs against smHDAC8 

Compound/Concentration 

smHDAC8 Inhibition [%] 

100 µM 10 µM 1 µM 

Compound 14 23.5 16.0 13.9 

Compound 15 34.1 7.8 9.8 

Compound 17 39.9 26.3 9.7 
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5. General Conclusion and Perspectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

“A man is not finished when he is defeated. He is finished when he quits.” 
 

~Richard M. Nixon.
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The spread of diseases has urged the dawning of new strategies; permitting researchers to 

delve into projects that can lead to the proposal of new candidate drugs. Computational 

methods applied in drug discovery have proven to be worthy in the entire drug discovery and 

development pipeline. In the studies reported herein, we were able to demonstrate that the 

application of various computational methods coupled to in vitro screening permitted us to 

identify novel inhibitors of HDACs. These HDACs are well recognized and validated targets to 

treat several diseases including cancer, parasitic and viral infections. Firstly, the generated 

protocols were able to identify novel HDACis and correctly predict their binding pose within 

the active site of the antiparasitic target smHDAC8. Generally, key interactions that were 

reported were observed. Nevertheless, novel HDACis with a novel zinc-binding motif (reversed 

hydroxamate moiety) could be identified that had not been previously explored. Furthermore, 

CADD methods such as QSAR models led to computer-guided optimization of 

benzhydroxamates as smHDAC8 inhibitors. However, problems with data size, sample size and 

chemical space were observed. Thus, the results from the QSAR prediction clearly showed that 

accurate prediction was only possible for highly similar compounds. Nevertheless, predictive 

models were able to explain ~ 73 % variation in the reported biological activity of the molecules. 

Our findings, therefore contributes to the global picture of using CADD methods to predict the 

activity of new molecules with inhibitory activity against smHDAC8. Future work in this line 

would include a larger sample size with the current results presented herein being a basis for 

that sample size generation.   

Secondly, a VS procedure was carried out to identify novel HDAC1 inhibitors. HDAC1 have 

been recognized to reactivate latent proviral cells and can be very useful for the complete 

eradication of HIV when such HDAC1 inhibitors are used simultaneously with cART. The 

performed VS permitted us to suggest novel HDAC1 inhibitors. Thus, the reported approaches 

can be used, in principle, to identify additional, novel and selective HDAC modulators with 

other functional groups/pharmacophores which can serve as starting points to design more 

potent inhibitors. Such synthetic compounds can be used not only in the treatment of 

schistosomiasis or HIV/AIDS, but also for cancer, neurodegenerative diseases and other 

pathological conditions. Finally, the current work was, however, not limited to synthetic HDAC 

modulators. In this era of growing interest in NPs and pseudo-natural compounds coupled to the 

plentiful information and investment on NPs, huge data has been made available online. 

Nonetheless, to satisfy the needs of in silico methods in identifying potential hits with NP based 

origin, NP-based compounds information must be made accessible in the form of libraries with 

well characterized molecules. Novel databases of African NPs were developed and overcame 
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the challenges in the process of data collection for NPs isolated from African sources. The 

ANPDB, although not exhaustive, represents the largest collection of its kind for the African 

continent so far. Hopefully, the new and freely accessible information (http://african-

compounds.org/anpdb/) provided for natural products isolated from African sources can be 

successfully translated into a pool of hit identification by the scientific community. Also, the 

major merit of the current African NP collection is seen with the presence of ~ 3500 molecules 

that are not found in PubChem. One of the perspectives would be to follow-up the submission 

process of these molecules to PubChem. While this process would help in improving the 

visibility of the current African collection, it would also call for more scientific collaboration or 

works on these molecules. Such collaboration could involve the investigation of modes of action 

and alternative biological activities, incorporation of more computed molecular descriptors, 

experimental data leading to the characterization of the NPs, possible biosynthetic pathways for 

metabolites included in the collection. However, this part of the study was additionally limited 

due to the problematic access to data for outsourcing/curation to construct the ANPDB. 

Albeit this challenge, several scientific collaborations were established, providing access to 

information not available in online journal databases. Even so, availability of physical samples 

for molecules included in the ANPDB, likewise, most available NP databases, for biological 

testing is still a limitation. Notwithstanding, current efforts to provide NP samples are being 

targeted through novel and enhanced techniques such as genomics-based approach, design and 

total or semi-synthetic chemical synthesis of NPs. From the work, plans to create collaborative 

support with end users of our platform to access services like on-demand sourcing and extraction 

are being put in place. Nevertheless, successful identification of hits from the developed 

database has already been reported, such as the identification of Sirtuin inhibitors and the 

proposing of potential RNA-polymerase inhibitor for SARs-CoV-2 via the use of CADD 

methods.209,210 Preliminary screening of the database suggested that there are plenty of putative 

HDAC modulators. In the current study, three compounds identified from the ANPDB and 

purchased, showed only a very weak inhibition of smHDAC8 in µM concentrations. However, 

identifying low nM molecules as hits from in silico VS projects remains a bottleneck. 

Optimization of these primary hits with low molecular weights from the screening campaigns 

to leads with even potent activities is important.  Further in vitro screening of the other suggested 

molecules against different HDAC isoforms will be carried out in future work. Additionally, 

known ZBGs like tropolone and thiol are present in the current collection and can serve as a 

starting point for substructure search as a means to suggest hit molecules for in vitro screening.  

http://african-compounds.org/anpdb/
http://african-compounds.org/anpdb/
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