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Abstract

Determination of bioreactor operating policies for optimal performance of a bioprocess
is a challenging task due to the highly variable nature of biological systems and our
limited process knowledge. To address this challenge, model-based optimization and
control approaches can be implemented for conducting in silico experiments to derive
optimal control strategies for improved performance of bioprocesses.
For reliable performance of model-based optimization and control, it is crucial that

the underlying model provides proper levels of detail to represent the real biopro-
cess and to address the full metabolic versatility. In this work, we consider bioprocess
optimization and control by exploiting the capabilities of dynamic metabolic-genetic
network models. In particular, we consider improving bioprocess productivity through
temporal manipulations of metabolism using dynamic enzyme-cost FBA model (deF-
BA). The dynamic nature of this model and included details on gene level allow for
direct temporal manipulation of gene expression, and through a proper formulation
(a bilevel problem), one can identify optimal genetic and process level manipulation
strategies according to the target performance criterion (productivity).
Moreover, advanced bioprocess control and optimization requires flexible and ro-

bust control strategy which guarantees the performance of the model-based approach
in the presence of disturbances and existing uncertainties. To this aim, on-line adapta-
tion schemes are integrated within our modeling approach which are suitable to control
highly uncertain biological processes with fast reactions to disturbances. The adapti-
ve approach could allow for online adaptation of the underlying model (deFBA) by
estimating uncertain and variable model parameters in different stages of the process.
In this direction, the developed deFBA-based approach is implemented inside a model
predictive control (MPC) routine, combined with a moving horizon estimation (MHE)
algorithm in order to adjust the underlying model online for different metabolic modes.
Considering the case study of ethanol formation in E. coli under different growth

conditions, it is shown that the proposed approach is a suitable approach to optimize
and control time-varying bioprocesses. Desired engineering objectives can be addressed
by the proposed approach through temporal manipulations of the metabolism while
process uncertainties can be handled efficiently using the adaptive nature of the im-
plemented control scheme.

Banafsheh Jabarivelisdeh Magdeburg, den 5. März 2021
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Deutsche Kurzfassung

Das Festlegen von Betriebsrichtlinien für Bioreaktoren für die optimale Durchfüh-
rung eines Bioprozesses ist aufgrund der sehr unterschiedlichen Natur biologischer
Systeme und unserer begrenzten Prozesskenntnisse eine herausfordernde Aufgabe. Um
diese Herausforderungen zubewältigen, können modellbasierte Optimierungs- und Re-
gelungsansätze implementiert werden, um in silico-Experimenten optimale Regelstra-
tegien für eine verbesserte Leistung von Bioprozessen abzuleiten. Für eine zuverlässi-
ge Durchführung der modellbasierten Optimierung und Regelung ist es entscheidend,
dass das zugrunde liegende Modell auf der richtigen Detailebenen liegt, um den tat-
sächlichen Bioprozess darzustellen und die volle Vielseitigkeit des Stoffwechsels zu
berücksichtigen. In dieser Arbeit betrachten wir die Optimierung und Regelung von
Bioprozessen, indem wir die Fähigkeiten dynamischer metabolisch-genetischer Netz-
werkmodelle nutzen. Insbesondere erwägen wir, die Produktivität von Bioprozessen
durch zeitliche Manipulationen des Stoffwechsels, unter Verwendung des dynamischen
Enzymkosten-FBA-Modells (deFBA), zu verbessern. Die Dynamik dieses Modells und
die darin enthaltenen Details auf Genebene ermöglichen eine direkte zeitliche Ma-
nipulation der Genexpression. Durch eine geeignete Formulierung (ein Problem auf
zwei Ebenen) können optimale Manipulationsstrategien, auf Gen- und Prozessebe-
ne gemäÃŸ dem Zielleistungskriterium (Produktivität), identifiziert werden. Darüber
hinaus erfordert eine fortschrittliche Regelung und Optimierung von Bioprozessen eine
flexible und robuste Regelungsungsstrategie, die die Leistung des modellbasierten An-
satzes, bei Vorhandensein von Störungen und bestehenden Unsicherheiten, garantiert.
Zu diesem Zweck sind Online-Anpassungsschemata in unseren Modellierungsansatz
integriert, mit denen sich sehr unsichere biologische Prozesse mit schnellen Reaktio-
nen auf Störungen regeln lassen. Der adaptive Ansatz könnte eine Online-Anpassung
des zugrunde liegenden Modells (deFBA) ermöglichen, indem unsichere und variable
Modellparameter in verschiedenen Phasen des Prozesses geschätzt werden. In dieser
Richtung wird der entwickelte deFBA-basierte Ansatz in einer MPC-Routine (Model
Predictive Control) implementiert, die mit einem MHE-Algorithmus (Moving Horizon
Estimation) kombiniert wird, um das zugrunde liegende Modell online für verschiedene
Stoffwechselmodi anzupassen. Betrachtet man die Fallstudie zur Ethanolbildung in E.
coli unter verschiedenenWachstumsbedingungen, wird gezeigt, dass der vorgeschlagene
Ansatz ein zur Optimierung und Regelung zeitvariabler Bioprozesse geeignet ist. Ge-
wünschte technische Ziele können durch den vorgeschlagenen Ansatz mithilfe zeitlicher
Manipulationen des Metabolismus angegangen werden, während Prozessunsicherhei-
ten unter Verwendung des adaptiven Charakters des implementierten Regelschemas
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effizient behandelt werden können.

Banafsheh Jabarivelisdeh Magdeburg, den 5. März 2021
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1 Introduction

1.1 Model-based optimization and control of bioprocesses

Biological processes are inherently complex which makes their analysis, optimization
and control challenging. Cell growth and bioproduct formation are the result of a very
large number of cellular reactions and events (e.g. gene expression, translation and
biochemical reactions), such that the cellular regulatory mechanisms, cells-medium
interactions and the requirements for an optimal process performance are not easy to
be analysed and estimated.
However, to keep a bioprocess economically viable, it is essential to operate it as

good as possible. Thus, it is valuable to invest in process optimization and control.
In industrial practice, improvements are often achieved by trial and error experiments
and based on empirical methods in order to characterize the underlying biological
system, which makes it time-consuming and expensive. Control of these processes is
also usually based on recipes which has insufficient ability to handle possible process
uncertainties, resulting in suboptimal production processes [6].
These challenges motivate the implementation of mathematical process models char-

acterized by a priori knowledge of the process as a systematic approach for production
process improvements.

1.1.1 Modeling of biological systems

Mathematical models describing the bioprocess as a function of cellular and process
parameters enable prediction, optimization and control of the system. It allows for in
silico runs of experiments, faster rate of improvements, a reduced number of required
experiments and significant reduction of expenses.
The modeling framework for the bioprocess should address both the bioreactor sys-

tem and the biological cell system as they have complex interactions and cannot be
analyzed separately. The nutrients in the media are consumed by the living microor-
ganism and metabolized into several products. Bioreactor models deal with mass
transfer aspects and cell models deal with the kinetics of the microorganism. For that,
kinetic expressions are used to quantify the rate of cellular processes (rate expres-
sions for the cell growth as well as rate expressions for nutrient uptake and metabolite
production) and the influence of other variables (relevant to the bioreactor operating
condition) on them.
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1 Introduction

Bioprocess models in general can be categorized in four classes; structured/unstruc-
tured and segregated/non-segregated [7]. Unstructured, non-segregated models con-
sider biomass as a whole (single variable) and cells within the population are assumed
to have identical properties (only one morphological form). When subpopulations of
cells show different behaviours, a segregated population model is used to give cells of
the population different properties [8]. Structuring at the cell level means that the
biomass is no longer described by a single variable, and additional variables are used
including compartments, enzyme pools and intracellular metabolites [9]. In general,
the application purpose of the modeling framework determines the complexity level
and structure of the model used.

1.1.2 Application of model-based approaches in biotechnology

Model-based approaches are implemented for bioprocess optimization and control to
derive optimal strategies for improved synthesis of desired bioproducts.
For the bioprocess optimization, models allow for determination of optimal process

trajectories (commonly referred as the open-loop control or the optimal recipe). This
means the model are used to identify optimal profiles of relevant manipulated variables;
operating conditions, medium composition, and optimal process timing, respect to a
target performance criterion [10]. The performance criterion is mainly defined based
on yield or productivity of desired bioproducts which must be stated in the form of an
objective function considering the relevant process constraints.
Besides that, process models are used to design control systems. To this aim, bio-

process models are implemented in order to derive control algorithms and to adjust
the controller parameters to take care of properties such as stability, robustness and
tracking control variables dynamics to their setpoints. As biochemical processes com-
monly have strongly variable dynamics, the operation condition must also be changed
to cope with changing process characteristics. Therefore, model-based bioprocess con-
trol often involves online application of optimal control, where control actions are
regularly recalculated based on the model and process information (online measure-
ments) [11]. In this direction, bioprocess models are also implemented in developing
software sensors. Software sensors are mainly state or parameter estimators which
enable online estimation of unknown states and parameters which are important to
support online bioprocess monitoring (such as monitoring reaction kinetics), control,
and fault detection [12].
For bioprocess optimization and control, non-segregated unstructured models are

classically the ones of practical interest for implementations, as they present the pro-
cess in a very simplified form with a basic representation of cellular metabolism. Un-
structured models generally involve lumped descriptions of intracellular metabolism in
terms of a specific growth rate and constant yield coefficients, commonly referred to
the substrate to biomass yield which is defined as the ratio of the amount of biomass
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produced to the amount of substrate consumed [13].
While this kind of models are of low complexity, they have limited capability to

predict the wide range of cellular behaviour in response to changing environmental
conditions. The regulatory complexity and adaptive responses to transient environ-
mental conditions can not be considered within these models.
In order to improve model prediction capabilities, it is demanded to explore more

insights from cellular metabolism. Therefore, precise models exploring intracellular
metabolism are required while still low model complexity is desired.
Compared to unstructured models, constraint-based models [14, 15] allow a more

detailed description of intracellular metabolism. Constraint-based models include
metabolic network which consists of metabolites and metabolic fluxes connecting the
metabolites. These models are founded on the stoichiometry of the metabolic network
and give an estimate of metabolic fluxes distribution from an optimization principle
based on a relevant biological objective. In fact these models are a suitable compro-
mise between unstructured models and the detailed mechanistic descriptions of kinetic
models (in which cellular regulations need to be accounted for by inclusion of detailed
enzymatic kinetics as well as regulatory terms).
Constraint-based models can be implemented on many levels from characterizing

and engineering of the host organism to manipulating and optimization of accompa-
nying bioprocess conditions. They have been shown to be useful in characterizing the
metabolic behavior of industrial microbes such as predicting growth and metabolites
secretion patterns, determination of substrate utilization range and theoretical prod-
uct yields, or predicting knockout phenotypes [4, 16]. However, the potential of these
models for efficient bioprocess optimization is not sufficiently explored and their ap-
plication in bioreactor operation and control is not yet well studied, which forms the
core questions of this thesis.

1.2 Contribution and outline of the thesis

This thesis aims to contribute in developing advanced model-based approaches for
improved performance of bioprocesses, such that desired engineering objectives are
addressed by supplying suitable control strategies. It involves applications of dynamic
constraint-based models for bioprocess optimization and control through dynamic ma-
nipulations of the cellular network for improved production of target biochemicals. In
particular we consider increasing bioprocess productivity in which temporal regula-
tion of metabolism is favored for keeping the cellular growth high enough during the
process.
Temporal regulation of metabolism is mostly accompanied by genetic regulation of

the enzymatic activity during the process, applied in transcriptional (DNA), transla-
tional (mRNA), or post-translational (protein) levels. For an efficient dynamic control
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of the metabolism, we implement a modeling approach based on dynamic metabolic-
genetic network models in which the metabolic network is coupled to macromolecule
production reactions using a dynamic stoichiometric balancing. Such a model allows
to predict temporal variations of involved metabolic enzymes during the process and
to address these different levels of manipulations. Through a proper formulation, the
modeling approach allows for identification of optimal profiles for the relevant manip-
ulated variables according to the target performance criterion (productivity).
Robustness and flexibility of derived control strategies are another important aspect

considered within this work. In fact, for an advanced bioprocess control and optimiza-
tion it is crucial to have a flexible control strategy which guarantees the performance of
the model-based approach in the presence of disturbances and existing uncertainties.
The common situation is that biological systems have strong time-varying dynam-
ics. Moreover, small disturbances may lead to changes in the dynamics, and thus
uncertainties are inevitable in modeling and simulation of bioprocesses. It means the
underlying model may not be able to capture the actual cellular behaviour due to the
existing plant-model mismatches. These all result in a poor performance of the control
model in addressing desired objectives. To address these challenges, on-line adapta-
tion schemes are integrated within our modeling approach for an adaptive and reliable
control of the bioprocess, which allows indirect but fast reactions to disturbances.
As the applications of the developed control approach, within this thesis two variant

metabolic-genetic networks of Escherichia coli are constructed which differ in available
substrates and included pathways, and then implemented to simulate different types
of growth modes.
Based on the mentioned objectives, this thesis is organized in six chapters including

this introductory part. They are briefly summarized in the following.
In Chapter 2, constraint-based models from stationary approaches to dynamic ones

and general principles for construction of these models are reviewed, along with their
extension for considering coupled metabolic and genetic networks. In particular, a dy-
namic metabolic-genetic network model ’dynamic enzyme-cost Flux balance analysis’
(deFBA) is presented in details, as the underlying model for bioprocess optimization
and control in this thesis.
In Chapter 3, first we provide a review of constraint-based models applications for

bioprocess optimization with a focus on bioprocess productivity improvement. Then
we formulate a control problem as bilevel optimization framework to identify optimal
strategies for dynamic genetic and process level manipulations to increase productivity.
The developed problem is based on the deFBA model to capture the network dynamics
and enable the analysis of temporal regulation in the metabolic-genetic network. For
a simulation, a small-scale metabolic-genetic network of E. coli growing on glucose
and lactose is first constructed. Then, our computational framework is implemented
for an open-loop control of E. coli batch growth to maximize ethanol productivity.
This example highlights the importance of integrating the genetic level and enzyme
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production and degradation processes for obtaining optimal dynamic gene and process
manipulations. Parts of this chapter are published in [17, 18], in which Jabarivelisdeh
and Waldherr contributed to derive the computational formulation, the metabolic-
genetic network of the case study and to the analysis of the results. Manuscripts were
written by Jabarivelisdeh.
In Chapter 4, we consider a closed-loop control of the bioprocess based on model

predictive control which is particularly suited for fed-batch bioreactors. Through in-
tegrating measurement feedbacks into the open-loop deFBA-based bilevel problem,
optimal fedbatch operating policies for maximal bioprocess productivity are deter-
mined while uncertainties in modeling parameters are handled efficiently. Advantages
of considering feedback corrections for model-based control of an uncertain biological
system are evaluated using the example of fed-batch fermentation of E. coli (based on
the derived metabolic-genetic network in Chapter 3) for maximal ethanol productiv-
ity. Some parts of this chapter are published in [19]. Simulations and writing of the
manuscript were performed by Jabarivelisdeh. Waldherr and Findeisen were involved
in directing and supervising the work.
In Chapter 5, an adaptive control of the bioprocess is aimed. To this aim and for a

reliable performance of the model-based approach, an adaptive model predictive con-
trol algorithm based on the deFBA-based bilevel problem is proposed. The adaptive
approach considers online adjustment of the underlying model during the process and
therefore addresses biological variability while compensating for possible uncertain-
ties. As example application, a microaerobic batch growth of E. coli is considered for
ethanol production (based on a metabolic-genetic network with glycerol as the sub-
strate, derived in this chapter). The microaerobic growth involves different metabolic
modes depending on the degree of oxygen limitations and is suitable to demonstrate
the capabilities of the proposed adaptive approach for the bioprocess control. Parts
of this chapter are published in [20]. Formulation, simulations and writing of the
manuscript were performed by Jabarivelisdeh. Carius, Findeisen and Waldherr pro-
vided critical feedbacks and contributed directly in shaping the research and analysis
of the results.
Chapter 6 summarizes the outcomes achieved from the implemented constraint-

based modeling approach for bioprocess optimization and control, and presents general
conclusions to be taken from this thesis.
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2 Constraint-based models of metabolic networks

This chapter presents general principles of constraint-based models along with an
overview of these models from stationary approaches to dynamic ones. Particularly,
constraint-based modeling of metabolic-genetic networks is presented in details as the
underlying model for the bioprocess simulations in this thesis.

2.1 Constraint-based modeling and flux balance analysis

Analysis of metabolic networks based on stoichiometric and constraint-based models
have become one of the most common and successful modeling approaches in systems
biology [4]. The interesting feature of the constraint-based model is that it is able to
quantitatively predict the state of a metabolic network without any need for detailed
kinetic information and only based on the stoichiometry of reactions. The metabolism
of a cell is described by a metabolic network model consisting of metabolites, and
metabolic fluxes connecting the metabolites. A typical metabolic network is shown in
Figure 2.1, representing the central metabolism of the microorganism E. coli.

With nm number of metabolites and nr number of reactions, the metabolic network
is summarized by the stoichiometric matrix S ∈ Rnm×nr in which each row corresponds
to one metabolite and each column to one reaction. Each matrix element Si,j presents
the stoichiometric coefficient of metabolite i in reaction j, with a negative or positive
sign. A positive value means that the metabolite is produced in that reaction, whereas
a negative value indicates reactants. Then, one can write:

Ṁ(t) = Sv(t). (2.1)

where M ∈ Rnm is the vector of metabolite concentrations and v ∈ Rnr is the reaction
flux vector of the network.
Figure 2.2 shows a simple metabolic network which comprises three internal metabo-

lites (B, C, and D), three external species (A as the substrate and E, F as products)
and six reactions connecting them (v4, v5, v6 as exchange reactions and v1, v2, v3 as
internal reactions), with corresponding stoichiometric matrix for internal metabolites.
The core assumption in constraint-based modeling of metabolic networks is that the
intracellular metabolites are in steady state. The logic behind this assumption is that
dynamics inside the cell are much faster than outside the cell, as metabolites of the
central carbon metabolism have a relative high turnover [21], and the production rate
of macromolecules is slow compared to metabolic reactions. Based on that, the intra-
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Figure 2.1: Metabolic network for central metabolism in E. coli, taken from [1]

cellular metabolites are considered to be in (pseudo) steady-state which means rates of
production and consumption are equal for each metabolite. Based on this assumption,
the mass balance for the intracellular metabolites is obtained as the general equation:

Sint.v = 0 (2.2)

with Sint which includes the stoichiometric coefficients of intracellular metabolites in
the reaction flux vector v (containing internal and exchange reactions). This is a
homogeneous systems of linear equations. The degree of freedom of the system (i.e.,
the number of reactions minus the rank of S which shows the number of linearly
independent rows) determines the number of unknown fluxes, for which measurements
are required to calculate a unique flux solution. Since the number of reactions is
typically much larger than the number of metabolites and not sufficient fluxes can be
reached in practice, the system is usually underdetermined.
The classical approach to overcome this problem is to use constraint-based modelling

in form of flux balance analysis (FBA) which solves this underdetermined system by
defining an optimization problem [2, 14]. FBA considers typically the following set of
constraints:
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Figure 2.2: Graphical representation of an example metabolic network and the stoi-
chiometric matrix

• steady state mass balance constraints Sintv = 0,

• capacities constraints (vmin ≤ v ≤ vmax) which define upper or lower boundaries
for some fluxes (which are often known for exchange reactions),

• irreversibility of reactions (0 ≤ v ≤ vmax),

which results in constraining the flux space to a convex cone of feasible fluxes, and
then a flux solution is found by optimizing a linear objective function. The objective
function is typically a linear combination of network fluxes which are specified by a
nr-dimensional vector w as wTv = w1v1 + w2v2 + ... + wnrvnr . The most frequently
used objective is maximizing the flux for biomass production (growth), which has been
shown to be a biologically realistic cellular objective at least for some microorganisms
(e.g. yeasts) under certain environmental conditions [22, 23]. To define biomass max-
imization as the objective, all elements of w are 0, except the element for the biomass
production reaction which is set equal to 1. Overall, maximizing the linear objective
together with other constraints results in a standard linear optimization problem - flux
balance analysis:

maximize
v

wTv

subject to Sv = 0,
vmin ≤ v ≤ vmax.

(2.3)

The process of constraining the solution space in FBA is illustrated in Figure 2.3,
in which the most right figure shows the optimal solution which lies at a vertex of the
solution space resulted from the linear programming problem.
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2 Constraint-based models of metabolic networks

Figure 2.3: Conceptual base of FBA for constraint-based modeling of metabolic
network, taken from [2].

Doing so, FBA predicts the particular steady state flux distribution by optimizing
a ”celluar” objective function. As FBA allows to study various functional properties
of metabolic networks based on the network structure, its basic principles has been
referred in modified versions in order to improve model predictions of cellular behaviour
and to tackle specific qualities.
Extensions to FBA were made in several aspects including the integration of reg-

ulatory events [24, 25], considering thermodynamic constraints [26, 27], integration
of gene expression data [28, 29], and capturing effects of genetic modifications [30]
(for a comprehensive review, see [31]). One important driver for extending classical
FBA is the desire to tackle transient changes of metabolic fluxes and species. FBA
gives the optimal flux distribution assuming the cells are in steady state. To describe
cellular processes in changing environments, several efforts have been made to simu-
late dynamic profiles of metabolite concentrations and metaboic fluxes [5, 15, 24]. We
present next the dynamic flux balance analysis (dFBA) approach [15] as an established
approach for dynamic optimization of metabolic networks.

2.2 Dynamic flux balance analysis

Dynamic flux balance analysis (dFBA) as a dynamic extension to FBA has been
proposed to study transients in metabolism by computing optimal metabolic fluxes
over a time range of interest.
In general, the model dynamics are given through a set of ordinary differential equa-

tions. These equations define the mass balances for species (total biomass, substrates
and products),

ż(t) = Sev(t)X(t),
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Ẋ(t) = µX(t),

µ =
∑

wivi, (2.4)

where X is a scalar representing biomass concentration and z is the vector for extra-
cellular species (substrates and products) concentrations with Se as the corresponding
stoichiometric matrix. v is the reaction flux vector per gram of the biomass (commonly
as mmol.(g biomass)-1.hr-1), which its multiplication to the biomass concentration X
(g biomass.l-1) gives the absolute flux (mmol.l-1.hr-1). µ is the growth rate defined as
a weighted sum of the reactions for growth precursors production. wi are the amounts
of the growth precursors required per gram of biomass. Along with the dynamic equa-
tions, several additional constraints can be considered including non-negative metabo-
lite values and bounds on transport fluxes [15].
The dFBA appears in two different formulations: the dynamic optimization ap-

proach (DOA) and the static optimization approach (SOA).
The dynamic approach, DOA, considers a growth-related objective and allows com-

puting optimal fluxes over the whole time range of interest. Considering maximizing
the biomass amount at the end of the process as the objective function, the dynamics
of cellular metabolism are described by the following dynamic optimization problem:

maximize
v(·)

X(tf )

subject to ż(t) = Sev(t)X(t),
Ẋ(t) = µ(t)X(t), µ =

∑
wivi

z(t0) = z0, X(t0) = X0,

z(t) ≥ 0, X(t) ≥ 0,
Sintv(t) = 0,
vmin(t) ≤ v(t) ≤ vmax(t).

(2.5)

Through this problem, metabolic fluxes v as control variables are computed in order to
maximize the biomass production X(tf ) at the end of the process (final time tf ) based
on the defined constraints including the steady state mass balance for intracellular
metabolites, the initial condition for extracellular species and biomass concentration
z0, and X0, positivity of species as well as the flux bounds (vmin and vmax). As
upper bounds to metabolic fluxes, additional constraints can also be added to cover
transport limitations. These might be the Michaelis-Menten kinetics for substrate
uptake or inhibitory terms that reflect growth rate suppression by the presence of
particular species.
Such a dynamic optimization problem can be solved in multiple ways, e.g. by dis-

cretizing the dynamic equations in the time domain using collocation methods [32, 33]
resulting in a nonlinear programming problem. The details of the solution procedure
using collocation approaches will be presented later in Section 2.3.2.
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In contrast to DOA in which the optimization problem is solved once, the static
approach SOA does not resolve the optimization problem over the complete timescale
of interests. Instead it involves predicting dynamic changes in biomass and extracel-
lular metabolites iteratively. For that, the time period is divided into N intervals. An
FBA problem (as in problem (2.3)) is solved at the beginning of each time interval t
with corresponding bounds on exchange fluxes, to obtain the flux distribution v and
the growth rate µ (as the biomass production flux ∑wivi) at that time instant. Then
based on the obtained fluxes v and µ, and using an approximation of the differen-
tial equations (assuming the fluxes are constant over the intervals), the extracellular
metabolites and biomass concentrations are updated for the following time interval
t+ ∆T :

∆T = tf − t0
N

,

z(t+ ∆T ) = z(t) + Sev∆T,
X(t+ ∆T ) = X(t) + µX(t)∆T.

(2.6)

where ∆T is the length of the time interval. So for the SOA, dFBA solves N linear
programming problems, one for each time step, in order to obtain the time profiles of
extracellular metabolites and biomass concentrations. It can be seen as an approximate
solution of the original problem.
These two approaches of dFBA have been evaluated and compared in [15] con-

sidering the analysis of the diauxic growth in Escherichia coli. In general, besides
computing the time courses of biomass and external species, the dFBA approaches
allow to formulate substrate uptake kinetics. Through the substrate uptake expres-
sions, it is possible to represent maximum uptake rates respect to transport limitations,
such that some known regulatory processes such as diauxic consumption of substrates
and growth inhibition by extracellular metabolites can be addressed. Based on these
features, dFBA has been implemented in several studies as a tool for phenotype predic-
tions or process/strain optimizations in batch and fed-batch fermentation applications
and co-culture simulations [34–39].
As dFBA models involve dynamic systems and their formulation is more complex

than a simple FBA model, some efforts have been also made for more efficient im-
plementations of these models and to make them more accessible as a modeling tool,
such as the constraint-based reconstruction and analysis (COBRA) toolbox [40] and
the DFBAlab simulator, both provided in the MATLAB environment [41].

2.3 Metabolic-genetic network models

So far, the biomass is captured only as one component (X) in FBA and dFBA models
which is one point of critiques to these approaches. In fact, with a coarse definition of
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biomass, its different allocations to different cellular components and the associated
metabolic processes cannot be represented in detail. Examples include the expression
of different enzymes for catalyzing different metabolic reactions, or the allocation to-
wards the ribosomal machinery for faster protein production vs. the allocation towards
enzymes for a faster metabolic turnover.
Inclusion of biomass composition and enzyme costs in metabolic optimization can

potentially improve the quality of predictions which has been studied in several works.
As an extension to FBA in this direction for describing the metabolic network together
with a variable biomass resource allocation, the resource balance analysis (RBA) ap-
proach has been proposed [42]. This approach considers the conversion of metabolites
into enzymes and other cellular macromolecules and constrains metabolic fluxes based
on the bioenergetic costs for producing required enzymes for metabolic pathways and
their catalytic capacity. RBA yields a nonlinear optimization problem which can pre-
dict the cell composition of bacteria and flux distributions in a specific (constant)
environment by maximizing the cellular growth. The optimization problem for RBA
will be presented later within this chapter (Section 2.3.3). A conceptually equivalent
approach has been proposed independently under the term of ME model (metabolism
and macromolecular expression) as a means to explore the relationship between geno-
type and phenotype using biochemical representations of transcription and translation
processes [43, 44].
Above mentioned approaches are however limited to stationary exponential growth,

and extensions were needed for description of dynamic changes of metabolic-genetic
fluxes. In this direction, dynamic enzyme-cost flux balance analysis (deFBA) has been
proposed in order to understand how resources are distributed in response to the dy-
namically changing environment. Such a dynamic metabolic-genetic approach can be
used to study the dynamic growth of microorganisms not only to get temporal profiles
of species and fluxes but also to understand the transitions in cellular components
distribution in response to changing operating conditions of a bioreactor.
In general, there are two subsystems which are important for metabolic-genetic

network models:

• The metabolic network which represents catabolism, anabolism and other cellular
functions. These reactions are catalyzed by enzymes.

• The translation apparatus which involves producing required enzymes (for
metabolism) and other substantial cellular macromolecules.

Here, we present details for constructing these models with a focus on the deFBA
formalism which is described in the following section.
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2.3.1 Dynamic enzyme-cost flux balance analysis

The dynamic enzyme-cost flux balance analysis is a constraint-based modeling ap-
proach which includes metabolic reaction network coupled with gene expression. It
can be considered as the extension of the established dFBA by considering a detailed
description of biomass as well as the cost and catalytic capacity of enzymes [45, 46].
The deFBA in general is formulated as a dynamic optimization problem for maximiz-
ing a growth-related objective which includes a stoichiometric part, which captures the
mass balances of the metabolic-genetic network, and a constraint based part, which
describes the biophysical constraints such as the metabolic capacity based on cellular
resource allocation.
The model consists of nM biochemical species divided into different groups:

• extracellular species present in the environment (nutrients and products) with
the molar amount vector z ∈ Rnz

≥0,

• intracellular metabolites with the molar amount vector m ∈ Rnm
≥0 ,

• macromolecules which are catalytic enzymes (gene products) and cellular building
blocks with the molar amount vector p ∈ Rnp

≥0.

with nM = nz + nm + np, [z] = [m] = [p] = mmol.
To define the total biomass B, we use the molecular weights bi of all macromolecules

p, as b = (b1, b2, ..., bnp), [bi] = g/mol. The total biomass (dry weight in g) is obtained
by:

B = bTp (2.7)

As with the species, we classify R network reactions into different groups:

• Exchange reactions between the inside and the outside of the cell (substrate
uptake and product secretion) with reaction flux vector Vz ∈ RRz .

• Metabolic reactions, converting metabolites into each other, with reaction flux
vector Vm ∈ RRm.

• Biomass production reactions, converting metabolites into macromolecules, with
reaction flux vector Vp ∈ RRp.

• Biomass degradation reactions with reaction flux vector Vd ∈ RRd.

where R = Rz +Rm +Rp +Rd. Corresponding to the unit used for molecular species,
all reaction flux vectors use a unit of molar amount per time.
For a general network of this type, the differential equations describing the dynamics

of the species are given using the stoichiometric matrix S ∈ RnM×R as

ż(t) = SzzVz(t),
ṗ(t) = SppVp(t)− S

p
dVd(t),

(2.8)
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with
Vd = kdegp. (2.9)

Thereby, Sij (j ∈ z, p, d and i ∈ z, p) are stoichiometric matrices with the stoichio-
metric coefficients of species i for reaction fluxes Vj. The biomass degradation flux
Vd is modelled to be proportional to the amount of each biomass component p with
corresponding degradation constants kdeg.
As explained earlier, the intracellular metabolites m can be considered to be in

quasi-steady state which yields:

ṁ = Smz Vz(t) + SmmVm(t) + Smp Vp(t) + Smd Vd(t) = 0, (2.10)

where Smz , Smp and Smd are the stoichiometric matrices with the stoichiometric coeffi-
cients for the metabolic species in m in the exchange reactions, biomass production,
and biomass degradation reactions flux vectors Vz, Vp, and Vd, respectively, and Smm
is the stoichiometric matrix for the metabolic network. To simplify notation, reaction
fluxes for exchange reactions, biomass production reactions and metabolic reactions
are collected in the overall reaction flux vector

V =


Vz
Vm
Vp

 ∈ RRz+Rm+Rp,

which is considered as the free time-dependant variable to be used in the dynamic
optimization. Note that degradation reactions are defined with the kinetic law (2.9)
and not subject to optimization. The corresponding stoichiometric matrices are

S =
Szz 0 0

0 0 Spp

 ,
Sm =

(
Smz Smm Smp

)
.

The state variables are also collected as

x =
z
p

 ∈ Rnz+np.

As there is no explicit flux for the biomass growth, and instead there are pathways for
producing individual biomass components, the overall growth rate can be determined
as

µ(t) = 1
B(t)

dB(t)
dt

, (2.11)

with the total biomass B(t).
The deFBA model also includes several biophysical constraints:
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• Enzyme capacity constraints, in which the reaction fluxes are limited by the
maximum enzymatic capacity. This maximum capacity is defined by the catalytic
constant (kcat) and the amount of associated enzymes. Individual enzymes may
catalyze multiple reactions. Hence, the capacity constraint for a single enzyme
pi can be written as ∑

j∈cat(i)
| Vj
kcat,±j

| ≤ pi, i ∈ E (2.12)

where cat(i) indexes the set of reactions catalysed by the enzyme pi, i ∈ E in
which E is the set of enzymes. kcat,+j (kcat,−j) denotes the constant of forward
(backward) reaction j with the flux of Vj. As an example, consider the case
where enzyme p1 catalyses a reversible reaction V1 and an irreversible reaction
V2. This results in two constraints, each for one possible combination of reaction
flux directions:

V1

kcat,+1
+ V2

kcat,+2
≤ p1,

V1

kcat,−1
+ V2

kcat,+2
≤ p1,

(2.13)

• Biomass composition constraints: in addition to enzymes, the macromolecules p
also include non-catalytic proteins and other molecules which do not contribute
directly to metabolism and growth, but they are required by the cell to keep it
working like DNA, RNA and cell walls. These species are denoted as "quota com-
pounds" [46], and the constraints are expressed by enforcing a minimal fraction
ϕQ (0 ≤ ϕQ ≤ 1) of the total dry weight bTp of the cell to be made of a certain
quota compound pQ

ϕQb
Tp ≤ pQ, Q ∈ Q (2.14)

where Q is the set of quota compounds.

• Enzyme-independent flux bounds which for example can be used to express the
irreversibility of reactions

Vmin ≤ V ≤ Vmax. (2.15)

• Positivity of molecular species
z ≥ 0,
p ≥ 0.

(2.16)

Besides the above-mentioned constraints, an objective function is still required to
define the complete optimization problem of the deFBA.
Biomass maximization is a common objective used in constraint-based models and

classical flux balance analysis. Similarly, the deFBA assumes that the cell evolves in a
way to maximize its growth in the form of maximizing total biomass. In the original
work [45], this objective is incorporated within the model in two alternative ways:
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first, as biomass maximization at the end of the optimization horizon (at time tf ),

J1 = B(tf ) = bTp(tf ), (2.17)

and second, as maximization of the biomass integrated over the considered time span
[t0, tf ],

J2 =
tf∫
t0

B(t)dt =
tf∫
t0

bTp(t)dt. (2.18)

The maximization of the terminal biomass (objective J1) has been used in dFBA (as
shown in Section 2.2), while the biomass integral (objective J2) has been used as an
evolutionary fitness measure in analysis of microbial metabolism [47].

These two objective functions can be compared by computing the variability of the
optimal solutions of the deFBA and the biophysical meaning of the solution through
considering an example of a minimal nutrient uptake network, taken from [48]. As
discussed in [45], for the first objective function J1, the results show non-unique so-
lutions and a quite high flux variability as obtained by a Flux Variability Analysis
[49]. Compared to that, for the second objective J2 the uniqueness of the solutions
is observed with zero flux variability for the considered example. The interpretation
of the integral objective is almost identical to the growth rate maximization over the
complete time scale, and therefore it allows for solutions which do not optimize the
growth rate at any given time. Implementing the objective J2 could also deliver results
in agreement with the typical growth kinetics of bacterial cultures [47], as the growth
at earlier time points would give a better objective functional value than the growth
at a later time.

Therefore, we use the objective J = J2 for the deFBA model implemented in this
thesis.

In summary, the deFBA model is described by the following dynamic optimization
problem:
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2 Constraint-based models of metabolic networks

maximize
V (·)

tf∫
t0

bTp(t)dt

subject to ẋ(t) =
ż(t)
ṗ(t)

 = SV (t)− SxdVd(t),

SmV (t) + Smd Vd(t) = 0,∑
j∈cat(i)

|Vj(t)/kcat,j| ≤ pi(t), i ∈ E

Vmin(t) ≤ V (t) ≤ Vmax(t),
ϕQb

Tp(t) ≤ pQ(t), Q ∈ Q,
x(t0) = x0 = (z0, p0),
x(t) ≥ 0.

(2.19)

where metabolic fluxes V as the control variables are computed in order to maximize
the biomass production based on the given constraints and initial condition x0.
Therefore, the key difference with the dFBA approach is that deFBA considers a

detailed presentation of biomass and allocates available resources over the different
enzymatic pathways in an optimal way in order to achieve maximum biomass growth.
In contrast to detailed kinetic models, where regulatory interactions from metabo-

lites on enzyme synthesis are commonly used [50], the deFBA model as shown uses
only an optimization principle and no regulatory constraints. However, since the cat-
alytic efficiency of enzymes as well as their biosynthesis costs are accounted for in
the optimization, the model can produce behaviours that will typically be realized by
regulatory interactions in the actual cells, such as catabolite repression or overflow
metabolism [45]. However, the downside of this approach is the requirement for know-
ing the details of producing gene products and catalytic constants of enzymes in the
model, as well as the increased numerical complexity due to the addition of biomass
components and associated constraints.
The optimization problem (2.19) addresses the cellular growth in the batch mode.

To be implemented for growth prediction in fed-batch or continuous modes, the model
dynamics should be revised accordingly and other relevant constraints might be added.
For example, additional constraints on the substrate uptake rate may be applied to
address growth inhibitory effects which is a common situation for fed-batch growth
modes.

2.3.2 Numerical solution

Solving problem (2.19) is important. So, we implement collocation methods to approx-
imate this problem by discretization of dynamic variables in the time domain [32, 33].
For the collocation, the time interval [t0, tf ] is divided into N equally sized intervals,
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2.3 Metabolic-genetic network models

each of length
h = tf − t0

N
. (2.20)

Each time interval contains K collocation points. Overall, the collocation points are
given by the sequence

t1,1, t1,2, ... , t1,K , t2,1, ... , tN,K .

Within each interval, the q-th collocation point is at position rq (relative to the interval
[−1, 1]), where rq is determined by the collocation scheme and order. The collocation
points are thus computed as

ti,q = (i− 1)h+ (rq + 1)h2 . (2.21)

The flux variable V (t) and the derivative of the state variable ẋ(t) are then dis-
cretized with a Lagrange interpolation scheme:

V (t) =
K∑
q=1

Vi,qLq(
2t− 2ti−1 − h

h
), ti−1 ≤ t ≤ ti,

ẋ(t) =
K∑
q=1

ẋi,qLq(
2t− 2ti−1 − h

h
), ti−1 ≤ t ≤ ti,

(2.22)

where Lq, q = 1, ..., K are the Lagrange polynomials

Lq(r) =
K∏

1≤i≤K,i 6=q

r − ri
rq − ri

, (2.23)

and ti = ih, i = 0, 1, ..., N are the boundaries of the time intervals used for the
discretization. The state variable x(t) is discretized at the boundaries of the N time
intervals and its value within an interval is approximated by integrating over the time
derivatives.

Here, we consider collocation points determined by zeros of the Legendre polyno-
mials. The discretization of variables in the time domain is schematically shown in
Figure 2.4, considering two collocation points at each time interval, K = 2.

In this way, the continuous optimization problem in (2.19) is approximated by a
finite-dimensional problem in which the optimization is carried out over the vector
W ∈ RNK(Rz+Rm+Rp+nz+np)+N(nz+np) defined as

W = (V1,1, V1,2, ..., VN,K , ẋ1,1, ẋ1,2, ..., ẋN,K , x1, x2, ..., xN),

.
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2 Constraint-based models of metabolic networks

Figure 2.4: Discretization of variables in the time domain considering two collocation
points at each time interval,K = 2. The collocation points are determined by zeros
of the Legendre polynomials: ti,1 = (i− 1)h+ (r1 + 1)h2 , ti,2 = (i− 1)h+ (r2 + 1)h2
(with r1 = −

√
3

3 , r2 =
√

3
3 ).

The finite dimensional optimization is then derived as:

maximize
W

cTW + d

subject to MeW = Ve,
MiW ≤ Vi.

(2.24)

where the vector c and the number d stem from the discretization of the objective func-
tional. The equality constraint matrixMe and the vector Ve stem from the collocation
of differential equations, the initial condition, and the quasi steady state constraint.
The inequality constraint matrix Mi and the vector Vi stem from the collocation of
inequality constraints in problem (2.19). The resulting LP can then be solved numer-
ically using standard commercial solvers such as CPLEX or Gurobi. More details for
discretization of variables can be found in [45].

2.3.3 Resource balance analysis

Based on the derived formulation for deFBA approach, it is straightforward to formu-
late the resource balance analysis (RBA) problem which addresses cell simulation in
steady state and constant environmental conditions. The main assumption of RBA is
the stationary growth of the cell. Based on this assumption, the cellular concentra-
tions of macromolecules need to remain constant, which means the amount of macro-
molecules pi increases at the same rate as the biomass. This assumption is defined as
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2.3 Metabolic-genetic network models

the below constraint in RBA:

SppVp = µp. (2.25)

All other constraints from deFBA including enzyme capacity and biomass composition
are implemented in RBA as well, but in their time-independent form. Moreover,
a constraint for the biomass amount in the system (bTp = B0) is added to get a
well defined optimization problem. The RBA problem is then defined as a nonlinear
optimization problem (due to the presence of the term µp in mass balance equations
of cellular components) which maximizes the growth rate:

maximize
µ,V,p

µ

subject to SppVp − µp = 0,
bTp = B0,

SmV = 0,∑
j∈cat(i)

|Vj/kcat,j| ≤ pi, i ∈ E

Vmin ≤ V ≤ Vmax,

ϕQb
Tp ≤ pQ, Q ∈ Q.

(2.26)

Within the RBA problem formulation, it is assumed that the cell is at a quasi steady
state and for each given value of the biomass B0, the metabolic fluxes and cellular com-
ponents are allocated to maximize the cellular growth rate µ. In other words, through
the problem (2.26), optimal metabolic fluxes and biomass components are computed
to have a maximal steady state cellular growth based on the given constraints and
total biomass amount B0.

2.3.4 General procedure for deriving a metabolic-genetic networks
model

In this section, we provide the main requirements for generating metabolic-genetic
network models. The overall protocol for deriving such a network can be summarized
as the following steps. A comprehensive procedure for generating and exchanging
metabolic-genetic network models can be however found in [46].

• The most important part of deriving a metabolic-genetic network model is a
(genome-scale) metabolic reconstruction of the target organism. The metabolic
network is constructed based on an annotated genome sequence of the organism
and includes describing the reactions of central carbon metabolism, the reactions
of the amino acid synthesis pathways and the pathways for the biosynthesis of
precursors of structural cell components. So far, around 2600 draft reconstruc-
tions for a multitude of organisms are freely available via online databases like
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2 Constraint-based models of metabolic networks

BioModels [51] and BiGG Models [52], from which one can obtain the metabolic
reconstruction for the organism of interest.

It is important to note that it is not in general possible to simulate a full genome-
scale deFBA model due to the size of the resulting linear program. While simula-
tion of steady-state resource allocation in genome-scale networks can be feasible
by RBA, dynamic approaches such as deFBA are still constrained to smaller sizes.
Till now, networks with up to 500 metabolic reactions have been successfully sim-
ulated with deFBA as shown in [53]. However, if the starting metabolic network
is too large, it is required to reduce the size of the network by relevant network
reduction tools such as the minimal network finder in [54] or NetworkReducer
[55], which allows to preserve desired network functionalities.

• Next, the genetic network is constructed by describing pathways for catalytic
proteins, ribosomes and quota compounds.

Catalytic protein (enzyme) production reactions are constructed based on the
gene-reaction mapping (which describes which genes are involved in the cat-
alyzing of each reaction) and their corresponding amino acid sequences. This
information can be obtained from online databases such as Genbank [56] and
UniProt [57]. It should be highlighted that via UniProt it is not only possible to
get data on a the gene sequence, but also to access to the Enzyme Commission
(E.C.) number and the subunit stoichiometry for enzyme complexes.

The protein production reaction then can be specified based on the computed
amino acid count of each protein and other additional reactants like energy co-
factors (e.g. in the form of ATP) required in producing each protein. Note that
for enzyme complexes, one needs to calculate the amino acids cost of each subunit
and then sum those up respect to the stoichiometry of each subunit. The wrong
enzyme compositions obtained from this step can change the contribution of the
involved enzymes for the growth simulation.

To set up ribosomes synthesis, we consider it as a large enzyme complex with a
single production reaction which describes the full translation and assembly pro-
cess. To construct the production reaction of ribosomes, the required ribosomal
proteins, ribosomal RNA and energy cofactors need to be taken into account.
This information on compositions of ribosomes can be found in the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) resource [58], or the Ribosomal Protein
Gene Database [59].

Then, we derive the production reaction for quota species such as DNA, mem-
branes, cell wall and RNA. As explained earlier these components play no cat-
alytic roles in the RBA/deFBA models, but we must enforce their production
via the biomass composition constraint to address that part of the resource cost
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required for proper cellular functionality. To reduce the number of quota com-
pounds in the model, we lump these together and build a single reaction that
produces the merged quota compounds.
To construct the production pathway for quota compounds, the appropriate
biomass fraction for these compounds should be first set up. For that we need
information on the percentage of biomass subcomponents, which can be obtained
from literature. For example, from the database BioNumbers [60], the composi-
tion of dry weight of the bacteria E. coli is reported as 55% protein (catalytic
and non-catalytic), 20% RNA, 10% Lipids, and 15% others.
After obtaining data on fractions of biomass components included within the
model, the biomass reaction of the metabolic network reconstruction can be useful
to proceed. Based on this overall biomass production reaction and considering the
portion of metabolites already used in enzymes and ribosomes synthesis reactions,
an average pathway for producing the quota compounds of the cell is constructed.
In cases which the ratio of biomass components is not directly available in the
literature, a detailed biomass production pathway itself can be a good place to
look, as it represents the typical biomass composition of the target organism.
In fact the stoichiometric coefficients of the involved metabolites of the biomass
reaction can describe the average composition of the cell. This is explained in
detail in [46].
The enzymes, ribosomes, and the structural component and their synthesis reac-
tions are then added to the stoichiometric matrix.

• Then, the reaction catalytic constants (turnover rates) should be extracted from
databases and integrated into the model. Catalytic constants are very important
parameters in metabolic-genetic network models involved in enzyme capacity
constraints, which highly impact the contribution of different metabolic pathways
during the growth.
The two main databases for obtaining enzymatic constants are BRENDA [61] and
SABIO-RK [62]. These databases often enable the user to filter catalytic constant
values for different organisms, mutant strain, pH value, etc. As a simple rule of
thumb, one should look for wild-type data obtained at a physiological pH for the
organism of interest, to take care of the model generality [46].
Beside extracting from databases, it is also possible to estimate the catalytic
constant of enzymes based on their properties; for example in [63], the catalytic
constant of enzymes has been considered to be proportional to the enzyme solvent
accessible surface area (SASA) and estimated from the enzyme molecular weight.

• Once the model is constructed, the important remaining step is tuning the model
to match experimental growth rates or measured reaction fluxes obtained in lab-
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oratory or retrieved from literature.
This step may involve adjusting some model parameters if there is a noticeable
mismatch between the growth rate µ predicted by the model and the one from
literature. For example if the simulated growth is too small, one should check
the kcat values again as this is most likely caused by very limiting values of some
core pathways. On the other hand, a very large simulated growth value probably
means the lack of maintenance or quota requirements, and one should check the
construction of any biomass composition constraints or consider maintenance
fluxes.
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3 Bioprocess optimization and control by
dynamic metabolic-genetic network models

In this chapter, we consider the applications of constraint-based models for optimiza-
tion and control of the bioprocess. First, we review the FBA-based computational
algorithms implemented for optimization of biotechnological processes. In particular
we focus on their applications for improving bioprocess productivity which are mainly
conducted by dynamic implementation of metabolic engineering strategies along with
dynamic control of fermentation condition.
As the next step, we implement dynamic metabolic-genetic network models for im-

proving bioprocess productivity through dynamic regulation of metabolism. To this
aim, within this chapter we focus on formulating the control problem for our target
objective (productivity), defining proper gene-level and process-level strategies and
implementing the proposed approach on a well-established case study using an exper-
imentally validated metabolic-genetic model.

3.1 Application of constraint-based modeling in bioprocess
optimization and control

Constraint-based models which represent detailed descriptions of cellular metabolism
compared to unstructured models, is an effective simulation approach to form the basis
for model-driven bioprocess optimization and control. Desired quantities to be usually
improved through the bioprocess optimization are product yield and productivity, and
FBA-based approaches can be implemented to address these metrics by finding optimal
production strategies [64].
FBA-based models allow to explore potential production capabilities of metabolic

networks. In this direction, a main and important application of constraint-based
models is in the area of metabolic engineering, for strain design. To this aim, several
algorithms have been proposed to identify targets of genetic interventions in order to
improve the production process (reviewed in [65]). One example is Optknock algo-
rithm [66], which is a FBA-based approach proposed for identifying candidates of gene
deletions to increase the product yield. For genetic-level applications, these models
can be also useful in determining the optimal time for applying genetic interventions
(as implemented in [37]). Besides that, in the process-level, FBA-based models can
be implemented to determine the optimal process and bioreactor condition, such as
the substrate feeding profile or the aeration level for an optimal cell growth. These
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implementations of FBA-based models in determining genetic and process level ma-
nipulation strategies for improved production processes are addressed in details within
the following sections.

3.2 FBA-based approaches for metabolic engineering

Increasing demands for the production of industrially relevant bioproducts, necessitate
the design of microbial strains that can produce valuable biochemicals which are opti-
mized not only for economical but also sustainability aspects. Metabolic engineering as
an enabling technology for this process involves developing new experimental and theo-
retical methodologies for targeted improvements of microbial hosts. It aims to redirect
metabolic fluxes in order to amplify the production of the compound that wild type
organisms produce in low concentration which is not cost effective for industrial-scale
production [4, 67]. Figure 3.1 shows the basic principle for metabolic engineering; the
host organism is engineered such that the metabolic fluxes are redistributed to achieve
increased production of the desired product. In this direction, FBA-based approaches
have been used to search for suitable interventions that redirect reaction fluxes towards
the product, resulted in several successfully engineered production strains [4].
The general objectives of metabolic engineering strategies are depicted in Figure 3.2.

The Figure presents the phenotypic phase plane with respect to two key quantities:
the biomass yield and the product yield. The yellow area shows all combinations of
these yields in the feasible steady state flux vectors of the network. This allows to
identify two extreme points: one point for maximum biomass yield (corresponding to
the wild type strain, as the basic assumption of FBA) and another point for maximum
product yield, where all the substrate is completely converted to the product and no
biomass is produced. The practically desired phenotype is shown by the blue area in
which the flux vectors is distributed in a way that the product yield is high, while still
allowing a reasonable biomass yield for a higher production process rate. Therefore,
interventions which cut away undesired regions by knockouts and flux redistributions
are followed.
A simple approach to do so is deleting pathways of undesired products formation

and possibly overexpression of pathways leading to target product formation. An im-
portant point is that pathways for building biomass precursors should not be removed.
However, it is still not ensured that the mutant uses pathways to product formation as
its objectives and it may adjust its metabolism such that only pathways for biomass
synthesis are active while no product is produced. An strategy to overcome this prob-
lem is the coupling of cellular growth and product formation. This means one follows
gene deletions which make the secretion of the product an essential pathway required
for the growth, and thus the target product is produced whenever the organism syn-
thesize biomass. In this way, the product formation is coupled to biomass synthesis.
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Coupling the product synthesis with the growth (biological and economical objec-
tives) has some advantages. One is that a minimum yield is guaranteed whenever the
cells grow. Moreover, due to adaptive evolution the cells move towards higher growth
rates over time [68]. As the formation of the desired product is in the route of the cell
growth, the product yield is also increased [4].

Figure 3.1: Distribution of metabolic fluxes in a) wild-type and b) engineered organ-
isms, taken from [3].

Many of the FBA-based strain design algorithms seek to derive strategies which
lead to coupled biomass and product formation. For this purpose, most of these strain
design algorithms implement bilevel optimization formulations that allow to address
two competing objective functions at the same time (e.g. the biological objective vs.
the bioengineering objective).
Available approaches aim in general to identify target reaction (gene) knockouts,

non-native additional pathways, a combination of knockouts, down-regulations and
over-expressions leading to the overproduction of a desired chemical. These approaches
mainly address improving product yield as the desired quality for the engineered strain.
In this direction, Optknock was the first FBA-based optimization method proposed

to identify suitable reaction knockouts in metabolic networks for achieving the highest
production yield [66], leading to a bilevel optimization problem. The inner optimiza-
tion problem maximizes the biological objective (growth) as the FBA model, while the
outer optimization maximizes product synthesis by identification of optimal gene/re-
action knockouts under the inner problem constraint. The obligatory growth-coupled
product synthesis is thus a direct aim of this approach by implementing a nested op-
timization. To model gene/reaction deletions, Optknock incorporates binary control
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Figure 3.2: General objectives of metabolic engineering strategies, taken from [4].

variables. Optknock is expressed as the following bilevel mixed integer optimization
problem:

maximize
yj

vproduct

s.t.
∑
j

(1− yj) ≤ k,

maximize
vj

vbiomass

s.t. Svj = 0,
vmin.yj ≤ vj ≤ vmax.yj,

(3.1)

where yj are binary variables selected from the outer optimization (for maximizing
the production flux) and they are defined to have a value of one if reaction j is active
and a value of zero if it is inactive. vj represents the flux of reaction j and k is the
number of allowable knockouts. Depending on yj values determined from the outer
optimization (0 or 1), the constraint

vmin.yj ≤ vj ≤ vmax.yj,

defines the state of reactions through the inner FBA problem; A reaction flux vj is set
to zero if yj is equal to zero, otherwise vj is free to have any value between a lower vmin
and an upper vmax bound. To solve the problem (3.1), the bilevel optimization is trans-
formed into a single level one in the original work [66] based on linear programming
duality theory, resulting an overall mixed integer linear problem (MILP).
Predictions of Optknock have been verified by successful application to real problems

for improved product yields [69, 70]. This approach was further modified to algorithms
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Table 3.1: FBA-based strain design algorithms.
Name Type of optimization Type of intervention Reference

problem
Optknock Bilevel, MILP Knockouts [66]
RobustKnock Multi-level, MILP Knockouts [71]
OptGene Evolutionary Knockouts [72]
OptStrain Bilevel, MILP Addition of non-native reactions [73]
OptReg Bilevel, MILP Knockouts, upregulations [74]

and downregulations
OptORF Bilevel, MILP Knockouts and overexpressions [75]

(of metabolic and regulatory genes)
OptForce Bilevel, MILP Knockouts, upregulations [76]

and downregulations
GDLS Heuristic Knockouts, upregulations [77]

and downregulations

which allow for other types of network manipulations e.g. inclusion of regulatory
constraints or heterologous reactions. A brief summary of these methods is presented
in Table 3.1. For a comprehensive review see [65]. Compared to Optknock, among
these modified approaches, in RobustKnock the objective of the outer optimization
problem (engineering objective) was adjusted to maximize the minimal production
of the target product. This reformulation in fact makes the product secretion really
obligatorily coupled to biomass formation, which is an effective improvement to the
original Optknock formulation. It should be kept in mind that coupling in these
approaches is considered based on the assumption of growth optimal behavior of the
cell (with growth maximization as the cellular objective). Therefore, in cases that the
organism does act optimally respect to its growth, one should expect to achieve lower
yield and suboptimal production of the target product consequently.
Solving MILPs from Optknock and similar methods is more complicated than the

LP of the classical FBA and is even more challenging in case of multiple knockouts.
To speed up the calculation, other algorithms have been implemented; OptGene [72]
for example applies an evolutionary algorithm and GDLS [77] uses a heuristic search
algorithm.

3.3 Dynamic control for improved bioprocess productivity

Yield and productivity are the main variables which must be optimized for an eco-
nomical and viable bioprocess. Classically, yield has high priority and is particularly
considered as the main objective in developing strain design algorithms.
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As shown in the previous section, developed computational design algorithms mainly
aim to maximize product yield using static approaches (gene additions or/and deletions
and up- or down-regulation of gene expression). Through these genetic manipulations,
the product formation flux is maximized which in fact can drain metabolites needed
for biomass synthesis. This negatively affects the cellular growth rate. Even though
the growth rate in a genetically modified strain can be also improved by adaptive
evolution, this strategy can not be applicable in every case, as the growth rate may
not increase to an acceptable level or the initial rates can be very low for successful
adaptive evolution [3]. Therefore, most of the strategies which are applied for yield
improvement, result in strains with low volumetric productivity (the target metabolite
produced per unit time and volume) due to the impaired growth rate.

In industrial applications, optimizing the productivity of an engineered strain by
reducing the processing time is usually the actual performance parameter in reducing
operation costs, and increasing the product yield does not necessarily result in sufficient
production rates [78]. This suggests that the trade-off between growth and produc-
tion is crucial in the design of a bioprocess and determination of optimal operating
conditions for maximizing these conflicting metrics is essential to ensure commercial
viability.

Recently, algorithms have been developed based on FBA approaches which con-
sider not only product yield but also productivity. For example, in [79], hypothetical
strains are generated by establishing many operating points with a defined growth rate
and product flux. These strains are then evaluated for productivity, yield and titer to
identify the optimal strain maximizing an objective considering all these three metrics.
However, similar to other available approaches, this algorithm assumes static manip-
ulations of the metabolism in which the enzymes will not be dynamically controlled.

When the productivity is the bottleneck of a bioprocess, dynamic control of the
metabolism proved to be more advantageous, as they permit to regain the bacterial
growth which is severely affected by static strategies such as gene deletions [80]. Here
the dynamic control means that manipulations of genetic and metabolic networks are
not implemented statically at the beginning of the process and instead the metabolism
can be modified temporally during the process. However, determination of the optimal
manipulation strategy is an essential task for a proper balance between the growth and
production. To achieve this aim, dynamic constraint-based models can be a suitable
modeling tool which allows for temporal control of cellular networks and to capture
the trade-off between yield and productivity. They are implemented to derive dynamic
control strategies, mainly in two directions: dynamic metabolic engineering and dy-
namic optimization of fermentation conditions, explained in following sections. Both of
these strategies are implemented for improving bioprocess productivity in considered
case studies within this thesis.
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3.3.1 Dynamic metabolic engineering

As mentioned, most of strain design algorithms placed emphasis on yield improvement
using static gene modifications without the possibility for a temporal control of enzyme
expression (static metabolic engineering), resulting in reduced bacterial growth.
One efficient approach to overcome the reduced growth imposed by genetic modifi-

cations is the use of two-stage dynamic optimization, which includes a growth stage
followed by a production stage [3]. In the growth stage, the flux distribution is as in
the wild-type. Through this stage, a high growth rate is achieved by the wild-type
level expression of genes and the biomass is generated quickly. Following the growth
stage, the production stage is considered in which the genetic manipulations is im-
plemented in order to maximize the flux through the product pathway. Therefore,
instead of applying the gene alterations at the start of the process (static metabolic
engineering), the target gene expression is regulated at an optimal time during the
process to balance between cell growth and product formation (dynamic metabolic
engineering), resulting in improved productivity.
For dynamic metabolic engineering purposes, there are diverse mechanisms to im-

plement temporal regulations of gene expression practically. For instance, the gene
expression can be regulated in response to an environmental signal, such as temper-
ature. This has been used in [81], in which glycolysis in Escherichia coli has been
temporally controlled by regulating the expression of a key glycolytic enzyme through
changes in temperature. A genetic control module based on quorum sensing is another
practical mechanism to this purpose. Quorum sensing acts to control cell-density de-
pendent processes in bacteria and can be a basis to design a circuit to dynamically
regulate the expression of target genes at desired times and cell densities. In [82], a
quorum sensing-based circuit has been implemented for dynamic control of endogenous
essential genes in glycolysis to redirect fluxes into a heterologous engineered pathway
in Escherichia coli. Besides, temporal genetic regulations can be also conducted based
on the Clustered regularly interspersed short palindromic repeats (CRISPR) system of
a bacteria cell. Based on that, the technology (CRISPR) interference (CRISPRi) has
been introduced as an RNA-guided platform for control of gene expression [83, 84].
This system allows to hinder transcription of the targeted DNA and to cause gene
repression, by utilizing a single protein and a designed guide RNA.
For an efficient implementation of dynamic metabolic engineering strategies for im-

proved process productivity, it is however essential to find the optimal timing for imple-
menting the genetic regulation and the temporal profile of the corresponding flux. In
this direction, constraint-based models have been implemented to assess the applicabil-
ity of the two-stage control and to determine the optimal profiles of target metabolic
pathways. Such efforts started with some works by Gadkar et al. [37, 85]. In [37]
using constraint-based metabolic models of Escherichia coli, it was demonstrated that
a dynamic manipulation of gene expression achieves a higher productivity compared
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to applying static gene knockouts. To maximize productivity for a target metabolite,
the authors implemented a bilevel optimization framework that computes the optimal
temporal profile of a manipulated metabolic flux. This bilevel optimization included
FBA with a growth objective to determine the metabolic fluxes, as the inner problem.
The optimal profile of the manipulated flux and the optimal regulation strategy were
determined using the static optimization approach (SOA) of the established dynamic
flux balance analysis (dFBA) approach [15] through an outer nonlinear problem. The
strategy proposed in [37] was further integrated to an algorithm based on genetic tog-
gle switch for its practical implementation [86, 87]. Anesiadis and co-workers in [86]
proposed an integrated computational model to manipulate the key metabolic fluxes.
The system is based on quorum sensing and its feasibility for dynamic control of gene
expression was demonstrated in vivo.

3.3.2 Dynamic optimization of fermentation condition

Besides engineering of the cellular metabolism, temporal control of the fermentation
process itself (bioreactor operating condition) represents another aspect of bioprocess
optimization for improved productivity. To increase the process productivity, genetic
manipulations can be coupled with dynamic regulations at the process level. In pro-
cess level control, the cellular growth (impaired by gene deletions, species-specific
inhibitory effects, etc) can be improved by modifying environmental conditions, in-
cluding dissolved oxygen concentration, substrate feeding rate, inducer concentration
and pH. In fact, implementing suitable operating policies for the process allows for
higher rates of product formation and improved productivity.
To this aim, dynamic constraint-based models can be used to design key operating

conditions such as optimal feeding policy, scheduling of batches, aeration pattern,
and media composition [16]. One common implementation of process level dynamic
control is considering two growth stages by performing a switch between aerobic and
anaerobic conditions, where the switching time is chosen in an optimal way. In several
studies [38, 88, 89], the productivity has been considered as a function of this operating
strategy and the dFBA model has been used to determine the optimal switching time
by adjusting the aeration level.

3.4 Dynamic control for improved bioprocess productivity
based on deFBA model

Despite of the advantages associated with dynamic manipulation of cellular metabolism
for improved process productivity, so far it has been addressed in few studies and the
modeling tools for this purpose are still limited [3]. In general, temporal genetic
manipulation can be implemented at transcriptional (DNA), translational (mRNA),

32



3.4 Dynamic control for improved bioprocess productivity based on deFBA model

and post-translational (enzyme) levels. Each of these levels requires unique engineering
tools to address the dynamic control at different time-scales. This makes dynamic
implementation of metabolic engineering strategies more challenging rather than the
static strategies [90].
For an efficient dynamic control of the metabolism, advanced model-based ap-

proaches are required to address the different levels of manipulations and to identify
proper strategies which are optimal regarding the target engineering objective. To
regulate the enzymatic activity during the process, the underlying model should ac-
count for the genetic level of cellular networks and the temporal variations of involved
metabolic enzymes. To achieve this aim, during this project we consider the dynamic
enzyme-cost FBA (deFBA) model (as explained in Chapter 2) as the underlying model
for temporal bioprocess optimization. The dynamic nature of the deFBA model and its
ability to define biomass composition including metabolic enzymes allow to explicitly
include the temporal control of enzyme expression in the optimization problem.
As shown earlier, constraint-based models are founded on the cells maximizing a rea-

sonable biological objective such as biomass, which is often opposed to the production
of a target metabolite from a bioprocess engineering point of view. A bilevel opti-
mization is a suitable approach to describe the bioprocess optimization and to address
conflicting objectives, as implemented in several strain design algorithms. Through
a bilevel formulation, in the outer optimization problem, the engineering objective is
maximized, while the inner problem represents the cellular model where the cellular
objective is maximized.

3.4.1 Dynamic optimization problem formulation based on deFBA
model

Here, we formulate a bilevel optimization to obtain the optimal strategies to tempo-
rally manipulate cellular metabolism for improved bioprocess productivity. To take
care of process productivity, we consider dynamic regulation of metabolism in a two-
phase process which includes a growth stage followed by a production stage [3]. It is
implemented by a dynamic manipulation of one or several specific reaction fluxes. The
target flux for temporal manipulation may be selected by a static bilevel optimization
method such as Optknock [66] (explained in Section 3.2). In the first phase, the ma-
nipulated flux is still active to favour the cell growth. Then at an optimal time the
manipulated flux is deactivated (by genetic or process level repressions) to switch the
metabolism to the second phase. In that phase, the metabolic fluxes mainly contribute
to product formation, while growth may be reduced. This is shown in Figure 3.3, in
which in the first stage growth enzymes are mainly active while in the second stage
contribution of production enzymes is promoted.
In the bilevel optimization problem, the productivity is used as the objective. It is

defined as the target product concentration xt(tf ) at the end of batch divided by the
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Figure 3.3: Schematic representation of the two-stage dynamic control approach. The
approach involves a growth stage followed by a production stage, implemented by
temporal manipulation of target pathways at genetic (DNA, RNA and enzyme)
and/or process levels.

batch time [86]:

pr = xt(tf )
tf

. (3.2)

By applying a bilevel optimization approach, we are searching for the optimal profile
of the manipulated fluxes that produces the target product with maximal productivity.
In the inner problem, deFBA model as presented in (2.19) is used to determine the
optimal metabolic flux distribution for cellular objective optimization.

The formulated dynamic bilevel problem using the deFBA model is as follows:
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maximize
tf ,treg

xt(tf )
tf

s.t. t0 ≤ treg ≤ tf , tmin ≤ tf ≤ tmax,

maximize
V (·)

tf∫
t0

bTp(t)dt

s.t. ẋ(t) =
ż(t)
ṗ(t)

 = SV (t)− SxdVd(t),

SmV (t) + Smd Vd(t) = 0,∑
j∈cat(i)

|Vj(t)/kcat,j| ≤ pi(t), i ∈ E

Vmin(t) ≤ V (t) ≤ Vmax(t),
ϕQb

Tp(t) ≤ pQ(t), Q ∈ Q
x(t0) = x0 = (z0, p0),
x(t) ≥ 0,
Vreg(t) = 0 for t ≥ treg.

(3.3)

In the outer optimization, the optimal batch time tf and the optimal time of regu-
lation for the manipulated flux treg, are determined to achieve maximum productivity
of the target metabolite xt. With the metabolic fluxes defined as V = (Vreg, Vunreg),
the regulation time is the time in which the target flux for manipulation Vreg, is down-
regulated. Here, we define the down-regulation by repressing the manipulated flux to
zero. The outer optimization is subjected to an inner optimization (the deFBA model)
which addresses maximizing biomass. Since the deFBA model is used as a constraint
in (3.3), the resulting reaction fluxes V (t) will at the same time be optimal for the
biomass objective J (equation 2.18) in the inner problem. However, this optimal so-
lution will typically be different based on the choice of regulation time treg and batch
time tf imposed by the outer problem.

Using this defined bilevel problem with the deFBA model, one can directly represent
a manipulation of gene expression pathways through adapting the biomass production
fluxes Vp. However, in previous approaches with the FBA and dFBA models, it is
not possible to directly represent a manipulation of the enzyme production pathway
or gene expression in the optimization problem, as within these models the biomass
production is defined as a single reaction and there are no separate pathways for the
biomass components including enzymes.

3.4.2 Solution procedure

We solve the bilevel optimization problem (3.3) in MATLAB. The outer optimization
is performed using fmincon. The inner deFBA model is solved as described in Section
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2.3.2. The resulting linear optimization, e.g. (2.24), for the inner problem is solved
using linprog in each iteration of the outer problem’s solution. Note that problem (3.3)
is typically not convex, so appropriate care has to be taken to ensure that a global
optimum is found. For that, several initial conditions have been evaluated for the
outer optimization to avoid obtaining a local minimum for the problem’s variables.

3.5 Application: improved ethanol productivity in E. coli
To validate and try the approach, we selected an anaerobic fermentation using E.
coli for ethanol production, a well-established case from the metabolic engineering
perspective. To this aim, first we develop a small-scale network model of E. coli
including substantial metabolic and genetic pathways which is capable to predict E.
coli growth. Then this network model is used within the developed bilevel approach
for the control of target pathways, resulting in maximal ethanol productivity.

3.5.1 Network description

We consider a small-scale metabolic-genetic network model of E. coli including the
core processes relating carbon uptake and growth, which is developed from an earlier
in silico model of the central E. coli metabolism [1]. Deriving this metabolic-genetic
network is guided by [46] and based on the general procedure outlined in Section 2.3.4.
This network includes uptake reactions for carbon sources and reactions for glycoly-

sis, pentose phosphate pathway, anaerobic fermentation, and respiration together with
appropriate production reactions for biomass components including catalytic enzymes,
ribosomes and structural macromolecules (including non-catalytic proteins, lipids and
other cellular components). All reactions with corresponding enzymes and their cat-
alytic constants are given in Tables 3.2 and 3.3 and for simplicity, gene IDs are used
for the naming of enzymes. The main simplifications and reduction steps for obtaining
this network are as below:

• As carbon sources, glucose and lactose are considered. Glucose uptake in the
model is implemented through the PTS system.

• All reactions from pentose phosphate pathways are described by reaction 5 [91].

• All reactions from the TCA cycle are lumped into reactions 11 and 12.

• Only acetate and ethanol are considered as fermentation products, while produc-
tion pathways for other co-products like succinate and lactate are deleted.

• Series reactions are lumped into one reaction which uses the smallest catalytic
constant of the involved enzymes. For the lumped reactions, we consider Lumped
enzymes which are obtained based on the composition of individual enzymes, pi
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and their catalytic constants kcat,i, i ∈ El, in which El is the set of involved en-
zymes in a lumped reaction. In scaling to the enzyme with the smallest catalytic
constant, we define

kmin = min
i∈El

kcat,i, (3.4)

and the composition of the lumped pathway enzyme pl is then obtained as

pl =
∑
i∈El

kmin
kcat,i

pi. (3.5)

• The production reaction for the structural component is based on the composition
of the dry weight of an E. coli cell [60]. From the overall biomass production
reaction of E. coli, the components of the ribosome and enzymes that are modelled
individually in the deFBA model are subtracted, and the remainder (which are
not catalysing reactions) are combined in a single quota compound Q. From the
available data for E. coli [60], it is estimated that this quota makes up at least 55
% of the total biomass. This is formulated in the biomass composition constraint
as

0.55bTp ≤ Q. (3.6)

• During the degradation reactions, we assume the macromolecules break down to
their individual components with no energy usage or synthesis. For example,
each catalytic enzyme decomposes only to its amino acid content with no ATP
production and consumption (as in Table 3.3). The degradation constants for
enzymes are approximated from the bulk protein half-lives in E. coli [60]. The
ribosome and the structural component are considered to have a much longer
half-lives (and be degraded much slower) than metabolic enzymes.

The biomass components collected in vector p and their weight vector b are listed in
Table 3.3. The weight vector are calculated based on the stoichiometric coefficients of
the respective subcomponents and their molar mass. Considering the initial biomass
concentration of B0 = bTp(0) = 0.005 gl-1, the initial biomass composition p(0) is
computed by the resource balance analysis (RBA) [42], using (2.26), to yield the
maximum growth rate for the considered metabolic-genetic network growing on glucose
and lactose.
The catalytic constant of the enzymes is set to be proportional to the enzyme solvent

accessible surface area (SASA) and estimated from the enzyme molecular weight [63].
It is assumed that all biomass reactions are catalyzed by the ribosome R and their
catalytic constants are obtained based on the translation elongation rate of 12 amino
acids/s in E. coli [92]. It may be also needed to scale the obtained catalytic constants
by an overall scaling factor (termed as f within this thesis) in order to match the
cellular growth rate to available experimental data.
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Table 3.2: Metabolic part of the deFBA model: Exchange and metabolic reactions
with associated enzymes, and rate constants kcat scaled by the factor f .

No. Reaction Gene Enzyme kcat/ (min-1)
1 GLC + PEP → G6P + PYR pts pts 8750 · f
2 LCT → GLC(in) lacY lacY 1908 · f
3 GLC(in) + ATP → G6P + ADP glk glk 1533 · f
4 G6P + ATP → 2T3P + ADP tpi tpi 2133 · f
5 G6P + 6NAD+ → T3P + 6NADH pgl pgl 1585 · f
6 T3P + NAD+ + ADP → PEP + NADH + ATP pgk pgk 1740 · f
7 PEP + ADP → PYR + ATP pyk pyk 5762 · f
8 PYR + CoA → AcCoA + FOR pfl pfl 5676 · f
9 PYR + CoA + NAD+ → AcCoA + NADH pdh pdh 59728 · f
10 PEP → OAA ppc ppc 9518 · f
11 OAA + AcCoA + NAD+ → AKG + CoA + NADH icd icd 3171 · f
12 AKG + 2NAD+ + ADP → OAA + 2NADH + ATP mdh mdh 2444 · f
13 AcCoA + ADP → ATP + CoA + ACT ackA ackA 1809 · f
14 AcCoA + 2NADH → ETH + CoA + 2NAD+ adhE adhE 52329 · f
15 4AKG +4NADH +8 ATP → 5AA + 4NAD+ + 8ADP gdhA gdhA 7560 · f
16 2NADH + O2 + 2.5 ADP → 2NAD+ + 2.5ATP nuo nuo 1935 · f

The complete deFBA model is then specified by the reactions in Tables 3.2 and 3.3
in combination with the biomass composition constraint (3.6).

We validate the deFBA model predictions using the available data for substrates,
product, and biomass in aerobic and anaerobic batch growth of E. coli on glucose [5].
From the considered metabolic-genetic network of E. coli, the deFBAmodel can predict
the cellular growth and metabolic dynamics under aerobic and anaerobic conditions.
For the model validation, a scaling factor is implemented for all catalytic constants
of metabolic reactions, in order to match the time for complete glucose substrate
metabolization in aerobic and anaerobic conditions to the experimental data. For this
network, a scaling factor of f = 0.6 for aerobic growth and f = 0.65 for anaerobic
growth are required to meet the experimental batch times. As shown in Figures 3.4
and 3.5, despite of a slight overestimation in final products, predictions obtained from
the deFBA model are in good agreement with the experimental data. One reason for
the overestimation in final products by the model is that we only considered pathways
for acetate and ethanol as fermentation products, while production pathways for other
co-products like succinate are overlooked.

Next step, we use the validated model as a basis for in silico experiments and to
derive dynamic manipulation strategies in order to enhance ethanol productivity.

38



3.5 Application: improved ethanol productivity in E. coli

Table 3.3: Genetic part of the deFBA model: Biomass reactions with values of
weights, catalytic (kcat) and degradation (kdeg) constants and initial conditions for
biomass components. All biomass reactions are catalyzed by ribosome R.

No. Biomass Reaction b/ kcat/ kdeg/ p(0)/
(g mol-1) (min-1) (hr-1) (µM)

Production reactions
17 2358AA + 9432ATP → pts + 9432ADP 257022 0.31 0.00011
18 2346AA + 9384ATP → lacY + 9384ADP 255714 0.31 0.00014
19 321AA + 1284ATP → glk + 1284ADP 34989 2.24 0.00017
20 2272AA + 9088ATP → tpi + 9088ADP 247648 0.32 0.000087
21 2304AA + 9216ATP → pgl + 9216ADP 251136 0.31 0.0006
22 1775AA + 7100ATP → pgk + 7100ADP 193475 0.41 0.00075
23 1880AA + 7520ATP → pyk + 7520ADP 204920 0.38 0
24 1766AA + 7064ATP → pfl + 7064ADP 192494 0.41 0.00017
25 42096AA + 168384ATP → pdh + 16838ADP 4588464 0.02 0
26 3532AA + 14128ATP → ppc + 14128ADP 384988 0.2 0.000038
27 2928AA + 11712ATP → icd + 11712ADP 319152 0.25 0.00011
28 4186AA + 16744ATP → mdh + 16744ADP 456274 0.17 0
29 1124AA + 4496ATP → ackA + 4496ADP 122516 0.64 0.00032
30 35640AA + 142560ATP → adhE + 142560ADP 3884760 0.02 0
31 5866AA + 23464ATP → gdhA + 23464ADP 639394 0.12 0.000012
32 1795AA + 7180ATP → nuo + 7180ADP 195655 0.4 0.00146
33 7459AA + 7420G6P + 38968ATP → R + 38968ADP 2289611 0.1 0.00063
34 466AA + 11G6P + 20T3P + 7144ATP + 1527NADH 54980 1.55 0.05

→ Q + 7144ADP + 1527NAD+

Degradation reactions
35-50 Enzymei → ni AA (e.g. pts → 2358AA) 0.014
51 R → 7459AA + 7420G6P 0.007
52 Q → 466AA + 11G6P + 20T3P 0.007
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Figure 3.4: Aerobic growth of E. coli on glucose: substrate, products and biomass
concentration profiles simulated by the deFBA model together with experimental
data obtained by [5].

3.5.2 Control strategies for dynamic genetic- and process-level
manipulations

Based on the derived metabolic-genetic network model, we aim to implement suit-
able strategies to temporally optimize a batch fermentation of E. coli, resulting in
maximized ethanol productivity.
With glucose and lactose as substrates under anaerobic conditions, E. coli produces

a mixture of products, including succinate, acetate, lactate and ethanol, in order to
maintain the redox balance [93]. For increased ethanol production in the cell, one pos-
sible strategy is to delete pathways for the competing co-products, which leads to an
increased carbon flux toward the ethanol pathway. However, deleting the gene respon-
sible for acetate formation (ackA) significantly reduces the growth rate under anaerobic
conditions, since this pathway also generates ATP and its deletion reduces the ATP
production. Due to the associated growth rate reduction, this reduces productivity
[94]. Therefore, we consider deleted pathways for succinate and lactate production, but
follow a two-stage dynamic optimization strategy with a manipulation of the acetate
pathway for improving the productivity.
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Figure 3.5: Anaerobic growth of E. coli on glucose: substrate, products and biomass
concentration profiles simulated by the deFBA model together with experimental
data obtained by [5].
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Table 3.4: Regulation constraints for the bilevel optimization problem.
Strategy 1: Acetate pathway Strategy 2:
regulation Static ackA knockout +

aerobic-anaerobic switch
Repression of Repression of
gene expression metabolic flux
V29(t) = 0 for t ≥ treg V13(t) = 0 for t ≥ treg V29(t) = 0 for t ≥ 0,

V16(t) = 0 for t ≥ treg

Table 3.5: Initial nutrient conditions and initial biomass bTp(0).
Glucose (GLC) Lactose (LCT) Biomass, bTp(0)

5 mM 30 mM 0.005 gl-1

Here, we implement the dynamic bilevel optimization problem for maximizing
ethanol productivity with two dynamic manipulation strategies: temporal genetic reg-
ulation, and a switch from aerobic to anaerobic conditions.

In order to come up with high ethanol productivity, we consider first a dynamic ma-
nipulation of the acetate formation pathway. This maintains a high cell growth rate in
anaerobic conditions during the initial growth stage. For the switch to the production
stage, the flux through the acetate pathway is repressed. Through the bilevel opti-
mization problem, we seek the optimal time point for switching from the growth stage
(with an active acetate pathway) to the production stage (with a repressed acetate
pathway and increased ethanol formation).

As the second strategy, we consider a combined aerobic-anaerobic batch growth of
E.coli. For enhanced production of ethanol, we propose static knockouts of competing
pathways, including the acetate pathway by deletion of the corresponding gene ackA.
Instead, a high growth rate during the growth stage is achieved through maintaining
aerobic conditions. At the switch to the production stage, the oxygen supply to the
culture is removed and the culture then grows anaerobically to produce ethanol. In
this case, the productivity of ethanol depends on the switch time from aerobic to
anaerobic conditions.

The specific regulation constraints for each of the considered strategies are presented
in Table 3.4. For the dynamic repression of the acetate pathway (Strategy 1), we
include two types of regulation: a repression of ackA gene expression and a direct
repression of the corresponding metabolic flux.

Initial nutrient conditions are summarized in Table 3.5.
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Table 3.6: Bilevel optimization results for different strategies.
Parameter Static ackA Strategy 1: Acetate Strategy 2:

knockout pathway regulation Static ackA knockout +
aerobic-anaerobic switch

Repression of Repression of
gene expression metabolic flux

Batch time, tf (hr) 14.6 12.6 12.2 10.7
Regulation time, treg (hr) 0 1 6.1 5.3
Produced ethanol (mM) 52.7 48.5 50 42.3
Productivity (mM hr-1) 3.61 3.86 4.1 3.95

3.6 Results and discussion

3.6.1 Higher productivity by dynamic strategies

The bilevel optimization framework defined as problem (3.3) is applied to obtain the
optimal time points of the considered manipulations (outlined in Section 3.5.2) for
maximal ethanol productivity. For the two implemented dynamic strategies (dynamic
acetate pathway regulation and aerobic-anaerobic switch), the optimal results are pre-
sented in Table 3.6, and concentration profiles of substrates, products and produced
biomass are shown in Figure 3.6 A-C. Table 3.6 also contains results for the anaer-
obic condition in which no dynamic regulation is considered and instead the acetate
pathway is inactive throughout the batch (by knocking out the gene ackA). A higher
productivity is obtained for all of the dynamic strategies compared to the static ma-
nipulation. In fact, deleting the acetate pathway at the start of the batch leads to a
biomass growth reduction. This, in turn, means that a longer batch time is needed to
consume all the substrates, and thus ethanol is produced with lower productivity but
with higher yield in comparison to the dynamic strategies (Figure 3.6 D).

3.6.2 Different manipulation strategy and productivity by each variant
of Strategy 1

For Strategy 1, our results in modulating expression of target genes instead of static
gene deletions are qualitatively in agreement with previous studies on dynamic genetic
alterations for higher productivity [37, 86]. However, in these works, genetic manip-
ulations which involve the down-regulation of gene expression have been described in
the model by directly repressing the corresponding metabolic fluxes, because the im-
plemented models (FBA and dFBA) did not allow describing a direct manipulation
of the gene expression. With the deFBA model, it is possible to distinguish genetic
manipulations explicitly from a manipulation of the metabolic flux, and our results
indicate that repressing the production pathway of the target enzyme (ackA) results
in a different productivity compared to repressing the corresponding metabolic flux
(acetate flux). Even more importantly, the optimal regulation time for the maximal
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Figure 3.6: Optimal concentration profiles of substrate, products and biomass result-
ing from the bilevel optimizations for several dynamic regulation strategies: (A)
Strategy 1 with repressing the production pathway of ackA enzyme. (B) Strategy
1 with repression of the acetate flux. (Note that the optimal batch time, regulation
time and concentration profiles are different for different variants of Strategy 1.)
(C) Strategy 2 with a static ackA knockout and a switch from aerobic to anaerobic
conditions. (D) Concentration profiles with a static ackA knockout with no dy-
namic manipulation. (GLC: glucose, LCT: lactose, ACT: acetate, ETH: ethanol).
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Figure 3.7: Optimal time for repressing the production pathway of ackA enzyme as
a function of its degradation constant, kdeg. The optimal regulation time increases
with the degradation rate constant of the enzyme.

productivity is also quite different in these two variants of Strategy 1 (Table 3.6). The
bilevel optimization suggests a relatively short time (1 h) to repress the production
of the ackA enzyme. However, the ackA enzyme already produced up to that point
continues to catalyze acetate production until the end of the batch (Figure 3.6 A).
This continuous production of acetate with low rate results in lower productivity for
ethanol in comparison to the case in which the regulation is applied directly to the
metabolic flux of the acetate pathway (Figure 3.6 B). Thereby the rate of on-going
metabolic flux depends on the target enzyme degradation rate compared to the process
batch time.
For this network, an average half-life of 50 hours is considered for ackA based on the

protein half-lives in E. coli [60], which means it degrades slowly relative to the process
time. However, different degradation rates for the target enzyme lead to different
optimal regulation times for repressing the production pathway of that enzyme. For
ackA, the effect of the degradation rate on the predicted regulation time for maximal
productivity is shown in Figure 3.7. From that, it can be noticed that for a higher
degradation constant, kdeg of ackA (faster degradation rate), the optimal time for
repression of the ackA production pathway (reaction 29) is predicted to be later in
contrast to a situation where the target enzyme degrades slowly (lower degradation
constant).
As discussed above, the deFBA model allows to distinguish between a dynamic re-

pression of just the gene expression vs. a dynamic inactivation of the enzyme itself
and the associated repression of the metabolic flux. Our bilevel optimization results
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suggest that with dynamic regulation, repressing the competing metabolic flux leads
to a higher productivity (+ 0.24 mM/h) compared to just the repression of the as-
sociated gene expression. So, for a practical implementation of this strategy, besides
designing methods to manipulate the expression of a target gene by inducible and re-
pressible promoters [81, 82, 84, 86], other techniques for the dynamic manipulation of
the enzymatic activity such as implementing inducible enzyme degradation (by degra-
dation tags) should be taken into account [95], as the enzyme already synthesized may
persist without active degradation. In contrast, the models previously used do not
permit a distinction between genetic and metabolic flux regulation, and in principle
only consider the repression of the metabolic flux.
In a recent study about increasing the productivity of itaconic acid production by

E. coli using a two-stage process strategy [96], it has been noticed that there is a con-
siderable delay when switching from the growth stage to the production stage through
a dynamic genetic repression in the TCA cycle. The delay they noticed between the
time of implementing the genetic repression, and the time in which the corresponding
flux is turned off, is due to the activity of pre-existing enzymes, which matches well to
our observations in this work. These results imply that it is highly important to take
enzyme expression pathways into account during the model optimization, especially
when planning for dynamic manipulations on the gene expression level only.

3.6.3 Robustness of a selected manipulation strategy

From the results in Table 3.6, we see the deFBA-based bilevel optimization problem
predicts that among implemented dynamic strategies, the second variant of Strategy
1 (dynamic repression of metabolic flux) provides the highest productivity for this
particular network as well as the highest yield. The results also suggest instead of just
a dynamic gene knockout (first variant of Strategy 1), the aerobic-anaerobic switch
seems to be more promising as besides giving higher productivity, it should also be
less challenging to be implemented technically.
As the enzyme capacity constraint is a very important constraint within the deFBA

model, we perform a sensitivity analysis on the catalytic constants of metabolic re-
actions. Besides comparing the relative importance of the different enzymes, this
sensitivity analysis also allows to evaluate the robustness of the above comparison
between strategies obtained from the bilevel optimization.
For the sensitivity analysis, the values of the catalytic constants are individually

perturbed to kcat,new = kcat/2, iterating over all metabolic reactions. For each per-
turbation, the deFBA model is solved with the network from Section 3.5.1. From
the perturbed solutions, we calculate the biomass growth rates in both aerobic and
anaerobic conditions, as shown in Table 3.7. It can be noticed that changing the kcat
value of reaction 6 (enzyme pgk) has the biggest impact on the anaerobic growth rate,
and it is also among the most influential reactions in aerobic conditions. Thus, for
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the robustness analysis of the bilevel optimization results, we specifically consider an
uncertainty in this value.
Performing the bilevel optimization with a range of different kcat values for reaction

6, we find the same ordering of strategies with respect to productivity as in the nominal
case for -30% up to +35% changes in its original value. For kcat values less than -30%
of the original value, the Strategy 2 (aerobic-anaerobic switch) becomes the strategy
with the highest productivity, instead of the second variant of Strategy 1 (dynamic
repression of metabolic flux). On the other hand, for values higher than +35%, the
second variant of Strategy 1 has still the highest productivity, but the first variant of
Strategy 1 (dynamic repression of gene expression) surpasses Strategy 2. Therefore,
we find the range of parameter uncertainties that the ordering of optimal strategies is
robust against, which sounds to be wide enough. However it should be noted that large
parameter perturbation can of course affect the predictions from the optimization, and
a good estimate of these constants is still desirable.
In this way, the proposed model and bilevel optimization approach can be helpful

for decision making between different control strategies for metabolic engineering and
bioprocess design purposes.

Table 3.7: Comparison of biomass growth rates for changes in catalytic constants of
metabolic reactions (kcat,new = kcat/2)

Reaction No. anaerobic growth rate ratio aerobic growth rate ratio
µnew/µ µnew/µ

1 0.9775 0.989
2 0.9449 0.9634
3 0.9943 0.9996
4 0.8955 0.9572
5 0.9958 0.9189
6 0.8268 0.9279
7 0.9602 0.9779
8 0.9377 1
9 1 0.9785
10 0.9864 0.9778
11 0.9775 0.9671
12 1 0.9778
13 0.9379 1
14 0.9366 1
15 0.9948 0.9967
16 1 0.8579
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3 Bioprocess optimization and control by dynamic metabolic-genetic network models

3.6.4 Optimal cellular resource allocation during the two-stage growth

From the optimization prediction by the deFBA model shown in Figure 3.6, one can
notice that the cells first take up glucose and after its depletion, they switch to lac-
tose according to the glucose-lactose diauxie experimentally observed in E. coli. This
uptake pattern can be explained as the optimal solution of the deFBA model with
the metabolic-genetic network of E. coli. One reason is that the uptake reaction for
glucose has a higher enzymatic efficiency than the uptake reaction for lactose. More-
over, glucose uptake and transformation to glucose-6-phosphate (reaction 1) require
less investment in terms of enzyme production cost compared to the lactose uptake
and transformation to glucose-6-phosphate (reactions 2 and 3).
It has been already shown that the sequential uptake of substrates limits the ability

of the microbial culture to efficiently produce bio-products and results in lower pro-
ductivities [36]. Therefore, when a microorganism shows a sequential uptake pattern
for available substrates, it is highly demanded to apply models which include the effect
of this mechanism on the productivity of the target product. In other words, imple-
menting models which cannot capture the catabolite repression by substrates (like
FBA and dFBA models previously used in the bilevel optimization for maximal pro-
ductivity) may not result in accurate predictions of an optimal strategy for metabolic
engineering purposes with mixed substrates and in practice we probably achieve a
lower productivity than expected based on the model prediction.
For further evaluation on the optimal resource distribution within the cell during

the two-stage growth, we provide the biomass composition for the implemented strate-
gies. Figure 3.8 represents the percentage of some key individual enzymes in case of
dynamic regulations (A-C) and static ackA knockout(D). As it can be seen, for both
variants of Strategy 1, the percentage of ackA is high in the growth stage, and then
in the production stage (after the time which regulation is applied) its percentage is
reduced. On the other hand, the percentage of enzyme adhE (responsible for ethanol
production) is mainly upward leading to ethanol production with higher production
rate in the production stage. The enzyme pfl (responsible for producing AcCoA from
pyruvate under anaerobic condition) is active during the whole batch time. It should
be mentioned that as expected no contribution of pdh (used for AcCoA production
from pyruvate in aerobic condition) is predicted by the model in Strategy 1 with the
anaerobic growth.
For the Strategy 2, the percentage of enzyme nuo (responsible for ATP production

in aerobic growth) is increased at the first phase of the growth (aerobic growth) and
then starts to decrease around the regulation time until the end of the batch. On the
other hand, at the second phase of the growth (switch to anaerobic condition) the
percentage of enzyme adhE (for ethanol production) is increased in order to promote
producing ethanol. Interestingly, in Strategy 2 it is noticed that when switching from
aerobic to anaerobic condition, the model predicts down-regulation of pdh (aerobic
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AcCoA production) and up-regulation of pfl (anaerobic AcCoA production) without
considering any regulatory information. Using the genetic part of the deFBA model,
we infer that is probably because pdh is a very expensive enzyme and the cell prefers to
switch it down as soon as there is no more need to produce additional NADH required
for respiration through the AcCoA production pathway (metabolic pathway 9).
The preference of the cell for glucose uptake can be again noticed in Figure 3.8, from

the profile of pts (responsible for glucose uptake) which is active from the beginning,
and profiles for lacY and glk (responsible for lactose uptake and transformation) which
their concentrations increase in the later stages of the growth.

3.6.5 Computational limitations

For the implemented deFBA-based bilevel optimization, keeping the inner model linear
allows for an efficient numerical solution. For the simulations, we consider N = 10
time intervals and K = 2 collocation points within each interval. Based on that, the
resulted LP of the deFBA model consists of 1400 decision variables and 1260 algebraic
constraints. Each solution of this LP requires 1.2s on a standard desktop computer,
and on average 30 iterations on the inner model are needed to perform the outer
optimization. The required CPU time for the inner problem depends on the number
of collocation steps, which defines the number of variables within the inner problem (as
explained in Section 2.3.2). Although in this work we implement a small-scale network,
deFBA models with larger networks (up to around 500 reactions) have already been
efficiently simulated, e.g. [53, 97]. We think that a bilevel optimization is still feasible
with large-scale models.
Although implementing a linear model for the inner problem is an advantage from

the computations required, it can be a potential limitation of the deFBA model that
flux bounds are approximated to change linearly with respect to the enzyme concentra-
tion, and do not depend on substrate metabolite concentrations. This is an approxima-
tion from the commonly used nonlinear reaction kinetics, such as the Michaelis-Menten
kinetics for substrate uptake, or inhibitory terms that reflect growth rate suppression
by the presence of particular species. It has been argued by [97] that due to metabolic
enzymes working mostly at saturation and also typically low substrate km values (e.g.
0.015 mM for glucose [15]), this approximation does not induce a significant error.
However, it should be noted that for applications with substrate-relevant growth in-
hibition, such an approximation works for low substrate concentrations and in case of
higher levels of inhibition it can impose significant prediction errors.
It is possible to formulate the deFBA model using nonlinear constraints, but with a

much higher computational cost for the associated nonlinear optimization. While this
will probably be prohibitive for the bilevel approach, one could still try to validate the
results for the optimal strategy using a more elaborate model. Besides, for the deFBA
model with nonlinear constraints one can also consider approaches for approximating
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Figure 3.8: Percentage of total biomass (dry-weight) for key enzymes in the optimal
solution for several regulation strategies: (A) Strategy 1 with repressing the pro-
duction pathway of ackA enzyme. (B) Strategy 1 with repression of acetate flux.
(C) Strategy 2 with a static ackA knockout and a switch from aerobic to anaer-
obic conditions. (D) Static ackA knockout with no dynamic manipulation. The
distribution of enzymes is rearranged in different stages of each growth modes.
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the nonlinearity with one or multiple linear constraints in order to maintain efficient
computation times while still keeping a sufficient model accuracy [17, 19].
As a relevant evaluation, we briefly outline such an approximation we have imple-

mented in [17] for a nonlinear dFBA model. The model is similar to the DOA formula-
tion of dFBA presented in Section 2.2, with an additional inequality constraint on the
substrate uptake to address growth inhibitions. To deal with the nonlinear dynamics
of dFBA, we use the absolute metabolic flux which is not defined per gram of biomass.
To do so, we define the absolute metabolic flux V , as a multiplication of the metabolic
flux per gram of biomass v, and the biomass concentration X,

V (t) = v(t)X(t). (3.7)

This transformation results in linear dynamics of the dFBA model, while the growth
inhibition constraint still remains nonlinear with a general form of

V uptake(t) ≤ vuptakemax X(t)
1 + z(t)/KI

, (3.8)

in which the uptake flux of the substrate V uptake is reduced as the concentration of a
metabolite z increases (vuptakemax andKI are the predefined maximum uptake flux and the
metabolite inhibition constant, respectively). We approximate this constraint based
on a tangent plane approximation of the function

g(X, z) = vuptakemax X(t)
1 + z(t)/KI

. (3.9)

Based on the shape of this function’s graph, two linear approximations are performed
at two points of this surface (X1, z1, g(X1, z1)) and (X2, z2, g(X2, z2)) by defining
the corresponding tangent planes as L1(X, z) and L2(X, z). Conceptually, each of
the planes can be considered as an approximation to the original surface, and the
constraint in (3.8) can be approximated by the mixed logical/linear constraint

V uptake ≤ L1(X, z), or

V uptake ≤ L2(X, z). (3.10)

This is conceptually shown in Figure 3.9 in a two dimensional space, with the function
g(x) to be approximated by lines L1(x) and L2(x).
The constraint (3.10) is numerically implemented by a time-dependant binary vari-

able λ, such that:

V uptake(t)− L1(X(t), z(t)) ≤ mλ(t),
V uptake(t)− L2(X(t), z(t)) ≤ m(1− λ(t)),

(3.11)

with m as a positive large constant (m >> 0). Each value of λ ∈ (0, 1) determines
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3 Bioprocess optimization and control by dynamic metabolic-genetic network models

Figure 3.9: Approximation of g(x) by lines L1(x) and L2(x).

which plane (L1, or L2) should be used for the approximation and in fact which of
these inequality constraints in (3.11) is active during the optimization.
After replacing the nonlinear constraint (3.8) by the two linear constraints in (3.11),

the dynamic dFBA optimization can be solved using the collocation method (with
the procedure explained in Section 2.3.2). Due to the presence of binary variables λ,
discretization of variables results in a mixed-integer linear problem (MILP) which can
then be solved numerically with a suitable solver, such as intlinprog in MATLAB.
In [17], the dFBA model has been implemented within a bilevel formulation for im-

proving bioprocess productivity by dynamic manipulation of the metabolic network.
Through implementing the dFBA-based bilevel problem for a case study, it was shown
that the bilevel optimization based on MILP (for dFBA with constraint approxima-
tions) gives optimal predictions for maximal productivity very close to those from the
bilevel optimization with NLP (corresponding to the original nonlinear dFBA without
approximating the nonlinear constraint), but with much lower computational cost.
For additional details relevant to this part, the bilevel optimization problems for max-
imal productivity based on nonlinear and linearized dFBA models are presented in
Appendix A.
To reduce the approximation errors, selection of appropriate points for defining

planes is however important for surface approximation, such that the resulting planes
cover as much of the area below the surface as possible. In case of nonlinear con-
straints with high degree of nonlinearity, the possible treatment would be considering
more approximation points to increase the accuracy of approximation, which in turn
increases the number of binary variables.
Therefore, linear approximations can be a possible remedy to reduce the computa-
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tional cost associated with nonlinear deFBA optimizations, while the linearized model
is still enough accurate for the growth simulation. Within the following chapter, a
linear approximation of a nonlinear deFBA model (implemented for closed-loop con-
trol of fed-batch bioreactors) is considered, which provides more details on the tangent
plane approximation.

3.7 Conclusion
In this chapter, we have implemented a bilevel optimization framework in order to im-
prove biochemical productivity via a dynamic regulation of metabolic-genetic networks
using genetic and process level manipulations. The constraint-based deFBA model has
been applied in order to find the optimal regulation times for maximal productivity of
product formation with a bilevel dynamic optimization approach.
The method has been employed to design a regulation strategy for improved ethanol

production by E. coli, by finding the optimal manipulation time for (1) repressing the
acetate pathway and (2) switching from aerobic to anaerobic conditions. Generally,
the dynamic manipulation approaches result in a higher productivity, but lower yield
compared to the static gene knockout. This offers a degree of flexibility to choose
between maximum productivity of the target product and maximum yield of the target
product at the expense of a longer batch time.
As discussed, the manipulation of the acetate pathway can involve different levels

such as regulation of the metabolic flux vs. regulation of the enzyme expression.
The difference in results for the manipulations on different levels captured by deFBA
indicates that the construction and utilization of models that can describe the intended
manipulation strategy is essential in achieving reliable predictions.
Overall, the deFBA-based bilevel problem can be a good basis for open-loop opti-

mization of the process for deriving process- and gene- level control strategies, when
the derived metabolic-genetic networks model represents the real process with high ac-
curacy. However, possible uncertainties and modeling errors may exist resulting in an
overall performance far from the optimum. This is an important aspect of model-based
optimization which is taken into account in following chapters employing model-based
control strategies, taking care of the process uncertainties.
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4 Model predictive control of the bioprocess
based on dynamic constraint-based models

In this chapter a closed-loop control of the bioprocess is considered by introducing
measurement feedback into the open-loop strategies, in order to handle uncertainties
in modelling parameters. The bilevel problem developed in the previous chapter is im-
plemented within a model predictive control routine for online adjustment of controller
states based on measurements. The control problem is specifically developed for a fed-
batch culture and through the online control it is aimed to obtain fed-batch operating
policies including the substrate feeding and process-level regulation of metabolism for
optimizing the productivity of a target product. An example of fed-batch fermentation
of E. coli for maximal ethanol productivity is considered to evaluate the advantages
of feedback corrections.

4.1 Closed-loop control of the bioprocess

In the previous chapter, we have implemented the dynamic enzyme-cost FBA model
within a bilevel framework to improve bioprocess productivity. The deFBA-based
bilevel approach as the open-loop control problem could improve bioprocess productiv-
ity by determining optimal strategies for dynamic manipulation of cellular metabolism
in both genetic and process levels.
Through the open-loop control, operating strategies are determined once through

the offline optimization and there is no consideration of measurement feedbacks. Such
a offline control relies completely on the accuracy of the underlying process model for
reproducing responses close to the real process based on the derived profiles of the
manipulated variables.
As an open-loop control of the bioprocess in our work the deFBA-based bilevel

optimization is solved based on the defined parameters and a given initial condition
and then the determined control sequences are applied to the plant (Figure 4.1 A).
However, uncertainties are inevitable in modeling and simulation of bioprocesses due
to the highly variable nature of biological systems. Because of the existing uncertain-
ties and mismatches the model may not be able to predict the real process dynamics
accurately, which results in a poor performance of the open-loop control and subop-
timal production processes. In practice, improved performance can be obtained by
introducing measurement feedback into the open-loop operating strategy [98]. In this
direction, in this chapter we consider a closed-loop control of the bioprocess by inte-
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A

B

Figure 4.1: Open-loop (A) vs. closed-loop (B) control of the bioprocess.

grating the information from online measurements into the open-loop deFBA-based
bilevel optimization (Figure 4.1 B).

4.2 Optimization and control of a fed-batch bioreactor
In this chapter, we consider closed-loop control of the bioprocess for improved produc-
tivity specifically in fed-batch process modes.
Many biotechnological processes rely on fed-batch operation modes, where one or

more substrates are fed to the bioreactor gradually during the process, while the prod-
ucts remain in the bioreactor until the end of the run. A fed-batch bioreactor allows
for better control of the nutrient level for favourable growth conditions. This is in fact
the superior cultivation mode when controlling concentrations of a nutrient affect the
yield or productivity of the desired product. A common example is the case where
some nutrients inhibit the growth of microorganisms even at relatively low concentra-
tions. By adding such substrates properly, their inhibitory effects can be significantly
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reduced resulting in improved process rates.
In this direction, an efficient production process requires determination of fed-batch

operating policies due to their strong effects on cellular metabolism. This means opti-
mal balance between cell growth and product formation and optimal process productiv-
ity is highly dependant to keeping an optimal level for nutrients inside the bioreactor.
In this direction, we implement the deFBA-based bilevel problem to find the optimal
fed-batch operating strategies including the substrate feeding and process-level regula-
tion of metabolic network that achieves maximal productivity for a target metabolite.
Afterwards, we implement the deFBA-based bilevel problem within a model predic-
tive control (MPC) [99] which allows for feedback corrections. It involves repeating
the bilevel optimization while it is updated by online measurements.

4.2.1 Fed-batch growth simulation

Here we implement the deFBA model to simulate the cellular growth in a fed-batch
culture. To address the substrate feeding during the process, the previously presented
batch growth model (problem 2.19) is revised accordingly to the following form

maximize
V (·)

tf∫
t0

v(t)bTp(t)dt (4.1a)

s.t. d(vz)
dt

= zfF (t) + SzzVz(t),
d(v)
dt

= F (t), (4.1b)
d(vp)
dt

= SppVp(t), (4.1c)

SmV (t) = 0, (4.1d)∑
j∈cat(i)

|Vj(t)/kcat,j| ≤ v(t)pi(t), i ∈ E (4.1e)

Vmin(t) ≤ V (t) ≤ Vmax(t), (4.1f)
ϕQb

Tp(t) ≤ pQ(t), Q ∈ Q, (4.1g)

V uptake(t) ≤ V uptake
max

zi(t)
Km + zi(t) + z2

i (t)/KI
, (4.1h)

x(t0) = x0 = (z0, p0), v(t0) = v0, x(t) ≥ 0, (4.1i)

where v is the liquid volume and F , zf are the feed flow rate and the feed concentration,
respectively. In the case of growth inhibitions by the substrate (a relevant consideration
for the fed-batch mode as explained earlier), additional constraints should be taken into
account. Here, growth inhibitions by the substrate is addressed by defining a constraint
on substrate uptake flux, V uptake (4.1h) which reduces the maximum substrate uptake
rate when high concentrations of the substrate are available. In its general form,
(4.1h) is a component-wise inequality constraint, where zi is the specific substrate
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with inhibition on its uptake flux V uptake, andKm andKI are saturation and inhibition
constants. V uptake

max is the maximum uptake rate of the inhibiting substrate. For more
precise definition within the deFBA, V uptake

max can be replaced by kcatv(t)p(t), as the
substrate uptake based on the maximum capacity of the corresponding enzyme. It
should be mentioned that for simplicity here we assume very low degradation rates for
enzymes and neglect the degradation term from mass balance equations (4.1c-d).
The resulted nonlinear dynamic optimization Problem (4.1) simulates the fed-batch

growth to be used further for bioreactor optimization and control.

4.2.2 Control problem for productivity maximization

The deFBA model for the fed-batch growth simulation then is used within a bilevel
framework to define the open-loop control problem for maximizing the productivity of
the target product xt. Through the problem (4.2), we are looking for a feeding profile
such that the substrate concentration is optimal within the bioreactor, along with the
optimal timing for the two-stage dynamic control of the metabolism.

maximize
F (t),tf ,treg

xt(tf )
tf

s.t. t0 ≤ treg ≤ tf , v(tf ) ≤ vmax,

maximize
V (·)

tf∫
t0

v(t)bTp(t)dt

s.t. (4.1b) to (4.1h),
x(t0) = x0 = (z0, p0), v(t0) = v0, x(t) ≥ 0,
Vreg(t) = 0 for t ≥ treg.

(4.2)

Fed-batch operating conditions including feed flow rate F , the optimal batch time
tf and the switch time between growth and production stages treg (by regulation
of a target flux Vreg) are determined in the outer optimization. For each selection of
these control variables, the inner deFBA constrains the fluxes to maximize the biomass
integral, subject to the repression of the manipulated flux at time treg. Recall that using
this defined deFBA-based bilevel problem, one can directly represent a manipulation
of metabolic pathways Vz and Vm, or manipulating gene expression pathways through
adapting the biomass production fluxes Vp.

4.3 Closed-loop control based on MPC

After defining the open-loop problem for the offline control, in the next step we consider
online control of the fed-batch bioreactor based on a shrinking-horizon MPC in order
to account for plant-model mismatches. The proposed control approach is composed
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MPC (with deFBA-based 
bilevel optimization) 

Input (F,...)

p

Optimization-based Controller

Measurements ( , )

RBA (state estimator)

Figure 4.2: MPC control scheme.

of MPC and RBA as an estimator for estimating the state of biomass components p.
Measured and estimated states are then used to initialize the deFBA model employed
within MPC.
The control scheme is visualized in Figure 4.2 and explained in detail in following

sections.

4.3.1 Model predictive control

Model predictive control is an optimization-based control approach which uses a model
to predicts the future behaviour of a dynamic system. MPC computes a trajectory of
control inputs by solving an optimization problem at each sampling time [99]. Here, we
consider a closed-loop control of the fed-batch bioreactor by introducing feedback to
the open-loop problem (4.2), based on the MPC. The optimal trajectory of the control
inputs is determined by repeating the bilevel optimization (4.2) while updating the
state (x, and v) based on online measurements.
For the MPC optimization, we first fix the batch time tf equal to its open-loop

optimal value, because online adjustment of this variable is considered impractical
during the production process. Then as the batch runs for a finite time, a shrinking
horizon is defined as tf − T for the time the optimization is performed over; where T
is the current time. A step size h is defined to discretize the prediction horizon to N
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time steps:
h = tf − t0

N
, T = t0 + ih, i = 0, ..., N.

Therefore, the MPC problem has a general form of

maximize
{uk(t)}

tf
T

F({xk(t)}tfT , {uk(t)}
tf
T ), (4.3)

where {uk(t)}tfT and {xk(t)}tfT stand for the sequences of control input (here F and
treg) and state variables (here z, p and v) vector, respectively, from the current time
T to the final time tf at the k-th iteration of MPC. F is the objective function.
In our case, each individual optimization problem for k = 1 to N , over the shrinking

batch time [T, tf ] is defined as:

maximize
{Fk(t)}

tf
T ,treg,k

xt(tf )

s.t. T ≤ treg,k ≤ tf , v(tf ) ≤ vmax,

maximize
V (·)

tf∫
T

vk(t)bTpk(t)dt

s.t. (4.1b) to (4.1h),
xk(T ) = x̃k(T ) = (z̃k(T ), p̃k(T ), vk(T ) = ṽk(T ), xk(t) ≥ 0,
Vreg(t) = 0 for t ≥ treg,k.

(4.4)
As the batch time tf is taken from the open-loop optimization, MPC maximizes the
final concentration of the target metabolite xt in order to have maximal productiv-
ity. Based on the defined nonlinear MPC problem (4.4), the feedback is applied by
resetting the controller initial conditions using measured or estimated state variables
x̃ (concentrations of substrate and products z̃ and biomass components p̃) and ṽ at
each iteration.

4.3.2 State estimation by resource balance analysis

During the MPC iterations, the states are updated by the current process measure-
ments. To update the states, we need to have information on the concentration of
biomass components (enzymes, quota compounds and other macromolecules) individ-
ually, as an initial condition for the deFBA model. However, in practice it is only
possible to measure the total biomass concentration B = bTp. Therefore, an algorithm
is needed to estimate the state of biomass components.
We compute the optimal biomass composition by the resource balance analysis

(RBA) and use that as an estimate. As explained earlier in Section 2.3.3, through
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the RBA problem it is assumed that the cell is at an optimal quasi steady state where
for each given value of biomass, the metabolic fluxes and cellular components are al-
located to maximize the cellular growth rate µ. Note that this is consistent with the
cellular objective optimization of the deFBA model in the inner problem, since max-
imization of the growth rate is often equivalent to the maximization of the biomass
integral.
For our application here, the estimation algorithm is defined as:

maximize
µ,V,p

µ

subject to SpVp − µvp = 0,
bTp = B̃,

SmV = 0,∑
j∈cat(i)

|Vj/kcat,j| ≤ vpi, i ∈ E

Vmin(z̃) ≤ V ≤ Vmax(z̃),
ϕQb

Tp ≤ pQ, Q ∈ Q,

V uptake ≤ V uptake
max

z̃i
Km + z̃i + z̃2

i /KI
,

Vreg = 0, if repressed.

(4.5)

For the measured value of the biomass B̃ at each sampling time with the correspond-
ing volume v, and the state of the manipulated flux Vreg (active or repressed), this
problem gives an estimate for biomass components, p which is used to initialize the
controller states in each iteration. Moreover, measurements on extracellular species (z̃)
are used to constrain fluxes. Besides being used in constraining the substrate uptake
flux V uptake in the growth inhibition constraint, measurements on z̃ allow to adjust
Vmin and Vmax; as an example if a metabolite is not present, the corresponding upper
flux bound is set to zero.

4.3.3 Linearized MPC

To reduce the computation cost associated with the nonlinear MPC problem in (4.4),
we seek a procedure to transform it into a linear problem. Toward this end, we imple-
ment a suitable transformation of problem variables followed by a linear approximation
of the nonlinear constraint for the substrate uptake.
For external species and biomass components x = (z, p), first we define new variables

as x́(t) = v(t)x(t), which results in a linear objective and dynamics of the model. As
the next step, we consider a linear approximation of the growth inhibition constraint
(4.1h). To do so, we first replace the general term of V uptake

max inside this constraint by
kcatṕ(t) for the substrate uptake with maximum enzyme capacity, and then implement
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the tangent plane approximation to linearize this constraint.
Basically, if we have a function U = f(X,Y), f : R2 → R and if f is differentiable

at point (a, b), then the graph of the linearization L((X,Y); (a, b)) is the tangent plane
to the graph of U = f(X,Y) at the point (a, b, f(a, b)) in R3, such that:

L(X,Y) = f(a, b) + ∂f

∂X
(a, b)(X− a) + ∂f

∂Y
(a, b)(Y− b). (4.6)

Here, we follow the same procedure to approximate the nonlinear function in the
constraint (4.1h)

f(ṕ, ź) = kcatṕ
ź/v

Km + ź/v + (ź/v)2/KI
,

by linearizing that at the point (ṕ(T ), ź(T ))

L(ṕ(T ), ź(T ) = f(ṕ(T ), ź(T )) + fṕ(ṕ(T ), ź(T ))(ṕ− ṕ(T )) + fź(ṕ(T ), ź(T ))(ź − ź(T )).

This results the inequality constraint (4.1h) as

V uptake(t) ≤ L(ṕ(T ), ź(T )). (4.7)

The supporting idea for the linear approximation of this constraint is that as in MPC
the states are reset at each control time step, the constraint can also be approximated
at the start point of each MPC iteration (time T ). In this way, the approximated
constraint is satisfied only within one control time step and then will be updated for
the next time step. These consequent linear approximations of (4.1h) possible in the
closed-loop optimization, allow us to have a reasonable approximation for the nonlinear
constraint and to work with an overall linear model for the MPC.

4.3.4 Overall MPC algorithm

The overall control algorithm is presented as Algorithm 4.1 (according to Figure 4.2).
It should be noted that before the iterations of the MPC algorithm, the RBA algorithm
is used to estimate the composition of the initial biomass, p(0).

4.3.5 Numerical solution

The solve bilevel optimization problems for the offline (4.2) and online (4.4) control,
the inner deFBA model is treated by the collocation approach (as described in Section
2.3.2), considering N = 10 time intervals and K = 2 collocation points within each
interval for discretization of variables (V , ẋ and x). The decision variable F determined
from the outer optimization is considered to change at the boundaries of the N time
intervals, as (F1, F2, ..., FN).
For the MPC, the controller sampling time is considered to be equal to the time
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4.4 Application: fed-batch growth of E. coli for improved ethanol productivity

Algorithm 4.1: Overall control algorithm
Estimate p(T ) with RBA for T = 0
For k = 1 to N
1. Given initial states x̃k(T ) = (z̃k(T ), pk(T )) and ṽk(T ),
a. linearize the nonlinear constraint (4.1h) as equation (4.7).
b. solve the dynamic optimization problem (4.4) over [T , tf ], which yields the
optimal control sequence (Fk,treg,k).

2. a. Apply the first move of (Fk)T+h
T to the plant during [T , T + h].

b. Apply the flux regulation (Vreg = 0) if T ≤ treg,k ≤ T + h.
3. T = T + h

4. Obtain new measurements: z̃k+1(T ), the total biomass B̃k+1(T ) and ṽk+1(T ).
5. Solve the RBA problem (4.5) with measured total biomass B̃k+1(T ),
which gives estimated biomass components pk+1(T ).
6. k = k + 1, iterate.

intervals for variables discretization (tf − t0
N

). As the state variable x(t) is discretized
at the boundaries of the N time intervals, it can be reset at each sampling interval
based on the measurements.
The overall bilevel optimization problems for the open-loop control and the MPC

are then solved in MATLAB. The outer optimization is performed using fmincon. The
inner deFBA is solved using linprog for the LP optimizations of the MPC, and using
IPOPT for the NLP of the open-loop optimization, for each iteration of the outer
problem’s solution.
For the open-loop optimization, several initial conditions have been evaluated for the

outer optimization to avoid obtaining a local minimum of problem’s variables. Also, for
an efficient performance within the MPC, the optimal control inputs obtained from
the open-loop optimization are used as an initial guess for the first iteration of the
closed-loop optimization. As the MPC proceeds, the optimal control values obtained
from each iteration are used as the initial guess for the next iteration. This approach
helps to avoid local optima during the MPC iterations.

4.4 Application: fed-batch growth of E. coli for improved
ethanol productivity

As an implementation, we consider a fed-batch growth of E. coli for converting glucose
to ethanol with maximum productivity. For that, we use the small-scale metabolic-
genetic network model of E. coli derived in previous chapter (Section 3.5.1) with
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4 Model predictive control of the bioprocess based on dynamic constraint-based
models

Table 4.1: Initial conditions and model parameters.
Parameter value
v(0) 0.7 l
GLC(0) 20 mM
GLCf 50 mM
bTp(0) 0.005 gl-1

Km, KI 0.015, 10 mM
vmax 1.5 l

glucose as the only available substrate which is considered to have growth inhibitory
effects at high concentrations.
For enhanced production of ethanol, we include a static knockout of the acetate

pathway as the competing co-product (by deletion of the corresponding gene ackA),
along with an optimal aerobic-anaerobic switch. Through that, a high growth rate is
achieved by maintaining aerobic conditions (growth stage) while at an optimal switch
time, the oxygen supply to the culture is removed and the culture then grows anaero-
bically to produce ethanol.
Model parameters and initial values are listed in Table 4.1, including initial liq-

uid volume v(0), glucose GLC(0), and biomass (bTp(0)) concentrations, feed glucose
concentration GLCf , maximum allowable liquid volume vmax, and saturation and in-
hibition constants (Km, KI) for glucose uptake.

4.5 Results and discussion

To have maximal ethanol productivity through the E. coli model, the open-loop op-
timization problem (4.2) is firstly applied to obtain the optimal batch time, aerobic-
anaerobic switch time, and the feeding pattern. The obtained optimal batch time (12.3
hr) is then used as tf within the closed-loop optimization problem (4.4), while the reg-
ulation time and the feeding rate are adjusted online to compensate for plant-model
mismatches.
To check the accuracy of implementing the linearized MPC problem, we compare

the results obtained by the open-loop optimization to those from the closed-loop op-
timization without considering any modelling error or mismatches. The predictions
by these two implementations are quite similar. Both implementations yield almost a
same switch time (6.1 hr). As shown in Figure 4.3, there is a small difference in the
feeding pattern. The glucose, ethanol and biomass concentration profiles (Figure 4.4)
are slightly different, but both optimizations result in almost the same final values of
species (including 45.8 mM ethanol). Based on the results we can argue applying the
linearized model for the closed-loop controller as an approximation of the nonlinear
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Figure 4.3: Feeding rate from the closed-loop (solid line) and open-loop (dashed line)
control considering no parametric errors.

model works well.

4.5.1 MPC performance with parametric errors

To evaluate the performance of the closed-loop controller over the open-loop one, we
consider some modelling errors. To do so, we consider plant-model mismatch in terms
of two model parameters, the catalytic constant kcat of the enzyme ’pts’, responsible for
glucose uptake (reaction 1) and glucose feed concentration (GLCf ). For the controller
we use the nominal values of these two parameters as in Tables 3.2, and 4.1, while for
the plant simulation perturbations are added.
First, we consider -20% errors in the kcat of glucose uptake enzyme in the plant

model. The MPC is then implemented with the final batch time of 12.3 hr. Figures
4.5 and 4.6 demonstrate the performance of the closed-loop control over the open-
loop one. In order to compensate for decreased glucose uptake rate due to the reduced
enzyme catalytic constant, MPC adjusts the feeding pattern and the regulation time for
maximal ethanol production. The closed-loop controller predicts a longer aerobic phase
(7.4 hr) compared to the nominal case (6.1 hr) to have sufficient amount of biomass
produced (0.96 g/L) for higher rate of the process. The final ethanol concentration
is obtained as 43 mM (64.5 mmol). This concentration value of ethanol is reasonably
consistent with the nominal result of 45.8 mM (68.7 mmol).
On the other hand, the open-loop controller shows a relatively poor performance

with the perturbed parameters, compared to the closed-loop one. As there is a reduced
substrate uptake rate (due to the reduced catalytic efficiency of the corresponding
enzyme), only 0.7 g/l biomass is produced during the batch. Therefore, a large amount
of substrate remains unconsumed and as the result only 32.3 mM (48.5 mmol) of
ethanol is produced.
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Figure 4.4: Biomass, glucose and ethanol concentration profiles resulted from the
closed-loop (solid line) and open-loop (dashed line) control considering no para-
metric errors.
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Figure 4.5: Feeding rate from closed-loop (solid line) and open-loop (dashed line)
control for -20% error in the kcat of glucose uptake enzyme.

For further investigation of the closed-loop controller performance, we consider
+20% change in glucose feed concentration in the plant simulation. Figure 4.7 rep-
resents the trajectories for the control input from the open-loop control and MPC. A
comparison of species concentrations resulted from MPC and the open-loop control is
also shown in Figure 4.8.
With the increased amount of glucose in the feed, the online controller adjusts

the substrate feeding and the aerobic-anaerobic switch time to appropriately balance
between the biomass growth and ethanol production. Therefore, by an optimal feed
input and initial aerobic growth of 6.65 hr predicted by MPC, all the substrate is
consumed and 52 mM ethanol is produced. As shown in Figure 4.8, this closed-loop
value for final ethanol (52 mM) is significantly higher than the case of implementing
the open-loop optimal profile, where there is an incomplete consumption of substrate
and only 43 mM ethanol is produced.
As mentioned earlier, in this work N = 10 iterations are considered for the MPC

optimizations. For this case study, an average 59 s is required for each MPC iteration.
However, if one consider the implementation of the original nonlinear deFBA model,
the required time increases significantly (an average 4390 s for each iteration). In fact,
using a linearized model within the MPC saves the computational time vastly but of
course at the expense of linear approximation errors.

4.6 Conclusion

In this chapter, the deFBA-based bilevel optimization problem has been implemented
for fed-batch bioreactor control. Through that, fed-batch operating policies including
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Figure 4.6: Biomass, glucose and ethanol concentration profiles resulted from closed-
loop (solid line) and open-loop (dashed line) control for -20% error in the kcat of
glucose uptake enzyme.
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Figure 4.7: Feeding rate from closed-loop (solid line) and open-loop (dashed line)
control for +20% error in glucose feed concentration, GLCf .

the substrate feeding profile and the optimal time for a process-level regulation of
metabolism were determined such that the productivity of a target product is maxi-
mized. Then, a closed-loop implementation of the open-loop strategies has been con-
sidered based on model predictive control in order to handle uncertainties in modelling
parameters.
For estimating the state of biomass components required for updating the initial

condition of the deFBA model at each iteration of the MPC, the control algorithm
includes the RBA as an state estimator. Further through the next chapter, relevant
evaluations show that this estimation algorithm can be considered as a suitable ap-
proach for estimating the state of biomass components.
Via the example of a fed-batch fermentation of E. coli for maximal ethanol pro-

ductivity, the advantages of feedback corrections to compensate for modelling errors
are evaluated by comparing the performance of the closed-loop control over an open-
loop one. Considering parametric errors, it was shown that the substrate feeding and
metabolic regulation strategy determined through the closed-loop control allow for
better consumption of substrate and higher production of the target product within
the fed-batch operating mode.

69



4 Model predictive control of the bioprocess based on dynamic constraint-based
models

0 5 10
Time (hr)

0

0.5

1

B
io

m
as

s 
(g

/l)

0 5 10
Time (hr)

0

20

40

60

C
on

ce
nt

ra
tio

n 
(m

M
)

GLC
ETH

Figure 4.8: Biomass, glucose and ethanol concentration profiles resulted from closed-
loop (solid line) and open-loop (dashed line) control for +20% error in glucose
feed concentration, GLCf .
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5 Adaptive predictive control of the bioprocess
using constraint-based modeling and estimation

This chapter presents an approach for adaptive control of the bioprocess. An adaptive
control system allows to compensate for changes in the system dynamics by adjusting
the controller characteristics. Based on that, it includes units for measuring (or esti-
mating) the process dynamics and adjusting the controller characteristics accordingly.
Here, an adaptive MPC approach based on the developed deFBA-based bilevel op-

timization is proposed which allows to adjust the model for each transient mode, using
the data obtained during the process. This means it considers online adjustments of
not only states but also modeling parameters which are uncertain or time-variable.
This approach is applied to an oxygen-limited (microaerobic) batch growth of E.

coli for ethanol production. Depending on the degree of oxygen limitation in the
microaerobic growth, the cells are transferred into different metabolic modes which
lead to changes in dynamics of the system. Through a simulation-based study, we
demonstrate that the proposed MPC approach with the adaptive deFBA model can
be an efficient approach to control such a process.

5.1 Adaptive control of the bioprocess

In the previous chapter, it was shown that introducing measurement feedbacks into
the open-loop deFBA-based bilevel optimization allows for improved performance of
the bioreactor control. Repeating the bilevel optimization with updated states based
on online measurements resulted in improved process productivity by compensating
plant-model mismatches.
However, a remaining bottleneck of the model-based control is that the underlying

model is often only valid for a limited operational range. In fact, models may be
restricted to narrow growth modes of the bioprocess and may not cover all transient
modes of the organism during the process operation. If the biological variability is
neglected, the performance of model-based control strategies may be limited. To ad-
dress this aspect, here we consider a closed-loop implementation of the deFBA-based
control based on adaptive MPC.
Generally, the standard MPC scheme uses nominal values of the parameters, while

an adaptive MPC scheme allows to adjust the model online to compensate for time-
varying process characteristics [100]. Due to the very dynamic nature of biological
systems, adaptive MPC can be a suitable approach for a flexible bioprocess control.
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Figure 5.1: Adaptive predictive control scheme.

In this work, we consider an adaptive MPC scheme which addresses uncertain pa-
rameters of the metabolic-genetic model within the control scheme to take biological
variabilities into account; besides updating the state based on the online data, the
uncertain parameters are also estimated and updated in each iteration of the MPC
scheme. To do so, MPC is combined with a moving horizon estimation (MHE) algo-
rithm to estimate uncertain modelling parameters for different growth modes of the
organism online. This adaptive approach allows to adapt the model for each transient
mode, using the data obtained during the process.

5.2 MPC based on adapted metabolic-genetic model

The proposed control approach is composed of MPC and an estimation part including
moving horizon estimation (MHE) and resource balance analysis (RBA) algorithms.
The MHE is used to estimate uncertain parameters of the underlying model (deFBA)
and RBA to estimate the state of biomass components p. Estimated states and pa-
rameters are then used to initialize and correct the deFBA model employed within
MPC. The control scheme is visualized in Figure 5.1 and explained in detail in the
following sections.
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5.2 MPC based on adapted metabolic-genetic model

5.2.1 Adaptive model predictive control

Before starting with the adaptive MPC, let’s recall the bilevel optimization for maximal
productivity in a batch growth developed in Chapter 3, which is used here as the open-
loop control problem:

maximize
tf ,u(t)

xt(tf )/tf (5.1a)

s.t. maximize
V (·)

tf∫
t0

bTp(t)dt (5.1b)

s.t. ẋ(t) =
ż(t)
ṗ(t)

 = SV (t), (5.1c)

SmV (t) = 0, (5.1d)∑
j∈cat(i)

|Vj(t)/kcat,j| ≤ pi(t), i ∈ E (5.1e)

Vmin(t) ≤ V (t) ≤ Vmax(t), (5.1f)
ϕQb

Tp(t) ≤ pQ(t), Q ∈ Q (5.1g)
x(t0) = x0 = (z0, p0), (5.1h)
x(t) ≥ 0, (5.1i)
Vreg(t) = u(t). (5.1j)

For this part, instead of finding the optimal time for repression of a target flux (which
so far has been considered for the regulation control input), we aim to find the profile of
the target flux which is dynamically manipulated. It means this formulation does not
only address the flux repression, but also allows for temporal down-regulation or up-
regulation of the target flux. Therefore, in the outer optimization the optimal profile
of the manipulated flux u and the optimal batch time tf are determined to get the
maximum productivity of the target metabolite xt(tf )/tf . In the inner problem the
unregulated metabolic fluxes are optimally distributed for biomass production, while
the manipulated flux Vreg is set to the control profile u determined from the outer
optimization.

For the MPC, same as what has been done in the previous chapter, we fix the batch
time equal to the optimal batch time tf obtained from the open-loop optimization
(5.1), and then perform MPC optimizations over a shrinking horizon from the current
time T to the end of the batch tf .

For k = 1 to N , each individual optimization problem over the shrinking batch time
[T, tf ] is defined as:
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maximize
{uk(t)}

tf
T

xt(tf )

s.t. maximize
V (·)

tf∫
T

bTpk(t)dt

s.t. (5.1c) to (5.1g),
xk(T ) = x̃k(T ) = (z̃k(T ), p̃k(T )), xk(t) ≥ 0,
Vreg(t) = uk(t).

(5.2)

Based on this problem (5.2), the feedback is applied by resetting the controller initial
conditions using measured and estimated state variables x̃ (substrate, products and
biomass components concentrations) at each iteration.
Within an adaptive MPC besides updating the state based on the online data, the

uncertain parameters are also estimated and updated in each iteration of the MPC.
However, as the underlying model is relatively complex with many parameters inside,
the prerequisite of the model adaptation is to identify which parameters should be
considered as inputs for adjusting network dynamics.
Such a parameter can be selected by sensitivity/observability analyses for any partic-

ular application and growth mode. Later, we show how the proposed adaptive MPC is
capable to identify target parameters for model adjustment in each metabolic mode of
the bioprocess. For the parameter estimation, a moving horizon estimation algorithm
is applied as explained in the next section.

5.2.2 Moving horizon estimation

In order to estimate unknown or uncertain parameters of the model based on the
information obtained through online measurements, we implement moving horizon
estimation [101, 102]. MHE minimizes the mismatch between the model outputs and
the measurements over an estimation window and can therefore give an estimate of
initial conditions or unknown parameters.
Uncertain parameters of the deFBA model are usually due to variations in the

catalytic constants kcat of metabolic or gene expression reactions, but could also be
the stoichiometry of an elementary reaction or other model elements. To represent
changing biological conditions, we assume that the parameters are slowly time-varying.
Thus, while in each MHE problem constant parameter values are estimated for the
considered horizon, the MHE problems at different iterations may result in different
parameter estimates.
Here, we implement MHE to estimate the uncertain parameters of the deFBA model

denoted by lk during each MPC iteration k. From k = 1 to N , each individual MHE
problem can be given by the following bilevel problem:
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5.2 MPC based on adapted metabolic-genetic model

minimize
lk

Nmhe∑
i=0

(Bk(T − ih)− B̃k(T − ih))2 + (zk(T − ih)− z̃k(T − ih))2

s.t. lmink ≤ lk ≤ lmaxk ,

maximize
V (·)

T∫
T−Nmheh

bTpk(t)dt

s.t. (5.1c) to (5.1g),
xk(T −Nmheh) = x̃k(T −Nmheh) = (z̃k(T −Nmheh), p̃k(T −Nmheh)),
Vreg(t) = ũk(t).

(5.3)
In the estimation problem (5.3), available measurements on biomass B̃, concentrations
z̃ of extracellular metabolites, and the manipulated flux ũ are used to estimate uncer-
tain deFBA parameters l. In principle the measured control input ũk should be the
same as the input uk determined in the MPC problem, but to account for the possi-
bility of input disturbances which can be measured we use a more general formulation
here. Note that in (5.3), the constraints (5.1c) to (5.1g) within the inner problem are
depending on the estimated parameter lk, which is an optimization variable in the
outer problem.
Thereby, at each MPC iteration k, lk is determined from the outer optimization

by minimizing the difference between the concentration of total biomass Bk = bTpk
and/or extracellular species (substrates and products) zk predicted by the deFBA
model (the inner problem) and the ones obtained via measurements (B̃k, z̃k), over
previous sampling times T − ih, i = 0, ..., Nmhe, where Nmhe presents the number
of time steps within the estimation horizon of the MHE. Note that the number of
time steps Nmhe considered in MHE’s prediction horizon is limited by the number of
time points with available measurements. So, as the MPC iterations proceed one can
increase Nmhe if it is needed for improved estimation. Upper and lower bounds lmink and
lmaxk can be used to ensure biological plausibility of the estimated model parameters.

5.2.3 State estimation by resource balance analysis

As explained in the previous chapter, in practice it is only possible to measure the total
biomass concentration, and an algorithm is needed to estimate the state of biomass
components for updating the states at each MPC iteration. Here, again we implement
RBA to compute the optimal biomass composition and use that as the estimate. For
our current application, the estimation algorithm is defined as:
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maximize
µ,V,p

µ

subject to SpVp − µp = 0,
bTp = B̃,

SmV = 0,∑
j∈cat(i)

|Vj/kcat,j| ≤ pi, i ∈ E

Vmin(z̃) ≤ V ≤ Vmax(z̃),
ϕQb

Tp ≤ pQ, Q ∈ Q
Vreg = ũ.

(5.4)

For the measured value of the biomass B̃ at each sampling time with corresponding
measured value for the manipulated flux ũ, this problem gives an estimate for biomass
components, p. Estimated p is then used to initialize the controller states in each
iteration. Measurements on extracellular species (z̃) are used to constrain fluxes by
adjusting Vmin and Vmax.

5.2.4 Adaptive MPC algorithm

The overall control algorithm is summarized as Algorithm 5.1 (in accordance to Figure
5.1). It should be noted that the first MPC iteration starts with the nominal value
of uncertain parameters. Moreover, before the iterations of the MPC algorithm, the
RBA algorithm is used to estimate the composition of the initial biomass p(0) (while
still no regulation of the metabolic-genetic network is applied).

5.3 Application: improved ethanol productivity in
microaerobic growth of E. coli

As the case study, we consider a batch growth of E. coli for converting glycerol into
ethanol under microaerobic conditions.
Glycerol is an attractive carbon source for fermentation processes as besides its

availability and low prices, it allows for higher yields of fermentation products than
those obtained from common sugars such as glucose [103]. Although the anaerobic
fermentation of glycerol by E. coli is an excellent platform for the synthesis of products
such as ethanol, the microorganism can not metabolize glycerol fermentatively unless
rich nutrients such as tryptone and yeast extract are present.
However, in [104] it was shown that the microaerobic growth condition (growth

with limited amount of oxygen) allows for efficient production of ethanol from glycerol
in E. coli without the need for additional expensive nutrients. This is a specifically
interesting growth condition to be implemented in our study, as the structure of the
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Algorithm 5.1: Adaptive predictive control algorithm
Estimate p(T ) with RBA for T = 0
For k = 1 to N
1. Given initial states x̃k(T ) = (z̃k(T ), pk(T )) and parameters lk,
solve the dynamic optimization problem (5.2) over [T , tf ] which,
yields the optimal control sequence {uk}tfT .
2. Apply the first move of control input (uk)T+h

T to the plant during
the time [T , T + h].
3. T = T + h

4. Obtain new measurements: metabolites z̃k+1(T ), total biomass B̃k+1(T ),
and control input ũk+1(T ).
5. Solve the MHE problem (5.3) with inputs (ũ, x̃)TT−Nmheh

which
yields the estimated parameter lk+1.
6. Solve the state estimation problem (5.4) with inputs ũk+1(T ), lk+1
and measured total biomass B̃k+1(T ), which gives estimated
biomass components pk+1(T ).
7. k = k + 1, iterate.

model changes in correspondence to the degree of oxygen limitation. Within this case
study of the microaerobic growth of E. coli, the proposed MPC algorithm is applied to
regulate the metabolic modes in order to maximize ethanol production by adjusting
the oxygen supply to the culture.

5.3.1 Network description

We consider a reduced metabolic-genetic network model of E. coli growing on glycerol
developed from the in silico model of the central E. coli metabolism [1, 105]. The
network includes glycerol dissimilation pathways and reactions for glycolysis, pentose
phosphate pathway, anaerobic fermentation, and respiration together with appropriate
production reactions for biomass components including catalytic enzymes, ribosomes
and structural macromolecules. The main steps for generating E. coli network with
glycerol as the carbon source is similar to what was presented in Chapter 3 (Section
3.5.1).
All reactions with corresponding enzymes and their catalytic constants are given

in Tables 5.1 and 5.2. The catalytic constants of enzymes are extracted from the
enzyme database BRENDA [61] for E. coli, and multiplied by an overall scaling factor
f to match model predictions to available experimental data. The initial biomass
composition p(0) is computed by the RBA to yield the maximum aerobic growth rate
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Table 5.1: Metabolic part of the deFBA model: Metabolic reactions with associated
enzymes and rate constants kcat, scaled by the scaling factor f .
No. Reaction Gene/Enzyme kcat/min

−1

1 GLY + ATP + q → T3P + ADP + qH2 glpK-D 1998 · f
2 GLY + PEP + NAD+ → T3P + NADH + PYR dhaK 1447 · f
3 2T3P → G6P fba 630 · f
4 G6P + 2NAD+ → RU5P + 2NADH + CO2 gnd 1326 · f
5 RU5P → X5P rpe 78000 · f
6 RU5P → R5P rpi 3000 · f
7 X5P + R5P → S7P + T3P tkt 3402 · f
8 S7P + T3P → E4P + G6P tal 780 · f
9 E4P + X5P → T3P + G6P tkt 3402 · f
10 T3P + ADP + NAD+ → PEP +NADH + ATP eno 3162 · f
11 PEP + ADP → PYR + ATP pyk 3960 · f
12 PYR + CoA → AcCoA + FOR pfl 768 · f
13 PYR + CoA + NAD+ → AcCoA + NADH + CO2 pdh 29160 · f
14 FOR → CO2 fhl 169980 · f
15 PEP + CO2 → OAA ppc 32400 · f
16 OAA + AcCoA + NAD+ → AKG + CoA + NADH + CO2 acn 318 · f
17 AKG + ADP + 3NAD+ → OAA + 3NADH + ATP + CO2 sucCD 2684 · f
18 AcCoA + ADP → ATP + CoA + ACT ackA 800 · f
19 AcCoA + 2NADH → ETH + CoA + 2NAD+ adhE 942 · f
20 ATP → ADP
21 AKG + ATP + NADH → AA + ADP + NAD+ gln 360 · f
22 O2 + 2qH2 → 2q + 8H+ cyo 18000 · f
23 NADH + q → qH2 + 4H+ + NAD+ nuo 2220 · f
24 4H+ + ADP → ATP atpH 3300 · f
25 ACT + ATP + CoA → ADP + AcCoA acs 3996 · f

on glycerol. The complete deFBA model is then specified by the reactions in Tables
5.1 and 5.2 in combination with the biomass composition constraint for the quota
compound (as in Chapter 3)

0.55bTp ≤ Q. (5.5)

Initial nutrient conditions are summarized in Table 5.3.
In the next step, we try to evaluate the prediction accuracy of the considered

metabolic-genetic network of E. coli for oxygen-limited growth conditions. To this
aim, we calibrate the model based on the available experimental data for the growth
of E. coli on glycerol for different degrees of oxygen limitation during a continuous
process mode.
As a parameter for the model adjustment, we consider the already introduced pa-

rameter f as a factor which is multiplied to all catalytic constants to scale them.
This parameter is then tuned such that the mismatch between model predictions on
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Table 5.2: Genetic part of the deFBA model: Biomass reactions with values of
weights, catalytic constants (kcat) and initial conditions for biomass components
p(0). All biomass reactions are catalyzed by ribosome R.
No. Biomass production b/ kcat/ p(0)/

reactions (g mol−1) (min−1) (mM)
26 1657AA + 6628ATP → glpK-D + 6628ADP 180610 0.43 0.000044
27 3657AA + 14628ATP → dhaK + 14628ADP 398610 0.2 0
28 1696AA + 6784ATP → fba + 6784ADP 184860 0.42 0.0000061
29 1275AA + 5100ATP → gnd + 5100ADP 138980 0.56 0.0000032
30 225AA + 900ATP → rpe + 900ADP 24520 3.2 0.000000008
31 438AA + 1752ATP → rpi + 1752ADP 47740 1.64 0.00000091
32 1326AA + 5304ATP → tkt + 5304ADP 144530 0.54 0.00000041
33 634AA + 2536ATP → tal + 2536ADP 69110 1.14 0.0000018
34 1923AA + 7692ATP → eno + 7692ADP 209610 0.37 0.000025
35 1880AA + 7520ATP → pyk + 7520ADP 204920 0.38 0.000014
36 1766AA + 7064ATP → pfl + 7064ADP 192490 0.41 0
37 42096AA + 168384ATP → pdh + 168384ADP 4588460 0.02 0.0000015
38 2837AA + 11348ATP → fhl + 11348ADP 309230 0.25 0
39 3532AA + 14128ATP → ppc + 14128ADP 384990 0.2 0.0000006
40 1943AA + 7772ATP → acn + 7772ADP 211790 0.37 0.000108
41 4565AA + 18260ATP → sucCD + 18260ADP 497580 0.16 0.0000082
42 4291AA + 17164ATP → ackA + 17164ADP 467720 0.17 0
43 35640AA + 142560ATP → adhE + 142560ADP 3884760 0.02 0
44 5675AA + 22700ATP → gln + 22700ADP 618580 0.13 0.000034
45 1291AA + 5164ATP → cyo + 5164ADP 140720 0.56 0.0000071
46 4282AA + 17128ATP → nuo + 17128ADP 466740 0.17 0.000076
47 4895AA + 19580ATP → atpH + 19580ADP 533550 0.15 0.000116
48 652AA + 2608ATP → acs + 2608ADP 68130 1.1 0
49 7459AA + 9132R5P + 29836ATP → R + 29836ADP 2292420 0.1 0.000015
50 25AA + 27G6P + 10R5P + 36E4P + 12T3P + 100PEP 65000 28.8 0.0059

+ 283PYR + 274AcCoA + 178OAA + 3110ATP
+ 1361NADH → Q + 274CoA + 3110ADP + 1361NAD+
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cellular rates and the experimentally measured ones is minimized. For that, we use
the E. coli growth data for four levels of respiration (representing fully aerobic to
highly oxygen-limited growth). The scaling factor value is determined by minimizing
the squared norm of the deviations between the model outputs and the experimental
measurements on glycerol uptake, acetate formation and the overall cellular growth
rates.
The obtained values of the scaling factor f for different levels of respiration are

presented in Table 5.4. From that it can be noticed that a different scaling factor is
obtained for the aerobic and microaerobic modes. The scaling factor for the aerobic
growth is higher (0.9) compared to the oxygen-limited growth (approximately 0.6 for
all oxygen-limited modes), which in fact suggests lower rate of E. coli metabolism in
oxygen limitation conditions.
In this direction, Figure 5.2 shows the rates of glycerol uptake and acetate production

as well as the overall growth rate predicted by the calibrated deFBA model along with
their experimentally measured values for different microaerobic levels.

5.3.2 Simulation cases for adaptive MPC

In this step, we define simulation cases for implementing the adaptive MPC algorithm
(Algorithm 5.1), in which the metabolic-genetic model of E. coli is used to maximize
the ethanol productivity. A metabolic regulation is considered by manipulating the
oxygen uptake rate OUR (V22 according to the numbering of metabolic pathways in
Table 5.1).
We first describe the parameter variation that is used to generate artificial process

data. It has been experimentally shown that with E. coli growing microaerobically on
glucose, decreases in the oxygen availability result in a decreased catabolic efficiency of
the cell [106]. Previous experimental studies indicate such a pattern for microaerobic
E. coli growth on glycerol as well, suggesting lower metabolic activity of E. coli in
oxygen limitation conditions compared to a fully aerobic growth. As shown in the
previous section, through validating the metabolic-genetic network with the available
experimental data, different scaling factors have been obtained for aerobic and oxygen-
limited conditions.
Therefore, we use variations in the scaling factor f (which addresses different rates

of metabolism during the process) as a source for plant-model mismatch in our case
study. We use a scaling factor of 0.9 for aerobic growth and 0.6 for all oxygen-limited

Table 5.3: Initial nutrient and initial biomass bTp(0).
Glycerol bTp(0)
255 mM 0.59 gl−1
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Figure 5.2: Oxygen-limited growth of E. coli: rates of cellular growth, glycerol
uptake and acetate formation simulated by the deFBA model together with the
experimental data.
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growth modes to simulate the real process, while these values are not known in the
control and estimation algorithms. Instead, the controller uses the metabolic-genetic
model with a nominal value for the scaling factor as f = 1, assuming that there is no
need to scale current kcat values obtained from databases.
To implement the adaptive MPC and evaluate its performance, we consider different

levels of mismatches and uncertainties by defining several cases which differ in param-
eters of plant-model mismatch as well as parameters considered for model adaptation.
To do so, we consider three cases summarized in Table 5.5. Details of implementing
each case are presented in the following sections.

5.3.2.1 Case 1

In the first case, we implement the adaptive MPC with adjusting the same parameter
as is used to generate variations in the artificial process data. To do so, the scaling
factor f is considered as the mismatch parameter which is estimated through the
MHE in each MPC iteration and used to adapt the underlying model for the next
MPC iteration. We call this the ideal case, as the MPC adjusts the exact parameter
of the plant-model mismatch.

5.3.2.2 Case 2

For the second case, we consider a different parameter set for the adaptation in the
control scheme than what is used in the process simulations. Therefore, we leave the
value of the scaling factor as its nominal value f = 1 in the model used within the
control scheme and instead try to adjust the individual catalytic constants kcat directly
in the MHE. In order to catch different rates of metabolism during the microaerobic
process (resulted from different scaling factor for aerobic and oxygen-limited growth
in the real plant simulation), one needs to adjust enzymatic constants of all metabolic
pathways.
To limit the computational complexity with respect to the number of parameters

to be estimated by MHE, we follow a parameter selection procedure which identifies

Table 5.4: Obtained scaling factor values for different oxygen-limited growth modes
through the model validation.

Oxygen uptake rate/ Scaling factor f
mmol(g.biomass)-1hr-1

11.8 (aerobic) 0.88
7.78 0.58
1.96 0.6
0.94 0.61
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Table 5.5: Mismatch and adaptation parameters in each simulation case.
Simulation case Case 1 Case 2 Case 3
Parameter of plant-model mismatch f f f and kcat’s
Parameter for model adjustment in MHE f kcat’s f or kcat’s

the most influential metabolic reactions in each microaerobic stage and then estimates
enzymatic constants for these instead of adjusting the constants of all reactions. For
the parameter selection, we perform a local sensitivity analysis in each MPC iteration
which identifies pathways for which a manipulation of the catalytic constants has
the highest impact on the cellular growth rate. To do so, we perturb the value of
each catalytic constant individually by kcat,new = kcat/A and kcat,new = kcatA, with a
prespecified value of A > 0, and evaluate the effect of each perturbation on the growth
rate. Parameters with higher sensitivity are then selected for model adjustment and
their values are estimated through MHE. Such a sensitivity analysis is done over the
whole parameter set in each MPC iteration based on the current state (measured
concentrations and OUR) of the process.

For the parameter estimation through MHE, we implement a sequential optimiza-
tion in which the catalytic constants are estimated based on their priority (resulting
from the sensitivity analysis). To do so, a stopping criterion is defined by placing a
tolerance on the objective function of the MHE (5.3) which determines a satisfactory
level for matching model predictions to the measurements. Considering l as the vector
containing ordered parameters, the procedure can be summarized as in Figure 5.3. The
first sequence starts with the estimation of the first identified parameter l(1). If the
termination criterion is not met through the first optimization, the algorithm proceeds
to the next sequence in which the first two identified parameters are estimated l(1 : 2).
In this way with an increased number of parameters in each sequence, MHE estimates
as many parameters as needed to reach the termination criterion on the model-data
difference, or until the list of parameters used for adaptation is exhausted.

Therefore, in each MPC iteration a different set of catalytic constants kcat is esti-
mated by sequential MHE problems depending on their importance in each microaer-
obic stage. By the implemented sequential scheme, we are able to track the minimum
number of parameters which are required to represent the process dynamics at each
stage. However, a simultaneous scheme can be also considered for MHE in which a
larger set of identified constants are estimated simultaneously through a single prob-
lem.
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Figure 5.3: Rate constants selection and estimation procedure.
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5.3.2.3 Case 3

In this case, we consider a different parameter set for the adaptation in the control
scheme than what is used in the plant simulations (such as Case 2), but with con-
sidering higher levels of uncertainties and modeling errors. To do so, we consider
plant-model mismatch not only in f but also in all catalytic constants kcat. This
means different scaling factor f and catalytic constants kcat for metabolic pathways
are used for the real process simulation compared to those used in the control model
(nominal values). Then the model is adapted by adjusting some selected catalytic
constants (identified by the sensitivity analysis and estimated through the sequential
MHE optimizations as explained in Case 2), or only by adjusting one general parameter
f .

5.4 Results and discussions

To have maximal ethanol productivity through the introduced E. coli model, the open-
loop optimization problem (5.1) is firstly applied to obtain the optimal batch time tf
and oxygen uptake rate OUR(t). By implementing the open-loop problem (5.1) on
the model discussed in Section 5.3, the final batch time is obtained as 14.9 hr for
maximal ethanol productivity. The optimization results are shown in Figure 5.4. The
bilevel optimization results in a decreasing OUR pattern in control of the microaerobic
ethanol production. It suggests an initial aerobic phase of the process with gradual
movement to the oxygen-limited conditions for improved process productivity, which
in fact shows balancing between the aerobic condition favoring the cell growth and the
anaerobic condition favoring ethanol formation.
The final batch time from the open-loop optimization (14.9 hr) is then used within

the shrinking horizon MPC problem (5.2), but the OUR is adjusted online to yield
the maximum final ethanol concentration while compensating for the plant-model mis-
match. This is implemented on the three cases defined in Section 5.3.2.

5.4.1 Case 1

For this case, we implement the MPC approach where the model is adapted online by
adjusting the uncertain time-variable parameter f . Note that for the first iteration
of the MPC, we use a nominal value for the scaling factor as f = 1. Figures 5.5 to
5.7 show the overall performance of the adaptive MPC (as in Algorithm 5.1) over the
MPC without model adaptation in which f is considered constant all the time and
equal to the nominal value of the parameter (f = 1). Figure 5.5 shows the parameter
estimation results; as the microaerobic growth proceeds, f decreases from 1 to around
0.6 as its value in the plant model. In order to compensate for the decreased f during
the microaerobic growth (and therefore lower overall growth rate), the adaptive MPC
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Figure 5.4: Optimal OUR pattern and concentration profiles of biomass, glycerol
and ethanol, resulted from the open-loop optimization.
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Figure 5.5: Scaling factor values estimated in adaptive MPC/Case 1 (solid line) and
used in non-adaptive MPC (dashed line). The real system values are shown in
red.

proposes higher values of OUR during the process compared to the non-adaptive one.
That means it allows a sufficient amount of biomass to be produced by keeping higher
levels of aeration. Therefore, it predicts better consumption of the substrate, and as the
result a higher amount of ethanol is produced (49 mM) compared to the non-adaptive
controller (40.3 mM).

5.4.2 Case 2

Through the second case, we aim to improve the flexibility of the adaptive approach
in addressing different growth modes and handling existing uncertainties. To address
different rates of metabolism in the microaerobic growth, in this case we do not specify
a priori which parameters are the exact source of the uncertainty and mismatch,
and instead go for adjusting only important parameters. To do so, we adjust only
the catalytic constants selected by a sensitivity analysis through the sequential MHE
optimizations (as explained in Section 5.3.2.2) in each MPC iteration.
Here, we implement the MPC approach where the scaling factor f is the parameter of

plant-model mismatch (as in Case 1) but the model is adapted by adjusting individual
catalytic constants. To identify target parameters to be estimated through sequential
MHE problems in each iteration the sensitivity analysis is performed; the values of all
catalytic constants are individually perturbed to kcat,new = kcat/5 and kcat,new = 5kcat,
iterating over all metabolic reactions in order to evaluate the effect of each perturbation
on the growth rate at the current state. Parameters with higher sensitivity are then
estimated and used to adapt the model.
We evaluate the performance of the adaptive MPC in this case over Case 1 and also
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Figure 5.6: OUR pattern from adaptive MPC/Case 1 (solid line) and non-adaptive
MPC (dashed line).
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Figure 5.7: Biomass, glycerol and ethanol concentration profiles resulted from adap-
tive MPC/Case 1 (solid line) and non-adaptive MPC (dashed line).
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Figure 5.8: OUR pattern from adaptive MPC/Case 2 (dotted line), adaptive MPC/-
Case 1 (solid line) and non-adaptive MPC (dashed line).

MPC without model adaptation (in which nominal values of catalytic constants are
used), shown in Figures 5.8 and 5.9. As can be seen in Figure 5.8, the OUR values
predicted by Case 2 are mostly slightly lower than those from Case 1 but still high
enough for better consumption of glycerol and higher production of ethanol compared
to the non-adaptive MPC.

Table 5.6: Final ethanol concentration resulted from different MPC schemes
MPC scheme Ethanol concentration (mM)
Adaptive, Case 1 49
Adaptive, Case 2 46.1
Non-adaptive 40.3

Table 5.6 shows the final concentration of ethanol from adaptive MPC (Case 1 and
Case 2) and non-adaptive MPC. We see the ethanol concentration from Case 2 is lower
compared to Case 1 (as the ideal case which directly adjusts the scaling factor, that
is the source of plant-model mismatch), but the value is still high compared to the
non-adaptive one.
Figure 5.10 shows per MPC iteration the enzymes for which the catalytic constants

were identified as sensitive parameters and were adjusted in the adaptation step. Each
column is labelled by the corresponding aeration level (at each MPC iteration) and in-
cludes identified enzymes (by the sensitivity analysis), of which the catalytic constants
are estimated through MHE and are used to adapt the deFBA model in the following
iteration of MPC. Moreover, in each column enzymes are ordered from the bottom to
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Figure 5.9: Biomass, glycerol and ethanol concentration profiles resulted from adap-
tive MPC/Case 2 (dotted line), adaptive MPC/Case 1 (solid line) and non-
adaptive MPC (dashed line).
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Table 5.7: Estimated values of the identified parameters (kcat) at each MPC iteration,
with their nominal and plant values

Enzyme with kcat adjustment glpK-D dhaK pfl acn ackA adhE gln nuo atpH
Nominal value 1998 1447 768 318 800 942 360 2220 3300
Aerobic growth
Plant value 1798 1302 691 286 720 848 324 1998 2970
Estimated (Iteration 1) - - - - - - 249 2156 3199
Microaerobic growth
Plant value 1199 868 461 191 480 565 216 1332 1980
Estimated (Iteration 2) 1047 - - 307 - - 220 1683 1882
Estimated (Iteration 3) - 888 - 179 483 - 208 1252 -
Estimated (Iteration 4) - - - - - - - 1232 1601
Estimated (Iteration 5) - 836 457 - 475 577 - - -
Estimated (Iteration 6) - 846 - - - 563 - - -
Estimated (Iteration 7) - - - - - 549 - - -

the top according to the order of their selection from the sensitivity analysis (bottom
with the most sensitive kcat towards the top with less sensitive ones). Corresponding to
Figure 5.10, Table 5.7 represents the kcat values of identified enzymes estimated in each
MPC iteration along with their nominal and plant values. As shown, in each iteration
only few parameters need to be estimated and used for model adjustment and there
is no need to adapt the catalytic constants of all metabolic pathways. Moreover, one
can notice that as the oxygen-limited growth proceeds, there is a gradual movement
from aerobically active enzymes to anaerobically active ones. Constants of enzymes
nuo and atpH (responsible for respiration) are adjusted in the initial aerobic phase
and earlier oxygen limited phases. The catalytic constant of enzyme glpK-D (respon-
sible for glycerol utilization in aerobic condition) is relevant during initial stage of the
oxygen-limited condition, while the constant of enzyme dhaK (responsible for glycerol
utilization in anaerobic condition) is adjusted in later stages. Moreover, the constants
of enzymes pfl (used for AcCoA production in anaerobic condition), ackA (responsible
for acetate production), and adhE (responsible for ethanol production) are adjusted
when a higher level of oxygen limitation is applied.
In fact switches between pathways in different metabolic modes show the impor-

tance of the parameter identification. For a better interpretation, we provide aerobic
and anaerobic glycerol utilization fluxes during the process (resulted from the open-
loop optimization) in Figure 5.11. During the process transitions to the microaero-
bic growth the contribution of the glpK-D-catalyzed pathway is decreased while the
pathway catalyzed by dhaK contributes as the major pathway for glycerol utilization
(compatible with experimental studies on microaerobic growth of E. coli on glycerol,
[104], regarding the transition between respiratory and oxygen-limited utilization of
glycerol). That is why the catalytic constant of enzyme glpK-D is the relevant param-
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Figure 5.10: Enzymes with estimated constants at different OUR levels of the process
corresponding to the MPC iteration (k = 1, ..., N − 1): glpK-D (reaction 1),
dhaK (reaction 2), pfl (reaction 12), acn (reaction 16), ackA (reaction 18), adhE
(reaction 19), gln (reaction 21), nuo (reaction 23), atpH (reaction 24).

eter in the earlier stage of the process while the constant of enzyme dhaK is relevant
in later stages. So, the most sensitive parameters in each growth mode are identified
in order to represent the process dynamics correctly.
The results obtained from Case 2 show the flexibility of the proposed adaptive

approach to address different metabolic modes by adjusting a minimum number of
relevant parameters.

5.4.3 Case 3

For further evaluation of the performance of adaptive MPC in handling existing un-
certainties, in Case 3 higher levels of modeling error in rate-relevant parameters are
considered than Cases 1 and 2. To do so, we perturb all catalytic constant by adding
20% uniform white noise to each kcat value in the plant simulation. This means we
use variations in f and each individual kcat to simulate the real process while nominal
values of these parameters are used in the controller.
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Figure 5.11: Aerobic and anaerobic glycerol utilization fluxes during the considered
microaerobic process (resulted from the open-loop optimization).

For the model adaptation in this case with modeling errors in all rate-relevant pa-
rameters, we do not adjust all those uncertain parameters and instead go for adjusting
only important parameters. To do so, we attempt to adapt the underlying model by
(A) adjustment of influential catalytic constants (as done in Case 2 based the proce-
dure explained in Section 5.3.2.2), and (B) adjustment of f as an overall rate-relevant
parameter.
We evaluate the performance of the adaptive MPC over the non-adaptive one by

implementation of several random noise sets on kcat values. Through Case 3(A) with
adjustment of the influential catalytic constants, as shown in Figure 5.12 A, we see
the adaptive MPC mostly results in higher production of ethanol compared to the
non-adaptive MPC. Among those we also notice cases in which there is negligible
improvement in final ethanol concentration from the adaptive MPC, but with higher
product yield compared to the non-adaptive one (as can be seen in Noise set 3).
This observation is most likely because in some cases implementing perturbations in
enzymatic constants result in a limited capacity for ethanol production of the cell,
such that by implementing the MPC with the model adaptation the final ethanol
concentration can not be improved compared to the non-adaptive one. Although,
we see that the adaptive MPC adjusts the OUR level for higher yield by avoiding
unnecessary biomass production, such an improvement in the yield by the adaptive
MPC can not be guaranteed, as within our control problem improving product yield
is not directly considered as an objective.
For the next step, again we apply several random noise sets on kcat values, but now

the adaptive MPC scheme estimates only the overall scaling factor f through Case
3(B). As shown in Figure 5.12 B, we see that the adaptive MPC does not necessarily
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improve the ethanol production, as for some of the noise sets it results in a lower
value of the final ethanol concentration compared to the non-adaptive MPC. Such an
observation is not surprising, as with such a highly uncertain system and adaptation
of only one model parameter, the controller can not capture the process dynamics
correctly. Therefore, one should not expect the adaptive MPC to improve the overall
control performance while proper parameters are not chosen for model adjustment.
Based on the results from the higher levels of plant-model mismatch considered in

this case, we argue that even with a very uncertain system the adaptive MPC allows
for improved performance, however it still depends on a good selection of the uncertain
parameters to be adjusted.

5.4.4 Computational limitations

The average computation time necessary for each iteration of the adaptive MPC in
the cases of one general parameter adjustment (e.g. Case 1 with adaptation of f) is
74 s on a standard desktop computer, while this time increases to 561 s for the case of
selected kcat adjustment (e.g. Case 2). The more computation time in Case 2 is mainly
due to the larger number of parameters to be estimated through the sequential MHE
problems in each iteration compared to Case 1 in which one parameter is estimated
through a single MHE problem.
For MPC with the parameter selection, here we have implemented a sensitivity

analysis which is done over the whole parameter set in each MPC iteration to identify
sensible parameters at that specific microaerobic level. However, it should be noted
that for larger networks with high-dimensional parameter sets it can not be compu-
tationally efficient to do the sensitivity analysis over the whole parameter set in each
iteration and instead one should consider performing the parameter selection offline in
order to identify a set of most important parameters. In that case, even more precise
parameter selection methods (e.g. the global sensitivity analysis approach proposed
in [107]) for the pre-selection of parameters under various conditions and inputs can
be implemented. This subset of parameters then can be considered for estimation and
model adjustment during MPC optimizations, resulting in a reduced total computation
cost of the MPC.
In this work N = 8 iterations are considered for the MPC optimization. Increasing

the number of MPC iterations (decreased sampling time) would result in improved
performance as it speeds up the parameter correction procedure, but it results in
higher computational time.

5.4.5 MPC with and without biomass state estimation

Next, the effect of using the RBA method as an approximate steady state estimation
within the adaptive MPC is evaluated. In previous sections of this chapter, MPC
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(A) (B)

Figure 5.12: Ethanol, biomass and glycerol concentration terminal values resulting
from adaptive MPC (blue bars) and non-adaptive MPC (orange bars) for different
noise sets applied on kcat values with the adjustment of (A) influential kcat values
and (B) the scaling factor f value.
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used the RBA algorithm through the problem (5.4) in order to estimate the biomass
composition. Here, we compare the control performance with state estimation to an
ideal situation where measurements for all biomass components would be available for
Case 1 with adjustment of f . As it is shown in Figure 5.13, there are some differences
in the estimated f , predicted OUR and concentration trajectories of species. However,
it can be seen that despite these differences the control actions in both cases yield a
very similar final value of produced ethanol.
To track the biomass composition during the growth in adaptive MPC (Case 1) with

feedbacks obtained from direct measurement of biomass components and from the RBA
estimation, Figure 5.14 represents the percentage of some individual key enzymes. As
can be seen, while there are some quantitative mismatches, the patterns of estimated
enzyme levels are qualitatively following the true model values; the percentage of en-
zymes nuo and atpH (used for aerobic respiration) is high at the initial aerobic phase of
the growth and then starts to decrease in following microaerobic phases. On the other
hand, as microaerobic growth proceeds the percentage of enzyme adhE is increased
in order to promote producing ethanol. While the process switches from aerobic to
microaerobic growth, the percentage of enzyme glpK-D (aerobic utilization of glyc-
erol) decreases while the percentage of enzyme dhaK (anaerobic glycerol utilization)
increases (as observed in Section 5.4.2 as well). Similarly, there is a down-regulation
of pdh (responsible for aerobic AcCoA production) and up-regulation of pfl (used for
anaerobic AcCoA production) when transferring from aerobic to oxygen-limited con-
ditions. It should be noted that these patterns for contribution of cellular components
in different stages of the growth are directly related to both metabolic and genetic
part of the deFBA model including enzyme production costs and their constants.
Despite the qualitative similarities, the RBA method does not provide a quanti-

tatively reliable estimation of the biomass components in this case. Nevertheless,
this estimation error has only a negligible effect on the controller performance in this
study: in fact, the optimal control action and the controller predictions of the ob-
jective value (final ethanol concentration) are consistent between the two cases. We
conclude that, although RBA gives only a qualitative estimation of the enzyme levels
in each microaerobic stage (as it is a steady state approach), it could still be used as
an estimator of biomass components within the proposed control scheme.

5.5 Conclusions

In this chapter, we have implemented a combination of model predictive control and
moving horizon estimation for an adaptive and flexible control of the bioprocess, based
on the developed bilevel optimization framework. In particular, improving bioprocess
productivity in microaerobic growth regimes was considered.
By considering several simulation cases, we have demonstrated the usefulness of
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Figure 5.13: Performance of adaptive MPC/Case 1 with state estimation (solid line)
and with full state information (dashed line).
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Figure 5.14: Biomass composition in adaptive MPC/Case 1 measured from the plant
model (top) and estimated by the RBA (bottom).
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5.5 Conclusions

the proposed adaptive control approach to address different biological states during
the process and to handle associated uncertainties. It was shown that the proposed
approach could capture the process dynamics by adjusting a few parameters through
integrating a parameter identifiability analysis. Based on the results, the adaptive
MPC adjusts the control inputs to appropriately balance between the biomass growth
and the target product formation for an optimal product formation compared to a
non-adaptive approach.
Moreover, the results of our simulation study showed that adaptive MPC with a

selection of relevant parameters, as in the simulation cases 2 and 3(A), is a promising
approach in bioprocess control. As a comparison, we have seen in Case 3(B) that
adjusting a single parameter will not be sufficient to ensure performance in the case of
plant-model mismatches for a complex bioprocess. Here, constraint-based models are
considered beneficial for our optimization and control purposes because they offer a
high flexibility and sufficient degrees of freedom to represent a wide range of biological
behaviours, in contrast to for example unstructured models which generally use much
fewer parameters. However, due to the initially large number of parameters, and not all
of them being relevant for the process dynamics, a selection of important parameters
to be used in the adaptation needs to be done.
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6 Conclusion and summary

Although Bioprocess optimization and control are commonly done based on basic un-
structured models, the simple representation of cellular metabolisms in this models
can not reflect the real bioprocess due to the complexity of the biological systems.
Compared to them, constraint-based approaches are useful for bioprocess analysis and
control as they address the full metabolic versatility by considering intracellular com-
ponents connected to each other and to the environment through metabolic fluxes. In
this work, we approached the model-based optimization and control of bioprocesses by
exploiting the capabilities of constraint-based models and metabolic-genetic network
models in particular. Beside cellular metabolism, metabolic-genetic network models
include details on biomass synthesis and gene expression e.g. enzymes synthesis and
degradation.
Within this thesis, the deFBA model as a dynamic metabolic-genetic network model

has been implemented to efficiently derive optimal manipulation strategies for improv-
ing bioprocess productivity. The details on gene level included in this model allows
for direct temporal manipulation of gene expression (which could not be addressed
via previous studies) and makes them a suitable approach to be applied for model-
based bioprocess analysis and control. However, models with additional metabolic
details involve larger sets of model parameters which needs to be identified correctly.
This causes a higher level of model uncertainties for detailed metabolic-genetic models
compared to simple unstructured models, which limits their application in bioreactor
control. Therefore, in this thesis we made efforts to present an adaptive model-based
approach based on metabolic-genetic network models which allows for deriving flexi-
ble and robust process control strategies, while different levels of cellular manipulation
(process and gene levels) are feasible. Below we summarize the thesis contents which
have been addressed in several chapters.
In Chapter 2, we reviewed methods for constraint-based modeling of cellular

metabolism including the flux balance analysis (FBA) and its extended versions. Then
metabolic-genetic network models from stationary to dynamic ones are presented in
details with a focus on the dynamic enzyme-cost FBA (deFBA) model, as the under-
lying approach for model-based bioprocess optimization and control in this thesis.
In Chapter 3, we have focused on the application of FBA-based models in bio-

process analysis and optimization especially for improving bioprocess productivity. In
this direction, we have formulated a bilevel optimization approach based on the deFBA
model to identify optimal control strategies for our target engineering objective (pro-
ductivity). This approach has been implemented to maximize ethanol productivity in
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6 Conclusion and summary

a batch growth of E. coli using a derived metabolic-genetic network model. Based on
the results obtained in Chapter 3, we argue that the proposed linear deFBA-based
bilevel approach is a promising approach in predicting suitable genetic and process
level regulations in order to guide metabolic engineering and bioprocess optimization,
as it accounts for gene expression (including enzymes production and degradation)
besides cellular metabolism and allows to directly regulate genetic networks.
Consequently in Chapters 4 and 5, we have focused on flexible model-based control

of bioprocesses for obtaining control strategies robust against process uncertainties. In
the fourth chapter, a closed-loop control of the bioprocess is addressed. The bilevel
deFBA-based approach has been implemented within a control algorithm based on
model predictive control which allows for feedback corrections based on online mea-
surements. By applying the control approach to a case study for improved ethanol
productivity in a fed-batch growth of E. coli, the importance of online control for
reliable model-based control of the bioprocess has been shown, as it allows for com-
pensating plant-model mismatches.
In chapter 5, we improved the flexibility of the proposed deFBA-based control ap-

proach by integrating online adaptation schemes which are suitable to control highly
uncertain biological processes. To this aim, an adaptive control algorithm has been
proposed composed of model predictive control and moving horizon estimation, and an
algorithm for estimating unknown states (here for biomass components). The adap-
tive approach could allow for online adaptation of the underlying model (deFBA) by
estimating uncertain and variable model parameters in different stages of the process.
As there is a relatively larger number of parameters in constraint-based modeling of
metabolic-genetic networks, parameter selection for identifying relevant parameters to
be used for model adaptation is an important step to be considered. In this direction,
the proposed control algorithm includes steps for parameter selection by performing
sensitivity analysis at each iteration of the process to identify parameters sufficient
for model adaptation at each specific growth mode. As an application, microaerobic
batch growth of E. coli for improved ethanol productivity from glycerol has been con-
sidered for evaluating the performance of the proposed control approach. Considering
several simulation cases with different levels of uncertainties, the capabilities of the
proposed adaptive approach to control highly dynamic and uncertain processes have
been highlighted.
Overall, we argue that the proposed deFBA-based control scheme is a suitable ap-

proach to control time-varying bioprocesses with switches in the dynamics of the sys-
tem. Desired engineering objectives can be addressed by the proposed deFBA-based
bilevel approach through temporal manipulations of the metabolism while process un-
certainties can be handled efficiently using the adaptive nature of the implemented
control scheme.
Although only simulation-based studies have been considered during this study,

as a further work a practical implementation of the proposed control approach is a
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highly recommended step. An experimental application of the proposed model-based
approach for both open-loop and closed-loop control allows to evaluate the results for
productivity improvements by suggested dynamic genetic and process level strategies
as well as the improvements by feedback corrections, theoretically achieved in this
study. Moreover, the performance of the adaptive closed-loop control needs be tested
and investigated experimentally (e.g. for the considered case study; the microaerobic
growth of E. coli) to recognize possible limitations of being applied in practice, guiding
for further modifications of the proposed approach.
Besides, it is important to extend the applicability of the proposed approach for

larger (genome scale) models. Although dealing with larger networks for optimiza-
tion and control sounds feasible, it may enforce some challenges due to the higher
model complexity. For instance when considering a large metabolic-genetic network
within the adaptive MPC algorithm, proper selection of uncertain parameters of course
requires integrating a preciser parameter identifier than a local sensitivity analysis im-
plemented within this work. Moreover, additional cares are also required to justify
computational limitations for this case, as a larger set of parameters are required to
be identified and estimated through the proposed sequential MHE, which makes the
estimation part computationally very expensive.
Furthermore, dealing with such non-convex bilevel optimizations can be prohibitive

for MPC implementations from computational point of view, especially in case of non-
linear optimization problem (as implemented in Chapter 4 for the fed-batch bioreactor
control). In this direction, modifications can be considered to speed up the calcula-
tions, such as efficient transformation of the bilevel optimization problem to a one-level
problem, or selection of suitable algorithms for numerical solutions.
Moreover, modifications on the underlying model itself can be taken into account.

Although the deFBA model includes details on biomass components, if available in-
tegrating any additional gene level data and regulatory information is still plausible
to improve prediction capabilities. Such data can be integrated within the model to
additionally constrain metabolic fluxes during different growth modes and to address
corresponding regulatory mechanism. For example, it was experimentally observed
that there is a switch between contribution of different enzymes responsible for respi-
ration (cytochrome bo3 ubiquinol oxidase and cytochrome bd-I ubiquinol oxidase) at
different oxygen-limited levels, while such an observation can not be addressed only
based on the optimization principle and additional flux constraints are required to
address this switch.
As an interesting extension of the deFBA model, one can also consider a combina-

tion of relevant objective functions (e.g. maximization of the overall ATP production
or minimization of the substrate consumption beside considering the growth maxi-
mization), with the possibility to switch between different objective functions during
different growth phases [108]. For instance, a weighted sum of relevant objectives can
be considered in the model, such that the weight coefficient of each objective is deter-
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6 Conclusion and summary

mined at each MPC iteration based on the available measurement data. This in fact
allows for proper adjustments in contribution of objectives at each growth mode e.g.
during the exponential growth of the cell or in nutrient scarcity conditions.
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A dFBA-based control problem for maximal
productivity

Here, we present a dFBA-based bilevel problem for optimizing bioprocess productivity
based on [17]. In the outer optimization the optimal batch time tf and the optimal time
of regulation for the manipulated flux treg, are determined for maximum productivity
of a target product zt. In the inner problem, the DOA approach of dFBA is imple-
mented to determine the optimal metabolic flux distribution for a cellular objective
optimization (here maximization of the biomass integral). The formulated dynamic
bilevel problem with the dFBA model is as:

maximize
tf ,treg

zt(tf )
tf

s.t. t0 ≤ treg ≤ tf , tmin ≤ tf ≤ tmax,

maximize
v(·)

tf∫
t0

X(t)dt

s.t. ż(t) = Sev(t)X(t),
Ẋ(t) = µ(t)X(t),
Sintv(t) = 0,
vmin(t) ≤ v(t) ≤ vmax(t),

vuptake(t) ≤ vuptakemax

1 + z(t)/KI
,

z(t0) = z0, X(t0) = X0,

z(t) ≥ 0, X(t) ≥ 0,
vreg(t) = 0 for t ≥ treg.

(A.1)

After linearization of the inner dFBA model using the flux variable transformation
(V (t) = v(t)X(t)) and the linear approximation of the growth inhibition constraint
for vuptake (by considering two tangent planes L1(X, z) and L2(X, z) of its nonlinear
function), the dynamic bilevel problem can be described as:
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A dFBA-based control problem for maximal productivity

maximize
tf ,treg

zt(tf )
tf

s.t. t0 ≤ treg ≤ tf , tmin ≤ tf ≤ tmax,

maximize
V (·)

tf∫
t0

X(t)dt

s.t. ż(t) = SeV (t),
Ẋ(t) = Vgrowth(t),
SintV (t) = 0,
vmin(t)X(t) ≤ V (t) ≤ vmax(t)X(t),
V uptake(t)− L1(X(t), z(t)) ≤ mλ(t),
V uptake(t)− L2(X(t), z(t)) ≤ m(1− λ(t)),
z(t0) = z0, X(t0) = X0,

z(t) ≥ 0, X(t) ≥ 0,
Vreg(t) = 0 for t ≥ treg.

(A.2)

For solving the resulted bilevel problem, the inner linearized dFBA is approximated
by discretization of dynamic variables in the time domain (similar to the procedure
explained in Section 2.3.2). With N time intervals and K collocation points within
each interval, V (t) and ż(t) are discretized at collocation points while the state variable
z is discretized at the boundaries of time intervals. To keep the growth inhibition
inequality constraints active during the entire time interval, the binary variable λ(t)
is considered to be applied at each collocation point. In this way, the dFBA problem
is transformed into a mixed-integer linear program (MILP) with the variable vectors
W and λ, defined as

W = (V1,1, V1,2, ..., VN,K , ż1,1, ż1,2, ..., żN,K , z1, z2, ..., zN),

λ = (λ1,1, λ1,2, ..., λN,K).
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B MATLAB implementation of RBA algorithm

The implemented algorithms in this work are based on metabolic-genetic network
models. In this section we provide the MATLAB scripts of the RBA algorithm, as the
base and steady state formulation of metabolic-genetic network models. However, the
details provided here can be helpful enough in better understanding of implementations
for dynamic algorithms used within this study as well.
The included RBA simulation code corresponds to metabolic and genetic networks

of E. coli growing on glycerol, preseneted in Tables 5.1 and 5.2.

M-file 1:
1 f unc t i on Xp= RBA(B0) % B0=t o t a l biomass concent ra t i on
2

3 Nu=50; %t o t a l number o f r e a c t i o n s
4 Num=25; %number o f metabo l i c r e a c t i o n s
5 Nup=25; %number o f biomass product ion r e a c t i o n s
6 Np=25; %number o f macromolecules
7 Nxint=21; %number o f i n t e r n a l metabo l i t e s
8

9 %var i ab l e vec to r W inc l ud e s f l u x e s V, macromolecules p , growth ra t e mu
10 % V=W(1 :Nu) ; p=W((Nu+1:Nu+Np) ; mu=W(Nu+Np+1)
11

12 %weights o f macromolecules ( g/mmol)
13 bT=100∗ [1 .8061 3 .9861 1 .8486 1 .3898 0 .2452 0 .4774

1 .4453 0 .6911 2 .0961 2 .0492 1 .9249 45.8846 3 .0923
3 .8499 2 .1179 4 .9758 4 .6772 38.8476 6 .1858 1 .4072
4 .6674 5 .3355 0 .6813 22.9242 0 . 6 5 ] ;

14

15 %equa l i t y c on s t r a i n t s : Sm∗V=0 and bT∗p=B0
16 Aeq=ze ro s ( Nxint+1,Nu+Np+1) ;
17 beq=ze ro s ( Nxint+1 ,1) ;
18

19 %FBA con s t r a i n t : Sm∗V=0
20 Sm=input ( ’ load the s t o i c h i ome t r i c matrix ’ ) ;
21 Aeq ( 1 : Nxint , 1 :Nu)=Sm;
22

23 %biomass amount in the system : bT∗p=B0
24 Aeq( Nxint+1,Nu+1:Nu+Np)=bT;
25 beq ( Nxint+1 ,1)=B0 ;
26

27 %in equa l i t y c on s t r a i n s : enzyme capac i ty and biomass compos it ion
28 AA=ze ro s (25+1 ,Nu+Np+1) ;
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B MATLAB implementation of RBA algorithm

29 BB=ze ro s (25+1 ,1) ;
30

31 %enzyme capac i ty c on s t r a i n t s V/kcat−p<0 in matrix form => M1∗V−M2∗p<0
32 kcat ( 1 :Num)=60∗ [1998 1447 630 1326 78000 3000 3402 780 3402 3162 3960

768 29160 169980 32400 318 2684 800 942 i n f 360 18000 2220 3300
3 9 9 6 ] ’ ; %c a t a l y t i c cons tant s f o r metabol i c r e a c t i o n s

33

34 kcat (Num+1:Nu) =60∗ [0 .43 0 .2 0 .42 0 .56 3 .2 1 .64 0 .54 1 .14 0 .37 0 .38 0 .41
0 .02 0 .25 0 .2 0 .37 0 .16 0 .17 0 .02 0 .13 0 .56 0 .17 0 .15 1 .1 0 .1 2 8 . 8 ] ’ ;

%t r a n s l a t i o n r a t e s f o r macromolecules product ion r e a c t i o n s
35

36 M1=ze ro s (25 ,Nu) ;
37 f o r i =1:8
38 M1( i , i )=1/kcat ( i ) ;
39 end
40 M1(7 ,9 )=1/kcat (9 ) ;
41 f o r i =9:24
42 M1( i , i +1)=1/kcat ( i +1) ;
43 end
44 f o r i=Num+1:Nu
45 M1(25 , i ) =0.01/ kcat ( i ) ;
46 end
47 AA(1 : 2 5 , 1 :Nu)=M1;
48

49 M2=ze ro s (25 ,Np) ;
50 f o r i =1:18
51 M2( i , i )=−1;
52 end
53 f o r i =19:24
54 M2( i +1, i )=−1;
55 end
56 AA(1 : 2 5 ,Nu+1:Nu+Np)=M2;
57

58 %biomass compos it ion c on s t r a i n t : 0 .65∗bT∗p<Q in matrix form => CC∗p<0
59 CC(1 , 1 :Np)=0.65∗bT;
60 CC(1 ,Np)=(0.65−1)∗b(Np) ;
61 AA(25+1 ,Nu+1:Nu+Np)=CC;
62

63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 %opt imiza t i on by ipopt through OPTI too lbox
65 lb=ze ro s (Nu+Np+1 ,1) ; %lower bounds
66 ub=1000∗ones (Nu+Np+1 ,1) ; %upper bounds
67 W0=ones (Nu+Np+1 ,1) ; %i n i t i a l va lue
68 fun=@(W) ob j e c t i v e f un (W) ; %ob j e c t i v e func t i on : mu
69 nlcon=@(W) non l inearcon (W) ; %non l inea r c on s t r a i n t : Sp∗Vp−mu∗p=0
70 cu=ze ro s (Np, 1 ) ; %lower bound o f the non l in ea r c on s t r a i n t
71 c l=ze ro s (Np, 1 ) ; %upper bound o f the non l i n ea r c on s t r a i n t
72

73 opts = op t i s e t ( ’ s o l v e r ’ , ’ ipopt ’ , ’ maxiter ’ ,3000 , ’ d i sp l ay ’ , ’ i t e r ’ ) ;
74
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75 %Build OPTI Problem
76 Opt = opt i ( ’ fun ’ , fun , ’ eq ’ ,Aeq , beq , ’ ineq ’ ,AA,BB, ’ n l ’ , nlcon , c l , cu , ’ bounds ’

, lb , ub , ’ x0 ’ ,W0, ’ opt ions ’ , opts ) ;
77

78 %Solve NLP
79 [W, fva l , e x i t f l a g ] = so l v e (Opt)
80

81 Vm=W(1 :Num) ; %metabol i c f l u x e s
82 Vp=W(Num+1:Nu) ; %biomass product ion f l u x e s
83 p=W(Nu+1:Nu+Np) ’ ; %concent ra t i on o f macromolecules ( biomass components )
84 mu=W(Nu+Np+1) ; %growth ra t e
85

86 end

M-file 2:
1 %de f i n i n g the ob j e c t i v e func t i on : maximize mu
2 f unc t i on ob j e c t i v e= ob j e c t i v e f un ( W )
3 mu=W(Nu+Np+1) ;
4 ob j e c t i v e=−mu;
5 end

M-file 3:
1 %de f i n i n g the non l in ea r constra intÂ´ : Sp∗Vp−mu∗p=0
2 f unc t i on c = non l inearcon ( W )
3

4 V=W(1 :Nu) ;
5 p=W(Nu+1:Nu+Np) ;
6 mu=W(Nu+Np+1) ;
7

8 Sp=0.01∗ diag ( ones (1 ,Np) ) ;
9 c ( 1 :Np)=(Sp∗V(Num+1:Nu) ) −((mu∗p) ) ;

10 end
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