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Abstract: Recently, pore network modelling has been attracting attention in the investigation of
electrolysis. This study focuses on a 2D pore network model with the purpose to study the drainage
of water by oxygen in anodic porous transport layers (PTL). The oxygen gas produced at the anode
catalyst layer by the oxidation of water flows counter currently to the educt through the PTL. When
it invades the water-filled pores of the PTL, the liquid is drained from the porous medium. For
the pore network model presented here, we assume that this process occurs in distinct steps and
applies classical rules of invasion percolation with quasi-static drainage. As the invasion occurs in the
capillary-dominated regime, it is dictated by the pore structure and the pore size distribution. Viscous
and liquid film flows are neglected and gravity forces are disregarded. The curvature of the two-phase
interface within the pores, which essentially dictates the invasion process, is computed from the
Young Laplace equation. We show and discuss results from Monte Carlo pore network simulations
and compare them qualitatively to microfluidic experiments from literature. The invasion patterns of
different types of PTLs, i.e., felt, foam, sintered, are compared with pore network simulations. In
addition to this, we study the impact of pore size distribution on the phase patterns of oxygen and
water inside the pore network. Based on these results, it can be recommended that pore network
modeling is a valuable tool to study the correlation between kinetic losses of water electrolysis
processes and current density.

Keywords: pore network model; drainage invasion; pore size distribution; porous transport
layer; electrolysis

1. Introduction

With innovations in the energy sector and a need for clean fuel, research is in progress to exploit
the potential of hydrogen as an efficient energy source. Exemplarily, fuel cells can utilize hydrogen to
produce electricity, and it can also serve as a fuel for internal combustion engines [1]. For the production
of hydrogen, electrolyzer technology serves as a very promising and viable option. The purity of
the produced hydrogen can be almost 100 vol % [2]. This way, it can be integrated with other
renewable resources to offer a broad range of ecologically clean methods for hydrogen production [3-5].
Shortly, electrolyzers and fuel cells will be able to help alleviate the effects of fossil and nuclear fuel
consumption [2,6,7]. This, however, implies efficient performance of electrolyzers.

A trade-off between the production rates and the efficiency of an electrolyzer is still to be met. For
this technology to be commercial, the cost and hence the efficiency needs to be optimized. Among the
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electrolyzer technologies, polymer electrolyte membrane (PEM) electrolyzers have an edge over the
other varieties because of high energy efficiency and compact design [8-10]. Power needed for the
electrolyzer operation can be obtained from renewable sources too and such systems have also been
gaining a lot of attention recently [11]. Polymer electrolyte membrane electrolytic cells (PEMECs) are
very common when coupling the technology with other renewable sources like solar or wind energy.

High current densities are necessary in order to obtain high production rates. The problem
is that the high current density operation results in a decrease of electrical efficiency. This is for
example, reported in [12-16] and it is mainly explained with the kinetic losses associated with the mass
transfer resistances through the porous transport layers (PTL) [17]. The counter-flow of the two phases
causes hindrance against each other, and this mass transfer resistance causes a decrease in the overall
electrolyzer performance [18,19].

It is strongly assumed that the high oxygen production rates achieved at the high current densities
allow for the formation of gas bubbles that can invade the PTL and partially drain the water [20,21].
The size of gas bubbles increases with the increase in current density [12,15,22]. This leads to the
formation of gas fingers penetrating the PTL from the anode catalyst layer, where the oxygen is
produced, to the water supply channel from where the oxygen is removed [8]. The development of
these gas fingers obviously results in the reduction of the overall water loading of the PTL. This can
severely affect the water permeability, especially if the surface saturation of the PTL with water is
significantly reduced by gas-filled pores [23]. On the other hand, the efficiency of the oxygen transport
in the opposite direction depends mainly on the tortuosity of the evolving gas branches.

According to the work done by Suerman et al. [24], 25% of the total cell overpotential could be
contributed to the mass transport losses and these losses are mostly credited to the oxygen withdrawal
from the catalyst surface and the PTLs. Yigit et al. [25] reported that at current densities less than
0.7 A/cm?, the hydrogen production rates were very low and at values above 1 A/cm? the electrical
efficiency decreased. Larger pores or high porosity values could easily mitigate this mass transport
problem on the side of the gas phase, but it would also decrease the electron transport and affect
the efficiency [8]. In contrast, small porosity values would hinder the gas removal and increase the
entrapped water amount within the catalyst layer, and thus, decrease the rate of reaction [8]. For this
purpose, current research aims at the structural optimization of PTLs with respect to efficient mass and
electron transfer.

Various experimental methods [12,14-16,20,26-28] and modeling approaches [29-33] are already
established to analyze the key factors of the PTL, such as flow regimes, structure, porosity, pore size
distribution (PSD), permeability, corrosion resistance, and electrical conductivity. From these studies,
the mass transfer limitations discussed before are generally either assigned to the flow regimes of the
gas phase (e.g., in Dedigama et al. [12] and Zhang et al. [34]) or to the structure of the PTL. The latter
has been studied in [14,15,26,29] (Table 1). In Ito et al. [15] an experimental study on a 27 cm? PEM
electrolyzer cell was presented that investigates the influence of porosity and pore diameter. In this
study, Ti-felt and Ti-powder prepared PTLs with different porosities and different pore structures were
used. According to this study, the optimum pore diameter would be 10 pm, whereas no significant
effect was seen for a porosity value greater than 50%. Grigoriev et al. [14] estimated an optimum value
of 12-13 um and 30%-50% as the optimum value of porosity using polarization curves for Ti-sintered
PTLs with different properties. Findings presented in Kang et al. [26] in an experimental study based
on thin/well tunable PTLs in a conventional cell suggested high porosity values and small pore sizes.
Ojung et al. [29] used a semi-empirical model in their investigations to study PEM cell without flow
channels. They varied pore sizes between 5-30 pm. They observed a decrease in performance at
5 um and greater than 11 pm there was no significant improvement shown by their model. They also
concluded that in a system without flow channels, porosity would not influence the performance at
fixed pore diameter and an optimum value of 60% was observed. Hwang et al. [35] also showed with
the experiments on reversible fuel cells using Ti-felt that for mean pore sizes around 30-50 pm porosity
is an insignificant factor.
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Table 1. Study of the interrelation of mass transfer limitations and porous transport layers
(PTL) structure.

. Estimated Estimated Operated
Reference Type of Technique . .
. Optimum Pore Optimum Current
No. Material Used to Study . . .
Size Porosity Density
[14] Ti-sintered Experimental 12-13 pm 30-50% 0-1.0 A/cm?
Ti (felt + . o >
[15] sintered) Experimental 10 pm <50% 0-2.0 A/em
[26] Thin/ W%H'tu“able Experimental 400 pm 70% 0-2.0 A/cm?
[29] Ti Semi-empirical 5-11 um 60% 0-5.0 A/em?

model

Besides this, explanations for the structure dependence of the electro activity can also be derived
from the consideration of flow regimes. Dedigama et al. [12] studied the flow regime within the PTL
using electrochemical impedance spectroscopy (EIS) and thermal imaging. They found a reduction in
the mass transfer limitation when passing from the bubble to the slug flow regime. In agreement with
that, Zhang et al. [34] observed a decrease in the efficiency with an increase of the mass flow rate of
water. Aubras et al. [31] showed that the porosity of the anode PTL affects the non-coalesced bubble
regime. According to this study, higher porosity can enhance coalescence of oxygen bubbles and
increase the performance of electrolyzer. Han et al. [36] also showed an increase in performance linked
to an increase in porosity. In addition to that, more recent studies [33,37] revealed the importance
of the interaction of the two involved hierarchical porous structures at the anode electrode, namely
the PTL and the catalyst layer. Exemplarily, it is demonstrated by Lee et al. [37] using micromodel
experiments that the pore sizes control the burst velocity of gas resulting in the application of a thin,
low porosity region at the inlet in order to reduce the gas saturations in the PTL.

The majority of the data suggests that a relatively lower value of pore size (around 10 um) is
favorable and no significant conclusion can be drawn about the porosity value. Some authors suggest
a high porosity value but others suggest that higher porosity would result in a slug flow, which can
lead to inefficient mass transfer and a decrease in efficiency. On the contrary, coalesced bubble regime
is also suggested to enhance the performance. In our view, other properties besides mean pore size and
porosity might influence the invasion process more significantly. In this paper, we aim at approaching
open questions by means of pore network (PN) modeling. In detail, we will consider the role of PSD,
which has a higher significance for the invasion in PTL than porosity.

From the above discussions, it can be concluded that advanced manufacturing processes are
required to tune the PTL performance. The reader may refer to [26,38-40] for various examples of PTL
production techniques that optimize the structure in terms of electrical efficiency and also in terms of
material consumption and costs. According to Lettenmeier et al. [39] vacuum plasma spraying can be
used to manufacture a PTL with a gradient in pore size along the thickness. It is possible to obtain an
average pore size of 10 um close to the bipolar plate and 5 um at the electrode side, with the help of
this technique (Figure 1). This coating technique can also be used to alter other properties of the PTLs
suiting to the need. In a very recent study, Lee et al. [33] showed the effect of porosity gradient on the
performance of the electrolyzer. The low porosity region was towards the membrane side and the
high porosity region on the water inlet side (Figure 1). They observed high water permeation despite
high oxygen saturations. Mo et al. [38] used electron beam melting (EBM) to mitigate the cost and
manufacturing issues of the PTL. They showed 8% improvement in the performance compared to the
conventionally woven PTLs. They obtained smooth surfaces at both ends of the PTL, thereby reducing
the contact resistance between PTL and catalyst layer. Schuler et. al. [41] verified this impact of the
interface between PTL and the catalyst layer clearly in their work.



Processes 2020, 8, 362 40f17

b 10um
E I Pore size

! gradient:
Increasing
E pore size
i from bottom
1 to top
Less porous :
region ' 5um
1 | !

Gas inlet side : Gas inlet side

Figure 1. (a) Schematic representation of different porosity regions in PTL as studied in [33]. (b) Pore
size gradient within PTL as in the study from [39].

2. Pore Network Models

The available methods for studying two-phase flow can be divided into continuum and discrete
models. The continuum models are usually formulated for macroscale continuous phases employing
effective parameters and are thus not suitable for explaining the discrete processes that occur at pore
scale. So, in order to gain a deeper understanding of the invasion processes under the action of
capillarity, viscous or gravity forces, pore scale models are usually preferred. Pore network models
(PNMS) are a type among various pore scale models available, e.g., Lattice Boltzmann models which
are mostly available on the scale of one pore. PNMs are discrete models that represent the pore
space by a lattice of pores and throats (e.g., [42—46]). In comparison to other methods, which are
computationally more expensive in terms of discretization of the physical domain and solving of the
governing equations, PNMs can be used to study larger systems computationally more efficiently.
Besides fundamental physical studies, PNMs are also used for the parameterization of macroscopic
models, e.g., to predict the capillary pressure curve, relative permeability curves, as well as saturation
curves [46].

PNMs are generally distinguished between quasi-static and dynamic models [47]. For the
simulation of the steady-states in capillary-dominated applications [33,48-51], quasi-static models
are used. In the absence of dynamic effects, e.g., driven by viscous forces, the entry capillary
pressure of pores and throats controls the displacement of liquid (drainage) or gas (imbibition) in such
applications [52]. In this work, the quasi-static model from [46] is applied for the simulation of the
drainage of water by oxygen.

The objective of this study is to achieve a fundamental understanding of gas and liquid transport
within the PTLs and the pore structure dependence of the invasion patterns. A regular 2D network of
pores and throats is used to illustrate the porous PTL. The void space of this network comprises of
spherical pores and cylindrical throats. Invasion percolation rules for quasi-static capillary invasion are
employed to simulate the displacement of water by oxygen. The displacement mechanism is controlled
by the capillary pressure curves of water that are obtained from the Young-Laplace equation:

20c0s0

Py = Papm — (1)
where P is the liquid pressure, Py, is the atmospheric pressure, o in kg s72 is the surface tension, 0 is
the wetting angle, and 7 is the radius of the channel.

Invasions or displacements occur when they are energetically more favorable. More clearly,
the pressure difference between the wetting fluid (water) and the non-wetting fluid (oxygen) leads to
the formation of a curvature with a radius depending on the pressure difference. In the case of drainage,
the non-wetting phase is the one with higher pressure to be forced through the porous structure.
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The incremental increase of the pressure inside the gas phase results in the invasion of the liquid filled
pores and throats, with liquid pressures depending on their radius and wettability (Equation (1)). This
means, that the stepwise invasion of the interconnected pore space results in the formation of distinct
invasion patterns that depend on the PSD and the connectivity of pores and throats.

In such networks, the porosity can be increased basically in two ways, namely by (i) increasing
the number of throats of the same dimensions, and (ii) changing the distribution of the throat sizes
(Figure 2). In the example illustrated in Figure 3, porosity and mean throat diameter are kept constant
and only the distribution varies following the invasion pressure curve computed using Equation (1).
As can be seen, the differences in the structural organization of the PN are expected to result in different
overall liquid saturations and different gas-liquid distributions [53]. The larger pores and throats are
invaded by the gas phase while the smaller ones remain liquid saturated.

High Porosity

By adding

channels

=
|

Changing

pore size
distribution

Low Porosity

Figure 2. Different throat size distributions with same porosity but different mean throat diameter and
standard deviation of the throat size. Solid in white and liquid saturated void space (i.e., pores and
throats) in blue.

Figure 3. Different saturations for constant porosity and constant mean throat diameter but different
organization of the pore network (PN). Solid and empty pores and throats in white and liquid saturated
pores and throats in blue.

3. Model Description

The model is comprised of two parts; part one includes the determination of the data structure
for the definition of the geometry of the void and solid space, and the second part contains the
equations of the drainage algorithm and the cluster labeling (Figure 4). The data structure contains
the information about the connections between the pores and throats in the network (Figure 5).
This information is used in the drainage algorithm for the stepwise calculation of the successive
invasion. The Hoshen-Kopelman algorithm [54,55] is then applied to identify invading and isolated
liquid clusters.
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Figure 4. Scheme of the algorithm.
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Figure 5. Pore and throat numbering in a 2D PN. The dashed lines illustrate the periodicity at the
lateral boundaries.

3.1. Network Generation

Pore and throat radii (rp, 7¢) are randomly distributed around a given average value with defined
standard deviations. The geometrical arrangement of throats and neighbor pores with the relevant
geometry parameters is illustrated in Figure 6.

- L .
Ve =Ap. Ly — Vp—gmp
—> s D

-2 — A, =1
A, =11y E, Yp.i L rpj p p

Figure 6. Geometric information about pores and throats.

3.2. Invasion Algorithm

After the geometric parameters are specified, active, i.e., invading clusters with their menisci are
identified and the maximum liquid pressure is computed within the active clusters using Equation (1).
The algorithm then selects the largest accessible throat or pore for gas invasion following the rules
specified in Vorhauer et al. [46]. As invasion proceeds, entrapped clusters are formed, which are
permanently isolated due to the incompressibility of the fluids.
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3.3. Cluster Labeling

During this process, labeling of liquid clusters is used to identify the pores and throats that are
connected to each other and form a pathway for liquid and gas transport. At the start of the invasion
process, the network is completely occupied by liquid, and there is only one cluster spanning the
whole network and conducting the liquid phase. With initiation of invasion, numerous liquid clusters
can form that are distinguished into liquid-conducting clusters (connected to bottom and top side of
the PN) and isolated clusters. The Hoshen—-Kopelman algorithm [54,55] is used for the labeling of
these clusters. Clusters are reviewed and relabeled after each invasion step to update the connections
between the pores and throats.

3.4. Model Assumptions

Quasi-static drainage invasion in the capillary dominated regime.

PN initially saturated with water.

No phase transition occurs.

Oxygen is injected at the top side and water is removed from the bottom side.
There is no mixing or diffusion between the two phases.

Viscous, gravity and liquid film flow are neglected.

Piston type throat invasion computed based on the Young-Laplace equation.

® NG

No further invasion occurs after breakthrough of the gas phase.

4. Pore Network Simulation of Microfluidic Experiments

A pore and throat network was conceived using the parameters of microfluidic experiments
from Arbabi et al. [20]. The PNM was constructed based on the image data extracted from Figure 7.
The experimental image in Figure 7 is then used to compare the flow path of gas within the micromodel
qualitatively with our own simulation results. In Figure 7, gas pores and throats are highlighted in
blue (pores) and yellow (throats) while liquid pores are in red and liquid throats in black. In this
investigation, we are interested if the PNM introduced above is able to predict the experimentally
estimated invasion path. It is remarked that invasion is dictated by the interface curvature of pore
and throat menisci, wherefore the pore and throat sizes are of interest here. They were determined
from the experimental image and transferred into the data structure of the PNM. Although the pore
sizes are significantly larger than the throat sizes in this example, pore invasion pressures were not
matched with the pore sizes. Instead the pore sizes were randomly adjusted. As can be seen below, the
simulation leads already to a very good agreement of the results. However, in a future study, it would
be preferable to track experimentally the different invasion pressure thresholds of pores and throats
based on the interface curvature of liquid menisci.

O Liguid filled pores

= Liquid filled throats

O Gas invaded pores

Gas invaded throats

Figure 7. Microfluidic drainage experiment from Arbabi et al. [20] (Reprinted with the permission from
Elsevier, 2014). Solids and gas invaded area in black, liquid in white. The PN is identified by the circles
and throats. The image shows the steady-state invasion pattern after breakthrough of the gas phase
from inlet (at the bottom) to water channel (at the top).
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The data of pore and throat sizes was implemented in the PNM to compute the successive invasion
of the PN. The result of the simulation is shown in Figure 8. It is observed that the invasion pattern
simulated with the PNM is identical with the experimental image (Figure 7). The perfect agreement
reveals the suitability of the model structure and model assumptions and the ability of PNMs to predict
the quasi-static drainage patterns. Though, in a future study it would be of interest, if also the stepwise
invasion of the PN can be accurately predicted, not only for idealized 2D structures but also in larger
and more realistic 3D structures.

=== |nvaded Throat
@ invaded Pore

Y - Position (-)

0 1 2 3 4
X - Position (-)

o
o

Figure 8. (a) PNM simulation result, (b) invasion pattern comparison of simulation and experiment
result. Liquid-filled throats are shown in black, invaded pores in red, and invaded throats in blue.
Liquid-filled pores are not shown.

5. Monte Carlo Simulations

5.1. Impact of Pore Size Distribution in Monomodal PNs

The pore size properties of sintered PTL were used to study the effect of PSD on the invasion
patterns and the steady-state saturation of the PTL at breakthrough of the gas phase. For this purpose,
a pore network (PN) with the properties summarized in Table 2 were used.

Table 2. Simulation Parameters.

Parameter Value
Network size (columns and rows) 80 x 30
Temperature 80 °C
Contact Angle 60°
Surface Tension of water 0.0627 N/m
Avg. pore diameter 23 pm
Avg. throat diameter 17 pm
Lattice spacing 50 pm
Avg. throat length 27 pm
Porosity 63%

The standard deviation values were varied from 0.5 um to 3 pm for a mean throat size of 17 um
(Figure 9), and pore sizes were used with a constant standard deviation value of 2 um. Monte Carlo
simulations were done for each data point so that the given gas saturation values in Figure 10 and
Table 3 are an average of 20 simulations. In general, it is observed that the final gas saturation increases
at breakthrough with widening of the radius distribution.
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Figure 9. Histograms of pore size distribution (PSD) with varying standard deviation in um as indicated

in the legend.
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Figure 10. Gas saturation at breakthrough of the gas phase for different PSDs. The mean value of throat
sizes is 17 pm.

Table 3. Total void volumes and porosities associated with the gas saturation at breakthrough.

Standard Deviation 0.5 um 10pum 15um 20pum 2.5um 3.0 um
Breakthrough gas saturation (%) 229 24.3 24.6 26.4 25.6 29
Porosity (%) 63.01 63.05 63.06 63.13 63.14 63.21
Total Void Volume (uL) 0.0178 0.0179  0.0180  0.0185  0.0191 0.0194

The simulation results clearly reveal the impact of PSD on the final distribution of liquid and
gas phase. While the average throat size was kept constant, the porosity of the PN increased slightly
with increasing standard deviation of throat sizes (Table 3). Thus, following the literature discussions
summarized above, it might be anticipated that higher porosities at constant mean throat or pore sizes
are a result of an increasing standard deviation of pore and throat sizes in the referenced situations. As
shown in Figure 10 and further analyzed below, the variation of PSD affects the invasion and thus the
gas saturation. In detail, a higher gas saturation is obtained for broader PSDs. It is to be noted that
higher PSDs than presented here can only be studied with a greater mean value of the throat size as

will be discussed below.
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5.2. Bimodal Pore Size Distributions

The previous results analyze the influence of the PSD on the example of monomodal PN, i.e., only
one peak in the histograms in Figure 9. As can be seen from Table 3, the porosity is only marginally
affected in these cases. Due to this, the phase distribution patterns change only slightly in Figure 10. In
reality, pore structures often obey bimodal PSDs, i.e., with two peaks in the histogram (Figure 11) and
with much stronger impact on porosity. The influence of macro pores is highlighted in Figure 3.

350 T T

300 [~ 1

200 - — -

150 -

Frequency (-)

100 -

50 - -

0 | | I
5 10 15 20 25

Throat Diameter (um)
Figure 11. Bimodal throat size distribution with standard deviation 2.0 pm for smaller (the first peak)
and 2.5 um for larger (the second peak) throats.

As can be seen, for the monomodal PN in Figure 12, widespread invasion patterns with a high
number of invasions is not achieved. This is in contrast to the bimodal PN in Figure 13. Monte Carlo
simulations yielded an average gas saturation of 26% for the monomodal network and 38% for the
bimodal network. This shows that widening of the PSD (Figure 9) and the introduction of macro
pores (Figure 11), both, result in a change of the invasion process. This change is more significant in
the second situation. While capillary fingering with narrow single gas branches is rather favored by
narrow PSDs, widening of the invasion front with higher gas saturations is obtained by larger PSDs,
and larger porosities. However, it can also be shown that the widening of the front can also be achieved
when the porosity is kept constant and only the PSD is adjusted (Figure 13). The monomodal and
bimodal networks used in simulations have a constant porosity of 71%. Figures 12 and 13 also show
the saturation profiles of these simulations. They reveal the importance of the consideration of the PSD
for characterization of the invasion process.

z=1.5mm B 4 o S Lk ey Ly e
LI R e
= . — Tt :ll'=f N 'y 1T

LR A :-‘l!l‘ o
AT
P 4
z=0mm T.1T LL

()

Figure 12. Cont.
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Figure 12. (a) Exemplary invasion patterns of the monomodal PN with porosity 71%. Liquid in blue,
gas in white and solid in gray. The arrow indicates the direction of gas invasion. (b) Saturation profiles
for different overall number of invaded throats and pores achieved during one drainage simulation of
the PN with randomly distributed pore and throat sizes.
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Figure 13. (a) Exemplary invasion patterns of the bimodal PN with porosity 71%. Liquid in blue, gas in
white and solid in gray. Macro-pores are represented by thicker lines. The arrow indicates the direction

of gas invasion. (b) Saturation profiles for different overall number of invaded throats and pores from
one drainage simulation.

These findings are in very good agreement with literature predictions on drainage invasion
regimes [48,56,57]. According to [57], the invasion occurs in the capillary dominated regime, i.e., with
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rather low injection rate and negligible viscous forces in both fluids. The viscosity ratio of water/air is
around 50, and the capillary number is calculated from the ratio of viscous over capillary forces:

AP,

Ca = 3P,

@)

with liquid pressure difference AP; and capillary pressure gradient AP.. It depends on the viscosity
of the liquid phase 1, the wetting curvature by means of surface tension ¢, and the velocity of the
invading menisci v, as

ST]ZJLt
AP} = — ®)
r
And )
00,
AP, = —2 @)
r

Ref. [58] considering the PSD with mean throat radius r and standard deviation og. (In Equation
(3), Lt denotes the length of a throat). The conditions for capillary fingering are fulfilled, if the capillary
number is below 107# [48,59]. With the given values for viscosity, surface tension and PSD, this would
be achieved if the invasion velocity is below 3.3 mm/min (with liquid viscosity of water = 1073 Pa's
and surface tension ¢ = 0.073 N/m at 20 °C, throat length L; = 50 um and standard deviation = 1.5 um).
This is in good agreement with correlations of the invasion time and current density estimated in [46].
Transition to another invasion regime, e.g., stable displacement or viscous fingering [48] would occur
if the invasion velocity would be increased or also if the standard deviation of the throat size would be
decreased. Such effects are observed in the research of drying of PNs, where sufficiently narrow PSDs
can result in stable, i.e., viscosity-dominated invasion [58]. When viscosity comes into play, the width
of the invasion front scales with capillary number. However, in the absence of viscosity, the probability
of the throat invasion depends on the PSD. In the limit of identical throat sizes, all throats would be
equally selected for invasion. In the case of our simulation, where in a such a limit the selection would
not be stochastically distributed but ordered by the throat number, the invasion would always occur in
the throat with the lowest number (also refer to Figure 4) wherefore consequently this special situation
(i.e., no distribution of throat and pore sizes) could not be simulated with the current algorithm. In
contrast, when the throat size distribution becomes broader, the invasion follows the path of the least
resistance, which results in a more random distribution of the phase patterns, provided that the throat
sizes are randomly distributed. Following [60] and [61], the occupation probability decreases with
growing Ar.

5.3. Pore Network Simulations of Real Porous Structures

The above discussions are referred to rather artificial porous structures aiming at a more
fundamental understanding of the influence of the pore structure on the invasion behavior. In
the following, we would like to compare the results for realistic pore structures, extracted from felt,
foam and sintered PTLs. The simulation results are compared to literature values from Arbabi et al. [20].
For this purpose, the PN simulations were repeated with a single-entry point (similar as in Figure 7). In
more detail, the invasion starts from a single gas pore while all other surface pores are not connected to
the oxygen supply. Simulations for each type of PTL were repeated five times with the PSDs shown in
Figure 14. From these simulations, representative patterns, i.e., which were most frequently observed,
are shown in Figure 15. It is seen that felt and foam PTL show more constricted patterns, while the
sintered PTL allows relatively broad patterns with more gas invasions, which is explained well enough
by the assumed PSDs for each type (Figure 14).

It is remarked that the PSDs are usually not provided in literature [20]. Due to this, we have
selected a standard deviation of throat width so as to catch the gas-liquid phase distributions found
for microfluidic experiments in the literature. The agreement of the simulated and the experimental
invasion behavior is very well. Also, the results are in line with the discussion of the impact of PSDs
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above. Namely, the foam exhibits one capillary finger that invades the PN almost straightly. The felt
PTL, with a slightly broader PSD (Figure 15), instead reveals a slight widening of the invasion front in
horizontal direction. In contrast to that, the sintered PTL allows for a broadening of the invasion front
and a significantly higher gas saturation at breakthrough.

In addition to that, it becomes clear from Figure 15 that the effect of liquid clustering occurs in all
types of the PTL. The greatest number of isolated liquid clusters is observed in the sintered PTL where
the number of invaded pores is higher and the invasion front appears more ramified. In the case of felt
and foam PTL, isolated clusters are not seen on the experimental images. This could be because of the
small size of the PN and the overall lower number of pore invasions.
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Figure 14. PSDs used for different PTL types with standard deviations: 1.0 um for foam, 1.7 pum for felt
and 2.5 um for sintered.
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Figure 15. Invasion pattern comparison: (a) foam PTL, (b) felt PTL, (c) sintered PTL (Experimental
images from [20] are reprinted with the permission from Elsevier, 2014).

6. Summary and Conclusions

In this study, the applicability of PMNs for the simulation of water drainage from PTL was
discussed. The PNM applies invasion percolation rules for hydrophilic drainage. It was shown that the
PNM can reliably predict the invasion patterns of 2D microfluidic devices related to water electrolysis
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studies. In addition to that, the structure dependence of the invasion process was studied using various
types of PTLs (foam, felt, sintered). In agreement with experimental data from literature, we could
predict different invasion patterns for the three cases. Felt and foam PTLs showed narrow gas fingers
while sintered PTL showed widespread invasion front patterns with a higher number of trapped
clusters. This observation matches the theoretical investigations based on a Monte Carlo study of
PSDs and invasion probability. Based on this, it could furthermore be shown, that the PSD affects
the invasion patterns more significantly than the porosity. More clearly, it was revealed that the PSD
could be adjusted independently of the porosity and that this resulted in different invasion patterns.
The impact of PSD can also be extended towards porous media in fuel cells.

As a next step, the PN will be further enhanced to replicate the local coordination numbers in
real PTLs with non-uniform distribution of pores and throats. The purpose would be to simulate
mass transfer within the real structure of porous media rather than in an idealized network. These
simulations would then be much closer to reality compared to the ones with a fixed coordination
number in the network. The effective transport parameters, e.g., permeability, could also then be
extracted by solving mass transfer equations pore by pore in a real structure. It would also be important
to study the effect of local temperature changes in the system and liquid flow through corner films.
Unsteady changes in the current density could also lead to pressure changes. For this reason, the
application of imbibition rules along with drainage will become important.
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Symbols
L Distance between nodes
L Length of throat
P, Capillary pressure
P, Liquid pressure
Ty Pore radius
Tt Throat radius
T Mean radius
v Velocity of invading menisci
2 Volume of pore
Vi Volume of throat
z PTL space coordinate
1 Viscosity of liquid phase
0 Contact angle
o Surface tension
oo Standard deviation
Abbreviations
Ca Capillary number
PN Pore network
PNM Pore network model
PSD Pore size distribution
PTL Porous transport layer

Ti Titanium
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