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Abstract. An iterative approach which was recently applied
to approximate the reflection and scattering coefficients of
transmission line ports is analyzed. The iterative solution for
the current on an infinite wire above ground is compared to
the exact solution. The example is chosen since it is one of
the few problems where an exact solution exists. The wire
is excited by a lumped voltage source or a plane wave. The
convergence of the iterative approach is shown. It can be con-
cluded that the zeroth iteration, which is the classical trans-
mission line solution, coincides with the general transverse
electromagnetic mode. Furthermore, it is shown that the first
iteration is a very good approximation of the radiation and
leaky modes, that occur in the close neighborhood around
the lumped source.

1 Introduction

Transmission lines play an important part in many branches
of electrical engineering. Hence, it is of great interest to un-
derstand the propagation of waves along transmission lines
and develop analytic methods to determine the currents on
wires.

Recently, an iterative approach was developed for thin
wires above ground and applied to many examples (see e.g.
Rachidi and Tkachenko, 2008; Middelstaedt et al., 2015,
2018). The iterative approach can be seen as an extension
to the classical transmission line approximation, which is
restricted to uniform transmission lines and to wavelengths
much larger than the transverse dimensions of the transmis-
sion lines. After only one iteration the iterative approach
already yields accurate results for infinite and semi-infinite
problems respecting the non-uniformity of the wire.

Due to the success of the iterative approach, questions that
arise are:

1. Does the iterative approach converge if more iterations
are used?

2. What is the interpretation of the solution of each itera-
tion step?

A first step in answering these fundamental questions is
done in this paper. The questions are answered using the ex-
ample of the infinite wire above ground excited by a lumped
voltage source and a plane wave. This specific problem is
chosen since its exact analytic solution is available for com-
parison.

Figure 1 shows the thin wire above an infinite, planar, per-
fectly electrically conducting ground. It is assumed that the
radius a of the wire is much smaller than its height h above
ground. Hence, the thin wire approximation can be applied.
The wire is either excited by a lumped voltage source with
amplitude V0 or by a plane wave with wave number k = ‖k‖
and electric field vector E0. The angle of incident is denoted
by θ and is defined as shown in Fig. 1.

The current density vector, that arises due to the sources,
is defined to be pointing in the positive z-direction. The cor-
responding current is denoted by I . The current I and the
electric scalar potential 8 can both be determined using
the so call mixed potential integral equations (MPIE). The
MPIE are derived in many publications e.g. in Nitsch and
Tkachenko (2010),

∂

∂z
8(z)+ jω

µ0

4π
GI (z)= Etan(z) (1a)

G
∂

∂z
I (z)+ 4π jωε08(z)= 0 . (1b)

The operator G is defined as a convolution integral

GI (z)=
∞∫
−∞

dz′G(z− z′)I (z′) (2)
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Figure 1. Infinite wire above ground with lumped voltage source
and plane wave excitation.

with the Green’s function for the half space

G(z)=
exp

(
− jk
√
z2+ a2

)
√
z2+ a2

−
exp

(
− jk
√
z2+ 4h2

)
√
z2+ 4h2

. (3)

The following relation holds for the angular frequency ω, the
permittivity ε0, and the permeability µ0

k = ω
√
µ0ε0 . (4)

The tangential electric field on the surface of the wireEtan(z)

depends on the kind of excitation. For the two considered
cases it is given as

Etan =

{
V0 δ(z) lumped voltage source

Ez exp(−jkθz) plane wave
(5)

with

Ez = 2j‖E0‖sin(θ)sin(khsin(θ)) (6)
kθ = k cos(θ) . (7)

The delta distribution is denoted by δ.
Usually, the goal is to solve equations similar to Eq. (1)

for the current I as in Leviatan and Adams (1982), Rachidi
and Tkachenko (2008), and Middelstaedt et al. (2015, 2018).
It is possible to find the exact solution for the straight infinite
wire above ground. For more practical cases there are no ex-
act analytic solutions but only approximations. The iterative
approach yields one of these approximations.

In the following the exact solution and the iterative one
are derived for the described example. The convergence of
the iterative approach is analyzed. Furthermore, the iterative
solution is interpreted by comparing it to the exact one.

2 Exact Solution

The problem of the infinite wire above ground is similar to
the two wire transmission line in free space, which is dealt
with in Schelkunoff (1956), Marin (1975), and Leviatan and
Adams (1982). In Marin (1975) the focus lies on the deter-
mination of the electromagnetic fields that propagate along

the wires in time domain. In Leviatan and Adams (1982) the
authors focus only on the transverse electromagnetic (TEM)
and leaky modes and ignore the radiation mode. Therefore,
the solution for the current along the wire is derived here
again with the focus on the current and all modes.

To solve Eq. (1) it is convenient to apply the Fourier trans-
form. The Fourier transform and its inverse, which is marked
with a tilde, are defined as

Ĩ (kz)=

∞∫
−∞

dzI (z)exp(−jkzz) (8)

I (z)=
1

2π

∞∫
−∞

dkzĨ (kz)exp(jkzz) . (9)

Fortunately, the transform of the Green’s function G is
known (see Nitsch and Tkachenko, 2002a)

G̃(kz)=


2
[
K0
(
a

√
k2
z − k

2
)

−K0
(
2h
√
k2
z − k

2
)] for k2

z 6= k
2

2ln
( 2h
a

)
for k2

z = k
2

(10)

where Km denotes the modified Bessel function of the sec-
ond kind and order m.

After some mathematical manipulations the current I and
its transform are found to be

Ĩ (kz)= 4π jωε0
Ẽtan(kz)

(k2
z − k

2)G̃(kz)
(11)

I (z)= 2jk
√
ε0

µ0

∞∫
−∞

dkz
Ẽtan(kz)exp(jkzz)
(k2
z − k

2)G̃(kz)
. (12)

With Eq. (12) an explicit expression is given for the current
that arises due to the excitation Etan(z). Depending on the
Fourier transform of the excitation Ẽtan(kz) the integral can
be solved. The transforms of the excitations given in Eq. (5)
are

Ẽtan(kz)=

{
V0 lumped volt. source

2πEz δ(kz+ kθ ) plane wave.
(13)

Hence, the solution resulting from the plane wave excita-
tion is simply

Ipw(z)= 4π jkEz

√
ε0

µ0

exp(−jkθz)
(k2
θ − k

2)G̃(kθ )
(14)

= 8π
√
ε0

µ0
‖E0‖

sin(khsin(θ))
k sin(θ)

exp(−jkθz)
G̃(kθ )

. (15)

2.1 Lumped Excitation

The procedure to obtain the solution for the lumped excita-
tion is more advanced. The difficulty lies in the solution of
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Figure 2. Contour of integration for Eq. (16) for z > 0 with poles
in the complex plane kz.

the integral in Eq. (12), namely

Ile(z)= 2jkV0

√
ε0

µ0

∞∫
−∞

dkz
exp(jkzz)

(k2
z − k

2)G̃(kz)
. (16)

The integral in Eq. (16) is analyzed using the residue the-
orem as in Marin (1975), Leviatan and Adams (1982). The
variable kz is assumed to be complex. Figure 2 shows the
integration contour for Eq. (16) qualitatively in the complex
plane for z > 0. Since the problem is symmetric it is suffi-
cient to only consider the solution for z > 0, which will be
done from now on.

The integrand has two branch cuts due to the square root in
Eq. (10). The branch cuts in Fig. 2 connect the branch points
at kz =±k via kz =∞ (ref. Riemann sphere). The choice of
the paths of the branch cuts originating from the fixed branch
points is arbitrary. Here these specific branch cuts are chosen
to allow a quick numerical integration along the branch cuts
for later considerations.

The residue theorem states that
∞∫
−∞

+

∫
CR, 1

+

∫
CR, 2

+

∫
Cε

+

∫
C−

+

∫
C+

= 2π j
∑
n

Res(kn) (17)

where Res(kn) denotes the residue of the integrand in
Eq. (16) for the poles kn inside the contour (see Fig. 2).
The integration along the outer circle vanishes for R→∞
mainly due to the exponential function in the numerator and
z > 0.

lim
R→∞

( ∫
CR, 1

+

∫
CR, 2

)
= 0 (18)

Hence,
∞∫
−∞

=−

∫
Cε

+ 2π j
∑
n

Res(kn)−
( ∫
C−

+

∫
C+

)
. (19)

The integral around the branch point at kz =−k results in
the TEM mode ITEM(z). Each residue in Eq. (19) gives rise
to leaky modes ILeaky(z). The integration along the branch
cut (in both directions) is connected to the radiation mode
IRad(z). The total current can be expressed as a sum of these
modes

Ile(z)= ITEM(z)+ ILeaky(z)+ IRad(z) . (20)

The TEM and leaky modes are analyzed in great detail
in Leviatan and Adams (1982). Their solution including the
constant factor in front of the integral in Eq. (16) is

ITEM(z)=
V0

2ZC
e−jkz (21)

ILeaky(z)=−
∑
n

V0

2Zn
ejknz (22)

for z > 0 with

ZC =
ln
( 2h
a

)
2π

√
µ0

ε0
(23)

Zn =
kn

4πk

√
k2
n− k

2
√
µ0

ε0

[
aK1

(
− a

√
k2
n− k

2
)

− 2hK1
(
− 2h

√
k2
n− k

2
)]
. (24)

The poles kn (the roots of Eq. 10) that contribute to the
solution are all located between the branch cut and the imag-
inary axis for this particularly chosen branch cut. There are
poles, whose real part is smaller than−k. But they are part of
a different Riemann surface. Hence, they are not part of the
total current.

The radiation modes arise due to the integration along the
branch cuts, specifically along the paths C− and C+.

IRad(z)=−2jkV0

√
ε0

µ0

( ∫
C−

dkz
exp(jkzz)

(k2
z − k

2) G̃(kz)

+

∫
C+

dkz
exp(jkz)

(k2
z − k

2) G̃(kz)

)
(25)

With the definition of the branch cut (see Fig. 2) follows

IRad(z)= jkV0

√
ε0

µ0

−k+j∞∫
−k

dkz
exp(jkzz)
(k2
z − k

2)

[
1

K0
(
− a

√
k2
z − k

2
)
−K0

(
− 2h

√
k2
z − k

2
)

−
1

K0
(
a

√
k2
z − k

2
)
−K0

(
2h
√
k2
z − k

2
)] (26)
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The integral can be modified with the substitution x =

−j(kz+ k), dkz = j dx.

IRad(z)=−kV0

√
ε0

µ0
e−jkz

∞∫
0

dx
exp(−xz)
−x(x+ 2jk)

[
1

K0
(
− a

√
−x(x+ 2jk)

)
−K0

(
− 2h

√
−x(x+ 2jk)

)
−

1

K0
(
a
√
−x(x+ 2jk)

)
−K0

(
2h
√
−x(x+ 2jk)

)] (27)

A solution for the latter integral is not known. But the in-
tegral is suitable for a fast numerical integration, especially
for large z.

The treatment of the radiation mode is omitted in Leviatan
and Adams (1982). In Marin (1975) the branch cut is chosen
differently and hence, a different representation of the radia-
tion mode is obtained.

The obtained exact solution is later used to interpret the
iterative solution.

3 Iterative Approach

The iterative approach is described in many publications, e.g.
Rachidi and Tkachenko (2008), Middelstaedt et al. (2016,
2018). The MPIE (Eq. 1) are modified to yield

∂

∂z
8(0)(z)+ jωL′I (0)(z)= Etan(z) (28a)

∂

∂z
I (0)(z)+ jωC′8(0)(z)= 0 (28b)

for the iteration start and

∂

∂z
8(n)(z)+ jωL′I (n)(z)= jωL′I (n−1)(z)

− jω
µ0

4π
GI (n−1)(z) (29a)

∂

∂z
I (n)(z)+ jωC′8(n)(z)=

∂

∂z
I (n−1)(z)

−
1

2ln
( 2h
a

)G ∂
∂z
I (n−1)(z) (29b)

for each iteration step with n= 1, 2, . . . and

L′ =
µ0

2π
ln
(

2h
a

)
(30)

C′ =
2πε0

ln
( 2h
a

) . (31)

The total current and total scalar potential are

I (z)= I (0)(z)+ I (1)(z)+ . . . (32)

8(z)=8(0)(z)+8(1)(z)+ . . . (33)

Equations (28) coincide with the classical telegrapher’s
equations. The equations for each iteration step (Eq. 29) have
a similar form. But the source is the electric field emitted by
the previously determined current I (n−1).

The equations can be solved using the Fourier transform
as for the exact solution. The results are

Ĩ (0)(kz)= 4π jωε0
Ẽtan(kz)

(k2
z − k

2)2ln
( 2h
a

) (34)

Ĩ (n)(kz)=

(
1−

G̃(kz)

2ln
( 2h
a

))Ĩ (n−1)(kz) (35)

=

(
1−

G̃(kz)

2ln
( 2h
a

))nĨ (0)(kz) . (36)

Hence, the resulting total current is

Ĩ (kz)=

∞∑
n=0

(
1−

G̃(kz)

2ln
( 2h
a

))nĨ (0)(kz) (37)

=
4π jωε0Ẽtan(kz)

(k2
z − k

2)2ln
( 2h
a

) ∞∑
n=0

(
1−

G̃(kz)

2ln
( 2h
a

))n (38)

The geometric series converges if and only if∣∣∣∣1− G̃(kz)

2ln
( 2h
a

) ∣∣∣∣< 1 . (39)

A parameter study found that Eq. (39) is always true as
long as the thin wire approximation is applicable, meaning
a� h and a� 2π/k. Further details are illustrated in Ap-
pendix B. Hence, the total current from the iterative approach
coincides with the exact result in Eq. (11) and therefore, con-
verges to the correct solution.

For general wires it is not so straight forward to obtain the
total current. Usually the zeroth and first iteration are deter-
mined analytically and the total current is approximated by
the sum of those two currents. Therefore, this procedure is
applied to this problem and the solutions are compared to the
exact modes.

For the plane wave excitation it is straight forward to de-
termine the currents I (n)pw (z) with Eqs. (34) and (36). They
are

I (0)pw (z)=
8π

2ln
( 2h
a

)√ ε0

µ0
‖E0‖

sin(khsin(θ))
k sin(θ)

e−jkθ z (40)

I (n)pw (z)=

(
1−

G̃(kθ )

2ln
( 2h
a

))nI (0)pw (z) . (41)

3.1 Lumped Excitation

To find the current of the zeroth and first iteration for the
lumped excitation it is more convenient to not apply the
Fourier transform. Thus, the complicated integral from the
inverse Fourier transform is avoided.
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It can be shown that

∂

∂z
GI (z)= G

∂

∂z
I (z) (42)

by applying integration by parts. Decoupling Eqs. (28) and
(29) then yields(
∂2

∂z2 + k
2
)
I (0)(z)=−

4π jωε0

2ln
( 2h
a

)Etan(z) (43)(
∂2

∂z2 + k
2
)
I (n)(z)=

(
∂2

∂z2 + k
2
)
I (n−1)(z)

−
1

2ln
( 2h
a

)G( ∂2

∂z2 + k
2
)
I (n−1)(z)

(44)

=

(
Id−

1

2ln
( 2h
a

)G)( ∂2

∂z2 + k
2
)
I (n−1)(z) (45)

=−
4π jωε0

2ln
( 2h
a

)(Id−
1

2ln
( 2h
a

)G)nEtan(z) (46)

where Id denotes the identity operator.
Equations (43) and (46) can be solved using a Green’s

function. The Green’s function for the given problem is

K(z, z0)=−
1

2jk
e−jk|z−z0| . (47)

To present the solution for each iteration in a concise form it
is convenient to define a linear operator K by

KI (z)=
∞∫
−∞

dz0 e−jk|z−z0|I (z0) . (48)

The solutions to Eqs. (43) and (46) are then

I (0)(z)=
1

2ZC
KEtan(z) (49)

I (n)(z)=
1

2ZC
K
(

Id−
1

2ln
( 2h
a

)G)nEtan(z) . (50)

The latter equations hold for any excitation. For the lumped
voltage source follows with Eq. (5)

I
(0)
le (z)=

V0

2ZC
Kδ(z) (51)

=
V0

2ZC
e−jk|z| (52)

and

I
(1)
le (z)=

V0

2ZC
K
(

Id−
1

2ln
( 2h
a

)G)δ(z) (53)

=
V0

2ZC
K
(
δ(z)−

1

2ln
( 2h
a

)G(z)) (54)

=
V0

2ZC

(
e−jk|z|

−
1

2ln
( 2h
a

)KG(z)) (55)

= I
(0)
le (z)−

V0

4ZC ln
( 2h
a

){ ∞∫
z

dz0 ejk(z−z0)G(z0)

+

z∫
−∞

dz0 e−jk(z−z0)G(z0)

}
. (56)

The latter integrals can be solved as described in Haase
(2005) yielding

I
(1)
le (z)=I

(0)
le (z)−

V0

4ZC ln
( 2h
a

){
e−jk|z|

[
E1

(
jk
(√
z2+ a2− |z|

))
−E1

(
jk
(√
z2+ 4h2− |z|

))]
+ ejk|z|

[
E1

(
jk
(√
z2+ a2+ |z|

))
−E1

(
jk
(√
z2+ 4h2+ |z|

))]}
(57)

with the exponential integral E1 defined in Abramowitz and
Stegun (1972).

4 Comparison

This section deals with the comparison of the zeroth and first
iteration with the exact solution.

4.1 Lumped Excitation

The zeroth iteration I (0)le (z), which is the classical transmis-
sion line solution, coincides with the exact TEM solution for
the lumped excitation (Eq. 21). The first iteration current and
the sum of the radiation and leaky modes are illustrated in
Figs. 3 and 4. The currents are normalized with the TEM
mode. It can be seen that even for large kh the first itera-
tion is a very good approximation of the radiation and leaky
modes.

In Appendix A it is shown that the asymptotic expansion
of the radiation mode and the first iteration coincide. Due to
the exponential damping of the leaky modes, their asymptotic
expansion is zero.

I
(1)
le (z)∼

V0

2ZC

4jkh2

4ln
( 2h
a

) exp(−jkz)
z

(58)

IRad(z)∼
V0

2ZC

4jkh2

4ln
( 2h
a

) exp(−jkz)
z

(59)

ILeaky(z)∼ 0 (60)

This explains the improved accuracy of the approximation
with increasing distance to the source.
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Figure 3. Comparison of the first iteration current with the leaky
and radiation modes for k = 1m−1, h= 0.5m, a = 1mm.

It is interesting to note that the asymptotic approximation
of the current of a semi infinite wire has the same form. It
is derived in Weinstein (1969) using the Wiener-Hopf tech-
nique.

4.2 Plane Wave Excitation

The convergence of the iterative approach for the plane wave
excitation is already illustrated in Rachidi and Tkachenko
(2008).

It is notable that for θ→ 0 follows

lim
θ→0

kθ = k (61)

lim
θ→0

G(kθ )=G(k)= 2ln
(

2h
a

)
(62)

lim
θ→0

I (0)pw (z)=
8π

2ln
( 2h
a

)√ ε0

µ0
‖E0‖he−jkz (63)

=
4h‖E0‖

2ZC
e−jkz (64)

lim
θ→0

I (n)pw (z)= 0 (65)

Hence, the iterative approach immediately converges to the
exact solution when θ→ 0. Furthermore, the solution in
Eq. (64) coincides with the TEM solution from the lumped
excitation with an equivalent voltage V0 = 4h‖E0‖. This

Figure 4. Comparison of the first iteration current with the leaky
and radiation modes for k = 10m−1, h= 0.5m, a = 1mm.

equivalent behavior is already mentioned in Nitsch and
Tkachenko (2002b).

5 Conclusions

The manuscript presents the exact and iterative solution for
the current of an infinite wire above ground excited by a
lumped and distributed source. The iterative approach ap-
proximates the system behavior independently of the exci-
tation. It is shown that the iterative approach converges for
reasonable wire dimensions. When there is a TEM mode
present, it coincides with the zeroth iteration solution, which
is know from classical transmission line theory. The first it-
eration, which can also be determined for arbitrary wires,
approximates the radiation and leaky modes. They occur
when a lumped disturbance, e. g. a lumped voltage source,
is present on the wire.

Even though only an infinite wire was analyzed the results
help to understand the propagation of currents along practi-
cal wires with discrete disturbances (lumped elements, sharp
bend, . . . ). Furthermore, the manuscript presents another ex-
ample where the iterative approach yields a very good ap-
proximation without much effort.

Data availability. No data sets were used in this article.
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Appendix A: Asymptotic Expansion for the Radiation
Mode and the First Iteration

The first iteration current is given in Eq. (57). As described
in Abramowitz and Stegun (1972) the amplitude of the ex-
ponential integral E1 vanishes for large arguments. For small
arguments a series exists.

E1

(
jk
(√
z2+ a2+ |z|

))
−E1

(
jk
(√
z2+ 4h2+ |z|

))
∼ 0 (A1)√

z2+ a2− |z| =
a2

2|z|
+O(|z|−3) (A2)

E1

(
jk
(√
z2+ a2− |z|

))
=−γ − ln

(
jka2

2|z|

)
+ jk

a2

2|z|
+O(|z|−2)

(A3)

where γ denotes the Euler-Mascheroni constant. Inserting
the latter results into Eq. (57) yields

I
(1)
le (z)∼

V0

2ZC
e−jk|z|

−
V0

2ZC

1

2ln
( 2h
a

) e−jk|z|

×

[
2ln

(
2h
a

)
+ jk

a2
− 4h2

2|z|

]
+O(|z|−2) (A4)

I
(1)
le (z)∼

V0

2ZC

jk(4h2
− a2)

4ln
( 2h
a

) exp(−jk|z|)
|z|

+O(|z|−2) . (A5)

The radiation mode consists of an integral of the form

J (z) :=

∞∫
0

dx e−xzf (x) (A6)

with

f (x)=
1

−x(x+ 2jk)

×

[
1

K0
(
− a

√
−x(x+ 2jk)

)
−K0

(
− 2h

√
−x(x+ 2jk)

)
−

1

K0
(
a
√
−x(x+ 2jk)

)
−K0

(
2h
√
−x(x+ 2jk)

)]
(A7)

The integral J (z) can be approximated for large z as de-
scribed in Wong (2002). Due to the strong damping of the
exponential function for large z

J (z)∼

∞∫
0

dx e−xzf (0) (A8)

=
f (0)
z

. (A9)

Figure B1. Convergence condition for different frequencies k with
h= 0.5m and a = 10mm.

After some lengthy but straight forward mathematical ma-
nipulation it can be shown that

lim
x→0

f (x)=−
π j(4h2

− a2)[
2ln

( 2h
a

)]2 . (A10)

Inserting the latter results into Eq. (27) yields

IRad(z)∼
π jk(4h2

− a2)[
2ln

( 2h
a

)]2 V0

√
ε0

µ0

exp(−jkz)
z

(A11)

=
V0

2ZC

jk(4h2
− a2)

4ln
( 2h
a

) exp(−jkz)
z

. (A12)

Appendix B: Parameter Study for the Convergence
Condition

In the following some results of the parameter study are il-
lustrated. As stated in Sect. 3 the function

q(kz)=

∣∣∣∣1− G̃(kz)

2ln
( 2h
a

) ∣∣∣∣ (B1)

needs to be smaller than 1 for the iterative approach to be
convergent.

Figure B1 shows the function q(kz) for different k. It can
be seen that the convergence condition Eq. (39) holds as long
as k ≤ klim. The upper bound klim is chosen such that a <
λ/10, where λ denotes the wavelength. This results in

klim =
2π
10a

. (B2)

If k increases, the thin wire approximation is not valid any-
more, q(kz) is larger than 1 for some kz and the iterative ap-
proach diverges.

A lengthy but straight forward analytic analysis shows that
q(kz) is always smaller than 1 for all kz > k.

www.adv-radio-sci.net/17/169/2019/ Adv. Radio Sci., 17, 169–176, 2019



176 F. Middelstaedt et al.: Analysis of an Iterative Approach for the Straight Infinite Wire Above Ground

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue
“Kleinheubacher Berichte 2018”. It is a result of the Klein-
heubacher Tagung 2018, Miltenberg, Germany, 24–26 Septem-
ber 2018.

Review statement. This paper was edited by Frank Gronwald and
reviewed by two anonymous referees.

References

Abramowitz, M. and Stegun, I. A. (Eds.): Handbook of Mathemati-
cal Functions, With Formulas, Graphs and Mathematical Tables,
National Bureau of Standards, 10 edn., U.S. Government Print-
ing Office Washinton D.C., USA, 1972.

Haase, H.: Full-Wave Field Interactions of Nonuniform Transmis-
sion Lines, Phd thesis, Otto von Guericke University, Magde-
burg, Germany, 2005.

Leviatan, Y. and Adams, A.: The response of a two-wire transmis-
sion line to incident field and voltage excitation, including the
effects of higher order modes, IEEE T. Antenn. Propag., 30, 998–
1003, https://doi.org/10.1109/TAP.1982.1142893, 1982.

Marin, L.: Transient electromagnetic properties of two,
infinite, parallel wires, Appl. Phys., 5, 335–345,
https://doi.org/10.1007/BF00928022, 1975.

Middelstaedt, F., Tkachenko, S., Vick, R., and Rambousky,
R.: Analytic approximation of natural frequencies of
bent wire structures above ground, in: 2015 IEEE Inter-
national Symposium on Electromagnetic Compatibility
(EMC), 812–817, Dresden, Germany, 16–22 August 2015,
https://doi.org/10.1109/ISEMC.2015.7256268, 2015.

Middelstaedt, F., Tkachenko, S. V., Rambousky, R., and
Vick, R.: High-Frequency Electromagnetic Field Cou-
pling to a Long, Finite Wire With Vertical Risers Above
Ground, IEEE T. Electromagn. C., 58, 1169–1175,
https://doi.org/10.1109/TEMC.2016.2544110, 2016.

Middelstaedt, F., Tkachenko, S. V., and Vick, R.: Trans-
mission Line Reflection Coefficient Including High-
Frequency Effects, IEEE T. Antenn. Propag., 66, 4115–4122,
https://doi.org/10.1109/TAP.2018.2839914, 2018.

Nitsch, J. and Tkachenko, S.: Complex-Valued Transmission-Line
Parameters and their Relation to the Radiation Resistance,
Interaction Note 573, Air Force Weapons Laboratory, Kirt-
land Air Force Base, Albuquerque, NM, USA, available at:
http://ece-research.unm.edu/summa/notes/In/0573.pdf (last ac-
cess: 11 April 2019), 2002a.

Nitsch, J. and Tkachenko, S.: Source Dependent Transmission
Line Parameters – Plane Wave vs. TEM Excitation, Interaction
Note 577, Air Force Weapons Laboratory, Kirtland Air Force
Base, Albuquerque, NM, USA, available at: http://ece-research.
unm.edu/summa/notes/In/0577.pdf (last access: 11 April 2019),
2002b.

Nitsch, J. and Tkachenko, S.: High-Frequency Multiconduc-
tor Transmission-Line Theory, Found. Phys., 40, 1231–1252,
https://doi.org/10.1007/s10701-010-9443-1, 2010.

Rachidi, F. and Tkachenko, S. V. (Eds.): Electromagnetic Field
Interaction with Transmission Lines: From Classical Theory
to HF Radiation Effects, WIT Press, Ashurst Lodge, Ashurst,
Southampton, SO40 7AA, UK, 2008.

Schelkunoff, S. A.: Electromagnetic Waves, D. Van Norstrand
Company, Inc., New York, NY, 8th printing, 1956.

Weinstein, L. A.: The Theory of Diffraction and the Factorization
Method, The Golem Press, Boulder, Colorado, 1969.

Wong, R.: Asymptotic Approximations of Integrals, SIAM,
Philadelphia, PA, 2002.

Adv. Radio Sci., 17, 169–176, 2019 www.adv-radio-sci.net/17/169/2019/

https://doi.org/10.1109/TAP.1982.1142893
https://doi.org/10.1007/BF00928022
https://doi.org/10.1109/ISEMC.2015.7256268
https://doi.org/10.1109/TEMC.2016.2544110
https://doi.org/10.1109/TAP.2018.2839914
http://ece-research.unm.edu/summa/notes/In/0573.pdf
http://ece-research.unm.edu/summa/notes/In/0577.pdf
http://ece-research.unm.edu/summa/notes/In/0577.pdf
https://doi.org/10.1007/s10701-010-9443-1

	Abstract
	Introduction
	Exact Solution
	Lumped Excitation

	Iterative Approach
	Lumped Excitation

	Comparison
	Lumped Excitation
	Plane Wave Excitation

	Conclusions
	Data availability
	Appendix A: Asymptotic Expansion for the Radiation Mode and the First Iteration
	Appendix B: Parameter Study for the Convergence Condition
	Competing interests
	Special issue statement
	Review statement
	References

