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Zusammenfassung

In der vorliegenden Arbeit untersuchen wir Äquivalenzprobleme zweier Objekte aus
der diskreten Mathematik: disjunkte Differenzfamilien und fast perfekt-nichtlineare
Funktionen (APN-Funktionen, aus dem Englischen: almost perfect nonlinear).

Eine disjunkte Differenzfamilie ist eine Sammlung disjunkter Teilmengen gleicher
Kardinalität einer Gruppe G, sodass jedes Nichtnullelement aus G gleich häufig als
Differenz zweier Elemente derselben Teilmenge auftritt. Differenzfamilien spielen
eine wichtige Rolle in der Designtheorie, finden aber auch in der Kodierungstheorie
Anwendung. Wird eine neue Differenzfamilienkonstruktion vorgestellt, so stellt sich
natürlicherweise die Frage, ob die resultierenden Objekte wirklich neu sind oder ob
sie isomorph zu bereits bekannten Differenzfamilien sind.

In dieser Arbeit untersuchen wir drei solche Isomorphieprobleme: Wir vergleichen
eine klassische Konstruktion in endlichen Körpern (Wilson 1972) mit drei Konstruk-
tionen in Galoisringen – zwei davon sind bekannt (Davis, Huczynska und Mullen
2017, sowie Momihara 2017), die dritte führen wir neu ein. Diese Isomorphieprobleme
sind besonders interessant, da alle drei Galoisring-Konstruktionen auf demselben
Ansatz wie Wilsons Konstruktion basieren. Indem wir ausgewählte Schnittzahlen
der assoziierten kombinatorischen Designs bestimmen, zeigen wir, dass die beiden
bekannten Differenzfamilien und Wilsons Differenzfamilien in fast allen Fällen nichti-
somorph sind. Für unsere neuen Differenzfamilien geben wir eine partielle Lösung
des Isomorphieproblems an.

APN-Funktionen sind vektorielle Boolesche Funktionen von Fn2 nach Fn2 mit opti-
malen differenziellen Eigenschaften. Sie wurden 1994 von Nyberg eingeführt. Die
Auseinandersetzung mit diesen Funktionen wird primär aus der Kryptographie heraus
motiviert, denn APN-Funktionen bieten den bestmöglichen Schutz gegen differenzielle
Kryptoanalyse. Weitere Anwendungen finden sich in der Kodierungstheorie und in
der endlichen Geometrie. Obwohl APN-Funktionen seit ihrer Einführung intensiv
untersucht wurden, sind bisher nur wenige inäquivalente APN-Funktionen bekannt:
einige sporadische Beispiele, mehrere APN-Potenzfunktionen und gegenwärtig 13 un-
endliche Familien von APN-Nichtpotenzfunktionen. Gänzlich offen ist die Frage,
wie viele inäquivalente APN-Funktionen es auf Fn2 für ein gegebenes n gibt. Auch
Computersuchen liefern nur für n ≤ 8 zufriedenstellende Resultate.

In der vorliegenden Arbeit präsentieren wir die erste nichttriviale untere Schranke
für die Anzahl der inäquivalenten APN-Funktionen auf Fn2 für gerade n = 2m.
Für zwei sorgfältig ausgewählte unendliche Familien von APN-Funktionen, die auf
Zhou und Pott (2013) und Taniguchi (2019) zurückgehen, ermitteln wir jeweils
exakt, unter welchen Bedingungen die Funktionen jeder dieser Klassen äquivalent
sind. Aus diesen Resultaten leiten wir ab, dass es auf F2m

2 mindestens ϕ(m)
2

⌈
2m+1

3m

⌉
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inäquivalente APN-Funktionen gibt, wobei ϕ die Eulersche Phi-Funktion bezeichne.
Darüber hinaus präsentieren wir einige Resultate über Gold APN-Funktionen und
über eine unendliche Familie von APN-Funktionen, die von Carlet (2011) eingeführt
wurde. Zudem bestimmen wir die Automorphismengruppen aller genannten APN-
Funktionen.
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Abstract
In this thesis, we study equivalence problems of two objects from discrete mathematics:
disjoint difference families and almost perfect nonlinear (APN) functions.

Disjoint difference families are collections of same-sized disjoint subsets of a
group G such that each nonzero element of G occurs equally often as the difference
of two elements from the same subset. Difference families play an important role
in design theory, and they also have applications in coding theory. Whenever a
new construction of a difference family is presented, it is a natural question to ask
whether the construction provides completely new objects or whether its instances
are isomorphic to already known difference families.

In this thesis, we study three such isomorphism problems: we compare each of
three different constructions of difference families in Galois rings, two of which were
introduced by Davis, Huczynska, and Mullen (2017) and by Momihara (2017), and
one of which is new, with a classical construction in finite fields by Wilson (1972).
These isomorphism problems are particularly intriguing as Wilson’s construction
served as an inspiration for all three Galois ring constructions. To compare such
difference families from different groups, we study the block intersection numbers of
their associated combinatorial designs. For both known difference families, we show
that they are in almost all cases nonisomorphic to Wilson’s difference families. For
our new difference family, we present a partial solution to the isomorphism problem.

APN functions are vectorial Boolean functions from Fn2 to Fn2 with optimal differ-
ential properties. They were introduced in 1994 by Nyberg. The main motivation to
study these functions lies in cryptography as APN functions provide the strongest
resistance against differential cryptanalysis, but they also have applications in coding
theory and finite geometry. Although APN functions have been extensively studied
since their introduction, only a limited number of inequivalent APN functions are
known: except for some sporadic examples, we know several power APN functions
and currently 13 infinite families of non-power APN functions. Up to now, it has
been completely unknown, how many inequivalent APN functions exist on Fn2 for
any given n. Satisfactory results from computer searches only exist for n ≤ 8.

In this thesis, we present the first nontrivial lower bound on the total number of
inequivalent APN functions on Fn2 where n = 2m is even. We carefully pick two
infinite families of non-power APN functions introduced by Zhou and Pott (2013)
and Taniguchi (2019), and we completely determine the equivalence of the instances
of these classes. We derive that on F2m

2 , there exist at least ϕ(m)
2

⌈
2m+1

3m

⌉
inequivalent

APN functions, where ϕ denotes Euler’s totient function. We add some results about
Gold APN functions and about an infinite family of APN functions by Carlet (2011),
and we determine the automorphism groups of all these APN functions.
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1 Introduction

Two focal points of research in combinatorics are the construction and the enumeration
of interesting combinatorial configurations. When considering a certain combinatorial
configuration, it is a natural problem to find as many examples of this object as
possible since we need a certain number of candidates to study it in detail. In the
best case, there are several powerful constructions that provide huge infinite families
of these objects. In general, however, there exist one or even several equivalence
relations on the structure the objects are embedded in that preserve the relevant
properties of the configuration. Consequently, it often happens that many instances
of the same infinite family are equivalent or that two classes that seem to be different
at first actually provide equivalent examples. Hence, it is not only important to find
new constructions of a combinatorial configuration, but it is an equally essential task
to enumerate these objects by carefully studying their equivalence.

In this thesis, we contribute to this task for two kinds of objects: difference
families, which are combinatorial configurations in abelian groups closely related to
combinatorial designs, and almost perfect nonlinear functions, APN functions in brief,
which are vectorial Boolean functions with optimal differential properties. We study
several isomorphism problems about difference families from different constructions
in finite fields and Galois rings, and we completely determine the equivalence of two
infinite families of APN functions. The latter result enables us to establish the first
nontrivial lower bound on the total number of APN functions.

This thesis is structured as follows. In this introduction, we present a short
overview of difference families and APN functions, and we explain further what
motivates our work. Afterwards, the thesis is separated into two parts one can read
separately: in Chapter 2 and Chapter 3, we focus on difference families and their
associated designs, and in Chapter 4 and Chapter 5, we study APN functions. In
both these parts, the respective first chapters, Chapter 2 and Chapter 4, contain
basic definitions and results that are mostly known, while the respective second
chapters, Chapter 3 and Chapter 5, contain our main results. In detail:

In Chapter 2, we introduce difference families and combinatorial designs together
with their equivalence relations, and we give a short overview of Galois rings. More-
over, we present the constructions of difference families that are relevant for this
thesis, including a new construction of difference families in Galois rings, and we
introduce a new family of divisible difference families. In Chapter 3, we study three
isomorphism problems concerning these infinite classes of difference families. We
tackle these problems using block intersection numbers.

In Chapter 4, we give an overview of vectorial Boolean functions and, in particular,
APN functions. Moreover, we introduce the relevant equivalence relations of vectorial
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1 Introduction

Boolean functions that preserve the APN property, and we present the infinite
families of APN functions that we study in detail. In Chapter 5, we completely
determine the equivalence of two classes of APN functions introduced by Zhou and
Pott [109] and by Taniguchi [100], respectively. From these results, we obtain the
first nontrivial lower bound on the total number of inequivalent APN functions.
Additionally, we determine the full automorphism groups of these functions.

Eventually, in Chapter 6, we will summarize our results, and we will give an
outlook on open problems that we encounter in the course of our work.

Finally, we remark that Chapter 2 and Chapter 3 are based on two papers by
Pott and the present author [75, 76] and Chapter 4 and Chapter 5 are based on two
papers by Zhou and the present author [77, 78].

1.1 Difference families
If G is an additively written abelian group of order v and D1, D2, . . . , Db are sub-
sets of cardinality k of G, or k-subsets of G, in brief, then we call the collection
{D1, D2, . . . , Db} a (v, k, λ) difference family in G if for every nonzero element g ∈ G,
there are λ distinct pairs of elements d, d′, where d, d′ ∈ Di for some i ∈ {1, 2, . . . , b},
such that d− d′ = g.

Example 1.1. The collection

D = {{1, 5, 8, 12}, {2, 3, 10, 11}, {4, 6, 7, 9}}

is a (13, 4, 3) difference family in the cyclic group Z13. Any nonzero element of Z13
is represented exactly three times as the difference of two elements from the same
subset in D = {D1, D2, D3}. For example, for 4 ∈ Z13, we have 5− 1 ≡ 12− 8 ≡ 4
(mod 13) from D1, and 2− 11 ≡ 4 (mod 13) from D2, and no difference from D3.

Difference families are a generalization of difference sets, which are basically
difference families with b = 1, and there is very rich theory on difference sets. We
refer to the introduction by Jungnickel and Pott [73] and the survey by Jungnickel [72]
for an overview. Still, various types of difference families have also long been studied
in combinatorial literature. The term difference family was introduced in 1972 by
Wilson [102], yet the concept of difference families can be traced back much further:
in 1852 and 1853, Anstice [4, 5] used similar ideas to construct an infinite family of
combinatorial designs. Unaware of Anstice’s work, it was Bose [15] in 1939 who, in
his paper, which is essentially the foundation of design theory, established difference
methods as tools to systematically construct combinatorial designs. For an overview
of difference families, we refer to the surveys by Abel and Buratti [1] and Beth,
Jungnickel, and Lenz [10, Chapter VII].

In the past 25 years, research also included different generalizations or specifications
of difference families, such as relative [28], strong [29], disjoint [84], near-complete [43],
partitioned [31, 50], divisible [85], external [88] and strong external difference fami-
lies [71, 89]. In this thesis, we will mostly deal with near-complete disjoint difference
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1.1 Difference families

families, which, using the notation from above, are difference families such that the
subsets D1, D2, . . . , Db are disjoint and partition the nonzero elements of G.

As pointed out by Ng and Paterson [86], the different types of difference families
have applications in design theory, cryptography, coding theory and communications
and information security, and they have connections to many other combinatorial
objects including association schemes, difference matrices, zero difference balance
functions, sequences, strongly regular graphs, and difference systems of sets; see also
the work by Abel and Buratti [1], Beth, Jungnickel, and Lenz [10], and Buratti and
Jungnickel [31].

In this thesis, in particular, the connections to design theory play an important
role as we can define an equivalence relation of difference families using the associated
combinatorial 2-designs. If P is a set with v elements, which we call points, then
a collection of k-subsets of P , which we call blocks, is a 2-(v, k, λ) design if every
two points are contained in exactly λ blocks. From any (v, k, λ) difference family
{D1, D2, . . . , Db}, we can easily obtain a 2-(v, k, λ) design by taking all the translates
Di + g, where i ∈ {1, 2, . . . , b} and g ∈ G.

Combinatorial designs have been extensively studied since the first half of the
19th century: Plücker [91] in 1835, Kirkman [79] in 1847, and Steiner [97] in 1853
all worked on combinatorial problems that today we would call design theoretical
problems. For a historical account, we refer to Wilson [103] and Anderson, Colbourn,
Dinitz, and Griggs [3]. Since these beginnings, countless publications have lead to
very rich literature about combinatorial designs and their applications in, for example,
group theory, finite geometry, and cryptography. We refer to Beth, Jungnickel, and
Lenz [10] and Colbourn and Dinitz [41] for an extensive overview of design theory.

One of the focal points of research on difference families is finding new instances
and new constructions of these objects. While difference families are not particularly
rare, this task is still important since we may find difference families with new
parameters or in new groups. In 2017, each Davis, Huczynska, and Mullen [43] and
Momihara [84] introduced new constructions of difference families in the additive
group of a Galois ring. In this thesis, we derive another new construction of difference
families in this particular group from the construction by Davis, Huczynska, and
Mullen [43]. Furthermore, we present a new construction of divisible difference
families that is derived from Momihara’s [84] work.

Even though the aforementioned constructions are new, this does not necessarily
imply that they provide completely new difference families since there exist two
basic equivalence relations between difference families: two difference families can
be equivalent or isomorphic. To be equivalent, two difference families need to be
defined in the same group. However, difference families in different groups may still
be isomorphic as this concept makes use of the associated designs, for which we
forget about the underlying groups.

So when a new construction of difference families is presented, we are naturally
interested in the question whether these difference families are new or whether they
are equivalent or isomorphic to already known ones. Of course, it does not make sense
to randomly choose two difference families and compare them—this selection has to
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1 Introduction

be carefully motivated. In the case of both the constructions in Galois rings by Davis,
Huczynska, and Mullen [43] and Momihara [84], the authors state that their work
was inspired by a popular construction of difference families in the additive group of
a finite field by Wilson [102]. As the constructions in Galois rings and those in finite
fields provide difference families with the exact same parameters, these classes are
natural candidates for studying their isomorphism problem. Davis, Huczynska, and
Mullen [43] even point out this question explicitly for their difference family.

In this thesis, we are going to solve these problems. We show that Momihara’s [84]
and Wilson’s [102] difference families are always nonisomorphic, and we prove that,
with one exception, the same holds for the difference families by Davis, Huczynska,
and Mullen [43] and by Wilson [102]. As our new construction of difference families
in Galois rings also has an analogue in finite fields from Wilson’s [102] construction,
we also study this isomorphism problem. Here, we present a partial solution.

1.2 Almost perfect nonlinear functions
A vectorial Boolean function f : Fn2 → Fn2 , where Fn2 denotes the n-dimensional vector
space over the finite field F2 with 2 elements, is called almost perfect nonlinear (APN)
if the equation

f(x+ a) + f(x) = b

has exactly 0 or 2 solutions for any b ∈ Fn2 and any nonzero a ∈ Fn2 . Note that
the term almost in almost perfect nonlinear is misleading in the sense that APN
functions actually are optimally nonlinear. A perfect nonlinear function is a function
f : Fnp → Fnp such that the equation f(x+ a)− f(x) = b has exactly one solution for
any b ∈ Fnp and any nonzero a ∈ Fnp . Such functions are also called planar functions.
However, over fields with characteristic 2, we have

f(x+ a) + f(x) = f((x+ a) + a) + f(x+ a),

which means that if x solves the above equation, so does x+ a. Consequently, there
are no perfect nonlinear functions on Fn2 , and APN functions are as close to perfect
nonlinearity as possible.

We once again start with an example. Note that we identify the vector space Fn2
with the finite field F2n here. This is something we will regularly do throughout this
thesis as it allows us to use finite field operations.

Example 1.2. The function
f(x) = x3

is APN on F2n for all positive integers n. As f(x+ a) + f(x) = ax2 + a2x+ a3 = b
is a quadratic equation, it has 0, 1 or 2 solutions for any a, b ∈ F2n where a 6= 0.
However, as pointed out above, one solution is not possible. Consequently, it has 0
or 2 solutions, and f is APN.

APN functions were introduced in 1994 by Nyberg [87]. She defined them as the
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1.2 Almost perfect nonlinear functions

mappings with the highest resistance to differential cryptanalysis, which is one of
the most important cryptanalysis tools for block ciphers and was introduced in 1991
by Biham and Shamir [11]. APN functions are also strongly connected with coding
theory and finite geometry. In particular, quadratic APN functions are equivalent
to a special type of dimensional dual hyperovals; see the work by Yoshiara [104],
Edel [56], and Dempwolff and Edel [44] for more details. Since their introduction,
APN functions have been studied intensively. For an extended overview of these
functions, we refer to the surveys by Pott [92], who mainly focuses on the geometrical
aspects of APN and planar functions, and Blondeau and Nyberg [12], who provide
an overview of theoretical results and applications of APN functions in cryptography.

For a long time, only very few APN functions were known, all of which were power
functions of the form x 7→ xd as in Example 1.2. Only in 2006, Edel, Kyureghyan,
and Pott [55] reported the first two examples of non-power APN functions on F10

2
and F12

2 . Since then, much research has been centered around finding new non-power
APN functions, and rightfully so as quite a few infinite families of such functions
have been discovered. Budaghyan, Calderini, and Villa [24, Table 3] recently listed
the 13 known families. In Section 4.3, we give a short overview of the known APN
functions.

In recent years, research about APN functions has focused on three big problems:
1. The Big APN Problem. When n is odd, several known APN functions on Fn2
are bijective. For example, all the known power APN functions permute the elements
of Fn2 where n is odd. It had been a long-standing unanswered question whether there
exists an APN permutation on Fn2 where n is even. In 2006, Hou [69] conjectured that
there was none. However, in 2009, his conjecture, which many believed to be true,
was refuted: Browning, Dillon, McQuistan, and Wolfe [21] presented the first instance
of an APN permutation on Fn2 with n even on F6

2. Until now, this is the only known
sporadic example, and since its discovery, the most intriguing question regarding
APN functions is whether there are more such functions. Despite many attempts
to tackle this so-called Big APN Problem, for example by Yu, Wang, and Li [108],
Calderini, Sala, and Villa [32], Perrin, Udovenko, and Biryukov [90], and Canteaut,
Perrin, and Tian [35], no additional APN permutation on an even-dimensional vector
space Fn2 has been found yet.
2. Finding non-quadratic APN functions. Except for one sporadic example
on F6

2, which was discovered by Edel and Pott [58] in 2009 using the so-called
switching method, every known non-power APN function is equivalent to a quadratic
APN function. That is an APN function that can be written in the form∑

0≤i<j≤n−1
ai,jx

2i+2j +
∑

0≤i≤n−1
bix

2i + c

with ai,j , bi, c ∈ F2n for i, j = 0, 1, . . . , n− 1 and not all ai,j = 0. Since then, almost
no progress has been made in finding more non-power APN functions that are not
equivalent to a quadratic function.

Using a completely different approach than Edel and Pott [58], Carlet [36] actually
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1 Introduction

also found a non-quadratic APN function on F6
2—but it turned out to be equivalent

to the one already known. While several power APN functions are non-quadratic,
it is an open problem whether there exist more than one non-quadratic non-power
APN function.
3. Determining the number of inequivalent APN functions. APN functions
are extremely rare: when randomly choosing a function on Fn2 where n ≥ 4, chances
that it is APN are basically 0. Completely classifying the APN functions on F4

2
and F5

2, Brinkmann and Leander [20] showed in 2008 that on these vector spaces,
approximately 1.9 · 1013 and 1.1 · 1023 APN functions, respectively, exist. While these
numbers seem to be large, they actually account for only approximately 1.0 · 10−4

and 7.6 · 10−24 percent, respectively, of all functions on these vector spaces. This
percentage certainly drops much further for greater n. Hence, it is of great interest
to find new constructions of these functions.

However, as there exist several equivalence relations for functions on Fn2 that
preserve the APN property, it is an equally important task to study how many
inequivalent functions do exist. Considering the most general notion of equivalence,
the so-called CCZ-equivalence, it turns out there are not so many:

Brinkmann and Leander [20] showed that on F4
2, all APN functions are pairwise

equivalent, and that on F5
2, all APN functions fall into three equivalence classes. On F6

2,
currently 14 equivalence classes are known: the non-quadratic one mentioned above
and 13 quadratic functions listed by Browning, Dillon, Kibler, and McQuistan [22].
It was confirmed by Edel [57] that this list is complete, but it is unknown whether
there exist more non-quadratic APN functions on F6

2. For n = 7 and n = 8, according
to Beierle and Leander [7], at the moment, 491 and 21 113 inequivalent functions
are known, respectively. Most of these functions do not fall into one of the known
infinite families, but were found by computer searches by Yu, Wang, and Li [108] in
2014, and by Beierle and Leander [7] in 2020.

For n ≥ 9, however, hardly any results about the number of inequivalent APN
functions exist. There are mainly two reasons for this. First, searching for new
functions computationally becomes very hard and resource consuming for greater n:
for example, the approach by Beierle and Leander [7], which yielded 12 923 new APN
functions on F8

2, only lead to five new APN functions on F10
2 so far. Second, up to now,

there are only few theoretical results about the equivalence of the infinite families of
non-power APN functions. Power APN functions are relatively well studied, but they
only provide very few inequivalent examples. As far as non-power APN functions
are concerned, the 13 known classes seem to be mutually inequivalent, but it is not
known how many inequivalent members each of these classes contains. It would be
particularly useful to have one construction that provides a plethora of inequivalent
functions.

In this thesis, we make an important contribution to the last of the aforementioned
problems: for n even, we present the first nontrivial lower bound on the total number
of inequivalent APN functions. In general, it is a very hard problem to prove the
inequivalence of two functions on Fn2 . As mentioned above, even computationally,
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1.2 Almost perfect nonlinear functions

it becomes difficult to check whether two APN functions are equivalent for n ≥ 9.
Consequently, for larger n, these problems need to be tackled theoretically. We
will carefully pick two infinite families of non-power APN functions, which were
introduced by Zhou and Pott [109] in 2013 and by Taniguchi [100] in 2019, and
completely solve the equivalence problem for the members of these classes. We will
add some similar results about a third infinite family of APN functions introduced
by Carlet [36].

First, we prove that the family by Zhou and Pott [109] contains 1
2ϕ(m)

(
bm4 c+ 1

)
inequivalent APN functions on F2m

2 with m even, where ϕ denotes Euler’s totient
function. Using the same approach for Taniguchi’s [100] APN functions, we consider-
ably improve this first lower bound and extend it to F2m

2 for any m ≥ 2. We show
that the number of inequivalent APN functions on F2m

2 is at least

ϕ(m)
2

⌈2m + 1
3m

⌉
.

As a corollary, our results enable us to determine the automorphism groups of the
Zhou-Pott and the Taniguchi APN functions as well as of the Gold APN functions
and, for m even, the Carlet APN functions.
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2 Difference families and combinatorial
designs

In this chapter, we focus on the two important combinatorial objects the first part
of this thesis is centered around: difference families and combinatorial designs. In
Section 2.1, we introduce these objects. We present some of their important properties,
and, in particular, we point out the connection between them: we demonstrate that
every difference family gives rise to a combinatorial design.

In Section 2.2, we define when two difference families are equivalent or isomorphic.
As three of the difference families for which we tackle the isomorphism problem exist
in a special local commutative ring called Galois ring, we give an introduction to
Galois rings in Section 2.3. In Section 2.4, we eventually present the constructions of
the difference families in finite fields and Galois rings that we study in this thesis.
While the difference family in finite fields and two of the three difference families in
Galois rings are well known, we also present one new construction in Galois rings.
We conclude this chapter by introducing a new divisible difference family in Galois
rings in Section 2.5.

2.1 Difference families and t-designs
We start by introducing some helpful notations. Let G be an abelian group, A,B ⊆ G
and g ∈ G. We define multisets

∆A := {a− a′ : a, a′ ∈ A, a 6= a′},
∆+A := {a+ a′ : a, a′ ∈ A, a 6= −a′},
A−B := {a− b : a ∈ A, b ∈ B, a 6= b},
A+B := {a+ b : a ∈ A, b ∈ B, a 6= −b},
A+ g := {a+ g : a ∈ A}.

In the course of this paper, we will sometimes use these notations to denote sets, not
multisets. It will be clear from the context if we mean the multiset or the respective
set.

We recall the definition of a difference family from Section 1.1 using the new
notations from above, and we introduce some additional properties of difference
families.

Definition 2.1. Let G be an abelian group of order v, and let D1, D2, . . . , Db be
k-subsets of G. The collection D = {D1, D2, . . . , Db} is called a (v, k, λ) difference
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2 Difference families and combinatorial designs

family in G if each nonzero element of G occurs exactly λ times in the multiset union

b⋃
i=1

∆Di.

We call D1, D2, . . . , Db the base blocks of D. If the base blocks are mutually disjoint,
we say D is a disjoint difference family. If b = 1, one speaks of a (v, k, λ) difference
set. We call D near-complete if the base blocks partition G \ {0}.

Using these new denotations, the difference family we presented in Example 1.1 is
a near-complete (13, 4, 3) disjoint difference family. We remark that the number b
of base blocks in a (v, k, λ) difference family is given by b = λ(v−1)

k(k−1) , which is the
quotient of the number of total differences and the number of differences per block.
Hence,

λ(v − 1) ≡ 0 (mod k(k − 1))

is a necessary condition for the existence of a (v, k, λ) difference family. Using this
condition, it is easy to confirm that there exists no complete disjoint difference family,
which is a difference family whose base blocks partition G. Such difference families
are often also called partitioned difference families, they are considered when we
allow base blocks of different cardinalities.

In this thesis, all the difference families we study are near-complete (v, k, k − 1)
disjoint difference families. Note that any disjoint difference family with parameters
(v, k, k − 1) is near-complete. Nevertheless, to point out the near-completeness, we
will usually also mention this property. Clearly, such difference families consist of
b = v−1

k base blocks.
Near-complete (v, k, k−1) disjoint difference families are closely related to external

difference families. As the name suggests, in an external difference family, we do not
consider the differences of elements within one set but the differences of elements
from distinct sets. Since Davis, Huczynska, and Mullen [43] actually constructed
external difference families, we will take a closer look at these objects and their
connection to disjoint difference families.

Definition 2.2. Let G be an abelian group of order v, and let D1, D2, . . . , Db

be mutually disjoint k-subsets of G, which we call base blocks. The collection
D = {D1, D2, . . . , Db} is called a (v, k, λ) external difference family if each nonzero
element of G occurs exactly λ times in the multiset union⋃

1≤i,j≤b
i 6=j

(Di −Dj) .

We call D near-complete if the base blocks partition the nonzero elements of G.

Proposition 2.1 shows that under certain conditions a disjoint difference family is
also an external difference family. This result was observed by Momihara [84], and,
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2.1 Difference families and t-designs

for near-complete disjoint difference families, it was also mentioned by Chang and
Ding [39] and Davis, Huczynska, and Mullen [43]. We will add a short proof.

Proposition 2.1. Let G be an abelian group of order v, let λ′ ≥ 2 be an integer,
and let D = {D1, D2, . . . , Db} be a collection of disjoint k-subsets of G such that
their union ⋃bi=1Di is a (v, bk, λ′) difference set in G. Then D is a (v, k, λ) disjoint
difference family in G for some positive integer λ < λ′ if and only if D is a (v, k, λ′−λ)
external difference family in G.

Proof. Let G be an abelian group of order v, and let D = {D1, D2, . . . , Db} be a
collection of mutually disjoint k-subsets of G whose union ⋃bi=1Di is a (v, bk, λ′)
difference set for some integer λ′ ≥ 2. We can split all the differences in ∆(⋃bi=1Di) in
the following way into the internal and the external differences of the D1, D2, . . . , Db:

∆
(

b⋃
i=1

Di

)
=

b⋃
i=1

∆Di ∪
⋃

1≤i,j≤b
i 6=j

(Di −Dj).

Since ⋃bi=1Di is a difference set, each element g ∈ G\{0} occurs with multiplicity λ′
in ∆(⋃bi=1Di). It follows that each nonzero element inG is represented as λ differences
in ⋃bi=1 ∆Di if and only if it is represented λ′ − λ times in ⋃1≤i,j≤b, i 6=j(Di − Dj).
Consequently, D is a (v, k, λ) disjoint difference family if and only if D is a (v, k, λ′−λ)
external difference family.

The next result follows immediately from Proposition 2.1.

Corollary 2.2. Let G be an abelian group. A collection D = {D1, D2, . . . , Db} of
k-subsets of G is a near-complete (v, k, k − 1) disjoint difference family in G if and
only if D is a near-complete (v, k, v − k − 1) external difference family in G.

Proof. If D is near-complete, then ⋃bi=1Di = G\{0}, and G\{0} is a (v, v−1, v−2)
difference set in G. The result now follows from Proposition 2.1.

For extended background on (v, k, k − 1) disjoint difference families, the reader is
referred to Buratti [30] who gives an overview of difference families with these param-
eters and summarizes several constructions, including the one by Davis, Huczynska,
and Mullen [43].

As mentioned before, every difference family gives rise to a combinatorial design.
Note that while a difference family requires the structure of a group, combinatorial
designs exist on sets.

Definition 2.3. Let P be a set with v elements, which we call points. A t-(v, k, λ) de-
sign D or t-design D, in brief, is a collection of k-subsets of P , which we call blocks,
such that each t-subset of P is contained in exactly λ blocks. We call P the point
set of D. If D has no repeated blocks, we say that D is simple.

The most famous example of a combinatorial design is the Fano plane:

11



2 Difference families and combinatorial designs

Example 2.4. The collection

D = {{1, 2, 7}, {1, 3, 6}, {1, 4, 5}, {2, 3, 4}, {2, 5, 6}, {3, 5, 7}, {4, 6, 7}}

is a 2-(7, 3, 1) design with point set P = {1, 2, . . . , 7}. Every 2-subset of P is contained
in exactly one block.

The designs associated to difference families are 2-designs, which are often referred
to as balanced incomplete block designs (BIBD). Note that a 2-(v, k, λ) design D
consists of vr

k blocks, where r = λ(v−1)
k−1 denotes the repetition number of D, which is

the number of blocks each point is contained in. In Definition 2.5 and Proposition 2.3,
we describe how to construct a 2-design from a difference family.

Definition 2.5. Let G be an abelian group, and let D = {D1, D2, . . . , Db} be a
collection of subsets of G. The development dev(D) of D is the collection

{Di + g : Di ∈ D, g ∈ G}

of all the translates of the subsets contained in D. The sets D1, D2, . . . , Db are called
the base blocks of dev(D).

In other words: The development dev(D) of D contains the orbits of the base
blocks of D under the action of G. Hence, dev(D) consists of vb blocks. Note
that these blocks are not necessarily distinct. If Di + g = Dj for two base blocks
Di, Dj and some g ∈ G, or if the orbit of a base block does not have full length, we
obtain repeated blocks, and dev(D) is not simple. In this thesis, all the designs we
consider are simple. The following Proposition 2.3 is well known. We add a proof for
completeness.

Proposition 2.3. Let D be a (v, k, λ) difference family in an abelian group G. The
development dev(D) of D forms a 2-(v, k, λ) design with point set G.

Proof. Let D = {D1, D2, . . . , Db} be a (v, k, λ) difference family in G, and let
D = dev(D) be the development of D. We take an arbitrary 2-subset T = {t1, t2}
of G, and we denote by n the number of blocks of D containing T . Recall that the
blocks of D are the translates Di + g.

We first show that n ≥ λ. Let d = t1 − t2. Since d is nonzero, d has exactly
λ representations as a difference d = d′−d′′ where d′, d′′ ∈ Di for some i ∈ {1, 2, . . . , b}.
Obviously, ∆Di = ∆(Di + g) for all i = 1, 2, . . . , b and all g ∈ G. This implies that
if d ∈ ∆Di, then d ∈ ∆(Di + g) for all g ∈ G. Hence, if we take d′, d′′ ∈ Di with
d′ − d′′ = d and set g = t1 − d′, then d′ + g = t1 and d′′ + g = t2. Consequently,
T ⊆ Di+g. Since there are λ pairs d′, d′′ with d′−d′′ = d, we find λ blocks containing
the set T this way.

Now suppose by way of contradiction that n > λ. This means that besides the
λ blocks mentioned above there is an additional block Dj+g for some j ∈ {1, 2, . . . , b}
and g ∈ G that contains T . Then d ∈ ∆(Dj + g) and it follows that d ∈ ∆Dj . Hence,
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we have λ+1 representations of the element d as a difference d′−d′′, where d′, d′′ ∈ Di

for some i = 1, 2, . . . , b. This contradicts our assumption that D is a (v, k, λ) difference
family. Consequently, n = λ.

2.2 Equivalent and isomorphic difference families
In this section, we introduce the notions of equivalent and isomorphic difference
families. While both concepts enable us to enumerate difference families, it is
important to distinguish them. We start by defining when two difference families are
equivalent.

Definition 2.6. Let G be an abelian group. We call two (v, k, λ) difference families
D = {D1, D2, . . . , Db} and D′ = {D′1, D′2, . . . , D′b} in G equivalent if there exists a
group automorphism α of G such that D′i is a translate of α(Di) = {α(d) : d ∈ Di}
for all i = 1, . . . , b.

In the following example, we present two equivalent difference families.

Example 2.7. The (13, 4, 3) difference family

D′ = {{3, 4, 11, 12}, {6, 8, 9, 11}, {2, 4, 8, 11}}

in the cyclic group Z13 is equivalent to the difference family

D = {D1, D2, D3} = {{1, 5, 8, 12}, {2, 3, 10, 11}, {4, 6, 7, 9}}

from Example 1.1 since D′ = {2D1 + 1, 2D2 + 2, 2D3 + 3}.

To define isomorphic difference families, we make use of the following definition
about isomorphic combinatorial designs.

Definition 2.8. Two 2-(v, k, λ) designs D and D′ with point sets P and P ′, respec-
tively, are isomorphic if there exists a bijection α : P → P ′ such that

(i) D′ = {α(B) : B ∈ D}, where α(B) = {α(p) : p ∈ B}, and
(ii) p ∈ B if and only if α(p) ∈ α(B) for any point p ∈ P .

From Proposition 2.3, we know that every difference family can be uniquely
associated with a combinatorial designs. We use these associated 2-designs to define
isomorphic difference families.

Definition 2.9. Two (v, k, λ) difference families D and D′ in abelian groups G
and G′, respectively, are isomorphic if their associated 2-(v, k, λ) designs dev(D) and
dev(D′) are isomorphic.

Note that equivalent difference families are isomorphic, which can be seen as follows.
Assume D = {D1, D2, . . . , Db} and D′ = {D′1, D′2, . . . , D′b} are equivalent difference
families in an abelian group G. Then for any i ∈ {1, 2, . . . , b}, the base block D′i is a
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2 Difference families and combinatorial designs

translate of α(Di) for some group automorphism α of G. As the associated designs
dev(D) and dev(D′) consist of all the translates of the base blocks of D and D′,
respectively, it is clear that α describes an isomorphism of dev(D) and dev(D′).

The converse, however, is in general not true: isomorphic difference families are not
necessarily equivalent. While this is obvious when D and D′ are difference families
in different groups, it also holds for difference families in the same group as the
following example by Colbourn [40] demonstrates.

Example 2.10 ([40, Remark 2.28]). The collections

D = {{0, 1, 2}, {0, 2, 9}, {0, 3, 6}, {0, 4, 8}, {0, 5, 10}},
D′ = {{0, 1, 3}, {0, 1, 6}, {0, 2, 7}, {0, 3, 10}, {0, 4, 8}},
D′′ = {{0, 1, 7}, {0, 1, 10}, {0, 2, 5}, {0, 2, 13}, {0, 4, 8}}

are (16, 3, 2) difference families in the cyclic group Z16. They are pairwise isomorphic:
D and D′ are isomorphic by the permutation (1 13)(2 14)(4 12)(5 9)(6 10)(7 15)
of the point set Z16, and D and D′′ are isomorphic by (2 10)(3 11)(6 14)(7 15).
However, it can be confirmed computationally that all three difference families are
mutually inequivalent. As an example: every difference family equivalent to D has
the structure {uDi + gi : i = 1, . . . , 5}, where u is a unit in the integer ring Z16 and
gi ∈ Z16 for i = 1, . . . , 5. However, for D′ and D′′ there are no such u and g1, . . . , g5.

In Chapter 3, we compare difference families in different groups. Hence, we
will only study isomorphism and no equivalence problems. However, one could
argue that combinatorial designs are, in comparison to difference families, the more
relevant combinatorial objects. Thus, it generally might be more interesting to study
isomorphism problems. In most cases, though, it is a very hard problem to prove
whether two designs are isomorphic or not. We will discuss some strategies to attack
such isomorphism problems at the beginning of Chapter 3.

2.3 Galois rings
As the difference families by Davis, Huczynska, and Mullen [43] and Momihara [84]
we are focusing on in this thesis are constructed in the additive group of a Galois
ring, we give a short introduction to Galois rings in this section. We present some
of their well-known properties; for extended general background on Galois rings,
we refer to the work by McDonald [82] and Wan [101]. Roughly speaking, Galois
rings are finite commutative rings that are relatively close to finite fields as they, for
example, have a large unit group.

Let p be a prime, and denote by Zp[X] the univariate polynomial ring over Zp. Let
P (X) ∈ Zpm [X] be a monic basic irreducible polynomial of degree r ≥ 1, where basic
irreducible means that the image of P (X) modulo p in the polynomial ring Fp[X] is
irreducible. The factor ring

Zpm [X]/(P (X))
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is called a Galois ring of characteristic pm and extension degree r, and it is denoted by
GR(pm, r). Its order is pmr. Since any two Galois rings of the same characteristic and
order are isomorphic, we speak of the Galois ring GR(pm, r). If m = 1, then GR(p, r)
is the finite field Fpr . For the remainder of this section, denote R = GR(pm, r).

Galois rings are local commutative rings. The unique maximal ideal of R is

I = pR = {pr : r ∈ R}.

The additive group of R is isomorphic to Zrpm . The unit group of R contains exactly
the elements of R \ I. We denote the unit group by R∗. It has order pmr − p(m−1)r,
and it is the direct product of a cyclic group of order pr − 1, called the Teichmüller
group T ∗ of R, and the so-called group of principal units P = 1 + I of order p(m−1)r.
If p is odd or if p = 2 and m ≤ 2, then P is a direct product of r cyclic groups of
order pm−1. If p = 2 and m ≥ 3, then P is a direct product of a cyclic group of order
2, a cyclic group of order 2m−2, and r − 1 cyclic groups of order 2m−1.

The factor ring R/I is isomorphic to the finite field Fpr with pr elements. Let ξ
be a generator of T ∗, which means ξ is an element of multiplicative order pr − 1 in
R∗. As a system of representatives of R/I, we take the Teichmüller set

T = {0, 1, ξ, . . . , ξpr−2}.

Every r ∈ R has a unique p-adic representation r = α0 + pα1 + · · · + pm−1αm−1,
where α0, α1, . . . , αm−1 ∈ T .

We remark that it is convenient to choose P (X) as a monic basic primitive
polynomial of degree r in Zpm [X], which means that the image of P (X) modulo p
is primitive in Fp[X]. Then ξ is a root of order pr − 1 of P (X), and we may set
ξ = X + (P (X)).

In this thesis, we will only consider Galois rings of characteristic p2. In this case,
the product of two principle units

(1 + pα)(1 + pβ) = 1 + p(α+ β)

for any α, β ∈ T , and every unit u ∈ GR(p2, r)∗ has a unique representation

u = α0(1 + pα1),

where α0 ∈ T ∗ and α1 ∈ T . Moreover, the group of principal units P is a direct
product of r cyclic groups of order p and thus has the structure of an elementary
abelian group of order pr.

In the following example, we describe the Galois ring GR(9, 2) and its impor-
tant structures. In Section 2.4 and Section 2.5, we will show examples of several
constructions of difference families in this particular Galois ring GR(9, 2).

Example 2.11. Define the Galois ring GR(9, 2) of characteristic 9 and extension
degree 2 as the factor ring Z9[X]/(X2 + 5X + 8). It contains 81 elements. Note that
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P (X) = X2 + 5X + 8 is a monic basic primitive polynomial in Z9[X] since the image
of P (X) in F3[X] is the primitive polynomial X2 + 2X + 2.

Set ξ = X + (P (X)). Then the Teichmüller group of GR(9, 2) is

T ∗ = {1, ξ, ξ2, . . . , ξ7} = {1, ξ, 4ξ + 1, 8ξ + 4, 8, 8ξ, 5ξ + 8, ξ + 5},

the maximal ideal is given as

I = pGR(9, 2) = {0, 3, 6, 3ξ, 6ξ, 3ξ + 3, 3ξ + 6, 6ξ + 3, 6ξ + 6},

and the group of principle units is

P = 1 + I = {1, 4, 7, 3ξ + 1, 6ξ + 1, 3ξ + 4, 3ξ + 7, 6ξ + 4, 6ξ + 7}.

The unit group of GR(9, 2) is GR(9, 2)∗ = GR(9, 2)\I. It is the direct product of T ∗
and P. Every u ∈ GR(9, 2)∗ can be uniquely represented in the form ξi(1 + 3ξj) for
some i, j ∈ {0, 1, . . . , 7}. For example, 6ξ + 5 = ξ4(1 + 3ξ2).

2.4 Constructions of difference families in finite fields and
Galois rings

There are dozens of constructions of various types of difference families. In this sec-
tion, we describe several constructions of near-complete (v, k, k−1) disjoint difference
families we will study in this thesis. We begin with a classical construction in finite
fields by Wilson [102]. Afterwards, we restate a very general construction in commu-
tative rings with an identity by Furino [62]. Furino’s work forms a framework for two
constructions in Galois rings, which we present next: the first one is due to Davis,
Huczynska, and Mullen [43], and the second one is a new construction. Eventually,
we present another construction in Galois rings introduced by Momihara [84].

For completeness, we add short proofs of the constructions by Wilson [102] and by
Davis, Huczynska, and Mullen [43], which we present in Theorem 2.4 and Theorem 2.6.
We will also give a proof for our new construction in Theorem 2.7. For the extensive
and technical proof of Momihara’s construction from Theorem 2.8, we refer to his
original work [84, Theorem 1]. We remark that Davis, Huczynska, and Mullen [43,
Theorem 2.1] actually showed that the disjoint difference family in Theorem 2.6 is
an external difference family.

In Theorem 2.4, we present Wilson’s construction of disjoint difference families in
finite fields. It makes use of the cyclotomy of the e-th powers in a finite field. The
idea goes back to Bose [15], who used this approach to construct 2-(v, 3, 2) designs.
A similar approach was also used by Hanani [67].

Theorem 2.4. Let Fq be the finite field with q elements, and let α be a primitive
element of Fq. Moreover, let e, f ≥ 2 be integers satisfying ef = q − 1, and let

C0 = {1, αe, α2e, . . . , α(f−1)e}
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be the unique subgroup of index e and order f of F∗q, which is formed by the e-th
powers of α. For i = 1, 2, . . . , e− 1, let Ci = αiC0 be the i-th coset of C0. Then the
collection C = {C0, C1, . . . , Ce−1} is a near-complete (q, f, f − 1) disjoint difference
family in the additive group of Fq.

Proof. Let x, y be distinct elements of F∗q , and suppose there exist c, c′ ∈ Ci for
some i ∈ {0, 1, . . . , e − 1} such that x = c − c′. Let z = y

x . Then y = zc − zc′.
Obviously, zc and zc′ are elements of the same coset Cj for some j ∈ {0, 1, . . . , e− 1}.
Hence, we have found a representation of y as the difference of two elements from the
same coset. Vice versa, every such difference representation of y gives a difference
representation for x. Consequently, every element of F∗q has the same number of
difference representations.

As there are e cosets Ci, all of cardinality f , and every Ci provides f(f − 1)
differences, we have ef(f − 1) total differences. They are distributed equally over
all q − 1 = ef elements of F∗q . Consequently, every x ∈ F∗q has exactly f − 1
representations x = c− c′ where c, c′ ∈ Ci for some i ∈ {0, 1, . . . , e− 1}.

Note that, according to Proposition 2.1, the collection C from Theorem 2.4 also
forms a near-complete (q, f, q−f −1) external difference family in the additive group
of Fq. Moreover, we remark that when we write q = pn for a prime p and an integer n,
we may understand C as a difference family in Znp as this group is isomorphic to the
additive group of Fq.

Example 2.12. The near-complete (13, 4, 3) disjoint difference family in the cyclic
group Z13 from Example 1.1 has been constructed using Theorem 2.4. Consider the
finite field F13 with 13 elements. Then 2 is primitive in F13, and D contains exactly
the subgroup of the third powers of 2 and its cosets:

D = {{20, 23, 26, 29}, {21, 24, 27, 210}, {22, 25, 28, 211}}.

In Theorem 2.5, we present Furino’s [62] construction of difference families in
commutative rings with an identity. His approach is a generalization of Wilson’s
construction in finite fields from Theorem 2.4. In this thesis, we only restate the
special case of difference families with parameters (v, k, k−1) of Furino’s construction,
for which we add a short proof. In general, his construction provides (v, k, e(k − 1))
disjoint difference families for some integer e dividing k.

Theorem 2.5 ([62, Theorem 3.3 and Corollary 3.5]). Let R be a commutative ring
with an identity. Define v = |R|, and denote the unit group of R by R∗. Let B
be a subgroup of R∗ of order k such that ∆B ⊆ R∗. Denote by S a system of
representatives of the cosets of B in R \ {0}. The collection {sB : s ∈ S} is a near
complete (v, k, k − 1) disjoint difference family in the additive group of R.

Proof. Note that, by definition, the sets sB, where s ∈ S, partition R \ {0}. We first
show that |sB| = k for all s ∈ S. Let s ∈ S. If s ∈ R∗, then clearly |sB| = k since
B is a subgroup of R∗ and |B| = k. Now suppose s /∈ R∗, and recall that s 6= 0.
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Assume, by way of contradiction, that |sB| < k. This implies there are distinct
b, b′ ∈ B such that sb = sb′ or, equivalently, s(b− b′) = 0. Since ∆B ⊆ R∗, we have
b− b′ ∈ R∗, which, in particular, implies b− b′ 6= 0. It follows that s = 0, which is a
contradiction. Hence, also if s is not a unit, |sB| = k.

It remains to show that every nonzero element of R has k− 1 representations b− b′
where b, b′ ∈ sB for some s ∈ S. Write

∆sB =
⋃
b∈B
b 6=1

(b− 1)sB.

Then, as the sets sB partition R \ {0}, the multiset union⋃
s∈S

∆sB =
⋃
b∈B
b6=1

(b− 1) (R \ {0}) .

As we have k− 1 choices for b ∈ B such that b 6= 1, the above multiset union consists
of k − 1 copies of R \ {0}.

Note that, by abuse of denotation, we also call a set sB where s is not a unit a coset
of the subgroup B. Furthermore, we remark that the construction by Furino [62] was
generalized in the case (v, k, k − 1) by Buratti [30] to so-called Ferrero pairs (G,A),
where G is a group, and A is a non-trivial group of automorphisms of G acting
semiregularly on G \ {0}.

We next present the construction of difference families in Galois rings by Davis,
Huczynska, and Mullen [43]. Inspired by Wilson’s [102] construction from The-
orem 2.4, the aforementioned authors found a cyclotomic construction of a near-
complete (p2r, pr − 1, p2r − pr) external difference family in the Galois ring GR(p2, r)
of characteristic p2. According to Proposition 2.1, their near-complete external
difference family is also a near-complete disjoint difference family. When seen in this
way, the construction fits into the general framework of Theorem 2.5 as we will show
in the proof of Theorem 2.6. We remark that the result may also be proved directly
by a similar approach as in Theorem 2.4 or using the Ferrero pairs by Buratti [30].

Theorem 2.6 ([43, Theorem 4.1]). Let p be a prime, and let r be a positive integer
such that pr ≥ 3. Let T be the Teichmüller set of the Galois ring GR(p2, r), and
let T ∗ = T \ {0}. Moreover, denote by P = {1 + pα : α ∈ T } the group of principal
units of GR(p2, r), and let S = P ∪ {p}. The collection

D = {sT ∗ : s ∈ S}

forms a near-complete (p2r, pr − 1, pr − 2) disjoint difference family in the additive
group of GR(p2, r).

Proof. We show that D meets the conditions of Theorem 2.5. Denote by I =
pGR(p2, r) the maximal ideal of GR(p2, r). The Teichmüller set T is a system of
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representatives of GR(p2, r)/I. As we have pointed out in Section 2.3, this factor
ring is isomorphic to the finite field Fpr . Consequently, the difference of two distinct
elements of the Teichmüller group T ∗ is a unit, hence ∆T ∗ ⊆ GR(p2, r)∗. Clearly, S
is a system of representatives of the cosets of T ∗ in GR(p2, r) \ {0}. As |T ∗| = pr− 1,
by Theorem 2.5, D is a (p2r, pr − 1, pr − 2) disjoint difference family.

Note that for p = 2 and r = 1, the collection D from Theorem 2.6 is not a difference
family in GR(4, 1) ∼= Z4 since, in this case, |T ∗| = 1. Moreover, we remark that D
can be considered as a difference family in Zrp2 .

Example 2.13. Consider the Galois ring GR(9, 2) that we presented in Example 2.11
with its Teichmüller group T ∗ and its group of principle units P. Let S = P ∪ {3}.
Then D = {sT ∗ : s ∈ S} forms a near-complete (81, 8, 7) disjoint difference family in
the additive group of GR(9, 2).

Inspired by Theorem 2.6 and the work by Furino [62], we noticed that if p is
odd, we obtain a new disjoint difference family in the additive group of GR(p2, r) by
collecting the cosets of the group of Teichmüller squares.

Theorem 2.7. Let p be an odd prime, and let r be a positive integer such that pr ≥ 5.
Moreover, let T ∗ = {1, ξ, ξ2, . . . , ξp

r−2} be the Teichmüller group of the Galois ring
GR(p2, r), and let T = T ∗ ∪ {0}. Denote by

T ∗Q = {1, ξ2, . . . , ξp
r−3}

the subgroup of squares of T ∗ and by P = {1 + pα : α ∈ T } the group of principle
units of GR(p2, r). Let

S = P ∪ ξP ∪ {p, pξ}.

The collection
D = {sT ∗Q : s ∈ S}

forms a near-complete
(
p2r, p

r−1
2 , p

r−3
2

)
disjoint difference family in the additive

group of GR(p2, r).

Proof. First, as |T ∗| = pr − 1 is even, exactly half of the elements of T ∗ are squares.
Hence, |T ∗Q| =

pr−1
2 . We show that D meets the conditions of Theorem 2.5. In the

proof of Theorem 2.6, we showed that ∆T ∗ ⊆ GR(p2, r)∗. As T ∗Q ⊆ T ∗, it follows
that also ∆T ∗Q ⊆ GR(p2, r)∗. Clearly, S is a system of representatives of the cosets
of T ∗Q in GR(p2, r). Consequently, by Theorem 2.5, D is a (p2r, p

r−1
2 , p

r−3
2 ) disjoint

difference family in the additive group of GR(p2, r).

Note that in the Galois ring GR(p2, r) where p is odd, the difference family from
Theorem 2.7 can be obtained by cutting the base blocks of the difference family from
Theorem 2.6 into halves.
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2 Difference families and combinatorial designs

Example 2.14. Consider the Galois ring GR(9, 2) that we presented in Example 2.11
with its Teichmüller group T ∗ and its group of principle units P. Let

T ∗Q = {1, ξ2, ξ4, ξ6} = {1, 4ξ + 1, 8, 5ξ + 8}

be the group of Teichmüller squares. Define S = P ∪ ξP ∪ {3, 3ξ}. The collection
D = {sT ∗Q : s ∈ S} forms a near-complete (81, 4, 3) disjoint difference family in the
additive group of GR(9, 2).

Furthermore, we remark that for the difference families from both Theorem 2.6 and
Theorem 2.7 in GR(p2, r), there exists a difference family from Theorem 2.4 in the
finite field Fp2r with the same parameters. For the parameters from Theorem 2.6, it
can be constructed by taking the subgroup of (pr +1)-th powers in F∗p2r and its cosets
as the base blocks. For the parameters from Theorem 2.7, we take the subgroup of
2(pr + 1)-th powers and its cosets.

To conclude this section, we present a construction of disjoint difference families in
the Galois ring GR(p2, 2n) of characteristic p2 and even extension degree 2n for some
positive integer n that was introduced by Momihara [84]. We need the following
notations first.

Denote by R2n the Galois ring GR(p2, 2n) = Zp2 [X]/(P (X)), where P (X) is a
monic basic primitive polynomial of degree 2n. Denote by I2n the maximal ideal
and by P2n = 1 + I2n the group of principal units of R2n. Let ξ be a root of order
p2n − 1 of P (X), and let

T2n = {0, 1, ξ, . . . , ξp2n−2}

be the Teichmüller set of R2n. Recall that each element of R2n has a unique p-adic
representation α0 + pα1, where α0, α1 ∈ T2n.

According to Wan [101, Theorem 14.24], the Galois ring R2n contains a unique
Galois ring GR(p2, n) of characteristic p2 and extension degree n as a subring.
We denote this subring by Rn. It can be constructed in the following way [101,
Corollary 14.28]. The element ξpn+1 ∈ T ∗2n has order pn−1 in T ∗2n. Hence, it generates
a subgroup of order pn − 1 of T ∗2n, which is the Teichmüller group T ∗n of Rn. Hence,

Tn = {0, 1, ξpn+1, ξ2(pn+1), . . . , ξ(pn−2)(pn+1)}

is the Teichmüller set of Rn, and we may describe Rn as

Rn = {α0 + pα1 : α0, α1 ∈ Tn}.

Then
R∗n = {α0(1 + pα1) : α0 ∈ T ∗n , α1 ∈ Tn}

is the unit group of Rn. Analogously to the notations for R2n, denote by In = pRn
the maximal ideal and by Pn = 1 + In the group of principal units of Rn. Then R∗n
is the direct product of T ∗n and Pn.
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2.4 Constructions of difference families in finite fields and Galois rings

Now, let S ⊆ T2n such that pS is a system of representatives of I2n/In. Then
1 + pS is a system of representatives of P2n/Pn. We enumerate the elements of S in
an arbitrary order and write S = {α0, α1, . . . , αpn−1}. Finally, we define a subset P
of I2n as

P = {pξpn , pξ(pn+1)+pn , pξ2(pn+1)+pn , . . . , pξ(pn−2)(pn+1)+pn}.

We are now able to describe Momihara’s [84] difference family.

Theorem 2.8 ([84, Theorem 1]). Let p be a prime, and let n be a positive integer.
Using the notations from above, for i = 0, 1, . . . , pn, define subsets

Di = ξi

P ∪
pn−1⋃

j=0
ξj(1 + pαj)R∗n


of the Galois ring GR(p2, 2n). The collection D = {D0, D1, . . . , Dpn} forms a near-
complete

(
p4n, p3n − p2n + pn − 1, p3n − p2n + pn − 2

)
disjoint difference family in

the additive group of GR(p2, 2n).

We remark that the construction from Theorem 2.8 does not meet the conditions
from Furino’s [62] Theorem 2.5. For the extensive and technical proof of Theorem 2.8,
the reader is referred to Momihara [84].

Example 2.15. Consider the Galois ring R2 = GR(9, 2) that we presented in
Example 2.11 with its Teichmüller group T ∗2 and its group of principle units P2. The
Galois ring R2 contains the Galois ring R1 = GR(9, 1) = Z9 as a subring. Then

T ∗1 = {1, 8}, I1 = {0, 3, 6}, and P1 = {1, 4, 7}

are the Teichmüller group, the maximal ideal, and the group of principal units of R1,
respectively. Moreover, the unit group of R1 is

R∗1 = {1, 2, 4, 5, 7, 8}.

If we define
S = {0, ξ, ξ5},

then 1 + pS is a system of representatives of P2n/Pn. Eventually, let

P = {3ξ3, 3ξ7}.

For i = 0, 1, 2, 3, define

Di = ξi
(
P ∪R∗1 ∪ ξ(1 + 3ξ)R∗1 ∪ ξ2(1 + 3ξ5)R∗1

)
.

Then the collection D = {D0, D1, . . . , D3} is a near-complete (81, 20, 19) disjoint
difference family in GR(9, 2).
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2 Difference families and combinatorial designs

In his paper, Momihara [84] mentions that for given p and n, since p3n−p2n+pn−
1 = (p2n + 1)(pn − 1) divides p4n − 1, there exists a disjoint difference family in the
additive group of the finite field Fp4n with the same parameters as in Theorem 2.8.
We can construct this difference family using Theorem 2.4 by taking the subgroup of
the (pn + 1)-th powers in F∗p4n and its cosets as the base blocks.

2.5 A new divisible difference family in Galois rings
Motivated by our study of Momihara’s [84] disjoint difference families from Theo-
rem 2.8, we found a new infinite family of divisible difference families in the Galois
ring GR(p2, 2n).

Definition 2.16. Let G be an abelian group of order v, and let N be a subgroup
of G. Let D1, D2, . . . , Db be k-subsets of G. The collection D = {D1, D2, . . . , Db} is
called a divisible difference family with parameters (G,N, k, λ1, λ2) if each nonzero
element of N occurs exactly λ1 times and each element of G \N occurs exactly λ2
times in the multiset union

b⋃
i=1

∆Di.

If N = {0}, then D is a (v, k, λ2) difference family. If b = 1 and if we set |N | = n
and m = v

n , then D is a (m,n, k, λ1, λ2) divisible difference set. If λ1 = 0, we say
that D is a (G,N, k, λ2) relative difference family.

Divisible difference families were first introduced by Momihara and Yamada [85].
We use the notation we introduced before Theorem 2.8, and we consider the Galois
ring GR(p2, 2n) again.

Theorem 2.9. Let p be a prime, and let n be a positive integer. Denote by R2n the
Galois ring GR(p2, 2n). We define a subgroup T of the unit group R∗2n as the direct
product of the Teichmüller group T ∗n of the subring Rn and the group of principle
units P2n of R2n, in short: T = {α0(1 + pα1) : α0 ∈ T ∗n , α1 ∈ T2n}. The collection

{T, ξT, . . . , ξpnT}

is a ((R2n,+), I2n, p
3n − p2n, p4n − p2n, p3n − 2p2n) divisible difference family.

Proof. Since |T ∗n | = pn − 1 and |P2n| = p2n, clearly |T | = p2n(pn − 1). Rewrite T as
T = {α0 + pα1 : α0 ∈ T ∗n , α1 ∈ T2n}. In ∆T , we consider differences of the type

α0 + pα1 − (β0 + pβ1), (2.1)

where α0, β0 ∈ T ∗n and α1, β1 ∈ T2n such that (α0, α1) 6= (β0, β1). We show that ∆T
consists of p2n(pn − 1) copies of I2n \ {0} and p2n(pn − 2) copies of T . We separate
two cases.
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2.5 A new divisible difference family in Galois rings

First, suppose α0 = β0, which implies α1 6= β1. Then (2.1) becomes

p(α1 − β1),

which is a nonzero element of I2n. There are pn − 1 possible choices for α0 ∈ T ∗n
and p2n(p2n − 1) possible choices for (α1, β1) where α1, β1 ∈ T2n and α1 6= β1. As
T2n is a system of representatives of the factor ring R2n/I2n, which is isomorphic
to Fp2n , the differences p(α1 − β1) cover each of the p2n − 1 elements of I2n \ {0}
exactly p2n(pn − 1) times.

Now, assume α0 6= β0. We first show that in this case, the difference from (2.1) is
an element of T . Rewrite (2.1) as

α0 − β0 + p(α1 − β1). (2.2)

In the proof of Theorem 2.6, we showed that ∆T ∗n ⊆ R∗n. Consequently, for every
distinct α0, β0 ∈ T ∗n , there are γ0 ∈ T ∗n and γ1 ∈ Tn such that α0 − β0 = γ0 + pγ1.
Hence, (2.2) can be written in the form

γ0 + p(γ1 + α1 − β1), (2.3)

where γ0 ∈ T ∗n and p(γ1 +α1−β1) ∈ I2n. This implies that for α0 6= β0, the difference
from (2.1) is an element of T .

Next, we rewrite (2.2) with respect to all distinct α0, β0 ∈ T ∗n and α1, β1 ∈ T2n as

∆T ∗n + p∆T2n.

Since Tn is a system of representatives of Rn/In, which is isomorphic to Fpn , the
multiset ∆T ∗n contains the same number of elements from every coset α+ In, where
α ∈ T ∗n . It follows that in (2.3), every γ0 ∈ T ∗n occurs equally often. Consequently,
the differences from (2.2) cover every element of T equally often. There are p4n(pn−
1)(pn − 2) distinct ways to choose α0, α1, β0, β1 in (2.2), and |T | = p2n(pn − 1). It
follows that each element of T is represented p2n(pn − 2) times as the difference of
two distinct elements of T .

Having studied the structure of ∆T , we easily obtain similar results for the structure
of ∆ξsT for all s = 0, 1, . . . , pn. Since ∆ξsT = ξs∆T , the multiset ∆ξsT contains
p2n(pn − 1) copies of ξsI2n = I2n and p2n(pn − 2) copies of ξsT . As we have pn + 1
sets ξsT , the multiset union ⋃pns=0 ∆ξT contains p2n(pn−1)(pn+1) = p4n−p2n copies
of I2n. Note that ⋃pns=0 ξT = R∗2n. Consequently, every element of R∗2n = R2n \ I2n
occurs with multiplicity p2n(pn − 2) = p3n − 2p2n in ⋃pns=0 ∆ξT .

We illustrate Theorem 2.9 in the following example.

Example 2.17. We consider the Galois ring R2 = GR(9, 2) and its subring R1 =
GR(9, 1) that we introduced in Example 2.11 and Example 2.15, respectively. Denote
the maximal ideal of R2 by I2. If we define T as the direct product of T ∗1 and P2,
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2 Difference families and combinatorial designs

then the collection
{T, ξT, ξ2T, ξ3T}

is a ((R2,+), I2, 18, 72, 9) divisible difference family. The multiset ⋃3
s=0 ∆ξsT consists

of 72 copies of I2n and 9 copies of R2n \ I2n = R∗2n.
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3 Solving isomorphism problems of
disjoint difference families

As mentioned in Section 2.4, for each of the difference families in the Galois ring
GR(p2, r) from Theorem 2.6, Theorem 2.7 and Theorem 2.8, there exists a difference
family with the same parameters in the finite field Fp2r from Theorem 2.4. Note
that two difference families in the additive groups of GR(p2, r) and Fp2r , respectively,
cannot be equivalent as they are defined in different groups Z2r

p and Zrp2 . However,
as pointed out in Section 2.2, the difference families could still be isomorphic. Since
all three constructions in Galois rings are inspired by the concept of cyclotomy used
in Wilson’s [102] construction, it is natural to ask whether the difference families are
mutually isomorphic or not.

In this chapter, we are going to answer this question. We study three isomorphism
problems about the difference families from Section 2.4: we examine whether Wil-
son’s [102] difference families in finite fields from Theorem 2.4 are isomorphic to the
difference families in Galois rings from Theorem 2.6, Theorem 2.7 and Theorem 2.8.

If we want to solve an isomorphism problem about difference families, we need
to decide whether two combinatorial designs are isomorphic or not. This is, in
general, a hard problem. If two designs are isomorphic, one can simply present the
corresponding isomorphism. If they are nonisomorphic, however, we have to show
that there is no such isomorphism. Usually, this is quite difficult. In this case, it is
often promising to look for a suitable isomorphism invariant that discriminates the
designs.

One popular approach is to study the ranks or the p-ranks of the incidence
matrices of the designs. But for the isomorphism problems we study, all the ranks
are full. When checking examples computationally, it often helps to compute the
automorphism groups of the designs. Computer algebra systems like Magma [16]
have built-in functions to do so. It is a hard problem though, to determine the
automorphism group of a combinatorial design theoretically.

The approach we follow is to calculate so-called block intersection numbers of
our 2-designs. In Section 3.1, we give an overview of these numbers. While this
technique has its limitations as well, it will be helpful in the cases we study: we will
completely solve the isomorphism problems for Wilson’s [102] difference families and
the difference families by Momihara [84] and by Davis, Huczynska, and Mullen [43]
in Section 3.2 and Section 3.4, respectively, and we will present a partial solution to
the isomorphism problem for Wilson’s [102] difference family and our new difference
family from Theorem 2.7 in Section 3.3. In Chapter 6, we will eventually take a
closer look at the limitations of our block intersection number approach.

25



3 Solving isomorphism problems of disjoint difference families

3.1 Block intersection numbers
We begin by defining block intersection numbers of a combinatorial design.

Definition 3.1. Let D be a t-(v, k, λ)-design. We call a nonnegative integer N
a block intersection number or, in brief, intersection number of D if D contains
two distinct blocks B and B′ that intersect in exactly N points. If N is a block
intersection number of D, we denote by n(N) the multiplicity of N , which is the
number of pairs of distinct blocks B,B′ of D such that |B ∩B′| = N .

Block intersection numbers have often been used to study combinatorial designs.
For example, a 2-design with only one intersection number is symmetric: the number
of blocks equals the number of points. Block intersection numbers can be easily
computed in the following way:
Remark 3.1. Let M denote the incidence matrix of a t-design D with the rows of M
corresponding to the points and the columns of M corresponding to the blocks of
D. The entry (i, j) of the matrix MTM equals the cardinality |Bi ∩ Bj | of the
intersection of the blocks Bi and Bj that correspond to the columns i and j of M .
Since Bi ∩Bj equals Bj ∩Bi and |Bi ∩Bi| = |Bi| is no block intersection number,
we describe all the block intersection numbers of D as the multiset of the matrix
entries (i, j), where i < j, of MTM .

In our case, all designs will be developments of difference families. In this situation,
there is a strong connection between differences and block intersection numbers.
Remark 3.2. Let D = {D1, D2, . . . , Db} be a difference family in an abelian group G,
and let D = dev(D). Let Di, Dj ∈ D be two not necessarily distinct base blocks of D,
and let d ∈ G be a difference occurring with multiplicity Nd in the multiset Di −Dj .
Then Nd is the block intersection number |Di∩ (Dj +d)| of the blocks Di and Dj +d
of D. Hence, we may determine the block intersection number |Di ∩ (Dj + d)| by
calculating the multiplicity Nd of d in Di −Dj . Note that in this case, Nd is also
the intersection number of the blocks Di + d′ and Dj + (d+ d′) for all d′ ∈ G.

Block intersection numbers of combinatorial designs clearly are invariant under
isomorphism: if B,B′ are blocks of a t-design D with |B ∩ B′| = N and α is a
permutation of the point set of D, then |α(B) ∩ α(B′)| = N . So, to prove that
two designs D and D′ are nonisomorphic, it is sufficient to show that D has one
block intersection number different from the block intersection numbers of D′. Note,
however, that there also exist designs that have the exact same block intersection
numbers but are nonisomorphic. We will present one such case in Example 3.4 in
Section 3.3. The designs in this example are pairwise nonisomorphic, but they all
share the same intersection numbers.

By the same argument as above, not only the block intersection numbers of a
combinatorial design, but also their multiplicities are isomorphism invariants. Thus,
when possible, we will also present the multiplicities of the intersection numbers we
determine in this chapter. Although we will not directly use these multiplicities to
solve isomorphism problems, they might be useful for further research. We determine
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3.1 Block intersection numbers

the multiplicities of the block intersection numbers in the way we describe in the
following remark.
Remark 3.3. To determine the multiplicity of an intersection number N of a design D,
we first count the number of pairs (i, j) such that two blocks Bi and Bj of D intersect
in N elements without considering that Bi ∩ Bj = Bj ∩ Bi. In the end, we divide
this number by 2.

Since we compare all three difference families in Galois rings from Theorem 2.6,
Theorem 2.7 and Theorem 2.8 to Wilson’s difference families in finite fields from
Theorem 2.4, we finish this section by pointing out an important connection between
Wilson’s difference families and the so-called cyclotomic numbers.

Definition 3.2. Let Fq be the finite field with q elements, and let e be a positive
integer dividing q−1. Let C0 be the subgroup of the e-th powers of F∗q , and denote by
C1, C2, . . . , Ce−1 the cosets of C0 in F∗q . For fixed non-negative integers i, j ≤ e− 1,
the cyclotomic number (i, j)e of order e is defined as

(i, j)e = |(Ci + 1) ∩ Cj |.

In the following Proposition 3.1, we show that the block intersection numbers
of the associated design of Wilson’s difference families are precisely the so-called
cyclotomic numbers. Moreover, we determine the multiplicities of the intersection
numbers dependent on the multiplicities of the cyclotomic numbers.

Proposition 3.1. Let e, f ≥ 2 be integers such that ef = q − 1, and let C be a
(q, f, f − 1) disjoint difference family in the additive group of Fq constructed with
Theorem 2.4. Let Me = {(i, j)e : i, j = 0, . . . , e− 1} be the multiset of the cyclotomic
numbers of order e in Fq, and denote by ne(N) the multiplicity of the cyclotomic
number N in Me.

The block intersection numbers of dev(C) are 0 and all N with N ∈ M . They
have multiplicities

n(N) =
{1

2q(q − 1)ne(0) + 1
2qe(e− 1) if N = 0,

1
2q(q − 1)ne(N) otherwise.

Proof. Let α be primitive in Fq, and let C = {C0, C1, . . . , Ce−1} be a disjoint
difference family from Theorem 2.4 in the additive group of Fq. Take two arbitrary
distinct blocks Ci + a and Cj + b, where i, j ∈ {0, 1, . . . , e − 1} and a, b ∈ Fq, of
dev(C). To calculate their block intersection number

|(Ci + a) ∩ (Cj + b)|,

we need to determine the number of solutions (s, t) of the equation

αse+i + a = αte+j + b. (3.1)
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3 Solving isomorphism problems of disjoint difference families

If a = b, then obviously only the case i 6= j is relevant. As then Ci and Cj are
disjoint, (3.1) has no solutions. Consequently,

|(Ci + a) ∩ (Cj + a)| = 0.

Since there are q choices for a and e(e − 1) choices for (i, j) such that i 6= j, the
block intersection number 0 occurs qe(e− 1) times in this case. Removing repeated
intersections, this multiplicity reduces to qe(e−1)

2 .
If a 6= b, then a − b = αr for some r ∈ {0, . . . , q − 1}. Write r = me + r′ for

nonnegative integers m and r′ such that r′ ≤ e− 1. Now, we can rewrite (3.1) as

α(s−m)e+(i−r′) + 1 = α(t−m)e+(j−r′).

Consequently,
|(Ci + a) ∩ (Cj + b)| = |(Ci−r′ + 1) ∩ Cj−r′ |, (3.2)

where the subscripts of C are calculated modulo e. The right-hand side of (3.2)
is exactly the cyclotomic number (i − r′, j − r′)e. We have q(q − 1) choices for
(a, b) such that a 6= b, and the difference a− b covers all the elements of F∗q equally
often. Consequently, each cyclotomic number (i, j)e that equals N contributes with
q(q − 1) to the multiplicity of the block intersection number N . Removing repeated
intersections, this contribution reduces to q(q−1)

2 .

It follows from the previous result that we can completely determine the block
intersection numbers of the design associated to a difference family from Theorem 2.4
by determining the respective cyclotomic numbers. It is, however, in general a hard
number theoretic problem to determine these cyclotomic numbers, and there is rich
literature about them dating back to the 1930s, when they were first studied by
Dickson [45, 46]. For a long time, the problem to determine cyclotomic numbers had
been solved only in single cases for small e; see for example the work by Storer [98]
from 1967. In 1982, Baumert, Mills, and Ward [6] eventually proved that when −1 is
a power of p modulo e, where p is the characteristic of Fq, the cyclotomic numbers of
order e can be calculated quite easily. As, in this case, there are only three distinct
cyclotomic numbers, Baumert, Mills, and Ward [6] speak of uniform cyclotomic
numbers. In Proposition 3.2, we restate their result.

Proposition 3.2 ([6, Theorems 1 and 4]). Consider the finite field Fpn. Let e ≥ 3
be a divisor of pn − 1. If −1 is a power of p modulo e, then either p = 2 or f = pn−1

e
is even, pn = s2 and s ≡ 1 (mod e), and the cyclotomic numbers of order e are

(0, 0)e = η2 − (e− 3)η − 1,
(0, i)e = (i, 0)e = (i, i)e = η2 + η for i 6= 0, (3.3)

(i, j)e = η2 for i 6= j and i, j 6= 0,

where η = s−1
e .
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3.2 Isomorphism problem I: Wilson vs. Davis, Huczynska, and Mullen

In the following sections, we show that the parameters of the difference families
from Theorem 2.6 and Theorem 2.8 meet the conditions of Proposition 3.2. Hence, in
these cases, we can completely determine the intersection numbers of the development
of Wilson’s difference families from Theorem 2.4 by combining Proposition 3.1 and
Proposition 3.2. Although the parameters from Theorem 2.7 do not meet the
conditions of Proposition 3.2, we will be able to determine the intersection numbers
of the respective design coming from finite fields in this case as well.

In summary, in all three isomorphism problems, we completely determine the block
intersection numbers of the designs associated to the difference families in finite
fields from Theorem 2.4. This implies that for the difference families in Galois rings,
we only need to show that their developments have at least one block intersection
number different from the respective cyclotomic numbers.

3.2 Isomorphism problem I: Wilson vs. Davis, Huczynska,
and Mullen

In this section, we solve the isomorphism problem for Wilson’s [102] difference families
in finite fields from Theorem 2.4 and the difference families in Galois rings from
Theorem 2.6 that were introduced by Davis, Huczynska, and Mullen [43]. As pointed
out before, the problem was raised by these authors. We will show that the difference
families from Theorem 2.4 and those from Theorem 2.6 are nonisomorphic in all but
one case. We obtain this result comparing the block intersection numbers of the
associated designs.

Throughout this section, we denote by C the (p2r, pr − 1, pr − 2) disjoint difference
family in the additive group of Fp2r from Theorem 2.4 that is constructed by taking
the subgroup of (pr + 1)-th powers of F∗p2r and its cosets, and we denote by D the
disjoint difference family with the same parameters in the additive group of GR(p2, r)
from Theorem 2.6. Moreover, we denote C = dev(C) and D = dev(D).

First note that block intersection numbers seem to be a good isomorphism invariant
to attack this problem as the following example demonstrates.

Example 3.3. From Theorem 2.4 and Theorem 2.6, we obtain (81, 8, 7) disjoint
difference families C and D in the additive groups of F34 and GR(9, 2), respectively.
The associated designs C and D have the following intersection numbers: for C, they
are 0, 1, 7 with multiplicities 91 125, 233 280 and 3 240, respectively; for D, they are
0, 1, 2, 3, 7 with multiplicities 129 033, 148 716, 43 740, 5 832 and 324, respectively.
Consequently, C and D are nonisomorphic.

As mentioned in Section 3.1, we can completely determine the intersection numbers
of C and their multiplicities using Proposition 3.1 and Proposition 3.2 since the
respective cyclotomic numbers are uniform.
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3 Solving isomorphism problems of disjoint difference families

Proposition 3.3. The 2-(p2r, pr−1, pr−2) design C has exactly the block intersection
numbers 0, 1 and pr − 2. These numbers occur with the following multiplicities:

n(0) = 1
2(3p5r + p4r − 2p3r),

n(1) = 1
2(p6r − p5r − p4r + p3r),

n(pr − 2) = 1
2(p4r − p2r).

Proof. According to Proposition 3.1, the block intersection numbers of C equal the
cyclotomic numbers of order pr + 1 in Fp2r . Using the notation from Proposition 3.2,
we have e = pr + 1. Since −1 ≡ pr (mod pr + 1), we can determine the required
cyclotomic numbers with the help of Proposition 3.2. From p2r = s2 and s ≡ 1
(mod pr + 1), it follows that s = −pr. Thus, η = −pr−1

pr+1 = −1, and we obtain the
cyclotomic numbers

(0, 0)pr+1 = pr − 2,
(0, i)pr+1 = (i, 0)pr+1 = (i, i)pr+1 = 0 for i 6= 0, (3.4)

(i, j)pr+1 = 1 for i 6= j and i, j 6= 0.

These are the intersection numbers of C.
To obtain their multiplicities, denote by npr+1(N) the number of cyclotomic

numbers of order pr + 1 that equal N . In Fp2r , according to (3.4), we have

npr+1(0) = 3pr, npr+1(1) = pr(pr − 1) and npr+1(pr − 2) = 1. (3.5)

We multiply these numbers with the factor 1
2p

2r(p2r − 1) from Proposition 3.1. This
gives us the multiplicities of the block intersection numbers 1 and pr − 2. To obtain
the multiplicity of 0, according to Proposition 3.1, we additionally need to add
1
2p

2r(pr + 1)pr.

We add an interesting observation about the cyclotomic number (0, 0)pr+1 from
the above theorem.
Remark 3.4. The finite field Fp2r contains a unique subfield Fpr . Thus, the sub-
group C0 of order pr− 1 of F∗p2r , which is the first base block of the disjoint difference
family C, is exactly the multiplicative group of the subfield Fpr . Hence, ∆C0 con-
tains precisely the elements of C0, each with multiplicity (pr − 2). It follows that
(C0 + 1) ∩ C0 = C0 \ {−1}, and, thus, (0, 0)pr+1 = pr − 2.

We next study the block intersection numbers of D, the design coming from the
difference family D in the Galois ring GR(p2, r). Recall from Remark 3.2 that
the intersection numbers of the development of a difference family occur as the
multiplicities of differences between or within base blocks.

Consider GR(p2, r). As before, let T denote the Teichmüller set, and let T ∗ =
T \ {0} denote the cyclic Teichmüller group of order pr − 1. Furthermore, denote
by I = pGR(p2, r) the maximal ideal and by P = 1 + I the group of principal units.
We start with three short lemmas.
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3.2 Isomorphism problem I: Wilson vs. Davis, Huczynska, and Mullen

Lemma 3.4. Consider the Galois ring GR(pm, r). If p is odd, then −1 ∈ T ∗, hence
T ∗ = −T ∗. If p = 2, then −1 is a principal unit, hence P = −P.
Proof. Recall from Section 2.3 that the unit group GR(pm, r)∗ is the direct product
of P and T ∗, and that |P| = p(m−1)r and |T ∗| = pr − 1. Let ξ be a generator of T ∗.
If p is odd, then T ∗ has even order, and P is a direct product of r cyclic groups, each
of odd order pm−1; see Section 2.3. Consequently, there are only two second roots of
unity in GR(pm, r), namely 1 and −1. Hence, −1 = ξ

pr−1
2 is an element of T ∗. If

p = 2, all the even integers in Z2m ⊆ GR(2m, r) are elements of the maximal ideal
I = 2GR(2m, r). Since P = 1 + I and −1 is odd, it follows that −1 ∈ P.

Lemma 3.5 is well known; see, for example, Wan [101, Theorem 14.8].
Lemma 3.5. Let u = α0(1 + pα1) and u′ = α′0(1 + pα′1), where α0, α

′
0 ∈ T ∗ and

α1, α
′
1 ∈ T , be two units in the Galois ring GR(p2, r). The difference u− u′ is a unit

if and only if α0 6= α′0.
Proof. The statement follows from the fact that the Teichmüller set T is a system of
representatives of GR(p2, r)/I, which is isomorphic to Fpr . Consequently,

u− u′ = α0 − α′0 + p(α1 − α′1)

is not a unit, if and only if α0 − α′0 = 0.

Lemma 3.6. Let d ∈ GR(pm, r). If d ∈ ∆T ∗, then dT ∗ ⊆ ∆T ∗, and all the elements
of dT ∗ occur with the same multiplicity in ∆T ∗.
Proof. Assume d occurs with multiplicity n in ∆T ∗, which means there exist n distinct
pairs (α1, α

′
1), . . . , (αn, α′n), where α1, α

′
1, . . . , αn, α

′
n ∈ T ∗, such that α1−α′1 = · · · =

αn − α′n = d. For every γ ∈ T ∗, we obtain γαi − γα′i = γd for all i = 1, . . . , n. Since
γαi, γα

′
i ∈ T ∗, the set dT ∗ = {dγ : γ ∈ T ∗} is contained in ∆T ∗, and every element

of dT ∗ occurs with multiplicity n.

In the following statements Lemma 3.7 to Lemma 3.10, we focus on the case p = 2.
These results will help us to determine a block intersection number of D. It follows
from Lemma 3.4 that in GR(4, r), the element −1 is a principal unit. Consequently,
for every base block (1 + 2α)T ∗, where α ∈ T , of D, the set −(1 + 2α)T ∗ of its
additive inverses is also a base block of D, and the two sets are disjoint. We also
need the following result:
Lemma 3.7. In the Galois ring GR(4, r), where r ≥ 2, the Teichmüller set T is the
set of all squares.
Proof. Since T = T ∗ ∪ {0} and T ∗ is a cyclic group of odd order 2r − 1, all the
elements of T are squares. Now, let x ∈ GR(4, r). If x ∈ I, we write x = pα for
some α ∈ T . As p2 = 0, it follows that x2 = 0, hence x2 ∈ T . If x is a unit, we
write x = α0(1 + pα1) for some α0 ∈ T ∗ and α1 ∈ T . Recall from Section 2.3 that
in GR(4, r), every principal unit has order 2. Hence, (1 + pα1)2 = 1, which means
x2 = α2

0 and thereby x2 ∈ T ∗.
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3 Solving isomorphism problems of disjoint difference families

We additionally use the well-known result that in the Galois ring GR(4, r) of
characteristic 4, the Teichmüller set is a relative difference set; see, for example,
Bonnecaze and Duursma [14, Lemma 3]. We add a proof in Proposition 3.8 but first,
we define this combinatorial object. Let G be a group of order mn that contains a
normal subgroup N of order n. We call a k-subset D of G an (m,n, k, λ)-relative
difference set in G relative to N if each element of G \ N occurs exactly λ times
in ∆D and the elements of N do not occur in ∆D.

Proposition 3.8. In GR(4, r), where r ≥ 2, the Teichmüller set T is a (2r, 2r, 2r, 1)-
relative difference set in the additive group of GR(4, r) relative to the maximal ideal
I = 2GR(4, r).

Proof. Let β, β′ ∈ T . From the proof of Theorem 2.6, it follows that if β 6= β′,
the difference β − β′ is a unit. Hence, the elements of I do not occur in ∆T . As
|∆T | = |GR(4, r)∗| = 4r − 2r, it remains to show that every u ∈ GR(4, r)∗ can be
represented in the form u = β − β′ for some β, β′ ∈ T . Recall from Section 2.3 that
u has a unique 2-adic representation u = α0 + 2α1, where α0 ∈ T ∗ and α1 ∈ T . We
need to find β, β′ ∈ T such that

α0 + 2α1 = β − β′.

This equation is solved by

β = α−1
0 (α0 + α1)2 and β′ = α−1

0 α2
1.

Clearly, β′ ∈ T . As according to Lemma 3.7, the Teichmüller set T is the set of all
the squares in GR(4, r), also β ∈ T .

In Proposition 3.8, we studied the Teichmüller set T . This result immediately
implies the following statement about the Teichmüller group T ∗.

Corollary 3.9. In GR(4, r), where r ≥ 2, we have

∆T ∗ = GR(4, r)∗ \ (T ∗ ∪ −T ∗) ,

and each element of GR(4, r)∗ \ (T ∗ ∪ −T ∗) occurs with multiplicity 1 in ∆T ∗.

Proof. According to Proposition 3.8, the Teichmüller set T is a (2r, 2r, 2r, 1)-relative
difference set in the additive group of GR(4, r) relative to I. Hence, by removing 0
from T to obtain T ∗, we remove differences of the type T ∗−0 = T ∗ and 0−T ∗ = −T ∗
from ∆T to obtain ∆T ∗.

For our purpose to calculate a block intersection number of D, we need the following
Lemma 3.10. A more detailed analysis of the differences and sums in the Teichmüller
set in GR(4, r), which includes the following result in a slightly different way, is given
by Hammons et al. [66, Section III.–C.] and Bonnecaze and Duursma [14, Theorem 1].
Arguments of this type have also been used by Ghinelli and Jungnickel [64] and
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3.2 Isomorphism problem I: Wilson vs. Davis, Huczynska, and Mullen

Resmini, Ghinelli, and Jungnickel [95] in the theory of difference sets to obtain ovals
in the development of a difference set and by Pott and Zhou [93] to construct Cayley
graphs.

Lemma 3.10. In GR(4, r), where r ≥ 2, an element s of the multiset ∆+T ∗ has
multiplicity 2 if s is a unit and multiplicity 1 if s ∈ I \ {0}.

Proof. Let β, γ be two distinct elements of the Teichmüller group T ∗. Since 2T = I,
it follows that β + β = 2β 6= 2γ = γ + γ. Hence, the elements of I \ {0} are
represented once as the sum of two elements of T ∗. We now consider sums of the
type β+γ, where β 6= γ. Clearly, each sum s = β+γ has at least two representations:
β + γ and γ + β. To prove that there are no more than those two representations,
we suppose by way of contradiction that there exist elements β′, γ′ ∈ T ∗ such that
β′, γ′ /∈ {β, γ} and β + γ = β′ + γ′. This equation is equivalent to β − β′ = γ′ − γ.
However, according to Corollary 3.9, all the differences of two distinct elements of
T ∗ are distinct. This is a contradiction.

We remark that Corollary 3.9 and Lemma 3.10 not only hold for T ∗ but also for
any coset (1 + 2α)T ∗, where α ∈ T , of T ∗. In Theorem 3.13, we will use Lemma 3.10
to prove that 2 is a block intersection number of D if p = 2. But first, we study the
case that p is odd.

For odd p, the following two lemmas will help us bound an intersection number
of D. We will formulate the results for the Teichmüller group T ∗. As in the case
p = 2, these results also hold for any of its cosets (1+pα)T ∗, where α ∈ T . According
to Lemma 3.4, if p is odd, then T ∗ = −T ∗. Hence, the Teichmüller group consists of
pairs of elements and their additive inverses, and we write

T ∗ =
{

1, ξ, ξ2, . . . , ξ(pr−3)/2,−1,−ξ,−ξ2, . . . ,−ξ(pr−3)/2
}
,

where ξ is a generator of T ∗.

Lemma 3.11. In GR(p2, r), where p is odd, let d ∈ ∆T ∗ be the difference of two
distinct elements of T ∗. The difference d has odd multiplicity if and only if d ∈ 2T ∗.
If d /∈ 2T ∗, then d has even multiplicity at least 2.

Proof. Let α, α′ ∈ T ∗ be two distinct Teichmüller elements, and let d = α − α′,
which means d ∈ ∆T ∗. According to Lemma 3.4, also −α,−α′ ∈ T ∗. If α′ 6= −α,
then −α′ − (−α) = d is a second representation of d in ∆T ∗. If α′ = −α, then d =
α−(−α) = 2α, and it is not guaranteed that d has more than this single representation
in ∆T ∗. However, in both of the above cases, it is possible that there exist more
distinct pairs (α1, α

′
1), . . . , (α`, α′`), where α1, α

′
1, . . . , α`, α

′
` ∈ T ∗ \ {±α,±α′}, such

that αi−α′i = −α′i−(−αi) = d for all i = 1, . . . , `. In this situation, d has multiplicity
2`+ 2 in ∆T ∗ if d /∈ 2T ∗ and multiplicity 2`+ 1 if d ∈ 2T ∗. It is not clear, however,
under which conditions such additional representations occur.
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3 Solving isomorphism problems of disjoint difference families

In Lemma 3.12, we establish an upper bound on the multiplicity of the differences
in the multiset ∆T ∗. Recall from Remark 3.3 that these multiplicities are directly
connected to the block intersection numbers of D.

Lemma 3.12. In GR(p2, r), where p is odd and pr > 3, every difference d ∈ ∆T ∗
occurs with multiplicity less than pr − 2.

Proof. Note that, counting multiplicities, ∆T ∗ contains (pr − 1)(pr − 2) elements.
We showed in Lemma 3.6 that if ∆T ∗ contains one element of a coset of T ∗, then it
contains all its elements, and they all have the same multiplicity. This implies, first,
that ∆T ∗ contains at least pr − 1 distinct elements, and, second, that pr − 2 is the
maximum multiplicity an element of ∆T ∗ can occur with. Now, suppose by way of
contradiction that there is an element d ∈ ∆T ∗ having multiplicity pr − 2. Since p is
odd, pr − 2 is odd, and it follows from Lemma 3.11 that d ∈ 2T ∗. By Lemma 3.6,
the whole set 2T ∗ is contained in ∆T ∗ with multiplicity pr − 2. Consequently,
∆T ∗ = 2T ∗. Note that, as 2 < p, clearly 2 is invertible.

Now let α ∈ T ∗ \{−1, 1}. Note that such an element exists as the condition pr > 3
guarantees that |T ∗| > 2. Then α − 1 ∈ ∆T ∗, which means α − 1 ∈ 2T ∗. Hence,
there is an element β ∈ T ∗ such that α− 1 = 2β. By Lemma 3.4, −1 ∈ T ∗, which
implies that α+ 1 is also contained in ∆T ∗, and we have α+ 1 = 2β + 2 = 2(β + 1).
It follows that β + 1 ∈ T ∗. However, if both β and β + 1 = β − (−1) are elements of
T ∗, then ∆T ∗ = T ∗. In other words, T ∗ needs to be an additive

(
pr−1, pr−2, pr−2)

difference set in T = T ∗ ∪ {0}. This is only the case if T forms an additive group.
As 1 ∈ T , it follows that p ∈ T . Since p is not a unit, this is a contradiction. Hence,
there is no d ∈ T ∗ with multiplicity pr − 2.

Summarizing the previous results and adding the results for two special cases,
we obtain Theorem 3.13, which solves the isomorphism problem for the difference
families C and D.

Theorem 3.13. Let C be a (p2r, pr − 1, pr − 2) disjoint difference family in the
additive group of the finite field Fp2r constructed with Theorem 2.4, and let D be a
disjoint difference family with the same parameters in the additive group of the Galois
ring GR(p2, r) constructed with Theorem 2.6. The difference families C and D are
isomorphic if p = 3 and r = 1, and they are nonisomorphic in every other case.

Proof. As before, denote by C and D the associated designs of C and D, respectively.
We show that D has a block intersection number different from the intersection
numbers of C. Recall from Proposition 3.3 that the block intersection numbers of C
are 0, 1 and pr − 2.

We first study D for p = 2, which means D is a difference family in GR(4, r). Let
d ∈ GR(4, r). By combining Corollary 3.9 and Lemma 3.10, we obtain the following
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3.3 Isomorphism problem II: Wilson vs. Kaspers and Pott

block intersection numbers of D:

|(T ∗ + d) ∩ T ∗| =
{

1 if d ∈ ∆T ∗,
0 in any other case,

|(T ∗ + d) ∩ −T ∗| =


2 if d ∈ (∆+(−T ∗)) \ I,
1 if d ∈ I \ {0},
0 in any other case.

Hence, 2 is an intersection number of D. For r ≥ 3, this number is different from the
intersection numbers of C and the designs are nonisomorphic. If p = 2 and r = 2,
however, D and C share the same block intersection numbers together with their
multiplicities: for both designs, the block intersection numbers are 0, 1, and 2 with
multiplicities 1600, 1440 and 120, respectively. We solve this case by computing the
automorphism groups of the designs using Magma [16]. The automorphism group
of D has order 384 while the automorphism group of C is of order 5760. If D and C
were isomorphic, their automorphism groups would have the same order. Hence, the
two designs are nonisomorphic.

Now, let p be an odd prime, and let r be an integer such that pr > 3. The case
p = 3 and r = 1 will be considered separately as in this case, Lemma 3.12 does not
hold. We show that if pr > 3, the design D has an intersection number N such that
1 < N < pr − 2. First, Lemma 3.11 gives us a lower bound: for any d ∈ (∆T ∗ \ 2T ∗),
the block intersection number |T ∗ ∩ (T ∗ + d)| ≥ 2. From Lemma 3.12, it follows that
|T ∗ ∩ (T ∗ + d)| < pr − 2 for all d ∈ ∆T ∗. Combining both bounds, we obtain

1 < |T ∗ ∩ (T ∗ + d)| < pr − 2

for all d ∈ (∆T ∗ \ 2T ∗). Consequently, C and D are nonisomorphic if p is odd and
pr > 3.

Eventually, let p = 3 and r = 1. In this case, the 2-(9, 2, 1)-designs C and D
are isomorphic. Note that GR(9, 1) ∼= Z9 and (F9,+) ∼= Z3 × Z3. An isomorphism
between D and C computed by the computer algebra system Magma [16] is the
following map from Z9, the point set of D, to Z3 × Z3, the point set of C, given by

0 7→ (0, 0), 1 7→ (0, 1), 2 7→ (1, 2), 3 7→ (1, 1), 4 7→ (2, 2)
5 7→ (2, 0), 6 7→ (1, 0), 7 7→ (2, 1), 8 7→ (0, 2).

3.3 Isomorphism problem II: Wilson vs. Kaspers and Pott
In this section, we partially solve the isomorphism problem for Wilson’s [102] difference
families in finite fields from Theorem 2.4 and our new difference families in Galois
rings that we introduced Theorem 2.7. As pointed out in Theorem 2.7, these difference
families only exist if p is odd. Hence, throughout this section, let p be an odd prime,
and let r be a positive integer.
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3 Solving isomorphism problems of disjoint difference families

Since we will use some results from Section 3.2 in this section, we introduce the
following notations first. As in Section 3.2, denote by C and by D the (p2r, pr −
1, pr− 2) difference families in the additive groups of Fp2r and GR(p2, r), respectively,
constructed with Theorem 2.4 and Theorem 2.6, and denote the associated designs
by C and D. We denote by CH and by DH the (p2r, p

r−1
2 , p

r−3
2 ) difference families in

the additive groups of Fp2r and GR(p2, r), respectively, which are constructed using
Theorem 2.4 and Theorem 2.7. They can be obtained by cutting the base blocks
of C and D into halves. We denote the associated designs of CH and DH by CH
and DH .

In Section 3.2, we solved the isomorphism problem for C and D. We showed that
the difference families are nonisomorphic for all combinations of p and r except p = 3
and r = 1. However, the fact that C and D are nonisomorphic does not automatically
imply that the same holds for CH and DH . In general, the fact that two designs
D1,D2 are nonisomorphic does not imply that two designs DH1 ,DH2 that are obtained
by cutting the blocks of D1 and D2 into smaller blocks are nonisomorphic. This is
demonstrated in the following example, which was given by Feng and Xiang [61,
Example 3.3] in the context of skew Hadamard difference sets.

Example 3.4. Consider the finite field F113 , and let α be primitive in F113 . Denote
by C0 the subgroup of the 14-th powers in F∗113 , and, analogously to Theorem 2.4, let
Ci = αiC0 denote the i-th coset of C0 for i = 1, 2, . . . , 13. According to Theorem 2.4,
the collection C = {C0, C1, . . . , C13} is a disjoint difference family in the additive
group of F113 . Moreover, it can be verified that the collections

D1 = {{C0 ∪ C2 ∪ C4 ∪ C6 ∪ C8 ∪ C10 ∪ C12},
{C1 ∪ C3 ∪ C5 ∪ C7 ∪ C9 ∪ C11 ∪ C13}},

D2 = {{C0 ∪ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6},
{C7 ∪ C8 ∪ C9 ∪ C10 ∪ C11 ∪ C12 ∪ C13}},

D3 = {{C0 ∪ C1 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C9},
{C2 ∪ C7 ∪ C8 ∪ C10 ∪ C11 ∪ C12 ∪ C13}}.

are also disjoint difference families in the additive group of F113 . Consider their associ-
ated designs dev(D1), dev(D2), dev(D3). Their full automorphism groups A1,A2,A3
have orders |A1| = 5310690, |A2| = 252890 and |A3| = 758670. Thus, the designs
are pairwise nonisomorphic. However, it is clear that from each of the three dif-
ference families, we can obtain the difference family C by cutting the base blocks
into the cyclotomic cosets C0, C1, . . . , C13. Hence, from the nonisomorphic designs
dev(D1),dev(D2),dev(D3), we can obtain the exact same design dev(C) by cutting
their blocks into smaller blocks.

Note that all three designs share the block intersection numbers 0, 332, 333 with
multiplicities 1 331, 2 655 345 and 885 115, respectively. Hence, in this example,
neither the intersection numbers nor their multiplicities distinguish the designs.

Unlike in the above example, our designs CH and DH apparently can be dis-
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tinguished by their block intersection numbers as the following example indicates.
Hence, these numbers seem to be a useful isomorphism invariant.

Example 3.5. Theorem 2.4 and Theorem 2.7 yield (625, 12, 11) disjoint difference
families CH and DH in the additive groups of F54 and GR(25, 2), respectively. The
associated 2-(625, 12, 11) designs have the following block intersection numbers:
for CH , they are 0, 1, 5, 6 with multiplicities 410 328 750, 117 000 000, 195 000, and
585 000, respectively; for DH , they are 0, 1, 2, 5, 6 with multiplicities 417 078 750,
100 687 500, 10 312 500, 7 500, and 22 500, respectively. Hence, the difference families
are nonisomorphic.

Our approach to attack the isomorphism problem for CH and DH is similar to the
approach in Section 3.2: we first determine the block intersection numbers and their
multiplicities of the design CH . Afterwards, we establish bounds on the intersection
numbers of DH . This will lead to a partial solution of the isomorphism problem.

We determine the cyclotomic numbers of order 2(pr + 1) in Fp2r , which are the
intersection numbers of CH . Unfortunately, these cyclotomic numbers are not uniform
as their parameters do not meet the conditions of Proposition 3.2, the result we used
to obtain the cyclotomic numbers of order pr + 1. Nevertheless, we can deduce the
cyclotomic numbers of order 2(pr + 1) from the cyclotomic numbers of order pr + 1
that we presented in Proposition 3.3. To do so, we need the following well-known
lemma by Dickson [47]. In the precise form of this thesis, it was also given by
Ralston [94].

Lemma 3.14 ([47, §67], [94, Theorem 2]). Let p be an odd prime, and let r be
a positive integer. Let Q be the set of nonzero squares, and let N be the set of
non-squares in the finite field Fpr . Denote by QQ the number of squares s ∈ Q for
which s+ 1 is a nonzero square and by QN the number of s ∈ Q for which s+ 1 is
not a square. Moreover, let NN denote the number of non-squares n ∈ N for which
n + 1 is not a square and NQ the number of n ∈ N for which n + 1 is a nonzero
square.

• If pr − 1 ≡ 0 (mod 4), then

QQ = pr − 5
4 , QN = pr − 1

4 , NN = pr − 1
4 , NQ = pr − 1

4 .

• If pr − 1 ≡ 2 (mod 4), then

QQ = pr − 3
4 , QN = pr + 1

4 , NN = pr − 3
4 , NQ = pr − 3

4 .

Combining Lemma 3.14 with Proposition 3.3, we obtain the following result.

Proposition 3.15. Let p be an odd prime, and let e = pr + 1 for some positive
integer r. In the finite field Fp2r , the cyclotomic numbers of order 2e are as follows:

37



3 Solving isomorphism problems of disjoint difference families

• If pr − 1 ≡ 0 (mod 4), then

(0, 0)2e = pr − 5
4 ,

(0, e)2e = (e, 0)2e = (e, e)2e = pr − 1
4 .

• If pr − 1 ≡ 2 (mod 4), then

(0, e)2e = pr + 1
4 ,

(0, 0)2e = (e, 0)2e = (e, e)2e = pr − 3
4 .

In both of the above cases,

(0, i)2e = (i, 0)2e = (i, i)2e = (i, e)2e

= (e, i)2e = (i, e+ i)2e = (e+ i, i)2e = 0 for i /∈ {0, e}.

Out of the remaining cyclotomic numbers

(i, j)2e, (i, j + e)2e, (i+ e, j)2e, (i+ e, j + e)2e, where i, j 6= 0 and i 6= j,

for fixed i and j, exactly one cyclotomic number is 1 and the other three cyclotomic
numbers are 0, but it is not known which one is 1.

Proof. Let e = pr + 1. Let C0 be the unique subgroup of order pr − 1 of F∗p2r

formed by the e-th powers, and let C0, C1, . . . , Cpr be the cosets of C0. Moreover,
let α be primitive in Fp2r . The finite field Fp2r contains a unique subfield Fpr with
pr elements. Hence, C0 is the multiplicative group F∗pr of Fpr . As pr is odd, C0
consists of 1

2(pr − 1) squares and non-squares in Fpr each. Consequently,

C0 = CH0 ∪ CHe ,

where
CH0 = {1, α2e, . . . , α(pr−3)e}

is the set of nonzero squares and

CHe = {αe, α3e, . . . , α(pr−2)e}

is the set of non-squares in F∗pr . The values of the cyclotomic numbers (i, j)2e, where
i, j ∈ {0, e}, now follow from Lemma 3.14.

Note that CH0 is a subgroup of F∗p2r itself. Consequently, in the same way as for C0,
we can divide each of the cosets C0, C1, . . . , Cpr of C0 into two cosets CHi and CHe+i
of CH0 . Since

Ci = CHi ∪ CHe+i
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3.3 Isomorphism problem II: Wilson vs. Kaspers and Pott

for all i = 0, 1, . . . , pr, we obtain

(Ci + 1) ∩ Cj =
⋃

k∈{i,e+i},
`∈{j,e+j}

(CHk + 1) ∩ CH`

for 0 ≤ i, j ≤ pr. In terms of cyclotomic numbers, this means

(i, j)e =
∑

k∈{i,e+i},
`∈{j,e+j}

(k, `)2e (3.6)

for 0 ≤ i, j ≤ pr. Recall that we determined the cyclotomic numbers of order
e = pr + 1 in Fp2r in the proof of Proposition 3.3. The values of the cyclotomic
numbers (i, j)2e, where i, j /∈ {0, e}, now follow from combining (3.6) with (3.4).

Unfortunately, the exact values of the cyclotomic numbers (i, j)2e, (i, j + e)2e,
(i+ e, j)2e, (i+ e, j + e)2e, where i, j 6= 0 and i 6= j, in Fp2r are not known in general.
It is an open problem to determine those.

Nevertheless, from Proposition 3.15, we can completely derive the block intersection
numbers of the 2-design CH as well as their multiplicities.

Proposition 3.16. Let CH be a (p2r, p
r−1
2 , p

r−3
2 ) difference family in the additive

group of Fp2r constructed with Theorem 2.4. The associated 2-design CH has exactly
the following block intersection numbers.

• If pr − 1 ≡ 0 (mod 4), the intersection numbers are 0, 1, pr−5
4 , and pr−1

4 , and
they occur with multiplicities

n(0) = 1
2(3p6r + 9p5r + p4r − 3p3r + 2p2r),

n(1) = 1
2(p6r − p5r − p4r + p3r),

n(pr−5
4 ) = 1

2(p4r − p2r),
n(pr−1

4 ) = 1
2(3p4r − 3p2r).

• If pr − 1 ≡ 2 (mod 4), the intersection numbers are 0, 1, pr−3
4 , and pr+1

4 . The
multiplicities n(0) and n(1) are as above and

n(pr−3
4 ) = 1

2(3p4r − 3p2r),
n(pr+1

4 ) = 1
2(p4r − p2r).

Proof. Let e = pr + 1. It follows from Proposition 3.1 that the block intersection
numbers of CH are exactly 0 and the cyclotomic numbers from Proposition 3.15. We
obtain their multiplicities using (3.6) from the proof of Proposition 3.15:

Every cyclotomic number (i, j)e of order e that equals 0 gives four cyclotomic
numbers of order 2e that equal 0. Every cyclotomic number of order e that takes
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3 Solving isomorphism problems of disjoint difference families

the value 1 splits into three cyclotomic numbers of order 2e that equal 0 and one
cyclotomic number of order 2e that equals 1. If pr − 1 ≡ 0 (mod 4), the unique
cyclotomic number of order e that equals pr − 2 provides one cyclotomic number of
order 2e that equals pr−5

4 and three cyclotomic numbers of order 2e that equal pr−1
4 .

If pr − 1 ≡ 2 (mod 4), we obtain pr−3
4 three times and pr+1

4 once from pr − 2.
For i ∈ {e, 2e}, denote by ni(N) the number of cyclotomic numbers of order i that

equal N . By the above argumentation, we obtain the following values for n2e(N). If
pr − 1 ≡ 0 (mod 4), then

n2e(0) = 4ne(0) + 3ne(1),
n2e(1) = ne(1)

n2e(p
r−5
4 ) = ne(pr − 2),

n2e(p
r−1
4 ) = 3ne(pr − 2).

(3.7)

If pr − 1 ≡ 2 (mod 4), then n2e(0) and n2e(1) are as above and

n2e(p
r−3
4 ) = 3ne(pr − 2),

n2e(p
r+1
4 ) = ne(pr − 2).

(3.8)

We now obtain the multiplicities of the block intersection numbers of CH by com-
bining (3.7) and (3.8) with (3.5) from the proof of Proposition 3.3 and Proposition 3.1.
In (3.5), we presented the values of ne(N) for N ∈ {0, 1, pr− 2}. According to Propo-
sition 3.1, we need to multiply the numbers from (3.7) and (3.8) with 1

2p
2r(p2r − 1)

to obtain the multiplicities of the respective block intersection numbers. For the
block intersection number 0 we additionally need to add 1

2p
2r(2p2r + 2)(2p2r + 1).

Next, we examine the intersection numbers of DH , the design associated to the
disjoint difference family DH in the Galois ring GR(p2, r) from Theorem 2.7. As in
Section 3.2, we use the connection between intersection numbers and multiplicities
of differences that we explained in Remark 3.2 to study these intersection numbers.

Let ξ denote a generator of the Teichmüller group T ∗, and let T = T ∗ ∪ {0}. As
in Theorem 2.7, we denote by T ∗Q the subgroup of Teichmüller squares in GR(p2, r)∗,
and we further denote by T ∗N the set of Teichmüller non-squares. Furthermore, we
call a coset of type

(1 + pα)T ∗Q,

where α ∈ T , a square coset of T ∗Q, and a coset of type

(1 + pα)T ∗N = (1 + pα)ξT ∗Q,

where α ∈ T , a non-square coset of T ∗Q.
In the remainder of this section, we establish bounds on block intersection numbers

of DH that come from the multisets ∆T ∗Q and T ∗Q − T ∗N . To obtain these bounds we
need to analyze the structure of those multisets first.
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3.3 Isomorphism problem II: Wilson vs. Kaspers and Pott

Lemma 3.17. Let p be an odd prime. Using the same notations as above, consider
the multisets ∆T ∗Q and T ∗Q − T ∗N in the Galois ring GR(p2, r).

• If pr − 1 ≡ 0 (mod 4), then ∆T ∗Q contains pr−5
4 square cosets and pr−1

4 non-
square cosets of T ∗Q, and T ∗Q − T ∗N contains pr−1

4 square and non-square cosets
of T ∗Q each.

• If pr − 1 ≡ 2 (mod 4), then ∆T ∗Q contains pr−3
4 square and non-square cosets

of T ∗Q each, and T ∗Q − T ∗N contains pr−3
4 square cosets and pr+1

4 non-square
cosets of T ∗Q.

Proof. Denote by I the maximal ideal of GR(p2, r). The Teichmüller set T is a
system of representatives of GR(p2, r)/I, which is isomorphic to the finite field Fpr .
Hence, when considered modulo I, differences of elements of Teichmüller squares
and Teichmüller non-squares act in the same way as the respective differences of
squares and non-squares in Fpr that we studied in Lemma 3.14.

We show the result for ∆T ∗Q. The result for T ∗Q − T ∗N can be obtained analogously.
By the same arguments as in Lemma 3.6, ∆T ∗Q consists of pr−3

2 not necessarily
distinct cosets of T ∗Q, each of cardinality pr−1

2 . Moreover, note that (1 + pα)T ∗Q ≡ T ∗Q
mod I for any square coset of T ∗Q, and (1 + pα)T ∗N ≡ T ∗N mod I for any non-square
coset of T ∗Q. Let d ∈ ∆T ∗Q. Then there are s, s′ ∈ T ∗Q such that

d = s− s′. (3.9)

According to the proof of Theorem 2.7, d is a unit. Hence, we may write d = α0 +pα1
for unique α0 ∈ T ∗ and α1 ∈ T . Dividing (3.9) by α0 and considering this equation
modulo I, we obtain

s′

α0
+ 1 ≡ s

α0
mod I. (3.10)

Note that, as T ∗Q is a group, 1
α0

is a square, and thereby s′

α0
and s

α0
are squares, if

and only if α0 is a square. Using the notation from Lemma 3.14, equation (3.10)
has QQ solutions for s, s′ if α0 ∈ T ∗Q and NN solutions if α0 ∈ T ∗N . Consequently, if
we consider ∆T ∗Q modulo I, this multiset contains QQ copies of T ∗Q and NN copies
of T ∗N , which means that ∆T ∗Q consists of QQ square cosets and NN non-square
cosets of T ∗Q.

Furthermore, we need the following properties of squares and non-squares in the
Galois ring GR(p2, r).

Proposition 3.18. Consider the Galois ring GR(p2, r), where p is odd.

(a) If pr − 1 ≡ 0 (mod 4), then −1 ∈ T ∗Q, and T ∗Q = −T ∗Q and 2T ∗Q ⊆ ∆T ∗Q.
If pr − 1 ≡ 2 (mod 4), then −1 ∈ T ∗N , and T ∗Q = −T ∗N and 2T ∗Q ⊆ T ∗Q − T ∗N .

41



3 Solving isomorphism problems of disjoint difference families

(b) If pr − 1 ≡ 0 (mod 12), then 1 ∈ ∆T ∗Q, and T ∗Q ⊆ ∆T ∗Q.
If pr − 1 ≡ 6 (mod 12), then 1 ∈ T ∗N − T ∗Q, and T ∗Q ⊆ T ∗N − T ∗Q.

(c) If pr− 1 ≡ 0 or 6 (mod 8), then 2 is a square, and 2T ∗Q is a square coset of T ∗Q.
If pr − 1 ≡ 2 or 4 (mod 8), then 2 is a non-square, and 2T ∗Q is a non-square
coset of T ∗Q.

Proof. Let ξ be a generator of the Teichmüller group T ∗ in the Galois ring GR(p2, r).

(a) In Lemma 3.4, we showed that if p is odd, −1 ∈ T ∗, in particular −1 = ξ
pr−1

2 .
The exponent pr−1

2 is even if pr − 1 ≡ 0 (mod 4); then −1 is a square in T ∗. If
pr − 1 ≡ 2 (mod 4), the exponent pr−1

2 is odd, and −1 is a non-square in T ∗.
(b) If pr − 1 ≡ 0 (mod 6), the equation x6 = 1 has exactly six solutions in the

Teichmüller group T ∗, namely ξ
k(pr−1)

6 for k = 0, 1, . . . , 5. We show that the
sum of these elements is 0. It is easy to see that

ξ
pr−1

6

5∑
k=0

ξ
k(pr−1)

6 =
5∑

k=0
ξ
k(pr−1)

6 .

Hence, (
ξ
pr−1

6 − 1
) 5∑
k=0

ξ
k(pr−1)

6 = 0.

As ξ
pr−1

6 − 1 is the difference of two distinct Teichmüller elements, it is a unit;
see the proof of Theorem 2.6. It follows that

5∑
k=0

ξ
k(pr−1)

6 = 0. (3.11)

By the same reasoning, ∑2
k=0 ξ

k(pr−1)
3 = 0. Consequently, we can rewrite

(3.11) as
ξ

5(pr−1)
6 − ξ

2(pr−1)
3 = 1.

If pr − 1 ≡ 0 (mod 12), the elements ξ
5(pr−1)

6 , and ξ
2(pr−1)

3 are squares and,
consequently, 1 ∈ ∆T ∗Q. If pr − 1 ≡ 6 (mod 12), then ξ

5(pr−1)
6 is a non-square

and ξ
2(pr−1)

3 is a square, hence 1 ∈ T ∗N − T ∗Q.
(c) We first consider r = 1. Note that GR(p2, 1) = Zp2 . The following classical

results about quadratic residues were first systematically given by Gauß [63]. A
positive integer a coprime to an odd prime p is a square in the integer ring Zpm ,
where m ≥ 1, if and only if a is a square in Zp. In Zp, the element 2 is a square
if p− 1 ≡ 0 or 6 (mod 8), and 2 is a non-square if p− 1 ≡ 2 or 4 (mod 8). This
solves the case r = 1.
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3.3 Isomorphism problem II: Wilson vs. Kaspers and Pott

Now, let r ≥ 2. Let
T ∗1 = {1, ζ, ζ2, . . . , ζp−2}

denote the Teichmüller group of GR(p2, 1), and let T1 = T ∗1 ∪ {0}. For a fixed
prime p, the Galois ring GR(p2, 1) is a subring of GR(p2, r) for all r ≥ 1. If
T ∗ = {1, ξ, ξ2, . . . , ξp

r−2} is the Teichmüller group of GR(p2, r), then T ∗1 is a
subgroup of T ∗ with ζ = ξ

pr−1
p−1 . Thus, we may write

T ∗1 =
{

1, ξ
pr−1
p−1 , ξ

2(pr−1)
p−1 , . . . , ξ

(p−2)(pr−1)
p−1

}
.

Since 2 is a unit in GR(p2, 1), there exist unique α0 ∈ T ∗1 and α1 ∈ T1 such
that α0(1 + pα1) = 2. It follows that α0 = ζ` for some ` ∈ {0, 1, . . . , p− 2}. In
GR(p2, r), we consequently obtain

2 = (1 + pα1) ξ
`(pr−1)
p−1 .

Hence, 2 is a square, and thereby 2T ∗Q is a square coset of T ∗Q, if ` or pr−1
p−1 is

even. The later is even if and only if r is even. In this case, pr − 1 ≡ 0 (mod 8).
Hence, if r is odd, then ` needs to be even. This implies that 2 is a square in
GR(p2, 1), which, according to the case r = 1, holds whenever p− 1 ≡ 0 or 6
(mod 8). If r is odd, pr ≡ p (mod 8). The result follows.

Note that it follows from Proposition 3.18 (b) that if pr − 1 ≡ 6 (mod 12), then
T ∗N ⊆ T ∗Q − T ∗N . By combining all three results from Proposition 3.18, we obtain the
following corollary.

Corollary 3.19. Consider the Galois ring GR(p2, r), where p is odd.

• If pr − 1 ≡ 0 (mod 12), then ∆T ∗Q contains both T ∗Q and 2T ∗Q. Moreover, 2T ∗Q
is a square coset of T ∗Q if and only if pr − 1 ≡ 0 (mod 24).

• If pr − 1 ≡ 6 (mod 12), then T ∗Q − T ∗N contains both T ∗N and 2T ∗Q. Moreover,
2T ∗Q is a non-square coset of T ∗Q if and only if pr − 1 ≡ 18 (mod 24).

Note that pr − 1 ≡ 0 (mod 24) holds whenever p ≥ 5 and r is even. To continue,
we need to study under which conditions 2 is a Teichmüller square.

Lemma 3.20. Consider the Galois ring GR(p2, r), where p is odd. Then

• T ∗Q = 2T ∗Q if and only if pr − 1 ≡ 0 or 6 (mod 8) and 2p−1 ≡ 1 (mod p2),

• T ∗N = 2T ∗Q if and only if pr − 1 ≡ 2 or 4 (mod 8) and 2p−1 ≡ 1 (mod p2).

Proof. The equation T ∗Q = 2T ∗Q holds if and only if 2 ∈ T ∗Q, which means 2 is a square
in the Teichmüller group T ∗. According to Proposition 3.18 (c), the element 2 is a
square in GR(p2, r)∗ if and only if pr − 1 ≡ 0 or 6 (mod 8). Recall that GR(p2, r)∗
is the direct product of T ∗, which is a cyclic group of order pr − 1, and the group of
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3 Solving isomorphism problems of disjoint difference families

principal units P, which is elementary abelian of order pr. Consequently, 2 ∈ T ∗ if
and only if 2pr−1 ≡ 1 (mod p2). Since 2 is an element of Zp2 = GR(p2, 1), which is a
subring of GR(p2, r), we can reduce this condition to 2p−1 ≡ 1 (mod p2).

On the other hand, the equation T ∗N = 2T ∗Q holds if and only if 2 ∈ T ∗N . The
second statement now follows from Proposition 3.18 (c) by analogous reasoning as
above.

A prime p solving the congruence 2p−1 ≡ 1 (mod p2) from Lemma 3.20 is called a
Wieferich prime. So far, the only known Wieferich primes are 1093 and 3511; we refer
to Crandall, Dilcher, and Pomerance [42], Knauer and Richstein [80], and Dorais
and Klyve [54] for some background on the search for more Wieferich primes. Thus,
the only known Galois rings of characteristic p2 with T ∗Q = 2T ∗Q are GR(10932, r),
where r is even, and GR(35112, r) for arbitrary r. The only known Galois ring of
characteristic p2 where T ∗N = 2T ∗Q is GR(10932, r), where r is odd.

With the help of Proposition 3.18 (a), we now establish a lower bound on the
multiplicities of certain elements in ∆T ∗Q and T ∗Q − T ∗N . The proof follows the same
approach as in Lemma 3.11.

Lemma 3.21. Consider the Galois ring GR(p2, r), where p is odd.

• If pr − 1 ≡ 0 (mod 4), then every d ∈ ∆T ∗Q with d /∈ 2T ∗Q has even multiplicity
at least 2.

• If pr − 1 ≡ 2 (mod 4), then every d ∈ T ∗Q − T ∗N with d /∈ 2T ∗Q has even
multiplicity at least 2.

Proof. We prove the first result. The second statement can be shown analogously.
Let p be a prime, and let r be a positive integer such that pr − 1 ≡ 0 (mod 4).
Moreover, let d ∈ ∆T ∗Q, which means there exist distinct s, s′ ∈ T ∗Q such that
d = s − s′. According to Proposition 3.18 (a), T ∗Q = −T ∗Q. Hence, if s′ 6= s, then
(−s′)− (−s) = d is a second representation of d in ∆T ∗Q. If s′ = −s, however, the two
representations are the same, and d = 2s, thus d ∈ 2T ∗Q. By the same reasoning as in
the proof of Lemma 3.11, there might be pairs of elements s1, s

′
1, s2, s

′
2, . . . , s`, s

′
` ∈ T ∗Q

such that si − s′i = −s′i − (−si) = d for all i ∈ {1, 2, . . . , `}, but all these differences
occur in pairs.

In Lemma 3.22, we establish an upper bound on the multiplicity of certain dif-
ferences in ∆T ∗Q and T ∗Q − T ∗N . For our main theorem of this section, only the first
part of the lemma is relevant. However, we also state the second part as it is easily
obtained from the previous results.

Lemma 3.22. Let p be an odd prime such that 2p−1 6≡ 1 (mod p2). Consider the
Galois ring GR(p2, r).

• If pr − 1 ≡ 0 (mod 24), then every square d ∈ ∆T ∗Q occurs with multiplicity
less than pr−5

4 .
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• If pr − 1 ≡ 18 (mod 24), then every d ∈ T ∗Q − T ∗N occurs with multiplicity less
than pr+1

4 .

Proof. The condition 2p−1 6≡ 1 (mod p2) guarantees that T ∗Q 6= 2T ∗Q and T ∗N 6= 2T ∗Q as
shown in Lemma 3.20. Assume pr − 1 ≡ 0 (mod 24). Let d be a square in ∆T ∗Q, and
denote its multiplicity by Nd. From Lemma 3.17, we know that ∆T ∗Q contains pr−5

4
not necessarily distinct square cosets of T ∗Q. It follows that Nd ≤ pr−5

4 , and Nd = pr−5
4

if and only if ∆T ∗Q contains exactly one square coset of T ∗Q with multiplicity pr−5
4 .

Assume Nd = pr−5
4 . As pr − 1 ≡ 0 (mod 24), according to Corollary 3.19, both

T ∗Q, 2T ∗Q ⊆ ∆T ∗Q, and 2T ∗Q is a square coset of T ∗Q. This is a contradiction.
Now, assume pr − 1 ≡ 18 (mod 24). Let d be a non-square in T ∗Q − T ∗N , and

denote its multiplicity by Nd. Analogously to above, we conclude from Lemma 3.17
that Nd ≤ pr+1

4 , and Nd = pr+1
4 if and only if T ∗Q − T ∗N contains only exactly one

non-square coset of T ∗Q. Assume Nd = pr+1
4 . If pr − 1 ≡ 18 (mod 24), then both T ∗N

and 2T ∗Q are contained in T ∗Q − T ∗N , and 2T ∗Q is a non-square coset of T ∗Q. Again, we
obtain a contradiction.

As we have mentioned in Remark 3.2, the multiplicity of a difference d ∈ ∆T ∗Q
corresponds directly to the block intersection number |T ∗Q ∩ (T ∗Q ∩ d)|. Hence, we
obtain from the previous lemmas the following result, which partially solves the
isomorphism problem for the difference families CH and DH .

Theorem 3.23. Let p be an odd prime such that 2p−1 6≡ 1 (mod p2). Let CH be a
(p2r, p

r−1
2 , p

r−3
2 ) disjoint difference family in the additive group of the finite field Fp2r

constructed with Theorem 2.4, and let DH be a disjoint difference family with the
same parameters in the additive group of the Galois ring GR(p2, r) constructed with
Theorem 2.7. If pr − 1 ≡ 0 (mod 24), then CH and DH are nonisomorphic.

Proof. Let p be an odd prime, and let r be an integer such that pr − 1 ≡ 0 (mod 24).
Recall from Proposition 3.16 that, in this case, the block intersection numbers of the
design CH are 0, 1, pr−5

4 , p
r−1
4 . Now, consider the Galois ring GR(p2, r), and denote

by T ∗Q the set of Teichmüller squares. By combining Lemma 3.21 and Lemma 3.22,
we obtain

1 < |T ∗Q ∩ (T ∗Q + d)| < pr−5
4

for all squares d ∈ ∆T ∗Q\2T ∗Q. Note that it follows from Corollary 3.19 and Lemma 3.20
that T ∗Q ⊆ ∆T ∗Q and T ∗Q 6= 2T ∗Q. Hence, such a square d always exists. Consequently,
the design DH has an intersection number different from the intersection numbers of
CH , and the designs are nonisomorphic.

We remark that the condition pr − 1 ≡ 0 (mod 24) from Theorem 3.23 is not as
restrictive as it sounds since it holds for all p and r where p ≥ 5 and r is even.

Furthermore, we note that Theorem 3.23 also holds for the Wieferich primes 1093
and 3511, which satisfy the condition 2p−1 ≡ 1 (mod p2). For both primes, we used
Magma [16] to compute ∆T ∗Q in the case r = 1, and we confirmed that ∆T ∗Q contains
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more than one square coset of T ∗Q. Hence, there are at least as many square cosets
of T ∗Q in ∆T ∗Q for r > 1, and, if pr − 1 ≡ 0 (mod 24), which means for even r, the
bound established in the previous proof holds.

To conclude this section, we demonstrate in Example 3.6 why our intersection
number approach fails if pr − 1 6≡ 0 (mod 24). We choose the case pr − 1 ≡ 18
(mod 24) since, in the previous lemmas, we already obtained several results about
this case, which followed immediately from the results for pr − 1 6≡ 0 (mod 24).
Example 3.6. Let p and r such that pr − 1 ≡ 18 (mod 24). In this case, according
to Proposition 3.16, the block intersection numbers of the design CH are 0, 1, pr−3

4 ,
pr+1

4 . For the design DH , using Lemma 3.21 and Lemma 3.22, we obtain

1 < |T ∗Q ∩ (T ∗N + d)| < pr+1
4

for all d ∈ (T ∗Q−T ∗N )\2T ∗Q. However, this result is of little use as it is still possible that
there exists some d ∈ (T ∗Q −T ∗N ) \ 2T ∗Q such that |T ∗Q ∩ (T ∗N + d)| = pr−3

4 , or that two
completely different blocks intersect in pr+1

4 elements. In fact, the multiset pT ∗Q−pT ∗N
contains the sets pT ∗N and pT ∗Q with multiplicities pr+1

4 and pr−3
4 , respectively. Hence,

these two numbers actually occur as the block intersection numbers

|pT ∗Q ∩ (pT ∗N + d)|,

where d ∈ I \ {0}. Consequently, with our approach, we cannot show the existence
of an intersection number N such that 1 < N < pr−3

4 .

3.4 Isomorphism problem III: Wilson vs. Momihara
In this section, we solve the isomorphism problem for Wilson’s [102] difference
families in finite fields from Theorem 2.4 and Momihara’s [84] difference families in
Galois rings from Theorem 2.8. We show that these difference families are always
nonisomorphic.

Recall from Theorem 2.8 that Momihara’s [84] difference families only exist in
Galois rings of characteristic p2 with even extension degree. Hence, throughout this
section, we consider the finite field Fp4n and the Galois ring GR(p2, 2n), where p is a
prime and n is a positive integer. Using the same notations as in the previous sections,
we denote by C the

(
p4n, p3n − p2n + pn − 1, p3n − p2n + pn − 2

)
disjoint difference

family in the additive group of Fp4n and by D the disjoint difference family with the
same parameters in the additive group of GR(p2, 2n). Moreover, let C = dev(C) and
D = dev(D).

To show that C and D are nonisomorphic, we study the block intersection numbers
of the associated designs C and D. The following example demonstrates that these
numbers apparently distinguish the designs.
Example 3.7. From Theorem 2.4 and Theorem 2.8, we obtain (2401, 300, 299)
disjoint difference families C and D in the additive groups of F74 and GR(49, 2),
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respectively. The associated 2-(2401, 300, 299) designs have the following intersection
numbers: for C, they are 0, 5, 36, 42 with multiplicities 67 228, 2 881 200, 121 010 400,
and 60 505 200, respectively. For D, they are 0, 5, 32, 36, 40, 42, 65 with multiplicities
67 228, 57 624, 50 824 368, 36 303 120, 84 707 280, 9 680 832, and 2 823 576, respectively.
Hence, the difference families are nonisomorphic.

We first determine the block intersection numbers of C, as shown in Proposition 3.1,
by calculating the cyclotomic numbers of order pn+ 1 in Fp4n . Since these cyclotomic
numbers are uniform, we can directly use Proposition 3.2.

Proposition 3.24. The 2-(p4n, p3n − p2n + pn − 1, p3n − p2n + pn − 2) design C has
precisely the block intersection numbers 0, pn − 2, p2n − 2pn + 1 and p2n − pn. These
intersection numbers occur with the following multiplicities:

n(0) = 1
2(p6n + p5n),

n(pn − 2) = 1
2(p8n − p4n),

n(p2n − 2pn + 1) = 1
2(p10n − p9n − p6n + p5n),

n(p2n − pn) = 1
2(3p9n − 3p5n).

(3.12)

Proof. The difference family C consists of the subgroup of the (pn + 1)-th powers
of F∗p4n and all its cosets. We show that C meets the conditions of Proposition 3.2.
Using the notation from Proposition 3.2, e = pn + 1, so −1 ≡ pn (mod pn + 1).
Moreover, from p4n = s2, it follows that s = p2n ≡ 1 (mod pn + 1). Consequently,
η = p2n−1

pn+1 = pn − 1. We now use (3.3) to obtain the cyclotomic numbers

(0, 0)pn+1 = pn − 2,
(0, i)pn+1 = (i, 0)pn+1 = (i, i)pn+1 = pn(pn − 1) for i 6= 0, (3.13)

(i, j)pn+1 = (pn − 1)2 for i 6= j and i, j 6= 0,

that occur as intersection numbers of C. Additionally, according to Proposition 3.1,
0 is an intersection number of C since the base blocks of C are disjoint.

We next determine the multiplicities of these intersection numbers. Denote by
npn+1(N) the number of cyclotomic numbers of order pn + 1 in Fp4n that equal N .
Counting the numbers in (3.13), we obtain

npn+1(0) = 0,
npn+1(pn − 2) = 1,

npn+1(p2n − 2pn + 1) = pn(pn − 1),
npn+1(p2n − pn) = 3pn.

(3.14)

The multiplicities of the block intersection numbers of C can now be obtained by
combining (3.14) with Proposition 3.1.

To examine the intersection numbers of the design D, we need some preparatory
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work. First, we present a result about ∆GR(p2, r)∗.

Lemma 3.25. For any Galois ring GR(p2, r), the multiset ∆GR(p2, r)∗ contains
every nonzero element of I with multiplicity p2r−pr and every element of GR(p2, r)∗
with multiplicity p2r − 2pr.

Proof. Let u, u′ ∈ GR(p2, r)∗, and write u = α0 + pα1 and u′ = α′0 + pα′1 for unique
α0, α

′
0 ∈ T ∗ and α1, α

′
1 ∈ T . In Lemma 3.5, we showed that u−u′ is not invertible if

and only if α0 = α′0. Consequently, there are (pr−1)p2r ways to choose α0, α
′
0, α1, α

′
1

such that u − u′ ∈ I. By similar reasoning as in the proof of Theorem 2.4, these
differences are evenly distributed. As |I \ {0}| = pr − 1, every nonzero element of I
has multiplicity p2r − pr in ∆GR(p2, r)∗. Analogously, there are (pr − 1)(pr − 2)p2r

ways to choose α0, α
′
0, α1, α

′
1 such that u− u′ ∈ GR(p2, r)∗. As these differences are

evenly distributed again and |GR(p2, r)∗| = pr(pr−1), every unit of GR(p2, r) occurs
with multiplicity p2r − 2pr in ∆GR(p2, r)∗.

As in Theorem 2.8, denote R2n = GR(p2, 2n) and Rn = GR(p2, n), and use the
subscripts 2n and n also for the respective subsets of these rings. Let ξ be a generator
of the Teichmüller group T ∗2n, and let S = {α0, α1, . . . , αpn−1} such that 1 + pS is a
system of representatives of P2n/Pn, where P2n and Pn are the groups of principal
units of R2n and Rn, respectively. Define

P = {pξpn , pξ(pn+1)+pn , pξ2(pn+1)+pn , . . . , pξ(pn−2)(pn+1)+pn}.

Furthermore, define subsets U and V of R∗2n as

U =
pn−1⋃
j=0

ξj(1 + pαj)R∗n and V =
pn−1⋃
j=0

(1 + pαj)R∗n. (3.15)

Note that for every base block Di of D, we have Di = ξi(P ∪ U). Moreover, V is
the direct product of T ∗n and P2n, and ⋃pni=0 ξ

iV = R∗2n. We additionally need the
following helpful lemmas.

Lemma 3.26. In R2n, we have R∗n = −R∗n and P = −P .

Proof. First, suppose p is odd. Then Lemma 3.4 implies that −1 = ξ
(pn−1)(pn+1)

2 . As
pn− 1 is even and T ∗n = {ξi(pn+1) : i = 0, 1, . . . , pn− 2}, clearly −1 ∈ T ∗n . The results
now follow from considering that T ∗n ⊆ R∗n and rewriting P as P = pξp

nT ∗n .
Now, assume p = 2. According to Lemma 3.4, now −1 ∈ P2n. Note that −1 ≡ 3

(mod 4). Since we can write 3 = 1 · (1 + 2 · 1) and 1 ∈ Tn, this implies −1 ∈ Pn.
Therefore, −1 ∈ R∗n, which implies R∗n = −R∗n. Furthermore, from I2n = 2R2n and
−2 ≡ 2 (mod 4), it follows that x = −x for all x ∈ I2n. As P ⊆ I2n, we have
−P = P .

For the proof of the following Lemma 3.27, we refer to Momihara [84].
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Lemma 3.27 ([84, Lemma 3]). Let s ≤ p2n−2 be a nonnegative integer, let r ∈ R2n,
and let V be as defined in (3.15). If ξs(1 + pr) /∈ Rn and ξs /∈ Tn, then

R∗n + ξs(1 + pr)R∗n = R∗2n \ (V ∪ ξsV ) .

We can now state the main theorem of this section. Since we have completely
determined the block intersection numbers of C in Proposition 3.24, we can prove
that C and D are nonisomorphic by showing that D has an intersection number
different from the ones of C. We remark that the proof of Theorem 3.28 has a similar
structure as the proofs by Momihara [84, Lemmas 4–7], but unlike Momihara, we
will not consider all the base blocks D0, D1, . . . , Db of the difference family D, but
only D0. Thus, our approach requires a more detailed analysis of the differences
in ∆D0.

Theorem 3.28. Let C be a
(
p4n, p3n − p2n + pn − 1, p3n − p2n + pn − 2

)
disjoint

difference family in the additive group of the finite field Fp4n constructed with Theo-
rem 2.4, and let D be a disjoint difference family with the same parameters in the
additive group of the Galois ring GR(p2, 2n) constructed with Theorem 2.8. Then C
and D are nonisomorphic.

Proof. For pn ≥ 3, we will prove Theorem 3.28 by showing that D has the block
intersection number |(D0 + u) ∩D0| = 2p2n − 5pn + 2 for all u ∈ U , where U is as
defined in (3.15). The case p = 2 and n = 1 will be solved computationally.

Suppose pn ≥ 3. As pointed out in Remark 3.2, the statement |(D0 + u) ∩D0| =
2p2n− 5pn + 2 for u ∈ U is equivalent to the statement that every u ∈ U occurs with
multiplicity (2pn − 1)(pn − 2) in the multiset ∆D0. Regarding the structure of

D0 = P ∪ U = P ∪

pn−1⋃
j=0

ξj(1 + pαj)R∗n

 ,
we can divide the differences in ∆D0 into four different types:

Type 1: ξs(1 + pαs)R∗n − ξt(1 + pαt)R∗n, where s, t ∈ {0, 1, . . . , pn − 1} and s 6= t,

Type 2: ∆ξs(1 + pαs)R∗n, where s ∈ {0, 1, . . . , pn − 1},

Type 3: ξs(1 + pαs)R∗n − P , where s ∈ {0, 1, . . . , pn − 1},

Type 4: ∆P .

Note that it follows from Lemma 3.26 that ξs(1 + pαs)R∗n − P = P − ξs(1 + pαs)R∗n
for all s ∈ {0, 1, . . . , pn − 1}. Hence, we summarize both these types of differences in
Type 3 .

From now on, fix u ∈ U . We determine the multiplicity of u in ∆D0 by counting
its occurrences in each of the four types of multisets defined above. We first show
that u occurs with multiplicity p2n − 3pn + 2 in the union of all Type 1 multisets

49
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and with multiplicity p2n − 2pn in the union of all Type 2 multisets. Afterwards, we
prove that u does not occur in multisets of Type 3 and Type 4 .

We start our proof by addressing differences of Type 1 . Fix s, t ∈ {0, 1, . . . , pn− 1}
such that s 6= t. From Lemma 3.26, it follows that

ξs(1 + pαs)R∗n − ξt(1 + pαt)R∗n = ξs(1 + pαs)R∗n + ξt(1 + pαt)R∗n.

Factoring out ξs(1 + pαs) gives

ξs(1 + pαs)(R∗n + ξt−s(1 + p(αt − αs))R∗n),

which, applying Lemma 3.27 and using the definition of V from (3.15), equals

ξs(1 + pαs)(R∗2n \ (V ∪ ξt−sV )).

Since (1 + pr)V = V for any r ∈ R2n, we may omit (1 + pαs) and write a Type 1
multiset in the form

ξs(1 + pαs)R∗n − ξt(1 + pαt)R∗n = R∗2n \ (ξsV ∪ ξtV ). (3.16)

Now, we count differences. The set D0 contains pn distinct subsets ξs(1 + pαs)R∗n.
Consequently, ∆D0 contains pn(pn−1) Type 1 multisets. Recall that ⋃pni=0 ξ

iV = R∗2n.
Since s, t ≤ pn − 1, according to (3.16), every Type 1 multiset contains the set ξpnV ,
whereas any element of ⋃pn−1

j=0 ξjV = R∗2n \ ξp
n
V occurs only in (pn − 1)(pn − 2)

Type 1 multisets. Since U ⊆ R∗2n \ ξp
n
V , we count, p2n − 3pn + 2 occurrences of u in

∆D0 coming from Type 1 multisets.
Next, we study differences of Type 2 : ∆ξs(1 + pαs)R∗n. Note that

∆ξs(1 + pαs)R∗n = ξs(1 + pαs)∆R∗n.

It follows from Lemma 3.25 that ξs(1 + pαs)∆R∗n contains p2n − pn copies of In
and p2n − 2pn copies of ξs(1 + pαs)R∗n. By (3.15), u ∈ ξs(1 + pαs)R∗n for some
s ∈ {0, 1, . . . , pn − 1}. Hence, u occurs p2n − 2pn times in ∆D0 as a difference of
Type 2 .

Now, we examine differences of Type 3 : ξs(1 + pαs)R∗n − P . First, we take
arbitrary elements ξk(pn+1)(1 + pβ) ∈ R∗n, where k ∈ {0, 1, . . . , pn − 2} and β ∈ Tn,
and −pξ`(pn+1)+pn ∈ P , where ` ∈ {0, 1, . . . , pn − 2}. Recall from Lemma 3.26 that
P = −P . Moreover, fix s ∈ {0, 1, . . . , pn − 1}. We study

ξs(1 + pαs)ξk(pn+1)(1 + pβ) + pξ`(p
n+1)+pn .

Factoring out ξs+k(pn+1) and summarizing, we obtain

ξs+k(pn+1)(1 + pαs)(1 + pβ)(1 + pξ(`−k)(pn+1)+pn−s). (3.17)
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Writing (3.17) with respect to all 0 ≤ k, ` ≤ pn − 2 and all β ∈ Tn, gives

ξs(1 + pαs)T ∗n Pn(1 + pξp
n−sT ∗n ). (3.18)

Note that 1 + pξp
n−sT ∗n ⊆ P2n and |1 + pξp

n−sT ∗n | = pn − 1. Since ξpn−s /∈ Tn, it
is clear that the sets Pn = 1 + pTn and 1 + pξp

n−sT ∗n are disjoint. We show that
from each of the pn − 1 other cosets in P2n/Pn exactly one element is contained
in 1 + pξp

n−sT ∗n . This is equivalent to showing that pξpn−sTn contains exactly one
element of every coset in I2n/In, except for In = pT ∗n itself. By way of contradiction,
suppose pξpn−sT ∗n contains two distinct elements x, x′ of the same coset in I2n/In.
Then x−x′ is an element of In. However, for two distinct integers k, `, the difference

pξp
n−s+k(pn+1) − pξpn−s+`(pn+1) = ξp

n−s(pξk(pn+1) − pξ`(pn+1))

is not contained in In since ξpn−s /∈ Tn and pξk(pn+1) − pξ`(pn+1) ∈ In. This is a
contradiction.

Consequently, (3.18) equals

ξs(1 + pαs)T ∗n (P2n \ Pn) .

Hence, with the definition of V from (3.15), we can write a Type 3 multiset as

ξs(1 + pαs)R∗n − P = ξs (V \ (1 + pαs)R∗n) .

Recall from (3.15) that U = ⋃pn−1
j=0 ξj(1 + pαj)R∗n. Hence, u ∈ U does not occur in

multisets of Type 3 .
Eventually, we examine differences of Type 4 : ∆P . As P ⊆ I2n, it follows that

∆P ⊆ ∆I2n. Hence, ∆P contains no units and, thus, provides no representations
of u.

Consequently, |(D0 + u) ∩D0| = (p2n − 3pn + 2) + (p2n − 2pn) = 2p2n − 5pn + 2.
For pn ≥ 3, this number does not equal any of the block intersection numbers 0,
pn − 2, p2n − 2pn + 1 and p2n − pn of C from Proposition 3.24. We conclude that C
and D are nonisomorphic if pn ≥ 3.

In the case p = 2 and n = 1, however, |(D0+u)∩D0| = 0, and the block intersection
numbers of D and their multiplicities match those of C: both 2-(16, 5, 4) designs have
the intersection numbers 0, 1 and 2 with multiplicities 168, 240 and 720, respectively.
To complete our proof, we computed the full automorphism groups Aut(C) and
Aut(D) of C and D, respectively, using Magma [16]. We obtained |Aut(C)| = 960 and
|Aut(D)| = 192. Hence, C and D are also nonisomorphic if p = 2 and n = 1.

As we only needed to calculate the block intersection number 2p2n − 5pn + 2 of D
to prove Theorem 3.28, we did not try to determine additional block intersection
numbers of this design. However, unlike for the difference families from Theorem 2.6
and Theorem 2.7, our computations show that for the difference families from
Theorem 2.8, the block intersection numbers appear to be very structured. From our
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computational results with Magma [16], we conjecture that D has the block intersection
numbers listed in the following remark. We leave the task to theoretically confirm
these results to future work. To tackle this problem, it seems promising to follow an
approach similar to the proof of Theorem 3.28.
Remark 3.5. We conjecture that D has precisely the seven block intersection numbers
0, pn−2, p2n−3pn+4, p2n−2pn+1, p2n−2pn+5, p2n−pn and 2p2n−5pn+2. Moreover,
we conjecture that these intersection numbers have the following multiplicities:

n(0) = 1
2(p6n + p5n),

n(pn − 2) = 1
2(p6n − p4n),

n(p2n − 3pn + 4) = 1
2(3p9n − 3p8n − 3p7n + 3p6n),

n(p2n − 2pn + 1) = 1
2(2p9n − p8n − 3p7n + p6n + p5n), (3.19)

n(p2n − 2pn + 5) = 1
2(p10n − 3p9n + p8n + 3p7n − 2p6n),

n(p2n − pn) = 1
2(3p8n + 3p7n − 3p6n − 3p5n),

n(2p2n − 5pn + 2) = 1
2(p8n − p6n).

We have computationally confirmed that the above numbers are block intersection
numbers of D for all p and n with pn ≤ 97, and we have confirmed that these numbers
are all the block intersection numbers of D and that they occur with the multiplicities
given in (3.19) for all p and n with pn ≤ 9.

Furthermore, we add an interesting observation about the connection between
the multiplicities of the intersection numbers of C and D. Recall the intersection
numbers of C from Proposition 3.24. If we denote the multiplicity of an intersection
number N of C by nC(N) and the multiplicity of an intersection number N of D by
nD(N), then it follows from comparing (3.12) and (3.19) that

nC(0) = nD(0),
nC(pn − 2) = nD(pn − 2) + nD(2p2n − 5pn + 2),

nC(p2n − 2pn + 1) = nD(p2n − 2pn + 1) + nD(p2n − 2pn + 5),
nC(p2n − pn) = nD(p2n − pn) + nD(p2n − 3pn + 4).
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In this chapter, we introduce APN functions, and we give all the definitions and basic
results needed for the presentation of our main results in Chapter 5. In Section 4.1,
we introduce vectorial Boolean functions and, in particular, APN functions. In
Section 4.2, we present the different notions of equivalence between vectorial Boolean
functions, and we introduce some approaches to study them. Finally, in Section 4.3,
we give an overview of the known classes of APN functions. In this section, we
will also present the two classes of APN functions by Zhou and Pott [109] and by
Taniguchi [100] that we will study extensively in Chapter 5.

4.1 Vectorial Boolean functions
Let F2 be the finite field with two elements, and denote by Fn2 the n-dimensional
vector space over F2. A function from Fn2 to Fm2 is called a vectorial Boolean function
if m ≥ 2 or simply a Boolean function if m = 1. In this thesis, we consider vectorial
Boolean functions from Fn2 to Fn2 , we say functions on Fn2 . Note that we will regularly
identify the vector space Fn2 over F2 with the finite field F2n with 2n elements as this
allows us to use the properties, operations, and notations of the finite field.

Vectorial Boolean functions can be represented in various ways: the most popular
representations are the univariate and the multivariate description. If n is even,
the bivariate description is another important representation. We describe all three
representations.

Let f : Fn2 → Fn2 . When we consider f as a function on F2n , then f can be uniquely
written as a univariate polynomial mapping

f(x) =
2n−1∑
i=0

aix
i,

where ai ∈ F2n for i = 0, 1, . . . , 2n − 1, of degree at most 2n − 1.
For the multivariate representation, we write f in the standard way to write

mappings on vector spaces using n Boolean coordinate functions f1, . . . , fn : Fn2 → F2,
which is

f(x1, . . . , xn) =

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

 .
To obtain a unique multivariate representation, we need the algebraic normal form
of f . This term was originally introduced for Boolean functions, but it can be easily
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extended to vectorial Boolean functions. If f is a Boolean function, f : Fn2 → F2,
then f has a unique representation as a multivariate polynomial mapping of the form

f(x1, . . . , xn) =
∑
u∈Fn2

au

n∏
i=1

xuii , (4.1)

where au ∈ F2 for all u ∈ Fn2 . If every coordinate function f1, . . . , fn : Fn2 → F2 of a
vectorial Boolean function f on Fn2 is given in its algebraic normal form, then we call
this multivariate representation the algebraic normal form of f .

Now, assume n is even. Write n = 2m for a positive integer m. We identify F2m
2

with the 2-dimensional vector space F2
2m over F2m . For the bivariate description, we

write f as a mapping on F2
2m defined by two functions f1, f2 : F2

2m → F2m , which
means

f(x, y) = (f1(x, y), f2(x, y)).

As f1 and f2 can be uniquely represented by a bivariate polynomial mapping

fk(x, y) =
2m−1∑
i,j=0

ak,i,jx
iyj ,

where k = 1, 2 and ak,i,j ∈ F2m for k = 1, 2 and i, j = 0, 1, . . . , 2m − 1, we can
also obtain a unique bivariate representation. Note that in order to switch between
the different descriptions, the choice of a basis is relevant. Mesnager [83] gives an
overview of how to get one representation from another one.

Example 4.1. In this thesis, we will often consider functions given in bivariate
representation. One example is the function f : F2

4 → F2
4 defined by

f(x, y) = (x3 + βy3, xy),

where β is primitive in F4. It is included in the class of APN functions we present in
Theorem 4.6. The multivariate description of f as a function on the vector space F4

2
is given by its algebraic normal form

f(x1, . . . , x4) =


x3x4 + x3 + x4
x1x2 + x1 + x2
x1x3 + x2x4

x1x4 + x2x3 + x2x4

 .
Its univariate description as a function on F16 is

f(x) = αx12 + α14x9 + α8x8 + α9x6 + α5x5 + α10x3 + α8x2 + αx,

where α is primitive in F16. To compute this example, we chose standard bases
and representations of finite fields implemented in Magma [16]: we constructed F4 as
the splitting field of the irreducible polynomial X2 +X + 1 ∈ F2[X] and F16 as the
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splitting field of X4 +X + 1 ∈ F2[X].

If f : Fn2 → Fn2 is given in its multivariate representation, and v ∈ Fn2 is nonzero,
then we call the Boolean function fv : Fn2 → F2 with

fv(x) = 〈v, f(x)〉, (4.2)

where 〈 , 〉 denotes a scalar product on Fn2 , a component function of f . In univariate
representation, we replace the scalar product on Fn2 with a scalar product on F2n :
the canonical choice is the absolute trace function tr : F2n → F2 defined by

tr(x) = x+ x2 + x22 + · · ·+ x2n−1
.

In this case, the component functions of f : F2n → F2n are the mappings

fa(x) = tr(af(x))

for any nonzero a ∈ F2n .
An important parameter of a vectorial Boolean function is its algebraic degree.

We define this term for Boolean functions first. Let f : Fn2 → F2 be a Boolean
function given in its algebraic normal form; see (4.1). The degree of a monomial
x 7→

∏n
i=1 x

ui
i is u1 + · · · + un, and the maximal degree of all monomials with a

nonzero coefficient in (4.1) is called the algebraic degree of f . Now let f be a vectorial
Boolean function on Fn2 . We define the algebraic degree of f as the largest degree
of all its coordinate functions in its algebraic normal form. We call a function of
algebraic degree 2 quadratic and a function of algebraic degree 1 affine. If f is affine
and has no constant term, we say f is linear. Note that the algebraic degree of a
vectorial Boolean function must not be confused with the polynomial degree of its
univariate description. Moreover, we remark that the algebraic degree of f is also
the largest degree of all its component functions, which we described in (4.2).

We can also determine the algebraic degree of f from its univariate and its bivariate
representation. For any nonnegative integer s ≤ 2n−1, we define the weight w(s) of s
as the number of nonzero coefficients in its binary expansion s = ∑n−1

j=0 sj2j , hence,
w(s) = ∑n−1

j=0 sj . If f is given in its univariate description f(x) = ∑2n−1
i=0 aix

i, then
the algebraic degree of f is

max
s:as 6=0

w(s).

If f is given in its bivariate description with two coordinate functions fk(x, y) =∑2m−1
i,j=0 ak,i,jx

iyj for k = 1, 2, then the algebraic degree of fk is

max
(s,t):as,t 6=0

(w(s) + w(t)),

and the algebraic degree of f is the largest degree of the coordinate functions.
All the APN functions we consider in this thesis are quadratic. If f is a quadratic
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function on Fn2 , then its univariate representation on F2n is of the form

f(x) =
∑

0≤i<j≤n−1
ai,jx

2i+2j +
∑

0≤i≤n−1
bix

2i + c,

where not all ai,j = 0. If f is affine, then

f(x) =
n−1∑
i=0

bix
2i + c,

where not all bi = 0. If f is affine and c = 0, then f is linear.

Example 4.2. The function from Example 4.1 on F4
2 is quadratic as in its algebraic

normal form, the coordinate functions have degree at most 2. The function f(x) = x3

on F2n is quadratic for all n. Since 3 = 1 · 2 + 1 · 1, we have w(3) = 2.

As mentioned above, functions on F2n are polynomial mappings. In this thesis, we
often use linearized polynomials. Denote by F2n [X] the univariate polynomial ring
over F2n . A polynomial of the form

P (X) =
∑
i≥0

aiX
2i ,

where not all ai = 0, is called a linearized polynomial. Note that there is a one-to-one
correspondence between linear functions on Fn2 and linearized polynomials in the
factor ring F2n [X]/(X2n −X). In the same way as for univariate polynomials, we
define a linearized polynomial in the multivariate polynomial ring F2n [X1, . . . , Xr]
as a polynomial of the form

P (X1, . . . , Xr) =
r∑
j=1

(∑
i≥0

ai,jX
2i
j

)
,

where not all ai,j = 0.
Vectorial Boolean functions play an important role in cryptography. From a

cryptographic view, one desirable property of a vectorial Boolean function is being
as nonlinear as possible. There are mainly two important approaches to measure
this nonlinearity: via the differential uniformity and via the Walsh spectrum.

For a function f on Fn2 , we call the mapping

x 7→ f(x+ a) + f(x),

where a ∈ Fn2 is nonzero, a differential mapping or a derivative of f . It is easy to
see that if f is linear, all the derivatives of f are 2n-to-1; their image sets all have
cardinality 1. Consequently, functions whose derivatives have a huge image set are,
in some sense, the opposite of linear. This makes them appealing for cryptography.
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We call a function f on Fn2 differentially k-uniform if the equation

f(x+ a) + f(x) = b

has at most k solutions for any b ∈ Fn2 and any nonzero a ∈ Fn2 . The multiset
containing the number of solutions to the above equation for all a and b is called the
differential spectrum of f . In Section 1.2, we have already pointed out why on Fn2 ,
the derivative of any function f can never be a permutation. This means there are no
differentially 1-uniform functions on Fn2 . Hence, a vectorial Boolean function on Fn2
with optimal differential properties is differentially 2-uniform. We call such functions
almost perfect nonlinear, and we recall their definition from Section 1.2.

Definition 4.3. A function f : Fn2 → Fn2 is called almost perfect nonlinear or APN,
in brief, if the equation

f(x+ a) + f(x) = b

has exactly 0 or 2 solutions for all nonzero a ∈ Fn2 and all b ∈ Fn2 .

There are several equivalent definitions of almost perfect nonlinearity, which are
summarized in the work by Budaghyan [23]. We only restate one using the derivative
here: a function f on Fn2 is APN if and only if for every nonzero a ∈ Fn2 , its derivative
x 7→ f(x + a) + f(x) is a 2-to-1 mapping or, equivalently, the image set of each
derivative has cardinality 2n−1.

As mentioned above, we will only consider quadratic APN functions in this thesis.
Quadratic functions on Fn2 have the property that the mapping

x 7→ f(x+ a) + f(x) + f(a) + f(0) (4.3)

is linear for all nonzero a ∈ Fn2 . Hence, the problem to find the number of solutions
to the equation f(x+ a) + f(x) = b for any b ∈ Fn2 reduces to checking the dimension
of the kernel of the linear map in (4.3). If the dimension is 1, then we have 0 or
2 solutions. Consequently, if the dimension of the kernel is 1 for all nonzero a ∈ Fn2 ,
then f is APN.

We have already shown in Example 1.2 that f(x) = x3 is APN on F2n for all n.
We will give an overview of the known APN functions in Section 4.3.

The second important nonlinearity parameter of a (vectorial) Boolean functions is
its Walsh spectrum. For a Boolean function f : Fn2 → F2, the Walsh transform f̂ is
the integer valued function

f̂(u) =
∑
x∈Fn2

(−1)f(x)+〈x,u〉,

where 〈 , 〉 denotes a scalar product on Fn2 ; for functions from F2n to F2, we may take
the trace function again. The values f̂(u) are called the Walsh coefficients of f , and
the set or sometimes the multiset

Wf = {f̂(u) : u ∈ Fn2}
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4 Almost perfect nonlinear functions

of all Walsh coefficients is called the Walsh spectrum of f . We say that the set or
the multiset of the absolute values of the Walsh coefficients is the extended Walsh
spectrum of f . The Walsh coefficient f̂(u) is used to measure the distance of f and
the affine functions x 7→ 〈u, x〉 and x 7→ 〈u, x〉+1. Consequently, the Walsh spectrum
indicates how well a Boolean function can be approximated by an affine function.

For a vectorial Boolean function f : Fn2 → Fn2 , the Walsh spectrum Wf of f is the
union of the Walsh spectra of all the component functions of f , which means

Wf =
⋃
v∈Fn2

Wfv ,

where v ∈ Fn2 is nonzero, and fv is defined as in (4.2). As above, the extended Walsh
spectrum contains the absolute values of the elements of Wf . The linearity of f ,
which is important to measure the resistance of a vectorial Boolean function against
linear cryptanalysis, is

L(f) = max
W∈Wf

|W |.

If f is a function from Fn2 to Fm2 , it can be shown using Parseval’s relation that
L(f) ≥ 2n2 . Functions achieving this lower bound with equality are called bent. We
refer to Mesnager [83] for an extended overview of bent functions. Bent vectorial
functions exist if and only if n is even and m ≤ n

2 . Consequently, functions on Fn2 , in
particular APN functions, cannot be bent. If f is a function on Fn2 , then L(f) ≥ 2n+1

2

as was shown by Sidel’nikov [96] and Chabaud and Vaudenay [38]. Functions for
which equality holds are called almost bent or AB, in brief. They exist only if n
is odd, and their Walsh spectrum Wf = {0,±2n+1

2 } is called the classical Walsh
spectrum for odd n. It is well known that any AB function is APN [38].

If n is even, AB functions do not exist, and the lowest possible linearity is unknown.
For even n, we say that Wf = {0,±2n2 ,±2n2 +1} is the classical Walsh spectrum. It is
the Walsh spectrum of all known infinite families of quadratic APN functions on Fn2 ,
where n is even. However, there are numerous examples of quadratic APN function
with a non-classical Walsh spectrum; the first one was presented by Dillon [48] on
F6

2. On F8
2, the currently known APN functions admit six different Walsh spectra,

three of which were only recently found to be valid Walsh spectra of APN functions
by Beierle and Leander [7].

4.2 Equivalence of vectorial Boolean functions
There are several important equivalence relations between vectorial Boolean functions
that preserve the APN property. We list them in the following definition.

Definition 4.4. Two functions f, g : Fn2 → Fn2 are called

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if there is an affine per-
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4.2 Equivalence of vectorial Boolean functions

mutation C on Fn2 × Fn2 such that

C(Gf ) = Gg,

where Gf = {(x, f(x)) : x ∈ Fn2} denotes the graph of f ,

• extended affine equivalent (EA-equivalent) if there exist three affine functions
A1, A2, A3 : Fn2 → Fn2 , where A1 and A2 are permutations, such that

f(A1(x)) = A2(g(x)) +A3(x),

• extended linearly equivalent (EL-equivalent) if they are EA-equivalent and
A1, A2, and A3 are linear,

• affine equivalent if they are EA-equivalent and A3(x) = 0,

• linearly equivalent if they are EL-equivalent and A3(x) = 0.

In the case of EL- or linear equivalence, we usually write L,N,M instead of
A1, A2, A3 to underline that these functions are linear. CCZ-equivalence is the
most general known equivalence relation of vectorial Boolean functions preserving
the APN property. Obviously, linear equivalence implies affine equivalence, and
affine equivalence implies EA-equivalence. Similarly, linear equivalence implies EL-
equivalence, which, in turn, implies EA-equivalence. Moreover, it is well known that
EA-equivalence implies CCZ-equivalence but, in general, the converse is not true as
was shown by Budaghyan, Carlet, and Pott [27]. Note that the algebraic degree of a
function is preserved under EA-equivalence, but this is, in general, not the case for
CCZ-equivalence.

In most cases, solving equivalence problems of APN functions is a difficult task.
For small values of n, we can check the equivalence of two functions computationally.
This is usually done by using a connection of vectorial Boolean functions to coding
theory and checking for code equivalence as proposed by Browning, Dillon, Kibler,
and McQuistan [22] and Edel and Pott [60]. We refer to MacWilliams and Sloane [81]
for more background on coding theory.

With any vectorial Boolean function f on Fn2 , we can associate a linear code Cf
with parity-check matrix

Hf =

 1
x

f(x)


x∈Fn2

.

This means
Cf = {v ∈ Fn2 : Hf · v = 0}. (4.4)

Two functions f and g are CCZ-equivalent if and only if their associated codes Cf
and Cg are equivalent. So to investigate the equivalence of two functions, we simply
compute the associated codes and use the built-in Magma [16] function to check for
code equivalence. For EA- and affine equivalence, similar codes were introduced by
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4 Almost perfect nonlinear functions

Edel and Pott [60]. To check for EA-equivalence, for instance, we need to consider
the code CEAf with parity-check matrix

HEA
f =

 1 0
x 0

f(x) y


x∈Fn2 , y∈F

n
2 \{0}

.

While testing for code equivalence is an effective method to determine the equivalence
of two functions on Fn2 for small values of n computationally, this approach becomes
too resource consuming for larger n.

Hence, when studying whether two functions are equivalent or not, it makes
sense to check some equivalence invariants first. Some useful invariants of vectorial
Boolean functions under CCZ-equivalence are their extended Walsh spectrum, their
Γ-rank, their ∆-rank, and the size of their automorphism group. Recently, Canteaut
and Perrin [34] additionally presented a new EA-invariant for quadratic functions
using so-called ortho-derivatives. We shortly introduce these invariants. Concerning
the automorphism group, we will go into more detail since we will determine the
automorphism group of several quadratic APN functions in Section 5.5.

We defined the extended Walsh spectrum in Section 4.1. Note that, in contrast
to the extended Walsh spectrum, the Walsh spectrum is not invariant under CCZ-
equivalence. As mentioned in Section 4.1, on Fn2 with n even, all currently known
quadratic APN functions that are part of an infinite family share the classical Walsh
spectrum. Consequently, these functions cannot be distinguished by their extended
Walsh spectra.

The Γ- and the ∆-rank of a vectorial Boolean function make use of a connection
between said functions and design theory; see Section 2.1 for a short introduction to
combinatorial designs. We refer to Beth, Jungnickel, and Lenz [10] and Colbourn
and Dinitz [41] for more background on this topic.

Definition 4.5. Let f be a function on Fn2 . Denote by Gf the graph of f , which
means

Gf = {(x, f(x)) : x ∈ Fn2},

and denote by Df the set

Df = {(a, f(x+ a) + f(x)) : x, a ∈ Fn2 , a 6= 0}.

We define the Γ-rank of f as the F2-rank of the incidence matrix of the development
dev(Gf ) of Gf , and we define the ∆-rank of f as the F2-rank of the incidence matrix
of dev(Df ).

If f and g are CCZ-equivalent functions, then their associated incidence structures
dev(Gf ) and dev(Gg) are isomorphic, which implies that the Γ-ranks of f and g are
equal. The same holds for dev(Df ) and dev(Dg) and the ∆-ranks of f and g. Note,
however, that there exist many CCZ-inequivalent APN functions that have the same
Γ-rank or the same ∆-rank. Moreover, it seems difficult to theoretically determine
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4.2 Equivalence of vectorial Boolean functions

these ranks for a given function. Nevertheless, for small n, computing the Γ-rank or
the ∆-rank of APN functions is an effective method to check for CCZ-inequivalence.
Remark 4.1. The incidence structures we describe in Definition 4.5 are, in general,
no t-designs as defined in Definition 2.3. If f is an APN function, then dev(Gf ) is a
so-called semibiplane: any two points are contained in either none or in exactly two
blocks, and any two blocks intersect in either none or in exactly two points. If f is
an AB function, then dev(Df ) is a 2-design since, in this case, Df is a Hadamard
difference set; see Edel and Pott [59] for more details. If f is APN but not AB, then
there may not be a nice characterization of dev(Df ).

The ortho-derivative of a quadratic APN function f on Fn2 is defined as the unique
function Πf : Fn2 → Fn2 with Πf (0) = 0 such that for all nonzero a ∈ Fn2 , the equation

〈Πf (a), f(x) + f(x+ a) + f(a) + f(0)〉 = 0

holds for all x ∈ Fn2 . The differential spectrum and the extended Walsh spectrum
of Πf are invariant under EA-equivalence of f . Since for quadratic functions, CCZ-
equivalence implies EA-equivalence, these invariants also indicate CCZ-equivalence.
First results by Canteaut and Perrin [34] and Beierle and Leander [7] suggest that
these invariants are easy to compute and strongly discriminate quadratic APN
functions. They will not help for non-quadratic functions, though.

Before introducing automorphisms of vectorial Boolean functions, we characterize
some of the mappings that define an equivalence of two functions in the sense of
Definition 4.4 in more detail. Let f and g be functions on Fn2 , and denote their
graphs by Gf and Gg, respectively. We call an affine permutation C on Fn2 ×Fn2 such
that C(Gf ) = Gg a CCZ-mapping from g to f . Similarly to Canteaut and Perrin [33],
we define an EL-mapping CEL = (L,M,N) from g to f as a linear CCZ-mapping
from g to f satisfying

f(L(x)) = N(g(x)) +M(x),

where L,N are linear permutations and M is a linear map on Fn2 . Such an EL-
mapping CEL from g to f may be represented as a formal matrix

CEL =
[
L 0
M N

]

corresponding to the calculation[
L 0
M N

] [
x
g(x)

]
=
[

L(x)
N(g(x)) +M(x)

]
=
[
y

f(y)

]
.

Moreover, we define an EA-mapping CEA = (L,M,N, a, b) from g to f as a CCZ-
mapping from g to f whose linear part is an EL-mapping. It is characterized by
linear maps L,M,N as above and two elements a, b ∈ Fn2 such that

f(L(x) + a) = N(g(x)) +M(x) + b.
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4 Almost perfect nonlinear functions

Now, an automorphism of f is an equivalence mapping from f to f , which is a
mapping on Fn2 × Fn2 that preserves the graph of f .

Definition 4.6. For a function f : Fn2 → Fn2 with graph Gf , we call an affine
permutation A on Fn2 × Fn2 with A(Gf ) = Gf an automorphism of f . We denote the
set of all such mappings by Aut(f). If A is an EA-mapping, we say that A is an
EA-automorphism of f , and we denote the set of all EA-automorphisms by AutEA(f).
Analogously, if A is an EL-mapping, we say that A is an EL-automorphism of f ,
and we denote the set of all EL-automorphisms by AutEL(f).

Note that Aut(f),AutEA(f) and AutEL(f) each form a group under composition,
see Canteaut and Perrin [33], and AutEL(f) is a subgroup of AutEA(f), which, in
turn, is a subgroup of Aut(f). Hence, we simply call Aut(f) the automorphism group
of f , and we call AutEA(f) and AutEL(f) the automorphism group of f under EA-
or EL-equivalence, respectively.

To compute the automorphism group of a vectorial Boolean function, usually the
aforementioned connection to coding theory is used: the automorphism group Aut(f)
of f is isomorphic to the automorphism group of the code Cf from (4.4); for AutEA(f),
we consider CEAf instead. For small values of n, the codes Cf and CEAf and their
automorphism groups can be easily computed with Magma [16], and we may use the
order of the respective automorphism group to check for CCZ- or EA-inequivalence.
However, as for the Γ-rank and the ∆-rank, there are many inequivalent functions
whose automorphism groups are of the same order. Furthermore, it is often difficult
to theoretically determine the automorphism group of a given function.

Because of all their limitations, the aforementioned equivalence invariants may be
useful to check the equivalence of particular examples of APN functions, but they
will most certainly not help to determine the equivalence between all functions from
an infinite family. In this thesis, we will use another approach to completely solve
several CCZ-equivalence problems: we directly determine under which conditions
there exists an equivalence mapping between given functions. While, at first, this
approach might look like an uphill battle, we will see that the situation becomes
easier to handle as all the functions we study are quadratic and have no constant
term. First, there is the following result by Yoshiara [106].

Theorem 4.1 ([106, Theorem 1]). Let f and g be quadratic APN functions on Fn2
with n ≥ 2. Then f is CCZ-equivalent to g if and only if f is EA-equivalent to g.

As it is much easier to study EA-equivalence than CCZ-equivalence, Theorem 4.1
is a very helpful result. For quadratic functions with no constant term, we can
simplify the problem even more. In this case, two EA-equivalent functions are also
EL-equivalent as we show in Proposition 4.2.1

1The present author was made aware of the result in Proposition 4.2 by one of the anonymous
reviewers of [78].
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4.2 Equivalence of vectorial Boolean functions

Proposition 4.2. Suppose f and g are EA-equivalent quadratic functions on Fn2
with f(0) = g(0) = 0, and denote by CEA = (L,M,N, a, b) an EA-mapping from g
to f . Define a mapping Df,L,a on Fn2 as

Df,L,a(x) = f(L(x) + a) + f(L(x)) + f(a).

Then b = f(a), the functions f and g are EL-equivalent, and CEA uniquely defines
an EL-mapping CEL = (L, M̃,N) from g to f , where M̃ = M +Df,L,a.

Proof. Recall from the definition of an EA-mapping that CEA satisfies the equation

f(L(x) + a) = N(g(x)) +M(x) + b. (4.5)

As f is quadratic and f(0) = 0, it is easy to confirm that the mapping Df,L,a is linear
for a 6= 0 and zero for a = 0; see also (4.3). Combining (4.5) with the definition
of Df,L,a, we obtain

f(L(x)) = N(g(x)) +M(x) +Df,L,a(x) + b+ f(a).

As f(0) = g(0) = 0 and L,N,M,Df,L,a have no constant part either, it follows that
b = f(a). Hence,

f(L(x)) = N(g(x)) +M(x) +Df,L,a(x).

Thus, f and g are EL-equivalent, and CEA corresponds to an EL-mapping CEL from
g to f of the shape [

L 0
M +Df,L,a N

]
that is uniquely determined by CEA.

Thanks to Theorem 4.1 and Proposition 4.2, we can study the CCZ-equivalence of
the functions in this thesis by restricting ourselves on their EL-equivalence. As many
of the functions we deal with are given in bivariate description, we next present a
general framework to study the EL-equivalence of such functions.

Two functions f, g : F2
2m → F2

2m defined by

f(x, y) = (f1(x, y), f2(x, y)) and g(x, y) = (g1(x, y), g2(x, y))

for coordinate functions f1, f2, g1, g2 : F2
2m → F2m are EL-equivalent, if there exist

linear functions L,N,M : F2
2m → F2

2m , where L and N are bijective, such that

f(L(x, y)) = N(g(x, y)) +M(x, y).

Write

L(x, y) = (LA(x, y), LB(x, y)) and M(x, y) = (MA(x, y),MB(x, y))
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4 Almost perfect nonlinear functions

for linear functions LA, LB,MA,MB : F2
2m → F2m and

N(x, y) = (N1(x) +N3(y), N2(x) +N4(y))

for linear functionsN1, . . . , N4 : F2m → F2m . In terms of these newly defined functions,
f and g are EL-equivalent if both

f1(LA(x, y), LB(x, y)) = N1(g1(x, y)) +N3(g2(x, y)) +MA(x, y), (4.6)
f2(LA(x, y), LB(x, y)) = N2(g1(x, y)) +N4(g2(x, y)) +MB(x, y) (4.7)

hold. They are linearly equivalent if M(x, y) = 0.
Equations (4.6) and (4.7) will form the framework in the proofs of our main results

in Chapter 5. We will then regard L,M and N as linearized polynomials in the
respective polynomial rings.

We close this section by showing that for a quadratic function f with no constant
part, Proposition 4.2 allows us to establish a connection between the automorphism
groups AutEA(f) and AutEL(f) of f under EA- and EL-equivalence. We need the
definition of a semidirect product first. Let G be a group with identity element e.
Let H and N be two subgroups of G. If N is normal, G = NH and N ∩H = {e},
then we say G is a semidirect product of N and H and write

G = N oH.

Proposition 4.3 may be well known.2 Edel and Pott [58] and Bracken, Byrne,
McGuire, and Nebe [18] showed that the automorphism group of a quadratic function
on Fn2 contains the additive group of F2n .

Proposition 4.3. Let f be a quadratic function on Fn2 with f(0) = 0. Then

AutEA(f) = Tf o AutEL(f),

where Tf is isomorphic to the additive group (F2n ,+) of F2n.

Proof. By Proposition 4.2, every EA-automorphism of f given by (L,M,N, a, b) can
be uniquely written as the composition of an EL-automorphism ϕ of the shape

ϕ :
[
x
y

]
7→
[
L 0
M̃ N

] [
x
y

]
, (4.8)

where M̃ = M +Df,L,a for Df,L,a as defined in Proposition 4.2, and a map τa of the
shape

τa :
[
x
y

]
7→
[

I 0
Df,I,a I

] [
x
y

]
+
[
a

f(a)

]
,

where I is the identity map on Fn2 .
2The proof of Proposition 4.3 is mainly due to Yue Zhou.
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Note that the set of all ϕ is AutEL(f). Clearly, τa is also an EA-automorphism
of f mapping (x, f(x)) to (x + a, f(x + a)) for any x ∈ Fn2 . The set of all τa with
a ∈ Fn2 forms a subgroup Tf of AutEA(f) that is isomorphic to (F2n ,+). Hence,
AutEA(f) = TfAutEL(f). Moreover, it is obvious that the identity map on Fn2 × Fn2
is the unique common element of Tf and AutEL(f).

It remains to show that Tf is a normal subgroup of AutEA(f). We do so by
verifying that

τa ◦ ϕ = ϕ ◦ τL−1(a). (4.9)

A similar result was given by Dempwolff and Edel [44, Lemma 2.5]. The left-hand
side of (4.9), τa ◦ ϕ, is exactly the EA-automorphism (L,M,N, a, b) we decomposed
above. The right-hand side of (4.9), ϕ ◦ τL−1(a), maps (x, f(x)) to

ϕ ◦ τL−1(a)

[
x

f(x)

]
=
[
L 0
M̃ N

] [
x+ L−1(a)

f(x+ L−1(a))

]

=
[

L(x) + a

N(f(x+ L−1(a))) + M̃(x+ L−1(a))

]
.

(4.10)

We consider
N(f(x+ L−1(a))) + M̃(x+ L−1(a)). (4.11)

Adding N(f(x)) +N(f(L−1(a))) twice and using the definition of M̃ , (4.11) equals

N(f(x)) +M(x) +N(f(L−1(a)) +M(L−1(a))
+Df,L,a(x) +N(f(x+ L−1(a))) +N(f(x)) +N(f(L−1(a))) +Df,L,a(L−1(a)).

First, note thatDf,L,a(L−1(a)) = 0. Second, asN(f(x)) = f(L(x))+M(x)+Df,L,a(x)
by the definition of ϕ, it follows that

N(f(x+ L−1(a))) +N(f(x)) +N(f(L−1(a)))
= f(L(x) + a) + f(L(x)) + f(a) = Df,L,a(x).

Third, using the same reasoning as before and recalling that Df,L,a(L−1(a)) = 0, we
have

N(f(L−1(a)) +M(L−1(a)) = f(a) +Df,L,a(L−1(a)) = f(a).

Consequently, we obtain

N(f(x+ L−1(a))) + M̃(x+ L−1(a)) = N(f(x)) +M(x) + f(a),

which, considering (4.10), means that ϕ◦τL−1(a) also describes the EA-automorphism
(L,M,N, a, b). Therefore, by definition, AutEA(f) = Tf o AutEL(f).

We remark that Proposition 4.3 enables us to determine the automorphism group
AutEA(f) under EA-equivalence of any quadratic function f on Fn2 , also if f(0) 6= 0.
To obtain AutEA(f), we then only have to apply a conjugation of a translation on
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the automorphism group AutEA(f + f(0)) of the quadratic function f + f(0), which,
as f + f(0) has no constant part, we can determine using Proposition 4.3.

We add an interesting remark about the connection of the automorphism groups
of quadratic APN functions under EA- and CCZ-equivalence.
Remark 4.2. Without formal proof, Satoshi Yoshiara and Ulrich Dempwolff pointed
out to Yue Zhou and the present author that if f is a quadratic APN function on
Fn2 , where n ≥ 4, then

Aut(f) = AutEA(f). (4.12)

It seems that a proof of this result requires techniques quite different from those used
in this thesis. Therefore, we did not try to extract a proof from the group theoretic
papers by the aforementioned authors [44, 105, 106].

Since no proof of (4.12) has been published yet, we will formulate our results about
the automorphism groups of several quadratic APN functions in Section 5.5 in terms
of EA-equivalence. A formal proof of (4.12) would imply that our results can be
directly transferred to the automorphism groups of the respective functions under
CCZ-equivalence.

4.3 Known families of almost perfect nonlinear functions
In this section, we give a short overview of the currently known APN functions.
Note that, from now on, we will usually identify the vector space Fn2 with the finite
field F2n , and we will denote the multiplicative group of F2n by F∗2n .

In Table 4.1, we present the known power APN functions x 7→ xd. According to
Pott [92], this list is sometimes believed to be complete. Power APN functions and
their equivalence relations are very well studied. We refer to Yoshiara [107] for a
complete characterization of the CCZ-equivalence relations among these functions.
It is, for example, known that Gold functions are inequivalent for different values
of i; see Budaghyan, Carlet, and Leander [26]. In Section 5.1, we will take a careful
look at the equivalence relations between distinct Gold functions as they will play an
important role in the proofs of our main theorems.

Table 4.1: List of the known power APN functions x 7→ xd on F2n [92, Table 3].
Exponents d Conditions Reference

Gold functions 2i + 1 gcd(i, n) = 1, i ≤ bn2 c [65, 87]
Kasami functions 22i − 2i + 1 gcd(i, n) = 1, i ≤ bn2 c [70, 74]
Welch function 2k + 3 n = 2k + 1 [52]
Niho function 2k + 2 k2 − 1 n = 2k + 1, k even [51]

2k + 2 3k+1
2 − 1 n = 2k + 1, k odd

Inverse function 22k − 1 n = 2k + 1 [9, 87]
Dobbertin function 24k + 23k + 22k + 2k − 1 n = 5k [53]
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Studying the power APN functions from Table 4.1, it is obvious, though, that none
of these classes provides many inequivalent functions. There are simply not enough
possible choices for the relevant parameters. Hence, power APN functions are not
well suited to establish a good lower bound on the total number of inequivalent APN
functions.

As far as non-power APN functions are concerned, the situation becomes much less
clear. Several infinite families of non-power APN functions have been found, but not
much is known about their equivalence relations. This includes equivalence relations
both between functions from different classes as well as between functions coming
from the same class. Recently, Budaghyan, Calderini, and Villa [24] actually reduced
the number of known classes of non-power APN functions by proving that several
of them coincide. The authors present an updated list [24, Table 3] of 13 currently
known infinite families of quadratic APN functions that are CCZ-inequivalent to
power functions. Note that in their list, Budaghyan, Calderini, and Villa [24] give all
functions in univariate description. We will only use bivariate descriptions in this
thesis as the functions we consider have much simpler forms in this representation.

In the remainder of this section, we present the APN functions we study in this
thesis. The main focus lies on the classes presented in Theorem 4.6 and Theorem 4.8,
which were introduced by Zhou and Pott [109] in 2013 and by Taniguchi [100] in
2019, respectively. In the aforementioned list [24, Table 3], these are the families F10
and F12. We add some information on the background of these infinite families first.

Both the Zhou-Pott and the Taniguchi functions have a similar form: they fit into
a general non-explicit construction introduced by Carlet [36, 37], who showed that a
function f : F2

2m → F2
2m with bivariate description

f(x, y) = (g(x, y), xy),

is APN if and only if

1. for every y ∈ F2m , the function x 7→ g(x, y) on F2m is APN,

2. for every x ∈ F2m , the function y 7→ g(x, y) on F2m is APN, and

3. for every (a, b) ∈ F∗2m×F∗2m and for every c ∈ F2m , the function x 7→ g(ax, bx+c)
on F2m is APN.

From his result, Carlet [36] derived the following class of APN functions.

Theorem 4.4 ([36, Theorem 1]). Let m be a positive integer, and let i, j be integers
such that gcd(m, i− j) = 1. Moreover, let s, t ∈ F∗2m and u, v ∈ F2m. The function
f : F22m → F22m defined by

f(x, y) =
(
sx2i+2j + ux2iy2j + vx2jy2i + ty2i+2j , xy

)
is APN if and only if the polynomial sX2i+2j + uX2i + vX2j + t has no root in F2m .
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4 Almost perfect nonlinear functions

Carlet [36] additionally showed that the class from Theorem 4.4 contains several
known families of APN functions that were introduced by Budaghyan and Carlet [25]
and by Bracken, Byrne, Markin, and McGuire [17]. They are summarized in the
family F4 in [24, Table 3].

Taniguchi [100] observed that the functions from Theorem 4.4 are CCZ-equivalent
to a family with a simpler representation. Since we are only interested in inequivalent
APN functions, we will from now on only consider the functions from Proposition 4.5
and call these Carlet APN functions.
Proposition 4.5 ([100, Corollary 2]). Let m ≥ 2 and k be positive integers such
that gcd(k,m) = 1. Let α ∈ F2m and β ∈ F∗2m. The function fk,α,β : F22m → F22m

defined by
fk,α,β(x, y) =

(
x2k+1 + αxy2k + βy2k+1, xy

)
is APN if and only if the polynomial X2k+1 + αX + β has no root in F2m.

Taniguchi [100] also showed that any function fk,α,β from Proposition 4.5 with
α 6= 0 is CCZ-equivalent to a function fk,1,β′ from the same family with α = 1. In
Lemma 5.7, we will restate this result and add a short proof. Consequently, only
Carlet APN functions with α = 0 and α = 1 are relevant to us.

Independently of Carlet’s [36] general construction from above, Zhou and Pott [109]
discovered a class of APN functions of a similar form, which they derived from a new
infinite family of commutative semifields. In Theorem 4.6, we restate their result,
which was later improved by Anbar, Kalaycı, and Meidl [2].
Theorem 4.6 ([109, Corollary 2] and [2, Proposition 3.5]). Let m ≥ 2 be an even
integer, and let k, s be positive integers such that k is coprime to m. Let α ∈ F∗2m.
The function fk,s,α : F22m → F22m defined by

fk,s,α(x, y) =
(
x2k+1 + αy(2k+1)2s , xy

)
is APN if and only if s is even and α is a non-cube.

Zhou and Pott [109] showed that the restrictions on the parameters s and α in
Theorem 4.6, namely on s to be even and on α to be a non-cube, are sufficient for
the function to be APN. Anbar, Kalaycı, and Meidl [2] then observed that these
conditions are also necessary.

Having learned of the Zhou-Pott APN functions, Carlet [37] generalized his family
from Theorem 4.4 so that it also contains the functions from Theorem 4.6.
Theorem 4.7 ([37, Theorem 4.2]). Let m be a positive integer, and let k be coprime
to m. Let h1, . . . , h4 be linear maps on F2m. The function f : F22m → F22m defined
by

f(x, y) = (h1(x2k+1) + h2(x2ky) + h3(xy2k) + h4(y2k+1), xy)

is APN if and only if for every a, b ∈ F2m such that (a, b) 6= (0, 0), the linear function

ta,b(y) = h1(a2k+1y) + h2(a2kby) + h3(ab2ky) + h4(b2k+1y)
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4.3 Known families of almost perfect nonlinear functions

is bijective if m is odd, and satisfies ker ta,b∩{u2k+1(v2k+v) : u ∈ F∗2m , v ∈ F2m} = {0}
if m is even.

Setting h1(x) = x, h2(x) = 0, h3(x) = αx and h4(x) = βx, we obtain the Carlet
APN functions from Proposition 4.5, choosing h1(x) = x, h2(x) = h3(x) = 0 and
h4(x) = αx2s , we obtain the Zhou-Pott APN functions from Theorem 4.6.

In Theorem 4.8, we present Taniguchi’s [100] construction. The author proved the
almost perfect nonlinearity of these functions using the three criteria on g(x, y) by
Carlet [36] we mentioned above.

Theorem 4.8 ([100, Theorem 3]). Let m ≥ 2 be a positive integer, and let k be an
integer coprime to m. Let α ∈ F2m and β ∈ F∗2m. The function fk,α,β : F22m → F22m

defined by
fk,α,β(x, y) =

(
x22k(2k+1) + αx22k

y2k + βy2k+1, xy
)

is APN if and only if the polynomial X2k+1 + αX + β has no root in F2m.

Anbar, Kalaycı, and Meidl [2] remarked that the Taniguchi APN functions from
Theorem 4.8 are also a special case of the functions from Theorem 4.7: we need to
choose h1(x) = x22k , h2(x) = αx2k , h3(x) = 0 and h4(x) = βx. Analogously to the
functions from Proposition 4.5, Taniguchi [100] showed that any function fk,α,β from
Theorem 4.8 with α 6= 0 is CCZ-equivalent to a function fk,1,β′ from the same class
with α = 1. We will restate this result in Proposition 5.12 and add a proof.

Note that all the functions from Theorem 4.4, Proposition 4.5, Theorem 4.6 and
Theorem 4.8 are quadratic. Moreover, Tan, Qu, Ling, and Tan [99] and Anbar,
Kalaycı, and Meidl [2] showed that all these functions have the classical Walsh
spectrum Wf = {0,±2m,±2m+1}.

We close this section by specifying the case α = 0 for Carlet and Taniguchi APN
functions with the help of the following lemma.

Lemma 4.9. Let m be a positive integer, let k be coprime to m, and let β ∈ F∗2m.
The polynomial P (X) = X2k+1 + β has no root in F2m if and only if m is even and
β is a non-cube.

Proof. It is well known that if m and k are coprime, then

gcd(2k + 1, 2m − 1) =
{

1 if m is odd,
3 if m is even.

Consequently, if m is odd, then P (X) is a permutation polynomial and, thus, always
has a root. If m is even, then P (X) has a root if and only if β is a cube.

From Lemma 4.9, we immediately obtain the following corollary.

Corollary 4.10. (a) A Carlet function fk,0,β on F22m from Proposition 4.5 is
APN if and only if m is even and β is a non-cube in F∗2m.
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4 Almost perfect nonlinear functions

(b) A Taniguchi function fk,0,β on F22m from Theorem 4.8 is APN if and only if
m is even and β is a non-cube in F∗2m.

It follows that Carlet APN functions with α = 0 from Proposition 4.5 coincide
with Zhou-Pott APN functions with s = 0 from Theorem 4.6.
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5 Solving equivalence problems of almost
perfect nonlinear functions

In this chapter, we study the equivalence relations of the functions introduced in
Section 4.3. In Section 5.1, we present a new proof to a well-known result about
the equivalence of Gold APN functions that we need in the following sections. In
Section 5.2, we completely determine the equivalence of Zhou-Pott APN functions.
In Section 5.3, we show that on F22m where m is even, Carlet APN functions are
included in the Zhou-Pott class. In Section 5.4, we almost completely determine the
equivalence of Taniguchi APN functions.

Afterwards, in Section 5.5, we derive the automorphism groups of all the afore-
mentioned APN functions under EA- and EL-equivalence from the precise shape
of the admissible equivalence mappings. Using these results, we add the final piece
to completely determine the equivalence of Taniguchi APN functions, and we com-
pletely determine the equivalence between Zhou-Pott and Taniguchi APN functions.
Eventually, we use all these results in Section 5.6 to determine the total number of
inequivalent functions in the families by Zhou-Pott and by Taniguchi. This allows
us to establish the first nontrivial lower bound on the total number of inequivalent
APN functions on F2n where n is even.

5.1 Equivalence of Gold APN functions
Before we tackle the equivalence problems of the Zhou-Pott and the Taniguchi APN
functions in the following sections, we state a well-known result about the equivalence
of Gold APN functions x 7→ x2k+1 on F2n , where k is coprime to n, in Theorem 5.1.
We present a new proof for this result that allows us to determine the precise shape
of the equivalence mappings of Gold APN functions. We will need these equivalence
mappings in the proofs of Theorem 5.4 and Theorem 5.13.

Note that Gold functions are quadratic and have no constant term. Hence, by
Theorem 4.1 and Proposition 4.2, two Gold functions are CCZ-equivalent if and only
if they are EL-equivalent. Moreover, for any k coprime to n, the Gold APN functions
x 7→ x2k+1 and x 7→ x2−k+1 are linearly equivalent on F2n since for the linearized
polynomials L(X) = X and N(X) = X2k , the equation

(L(x))2k+1 = N(x2−k+1)

holds for all x ∈ F2n . Consequently, we only need to consider Gold APN functions
with k < n

2 .
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5 Solving equivalence problems of almost perfect nonlinear functions

Our new proof shows that for n ≥ 5, all equivalence mappings from one Gold APN
function to another are monomials. The case n = 4 will be considered separately
in Proposition 5.2. For n ≤ 3, the Gold APN function x 7→ x3 is the unique APN
function up to EA-equivalence. Hence, this case may not be interesting and will not
be considered in this thesis.
Theorem 5.1. Let n ≥ 5, and let k, ` be integers coprime to n such that 0 < k, ` < n

2 .
Two Gold APN functions f, g : F2n → F2n, where

f(x) = x2k+1 and g(x) = x2`+1,

are CCZ-equivalent if and only if k = `. In this case, the functions are linearly
equivalent, and the equation f(L(x)) = N(g(x)) holds for all x ∈ F2n if and only if
L(X) = auX

2u and N(X) = a2k+1
u X2u for some u ∈ {0, . . . , n− 1} and au ∈ F∗2n.

Proof. If k = `, the functions f and g coincide and, thus, are linearly equiva-
lent and thereby CCZ-equivalent. We will show that EL-equivalence, and thereby
CCZ-equivalence, of f and g implies k = ` and that f and g are linearly equiva-
lent. Assume f and g are EL-equivalent. Then there exist linearized polynomials
L(X), N(X),M(X) ∈ F2n [X], where N(X) and L(X) are permutation polynomials,
such that

(L(x))2k+1 = N(x2`+1) +M(x) (5.1)

for all x ∈ F2n . Let x ∈ F2n . Writing L(X) = ∑n−1
i=0 aiX

2i and N(X) = ∑n−1
i=0 biX

2i ,
and rearranging the left-hand side of (5.1), we obtain

n−1∑
i=0

a2k
i−kaix

2i+1 +
n−1∑
i,j=0,
j 6=i+k

a2k
i ajx

2i+k+2j =
n−1∑
i=0

bix
(2`+1)2i +M(x). (5.2)

As the first sum on the left-hand side of (5.2) is a linearized polynomial and the
second sum on the left-hand side does not include any linear parts, it follows that

M(X) =
n−1∑
i=0

a2k
i−kaiX

2i+1
. (5.3)

We omit the linear parts and rewrite the second sum on the left-hand side of (5.2).
We obtain ∑

0≤i<j≤n−1
(a2k
i−kaj + a2k

j−kai)x2i+2j =
n−1∑
i=0

bix
2i+2i+` ,

where the subscripts of a are calculated modulo n. It follows that

a2k
i−kai+` + a2k

i+`−kai = bi for all i, (5.4)

a2k
i−kaj + a2k

j−kai = 0 for j 6= i, i± `. (5.5)
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5.1 Equivalence of Gold APN functions

Since N(X) cannot be zero, there exists some u ∈ {0, . . . , n− 1} such that bu 6= 0.
Then, by (5.4), au−k and au cannot be zero at the same time. We will consider the
two cases that, first, exactly one of au−k and au is nonzero and, second, both au−k
and au are nonzero.
Case 1. We divide this case into two subcases: first, we assume au 6= 0 and au−k = 0,
and second, we assume au = 0 and au−k 6= 0.
Case 1.1. Suppose au 6= 0 and au−k = 0. Then (5.4) with i = u implies au+`−k 6= 0,
and (5.5) reduces to

a2k
j−kau = 0 for j 6= u, u± `.

Consequently, aj−k = 0 for j 6= u, u ± `, and besides au and au+`−k, the only
coefficient of L(X) that is possibly nonzero is au−`−k.

Assume k 6= `. Then L(X) = auX
2u + au−`−kX

2u−`−k + au+`−kX
2u+`−k . If we

plug this polynomial into (5.1), we obtain on the left-hand side

a2k+1
u x2u(2k+1) + a2k+1

u−`−kx
2u−`−k(2k+1) + a2k+1

u+`−kx
2u+`−k(2k+1)

+ a2k
u au−`−kx

2u−`−k(22k+`+1) + a2k
u au+`−kx

2u+`−k(22k−`+1)

+ a2k
u−`−kaux

2u−`(2`+1) + a2k
u−`−kau+`−kx

2u+`−k(2k−2`+1)

+ a2k
u+`−kaux

2u(2`+1) + a2k
u+`−kau−`−kx

2u−`−k(2k+2`+1).

(5.6)

Note that the first and the third summand of (5.6) have nonzero coefficients and,
since k 6≡ ±` (mod n), they can neither cancel each other nor can they be canceled
by any of the other terms. However, as k 6= `, these two terms cannot be represented
on the right-hand side of (5.1). This is a contradiction.

Now suppose k = `. Then au and au+`−k coincide, and L(X) = auX
2u +

au−2kX
2u−2k . Plugging this polynomial into the left-hand side of (5.1), we obtain

a2k+1
u x2u(2k+1) + a2k+1

u−2kx
2u−2k(2k+1)

+ a2k
u au−2kx

2u−2k(23k+1) + a2k
u−2kaux

2u−k(2k+1).
(5.7)

As n ≥ 5, we have 3k 6≡ ±k (mod n). Hence, the third term of (5.7) neither can
be canceled nor can it be represented in the form x2i(2k+1) on the right-hand side
of (5.1). Consequently, its coefficient has to be zero. Since au 6= 0, it follows that
au−2k = 0, which means L(X) = auX

2u is a monomial. Thus, N(X) = buX
2u is

also a monomial, and it follows from (5.4) that bu = a2k+1
u . Furthermore, (5.3) now

implies M(X) = 0, which means f and g are linearly equivalent.
Case 1.2. Assume au−k 6= 0 and au = 0. Now (5.4) implies au+` 6= 0. Moreover,
(5.5) with i = u becomes

a2k
u−kaj = 0 for j 6= u, u± `.

Consequently, aj = 0 for j 6= u, u± `, and besides au−k and au+`, the only coefficient
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5 Solving equivalence problems of almost perfect nonlinear functions

of L(X) that is possibly nonzero is au−`.
If we suppose k 6= `, we obtain, by similar reasoning as above, the same contradic-

tion as in Case 1.1. The case k = ` is also similar, but will lead to a contradiction
now. If k = `, then L(X) = au−kX

2u−k + au+kX
2u+k , where both coefficients are

nonzero. Plugging this polynomial into (5.1), the left-hand side becomes

a2k+1
u−k x

2u−k(2k+1) + a2k+1
u+k x

2u+k(2k+1) + a2k
u−kau+kx

2u(2k+1) + a2k
u+kau−kx

2u−k(23k+1).

Similarly to (5.7), the fourth term cannot be represented in the form x2i(2k+1) on
the right-hand side of (5.1). As its coefficient is nonzero, this is a contradiction.
Case 2. Assume both au and au−k are nonzero. First, suppose k 6= `. Since
0 < k, ` < n

2 , it follows that u− k 6≡ u± ` (mod n). Hence, we may consider (5.5)
for i = u and j = u− k and obtain

a2k+1
u−k + a2k

u−2kau = 0.

Consequently, au−2k 6= 0. If we now consider (5.5) for (i, j) = (u− k, u− 2k), (u−
2k, u− 3k), . . . , (u− (n− 1)k, u) and recall that gcd(k, n) = 1, then it follows that
ai 6= 0 for all i = 0, . . . , n− 1. Moreover, this sequence of equations implies that the
quotient

a2k
i−k
ai

=
a2k
u−k
au

=: ∆

is constant for all i = 0, . . . , n− 1. We consider (5.4) for i = u:

a2k
u−kau+` + a2k

u+`−kau = bu. (5.8)

If we divide (5.8) by auau+`, we obtain

a2k
u−k
au

+
a2k
u+`−k
au+`

= bu
auau+`

.

This is a contradiction as the left-hand side is ∆ + ∆ = 0 and the right-hand side is
nonzero.

Now, assume k = `. In this case, (5.4) becomes

a2k
u−kau+k + a2k+1

u = bu (5.9)

for i = u. We consider (5.5) for i = u− k and j = u+ k:

a2k
u−2kau+k + a2k

u au−k = 0.

Recall that au−k, au 6= 0, thus au−2k, au+k 6= 0. From additionally considering (5.5)
for (i, j) = (u− 2k, u), (u− 3k, u− k), . . . , (u, u+ 2k), it follows that ai 6= 0 for all
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5.1 Equivalence of Gold APN functions

i = 0, . . . , n− 1. Furthermore, we obtain from these equations that

a2k
u−ik

au−(i+1)k
=


a2k
u

au+k
=: ∆1 for i even,

a2k
u−k
au

=: ∆2 for i odd.

Note that u − k 6≡ u + 3k (mod n) as n ≥ 5. Hence, considering (5.5) with i = u
and j = u+ 3k, we obtain

a2k
u−kau+3k + a2k

u+2kau = 0,

which implies ∆1 = ∆2 =: ∆. If we now divide (5.9) by auau+k, we obtain the same
kind of contradiction as in the case k 6= `. Hence, Case 2 does not provide any
solutions for L(X), N(X) and M(X).
In summary, f and g are EL-equivalent if and only if k = `, and the only possible
EL-mappings from g to f are described by the polynomials L(X) = auX

2u , N(X) =
a2k+1
u X2u and M(X) = 0 for arbitrary u ∈ {0, . . . , n− 1} and au ∈ F∗2n .

For completeness, we also consider Gold functions on F24 . Note that on F4
2, it

was shown by Brinkmann and Leander [20] that the Gold function f(x) = x3 is the
unique APN function up to CCZ-equivalence. The authors additionally showed that
there are two EA-classes of APN functions, though: the class containing the Gold
function, and a second class that was found by Budaghyan, Carlet, and Pott [27]
and whose functions are EA-inequivalent to power functions.

If n = 4, some of the arguments used in the proof of Theorem 5.1 do not hold.
Unlike in the case n ≥ 5, this leads to additional EL-mappings from f to f that
are not monomials. We describe these EL-automorphisms of f in the following
proposition. This result can be verified computationally, for example with Magma [16].

Proposition 5.2. The set AutEL(f) of EL-automorphisms of the unique Gold APN
function f : F24 → F24 defined by f(x) = x3 consists of the linearized monomials
from Theorem 5.1 together with the linearized polynomials

L(X) = a1X
2 + a3X

8 and N(X) = a2
3a1X + a3

1X
2 + a2

1a3X
4 + a3

3X
8,

L(X) = a0X + a2X
4 and N(X) = a3

0X + a2
0a2X

2 + a3
2X

4 + a2
2a0X

8,

for coefficients a1, . . . , a4 ∈ F∗2n such that a1
a3

and a0
a2

, respectively, are non-cubes.

Proof. It is easy to confirm that the monomial EL-mappings we presented in The-
orem 5.1 for n ≥ 5, also establish a linear equivalence for n = 4. Suppose n = 4.
Using the same approach and the same notations as in the proof of Theorem 5.1, we
obtain (5.4) and (5.5) for k = ` = 1. More precisely, we have the following equations
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5 Solving equivalence problems of almost perfect nonlinear functions

of type (5.4):

a2
3a1 + a3

0 = b0, a2
0a2 + a3

1 = b1, a2
1a3 + a3

2 = b2, a2
2a0 + a3

3 = b3. (5.10)

Note that we now only have two equations of type (5.5), namely

a2
1a0 + a2

3a2 = 0 and a2
0a3 + a2

2a1 = 0. (5.11)

We may assume that bu 6= 0 for some u ∈ {0, . . . , 3}, and we separate the same cases
as in the proof of Theorem 5.1:
Case 1. First, suppose au 6= 0 and au−1 = 0. The case au = 0 and au−1 6= 0 may
be solved analogously. If au 6= 0 and au−1 = 0, it follows from (5.11) that au+1 = 0
and au−2 6= 0. However, unlike in the proof of Theorem 5.1, we do not obtain a
contradiction from (5.7) now, as x23k+1 = x9 can be written as x23k(2k+1) = x23·3.
Hence, the equation

L(x)3 = N(x3)

holds not only for the linearized monomials from Theorem 5.1, but also for the
linearized polynomials

L(X) = a1X
2 + a3X

8 and N(X) = a2
3a1X + a3

1X
2 + a2

1a3X
4 + a3

3X
8,

which we obtain choosing u = 1 or 3, and

L(X) = a0X + a2X
4 and N(X) = a3

0X + a2
0a2X

2 + a3
2X

4 + a2
2a0X

8,

for which we choose u = 0 or u = 2.
In the final step, we need to check under which conditions L(X) and N(X) are

permutation polynomials. Since L(X) and N(X) are linearized, it is sufficient to
show that they have no nonzero roots. For x 6= 0, the equation L(x) = 0 can be
rearranged to a1

a3
= x6 and a0

a2
= x3, respectively. These equations have no solution

if and only if a1
a3

and a0
a2

are non-cubes. It is routine to verify that N(X) also is a
permutation polynomial in these cases.
Case 2. Now, let both au−1 and au be nonzero. In this case, it follows from (5.11)
that a1, . . . , a4 are nonzero, and that a1

a3
and a2

a0
have to be cubes satisfying (a1

a3
)2 = a2

a0
.

Consequently, by (5.10), the coefficients b1, . . . , b4 are also nonzero, which implies
a3

0 6= a2
3a1. Taking all these conditions into consideration, we obtain 15 choices for a1,

five choices for a3, twelve choices for a0, and a2 is finally uniquely determined by the
other coefficients. Thus, we obtain a total of 900 possible distinct polynomials L(X).
However, it can be verified that none of them is a permutation polynomial. Hence,
Case 2 does not provide any solutions.
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5.2 Equivalence of Zhou-Pott APN functions
In this section, we study the equivalence of the Zhou-Pott APN functions on F22m ,
where m is even, that we introduced in Theorem 4.6. We will answer the question
for which values of the parameters k, s, α two Zhou-Pott APN functions fk,s,α are
CCZ-inequivalent. Recall from Section 4.3 that these functions are quadratic and
have no constant term. Hence, by Theorem 4.1 and Proposition 4.2, two Zhou-Pott
APN functions are CCZ-equivalent if and only if they are EL-equivalent. We begin
by proving some obvious equivalences:

Proposition 5.3. Let m be an even integer. Let k, ` be integers coprime to m such
that 0 < k, ` < m, and let s, t be even integers with 0 ≤ s, t ≤ m. Let α, β ∈ F∗2m be
non-cubes. The following Zhou-Pott APN functions on F22m from Theorem 4.6 are
linearly equivalent:

(a) fk,s,α and fk,s,β,

(b) fk,s,α and f−k,s,β,

(c) fk,s,α and fk,−s,β,

(d) fk,s,α and f−k,−s,β.

Proof. By (4.6) and (4.7), the Zhou-Pott functions fk,s,α and f`,t,β are linearly
equivalent if there exist invertible mappings L,N on F2

2m , represented by linearized
polynomials LA(X,Y ), LB(X,Y ) ∈ F2m [X,Y ] and N1(X), . . . , N4(X) ∈ F2m [X],
respectively, such that the two equations

LA(x, y)2k+1 + αLB(x, y)(2k+1)2s = N1(x2`+1 + βy(2`+1)2t) +N3(xy),

LA(x, y)LB(x, y) = N2(x2`+1 + βy(2`+1)2t) +N4(xy)

hold for all x, y ∈ F2m . Note that in all the following cases, N2(X) = N3(X) = 0.
Hence we will omit these polynomials in the remainder of the proof. Let x, y ∈ F2m .

(a) Suppose k = ` and s = t, and denote by γ a primitive element of F2m .
For the non-cubes α, β ∈ F∗2m write α = γa and β = γb for some integers
a, b ∈ {0, . . . , 2m − 1} such that a, b 6≡ 0 (mod 3). We separate the cases a ≡ b
(mod 3) and a 6≡ b (mod 3). First, assume a ≡ b (mod 3). Then fk,s,γa and
fk,s,γb are linearly equivalent by

LA(X,Y ) = X, LB(X,Y ) = γcY, N1(X) = X, N4(X) = γcX,

where c ∈ {0, . . . , 2m − 1} such that

(2k + 1)2sc ≡ b− a (mod 2m − 1).
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5 Solving equivalence problems of almost perfect nonlinear functions

Such an integer c always exists as gcd((2k + 1)2s, 2m − 1) = 3 and b− a ≡ 0
(mod 3). If a 6≡ b (mod 3), then fk,s,γa and fk,s,γb are linearly equivalent by

LA(X,Y ) = X2, LB(X,Y ) = γcY 2, N1(X) = X2, N4(X) = γcX2,

where c satisfies

(2k + 1)2sc ≡ 2b− a (mod 2m − 1).

By the same reasoning as before and considering that 2b−a ≡ 0 (mod 3), such
an integer c always exists.

(b) According to (a), f−k,s,β is linearly equivalent to f−k,s,α. The function fk,s,α is
also linearly equivalent to f−k,s,α via the equivalence mapping given by

LA(X,Y ) = X2−k , LB(X,Y ) = Y 2−k , N1(X) = X, N4(X) = X2−k .

(c) Let β′ = 1
α2−s . According to (a), fk,−s,β is linearly equivalent to fk,−s,β′ . We

show that fk,s,α is also linearly equivalent to fk,−s,β′ . This can be seen choosing

LA(X,Y ) = Y, LB(X,Y ) = X, N1(X) = αX2s , N4(X) = X.

(d) Combining (b) and (c), it follows that fk,s,α is linearly equivalent to f−k,−s,β .

Thanks to Proposition 5.3, we can, from now on, fix the non-cube α and restrict
the parameters k and s to 0 < k < m

2 and 0 ≤ s ≤ m
2 .

In Theorem 5.4, we completely determine the equivalence of Zhou-Pott APN
functions. Note that for m = 2, all Zhou-Pott APN functions are CCZ-equivalent
since, as mentioned above, there is only one CCZ-class of APN functions on F24 . The
result for the case m = 4 was already given by Zhou and Pott [109], we restate it at
the beginning of our proof. We remark that our approach to prove Theorem 5.4 is
motivated by Zhou and Pott [109], who used a similar technique to determine under
which conditions the semifields, from which they obtained their APN functions, are
non-isotopic.

Theorem 5.4. Let m ≥ 4 be an even integer. Let k, ` be integers coprime to m such
that 0 < k, ` < m

2 , let s, t be even integers with 0 ≤ s, t ≤ m
2 , and let α, β ∈ F∗2m be non-

cubes. Two Zhou-Pott APN functions fk,s,α, f`,t,β : F22m → F22m from Theorem 4.6
defined by

fk,s,α(x, y) =
(
x2k+1 + αy(2k+1)2s , xy

)
and

f`,t,β(x, y) =
(
x2`+1 + βy(2`+1)2t , xy

)
are CCZ-equivalent if and only if k = ` and s = t.
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5.2 Equivalence of Zhou-Pott APN functions

Proof. As shown in Proposition 5.3 (a), f`,t,β is linearly equivalent and thereby CCZ-
equivalent to f`,t,α. Hence, we only consider fk,s,α and f`,t,α from now on. Write fk,s
and f`,t for these functions. We show that if fk,s and f`,t are CCZ-equivalent, which
implies the functions are EL-equivalent, then k = ` and s = t.

For m = 4, the only admissible parameters are k = 1 and s ∈ {0, 2}. Zhou and
Pott [109] showed that the functions f1,0 and f1,2 on F24 are CCZ-inequivalent. The
authors computed the Γ-rank of these functions as 13200 and 13642, respectively.

For the remainder of this proof, let m ≥ 6. Suppose the functions fk,s and f`,t are
EL-equivalent. Similar to the the proof of Proposition 5.3, this implies that there exist
linearized polynomials LA(X,Y ), LB(X,Y ), MA(X,Y ), MB(X,Y ) ∈ F2m [X,Y ] and
N1(X), . . . , N4(X) ∈ F2m [X], where

L(X,Y ) = (LA(X,Y ), LB(X,Y ))

and
N(X,Y ) = (N1(X) +N3(Y ), N2(X) +N4(Y ))

are invertible, such that the equations

LA(x, y)2k+1 + αLB(x, y)(2k+1)2s

= N1(x2`+1 + αy(2`+1)2t) +N3(xy) +MA(x, y),
(5.12)

LA(x, y)LB(x, y) = N2(x2`+1 + αy(2`+1)2t) +N4(xy) +MB(x, y) (5.13)

hold for all x, y ∈ F2m . We write LA(X,Y ) = L1(X) + L3(Y ) and LB(X,Y ) =
L2(X) + L4(Y ) for linearized polynomials L1(X), . . . , L4(X) ∈ F2m [X]. Hence,

L(X,Y ) = (L1(X) + L3(Y ), L2(X) + L4(Y )) .

Write

L1(X) =
m−1∑
i=0

aiX
2i , L2(X) =

m−1∑
i=0

biX
2i ,

and

L3(Y ) =
m−1∑
i=0

aiY
2i , L4(Y ) =

m−1∑
i=0

biY
2i .

Analogously, define linearized polynomials M1(X), . . . ,M4(X) ∈ F2m [X] such that

M(X,Y ) = (M1(X) +M3(Y ),M2(X) +M4(Y )).

For the remainder of the proof, let x, y ∈ F2m . We first prove the following claim.

Claim 5.1. If fk,s and f`,t are EL-equivalent, then k = ` and each of the linearized
polynomials L1(X), L2(X), L3(Y ), L4(Y ) is either a binomial, a monomial or zero.
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5 Solving equivalence problems of almost perfect nonlinear functions

We will prove the result for y = 0, hence we only consider L1(X) and L2(X). By
proceeding analogously, it can be shown that the statement also holds for x = 0 and
the polynomials L3(Y ) and L4(Y ). Suppose y = 0. Then (5.12) and (5.13) can be
reduced to

L1(x)2k+1 + αL2(x)(2k+1)2s = N1(x2`+1) +M1(x), (5.14)

L1(x)L2(x) = N2(x2`+1) +M2(x) (5.15)

for all x ∈ F2m . Write

N1(X) =
m−1∑
i=0

ciX
2i and N2(X) =

m−1∑
i=0

diX
2i .

Since L(X,Y ) needs to be a permutation polynomial, it is not possible that both
L1(X) and L2(X) are zero. We first consider the case that one of L1(X) or L2(X)
is zero. Assume L1(X) 6= 0 and L2(X) = 0. In this case, the left-hand side of (5.15)
is zero, and it follows that N2(X) = M2(X) = 0. Moreover, (5.14) becomes

L1(x)2k+1 = N1(x2`+1) +M1(x), (5.16)

which implies that the Gold APN functions x 7→ x2k+1 and x 7→ x2`+1 are EL-
equivalent. According to Theorem 5.1, this holds if and only if k = `. It additionally
follows from Theorem 5.1 that, as m ≥ 6, the polynomial L1(X) is a linearized
monomial. In summary, we obtain

L1(X) = auX
2u and L2(X) = 0 (5.17)

for some u ∈ {0, . . . ,m− 1} and au ∈ F∗2m . If we consider the case L1(X) = 0 and
L2(X) 6= 0, we analogously obtain

L1(X) = 0 and L2(X) = buX
2u (5.18)

for some u ∈ {0, . . . ,m− 1} and bu ∈ F∗2m . In both cases, M1(X) = M2(X) = 0.
Now, let both L1(X) and L2(X) be nonzero. Then (5.15) becomes

m−1∑
i=0

aibix
2i+1 +

m−1∑
i,j=0,
j 6=i

aibjx
2i+2j =

m−1∑
i=0

dix
(2`+1)2i +M2(x). (5.19)

The first sum on the left-hand side of (5.19) is a linearized polynomial and the second
sum does not contain linear parts. Hence, M2(X) = ∑m−1

i=0 aibiX
2i+1 . Omitting the

linear parts, we rewrite (5.19) as

∑
0≤i<j≤m−1

(aibj + ajbi)x2i+2j =
m−1∑
i=0

dix
2i+2i+`
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5.2 Equivalence of Zhou-Pott APN functions

and obtain

aibi+` + ai+`bi = di for all i, (5.20)
aibj + ajbi = 0 for j 6= i, i± `, (5.21)

where the subscripts are calculated modulo m. We separate the proof into two cases:
first, the case that di = 0 for all i = 0, . . . ,m− 1 and, second, the case that du 6= 0
for some u ∈ {0, . . . ,m− 1}.
Case 1. In this case, we show that if di = 0 for all i = 0, . . . ,m − 1, similarly to
(5.16), the problem can be reduced to the Gold APN case. We will demonstrate that
this implies k = ` and that L1(X) and L2(X) are monomials of the same degree.

Assume di = 0 for all i = 0, . . . ,m − 1, which means N2(X) = 0. In this case,
(5.20) and (5.21) combine to

aibj + ajbi = 0 for j 6= i. (5.22)

As L1(X), L2(X) 6= 0, there exist u, u′ ∈ {0, . . . ,m − 1} such that the coeffi-
cients au, bu′ are nonzero. If u = u′, then the corresponding term aubuX

2u+1 is
linearized. Hence, in (5.15), it is a part of M2(X), not of N2(X). If u 6= u′, then, by
(5.22),

aubu′ + au′bu = 0.

Consequently, au′ , bu 6= 0 and au, au′ , bu, bu′ need to satisfy au
bu

= au′
bu′

. Define ∆ = au
bu

,
and note that ∆ 6= 0. It follows from (5.22) that all pairs (aj , bj) satisfy either

aj = bj = 0 or aj
bj

= ∆. (5.23)

Hence, bj = δaj , where δ = 1
∆ , for all j = 0, . . . ,m− 1, and L2(X) is a multiple of

L1(X), namely
L2(X) = δL1(X). (5.24)

Considering (5.15), it is obvious that L1(X)L2(X) = δL1(X)2 is a linearized polyno-
mial, hence N2(X) = 0 and M2(X) = δL1(X)2.

Next, we plug L1(X) and L2(X) = δL1(X) into (5.14) and obtain

L1(x)2k+1 + αδ(2k+1)2sL1(x)(2k+1)2s = N1(x2`+1) +M1(x). (5.25)

If s = 0, then (5.25) becomes

(1 + αδ(2k+1)2s)L1(x)2k+1 = N1(x2`+1) +M1(x),

which again implies that the Gold APN functions x 7→ x2k+1 and x 7→ x2`+1 are
EL-equivalent. According to Theorem 5.1, it follows that k = ` and that L1(X) is
a monomial. Consequently, L2(X) = δL1(X) is also a monomial, it has the same
degree as L1(X).
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5 Solving equivalence problems of almost perfect nonlinear functions

If s 6= 0, we define a polynomial T (X) ∈ F2m [X] by

T (X) = X + αδ(2k+1)2sX2s

and rewrite the left hand side of (5.25) as T (L1(x)2k+1). We show that T (X) is a
permutation polynomial. Since T (X) is linearized, it is sufficient to show that it has
no nonzero root. If T (X) had a nonzero root, it would solve the equation

α−1 = δ(2k+1)2sx2s−1. (5.26)

We show that this equation can never be true. Its left-hand side is obviously a
non-cube. Since gcd(2k + 1, 2m − 1) = 3, the first factor on the right-hand side,
δ(2k+1)2s , is a cube. As gcd(2s−1, 2m−1) = 2gcd(s,m)−1 = 22 gcd( s2 ,

m
2 )−1 is divisible

by 3, the second factor, x2s−1, is also a cube. Hence, we have a cube on the right-hand
side and a non-cube on the left-hand side of (5.26), which is a contradiction.

Denote by T−1(X) the inverse of T (X) and rewrite (5.25) as

L1(x)2k+1 = T−1(N1(x2`+1)) + T−1(M1(x)). (5.27)

As T−1(X) is also linearized, (5.27) leads us to the equivalence problem of the Gold
APN functions x 7→ x2k+1 and x 7→ x2`+1 again, and it follows from Theorem 5.1 that
k = ` and that L1(X) is a monomial. Because of (5.24), L2(X) is also a monomial,
it has the same degree as L1(X).

In summary, from Case 1, we obtain

L1(X) = auX
2u and L2(X) = buX

2u . (5.28)

Moreover, M1(X) = 0 and M2(X) = aubuX
2u+1 .

Case 2. Consider (5.20) and (5.21) again, and assume du 6= 0 for some u ∈
{0, . . . ,m − 1}, which means N2(X) 6= 0. We show that this assumption implies
that k = ` and that L1(X) and L2(X) are either both monomials, but this time
of different degrees 2u and 2u+k, or, for s = 0, are both binomials consisting of
monomials of the same degrees 2u and 2u+k with some special conditions on the
coefficients.

If du 6= 0 for some u ∈ {0, . . . ,m− 1}, then, by (5.20), au and bu cannot be zero at
the same time. We will separate the proof of Case 2 into two subcases: first, Case 2.1,
where both au and bu are nonzero, and second, Case 2.2, where exactly one of au
and bu is nonzero. Both these cases will be separated into several subcases again.
Case 2.1. Assume au 6= 0 and bu 6= 0. Then, from (5.21), it follows that all
pairs (aj , bj) with j 6= u, u± ` satisfy (5.23). We first show that the only coefficients
that are possibly nonzero are aj , bj for j = u, u± `, u± 2`.

By way of contradiction, suppose there exists `′ 6= 0,±`,±2` such that au+`′ and
bu+`′ are nonzero. Considering (5.23), this implies au+`′

bu+`′
= ∆. Since u+ `′± ` 6= u± `,

82



5.2 Equivalence of Zhou-Pott APN functions

it follows from (5.21) with i = u + `′ that both (au+`, bu+`) and (au−`, bu−`) also
have to satisfy one of the equations in (5.23). Hence, (5.23) holds for all pairs (aj , bj)
with j = 0, . . . ,m − 1, which means L2(X) is a multiple of L1(X). It now follows
from (5.15) that N2(X) = 0. This is a contradiction.

Hence, for the remainder of Case 2.1, suppose aj = bj = 0 for j 6= u, u± `, u± 2`.
We separate Case 2.1 into two subcases. In Case 2.1.1, we assume au±2` = bu±2` = 0,
and we will see that provided k = ` and s = 0, there exist binomials L1(X) and
L2(X) satisfying (5.14) and (5.15). In Case 2.1.2, we suppose that at least one of
the coefficients au±2`, bu±2` is nonzero. This case will lead to a contradiction.
Case 2.1.1. Assume au±2` = bu±2` = 0. In this case, we obtain only one equation
from (5.21), namely

au−`bu+` + au+`bu−` = 0.

Hence, either
(i) au−` = au+` = 0 or bu−` = bu+` = 0, meaning that one of L1(X) and L2(X) is a

monomial and the other one has at most three nonzero coefficients, or
(ii) au−` = bu−` = 0 or au+` = bu+` = 0, meaning that both L1(X) and L2(X) have

at most two nonzero coefficients, or
(iii) au±`, bu±` 6= 0 and au−`

bu−`
= au+`

bu+`
, meaning that both L1(X) and L2(X) are

trinomials.
We will consider each of these three subcases separately.

Case 2.1.1. (i) Assume bu−` = bu+` = 0. The case au−` = au+` = 0 follows by
symmetry. We consider polynomials

L1(X) = au−`X
2u−` + auX

2u + au+`X
2u+` and L2(X) = buX

2u ,

where au and bu are nonzero. Moreover, we may assume that at least one of au−` and
au+` is nonzero as otherwise L1(X) and L2(X) are monomials of the same degree
implying N2(X) = 0. This contradicts the assumption of Case 2.

We plug L1(X) and L2(X) into the left-hand side of (5.14) and obtain

L1(x)2k+1 = a2k+1
u−` x

2u−`(2k+1) + a2k+1
u x2u(2k+1) + a2k+1

u+` x
2u+`(2k+1)

+ a2k
u−`aux

2u(2k−`+1) + a2k
u au+`x

2u+`(2k−`+1)

+ a2k
u+`au−`x

2u−`(2k+2`+1) + a2k
u−`au+`x

2u+`(2k−2`+1)

+ a2k
u au−`x

2u−`(2k+`+1) + a2k
u+`aux

2u(2k+`+1)

(5.29)

and

αL2(x)2s(2k+1) = αb2
s(2k+1)
u x2s+u(2k+1). (5.30)
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Recall that the right-hand side of (5.14) is

m−1∑
i=0

cix
2i(2`+1) +M1(x).

We show that the first three summands of (5.29), whose exponents all contain the
factor 2k + 1, cannot be canceled simultaneously. As 0 < ` < m

2 , they cannot cancel
each other. If ` = m

2 − k, the exponent of the sixth term contains the factor 2k + 1, it
can be written as 2u−m2 (2k + 1). However, by the same reasoning as above, this term
cannot cancel any of the first three terms. The only possibility that one of these
summands may be canceled is the following: if ` = k, the seventh and the second
term can be summarized and could potentially cancel each other. But since au−`
or au+` is nonzero, for arbitrary k and `, there is at least one term with a nonzero
coefficient in (5.29) whose exponent contains the factor 2k + 1. Note that this term
cannot be canceled by the term from (5.30): as m and s are even and gcd(`,m) = 1,
it follows that s 6≡ ±` (mod m).

We now compare the left-hand side and the right-hand side of (5.14). Since the
left-hand side contains a term of the shape aix2i(2k+1), it follows that k = `. Note
that in this case, the fourth and fifth summand of (5.29) become linearized, hence

M1(X) = a2k
u−kauX

2u+1 + a2k
u au+kX

2u+k+1
.

Now, consider the sixth, eighth and ninth summand of (5.29):

a2k
u+kau−kx

2u−k(23k+1), a2k
u au−kx

2u−k(22k+1), a2k
u+kaux

2u(22k+1).

As m ≥ 6, we have 2k 6≡ ±k (mod m) and 3k 6≡ ±k (mod m). Hence, these terms
cannot be represented in the form cix

2i(2k+1), which means their coefficients have to
be zero. As au 6= 0, it follows that au−k = au+k = 0. This is a contradiction.
Case 2.1.1. (ii) Assume au−` = bu−` = 0. The case au+` = bu+` = 0 follows by
symmetry. In our case,

L1(X) = auX
2u + au+`X

2u+` and L2(X) = buX
2u + bu+`X

2u+`
.

As in Case 2.1.1. (i), au and bu are nonzero, and we may assume that at least one of
au+` and bu+` is nonzero. For the left-hand side of (5.14), we obtain

L1(x)2k+1 = a2k+1
u x2u(2k+1) + a2k+1

u+` x
2u+`(2k+1)

+ a2k
u au+`x

2u+`(2k−`+1) + a2k
u+`aux

2u(2k+`+1).
(5.31)

and

αL2(x)2s(2k+1) = αb2
s(2k+1)
u x2s+u(2k+1) + αb

2s(2k+1)
u+` x2s+u+`(2k+1)

+ αb2
s+k
u b2

s

u+`x
2s+u+`(2k−`+1) + αb2

s+k
u+` b

2s
u x

2s+u(2k+`+1).
(5.32)
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As in Case 2.1.1. (i), the first two terms of (5.31) and (5.32), respectively, cannot
cancel each other. We separate the cases s 6= 0 and s = 0.

First, assume s 6= 0. As s 6≡ ±` (mod m), the terms in (5.31) and in (5.32) cannot
cancel each other if we add both expressions. Consequently, from comparing the
left-hand side of (5.14) with its right-hand side, it follows that k = `. Using the same
argument as in Case 2.1.1. (i), we obtain au+` = bu+` = 0, which is a contradiction.

Next, assume s = 0. Now, the corresponding terms in (5.31) and (5.32) can be
summarized. We show that the coefficient of the first summand,

(a2k+1
u + αb2

k+1
u )x2u(2k+1), (5.33)

is nonzero. As au, bu 6= 0, the coefficient is zero, if and only if

α =
(
au
bu

)2k+1
.

However, as gcd(2k + 1, 2m − 1) = 3, this implies that α is a cube, which is a
contradiction. Hence, the term from (5.33) occurs with a nonzero coefficient on
the left-hand side of (5.14), and we need k = ` to represent it as cix2i(2`+1) on the
right-hand side of (5.14). If k = `, the second term in the sum of (5.31) and (5.32)
can also be represented in this way, and the third term is linearized, which means

M1(X) = (a2k
u au+k + αb2

k

u bu+k)X2u+k+1
.

We consider the fourth summand:(
a2k
u+kau + αb2

k

u+kbu
)
x2u(22k+1).

As 2k 6≡ ±k (mod m), it cannot be represented as cix2i(2k+1). Hence, its coefficient
has to be zero. As at least one of au+k and bu+k is nonzero, this is only the case if

(
au
bu

)(
au+k
bu+k

)2k

= α. (5.34)

Hence, for s = 0, we obtain binomials L1(X) and L2(X) of the form

L1(X) = auX
2u + au+kX

2u+k and L2(X) = buX
2u + bu+kX

2u+k
, (5.35)

where the coefficients satisfy (5.34). This implies au
bu
6= au+k

bu+k
since otherwise, α

would be a cube. Moreover, we obtain M1(X) = (a2k
u au+k + αb2

k

u bu+k)X2u+k+1 and
M2(X) = aubuX

2u+1 + au+kbu+kX
2u+k+1 .
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Case 2.1.1. (iii) Now,

L1(X) = au−`X
2u−` + auX

2u + au+`X
2u+`

and L2(X) = bu−`X
2u−` + buX

2u + bu+`X
2u+`

,

where all coefficients are nonzero and au−`
bu−`

= au+`
bu+`

. We plug these polynomials
into (5.14). Then L1(x)2k+1 is as in (5.29), and αL2(x)(2k+1)2s looks basically the
same: just replace a by b, multiply every coefficient by α and apply the automorphism
x 7→ x2s on every summand. Furthermore, what we mentioned below (5.30) for the
coefficients of L1(x)2k+1 still holds, now for the coefficients of both L1(x)2k+1 and
αL2(x)(2k+1)2s . As in Case 2.1.1. (ii), we separate the cases s 6= 0 and s = 0.

Assume s 6= 0. Like before, terms from L1(x)2k+1 and from αL2(x)(2k+1)2s cannot
cancel each other, and it follows that k = `. We obtain

M1(X) = a2k
u−kauX

2u+1+a2k
u au+kX

2u+k+1+αb2s+k
u−k b

2s
u X

2s+u+1+αb2s+k
u a2s

u+kX
2s+u+k+1

.

By the same argument as in Case 2.1.1. (i), the sixth, eighth and ninth term of (5.29),
which now contain the factors x23k+1 or x22k+1, cannot be represented as x2i(2k+1)

on the right-hand side of (5.14). The same holds for the corresponding terms in
αL2(x)2s(2k+1). As a consequence, the coefficients of these terms, which are

a2k
u+kau−k, a

2k
u au−k, a

2k
u+kau, and αb2

k+s
u+k b

2s
u−k, αb

2k+s
u b2

s

u−k, αb
2k+s
u+k b

2s
u ,

have to be zero. As au, bu 6= 0, it follows that au±k = bu±k = 0, which contradicts
our assumption that all coefficients are nonzero.

Now, suppose s = 0. In this case, we can summarize the corresponding terms
of L1(x)2k+1 and αL2(x)2s(2k+1) and obtain the same term as in (5.33) on the left-
hand side of (5.14). By the same argument as in Case 2.1.1. (ii), it follows that k = `.
Now, consider the term

(a2k
u+kau−k + αb2

k+s
u+k b

2s
u−k)x2u−k(23k+1),

which, as 3k 6≡ ±k (mod m), cannot be represented as cix
2i(2k+1). Hence, its

coefficient has to be zero. As au±k and bu±k are nonzero, this is only the case if
(
au−k
bu−k

)(
au+k
bu+k

)2k

= α.

However, as au−k
bu−k

= au+k
bu+k

and gcd(2k + 1, 2m − 1) = 3, this contradicts the condition
that α is a non-cube. In summary, we cannot obtain possible polynomials L1(X)
and L2(X) from Case 2.1.1. (iii).
Case 2.1.2. Now, assume aj = bj = 0 for j 6= u, u ± `, u ± 2`. Recall that all
pairs (aj , bj) where j 6= u, u± ` have to satisfy (5.23). If au±2` = bu±2` = 0, we are
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5.2 Equivalence of Zhou-Pott APN functions

in Case 2.1.1. Hence, assume that au+2` and bu+2` are nonzero. One can obtain
an almost identical result by symmetry when assuming that au−2` and bu−2` are
nonzero.

If au+2`, bu+2` 6= 0, then, by (5.23), au+2`
bu+2`

= ∆. It follows from (5.21) that also
(au−2`, bu−2`) and (au−`, bu−`) have to satisfy (5.23). However, (5.21) does not provide
any restriction on the value of (au+`, bu+`). If (au+`, bu+`) satisfies (5.23), then all
(aj , bj) do and we are in the case described at the beginning of Case 2.1. If (au+`, bu+`)
does not satisfy (5.23), then it follows from (5.21) that aj = bj = 0 for j = u−`, u−2`.
Hence,

L1(X) = auX
2u + au+`X

2u+` + au+2`X
2u+2`

and L2(X) = buX
2u + bu+`X

2u+` + bu+2`X
2u+2`

.

As au
bu

= au+2`
bu+2`

, this case is similar to Case 2.1.1. (iii) when shifting all coefficients
by `, with the only difference that now exactly one of the middle coefficients au+`
and bu+` may be zero. However, the arguments used in Case 2.1.1. (iii) still hold.
Consequently, Case 2.1.2 does not provide possible polynomials L1(X) and L2(X).
Case 2.2. Assume exactly one of au and bu is nonzero. We show the case au 6= 0
and bu = 0. The case au = 0 and bu 6= 0 can be proved analogously. So, assume
au 6= 0 and bu = 0. From (5.20) with i = u, we then obtain the equation

aubu+` = du.

As du 6= 0, it follows that bu+` 6= 0. Moreover, from (5.21) with i = u, we obtain

aubj = 0 for j 6= u, u± `.

Consequently, bj = 0 for j 6= u± `. It now follows from (5.21) with i = u+ ` that

ajbu+` = 0 for j 6= u− `, u, u+ `, u+ 2`.

Consequently, aj = 0 for j 6= u− `, u, u+ `, u+ 2`.
We will separate the proof of Case 2.2 into two subcases: in Case 2.2.1, we consider

bu−` 6= 0, and in Case 2.2.2, we consider bu−` = 0. Recall that bu+` 6= 0.
Case 2.2.1. Suppose bu−` 6= 0. From (5.21) with i = u− ` and j = u+2`, we obtain

au+2`bu−` = 0,

which implies au+2` = 0. Moreover, for i = u− ` and j = u+ `, we obtain

au−`bu+` + au+`bu−` = 0,

which, recalling that bu+` is nonzero, implies either au−` = au+` = 0 or au−`, au+` 6= 0
and au−`

bu−`
= au+`

bu+`
. We separate these two subcases:
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Case 2.2.1. (i) Assume au−` = au+` = 0. Then

L1(X) = auX
2u and L2(X) = bu−`X

2u−` + bu+`X
2u+`

,

where all coefficients are nonzero. We plug L1(X) and L2(X) into (5.14) and obtain
on the left-hand side

L1(x)2k+1 = a2k+1
u x2u(2k+1) (5.36)

and

αL2(x)(2k+1)2s = αb2
s+k+1
u−` x2s+u−`(2k+1) + αb2

s+k+1
u+` x2s+u+`(2k+1)

+ αb2
s+k
u−` b

2s
u+`x

2s+u+`(2k−2`+1) + αb2
s+k
u+` b

2s
u−`x

2s+u−`(2k+2`+1).
(5.37)

Recall that the right-hand side of (5.14) is

m−1∑
i=0

cix
2i(2`+1) +M1(x).

Since s 6≡ ±` (mod m), the terms containing x2k+1 cannot be canceled with each
other. Hence, they can only be represented as cix2i(2`+1) if k = `. In this case,
however, the last term of (5.37) contains x23k+1, which cannot be represented in
the form cix

2i(2k+1) since m ≥ 6 implies 3k 6≡ ±k (mod m). Consequently, the
corresponding coefficient has to be zero, which implies that bu−` = 0 or bu+` = 0.
This is a contradiction.
Case 2.2.1. (ii) Assume au−`, au+` 6= 0 and au−`

bu−`
= au+`

bu+`
. Then

L1(X) = au−`X
2u−` + auX

2u + au+`X
2u+`

and L2(X) = bu−`X
2u−` + bu+`X

2u+`
,

where all coefficients are nonzero. We plug these polynomials into (5.14). Then
L1(x)2k+1 is as in (5.29) and αL2(x)(2k+1)2s is as in (5.37). Since a2k+1

u x2u(2k+1) can
never be canceled by any of the terms in (5.37), it follows that k = `. However, now
the expressions a2k

u au−kx
2u−k(22k+1) and a2k

u+kaux
2u(22k+1) occur on the left-hand side

of (5.14), and they cannot be represented in the form cix
2i(2k+1) on its right-hand

side. As the corresponding coefficients are nonzero, this is a contradiction.
Case 2.2.2. Assume bu−` = 0. Then, by (5.21) with i = u + ` and j = u − `, we
have

au−`bu+` = 0,

which implies au−` = 0. We obtain

L1(X) = auX
2u + au+`X

2u+` + au+2`X
2u+2` and L2(X) = bu+`X

2u+`
,
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where au and bu+` are nonzero. We consider (5.14) for these polynomials. The
expression L1(x)2k+1 is now similar to (5.29), we only need to replace u by u + `.
Moreover,

αL2(x)(2k+1)2s = b
2s(2k+1)
u+` x2s+u+l(2k+1).

Since terms containing x2u(2k+1) and x2u+2`(2k+1) cannot be canceled on the left-
hand side of (5.14), but have to be represented on its right-hand side, it follows that
k = `. If k = `, the summands

a2k
u+2kaux

2u(23k+1), a2k
u+kaux

2u(22k+1), a2k
u+2kau+kx

2u+k(22k+1)

on the left-hand side cannot be represented as cix2i(2k+1) on the right-hand side.
As au 6= 0, it follows that au+k = au+2k = 0. Consequently, L1(X) and L2(X) are
monomials of the form

L1(X) = auX
2u and L2(X) = bu+kX

2u+k
, (5.38)

and M1(X) = M2(X) = 0.
Note that if we consider Case 2.2 with au = 0 and bu 6= 0, we obtain

L1(X) = au+kX
2u+k and L2(X) = buX

2u (5.39)

and M1(X) = M2(X) = 0 from Case 2.2.2.
This concludes the proof of Claim 5.1. We summarize the results we have

obtained so far. If the APN functions fk,s and f`,t are EL-equivalent, then k = `,
and L1(X) and L2(X) are of the form

L1(X) = auX
2u + au+kX

2u+k and L2(X) = buX
2u + bu+kX

2u+k

for some u ∈ {0, . . . ,m − 1}. If L1(X) is a binomial, then, by (5.35), L2(X) is as
well. Moreover, this case is only possible if s = 0 and the coefficients of L1(X) and
L2(X) satisfy (5.34). If L1(X) is a monomial of degree 2u, then, L2(X) is either
zero, see (5.17), or a monomial of degree 2u or 2u±k, see (5.28), (5.38), and (5.39). If
L1(X) = 0, then, by (5.18), L2(X) is a monomial.

Vice versa, the same statements hold for L3(Y ) and L4(Y ), where

L3(Y ) = awY
2w + aw+kY

2w+k and L4(Y ) = bwY
2w + bw+kY

2w+k

for some w ∈ {0, . . . ,m− 1}.
It remains to show that EL-equivalence of fk,s and fk,t implies s = t. Combining

the results on L1(X), . . . , L4(X) we mentioned above, the following combinations of
LA(X,Y ) = L1(X) + L3(Y ) and LB(X,Y ) = L2(X) + L4(Y ) are possible:

(a) LA(X,Y ) = auX
2u + au+kX

2u+k + awY
2w + aw+kY

2w+k

and LB(X,Y ) = buX
2u + bu+kX

2u+k + bwY
2w + bw+kY

2w+k ,
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(b) LA(X,Y ) = auX
2u + au+kX

2u+k + awY
2w

and LB(X,Y ) = buX
2u + bu+kX

2u+k + bwY
2w ,

(c) LA(X,Y ) = auX
2u + au+kX

2u+k + awY
2w

and LB(X,Y ) = buX
2u + bu+kX

2u+k + bw+kY
2w+k ,

(d) LA(X,Y ) = auX
2u + au+kX

2u+k + aw+kY
2w+k

and LB(X,Y ) = buX
2u + bu+kX

2u+k + bwY
2w ,

(e) LA(X,Y ) = auX
2u + awY

2w + aw+kY
2w+k

and LB(X,Y ) = buX
2u + bwY

2w + bw+kY
2w+k ,

(f) LA(X,Y ) = auX
2u + awY

2w + aw+kY
2w+k

and LB(X,Y ) = bu+kX
2u+k + bwY

2w + bw+kY
2w+k ,

(g) LA(X,Y ) = au+kX
2u+k + awY

2w + aw+kY
2w+k

and LB(X,Y ) = buX
2u + bwY

2w + bw+kY
2w+k ,

(h) LA(X,Y ) = auX
2u + awY

2w and LB(X,Y ) = buX
2u + bwY

2w ,

(i) LA(X,Y ) = auX
2u + awY

2w and LB(X,Y ) = buX
2u + bw+kY

2w+k ,

(j) LA(X,Y ) = auX
2u + aw+kY

2w+k and LB(X,Y ) = buX
2u + bwY

2w ,

(k) LA(X,Y ) = auX
2u + awY

2w and LB(X,Y ) = bu+kX
2u+k + bwY

2w ,

(l) LA(X,Y ) = au+kX
2u+k + awY

2w and LB(X,Y ) = buX
2u + bwY

2w ,

(m) LA(X,Y ) = auX
2u + awY

2w and LB(X,Y ) = bu+kX
2u+k + bw+kY

2w+k ,

(n) LA(X,Y ) = auX
2u + aw+kY

2w+k and LB(X,Y ) = bu+kX
2u+k + bwY

2w ,

(o) LA(X,Y ) = au+kX
2u+k + awY

2w and LB(X,Y ) = buX
2u + bw+kY

2w+k ,

(p) LA(X,Y ) = au+kX
2u+k + aw+kY

2w+k and LB(X,Y ) = buX
2u + bwY

2w .

Note that, as L(X,Y ) = (LA(X,Y ), LB(X,Y )) has to be a permutation polyno-
mial, it is neither possible that LA(X,Y ) or LB(X,Y ) is zero nor that both LA(X,Y )
and LB(X,Y ) depend only on X or only on Y . We will show that all cases listed
above either lead to a contradiction or to the conclusion that s = t and LA(X,Y )
and LB(X,Y ) need to be monomials of the same degree.

Considering that, according to Claim 5.1, EL-equivalence of fk,s and f`,t implies
k = `, we rewrite (5.12) and (5.13) as

LA(x, y)2k+1 + αLB(x, y)(2k+1)2s

= N1(x2k+1 + αy(2k+1)2t) +N3(xy) +MA(x, y),
(5.40)

LA(x, y)LB(x, y) = N2(x2k+1 + αy(2k+1)2t) +N4(xy) +MB(x, y). (5.41)
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We will check for all the possible combinations (a)–(p) if (5.40) and (5.41) can hold.
We begin with cases (a)–(g). Note that in these cases, L1(X) and L2(X) or L3(Y )
and L4(Y ) are binomials. Hence, these cases require s = 0, and the coefficients of
the binomials are nonzero and have to satisfy (5.34).

We first consider (c). As L1(X) and L2(X) are binomials, the coefficients au,
au+k, bu and bu+k are nonzero. If we plug the polynomials of (c) into the left-hand
side of (5.41), we obtain

LA(x, y)LB(x, y) = aubux
2u+1 + au+kbu+kx

2u+k+1

+ (aubu+k + au+kbu)x2u(2k+1) + awbw+ky
2w(2k+1)

+ aubw+kx
2uy2w+k + au+kbw+kx

2u+k
y2w+k

+ buawx
2uy2w + bu+kawx

2u+k
y2w .

(5.42)

Note that the first and the second term of (5.42) are linearized. We focus on the
last four summands. At least one of aw and bw+k needs to be nonzero, as otherwise
L(X,Y ) is no permutation polynomial. Consequently, (5.42) must contain the fifth
and the sixth or the seventh and the eighth summand. However, no matter how
we choose u and w, we can never represent x2uy2w+k and x2u+k

y2w+k or x2uy2w and
x2u+k

y2w simultaneously in the form x2iy2i on the right-hand side of (5.41). Hence,
(c) leads to a contradiction. Similar arguments also lead to contradictions in cases
(d), (f) and (g).

We next consider (b). Recall that, in this case, au, au+k, bu and bu+k are nonzero
and, by the arguments below (5.35), satisfy au

bu
6= au+k

bu+k
. Plugging LA(X,Y ) and

LB(X,Y ) into (5.41), we obtain on the left-hand side

LA(x, y)LB(x, y) = aubux
2u+1 + au+kbu+kx

2u+k+1

+ (aubu+k + au+kbu)x2u(2k+1) + awbwy
2w+1

+ (aubw + buaw)x2uy2w + (au+kbw + bu+kaw)x2u+k
y2w .

(5.43)

Now the first, second and fourth term of (5.43) are linearized. Note that the coefficient
aubu+k + au+kbu of the third term of (5.43) is nonzero, as otherwise au

bu
= au+k

bu+k
. To

represent this term on the right-hand side of (5.41), we need N2(X) 6= 0. This implies
that there is a term containing the factor α2iy2t+i(2k+1) on the right-hand of (5.41).
However, there is no corresponding term on the left-hand side, see (5.43). This is
a contradiction. By proceeding analogously, we obtain a similar contradiction in
case (e).

Next, consider (a). Recall that this case is only possible for s = 0. Since in this
case, L1(X), . . . , L4(X) are binomials, all the coefficients of LA(X,Y ) and LB(X,Y )
have to be nonzero and satisfy the inequalities au

bu
6= au+k

bu+k
and aw

bw
6= aw+k

bw+k
as shown

below (5.35). If we plug LA(X,Y ) and LB(X,Y ) into (5.41), the following four terms
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occur on the left-hand side of this equation:

(aubw + buaw)x2uy2w , (aubw+k + buaw+k)x2uy2w+k
,

and (au+kbw + bu+kaw)x2u+k
y2w , (au+kbw+k + bu+kaw+k)x2u+k

y2w+k
.

(5.44)

We show that the coefficients of the second and the third term have to be zero.
Suppose, the coefficient of the second term is nonzero. Then we need u = w + k
to represent it on the right-hand side of (5.41). It is easy to see that now none of
the other terms in (5.44) can be represented on the right-hand side of (5.41), which
means their coefficients have to be zero. However, if all three coefficients are zero,
it follows that au

bu
= au+k

bu+k
= aw

bw
= aw+k

bw+k
. This is a contradiction. Analogously, the

assumption that the third term does not vanish leads to the same contradiction.
Hence, assume au

bu
= aw+k

bw+k
and au+k

bu+k
= aw

bw
. Then the second and third term of

(5.44) vanish, and the coefficients of the first and the fourth term are nonzero. If
we now compare the left-hand side and the right-hand side of (5.41), it follows that
u = w. Next, we use (5.40). On the left-hand side of (5.40), we obtain the summand

(a2k
u+kau + αb2

k

u+kbu)x2u+2k
y2u ,

which cannot be represented on the corresponding right-hand side. Consequently, its
coefficient has to be zero, which implies

α =
a2k
u+kau

b2
k

u+kbu
.

However, as au
bu

= au+k
bu+k

and gcd(2k + 1, 2m − 1) = 3, this implies that α is a cube.
Hence, case (a) leads to a contradiction.

We next study the cases (h)–(p), where L1(X), . . . , L4(X) are monomials. We
consider (i) first. If LA(X,Y ) and LB(X,Y ) are as in (i), the left-hand side of (5.41)
is

LA(x, y)LB(x, y) = aubux
2u+1 + awbw+ky

2w(2k+1)

+ aubw+kx
2uy2w+k + buawx

2uy2w .
(5.45)

The first term of (5.45) is linearized. Since (5.45) does not contain a term with x2k+1,
we need N2(X) = 0 on the right-hand side of (5.41). It follows that the second
summand of (5.45) cannot be represented on the right-hand side of (5.41), which
means aw or bw+k has to be zero.
Case 1. Suppose aw = 0. Note that this implies au 6= 0 and bw+k 6= 0 as otherwise
L(X,Y ) would not be a permutation polynomial. If aw = 0, the fourth summand of
(5.45) vanishes, and the third summand can only be represented on the right-hand
side of (5.41) if u = w + k. We consider the left-hand side of (5.40) with u = w + k
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and obtain

LA(x, y)2k+1 + αLB(x, y)(2k+1)2s

= a2k+1
u x2u(2k+1) + αb2

s(2k+1)
u x2u+s(2k+1) + αb

2s(2k+1)
u y2u+s(2k+1)

+ αb2
k+s
u b

2s
u x

2u+k+s
y2u+s + αb

2k+s

u b2
s

u x
2u+s

y2u+k+s
.

(5.46)

The fourth and the fifth summand of (5.46) cannot be canceled by any of the other
terms, and they cannot be represented on the right-hand side of (5.40). As α, bu 6= 0,
it follows that bu = 0. This means, LA(X,Y ) and LB(X,Y ) are monomials of the
same degree,

LA(X,Y ) = auX
2u and LB(X,Y ) = buY

2u . (5.47)

Case 2. Suppose bw+k = 0. By the same arguments as above, this implies bu 6= 0
and aw 6= 0. Now (5.45) holds for u = w. We consider (5.40) with u = w:

LA(x, y)2k+1 + αLB(x, y)(2k+1)2s = a2k+1
u x2u(2k+1) + a2k+1

u y2u(2k+1)

+ a2k
u aux

2ky + a2k
u auxy

2k

+ αb2
s(2k+1)
u x2u+s(2k+1)

(5.48)

Now, the third and the fourth summand of (5.48) cannot be represented on the
right-hand side of (5.40). As au 6= 0, it follows that au = 0. Consequently, LA(X,Y )
and LB(X,Y ) are monomials of the same degree,

LA(X,Y ) = auY
2u and LB(X,Y ) = buX

2u . (5.49)

By symmetry, the same results can be obtained from cases (j)–(l).
We study (m) next. With LA(X,Y ) and LB(X,Y ) from (m), the left-hand side

of (5.41) becomes

LA(x, y)LB(x, y) = aubu+kx
2u(2k+1) + awbw+ky

2w(2k+1)

+ aubw+kx
2uy2w+k + awbu+kx

2u+k
y2w .

(5.50)

As k 6≡ ±k, the third and the fourth term of (5.50) cannot be represented simultane-
ously in the shape x2iy2i on the right-hand side of (5.41). Consequently, at least one
of au, bu+k, aw and bw+k needs to be zero.

Suppose au = 0, which implies aw and bu+k are nonzero. Now the first term of
(5.50) vanishes. It follows that N2(X) = 0. Hence, we cannot represent the second
term of (5.50) on the right-hand side of (5.41), and we need bw+k = 0. The only
remaining term of (5.50) is the fourth one. To represent it on the right-hand side of
(5.41), we need w = u + k. Consequently LA(X,Y ) and LB(X,Y ) are monomials
of the same degree as in (5.49). We obtain the same result if we assume bw+k = 0.
When supposing bu+k = 0 or aw = 0, we obtain that LA(X,Y ) and LB(X,Y ) are

93



5 Solving equivalence problems of almost perfect nonlinear functions

monomials of the same degree as in (5.47). By symmetry, (p) leads to identical
results.

We consider (n). If we plug LA(X,Y ) and LB(X,Y ) of (n) into (5.41), the
left-hand side becomes

LA(x, y)LB(x, y) = aubu+kx
2u(2k+1) + aw+kbwy

2w(2k+1)

+ aubwx
2uy2w + bu+kaw+kx

2u+k
y2w+k

.
(5.51)

Clearly, the third and the fourth term cannot vanish simultaneously since otherwise
L(X,Y ) would not be a permutation polynomial. To represent the third or the
fourth term on the right-hand side of (5.41), we need u = w. We plug LA(X,Y ) and
LB(X,Y ) with u = w into (5.40). The left-hand side of (5.40) then contains the two
summands

aua
2k
u+kx

2uy2u+2k and αb2
s+k
u+k b

2s
u x

2s+u+2k
y2s+u

,

which neither can be canceled, nor can be represented on the right-hand side of
(5.40). Consequently, one of au and au+k and one of bu+k and bu have to be zero,
which means that LA(X,Y ) and LB(X,Y ) are monomials. The only combinations so
that L(X,Y ) is a permutation polynomial are LA(X,Y ) and LB(X,Y ) as in (5.47)
or (5.49). By symmetry, we obtain the same result for case (o).

Eventually, we study (h): For this case, we obtain

LA(x, y)LB(x, y) = aubux
2u+1 + awbwy

2w+1 + (aubw + buaw)x2uy2w (5.52)

on the left-hand side of (5.41). We consider two cases: in Case 1, the third term of
(5.52) vanishes, in Case 2, its coefficient is nonzero.
Case 1. Suppose au, bu, aw and bw are nonzero and satisfy au

bu
= aw

bw
. Note that this

is the only possibility such that aubw + buaw = 0 as aubw = buaw = 0 implies that
L(X,Y ) is not a permutation polynomial. In our case, the left-hand side of (5.41) is
a linearized polynomial, and it follows that N2(X) = N4(X) = 0.

We plug LA(X,Y ) and LB(X,Y ) into (5.40). Then the left-hand side of (5.40)
contains the four summands

a2k
u awx

2u+k
y2w , αb2

k+s
u b

2s
w x

2s+u+k
y2s+w

and aua
2k
w x

2uy2w+k
, αb2

s

u b
2s+k

w x2s+u
y2s+w+k

.
(5.53)

If s 6= 0, these terms cannot be represented on the right-hand side of (5.40). Hence,
the corresponding coefficients need to be zero, which is a contradiction. If s = 0, we
can summarize the terms of (5.53) and obtain

(a2k
u aw + αb2

k

u bw)x2u+k
y2w and (aua2k

w + αbub
2k
w )x2uy2w+k

. (5.54)
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5.2 Equivalence of Zhou-Pott APN functions

The coefficients of these terms are zero if both

α = a2k
u aw

b2ku bw
and α = aua

2k
w

bub
2k
w

(5.55)

hold. As au
bu

= aw
bw

, both equations are identical and we obtain

α =
(
au
bu

)2k+1
.

Since gcd(2k + 1, 2m − 1) = 3, this implies α is a cube, which is a contradiction.
Case 2. Now, assume aubw + buaw 6= 0. We need u = w to represent the third term
of (5.52) on the right-hand side of (5.41). Assuming u = w, we plug LA(X,Y ) and
LB(X,Y ) into (5.40). Then its left-hand side contains the summands from (5.53),
where u = w.

As in Case 1, if s 6= 0, these terms cannot be represented on the right-hand side
of (5.40). Hence, either au and bu or au and bu need to be zero, which implies that
LA(X,Y ) and LB(X,Y ) are monomials of the same degree as in (5.47) and (5.49).
If s = 0, the results from the case s 6= 0 are also possible. But additionally, we can
summarize the terms from (5.53) in the same way as in (5.54) with u = w. The
coefficients of these terms are zero if both equations from (5.55) with u = w hold.
This is only the case if (

aubu
buau

)2k−1

= 1. (5.56)

Since k and m are coprime, we obtain gcd(2k − 1, 2m − 1) = 2gcd(k,m) − 1 = 1.
Consequently, (5.56) implies au

bu
= au

bu
. As u = w, this contradicts our assumption

au
bu
6= aw

bw
.

In summary, the only possible choices for LA(X,Y ) and LB(X,Y ) are that both
polynomials are monomials of the same degree as in (5.47) or (5.49). We will show
that both cases imply s = t.

First, consider LA(X,Y ) = auX
2u and LB(X,Y ) = buY

2u . It follows from (5.41)
that, in this case, N2(X) = 0, N4(X) = aubuX

2u , and MB(X,Y ) = 0. Plugging
LA(X,Y ) and LB(X,Y ) into (5.40), we obtain

(aux2u)2k+1 + α(buy2u)(2k+1)2s

= N1(x2k+1 + αy(2k+1)2t) +N3(xy) +MA(x, y).
(5.57)

Clearly, MA(X,Y ) = 0 and N3(X) = 0. Moreover, N1(X) has to be a monomial of
degree 2u, and s = t. Writing N1(X) = cuX

2u and considering s = t, (5.57) becomes

a2k+1
u x2u(2k+1) + αb

2s(2k+1)
u y2s+u(2k+1) = cux

2u(2k+1) + α2ucuy
2s+u(2k+1).
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5 Solving equivalence problems of almost perfect nonlinear functions

It follows that the coefficients have to satisfy the equations

a2k+1
u = cu and αb

2s(2k+1)
u = α2ucu. (5.58)

Clearly, we can find admissible coefficients.
Next, we consider LA(X,Y ) = auY

2u and LB(X,Y ) = buX
2u . Now, (5.41) implies

N2(X) = 0, N4(X) = buauX
2u , and MB(X,Y ) = 0. Moreover, (5.40) becomes

(auy2u)2k+1 + α(bux2u)(2k+1)2s

= N1(x2k+1 + αy(2k+1)2t) +N3(xy) +MA(x, y).
(5.59)

It follows that MA(X,Y ) = 0 and N3(X) = 0. Moreover, N1(X) has to be a
monomial of degree 2u+s, and we need s + t ≡ 0 (mod m). As 0 ≤ s, t ≤ m

2 , this
congruence only holds for s = t = 0 and s = t = m

2 . Writing N1(X) = cu+sX
2u+s

and considering s = t = 0 or m
2 , (5.59) becomes

αb2
s(2k+1)
u x2s+u(2k+1) + a2k+1

u y2u(2k+1) = cu+sx
2s+u(2k+1) + α2u+s

cu+sy
2u(2k+1).

Consequently, the coefficients have to meet the conditions

αb2
s(2k+1)
u = cu+s and a2k+1

u = α2u+s
cu+s. (5.60)

As before, we can find admissible coefficients. This concludes our proof.

In Theorem 5.15, we will take a closer look at the coefficients satisfying (5.58) and
(5.60), respectively, to determine the automorphism groups of Zhou-Pott functions
under EL- and EA-equivalence. In Corollary 5.20, we use Theorem 5.4 to determine
the exact number of inequivalent Zhou-Pott functions.

5.3 Equivalence of Carlet APN functions
In this section, we add a few results about the equivalence relations of Carlet APN
functions from Proposition 4.5. In Theorem 5.8, we show that for even m, any
Carlet APN function on F22m is EL-equivalent to a Zhou-Pott APN function from
Theorem 4.6. From this result, we determine the equivalence of Carlet APN functions
on F22m where m is even. Note that we do not consider the case that m is odd in
this thesis.

First, we need the following three results. In Lemma 5.5, we summarize several
observations about polynomials of the shape X2k+1 + αX + β that may be well
known.

Lemma 5.5. Let m ≥ 2 and k < m be positive integers, and let α, β ∈ F∗2m.

(a) The polynomial P (X) = X2k+1 + αX + β has no root in F2m if and only if
P ′(X) = X2k+1 +X + β

α2−k+1 has no root in F2m.
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5.3 Equivalence of Carlet APN functions

(b) The polynomial P (X) = X2k+1 + X + β has no root in F2m if and only if
P ′(X) = X2k+1 +X + β2i has no root in F2m for i ∈ {0, . . . ,m− 1}.

(c) The polynomial P (X) = X2k+1 + X + β has no root in F2m if and only if
P ′(X) = X2−k+1 +X + β has no root in F2m.

Proof. (a) Substitute X by α2−kX in P (X) to obtain α2−k+1X2k+1 +α2−k+1X+β.
Factoring out α2−k+1 gives the result.

(b) For any i ∈ {0, . . . ,m − 1}, we can transform P (X) into P ′(X) by applying
the automorphism x 7→ x2i on the coefficients of P (X).

(c) We can transform P ′(X) into P (X) using the substitution X 7→ (X + 1)2k .

The next result is by Bracken, Tan, and Tan [19]. It specifies the values of β ∈ F∗2m
such that the polynomial X2k+1 +X + β has no root in F2m .

Lemma 5.6 ([19, Theorem 2.1]). Let m be a positive integer, and let k be coprime
to m. Denote by C the set of non-cubes in F∗2m , and define a function t : C → F2m by

t(γ) = γ(γ + 1)2k+2−k

(γ + γ2−k)2k+1 .

The polynomial X2k+1 +X + β ∈ F2m [X] has no root if and only if β ∈ Im(t).

Lemma 5.7 is due to Taniguchi [100]. We add a short proof.

Lemma 5.7 (included in [100, Corollary 2]). Let m be a positive integer, let k be an
integer coprime to m, and let α, β ∈ F∗2m such that the polynomial X2k+1 + αX + β
has no root in F2m . Define β′ = β

α2−k+1 . The Carlet APN functions fk,α,β and fk,1,β′
on F22m from Proposition 4.5 are linearly equivalent.

Proof. Note that, according to Lemma 5.5 (a), fk,1,β′ is APN. By (4.6) and (4.7), the
Carlet APN functions fk,α,β and fk,1,β′ are linearly equivalent if there exist invertible
mappings L,N on F2

2m , represented by linearized polynomials LA(X,Y ), LB(X,Y ) ∈
F2m [X,Y ] and N1(X), . . . , N4(X) ∈ F2m [X], respectively, such that the two equations

LA(x, y)2k+1 + αLA(x, y)LB(x, y)2k + βLB(x, y)2k+1

= N1(x2`+1 + xy2` + β′y2`+1) +N3(xy),

LA(x, y)LB(x, y) = N2(x2`+1 + xy2` + β′y2`+1) +N4(xy)

hold for all x, y ∈ F2m . These equations are satisfied for

LA(X,Y ) = X, LB(X,Y ) = 1
α2−k Y,

N1(X) = X, N2(X) = 0, N3(X) = 0, N4(X) = 1
α2−kX.
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5 Solving equivalence problems of almost perfect nonlinear functions

With the help of Lemma 5.6 and Lemma 5.7, we are able to prove Theorem 5.8.
This result may be well known. Note that Zhou-Pott and Carlet APN functions are
quadratic and have no constant term, which, by Theorem 4.1 and Proposition 4.2,
implies they are CCZ-inequivalent if and only if they are EL-equivalent. Thanks to
Lemma 5.7, we only need to consider Carlet APN functions with α ∈ {0, 1}.
Theorem 5.8. Let m ≥ 2 be an even integer, let k be an integer coprime to m,
and let γ ∈ F∗2m be a non-cube. Moreover, let α ∈ {0, 1} and β ∈ F∗2m such that
the polynomial X2k+1 + aX + β has no root in F2m. On F22m, the Zhou-Pott APN
function fk,0,γ from Theorem 4.6 is EL-equivalent to the Carlet APN function gk,α,β
from Proposition 4.5.
Proof. For α = 0, we have shown in Corollary 4.10 (a) that gk,0,β = fk,0,β . According
to Proposition 5.3 (a), fk,0,β is linearly equivalent to fk,0,γ .

Suppose α = 1. We show that fk,0,γ is EL-equivalent to gk,1,β. In a first step, we
prove that fk,0,γ is EL-equivalent to gk,α′,β′ , where

α′ = γ2k + γ

γ + 1 and β′ = γ2k+1 + γ

γ + 1 .

According to (4.6) and (4.7), the functions fk,0,γ and gk,α′,β′ are EL-equivalent if there
exist linear mappings L,N,M on F2

2m , where L,N are invertible, that are represented
by linearized polynomials LA(X,Y ), LB(X,Y ), MA(X,Y ), MB(X,Y ) ∈ F2m [X,Y ]
and N1(X), . . . , N4(X) ∈ F2m [X], respectively, such that the two equations

LA(x, y)2k+1 + γLB(x, y)2k+1

= N1(x2k+1 + α′xy2k + β′y2k+1) +N3(xy) +MA(x, y),

LA(x, y)LB(x, y) = N2(x2k+1 + α′xy2k + β′y2k+1) +N4(xy) +MB(x, y)

hold for all x, y ∈ F2m . This is the case for

LA(X,Y ) = X + γY LB(X,Y ) = X + Y,

N1(X) = (γ + 1)X, N2(X) = 0, N3(X) = 0, N4(X) = (γ + 1)X,
MA(X,Y ) = 0, MB(X,Y ) = X2 + γY 2.

It now follows from Lemma 5.7 that gk,α′,β′ , and thereby fk,0,γ , is EL-equivalent
to gk,1,β′′ , where

β′′ = β′

α′2−k+1 = γ(γ + 1)2k+2−k

(γ + γ2−k)2k+1 .

It remains to show that fk,0,γ is EL-equivalent to gk,1,β . We consider β′′ as a map
from the set of non-cubes of F∗2m to F2m . According to Lemma 5.6, as X2k+1 +X+β
has no root in F2m , there exists a non-cube γ′ ∈ F∗2m such that β′′(γ′) = β. Hence,
fk,0,γ′ is EL-equivalent to gk,1,β. By Proposition 5.3 (a), fk,0,γ′ is also linearly
equivalent to fk,0,γ . It follows that fk,0,γ is EL-equivalent to gk,1,β.
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Theorem 5.8 implies the following results about the equivalence of two Carlet APN
functions on F22m where m is even. Recall that for m = 2 all APN functions are
CCZ-equivalent.

Corollary 5.9. Let m ≥ 4 be even.

(a) Two Carlet APN functions fk,α,β and f−k,α,β on F22m are CCZ-equivalent.

(b) Two Carlet APN functions fk,α,β and f`,α′,β′ on F22m where 0 < k, ` < m
2 are

CCZ-equivalent if and only if k = `.

Proof. Statement (a) follows from Lemma 5.7 and Theorem 5.8 in combination with
Proposition 5.3 (b). Statement (b) follows from Lemma 5.7 and Theorem 5.8 in
combination with Proposition 5.3 (a) and Theorem 5.4.

We remark that our computations hint Corollary 5.9 may also hold for odd m.

5.4 Equivalence of Taniguchi APN functions
In this section, we study the equivalence of the Taniguchi APN functions on F22m

that we introduced in Theorem 4.6. We will answer the question for which values of
the parameters two Taniguchi APN functions fk,α,β and f`,α′,β′ are CCZ-inequivalent.
Our approach to tackle this equivalence problem is similar to the approach we used
in Section 5.2 for the equivalence problem of the Zhou-Pott functions.

As pointed out before, Taniguchi APN functions are quadratic and have no constant
term. Hence, by Theorem 4.1 and Proposition 4.2, two Taniguchi APN functions
are CCZ-equivalent if and only if they are EL-equivalent. We begin by studying the
case α = 0. Recall from Corollary 4.10 (b) that a Taniguchi function fk,0,β on F22m

is APN if and only if m is even and β ∈ F∗2m is a non-cube.

Proposition 5.10. Let m ≥ 2 be an even integer, and let k be an integer coprime
to m. Let β, γ ∈ F∗2m be non-cubes. The Taniguchi APN function fk,0,β on F22m from
Theorem 4.8 is linearly equivalent to the Zhou-Pott APN function gk,2k,γ on F22m

from Theorem 4.6.

Proof. If β ∈ F∗2m is a non-cube, then 1
β is as well. From Proposition 5.3 (a), we

know that the Zhou-Pott APN function gk,2k,γ is linearly equivalent to gk,2k, 1
β

. We
show that fk,0,β is also linearly equivalent to gk,2k, 1

β
.

By (4.6) and (4.7) and the explanations below, the functions fk,0,β and gk,2k, 1
β

are linearly equivalent if there exist bijective mappings L,N on F2
2m , represented by

linearized polynomials LA(X,Y ), LB(X,Y ) ∈ F2m [X,Y ] and N1(X), . . . , N4(X) ∈
F2m [X], respectively, such that the two equations

LA(x, y)22k(2k+1) + βLB(x, y)(2k+1) = N1(x2k+1 + 1
β y

22k(2k+1)) +N3(xy),

LA(x, y)LB(x, y) = N2(x2k+1 + 1
β y

22k(2k+1)) +N4(xy)
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hold for all x, y ∈ F2m . The functions fk,0,β and gk,2k, 1
β

are linearly equivalent by

LA(X,Y ) = Y, LB(X,Y ) = X,

N1(X) = βX, N2(X) = 0, N3(X) = 0, N4(X) = X.

Consequently, fk,0,β is linearly equivalent to gk,2k,γ .

From Proposition 5.10, we immediately obtain the following results.

Corollary 5.11. Let m ≥ 4 be even.

(a) Two Taniguchi APN functions fk,0,β and f−k,0,β on F22m are CCZ-equivalent.

(b) Two Taniguchi APN functions fk,0,β and f`,0,β′ on F22m where 0 < k, ` < m
2

are CCZ-equivalent if and only if k = `.

Proof. Result (a) follows from combining Proposition 5.10 with Proposition 5.3 (b).
Result (b) follows from Proposition 5.10 in combination with Theorem 5.4.

From now on, we focus on the case α 6= 0.

Proposition 5.12. Let m ≥ 2 be an integer. Let k be an integer coprime to m, and
let α, β ∈ F∗2m such that X2k+1 + αX + β has no root in F2m. Then the following
pairs of Taniguchi APN functions on F22m from Theorem 4.8 are linearly equivalent:

(a) fk,α,β and fk,1,β′, where β′ = β

α2−k+1 ,

(b) f
k,1,β2i and fk,1,β for i ∈ {0, . . . ,m− 1},

(c) f−k,1,β and fk,1,β.

Proof. Note that it follows from Lemma 5.5 that all the functions in Proposition 5.12
are APN. To study their equivalence, we use the framework established in (4.6)
and (4.7). Two Taniguchi APN functions fk,α,β and f`,α′,β′ are linearly equivalent if
there exist invertible mappings L,N on F2

2m , represented by linearized polynomials
LA(X,Y ), LB(X,Y ) ∈ F2m [X,Y ] and N1(X), . . . , N4(X) ∈ F2m [X], respectively,
such that the two equations

LA(x, y)22k(2k+1) + αLA(x, y)22k
LB(x, y)2k + βLB(x, y)(2k+1)

= N1(x(2`+1)22` + α′x22`
y2` + β′y2`+1) +N3(xy),

LA(x, y)LB(x, y) = N2(x(2`+1)22` + α′x22`
y2` + β′y2`+1) +N4(xy)

hold for all x, y ∈ F2m . We will present such polynomials for (a)–(c). As in all three
cases, N2(X) = N3(X) = 0, we will not restate these polynomials in every case.

(a) The functions fk,α,β and fk,1,β′ are linearly equivalent by

LA(X,Y ) = X, LB(X,Y ) = 1
α2−k Y, N1(X) = X, N4(X) = 1

α2−kX.
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(b) The functions fk,1,β2i and fk,1,β are linearly equivalent by

LA(X,Y ) = X2i , LB(X,Y ) = Y 2i , N1(X) = X2i , N4(X) = X2i .

(c) We first show that f−k,1,β and fk, 1
β
, 1
β

are linearly equivalent. Their equivalence
is established by

LA(X,Y ) = Y 23k
, LB(X,Y ) = X23k

, N1(X) = βX, N4(X) = X23k
.

Using (a), it follows that fk, 1
β
, 1
β

is linearly equivalent to f
k,1,β2−k , which,

by (b), is linearly equivalent to fk,1,β. Hence, f−k,1,β and fk,1,β are linearly
equivalent.

In the following Theorem 5.13, we completely solve the equivalence problem for
Taniguchi APN functions fk,α,β with α 6= 0. As mentioned before, on F24 , there exists
only one APN function up to CCZ-equivalence. Consequently, we only consider F22m

with m ≥ 3. According to Proposition 5.12, every Taniguchi APN function fk,α,β with
α 6= 0 is linearly equivalent to a Taniguchi APN function fk′,1,β′ where 0 < k′ < m

2
and α = 1. Hence, we will only consider functions fk,1,β where 0 < k < m

2 .
Note that the structure of the proof of Theorem 5.13 is similar to the structure

of the proof of Theorem 5.4, some parts are almost identical. However, to keep the
proof of Theorem 5.13 self-contained, we will not shorten it.

Theorem 5.13. Let m ≥ 3 be an integer, and let k, ` be integers coprime to m such
that 0 < k, ` < m

2 . Let β, β′ ∈ F∗2m such that the polynomials X2k+1 + X + β and
X2`+1 +X + β′ have no root in F2m . Two Taniguchi APN functions fk,1,β, f`,1,β′ on
F22m defined by

fk,1,β = (x22k(2k+1) + x22k
y2k + βy2k+1, xy)

and
f`,1,β′ = (x22`(2`+1) + x22`

y2` + β′y2`+1, xy)

are CCZ-equivalent if and only if k = ` and β′ = β2i for some i ∈ {0, . . . ,m− 1}.

Proof. We have shown in Proposition 5.12 (b) that fk,1,β and f
k,1,β2i are linearly

equivalent and thereby CCZ-equivalent. We will now show the converse: if fk,1,β and
f`,1,β′ are CCZ-equivalent, then k = ` and β′ = β2i for some i ∈ {0, . . . ,m− 1}.

For m = 3 and m = 4, the result can be easily confirmed. If m = 3, then k = 1,
and there are three distinct β ∈ F∗23 such that X3 +X + β has no root in F∗23 . If β
meets this condition, then, according to Lemma 5.5 (b), β2 and β4 do as well. It
follows from Proposition 5.12 that for m = 3, all three Taniguchi APN functions
belong to the same equivalence class. If m = 4, then k = 1, and there are five
distinct β ∈ F∗24 such that X3 +X + β has no root, namely 1 and β, β2, β4, β8 for
some β 6= 1. Hence, for m = 4, there exist two equivalence classes: f1,1,1 and f1,1,β,
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5 Solving equivalence problems of almost perfect nonlinear functions

where β 6= 1. Their inequivalence was shown by Taniguchi [100], who computed the
Γ-ranks for these functions as 13 700 and 13 798, respectively.

For the remainder of the proof, let m ≥ 5. Assume fk,1,β and f`,1,β′ are CCZ-
equivalent. By Theorem 4.1 and Proposition 4.2, this implies that the functions are
also EL-equivalent. Hence, similarly to the proof of Proposition 5.12, there exist
linearized polynomials LA(X,Y ), LB(X,Y ),MA(X,Y ),MB(X,Y ) ∈ F2m [X,Y ] and
N1(X), . . . , N4(X) ∈ F2m [X], where

L(X,Y ) = (LA(X,Y ), LB(X,Y ))

and
N(X,Y ) = (N1(X) +N3(Y ), N2(X) +N4(Y ))

are invertible, such that the equations

LA(x, y)22k(2k+1) + LA(x, y)22k
LB(x, y)2k + βLB(x, y)2k+1

= N1(x(2`+1)22` + x22`
y2` + β′y2`+1) +N3(xy) +MA(x, y),

(5.61)

LA(x, y)LB(x, y)

= N2(x(2`+1)22` + x22`
y2` + β′y2`+1) +N4(xy) +MB(x, y)

(5.62)

hold for all x, y ∈ F2m . We write LA(X,Y ) = L1(X) + L3(Y ) and LB(X,Y ) =
L2(X) + L4(Y ) for linearized polynomials L1(X), . . . , L4(X) ∈ F2m [X]. Hence,

L(X,Y ) = (L1(X) + L3(Y ), L2(X) + L4(Y )) .

Write

L1(X) =
m−1∑
i=0

aiX
2i , L2(X) =

m−1∑
i=0

biX
2i ,

and

L3(Y ) =
m−1∑
i=0

aiY
2i , L4(Y ) =

m−1∑
i=0

biY
2i .

Analogously, define linearized polynomials M1(X), . . . ,M4(X) ∈ F2m [X] such that

M(X,Y ) = (M1(X) +M3(Y ),M2(X) +M4(Y )).

For the remainder of the proof, let x, y ∈ F2m . We first prove the following claim.

Claim 5.2. If fk,1,β and f`,1,β′ are EL-equivalent, then k = ` and each of the
linearized polynomials L1(X), L2(X), L3(Y ), L4(Y ) is a monomial or zero.

We will prove the result for y = 0 and obtain statements for L1(X) and L2(X).
Using the same approach with x = 0, identical statements can be obtained for L3(Y )
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and L4(Y ). Let y = 0. Then it follows from (5.61) and (5.62) that the equations

L1(x)22k(2k+1) + L1(x)22k
L2(x)2k + βL2(x)2k+1 = N1(x(2`+1)22`) +M1(x), (5.63)

L1(x)L2(x) = N2(x(2`+1)22`) +M2(x) (5.64)

need to hold for all x ∈ F2m . Write

N1(X) =
m−1∑
i=0

ciX
2i and N2(X) =

m−1∑
i=0

diX
2i−2`

.

Note that, for convenience, we shift the summation index of N2(X).
As L(X,Y ) has to be invertible, it is not possible that both L1(X) and L2(X) are

zero. We first study the case that exactly one out of L1(X) and L2(X) is nonzero.
Suppose L1(X) 6= 0 and L2(X) = 0. In this case, the left-hand side of (5.64) is zero,
which implies N2(X) = M2(X) = 0. Moreover, (5.63) becomes

L1(x)22k(2k+1) = N1(x(2`+1)22`) +M1(x). (5.65)

This equation implies that the Gold APN functions x 7→ x2k+1 and x 7→ x2`+1

on F2m are EL-equivalent. According to Theorem 5.1, this holds if and only if k = `.
We further showed that for m ≥ 5, the associated equivalence mappings between two
Gold APN functions with k = ` are linearized monomials. Consequently, we obtain

L1(X) = auX
2u and L2(X) = 0 (5.66)

for some u ∈ {0, . . . ,m− 1} and au ∈ F∗2m . If we suppose L1(X) = 0 and L2(X) 6= 0
and proceed analogously to the previous case, we obtain

L1(X) = 0 and L2(X) = buX
2u (5.67)

for some u ∈ {0, . . . ,m − 1} and bu ∈ F∗2m . In both of the above cases, we have
M1(X) = M2(X) = 0.

Now, assume that both L1(X) and L2(X) are nonzero. Then (5.64) becomes

m−1∑
i=0

aibix
2i+1 +

m−1∑
i,j=0,
j 6=i

aibjx
2i+2j =

m−1∑
i=0

dix
(2`+1)2i +M2(x). (5.68)

Note that the first sum on the left-hand side of (5.68) is linearized. Hence, set
M2(X) = ∑m−1

i=0 aibiX
2i+1 . We rewrite (5.68) as

∑
0≤i<j≤m−1

(aibj + ajbi)x2i+2j =
m−1∑
i=0

dix
2i+2i+` ,
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which implies that the equations

aibi+` + ai+`bi = di for all i, (5.69)
aibj + ajbi = 0 for j 6= i, i± `, (5.70)

where the subscripts are calculated modulo m, have to hold. We separate the proof
into two cases: first, the case that di = 0 for all i = 0, . . . ,m− 1, and, second, the
case that du 6= 0 for some u ∈ {0, . . . ,m− 1}.
Case 1. In this case, we show that if di = 0 for all i = 0, . . . ,m − 1, similarly
to (5.65), the problem can be reduced to the equivalence problem of two Gold APN
functions. Assume di = 0 for all i = 0, . . . ,m− 1, which means N2(X) = 0. In this
case, (5.69) and (5.70) combine to

aibj + ajbi = 0 for j 6= i. (5.71)

As L1(X) and L2(X) are both nonzero, there exist u, u′ ∈ {0, . . . ,m − 1} such
that au and bu′ are nonzero. If u = u′, the corresponding term aubuX

2u+1 on the
left-hand side of (5.64) is linearized and only contributes to M2(X) on the respective
right-hand side. If u 6= u′, then, by (5.71),

aubu′ + au′bu = 0.

Consequently, au′ and bu have to be nonzero as well, and au, au′ , bu, bu′ have to meet
the condition au

bu
= au′

bu′
. Define ∆ = au

bu
, and note that ∆ 6= 0. It follows from (5.71)

that for all j = 0, . . . ,m− 1, the coefficient pair (aj , bj) satisfies either

aj = bj = 0 or aj
bj

= ∆. (5.72)

Consequently, bj = δaj , where δ = 1
∆ , for all j = 0, . . . ,m − 1, and L2(X) is a

multiple of L1(X), namely
L2(X) = δL1(X). (5.73)

We plug L1(X) and L2(X) into (5.63) and obtain

L1(x)22k(2k+1) + δ2kL1(x)2k(2k+1) + βδ2k+1L1(x)2k+1

= N1(x(2`+1)22`) +M1(x).
(5.74)

Define a polynomial T (X) ∈ F2m [X] as

T (X) = X22k + δ2kX2k + βδ2k+1X,

and rewrite the left-hand side of (5.74) as T (L1(x)2k+1). We show that T (X) is a
permutation polynomial. Since T (X) is linearized, it is sufficient to show that T (X)
has no nonzero roots. If T (X) had a nonzero root, it would also be a root of the
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polynomial
T ′(X) = X22k−1 + δ2kX2k−1 + βδ2k+1.

Substitute X2k−1 by X, and note that, as gcd(2k − 1, 2m − 1) = 2gcd(k,m) − 1 = 1,
this substitution is one-to-one. We obtain

T ′(X) = X2k+1 + δ2kX + βδ2k+1.

By Lemma 5.5 (a), the polynomial T ′(X) has no root if and only if P (X) =
X2k+1 +X + β has no root in F2m . This holds by the definition of β.

Hence, we denote by T−1(X) the inverse of T (X) and rewrite (5.74) as

L1(x)2k+1 = T−1(N1(x(2`+1)22`)) + T−1(M1(x)). (5.75)

Since T−1(X) is also linearized, (5.75) describes the same equivalence problem of
two Gold APN functions as in (5.65). It follows from Theorem 5.1 that k = ` and
that L1(X) is a linearized monomial. Because of (5.73), the polynomials L1(X) and
L2(X) are monomials of the same degree:

L1(X) = auX
2u and L2(X) = buX

2u . (5.76)

Moreover, M2(X) = aubuX
2u+1 and M1(X) = 0.

Case 2. Consider (5.69) and (5.70) again, and assume du 6= 0 for some u ∈
{0, . . . ,m − 1}, which means N2(X) 6= 0. If du 6= 0, then, by (5.69), au and bu
cannot be zero at the same time. We will separate the proof of Case 2 into two
subcases: first, Case 2.1, where both au and bu are nonzero, and second, Case 2.2,
where exactly one of au and bu is nonzero. Both these cases will be separated into
several subcases again.

We will show that Case 2.1 will lead to a contradiction, whereas Case 2.2 provides
new possible solutions for L1(X) and L2(X) under the condition that k = `: the
polynomials can be monomials of different degrees.
Case 2.1. Assume au 6= 0 and bu 6= 0. It follows from (5.70) that all pairs (aj , bj),
where j 6= u, u± `, satisfy (5.72). We will first show that the only possible nonzero
coefficients are aj , bj for j = u, u± `, u± 2`.

By way of contradiction, suppose there exists `′ 6= 0,±`,±2` such that au+`′ and
bu+`′ are nonzero. By (5.72), this implies au+`′

bu+`′
= ∆. Since u+`′±` 6= u±`, it follows

from (5.69) with i = u+ `′ that both (au+`, bu+`) and (au−`, bu−`) also have to satisfy
one of the equations in (5.72). Hence, (5.72) holds for all j = 0, . . . ,m− 1, which
means that L2(X) is a multiple of L1(X). However, now L1(X)L2(X) is linearized,
and (5.64) implies N2(X) = 0. This is a contradiction.

Hence, we assume aj = bj = 0 for j 6= u, u± `, u± 2` for the remainder of Case 2.1.
We separate its proof into two subcases: in Case 2.1.1, we assume au±2` = bu±2` = 0,
in Case 2.1.2, we suppose that at least one of the coefficients au±2`, bu±2` is nonzero.
Both these cases lead to contradictions.
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5 Solving equivalence problems of almost perfect nonlinear functions

Case 2.1.1. Suppose au±2` = bu±2` = 0. In this case, we obtain only one equation
from (5.69), namely

au−`bu+` + au+`bu−` = 0.

Hence, either
(i) au−` = au+` = 0 or bu−` = bu+` = 0, meaning that one of L1(X) and L2(X) is a

monomial and the other one has at most three nonzero coefficients, or
(ii) au−` = bu−` = 0 or au+` = bu+` = 0, meaning that both L1(X) and L2(X) have

at most two nonzero coefficients, or
(iii) au±`, bu±` 6= 0 and au−`

bu−`
= au+`

bu+`
, meaning that both L1(X) and L2(X) are

trinomials.
We will consider each of these three subcases separately.
Case 2.1.1. (i) Assume bu−` = bu+` = 0. The case au−` = au+` = 0 follows by
symmetry. We consider polynomials

L1(X) = au−`X
2u−` + auX

2u + au+`X
2u+` and L2(X) = buX

2u ,

where au, bu 6= 0. Moreover, we may assume that at least one of au−` and au+` is
nonzero as otherwise L1(X) and L2(X) are monomials of the same degree, which
implies N2(X) = 0. This contradicts the assumption of Case 2. We plug L1(X) and
L2(X) into the left-hand side of (5.63) and obtain

L1(x)22k(2k+1) = a
22k(2k+1)
u−` x2u−`+2k(2k+1) + a22k(2k+1)

u x2u+2k(2k+1)

+ a
22k(2k+1)
u+` x2u+`+2k(2k+1) + a23k

u−`a
22k
u x2u+2k(2k−`+1)

+ a23k
u a22k

u+`x
2u+`+2k(2k−`+1) + a23k

u+`a
22k
u−`x

2u−`+2k(2k+2`+1) (5.77)

+ a23k
u−`a

22k
u+`x

2u+`+2k(2k−2`+1) + a23k
u a22k

u−`x
2u−`+2k(2k+`+1)

+ a23k
u+`a

22k
u x2u+2k(2k+`+1)

and

L1(x)22k
L2(x)2k = a22k

u−`b
2k
u x

2u+k(2k−`+1) + a22k
u b2

k

u x
2u+k(2k+1)

+ a22k
u+`b

2k
u x

2u+k(2k+`+1)
(5.78)

and
βL2(x)2k+1 = βb2

k+1
u x2u(2k+1). (5.79)

Recall that the right-hand side of (5.63) is

m−1∑
i=0

cix
2i+2`(2`+1) +M1(x).

Note that the second term of (5.77), whose coefficient is nonzero, can only be
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canceled by any of the other terms in (5.77), (5.78) and (5.79) if k = `. Then, it may
be canceled by the seventh term of (5.77). For k 6= ` it cannot be canceled as, since
0 < ` < m

2 , no other term will be of the shape ax2u+2k(2k+1). Assuming the second
term of (5.77) cannot be canceled, it can only be represented on the right-hand side
of (5.63) if k = `.

In summary, we may suppose k = `. Now, the fourth and the fifth summand of
(5.77) as well as the first summand of (5.78) become linearized. Consequently,

M1(X) = a22k
u−kb

2k
u X

2u+k+1 + a23k
u−ka

22k
u X2u+2k+1 + a23k

u a22k
u+kX

2u+3k+1
.

Next, consider the eighth and the ninth term of (5.77), where the eighth term can be
summarized with the third term of (5.78):

a23k
u+ka

22k
u x2u+2k(22k+1), (a23k

u a22k
u−k + a22k

u+kb
2k
u )x2u+k(22k+1).

As m ≥ 5 and gcd(k,m) = 1, we have 2k 6≡ ±k (mod m). Hence, these terms cannot
be represented in the form cix

2i+2k(2k+1) on the right-hand side of (5.63), which
means that their coefficients have to be zero. As au 6= 0, it follows that au+k = 0,
which, recalling that bu 6= 0, then implies au−k = 0. This contradicts our assumption
that at least one of au−k and au+k is nonzero.
Case 2.1.1. (ii) Assume au−` = bu−` = 0. The case au+` = bu+` = 0 follows by
symmetry. In our case,

L1(X) = auX
2u + au+`X

2u+` and L2(X) = buX
2u + bu+`X

2u+`
.

As in Case 2.1.1. (i), au and bu are nonzero, and we may assume that at least one of
au+` and bu+` is nonzero. For L1(X) and L2(X) as above, the the left-hand side of
(5.63) consists of

L1(x)22k(2k+1) = a22k(2k+1)
u x2u+2k(2k+1) + a

22k(2k+1)
u+` x2u+`+2k(2k+1)

+ a23k
u a22k

u+`x
2u+`+2k(2k−`+1) + a23k

u+`a
22k
u x2u+2k(2k+`+1)

and

L1(x)22k
L2(x)2k = a22k

u b2
k

u x
2u+k(2k+1) + a22k

u+`b
2k
u+`x

2u+`+k(2k+1)

+ a22k
u b2

k

u+`x
2u+`+k(2k−`+1) + a22k

u+`b
2k
u x

2u+k(2k+`+1)

and

βL2(x)2k+1 = βb2
k+1
u x2u(2k+1) + βb2

k+1
u+` x

2u+`(2k+1)

+ βb2
k

u bu+`x
2u+`(2k−`+1) + βb2

k

u+`bux
2u(2k+`+1).

By similar reasoning as in Case 2.1.1. (i), not all summands containing the fac-
tor x2k+1 can be canceled simultaneously. Consequently, we need k = ` for these
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terms to be represented on the right-hand side of (5.63). If k = `, the following
terms, which cannot be canceled, occur on the left-hand side of (5.63):

a23k
u+ka

22k
u x2u+2k(22k+1), a22k

u+kb
2k
u x

2u+k(22k+1), βb2
2k
u+kbux

2u(22k+1).

Note that least one of these terms has a nonzero coefficient as au, bu and at least one
of au+k and bu+k are nonzero. However, none of these terms can be represented in
the form cix

2i+2k(2k+1) on the right-hand side of (5.63). This is a contradiction.
Case 2.1.1. (iii) Now,

L1(X) = au−`X
2u−` + auX

2u + au+`X
2u+`

and L2(X) = bu−`X
2u−` + buX

2u + bu+`X
2u+`

,

where all coefficients are nonzero and satisfy au−`
bu−`

= au+`
bu+`

. We plug these polynomials
into the left-hand side of (5.63). By similar reasoning as in Case 2.1.1. (i) and
Case 2.1.1. (ii), not all terms containing the factor x2k+1 can be canceled. Hence,
k = `. Now, the left-hand side of (5.63) contains the following two summands that
have nonzero coefficients and cannot be canceled:

a23k
u+ka

22k
u x2u+2k(22k+1), βb2

2k
u bu−kx

2u−k(22k+1).

As none of them can be represented on the right-hand side of (5.63), this is a
contradiction.
Case 2.1.2. Suppose that not all of au±2`, bu±2` are zero. Recall that all pairs (aj , bj)
where j 6= u, u± ` have to satisfy (5.72). We consider the case that au+2` and bu+2`
are nonzero. An almost identical result can be obtained by symmetry assuming that
au−2` and bu−2` are nonzero.

If au+2`, bu+2` 6= 0, then, by (5.72), au+2`
bu+2`

= ∆. It follows from (5.70) that
(au−2`, bu−2`) and (au−`, bu−`) also have to satisfy (5.72). However, (5.70) does not
provide any restriction on the values of au+` and bu+`. If (au+`, bu+`) satisfies (5.72),
then all (aj , bj) do, and we know from the beginning of Case 2.1 that this implies
N2(X) = 0. As before, this is a contradiction.

If (au+`, bu+`) does not satisfy (5.72), then it follows from (5.70) that aj = bj = 0
for j = u− `, u− 2`. Hence,

L1(X) = auX
2u + au+`X

2u+` + au+2`X
2u+2`

and L2(X) = buX
2u + bu+`X

2u+` + bu+2`X
2u+2`

.

As au
bu

= au+2`
bu+2`

, this case is similar to Case 2.1.1. (iii), when we substitute u by u+ `,
with the only difference that now, precisely one of the middle coefficients au+`, bu+`
may be zero. However, the arguments used in Case 2.1.1 leading to the conclusion
k = ` still hold. If k = `, the left-hand side of (5.63) contains the following summands
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that have nonzero coefficients and cannot be canceled:

a23k
u+2ka

22k
u x2u+2k(23k+1), a22k

u+2kb
2k
u x

2u+k(23k+1), βb2
k

u+2kbux
2u(23k+1).

As these terms cannot be represented on the right-hand side of (5.63), their coefficients
need to be zero. This contradicts our assumption that au, au+2k, bu, bu+2k are nonzero.
Case 2.2. Assume, exactly one of au and bu is nonzero. We show the case au 6= 0
and bu = 0. The case au = 0 and bu 6= 0 can be proved analogously. So assume
au 6= 0 and bu = 0. From (5.69) with i = u, we obtain the equation

aubu+` = du.

As du 6= 0, it follows that bu+` 6= 0. From (5.70) with i = u, we obtain

aubj = 0 for j 6= u, u± `.

Consequently, bj = 0 for j 6= u± `. Now, (5.70) with i = u+ ` implies

ajbu+` = 0 for j 6= u− `, u, u+ `, u+ 2`.

Hence, aj = 0 for j 6= u − `, u, u + `, u + 2`. We will separate the remainder of
Case 2.2 into two subcases: in Case 2.2.1, we consider bu−` 6= 0, in Case 2.2.2, we
suppose bu−` = 0.
Case 2.2.1. Assume bu−` 6= 0. From (5.70) with i = u− ` and j = u+ 2`, we obtain

au+2`bu−` = 0,

which implies au+2` = 0. If we consider (5.70) with i = u− ` and j = u+ `, then

au−`bu+` + au+`bu−` = 0.

Recalling that bu+` is nonzero, this implies either au−` = au+` = 0 or au−`, au+` 6= 0
and au−`

bu−`
= au+`

bu+`
. We separate these two subcases:

Case 2.2.1. (i) Assume au−` = au+` = 0. Then

L1(X) = auX
2u and L2(X) = bu−`X

2u−` + bu+`X
2u+`

,

where all coefficients are nonzero. We plug these polynomials into the left-hand side
of (5.63) and obtain

L1(x)22k(2k+1) = a22k(2k+1)
u x2u+2k(2k+1)

and

L1(x)22k
L2(x)2k = a22k

u b2
k

u−`x
2u−`+k(2k+`+1) + a22k

u b2
k

u+`x
2u+`+k(2k−`+1)
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and

βL2(x)2k+1 = βb2
k+1
u−` x

2u−`(2k+1) + βb2
k+1
u+` x

2u+`(2k+1)

+ βb2
k

u−`bu+`x
2u+`(2k−2`+1) + βb2

k

u+`bu−`x
2u−`(2k+2`+1).

(5.80)

As in previous cases, not all terms containing the factor x2k+1 can be canceled
simultaneously. Thus, we need k = ` to represent them on the right-hand side of
(5.63). However, if k = `, the left-hand side of (5.63) contains the terms

a22k
u b2

k

u−kx
2u(22k+1) and βb2

k

u+kbu−kx
2u−k(23k+1),

which cannot be represented in the form cix
2i+2k(2k+1) on the right-hand side of

(5.63). Hence, their coefficients need to be zero, which is a contradiction.
Case 2.2.1. (ii) Assume au−`, au+` 6= 0 and au−`

bu−`
= au+`

bu+`
. Then

L1(X) = au−`X
2u−` + auX

2u + au+`X
2u+`

and L2(X) = bu−`X
2u−` + bu+`X

2u+`
,

where all coefficients are nonzero. We plug these polynomials into the left-hand
side of (5.63). Then L1(x)22k(2k+1) is as in (5.77) and βL2(x)2k+1 is as in (5.80).
Moreover,

L1(x)22k
L2(x)2k = a22k

u−`b
2k
u−`x

2u−`+k(2k+1) + a22k
u+`b

2k
u+`x

2u+`+k(2k+1)

+ a22k
u−`b

2k
u+`x

2u+`+k(2k−2`+1) + a22k
u b2

k

u−`x
2u−`+k(2k+`+1)

+ a22k
u b2

k

u+`x
2u+`+k(2k−`+1) + a22k

u+`b
2k
u−`x

2u−`+k(2k+2`+1).

(5.81)

By the same reasoning as in Case 2.2.1. (i), it follows that k = `. However, if k = `,
then, for example, the fourth term of (5.81) neither can be canceled by any other
terms on the left-hand side of (5.63), nor can it be represented on the right-hand
side of (5.63). This implies au = 0 or bu−` = 0, which contradicts our assumption.
Case 2.2.2. Assume bu−` = 0. From (5.70) with i = u+ ` and j = u− `, it follows
that

au−`bu+` = 0,

which, recalling that bu+` 6= 0, implies au−` = 0. Then

L1(X) = auX
2u + au+`X

2u+` + au+2`X
2u+2` and L2(X) = bu+`X

2u+`
,

where au and bu+` are nonzero. Plugging these polynomials into (5.63), the expressions
L1(x)22k(2k+1), L1(x)22k

L2(x)2k and βL2(x)2k+1 are as in (5.77), (5.78) and (5.79),
respectively, when substituting u by u+ `. By the same reasoning as in Case 2.1.1. (i),
it follows that k = `. If k = `, analogously to Case 2.1.1. (i), the following terms
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occur on the left-hand side of (5.63):

a23k
u+2ka

22k
u x2u+2k(23k+1), (a23k

u+ka
22k
u + a22k

u+2kb
2k
u+k)x2u+2k(22k+1).

As neither of them can be represented on the right-hand side of (5.63), their coefficients
need to be zero. Since au 6= 0, it follows that au+2k = 0, and, consequently, au+k = 0.
Hence, L1(X) and L2(X) are monomials of the form

L1(X) = auX
2u and L2(X) = bu+kX

2u+k
, (5.82)

and we have M1(X) = a22k
u b2

k

u+kX
2u+2k+1 and M2(X) = 0.

Note that if we consider Case 2.2 with au = 0 and bu 6= 0, we obtain

L1(X) = au+kX
2u+k and L2(X) = buX

2u (5.83)

together with M1(X) = a22k
u+kb

2k
u X

2u+2k+1 and M2(X) = 0, from Case 2.2.2.
This concludes the proof of Claim 5.2. We summarize the results we have

obtained so far. If the Taniguchi APN functions fk,1,β and f`,1,β′ are EL-equivalent,
then k = `, and the polynomials L1(X) and L2(X) are of the following shapes: either,
one of L1(X) and L2(X) is zero and the other one is a monomial, see (5.66) and
(5.67), or both L1(X) and L2(X) are monomials, either of the same degree or of
degrees 2u and 2u+k, see (5.76), (5.82) and (5.83). Vice versa, the same statements
hold for L3(Y ) and L4(Y ).

It remains to show that the EL-equivalence of fk,1,β and fk,1,β′ implies β′ = β2i

for some i ∈ {0, . . . ,m− 1}. Combining the results on L1(X), L2(X), L3(Y ), L4(Y )
mentioned above, it is clear that the polynomials LA(X,Y ) and LB(X,Y ) have to
be of one of the following forms:

(a) LA(X,Y ) = auX
2u + awY

2w and LB(X,Y ) = buX
2u + bwY

2w ,

(b) LA(X,Y ) = auX
2u + awY

2w and LB(X,Y ) = buX
2u + bw+kY

2w+k ,

(c) LA(X,Y ) = auX
2u + aw+kY

2w+k and LB(X,Y ) = buX
2u + bwY

2w ,

(d) LA(X,Y ) = auX
2u + awY

2w and LB(X,Y ) = bu+kX
2u+k + bwY

2w ,

(e) LA(X,Y ) = au+kX
2u+k + awY

2w and LB(X,Y ) = buX
2u + bwY

2w ,

(f) LA(X,Y ) = auX
2u + awY

2w and LB(X,Y ) = bu+kX
2u+k + bw+kY

2w+k ,

(g) LA(X,Y ) = auX
2u + aw+kY

2w+k and LB(X,Y ) = bu+kX
2u+k + bwY

2w ,

(h) LA(X,Y ) = au+kX
2u+k + awY

2w and LB(X,Y ) = buX
2u + bw+kY

2w+k ,

(i) LA(X,Y ) = au+kX
2u+k + aw+kY

2w+k and LB(X,Y ) = buX
2u + bwY

2w .
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Note that, as L(X,Y ) = (LA(X,Y ), LB(X,Y )) has to be a permutation polyno-
mial, it is neither possible that LA(X,Y ) or LB(X,Y ) is zero nor that both LA(X,Y )
and LB(X,Y ) depend only on X or only on Y . We will show that all cases listed
above lead to the conclusion that LA(X,Y ) and LB(X,Y ) need to be monomials of
the same degree of the shape

LA(X,Y ) = auX
2u and LB(X,Y ) = buY

2u . (5.84)

We rewrite (5.61) and (5.62) considering k = `:

LA(x, y)22k(2k+1) + LA(x, y)22k
LB(x, y)2k + βLB(x, y)2k+1

= N1(x22k(2k+1) + x22k
y2k + β′y2k+1) +N3(xy) +MA(x, y),

(5.85)

LA(x, y)LB(x, y)

= N2(x22k(2k+1) + x22k
y2k + β′y2k+1) +N4(xy) +MB(x, y).

(5.86)

We will plug all the possible combinations (a)–(i) into these equations. We start
with (b). Plugging the polynomials of (b) into the left-hand side of (5.86), we obtain

LA(x, y)LB(x, y) = aubux
2u+1 + awbw+ky

2w(2k+1)

+ aubw+kx
2uy2w+k + awbux

2uy2w .
(5.87)

Note that the first term of (5.87) is linearized. As there is no term containing the
factor x2k+1 in (5.89), we need N2(X) = 0 on the right-hand side of (5.86). This
implies, first, that the coefficient awbw+k of the second summand of (5.87) has to
be zero, and second, that the third and the fourth summand of (5.87) cannot be
represented simultaneously on the right-hand side of (5.86). The coefficient of the
second summand of (5.87) is zero if aw or bw+k is zero. We separate the proof into
two cases:
Case 1. Assume aw = 0. Note that this implies au 6= 0 and bw+k 6= 0 as otherwise
L(X,Y ) would not be a permutation polynomial. If aw = 0, then (5.86) holds only
if u = w + k. Set u = w + k, and plug LA(x, y) and LB(x, y) into the left-hand side
of (5.85). We obtain

LA(x, y)22k(2k+1) = a22k(2k+1)
u x2u+2k(2k+1) (5.88)

and

LA(x, y)22k
LB(x, y)2k = a22k

u b2
k

u x
2u+k(2k+1) + a22k

u b
2k
u x

2u+2k
y2u+k (5.89)

and

βLB(x, y)2k+1 = βb2
k+1
u x2u(2k+1) + βb

2k+1
u y2u(2k+1)

+ βb2
k

u bux
2u+k

y2u + βb
2k
u bux

2uy2u+k
.

(5.90)
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The fourth summand of (5.90) cannot be canceled by any other summand of (5.88)–
(5.90), and it cannot be represented on the right-hand side of (5.85). As β, bu 6= 0, it
follows that bu = 0. Consequently, LA(X,Y ) and LB(X,Y ) are monomials of the
same degree as in (5.84).
Case 2. Assume bw+k = 0. By the same reasoning as in Case 1, this implies bu 6= 0
and au 6= 0. Now, (5.86) holds for u = w. Set u = w and plug LA(x, y) and LB(x, y)
into the left-hand side of (5.85). The expression LA(x, y)22k

LB(x, y)2k contains the
term

a22k
u b2

k

u x
2u+k

y2u+2k
,

which has a nonzero coefficient and cannot be canceled by the other terms on the
left-hand side of (5.85). However, it cannot be represented on the right-hand side of
(5.85). This is a contradiction.
By proceeding analogously to (b), the cases (c)–(e) lead to the same result: LA(X,Y )
and LB(X,Y ) need to be as in (5.84).

We next study (f). If we plug LA(X,Y ) and LB(X,Y ) of (f) into (5.86), we obtain

LA(x, y)LB(x, y) = aubu+kx
2u(2k+1) + awbw+ky

2w(2k+1)

+ aubw+kx
2uy2w+k + awbu+kx

2u+k
y2w .

(5.91)

If all coefficients are nonzero, we need u = w + 2k to represent the first and the
second summand of (5.91) on the right-hand side of (5.86). Then, however, the
fourth term of (5.91) cannot be represented on the right-hand side of (5.86), which is
a contradiction.

Now assume one of the coefficients is zero. We show the case bu+k = 0. If
bu+k = 0, it follows that au and bw+k are nonzero as otherwise L(X,Y ) would not
be a permutation polynomial. Moreover, as the first term of (5.91) vanishes, we
need N2(X) = 0. Then, also the second term of (5.91) cannot be represented on the
right-hand side of (5.86) and awbw+k has to be zero. As bw+k 6= 0, it follows that
aw = 0. Moreover, we need u = w + k to represent the third summand of (5.91) on
the right-hand side of (5.86). Consequently, LA(X,Y ) and LB(X,Y ) are monomials
as in (5.84).

If we suppose au = 0 instead of bu+k = 0, we end up with the same contradiction
as in the study of (b), Case 2. Analogous results can be obtained when assuming
aw = 0 or bw+k = 0. Note that, by symmetry, case (i) leads to the same results as
(f). Moreover, an analogous approach also provides identical results for cases (g)
and (h).

It remains to study (a). If we plug LA(X,Y ) and LB(X,Y ) of (a) into (5.86), we
obtain

LA(x, y)LB(x, y) = aubux
2u+1 + awbwy

2w+1 + (aubw + awbu)x2uy2w . (5.92)

We separate two cases: in Case 1, the third term of (5.92) vanishes, in Case 2, its
coefficient is nonzero.
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Case 1. We first show that the third term of (5.92) can only vanish if all coefficients
are nonzero. Suppose au = 0. Then awbu has to be zero as well. However, this is
not possible, as au = 0 implies that aw and bu are nonzero. By symmetry, the same
result is obtained if we assume that any other coefficient is zero.

Consequently, assume all coefficients are nonzero and au
bu

= aw
bw

. Then (5.86) does
not provide any more information about the coefficients, as the left-hand side is a
linearized polynomial. We plug LA(X,Y ) and LB(X,Y ) into the left-hand side of
(5.85) and obtain

LA(x, y)22k(2k+1) = a22k(2k+1)
u x2u+2k(2k+1) + a22k(2k+1)

w y2w+2k(2k+1)

+ a23k
u a22k

w x2u+3k
y2w+2k + a23k

w a22k
u x2u+2k

y2w+3k (5.93)

and

LA(x, y)22k
LB(x, y)2k = a22k

u b2
k

u x
2u+k(2k+1) + a22k

w b
2k
w y

2w+k(2k+1)

+ a22k
u b

2k
w x

2u+2k
y2w+k + a22k

w b2
k

u x
2u+k

y2w+2k
(5.94)

and

βLB(x, y)2k+1 = βb2
k+1
u x2u(2k+1) + βb

2k+1
w y2w(2k+1)+

+ βb2
k

u bwx
2u+k

y2w + βb
2k
w bux

2uy2w+k
.

(5.95)

No matter how we choose u and w, the third and the fourth summand of (5.93)
cannot be canceled by the terms of (5.93)–(5.95), and they cannot be represented
simultaneously on the right-hand side of (5.85). Hence, at least one of the coefficients
needs be zero, which is a contradiction.
Case 2. Assume aubw + awbu 6= 0. As there are no terms on the left-hand side of
(5.86) containing the factors x2k+1 and y2k+1, it follows that N2(X) = 0, and we
need u = w to represent the third summand of (5.92) on the right-hand side of (5.86).
We plug LA(X,Y ) and LB(X,Y ) into (5.85) and obtain the same expressions as in
(5.93)–(5.95) with u = w. Analogously to Case 1, the third and the fourth term
of (5.93) cannot be represented on the right-hand side of (5.85) at the same time.
Hence, auaw has to be zero. Assuming aw = 0, we obtain, by similar reasoning as in
the previous cases, that LA(X,Y ) and LB(X,Y ) have to be monomials of the same
degree as in (5.84). Assuming au = 0, we obtain the same contradiction as in the
study of (b), Case 2.

In summary, the only choice of LA(X,Y ) and LB(X,Y ) that may satisfy (5.85)
and (5.86) is LA(X,Y ) = auX

2u and LB(x, y) = buY
2u . Considering (5.86) for these

monomials, it follows that N2(X) = 0, N4(X) = aubuX
2u and MB(X,Y ) = 0. If we
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plug LA(X,Y ) and LB(X,Y ) into (5.85), we obtain

a22k(2k+1)
u x2u+2k(2k+1) + a22k

u b
2k
u x

2u+2k
y2u+k + βb

2k+1
u y2u(2k+1)

= N1(x22k(2k+1) + x22k
y2k + β′y(2k+1)) +N3(xy) +MA(x, y).

(5.96)

Obviously, N3(X) = 0 and MA(X,Y ) = 0, and N1(X) has to be a monomial of
degree 2u, the same degree as LA(X,Y ) and LB(X,Y ).

Write N1(X) = cuX
2u . Then (5.96) becomes

a22k(2k+1)
u x2u+2k(2k+1) + a22k

u b
2k
u x

2u+2k
y2u+k + βb

2k+1
u y2u(2k+1)

= cux
2u+2k(2k+1) + cux

2u+2k
yu+2k + cuβ

′2uy2u(2k+1),

and the coefficients au, bu, cu have to meet the following conditions:

a22k(2k+1)
u = cu, a22k

u b
2k
u = cu, βb

2k+1
u = cuβ

′2u . (5.97)

The first two equations of (5.97) imply bu = a22k
u and cu = b

2k+1
u . Combining the

later result with the third equation of (5.97), it follows that β = β′2
u . Clearly, we can

now find au, bu and cu such that the equations in (5.97) are satisfied. This concludes
our proof.

In Theorem 5.17, we use Theorem 5.13 and, in particular, (5.97) to determine the
automorphism groups of Taniguchi APN functions under EL- and EA-equivalence.
In Theorem 5.28, we present the precise number of inequivalent Taniguchi functions.

After determining the automorphism groups, we will complete the solution to the
equivalence problem of Taniguchi APN functions in Corollary 5.19 by showing that
fk,0,β is CCZ-inequivalent to fk,1,β′ for all admissible β, β′ ∈ F∗2m .

5.5 Automorphism groups of Gold, Zhou-Pott, Carlet and
Taniguchi APN functions

In this section, we present the automorphism groups of Gold, Zhou-Pott, Carlet (for
m even) and Taniguchi APN functions under EL- and under EA-equivalence. For
any function f from these classes, we obtain AutEL(f) from the precise shape of the
EL-mappings we determined in the previous sections. We then use Proposition 4.3
to determine AutEA(f). Recall that Remark 4.2 indicates that if f is a quadratic
APN function on F2n with n ≥ 4, we also have Aut(f) = AutEA(f). Our results will
eventually allow us to determine the equivalence between Zhou-Pott and Taniguchi
APN functions. This will be the final piece needed to complete the study of the
equivalence of Taniguchi APN functions.

We start with Gold APN functions x 7→ x2k+1. Note that Corollary 5.14 is well
known. These results were originally given by Berger and Charpin [8, Proposition 5]
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in a coding theory context. We restate their result to demonstrate how it can be
derived from Theorem 5.1 and Proposition 5.2.

Corollary 5.14. Let f be a Gold APN function on F2n . If n ≥ 5, then AutEL(f) is
isomorphic to the general semi-linear group ΓL(1, 2n) of degree 1 over F2n, and

|AutEL(f)| = n(2n − 1) and |AutEA(f)| = n2n(2n − 1).

If n = 4, then

|AutEL(f)| = 360 and |AutEA(f)| = 5760.

Proof. In Theorem 5.1, we showed that for n ≥ 5, the EL-automorphisms of a Gold
APN function are precisely described by polynomials of the shape L(X) = auX

2u ,
N(X) = a2k+1

u X2u and M(X) = 0. As u ∈ {0, . . . , n − 1} and au ∈ F∗2n , there
exist n(2n − 1) distinct monomials L(X). By fixing u and au, the monomial N(X)
is uniquely determined. Clearly, AutEL(f) is isomorphic to the semilinear group
ΓL(1, 2n), and |AutEL(f)| = n(2n − 1).

If n = 4, we obtain the same number of monomial equivalence mappings as above:
that is 4 · (24 − 1) = 60. Besides these monomials, we now additionally have the
linearized polynomials presented in Proposition 5.2. The coefficients in both possible
shapes of L(X) and N(X) only depend on some au, au+2 ∈ F∗2n , where u ∈ {0, 1},
such that au

au+2
is a non-cube. Consequently, for both polynomial pairs, we have

15 choices for au resulting in 10 choices for au+2. This gives us a total number of
300 = 2 · 15 · 10 distinct pairs of L(X) and N(X). Adding this number to the number
of distinct monomials, we obtain |AutEL(f)| = 60 + 300 = 360.

In both of the above cases, the automorphism group AutEA(f) is obtained from
AutEL(f) using Proposition 4.3.

Berger and Charpin [8] actually showed that for n = 4, the automorphism group
AutEL(f) of the unique Gold APN function f(x) = x3 is isomorphic to the gen-
eral semilinear group ΓL(2, 4). Furthermore, we remark that the automorphism
group AutEA(f) under EA-equivalence of any quadratic APN function f on F24

has order 5760 since there is only one EA-class of quadratic APN functions on F24 .
Therefore, we will only consider F22m with m > 2, when determining the automor-
phism groups of the Zhou-Pott, Carlet and Taniguchi functions in the remainder of
this section.

We next study Zhou-Pott functions. From the proof of Theorem 5.4, we can deduce
the order of their automorphism group under EL-equivalence.

Theorem 5.15. Let m ≥ 4 be even, and let fk,s,α be a Zhou-Pott APN function on
F22m from Theorem 4.6. Then

|AutEL(fk,s,α)| =
{

3m(2m − 1) if s ∈ {0, m2 },
3
2m(2m − 1) otherwise,
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and

|AutEA(fk,s,α)| =
{

3m22m(2m − 1) if s ∈ {0, m2 },
3m22m−1(2m − 1) otherwise.

Proof. We determine |AutEL(fk,α,β)|, then |AutEA(fk,α,β)| follows from Proposi-
tion 4.3.

Using the same notation as in the proof of Theorem 5.4, we count the number
of EL-mappings (L,M,N) that map fk,s,α onto itself. For m ≥ 6, we showed that
LA(X,Y ) and LB(X,Y ) need to be monomials of the same degree 2u as presented
in (5.47), where LA(X,Y ) = auX

2u and LB(X,Y ) = buY
2u , or, if s ∈ {0, m2 },

also as in (5.49), where LA(X,Y ) = auY
2u and LB(X,Y ) = buX

2u . For both
cases, we proved that N1(X) is also a monomial, N2(X) = N3(X) = 0, N4(X) is a
monomial of degree 2u that is uniquely determined by LA(X,Y ) and LB(X,Y ), and
MA(X,Y ) = MB(X,Y ) = 0.

First, we consider the case LA(X,Y ) = auX
2u and LB(X,Y ) = buY

2u . In this case,
N1(X) = cuX

2u . In the proof of Theorem 5.4, we showed that u ∈ {0, . . . ,m− 1}
and the coefficients au, bu, cu ∈ F∗2m have to satisfy the equations a2k+1

u = cu and
αb

2s(2k+1)
u = α2ucu from (5.58). These conditions imply

α2u−1a2k+1
u = b

2s(2k+1)
u . (5.98)

If we divide (5.98) by a2k+1
u , we have a cube on the right-hand side. Consequently,

α2u−1 also needs to be a cube. As gcd(2u − 1, 2m − 1) = 2gcd(u,m) − 1 is divisible
by 3 if and only if gcd(u,m) is even, α2u−1 is a cube if and only if u is even. Since
u ∈ {0, . . . ,m− 1}, we first have m

2 choices for u. Then we may choose au arbitrarily
from F∗2m , which means we have 2m − 1 choices for au. Every choice of au results in
3 choices for bu since x 7→ x2k+1 is a 3-to-1 mapping on F∗2m with m even. Finally,
cu is uniquely determined by au.

If s ∈ {0, m2 }, we can also choose LA(X,Y ) = auY
2u and LB(X,Y ) = buX

2u . Then
N1(X) = cu+sX

2u+s , and u ∈ {0, . . . ,m− 1} and the coefficients au, bu, cu+s ∈ F∗2m
have to satisfy the following equations that are given in (5.60): αb2

s(2k+1)
u = cu+s

and a2k+1
u = α2u+s

cu+s. From these conditions, it follows that

a2k+1
u = α2u+s+1b2

s(2k+1)
u . (5.99)

Dividing (5.99) by b2
s(2k+1)
u , we obtain a cube on the left-hand side. Hence, α2u+s+1

has to be a cube as well. Define r = u + s. Then α2r+1 is a cube if and only if
gcd(2r + 1, 2m − 1) is divisible by 3. It is well known that

gcd(2r + 1, 2m − 1) = 2gcd(2r,m) − 1
2gcd(r,m) − 1

; (5.100)

for a proof we refer to Zhou and Pott [109]. Write m = 2n · q for a positive integer n
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and odd q. Then

gcd(2r,m) =
{

gcd(r,m) if 2n | r,
2 gcd(r,m) if 2n - r.

(5.101)

Combining (5.100) with (5.101), it follows that

gcd(2r + 1, 2m − 1) =
{

1 if 2n | r,
2gcd(r,m) + 1 if 2n - r.

As m is even, 3 divides 2gcd(r,m) + 1 if and only if r is odd. Recall that r = u+ s.
Consequently, if s = 0, then u has to be odd, and if s = m

2 , then u has to be odd if
4 | m, and u has to be even if 4 - m. In summary, in each of these three cases, either
u has to be even or u has to be odd. As u ∈ {0, . . . ,m− 1}, we have, for both u even
and u odd, m

2 choices for u. By the same arguments as above, we then have 2m − 1
possibilities to choose au resulting in 3 choices for bu. Eventually, cu+s is uniquely
determined by the choice of au. Hence, if s ∈ {0, m2 }, then there exist twice as many
EL-automorphisms of fk,s,α as in the case s /∈ {0, m2 }.

We checked the case m = 4 computationally with Magma [16]. According to
Theorem 5.4, there exist two equivalence classes of Zhou-Pott functions on F28 ,
represented by f1,0,α and f1,2,α for an arbitrary non-cube α ∈ F24 . For both functions
we obtained |AutEA(fk,s,α)| by computing the automorphism group Aut(CEAfk,s,α) of
the associated code CEAfk,s,α as described in Section 4.2. The value of |AutEL(fk,s,α)|
then follows from Proposition 4.3. Our computations confirm that for m = 4, the
same formula as for m ≥ 6 holds.

From Theorem 5.15, we derive the automorphism group of Carlet APN functions
on F22m when m is even.

Corollary 5.16. Let m ≥ 4 be even, and let fk,α,β be a Carlet APN function on
F22m from Proposition 4.5. Then

|AutEL(fk,α,β)| = 3m(2m − 1) and |AutEA(fk,α,β)| = 3m22m(2m − 1).

Proof. In Theorem 5.8, we showed that on F22m , where m is even, any Carlet APN
function is EL-equivalent to a Zhou-Pott APN function with s = 0. Consequently,
their automorphism groups under EL- and under EA-equivalence are isomorphic.
The result now follows from Theorem 5.15.

We now focus on Taniguchi APN functions. We can derive the order of their
automorphism group under EL-equivalence from the proof of Theorem 5.13. Note
that Theorem 5.17 only holds for m ≥ 4. If m = 3, the unique Taniguchi APN
function f1,1,β on F26 is EA-equivalent to the APN function x 7→ x3 + ux24 + x10,
where u is primitive in F26 , that was presented by Browning, Dillon, Kibler, and
McQuistan [22]. In this case, |AutEA(f1,1,β)| = 896.
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Theorem 5.17. Let m ≥ 4, and let fk,α,β be a Taniguchi APN function on F22m

from Theorem 4.6. Define β′ = β

α2−k+1 . Then

|AutEL(fk,α,β)| =



3m(2m − 1) if α = 0 and m = 4,
3
2m(2m − 1) if α = 0 and m ≥ 6,

m(2m − 1)
min{u ≥ 1 : β′2u = β′}

if α 6= 0,

and

|AutEA(fk,α,β)| =



3m22m(2m − 1) if α = 0 and m = 4,

3m22m−1(2m − 1) if α = 0 and m ≥ 6,

m22m(2m − 1)
min{u ≥ 1 : β′2u = β′}

if α 6= 0.

Proof. We determine |AutEL(fk,α,β)|, then |AutEA(fk,α,β)| follows from Proposi-
tion 4.3.

If α = 0, then m is even and, according to Proposition 5.10, the Taniguchi APN
function fk,0,β is linearly equivalent to the Zhou-Pott APN function gk,2k,β. Hence,
their automorphism groups are isomorphic, and the result follows from Theorem 5.15.
Note that if m = 4, then k = 1 and 2k = m

2 , whereas for m ≥ 6, we always have
2k 6= m

2 since k and m are coprime.
If α 6= 0, we know from Proposition 5.12 (a) that fk,α,β is linearly equivalent

to fk,1,β′ . We study the case α = 1. For m = 4 the results can be confirmed
computationally with Magma [16] as described for the Zhou-Pott function in the
proof of Theorem 5.15. Assume m ≥ 5. Then the proof of Theorem 5.13 holds,
we use the same notation. We count the number of EL-automorphisms (L,M,N)
of fk,1,β′ . We showed that LA(X,Y ) = auX

2u and LB(X,Y ) = buY
2u . Moreover,

MA(X,Y ) = MB(X,Y ) = 0, N2(X) = N3(X) = 0, and N4(X) = aubuX
2u is a

uniquely determined monomial of degree 2u. Furthermore, N1(X) = cuX
2u . We next

consider the conditions given in (5.97) that u ∈ {0, . . . ,m− 1} and the coefficients
au, bu, cu ∈ F∗2m have to meet. We showed that

bu = a22k
u , cu = b

2k+1
u , and β′2

u = β′.

The number of u such that β′2u = β′ is given by
m

min{u ≥ 1 : β′2u = β′}
.

For every u, we have 2m − 1 choices for au. By fixing au, the coefficients bu and cu
are uniquely determined.

From Theorem 5.17, we easily derive the following result about the inequivalence
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5 Solving equivalence problems of almost perfect nonlinear functions

of Taniguchi and Zhou-Pott APN functions. Recall that Zhou-Pott APN functions
only exist on F22m with m even and that we already solved the case α = 0 in
Proposition 5.10.

Corollary 5.18. Let m ≥ 4 be even. Let fk,α,β, where α 6= 0, be a Taniguchi APN
function on F22m from Theorem 4.8, and let g`,s,γ be a Zhou-Pott APN function on
F22m from Theorem 4.6. Then fk,α,β and g`,s,γ are CCZ-inequivalent.

Proof. We determined the order of the automorphism group under EA-equivalence
for Zhou-Pott and Taniguchi APN functions in Theorem 5.15 and Theorem 5.17,
respectively. Clearly, m

min{u≥1:β′2u=β′} <
3
2m < 3m, which implies |AutEA(fk,α,β)| 6=

|AutEA(g`,s,γ)|. Consequently, the functions are EA-inequivalent. It follows from
Theorem 4.1 that they are also CCZ-inequivalent.

From Corollary 5.18, we eventually derive the final piece to determine the complete
equivalence of Taniguchi APN functions.

Corollary 5.19. Let m ≥ 4 be even. Two Taniguchi APN functions fk,0,β and
f`,α′,β′, where α′ 6= 0, on F22m from Theorem 4.8 are CCZ-inequivalent.

Proof. According to Proposition 5.10, fk,0,β is CCZ-equivalent to a Zhou-Pott APN
function gk,2k,γ from Theorem 4.6. The result now follows from Corollary 5.18.

5.6 On the number of inequivalent APN functions
In this section, we use the results about the equivalence of Zhou-Pott and Taniguchi
APN functions we obtained in the previous sections to precisely determine the number
of CCZ-inequivalent functions within each of these families. For even m, we add
a result about the number of Carlet APN functions. For completeness, we remark
that clearly on F2n , there exist ϕ(n)

2 CCZ-inequivalent Gold APN functions, where ϕ
denotes Euler’s totient function.

We start with the Zhou-Pott functions. Recall that these functions are APN only
if m is even. We obtain the following result immediately from Theorem 5.4.

Corollary 5.20. On F22m, where m ≥ 4 is even, there exist exactly

ϕ(m)
2

(⌊
m

4

⌋
+ 1

)
CCZ-inequivalent Zhou-Pott APN functions fk,s,α from Theorem 4.6, where ϕ denotes
Euler’s totient function.

Proof. According to Proposition 5.3, we may fix α and we only need to consider
0 < k < m

2 and 0 ≤ s ≤ m
2 . We have shown in Theorem 5.4 that for 0 < k, ` < m

2
and 0 ≤ s, t ≤ m

2 , two Zhou-Pott APN functions fk,s,α and f`,t,β on F22m , where m is
even, are CCZ-inequivalent if and only if k 6= ` and s 6= t. We count the number of
distinct parameter pairs (k, s) we can choose: as 0 ≤ s ≤ m

2 and s is even, we have
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5.6 On the number of inequivalent APN functions

bm4 c nonzero choices for s plus the choice s = 0. As 0 < k < m
2 and gcd(k,m) = 1,

we have ϕ(m)
2 choices for k.

In Table 5.1, we present the result of Corollary 5.20 for small values of m. Note
that from computational results, only the number of inequivalent Zhou-Pott APN
functions for m = 4 was known.

In Figure 5.2, we illustrate Corollary 5.20 for m ≤ 1000. The upper bound m(m+4)
16

on the number of inequivalent Zhou-Pott APN functions on F22m holds for all m ≥ 4.
It is sharp whenever m is a power of 2. The lower bound m

√
m

2 holds for m > 210.
From Corollary 5.9, we easily obtain the number of inequivalent Carlet APN

functions on F22m , where m is even. Our computations hint that Corollary 5.21 may
also hold for m odd.

Corollary 5.21. On F22m, where m ≥ 4 is even, there exist precisely ϕ(m)
2 CCZ-

inequivalent Carlet APN functions fk,α,β from Proposition 4.5, where ϕ denotes
Euler’s totient function.

Proof. In Corollary 5.9, we have shown that two Carlet APN functions fk,α,β and
f`,α′,β′ on F22m , where m is even, are CCZ-equivalent if and only if k ≡ ±` (mod m).
As gcd(k,m) = 1, we have ϕ(m)

2 choices for k.

Next, we focus on Taniguchi APN functions. Recall that unlike the Zhou-Pott
APN functions, they exist on F22m for any m. We present the precise number of
CCZ-inequivalent Taniguchi APN functions on F22m in Theorem 5.28. To determine
this number, we count the combinations of admissible parameters that lead to
inequivalent functions. This time, we need to do some preparatory work, though,
as counting all valid β turns out to be quite complicated. Therefore, we remark
that in Corollary 5.29, we give a nice and very good lower bound on the number
of inequivalent Taniguchi APN functions that can be immediately obtained from
Theorem 5.13 in combination with Lemma 5.23.

Recall from Proposition 5.12 that every Taniguchi APN function fk,α,β with α 6= 0
is CCZ-equivalent to a Taniguchi function fk,1,β′ for some β′ ∈ F∗2m . Hence, we only
need to consider functions with α = 0 or α = 1. As we have shown in Proposition 5.10
that fk,0,β is part of the Zhou-Pott family, for which we determined the number of
inequivalent functions in Corollary 5.20, we focus on the case α = 1 first.

In Theorem 5.13, we showed that two Taniguchi APN functions fk,1,β and fk,1,β′

on F22m are CCZ-equivalent if and only if β′ = β2i for some i ∈ {0, . . . ,m − 1}.
Consequently, to obtain the exact number of β that provide inequivalent functions

Table 5.1: Number n(m) of CCZ-inequivalent Zhou-Pott APN functions on F22m for
small values of m.

m 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
n(m) 2 2 6 6 8 12 20 15 24 30 28 42 48 32 72 72
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Figure 5.2: Number of CCZ-inequivalent Zhou-Pott APN functions on F22m for
m ≤ 1000.

for fixed k, we need to determine the number of orbits of β ∈ F∗2m such that the
polynomial X2k+1 +X + β has no root in F2m under the action of the Galois group
Gal(F2m/F2). We will do so in Proposition 5.27 with the help of the following series
of lemmas.

First, in Lemma 5.22, we present a special case of a result by Bluher [13], who
determined the possible numbers of roots of the polynomial Xpk+1 +X + β in Fpm
for any prime p and integers k and m. We only restate her result for p = 2.

Lemma 5.22. Let k,m be positive integers. For any β ∈ F∗2m, the polynomial
P (X) = X2k+1 +X + β has either none, one, two or 2gcd(k,m) + 1 roots in F2m. In
particular, if gcd(k,m) = 1, then P (X) has either none, one or three roots in F2m.

Bluher [13, Theorem 5.6] additionally determined the number of β ∈ F∗pm such
that Xpk+1 +X +β has none, one, two or pgcd(k,m) + 1 roots in Fpm . In Lemma 5.23,
we present her result for p = 2, gcd(k,m) = 1 and X2k+1 +X + β having no root
in F2m . In this specific form, the result was also given by Helleseth and Kholosha [68,
Theorem 1].

Lemma 5.23. The number of β ∈ F∗2m such that the polynomial X2k+1 +X + β has
no root in F2m is 2m−1

3 if m is even and 2m+1
3 if m is odd.
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5.6 On the number of inequivalent APN functions

To determine the number of orbits under the action of Gal(F2m/F2) into which
all β from Lemma 5.23 decompose, we need the following technical lemmas.1

Lemma 5.24. If k is a positive integer coprime to 3, then 3k does not divide 2k + 1.

Proof. Assume, by way of contradiction, that 3k | 2k + 1. By the Chinese Remainder
Theorem, 2k ≡ −1 (mod 3), which means that k is odd. Write k = pt11 · · · ptss for
primes p1, . . . , ps such that 3 < p1 < p2 < · · · < ps and integers ti ≥ 1 for i = 1, . . . , s.
For convenience, set p = p1 and t = t1 for the remainder of this proof.

Using the Chinese Remainder Theorem again, we also obtain 2k ≡ −1 (mod pt).
Denote Euler’s totient function by ϕ. Since 22k ≡ 1 (mod pt), and the unit group of
the integer ring Zpt has order ϕ(pt), it follows that the multiplicative order ordpt(2)
of 2 modulo pt divides gcd(2k, ϕ(pt)). Note that ϕ(pt) = (p−1)pt−1. Clearly, p−1 is
even. Moreover, p−1 is not divisible by pi for any i ∈ {1, . . . , s} as p−1 < pi for all i.
Recalling that k = ptpt22 · · · ptss , it follows that gcd(2k, ϕ(pt)) = 2pt−1. Consequently,
22pt−1−1 ≡ 0 (mod pt), which implies 4pt−1−1 ≡ 0 (mod p). As 4p ≡ 4 (mod p), we
obtain 4− 1 ≡ 0 (mod p), and it follows that p = 3. This contradicts the assumption
that 3 < p.

Lemma 5.25. Let k and m be positive integers satisfying gcd(k,m) = 1. Write
m = pr for a prime p and an integer r. Let β ∈ F∗2r such that the polynomial
P (X) = X2k+1 +X + β has no root in F2r .

(a) If p 6= 3, then P (X) has no root in F2m.

(b) If p = 3, then P (X) has exactly three roots in F2m.

Proof. Set σ(x) = x2r for x in any extension of F2r . We show (a) first. Let p 6= 3 be
a prime such that m = pr for some integer r. By way of contradiction, suppose that
P (X) has a root x0 ∈ F2m . Then x0, σ(x0), . . . , σp−1(x0) have to be p distinct roots
of P (X) in F2m because σ(P (x0)) = σ(x0)2k+1 + σ(x0) + β = 0 and p is prime. It
follows from Lemma 5.23 that if P (X) has more than one root in F2m , then P (X)
has exactly three roots in F2m . This contradicts the assumption that p 6= 3.

We next prove (b). Now p = 3, so m = 3r. If P (X) has at least one root in F2m ,
then by the proof of (a), it has exactly three roots in F2m , and we are done.

Assume, by way of contradiction, that P (X) has no root in F2m . First, if k = 1,
then P (X) has degree 3 and is irreducible over F2r . Therefore, P (X) splits over F2m ,
which contradicts our assumption.

From now on, suppose k > 1. We write P (X) = P1(X)P2(X) · · ·Ps(X) for
irreducible polynomials P1(X), . . . , Ps(X) ∈ F2m [X]. Since the degree 2k + 1 of
P (X) is odd, at least one of the polynomials P1(X), . . . , Ps(X) has odd degree. Let
j∗ ∈ {1, . . . , s} such that Pj∗(X) has odd degree and is of minimal degree among
all polynomials Pj(X) of odd degree. We denote ` = deg(Pj∗(X)) and remark that
` ≥ 3 since P (X) has no root in F2m . The polynomial Pj∗(X) now splits over F2m` ,

1The results in Lemma 5.24–Proposition 5.27 are mainly based on the work by Yue Zhou.
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which is an extension of F2m with [F2m` : F2m ] = `. Consequently, P (X) has at
least ` roots in F2m` , and there is no root of P (X) in any proper subfield of F2m`
containing F2m .

As ` ≥ 3, it follows from Lemma 5.22 that P (X) has exactly 2gcd(m`,k) + 1 roots
in F2m` . Define h = gcd(m`, k), and note that this implies h = gcd(`, k). If
h = 1, then P (X) has three roots in F2m` , and these roots are also elements of
F2m since m = 3r. This contradicts our assumption that P (X) has no root in
F2m . Hence, assume h > 1. We show that 3` | 2h + 1. We may regard σ as an
element in Gal(F2m`/F2r). If 3 - `, then it is clear that x0, σ(x0), . . . , σ3`(x0) are
pairwise distinct for any root x0 of P (X) in F2m` . We show that this also holds
if 3 | `. Suppose 3 | ` and σj(x0) = x0 for some j < 3` with j | 3`. This means
[F2r(x0) : F2r ] = j. Thus,

[F2m(x0) : F2m ] =
{
j if 3 - j,
j/3 if 3 | j.

By definition, we have F2m` = F2m(x0). Consequently, if 3 - j, it follows that j = `,
which is a contradiction to the assumption that 3 | `. If 3 | j, we obtain ` = j/3,
which contradicts the assumption j < 3`.

Therefore, 3` divides 2h + 1. As h | `, we obtain in particular 3h | 2h + 1. By
Lemma 5.24, this implies gcd(h, 3) > 1. As m = 3r and h | k, it follows that
gcd(m, k) > 1, which is a contradiction.

For any two coprime positive integers k and m, define

Φ(m) = {β ∈ F∗2m : X2k+1 +X + β has no root in F2m} (5.102)

and
M(m) = |Φ(m)|

and

N(m) =
∣∣{β ∈ Φ(m) : β /∈ F2m′ for all m′ < m with m′ | m}

∣∣ . (5.103)

According to Lemma 5.23,

M(m) = 2m + (−1)m+1

3 . (5.104)

In the following Lemma 5.26, we determine the exact value of N(m).

Lemma 5.26. Let m be a positive integer. Write m = 3n0
∏t
i=1 p

ni
i , where n0 is

a non-negative integer, p1, . . . , pt are distinct prime numbers, and n1, . . . , nt are
positive integers. If t = 0, which means m = 3n0 and, in particular, includes the case
m = 1, then

N(m) = 2m + 1
3 .
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5.6 On the number of inequivalent APN functions

If t ≥ 1, then

N(m) = 1
3
(
2m −

t∑
i=1

2
m
pi +

t∑
i,j=1,
j 6=i

2
m
pipj − . . .

· · ·+ (−1)`
t∑

i1,...,i`=1
pairwise distinct

2
m

pi1 ···pi` + · · ·+ (−1)t · 2
m

p1p2···pt − ε
)
,

(5.105)

where

ε =
{

2 if t = 1 and m ≡ 2 (mod 4),
0 otherwise.

Proof. By definition, to determine N(m), we take Φ(m), and for every proper subfield
F2m′ of F2m , we exclude each element in Φ(m) ∩ F∗2m′ from Φ(m).

We first consider the case t = 0. If n0 = 1, which means m = 1, then X2k+1 +X+β
has no root in F2 if and only if β = 1. Hence, N(1) = 1. If n0 ≥ 1, by Lemma 5.25,

Φ(m) ∩ F2m′ =
{
∅ if 3m′ | m,
Φ(m′) if 3m′ - m.

Consequently, we obtain N(3n0) = M(3n0) and, by (5.104), M(3n0) = 2m+1
3 .

From now on, assume t ≥ 1. Then, by the inclusion–exclusion principle,

N(m) = M(m)−
t∑
i=1

M

(
m

pi

)
+

t∑
i,j=1,
j 6=i

M

(
m

pipj

)
− · · ·

· · ·+ (−1)`
t∑

i1,...,i`=1
pairwise distinct

M

(
m

pi1 · · · pi`

)
+ · · ·+ (−1)tM

(
m

p1 · · · pt

)
.

(5.106)

First, suppose m 6≡ 2 (mod 4), which means either m is odd or 4 | m. If m is odd,
then m′ is odd for all m′ | m. If 4 | m, then m′ is even for all m′ = m

pi1 ···pi`
that occur

in (5.106). Consequently, in these two cases, by (5.104), we have

M(m′) = 2m′ + (−1)m+1

3 (5.107)
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for any m′ = m
pi1 ···pi`

occurring in (5.106). Plugging (5.107) into (5.106), we obtain

N(m) = 1
3

(
2m −

t∑
i=1

2
m
pi +

t∑
i,j=1,
j 6=i

2
m
pipj − · · ·+ (−1)t · 2

m
p1p2···pt

)

+ (−1)m+1

3

(
1−

(
t

1

)
+
(
t

2

)
− · · ·+ (−1)t

)
.

(5.108)

Note that the last sum of (5.108) equals zero, which can be seen using the binomial
identity (x+ y)n = ∑n

k=0
(n
k

)
xn−kyk with x = 1 and y = −1 (or vice versa).

If m ≡ 2 (mod 4), we set p1 = 2 and n1 = 1. By (5.104),

M(m′) =


2m′+1

3 if m′ = m
2pi2 ···pi`

,

2m′−1
3 if m′ = m

pi1 ···pi`
and i1, . . . , i` 6= 1.

(5.109)

Plugging (5.109) into (5.106), we obtain

N(m) = 1
3

(
2m −

t∑
i=1

2
m
pi +

t∑
i,j=1,
j 6=i

2
m
pipj − · · ·+ (−1)t · 2

m
p1p2···pt

)

+ 1
3

t∑
i=0

(−1)i
((

t− 1
i− 1

)
−
(
t− 1
i

))
.

(5.110)

We show where the last sum of (5.110) is coming from and which values it can
take. If t = 1, then m = 3n0 · 2. Note that m is even and m

2 is odd. Hence, in this
case, N(m) = M(m)−M(m2 ) = 2m − 2m2 − 2, and the last sum of (5.110) equals −2.
Now assume t > 1. Consider

t∑
i1,...,i`=1

pairwise distinct

M

(
m

pi1 · · · pi`

)
(5.111)

from (5.106) for some ` ∈ {1, . . . , t}. This sum consists of
(t
`

)
terms. Assume

pi1 < pi2 < · · · < pi` . If i1 = 1, which means pi1 = 2, then m
2pi2 ···pi`

is odd. In this
case, there exist

(t−1
`−1
)

ways to choose pi2 , . . . , pi` . On the contrary, if i1 6= 1, then
m

pi1 ···pi`
is even, and we can choose pi1 , . . . , pi` in

(t−1
`

)
ways. Combining these results

with (5.109), the sum in (5.111) consists of
(t−1
`−1
)

terms of the form 2m′+1
3 and

(t−1
`

)
terms of the form 2m′−1

3 . By similar reasoning as in the case m 6≡ 2 (mod 4), the
last sum of (5.110) is zero if t > 1.

In Proposition 5.27, we determine the number of orbits under the action of
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Gal(F2m/F2) into which Φ(m) decomposes.

Proposition 5.27. Let m be positive integer. Let Φ(m) as in (5.102), and define

B(m) =
{
{β2i : i ∈ {0, . . . ,m− 1}} : β ∈ Φ(m)

}
as the set of orbits of β ∈ F∗2m for which X2k+1 +X + β has no root in F2m under
the action of the Galois group Gal(F2m/F2). Moreover, define b(m) = |B(m)|. Then

b(m) =
∑

m′|m, 3- m
m′

N(m′)
m′

,

where N(m′) is defined as in (5.103) and can be calculated as in Lemma 5.26.

Proof. In any subfield F2m′ of F2m , the number of orbits of β ∈ Φ(m)∩F∗2m′ under the
action of Gal(F2m′/F2) that have full length m′ is N(m′)

m′ . It follows from Lemma 5.25
that we only need to consider the orbits in F2m′ with 3 - [F2m : F2m′ ]. Adding all
these numbers gives b(m).

With the help of Proposition 5.27, we can eventually determine the precise number
of CCZ-inequivalent Taniguchi APN functions on F22m .

Theorem 5.28. Let m ≥ 3, and denote by n(m) the number of CCZ-inequivalent
Taniguchi APN functions fk,α,β on F22m from Theorem 4.8. Then

n(m) =


ϕ(m)b(m)

2 if m is odd,

ϕ(m)(b(m) + 1)
2 if m is even,

where ϕ denotes Euler’s totient function and b(m) is as defined in Proposition 5.27.

Proof. Let m ≥ 3. Thanks to Proposition 5.12, we only need to consider α ∈ {0, 1}
and 0 < k < m

2 . We study functions with α = 1 first. According to Theorem 5.13, for
0 < k, ` < m

2 , two Taniguchi APN functions fk,1,β and f`,1,β′ are CCZ-equivalent if
and only if k = ` and β = β′2

i for some i ∈ {0, . . . ,m− 1}. We count the number of
pairs (k, β) leading to inequivalent APN functions. As 0 < k < m

2 and gcd(k,m) = 1,
we have ϕ(m)

2 choices for k. The number of admissible β ∈ F∗2m is given by b(m)
from Proposition 5.27. If m is odd, then these are all inequivalent Taniguchi APN
functions.

If m is even, according to Corollary 4.10 (b), there also exist Taniguchi APN
functions with α = 0. In this case, it follows from Corollary 5.19 in combination
with Corollary 5.11 that for every valid choice of k, there is additionally exactly
one Taniguchi APN function fk,0,β up to CZZ-equivalence. It is inequivalent to all
functions with α 6= 0. As before, we have ϕ(m)

2 choices for k.
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Table 5.3: Number n(m) of CCZ-inequivalent Taniguchi APN functions on F22m for
certain values of m.

m 4 5 6 7 8 9 10 11 12 13 14 15 16
n(m) 3 6 5 21 26 57 74 315 234 1 266 1 185 2 916 5 492

bound 2 6 4 21 22 57 70 315 228 1 266 1 173 2 916 5 464

m 17 18 19 20 21 22 23 24
n(m) 20 568 14 595 82 791 69 988 199 734 317 915 1 337 325 932 308

bound 20 568 14 565 82 791 69 908 199 734 317 755 1 337 325 932 068

m 25 30 40 50 100
n(m) 4 473 950 47 723 332 73 300 845 320 ≈ 7.5 · 1013 ≈ 8.5 · 1028

bound 4 473 930 47 721 860 73 300 775 192 ≈ 7.5 · 1013 ≈ 8.5 · 1028

In Corollary 5.29, we give a nice lower bound on the number from Theorem 5.28.
It becomes obvious that the number of inequivalent quadratic APN functions on
F22m grows exponentially in m.

Corollary 5.29. Let m ≥ 3, and denote by n(m) the number of CCZ-inequivalent
Taniguchi APN functions on F22m from Theorem 4.8. Then

n(m) ≥ ϕ(m)
2

⌈2m + 1
3m

⌉
,

where ϕ denotes Euler’s totient function.

Proof. Define B(m) and b(m) as in Proposition 5.27. The value of b(m) is minimal
if all the orbits in B(m) have full length m. By Lemma 5.23, this implies

b(m) ≥


⌈

2m−1
3m

⌉
if m is even,⌈

2m+1
3m

⌉
if m is odd.

Clearly,
⌈

2m−1
3m

⌉
=
⌈

2m+1
3m

⌉
for all m ≥ 3. The result now follows from Theorem 5.28.

In Table 5.3, we list the exact number of CCZ-inequivalent Taniguchi APN functions
obtained from Theorem 5.28 for certain values of m. From computational results,
this number was only known for m ≤ 4. Recall that for m = 2 and m = 3, there is
only one Taniguchi APN function up to CCZ-equivalence. We additionally compare
these numbers to the lower bound established in Corollary 5.29. Clearly, the bound
is very close to the actual number of Taniguchi APN functions.
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6.1 Difference families
In this thesis, we studied the isomorphism problem for three pairs of near-complete
(v, k, k − 1) disjoint difference families in Galois rings and finite fields. All the
constructions in Galois rings were inspired by a well-known construction in finite
fields that was introduced in 1972 by Wilson [102]. By carefully calculating and
bounding block intersection numbers of the associated designs, we managed to
completely solve two of the isomorphism problems, see Section 3.2 and Section 3.4,
and partially solve the third one, see Section 3.3.

In general, isomorphism problems of combinatorial designs are hard problems. Our
results demonstrate that the block intersection number approach to tackle these
problems, while promising in some cases, has its limitations in general. To make the
approach work, one needs designs that have a sufficiently strong algebraic structure.
Only then, it is possible to calculate or at least bound these numbers.

In our case, we were able to use the existing rich theory about cyclotomic numbers
to completely determine the block intersection numbers of the designs coming from
finite fields. Fortunately, in all our cases, Wilson’s [102] difference families provided
uniform or almost uniform cyclotomic numbers, so that we could easily calculate
them. Otherwise, their determination would have been difficult.

Thus, we knew the intersection numbers of the designs from finite fields, and
we only needed to show that the designs from Galois rings have at least one block
intersection number different from the intersection numbers of the finite fields designs.
For Momihara’s [84] difference family, which has the most structure among the
Galois ring difference families we studied, we calculated such an intersection number
and thereby solved the isomorphism problem. For the difference family by Davis,
Huczynska, and Mullen [43], we were also able to determine one intersection number
in the case p = 2, while for odd p we could bound an intersection number, so that we
also solved this isomorphism problem. For our newly constructed difference family
from Theorem 2.7, however, we were only able to partially solve the isomorphism
problem by bounding an intersection number in the case pr − 1 ≡ 0 (mod 24).

Despite these mixed results, we still consider the block intersection number ap-
proach promising to tackle isomorphism problems of combinatorial designs, especially
if the designs are constructed as the development of some difference structure. The
strong connection between block intersection numbers and multiplicities of differences
that we emphasized in Remark 3.2 will often provide ways to obtain useful results
about the intersection numbers.

We conclude by listing several interesting open problems about difference families
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and their developments that we stumbled upon in the course of our study:

• Our computations hint that Wilson’s [102] difference family from Theorem 2.4
and our difference family from Theorem 2.7 are always nonisomorphic and not
only in the case pr − 1 ≡ 0 (mod 24) that we described in Theorem 3.23. We
leave the task to prove this conjecture to future work.

• The construction of a disjoint difference family in the Galois ring GR(p2, r)
presented in Theorem 2.7 does not only work for the subgroup of squares in
the Teichmüller group but for all its subgroups. Moreover, there will always be
an analogous difference family in the finite field Fp2r . It would be interesting
to study the isomorphism problem in all these cases. It might be possible to
deduce more block intersection numbers from the ones given in Proposition 3.3
and Proposition 3.16.

• In Remark 3.5, we have conjectured all the block intersection numbers and
their multiplicities of Momihara’s [84] designs. Since it is always helpful to
know isomorphism invariants of combinatorial objects, it would be nice to prove
this conjecture.

• As mentioned before, Momihara’s [84] difference family has a strong structure.
In Section 2.5, we used this structure to obtain a new divisible difference
family in Galois rings. A deeper study of the difference relations within and
between the base blocks of Momihara’s [84] difference family could lead to more
interesting results and perhaps new types of difference families.

• As mentioned in Section 3.1, nonisomorphic designs can have the same block
intersection numbers. To get a better understanding of how useful intersection
numbers are as an isomorphism invariant, it would be interesting to find more
difference families as in Example 3.4, for which the associated designs have the
same intersection numbers but are still nonisomorphic.

6.2 Almost perfect nonlinear functions
In this thesis, we completely determined the equivalence of two infinite families of
quadratic non-power APN functions of the form f(x, y) = (g(x, y), xy) that were
introduced by Zhou and Pott [109] and Taniguchi [100]. Moreover, we added some
results about the equivalence of APN functions of a similar form introduced by
Carlet [36]. In Table 6.1, we summarize our results for these three families.

From these results, we were able to derive the exact number of CCZ-inequivalent
APN functions contained in the Zhou-Pott and in the Taniguchi family. By showing
that the number of Taniguchi APN functions on F22m grows exponentially in m, we
established the first nontrivial lower bound on the total number of CCZ-inequivalent
APN functions. Up to now, we have solely had computational results about this
number, but only for n ≤ 8. The only infinite families for which the equivalence had
been completely determined were power APN functions.
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Table 6.1: Equivalence of APN functions of the form f(x, y) = (g(x, y), xy) on F22m

Class g(x, y) Conditions

Zhou-Pott
[109, 2]

x2k+1 + αy(2k+1)2s m even, gcd(k,m) = 1, s even,
α ∈ F∗2m not a cube

fk,s,α
CCZ∼ f`,t,α′ iff k ≡ ±` (mod m) and s ≡ ±t (mod m)

Carlet
[36, 100]

x2k+1 + αxy2k + βy2k+1 gcd(k,m) = 1, X2k+1 + αX + β
has no root in F2m

if m even: fk,α,β
CCZ∼ f`,α′,β′ iff k ≡ ±` (mod m),

contained in Zhou-Pott

Taniguchi
[100]

x22k(2k+1) + αx22k
y2k + βy2k+1 gcd(k,m) = 1, X2k+1 + αX + β

has no root in F2m

if α, α′ 6= 0: fk,α,β
CCZ∼ f`,α′,β′ iff k ≡ ±` (mod m) and β = β′2i ,

inequivalent to Zhou-Pott

if α = α′ = 0: fk,α,β
CCZ∼ f`,α′,β′ iff k ≡ ±` (mod m),

contained in Zhou-Pott

In the course of our study, the following problems remained open:

• As pointed out in Remark 4.2, it seems that on F2n with n ≥ 4, for any quadratic
APN function f , we have Aut(f) = AutEA(f). This result apparently follows
implicitly from Yoshiara’s [106] proof of Theorem 4.1 in combination with a
result by Dempwolff and Edel [44, Theorem 4.10]. It would be very helpful to
have a direct proof of this result.

• In Corollary 5.21, we showed that for even m, there exist ϕ(m)
2 CCZ-inequivalent

Carlet APN function on F22m , and in Corollary 5.16, we determined the
automorphism group of Carlet APN functions for m even. Our computations
hint that these results also hold if m is odd. As this would imply that the
Carlet APN class contains only few inequivalent members, we did not pursue
solving the equivalence problem for m odd any further. Nevertheless, it would
be nice to have a complete characterization of the equivalence relations of
Carlet functions.

More generally, our results may shift the focus of research on APN functions onto
the following open problems:

131



6 Conclusion and outlook

• The lower bound on the total number of CCZ-inequivalent APN functions on
the finite field F2n established in this thesis only holds for even n. It will be
interesting to find a similar bound for n odd. Several of the infinite families in
the list by Budaghyan, Calderini, and Villa [24, Table 3] also exist for odd n,
so this may be a good starting point. Note, however, that for n odd, we cannot
use the bivariate description that proved to be helpful in this thesis.

• Our results demonstrate that there are a great number quadratic APN functions
on F22m , all of which have the classical Walsh spectrum. Thus, the efforts to
find new APN functions may focus on the search for non-quadratic functions
and functions with a non-classical Walsh spectrum. So far, only one non-power
APN function that is not equivalent to a quadratic function is known, and lately,
there was not much progress regarding this problem. Recent computational
results by Beierle and Leander [7], however, show that there exist numerous
APN functions with non-classical Walsh spectra. It would be great to find an
infinite family that contains non-power APN functions with a non-classical
Walsh spectrum.

• The APN permutation on F26 by Browning, Dillon, McQuistan, and Wolfe [21],
which is the lone APN permutation on F2n with n even, is CCZ-equivalent to
a quadratic function. Hence, it remains interesting to study quadratic APN
functions with the goal of getting closer to a solution to The Big APN problem.
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