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Chapter 1

Introduction

This dissertation is devoted to an important branch of optimization theory known as set

optimization. Roughly speaking, this is the class of mathematical problems dealing with the

minimization of set-valued mappings acting between two normed spaces, where the image space

is partially ordered by a closed, convex, and pointed cone. These problems generalize vector op-

timization models and have received considerable attention during the past decades due to their

applications in finance [49, 74], socio-economics [18, 135], robotics [89], and robust multiobjective

decision making [46, 86].

There are two main approaches for defining optimal solutions of a set optimization problem,

namely the vector approach and the set approach. In the vector approach, one looks for minimal

points in the image set of the set-valued objective mapping [89]. Thus, in this case, an optimal

set is selected by identifying just one of its elements, without taking into account the rest of

the set. However, in some practical scenarios, this feature poses an important drawback from

the modelling point of view, therefore restricting the range of applications they can describe.

The set approach is an attempt to overcome this problem, and it is the solution concept that

we will mainly use in this work. The idea there lies on comparing sets with respect to a binary

relation (usually a preorder) defined on the power set of the image space, and to consider

minimal solutions accordingly. To the best of our knowledge, the first of these set relations

were introduced independently by Young [158] and Nishnianidze [136], and later by Kuroiwa

[117, 119]. Moreover, recently new set relations were defined by Jahn and Ha [95], and Karaman

et al. [100]. On the other hand, set optimization problems and their solution concepts with

respect to the set approach were considered for the first time by Kuroiwa in [115]. Since then,

the research in this area has grown intensively, and different directions have been pursued. A non

exhaustive list of topics considered are, among others, the existence of solutions [2, 78, 95, 119,

120, 127], duality statements [79, 77, 116, 118], well-posedness [35, 37, 62, 64, 75, 76, 125, 126],

optimality conditions [2, 3, 11, 38, 69, 70, 91, 93, 109, 113, 137, 140, 142], and algorithms

[46, 48, 65, 66, 85, 86, 90, 94, 97, 107, 110, 112, 146]. We refer the reader to [89, 106, 130] for a

comprehensive overview of the field.

On the other hand, scalarization techniques are a fundamental tool in vector and set opti-
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mization, both from the theoretical and the computational point of view. Roughly speaking,

this technique consists in replacing the vector or set optimization problem by a parametric fam-

ily of so called scalarization problems. By a scalarization problem, we understand a standard

optimization problem whose solution set has connections to that of the initial one. Scalarization

problems are typically created by minimizing the composition of a so called scalarizing func-

tional with the vector- (set-)valued objective mapping of the vector (set) optimization problem,

and perhaps adding some additional constraints. Moreover, these scalarizing functionals, as well

as the additional constraints, depend on certain parameters. Thus, because of their connection

with the initial vector optimization or set optimization problem, scalarization techniques have

been successfully employed as a solution method (by solving for each value of the admissible

parameters the corresponding scalarization problem), or as an intermediate tool to obtain results

in other topics. In fact, they have been of utmost importance in some of the lines of research

mentioned above.

In vector optimization, there are already several scalarization techniques discussed in the

literature, see [47] for a general overview. Furthermore, some of them have been extended to the

set-valued context. In particular, many authors have studied generalizations of the nonlinear

separating functionals introduced by Gerstewitz [56] (compare [55] and [57]) and by Hiriart-

Urruty [81], see [7, 30, 63, 73, 80, 98, 107, 123]. In this dissertation, we derive optimality

conditions and algorithms for set optimization problems using scalarizing functionals as the

main tool. The highlights are the following:

• We provide a unified characterization of different classes of scalarizing functionals from

the literature, and introduce a new class extending the previous ones.

• We obtain new necessary optimality conditions for set optimization problems using tools

from variational analysis.

• We propose a steepest descent method for a particular class of set optimization problems.

In the rest of this chapter we discuss the structure of the dissertation. With the intention

of making the exposition as self-contained as possible, we start in Chapter 2 by introducing the

relevant mathematical concepts and results that will be used in our work.

Chapter 3 deals with different classes of scalarizing functionals. In a first part, we establish

relationships between three of the well known classes in the sense of inclusion. The elements

in these classes of functionals are sublinear, and we completely determine their relationships.

In a second part, we introduce a new class of scalarizing functionals whose elements are not

necessarily sublinear, but rather can be expressed as the difference of sublinear functionals.

There, we examine relationships of inclusion between this new class and the classes previously

considered. Moreover, we discuss important connections with set optimization.

In Chapter 4, we establish the main results concerning optimality conditions for set opti-

mization problems where the solution concept is given by the set approach. Specifically, we deal

with the so called lower set less and upper set less preorder relations. Motivated by the results
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obtained in the literature and in Chapter 3, we introduce two extended real valued functionals

that are induced by the so called Gerstewitz-Weidner functional and the set-valued objective

mapping. These functionals are associated to each of the set relations. First, we show that

they inherit different properties from the set-valued objective mapping. We then study the

limiting subdifferential of these functionals. The estimated subdifferential, together with the

properties of the functionals, allow us to obtain Fermat rules for set optimization problems with

Lipschitzian data.

Chapter 5 examines a first order solution method for a particular class of set optimization

problems. In this case, the images of the set-valued objective mapping are of finite and equal

cardinality. We further assume that the set-valued mapping can be decomposed into a finite

number of selections that are continuously differentiable. In the first part of the chapter, we

develop tailored optimality conditions for problems with that particular structure. These opti-

mality conditions differ from the ones studied in Chapter 4, and exploit the assumptions on the

set-valued mapping. In the second part, based on the previously derived optimality conditions,

we propose the descent method and its convergence analysis. Moreover, we also discuss the im-

plementation of the algorithm, and illustrate some of the results obtained on different instances

previously considered in the literature.

Finally, in Chapter 6, we summarize our contributions and establish some further lines of

research.



Chapter 2

Mathematical Preliminaries

In this chapter we provide an exposition of the most important theorems and definitions em-

ployed in the thesis. We assume that the reader is already familiar with the topological notions

of the real line and with the basic operations in set theory. The chapter is organized as follows.

Since we will be working in the setting of normed spaces, we start by recalling in Section 2.1

elements of functional analysis. Specifically, the dual space construction, the separation theo-

rem, and the w∗- topology will be presented. In Section 2.2, we consider binary relations and

their relationships with cones in a vector space. In particular, we also present the definitions of

the set relations we are going to deal with and some basic results related to them. In Section

2.3, we recall different tools from set-valued and variational analysis. In this case, the notions of

limiting subdifferential of a functional and coderivatives of a set-valued mapping will prove to

be a key concept when deriving optimality conditions for set optimization problems. Section 2.4

formally introduces vector and set optimization problems, together with the different solution

concepts. We conclude in Section 2.5 by considering several types of scalarizing functionals and

their properties.

2.1 Fundamentals of Functional Analysis

We start with some fundamental notions of sets that will be used very often. As usual, the

symbols R,R+,R++ and N stand for the set of real numbers, the set of nonnegative real numbers,

the set of positive real numbers and the set of positive natural numbers respectively. In addition,

the set of extended real numbers is R := R ∪ {−∞,+∞}.
Given sets A and B, their union, intersection, difference and cartesian product are denoted

respectively by A ∪B,A ∩B,A \B and A×B. In addition, if the set A is finite, we denote its

cardinality by |A|. Furthermore, we denote the class of all nonempty subsets of A by P(A). We

now recall the basic notion of a vector space.

Definition 2.1.1. Let X be a nonempty set and consider two mappings + : X ×X → X and

· : R×X → X that will act as sum and multiplication by a scalar respectively. The tuple (X,+, ·)
is called a real vector space if the following conditions are satisfied:

4
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(i) ∀ x1, x2, x3 ∈ X : (x1 + x2) + x3 = x1 + (x2 + x3),

(ii) ∀ x1, x2 ∈ X : x1 + x2 = x2 + x1,

(iii) ∃ 0 ∈ X : ∀ x ∈ X : x+ 0 = x,

(iv) ∀ x1 ∈ X, ∃ x2 ∈ X : x1 + x2 = 0; we write x2 = −x1,

(v) ∀ x1, x2 ∈ X, ∀ t ∈ R : t(x1 + x2) = tx1 + tx2,

(vi) ∀ x ∈ X, ∀ t1, t2 ∈ R : (t1 + t2)x = t1x+ t2x,

(vii) ∀ x ∈ X, ∀ t1, t2 ∈ R : t1(t2x) = (t1t2)x,

(viii) ∀ x ∈ X : 1x = x.

If there is no risk of confusion, we say that X is a vector space, and we omit the internal

operations. The element 0 is also called the origin. Furthermore, for A,B ⊆ X and a scalar

t ∈ R, the sum of sets and the multiplication by a scalar are given by tA := {ta | a ∈ A} and

A+B := {a+ b | a ∈ A, b ∈ B} respectively.

Very important concepts under a vector space structure are those related to linearity and

convexity, which we define next.

Definition 2.1.2. Let X be a vector space and A be a nonempty subset of X.

(i) We say that A is a subspace of X if for every t1, t2 ∈ R : t1A+ t2A ⊆ A.

(ii) The set A is said to be convex if for every t ∈ [0, 1] : tA+ (1− t)A ⊆ A.

(iii) The convex hull of A, denoted by convA, is defined as

convA :=
⋂
{A′ ⊇ A | A′ convex }.

As usual, a functional is understood as an operator whose range of values is contained in R.
Furthermore, for a set-valued mapping F : X ⇒ Y and nonempty subsets A and B of X and Y

respectively, we put

F [A] :=
⋃
x∈A

F (x), F−1[B] := {x ∈ X | F (x) ∩B 6= ∅}.

We also denote by f |A the restriction of the vector-valued function f : X → Y to the set A,

that is, f |A : A→ Y is defined as

f |A(x) = y ⇐⇒ x ∈ A, y = f(x).

Below we establish some of the main algebraic definitions associated to functionals defined

on a vector space.
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Definition 2.1.3. Let X be a vector space and f : X → R be a given functional. The domain

and the epigraph of f are defined respectively as

dom f := {x ∈ X | f(x) < +∞},

epi f := {(x, t) ∈ X × R | f(x) ≤ t}.

Furthermore, f is said to be proper if dom f 6= ∅ and f(x) > −∞ for every x ∈ X.

Definition 2.1.4. Let X be a vector space and f : X → R be a given functional.

(i) We call f additive if

∀ x1, x2 ∈ X : f(x1 + x2) = f(x1) + f(x2).

If

∀ x1, x2 ∈ X : f(x1 + x2) ≤ f(x1) + f(x2),

we say that f is subadditive.

(ii) We call f homogeneous if

∀ t ∈ R, x ∈ X : f(tx) = tf(x).

If the above equality is only satisfied for t ∈ R+, we say that f is positive homogeneous.

(iii) We say that f is linear if it is finite valued, additive, and homogeneous. If f is only

subadditive and positve homogeneous, we say that it is sublinear.

(iv) Suppose that A ⊆ X is convex. We say that f is convex on A if the inequality

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

holds for all t ∈ [0, 1] and x1, x2 ∈ A for which the right hand side is well defined.

Definition 2.1.5. Let X be a vector space and A ⊆ X be nonempty. The indicator functional

of the set A is δA : X → R defined as

δA(x) :=

{
0 if x ∈ A,
+∞ otherwise .

Next, we turn our attention to topological spaces.

Definition 2.1.6. Let X be a nonempty set, and T be a family of subsets of X. We say that

the pair (X, T ) is a topological space if T satisfies the following conditions:
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(i) ∅, X ∈ T ,

(ii) the union of elements in T belongs to T ,

(iii) the finite intersection of sets in T belongs to T .

The elements of T are called open sets. Furthermore, a subset of X is said to be closed if its

complement is open.

We define now some basic topological concepts.

Definition 2.1.7. Let (X, TX) and (Y, TY ) be topological spaces, A ⊆ X, x̄ ∈ X, and f : X → Y

be a given vector-valued function.

(i) The interior of A is the set denoted by intA and given by

intA :=
⋃
{A′ ⊆ A | A′ open }.

(ii) The closure of A is the set denoted by clA and defined as

clA :=
⋂
{A′ ⊇ A | A′ closed }.

(iii) The boundary of A is the set denoted by bdA and defined as bdA := (clA) \ intA.

(iv) We say that A is a neighborhood of x̄ if there exists an open set U such that x̄ ∈ U ⊆ A.

The class of all neighborhoods of x̄ will be denoted by NTX (x̄).

(v) A collection Bx̄ ⊆ NTX (x̄) is said to be a neighborhood base of x̄ if for every U ∈ NTX (x̄)

there is B ∈ Bx̄ such that B ⊆ U.

(vi) We say that A is dense on a subset B of X if B ⊆ clA.

(vii) We say that A is compact if for any collection T1 ⊆ TX satisfying A ⊆
⋃
{A′ | A′ ∈ T1} ,

there exists p ∈ N and A′1, . . . , A
′
p ∈ T1 such that

A ⊆
p⋃
i=1

A′i.

(viii) Suppose that x̄ ∈ A. We say that A is locally closed around x̄ if there exists a neighborhood

U of x̄ such that A ∩ U is a closed set.

(ix) A sequence {xk}k≥1 ⊂ X is said to be convergent to a point x̄ ∈ X if the following holds:

∀ U ∈ NTX , ∃ kU ∈ N : xk ∈ U for every k ≥ kU .

This is denoted by xk → x̄.
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(x) The functional f is said to be continuous at x̄ if the following condition is satisfied:

∀ V ∈ NTY (f(x̄)) : f−1[V ] ∈ NTX (x̄).

We say that f is continuous if it is continuous at every point of X.

(xi) Suppose that Y = R. The functional f is called lower semicontinuous at x̄ if the following

assertion holds:

∀ ε > 0, ∃ U ∈ NTX (x̄) : f(x) > f(x̄)− ε for every x ∈ U.

We say that f is lower semicontinuous on the set A if it is lower semicontinuous at every

point of A.

The concept of basis will be very useful when defining different topologies later in the text.

Definition 2.1.8. Let X be a given set and B be a family of subsets of X.

(i) We say that B is a basis for a topology on X if the following properties are satisfied:

(a) X is exactly the union of the elements of B,

(b) If x ∈ A ∩B with A,B ∈ B, then there is C ∈ B such that x ∈ C ⊆ A ∩B.

(ii) Suppose that B is a basis for a topology and consider the family T of subsets of X defined

as follows: A ⊆ X belongs to T if and only if A can be represented as the union of elements

in B. Then, it can be shown that T is a topology on X. In this case, we say that T is the

topology generated by B.

At the intersection between vector spaces and topologies lies the following concept.

Definition 2.1.9. Let X be a vector space and let T be a topology on X.

(i) We say that (X, T ) is a topological vector space if the operations of sum and product by a

scalar are continuous.

(ii) The topological vector space (X, T ) is said to be locally convex if there exists a neighborhood

base of 0 ∈ X consisting of convex sets.

The most important class of topological vector spaces that we will consider in this work is

that of normed spaces.

Definition 2.1.10. Let X be a vector space and ‖ · ‖X : X → R+ be a given functional.

(i) We say that ‖ · ‖X is a norm on X if the following conditions are fulfilled for every

x1, x2 ∈ X and every t ∈ R:

(a) ‖x1‖X = 0⇐⇒ x1 = 0,
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(b) ‖tx1‖X = |t|‖x1‖X ,

(c) ‖x1 + x2‖X ≤ ‖x1‖X + ‖x2‖X .

(ii) If ‖ · ‖X is a norm on X, we say that the pair (X, ‖ · ‖X) is a normed space.

(iii) The unit ball and the unit sphere in a normed space (X, ‖ · ‖X) are defined respectively as

follows:

BX := {x ∈ X | ‖x‖X ≤ 1}, SX := {x ∈ X | ‖x‖X = 1}

(iv) Suppose that (X, ‖ · ‖X) is a normed space. The norm topology on X is the topology

generated by the collection

B := {x+ ε (BX \ SX) | x ∈ X, ε ∈ R++}.

It is well known that normed spaces with the norm topology are locally convex topological

vector spaces. On the other hand, the norm ‖ · ‖X induces a metric on X defined as follows:

d(x1, x2) := ‖x1 − x2‖X . Hence, in this context, the unit sphere SX is the set of elements in X

at distance 1 from the origin. In this setting, a set A ⊆ X is said to be bounded if there is an

upper bound between the distances of its points and the origin, that is, if we can find a constant

L > 0 such that A ⊆ LB.

Definition 2.1.11. Let (X, ‖ · ‖X) be a normed space and consider a set A ⊆ X. The distance

functional associated to A is d‖·‖X (·, A) : X → R defined as

d‖·‖X (x,A) := inf
x′∈A
‖x− x′‖X .

From now on, when referring to a normed space, we drop the norm in the tuple definition if

there is no confusion. We also omit the subscript X in the norm, the unit sphere and the unit

ball. Hence, for example, we say that X is a normed space and that ‖ · ‖, S and B are its norm,

unit sphere and unit ball respectively.

Some other notations and conventions used in the text are the following:

• Unless otherwise stated, whenever we consider topological concepts in a normed space, we

do so according to the norm topology.

• If X and Y are normed spaces, the cartesian product X × Y is also a vector space, and

we will consider this as a normed space with the norm ‖ · ‖X×Y given by ‖(x, y)‖X×Y =

‖x‖X + ‖y‖Y .

• Two norms ‖ · ‖ and ‖ · ‖′ in a vector space X are said to be equivalent if we can find

constants α, β > 0 such that

∀ x ∈ X : α‖x‖ ≤ ‖x‖′ ≤ β‖x‖.
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This is denoted by ‖ · ‖ ∼ ‖ · ‖′.

• If X = Rn for some n ∈ N, we assume implicitly that vectors are represented as columns

and that the Euclidean norm is used, that is, for x =


x1

...

xn

 ∈ Rn,

‖x‖2 :=

(
n∑
i=1

x2
i

) 1
2

.

Furthermore, if {xk}k≥1 is a sequence in Rn, we denote by xk,i the ith- component of the

vector xk.

An important class of sequences in normed spaces are those who satisfy Cauchy’s property.

Definition 2.1.12. Let (X, ‖ · ‖X) be a normed space and {xk}k≥1 be a sequence in X. We call

{xk}k≥1 a Cauchy sequence if ‖xn − xm‖ → 0.

Another fundamental notion in a vector space that is closely related to norms is that of

Minkowski functionals.

Definition 2.1.13. Let X be a vector space and consider a nonempty set U ⊆ X.

(i) We say that U is absorbing if for every x ∈ X there is t̄ > 0 such that x ∈ tU whenever

|t| > t̄.

(ii) We say that U is balanced if tU ⊆ U for every t ∈ [−1, 1].

(iii) Suppose that U is convex and absorbing. The Minkowski functional γU : X → R of U is

defined as

γU (x) := inf{t > 0 | x ∈ tU}.

Remark 2.1.14. It is easy to see that, if X is normed space and U is a neighborhood of 0, then

U is absorbing. Furthermore, the unit ball B is in this case also a balanced set.

In the next proposition we show the connection between Minkowski functionals and norms.

Proposition 2.1.15. ([144, Theorem 1.39]) Let X be a normed space and U ⊂ X be a convex,

balanced and bounded neighborhood of 0. Then, the Minkowski functional of U is a norm in X.

Duality will be another fundamental tool in our work. In that direction, we must first recall

the space of continuous linear operators.

Definition 2.1.16. Let X and Y be normed spaces and T : X → Y be a given operator.
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(i) We say that T is linear if:

∀ x1, x2 ∈ X, t ∈ R : T (tx1 + x2) = tT (x1) + T (x2).

Of course, when Y = R, this concept reduces to the one in Definition 2.1.4.

(ii) Suppose that T is a linear operator. We say that T is bounded if there exists a constant

` > 0 such that

∀ x ∈ X : ‖Tx‖ ≤ `‖x‖.

Since it is well known that the boundedness and continuity of a linear operator T are

equivalent, we also say that T is continuous.

(iii) The vector space of all continuous linear operators acting on the space X and with range

on the space Y is the set

L(X,Y ) := {T : X → Y | T is linear and bounded}

endowed with the addition and product by a scalar defined as follows:

∀ T1, T2 ∈ L(X,Y ), x ∈ X, t ∈ R : (T1 + T2)(x) := T1(x) + T2(x),

(tT1)(x) := tT1(x).

(iv) The norm topology on the vector space L(X,Y ) is the norm topology on the normed space(
L(X,Y ), ‖ · ‖L(X,Y )

)
, where the functional ‖ · ‖L(X,Y ) : L(X,Y )→ R is defined as

‖T‖L(X,Y ) := sup
x∈X\{0}

‖T (x)‖Y
‖x‖X

. (2.1)

We can now proceed to define dual spaces.

Definition 2.1.17. Let (X, ‖ · ‖) be a normed space.

(i) The topological dual space of X is denoted by X∗ and is defined as X∗ := L(X,R).

(ii) Consider the dual space X∗ of X. The dual norm of ‖ · ‖ is the functional ‖ · ‖∗ : X∗ → R+

given by ‖ · ‖∗ := ‖ · ‖L(X,R), where ‖ · ‖L(X,R) is given in (2.1), that is,

∀ x∗ ∈ X∗ : ‖x∗‖∗ = sup
x∈X\{0}

|〈x∗, x〉|
‖x‖

.

In the equations above, 〈x∗, x〉 denotes the evaluation of the functional x∗ at the point

x ∈ X.

(iii) The norm topology on X∗ is the norm topology on the normed space (X∗, ‖ · ‖∗).
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We will keep the notation of Definition 2.1.17 throughout the thesis, that is, we will denote

an arbitrary element in X∗ by x∗ and use 〈·, ·〉 as the dual pairing. The only exception to this

notation is when we are working in the finite dimensional Euclidean space Rn, for some n ∈ N .

In that case, (Rn)∗ can be identified with Rn, and hence their vectors are denoted by lower case

letters. Furthermore, for vectors u, v ∈ Rn, we have 〈u, v〉 = u>v.

The following relation holds between a norm and its dual:

Proposition 2.1.18. ([114, Corollary 4.3-4]) Let (X, ‖ · ‖) be a normed space and let X∗ be its

topological dual. Then, for every x ∈ X, we have

‖x‖ = sup
x∗∈X∗\{0}

|〈x∗, x〉|
‖x∗‖∗

.

We will use the concept of adjoint operator a few times in our work. This is defined next.

Definition 2.1.19. Let X and Y be normed spaces and T : X → Y be a continuous linear

operator. The adjoint operator of T is T ∗ : Y ∗ → X∗ defined as

∀ y∗ ∈ Y ∗, x ∈ X : 〈T (y∗), x〉 = 〈y∗, T (x)〉.

Remark 2.1.20. It is well known [144, Theorem 4.10] that the adjoint operator T ∗ of T in the

definition above satisfies T ∗ ∈ L(Y ∗, X∗), and that ‖T‖L(X,Y ) = ‖T ∗‖L(Y ∗,X∗).

We recall next the concept of support functional of a set.

Definition 2.1.21. Let X be a normed space and consider a set G ⊆ X∗. The support functional

σG : X → R of G is defined as

σG(x) := sup
x∗∈G

〈x∗, x〉 .

Furthermore, for an element x ∈ X, the x- face of G is defined by

Gx := {x∗ ∈ G | 〈x∗, x〉 = σG(x)} . (2.2)

The dual of the normed space (X∗, ‖ · ‖∗) is called the bidual of X and is denoted by

X∗∗(instead of (X∗)∗). In order to define the second topology that we will consider in the dual

space, we need the following concept:

Definition 2.1.22. Let X be a normed space and consider its bidual X∗∗. The canonical mapping

JX : X → X∗∗ is defined as follows:

∀ x ∈ X,x∗ ∈ X∗ : 〈JX(x), x∗〉 = 〈x∗, x〉. (2.3)

Next, for x̄∗ ∈ X∗, x1, . . . , xp ∈ X and ε > 0, we consider the set:

U(x̄∗, x1, . . . , xp, ε) :=

p⋂
i=1

{x∗ ∈ X∗ | |〈x∗, xi〉 − 〈x̄∗, xi〉| < ε}.
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Definition 2.1.23. Let X be a normed space and consider its topological dual space X∗. Then,

the class

B := {U(x∗, x1, . . . , xp, ε) | x∗ ∈ X∗, p ∈ N, x1, . . . , xp ∈ X, ε > 0}

is a basis for a topology on X∗, and the topology generated by B is called the w∗- topology on

X∗.

The closure of a set G ⊆ X∗ with respect to the w∗- topology is denoted by cl∗G, in order to

differentiate it from the closure in the (dual) norm topology. With the same intention, we also

write x∗k
w∗→ x̄∗ when the sequence {x∗k}k≥1 ⊂ X∗ converges to the point x̄∗ in the w∗- topology.

We collect some useful results related to the w∗- topology in the next Proposition.

Proposition 2.1.24. ([83]) Let X be a normed space and consider its topological dual space

X∗. The following assertions hold:

(i) The set X∗, together with the w∗ topology, is a locally convex topological vector space.

Moreover, the set of linear functionals in the topological bidual X∗∗ that are continuous

with respect to the w∗- topology is exactly JX [X].

(ii) Let A ⊂ X∗ be convex. Then, A is closed with respect to the norm topology in X∗ if and

only if it is w∗- closed.

(iii) Let a nonempty set A ⊂ X∗ be bounded and w∗- closed. Then, A is w∗- compact. The

converse statement is satisfied if X is a Banach space (see Definition 2.1.25).

We define now the three main classes of normed spaces that will be used in the text. For

the concept of Fréchet differentiability, see Subsection 2.3.2.

Definition 2.1.25. Let X be a normed space.

(i) We say that X is a Banach space if every Cauchy sequence is convergent.

(ii) Suppose that X is a Banach space. We say that X is reflexive if the canonical mapping

JX is surjective, that is, if JX [X] = X∗∗.

(iii) Suppose that X is a Banach space. We say that X is Asplund if every continuous convex

functional f defined on an open convex subset U of X is Fréchet differentiable on a dense

subset of U.

We close the section with the fundamental separation theorem for convex sets, which is of

supreme importance in functional analysis.

Theorem 2.1.26. ([83]) Let X be a locally convex topological vector space and A,B ⊆ X be

closed and convex. The following statements holds:
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(i) Suppose that intA 6= ∅. Then, intA∩B = ∅ if and only if there is x∗ ∈ X∗ \ {0} such that

sup
a∈A
〈x∗, a〉 ≤ inf

b∈B
〈x∗, b〉

(ii) Suppose that A is compact and that A ∩B = ∅. Then, there is x∗ ∈ X∗ \ {0} such that

sup
a∈A
〈x∗, a〉 < inf

b∈B
〈x∗, b〉.

2.2 Binary Relations and Cones

2.2.1 Properties of Binary Relations

In this section, we introduce binary relations on a set. In order to keep the notation consistent

throughout the dissertation, and because binary relations will be considered on an image space,

we will use a set Y in the definition.

Definition 2.2.1. Let Y be a nonempty set. A binary relation on Y is a set R ⊆ Y × Y. We

write y1Ry2 when (y1, y2) ∈ R, and we say that y1 and y2 are related.

Some basic concepts associated to binary relations are the following:

Definition 2.2.2. Let R be a binary relation on a set Y. We say that R is:

(i) reflexive, if for every y ∈ Y : yRy,

(ii) symmetric, if for every y1, y2 ∈ Y : y1Ry2 =⇒ y2Ry1,

(iii) antisymmetric, if for every y1, y2 ∈ Y : y1Ry2 and y2Rx1 =⇒ y1 = y2,

(iv) transitive, if for every y1, y2, y3 ∈ Y : y1Ry2 and y2Ry3 =⇒ y1Ry3.

Definition 2.2.3. Let R be a binary relation on a set Y. We say that R is:

(i) total, if for every y1, y2 ∈ A : y1Ry2 or y2Ry1,

(ii) a preorder, if R is reflexive and transitive,

(iii) a partial order, if R is reflexive, antisymmetric, and transitive.

(iv) an equivalent relation, if R is reflexive, symmetric, and transitive.

Example 2.2.4. Let Y be an arbitrary nonempty set. Then,

R := {(A,B) ∈ P(Y )× P(Y ) | A ⊆ B}

defines a binary relation on P(Y ) that is reflexive, antisymmetric, and transitive. Hence, in

particular, it constitutes a partial order on P(Y ).
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Definition 2.2.5. Let R be a binary relation on a nonempty set Y , and consider A ⊆ Y . An

element ā ∈ A is said to be minimal of A with respect to R if the following holds:

∀ a ∈ A : aRā =⇒ āRa.

Similarly, we say that ā ∈ A is a maximal element of A with respect to R if

∀ a ∈ A : āRa =⇒ aRā.

The set of minimal and maximal elements of A are denoted by Min(A,R) and Max(A,R),

respectively.

In this dissertation, we will be mostly considering binary relations related to an underlying

vector space. In that case, we want the binary relation to have properties that are directly

linked to the sum and product operations defining the vector space. The following concept is

fundamental in that aspect.

Definition 2.2.6. Let Y be a vector space and R be a binary relation on Y. We say that R is

compatible with the linear structure of Y if the following properties are fulfilled:

(i) ∀ t ≥ 0, y1, y2 ∈ Y : y1Ry2 =⇒ ty1Rty2,

(ii) ∀ y, y1, y2 ∈ Y : y1Ry2 =⇒ (y + y1)R(y + y2).

In the next section we will see how to define partial orders that are compatible with a linear

structure.

2.2.2 Cone Properties

In this part, we introduce the notion of a cone together with some of its properties. As we will

see, this concept is directly related to Definition 2.2.6.

Definition 2.2.7. Let Y be a vector space and K be a nonempty subset of Y. We say that K is

a cone if tx ∈ K for every x ∈ K and every t ≥ 0. A cone K is called:

(i) convex, if K +K ⊆ K,

(ii) proper, if K 6= {0} and K 6= Y ,

(iii) pointed, if K ∩ (−K) = {0}.

Other properties of cones are related to a topology.

Definition 2.2.8. Let Y be a topological vector space and K be a cone in Y. We say that K is

solid if intK 6= ∅,

Subsets of a vector space Y induce a binary relation that is defined below.
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Definition 2.2.9. Let Y be a vector space and K be a nonempty subset of Y. The binary relation

on Y induced by K is denoted by �K and is defined as

�K := {(y1, y2) ∈ Y × Y | y2 − y1 ∈ K}.

If in the above definition Y is a topological vector space and intK 6= ∅, we write ≺K in

place of �intK . The following theorem shows the importance of the binary relations induced by

cones.

Theorem 2.2.10. ([58, Theorem 2.1.13]) Let Y be a vector space and K be a proper cone in

Y. Then, the following statements concerning the relation �K from Definition 2.2.9 hold:

(i) The relation �K is reflexive and compatible with the linear structure of Y.

(ii) The cone K is convex if and only if �K is transitive.

(iii) The cone K is pointed if and only if �K is antisymmetric.

Hence, in particular, �K is a partial order if and only if K is a convex and pointed cone.

Conversely, if R is a binary relation on Y that is reflexive and compatible with the linear structure

of Y, then the set K := {y ∈ Y | 0Ry} is a cone and R =�K .

Another important concept that we will use is that of generators.

Definition 2.2.11. Let Y be a topological vector space, G ⊆ Y, and consider a proper convex

cone K ⊂ Y.

(i) The cone generated by G is the set denoted by coneG that is defined as

coneG := {tx | t ≥ 0, g ∈ G}.

(ii) We say that a set G is a topological generator of K if the following conditions are fulfilled:

(a) G is convex,

(b) 0 /∈ clG,

(c) coneG = K.

(iii) We say that G is a topological base of K if it is a generator of K such that for every

x ∈ K \ {0} the representation

y = tg, t > 0, g ∈ G

is unique.
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Example 2.2.12. The set Rm+ ⊂ Rm is a closed, convex, pointed, and solid cone. In the

literature, it is often called the natural ordering cone. It is also easy to see that the set

B :=

{
x ∈ Rm+

∣∣∣ m∑
i=1

xi = 1

}

is a base (and hence a generator) of Rm+ .

Definition 2.2.13. Let Y be a topological vector space and K ⊂ Y be a proper cone.

(i) The dual cone of K is the set K∗ defined as

K∗ := {y∗ ∈ Y ∗ | ∀ y ∈ K : 〈y∗, y〉 ≥ 0}.

(ii) The quasinterior of K∗ is the set Ks∗ given by

Ks∗ := {y∗ ∈ Y ∗ | ∀ y ∈ K \ {0} : 〈y∗, y〉 > 0}.

We establish some properties of convex cones and their duals in the next proposition.

Proposition 2.2.14. ([58, 89]) Let Y be a normed space and K ⊂ Y be a closed, convex,

pointed, and solid cone. The following assertions hold:

(i) K +K = K.

(ii) K + intK = intK.

(iii) K∗ is a w∗- closed and convex cone.

(iv) K = {y ∈ Y | ∀ y∗ ∈ K∗ : 〈y∗, y〉 ≥ 0}.

(v) intK = {y ∈ Y | ∀ y∗ ∈ K∗ \ {0} : 〈y∗, y〉 > 0}.

(vi) A set B ⊂ Y ∗ is a base of K∗ with respect to the w∗- topology if and only if there exists

e ∈ intK such that

B = {y∗ ∈ K∗ | 〈y∗, e〉 = 1}.

2.2.3 Set Relations

In this part of the section, we define preorder relations between the subsets of a vector space,

and recall some of its properties. These set relations are the basis of the solution concepts for

the set optimization problem that will be studied in this thesis.

Definition 2.2.15 ([41, 117, 136, 158]). Let Y be a vector space and fix a nonempty set K ⊆ Y.
The following set relations are defined on P(Y ) :
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(i) The lower set less relation �(l)
K is defined as

∀ A,B ⊆ Y : A �(l)
K B :⇐⇒ B ⊆ A+K.

(ii) The upper set less relation �(u)
K is defined as

∀ A,B ⊆ Y : A �(u)
K B :⇐⇒ A ⊆ B −K.

(iii) The set less relation �(s)
K is defined as

∀ A,B ⊆ Y : A �(s)
K B :⇐⇒ A �(l)

K B and A �(u)
K B.

(iv) The possibly set less relation �(p)
K is defined as

∀ A,B ⊆ Y : A �(p)
K B :⇐⇒ B ∩ (A+K) 6= ∅.

(v) The certainly set less relation �(c)
K is defined as

∀ A,B ⊆ Y : A �(c)
K B :⇐⇒ B ⊆

⋂
a∈A

(a+K).

For simplicity, whenever we consider the set relation with respect to an open set intK, we write

≺(r)
K instead of �(r)

intK , for r ∈ {l, u, s, p, c}.

Remark 2.2.16. It is easy to check [95, Proposition 3.9] that the following implications between

the set relations hold:

A �(c)
K B =⇒ A �(s)

K B =⇒ A �(l)
K Bww� ww�

A �(u)
K B =⇒ A �(p)

K B.

In addition, it is not difficult to construct examples on which the converse implications are not

fulfilled.

It is worth to point out that the set relations in Definition 2.2.15 are not the only ones in

the literature. Indeed, new set order relations were defined later by Jahn and Ha in [95], and

very recently by Karaman et al. in [100].

We collect some properties of the set relations in the next proposition.

Proposition 2.2.17. ([95]) Let Y be a vector space and consider a proper convex cone K ⊂ Y.
Then, the following assertions hold:

(i) For r ∈ {l, u, s}, the relation �(r)
K is a preorder in P(Y ). Furthermore, �(r)

K is compatible

with the vector space operations of Y, in the sense that
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(a) ∀ t ≥ 0, A,B ⊆ Y : A �(r)
K B =⇒ tA �(r)

K tB,

(b) ∀ A,B,C ⊆ Y : A �(r)
K B =⇒ A+ C �(r)

K B + C.

(ii) For A,B ⊆ Y, we have

A �(l)
K B and B �(l)

K A⇐⇒ A+K = B +K,

A �(u)
K B and B �(u)

K A⇐⇒ A−K = B −K.

(iii) The set relation �(p)
K is reflexive and compatible with the vector space operations of Y in

the sense indicated in item (i).

(iv) The relation �(c)
K is antisymmetric and transitive.

In this work, we will only deal with the relations �(l)
K ,�

(u)
K and �(s)

K in the context of set

optimization. This is because, for optimization purposes, the relations �(p)
K and �(c)

K seem to

be too weak and too strong respectively. Intuitively, since the set relation �(c)
K is very strong, it

is difficult to have two sets that are comparable in general. Thus, we expect, when finding the

minimal elements among a family of sets with respect to the binary relation �(c)
K (see Definition

2.2.5), to have all the family as the solution set. In the same context, we could argue that,

since �(p)
K is weak, it is almost symmetric, and hence almost all the elements in the family are

minimal. Nevertheless, we believe that our approach in Chapter 4 to optimality conditions could

be extended to deal with these set relations.

As a final note, we mention that, taking into account Proposition 2.2.17 (ii), it is possible

to show [80] that the binary relation ∼(l)
K defined on P(Y ) as

∀ A,B ⊆ Y : A ∼(l)
K B ⇐⇒ A+K = B +K

is an equivalence relation. Thus, the relation ∼(l)
K defines, for any set A ⊆ Y, a corresponding

equivalence class [A](l) as follows:

[A](l) :=
{
B ⊆ Y | A ∼(l)

K B
}
.

A similar concept can be considered for the preorder �(u)
K .

2.3 Generalized Differentiation

2.3.1 Set Valued Analysis

In this part of the section, we recall some basic notions of set-valued analysis, which lie at the

core of our work. We start by defining the domain of a set-valued mapping, together with other

associated concepts.
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Definition 2.3.1. Let X and Y be vector spaces and F : X ⇒ Y be a set-valued mapping.

(i) The domain of F is given by

domF := {x ∈ X | F (x) 6= ∅}.

(ii) The graph of F is defined by

gphF :=
{

(x, y) ∈ X × Y | y ∈ F (x)
}
.

(iii) Let K ⊂ Y be a cone. Then, the epigraph of F is defined as

epiF :=
{

(x, y) ∈ X × Y | y ∈ F (x) +K
}
.

(iv) Let K ⊂ Y be a convex cone. The epigraphical and hypographical multifunctions associated

to F are the set-valued mappings EF ,HF : X ⇒ Y given by

EF (x) := F (x) +K (2.4)

and

HF (x) := F (x)−K (2.5)

respectively.

Of utmost importance in our work is the convexity of a set-valued mapping.

Definition 2.3.2. ([9, 122]) Let X and Y be vector spaces and F : X ⇒ Y be a given set-valued

mapping.

(i) We say that F is convex if gphF is a convex subset of X × Y .

(ii) Let Ω ⊆ X be a convex set, K ⊂ Y be a convex cone, and consider the preorder relation

�(r)
K from Definition 2.2.15, where r ∈ {l, u}. We say that F is �(r)

K - convex on Ω if

Ω ⊆ domF and

∀ x1, x2 ∈ Ω, t ∈ [0, 1] : F (tx1 + (1− t)x2) �(r)
K tF (x1) + (1− t)F (x2). (2.6)

If we omit the set Ω, we assume that Ω = domF and that domF is a convex set.

Remark 2.3.3. It can be shown that F is �(l)
K - convex on Ω if and only if epiF ∩ (Ω× Y ) is a

convex set, or equivalently, if the restriction of the epigraphical multifunction EF to the set Ω is

convex in the sense of Definition 2.3.2 (i). However, a similar result concerning the set relation

�(u)
K and the hypographical multifunction HF does not hold.
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Remark 2.3.4. It is easy to verify that the convexity concepts in Definition 2.3.2 (ii) are

independent of the set relation in case F is single valued, that is, when F = f : X → Y is a

vector-valued function well defined on Ω. In that case, condition (2.6) is equivalent to

∀ x1, x2 ∈ Ω, t ∈ (0, 1) : f(tx1 + (1− t)x2) �K tf(x1) + (1− t)f(x2),

where �K is given in Definition 2.2.9. We also say that the function f is K- convex on Ω.

In the next definition we consider different concepts of boundedness for a set-valued mapping.

Definition 2.3.5. Let X and Y be normed spaces, F : X ⇒ Y be a given set-valued mapping

and K ⊂ Y be a closed, convex, pointed, and solid cone. In addition, let A ⊆ Y be nonempty,

and fix an element e ∈ intK. Furthermore, consider the preorder relations �(l)
K and �(u)

K from

Definition 2.2.15. We say that:

(i) A is K- bounded below (above), if there exists α > 0 such that

−αe �(l)
K A (respectively, A �(u)

K αe).

(ii) F is locally K- bounded below (above) at x̄ ∈ X, if there exists a neighborhood U of x̄ such

that the set F [U ] is K- bounded below (above).

(iii) F is locally �(r)
K - bounded at x̄ ∈ X for some r ∈ {l, u}, if there exists α > 0 and a

neighborhood U of x̄ such that

∀ x ∈ U : F (x) ∩ (−αe+K) ∩ (αe−K) ∈ [F (x)](r).

(iv) F is locally bounded at x̄ if there exists L > 0 and a neighborhood U of x̄ such that

F [U ] ⊆ LB.

Remark 2.3.6. It can be shown that the boundedness concepts introduced in items (i) − (iii)

above are independent of the vector e.

We conclude the subsection with other topological notions associated to set-valued mappings.

Definition 2.3.7. Let X and Y be normed spaces and F : X ⇒ Y be a given set-valued mapping.

In addition, fix a point x̄ ∈ X. We say that:

(i) F is locally compact at x̄ if there exists a neighborhood U of x̄ and a compact set C ⊂ Y

such that

F [U ] ⊆ C.
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(ii) F is locally Lipschitz-like at (x̄, ȳ) ∈ gphF if there are neighborhoods U of x̄ and V of ȳ

and a constant ` ≥ 0 such that

∀ x, x′ ∈ U : F (x) ∩ V ⊆ F (x′) + `‖x− x′‖B.

(iii) F is locally Lipschitz at x̄ if there is a neighborhood U of x̄ and a constant ` ≥ 0 such that

∀ x, x′ ∈ U : F (x) ⊆ F (x′) + `‖x− x′‖B.

(iv) F is inner semicompact at x̄ ∈ domF if, for every sequence {xk}k≥1 ⊂ X satisfying

xk → x̄, there is a sequence {yk}k≥1 ⊂ Y that contains a convergent subsequence and is

such that yk ∈ F (xk) for every k ∈ N. In particular, x̄ ∈ int domF.

(v) F is closed at x̄ if, for any sequence {(xk, yk)}k≥1 ⊆ gphF with (xk, yk)→ (x̄, ȳ), we have

(x̄, ȳ) ∈ gphF.

Remark 2.3.8. Note that, if F is locally compact at x̄, then it is locally bounded at the same

point. The converse holds if Y is finite dimensional. Moreover, if F is locally Lipschitz at x̄, it

is in particular locally Lipschitz-like at every point (x̄, ȳ) ∈ gphF.

Proposition 2.3.9. ([132, Theorem 1.42]) Let X and Y be Banach spaces and F : X ⇒ Y be

a given set-valued mapping. Suppose that F is locally compact and closed at x̄ ∈ X Then, F is

locally Lipschitz at x̄ if and only if it is locally Lipschitz-like at (x̄, ȳ) for every ȳ ∈ F (x̄).

2.3.2 Subdifferential and Coderivatives

In this subsection, we introduce the tools from variational analysis that will be fundamental

when deriving optimality conditions for set optimization problems in Chapter 4. Most of the

material is taken from [132, 133], and we refer the reader to these texts for more details.

We start with some differentiability concepts.

Definition 2.3.10. Let X and Y be normed spaces, f : X → Y be a given vector-valued

function, and x̄ ∈ X.

(i) The directional derivative of f at x̄ in the direction d ∈ X is defined as the limit

f ′(x̄, d) := lim
t↓0

f(x̄+ td)− f(x̄)

t
, (2.7)

if it exists. If this limit exists for every d ∈ X, we say that f is directionally differentiable

at x̄, and we call the map f ′(x̄, ·) : X → Y defined by (2.7) the directional derivative of f

at x̄.

(ii) Suppose that Y = R. We say that f is quasidifferentiable at x̄ if it is directionally differen-

tiable at x̄ and there exists two nonempty, convex and w∗- compact sets G,H ⊂ X∗ such

that

f ′(x̄, ·) = σG(·)− σH(·).
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In that case, the sets G and −H are called the subdifferential and superdifferential of f at

x̄, respectively. Furthermore, the pair (G,−H) is called the quasidifferential of f at x̄.

(iii) We say that f is Fréchet differentiable at x̄ if there exists a bounded linear operator

∇f(x̄) : X → Y such that

lim
x→x̄

‖f(x)− f(x̄)−∇f(x̄)(x− x̄)‖
‖x− x̄‖

= 0.

In that case, we refer to the operator ∇f(x̄) as the Fréchet derivative of f at x̄. If in

addition the mapping ∇f(·) : X → L(X,Y ) is continuous, we say that the function f is

continuously Fréchet differentiable at x̄.

(iv) We say that f is strictly Fréchet differentiable at x̄ if there exists a bounded linear operator

∇f(x̄) : X → Y such that

lim
u→x̄
x→x̄

‖f(x)− f(u)−∇f(x̄)(x− u)‖
‖x− u‖

= 0.

Remark 2.3.11. Some important observations are the following:

• The class of quasidifferentiable functionals is very important since it includes the class of

D.C.-functionals (difference of convex functionals) and the class of locally convex func-

tionals. For a comprehensive review on quasidifferentiability, see also [39].

• It can be verified that, if f is continuously Fréchet differentiable at x̄, then it is in particular

strictly Fréchet differentiable at that point.

The main class of functionals that will be used in the nonsmooth setting is that of locally

Lipschitz. We recall this concept below.

Definition 2.3.12. Let X and Y be normed spaces and f : X → Y be a given vector-valued

function. In addition, fix a point x̄ ∈ X.

(i) We say that f is Lipschitz on a set A ⊆ X, provided that there exists ` ≥ 0 such that

∀ x1, x2 ∈ A : ‖f(x1)− f(x2)‖ ≤ `‖x1 − x2‖.

This is also referred to as a Lipschitz condition of rank `. We say that f is locally Lipschitz

at x̄ if there is a neighborhood U of x̄ such that f is Lipschitz on U . Moreover, f is said

to be locally Lipschitz on A, if f is locally Lipschitz at every point x ∈ A.

(ii) The function f is said to be strictly Lipschitz at x̄ if f is locally Lipschitz at x̄ and, for

every u ∈ X and sequences {xk}k≥1 ⊂ X, {tk}k≥1 ⊂ R with xk → x̄ and tk ↓ 0, the sequence

{yk}k≥1 ⊂ Y defined as

∀ k ∈ N : yk :=
f(xk + tku)− f(xk)

tk

contains a convergent subsequence.
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Remark 2.3.13. The notion of strict Lipschitzianity was introduced in [132, Definition 3.25].

Although this concept is less known in the literature, it is useful when considering relationships

between coderivatives and subdifferentials of a vector valued functional, as we will see later in

this subsection. It is easy to see that the Lipschitz and strictly Lipschitz property of a function

are equivalent if Y is finite dimensional.

We recall next a notion of limits of sets that is necessary for the forthcoming definitions.

Definition 2.3.14. Let X be a normed space and F : X ⇒ X∗ be a given set-valued mapping.

The Painlevé-Kuratowski outer limit of F at x̄ with respect to the norm topology of X and the

w∗- topology of X∗ is defined by

lim sup
x→x̄

F (x) := {x∗ ∈ X∗ | ∃ {(xk, x∗k)}k≥1 ⊆ gphF : xk → x̄, x∗k
w∗−−→ x∗}.

We consider next two fundamental concepts.

Definition 2.3.15. Let X be a Banach space and consider a set Ω ⊆ X.

(i) Given x ∈ X and ε ≥ 0, the set of ε- normals to Ω at x is defined by

N̂ε(x,Ω) :=

{
x∗ ∈ X∗

∣∣∣ lim sup
u

Ω−→x

〈x∗, u− x〉
‖u− x‖

≤ ε

}
, (2.8)

where u
Ω−→ x means that u → x with u ∈ Ω. When ε = 0, the set defined by (2.8) is

called the Fréchet normal cone to Ω at x, and is denoted by N̂(x,Ω). If x /∈ Ω, we put

N̂ε(x,Ω) := ∅ for all ε ≥ 0.

(ii) The limiting normal cone to Ω at x̄ ∈ X is defined by

N(x̄,Ω) := lim sup
x→x̄
ε↓0

N̂ε(x,Ω). (2.9)

We also put N(x̄,Ω) := ∅ for x̄ /∈ Ω.

Definition 2.3.16. Let X be a Banach space and consider a functional f : X → R, together

with a point x̄ ∈ X such that |f(x̄)| < +∞. The limiting subdifferential of f at x̄ is defined by

∂f(x̄) :=
{
x∗ ∈ X∗ | (x∗,−1) ∈ N

(
(x̄, f(x̄)), epi f

)
}.

We put ∂f(x̄) := ∅ if |f(x̄)| = +∞.

Remark 2.3.17. It is well known [132, Theorem 1.93] that, if f is convex and finite at x̄, then

∂f(x̄) = {x∗ ∈ X∗ | ∀ x ∈ X : f(x)− f(x̄) ≥ 〈x∗, x− x̄〉 },

and hence ∂f(x̄) coincides with Fenchel’s subdifferential from convex analysis. In case Ω is a

convex set, we also have [132, Proposition 1.5]:
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N(x̄,Ω) = {x∗ ∈ X∗ | ∀ x ∈ Ω : 〈x∗, x− x̄〉 ≤ 0},

and hence N(x̄,Ω) equals the normal cone in the sense of convex analysis. For this reason, in

this dissertation we make no distinction in the notation of the subdifferential or the normal cone

when considering the convex case.

The following proposition summarizes some useful facts about convex functionals and their

subdifferentials.

Proposition 2.3.18. ([145]) Let X be a Banach space, f : X → R be a convex functional, and

fix x̄ ∈ X. Suppose that f is bounded above in a neighborhood U of x̄, that is, there is L > 0

such that

∀ x ∈ U : f(x) < L.

Then, the following assertions hold:

(i) The functional f is locally Lipschitz and directionally differentiable at x̄.

(ii) The set ∂f(x̄) is a nonempty, convex, bounded, and w∗- closed subset of X∗. In particular,

∂f(x̄) is w∗- compact.

(iii) The directional derivative f ′(x̄, ·) is sublinear, continuous, and satisfies

(a) f ′(x̄, ·) = σ∂f(x̄)(·),

(b) ∂f ′(x̄, ·)(0) = ∂f(x̄).

(iv) Suppose that f = σG, where G ⊂ X∗ is convex and w∗- compact. Then,

∂f(x̄) = Gx̄,

where Gx̄ is the x̄- face of G, see Definition 2.1.21.

Proposition 2.3.19. ([32, 132]) Let X and Y be Asplund spaces, and consider a point x̄ ∈ X.
The following statements hold:

(i) Assume that f1, f2 : X → R are given functionals, that f1 is locally Lipschitz at x̄, and

that f2 is lower semicontinuous at every point in a neighborhood of x̄. Then,

∂(f1 + f2)(x̄) ⊆ ∂f1(x̄) + ∂f2(x̄).

Furthermore, the equality holds if both f1 and f2 are convex or strictly differentiable, even

without the Asplund assumption.
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(ii) Assume that f : X → Y is strictly Lipschitz at x̄ and that ψ : Y → R is locally Lipschitz

at f(x̄). Then,

∂(ψ ◦ f)(x̄) ⊆
⋃

y∗∈∂ψ(f(x̄))

∂(y∗ ◦ f)(x̄).

Moreover, the equality holds if ψ is convex and f = T ∈ L(X,Y ) (see Definition 2.1.16),

even without the Asplund assumption. In that case, we have

∂(ψ ◦ T )(x̄) = T ∗ [∂ψ(T (x̄))] ,

where T ∗ is the adjoint operator of T, see Definition 2.1.19.

The following proposition relates the subdifferential of a functional and that of its opposite:

Proposition 2.3.20. Let X be an Asplund space and suppose that the functional f : X → R is

locally Lipschitz at x̄. Then,

∂(−f)(x̄) ⊆ − cl∗ conv (∂f(x̄)) .

Proof. Let ∂◦ denote Clarke’s subdifferential operator, see [33] for details. Then, we have

∂(−f)(x̄) ⊆ cl∗ conv (∂(−f)(x̄))

([132,Theorem 3.57])
= ∂◦(−f)(x̄)

([33,Proposition 2.3.1])
= −∂◦f(x̄)

([132,Theorem 3.57])
= −cl∗ conv (∂f(x̄)) .

We continue by defining the basic coderivative of a set-valued mapping at a point of its

graph.

Definition 2.3.21. Let X and Y be Banach spaces and F : X ⇒ Y be a set-valued mapping.

The limiting coderivative of F at (x̄, ȳ) ∈ gphF is the multifunction D∗F (x̄, ȳ) : Y ∗ ⇒ X∗

defined by

D∗F (x̄, ȳ)(y∗) =
{
x∗ ∈ X∗ | (x∗,−y∗) ∈ N

(
(x̄, ȳ), gphF

)
}. (2.10)

We put D∗F (x̄, ȳ)(y∗) := ∅ for all y∗ ∈ Y ∗ if (x̄, ȳ) /∈ gphF .

As a convention, we omit the value of ȳ in the coderivative notation above if F : X ⇒ Y

is given by F (x) := {f(x)} and f : X → Y is a given vector-valued function. Hence, we

write D∗f(x̄) instead of D∗f(x̄, f(x̄)). The following proposition shows two useful properties of

coderivatives of functionals.
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Proposition 2.3.22. ([132, Theorem 1.38, Theorem 3.28]) Let X and Y be Banach spaces,

f : X → Y be a given vector-valued function, and fix x̄ ∈ X. The following statements hold:

(i) Suppose that f is strictly Fréchet differentiable at x̄. Then,

∀ y∗ ∈ Y : D∗f(x̄)(y∗) =
{
∇f(x̄)∗(y∗)}.

(ii) Assume that X satisfies the Asplund property and that f is strictly Lipschitz at x̄. Then,

∀ y∗ ∈ Y : D∗f(x̄)(y∗) = ∂(y∗ ◦ f)(x̄).

Next, we recall two useful constraint qualifications from nonlinear programming.

Definition 2.3.23. Let f : Rm → Rp be a given vector-valued function and consider the set

C := {y ∈ Rp | fi(y) ≤ 0, i = 1, . . . , p}. (2.11)

(i) We say that C satisfies the Mangasarian-Fromovitz constraint qualification (MFCQ for

short) at ȳ ∈ C with respect to the representation (2.11) if each fi is continuously diffe-

rentiable and the vectors {∇fi(ȳ)}i∈I(ȳ) are positively linearly independent, that is, if

∇f(ȳ)µ = 0, µ>f(ȳ) = 0, µ ∈ Rp+ =⇒ µ = 0.

Here, I(ȳ) := {i ∈ {1, . . . , p} | fi(ȳ) = 0} is the set of active indexes at ȳ.

(ii) We say that C satisfies Slater’s constraint qualification with respect to the representation

(2.11) if there exists ȳ ∈ C such that max
i=1,...,p

fi(ȳ) < 0.

Remark 2.3.24. It is well known [20] that, if C satisfies Slater’s constraint qualification and

each fi is convex and continuously differentiable, then C satisfies MFCQ at every ȳ ∈ C.

We close the subsection with two propositions that show how to compute normal cones to

particular types of sets.

Proposition 2.3.25. ([132, Corollary 4.35]) Let F : Rn ⇒ Rm be defined as

F (x) := {y ∈ Rm | fi(x, y) ≤ 0, i = 1, . . . , p},

where each fi : Rn × Rm → R is continuously differentiable. In addition, let ȳ ∈ F (x̄) and

consider the set of active indexes

I(x̄, ȳ) := {i ∈ {1, . . . , p} | fi(x̄, ȳ) = 0}. (2.12)

Furthermore, suppose that gphF satisfies MFCQ at (x̄, ȳ). Then,
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N((x̄, ȳ), gphF ) = cone conv{∇fi(x̄, ȳ)}i∈I(x̄,ȳ)

and the basic coderivative of F at (x̄, ȳ) is given by

D∗F (x̄, ȳ)(v) = {u ∈ Rn | (u,−v) ∈ cone conv{∇fi(x̄, ȳ)}i∈I(x̄,ȳ)}.

Proposition 2.3.26. ([8, Proposition 9.6.1]) Let X be a normed space and f : X → R be

convex and continuous. Furthermore, suppose that the set

C := {x ∈ X | f(x) ≤ 0}

satisfies Slater’s condition with respect to that representation and that x̄ ∈ C is such that

f(x̄) = 0. Then,

N(x̄, C) = cone ∂f(x̄).

2.3.3 Marginal Functions

In the last part of this section, we present some properties of marginal functions and their

subdifferentials. This problem is closely related to the computation of the subdifferentials of the

functionals we will see in Chapter 4.

Suppose that X and Y are Banach spaces. Recall that, for a functional f : X × Y → R and

a set-valued mapping F : X ⇒ Y, the associated marginal function ϕ : X → R is defined as

ϕ(x) := inf
y∈F (x)

f(x, y). (2.13)

In this setting, we can also consider the so called solution map S : X ⇒ Y given by

S(x) := {y ∈ F (x) | f(x, y) = ϕ(x)}. (2.14)

The following proposition establishes a sufficient condition in order to have the Lipschitz

property of marginal functions. Although this is a basic result, we couldn’t find a proof in the

literature, and hence we provide it.

Proposition 2.3.27. Let X and Y be Banach spaces, F : X ⇒ Y be a set-valued mapping,

and f : X × Y → R be a given functional. Moreover, consider the marginal function ϕ given by

(2.13). Suppose that F is Lipschitz on a set U ⊆ X with constant ` > 0, and that f is Lipschitz

on the set (U × Y ) ∩ gphF with constant `′ > 0. Furthermore, assume that ϕ is finite at some

point x̄ ∈ U. Then, ϕ is Lipschitz on U with constant `′(1 + `).

Proof. Take x1, x2 ∈ U and let `, `′ > 0 be the Lipschitz constants of F and f respectively.

Then, because F is Lipschitz on U, we have:

∀ y2 ∈ F (x2), ∃ y1 ∈ F (x1) : ‖y1 − y2‖ ≤ `‖x1 − x2‖.



2.3. Generalized Differentiation 29

Taking this into account, together with the Lipschitz continuity of f on (U ×Y )∩ gphF, we get

∀ y2 ∈ F (x2), ∃ y1 ∈ F (x1) : f(x1, y1) ≤ f(x2, y2) + `′(‖x1 − x2‖+ ‖y1 − y2‖)

≤ f(x2, y2) + `′(1 + `)‖x1 − x2‖.

This implies

ϕ(x1) ≤ ϕ(x2) + ˜̀‖x1 − x2‖, (2.15)

with ˜̀ := `′(1 + `). Since ϕ(x̄) > −∞, we can substitute x1 = x̄ in (2.15) to obtain that

ϕ(x2) > −∞ for every x2 ∈ U. From this, it follows that ϕ is Lipschitz on U.

We now present two results concerning the subdifferential of ϕ. The first one treats the case

in which F and f are assumed to be convex.

Theorem 2.3.28. ([6, Theorem 4.2]) Let X and Y be Banach spaces, F : X ⇒ Y be a set-

valued mapping, and f : X × Y → R be a given functional. Consider the marginal function

ϕ given by (2.13), together with the solution map S defined by (2.14). Furthermore, suppose

that F is convex, that f is a proper and convex function, and that at least one of the following

regularity conditions is satisfied:

(i) int gphF ∩ dom f 6= ∅,

(ii) f is continuous at a point (x̃, ỹ) ∈ gphF .

Then, ϕ is convex and, for any x̄ ∈ domϕ with ϕ(x̄) 6= −∞ and any ȳ ∈ S(x̄), we have

∂ϕ(x̄) =
⋃

(x∗,y∗)∈∂f(x̄,ȳ)

[
x∗ +D∗F (x̄, ȳ)(y∗)

]
.

For the case in which F is not supposed to be convex, many results already exist in the

literature. We conclude by establishing a weaker version of [132, Theorem 3.38 (ii)], which will

be enough for our purposes.

Theorem 2.3.29. ([132, Theorem 3.38]) Let X and Y be Asplund spaces, F : X ⇒ Y be a

set-valued mapping, and f : X×Y → R be a given functional. Consider now the marginal func-

tion ϕ given by (2.13), the solution map S defined by (2.14), and a point x̄ ∈ X. Furthermore,

assume that:

(i) F is closed at x̄,

(ii) S is inner semicompact at x̄,

(iii) there exists a neighborhood U of x̄ such that f is Lipschitz on U × Y,
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(iv) gphF is locally closed around every point of the set {x̄} × S(x̄).

Then,

∂ϕ(x̄) ⊆
⋃

ȳ∈S(x̄)
(x∗,y∗)∈∂f(x̄,ȳ)

[
x∗ +D∗F (x̄, ȳ)(y∗)

]
. (2.16)

2.4 Vector and Set Optimization

In this section, we provide an overview of set optimization problems, which are the main topic of

the thesis. We will formally introduce the different solution concepts, and recall some important

results and particular cases. We start by defining the standard optimization problem, and later

we move to the more general setting.

Definition 2.4.1. Let X be a normed space, f : X → R be a given functional, and Ω ⊆ X. The

optimization problem associated to this data is defined as

min
x∈Ω

f(x), (OP(f,Ω))

where the solution concepts are given as follows:

(i) We say that a point x̄ ∈ Ω is a minimum of OP(f,Ω) if

∀ x ∈ Ω : f(x̄) ≤ f(x).

(ii) We call a point x̄ ∈ Ω a strict minimum of OP(f,Ω) if

∀ x ∈ Ω : f(x̄) < f(x).

If in the above definition we replace Ω by Ω ∩ U, with U being a neighborhood of x̄, we say that

x̄ is a local minimum and a local strict minimum respectively.

We recall necessary conditions for OP(f,Ω) in the following theorem. Since in our thesis

we only treat problems with Lipschitzian data, we restrict ourselves to consider only optimality

conditions for problems were the objective functional is locally Lipschitz at the point of interest.

However, it is worth mentioning that this condition can be weakened, at the expense of additional

assumptions [133].

Theorem 2.4.2. ([133, Proposition 5.3]) Let X be an Asplund space, f : X → R be a given

functional, and Ω ⊆ X be closed. Suppose that x̄ ∈ Ω is a local minimum of OP(f,Ω) and that

f is locally Lipschitz x̄. Then,

0 ∈ ∂f(x̄) +N(x̄,Ω). (2.17)

Moreover, even without the Asplund assumption, condition (2.17) is both necessary and sufficient

for optimality if f is convex and continuous at x̄, and Ω is a convex set.
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Definition 2.4.3. Let X be a Banach space, f : X → R be a given functional, and Ω ⊆ X. We

say that the point x̄ ∈ Ω is stationary for OP(f,Ω) if (2.17) holds.

Remark 2.4.4. In the literature, statements like the one in Theorem 2.4.2 have been considered

with respect to other type of subdifferentials. In particular, for the case Ω = X, it is well known

that the inclusion

0 ∈ ∂̂f(x̄) (2.18)

is also necessary for optimality in OP(f,X). Here, ∂̂f(x̄) is the so called Fréchet subdifferential

of f at x̄, see [131, 132] and the references therein for details. In fact, we always have ∂̂f(x) ⊆
∂f(x) for every x ∈ X, so that (2.18) is a stronger necessary condition for OP(f,X) than

(2.17). However, the Fréchet subdifferential has other limitations, like poor calculus rules, that

restricts its applications in optimization.

Next, we consider vector optimization problems. In order to do this, one must define first

the concept of minimal elements of a set in a partially ordered space.

Definition 2.4.5. Let Y be a normed space and K ⊂ Y be a proper, closed, convex, and pointed

cone. Furthermore, consider a set A ⊆ Y.

(i) Suppose that intK 6= ∅. The set of weakly minimal elements of A with respect to K is

defined as

WMin(A,K) := {y ∈ A | (y − intK) ∩A = ∅}.

(ii) The set of minimal elements of A with respect to K is given by

Min(A,K) := {y ∈ A | (y −K) ∩A = {y}}.

(iii) Suppose that intK 6= ∅. The set of weakly maximal elements of A with respect to K is

defined as

WMax(A,K) := WMin(A,−K).

(iv) The set of maximal elements of A with respect to K is given by

Max(A,K) := Min(A,−K).

(v) The set of strongly minimal elements of A with respect to K is defined as

SMin(A,K) := {y ∈ A | A ⊆ y +K}.
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(vi) The set of strongly maximal elements of A with respect to K is given by

SMax(A,K) := SMin(A,−K).

Remark 2.4.6. If we consider the binary relations �K and ≺K from Definition 2.2.9, it is

possible to check that WMin(A,K) = Min(A,≺K) and that Min(A,K) = Min(A,�K), where

the sets Min(A,≺K) and Min(A,�K) are understood in the sense of Definition 2.2.5. A similar

statement can be made about the sets WMax(A,K) and Max(A,K).

The following proposition shows the relationships between the different solution concepts

and provides an existence result.

Proposition 2.4.7. ([89]) Let Y be a normed space and K ⊂ Y be a closed, convex, pointed,

and solid cone. Furthermore, consider a set A ⊆ Y. The following statements hold:

(i) If A is compact, then Min(A,K) 6= ∅ and A+K = Min(A,K) +K.

(ii) The following inclusions are true:

SMin(A,K) ⊆ Min(A,K) ⊆WMin(A,K).

Similarly,

SMax(A,K) ⊆ Max(A,K) ⊆WMax(A,K).

Definition 2.4.8. Let X and Y be normed spaces and K ⊂ Y be a closed, convex, and pointed

cone. Let f : X → Y be a given vector-valued function, and consider Ω ⊆ X. The vector

optimization problem associated to this data is defined as

K- min
x∈Ω

f(x), (VOP(f,K,Ω))

where the solution concepts are given as follows:

(i) Suppose that intK 6= ∅. We say that a point x̄ ∈ Ω is a weakly minimal solution of

VOP(f,K,Ω) if f(x̄) ∈WMin(f [Ω] ,K), or equivalently, if

@ x ∈ Ω : f(x) ≺K f(x̄).

(ii) We say that a point x̄ ∈ Ω is a minimal solution of VOP(f,K,Ω) if f(x̄) ∈ Min(f [Ω] ,K),

or equivalently, if

@ x ∈ Ω : f(x) �K f(x̄) and f(x) 6= f(x̄).
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If in the above definitions we replace Ω by Ω ∩ U, with U being a neighborhood of x̄, we call x̄ a

local weakly minimal and a local minimal solution respectively.

Remark 2.4.9. It is easy to verify that every minimal of solution of VOP(f,K,Ω) is also

weakly minimal. Hence, in particular, optimality conditions for weakly minimal solutions are

also necessary for minimal ones.

On the other hand, note that when Y = R, the problem VOP(f,R+,Ω) is equivalent to

OP(f,Ω), in the sense that both solution concepts collapse into the concept of minimum of

OP(f,Ω).

Necessary and sufficient optimality conditions for weakly minimal solutions of VOP(f,K,Ω)

are considered in the following theorem. As for problem OP(f,Ω), we analyze only the case

on which the vector-valued function is locally Lipschitz. The statement will be an immediate

consequence of other results in the literature, but the formulation below is more suitable for our

purposes.

Theorem 2.4.10. ([151, 152] ) Let X and Y be Banach spaces, Ω ⊆ X be nonempty and closed,

and K ⊂ Y be a closed, convex, pointed, and solid cone. Let f : X → Y be a given vector-valued

function, and consider a point x̄ ∈ Ω. The following statements hold:

(i) Suppose that X and Y satisfy the Asplund property, and that f is locally Lipschitz at x̄. If

x̄ is a local weakly minimal solution of VOP(f,K,Ω), then

∃ k∗ ∈ K∗ \ {0} : 0 ∈ D∗f(x̄)(k∗) +N(x̄,Ω). (2.19)

Furthermore, if f is strictly Fréchet differentiable at x̄ or f is strictly Lipschitz at x̄, then

(2.19) implies

∃ k∗ ∈ K∗ \ {0} : 0 ∈ ∇f(x̄)∗(k∗) +N(x̄,Ω) (2.20)

and

∃ k∗ ∈ K∗ \ {0} : 0 ∈ ∂(k∗ ◦ f)(x̄) +N(x̄,Ω) (2.21)

respectively.

(ii) Suppose that Ω is a convex set and that f is K- convex on Ω and continuous at x̄. Then, con-

dition (2.21) is both necessary and sufficient for the weak minimality of x̄ in VOP(f,K,Ω).

Proof. (i) From [152, Theorem 5], we have

0 ∈ D∗Ef (x̄, f(x̄))[K∗ \ {0}] +N(x̄,Ω),

where Ef is the epigraphical multifunction of f from Definition 2.3.1 (iv). Statement (2.19)

follows then from [16, Proposition 4.3], where it is established the fact that D∗Ef (x̄, f(x̄))(y∗) ⊆
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D∗f(x̄)(y∗) for every y∗ ∈ Y ∗. The implications (2.20) and (2.21) are deduced from Proposition

2.3.22.

(ii) The necessity is a direct consequence of [151, Theorem 3]. In order to show the sufficiency,

we argue by contradiction. Suppose that x̄ is not a weakly minimal solution of VOP(f,K,Ω).

Then, we could find x ∈ Ω such that

f(x) ≺K f(x̄). (2.22)

According to (2.21), we can find k∗ in K∗ \ {0} and x∗ ∈ X∗ such that

x∗ ∈ ∂(k∗ ◦ f)(x̄) ∩ −N(x̄,Ω). (2.23)

Furthermore, it is straightforward to verify that, since k∗ ∈ K∗ and f is K- convex, the functional

k∗ ◦ f is convex and continuous at x̄. Hence, we obtain

〈x∗, x− x̄〉
((2.23) + Remark 2.3.17)

≤ 〈k∗, f(x)− f(x̄)〉
((2.22) + (k∗∈K∗))

< 0.

However, according to Remark 2.3.17, this would contradicts the fact that x∗ ∈ −N(x̄,Ω) in

(2.23).

Remark 2.4.11. According to Remark 2.4.9, when Y = R, the problem VOP(f,R+,Ω) reduces

to the standard optimization problem OP(f,Ω). In that case, note that the condition (2.21) is

now equivalent to (2.17) in Theorem 2.4.2.

Definition 2.4.12. Let X and Y be Banach spaces, and K ⊂ Y be a proper, closed, convex,

pointed, and solid cone. Let f : X → Y be a given vector-valued function, and Ω ⊆ X. We say

that the point x̄ ∈ Ω is stationary for VOP(f,K,Ω) if (2.19) holds.

A direct consequence of Theorem 2.4.10 (ii) is the following corollary:

Corollary 2.4.13. Consider problem VOP(f,Rm+ ,Rn) for a given vector-valued function

f : Rn → Rm. Suppose that each component functional fi is convex and strictly differentiable at

x̄ ∈ Rn. Then, f is Rm+ - convex, and x̄ is a weakly minimal solution of VOP(f,Rm+ ,Rn) if and

only if there exists µ ∈ Rm+ \ {0} such that ∇f(x̄)µ = 0.

We can now define formally set optimization problems.

Definition 2.4.14. Let X and Y be normed spaces and K ⊂ Y be a closed, convex, pointed,

and solid cone. Let Ω ⊆ X be nonempty and consider a set-valued mapping F : X ⇒ Y such

that Ω ⊆ int domF. The set optimization problem is defined as

K- min
x∈Ω

F (x), (SOP(F,K,Ω))

and its minimal solutions are defined according to the following two approaches:
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(i) (Vector Approach) We say that a point x̄ ∈ Ω is a weak minimizer of SOP(F,K,Ω) if

F (x̄) ∩WMin(F [Ω],K) 6= ∅.

(ii) (Set Approach) Consider, for r ∈ {l, u, s}, the set relations �(r)
K from Definition 2.2.15.

We say that a point x̄ ∈ Ω is a

(a) �(r)
K - weakly minimal solution of SOP(F,K,Ω), if

@ x ∈ Ω \ {x̄} : F (x) ≺(r)
K F (x̄),

(b) �(r)
K - minimal solution of SOP(F,K,Ω), if for every x ∈ Ω the following implication

holds:

F (x) �(r)
K F (x̄) =⇒ F (x̄) �(r)

K F (x),

(c) �(r)
K - strictly minimal solution of SOP(F,K,Ω), if

@ x ∈ Ω \ {x̄} : F (x) �(r)
K F (x̄).

If in the above definition we replace Ω by Ω∩U , with U being a neighborhood of x̄, we say that x̄

is a local weak minimizer in (i) and a local (�(r)
K - weakly, �(r)

K - , �(r)
K - strictly) minimal solution

respectively in (ii).

Remark 2.4.15. It is easy to verify that the concepts of weak minimizers and �(r)
K - weak

minimality (r ∈ {l, u, s}) in Definition 2.4.14 are all equivalent in case F is a vector-valued

function f : X → Y . In that case, they all coincide with the concept of weakly minimal solutions

of VOP(f,K,Ω) in Definition 2.4.8 (i).

Remark 2.4.16. In Definition 2.4.14 (i), one could also consider the concept of minimizer

and strong minimizer of SOP(F,K,Ω) by replacing WMin by Min and SMin respectively. On

the other hand, additional set relations have been considered in the literature by Jahn and Ha

[95] and Karaman et.al [100]. For each of these set relations, corresponding minimal solutions

could also be defined. In the above definition we just established those that will be used in the

dissertation.

Remark 2.4.17. Let Ω ⊆ Rn and U ⊆ Rq be nonempty sets, K ⊆ Rm be proper, closed, convex,

pointed, and solid cone, and f : Rn × U → Rm be a given function. Furthermore, consider the

set-valued mapping F : Rn ⇒ Rm given by

F (x) = {f(x, u) | u ∈ U}. (2.24)

Then, the set optimization problem SOP(F,K,Ω) associated to this data arises when modelling

uncertainty in a vector optimization problem. In that case, the cost function f of the vector
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problem depends not only on the decision variable x, but also on an uncertain parameter u

which belongs to the so called uncertainty set U . In this setting, the �(l)
K - weakly minimal and

�(u)
K - weakly minimal solutions of SOP(F,K,Ω) model optimistic and pessimistic solutions of

the so called robust counterpart problem to the vector optimization problem under uncertainty,

respectively. We refer the reader to [86] and the references therein for an overview of the topic.

The solution concept with the vector approach in Definition 2.4.14 (i) was the first one

considered in the literature and hence it is already well studied, see [89, 106, 130] and the

references therein for an extensive treatment on the topic. It is worth pointing out that, although

in this dissertation we deal only with set approach solutions, the vector approach is still useful for

us as important connections between these concepts can be made. Some of these relationships

are collected in the next proposition.

Proposition 2.4.18. Let X and Y be normed spaces and K ⊂ Y be a closed, convex, pointed,

and solid cone. In addition, let Ω ⊆ X be nonempty and closed, and fix x̄ ∈ Ω. Furthermore, let

F : X ⇒ Y be a set-valued mapping such that Ω ⊆ int domF, and consider the set optimization

problem SOP(F,K,Ω). The following assertions hold:

(i) Suppose that x̄ is a �(r)
K - strictly minimal solution of SOP(F,K,Ω) for some r ∈ {l, u, s}.

Then, x̄ is both a �(r)
K - minimal and a �(r)

K - weakly minimal solution of SOP(F,K,Ω).

(ii) Assume that x̄ is a �(l)
K - minimal solution of SOP(F,K,Ω) and that WMin(F (x̄),K) 6= ∅.

Then, x̄ is a �(l)
K - weakly minimal solution of SOP(F,K,Ω). Similarly, if x̄ is a �(u)

K -

minimal solution of SOP(F,K,Ω) and WMax(F (x̄),K) 6= ∅, then x̄ is a �(u)
K - weakly

minimal solution of SOP(F,K,Ω).

(iii) Suppose that WMin(F (x̄),K) 6= ∅. Then, x̄ is a �(l)
K - weakly minimal solution of

SOP(F,K,Ω) if and only if F (x̄) ∈ Min
(
F ,≺(l)

K

)
, where F := {F (x) | x ∈ Ω} and

the term Min
(
F ,≺(l)

K

)
is understood in the sense of Definition 2.2.5.

(iv) Assume that WMin(F (x̄),K) 6= ∅ and that x̄ is a weak minimizer of SOP(F,K,Ω). Then,

x̄ is also a �(l)
K - weakly minimal solution. Conversely, suppose that x̄ is a �(l)

K - weakly

minimal solution of SOP(F,K,Ω) and that SMin(F (x̄),K) 6= ∅. Then, x̄ is a weak mini-

mizer of SOP(F,K,Ω).

Proof. (i) This follows directly from the definition and the reflexivity of the set relation �(r)
K .

(ii) We only prove the statement for the lower set less relation as the other one is similar.

Assume that x̄ is not a �(l)
K - weakly minimal solution of SOP(F,K,Ω). Then, we could find

x ∈ Ω such that F (x) ≺(l)
K F (x̄). In particular, we deduce that F (x) �(l)

K F (x̄). Since x̄ is a �(l)
K -

minimal solution, we obtain F (x̄) �(l)
K F (x). From this, it follows that

F (x̄) �(l)
K F (x) ≺(l)

K F (x̄),

a contradiction to the fact that WMin(F (x̄),K) 6= ∅.



2.5. Scalarizing Functionals 37

(iii) Suppose first that x̄ is a �(l)
K - weakly minimal solution of SOP(F,K,Ω), and fix x ∈ Ω.

Then, it suffices to show that F (x) ⊀(l)
K F (x̄). Indeed, otherwise it would follow from the �(l)

K -

weak minimality of x̄ that x = x̄. Then, we would obtain F (x̄) ≺(l)
K F (x̄), a contradiction to the

fact that WMin(F (x̄),K) 6= ∅.
On the other hand, suppose now that F (x̄) ∈ Min

(
F ,≺(l)

K

)
and that x̄ is not a �(l)

K - weakly

minimal solution of SOP(F,K,Ω). Then, we could find x ∈ Ω such that F (x) ≺(l)
K F (x̄). From

the minimality of F (x̄) on the family F , we deduce that F (x̄) ≺(l)
K F (x). Hence, similarly to the

proof of (ii), we have F (x̄) ≺(l)
K F (x̄), a contradiction to WMin(F (x̄),K) 6= ∅.

(iv) The first part of the statement follows from (iii) and [80, Proposition 2.10]. The converse

is just [109, Proposition 3.9].

Remark 2.4.19. A similar statement to Proposition 2.4.18 (iv) can be stated for the upper set

less relation, see [80, Remark 2.11].

Optimality conditions for weak minimizers of set optimization problems are established be-

low, see [14, 15, 16, 19, 43, 68] for similar results.

Theorem 2.4.20. ([17, Theorem 5.3] ) Let X and Y be Asplund spaces and K ⊂ Y be a

closed, convex, pointed, and solid cone. Let F : X ⇒ Y be a given set valued mapping and

Ω ⊆ X be nonempty and closed. Suppose that x̄ ∈ Ω is a weak minimizer of SOP(F,K,Ω) and

let ȳ ∈ F (x̄) ∩WMin(F (Ω ∩ U),K), where U is the neighborhood of x̄ on which x̄ is optimal.

Furthermore, assume that gphF is locally closed around (x̄, ȳ), and that F is locally Lipschitz-like

at (x̄, ȳ). Then,

∃ k∗ ∈ K∗ \ {0} : 0 ∈ D∗F (x̄, ȳ)(k∗) +N(x̄,Ω). (2.25)

Remark 2.4.21. It is easy to see that, when F is a vector-valued function f : X → Y , the

statement of Theorem 2.4.20 is equivalent to that of (2.19) in Theorem 2.4.10. This makes

sense since, according to Remark 2.4.15, x̄ would be a weakly minimal solution of VOP(f,K,Ω)

in that case.

Definition 2.4.22. Let X and Y be Banach spaces, and K ⊂ Y be a closed, convex, pointed,

and solid cone. Let F : X ⇒ Y be a given set-valued mapping, and Ω ⊆ X be nonempty. We

say that a point x̄ ∈ Ω is stationary for SOP(F,K,Ω) if there exists ȳ ∈ F (x̄) such that (2.25)

holds.

We close this section by mentioning that, in Chapter 4, we will derive optimality conditions

for set optimization problems with respect to the set approach, along the lines of Theorem

2.4.20.

2.5 Scalarizing Functionals

As mentioned in the introduction, scalarization techniques are a fundamental tool in vector and

set optimization, and play a mayor role in this dissertation. In this section, we recall three types
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of scalarizing functionals that will be used throughout the text, together with some of their

properties. We start by defining some fundamental conditions that a functional must fulfill in

order to be a good candidate for scalarization, see [106, 129, 153, 154].

Definition 2.5.1. Let Y be a normed space and ψ : Y → R be a given functional. Furthermore,

let K ⊂ Y be a closed, convex, pointed, and solid cone, and consider the binary relation �K
from Definition 2.2.9. We say that ψ is

(i) K- monotone, if y �K z =⇒ ψ(y) ≤ ψ(z),

(ii) strictly K- monotone, if y ≺K z =⇒ ψ(y) < ψ(z),

(iii) strongly K- monotone, if y �K z, y 6= z =⇒ ψ(y) < ψ(z).

We simply call ψ (strictly, strongly) monotone if there is no risk of confusion with the cone K.

Definition 2.5.2. Let Y be a normed space and ψ : Y → R be a given continuous functional.

Furthermore, let K ⊂ Y be a closed, convex, pointed, and solid cone.

(i) We say that ψ satisfies the monotonicity property if ψ is strictly K- monotone.

(ii) We say that ψ satisfies the representability property if {y ∈ Y | ψ(y) < 0} ⊆ − intK.

Remark 2.5.3. Note that, as a consequence of continuity, the monotonicity property implies the

K- monotonicity of ψ and the representability property implies that {y ∈ Y | ψ(y) ≤ 0} ⊆ −K.

Using this, it is straightforward to verify that a functional ψ satisfying both the monotonicity

and representability property give a robust representation of −K, that is,

{y ∈ Y | ψ(y) ≤ 0} = −K, {y ∈ Y | ψ(y) < 0} = − intK. (2.26)

Another important concept related to scalarizing functionals is that of translativity along a

direction [58, Theorem 2.3.1].

Definition 2.5.4. Let Y be a normed space. A functional ψ : Y → R is said to be translation

invariant along e ∈ Y if

∀ y ∈ Y, t ∈ R : ψ(y + te) = ψ(y) + t. (2.27)

We can now introduce the main functionals employed in the text.

Definition 2.5.5. ([54, 55, 57, 81, 60]) Let Y be a normed space and K ⊂ Y be a closed,

convex, pointed, and solid cone. The following functionals are introduced:

(i) Let e ∈ intK. The Gerstewitz-Weidner functional ψe : Y → R associated to e is defined as

ψe(y) := min{t ∈ R | te ∈ y +K}. (2.28)
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(ii) Let ‖·‖′ be a norm equivalent to ‖·‖. The Hiriart-Urruty functional ψ‖·‖′ : Y → R associated

to ‖ · ‖′ is given by

ψ‖·‖′(y) := d‖·‖′(y,−K)− d‖·‖′(y, Y \ −K). (2.29)

(iii) Let G be a w∗- compact generator of K∗. The Drummond-Svaiter functional ψG : Y → R
associated to G is defined as

ψG(y) := σG(y). (2.30)

The following proposition shows that the scalarizing functionals in Definition 2.5.5 share

some common properties, including those of monotonicity and representability.

Proposition 2.5.6. ([54, 60, 81]) Let Y be a normed space and K ⊂ Y be a closed, convex,

pointed, and solid cone. Let ψ : Y → R be a given, where ψ stands for the functionals (2.28),

(2.29), and (2.30) in Definition 2.5.5. Then,

(i) ψ is continuous and sublinear,

(ii) ψ is strictly K- monotone (and hence K- monotone according to Remark 2.5.3),

(iii) ψ satisfies

−K = {y ∈ Y | ψ(y) ≤ 0}, − intK = {y ∈ Y | ψ(y) < 0}.

Some specific properties of Gerstewitz-Weidner functionals are given next.

Proposition 2.5.7. ([44, 106]) Let Y be a Banach space and K ⊂ Y be a closed, convex,

pointed, and solid cone. For e ∈ intK, consider the Gerstewitz-Weidner functional ψe from

Definition 2.5.5. Then:

(i) ψe is Lipschitz on Y with constant

ρ := max
y∗∈∂ψe(0)

‖y∗‖∗, (2.31)

(ii) ψe is translation invariant along e,

(iii) ∂ψe(ȳ) = {k∗ ∈ K∗ | 〈k∗, e〉 = 1, ψe(ȳ) = 〈k∗, ȳ〉}.

Remark 2.5.8. According to Proposition 2.5.6 (iii), for any ȳ ∈ −bdK we have ψe(ȳ) = 0.

Then, it follows from (iii) that ∂ψe(ȳ) = {k∗ ∈ K∗ | 〈k∗, e〉 = 1, 〈k∗, ȳ〉 = 0}.

We close this chapter with the following result, that characterizes different set relations by

means of a Gerstewitz-Weidner scalarizing functional.
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Theorem 2.5.9. ([107, 108, 111]) Let Y be a normed space and K ⊂ Y be a closed, convex,

pointed, and solid cone. Furthermore, consider nonempty sets A,B ⊆ Y and the set relations

�(l)
K ,�

(u)
K from Definition 2.2.15. Then,

(i) A �(l)
K B =⇒ sup

b∈B
inf
a∈A

ψe(a− b) ≤ 0.

(ii) A �(u)
K B =⇒ sup

a∈A
inf
b∈B

ψe(a− b) ≤ 0.



Chapter 3

Unified Characterization of

Nonlinear Scalarizing Functionals

In this chapter we derive, in a specific sense, relationships between three main types of scalarizing

functionals, namely, those from Definition 2.5.5. In addition, an extended class of quasidiffer-

entiable scalarizing functionals is introduced, which also has important connections with set

optimization. The results are based on the paper by Bouza, Quintana and Tammer [25], and

are derived in the following setting:

Assumption 1. Let Y be a Banach space and K ⊂ Y be a proper, closed, convex, pointed, and

solid cone.

There are two main reasons for considering relationships between well known classes of

scalarizing functionals and their generalizations:

• The functionals from Definition 2.5.5 have been employed in the setting of vector and

set optimization for the same purpose (deriving optimality conditions and algorithms).

However, it is not at all clear whether there is an advantage on using one scalarization or

the other.

• Understanding the set of all scalarizing functionals and being able to generate all or part

of them could have both theoretical and practical applications. For example, for robust

counterpart problems to vector optimization problems under uncertainty (see Remark

2.4.17), it is known [24] that there are minimal solutions that can not be recovered with

any convex scalarizing functional. Thus, as a first step, it is also of interest to consider

simpler classes of nonconvex scalarizations.

In this chapter, we provide a partial solution to both of these problems. The structure is as

follows. In Section 3.1, we briefly discuss previous work in the literature that is related to ours in

this chapter. Section 3.2 studies the relationships between the classes of scalarizing functionals

by Gerstewitz-Weidner, Huriart-Urruty and Drummond-Svaiter in the sense of inclusion. Based

on these results, in Section 3.3 we introduce an extended class of scalarizing functionals, whose

41
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elements can be represented as the difference of two sublinear functionals. The relationships

with the previous classes are also discussed.

3.1 Literature Review

In this section, we review different works in the literature that are related to the main two

topics of this chapter: relationships between scalarization techniques, and generalized classes

of scalarization. We start by recalling, as mentioned in the introduction, that a scalarization

problem is usually determined by an underlying scalarizing functional and possibly a set of

constraints, and that in turn these depend on different parameters.

Many comparisons between different scalarization problems in vector optimization where the

ordering cone is the standard Pareto cone (that is, the nonnegative orthant) can be found in

the literature, see for example [128] and the references therein. However, these comparisons are

either experimental, or are made with the aid of a decision maker. A mathematically rigorous

treatment of the relationships between different methods is more rare. In fact, to the best of

our knowledge, the main references in this case are [47, 104]. Furthermore, some isolated results

can also be found in [36, 63, 124].

• In the context of vector optimization, Eichfelder proved in [47] that several well known

types of scalarization problems could be reformulated as a Pascoletti-Serafini problem

[57, 138] if the corresponding parameters are carefully chosen. The methods examined

included, among others: the linear scalarization technique [52], the ε- constraint method

[72], the weighted Chebyshev scalarization [27], the Gourion and Luc problem [59], and

the method by Kaliszewski [99].

Moreover, it is also well known [54] that, under different assumptions, Pascoletti-Serafini

problems can be reformulated using Gerstewitz-Weidner scalarizing functionals, see Defi-

nition 2.5.5. Thus, the class of Gerstewitz-Weidner functionals already unifies some of the

well known scalarization approaches.

• In [104], also for vector optimization problems, both a qualitative and quantitative compa-

rison between different scalarization methods and the so called conic scalarization problem

[51, 102, 103] was studied. Differently to [47], the quantitative comparison in this case was

mostly focused on inclusions between the solution sets of each scalarization problem, and

not on the equivalence of them under reformulation. The main results stated in this paper

are the following:

– Every linear scalarization problem can be reformulated as a conic scalarization

problem with an appropriate parameter.

– Every solution of a Benson’s scalar problem [23] can be obtained as a solution of a

conic scalarization problem with a specified parameter.
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– There exists a subset of Pascoletti-Serafini problems for which there are conic scalar-

ization problems with smaller optimal value.

• In [36, 124], the authors proved that Gerstewitz-Weidner functionals are a particular case of

Hiriart-Urruty functionals. Later, in [63], this result was extended to the set optimization

context. In this chapter we derive a similar result in a slightly different setting.

On the other hand, the topic of generalized scalarizing functionals was first addressed in

the earlier papers by Wierzbicki [153, 154, 155], and later by Miglierina and Molho in [129]. In

these works, scalarizing functionals were introduced in an axiomatic way, and it was shown that

these axioms are necessary and sufficient in order to characterize the sets of minimal and weakly

minimal points of a vector optimization problem. Specifically, the axioms stated are those of

monotonicity and order representability introduced in Definition 2.5.2. However, the discussion

on how to generate all the functionals satisfying the axioms is very limited. In Section 3.3, some

first steps in that direction are analyzed.

3.2 Relationships Among the Main Classes of Scalarizing Func-

tionals

In this section, based on Definition 2.5.5, we consider different classes of scalarizing functionals

that have been previously studied in the literature and show relationships between them in the

sense of inclusion. We start by formally introducing these classes.

Definition 3.2.1. Let Assumption 1 be fulfilled.

(i) The class of Gerstewitz-Weidner scalarizing functionals is denoted by SGW and is defined

as

SGW := {ψe | e ∈ intK},

where ψe is given by (2.28) in Definition 2.5.5 (i).

(ii) The class of Hiriart-Urruty functionals is denoted by SHU and is defined as

SHU := {ψ‖·‖′ | ‖ · ‖′ is a norm in Y, ‖ · ‖′ ∼ ‖ · ‖},

where ψ‖·‖′ is given by (2.29) in Definition 2.5.5 (ii).

(iii) The class of Drummond-Svaiter functionals is denoted by SDS and is defined as

SDS := {ψG | G is w∗- compact generator of K∗},

where ψG is given by (2.30) in Definition 2.5.5 (iii).
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In Section 2.5, specifically in Proposition 2.5.6, we saw that the functionals belonging to

the set SGW ∪ SHU ∪ SDS are sublinear, continuous, and satisfy both the monotonicity and

representability properties. It turns out that these properties are inherent of the class SDS , as

our next theorem shows.

Theorem 3.2.2. Let Assumption 1 be fulfilled and consider any continuous and sublinear

functional ψ : Y → R that satisfies the monotonicity and representability properties. Then,

G := ∂ψ(0) is a w∗- compact generator of K∗ such that

ψ = ψG ∈ SDS .

In particular, this implies that SGW ⊆ SDS and SHU ⊆ SDS .

Proof. It follows from the second part of Remark 2.5.3 that the resulting cone −K has the

representation given in (2.26), and thus Slater’s condition is satisfied. By noticing that ψ(0) = 0

and that N(0,K) = −K∗, we deduce from Proposition 2.3.26 that

K∗ = cone(∂ψ(0)). (3.1)

Furthermore, because of Slater’s condition, it follows that 0 is not an optimal solution of

OP(ψ, Y ). Thus, Theorem 2.4.2 implies that 0 /∈ ∂ψ(0). This, together with (3.1), implies

that G is a w∗- compact generator of K∗. Finally, from the sublinearity of ψ and Proposition

2.3.18 (iii), we deduce that

ψ(y) = ψ′(0, y) = σ∂ψ(0)(y) = σG(y).

The following proposition shows that SGW is the subset of functionals in SDS associated to

the bases of K∗.

Proposition 3.2.3. Let Assumption 1 be fulfilled and, for some w∗- generator G of K∗, consider

the corresponding element ψG ∈ SDS . Then, ψG ∈ SGW if and only if G is a base of K∗ in the

w∗- topology.

Proof. Suppose first that ψG ∈ SGW . Then, there exists e ∈ intK such that ψG = ψe. By

Theorem 3.2.2, it is sufficient to show now that ∂ψe(0) is a base of K∗. The statement is then

a consequence of Proposition 2.5.7 (iii) and Proposition 2.2.14 (vi).

Conversely, assume that G is a base of K∗. Then, by Proposition 2.2.14 (vi), there exists

e ∈ intK such that

G = {y∗ ∈ K∗ | 〈y∗, e〉 = 1}. (3.2)

Consider now the functional ψe ∈ SGW . Then, from Proposition 2.5.7 (iii) and (3.2), we get

∂ψe(0) = G. Thus, Theorem 3.2.2 implies that ψe = ψG.
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Next proposition provides another characterization of the class SGW related to the translation

invariance property.

Proposition 3.2.4. Let Assumption 1 be fulfilled and consider a functional ψG ∈ SDS , together

with an element e ∈ intK. Then, ψG satisfies the translation property with respect to e if and

only if ψG = ψe ∈ SGW .

Proof. Suppose first that ψG satisfies the translation invariance property with respect to e.

Then, by substituting y = 0 and t = ±1 in (2.27), we get σG(e) = 1 and σG(−e) = −1

respectively. The definition of the support functional now implies:

∀ g∗ ∈ G : 〈g∗, e〉 ≤ 1, 〈g∗,−e〉 ≤ −1.

From this, we deduce that

∀ g∗ ∈ G : 〈g∗, e〉 = 1.

Furthermore, since G is a generator of K∗, it follows that

G = {y∗ ∈ K∗ | 〈g∗, e〉 = 1}.

Consider now the functional ψe ∈ SGW . Then, according to Proposition 2.5.7 (iii), we get

G = ∂ψe(0). Te first part of the statement follows from Theorem 3.2.2. The sufficiency is just

Proposition 2.5.7 (ii).

Remark 3.2.5. Proposition 3.2.4 establishes that SGW is exactly the set of elements in SDS
that satisfy the translation invariance property. It is worth to point out that it was recently

established in [50, Lemma 3.2] that an element ψ‖·‖ ∈ SHU satisfies the translation property

with respect to e ∈ K, provided that

d‖·‖(e,−K) = d‖·‖(−e, Y \ −K) = 1. (3.3)

However, it turns out that this condition already implies that ψ‖·‖ = ψe ∈ SGW . Indeed, from

(3.3) we deduce that e ∈ intK. Thus, the statement follows from Theorem 3.2.2 and Proposition

3.2.4.

In the rest of this section, we address the question of the relationships between the classes

SGW and SHU . In the following lemma, we compute the subdifferential of an arbitrary element

ψ‖·‖′ ∈ SHU at the point ȳ = 0. For a finite dimensional version of this result, see [34, Theorem

4.2]. For general characterizations (for the case that K = A and A is a subset of Y without

convexity assumptions concerning the involved set A) of the approximate subdifferential by Ioffe

of ψ‖·‖′ , see [67, Proposition 21.11].

Lemma 3.2.6. Let Assumption 1 be fulfilled and consider the functional ψ‖·‖ ∈ SHU. Then,
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∂ψ‖·‖(0) = cl∗ conv (K∗ ∩ S∗) ,

where S∗ is the unit sphere in the dual space with respect to ‖ · ‖∗.

Proof. Let f : Y → R be defined as

f(y) :=

{
−d‖·‖(y, Y \ −K) if y ∈ −K,
+∞ if y /∈ −K

}
.

Then, by [81, Proposition 5], we get

∂ψ‖·‖(0) = ∂f(0) ∩ B. (3.4)

Furthermore, from [28, Proposition 3.1], we also have

d‖·‖(y, Y \ −K) = inf
‖y∗‖∗≥1

{
σ(−K)(y

∗)− 〈y∗, y〉
}
,

or equivalently,

− d‖·‖(y, Y \ −K) = sup
‖y∗‖∗≥1

{
〈y∗, y〉 − σ(−K)(y

∗)
}
. (3.5)

Since K is a cone, it is easy to verify that σ(−K) = δK∗ , the indicator functional of K∗. Hence,

by defining G := K∗ ∩ {y∗ ∈ Y ∗ | ‖y∗‖∗ ≥ 1}, we get from (3.5) that

− d‖·‖(y, Y \ −K) = σG(y). (3.6)

• Claim 1: ∀ y ∈ −K : −d‖·‖(y, Y \ −K) = σ(K∗∩ S∗)(y).

Indeed, since K∗ ∩ S∗ ⊆ G and (3.6) holds, we have −d‖·‖(y, Y \ −K) ≥ σ(K∗∩ S∗)(y).

Choose now any y∗ ∈ G and y ∈ −K. Then, 〈y∗, y〉 ≤ 0, which implies

(‖y∗‖∗ − 1)〈y∗, y〉 ≤ 0.

From this we deduce that 1
‖y∗‖∗ y

∗ ∈ K∗ ∩ S∗ and that 〈y
∗,y〉
‖y∗‖∗ ≥ 〈y

∗, y〉, which proves our

claim.

Set

D := cl∗ conv (K∗ ∩ S∗) .

Then, taking into account (3.4) and Claim 1 just proved, we have that y∗ ∈ ∂ψ‖·‖(0) if and only

if ‖y∗‖∗ ≤ 1 and

∀ y ∈ −K : 〈y∗, y〉 ≤ σ(K∗∩S∗)(y). (3.7)
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By convexity and the w∗- closedness of ∂ψ‖·‖(0), it is easy to verify that D ⊆ ∂ψ‖·‖(0). Thus, in

order to finish the proof, we only need to show that the reverse inclusion also holds. We proceed

now to prove that assertion.

Suppose that ∂ψ‖·‖(0) * D and fix an element ȳ∗ ∈ ∂ψ‖·‖(0) \D. The following claim holds:

• Claim 2: ȳ∗ /∈ [1,+∞)D.

Since ȳ∗ /∈ D, we can apply Theorem 2.1.26 (ii) and Proposition 2.1.24 (i) to obtain an

element ŷ ∈ Y such that

〈ȳ∗, ŷ〉 < inf
d∗∈D
〈d∗, ŷ〉. (3.8)

Taking into account (3.8) and the fact that 1
‖ȳ∗‖∗ ȳ

∗ ∈ D, we find that 〈ȳ∗, ŷ〉 < 1
‖ȳ∗‖∗ 〈ȳ

∗, ŷ〉.
Equivalently, we have

(‖ȳ∗‖∗ − 1)〈ȳ∗, ŷ〉 < 0. (3.9)

Because of (3.4) and (3.9), we get that ‖ȳ∗‖∗ < 1. From this and (3.9), we also obtain

〈ȳ∗, ŷ〉 > 0. Thus, we deduce that

0 < 〈ȳ∗, ŷ〉 < inf
d∗∈D
〈d∗, ŷ〉 = inf

d∗∈[1,+∞)D
〈d∗, ŷ〉.

In particular, this implies that ȳ∗ /∈ [1,+∞)D, which proves the claim.

Now, note that 0 /∈ D. Otherwise, we would have 0 ∈ ∂ψ‖·‖(0), which would contradict the fact

that ∂ψ‖·‖(0) is a generator of K∗, see Theorem 3.2.2. Applying now [32, Lemma in page 218],

we obtain that the set [1,+∞)D is w∗- closed and convex. Furthermore, by Theorem 2.1.26 (ii)

and Proposition 2.1.24 (i), we find ȳ ∈ Y such that 〈ȳ∗, ȳ〉 > σ([1,+∞)D)(ȳ). The following claim

is true:

• Claim 3: ∀ y∗ ∈ D : 〈y∗, ȳ〉 ≤ 0.

Indeed, otherwise there exists y∗ ∈ D such that 〈y∗, ȳ〉 > 0. Hence, we get that ty∗ ∈
[1,+∞)D for every t ≥ 1, which implies

〈ȳ∗, ȳ〉 > σ([1,+∞)D)(ȳ) ≥ t〈y∗, ȳ〉 > 0.

By letting t→ +∞ in the above inequality, we obtain 〈ȳ∗, ȳ〉 > +∞, a contradiction.

Now, from Claim 3 and Proposition 2.2.14 (iv), we find that ȳ ∈ −K. Thus, we deduce that

〈ȳ∗, ȳ〉 > σ([1,+∞)D)(ȳ) ≥ σD(ȳ) ≥ σ(K∗∩S∗)(ȳ),

a contradiction to (3.7). This completes the proof.
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We can now establish sufficient conditions to guarantee that SGW ⊆ SHU .

Theorem 3.2.7. In addition to Assumption 1, suppose that Y is reflexive and consider, for

e ∈ intK, the corresponding element ψe ∈ SGW . Then, there exists a norm ‖ · ‖′ in Y such that

‖ · ‖′ ∼ ‖ · ‖ and ψ‖·‖′ = ψe. In particular, we have that SGW ⊆ SHU .

Proof. Set

V := {y∗ ∈ Y ∗ | |〈y∗, e〉| ≤ 1}

and B := ∂ψe(0). Then, according to Proposition 2.5.7 (iii),

B = {y∗ ∈ K∗ | 〈y∗, e〉 = 1}.

Furthermore, from Proposition 2.3.18 (ii), we have that B is bounded. Hence, there exists L > 0

such that

∀ y∗ ∈ B : ‖y∗‖∗ ≤ L.

Consider the set

U := V ∩ LB.

It is then easy to see that U is a convex and balanced neighborhood of the origin. In Figure 3.1

we illustrate this construction. Furthermore, consider now the Minkowski functional associated

to U, that is, the functional γU : Y ∗ → R given by

γU (y∗) := inf{t > 0 | y∗ ∈ tU}.

Then, by Proposition 2.1.15, it follows that γU is a norm in Y ∗. Moreover, by construction, it is

straightforward to verify that γU ∼ ‖ · ‖∗. Let S∗U denote the unit sphere in Y ∗ with respect to

the norm γU . Then, the following claim is true

• Claim 1: B = S∗U ∩K∗.

Indeed, take any y∗ ∈ B. Then, y∗ ∈ K∗ ∩ U, which implies γU (y∗) ≤ 1. If this inequality

is strict, we could find t > 1 such that ty∗ ∈ U. Hence, we would have

1
(ty∗∈V )

≥ t〈y∗, e〉 (y∗∈B)
= t > 1,

a contradiction. It follows then that γU (y∗) = 1, which implies B ⊆ S∗U ∩K∗.

In order to see the reverse inclusion, take y∗ ∈ S∗U ∩K∗. Then, since e ∈ intK, we have

〈y∗, e〉 > 0. Hence, we find that 1
〈y∗,e〉y

∗ ∈ B ⊆ S∗U , which implies

γU

(
1

〈y∗, e〉
y∗
)

= 1.
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K∗

B

V

U

Figure 3.1: Geometrical construction in the proof of Theorem 3.2.7

Thus, we get that 〈y∗, e〉 = 1. Since y∗ ∈ K∗, this is equivalent to y∗ ∈ B, which shows

that

S∗U ∩K∗ ⊆ B.

Next, consider the canonical mapping JY from Definition 2.1.22, and let γU ∗ be the dual

norm of γU in Y ∗∗. We define next ‖ · ‖′ : Y −→ R as

‖y‖′ := (γU ∗ ◦ JY )(y). (3.10)

Then, it follows from the definition that ‖ · ‖′ is a norm in Y. Furthermore, since γU ∼ ‖ · ‖∗, we

also obtain ‖ · ‖′ ∼ ‖ · ‖. We deduce now that

∀ y∗ ∈ Y ∗ : γU (y∗)
(Proposition 2.1.18)

= sup
y∗∗∈Y ∗∗\{0}

|〈y∗∗, y∗〉|
γU ∗(y

∗∗)

(Y reflexive)
= sup

y∈Y \{0}

|〈JY (y), y∗〉|
(γU ∗ ◦ JY )(y)

(Definition 2.1.22 + (3.10))
= sup

y∈Y \{0}

|〈y∗, y〉|
‖y‖′

(Definition 2.1.17 (ii))
= ‖y∗‖′∗,

so that ‖ · ‖′∗ = γU . Considering now the functional ψ‖·‖′ ∈ SHU , we find that

∂ψ‖·‖′(0)
(Lemma 3.2.6)

= cl∗ conv(K∗ ∩ S∗U )
(Claim 3)

= cl∗ convB = B.

The statement follows now from Theorem 3.2.2.
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Remark 3.2.8. As mentioned in Section 3.1, a result like Theorem 3.2.7 was first stated in

[36, Proposition 2], extended in [63] to the context of set optimization, and rediscovered in

[124, Theorem 4.2]. Our argument was derived independently and uses a similar idea to that

of [36]. The main difference between our proof and that stated in [36] is that we work towards

constructing a norm in the primal space for which the subdifferential of the corresponding Hiriart-

Urruty functional at the origin coincides with that of the Gerstewitz-Weidner functional. This

working scheme has the advantage of being applicable when analyzing relationships among other

types of scalarizations.

In Theorem 3.2.2 and Theorem 3.2.7, we have shown, under mild assumptions, inclusions

between the classes SGW ,SHU and SDS . The following example illustrates that these inclusions

are strict in general.

Example 3.2.9. In Assumption 1, let Y = R2 and K = R2
+, so that K∗ = R2

+. Recall that

in finite dimensions we always assume the Euclidean norm ‖ · ‖2, and that S denotes the corre-

sponding unit sphere. Next, consider the sets

G1 := conv(S ∩K∗), G2 := G1 ∪ conv


(

0

1

)
,

(
1

0

)
,

1
2

1
2

 .

Then, it is clear that G1 and G2 are compact generators of K∗, and hence σG1 , σG2 ∈ SDS . The

following holds:

(i) σG1 ∈ SHU \ SGW .

According to Lemma 3.2.6 and Theorem 3.2.2, it is easy to see that σG1 ∈ SHU . Assume

that σG1 ∈ SGW . Then, according to Proposition 2.5.7 (iii), we could find an element

e ∈ intK such that G1 = {v ∈ R2
+ | e>v = 1}. Since the interior of G1 is nonempty, this

would be a contradiction.

(ii) σG2 ∈ SDS \ SHU .

Since we already know that σG2 ∈ SDS , it remains to show that σG2 /∈ SHU . Assume

otherwise. Then, we can find a norm ‖ · ‖′ equivalent to ‖ · ‖2 such that σG2 = ψ‖·‖′ .

According to Lemma 3.2.6, we now have

G2 = ∂ψ‖·‖′(0) = conv(S′ ∩ R2
+),

where S′ is the unit sphere in R2 with respect to ‖ · ‖′∗. Let v :=

1
2

1
2

 . Then, because

(S ∩ R2
+) ∪ {v} are extreme points of G2, it follows that (S ∩ R2

+) ∪ {v} ⊆ S′ ∩ R2
+. From

this, we then obtain v ∈ S′ and
√

2v ∈ S ∩ R2
+ ⊆ S′, a contradiction.
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Taking into account Theorem 3.2.2, Theorem 3.2.7, and Example 3.2.9, we get the following

corollary.

Corollary 3.2.1. Let Assumption 1 be fulfilled and suppose in addition that Y is reflexive.

Then,

SGW ⊆ SHU ⊆ SDS

and these inclusions are, in general, strict.

Remark 3.2.10. Corollary 3.2.1 shows that, since the class SGW is the smallest, its elements

can only have additional properties. In particular, according to Proposition 3.2.4, the translation

invariance property is one that only the functionals in this class enjoy. Furthermore, this type

of functionals are exploited in the context of risk measures in mathematical finance [106]. We

conclude that the class SGW has more advantages from both the theoretical and practical point

of view.

3.3 Generalized Class of Scalarizing Functionals

In this section, we further elaborate on the idea of generators of dual cones to extend the

class SDS . Specifically, given w∗- compact sets G,H ⊂ Y ∗, we consider scalarizing functionals

ψ : Y → R of the form

ψ(y) := σG(y)− σH(y). (3.11)

These functionals are quasidifferentiable at any point as a consequence of the quasidifferentiabil-

ity of the involved support functionals. Furthermore, they are also continuous, since in Banach

spaces the w∗- compact sets are also bounded, see Proposition 2.1.24. In the following, we study

necessary and sufficient geometrical conditions on G and H under which ψ satisfies the two

main axioms of scalarizations: monotonicity and order representability. These conditions will

motivate the definition of the new class of quasidifferentiable scalarizing functionals.

First, we focus on monotonicity properties based on set relations between the faces of the

subdifferential and the superdifferential. Our starting point is the following lemma, that can be

seen as a generalization of Hörmander’s Theorem [145, Theorem 2.3.1].

Lemma 3.3.1. Let Assumption 1 be fulfilled and let G,H ⊆ Y ∗ be convex and w∗- compact.

Then,

(i) The equivalence

H �(u)
K∗ G ⇐⇒ σG|K ≥ σH |K

holds.
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(ii) The implication

H �(u)
K∗\{0} G =⇒ σG|intK > σH |intK

holds. The converse is also true if H ∩Min(G,K∗) = ∅.

(iii) Assume that Ks∗ 6= ∅. Then,

H �(u)
Ks∗ G =⇒ σG|K\{0} > σH |K\{0}.

The converse holds if Y is reflexive and intK∗ 6= ∅.

Proof. We only prove (ii) and (iii), since (i) is a particular case of [91, Lemma 2.1].

(ii) Suppose first that H �(u)
K∗\{0} G, and fix elements y ∈ intK and h∗ ∈ H such that

〈h∗, y〉 = σH(y). Then, we can find g∗ ∈ G such that g∗ − h∗ ∈ K∗ \ {0}. Hence, by Proposition

2.2.14 (v), we have 〈g∗ − h∗, y〉 > 0. Thus, it follows that

σG(y) ≥ 〈g∗, y〉 = 〈g∗ − h∗, y〉+ 〈h∗, y〉 = σH(y) + 〈g∗ − h∗, y〉 > σH(y),

which proves the first part of the statement.

In order to verify the second part, assume now that H ∩ Min(G,K∗) = ∅ and that

σG|intK > σH |intK . Then, since K is convex, we have that cl intK = K, see [83]. This fact,

together with our assumption, imply that

σG|K ≥ σH |K .

Hence, according to statement (i), we have H ⊆ G −K∗. Assume that, on the contrary, H *
G−K∗ \ {0}. Then, there exists an element

h∗ ∈ H ∩ ((G−K∗) \ (G−K∗ \ {0}))).

From this, we deduce that h∗ ∈ G ∩H, and that h∗ /∈ y∗ −K∗ \ {0} for any y∗ ∈ G. However,

by definition, this means that h∗ ∈ H ∩Min(G,K∗), a contradiction.

(iii) To this end, let K∗s 6= ∅ and assume that H ⊆ G−K∗s. Furthermore, fix y ∈ K \ {0}
and h∗ ∈ H such that 〈h∗, y〉 = σH(y). Analogous to the proof of (ii), there exists g∗ ∈ G such

that k∗ := g∗ − h∗ ∈ K∗s. Then, it follows that

σH(y) = 〈h∗, y〉 = 〈g∗, y〉 − 〈k∗, y〉 ≤ σG(y)− 〈k∗, y〉 < σG(y),

where the last inequality holds because k∗ ∈ K∗s and y ∈ K \ {0}. Hence, the first implication

is proved.

Assume now that Y is reflexive and that intK∗ 6= ∅. It is well known that we always have

intK∗ = intK∗s. Furthermore, the reflexivity implies that
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intK∗ = intK∗s = K∗s.

In fact, this is a characterization of reflexive spaces [29, Theorem 3.6].

If

H * G−K∗s = G− intK∗,

then there exists h∗ ∈ H, h∗ /∈ G − intK∗. By Theorem 2.1.26 (ii) and Proposition 2.1.24 (i),

we can find y ∈ Y \ {0} such that

∀ g∗ ∈ G, k∗ ∈ K∗ : 〈h∗, y〉 ≥ 〈g∗ − k∗, y〉.

From this, it is easy to deduce that y ∈ K and that σH(y) ≥ σG(y), as desired.

For the forthcoming results we recall that, for an element y ∈ Y and a set A ⊆ Y ∗, the

y- face of A is denoted by Ay, see Definition 2.1.21.

Proposition 3.3.2. Let Assumption 1 be fulfilled and let G,H ⊆ Y ∗ be convex and w∗- compact.

Then, the following assertions are equivalent:

(i) ∀ y ∈ Y : Hy �(s)
K∗ G

y,

(ii) ∀ y ∈ Y : Hy �(u)
K∗ G

y,

(iii) ∀ y ∈ Y : Hy �(l)
K∗ G

y.

Proof. According to Remark 2.2.16, we always have (i) =⇒ (ii) and (i) =⇒ (iii). Hence, by

the definition of the set less relation, it suffices to show that (ii) and (iii) are equivalent. We

now proceed to prove this statement. The key lies in the following claim:

• Claim: ∀ y ∈ Y : Hy �(u)
K∗ G

y =⇒ H �(l)
K∗ G.

Indeed, assume otherwise. Then, there exists ḡ∗ ∈ G \ (H +K∗). Consider the sets

S := G ∩ (H +K∗), M := (ḡ∗ −K∗) ∩G.

It is easy to see that M is w∗- compact. Furthermore, the definition of ḡ∗ also implies that

M ∩ (H + K∗) = ∅. We can now apply Theorem 2.1.26 (ii) to strongly separate the sets

M and H +K∗ and obtain an element ȳ ∈ Y such that

σG(ȳ) ≥ inf
g∗∈M

〈g∗, ȳ〉 > sup
y∗∈H+K∗

〈y∗, ȳ〉 ≥ σS(ȳ). (3.12)

Now, consider the set Gȳ. By (3.12), we have that Gȳ ⊆ G \ S, which is equivalent to

Gȳ∩(H+K∗) = ∅. However, this means in particular that H ȳ * Gȳ−K∗, a contradiction.

This proves the claim.
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Assume now that (ii) holds and that there exists y ∈ Y such thatHy �(l)
K∗ G

y, or equivalently,

that Gy * Hy + K∗. Then, we can find ḡ∗ ∈ Gy \ (Hy + K∗). By Theorem 2.1.26 (ii) and

Proposition 2.1.24 (i), there exists ȳ ∈ Y such that

〈ḡ∗, ȳ〉 > sup
(h∗,k∗)∈H×K∗

〈h∗ + k∗, ȳ〉.

In particular, this implies that 〈k∗, ȳ〉 ≤ 0 for every k∗ ∈ K∗, which, in virtue of Proposition

2.2.14 (iv), means that ȳ ∈ −K. Since ḡ∗ ∈ G, our claim gives us the existence of h̄∗ ∈ H and

k̄∗ ∈ K∗ such that ḡ∗ = h̄∗ + k̄∗. Then, we deduce

σH(ȳ) ≥ 〈h̄∗, ȳ〉 ≥ 〈h̄∗, ȳ〉+ 〈k̄∗, ȳ〉 = 〈ḡ∗, ȳ〉 > sup
(h∗,k∗)∈H×K∗

〈h∗ + k∗, ȳ〉 ≥ σH(ȳ),

a contradiction. This proves that (ii) =⇒ (iii). By interchanging G and H and considering

(−K∗) instead of K∗, a similar analysis proves that (iii) =⇒ (ii). The proof is complete.

The following result completely characterizes K- monotone functionals of the form (3.11)

with respect to the corresponding y- faces of the sets G and H.

Lemma 3.3.3. Let Assumption 1 be fulfilled and let G,H ⊆ Y ∗ be convex and w∗- compact.

Consider the functional ψ : Y → R defined by (3.11). Then:

(i) The functional ψ is K- monotone if and only if

∀ y ∈ Y : Hy �(u)
K∗ G

y.

(ii) If Hy �(u)
K∗\{0} G

y for every y ∈ Y, the functional ψ is strictly K- monotone.

(iii) If K∗s 6= ∅ and Hy �(u)
Ks∗ Gy for every y ∈ Y, the functional ψ is strongly K- monotone.

Proof. (i) Suppose that ψ is K- monotone and consider, for y ∈ Y and z ∈ K, the functional

ζy,z : R→ R given by

ζy,z(t) := ψ(y + tz).

Then, it is easy to verify that the K- monotonicity of ψ is equivalent to having that, for every

y ∈ Y, z ∈ K, the point t̄ = 0 is a solution of the problem OP(ζy,z,R+), that is,

min
t∈R+

ζy,z(t).

Applying now the optimality conditions of [88, Theorem 3.8 (a)] for every y ∈ Y, z ∈ K, we get

∀ y ∈ Y, z ∈ K, t ≥ 0 : ζ ′y,z(0, t) ≥ 0. (3.13)
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Fix now y ∈ Y, z ∈ K, and consider the operator T ∈ L(R, Y ) defined as

T (t) = tz.

Furthermore, let g : R→ R be defined as

g(t) = σG(y + T (t)).

Note that, because f is convex and continuous at t̄, we can apply Proposition 2.3.18 (iii) (a) to

obtain

∀ t ∈ R : g′(t̄, t) = σ∂g(t̄)(t). (3.14)

Then, by considering the adjoint operator T ∗ of T, we deduce that

∂g(t̄)
(Proposition 2.3.19 (ii))

= T ∗ [∂σG(y + t̄z)]

= T ∗ [∂σG(y)]
(Proposition2.3.18 (iv))

= T ∗ [Gy] . (3.15)

On the other hand, it is straightforward to verify that

∀ y∗ ∈ Y : T ∗(y∗) = 〈y∗, z〉. (3.16)

Thus, from (3.14), (3.15), and (3.16), we find that

g′(0, t) = tσGy(z). (3.17)

In a similar fashion, we can show that the functional h : R → R given by h(t) = σH(y + tz),

satisfies

h′(0, t) = tσHy(z). (3.18)

Hence, from (3.17) and (3.18), we find that (3.13) is equivalent to

∀ y ∈ Y, z ∈ K : σGy(z)− σHy(z) ≥ 0.

Applying now Lemma 3.3.1 (i), we obtain

∀ y ∈ Y : Hy ⊆ Gy −K∗,

and the necessity follows.

In order to prove sufficiency, assume that Hy �(s)
K∗ G

y for every y ∈ Y. Then, according to

what we just saw, this is equivalent to

∀ y ∈ Y, z ∈ K, t ≥ 0 : ζ ′y,z(0, t) ≥ 0.
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In particular, this implies that ζy,z is increasing along any z ∈ K. Hence, it follows that t̄ = 0 is

a global minimum of ζy,z, from which the monotonicity is deduced.

(ii) Assume now that Hy ⊆ Gy−K∗ \{0} for every y ∈ Y. By Lemma 3.3.1 (ii), this implies

σGy |intK > σHy |intK .

Hence, for any y ∈ Y , z ∈ intK and t > 0, we have

ζ ′y,z(0, t) > 0.

Thus, it follows that t̄ = 0 is a strict local minimum of OP(ζy,z,R+). Hence, ψ is strictly

monotone.

(iii) Assume in addition that Hy ⊆ Gy − K∗s for each y ∈ Y. By Lemma 3.3.1 (iii), this

implies

σGy |K\{0} > σHy |K\{0}.

Then, we have ζ ′y,z(0, t) > 0 for every y ∈ Y, z ∈ K \ {0}, t > 0. Hence, in this case t̄ = 0 is a

strict minimum of OP(ζy,z,R+), which gives us the strong monotonicity of ψ.

Corollary 3.3.4. Let Assumption 1 be fulfilled and let G,H ⊆ Y ∗ be convex and w∗- compact

such that G ∩H = ∅. Suppose that the functional ψ : Y → R defined by (3.11) is K- monotone.

Then, it is also strictly K- monotone.

Proof. Because of the monotonicity assumption on ψ and Lemma 3.3.3 (i), we have in particular

Hy ⊆ Gy−K∗ for every y ∈ Y . Moreover, because G∩H = ∅, we actually get Hy ⊆ Gy−K∗\{0}
for every y ∈ Y, or equivalently,

∀ y ∈ Y : Hy �(u)
K∗\{0} G

y.

Applying now Lemma 3.3.3 (ii), we obtain the strict monotonicity of ψ.

Now, we focus on the conditions that G and H must fulfill in order to guarantee the order

representability axiom. To this aim, we introduce the set-valued mapping P : Y ⇒ Y ∗ defined

by

P (y) := {y∗ ∈ Y ∗ | 〈y∗, y〉 ≥ 0} = (cone{y})∗ .

Note that

intP (y) = (cone{y})s∗ 6= ∅,

for y 6= 0. With this definition, it is immediate how to find a geometrical condition on G and H

that is equivalent to the order representability, as the following lemma shows.

Lemma 3.3.5. Let Assumption 1 be fulfilled and let G,H ⊆ Y ∗ be convex and w∗- compact.

Consider the functional ψ : Y → R defined by (3.11). Then,
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(i) The implication

H ⊆
⋂

y/∈−K

(G− intP (y)) =⇒ {y ∈ Y | ψ(y) ≤ 0} ⊆ −K

holds. The converse is true if Y is reflexive.

(ii) If ψ is K- monotone and G ∩H = ∅,

H ⊆
⋂

y/∈−K

(G− intP (y)) =⇒ − intK = {y ∈ Y | ψ(y) < 0}.

Proof. (i) We have

H ⊆
⋂

y/∈−K

(G− intP (y)) ⇐⇒ ∀ y /∈ −K : H ≺(u)
P (y) G

⇐⇒ ∀ y /∈ −K : H �(u)

(cone{y})s∗ G

(Lemma 3.3.1 (iii))
=⇒ ∀ y /∈ −K : σG|cone{y}\{0} > σH |cone{y}\{0}

⇐⇒ ∀ y /∈ −K : σG(y) > σH(y)

⇐⇒ ∀ y /∈ −K : ψ(y) > 0

⇐⇒ {y ∈ Y | ψ(y) ≤ 0} ⊆ −K,

which proves the first part of the statement.

Now, assume that Y is reflexive. In order to prove the converse, it suffices to show that the

converse of the one-way implication in the previous proof is true. But this is a consequence of

the second part of Lemma 3.3.1 (iii) by noticing that intP (y) 6= ∅ for every y ∈ Y. This finishes

the proof of (i).

(ii) By Corollary 3.3.4, the functional ψ is strictly monotone. This already implies

− intK ⊆ {y ∈ Y | ψ(y) < 0}.

On the other hand, if ψ(y) < 0, then y ∈ −K by statement (i) in this lemma. Hence, it follows

from the continuity of ψ that y ∈ − intK. The proof is complete.

The results on the previous section motivates the following definition:

Definition 3.3.6. Let Assumption 1 be fulfilled and let G,H be convex and w∗- compact subsets

of Y ∗. We say that the pair (G,H) is a scalarization pair if:

(i) ∀ y ∈ Y : Hy �(s)
K∗ G

y,

(ii) H ∩G = ∅,
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(iii) H ⊆
⋂

y/∈−K
(G− intP (y)).

The class of all scalarization pairs is denoted by D. Furthermore, we define the class of quasid-

ifferentiable and positively homogeneous scalarizing functionals as the set

SQD := {ψ : Y → R | ∃ (G,H) ∈ D : ψ = σG − σH}.

Our next theorem is an immediate consequence of the previous lemmas. It shows that

SQD is a class of functionals whose elements fulfill the monotonicity and order representability

conditions.

Theorem 3.3.7. Let Assumption 1 be fulfilled and consider ψ ∈ SQD. Then, ψ is strictly K-

monotone and satisfies the representability property.

Proof. By Lemma 3.3.3, the functional ψ is monotone. Hence, the strict monotonicity follows

from Corollary 3.3.4. The representability property is a consequence of Lemma 3.3.5 (i), (ii),

the convexity of K, and the continuity of ψ.

The following result confirms that SQD extends the class SDS . First, we recall that, for sets

G,H ⊆ Y ∗, the set G 	 H defined as G 	 H := {y∗ ∈ Y ∗ | y∗ + H ⊆ G} is the so called

Hadwiger-Pontryagin difference of sets, see [71, 141].

Theorem 3.3.8. Let Assumption 1 be fulfilled and let G,H be w∗- compact convex subsets of

Y ∗. Then,

(i) The set G is a w∗- compact generator of K∗ ⇐⇒ (G, {0}) ∈ D. In particular, SDS ⊆ SQD.

(ii) Assume that (G,H) ∈ D and let the functional ψ be defined by (3.11). Then,

ψ ∈ SDS ⇐⇒ H +G	H = G.

In particular, the set G	H is necessarily a generator of K∗.

Proof. (i) Let us assume first that G is a generator of K∗. We now prove that (G, {0}) ∈ D.
Indeed, it follows from the definition that 0 /∈ G, or equivalently, {0} ∩G = ∅. Furthermore, by

Proposition 3.3.2, the condition {0} �(s)
K∗ G

y for every y ∈ Y is equivalent to {0} �(l)
K∗ G

y for

every y ∈ Y. This just means that Gy ⊆ K∗ for all y, which is trivially satisfied by the definition

of the generator. In order to finish this first part, it remains to show that

0 ∈
⋂

y/∈−K

(G− intP (y)) .

Assume otherwise. Then, we could find y /∈ −K such that 0 /∈ G− intP (y). This is equivalent

to G ⊆ −P (y), and hence

∀ g∗ ∈ G : 〈g∗, y〉 ≤ 0.
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Because G is a generator of K∗, we can apply Proposition 2.2.14 (iv) to obtain that y ∈ −K, a

contradiction. This proves the first implication.

Now, assume that (G, {0}) ∈ D. By Theorem 3.3.7, the functional ψ := σG − σ{0} = σG

satisfies both the monotonicity and the order representability axiom. Hence, from the proof of

Theorem 3.2.2, we get that G is in fact a generator of K∗.

(ii) We have ψ ∈ SDS if and only if there exists a generator D of K∗ such that σG−σH = σD.

Adding σH to both members we get

σG = σD + σH = σD+H .

Then, applying Hörmander’s Theorem [145, Theorem 2.3.1], we find that G = D+H. Therefore,

by the definition of G	H, we deduce that G	H = D.

By now, we know that SDS ⊆ SQD. However, it is not clear whether these classes are

equivalent. We close this section by showing that this inclusion is actually strict under natural

assumptions.

Theorem 3.3.9. In addition to Assumption 1, suppose that intK∗ 6= ∅. Then,

SQD \ SDS 6= ∅.

Proof. First, let us note that, if dimY = 1, the result is trivial. Indeed, in this case, we can

assume without loss of generality that Y = R and K = R+. Then, it is easy to see that the sets

G = [a, b] and H = [c, d] form a scalarization pair if and only if a > d. By choosing them so

that b− d < a− c, we ensure that G	H = ∅ and hence, by Theorem 3.3.8 (ii), the associated

functional to this sets will be nonconvex.

For the rest of the proof, we assume that dimY > 1. Here, the argument will be divided in

several steps:

Step 1: Definition of suitable sets G and H of Y ∗.

Fix elements e ∈ intK and v∗ ∈ intK∗, and consider the basis

B := {y∗ ∈ K∗ | 〈y∗, e〉 = 1}

of K∗. Then, we can find ε > 0 such that

v∗ + εB ⊂ K∗. (3.19)

On the other hand, according to Proposition 2.5.7 (iii), we have B = ∂ψe(0). Hence, from

Proposition 2.3.18 (ii), we deduce that B is bounded. Thus,

L := sup
b∗∈B

‖b∗‖∗ < +∞.
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Consider now the point p∗ = L
ε v
∗. Then, for any b∗ ∈ B, we have

ε =
ε

L
L ≥ ε

L
‖b∗‖∗ =

∥∥∥v∗ − ε

L
b∗ − v∗

∥∥∥
∗
.

By (3.19), we now have v∗− ε
Lb
∗ ∈ K∗, which is equivalent to b∗ ∈ p∗−K∗. Since b∗ was chosen

arbitrarily in B, it follows that the constructed point p∗ satisfies

B ⊆ p∗ −K∗.

Consider now the sets

G := (B +K∗) ∩ (p∗ −K∗), C := {y ∈ Y | 〈p∗, y〉 < σG(y)}.

Note that −e ∈ C, and hence C 6= ∅. Indeed, assume the contrary. In case G 6= {p∗}, we could

find g∗ ∈ G\{p∗}, Then, we would have p∗−g∗ ∈ K∗\{0}, such that 〈p∗−g∗,−e〉 < 0. However,

this implies

〈p∗,−e〉 < 〈g∗,−e〉 ≤ σG(−e),

a contradiction. If on the other hand G = {p∗}, then we also get B = {p∗}. Since intK∗ 6= ∅ and

B is a basis of K∗, we deduce that dimY ∗ = 1, which implies dimY = 1, again a contradiction.

Let us define next

H̃ := cl∗ conv

⋃
y∈C

Gy ∪B

 .

Furthermore, let

β := inf
b∗∈B

‖b∗‖∗, η := sup
h∗∈H̃

‖h∗‖∗.

Finally, put

H :=
β

2η
H̃.

Step 2: Proving that (G,H) is a scalarization pair.

This will be a consequence of the following claims:

• Claim 1: G and H are convex and w∗- compact.

We have that G is convex because it is the intersection of convex sets. By definition, H̃

is convex, so H is convex too. Since H̃ is a w∗- closed subset of G, in order to prove w∗-

compactness of H it suffices to prove the w∗- compactness of G. However, from Proposition

2.1.24 (iii), this is equivalent to show that G is w∗- closed and ‖ · ‖∗- bounded.

The w∗- closedness of G is easy to see: G is the intersection of two w∗- closed sets. In

order to see that G is ‖ · ‖∗- bounded, note that 〈g∗, e〉 ≤ 〈p∗, e〉 for every g∗ ∈ G. Now,
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G

p∗

H̃

B

H

K∗

Figure 3.2: Idea of the construction in the proof of Theorem 3.3.9

since B is a basis of K∗, every element g∗ ∈ G can be written as g∗ = tb∗, where t > 0 and

b∗ ∈ B. Then, we have the inequality 〈tb∗, e〉 ≤ 〈p∗, e〉, from which we find that

t ≤ 〈p
∗, e〉
〈b∗, e〉

= 〈p∗, e〉.

Thus, it follows that

‖g∗‖∗ = t‖b∗‖∗ ≤ 〈p∗, e〉‖b∗‖∗ ≤ L〈p∗, e〉 < +∞,

as we wanted.

• Claim 2: G ∩H = ∅.

By construction, we have

∀ h∗ ∈ H : ‖h∗‖∗ ≤
β

2η
η =

β

2
< β,

and

∀ g∗ ∈ G : ‖g∗‖∗ ≥ β.

In particular, this implies that G ∩H = ∅.

• Claim 3: ∀ y ∈ Y : Hy �(s)
K∗ G

y.

From Proposition 3.3.2, we only need to show that Hy ⊆ Gy −K∗ for every y ∈ Y. Before

proceeding, note that the definition of H̃ implies

∀ y ∈ C : Gy ⊆ H̃ ⊆ G.

Hence, we have
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∀ y ∈ C : H̃y = Gy. (3.20)

Now, taking into account (3.20) and the fact that η ≥ β, we get

∀ y ∈ C : Hy =
β

2η
H̃y =

β

2η
Gy ⊆ Gy −K∗.

On the other hand, for y /∈ C, we have by definition that p∗ ∈ Gy. Thus, we find that

Hy ⊂ H ⊆ p∗ −K∗ ⊆ Gy −K∗,

as desired.

• Claim 4: H ⊆
⋂

y/∈−K
(G− intP (y)).

Assume otherwise. Then,

∃ y /∈ −K, h∗ ∈ H : h∗ /∈ G− intP (y)

⇐⇒ h∗ /∈ Gy − intP (y)

⇐⇒ 〈h∗, y〉 ≥ σG(y).

Since y /∈ −K and G ⊆ K∗, we have σG(y) > 0. Then, taking into account that 2η
β > 1

and that 2η
β h
∗ ∈ H̃ ⊆ G, we get

0 < σG(y) ≤ 〈h∗, y〉 < 〈 2η
β
h∗︸ ︷︷ ︸

∈H̃⊆G

, y〉 ≤ σG(y),

a contradiction.

This proves that (G,H) is a scalarization pair and hence, by Theorem 3.3.7, it follows that

ψ := σG − σH ∈ SQD.

Step 3: Proving that ψ is nonconvex.

Assume that ψ is convex. By Theorem 3.3.8 (ii), this is true if and only if G	H +H = G.

In particular, since p∗ ∈ G, it follows that there exists ȳ∗ ∈ Y ∗ such that

p∗ ∈ ȳ∗ +H, ȳ∗ +H ⊆ G.

Let u∗ := p∗ − ȳ∗ ∈ H. In order to arrive at a contradiction, we use the following claims:



3.3. Generalized Class of Scalarizing Functionals 63

• Claim 5: The inclusion H ⊆ u∗ −K∗ holds.

Indeeed, take any h∗ ∈ H. Then, by hypothesis, we have ȳ∗ + h∗ ∈ G ⊆ p∗ −K∗. Hence,

we can find k∗ ∈ K∗ such that ȳ∗ + h∗ = p∗ − k∗. This implies that

h∗ = p∗ − ȳ∗ − k∗ = u∗ − k∗ ∈ u∗ −K∗,

which justifies the claim.

• Claim 6: u∗ /∈ B′ = β
2ηB.

Otherwise, note that B′ ⊆ H ⊆ u∗ −K∗ by Claim 5. Take any b∗ ∈ B′. Then, we have

〈b∗, e〉 = 〈u∗, e〉 and u∗ − b∗ ∈ K∗. Thus,

〈u∗, e〉 = 〈b∗, e〉+ 〈u∗ − b∗, e〉 ≥ 〈b∗, e〉

and, since e ∈ intK, the equality holds if and only if u∗ = b∗. Hence B′ = {u∗}, which

implies that dimK∗ = 1. Since intK∗ 6= ∅, this in particular means that dimY ∗ = 1, and

hence dimY = 1, a contradiction.

• Claim 7: u∗ ∈ intK∗.

Assume otherwise. Then, we could apply Theorem 2.1.26 (i) to obtain a functional y∗∗ ∈
Y ∗∗ \ {0} such that

∀ k∗ ∈ K∗ : 〈y∗∗, u∗〉 ≤ 〈y∗∗, k∗〉.

From this we deduce that y∗∗ ∈ (K∗)∗ and that 〈y∗∗, u∗〉 ≤ 0. This, together with Claim

5, the fact that B′ is a basis of K∗ and that B′ ⊆ H, gives us

∀ b∗ ∈ B′ : 〈y∗∗, b∗〉 ≤ 〈y∗∗, u∗〉 ≤ 0.

On the other hand, since B′ is in particular a generator of K∗, this implies 〈y∗∗, k∗〉 = 0

for any k∗ ∈ K∗. Since intK∗ 6= ∅, this would imply that y∗∗ = 0, a contradiction.

• Claim 8:

( ⋃
y∈C

Gy ∪B

)
⊆ B ∪ bdK∗.

Assume otherwise. Then, we can find y ∈ C and y∗ ∈ Gy such that y∗ /∈ B ∪ bdK∗.

Since Gy ⊆ K∗, we have that y∗ ∈ intK∗. Since y ∈ C, we also get 〈y∗, y〉 > 〈p∗, y〉. By

the definition of G, we have that k∗ := p∗ − y∗ ∈ K∗, which implies in particular that

〈k∗, y〉 < 0. Then, taking into account that y∗ /∈ B, we find that y∗−tk∗ ∈ y∗−K∗ ⊆ p∗−K∗

and y∗ − tk∗ ∈ B + K∗ for t > 0 small enough. By the definition of G, this means that

y∗ − tk∗ ∈ G for t > 0 small enough. Thus, we deduce that

〈y∗ − tk∗, y〉 = 〈y∗, y〉 − t〈k∗, y〉 > 〈y∗, y〉,

a contradiction to the fact that y∗ ∈ Gy. The claim is true.
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• Claim 9: ∃ α > 0 such that 〈k∗, e〉 ≤ 〈u∗, e〉 −α for every k∗ ∈ B′ ∪ [(u∗ −K∗) ∩ bdK∗] .

Indeed, because of Claims 6 and 7, we have u∗ /∈ B′ and u∗ ∈ intK∗. Hence, we can

find δ > 0 such that u∗ + δB ⊆ intK∗ and (u∗ + δB) ∩ B′ = ∅. On the other hand, by

Proposition 2.3.18 (ii) and Proposition 2.5.7 (iii), for any α > 0 the set

Bα := {y∗ ∈ K∗ | 〈y∗, e〉 = α}

is bounded. This implies the existence of α > 0 such that Bα ⊆ δB. From Claim 5 and

Claim 6 we get that β
2η < 〈u

∗, e〉 and, hence, we can choose α small enough such that

β

2η
≤ 〈u∗, e〉 − α. (3.21)

In particular, this means that 〈k∗, e〉 ≤ 〈u∗, e〉 − α for any k∗ ∈ B′. Then, we deduce that

{y∗ ∈ u∗ −K∗ | 〈y∗, e〉 = 〈u∗, e〉 − α} = u∗ +Bα ⊆ u∗ + δB ⊆ intK∗. (3.22)

Take now any k∗ ∈ (u∗ −K∗) ∩ bdK∗. Then, we have the existence of t ≥ 0 and b∗α ∈ Bα
such that k∗ = u∗ + tb∗α. In fact, because of (3.22), we get that t > 1. Thus,

〈k∗, e〉 = 〈u∗, e〉+ t〈b∗α, e〉 ≤ 〈u∗, e〉 − α,

as desired.

Finally, choose any y ∈ C. Then, according to Claim 8, we have Gy ⊆ B ∪ bdK∗, so that
β
2ηG

y ⊆ [B′ ∪ bdK∗] ∩H. Furthermore, because of Claim 5, this implies

β

2η
Gy ⊆

(
B′ ∪ bdK∗

)
∩H ⊆

(
B′ ∪ bdK∗

)
∩ (u∗ −K∗) ⊆ B′ ∪ [(u∗ −K∗) ∩ bdK∗] . (3.23)

Now, taking α as in Claim 9, we get 〈h∗, e〉 ≤ 〈u∗, e〉 − α for any h∗ ∈ β
2ηG

y ∪ B′. Since, by

definition, H = cl∗ conv

( ⋃
y∈C

β
2η (Gy ∪B)

)
, we find that

∀ h∗ ∈ H : 〈h∗, e〉 ≤ 〈u∗, e〉 − α.

However, this is a contradiction to the fact that u∗ ∈ H. Therefore, the functional ψ is nonconvex.



Chapter 4

Optimality Conditions in Set

Optimization

In this chapter, we study necessary optimality conditions for the general problem SOP(F,K,Ω),

where the solution concept is given by the set approach. Specifically, we deal with the preorders

�(l)
K and �(u)

K , although our methodology could be extended to other set relations. Our results

generalize Theorem 2.4.10 for set optimization problems with respect to the set approach, and

are based on the paper by Bouza, Quintana, Tuan and Tammer [26]. The main assumption

throughout this part is the following:

Assumption 2. Let X and Y be Banach spaces, K ⊂ Y be a proper, closed, convex, pointed,

and solid cone, and e ∈ intK. Let Ω ⊆ X be nonempty and closed, and fix x̄ ∈ Ω. Furthermore,

let F : X ⇒ Y be a set-valued mapping such that Ω ⊆ int domF.

The chapter is organized as follows. In Section 4.1, we present a literature review on opti-

mality conditions for set optimization problems, and comment on some of the advantages that

our results have over the existing ones. In Section 4.2, we derive properties of convexity and

Lipschitzianity of suitable scalarizing functionals under the same assumptions on the set-valued

objective mapping. Sections 4.3 and 4.4 are devoted to obtaining upper estimates of the limit-

ing subdifferential of these scalarizing functionals. These upper estimates are then employed in

Section 4.5 to derive the optimality conditions for set optimization problems. In Section 4.6, we

derive Karush-Kuhn-Tucker type optimality conditions for a class of convex problems given by

functional constraints.

4.1 Literature Review

The literature on the topic of optimality conditions for set optimization problems with respect to

the set approach is very rich and different results have been obtained using objects of generalized

differentiation lying in both the primal and dual spaces. The techniques employed in the primal

space are mainly based on some type of directional derivatives and can be roughly separated

into the following classes:
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• Directional derivatives based on set differences [38, 91, 101, 140].

The main idea is to consider a suitable operation that resembles subtraction in the power

set of the image space. These operations are based on the well known differences of sets of

Minkowski and Demyanov [71, 143], but usually slight modifications are introduced in order

to make it useful in set optimization. Then, with the help of the set difference, a directional

derivative is defined as a limit of an associated incremental quotient. Furthermore, the

optimality conditions obtained in this setting establish the nonnegativity of the directional

derivative, according to the treated set relation.

• Directional derivatives based on a distance type functional [69, 70].

In contrast to the previous technique, a directional derivative is introduced in [69] with

the help of the standard algebraic difference of sets and a distance type functional. The

distance functional is a modification of the well known Hausdorff distance for sets and

is based on the classical Hiriart-Urruty functional studied in Chapter 3. The directional

derivative is, in this case, defined as the minimal set of some compact set to which the

incremental quotient converges (in the sense of the modified distance). A similar idea is

used in [70] to introduce a concept of slope for a set-valued mapping at a given point,

together with necessary conditions for minimal solutions of the set optimization problem

in the convex case.

• Directional derivatives based on embedding [11, 121].

The idea in [11, 121] is to embed the class of convex and bounded sets (with respect

to the ordering cone) into a suitable normed space. With this construction, the original

set optimization problem is equivalent to a standard vector optimization problem having

as a target function the composition of the embedding map and the set-valued objective

mapping. Hence, a directional derivative of the set-valued mapping is defined in a standard

way as the directional derivative of this composition.

• Directional derivatives of selections of the set-valued objective mapping [2, 3].

In this approach, there is no explicit definition of directional derivatives for a set-valued

mapping, but rather they use those of its continuous selections. Roughly speaking, the

optimality conditions establish the nonnegativity, in the sense of the ordering cone, of

these directional derivatives.

• Contingent derivatives and variations [109, 113, 137, 142].

Contingent derivatives and epiderivatives have been successfully employed in obtaining

optimality conditions for set optimization problems with respect to the vector approach

[89]. Consequently, it was a natural idea to apply these tools also in the set approach

setting. In this direction, other modifications of the derivatives were also studied, like

those of Shi [147] and Studniarski [148].
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On the other hand, to the best of our knowledge, optimality conditions using objects of gen-

eralized differentiation lying in the dual space have been considered only twice in the literature

[93, 109]. In particular:

• In [93], the case in which the set-valued mapping is given by functional constraints was an-

alyzed. Using a vectorization result by Jahn [92], the set-valued problem was transformed

into a vector-valued one (with an infinite dimensional image space), and hence classical

optimality conditions for vector optimization problems were applied.

• In [109] the idea is that, under different assumptions, set approach solutions of the set-

valued problem are also solutions based on the vector approach. Hence, under these

assumptions, the optimality conditions in Theorem 2.4.20 for vector approach solutions

are also applicable in the context of the set approach.

We want to mention however, that some of these optimality conditions are derived under

somewhat strong assumptions on the set-valued objective mapping. For example, in [2, 3, 109,

113, 137, 142], it is required that the optimal set has a strongly minimal element in order to

verify optimality. In addition, either the convexity or compactness (mostly both) of the images

of the set-valued objective mapping are needed in [38, 69, 70, 91, 93, 140].

Recently, it also caught our attention that, independently, Amahroq and Oussarhan in [4, 5]

and Huerga, Jiménez and Novo in [84] were working with similar ideas to ours for deriving

optimality conditions in set optimization. The main differences between the results derived in

these papers and our optimality conditions are the following:

• In [4, 5, 84], the authors studied only solution concepts based on the lower set less relation.

In this chapter, we also examine solution concepts based on the upper set less relation.

• In [5, 84], the case in which the set-valued objective mapping is convex was analyzed under

stronger assumptions to ours. In addition, the optimality conditions in [5] require that the

optimal set has a strongly minimal element. In our results for the convex case, we have

no assumption on the structure of the minimal elements of the optimal set.

• In [4], the case in which the set-valued objective mapping is locally Lipschitzian is studied.

However, the authors assume the compactness of the images of the set-valued objective

mapping. Furthermore, the optimality conditions are not established using the initial

data, but rather they are expressed in a limiting form. Also in [84], certain compactness

assumptions concerning the involved set-valued mappings are supposed. In this chapter,

we derive our main results in terms of the initial data, and we do not impose any convexity

or compactness condition on the set-valued objective mapping.
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4.2 Properties of Two Classes of Scalarizing Functionals in Set

Optimization

With the purpose of deriving optimality conditions for set optimization problems we introduce

in this section, for a given set-valued mapping F , two associated functionals. We then proceed to

show that these functionals inherit the convexity and Lipschitz property from F. It is natural to

think that the scalarizing functionals for set optimization problems are based on those for vector

optimization. In that case, according to our discussion in Chapter 3 (specifically, Remark 3.2.10),

it makes sense to consider, under Assumption 2, the functional ψe defined by (2.28). This,

together with the characterization of the set relations presented in Theorem 2.5.9, motivates our

next definition.

Definition 4.2.1. Let Assumption 2 be fulfilled.

(i) The lower inner function gl : X × Y → R is defined as

gl(x, z) := inf
y∈F (x)

ψe(y − z). (4.1)

(ii) The upper inner function gu,x̄ : Y → R is defined as

gu,x̄(y) := inf
ȳ∈F (x̄)

ψe(y − ȳ). (4.2)

(iii) For r ∈ {l, u}, the functional fr,x̄ : X → R is defined as follows:

fr,x̄(x) :=


sup

ȳ∈F (x̄)
gl(x, ȳ) = sup

ȳ∈F (x̄)
inf

y∈F (x)
ψe(y − ȳ) if r = l,

sup
y∈F (x)

gu,x̄(y) = sup
y∈F (x)

inf
ȳ∈F (x̄)

ψe(y − ȳ) if r = u.
(4.3)

As mentioned at the beginning of the section, we now show that for preorders �(l)
K and

�(u)
K , the corresponding scalarizing functional inherits the convexity property of the set-valued

mapping. We start with a simple proposition.

Proposition 4.2.2. Let Assumption 2 be fulfilled and consider the functionals given in Defini-

tion 4.2.1. Then, the following statements are true:

(i) For every x ∈ X, the functional gl(x, ·) is −K- monotone. Furthermore, for ȳ ∈ F (x̄), we

have that gl(x̄, ȳ) = 0 if and only if ȳ ∈WMin(F (x̄),K).

(ii) The functional gu,x̄ is K- monotone. Furthermore, for y ∈ F (x̄), we have that gu,x̄(y) = 0

if and only if y ∈WMax(F (x̄),K).

(iii) For any r ∈ {l, u}, we have fr,x̄(x̄) ≤ 0. Equality holds if r = l and WMin(F (x̄),K) 6= ∅,
or r = u and WMax(F (x̄),K) 6= ∅.
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Proof. (i) The monotonicity of gl(x, ·) follows directly from the monotonicity of ψe. Now fix

ȳ ∈ F (x̄). Then, we have gl(x̄, ȳ) ≤ 0 and hence

gl(x̄, ȳ) = 0 ⇐⇒ inf
y∈F (x̄)

ψe(y − ȳ) ≥ 0

⇐⇒ ∀ y ∈ F (x̄) : ψe(y − ȳ) ≥ 0

⇐⇒ ∀ y ∈ F (x̄) : y − ȳ /∈ − intK

⇐⇒ ȳ ∈WMin(F (x̄),K).

(ii) The monotonicity of gu,x̄ is easily deduced from the monotonicity of ψe. Now take

y ∈ F (x̄). Then, we always have gu,x̄(y) ≤ 0. Analogous to (i) we get

gu,x̄(y) = 0 ⇐⇒ inf
ȳ∈F (x̄)

ψe(y − ȳ) ≥ 0

⇐⇒ ∀ ȳ ∈ F (x̄) : ψe(y − ȳ) ≥ 0

⇐⇒ ∀ ȳ ∈ F (x̄) : y − ȳ /∈ − intK

⇐⇒ y ∈WMax(F (x̄),K),

as desired.

(iii) The fact that fr,x̄(x̄) ≤ 0 is trivial. If r = l and ỹ ∈ WMin(F (x̄),K) 6= ∅ then, by

statement (i), we get gl(x̄, ỹ) = 0. From this we deduce that fl,x̄(x̄) ≥ gl(x̄, ỹ) = 0, and hence

the equality holds. Analogously, if r = u and ỹ ∈WMax(F (x̄),K) 6= ∅ then, by statement (ii),

we get gu,x̄(ỹ) = 0. Again, this implies that fu,x̄(x̄) ≥ 0, and hence the equality.

Remark 4.2.3. Proposition 4.2.2 (i) together with Proposition 2.5.6 (ii) gives us monotonicity

properties of the functionals gl(x, ·) and ψe. From this, it easily follows that the functionals gl and

fl,x̄ are invariant under replacement of F by any set-valued mapping of the form FA := F +A,

with A ⊆ K and 0 ∈ A. In particular, this is true when we replace F by EF .
Similarly, from Proposition 4.2.2 (ii) and Proposition 2.5.6 (ii) we deduce that the functionals

fu,x̄ and gu,x̄ are invariant under replacement of F by any set-valued mapping of the form

FA := F −A, with A ⊆ K and 0 ∈ A.

The next lemma proves the convexity of the inner functions given by (4.1) and (4.2) under

different convexity assumptions on F.

Lemma 4.2.4. Let Assumption 2 be fulfilled and consider the lower and upper inner functions

given in Definition 4.2.1. The following statements hold:

(i) If F is �(l)
K - convex, then gl(·, ȳ) is convex for every ȳ ∈ F (x̄). Furthermore, if F is locally

�(l)
K - bounded at x̄, then x̄ ∈ int dom gl(·, ȳ) and gl(·, ȳ) is continuous at x̄.



4.2. Properties of Two Classes of Scalarizing Functionals in Set Optimization 70

(ii) If the set HF (x̄) is convex and K- bounded above, then gu,x̄ is a convex K- monotone

functional that is continuous on Y.

Proof. (i) Take ȳ ∈ F (x̄), x1, x2 ∈ X, and t ∈ (0, 1). Let xt := tx1 + (1 − t)x2 and

Ft := tF (x1) + (1− t)F (x2). Since F is �(l)
K - convex, we have

Ft ⊆ F (xt) +K. (4.4)

We now have

gl(tx1 + (1− t)x2, ȳ) = inf
y∈F (xt)

ψe(y − ȳ)

(Proposition 2.5.6 (ii))
= inf

y∈F (xt)+K
ψe(y − ȳ)

((4.4))

≤ inf
y∈Ft

ψe(y − ȳ)

= inf
(y1,y2)∈F (x1)×F (x2)

ψe(ty1 + (1− t)y2 − ȳ)

= inf
(y1,y2)∈F (x1)×F (x2)

ψe(t(y1 − ȳ) + (1− t)(y2 − ȳ))

(Proposition 2.5.6 (i))

≤ inf
(y1,y2)∈F (x1)×F (x2)

tψe(y1 − ȳ) + (1− t)ψe(y2 − ȳ)

= tgl(x1, ȳ) + (1− t)gl(x2, ȳ).

Now, let us assume that F is locally �(l)
K - bounded at x̄. Hence, we can find α > 0 and a

neighborhood U of x̄ such that

∀ x ∈ U : F (x) ∩ (−αe+K) ∩ (αe−K) +K = F (x) +K.

By the monotonicity of ψe in Proposition 2.5.6 (ii) we have, for every x ∈ U :

−∞ < ψe(−αe− ȳ)

= inf
y∈−αe+K

ψe(y − ȳ)

≤ inf
y∈F (x)+K

ψe(y − ȳ)

= gl(x, ȳ) (4.5)

= inf
y∈F (x)∩(αe−K)

ψe(y − ȳ)

≤ sup
y∈F (x)∩(αe−K)

ψe(y − ȳ)

≤ ψe(αe− ȳ)

< +∞.

This shows that gl(·, ȳ) is finite and bounded above around x̄. The continuity follows then from

Proposition 2.3.18 (i).
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(ii) The monotonicity of gu,x̄ was already established in Proposition 4.2.2 (ii). In order to

show the convexity, we check that epi gu,x̄ is convex. Indeed, take (y1, t1), (y2, t2) ∈ epi gu,x̄ and

t ∈ (0, 1). Hence, gu,x̄(x1) ≤ t1 and gu,x̄(x2) ≤ t2. Then, for any ε > 0, we have

gu,x̄(x1) < t1 + ε, gu,x̄(x2) < t2 + ε.

We can now find ȳ1, ȳ2 ∈ F (x̄) such that

ψe(y1 − ȳ1) < t1 + ε, ψe(y2 − ȳ2) < t2 + ε.

From this, we get

ψe((ty1 + (1− t)y2)− (tȳ1 + (1− t)ȳ2)) = ψe(t(y1 − ȳ1) + (1− t)(y2 − ȳ2))

≤ tψe(y1 − ȳ1) + (1− t)ψe(y2 − ȳ2)

≤ t(t1 + ε) + (1− t)(t2 + ε)

= tt1 + (1− t)t2 + ε.

Now, because F (x̄)−K is convex, we have

tȳ1 + (1− t)ȳ2 ∈ conv(F (x̄)) ⊆ HF (x̄),

and hence we can find ȳ ∈ F (x̄) such that tȳ1 + (1− t)ȳ2 ∈ ȳ−K. Then, by monotonicity of ψe,

we get

gu,x̄(ty1 + (1− t)y2) ≤ ψe(ty1 + (1− t)y2 − ȳ)

≤ ψe((ty1 + (1− t)y2)− (tȳ1 + (1− t)ȳ2))

≤ tt1 + (1− t)t2 + ε.

Since ε > 0 was chosen arbitrarily, we conclude that (ty1 + (1 − t)y2, tt1 + (1 − t)t2) ∈ epi gu,x̄.

This means that epi gu,x̄ is a convex set, as desired.

Now, since HF (x̄) is K- bounded above, we have

−∞ < ψ(y − αe) = inf
ȳ∈αe−K

ψe(y − ȳ) ≤ inf
ȳ∈HF (x̄)

ψe(y − ȳ)
(Remark 4.2.3)

= gu,x̄(y).

This means that gu,x̄ is finite on Y. The continuity of gu,x̄ is now deduced by fixing ȳ ∈ F (x̄)

and noticing that gu,x̄(·) ≤ ψe(· − ȳ), a continuous convex functional.

We are now ready to establish the convexity of the functionals fl,x̄ and fu,x̄, under the

assumption that F is �(l)
K - convex (�(u)

K - convex, respectively), see Definition 2.3.2.

Theorem 4.2.5. Let Assumption 2 be fulfilled and, for r ∈ {l, u}, consider the functional fr,x̄

given in Definition 4.2.1 (iii). The following statements hold:
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(i) If F is �(l)
K - convex then fl,x̄ is convex. Furthermore, if F is locally �(l)

K - bounded at x̄,

then x̄ ∈ int dom fl,x̄ and fl,x̄ is continuous at x̄.

(ii) If F is �(u)
K - convex and HF (x̄) is a convex set, then fu,x̄ is convex. Furthermore, if F is

locally K- bounded above at x̄, then x̄ ∈ int dom fu,x̄ and fu,x̄ is continuous at x̄.

Proof. (i) We have

fl,x̄(x) = sup
ȳ∈F (x̄)

gl(x, ȳ).

By Lemma 4.2.4 (i), for every ȳ ∈ F (x̄), the functional gl(·, ȳ) is convex. Hence, fl,x̄ is convex

as it is the supremum of convex functionals. According to Proposition 2.3.18 (i), to prove the

second part it suffices to show that fl,x̄ is finite and upper bounded on a neighborhood of x̄. In

order see this, note that the assumptions on the second part of Lemma 4.2.4 (i) are fulfilled.

Hence, from (4.5) we get the existence of α > 0 and neighborhood U of x̄ on which

∀ x ∈ U : −∞ < gl(x, ȳ) ≤ ψe(αe− ȳ). (4.6)

Taking the supremum over ȳ ∈ F (x̄) in (4.6), we get

∀ x ∈ U : −∞ < fl,x̄(x) ≤ sup
ȳ∈F (x̄)

ψe(αe− ȳ). (4.7)

Since F is locally �(l)
K - bounded at x̄, it is easy to verify in particular that F (x̄) ⊆ −αe+K. By

the monotonicity of ψe in Proposition 2.5.6 (ii), we now obtain

sup
ȳ∈F (x̄)

ψe(αe− ȳ) ≤ ψe(2αe) = 2α.

This, together with (4.7), implies that fl,x̄ is finite and upper bounded on U. The statement

follows.

(ii) Let us now prove that fu,x̄ is convex. Indeed, take any x1, x2 ∈ X and t ∈ (0, 1), Again,

by denoting xt = tx1 + (1− t)x2 and Ft = tF (x1) + (1− t)F (x2), we have

fu,x̄(xt) = sup
y∈F (xt)

gu,x̄(y)

(Convexity of F )

≤ sup
y∈Ft

gu,x̄(y)

= sup
(y1,y2)∈F (x1)×F (x2)

gu,x̄(ty1 + (1− t)y2)

(Convexity of gu,x̄)

≤ sup
(y1,y2)∈F (x1)×F (x2)

tgu,x̄(y1) + (1− t)gu,x̄(y2)

= tfu,x̄(x1) + (1− t)fu,x̄(x2),

as desired.

Now, assume that F is locally K- bounded above at x̄ and let U be the neighborhood on

which the boundedness property holds. Again, in order to prove the second part it suffices to
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show that fu,x̄ is finite and upper bounded on a neighborhood of x̄. We proceed as follows: since

x̄ ∈ int domF, we can assume without loss of generality that U ⊆ int domF. Moreover, since in

particular the assumptions of Lemma 4.2.4 (ii) are fulfilled, we get that gu,x̄(y) > −∞ for every

y ∈ Y. Taking any selection θ of F on U, we deduce that

∀ x ∈ U : −∞ < gu,x̄(θ(x)) ≤ fu,x̄(x).

On the other hand, recall that from Lemma 4.2.4 (ii) the functional gu,x̄ is K- monotone and

finite. Taking this into account and the fact that F (x)−K ⊆ αe−K for every x ∈ U, we obtain

∀ x ∈ U : fu,x̄(x) ≤ sup
y∈αe−K

gu,x̄(y) = gu,x̄(αe) < +∞.

The theorem is proved.

Next, we show that the Lipschitz properties of the set-valued mapping are also transfered

to the corresponding functionals. The result will be an immediate consequence of Proposition

2.3.27, Proposition 2.5.7 (i) and Proposition 4.2.2.

Lemma 4.2.6. Let Assumption 2 be fulfilled. Consider the lower and upper inner functions gl

and gu,x̄ given in Definition 4.2.1, and let ρ be the Lipschitz constant of ψe given by (2.31). The

following statements hold:

(i) If F is Lipschitz with constant ` > 0 on a neighborhood U of x̄ and there exists ȳ ∈ Y with

gl(x̄, ȳ) > −∞, then gl is Lipschitz on U × Y with constant ρ(1 + `). In particular, the

condition gl(x̄, ȳ) > −∞ can be replaced by ȳ ∈WMin(F (x̄),K).

(ii) The functional gu,x̄ is Lipschitz on Y with constant ρ if and only if gu,x̄(ȳ) > −∞ for some

ȳ ∈ Y. In particular, this is true if WMax(F (x̄),K) 6= ∅.

Proof. (i) Consider the set-valued mapping F̃ : X×Y ⇒ Y and the functional f̃ : X×Y ×Y →
R defined as

F̃ (x, y) := F (x), f̃(x, y, z) := ψe(z − y).

Apply now Proposition 2.3.27 (i) with ϕ := gl, F := F̃ and f := f̃ to obtain the Lipschitz

property of gl. If ȳ ∈WMin(F (x̄),K), then it follows from Proposition 4.2.2 (i) that gl(x̄, ȳ) =

0 > −∞.
(ii) Follows easily from the fact that gu,x̄ is the finite infimum of a fixed family of Lipschitz

functionals on Y. Of course, when ȳ ∈ WMax(F (x̄),K) 6= ∅, we get gu,x̄(ȳ) = 0 > −∞ from

Proposition 4.2.2 (ii).

We can now establish the Lipschitz property of the functionals fl,x̄ and fu,x̄.

Theorem 4.2.7. Let Assumption 2 be fulfilled. For r ∈ {l, u}, consider the functional fr,x̄ given

by (4.3) and suppose that F is locally Lipschitz at x̄. The following statements hold:
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(i) If WMin(F (x̄),K) 6= ∅, then fl,x̄ is locally Lipschitz at x̄.

(ii) If WMax(F (x̄),K) 6= ∅, then fu,x̄ is locally Lipschitz at x̄.

Proof. (i) Consider the constant set-valued mapping F̃ : X ⇒ Y given by F̃ (x) := F (x̄)

for every x ∈ X. By Lemma 4.2.6 (i), we know that gl is Lipschitz on U × Y, where U is

a neighborhood of x̄ on which F is Lipschitz. Furthermore, according to Proposition 4.2.2

(iii), we have fl,x̄(x̄) = 0 < +∞. Hence, the Lipschitz property of fl,x̄ around x̄ follows from

Proposition 2.3.27 (ii) with ϕ := fl,x̄, F := F̃ and f := gl.

(ii) Similarly, consider the functional f̃ : X × Y → R given by f̃(x, y) := gu,x̄(y) for every

(x, y) ∈ X × Y. From 4.2.6 (ii), we get that f̃ is Lipschitz on X × Y. In addition, Proposition

4.2.2 (iii) implies that fu,x̄(x̄) = 0 < +∞. Hence, the Lipschitz property of fu,x̄ around x̄ follows

from Proposition 2.3.27 (ii) with ϕ := fu,x̄, F := F and f := f̃ .

4.3 Subdifferential of the Functional Associated to the Lower

Set Less Relation

In this part, we derive upper estimates for the limiting subdifferential of the functional fl,x̄

studied in Section 4.2. Our upper estimates are given in terms of the coderivative of the set-

valued objective map F and are based in Theorem 2.3.28 and Theorem 2.3.29. These motivates

the definition of the following solution maps.

Definition 4.3.1. Let Assumption 2 be fulfilled.

(i) The lower inner solution map Sl,1F : X × Y ⇒ Y is defined as

Sl,1F (x, y) := {z ∈ F (x) | ψe(z − y) = gl(x, y)}.

(ii) The lower outer solution map Sl,2F : X ⇒ Y is defined as

Sl,2F (x) := {y ∈ F (x̄) | fl,x̄(x) = gl(x, y)}.

Remark 4.3.2. According to Remark 4.2.3, the functionals gl and fl,x̄ are invariant under

replacement of F by EF . However, although the set-valued mappings Sl,iF and Sl,iEF are based on

the same functionals (i = 1, 2), we always have Sl,iF (·) ⊆ Sl,iEF (·) and the inclusions can be strict.

We divide the analysis in two cases, corresponding to whether F is �(l)
K - convex or locally

Lipschitz at x̄. We start the study with the convex case. The next lemma shows an exact formula

for the subdifferential of the inner function given in Definition 4.2.1 (i). It is worth mentioning

that a similar version of this result was recently obtained in [70, Lemma 2], but assuming the

separability of X.
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Lemma 4.3.3. Let Assumption 2 be fulfilled and, for ȳ ∈WMin(EF (x̄),K), consider the func-

tional gl,ȳ := gl(·, ȳ). Assume in addition that F is �(l)
K - convex and locally �(l)

K - bounded at x̄.

Then,

∂gl,ȳ(x̄) = D∗EF (x̄, ȳ) [∂ψe(0)] . (4.8)

Proof. The result will be a simple consequence of Theorem 2.3.28. Indeed, note that according

to Remark 4.2.3 we can write

gl,ȳ(x) = inf
y∈EF (x)

f(x, y),

where f : X × Y → R is defined as f(x, y) = ψe(y − ȳ). Since F is �(l)
K - convex, we have that

EF is a convex set-valued mapping. It is also obvious that f is proper and convex. Moreover,

by Proposition 4.2.2 (i), we have that gl,ȳ(x̄) = 0 6= −∞. According to Proposition 2.5.7 (i), f

is Lipschitz on X × Y and hence the regularity condition (ii) in Theorem 2.3.28 is satisfied. In

this case, the solution map is just Sl,1EF (·, ȳ). According to Proposition 4.2.2 (i) and Proposition

2.5.6 (iii), we get

Sl,1EF (x̄, ȳ) = {y ∈ EF (x̄) | ψe(y − ȳ) = 0} = EF (x̄) ∩ (ȳ − bdK). (4.9)

Since 0 ∈ bdK, it follows that ȳ ∈ Sl,1EF (x̄, ȳ). Applying now Theorem 2.3.28, we obtain

∂gl,ȳ(x̄) =
⋃

(x∗,y∗)∈∂f(x̄,ȳ)

[x∗ +D∗EF (x̄, ȳ)(y∗)]

=
⋃

(x∗,y∗)∈{0}×∂ψe(0)

[x∗ +D∗EF (x̄, ȳ)(y∗)]

=
⋃

y∗∈∂ψe(0)

D∗EF (x̄, ȳ)(y∗),

which proves the statement.

Lemma 4.3.4. Let Assumption 2 be fulfilled and take points (x̄, ȳ1), (x̄, ȳ2) ∈ gph EF such that

ȳ1 �K ȳ2. If F is �(l)
K - convex, then:

∀ y∗ ∈ K∗ : D∗EF (x̄, ȳ2)(y∗) ⊆ D∗EF (x̄, ȳ1)(y∗).

Proof. Fix y∗ ∈ K∗ and x∗ ∈ D∗EF (x̄, ȳ2)(y∗). Since ȳ1−ȳ2 ∈ −K, we have that 〈y∗, ȳ1−ȳ2〉 ≤ 0.

Then, for every (x, y) ∈ gph EF , we have

〈x∗, x− x̄〉 ≤ 〈y∗, y − ȳ2〉

= 〈y∗, y − ȳ1〉+ 〈y∗, ȳ1 − ȳ2〉

≤ 〈y∗, y − ȳ1〉,
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which implies that (x∗,−y∗) ∈ N((x̄, ȳ1), gph EF ). The statement is proved.

The following concept was introduced in [149].

Definition 4.3.5. Let Assumption 2 be fulfilled and consider A ⊆ Y. We say that A is strongly

K- compact if there exists a compact set B ⊆ A such that B ∈ [A](l).

Theorem 4.3.6. Let Assumption 2 be fulfilled and suppose that F is �(l)
K - convex and locally

�(l)
K - bounded at x̄, and that F (x̄) is strongly K- compact. Then,

∂fl,x̄(x̄) = cl∗ conv

 ⋃
ȳ∈Min(F (x̄),K)

D∗EF (x̄, ȳ) [∂ψe(0)]

 .

Proof. Under the assumptions of the theorem we can apply Theorem 4.2.5 (i) to obtain that

the functional fl,x̄ is convex and continuous at x̄. Hence, by [139, Proposition 1.11], we have

∂fl,x̄(x̄) 6= ∅. Since F (x̄) is strongly K- compact, there exists a compact set A ⊆ F (x̄) such that

A+K = F (x̄) +K. Applying [89, Lemma 4.7], we get that

Min(F (x̄),K) = Min(A,K) 6= ∅. (4.10)

As in Lemma 4.3.3, we consider, for ȳ ∈ F (x̄), the functional gl,ȳ := gl(·, ȳ). Then, according to

Proposition 4.2.2 (i), the functional gl(x, ·) is −K monotone for any x ∈ X. This implies

fl,x̄(x) = sup
ȳ∈F (x̄)

gl(x, ȳ) = sup
ȳ∈F (x̄)+K

gl(x, ȳ) = sup
ȳ∈A+K

gl(x, ȳ) = sup
ȳ∈A

gl(x, ȳ) = sup
ȳ∈A

gl,ȳ(x).

The above equation implies that fl,x̄ can be expressed as the pointwise supremum of the

parametric family {gl,ȳ}ȳ∈A. In this context, it is stated in [145, Proposition 4.5.2] an exact

formula for the subdifferential of the maximum of convex functions. In order to apply this

proposition, it is sufficient to verify the following statements:

• (A, ‖ · ‖) is a compact Hausdorff space.

This is obviously fulfilled because of our compactness assumption.

• For any ȳ ∈ A, the functional gl,ȳ is convex and continuous at x̄.

Since A ⊆ F (x̄), the statement follows directly from Lemma 4.2.4 (i).

• For every x ∈ X, the functional gl(x, ·) is u.s.c at every point of A.

Indeed, fix x ∈ X and take ȳ ∈ A,α ∈ R such that gl(x, ȳ) < α. This is equivalent to

inf
y∈F (x)

ψe(y − ȳ) < α,

and hence we can find y′ ∈ F (x) such that ψe(y
′ − ȳ) < α. Because of the continuity of

ψe, we can find a neighborhood V (ȳ) of ȳ such that for every z ∈ V (ȳ), the inequality

ψe(y
′ − z) < α holds. This, together with the definition of gl(x, ·), gives us
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∀ z ∈ V (ȳ) ∩A : gl(x, z) ≤ ψe(y′ − z) < α,

as desired.

Applying now [145, Proposition 4.5.2], we obtain that

∂fl,x̄(x̄) = cl∗ conv

⋃
ȳ∈S̃

∂gl,ȳ(x̄)

 , (4.11)

where

S̃ = {ȳ ∈ A | gl,ȳ(x̄) = fl,x̄(x̄)}.

Recall that WMin(F (x̄),K) 6= ∅ according to (4.10). Then, by Proposition 4.2.2 (iii), we know

that fl,x̄(x̄) = 0. Hence, ȳ ∈ S̃ if and only if gl,ȳ(x̄) = 0. Fix ȳ ∈ A. Note that, because of the

monotonicity of ψe, we have

gl,ȳ(x̄) = inf
y∈F (x̄)

ψe(y − ȳ) = inf
y∈F (x̄)+K

ψe(y − ȳ) = inf
y∈A+K

ψe(y − ȳ) = inf
y∈A

ψe(y − ȳ).

Then, following the same lines in the proof of Proposition 4.2.2 (i), we get

inf
y∈A

ψe(y − ȳ) = 0⇐⇒ ȳ ∈WMin(A,K).

This shows that

S̃ = WMin(A,K). (4.12)

Furthermore, since A is compact, we can apply Proposition 2.4.7 (i) to obtain

A ⊆ Min(A,K) +K. (4.13)

Hence, taking into account (4.11), (4.12) and Lemma 4.3.3, we obtain

∂fl,x̄(x̄) = cl∗ conv

 ⋃
ȳ∈WMin(A,K)

D∗EF (x̄, ȳ) [∂ψe(0)]

 . (4.14)

By (4.13), for every ȳ ∈ WMin(A,K) there exists ȳ1 ∈ Min(A,K) such that ȳ1 �K ȳ. This,

together with the fact that ∂ψe(0) ⊆ K∗, allows us to apply Lemma 4.3.4 to obtain

D∗EF (x̄, ȳ) [∂ψe(0)] ⊆ D∗EF (x̄, ȳ1) [∂ψe(0)] . (4.15)

Combining equations (4.14) and (4.15), we have

∂fl,x̄(x̄) = cl∗ conv

 ⋃
ȳ∈WMin(A,K)

D∗EF (x̄, ȳ) [∂ψe(0)]


⊆ cl∗ conv

 ⋃
ȳ1∈Min(A,K)

D∗EF (x̄, ȳ1) [∂ψe(0)]

 .
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Since the reverse inclusion is obviously true, we obtain

∂fl,x̄(x̄) = cl∗ conv

 ⋃
ȳ∈Min(A,K)

D∗EF (x̄, ȳ) [∂ψe(0)]

 .

The desired result follows from (4.10).

Next we analyze the case on which F is locally Lipschitz at x̄. Similar to the convex case,

we start by establishing an upper estimate of the limiting subdifferential of the inner function.

Lemma 4.3.7. Let Assumption 2 be fulfilled with X and Y being Asplund spaces, and let

ȳ ∈WMin(F (x̄),K). Suppose also that:

(i) F is closed at x̄,

(ii) Sl,1F (x, y) is inner semicompact at (x̄, ȳ),

(iii) gphF is locally closed around every point in the set {x̄} × F (x̄) ∩ (ȳ − bdK).

Then,

∂gl(x̄, ȳ) ⊆
⋃

z̄∈F (x̄)∩(ȳ−bdK)
z∗∈∂ψe(z̄−ȳ)

D∗F (x̄, z̄)(z∗)× {−z∗}. (4.16)

Proof. Consider the set-valued mapping F̃ : X×Y ⇒ Y and the functional f : X×Y ×Y → R
defined as

F̃ (x, y) := F (x), f(x, y, z) := ψe(z − y).

Thus, we have

gl(x, y) = inf
z∈F̃ (x,y)

f(x, y, z).

Now, we check that it is possible to apply Theorem 2.3.29. First, note that the associated

solution map in this case is just Sl,1F , from Definition 4.3.1. Next, observe that gl(x̄, ȳ) = 0 by

Proposition 4.2.2 (i). Hence, from the representability property of ψe in Proposition 2.5.6 (iii),

we get

Sl,1F (x̄, ȳ) = {z ∈ F (x̄) | ψe(z − ȳ) = 0} = F (x̄) ∩ (ȳ − bdK) ⊇ {ȳ} 6= ∅. (4.17)

We proceed to check that the hypothesis of the theorem are fulfilled.

• F̃ is closed at (x̄, ȳ).

This is obviously fulfilled by the definition of F̃ and condition (i) above.

• Sl,1F is inner semicompact at (x̄, ȳ).

This is precisely condition (ii) in the lemma.
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• There is a neighborhood U ′ of (x̄, ȳ) such that f is Lipschitz on U ′ × Y.

This follows directly from the definition of f and Proposition 2.5.7 (i).

• gph F̃ is locally closed around every point in the set {(x̄, ȳ)} × Sl,1F (x̄, ȳ).

Taking into account (4.17), the statement follows from condition (iii).

Applying now Theorem 2.3.29 we obtain

∂gl(x̄, ȳ) ⊆
⋃

z̄∈F (x̄)∩(ȳ−bdK)
(x∗,y∗,z∗)∈∂f(ȳ,ȳ,z̄)

{
(x∗, y∗) +D∗F̃ (x̄, ȳ, z̄)(z∗)

}
. (4.18)

We now simplify the above inclusion. The first step will be to examine D∗F̃ (x̄, ȳ, z̄). Note that

gph F̃ = {(x, y, z) | z ∈ F (x)}.

Hence, we obtain

N((x̄, ȳ, z̄), gph F̃ ) = {(x∗, 0, z∗) ∈ X∗ × Y ∗ × Y ∗ | (x∗, z∗) ∈ N((x̄, z̄), gphF )}.

From this we deduce that

D∗F̃ (x̄, ȳ, z̄)(z∗) = {(x∗, 0) ∈ X∗ × Y ∗ | (x∗,−z∗) ∈ N((x̄, z̄), gphF )}

= D∗F (x̄, z̄)(z∗)× {0}. (4.19)

Next, we compute ∂f(x̄, ȳ, z̄). For this, we first note that f is convex and continuous at every

point. Considering the operator T : X×Y → Y defined as T (x, y, z) := z−y, we get f = ψe ◦T.
Since T is linear and bounded, and ψe is convex and continuous, we can apply the chain rule in

Proposition 2.3.19 (ii) to obtain

∂f(x̄, ȳ, z̄) = ∂f(x̄, ȳ, z̄) = T ∗[∂ψe(z̄ − ȳ)] = T ∗[∂ψe(z̄ − ȳ)].

Moreover, it is easy to check that T ∗(z∗) = (0,−z∗, z∗). Hence, we get

∂f(x̄, ȳ, z̄) = {0} ×
⋃

z∗∈∂ψe(z̄−ȳ)

(−z∗, z∗). (4.20)

Substituting now (4.19) and (4.20) into (4.18), the desired estimate is obtained.

Theorem 4.3.8. In addition to Assumption 2, let X and Y be Asplund spaces. Suppose also

that:

(i) F is locally Lipschitz at x̄,

(ii) WMin(F (x̄),K) 6= ∅,

(iii) F is closed at x̄,
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(iv) Sl,1F is inner semicompact at every point of {x̄} ×WMin(F (x̄),K),

(v) Sl,2F is inner semicompact at x̄,

(vi) gphF is locally closed around every point in the set {x̄} ×WMin(F (x̄),K).

Then,

∂fl,x̄(x̄) ⊆ cl∗ conv

 ⋃
ȳ∈WMin(F (x̄),K)

{
x∗ ∈ X∗ | ∃ y∗ ∈ N(ȳ, F (x̄)) : (x∗, y∗) ∈ G(x̄,ȳ)

} ,

(4.21)

where

G(x̄,ȳ) = cl∗ conv

 ⋃
z̄∈F (x̄)∩(ȳ−bdK)

z∗∈∂ψe(z̄−ȳ)

D∗F (x̄, z̄)(z∗)× {−z∗}

 .

Proof. Consider the (constant) set-valued mapping F̃ : X ⇒ Y defined as F̃ (x) := F (x̄) for

every x ∈ X. Then, we can write

fl,x̄(x) = sup
y∈F̃ (x)

gl(x, y).

Next, note that the solution map in this case is Sl,2F . Furthermore, as a consequence of (ii) and

Proposition 4.2.2 (iii), we obtain fl,x̄(x̄) = 0. The definition of F̃ and gl allow us then to apply

Proposition 4.2.2 (i) to obtain that

Sl,2F (x̄) = WMin(F (x̄),K).

We now check that it is possible to apply Theorem 2.3.29 to obtain an upper estimate of

Mordukhovich’s subdifferential of fl,x̄ at x̄.

• F̃ is closed at x̄.

It is easy to see that the closedness of F̃ at x̄ is equivalent to the closedness of the set

F (x̄). The statement follows from condition (iii).

• Sl,2F is inner semicompact at x̄.

This is precisely condition (v).

• There is a neighborhood U of x̄ such that gl is Lipschitz on U × Y.

This follows from conditions (i), (ii) and Lemma 4.2.6 (i).

• gph F̃ is locally closed around every point of the set {x̄} × Sl,2F (x̄).

Again, this is deduced from the fact that F (x̄) is a closed set, which is implied by (iii).
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Hence, taking into account the Lipschitz property of fl,x̄ from Theorem 4.2.7 (i), we obtain:

∂fl,x̄(x̄) = ∂

(
− inf
y∈F̃ (·)

−gl(·, y)

)
(x̄)

(Proposition 2.3.20)

⊆ −cl∗ conv

(
∂

(
inf

y∈F̃ (·)
−gl(·, y)

)
(x̄)

)

(Theorem 2.3.29)

⊆ −cl∗ conv


⋃

ȳ∈Sl,2F (x̄)
(x∗,y∗)∈∂(−gl)(x̄,ȳ)

[
x∗ +D∗F̃ (x̄, ȳ)(y∗)

] . (4.22)

Now we examine D∗F̃ (x̄, ȳ) for any (x̄, ȳ) ∈ X ×Y. Since gph F̃ = X ×F (x̄), we get in this case

N((x̄, ȳ), gph F̃ ) = {0} ×N(ȳ, F (x̄)). From this, we deduce that

D∗F̃ (x̄, ȳ)(y∗) =

{
{0} if y∗ ∈ −N(ȳ, F (x̄)),

∅ otherwise .

Plugging this back into (4.22) and taking into account that Sl,2F (x̄) = WMin(F (x̄),K), we obtain

∂fl,x̄(x̄) ⊆ cl∗ conv

 ⋃
ȳ∈WMin(F (x̄),K)

{
x∗ ∈ X∗ | ∃ y∗ ∈ N(ȳ, F (x̄)) : −(x∗, y∗) ∈ ∂(−gl)(x̄, ȳ)

} .

(4.23)

On the other hand, taking into account the Lipschitz property of gl from Lemma 4.2.6 (i),

for every ȳ ∈WMin(F (x̄),K) we also have:

∂(−gl)(x̄, ȳ)
(Proposition 2.3.20)

⊆ −cl∗ conv (∂gl(x̄, ȳ))

(Lemma 4.3.3)

⊆ −cl∗ conv

 ⋃
z̄∈F (x̄)∩(ȳ−bdK)

z∗∈∂ψe(z̄−ȳ)

D∗F (x̄, z̄)(z∗)× {−z∗}

 .(4.24)

Finally, by putting (4.24) back into (4.23), we obtain our desired estimate.

Remark 4.3.9. According to Remark 4.2.3, the scalarizing functional fl,x̄ would remain un-

changed if we substitute F by a set-valued mapping F̃ : X ⇒ Y of the form F̃ (x) = F (x) + A,

with A ⊆ K and 0 ∈ A. Hence, in Theorem 4.3.8 we can substitute F by any other set-valued

mapping F̃ of the above form. By doing this, we can obtain different (maybe sharper) upper

estimates of ∂fl,x̄(x̄). This is worth keeping in mind when obtaining optimality conditions for

set optimization problems, as these are based on the subdifferential of fl,x̄(x̄), see Section 4.5.

Remark 4.3.10. Note that, since the upper estimate of ∂fl,x̄(x̄) obtained in (4.21) is convex, it

also constitutes an upper estimate of ∂◦fl,x̄(x̄) according to [132, Theorem 3.57]. However, as we

will see in Example 4.5.7, when applying this result to optimality conditions for set optimization

problems, the convexity of the upper estimate can not be removed very easily.
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The following corollary shows that if Y is finite dimensional our assumptions in Theorem

4.3.8 are natural.

Corollary 4.3.11. Let Assumption 2 be fulfilled with X being an Asplund space. Suppose that

Y is finite dimensional and that gphF is closed. Furthermore, assume that F is locally Lipschitz

and locally bounded at x̄. Then, inclusion (4.21) holds.

Proof. Since gphF is closed, in particular we have that F is closed valued. This, together

with the local boundedness at x̄ and the finite dimensionality of Y, gives us the compactness

of F (x̄). Hence, according to Proposition 2.4.7, we have WMin(F (x̄),K) 6= ∅. Furthermore, the

local boundedness of F at x̄ also implies that of the set-valued mappings Sl,1F and Sl,2F in the

statement of Theorem 4.3.8. This, together with the fact that Y is finite dimensional gives us the

inner semicompactness of Sl,1F and Sl,2F . Thus, all the conditions of Theorem 4.3.8 are satisfied.

The statement follows.

4.4 Subdifferential of the Functional Associated to the Upper

Set Less Relation

In this section, we compute an approximation of the limiting subdifferential of the functional

fu,x̄ given in Definition 4.2.1 at the point x̄. We start again by defining two useful solution maps.

Definition 4.4.1. Let Assumption 2 be fulfilled.

(i) The upper inner solution map Su,1F : Y ⇒ Y is defined as

Su,1F (y) := {z ∈ F (x̄) | gu,x̄(y) = ψe(y − z)}.

(ii) The upper outer solution map Su,2F : X ⇒ Y is defined as

Su,2F (x) := {y ∈ F (x) | fu,x̄(x) = gu,x̄(y)}.

In the next lemma, we obtain upper estimates for the subdifferentials of the inner function

in both the convex and Lipschitz cases.

Lemma 4.4.2. Let Assumption 2 be fulfilled. The following statements hold:

(i) Let ȳ ∈WMax(HF (x̄),K) and suppose that HF (x̄) is convex and K- bounded above. Then

gu,x̄ is convex, continuous at x̄ and

∂gu,x̄(ȳ) = ∂ψe(0) ∩N(ȳ,HF (x̄)). (4.25)

(ii) Let X and Y be Asplund and fix ȳ ∈WMax(F (x̄),K). Suppose that:
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(a) F (x̄) is closed,

(b) Su,1F is inner semicompact at ȳ.

Then,

∂gu,x̄(ȳ) ⊆
⋃

z̄∈F (x̄)∩(ȳ+bdK)

∂ψe(ȳ − z̄) ∩N(z̄, F (x̄)). (4.26)

Proof. Our statements will follow from Theorem 2.3.28 and Theorem 2.3.29, respectively. In

order to see this, we consider T : Y × Y → Y and f : Y × Y → R defined respectively as

T (y, z) := y − z, f(y, z) := (ψe ◦ T )(y, z).

Furthermore, we define the set-valued maps F̃ , F̂ : Y ⇒ Y respectively as F̃ (y) = HF (x̄) and

F̂ (y) = F (x̄) for every y ∈ Y. We can then write

gu,x̄(y) = inf
z∈F̃ (y)

f(y, z),

with corresponding solution map Su,1HF , and

gu,x̄(y) = inf
z∈F̂ (y)

f(y, z),

with corresponding solution map Su,1F . By Proposition 4.2.2 (ii) and Proposition 2.5.6 (iii), we

get

Su,1HF (ȳ) = {z ∈ HF (x̄) | ψe(ȳ − z) = gu,x̄(ȳ)}

= {z ∈ HF (x̄) | ψe(ȳ − z) = 0}

= HF (x̄) ∩ (ȳ + bdK).

In particular, we deduce that ȳ ∈ Su,1HF (x̄). Similarly, we obtain

Su,1F (ȳ) = F (x̄) ∩ (ȳ + bdK). (4.27)

On the other hand, it is obvious that f is convex and continuous. Moreover, for any z̄ ∈ Y, the

chain rule in Proposition 2.3.19 (ii) implies

∂f(ȳ, z̄) = T ∗[∂ψe(T (ȳ, z̄))] = T ∗[∂ψe(ȳ − z̄)].

It is easy to verify that in this case T ∗(y∗) = (y∗,−y∗). Hence, we get

∂f(ȳ, z̄) =
⋃

y∗∈∂ψe(ȳ−z̄)

(y∗,−y∗). (4.28)



4.4. Subdifferential of the Functional Associated to the Upper Set Less Relation 84

We proceed now to analyze each case separately.

(i) The convexity and continuity follows from Lemma 4.2.4 (ii). The subdifferential formula

will be a simple application of Theorem 2.3.28 and to do so, we check that the hypothesis are

fulfilled. Indeed, by assumption, HF (x̄) is a convex set and hence F̃ is a convex set-valued

mapping. Moreover, from Proposition 2.5.6 (i) and Proposition 2.5.7 (i), it follows that f is a

proper convex function that is continuous at any point of gph F̃ and hence, in particular, the

regularity condition (ii) in Theorem 2.3.28 is satisfied. As a consequence of Proposition 4.2.2

(ii), we also have that ȳ ∈ dom gu,x̄ and dom gu,x̄(ȳ) = 0 < +∞.
Since ȳ ∈ Su,1HF (x̄), we can apply now Theorem 2.3.28 to obtain

∂gu,x̄(ȳ) =
⋃

(y∗,z∗)∈∂f(ȳ,ȳ)

[
y∗ +D∗F̃ (ȳ, ȳ)(z∗)

]
. (4.29)

Next, we examine the term D∗F̃ (ȳ, ȳ)(z∗) in the above formula. Note that gph F̃ = Y ×HF (x̄).

Hence, we get N((ȳ, ȳ), gph F̃ ) = {0} × N(ȳ,HF (x̄)) and from this it follows that, for any

y∗ ∈ Y ∗ :

D∗F̃ (ȳ, ȳ)(−y∗) = {z∗ ∈ Y ∗ | (z∗, y∗) ∈ N(ȳ,HF (x̄))}

= {z∗ ∈ Y ∗ | (z∗, y∗) ∈ {0} ×N(ȳ,HF (x̄))}

=

{
{0} if y∗ ∈ N(ȳ,HF (x̄)),

∅ otherwise.

Taking this into account together with (4.28), we obtain the following in (4.29):

∂gu,x̄(ȳ) =
⋃

y∗∈∂ψe(0)

[
y∗ +D∗F̃ (ȳ, ȳ)(−y∗)

]

=
⋃

y∗∈∂ψe(0)

[
y∗ +

{
{0} if y∗ ∈ N(ȳ,HF (x̄)),

∅ otherwise

]
= ∂ψe(0) ∩N(ȳ,HF (x̄)),

as expected.

(ii) In this case, we will apply Theorem 2.3.29 to obtain an upper estimate of ∂gu,x̄(ȳ). We

check that all the conditions of the theorem are fulfilled:

• F̂ is closed at ȳ.

This follows from condition (a).

• Su,1F is inner semicompact at ȳ.

This is just condition (b).

• There exists a neighborhood V of ȳ such that f is Lipschitz on V × Y.

Follows directly from the Lipschitz property of ψe in Proposition 2.5.7 (i).
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• gph F̃ is locally closed around every point in the set {ȳ} × Su,1F (ȳ).

This is a consequence of (a).

Theorem 2.3.29 together with (4.27) gives us now

∂gu,x̄(ȳ) ⊆
⋃

z̄∈F (x̄)∩(ȳ+bdK)
(y∗,z∗)∈∂f(ȳ,z̄)

[
y∗ +D∗F̂ (ȳ, z̄)(z∗)

]
. (4.30)

Analogous to the proof of statement (i), we obtain

D∗F̂ (ȳ, z̄)(z∗) =

{
{0} if z∗ ∈ −N(z̄, F (x̄)),

∅ otherwise .

Finally, by substituting this and (4.28) into (4.30), the desired estimate is obtained.

Next, we state the main result of the section.

Theorem 4.4.3. In addition to Assumption 2, let X and Y be Asplund spaces. Suppose also

that:

(i) F is locally Lipschitz at x̄,

(ii) WMax(F (x̄),K) 6= ∅,

(iii) F is closed at x̄,

(iv) Su,1F is inner semicompact at every point in the set WMax(F (x̄),K),

(v) Su,2F is inner semicompact at x̄.

(vi) gphF is locally closed around any point in the set {x̄} ×WMax(F (x̄),K).

Then,

∂fu,x̄(x̄) ⊆ −cl∗ conv

 ⋃
ȳ∈WMax(F (x̄),K)

D∗F (x̄, ȳ)
[
H(x̄,ȳ)

] , (4.31)

where

H(x̄,ȳ) := −cl∗ conv

 ⋃
z̄∈F (x̄)∩(ȳ+bdK)

∂ψe(ȳ − z̄) ∩N (z̄, F (x̄))

 .

Proof. Consider the function f : X × Y → Y defined as f(x, y) = gu,x̄(y). By definition, we

have

fu,x̄(x) = sup
y∈F (x)

f(x, y).

We verify that we can apply Theorem 2.3.29. First, note that the solution map in this case

is just Su,2F . Hence, Proposition 4.2.2 (iii) can be applied to obtain fu,x̄(x̄) = 0. Then, from

Proposition 4.2.2 (ii) we get
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Su,2F (x̄) = WMax(F (x̄),K) 6= ∅. (4.32)

We proceed to check the rest of the assumptions:

• F is closed at x̄,

This is just condition (iii) in the theorem.

• Su,2F is inner semicompact at x̄,

This is exactly condition (v) in our theorem.

• There is a neighborhood U of x̄ such that f is Lipschitz on U × Y.

Follows directly from condition (ii) and Lemma 4.2.6 (ii).

• gphF is locally closed around every point in the set {x̄} × Su,2F (x̄).

This follows from (4.32) and condition (vi) in the theorem.

Hence, taking into account the Lipschitz property of fu,x̄ from Theorem 4.2.7 (ii), we obtain:

∂fu,x̄(x̄) = ∂

(
− inf
y∈F (·)

−f(·, y)

)
(x̄)

(Proposition 2.3.20)

⊆ −cl∗ conv

(
∂

(
inf

y∈F (·)
−f(·, y)

)
(x̄)

)
(4.33)

(Theorem 2.3.29 + (4.32))

⊆ −cl∗ conv

 ⋃
ȳ∈WMax(F (x̄),K)
(x∗,y∗)∈∂(−f)(x̄,ȳ)

[
x∗ +D∗F (x̄, ȳ)(y∗)

] .

Note that f is independent of the argument in the space X. Furthermore, since F is closed at

x̄, we also have that F (x̄) is a closed set. Hence, together with condition (iv), it is easy to see

that the assumptions of Lemma 4.4.2 are satisfied. Then, for any ȳ ∈WMax(F (x̄),K), we get:

∂(−f)(x̄, ȳ) = {0} × ∂(−gu,x̄)(ȳ)

(Proposition 2.3.20)

⊆ −{0} × cl∗ conv (∂gu,x̄(ȳ)) (4.34)

(Lemma 4.4.2 (ii))

⊆ −{0} × cl∗ conv

 ⋃
z̄∈F (x̄)∩(ȳ+bdK)

∂ψe(ȳ − z̄) ∩N(z̄, F (x̄))

 .

Taking into account (4.34) and (4.33), we obtain the desired estimate.

Remark 4.4.4. Similar to Remark 4.3.9, the functional fu,x̄ remains unchanged if we substitute

F by F̃ : X ⇒ Y of the form F̃ (x) = F (x) − A, with A ⊆ K and 0 ∈ A. Hence, in Theorem

4.4.3 we can substitute F by any other set-valued mapping F̃ of the above form. From this, we

can obtain different (maybe sharper) upper estimates of ∂fu,x̄(x̄), which can be translated into

sharper optimality conditions set optimization problems, see Section 4.5.



4.4. Subdifferential of the Functional Associated to the Upper Set Less Relation 87

Remark 4.4.5. Similarly to Remark 4.3.10, we mention that, although the upper estimate in

(4.31) is convex (and hence we are also estimating ∂◦fu,x̄(x̄)), Example 4.5.7 illustrates that

convexity is necessary.

The proof of the following corollary is similar to that of Corollary 4.3.11, and it is hence

omitted.

Corollary 4.4.6. Let Assumption 2 be fulfilled with X being Asplund. Suppose that Y is finite

dimensional and that gphF is closed. Furthermore, assume that F is locally Lipschitz and locally

bounded at x̄. Then, inclusion (4.31) holds.

We conclude this section with a sharper result in the convex case.

Theorem 4.4.7. In addition to Assumption 2, let X and Y be Asplund spaces. Suppose also

that

(i) F is �(u)
K - convex and locally K- bounded above at x̄,

(ii) HF is convex valued in a neighborhood of x̄,

(iii) HF is closed at x̄,

(iv) WMax(HF (x̄),K) 6= ∅,

(v) Su,2HF (x) is inner semicompact at x̄.

(vi) gphHF is locally closed around any point in the set {x̄} ×WMax(HF (x̄),K).

Then,

∂fu,x̄(x̄) ⊆ −cl∗ conv

 ⋃
ȳ∈WMax(HF (x̄),K)

D∗HF (x̄, ȳ) [−∂ψe(0) ∩N(ȳ,HF (x̄))]

 .

Proof. Because of conditions (i) and (ii), we can apply [150, Theorem 7.4.9] to obtain that HF
is locally Lipschitz at x̄. Then, it is easy to see that assumptions (i)− (iii), (v)− (vi) of Theorem

4.4.3 are satisfied if we replace F by HF . Since these assumptions are the only ones needed to

obtain (4.33), we can take into account Remark 4.4.4 to get in this case

∂fu,x̄(x̄) ⊆ −cl∗ conv

 ⋃
ȳ∈WMax(HF (x̄),K)

(x∗,y∗)∈∂(−f)(x̄,ȳ)

[
x∗ +D∗HF (x̄, ȳ)(y∗)

] , (4.35)

where f is the same function defined in Theorem 4.4.3. Similar to (4.34), but applying Lemma

4.4.2 (i) instead, we obtain

∂(−f)(x̄, ȳ) ⊆ −{0} ×
(
∂ψe(0) ∩N(ȳ,HF (x̄))

)
. (4.36)

The estimate is then obtained by replacing the term ∂(−f)(x̄, ȳ) in (4.35) by the upper

estimate obtained in (4.36).
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4.5 Fermat Rules in Set Optimization

In this section, we obtain the optimality conditions for set optimization problems based on our

previous results. We start by establishing that, as in the scalar case, local solutions are also

global under convexity.

Proposition 4.5.1. Let Assumption 2 be fulfilled and, for r ∈ {l, u}, consider the preorder

relation �(r)
K in Definition 2.2.15. Suppose that Ω is convex, that F is �(r)

K - convex and that x̄

is a local �(r)
K - weakly minimal solution of SOP(F,K,Ω). The following statements are true:

(i) If r = l, then x̄ is also a global �(l)
K - weakly minimal solution.

(ii) If r = u and HF (x̄) is convex, then x̄ is also a global �(u)
K - weakly minimal solution.

Proof. Since the proofs are similar and resemble the one in the scalar case, we only show (ii).

See also [70, Proposition 5] for a proof of (i) with a slightly different optimality concept. Let U

be the neighborhood of x̄ such that

∀ x ∈ Ω ∩ U \ {x̄} : F (x) ⊀(r)
K F (x̄)

and suppose that x̄ is not a global �(u)
K - weakly minimal solution of SOP(F,K,Ω). Then, we

can find x̃ ∈ Ω \ {x̄} such that F (x̃) ≺(u)
K F (x̄). Hence, we get the existence of t ∈ (0, 1] such

that xt := tx̃+ (1− t)x̄ ∈ Ω ∩ U \ {x̄}. It follows that

F (xt) ⊆ F (xt)−K
(F is �(u)

K −convex)

⊆ tF (x̃) + (1− t)F (x̄)−K

⊆ tHF (x̃) + (1− t)HF (x̄)−K
(F (x̃)≺(u)

K F (x̄))

⊆ tHF (x̄) + (1− t)HF (x̄)− intK
(HF (x̄) is convex)

= HF (x̄)− intK

= F (x̄)− intK,

which is equivalent to F (xt) ≺(u)
K F (x̄). This contradicts to the local minimality of F at x̄.

In the following theorem we establish relationships between the set-valued problem and a

corresponding scalar problem. We want to mention that a similar statement to (i) below have

been established in [80, Corollary 4.11] for the case r = l.

Theorem 4.5.2. Let Assumption 2 be fulfilled and, for r ∈ {l, u}, consider the preorder rela-

tion �(r)
K in Definition 2.2.15 and the functional fr,x̄ in Definition 4.2.1 (iii). The following

assertions are true:
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(i) If x̄ is a local �(r)
K - weakly minimal solution of SOP(F,K,Ω), then x̄ is a local solution of

the problem OP(fr,x̄,Ω), that is,

min
x∈Ω

fr,x̄(x). (OP(fr,x̄,Ω))

(ii) Conversely, suppose that x̄ is a local strict solution of OP(fr,x̄,Ω) and either r = l and

WMin(F (x̄),K) 6= ∅, or r = u and WMax(F (x̄),K) 6= ∅. Then, x̄ is a local �(r)
K - strictly

minimal solution of SOP(F,K,Ω).

Proof. (i) Assume that x̄ is not a local solution of OP(fr,x̄,Ω). Then, for every neighborhood

U of x̄ we can find x̃ ∈ Ω ∩ U such that

fr,x̄(x̃) < fr,x̄(x̄) ≤ 0. (4.37)

We just analyze the case r = u since the other one is similar. From the definition of fu,x̄ and

(4.37), we deduce that for every ỹ ∈ F (x̃), the inequality gu,x̄(ỹ) < 0 holds. Equivalently, we

obtain

∀ ỹ ∈ F (x̃) ∃ ȳ ∈ F (x̄) : ψe(ỹ − ȳ) < 0.

Again, by Proposition 2.5.6 (iii), we obtain F (x̃) ≺(u)
K F (x̄), a contradiction.

(ii) By Proposition 4.2.2 (iii) we know that fr,x̄(x̄) is finite. Assume that x̄ is not a local

�(r)
K - strictly minimal solution of SOP(F,K,Ω). Then, for any neighborhood U of x̄ we can

find x̃ ∈ (Ω ∩ U) \ {x̄} such that

F (x̃) �(r)
K F (x̄).

Hence, according to Theorem 2.5.9, we get

fr,x̄(x̃) ≤ fr,x̄(x̄).

This contradicts the fact that x̄ is a local strict solution of OP(fr,x̄,Ω).

Necessary optimality conditions for SOP(F,K,Ω) with respect to the relation �(l)
K are es-

tablished in the next theorem.

Theorem 4.5.3. Let Assumption 2 be fulfilled and consider the preorder relation �(l)
K in Def-

inition 2.2.15. Suppose that x̄ is a local �(l)
K - weakly minimal solution of SOP(F,K,Ω). The

following statements are true:

(i) Suppose that Ω is convex, that F is �(l)
K - convex and locally �(l)

K - bounded at x̄, and that

F (x̄) is strongly K- compact. Then,

0 ∈ cl∗ conv

 ⋃
ȳ∈Min(F (x̄),K)

D∗EF (x̄, ȳ) [∂ψe(0)]

+N(x̄,Ω). (4.38)

This condition is sufficient for optimality provided that, in addition, F is strongly K-

compact valued in Ω.



4.5. Fermat Rules in Set Optimization 90

(ii) Suppose that X and Y are Asplund spaces, that F is locally Lipschitz at x̄, and that the

rest of the conditions in Theorem 4.3.8 are fulfilled. Then,

0 ∈ cl∗ conv

 ⋃
ȳ∈WMin(F (x̄),K)

{
x∗ ∈ X∗ | ∃ y∗ ∈ N(ȳ, F (x̄)) : (x∗, y∗) ∈ G(x̄,ȳ)

}+N(x̄,Ω),

(4.39)

where

G(x̄,ȳ) = cl∗ conv

 ⋃
z̄∈F (x̄)∩(ȳ−bdK)

z∗∈∂ψe(z̄−ȳ)

D∗F (x̄, z̄)(z∗)× {−z∗}

 .

Proof. First note that, by Theorem 4.5.2, x̄ is a solution of OP(fl,x̄,Ω).

(i) Because of Theorem 4.2.5 (i), we know that fl,x̄ is convex and continuous at x̄. Then,

according to Theorem 2.4.2, the inclusion 0 ∈ ∂fl,x̄(x̄) +N(x̄,Ω) is both necessary and sufficient

for the optimality of x̄ inOP(fl,x̄,Ω). Hence, the first part of the statement follows from Theorem

4.3.6.

Suppose now that F is strongly K- compact valued in Ω and that x̄ is not a �(l)
K - weakly

minimal solution of SOP(F,K,Ω). Then, without loss of generality we can assume that F is

compact valued and that there exists x̃ ∈ Ω such that

F (x̃) ≺(l)
K F (x̄). (4.40)

We claim that fl,x̄(x̃) < 0 = fl,x̄(x̄), which contradicts (4.38). Indeed, note that because

F (x̃) is compact, the functional gl(x̃, ·) is finite. It is also upper semicontinuous in Y because

it is the infimum of continuous functionals. Since F (x̄) is compact, it follows from the classical

Weierstrass’s theorem that OP (−gl(x̃, ·), F (x̄)) has a solution ȳ. According to (4.40), we can

find ỹ ∈ F (x̃) such that ỹ ≺K ȳ. Hence, we get

fl,x̄(x̃) = gl(x̃, ȳ) ≤ ψe(ỹ − ȳ) < 0,

as desired.

(ii) Similarly to the previous case, by Theorem 4.2.7 (i) we obtain that fl,x̄ is locally Lipschitz

at x̄. Hence, all the assumptions for the necessary optimality conditions in Theorem 2.4.2 are

satisfied. From this, we get 0 ∈ ∂fl,x̄(x̄) + N(x̄,Ω). The result follows then from Theorem

4.3.8.

With a similar argument to the one in the previous theorem, we can obtain the optimality

conditions for problems with the relation �(u)
K . The proof is hence omitted.
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Theorem 4.5.4. In addition to Assumption 2, suppose that X and Y are Asplund spaces and

consider the preorder relation �(u)
K in Definition 2.2.15. Furthermore, assume that x̄ is a local

�(u)
K - weakly minimal solution of SOP(F,K,Ω). The following assertions hold:

(i) Suppose that F is �(u)
K - convex and locally K- bounded above at x̄, and that the conditions

in Theorem 4.4.7 are fulfilled. Then,

0 ∈ −cl∗ conv

 ⋃
ȳ∈WMax(HF (x̄),K)

D∗HF (x̄, ȳ) [−∂ψe(0) ∩N(ȳ,HF (x̄))]

+N(x̄,Ω).

(ii) Suppose that the F is locally Lipschitz at x̄ and that the conditions in Theorem 4.4.3 are

fulfilled. Then

0 ∈ −cl∗ conv

 ⋃
ȳ∈WMax(F (x̄),K)

D∗F (x̄, ȳ)
[
H(x̄,ȳ)

]+N(x̄,Ω), (4.41)

where

H(x̄,ȳ) := −cl∗ conv

 ⋃
z̄∈F (x̄)∩(ȳ+bdK)

∂ψe(ȳ − z̄) ∩N (z̄, F (x̄))

 .

Remark 4.5.5. Under the assumptions of both Theorem 4.5.3 (ii) and Theorem 4.5.4 (ii), it is

possible to derive optimality conditions for �(s)
K - weakly minimal solutions of SOP(F,K,Ω). In-

deed, let x̄ be a �(s)
K - weakly minimal solution of SOP(F,K,Ω), and consider

fs,x̄ : X → R given by

fs,x̄(x) := max{fl,x̄(x), fu,x̄(x)}.

Then, from Proposition 4.2.2 (iii), we deduce that fs,x̄(x̄) = 0. Moreover, by Theorem 4.2.7, we

get that fs,x̄ is locally Lipschitz at x̄. Furthermore, similarly to the proof of Theorem 4.5.2 (i),

we deduce that x̄ is a solution of OP(fs,x̄,Ω). Thus, according to Theorem 2.4.2,

0 ∈ ∂fs,x̄(x̄) +N(x̄,Ω). (4.42)

Let Cl and Cu be the convex upper estimates of ∂fl,x̄(x̄) and ∂fu,x̄(x̄) in (4.21) and (4.31)

respectively. Then, we deduce that
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∂fs,x̄(x̄)
([132,Theorem 3.46])

⊆
⋃

t∈[0,1]

∂ (tfl,x̄ + (1− t)fu,x̄) (x̄)

(Proposition 2.3.19 (i))

⊆
⋃

t∈[0,1]

∂ (tfl,x̄) (x̄) + ∂ ((1− t)fu,x̄) (x̄)

=
⋃

t∈[0,1]

t∂fl,x̄(x̄) + (1− t)∂fu,x̄(x̄)

(Theorem 4.3.8 + Theorem 4.4.3)

⊆
⋃

t∈[0,1]

tCl + (1− t)Cu

(Cl,Cu convex)

⊆ conv(Cl ∪ Cu).

Hence, from this and (4.42), we find that the inclusion

0 ∈ conv(Cl ∪ Cu) +N(x̄,Ω)

is necessary for �(s)
K - weak minimality.

Theorem 4.5.3 and Theorem 4.5.4 motivates the following definition of stationary points for

SOP(F,K,Ω). Since in the next chapter we will derive stronger optimality conditions for a

particular class of set optimization problems, we refer to the concepts below as weak.

Definition 4.5.6. Let Assumption 2 be fulfilled. We say that x̄ is a

(i) weak �(l)
K - stationary point of SOP(F,K,Ω), if (4.39) is fulfilled,

(ii) weak �(u)
K - stationary point of SOP(F,K,Ω), if (4.41) is fulfilled.

We conclude this section with the following example, that illustrate our results and compare

them with other results obtained for the vector approach.

Example 4.5.7. In Assumption 2, let X = Ω = R, Y = R2, K = R2
+, e =

(
1

1

)
, and x̄ = 0.

Furthermore, let the functional f : R → R2 and the set-valued mapping F : R ⇒ R2 be defined

as

f(x) :=

(
x+ 1

x− 1

)
and

F (x) := {f(x),−f(x)}

respectively, and consider SOP(F,K,Ω). Thus, in particular, we have ∇f(x̄) =

(
1

1

)
. Then,
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(i) F is locally Lipschitz at x̄.

(ii) x̄ is both a local �(l)
K ,�

(u)
K - weakly minimal solution of SOP(F,K,Ω):

Indeed, it is easy to verify that

∀ x ∈ (−1, 1) : F (x) ⊀(l)
K F (x̄), F (x) ⊀(u)

K F (x̄).

(iii) x̄ is not a local weak minimizer of SOP(F,K,Ω):

Indeed, note that in any neighborhood U of x̄ we can find x ∈ U \ {x̄} such that −x ∈ U.
Then, it is easy to check that

F (x̄) ⊂
(
F (x) + intK

)
∪
(
F (−x) + intK

)
.

(iv) x̄ is not a stationary point in the sense of Definition 2.4.22 (vector approach):

Since f(x̄) 6= −f(x̄) and gphF = gph f ∪ gph(−f), we have that gphF = gph f and

gphF = gph(−f) around (x̄, f(x̄)) and (x̄,−f(x̄)) respectively. By the differentiability of

f and Proposition 2.3.22, we obtain

∀ v ∈ R2 : D∗F (x̄, f(x̄))(v) = {∇f(x̄)v} = {v1 + v2}, (4.43)

∀ v ∈ R2 : D∗F (x̄,−f(x̄))(v) = {−∇f(x̄)v} = {−(v1 + v2)}. (4.44)

According to Definition 2.4.22 and Theorem 2.4.20, x̄ is a stationary point of F in the

sense of the vector approach if and only if there exists ȳ ∈ F (x̄) and v ∈ K∗ \{0} such that

0 ∈ D∗F (x̄, ȳ)(v).

Since K∗ = K in our context, it is then easy to check that

0 ∈ D∗F (x̄, f(x̄))(v), v ∈ K∗ ⇐⇒ v =

(
0

0

)
.

Similarly, we obtain that

0 ∈ D∗F (x̄,−f(x̄))(v), v ∈ K∗ ⇐⇒ v =

(
0

0

)
.

It follows that x̄ is not a stationary point in the sense of Definition 2.4.22.

(v) x̄ is both weak �(l)
K - and weak �(u)

K - stationary:

Of course, this is a direct consequence of Theorem 4.5.3 and Theorem 4.5.4, but we show the

calculus for completeness. First, we note that WMin(F (x̄),K) = WMax(F (x̄),K) = F (x̄).

Because F (x̄) consists of isolated points, we obtain
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N(f(x̄), F (x̄)) = N(−f(x̄), F (x̄)) = R2. (4.45)

On the other hand, from Proposition 2.5.7 (iii) we have

∂ψe(0) = {v ∈ R2
+ | v1 + v2 = 1}. (4.46)

The weak �(l)
K - stationarity of x̄ is now equivalent to 0 ∈ cl conv(A1 ∪A2), where

A1 :=

{
u ∈ R | ∃ v ∈ R2 :

(
u

v

)
∈ G(x̄,f(x̄))

}
, (4.47)

A2 :=

{
u ∈ R | ∃ v ∈ R2 :

(
u

v

)
∈ G(x̄,−f(x̄))

}
. (4.48)

We have

G(x̄,f(x̄))
(4.43)

= cl conv

 ⋃
v∈∂ψe(0)

{v1 + v2} × {−v}


(4.46)

= cl conv

 ⋃
v∈∂ψe(0)

{1} × {−v}


= {1} × (−∂ψe(0)) .

From this, we deduce that A1 = {1}. Using a similar argument we can obtain G(x̄,−f(x̄)) =

{−1} × (−∂ψe(0)) , from which we obtain A2 = {−1}. Hence, we have

0 ∈ [−1, 1] = cl conv(A1 ∪A2),

and the weak �(l)
K - stationarity of x̄ follows.

Next, we show that x̄ is also weak �(u)
K - stationary. Similarly to the previous case, this is

equivalent to 0 ∈ cl conv(B1 ∪B2), where

B1 := −D∗F (x̄, f(x̄))
[
H(x̄,f(x̄))

]
, (4.49)

B2 := −D∗F (x̄, f(x̄))
[
H(x̄,−f(x̄))

]
. (4.50)

We now have

H(x̄,f(x̄)) = − cl conv (∂ψe(0) ∩N (f(x̄), F (x̄)))

(4.45)
= −∂ψe(0).
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From this, we deduce that

B1
(4.49)

= −D∗F (x̄, f(x̄))[−∂ψe(0)]
(4.43)

= {1}.

Similarly, we can obtain H(x̄,−f(x̄)) = −∂ψe(0), from which we get

B2
(4.50)

= −D∗F (x̄,−f(x̄))[−∂ψe(0)]
(4.44)

= {−1}.

Hence, we have 0 ∈ [−1, 1] = cl conv(B1 ∪B2), and x̄ is weak �(u)
K - stationary.

4.6 Application to Convex Problems Involving Functional Con-

straints

In this last section, by means of the optimality conditions developed in Section 4.5, we derive

Karush - Kuhn- Tucker conditions for set optimization problems where the solution concept is

given by the �(l)
K relation and the set-valued objective mapping is defined by convex inequality

constraints. Specifically, we work with the following set of assumptions:

Assumption 3. Let Assumption 2 holds with X = Ω = Rn, Y = Rm, and F : Rn ⇒ Rm given

by

F (x) := {y ∈ Rm | fi(x, y) ≤ 0, i = 1, . . . , p}, (4.51)

where each fi : Rn × Rm → R is convex and continuously Fréchet differentiable at every point.

It is worth to point out that, to the best of our knowledge, the set optimization problem

where the set-valued objective mapping F has the structure (4.51) has only been studied once

in the literature by Jahn [93]. In fact, in that case, even equality constraints can be considered,

as long as the sets F (x) are compact and the sets F (x) +K and F (x)−K are convex for every

feasible point x ∈ Rn. It is also worth mentioning that, although only �(s)
K - minimal solutions

are studied in that reference, the results can be easily adapted to �(l)
K - weakly minimal solutions.

Our main result is the following:

Theorem 4.6.1. Let Assumption 3 be fulfilled and consider problem SOP(F,K,Ω). Suppose

that F is strongly K- compact valued and locally �(l)
K - bounded at x̄. Furthermore, assume

that F (x̄) satisfies MFCQ at every ȳ ∈ Min(F (x̄),K). Then, x̄ is a �(l)
K - weakly minimal so-

lution of SOP(F,K,Ω) if and only if there exists λ ∈ Rn+1
+ , ȳ1, . . . , ȳn+1 ∈ Min(F (x̄),K) and

µ1, . . . , µn+1 ∈ Rp+ such that

n+1∑
i=1

λi∇xf(x̄, ȳi)µi = 0,

n+1∑
i=1

λi = 1,

∇yf(x̄, ȳi)µi ∈ −K∗, i = 1, . . . , n+ 1,

e>∇yf(x̄, ȳi)µi = −1, i = 1, . . . , n+ 1,

µ>i f(x̄, ȳi) = 0, i = 1, . . . , n+ 1.
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Here, f : Rn × Rm → Rp is given by f(x) :=


f1(x)

...

fp(x)

 .

Proof. The proof will be divided in several steps.

Step 1: We prove that for any v ∈ K∗ and ȳ ∈ F (x̄) : D∗F (x̄, ȳ)(v) = D∗EF (x̄, ȳ)(v).

Note that, under Assumption 3, gphF = {(x, y) ∈ Rn × Rm | fi(x, y) ≤ 0, i = 1, . . . , p} is a

convex set. Moreover, from the definition of EF it follows that

gph EF = gphF + {0} ×K. (4.52)

Hence, gph EF is also convex and, according to Remark 2.3.3, it follows that F is �(l)
K - convex.

From the definition of the coderivative, the statement of the claim is equivalent to

N
(
(x̄, ȳ), gph EF

)
= N

(
(x̄, ȳ), gphF

)
∩ (Rm ×−K∗). (4.53)

We proceed then to prove (4.53). First, suppose that (u, v) ∈ N
(
(x̄, ȳ), gph EF

)
. According to

(4.52), the convexity of gph EF and Remark 2.3.17, this is the same as

∀ (x, y) ∈ gphF, k ∈ K : u>(x− x̄) + v>(y + k − ȳ) ≤ 0. (4.54)

Taking into account that gphF is also convex and Remark 2.3.17, we can put k = 0 in (4.54) to

obtain that (u, v) ∈ N
(
(x̄, ȳ), gphF

)
. On the other hand, by substituting x = x̄, y = ȳ in (4.54),

we get v>k ≤ 0 for every k ∈ K. According to the definition of the dual cone, this implies that

v ∈ −K∗. Hence,

N
(
(x̄, ȳ), gph EF

)
⊆ N

(
(x̄, ȳ), gphF

)
∩ (Rm ×−K∗).

In order to see the reverse inclusion, choose (u, v) ∈ N
(
(x̄, ȳ), gphF

)
∩ (Rm × −K∗). Then,

v ∈ −K∗ and

∀ (x, y) ∈ gphF : u>(x− x̄) + v>(y − ȳ) ≤ 0.

It is then easy to see that this implies (4.54), and the statement follows.

Step 2: We prove that the set

A :=
⋃

ȳ∈Min(F (x̄),K)

D∗F (x̄, ȳ) [∂ψe(0)]

is compact.

It suffices to show that A is both closed and bounded. In order to see the closedness of A, let

{uk}k≥1 ⊆ A be such that uk → ū. Hence, taking into account the definition of the coderivative,

there are sequences {yk}k≥1 ⊆ Min(F (x̄),K) and {vk}k≥1 ⊆ ∂ψe(0) such that
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(uk,−vk) ∈ N
(
(x̄, yk), gphF

)
. (4.55)

Since F (x̄) and ∂ψe(0) are compact, we can assume without loss of generality that yk → ŷ ∈ F (x̄)

and that vk → v̄ ∈ ∂ψe(0). Furthermore, it is well known that the set-valued mappingN(·, gphF )

is closed at any point. Therefore, taking the limit when k → +∞ in (4.55), we obtain

(ū,−v̄) ∈ N
(
(x̄, ŷ), gphF

)
,

or equivalently, ū ∈ D∗F (x̄, ŷ)(v̄). Next, using the compactness of F (x̄) is compact, we can apply

Proposition 2.4.7 (i) to obtain an element ȳ ∈ Min(F (x̄),K) such that ȳ �K ŷ. By replacing

gph EF by gphF in the proof of Lemma 4.3.4 and taking into account that v̄ ∈ ∂ψe(0) ⊆ K∗, we

deduce that D∗F (x̄, ŷ)(v̄) ⊆ D∗F (x̄, ȳ)(v̄). Thus, we have that ū ∈ D∗F (x̄, ȳ)(v̄), which implies

the closedness of A.

Suppose now that A is not bounded. Then, we could find an unbounded sequence {uk}k≥1 ⊆
A. Let {yk}k≥1 ⊆ Min(F (x̄),K) and {vk}k≥1 ⊆ ∂ψe(0) be the sequences that satisfy (4.55) and,

as before, denote by ȳ and v̄ their respective limits. Then, we also have(
uk
‖uk‖

,− vk
‖uk‖

)
∈ N

(
(x̄, yk), gphF

)
. (4.56)

Without loss of generality we can now assume that uk
‖uk‖ → ū. Then, taking the limit when

k → +∞ in (4.56), we get

(ū, 0) ∈ N
(
(x̄, ȳ), gphF

)
.

According to Proposition 2.3.25, we now have

N((x̄, ȳ), gphF ) = cone conv{∇fi(x̄, ȳ)}i∈I(x̄,ȳ), (4.57)

where I(x̄, ȳ) = {i ∈ {1, . . . , p} | fi(x̄, ȳ) = 0} is the set of active indexes. In particular, there

exists α ∈ Rp+ such that

∇xf(x̄, ȳ)α = ū, (4.58)

∇yf(x̄, ȳ)α = 0, (4.59)

α>f(x̄, ȳ) = 0. (4.60)

Since F (x̄) satisfies MFCQ at ȳ, equation (4.59) implies α = 0. Hence, from (4.58) we deduce

that ū = 0, a contradiction to the fact that ‖ū‖ = 1.

Step 3: We obtain the multipliers.

By Theorem 4.5.3 (i), we know that the �(l)
K - weak minimality of x̄ for SOP(F,K,Ω) is

equivalent to
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0 ∈ cl conv

 ⋃
ȳ∈Min(F (x̄),K)

D∗F (x̄, ȳ) [∂ψe(0)]

 = cl convA.

Note that we replaced D∗EF (x̄, ȳ) by D∗F (x̄, ȳ) in the above equation because of the result

in the first step of this proof. Since A is compact, so is convA and hence the necessary and

sufficient condition is read as 0 ∈ convA. By Carathéodory’s Theorem [20, Theorem 2.1.6], we

now get the existence of ȳ1, . . . , ȳn+1 ∈ Min(F (x̄),K) and λ ∈ Rn+1
+ such that

n+1∑
i=1

λi = 1 and

0 ∈
n+1∑
i=1

λiD
∗F (x̄, ȳi)[∂ψe(0)]. (4.61)

From (4.61), it follows the existence of u1, . . . , un+1 ∈ Rn and v1, . . . vn+1 ∈ ∂ψe(0) such that

ui ∈ D∗F (x̄, ȳi)(vi) for every i ∈ {1, . . . , n+ 1} and

0 =
n+1∑
i=1

λiui. (4.62)

On the other hand, taking into account that F (x̄) satisfies MFCQ at every ȳi, we can verify

that gphF satisfies MFCQ at every (x̄, ȳi). Hence, according to Proposition 2.3.25, we get the

existence of µ1, . . . , µn+1 ∈ Rp+ such that for each i ∈ {1, . . . , n+ 1} :

ui = ∇xf(x̄, ȳi)µi, (4.63)

−vi = ∇yf(x̄, ȳi)µi, (4.64)

µ>i f(x̄, ȳi) = 0. (4.65)

The statement of the theorem follows now from (4.62), (4.63), (4.64), (4.65) and Proposition

2.5.7 (iii).

Remark 4.6.2. The main difference between our result (Theorem 4.6.1) and those derived in

[93, Theorem 3.1] and [93, Theorem 4.3] lie on the type of multipliers obtained for the set-valued

objective mapping F . Indeed, in [93, Theorem 3.1], these multipliers are Radon measures [156],

and in [93, Theorem 4.3] they are positive functionals defined on the elements of K∗ with unit

length. On the other hand, our multipliers are really objects lying in Rn and Rm, and hence

we make no use of infinite dimensional constructions. This shows that our approach is very

promising, since the optimality conditions obtained are more tractable from the computational

point of view. However, we must mention that the results in [93] were derived under slightly

weaker assumptions.

We analyze next some consequences of Theorem 4.6.1.
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Corollary 4.6.3. Let Assumption 3 be fulfilled and suppose that F is compact valued and locally

bounded at x̄. Furthermore, assume that F (x̄) satisfies Slater’s condition. Then, the statement

of Theorem 4.6.1 holds.

Proof. Since F is compact valued and locally bounded at x̄, it is in particular strongly K-

compact valued and locally �(l)
K - bounded at x̄. In addition, according to Remark 2.3.24, the

fact that F (x̄) satisfies Slater’s condition implies that F (x̄) satisfies MFCQ at every point. The

statement follows then from Theorem 4.6.1.

The following corollary shows that with Theorem 4.6.1 we can recover Corollary 2.4.13.

Corollary 4.6.4. Let f̃ : Rn → Rm be continuously differentiable and suppose that each f̃i is

convex. Moreover, consider the multiobjective problem VOP(f̃ ,Rm+ ,Rn), that is

Rm+ - min
x∈Rn

f̃(x). (VOP(f̃ ,Rm+ ,Rn))

Then, x̄ is a weakly minimal solution of VOP(f̃ ,Rm+ ,Rn) if and only if there exists µ ∈ Rm+ \{0}
such that ∇f̃(x̄)µ = 0.

Proof. This is an immediate consequence of Theorem 4.6.1 with f : Rn × Rm → Rm being

defined as f(x) := f̃(x)− y.

Our last example shows necessary and sufficient conditions for problems where the graph of

the set-valued objective mapping is a polyhedral.

Corollary 4.6.5. Consider SOP(F,K,Ω) associated to the set-valued mapping F : Rn ⇒ Rm

given by

F (x) := {y ∈ Rm | Ax+By ≤ c},

where A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp and B is assumed to have full row rank. Furthermore, let

x̄ ∈ int domF and suppose that F is compact valued and locally bounded at x̄. Then, x̄ is a �(l)
K -

weakly minimal solution of SOP(F,K,Ω) if and only if there exists λ ∈ Rn+1
+ , ȳ1, . . . , ȳn+1 ∈

Min(F (x̄),K) and µ1, . . . , µn+1 ∈ Rp+ such that

n+1∑
i=1

λiA
>µi = 0,

n+1∑
i=1

λi = 1,

B>µi ∈ −K∗, i = 1, . . . , n+ 1,

e>B>µi = −1, i = 1, . . . , n+ 1,

µ>i (Ax̄+Bȳi − c) = 0, i = 1, . . . , n+ 1.



Chapter 5

Steepest Descent Method for

Set-Valued Mappings of Finite

Cardinality

In this chapter, we derive a new steepest descent method for SOP(F,K,Ω) where the set-

valued objective mapping is identified by a finite number of continuously Fréchet differentiable

selections. Formally, we consider the problem of finding �(l)
K - weakly minimal solutions of

K- min
x∈Rn

F (x) (SOP(F,K,Rn))

under the following assumption:

Assumption 4. Let f1, f2, . . . , fp : Rn → Rm be continuously Fréchet differentiable at every

point and let K ⊂ Rm be a proper, closed, convex, pointed and solid cone. Furthermore, let

F : Rn ⇒ Rm be defined as

F (x) =

{
f1(x), f2(x), . . . , fp(x)

}
, (5.1)

and fix points x̄ ∈ Rn, e ∈ intK.

The motivation for considering SOP(F,K,Rn) under Assumption 4 is twofold:

• In this setting, SOP(F,K,Rn) is equivalent to the robust counterpart of a vector op-

timization problem with a finite uncertainty set (see Remark 2.4.17). Indeed, if in Re-

mark 2.4.17 the uncertainty set U := {u1, . . . , up} ⊂ Rq is considered, we can define

fi(x) := f(x, ui) to obtain a formulation as SOP(F,K,Rn) with F given by (5.1). Con-

versely, if SOP(F,K,Rn) is given and F has the structure (5.1), we can set U := {1, . . . , p}
and f : Rn × U → Rm as

f(x, i) := fi(x)

to recover the formulation (2.24).

100
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• Also within the context of vector optimization under uncertainty, we believe that the

treatment of robust counterpart problems with a finite uncertainty set is very useful when

deriving methods for dealing with the general case, see for example [134] for a cutting

plane strategy. In fact, under different assumptions, solving a problem with respect to a

finite subset of a general uncertainty set can be enough to guarantee that a solution for

the original problem was found, see [46, Theorem 5.9] and [22, Proposition 2.1].

The chapter is structured as follows. In Section 5.1, we present a short survey on the different

methods for the solution of set optimization problems in the literature. In Section 5.2, we derive

optimality conditions for SOP(F,K,Rn) that are independent of those studied in Chapter 4.

These optimality conditions constitute the basis of the descent method described in Section 5.3,

where the full convergence of the algorithm is also obtained. Finally, in Section 5.4, we present

the performance of the method on different test instances.

5.1 Literature Review

There are only a few methods for the solution of set optimization problems with respect to the

set approach. These algorithms can be roughly clustered into three different groups:

• Algorithms for unconstrained problems with no particular structure of the set-valued ob-

jective mapping [90, 94, 107].

In this setting, the algorithms derived are descent methods and use a derivative free stra-

tegy. First, a discretization of the unit sphere is chosen in advance. Then, at every

iteration, an element in this discretization is labelled as a descent direction, and an initial

initial step size is determined. This is achieved by comparing the images of the set-valued

objective mapping both at the current iterate and at displacements of the current iterate

in the directions of the discretization (by a specified step size). Then, in a second step, a

line search is performed in the selected direction in order to refine the initial step size.

In [90], a method for finding �(s)
K - minimal solutions was described. There, the case in

which both the epigraphical and hypographical multifunctions of the set-valued objective

mapping have convex values was analyzed. Furthermore, it is straightforward to deduce,

from this reference, a method for each of the relations �(l)
K and �(u)

K . The convexity

assumption was then relaxed in [107], where the approach was extended for the preorder

�(u)
K . Finally, in [94], the proposed method deals with the so called minmax order relation

that was introduced in [95]. The main feature of this paper is that, instead of choosing

only one descent direction at every iteration, it considers several of them at the same time.

Thus, the method generates a tree with the initial point as the root, and the possible

solutions as leaves.

• Algorithms for problems with a finite feasible set [65, 66, 110, 112].
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The algorithms in this class are extensions, to the set-valued setting, of corresponding

methods for vector optimization problems.

The first method proposed to find the minimal elements of a finite family of vectors in

a partially ordered space can be found in [157]. This algorithm uses a so called forward

reduction procedure that, in practice, avoids making many comparisons between vectors in

the family. Therefore, this method performs more efficiently than a naive implementation

in which every pair of vectors must be compared. The main drawback in that approach

was that the output of the method would give only a superset of the set of minimal

elements. This problem was later fixed by Jahn in [87, 96] by adding an extra reduction

procedure after the first forward step (known in the literature as the backward iteration),

thus obtaining exactly the set of minimal elements. The algorithms described in [110, 112]

extend those of Jahn [87, 96] to deal with set-valued problems.

Very recently, Günther and Popovici [61] introduced a new strategy for the solution of

the problem in the vector case. The idea now is to, first, find an enumeration of the

elements in the family whose images by a strongly monotone functional are increasing. In

a second step, the backward iteration procedure of Jahn [87, 96] is performed. The method

guarantees to find all the minimal elements in the family. Moreover, the remarkable feature

of that algorithm is the computational complexity, since it is superior to the other method

derived by Jahn. This presorting idea was then extended to set optimization problems in

[65, 66].

• Algorithms for robust counterpart problems arising in vector optimization under uncer-

tainty [46, 48, 85, 86, 97, 146].

The methods in this group are derived for problems where the set-valued objective mapping

has the particular structure (2.24), and hence they are of most interest to us in this chapter.

Except for the branch and bound scheme described in [48], the algorithms are based on

some type of scalarization. Thus, as in any scalarization process, the idea is to substitute

the set optimization problem by a scalar one and solve it. Typically, the resulting scalar

problem is the robust counterpart of an optimization problem under uncertainty [21], and

their solutions are �(u)
K - minimal or �(l)

K - minimal for the initial set optimization problem.

In [46, 85, 86], a linear scalarization was employed for the solution of the set optimization

problem. Furthermore, the ε- constraint method was extended too in [46, 85], for the

particular case in which the ordering cone is the nonnegative orthant. Weighted Chebyshev

scalarization and some of its variants (augmented, min-ordering) were also studied in

[85, 97, 146].

The main drawback of the scalarization- based methods in this class is that, in general,

they are not able to recover all the solutions of the set optimization problem. In fact, the ε-

constraint method, which is known to overcome this difficulty in standard multiobjective

optimization, will fail in this setting. Thus, algorithms that are able to deal with this
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problem are of interest.

Our approach in this chapter is different. We propose a first order method for the solution

of SOP(F,K,Rn) under Assumption 4, that is a natural extension of those analyzed in [31] and

[60] for vector optimization problems. The accumulation points of the sequence generated by the

algorithm satisfy (under different assumptions) some type of necessary optimality conditions, and

is able to detect whether a given point is already stationary or not. To the best of our knowledge,

this would be the first method to have such property in the context of set optimization.

5.2 Optimality Conditions

In this section, we study optimality conditions for �(l)
K - weakly minimal solutions of

SOP(F,K,Rn). These conditions will be the foundation on which the proposed algorithm

will be built. Although a natural idea would be to consider the result from Theorem 4.5.3,

the computation of the coderivative of the set-valued objective mapping is very difficult in this

particular case. In fact, because of the representation (5.1), for any point (x̄, ȳ) ∈ gphF we have

the existence of neighborhoods U of x̄ and V of ȳ such that

gphF ∩ (U × V ) =

 ⋃
{i∈{1,...,p}| fi(x̄)=ȳ}

gph fi

 ∩ (U × V ). (5.2)

Hence, in order to compute D∗F (x̄, ȳ) we need to find N((x̄, ȳ), gphF ) which, according to

(5.2), is equivalent to computing N

(
(x̄, ȳ),

⋃
{i∈{1,...,p}| fi(x̄)=ȳ}

gph fi

)
. However, to the best of

our knowledge, there is no exact formula for finding this cone in terms of the initial data.

Thus, instead of considering Theorem 4.5.3, we exploit the particular structure of F and the

differentiability of the functionals fi to deduce necessary conditions.

We start by defining some index-related set-valued mappings that will be of importance.

Definition 5.2.1. Let Assumption 4 be fulfilled. The following set-valued mappings are defined:

(i) The active index of minimal elements associated to F is I : Rn ⇒ {1, . . . , p} given by

I(x) :=
{
i ∈ {1, . . . , p} | fi(x) ∈ Min(F (x),K)

}
.

(ii) The active index of weakly minimal elements associated to F is I0 : Rn ⇒ {1, . . . , p} defined

as

I0(x) :=
{
i ∈ {1, . . . , p} | fi(x) ∈WMin(F (x),K)

}
.

(iii) For a vector v ∈ Rm, we define Iv : Rn ⇒ {1, . . . , p} as

Iv(x) := {i ∈ I(x) | fi(x) = v}.
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It follows directly from the definition that Iv(x) = ∅ whenever v /∈ Min(F (x),K) and that

∀ x ∈ Rn : I(x) =
⋃

v∈Min(F (x),K)

Iv(x). (5.3)

Definition 5.2.2. Let Assumption 4 be fulfilled. The map ω : Rn → R is defined as the

cardinality of the set of minimal elements of F , that is,

ω(x) := |Min(F (x),K)|.

Furthermore, we set ω̄ := ω(x̄).

From now on we consider that, for any point x ∈ Rn, an enumeration {vx1 , . . . , vxω(x)} of the

set Min(F (x),K) has been chosen in advance.

Definition 5.2.3. Let Assumption 4 be fulfilled and, for a given point x ∈ Rn, consider the

enumeration {vx1 , . . . , vxω(x)} of the set Min(F (x),K). The partition set of x is defined as

Px :=

ω(x)∏
j=1

Ivxi (x),

where Ivxj (x) is given in Definition 5.2.1 (iii) for j ∈ {1, . . . , ω(x)}.

The optimality conditions for SOP(F,K,Rn) we will present are based on the following idea:

from the particular structure of F, we will construct a family of vector optimization problems

that, together, locally represent SOP(F,K,Rn) (in a sense to be specified) around the point

which must be checked for optimality. Then, standard, optimality conditions (via Theorem

2.4.10) are applied to the family of vector optimization problems. The following lemma is the

key step in that direction.

Lemma 5.2.4. Let Assumption 4 be fulfilled and let the cone K̃ ⊂
ω̄∏
j=1
Rm be defined as

K̃ :=

ω̄∏
j=1

K. (5.4)

Furthermore, consider the partition set Px̄ associated to x̄ and define, for every a ∈ Px̄, the

functional f̃a : Rn →
ω̄∏
j=1
Rm as

f̃a(x) :=


fa1(x)

...

faω̄(x)

 . (5.5)

Then, x̄ is a local �(l)
K - weakly minimal solution of SOP(F,K,Rn) if and only if, for every

a ∈ Px̄, x̄ is a local weakly minimal solution of VOP(f̃a, K̃,Rn), that is,

K̃- min
x∈Rn

f̃a(x). (VOP(f̃a, K̃,Rn))
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Proof. We argue by contradiction in both cases. First, assume that x̄ is a local �(l)
K - weakly

minimal solution of SOP(F,K,Rn) and that, for some a ∈ Px̄, x̄ is not a local weakly minimal

solution of VOP(f̃a, K̃,Rn). Then, we could find a sequence {xk}k≥1 ⊂ Rn such that xk → x̄

and

∀ k ∈ N : f̃a(xk) ≺K̃ f̃a(x̄). (5.6)

Hence, we deduce that

∀ k ∈ N : F (x̄)
(Proposition 2.4.7 (i))

⊆ {fa1(x̄), . . . , faω̄(x̄)}+K

(5.6)

⊆ {fa1(xk), . . . , faω̄(xk)}+ intK +K

(Proposition 2.2.14 (ii))

⊆ F (xk) + intK.

Since this is equivalent to F (xk) ≺
(l)
K F (x̄) for every k ∈ N and xk → x̄, we contradict the �(l)

K -

weak minimality of x̄.

Next, suppose that x̄ is a local weakly minimal solution of VOP(f̃a, K̃,Rn) for every a ∈ Px̄,

but not a local �(l)
K - weakly minimal solution of SOP(F,K,Rn). Then, we could find a sequence

{xk}k≥1 ⊂ Rn such that xk → x̄ and F (xk) ≺
(l)
K F (x̄) for every k ∈ N. Consider the enumeration

{vx̄1 , . . . , vx̄ω̄} of the set Min(F (x̄),K). Then,

∀ j ∈ {1, . . . , ω̄}, k ∈ N,∃ i(j,k) ∈ {1, . . . , p} : fi(j,k)
(xk) ≺K vx̄j . (5.7)

Since the indexes i(j,k) are being chosen on the finite set {1, . . . , p}, we can assume without

loss of generality that i(j,k) is independent of k, that is, i(j,k) = īj for every k ∈ N and some

īj ∈ {1, . . . , p}. Hence, taking the limit in (5.7) when k → +∞, we get

∀ j ∈ {1, . . . , ω̄} : fīj (x̄) �K vx̄j . (5.8)

Because vx̄j ∈ Min(F (x̄),K), it follows from (5.8) that fīj (x̄) = vx̄j and that īj ∈ I(x̄) for every

j ∈ {1, . . . , ω̄}. Consider now the tuple ā := (̄i1, . . . , īω̄). Then, it can be verified that ā ∈ Px̄.
Moreover, from (5.7) we deduce that f̃ā(xk) ≺K̃ f̃ā(x̄) for every k ∈ N. Since xk → x̄, we

contradict the weak minimality of x̄ for VOP(f̃a, K̃,Rn) when a = ā.

We can now establish the necessary optimality condition for SOP(F,K,Rn) that will be

used in our descent method.

Theorem 5.2.5. Let Assumption 4 be fulfilled and suppose that x̄ is a local �(l)
K - weakly minimal

solution of SOP(F,K,Rn). Then,

∀ a ∈ Px̄, ∃ µ1, µ2, . . . , µw̄ ∈ K∗ :
ω̄∑
j=1

∇faj (x̄)µj = 0, (µ1, . . . , µw̄) 6= 0. (5.9)

Furthermore, if every fi is K- convex for each i ∈ I(x̄), this condition is also sufficient for the

local �(l)
K - weak optimality of x̄.
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Proof. By Lemma 5.2.4, we get that x̄ is a local weakly minimal solution of VOP(f̃a, K̃,Rn) for

every a ∈ Px̄. Applying Theorem 2.4.10 (i) (in the Fréchet differentiable case) for every a ∈ Px̄,

we get

∀ a ∈ Px̄,∃ µ ∈ K̃∗ \ {0} : ∇f̃a(x̄)µ = 0. (5.10)

Since K̃∗ =
ω̄∏
j=1

K∗, it is easy to verify that (5.10) is equivalent to the first part of the statement

In order to see the sufficiency under convexity, assume that x̄ satisfies (5.9). Note that

for any a ∈ Px̄, the function f̃a is K̃- convex provided that each fi is K- convex for every

i ∈ I(x̄). Hence, from Theorem 2.4.10 (ii), we deduce that x̄ is a local weakly minimal solution

of VOP(f̃a, K̃,Rn) for every a ∈ Px̄. Applying now Lemma 5.2.4, we obtain that x̄ is a local

�(l)
K - weakly minimal solution of SOP(F,K,Rn).

Based on Theorem 5.2.5, we define the following concepts of stationarity for SOP(F,K,Rn).

Definition 5.2.6. Let Assumption 4 be fulfilled. We say that x̄ is a �(l)
K - stationary point of

SOP(F,K,Rn) if there exists a nonempty set Q ⊆ Px̄ such that the following assertion holds:

∀ a ∈ Q, ∃ µ1, µ2, . . . , µw̄ ∈ K∗ :
ω̄∑
j=1

∇faj (x̄)µj = 0, (µ1, . . . , µw̄) 6= 0. (5.11)

In that case, we also say that x̄ is �(l)
K - stationary with respect to Q. If, in addition, we can

chose Q = Px̄ in (5.11), we simply call x̄ a strongly �(l)
K - stationary point.

Remark 5.2.7. It follows from Definition 5.2.6 that a strongly �(l)
K - stationary point of

SOP(F,K,Rn) is also �(l)
K - stationary with respect to Q for every Q ⊆ Px̄. In addition, from

the proof of Theorem 5.2.5, we know that (5.11) is equivalent to x̄ being a stationary point (in

the sense of Theorem 2.4.10 (i)) of VOP(f̃a, K̃,Rn) for every a ∈ Q. Hence, in particular, �(l)
K -

stationarity is also a necessary optimality condition for SOP(F,K,Rn).

Remark 5.2.8. Let Assumption 4 be fulfilled and suppose that m = 1,K = R+. Furthermore,

consider the functional f : Rn → R defined as

f(x) := min
i=1,...,p

fi(x)

and problem SOP(F,K,Rn) associated to this data. Hence, in this case,

I(x̄) = {i ∈ {1, . . . , p} | fi(x̄) = f(x̄)}.

It is then easy to verify that the following statements hold:

(i) x̄ is strongly �(l)
K - stationary for SOP(F,K,Rn) if and only if

∀ i ∈ I(x̄) : ∇fi(x̄) = 0.
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(ii) x̄ is �(l)
K - stationary for SOP(F,K,Rn) if and only if

∃ i ∈ I(x̄) : ∇fi(x̄) = 0.

On the other hand, one could also check that x̄ is a �(l)
K - weakly minimal solution of

SOP(F,K,Rn) if and only if x̄ solves OP(f,Rn), see Definition 2.4.1. Then, taking into account

Theorem 2.4.2 and Remark 2.4.4, we find that the inclusions

0 ∈ ∂̂f(x̄) (5.12)

and

0 ∈ ∂f(x̄) (5.13)

are necessary for x̄ being a �(l)
K - weakly minimal solution of SOP(F,K,Rn). Furthermore, from

[45, Proposition 5] and [132, Proposition 1.113], we have

∂̂f(x̄) =
⋂

i∈I(x̄)

{∇fi(x̄)} (5.14)

and

∂f(x̄) ⊆
⋃

i∈I(x̄)

{∇fi(x̄)} (5.15)

respectively. Thus, from (5.12), (5.14) and (i), we deduce that

(iii) x̄ is strongly �(l)
K - stationary for SOP(F,K,Rn) if and only if x̄ is stationary for OP(f,Rn)

in the sense of Fréchet, see Remark 2.4.4.

Similarly, from (5.13), (5.15) and (ii), we find that

(iii) If x̄ is stationary for OP(f,Rn) in the sense of Definition 2.4.3, then x̄ is �(l)
K - stationary

for SOP(F,K,Rn).

We close the section with the following proposition, that presents an alternative characteri-

zation of �(l)
K - stationary points.

Proposition 5.2.9. Let Assumption 4 be fulfilled and let Q ⊆ Px̄. Then, x̄ is �(l)
K - stationary

for SOP(F,K,Rn) with respect to Q if and only if

∀ a ∈ Q, u ∈ Rn,∃ j ∈ {1, . . . , ω̄} : ∇faj (x̄)>u /∈ − intK. (5.16)

Proof. Suppose first that x̄ is �(l)
K - stationary with respect to Q. Fix now a ∈ Q, u ∈ Rn, and

consider the vectors µ1, µ2, . . . , µω̄ ∈ K∗ that satisfy (5.11). We argue by contradiction. Assume

that
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∀ j ∈ {1, . . . , ω̄} : ∇faj (x̄)>u ∈ − intK. (5.17)

From (5.17) and the fact that (µ1, . . . , µω̄) ∈

(
ω̄∏
j=1

K∗

)
\ {0}, we deduce that

(
µ>1

(
∇fa1(x̄)>u

)
, . . . , µ>j

(
∇faj (x̄)>u

))
∈ −Rω̄+ \ {0}. (5.18)

Hence, we get

0
(5.11)

=

 ω̄∑
j=1

∇faj (x̄)µj

> u =

ω̄∑
j=1

µ>j

(
∇faj (x̄)>u

) (5.18)
< 0,

a contradiction.

Suppose now that (5.16) holds, and fix a ∈ Q. Consider the functional f̃a and the cone K̃

from Lemma 5.2.4, together with the set

A :=
{
∇f̃a(x̄)>u | u ∈ Rn

}
.

Then, we deduce from (5.16) that

A ∩ int K̃ = ∅.

Applying Theorem 2.1.26 (i), we obtain (µ1, . . . , µω̄) ∈

(
ω̄∏
j=1
Rm
)
\ {0} such that

∀ u ∈ Rn, v1, . . . , vω̄ ∈ K :

 ω̄∑
j=1

∇faj (x̄)µj

> u ≤ ω̄∑
j=1

µ>j vj . (5.19)

By fixing j̄ ∈ {1, . . . , ω̄} and substituting u = 0, vj = 0 for j 6= j̄ in (5.19), we obtain

∀ vj̄ ∈ K : µ>j̄ vj̄ ≥ 0.

Hence, µj̄ ∈ K∗. Since j̄ was chosen arbitrarily, we get that (µ1, . . . , µω̄) ∈

(
ω̄∏
j=1

K∗

)
\ {0}.

Define now

ū :=

ω̄∑
j=1

∇faj (x̄)µj .

Then, to finish the proof, we need to show that ū = 0. In order to see this, substitute u = ū and

vj = 0 for each j ∈ {1, . . . , ω̄} in (5.19) to obtain

∥∥∥∥∥∥
ω̄∑
j=1

∇faj (x̄)µj

∥∥∥∥∥∥
2

≤ 0.

Hence, it can only be ū = 0, and statement (5.11) is true.
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5.3 Descent Method and its Convergence Analysis

Now we present the solution approach. It is clearly based on the result shown in Lemma 5.2.4.

At every iteration, an element a in the partition set of the current iterate point is selected, and

then a descent direction for VOP(f̃a, K̃,Rn) will be found using ideas from [31, 60]. However,

one must be careful with the selection process of the element a in order to guarantee convergence.

Thus, we propose a specific way to achieve this. After the descent direction is determined, we

follow a classical backtracking procedure of Armijo type to determine a suitable step size, and

we update the iterate in the desired direction. Formally, the method is the following:

Algorithm 1: Descent Method in Set Optimization

Step 0. Choose x0 ∈ Rn, β, ν ∈ (0, 1), and set k := 0.

Step 1. Compute

Mk := Min(F (xk),K), Pk := Pxk , ωk := |Min(F (xk),K)|.

Step 2. Find

(ak, uk) ∈ argmin
(a,u)∈Pk×Rn

max
j=1,...,ωk

{
ψe
(
∇faj (xk)>d

)}
+

1

2
‖u‖2.

Step 3. If uk = 0, Stop. Otherwise, go to Step 4.

Step 4. Compute

tk := max
q∈N∪{0}

{
νq | ∀ j ∈ {1, . . . , ωk} : fak,j (xk+ν

quk) �K fak,j (xk)+βν
q∇fak,j (xk)

>uk

}
.

Step 5. Set xk+1 := xk + tkuk, k := k + 1 and go to Step 2.

Remark 5.3.1. It is possible to verify that, when p = 1, Algorithm 1 reduces to the methods

described in [31, 60] for vector optimization problems. Indeed, the only difference in that case

would be the scalarizing functional employed in Steps 2 and 4: in [60], an element ψG ∈ SDS,

and in [31], an element ψ‖·‖ ∈ SHU , see Definition 3.2.1. However, by Corollary 3.2.1, ψe ∈
SHU ⊂ SDS , and hence our assertion is true.

Now, we start the convergence analysis of Algorithm 1. Our first lemma describes local

properties of the active indexes.

Lemma 5.3.2. Let Assumption 4 be fulfilled. Then, there exists a neighborhood U of x̄ such that

the following properties are satisfied (some of them under additional conditions to be established

below) for every x ∈ U :

(i) I0(x) ⊆ I0(x̄),

(ii) I(x) ⊆ I(x̄), provided that Min(F (x̄),K) = WMin(F (x̄),K),
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(iii) ∀ v ∈ Min(F (x̄),K) : Min
(
{fi(x)}i∈Iv(x̄),K

)
⊆ Min(F (x),K),

(iv) ∀ v1, v2 ∈ Min(F (x̄),K), v1 6= v2 : Min
(
{fi(x)}i∈Iv1 (x̄),K

)
∩Min

(
{fi(x)}i∈Iv2 (x̄),K

)
= ∅,

(v) ω(x) ≥ ω(x̄).

Proof. It suffices to show the existence of the neighborhood U for each item independently, as

we could later take the intersection of them to satisfy all the properties.

(i) Assume that this is not satisfied in any neighborhood U of x̄. Then, we could find a

sequence {xk}k≥1 ⊂ Rn such that xk → x̄ and

∀ k ∈ N : I0(xk) \ I0(x̄) 6= ∅. (5.20)

Because of the finite cardinality of all possible differences in (5.20), we can assume without loss

of generality that there exists a common ī ∈ {1, . . . , p} such that

∀ k ∈ N : ī ∈ I0(xk) \ I0(x̄). (5.21)

In particular, (5.21) implies that ī ∈ I0(xk). Hence, we get

∀ k ∈ N, i ∈ {1, . . . , p} : fi(xk)− fī(xk) ∈ − (Rm \ intK) .

Since Rm \ intK is closed, taking the limit when k → +∞ we obtain

∀ i ∈ {1, . . . , p} : fi(x̄)− fī(x̄) ∈ − (Rm \ intK) .

Hence, we deduce that fī(x̄) ∈WMin(F (x̄),K) and ī ∈ I0(x̄), a contradiction to (5.20).

(ii) Consider the same neighborhood U on which statement (i) holds. Note that, under the

given assumption, we have I0(x̄) = I(x̄). This, together with statement (i), implies:

∀ x ∈ U : I(x) ⊆ I0(x) ⊆ I0(x̄) = I(x̄).

(iii) For this statement, it is also sufficient to show that the neighborhood U can be chosen

for any point in the set Min(F (x̄),K). Hence, fix v ∈ Min(F (x̄),K) and assume that there is

no neighborhood U of x̄ on which the statement is satisfied. Then, we could find sequences

{xk}k≥1 ⊂ Rn and {ik}k≥1 ⊆ Iv(x̄) such that xk → x̄ and

∀ k ∈ N : fik(xk) ∈ Min({fi(xk)}i∈Iv(x̄),K) \Min(F (xk),K). (5.22)

Since Iv(x̄) is finite, we deduce that the elements in the sequence {ik} can only take a finite

number values. Hence, we can assume without loss of generality that there exists ī ∈ Iv(x̄) such

that ik = ī for every k ∈ N. Then, (5.22), is equivalent to

∀ k ∈ N : fī(xk) ∈ Min({fi(xk)}i∈Iv(x̄),K) \Min(F (xk),K). (5.23)

From (5.23) we get in particular that fī(xk) /∈ Min(F (xk),K) for every k ∈ N. This, together

with the domination property in Proposition 2.4.7 (i) and the fact that the sets I(xk) are
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contained in the finite set {1, . . . , p}, allow us to obtain without loss of generality the existence

of ĩ ∈ I(x̄) such that

∀ k ∈ N : fĩ(xk) � fī(xk), fĩ(xk) 6= fī(xk). (5.24)

Taking the limit in (5.24) now when k → +∞ we obtain fĩ(x̄) � fī(x̄) = v. Since v is a

minimal element of F (x̄), it can only be fĩ(x̄) = v and, hence, ĩ ∈ Iv(x̄). From this, the first

inequality in (5.24), and the fact that fī(xk) ∈ Min({fi(xk)}i∈Iv(x̄),K) for every k ∈ N, we get

that fī(xk) = fĩ(xk) for all k ∈ N. This contradicts the second part of (5.24), and hence our

statement is true.

(iv) It follows directly from the continuity of the functionals fi, i = 1, . . . , p.

(v) The statement is an immediate consequence of (iii) and (iv).

For the main convergence theorem of our method, we will need the notion of regularity of a

point for a set-valued mapping.

Definition 5.3.3. Let Assumption 4 be fulfilled. We say that x̄ is a regular point of F if the

following conditions are satisfied:

(i) Min(F (x̄),K) = WMin(F (x̄),K),

(ii) the functional ω is constant in a neighborhood of x̄.

Remark 5.3.4. Since we will analyze the stationarity of the regular limit points of the sequence

generated by Algorithm 1, the following points must be addressed:

• Notice that, by definition, the regularity property of a point is independent of the optimality

concept in Definition 2.4.14 (ii). Thus, by only knowing that a point is regular, we can not

infer anything about whether it is optimal or not.

• The concept of regularity seems to be linked to the complexity of comparing sets in a high

dimensional space. For example, in case m = 1 or p = 1, every point in Rn is regular for

any set-valued mapping F of the form (5.1). Indeed, in these cases, we have ω(x) = 1 and

Min(F (x),K) = WMin(F (x),K) =


{

min
i=1,...,p

fi(x)

}
if m = 1,

{f1(x)} if p = 1

for all x ∈ Rn.

A natural question is whether regularity is a strong assumption to impose on a point. In that

sense, given the finite structure of the sets F (x), the condition (i) in Definition 5.3.3 seems to be

very reasonable. In fact, we would expect that, for most practical cases, this condition is fulfilled

at almost every point. For condition (ii), a formalized statement is derived in Proposition 5.3.5

below.
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Proposition 5.3.5. Let Assumption 4 be fulfilled. Then, the set

S := {x ∈ Rn | ω is locally constant at x}

is open and dense in Rn.

Proof. (i) The openness is trivial. Suppose now that S is not dense in Rn. Then, Rn \ (clS) is

nonempty and open. Furthermore, since ω is bounded above, the real number

p0 := max
x∈Rn\(clS)

ω(x)

is well defined. Consider the set

A :=

{
x ∈ Rn | ω(x) ≤ p0 −

1

2

}
.

From Lemma 5.3.2 (v), it follows that ω is lower semicontinuous. Hence, A is closed as it is the

sublevel set of a lower semicontinuous functional, see [145, Lemma 1.7.2]. Consider now the set

U := (Rn \ (clS)) ∩ (Rn \A) .

Then, U is a nonempty open subset of Rn \ (clS). This, together with the definition of A, gives

us ω(x) = p0 for every x ∈ U. However, this contradicts the fact that ω is not locally constant

at any point of Rn \ (clS). Hence, S is dense in Rn.

An essential property of regular points of a set-valued mapping is described in the next

proposition.

Proposition 5.3.6. Let Assumption 4 be fulfilled and suppose that x̄ is a regular point of F.

Then, there exists a neighborhood U of x̄ such that the following properties hold for every x ∈ U :

(i) ω(x) = ω̄,

(ii) there is an enumeration {wx1 , . . . , wxω̄} of Min(F (x),K) such that

∀ j ∈ {1, . . . , ω̄} : Iwxj (x) ⊆ Ivx̄j (x̄).

In particular, without loss of generality, we have Px ⊆ Px̄ for every x ∈ U.

Proof. Let U be the neighborhood of x̄ from Lemma 5.3.2. Since x̄ is a regular point of F, we

can assume without loss of generality that ω is constant on U. Hence, property (i) is fulfilled. Fix

now x ∈ U and consider the enumeration {vx̄1 , . . . , vx̄ω̄} of Min(F (x̄),K). Then, from properties

(iii) and (iv) in Lemma 5.3.2 and the fact that ω(x) = ω̄, we deduce that

∀ j ∈ {1, . . . , ω̄} :

∣∣∣∣Min

(
{fi(x)}i∈Ivx̄

j
(x̄),K

)∣∣∣∣ = 1. (5.25)
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Next, for j ∈ {1, . . . , ω̄}, we define wxj as the unique element of the set Min

(
{fi(x)}i∈Ivx̄

j
(x̄),K

)
.

Then, from (5.25), property (iii) in Lemma 5.3.2 and the fact that ω is constant on U, we obtain

that {wx1 , . . . , wxω̄} is an enumeration of the set Min(F (x),K).

It remains to show now that this enumeration satisfies (ii). In order to see this, fix j ∈
{1, . . . , ω̄} and ī ∈ Iwxj (x). Then, from the regularity of x̄ and property (ii) in Lemma 5.3.2,

we get that I(x) ⊆ I(x̄). In particular, this implies ī ∈ I(x̄). From this and (5.3), we have the

existence of j′ ∈ {1, . . . , ω̄} such that ī ∈ Ivx̄
j′

(x̄). Hence, we deduce that

wxj = fī(x) ∈ {fi(x)}i∈Ivx̄
j′

(x̄) . (5.26)

Then, from (5.25), (5.26) and the definition of wxj′ , we find that wxj′ �K wxj . Moreover, because

wxj′ , w
x
j ∈ Min(F (x),K), it can only be wxj′ = wxj . Thus, it follows that j = j′, since {wx1 , . . . , wxω̄}

is an enumeration of the set Min(F (x),K). This shows that ī ∈ Ivx̄j (x̄), as desired.

For the rest of the analysis we need to introduce the parametric family of functionals

{ϕx}x∈Rn , whose elements ϕx : Px × Rn → R are defined as follows:

∀ a ∈ Px, u ∈ Rn : ϕx(a, u) := max
j=1,...,ω(x)

{
ψe
(
∇faj (x)>u

)}
+

1

2
‖u‖2. (5.27)

It is easy to see that, for every x ∈ Rn and a ∈ Px, the functional ϕx(a, ·) is strongly convex in

Rn, that is, there exists a constant α > 0 such that the inequality

ϕx
(
a, tu+ (1− t)u′

)
+ αt(1− t)‖u− u′‖2 ≤ tϕx(a, u) + (1− t)ϕx

(
a, u′

)
is satisfied for every u, u′ ∈ Rn and t ∈ [0, 1]. According to [53, Lemma 3.9], the functional

ϕx(a, ·) attains its minimum over Rn, and this minimum is unique. In particular, we can check

that

∀ x ∈ Rn, a ∈ Px : min
u∈Rn

ϕx(a, u) ≤ 0 (5.28)

and that, if ua ∈ Rn is such that ϕx(a, ua) = min
u∈Rn

ϕx(a, u), then

ϕx(a, ua) = 0⇐⇒ ua = 0. (5.29)

Taking into account that Px is finite, we also obtain that ϕx attains its minimum over the set

Px × Rn. Hence, we can consider the functional φ : Rn → R given by

φ(x) := min
(a,u)∈Px×Rn

ϕx(a, u). (5.30)

Then, because of (5.28), it can be verified that

∀ x ∈ Rn : φ(x) ≤ 0. (5.31)
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Furthermore, if (a, u) ∈ Px × Rn is such that φ(x) = ϕx(a, u), it follows from (5.29) (see also

[60]) that

φ(x) = 0⇐⇒ u = 0. (5.32)

In the following two propositions we show that Algorithm 1 is well defined. We start by

proving that, if Algorithm 1 stops in Step 3, a �(l)
K - stationary point was found.

Proposition 5.3.7. Let Assumption 4 be fulfilled and consider the functionals ϕx̄ and φ given

in (5.27) and (5.30) respectively. Furthermore, let (ā, ū) ∈ Px̄×Rn be such that φ(x̄) = ϕx̄(ā, ū).

Then, the following statements are equivalent:

(i) x̄ is a strongly �(l)
K - stationary point of SOP(F,K,Rn),

(ii) φ(x̄) = 0,

(iii) ū = 0.

Proof. The result will be a consequence of [31, Proposition 2.2] where, using an Hiriart- Urruty

functional, a similar statement is proved for vector optimization problems. Consider the cone

K̃ given by (5.4) , the vector ẽ :=


e
...

e

 ∈ int K̃, and the scalarizing functional ψẽ associated to

ẽ and K̃, see Definition 2.5.5 (i). Then, for any v1, . . . , vω̄ ∈ Rm and v :=


v1

...

vω̄

 , we get

ψẽ(v) = min{t ∈ R | tẽ ∈ v + K̃}

= min{t ∈ R | ∀ j ∈ {1, . . . , ω̄} : te ∈ vj +K}

= max
j=1,...,ω̄

ψe(vj).

(5.33)

From Theorem 3.2.7, we know that ψẽ ∈ SHU , the class of Hiriart-Urruty functionals. Hence,

for a fixed a ∈ Px̄ we can apply [31, Proposition 2.2] to VOP(f̃a, K̃,Rn) to obtain that

x̄ is a stationary point of VOP(f̃a, K̃,Rn)⇐⇒ min
u∈Rn

ψẽ

(
∇f̃a(x̄)>u

)
+

1

2
‖u‖2 = 0 (5.34)

Thus, we deduce that
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x̄ is strongly �(l)
K - stationary

(Remark 5.2.7)⇐⇒ ∀ a ∈ Px̄ : x̄ is stationary for VOP(f̃a, K̃,Rn)

(5.34)⇐⇒ ∀ a ∈ Px̄ : min
u∈Rn

ψẽ

(
∇f̃a(x̄)>u

)
+

1

2
‖u‖2 = 0

((5.27) + (5.33))⇐⇒ ∀ a ∈ Px̄ : min
u∈Rn

ϕx̄(a, u) = 0

⇐⇒ min
(a,u)∈Px̄×Rn

ϕx̄(a, u) = 0

(5.30)⇐⇒ φ(x̄) = 0
(5.32)⇐⇒ ū = 0,

as desired.

Remark 5.3.8. A similar statement to the one in Proposition 5.3.7 can be made for �(l)
K -

stationary points of SOP(F,K,Rn). Indeed, for a set Q ⊆ Px̄, consider a point (āQ, ūQ) ∈
Q× Rn such that ϕx̄ (āQ, ūQ) = min

(a,u)∈Q×Rn
ϕx̄(a, u). Then, by replacing Px̄ by Q in the proof of

Proposition 5.3.7, we can show that the following statements are equivalent:

(i) x̄ is �(l)
K - stationary for SOP(F,K,Rn) with respect to Q,

(ii) min
(a,u)∈Q×Rn

ϕx̄(a, u) = 0,

(iii) ūQ = 0.

Next, we show that the line search in Step 4 of Algorithm 1 terminates in finitely many

steps.

Proposition 5.3.9. Let Assumption 4 be fulfilled and fix β ∈ (0, 1). Consider the functionals

ϕx̄ and φ given in (5.27) and (5.30) respectively. Furthermore, let (ā, ū) ∈ Px̄×Rn be such that

φ(x̄) = ϕx̄(ā, ū) and suppose that x̄ is not a strongly �(l)
K - stationary point of SOP(F,K,Rn).

The following assertions hold:

(i) There exists t̃ > 0 such that

∀ t ∈ (0, t̃ ], j ∈ {1, . . . , ω̄} : fāj (x̄+ tū) �K fāj (x̄) + βt∇fāj (x̄)>ū.

(ii) Let t̃ be the parameter in statement (i). Then,

∀ t ∈ (0, t̃ ] : F (x̄+ tū) �(l)
K

{
fāj (x̄) + βt∇fāj (x̄)>ū

}
j∈{1,...,ω̄}

≺(l)
K F (x̄),

In particular, ū is a descent direction of F at x̄ with respect to the preorder �(l)
K .
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Proof. (i) Assume otherwise. Then, we could find a sequence {tk}k≥1 and j̄ ∈ {1, . . . , ω̄} such

that tk → 0 and

∀ k ∈ N : fāj̄ (x̄+ tkū)− fāj̄ (x̄)− βtk∇fāj̄ (x̄)>ū /∈ −K. (5.35)

As (Rm \ −K) ∪ {0} is a cone, we can multiply (5.35) by 1
tk

for each k ∈ N to obtain

∀ k ∈ N :
fāj̄ (x̄+ tkū)− fāj̄ (x̄)

tk
− β∇fāj̄ (x̄)>ū /∈ −K. (5.36)

Taking now the limit in (5.36) when k → +∞ we get

(1− β)∇fāj̄ (x̄)>ū /∈ − intK.

Since β ∈ (0, 1), this is equivalent to

∇fāj̄ (x̄)>ū /∈ − intK. (5.37)

On the other hand, since x̄ is not strongly �(l)
K - stationary, we can apply Proposition 5.3.7 to

obtain that ū 6= 0 and that φ(x̄) < 0. This implies that ϕx̄(ā, ū) < 0, and hence

max
j=1,...,ω̄

{
ψe

(
∇fāj (x̄)>ū

)}
< −1

2
‖ū‖2 < 0.

From this, we deduce that

∀ j ∈ {1, . . . , ω̄} : ψe

(
∇fāj (x̄)>ū

)
< 0

and, by Proposition 2.5.6 (iii),

∀ j ∈ {1, . . . , ω̄} : ∇fāj (x̄)>ū ∈ − intK. (5.38)

However, this is a contradiction with (5.37), and hence the statement is proved.

(ii) From (5.38), we know that

∀ j ∈ {1, . . . , ω̄}, t ∈ (0, t̃ ] : fāj (x̄) + βt∇fāj (x̄)>ū ≺K fāj (x̄). (5.39)

Then, it follows that

∀ t ∈ (0, t̄ ] : F (x̄)
(Proposition 2.4.7 (i))

⊂ {fā1(x̄), . . . , fāω̄(x̄)}+K

(5.39)
⊂

{
∇fāj (x̄) + βt∇fāj (x̄)>ū

}
j∈{1,...,ω̄}

+ intK

(Statement (i))

⊆
{
fāj (x̄+ tā1), . . . , fāj (x̄+ tāω̄)

}
j∈{1,...,ω̄} +K + intK

⊆ F (x̄+ tū) + intK,

as desired.
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We are now ready to establish the convergence of Algorithm 1.

Theorem 5.3.10. Let Assumption 4 be fulfilled and suppose that Algorithm 1 generates an

infinite sequence. Furthermore, assume that x̄ is an accumulation point of this sequence that is

regular for F. Then, x̄ is �(l)
K - stationary. In particular, when |Px̄| = 1, we get that x̄ is strongly

�(l)
K - stationary.

Proof. Consider the functional ζ : P (Rm)→ R defined as

∀ A ⊆ Rm : ζ(A) := inf
y∈A

ψe(y).

The proof will be divided in several steps:

Step 1: We show the following sufficient decrease result:

∀ k ∈ N ∪ {0} : (ζ ◦ F )(xk+1) ≤ (ζ ◦ F )(xk) + βtk

[
φ(xk)−

1

2
‖uk‖2

]
. (5.40)

Indeed, because of the K- monotonicity of ψe in Proposition 2.5.6 (ii), the functional ζ is

�(l)
K - monotone, that is, A �(l)

K B =⇒ ζ(A) ≤ ζ(B). On the other hand, from Proposition 5.3.9

(ii), we deduce that

∀ k ∈ N ∪ {0} : F (xk + tkuk) �
(l)
K

{
fak,j (xk) + βtk∇fak,j (xk)

>uk

}
i∈{1,...,ωk}

.

Hence, using the monotonicity of ζ, we obtain for any k ∈ N ∪ {0} :

(ζ ◦ F )(xk+1) ≤ min
j=1,...,ωk

{
ψe

(
fak,j (xk) + βtk∇fak,j (xk)

>uk

)}
(Proposition 2.5.6 (i))

≤ min
j=1,...,ωk

{
ψe
(
fak,j (xk)

)
+ βtkψe

(
∇fak,j (xk)

>uk

)}
≤ min

j=1,...,ωk

{
ψe
(
fak,j (xk)

)
+ βtk max

j′=1,...,ωk

{
ψe

(
∇fak,j′ (xk)

>uk

)}}
= (ζ ◦ F )(xk) + βtk max

j=1,...,ωk

{
ψe

(
∇fak,j (xk)

>uk

)}
.

The above inequality, together with the definition of φ in (5.30), implies (5.40).

On the other hand, since x̄ is an accumulation point of the sequence {xk}k≥0, we can find a

subsequence K ⊆ N such that xk
K→ x̄.

Step 2: The following inequality holds

∀ k ∈ N ∪ {0} : F (x̄) �(l)
K F (xk). (5.41)

Indeed, from Proposition 5.3.9 (ii), we can guarantee that the sequence {F (xk)}k≥0 is �(l)
K -

decreasing, that is,

∀ k ∈ N ∪ {0} : F (xk+1) �(l)
K F (xk). (5.42)
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Fix now k ∈ N, and i ∈ {1, . . . , p}. Then, according to (5.42), we have

∀ k′ ∈ K, k′ ≥ k,∃ ik′ ∈ {1, . . . , p} : fik′ (xk′) �K fi(xk). (5.43)

Since there are only a finite number of possible values for ik′ , we can assume without loss of

generality that there is ī ∈ {1, . . . , p} such that ik′ = ī for every k′ ∈ K, k′ ≥ k. Hence, (5.43) is

equivalent to

∀ k′ ∈ K, k′ ≥ k : fī(xk′)− fi(xk) ∈ −K. (5.44)

Taking the limit now in (5.44) when k′
K→ +∞, we find that

fi(xk) ∈ fī(x̄) +K.

Since i was chosen arbitrarily in {1, . . . , p}, this implies the statement.

Step 3: We prove that the sequence {uk}k∈K is bounded.

In order to see this, note that, since xk is not a stationary point, we have by Proposition

5.3.7 that φ(xk) < 0 for every k ∈ N ∪ {0}. By the definition of ak and uk, we then have

∀ k ∈ N ∪ {0} : ϕxk(ak, uk) < 0. (5.45)

Recall that ρ is the Lipschitz constant of ψe given in Proposition 2.5.7 (i). Thus, we deduce that

∀ k ∈ N ∪ {0} : ‖uk‖2
((5.45) + (5.27))

< −2 max
j=1,...,ωk

{
ψe

(
∇fak,j (x̄)>uk

)}
= 2 max

j=1,...,ωk

{∣∣∣ψe (∇fak,j (x̄)>uk

)∣∣∣}
(Proposition 2.5.7 (i))

≤ 2ρ max
j=1,...,ωk

{∥∥∥∇fak,j (x̄)>uk

∥∥∥}
≤ 2ρ‖uk‖ max

j=1,...,ωk

{
‖∇fak,j (xk)‖

}
.

Hence,

∀ k ∈ N ∪ {0} : ‖uk‖ ≤ 2ρ max
j=1,...,ωk

{
‖∇fak,j (xk)‖

}
. (5.46)

Since {xk}k∈K is bounded, the statement follows from (5.46).

Step 4: We show that x̄ is �(l)
K - stationary.

Fix κ ∈ N. Then, it follows from (5.40) that

∀ k ∈ N : −βtk max
j=1,...,ωk

{
ψe

(
∇fak,j (xk)

>uk

)}
≤ (ζ ◦ F )(xk)− (ζ ◦ F )(xk+1). (5.47)

Adding this inequality for k = 0, . . . , κ, we obtain
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− β
κ∑
k=0

tk max
j=1,...,ωk

{
ψe

(
∇fak,j (xk)

>uk

)}
≤ (ζ ◦ F )(x0)− (ζ ◦ F )(xκ+1). (5.48)

On the other hand, similarly to (5.38) in the proof of Proposition 5.3.9 (i), we can obtain

that

∀ k ∈ N ∪ {0}, j ∈ {1, . . . , ωk} : ∇fak,j (xk)
>uk ∈ − intK. (5.49)

In particular, applying Proposition 2.5.6 (iii) in (5.49), we find that

∀ k ∈ N ∪ {0}, j ∈ {1, . . . , ωk} : ψe

(
∇fak,j (xk)

>uk

)
< 0. (5.50)

We then have

0
(5.50)
< −

κ∑
k=0

tk max
j=1,...,ωk

{
ψe

(
∇fak,j (xk)

>uk

)} (5.48)

≤ (ζ ◦ F )(x0)− (ζ ◦ F )(xκ+1)

β

(ζ monotone + (5.41))

≤ (ζ ◦ F )(x0)− (ζ ◦ F )(x̄)

β
.

Taking now the limit in the previous inequality when κ→ +∞, we deduce that

0 ≤ −
∞∑
k=0

tk max
j=1,...,ωk

{
ψe

(
∇fak,j (xk)

>uk

)}
< +∞.

In particular, this implies

lim
k→∞

tk max
j=1,...,ωk

{
ψe

(
∇fak,j (xk)

>uk

)}
= 0. (5.51)

Since there are only a finite number of subsets of {1, . . . , p} and x̄ is regular for F, we can

apply Proposition 5.3.6 to obtain, without loss of generality, the existence of Q ⊆ Px̄ and ā ∈ Q
such that

∀ k ∈ K : ωk = ω̄, Pxk = Q, ak = ā. (5.52)

Furthermore, since the sequences {tk}k≥1, {uk}k∈K are bounded, we can also assume without

loss of generality the existence of t̄ ∈ R, ū ∈ Rn such that

tk
K→ t̄, uk

K→ ū. (5.53)

The rest of the proof is devoted to show that x̄ is a �(l)
K - stationary point with respect to Q.

First, observe that by (5.52) and the definition of ak, we have

∀ a ∈ Q, k ∈ K, u ∈ Rn : φ(xk) = ϕxk(ā, uk) ≤ ϕxk(a, u).

Then, taking into account that ωk = ω̄ in (5.52), we can take the limit when k
K→ +∞ in the

above expression to obtain
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∀ a ∈ Q, u ∈ Rn : ϕx̄(ā, ū) ≤ ϕx̄(a, u).

Equivalently, we have

(ā, ū) ∈ argmin
(a,u)∈Q×Rn

ϕx̄(a, u). (5.54)

Next, we analyze two cases:

Case 1: t̄ > 0.

According to (5.51) and (5.52), we have in this case

lim
k
K→+∞

max
j=1,...,ω̄

{
ψe

(
∇fāj (xk)>uk

)}
= 0. (5.55)

Then, it follows that

0 ≤ 1

2
‖ū‖2

((5.52) + (5.53) + (5.55))
= lim

k
K→+∞

max
j=1,...,ω̄

{
ψe

(
∇fāj (xk)>uk

)}
+

1

2
‖uk‖2

= lim
k
K→+∞

φ(xk)

(5.31)

≤ 0,

from which we deduce ū = 0. This, together with (5.54) and Remark 5.3.8, imply that x̄ is a

�(l)
K - stationary point with respect to Q.

Case 2: t̄ = 0.

Fix an arbitrary κ ∈ N. Since tk
K→ 0, for k ∈ K large enough νκ does not satisfy Armijo’s

line search criteria in Step 4 of Algorithm 1. By (5.52) and the finiteness of ω̄, we can assume

without loss of generality the existence of j̄ ∈ {1, . . . , w̄} such that

∀ k ∈ K : fāj̄ (xk + νκuk) �K fāj̄ (xk) + βνκ∇fāj̄ (xk)
>uk.

From this, it follows that

∀ k ∈ K :
fāj̄ (xk + νκuk)− fāj̄ (xk)

νκ
− β∇fāj̄ (xk)

>uk /∈ −K.

Taking the limit now when k
K→ +∞, we obtain

fāj̄ (x̄+ νκū)− fāj̄ (x̄)

νκ
− β∇fāj̄ (x̄)>ū /∈ − intK.

Next, taking the limit when κ→ +∞, we get
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(1− β)∇fāj̄ (x̄)>ū /∈ − intK.

Since β ∈ (0, 1), we deduce that ∇fāj̄ (x̄)>ū /∈ − intK and, according to Proposition 2.5.6 (iii),

this is equivalent to

ψe(∇fāj̄ (x̄)>ū) ≥ 0. (5.56)

Finally, we find that

0
(5.56)

≤ ψe(∇fāj̄ (x̄)>ū) ≤ ϕx̄(ā, ū)
(5.54)

= min
(a,u)∈Q×Rn

ϕx̄(a, u)
(5.28)

≤ 0,

which implies

min
(a,u)∈Q×Rn

ϕx̄(a, u) = 0. (5.57)

The �(l)
K - stationarity of x̄ follows then from (5.57) and Remark 5.3.8. The proof is complete.

5.4 Implementation and Numerical Illustrations

In this section, we report some preliminary numerical experience with the proposed method.

Algorithm 1 was implemented in Python 3 and the experiments were done in a PC with an

Intel(R) Core(TM) i5-4200U CPU processor and 4.0 GB of RAM. We describe below some

details of the implementation and the experiments:

• We considered instances of problem SOP(F,K,Rn) only for the case in which K is the

standard ordering cone, that is, K = Rm+ . In addition, we chose the parameter e ∈ intK

for the scalarizing functional ψe as e = (1, . . . , 1)>.

• The parameters β and ν for the line search in Step 4 of the method were chosen as

β = 0.0001, ν = 0.500.

• The stopping criteria employed was that ‖uk‖ < 0.0001, or a maximum number of 200

iterations was reached.

• For finding the set Min(F (xk),K) at the kth- iteration in Step 1 of the algorithm, we

implemented the method developed by Günther and Popovici in [61]. This procedure

requires a strongly K- monotone functional ψ : Rm → R for a so called presorting phase.

In our implementation, we used ψ defined as follows:

∀ v ∈ Rm : ψ(v) =

m∑
i=1

vi.
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The other possibility for finding the set Min(F (xk),K) would have been to use the method

introduced by Jahn in [87, 89, 96] with ideas from [157]. However, as mentioned in Section

5.1, the first approach has better computational complexity. Thus, the algorithm proposed

in [61] was a clear choice.

• At the kth- iteration in Step 2 of the algorithm, we worked with the modelling language

CVXPY 1.0 [1, 40] for the solution of the problem OP(ϕxk , Pk × Rn), that is,

min
(a,u)∈Pk×Rn

ϕxk(a, u).

Since the variable a is constrained to be in the discrete set Pk, we proceeded as follows:

using the solver ECOS [42] within CVXPY, we compute for every a ∈ Pk the unique

solution ua of the strongly convex problem OP(ϕxk(a, ·),Rn), that is,

min
u∈Rn

ϕxk(a, u).

Then, we set

(ak, uk) = argmin
a∈Pk

ϕxk(a, ua).

• For each test instance considered in the experimental part, we generated initial points

randomly on a specific set and run the algorithm. We define as solved those experiments

in which the algorithm stopped because ‖uk‖ < 0.0001, and declared that a strongly �(l)
K -

stationary point was found. For a given experiment, its final error is the value of ‖uk‖ at

the last iteration. The following variables are collected for each test instance:

– Solved: this value indicates the number of initial points for which the problem was

solved.

– Iterations: this is a 3-tuple (min, mean, max) that indicates the minimum, the

mean, and the maximum of the number of iterations in those instances reported as

solved.

– Mean CPU Time: Mean of the CPU time(in seconds) among the solved cases.

Furthermore, for clarity, all the numerical values will be displayed for up to four decimal

places.

Now, we proceed to the different instances on which our algorithm was tested. Our first test

instance can be seen as a continuous version of an example in [65].

Test Instance 5.4.1. We consider F : R⇒ R2 defined as

F (x) := {f1(x), . . . , f5(x)}
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where, for i = 1, . . . , 5, fi : R→ R2 is given as

fi(x) :=

(
x

x
2 sin(x)

)
+ sin2(x)

[
(i− 1)

4

(
1

−1

)
+

(
1− (i− 1)

4

)(−1

1

)]
.

The objective values in this case are discretized segments moving around a curve and being

contracted (dilated) by a factor dependent on the argument. We generated 100 initial points x0

randomly on the interval [−5π, 5π] and run our algorithm. Some of the metrics are collected in

Table 5.1. As we can see, in this case all the runs terminated finding a strongly �(l)
K - stationary

point. Moreover, we observed that for this problem not too many iterations were needed.

Test Instance 5.4.1

Solved Iterations Mean CPU Time

100 (0, 13.97, 71) 0.1872

Table 5.1: Performance of Algorithm 1 in Test Instance 5.4.1

In Figure 5.1, the sequence {F (xk)}k∈{0,...,7} generated by Algorithm 1 for a selected starting

point is shown. In this case, strong stationarity was declared after 7 iterations. The traces of the

curves fi for i ∈ {1, . . . , 5} are displayed, with arrows indicating their direction of movement.

Moreover, the sets F (x0) and F (x7) are represented by black and red points respectively, and

the elements of the sets F (xk) with k ∈ {1, . . . , 6} are in gray color. The improvements of the

objective values after every iteration are clearly observed.

12 11 10 9 8 7
y1

6

4

2

0

2

4

y 2

Figure 5.1: Sequence generated in the image space by Algorithm 1 for a selected starting point

in Test Instance 5.4.1

Test Instance 5.4.2. In this example, we start by taking a uniform partition U1 of 10 points

of the interval [−1, 1] that is,

U1 = {−1,−0.7778,−0.5556,−0.3333,−0.1111, 0.1111, 0.3333, 0.5556, 0.7778, 1}.
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Then, the set U := U1 × U1 is a mesh of 100 points of the square [−1, 1] × [−1, 1]. Let

{u1, . . . , u100} be an enumeration of U and consider the points

l1 :=

(
0

0

)
, l2 :=

(
8

0

)
, l3 :=

(
0

8

)
.

We define, for i ∈ {1, . . . , 100}, the functional fi : R2 → R3 as

fi(x) :=
1

2


‖x− l1 − ui‖2

‖x− l2 − ui‖2

‖x− l3 − ui‖2

 .

Finally, the set-valued mapping F : R2 ⇒ R3 is defined by

F (x) := {f1(x), . . . , f100(x)} .

Note that problem SOP(F,K,Rn) corresponds in this case to the robust counterpart of

a vector location problem under uncertainty, where U represents the uncertainty set on the

location facilities l1, l2, l3. Furthermore, with the aid of Theorem 5.2.5, it is possible to show

that a point x̄ is a local �(l)
K - weakly minimal solution if and only if

x̄ ∈ conv {lj + ui | (i, j) ∈ I(x̄)× {1, 2, 3}} .

Thus, in particular, the local �(l)
K - weakly minimal solutions lie on the set

C := conv ((l1 + U) ∪ (l2 + U) ∪ (l3 + U)) . (5.58)

In this test instance, 100 initial points x0 were generated in the square [−50, 50]× [−50, 50],

and Algorithm 1 was ran in each case. A summary of the results are presented in Table 5.2.

Again, for any initial point the sequence generated by the algorithm stopped with a local solution

to our problem. Perhaps the most noticeable parameter recorded in this case is the number of

iterations required to declare the solution. Indeed, in most cases, only 1 iteration was enough,

even when the starting point was far away from the locations l1, l2, l3.

Test Instance 5.4.2

Solved Iterations Mean CPU Time

100 (0,1.32,2) 0.0637

Table 5.2: Performance of Algorithm 1 in Test Instance 5.4.2

In Figure 5.2, the set of solutions found in this experiment are shown in red. The locations

l1, l2, l3 are represented by black points and the elements of the set (l1 + U)∪ (l2 + U)∪ (l3 + U)

are colored in gray. We can observe, as expected, that all the local solutions found are contained

in the set C given in (5.58).

Our next example was studied in [107].
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Figure 5.2: Solutions found (in red) in the argument space for Test Instance 5.4.2

Test Instance 5.4.3. For i ∈ {1, . . . , 14}, we consider the functional fi : R2 → R2 defined as

fi(x) :=

(
x2

1 + x2
2

2(x1 + x2)

)
+

1

4

cos
(

2π(i−1)
14

)
sin
(

2π(i−1)
14

) .

Hence, F : R2 ⇒ R2 is given by

F (x) := {f1(x), . . . , f14(x)}.

In this case, the images of the set-valued mapping are discretized circumferences of radius 1
4

centered at a point depending on the argument. Moreover, we can apply Theorem 5.2.5 to show

that the set of local �(l)
K - weakly minimal solutions is given by

D := {x ∈ R2 | x1 = x2, x2 ≤ 0}. (5.59)

We generated randomly 100 initial points in the square [−10, 10] × [−10, 10] and ran Al-

gorithm 1. A summary of the results is collected in Table 5.3, and the solutions found in the

argument space are illustrated in Figure 5.3. Again, as expected, in Figure 5.3 every point

belongs to the set D defined in (5.59).

Test Instance 5.4.3

Solved Iterations Mean CPU Time

100 (1, 35.6,89) 0.4807

Table 5.3: Performance of Algorithm 1 in Test Instance 5.4.3.

In Figure 5.4, the sequence {F (xk)}k∈{0,...,20} generated by Algorithm 1 for a selected starting

point in this test instance is presented. In this case, a solution was found after 20 iterations. The
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Figure 5.3: Solutions found in the argument space for Test Instance 5.4.3

sets F (x0) and F (x20) are represented by black and red points respectively, and the elements of

the sets F (xk) with k ∈ {1, . . . , 19} are colored in gray. As in Test Instance 5.4.1, the decrease

of the images at every iteration is observed.

Our last test example comes from [94].

Test Instance 5.4.4. For i ∈ {1, . . . , 100}, we consider the functional fi : R2 → R2 defined as

fi(x) :=

ex1
2 cos(x2) + x1 cos(x2) cos3

(
2π(i−1)

100

)
− x2 sin(x2) sin3

(
2π(i−1)

100

)
e
x2
20 sin(x1) + x1 sin(x2) cos3

(
2π(i−1)

100

)
+ x2 cos(x2) sin3

(
2π(i−1)

100

) .

Hence, F : R2 ⇒ R2 is given by

F (x) := {f1(x), . . . , f100(x)}.

The images of the set-valued mapping in this example are discretized, shifted, rotated, and

deformated rhombuses, see Figure 5.5. We generated randomly 100 initial points in the square

[−10π, 10π]× [−10π, 10π] and ran our algorithm. A summary of the results is collected in Table

5.4. In this case, only for 88 initial points a solution was found. In the rest of the occasions, the

algorithm stopped because the maximum number of iterations was reached. Further examination

in these unsolved cases revealed that, except for two of the initial points, the final error was of

the order of 10−1 (even 10−3 and 10−4 in half of the cases). Thus, perhaps only a few more

iterations were needed in order to declare strong stationarity.

Figure 5.5 illustrates the sequence {F (xk)}k∈{0,...,18} generated by Algorithm 1 for a selected

starting point. Strong stationarity was declared after 18 iterations in this experiment. The sets

F (x0) and F (x18) are represented by black and red points respectively, and the elements of the

sets F (xk) with k ∈ {1, . . . , 17} are in gray color. Similarly to the other test instances, we can

observe that at every iteration the images decrease with respect to the preorder �(l)
K .
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Figure 5.4: Sequence generated in the image space by Algorithm 1 for a selected starting point

in Test Instance 5.4.3

Test Instance 5.4.4

Solved Iterations Mean CPU Time

88 (0, 11.9091 , 110) 0.8492

Table 5.4: Performance of Algorithm 1 in Test Instance 5.4.4.
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Figure 5.5: Sequence generated in the image space by Algorithm 1 for a selected starting point

in Test Instance 5.4.4.



Chapter 6

Conclusions and Outlook

In this dissertation, we considered set optimization problems with respect to the set approach

and their interplay with suitable scalarized problems. A summary of our contributions is the

following:

• We derived an exact formula for the subdifferential of Hiriart-Urruty functionals, see

Lemma 3.2.6. To the best of our knowledge, this representation is new in the infinite

dimensional context. Other representations and approximations have been given in the

literature, for example in [67, Proposition 21.11], [81, Proposition 5] and [82, Theorem 3].

• We provided several relationships in the sense of inclusion between three mayor classes

of scalarizing functionals known today, namely that of Gerstewitz-Weidner (SGW ), that

of Hiriart-Urruty (SHU ) and that of Drummond-Svaiter (SDS). Our results show that,

under natural assumptions, SGW ⊆ SHU ⊆ SDS , see Theorem 3.2.7 and Theorem 3.2.2.

Furthermore, we have shown that SDS is exactly the set of sublinear scalarizing functionals

that satisfy the required axioms to be useful in vector optimization: monotonicity and order

representability.

• We introduced a new class of scalarizing functionals that are not necessarily sublinear, but

can be represented as the difference of support functionals, see Definition 3.3.6. Thus, the

elements in this class are in particular quasidifferentiable and positively homogeneous. To

achieve this, we found geometrical conditions on the quasidifferential of the functionals in

order to guarantee the fulfillment of the monotonicity and order representability axioms.

Furthermore, we proved that this class is strictly larger than SDS if the dual cone has

nonempty interior, see Theorem 3.3.9.

• We derived different properties of two types of functionals that are associated to the

preoders �(l)
K and �(u)

K , respectively. Roughly speaking, these functionals can be seen

as the composition of two well known scalarizing functionals in set optimization with a

set-valued mapping. Specifically, it was shown that they inherit the convexity and the

128
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Lipschitz property from the set-valued mapping, see Theorem 4.2.5 and Theorem 4.2.7.

Furthermore, upper estimates of the limiting subdifferential of the functionals were also

studied in Theorem 4.4.3 and Theorem 4.3.8.

• We obtained, using generalized differentiation objects in the dual space, new optimality

conditions for set optimization problems with respect to the preorders �(l)
K and �(u)

K , see

Theorem 4.5.3 and Theorem 4.5.4. Perhaps the most attractive feature of these new

necessary conditions is that classical assumptions such as convexity, compactness of the

images of the set-valued objective mapping, and the existence of a strongly minimal ele-

ment in the optimal set, are not required. The necessity of these assumptions are some of

the drawbacks of the other approaches in the literature [2, 3, 11, 38, 69, 70, 91, 93, 109,

113, 137, 140, 142].

• The optimality conditions obtained for weakly �(l)
K - minimal solutions of set optimization

problems were also shown to be sufficient in the case on which both, the epigraphical

multifunction of the set-valued objective mapping and the feasible set, are convex, see

Theorem 4.5.3 (i). Moreover, we also examined the particular case on which the graph of

the set-valued objective mapping was represented by finitely many inequality constraints

involving convex and continuously differentiable functionals. There, under the MFCQ,

we derived Karush-Kuhn-Tucker type necessary and sufficient optimality conditions, see

Theorem 4.6.1. Compared to the previous result in the literature [93], our optimality

condition seems to be more tractable from a computational point of view because we also

obtain the multipliers in the dual space.

• We studied a first order method for finding �(l)
K - weakly minimal solutions of set opti-

mization problems in which the images of the set-valued objective mapping have finite

cardinality, see Algorithm 1. Solving a problem with this type of set-valued objective

mapping is equivalent to find optimistic solutions to a vector optimization problem under

uncertainty (see Remark 2.4.17) with a finite uncertainty set. The main convergence result

stated that, under mild assumptions, the accumulation points of the sequence generated

by the proposed descent method satisfies some type of first order necessary conditions, see

Theorem 5.3.10. For set optimization problems, the proposed algorithm seems to be the

first in the literature with this desirable property.

On the other hand, our results also open several ideas for further research. Some of these

are the following:

• Derive optimality conditions for set optimization problems with respect to other set rela-

tions. Indeed, we believe that the methodology employed in Chapter 4 could be extended

to deal with other more complex set relations like those described in [95, 100, 117, 119].



• Relax the Lipschitz assumption on the set-valued objective mapping for the optimality

conditions. In this case, perhaps a replacement by some type of lower semicontinuity

property could be examined.

• Apply the obtained optimality conditions to set optimization problems were the set-valued

objective mapping has a particular structure. In this direction, we have already studied

the case in which the set-valued mappings is given by convex functional constraints in

Theorem 4.6.1. We believe that this result could be extended to deal with nonconvex

descriptions. Another possibility would be to study problems of the form (2.24) that arise

in vector optimization under uncertainty.

• Extend the algorithmic strategy from Chapter 5 to other set relations. Of particular

interest in this case would be the preorder �(u)
K , since it is the one that models pessimistic

solutions in vector optimization under uncertainty. A second step in this direction could be

to integrate the developed methods with a cutting plane strategy like the one described in

[134]. This would allow us to obtain a family of algorithms for general vector optimization

problems under uncertainty.
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[63] C. Gutiérrez, B. Jiménez, E. Miglierina, and E. Molho. Scalarization in set optimization

with solid and nonsolid ordering cones. J. Global Optim., 61(3):525–552, 2015.

[64] C. Gutiérrez, E. Miglierina, E. Molho, and V. Novo. Pointwise well-posedness in set

optimization with cone proper sets. Nonlinear Anal., 75(4):1822–1833, 2012.
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[77] E. Hernández and L. Rodŕıguez-Maŕın. Duality in set optimization with set-valued maps.

Pac. J. Optim., 3(2):245–255, 2007.
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[109] E. Köbis, M. A. Köbis, and J.-C. Yao. Optimality conditions for set-valued optimization

problems based on set approach and applications in uncertain optimization. J. Nonlinear

Convex Anal., 18(6):1001–1014, 2017.
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Kōkyūroku, (1031):85–90, 1998. Research on nonlinear analysis and convex analysis

(Japanese) (Kyoto, 1997).

[118] D. Kuroiwa. Some duality theorems of set-valued optimization with natural criteria. In

Nonlinear analysis and convex analysis (Niigata, 1998), pages 221–228. World Sci. Publ.,

River Edge, NJ, 1999.

[119] D. Kuroiwa. On set-valued optimization. In Proceedings of the Third World Congress of

Nonlinear Analysts, Part 2 (Catania, 2000), volume 47, pages 1395–1400, 2001.

[120] D. Kuroiwa. Existence theorems of set optimization with set-valued maps. J. Inf. Optim.

Sci., 24(1):73–84, 2003.

[121] D. Kuroiwa. On derivatives of set-valued maps and optimality conditions for set optimiza-

tion. J. Nonlinear Convex Anal., 10(1):41–50, 2009.

[122] D. Kuroiwa, T. Tanaka, and T.X.D. Ha. On cone convexity of set-valued maps. Nonlinear

Anal., 30(3):1487–1496, 1997.

[123] I. Kuwano, T. Tanaka, and S. Yamada. Inherited properties of nonlinear scalarizing func-

tions for set-valued maps. In Nonlinear analysis and convex analysis, pages 161–177.

Yokohama Publ., Yokohama, 2010.

[124] G. H. Li, S. J. Li, and M. X. You. Relationships between the oriented distance functional

and a nonlinear separation functional. J. Math. Anal. Appl., 466(1):1109–1117, 2018.

[125] X.-J. Long and J. W. Peng. Generalized B-well-posedness for set optimization problems.

J. Optim. Theory Appl., 157(3):612–623, 2013.



BIBLIOGRAPHY 140

[126] X.-J. Long, J.-W. Peng, and Z.-Y. Peng. Scalarization and pointwise well-posedness for

set optimization problems. J. Global Optim., 62(4):763–773, 2015.

[127] T. Maeda. On optimization problems with set-valued objective maps: existence and

optimality. J. Optim. Theory Appl., 153(2):263–279, 2012.
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