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General Introduction 

In view of the growing world population predicted to reach over 9 billion by 2050, producing 

sufficient food to meet the demand of the rising population is an unprecedented challenge (Goddard, 

2009; Godfray et al., 2010; Ray et al., 2013). In addition, the climate change and decreasing 

resources, such as water and agricultural land, will potentially restrict crop production. To 

overcome these challenges, scientists and breeders are developing and implementing tools to breed 

varieties of crops that provide higher productivity and better adaptability under environmental 

stress including drought, high temperature, poor soil, diseases and destructive pest (Barbier and 

Hochard, 2018; Gu et al., 2018; Lesk et al., 2016).  

Plant breeding, an economical and environmentally friendly method, has been performed for 

thousands of years to improve plant‐derived products used for human nutrition or feeding of 

domesticated animals (Hartung and Schiemann, 2014). The traditional plant breeding approaches 

mainly rely on crossing of crop plants and selecting improved cultivars, which is time-consuming 

and labor-intensive. Modern breeding methodologies with precise selection and reduced breeding 

time are considered as efficient approaches to achieve genetic improvement of target traits, such as 

genomic-aided breeding that will dramatically reduce the time required to identify cultivars, which 

express the desired trait in a breeding program (Voss-Fels et al., 2019; Wang et al., 2018). Although 

the production of grain have been boosted in some cropping systems, for instance yields have been 

increased over sevenfold in maize, the challenge of plant breeding remains regarding not only yield 

but also quality and tolerance to environmental stress owing to climate change (Breseghello and 

Coelho, 2013; Wang et al., 2020). Environmental stress will directly affect the growth of plants 

and finally result in the reduction of grain yield. Taking the influence of pathogens and pests for 

example, yield loss was estimated at a global level and per hotspot for maize (22.5%; 19.5–41.1%), 

rice (30.0%; 24.6–40.9%), wheat (21.5%; 10.1–28.1%), potato (17.2%; 8.1–21.0%) and soybean 

(21.4%; 11.0–32.4%) (Savary et al., 2019). In addition, despite the important discoveries reported 

by many studies, for most traits the predicted proportion of phenotypic variance explained by 

genetic scores remains considerably lower than the trait heritability (Kim et al., 2017). In terms of 

this, a deep understanding of the genetic architecture of important traits would provide knowledge 

to guide future genetic improvement and close the missing heritability gap. 
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Approaches and mapping populations for dissecting the genetic architecture of traits 

Linkage mapping and association mapping have been widely applied to dissect the genetic 

architecture of complex traits in plants (Wurschum, 2012). Linkage mapping is a conventional 

mapping method to identify genomic regions co-segregating with a given trait using biparental 

populations. In contrast, association mapping, also known as linkage disequilibrium mapping, takes 

the advantage of historic linkage disequilibrium to associate phenotypes to genotypes utilizing a 

more diverse population. Both of the two approaches aim to identify quantitative trait locus (QTL) 

or markers closely linked to QTLs. The key difference between linkage and association mapping 

resides in whether recombination events occur in biparental populations or not. Thus, the strengths 

and weaknesses of different mapping approaches are linked with the structure of mapping 

population.  

In general, linkage mapping utilizes biparental mapping populations. The mapping population 

derived from biparental crosses, such as recombinant inbred line (RIL, Fig.1a), has limited genetic 

diversity as only two parental lines are used as the population founders (da Silva et al., 2018; 

Jamann et al., 2015; Semagn et al., 2010). Additionally, the limited recombination events in 

biparental populations result in low mapping resolution, allowing the localization of QTL to 10-20 

cM intervals. An interval of 10 cM in maize could contain 200 or more genes (Haberer et al., 2005; 

Xu et al., 2017).  

Multi-parental mapping populations, including nested association mapping (NAM) and multi-

parental advanced generation intercross (MAGIC) populations, were developed to overcome the 

limitation of biparental populations (Fig. 1b, 1c) (Huang et al., 2015; Meng et al., 2016; Yu et al., 

2008). As a combination of RIL populations sharing one common founder line, NAM populations 

provide high power and resolution for QTL detection, while MAGIC populations present high 

resolution and genetic diversity owing to the intercrosses of multiple inbred founders. However, 

the construction of a multi-parental population requires many years and excessive effort.  
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Fig. 1. Different mapping population. (a) recombinant inbred line (RIL), (b) nested association 

mapping (NAM), (c) multi-parental advanced generation intercross (MAGIC) and (d) diverse 

population. 

Natural populations or diverse populations facilitate to take the advantages of abundant historic 

recombination and are the most prevalently used populations for association mapping (Fig. 1d), 

which provide due to the broad genetic variation a high mapping resolution. In addition, there is 

no need of the laborious development of a mapping population, which will save time and energy. 

As the next generation sequencing techniques advance and sequencing costs are reduced, high-

density markers enable association mapping at the genome-wide level with very high resolution, 

even for direct identification of the underlying candidate genes (Juliana et al., 2018; Sapkota et al., 

2019). Therefore, genome-wide association mapping (GWAS) has become a powerful tool for 

unraveling the molecular genetic basis underlying the phenotypic variation in many crops. 
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Basic principle for conducting GWAS in plant populations 

In general, GWAS mainly consists of three steps (Fig. 2):  

 

Fig. 2. A flowchart of genome-wide association mapping. 

Firstly, a population with diverse genotypes is selected that can represent a range-wide collection 

of germplasms relative to a specific breeding. It can be a multi-parental population (NAM or 

MAGIC population) or diverse population as mentioned above. 

Secondly, genetic variants are collected and phenotyped for the traits of interest. Currently, single-

nucleotide polymorphisms (SNPs) are the most commonly used genetic variants and haplotypes 

are also used in association studies (this will be described in details later).  

Thirdly, statistical analysis is performed to identify genetic variants associated to phenotypic 

variation. The population structure is prone to result in spurious associations because some neutral 

markers are significantly correlated with trait difference among subpopulations (Xu et al., 2017). 

Thus, an appropriate statistical model is critical to control the effect of population structure 

especially when the samples have very diverse levels of familial relatedness and complex 

population structure. Currently, the mixed linear model (MLM) suggested by Yu and coauthors 
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(Yu et al., 2006) is considered as a state-of-the-art method to correct the population structure and 

family relatedness. MLM can be simply described as follows: 

𝑦 = 𝑋𝛽 + 𝑔 + 𝑒, 

where 𝑦 is the vector of observed phenotypic values; 𝛽 is the vector of fixed effects, such as the 

common intercept term, the tested marker effects and subpopulation effects, while 𝑋 stands for the 

design matrix relating 𝑦 to 𝛽; 𝑔 is a vector of genotypic effects or polygenic background effects, 

and 𝑒 indicates the residual term of the model. 𝑔 and 𝑒 are considered as random effects, with 

𝑔~𝑁(0, 𝜎𝑔
2𝐾)  and 𝑒~𝑁(0, 𝜎𝑒

2𝐼) , where 𝐾  is a marker-derived kinship matrix, 𝐼  is the identity 

matrix, 𝜎g
2 and 𝜎e

2 are the genetic variance and residual variance, respectively.  

Although not necessarily included in the standard GWAS procedure, validation is useful for 

preventing spurious associations so that the results can be generalized to other populations. 

However, biological or functional validations, which need to generate independent and appropriate 

population such as NIL populations, require substantial amount of time and are therefore often 

avoided (Navara and Smith, 2014). Validation using another independent diverse population may 

be an alternative choice to test whether the discoveries in one population are also effective in other 

independent populations and to decrease the false positive QTLs to some extent.   

Limitations of current GWAS approaches using single SNP 

The most commonly used genetic variants to test genotype-phenotype associations in GWAS are 

SNPs owing to the cost-effective genotyping with SNP arrays. Moreover, as the development in 

next generation sequencing techniques, the cost of whole genome sequencing (WGS) continues to 

decrease (Schneeberger, 2014). The utilization of high-density SNPs for GWAS could improve the 

mapping resolution, while it also results in a stringent level of significance accounting for multiple 

tests, which may cause false negatives (type II error). Besides, GWAS based on single markers 

often explain only a small proportion of the genetic variation: in general, single SNP variants 

contribute to less than 10% of the phenotypic variation for many complex traits (He et al., 2019b; 

Manolio et al., 2009). Additionally, only a modest proportion of the estimated heritability was 

explained by the SNP variants detected in GWAS for most complex traits (Manolio et al., 2009; 

Manolio, 2013). More importantly, complex traits are polygenic and frequently regulated by 
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epistatic interactions (Doust et al., 2014; Jiang et al., 2017). In particular, epistatic effects among 

markers within small genomic regions are termed as local epistasis. It has long-term impact in plant 

breeding due to reduced chance to disappear after generations of recombination (Akdemir and 

Jannink, 2015; He et al., 2017), while it cannot be detected by the separate evaluation of each single 

SNP in GWAS. Thus, a more efficient method is required. 

Advantages of GWAS using haplotypes  

Haplotypes, a cluster or block of multiple SNPs, have been proposed to be applied in GWAS. 

Empirical studies have shown that haplotype-based GWAS were able to detect loci which failed to 

be identified in single SNP-based GWAS (Pryce et al., 2010; Tregouet et al., 2009). Furthermore, 

haplotype-based GWAS can dramatically reduce the number of tests because most haplotypes fall 

into a few classes within the regions of little evidence of recombination (Fig. 3) (Zhao et al., 2007). 

Importantly, haplotype can capture local epistatic effects between the SNPs, which could increase 

power and accuracy in dissecting complex traits (Bardel et al., 2005; Jiang et al., 2018). Many other 

literatures have revealed the advantages of using haplotypes for GWAS in human or animals. For 

instance, haplotypes provide more polymorphism information content compare to bi-allelic SNPs 

(N'Diaye et al., 2017); offer more information to estimate whether two alleles are identical by 

descent (Meuwissen and Goddard, 2000); clades of haplotype alleles capture information from 

evolutionary history (Templeton et al., 1987) and provide more power than single marker when an 

allelic series exists (Morris and Kaplan, 2002). These points together suggest that haplotypes 

provide potential prospect for the development of GWAS. 
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Fig. 3. A simple example to show how the use of haplotypes decreases the number of multiple tests 

compared to SNPs. 

Approaches for constructing haplotypes 

Several different approaches have been developed to define or construct haplotype blocks. The 

most widely used haplotypes for GWAS can be summarized as two types: haplotype based on 

sliding window or linkage disequilibrium (LD). 

Haplotype based on sliding window  

The simplest way to define haplotype blocks is the sliding window approach. Generally, the 

haplotype blocks are constructed by combining adjacent SNPs within a specific window size and 

the window moves with a certain step that could be smaller or equal to the window size (Huang et 

al., 2007; Lorenz et al., 2010). The study in barley is an example for the use of overlapping sliding 

windows with a fixed window size of three SNPs (Lorenz et al., 2010), while other studies attempt 

different window size ranging from 2 to 10 SNPs (Mathias et al., 2006; Pan et al., 2015). The size-

fixed sliding window is easy to be conducted, however, it does not consider the various degrees of 

LD along the chromosome. Thus, variable-size sliding window approaches are proposed to cope 

with this problem. Model selection or exhaustive searching approaches have been applied to 
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estimate the optimum window size at each locus (Li et al., 2007; Lin et al., 2004). A previous study 

has revealed that variable-size sliding windows can increase the power for the detection of disease 

variants compared to fixed-size sliding windows and single SNP, but with the cost of increased 

number of multiple tests and computation (Guo et al., 2009). 

Haplotype defined based on linkage disequilibrium 

Alternatively, haplotype can be constructed based on LD that is the nonrandom association of 

alleles at different sites, and related to the time of the mutation events and genetic distance. Several 

studies have found links between the LD pattern and haplotype blocks (Daly et al., 2001; Wall and 

Pritchard, 2003). Therefore, LD quickly becomes one of the most common approaches to define 

haplotype blocks. In total, three kind of LD-based approaches have been recommended. The first 

one is directly based on the measure of LD. The haplotype blocks are defined by grouping closely-

linked SNPs that required at least a certain proportion of pairwise LD of those SNP passed a user-

determined threshold (Gabriel et al., 2002). The second type is based on haplotype diversity. That 

is, at least a certain percentage of observed haplotypes must be common haplotypes, which means 

the frequency of haplotypes must be above a certain threshold. Meanwhile, the number of SNPs 

that distinguish the haplotypes in each block is required to be minimal. Although definition of 

measures based on LD and diversity are distinct, the two approaches are highly correlated because 

regions of low haplotype diversity typically exhibit high LD and vice versa (Cardon and Abecasis, 

2003). In the third type of approach, the historical recombination events are considered in the 

construction of haplotype block. Precisely, SNPs are grouped into a block if there are no historical 

recombination events measured by the so-called four-gamete test (Wang et al., 2002). 

Further haplotype-based approaches used for GWAS 

The approaches mentioned above consider only consecutive SNPs, which are often in high LD, 

when constructing haplotype blocks. As a consequence, the haplotypes usually do not provide 

much more informative than a single SNP because the SNPs in high LD provide redundant 

information (Laramie et al., 2007). Another class of approaches that are not limited on adjacent 

SNPs select the most informative SNPs to generate haplotypes by using stepwise regression 

(Knuppel et al., 2012; Yang et al., 2008). Despite their potential, this class of approaches are 

restricted only to candidate gene regions instead of whole genome because of the high 
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computational burden. Currently, most studies developing the haplotype-based GWAS approaches 

are based on binary traits (case and control) in human diseases, while the situation is different for 

quantitative traits. Moreover, many studies developing the haplotype-based methods were based 

on simulations under specific assumptions or ideal situation. However, these cases may not hold in 

real-world studies owing to much more complex genetic background (Liu et al., 2008). 

Arabidopsis: a perfect model species for developing statistical methodology 

Arabidopsis (Arabidopsis thaliana) as a model species, is one of the first non-human organisms 

used for GWAS, which demonstrates the feasibility of GWAS in plants (Atwell et al., 2010). 

Besides, Arabidopsis is considered as the almost ideal organism to conduct GWAS because it 

maintains inbred lines via continued self-fertilization, thus it is possible to study different 

phenotypes using genetically identical individuals (Korte and Farlow, 2013b). Over the past years, 

substantial GWAS studies have been conducted in terms of hundreds of phenotypes including the 

landmark GWAS study of 107 phenotypes (Atwell et al., 2010) and numerous other traits (Chan et 

al., 2011; Chao et al., 2012; Filiault and Maloof, 2012; Francisco et al., 2016; Slovak et al., 2015). 

As the release of abundant high-quality genotypic and phenotypic data, including the 1001 

Genomes Project for Arabidopsis (1001 Genomes Consortium, 2016; Weigel and Mott, 2009) and 

the phenotypic database AraPheno (Seren et al., 2017), Arabidopsis has played a major role in 

developing appropriate statistical methodologies for GWAS (Korte et al., 2012; Sato et al., 2019; 

Segura et al., 2012; Song et al., 2018). The developed methodologies serve as a toolbox to unravel 

the genetic mechanism of important agronomical traits in various crop species. 

The world’s second cultivated cereal wheat and the important trait leaf rust 

Wheat (Triticum aestivum L.) is the world’s second most cultivated cereal after maize and provides 

one-fifth of the calorie intake of human population. However, conducting GWAS or genome 

analysis in wheat is challenging due to its huge hexaploid genome (17Gb, 2n=6x) that originates 

from three ancestral diploid genomes (A, B and D) (Sukumaran and Yu, 2014). Recently, the 

published, high-quality and well annotated wheat reference genome (IWGSC et al., 2018) 

facilitates the implementation and interpretation of GWAS in wheat. Subsequently, the genetic 

basis of yield-related traits was reported in several GWAS studies (Alqudah et al., 2020; Lujan 

Basile et al., 2019; Tsai et al., 2020). Besides, scientists and breeders also paid much attention to 
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the disease-related traits due to their severe negative influence on grain yield, such as the resistance 

of leaf rust, yellow rust, powdery mildew and fusarium head blight. Among them, leaf rust (caused 

by Puccinia triticina) is one of the most common and widespread wheat diseases, which can cause 

up to 40% loss of wheat yield mainly by reducing kernel weight and decreasing the number of 

kernels per spike (Khan et al., 2013). 

Many scientists and breeders have been studying the genetic architecture of leaf rust resistance in 

order to efficiently increase the resistance level of cultivars. For instance, about 90 resistance QTLs 

have been described in wheat (Kassa et al., 2017; Yang and Liu, 2004) and a few leaf rust resistance 

genes (Lr) have been cloned (listed in Table 1). Nevertheless, most of the identified leaf rust 

resistance QTLs are race-specific, which are only effective against particular pathogen isolates and 

thus prove to be ineffective after a few years of introduction because of the high mutation rate or 

virulence dynamics of pathogen populations (Lowe et al., 2011; McCallum et al., 2016). Moreover, 

most of previous QTL mapping studies rely on bi-parental populations, in which the low mapping 

resolution prevented researchers from precisely mapping candidate resistance genes (Xu et al., 

2017) as well as developing reliable functional markers for marker-assisted selection. 

Table 1. Cloned resistance genes of leaf rust. 

Genes Chromosome Pathogen1  Type  Reference  

Lr1 5DL Pt Race-specific (Cloutier et al., 2007) 

Lr10 1AS Pt Race-specific (Feuillet et al., 2003) 

Lr21 1DL Pt Race-specific (Huang et al., 2009) 

Lr22a 2DS Pt Race-specific (Thind et al., 2017) 

Lr34 7DS Pt, Pst, Pgt, Bgt Non-race-specific (Krattinger et al., 2011) 

Lr67 4DL Pt, Pst, Pgt, Bgt Non-race-specific (Moore et al., 2015) 

 1: leaf rust (Puccinia triticina; Pt), stripe rust (Puccinia striiformis f. sp. tritici; Pst), stem rust 

(Puccinia graminis f. sp. tritici; Pgt) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt)  

Although a few GWAS have been performed in wheat using single SNP-based method for deep 

genetic analysis of leaf rust resistance (Juliana et al., 2018; Sapkota et al., 2019), the haplotype-

based method has not been conducted yet. Moreover, haplotype-based approach can detect the local 

epistasis that may play a critical role on resistance of leaf rust but cannot be detected by single 

SNP-based GWAS. Thus, haplotype-based GWAS method should provide an insight into genetic 
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basis of resistance to leaf rust, which will benefit marker-assisted selection of leaf rust resistance 

and represent promising targets to clone novel resistance genes.  

Benefits of hybrid mapping population for GWAS in wheat 

In a number of crop species, notably rice and maize, hybrid cultivars present higher grain yield 

compared to their parents owing to heterosis. For wheat, the studies have shown that hybrids 

perform better in terms of economic yield and yield stability (Muhleisen et al., 2014; Whitford et 

al., 2013). However, the mechanisms involved in the hybrid performance cannot be completely 

revealed by the GWAS based on inbred populations. Thus, in addition to diverse inbred population, 

hybrid population as a new population type is suitable for GWAS in crops exhibiting hybrid vigor, 

allowing GWAS to detect not only additive effects but also dominance effects (Mirdita et al., 2015). 

Recently, numerous traits have been successfully studied using hybrids population in wheat, 

including male floral traits, anther extrusion and disease resistance (powdery mildew, leaf rust and 

stripe rust) (Boeven et al., 2016; Gowda et al., 2014; Muqaddasi et al., 2016). 

High marker density based on exome capture sequencing in wheat 

To achieve high mapping resolution in GWAS, it is necessary to genotype the mapping population 

with a high-density marker panel. Given the advances in the next generation sequencing techniques 

and the reduced sequencing costs, WGS has been suggested as a method to characterize the genetic 

variants of mapping populations (Davey et al., 2011). Nevertheless, the cost of WGS in wheat 

remains high due to the large genome and its allohexaploid nature, making it necessary to have 

enough coverage to distinguish homologs and homeologs (Appels et al., 2018). Exome capture 

sequencing is an alternate solution to dramatically reduce sequencing costs by focusing on gene 

coding regions (Mo et al., 2018). The potential of using exome capture sequencing has been 

demonstrated in a pioneering study in wheat where genes underlying wheat improvement and 

environmental adaptation could be identified (He et al., 2019a).  
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Objectives of this thesis 

Most GWAS studies almost invariably used single point analysis and haplotype approaches are 

neglected in plant analysis. However, various rationales for testing associations between 

phenotypes and haplotypes rather than single SNPs have been proposed. Thus, the main goal of the 

present PhD work was to develop a novel haplotype-based association mapping approach and to 

use experimental data sets in combination with state-of-the art approaches and study its potential 

and limits. This work covers the following specific objectives: 

1) To develop a new approach of haplotype-based GWAS by considering additive and local 

epistatic interaction effects (called functional haplotype-based GWAS, FH-based GWAS). 

To compare the potential of FH-based GWAS to traditional single SNP-based GWAS as 

well as two other haplotype-based GWAS (haplotype based on sliding window and LD) 

using the model species Arabidopsis and the complex trait of flowering time. In addition, 

simulation study was performed to gain insight under which circumstances the FH-based 

GWAS outperforms SNP-based GWAS (Liu et al., 2019).  

2) Because Arabidopsis is a model system with no economic value, the FH-based GWAS is 

prospected to be used in crops (wheat). SNP-based GWAS, as a standard method of GWAS, 

always play the role of benchmark for other methods. Thus, to understand the potential of 

FH-based GWAS in wheat, we firstly attempted to maximize the power of SNP-based 

GWAS with the important trait of leaf rust in HYWHEAT dataset by considering the 

influence of subpopulation structure (Liu et al., 2020a). 

3) The potential of FH-based GWAS was compared to SNP-based GWAS in the aspect of 

power and phenotypic variance explained by the significant associations, using the same 

data set of leaf rust in HYWHEAT population. The validation of traits-marker associations 

in an independent population to reduce false positive results and reveal stability of different 

approaches. In addition, to understand whether the haplotype-based approach would benefit 

in closing the missing heritability gap, the predictability was compared between associated 

haplotypes and SNPs (Liu et al., 2020b). 
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Selecting Closely-Linked SNPs Based on Local
Epistatic Effects for Haplotype Construction
Improves Power of Association Mapping
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ABSTRACT Genome-wide association studies (GWAS) have gained central importance for the identifica-
tion of candidate loci underlying complex traits. Single nucleotide polymorphism (SNP) markers are mostly
used as genetic variants for the analysis of genotype-phenotype associations in populations, but closely
linked SNPs that are grouped into haplotypes are also exploited. The benefit of haplotype-based GWAS
approaches vs. SNP-based approaches is still under debate because SNPs in high linkage disequilibrium
provide redundant information. To overcome some constraints of the commonly-used haplotype-based
GWAS in which only consecutive SNPs are considered for haplotype construction, we propose a new
method called functional haplotype-based GWAS (FH GWAS). FH GWAS is featured by combining SNPs
into haplotypes based on the additive and epistatic effects among SNPs. Such haplotypes were termed
functional haplotypes (FH). As shown by simulation studies, the FH GWAS approach clearly outperformed
the SNP-based approach unless the minor allele frequency of the SNPs making up the haplotypes is low and
the linkage disequilibrium between them is high. Applying FH GWAS for the trait flowering time in a large
Arabidopsis thaliana population with whole-genome sequencing data revealed its potential empirically.
FH GWAS identified all candidate regions which were detected in SNP-based and two other haplotype-based
GWAS approaches. In addition, a novel region on chromosome 4 was solely detected by FH GWAS. Thus
both the results of our simulation and empirical studies demonstrate that FH GWAS is a promising method
and superior to the SNP-based approach even if almost complete genotype information is available.

KEYWORDS

haplotype
epistasis
genome-wide
association
study

Genome-wide association studies (GWAS) have been widely applied to
identify candidate regions on chromosomes influencing complex traits
in plant (Brachi et al. 2011), animal (Goddard and Hayes 2009) and
human populations (McCarthy et al. 2008). The most commonly used

genetic variants to test genotype-phenotype associations in GWAS are
single nucleotide polymorphism (SNP) markers. Alternatively, SNPs
can be combined into haplotypes which has been popular in association
studies since the structure of human haplotype blocks was revealed
(Gabriel et al. 2002; Cardon and Abecasis 2003). Empirical studies
showed that haplotype-based GWAS was able to detect loci which
failed to be identified in single SNP-based GWAS (Trégouët et al.
2009; Pryce et al. 2010). Nonetheless, contrasting results comparing
the power of haplotype- and SNP-based GWAS were reported in
previous studies (Lorenz et al. 2010) and whether it is beneficial to
use haplotypes as variants in GWAS has to be evaluated on a case-
by-case basis (Long and Langley 1999).

Potential advantages for testing associations between phenotypes
and haplotypes, instead of SNP markers include: haplotypes may
exploit epistatic interactions among markers within the haplotype
blocks (Schaid 2004); contain more information on whether two
alleles are identical by decent (Meuwissen and Goddard 2000);
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utilize the information from evolutionary history (Durrant et al.
2004) and provide more power than single SNPs whenmultiple alleles
contribute to the trait (Morris and Kaplan 2002). There are, however,
also drawbacks when using haplotypes as variants in association
tests. Adding irrelevant markers to a possible causal genetic variant
will dilute the contrasts among haplotype allele classes (Clark 2004).
A haplotype consisting of k SNPs may have up to 2k different haplo-
type alleles, which will increase the degree of freedom and hence
reduce the power of test (Zhao et al. 2003).

Among factors affecting the power of haplotype-based GWAS
approaches, a fundamental one is how the haplotypes are constructed.
The widely used methods group SNPs by sliding-windows of fixed or
variable length (Lin et al. 2004; Huang et al. 2007), by the linkage
disequilibrium (LD) between adjacent SNPs (Barrett et al. 2005) or
by the diversity of haplotypes across samples (Zhang et al. 2002;
Anderson and Novembre 2003). Common to these methods is that
only consecutive SNPs, which are often in high LD, are combined into
haplotypes. Consequently, in many cases the haplotypes are not much
more informative than a single SNP because the SNPs in high LD
provide redundant information (Laramie et al. 2007). This may provide
one explanation for the contradicting results reported in the literature
comparing the power of haplotype- and SNP-based GWAS ap-
proaches. Other methods were developed to search for haplotypes
consisting of most informative and possibly non-consecutive SNPs
within a certain region (Laramie et al. 2007; Yu and Schaid 2007;
Abo et al. 2008; Yang et al. 2008; Dai et al. 2009; Knuppel et al.
2012). Despite their potential, the high computational burden associ-
ated with these methods restricted their use mainly to association stud-
ies for candidate gene regions.

In this study we addressed these limitations by developing a new
method of constructing haplotypes, taking epistatic effects among SNPs
intoaccount.Epistasis hasbeen identifiedas an important contributor to
the genetic variation of complex quantitative traits (Carlborg andHaley
2004; Mackay 2014). It has been reported for two- or three-locus ex-
amples that a model involving haplotype effects can be reparametrized
into one including the main and epistatic effects among markers con-
stituting the haplotypes (Conti and Gauderman 2004; Schaid 2004).
More recently this relationship between haplotype and marker effects
was formally proved in the framework of genome-wide prediction for
homozygous populations (Jiang et al. 2018). Capitalizing on these
theoretical findings, we exploited epistatic effects among markers
for constructing haplotypes and implemented this novel strategy in
haplotype-based GWAS for a large Arabidopsis thaliana population
generated by the 1001 Genomes Consortium (1001 Genomes Consor-
tium 2016). The results were compared to those obtained with two
commonly used haplotype-based GWAS methods as well as the single
SNP-based approach, and underlined the ability to detect hidden
marker-trait associations using the newly devised strategy. Moreover,
simulation studies revealed factors which determine whether the de-
veloped GWAS approach outperforms the single SNP-based method.

MATERIALS AND METHODS
Throughout the manuscript, a combination of (possibly non-consecu-
tive) SNPs was termed haplotype. By haplotype effect we meant to
consider the effects of all possible alleles together. When referring to a
specific allele, the term haplotype allele was used.

The baseline model for genome-wide
association mapping
A standard linear mixed model controlling the structure of genetic
relatedness or the polygenic background effects (Yu et al.2006)wasused

for genome-wide association mapping. In this study the model was
used for testing single SNP effects, epistatic effects among several SNPs
and haplotype effects. It can be uniformly described as following:

y ¼ 1nmþ Xbþ g þ e (1)

where y is a n-dimensional vector of observed phenotypic values (n is
the number of genotypes), 1n is a vector of one’s, m is a common
intercept term, b represents the effects of the variables (SNPs, inter-
actions among SNPs or haplotype alleles) being tested, X stands for
the corresponding design matrix, g is the n-dimensional vector of
genotypic effects and e is the residual term. In the model we assume
that m and b are fixed effects, g and e are random effects and
g � Nð0;s2

gKÞ, e � Nð0;s2
e IÞ, where K is a marker-derived kinship

matrix, I is the identity matrix, s2
g and s2

e are the corresponding
variance components. Distance matrix was calculated with Rogers’
distance (Reif et al. 2005) and K was equaling one minus distance
matrix. To reduce the computational load, an acceleration algorithm
was implemented in which the linear mixed model was transferred
to a simple linear model by applying eigen-decomposition to the
kinshipmatrix (Lippert et al. 2011). The significance ofbwas assessed
by t-test.

The general procedure of functional haplotype-based
GWAS (FH GWAS)
In genomic prediction, it was demonstrated that modeling haplotype
effects is equivalent to modeling main and epistatic effects among
markers within the haplotype block, except that the twomodels assume
different covariance structures for the unknown parameters (Jiang et al.
2018). The theory also applies toGWAS and in this case the twomodels
are strictly equivalent because the parameters to be tested are assumed
to be fixed effects (Equation 1) and hence without any covariance
structure. Based on this theory, we developed a new haplotype-based
GWAS approach, FH GWAS, with haplotypes based on the main and
epistatic effects among SNPs. FH GWAS consists of the following four
steps summarized in Figure 1.

Step 1: Preselecting SNPs to be combined into haplotypes: GWAS
for single SNPs is performed using the linearmixedmodel (Equation 1)
and a mild threshold without correction for multiple testing is applied
to identify candidate SNPs (e.g., P , 0.01). SNPs whose P values do
not pass the threshold are excluded in subsequent analyses.

Step 2: Constructing functional haplotypes: In this step, candidate
SNPs showing significant local epistatic effects are grouped into hap-
lotypes. First we need to determine two parameters: the window size for
searching haplotypes (denoted by w) and the number of SNPs in each
haplotype (denoted by l). Theoretically the choice of these two param-
eters can be arbitrary. But in practice one needs to consider the linkage
disequilibrium in the population, the computational load and the
power of the association test (More details were discussed in the Dis-
cussion section). Once the parameters are chosen, GWAS model
(Equation 1) is then performed for any l-tuple of SNPs within the
window size w, including the additive effects of each SNP and the
digenic epistatic effects for each pair of SNPs. That is, the entries in
the vector b include ai (1# i# l) and aaij (1# i, j# l), where ai
denotes the additive effect of the i-th SNP, aaij denotes the epistatic
effects between the i-th and the j-th SNP. In the case that l is small,
higher-order epistatic effects can also be included in the model. Next
we determine the number of significant additive and epistatic effects
(again under a mild threshold) required for grouping the l-tuple of
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SNPs into a haplotype, i.e., when there are at least s (s# l) significant
additive effects and t (t# lðl2 1Þ=2) significant epistatic effects, the
l-tuple of SNPs is combined into a haplotype. Since main as well as
epistatic effects are taken into account for haplotype construction we
coined the term functional haplotypes. Importantly, for each trait to be
analyzed in a given population, a different set of candidate SNPs and
functional haplotypes will be obtained.

Step 3: GWAS using functional haplotypes: All resulting functional
haplotypes are applied in conjunction with phenotypic data for GWAS
using the linear mixed model (Equation 1). Significant functional
haplotypes are then identified using a stringent genome-wide threshold

corrected for multiple testing, e.g., P , 0.05 after Bonferroni
(Dunn 1961) or Benjamini-Hochberg correction (Benjamini and
Hochberg 1995).

Step 4: Narrowing Down candidate regions: In each region in which
significant functional haplotypes are detected in Step 3, we fitted all
significant functional haplotypes in a variable-selection model (e.g., the
stepwise linear regression model (Draper and Smith 2014) or the least
absolute shrinkage and selection operator (LASSO, Tibshirani 1996) to
select representative significant functional haplotypes. In any region
where significant functional haplotypes are found, the span of all rep-
resentative haplotypes is considered as a final candidate region.

Figure 1 The workflow for FH
GWAS.
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Two other methods constructing haplotypes
To compare FH GWAS with existing haplotype-based GWAS ap-
proaches, we considered the following two commonly-used methods
of constructing haplotypes (Figure S1).

The overlapping sliding-window approach: The sliding window
approach constructs haplotypes with a fixed window length, i.e.,
the number of adjacent SNPs (Huang et al. 2007). If the window is
moved with a certain step size which is smaller than the window length
adjacent windows are overlapping. In this study we chose the window
length to be three, which is consistent with the length of our functional
haplotypes, and the step size to be one.

The linkage disequilibrium approach: The linkage disequilibrium
(LD) approach groups SNPs into a haplotype if the LD between every
two adjacent SNPs is equal or greater than a certain threshold, which
allows physically close and non-randomly associated SNPs to be
grouped together in the same haplotype (Barrett et al. 2005). In our
study, the r2 statistic was used tomeasure LD (Hill and Robertson 1968)
and the threshold was set to 0.9. Note, that in this method the con-
structed haplotypes may have different lengths. In all cases in which
SNPs were not grouped into any haplotype, the single SNPs were
considered as haplotypes of length one.

GWAS based on haplotypes constructed via the above two
methods are referred as SWH GWAS and LDH GWAS respectively.
The significance of haplotypes was also tested using the linear mixed
model (Equation 1).

Data sets
The study was based on published data of Arabidopsis thaliana from
the 1001 Genomes Consortium (1001 Genomes Consortium 2016).
The genotypic data contained 1,134 accessions with 11,458,975 single-
nucleotide polymorphisms (SNPs). The phenotypic data that were
considered was flowering time for plants grown at two different tem-
peratures (10� and 16�), which included phenotypic values for 1,163
and 1,123 accessions respectively. Combining the genotypic and phe-
notypic data, 1,003 (970) accessions were used in the 10� (16�) data
set. In the following the two data sets were referred as data set FT10
(10�) and FT16 (16�) respectively. Only bi-allelic SNPs were consid-
ered for the analyses. After removing the SNPs with missing rate
above or equaling 0.1, the remaining missing values were imputed
with IMPUTE2 (Howie et al. 2009; Howie et al. 2012). Linkage phases
were determined by SHAPEIT (Delaneau et al. 2011). SNPs
with minor allele frequency (MAF) below 0.05 were also removed.
For subsequent analyses the resulting 756,005 and 754,656 SNPs
were used for data set FT10 and FT16, respectively.

Comparing FH GWAS with other methods using
empirical data
Wecompared the performance of FHGWASwith that of SWHGWAS,
LDH GWAS and the single SNP-based approach with the Arabidopsis
thaliana data sets described in the previous section. The genome-wide
thresholds for the different approaches were generally determined as
P, 0.05 after Bonferroni correction for multiple testing (Dunn 1961).
Thus for the SNP, SWH and LDH GWAS approaches, the thresholds
were P , 0.05/m, where m is the number of SNPs or haplotypes
constructed in total. The proportion of phenotypic variance explained
by each of the significant SNPs or haplotypes was calculated as the
adjusted R2 in a linear regression model with intercept and the test-
ing variable. For regions in which significant associations were detected

in GWAS, annotated genes were retrieved from Araport11 (Cheng
et al. 2017).

Implementation of FH GWAS: In the procedure of preselecting SNPs,
we filtered the markers with the threshold P , 0.01. Then we set the
window size for searching haplotypes to be 50 kb and the number of
SNPs in each haplotype to be three. Thus the linear mixed model (1)
was performed for any triplet of candidate SNPs within 50 kb, testing
the additive effects of each SNP, the epistatic effects for each pair of
SNPs and the three-way epistatic effects. If at least two of the additive
effects were significant with P , 0.05 and at least two of the pairwise
epistatic effects were significant with P , 0.1, the triplet of SNPs
was grouped into a functional haplotype. In the test of all functional
haplotypes, we again applied the Bonferroni correction for multiple
testing. But the threshold for FH GWAS needed further adjustment
to account for the pre-testing procedure for single SNP effects and
epistatic effects. So a more stringent threshold was determined as
P , 0.05/(m+c), where m is the number of functional haplotypes
and c is the number of tests performed in the pre-testing procedure.
To select representative significant functional haplotypes, we used
the stepwise linear regression model (Draper and Smith 2014) and
applied a bidirectional elimination procedure minimizing the Schwarz
Bayesian Criterion (Schwarz 1978).

GWAS considering markers in perfect LD
SNPs in perfect LD (r2 ¼ 1) are virtually identical in GWASmodels in
the sense that they have the same estimated effects and P values. Thus
for each group of SNPs in perfect LD, we recorded their positions and
performed only one test in GWAS. This approach was termed SNPLD
GWAS. Let nLD be the number of SNPs adjusted for perfect LD, mean-
ing that SNPs in perfect LD were counted only once. Then the thresh-
old for SNPLD GWAS was P , 0.05/nLD.

For any two haplotypes consisting of three SNPs, they may share k
SNPs (k = 0, 1, 2). If the remaining 3-k pairs of SNPs are in perfect LD
respectively, the two haplotypes can be treated as identical in GWAS for
the same reason as above. Thus our FH GWAS approach can also be
adjusted by considering SNPs in perfect LD, which was termed FHLD

GWAS. Let mLD be the adjusted number of functional haplotypes
and cLD be the adjusted number of tests performed in the pre-testing
procedure. Then the new threshold for FHLDGWASwas determined as
P , 0.05/(mLD+cLD).

Decay of linkage disequilibrium
The genome-wide decay of LD in the population of data set FT10
was estimated by a non-linear regression model using Hill and Weir’s
function (Hill and Weir 1988). The same method was used to estimate
the decay of LD for the five candidate regions detected in GWAS.

Simulation study
Phenotypic data were simulated based on genotypic data of the 1,003
Arabidopsis thaliana accessions described previously (1001 Genomes
Consortium 2016). Considering computational load, the simulations
were restricted to all bi-allelic SNPs mapping to chromosome 2 regard-
less of MAF, in total 279,038 SNPs. In the simulation procedure three
SNPs were always selected within a 50 kb window and main and
epistatic effects were assigned to them. To clarify the influence of LD
andMAF on the performance of haplotype-based GWAS, three ranges
of LD (0-0.2, 0.3-0.6 and 0.7-1) between each pair of selected SNPs,
three ranges of MAF (0-0.1, 0.2-0.3 and 0.4-0.5) for the selected SNPs
and combinations thereof were considered. For each of the resulting

4118 | F. Liu et al.



nine simulation scenarios, the main effect of each SNP, the epi-
static effects between each pair of SNPs and the three-term inter-
action effect were set to account for 6%, 3% and 1% of the
explained proportion of genetic variance, respectively and the her-
itability was set to be 0.8. All remaining SNPs were required
to contribute equally to the remaining proportion of explained
genetic variance to simulate genetic background. Based on the
resulting simulated phenotypic data, association mapping was per-
formed (model 1) using the three SNPs of a particular haplotype
individually and the haplotype. For each scenario, simulations
were repeated 1,000 times.

Data availability
All data analyzed in this study have been published previously (1001
Genome Consortium 2016). Phenotypic data were downloaded
from AraPheno (https://arapheno.1001genomes.org/phenotypes/?
sort=study&page=1). Genomic data were downloaded from
the 1001 Genomes data center (http://1001genomes.org/data/
GMI-MPI/releases/v3.1/, the data ‘1001genomes_snp-short-indel_
only_ACGTN.vcf.gz’ was used in this study). FH GWAS was
implemented using R (R Core Team 2017). The source code and
sample data sets which are subsets of the original data set for
running the code can be found at https://github.com/Fangv1/
Functional_haplotype_GWAS/tree/master/. Supplemental files
are available at figshare. Supplemental material available at fig-
share: https://doi.org/10.25387/g3.8967986.

RESULTS

FH GWAS outperformed SNP-based and two other
haplotype-based GWAS approaches
In this study, data for flowering time inArabidopsis thaliana accessions
that had been cultivated at 10� and 16� were analyzed (1001 Genomes
Consortium 2016), these compilations are referred to as data sets FT10
and FT16, respectively. Data set FT10 encompassed 1,003 accessions
and after quality control 756,005 biallelic SNPs remained for subse-
quent analyses. To assess the performance of the proposed FH GWAS,
we compared its results to those of single SNP-based GWAS and two
other haplotype-based approaches in which haplotypes were either
constructed using sliding-windows (SWH GWAS) or by considering
LD of consecutive SNPs (LDH GWAS). The number of SNPs grouped
into haplotypes and number of haplotypes analyzed in GWAS varied
between the three approaches (Table S1). Applying Bonferroni correc-
tion formultiple testing (Dunn 1961) (P, 0.05) resulted in significance
thresholds of -log10P = 7.03, -log10P = 7.18 and -log10P = 6.50 for LDH,
SWH and FH GWAS, respectively. But for FH GWAS it was necessary
to apply a further correction to account for the pre-testing procedure
for single SNP effects and epistatic effects which preceded the construc-
tion of functional haplotypes (seeMaterials and Methods for details).
Implementing this correction resulted in a more stringent threshold
of -log10P = 8.29. Applying the different GWAS approaches, signif-
icant associations were found in five chromosome regions (Figure
2A-2D). Importantly, all regions that were identified by SNP-based,
LDH and/or SWH GWAS were also found by FH GWAS. Four
regions, I, III, IV and V, were identified by all methods, but region
II on chromosome 4 solely showed significant association with
flowering time using FH GWAS. For each of the significant func-
tional haplotypes detected in region II, an additional association
test was performed with only the main effects of the three SNPs
in the haplotype. We found that in all cases the –log(P) values de-
creased by three to five orders of magnitude. This clearly showed

the important contribution of epistatic effects to the overall effect of
a functional haplotype.

For each haplotype the P value of the SNP for which the lowest
P value had been observed in single SNP-based GWAS was compared
to the one of the corresponding haplotype. The proportion of
haplotypes showing significant associations that contained at least
one SNP, which had passed the significance threshold in SNP-based
GWAS, varied between the three different haplotype-based GWAS
approaches (Figure 2E-2G). The highest proportion was found
with 90.91% for LDH GWAS and the lowest one with 29.33% for
FH GWAS (Table 1).

Accounting for linkage disequilibrium in functional
haplotype-based GWAS
Strikingly, FHGWAS identified several thousand significant haplotypes
whereas SNP-based GWAS and the other two haplotype-based GWAS
approaches revealed few significant associations (Table 1, Figure 2).
Inspection of the significant functional haplotypes in a given chromo-
some region revealed many subsets sharing one or two SNPs. For
example, nine of the 15 significant haplotypes in region II had two
SNPs in common. Moreover, the SNPs distinguishing these nine sig-
nificant haplotypes were in high LD to each other (Figure S2). This
exemplifies that many different significant functional haplotypes may
result in cases in which significant haplotypes are made up of SNPs
which are in high LD with other SNPs in the region. Taking into
account which SNPs are in perfect LD to each other it is possible to
restrict the FH GWAS analysis to those haplotypes which provide non-
redundant information regarding additive and epistatic effects, called
FHLD GWAS hereafter. In data set FT10, the number of SNP combi-
nations to be tested could be reduced in this manner from 8,932,265 to
2,460,993. Instead of 157,526 functional haplotypes in FH GWAS only
44,759 resulted in FHLD GWAS. However, owing to a less stringent
threshold of -log10P = 7.79 for FHLDGWAS compared to -log10P = 8.29
for FH GWAS the number of significant associations increased
(Table S2). Regardless whether FH GWAS or FHLD GWAS were used
multiple significant haplotypes were found in regions I to V. In addi-
tion, a single haplotype passed the significance threshold in FHLD

GWAS on chromosome 3 (Table S2, Figure 2, Figure S3).

Representative significant haplotypes narrowed down
the candidate regions
Depending on the region, the mean size of the significant functional
haplotypes, defined as the distance in base pairs between the outermost
SNPsof aparticularhaplotype, varied from10.6 to41.3kb inFHGWAS.
Moreover, the size of chromosome segments in which overlapping
significant functional haplotypes were found differed, ranging from
54.3 to 167.2 kb (Table S3). The sizes of the significant functional
haplotypes in conjunction with their high number hampered the search
for candidate genes. Variable selection methods were therefore used to
reduce the number of significant functional haplotypes (see Materials
andMethods for details). For data set FT10, two to six and two to eight
representative haplotypes were selected per region in FH GWAS and
FHLD GWAS, respectively (Table S2). Taking into account the overlaps
between all representative significant functional haplotypes of a given
region and/or the area between them, small regions with few genes were
detected (Figure 3, Figure 4, Figure S4, Table S4). In all cases a candidate
gene was identified among these genes for which a role in flowering
time control had been documented previously. FT (Kardailsky et al.
1999; Corbesier et al. 2007) represents a candidate gene for region I
on chromosome 1 (Figure 3A). DOG1 (Huo et al. 2016) and FLC
(Michaels and Amasino 1999; Li et al. 2014) are part of regions III
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and IV on chromosome 5, respectively (Figure 4). In these three areas,
the significant SNPs that were significantly associated with the trait
flowering time were also located in the candidate gene itself or in its
immediate vicinity. It is important to note that the proportions of
phenotypic variance explained by the representative significant haplo-
types were in four out of five analyzed regions higher than those de-
termined for any of the SNPs in these chromosome segments (Figure 4,
Table S5). In region V on chromosome 5, the only SNP significantly
associated with the trait flowering time mapped approximately
60 kb apart from the region with the candidate gene VIN3 (Sung
and Amasino 2004) which was indicated by the representative sig-
nificant functional haplotypes in FHGWAS (Figure 3B). In region II
that had only been detected using FH GWAS and FHLD GWAS,

CCT/CRP/MED12 (Imura et al. 2012) was identified as candidate
gene (Figure S2, Figure S4).

FH GWAS for the trait flowering time at two different
growth temperatures
Association studies in which the trait flowering time had been com-
paratively analyzed for accessions cultivated at 10� and 16� had revealed
fewer significant SNP associations in the latter data set (1001 Genomes
Consortium 2016). It was therefore of interest to extend the perfor-
mance comparisons of SNP-based and FH GWAS to data set FT16, in
which phenotypic data for 970 accessions and 754,655 biallelic SNPs
that had passed quality control had been compiled. Two regions show-
ing significant associations were identified by SNP-basedGWAS as well

Figure 2 Association mapping
results using four different GWAS
approaches. (A-D) Manhattan
plots illustrate the results for a
single SNP-based (A) and three
haplotype-based GWAS ap-
proaches for data set FT10
(B-D). Positions of SNPs or haplo-
types on the five chromosomes
are shown on the x axis relative to
their -log10(P) values on the y axis.
Haplotypes were constructed
based on overlapping sliding-win-
dows (B), linkage disequilibrium
(C) or by using the functional hap-
lotype approach (D). Thresholds
after Bonferroni correction for
multiple testing (Dunn 1961)
(P , 0.05) are displayed as hori-
zontal dotted gray lines. Taking
into account the pre-testing pro-
cedure for single SNP main and
epistatic effects implemented in
the functional haplotype approach
a more stringent threshold resulted
that is indicated as a pale blue
dotted line in panels (D) and (G).
(E-G) Plots showing the -log10(P)
values of haplotypes on the y axis
relative to the -log10(P) values
established by SNP-based GWAS
for the most significant SNP of a
corresponding haplotype on the x
axis. The P value relationships for
SWH, LDH and FH based GWAS
are illustrated in panels (E), (F)
and (G), respectively. Thresholds
after Bonferroni correction for mul-
tiple testing (Dunn 1961) (P ,
0.05) are indicated as horizontal
dotted dark blue lines for haplo-
types and vertical dotted red lines
for single SNPs. The five regions in
which significant associations were
found were denoted with I to V
and are marked by stippled lines.
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as FH GWAS using data set FT16 (Figure S5), these corresponded
to regions III and IV that had also been found for plants cultivated at
10�. In contrast, region II on chromosome 4 was solely identified by FH
GWAS, regardless which of the two data sets was analyzed (Figure 2,
Figure S5). Significant associations in regions I and Vwere not found in
data set FT16. However, for FT16, FH GWAS detected in three addi-
tional regions located on chromosomes 1, 2 and 3 between one and
three significant haplotypes associated with the trait flowering time
(Figure S5).

The three regions, which were identified by FH GWAS in both data
sets, were analyzed in more detail. A comparison of the results revealed
that the chromosome segments in which the representative significant
functionalhaplotypeswere foundshowed largeoverlaps inbothdata sets
(TableS4) implying that the samethreecandidategenesunderlie the trait
flowering time in these regions (Figure S6). Interestingly, such congru-
ence was not observed if for example the candidate SNPs that were
considered for the constructionof functional haplotypeswere compared
in the two data sets. Although around 650 candidate SNPs were
identified in each of the two data sets, only 390 were in common.
Similar results were found by assessing the SNPs that were grouped into
haplotypes (Table S6). Although 67,865 and 57,479 functional haplo-
types had been considered in GWAS using the two data sets, only 3,606
were in commonbetween both data sets. A similar trendwas seen if only
those haplotypes were considered that had passed the GWAS signifi-
cance thresholds. None of the representative significant functional
haplotypes were identical in the two data sets (Table S6).

The influence of linkage disequilibrium and minor allele
frequencies on the power of functional haplotype-
based GWAS
Simulation studies were performed to gain insight under which cir-
cumstances FH GWAS outperforms SNP-based GWAS. Specifically, it
was analyzedhow theminor allele frequency (MAF)of theSNPsmaking
up a particular haplotype and the LD between them influenced the
results of FHGWAS, therefore threeMAFandLD ranges each aswell as
all of their combinations were considered (seeMaterials and Methods
for details). The P value distributions obtained for the haplotypes using
the nine different simulation scenarios are shown in Figure 5 side-by-
side with the results for the most significant SNPs of the different
haplotypes. Mean P values were inversely correlated with the MAF
range in FHGWAS and SNP-based GWAS, regardless which LD range
was analyzed. In scenarios in which the MAF range was kept constant,
inverse correlations were seen between the mean P values and the LD
range. Exceptionally, analysis of the highest MAF range revealed very
similar mean P values in case of FH GWAS for the three different LD

ranges. In four out of the nine scenarios tested, the mean P values
obtained for FH GWAS clearly outperformed those of SNP-based
GWAS, in each of these four scenariosmore than 96% of the haplotypes
revealed lower P values compared to the values that had been estab-
lished by SNP-based GWAS for the most significant SNPs of these
haplotypes (Table S7). This was not the case in the five scenarios in
which the lowest MAF range and/or the highest LD range were ana-
lyzed. The same trends were observed regarding the proportion of
phenotypic variance explained by the haplotypes and the most signif-
icant SNPs of the different haplotypes (Figure S7).

DISCUSSION
We devised a haplotype-based GWAS approach, FH GWAS, for
studying complex quantitative traits which capitalizes on a novel way
in which main and epistatic effects among markers are considered to
group SNPs into haplotypes. In FH GWAS we first select SNPs with a
mild threshold for main effects and then search for combinations of
consecutive and/or non-consecutive SNPs in a genomic region of de-
fined size requiring certain significance for epistatic effects. In this way,
only those SNPs having true contribution to the haplotype effects via
additive and/or epistatic effects are combined into functional
haplotypes. Thus, FH GWAS is able to overcome the constraints of
combining redundant SNPs in high LD into haplotypes andmeanwhile
it avoidsexhaustedsearchforoptimalcombinationsofSNPswhichis too
time-consuming. It is therefore expected to be more powerful than
SNP-based and other haplotype-based GWAS approaches, which was
confirmed by the empirical analyses for the trait flowering time in
Arabidopsis thaliana using the data from the 1001 Genomes Consor-
tium (1001 Genomes Consortium 2016). Our FH GWAS approach
detected not only all regions, which were detected in the SNP-based
and the other two haplotype-based approaches, but also a new candi-
date region on chromosome 4 for plants cultivated at 10� and 16�
(Figure 2, Figure S5). The FHGWAS approach can be generally applied
to any quantitative trait in any homozygous species for which popula-
tions with appropriate SNP coverage and of suitable size are available. If
multiple traits are studied, the functional haplotypes have to be con-
structed for each trait separately as the tests of marker main and epi-
static effects are trait-dependent. Thus, FH GWAS enhances the power
of GWAS in a way that is tailored for each trait, however, it has a higher
computational load than other haplotype-based GWAS approaches in
which solely consecutive SNPs are considered for haplotype
construction.

On the implementation of functional haplotype-
based GWAS
The first step of FH GWAS is a mild preselection of SNPs according to
their main effects in order to reduce the computational load for the
remaining steps. Thus, it is necessary for high density SNP data sets
generated for example by whole genome sequencing projects as used in
this study (1001 Genomes Consortium 2016). Theoretically, the signif-
icance of a haplotype effect can be solely a result of significant epistatic
effects, or cumulative (non-)significant main and epistatic effects
among the SNPs. The preselection of SNPs is therefore dispensable
and can be omitted if the computational load is acceptable.

In the second step of the procedure, the construction of functional
haplotypes, there are two important parameters to be determined,
namely the size of the window in which the functional haplotypes
are constructed and the number of SNPs to be grouped into haplotypes.
The window size is essentially determined by the extent of LD in the
population,however, genedensityshouldalsobeconsidered.Atoosmall
window size leads to high LD among markers within the window,

n■ Table 1 Summary of significant associations in different
genome-wide association studies obtained for the trait flowering
time for Arabidopsis thaliana accessions using data set FT10

SNP
GWAS

SWH
GWAS

LDH
GWAS FH GWAS

Number of significant
assocations

SNP Ha Hb Ha Hb Ha Hb

I (Chr1) 4 7 4 3 0 71 61
II (Chr4) 0 0 0 0 0 15 15
III (Chr5) 1 2 1 2 1 701 565
IV (Chr5) 5 6 1 5 0 19030 13900
V (Chr5) 1 5 2 1 0 4952 2963
Total 11 20 8 11 1 24769 17504

Ha refers to all significant haplotypes.
Hb represents significant haplotypes which did not contain any significant SNP.
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reducing the advantage of haplotypes according to the results of the
simulation study (Figure 5), whereas a too large window size may yield
functional haplotypes that span large regions on the chromosome in-
volvingmany candidate genes. For theArabidopsis thaliana population
considered in this study, the window size was set to be 50 kb, where the
LD (measured as r2) decayed to 0.03 (Figure S8A). On average 22 genes
mapped to intervals of this size in the Arabidopsis thaliana Col-0 ge-
nome (Arabidopsis Genome Initiative 2000). Interestingly, in the re-
gion with the steepest LD decay (Figure S8B), region I, median and

mean haplotype sizes were substantially smaller than in the other four
regions (Table S3).

The number of SNPs in each haplotype is directly relevant to the
power of association test, which decreases as the number of haplotype
alleles increases. Usually only a small number of SNPs can be afforded
unless the population size is very large, because the number of haplotype
alleles grows exponentially with an increasing number of SNPs consti-
tuting the haplotype. It is also limited by the computational load
because allowing more SNPs in a haplotype results in more possible

Figure 3 Details of significant as-
sociations for the trait flower-
ing time revealed by SNP-based
and functional haplotype-based
GWAS in two chromosome re-
gions. Panels (A) and (B) refer to
the analysis of data set FT10 for
regions I and V, respectively. SNP
positions on the different chromo-
somes are shown on the x axis
relative to the corresponding
-log10(P) values on the y axis.
The depicted regions reflect the
chromosome segments for which
overlapping functional haplotypes
had been obtained, but only
those functional haplotypes are
shown which passed the stringent
adjusted significance threshold of
-log10(P) = 8.29 as gray or pink
lines. Pink lines highlight repre-
sentative significant functional
haplotypes. The positions of the
first and third SNP of a particular
haplotype on the chromosome
mark the beginning and end of
the line, respectively. A colored
triangle indicates the SNP of a
haplotype for which the lowest P
value was observed by SNP-
based GWAS. P values ranging
from 1 · 1024 to 1 · 1022, 1 ·
1026 to 1 · 1024, 1 · 1028 to
1 · 1026 are represented as black,
orange and green triangles, re-
spectively. Blue triangles repre-
sent P values smaller than 1 ·
1028. The translucent pale blue
and red dots correspond to the
P values of SNPs obtained in sin-
gle SNP-based GWAS, red dots
represent those SNPs that were
part of significant functional hap-
lotypes. Below the x axis the cod-
ing regions of genes in the region
are shown as gray boxes, 59-
regions are indicated as red lines.
Two vertical pink dashed lines are
used to mark the position of the
coding region of the candidate
gene. The red and blue horizon-
tal stippled lines correspond to
the significance thresholds for
single SNP-based and FH GWAS,
respectively.
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combinations of SNPs to be tested. Thus in this study the number of
SNPs in each haplotype block was set to be three.

Functional haplotypes boosted power of GWAS by
exploiting statistical epistasis
The construction of functional haplotypes rests upon interaction effects
among markers, which was termed statistical epistasis in quantitative

genetics (Moore and Williams 2005). In general, the estimation of
statistical epistasis is not directly relevant to biological mechanisms of
gene interactions (Carlborg and Haley 2004), although some simula-
tion studies showed that various functional dependency patterns of
genes could result in significant statistical epistasis (Gjuvsland et al.
2007). As we observed many significant functional haplotypes consist-
ing of SNPs with non-significant main effects even in the region where

Figure 4 Proportions of explained
phenotypic variance for the trait
flowering time obtained by SNP-
based and functional haplotype
based GWAS in two different chro-
mosome regions. Details for re-
gions III and IV are illustrated for
data set FT10 in panels (A) and (B),
respectively. SNP positions on
chromosome 5 and percentages
of adjusted R2 values are shown
on the x and y axes, respectively.
Chromosome segments are illus-
trated for which overlapping
functional haplotypes had been
obtained, but only significant func-
tional haplotypes are displayed as
gray or pink lines. Representative
significant functional haplotypes
are indicated by pink lines. The be-
ginning and end of the individual
lines represent the chromosome
positions of the first and third SNP
of a particular haplotype, respec-
tively. The SNP for which the lowest
P value of a given significant func-
tional haplotype was obtained is in-
dicated as a colored triangle. Black,
orange and green triangles repre-
sent P values ranging from 1 · 1024

to 1 · 1022, 1 · 1026 to 1 · 1024,
1 · 1028 to 1 · 1026, respectively.
Blue triangles mark P values smaller
than 1 · 1028. Percentages of R2

determined for SNPs are displayed
as translucent pale blue or red dots,
those SNPs that were part of signif-
icant functional haplotypes are
depicted in red. The coding re-
gions of genes are shown as gray
boxes and red lines represent 59-
regions. The position of the coding
region of the candidate gene is
marked by two vertical pink dashed
lines.
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SNPs with strong main effect were detected (Figure 3B), a variable-
selection algorithm was applied to select representative haplotypes.
This step was of crucial importance to narrow down the regions,
which needed to be inspected for the presence of candidate genes.
In each candidate region, detailed analyses of the representative
haplotypes revealed several distinct two- or three-locus genotype-
phenotype patterns. Moreover, although three of the candidate
genes were identified in two different data sets, none of the repre-
sentative significant functional haplotypes were identical in these
two data sets (Table S5). These findings made it unlikely that the
statistical epistasis exploited by the significant haplotypes
reflected a biological mechanism of gene interactions but also
revealed that the cumulative statistical epistatic effects among
SNPs in haplotypes indeed enhanced the power of FH-GWAS.
Hence, the approach is useful for detecting new candidate re-
gions, which cannot be detected using SNP-based or other hap-
lotype-based GWAS approaches. Previously, haplotype-based
methods were used to boost power in GWAS mainly for incom-
plete genotype data (McCarthy et al. 2008), whereas our study
showed that FH GWAS is a promising method even if almost

complete genotype information is available such as whole-ge-
nome sequencing data.

Further development of functional haplotype-
based GWAS
In this study, FH GWAS was applied to an Arabidopsis thaliana pop-
ulation consisting of pure homozygous lines. Hence, the haplotype
phase was known and only the additive-by-additive epistasis was con-
sidered in the construction of functional haplotypes. A generalization of
the FH GWAS method for heterozygous populations is possible as
algorithms inferring haplotype phases (Browning and Browning
2011) can be applied if the haplotype phase is unknown. It may,
however, be necessary to consider other types of epistasis, additive-
by-dominance and dominance-by-dominance, when constructing
functional haplotypes. Note, that in these cases the relationship be-
tween haplotype effects andmarker epistatic effects was only illustrated
in two- or three-locus examples but not formally proved in general case
(Conti and Gauderman 2004; Schaid 2004; Jiang et al. 2018). Thus,
further theoretical and empirical studies are needed to develop an
optimal strategy of FH GWAS for heterozygous populations.

Figure 5 Comparison of P value distributions for FH GWAS and SNP-based GWAS obtained for nine different simulation scenarios. The
violin plots show the distributions of P values after 1,000 simulation runs. Plots are arranged in order of decreasing MAF and increasing
LD range. The y axis corresponds to the -log10(P values). ‘A’ represents the P values of haplotypes and ‘B’ the P values of the most
significant SNPs of the particular haplotypes. The black vertical line corresponds to the 95% confidence interval and the black vertical
box represents the interquartile range. The white and red dots mark the median and mean values, respectively. The latter values are
indicated in the plots.

4124 | F. Liu et al.



ACKNOWLEDGMENTS
Fang Liu was supported with funds from China Scholarship Council
(CSC). Yong Jiang was supported by the Federal Ministry of
Education and Research of Germany (Grant FKZ031B0184A).

LITERATURE CITED
Abo, R., S. Knight, J. Wong, A. Cox, and N. J. Camp, 2008 hapConstructor:

automatic construction and testing of haplotypes in a Monte Carlo
framework. Bioinformatics 24: 2105–2107. https://doi.org/10.1093/
bioinformatics/btn359

Anderson, E. C., and J. Novembre, 2003 Finding haplotype block bound-
aries by using the minimum-description-length principle. Am. J. Hum.
Genet. 73: 336–354. https://doi.org/10.1086/377106

Arabidopsis Genome Initiative, 2000 Analysis of the genome sequence of
the flowering plant Arabidopsis thaliana. Nature 408: 796–815. https://
doi.org/10.1038/35048692

Barrett, J. C., B. Fry, J. Maller, and M. J. Daly, 2005 Haploview: analysis and
visualization of LD and haplotype maps. Bioinformatics 21: 263–265.
https://doi.org/10.1093/bioinformatics/bth457

Benjamini, Y., and Y. Hochberg, 1995 Controlling the false discovery rate -
a practical and powerful approach to multiple testing. J. R. Stat. Soc.
Series B Stat. Methodol. 57: 289–300.

Brachi, B., G. P. Morris, and J. O. Borevitz, 2011 Genome-wide association
studies in plants: the missing heritability is in the field. Genome Biol.
12: 232. https://doi.org/10.1186/gb-2011-12-10-232

Browning, S. R., and B. L. Browning, 2011 Haplotype phasing: existing
methods and new developments. Nat. Rev. Genet. 12: 703–714. https://
doi.org/10.1038/nrg3054

Cardon, L. R., and G. R. Abecasis, 2003 Using haplotype blocks to map
human complex trait loci. Trends Genet. 19: 135–140. https://doi.org/
10.1016/S0168-9525(03)00022-2

Carlborg, O., and C. S. Haley, 2004 Epistasis: too often neglected in complex
trait studies? Nat. Rev. Genet. 5: 618–625. https://doi.org/10.1038/nrg1407

Cheng, C. Y., V. Krishnakumar, A. P. Chan, F. Thibaud-Nissen, S. Schobel
et al., 2017 Araport11: a complete reannotation of the Arabidopsis
thaliana reference genome. Plant J. 89: 789–804. https://doi.org/10.1111/
tpj.13415

Clark, A. G., 2004 The role of haplotypes in candidate gene studies. Genet.
Epidemiol. 27: 321–333. https://doi.org/10.1002/gepi.20025

Conti, D. V., and W. J. Gauderman, 2004 SNPs, haplotypes, and model
selection in a candidate gene region: The SIMPle analysis for multilocus
data. Genet. Epidemiol. 27: 429–441. https://doi.org/10.1002/gepi.20039

Corbesier, L., C. Vincent, S. H. Jang, F. Fornara, Q. Z. Fan et al., 2007 FT
protein movement contributes to long-distance signaling in floral in-
duction of Arabidopsis. Science 316: 1030–1033. https://doi.org/10.1126/
science.1141752

Dai, J. Y., M. Leblanc, N. L. Smith, B. Psaty, and C. Kooperberg,
2009 SHARE: an adaptive algorithm to select the most informative set
of SNPs for candidate genetic association. Biostatistics 10: 680–693.
https://doi.org/10.1093/biostatistics/kxp023

Delaneau, O., J. Marchini, and J. F. Zagury, 2011 A linear complexity
phasing method for thousands of genomes. Nat. Methods 9: 179–181.
https://doi.org/10.1038/nmeth.1785

Draper, N. R., and H. Smith, 2014 Applied regression analysis, John Wiley &
Sons, Hoboken, NJ.

Dunn, O. J., 1961 Multiple Comparisons among Means. J. Am. Stat. Assoc.
56: 52–64. https://doi.org/10.1080/01621459.1961.10482090

Durrant, C., K. T. Zondervan, L. R. Cardon, S. Hunt, P. Deloukas et al.,
2004 Linkage disequilibrium mapping via cladistic analysis of single-
nucleotide polymorphism haplotypes. Am. J. Hum. Genet. 75: 35–43.
https://doi.org/10.1086/422174

Gabriel, S. B., S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy et al.,
2002 The structure of haplotype blocks in the human genome. Science
296: 2225–2229. https://doi.org/10.1126/science.1069424

Gjuvsland, A. B., B. J. Hayes, S. W. Omholt, and O. Carlborg, 2007 Statistical
epistasis is a generic feature of gene regulatory networks. Genetics
175: 411–420. https://doi.org/10.1534/genetics.106.058859

Goddard, M. E., and B. J. Hayes, 2009 Mapping genes for complex traits in
domestic animals and their use in breeding programmes. Nat. Rev. Genet.
10: 381–391. https://doi.org/10.1038/nrg2575

Hill, W. G., and A. Robertson, 1968 Linkage disequilibrium in finite pop-
ulations. Theor. Appl. Genet. 38: 226–231. https://doi.org/10.1007/
BF01245622

Hill, W. G., and B. S. Weir, 1988 Variances and covariances of squared
linkage disequilibria in finite populations. Theor. Popul. Biol. 33: 54–78.
https://doi.org/10.1016/0040-5809(88)90004-4

Howie, B., C. Fuchsberger, M. Stephens, J. Marchini, and G. R. Abecasis,
2012 Fast and accurate genotype imputation in genome-wide associa-
tion studies through pre-phasing. Nat. Genet. 44: 955–959. https://
doi.org/10.1038/ng.2354

Howie, B. N., P. Donnelly, and J. Marchini, 2009 A flexible and accurate
genotype imputation method for the next generation of genome-wide
association studies. PLoS Genet. 5: e1000529. https://doi.org/10.1371/
journal.pgen.1000529

Huang, B. E., C. I. Amos, and D. Y. Lin, 2007 Detecting haplotype effects in
genomewide association studies. Genet. Epidemiol. 31: 803–812. https://
doi.org/10.1002/gepi.20242

Huo, H. Q., S. H. Wei, and K. J. Bradford, 2016 DELAY OF GERMINATION1
(DOG1) regulates both seed dormancy and flowering time through
microRNA pathways. Proc. Natl. Acad. Sci. USA 113: E2199–E2206.
https://doi.org/10.1073/pnas.1600558113

Imura, Y., Y. Kobayashi, S. Yamamoto, M. Furutani, M. Tasaka et al.,
2012 CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator
with multiple target steps in Arabidopsis. Plant Cell Physiol. 53: 287–303.
https://doi.org/10.1093/pcp/pcs002

Jiang, Y., R. H. Schmidt, and J. C. Reif, 2018 Haplotype-based genome-wide
prediction models exploit local epistatic interactions among markers. G3
(Bethesda) 8: 1687–1699. https://doi.org/10.1534/g3.117.300548

Kardailsky, I., V. K. Shukla, J. H. Ahn, N. Dagenais, S. K. Christensen et al.,
1999 Activation tagging of the floral inducer FT. Science 286:
1962–1965. https://doi.org/10.1126/science.286.5446.1962

Knuppel, S., J. Esparza-Gordillo, I. Marenholz, H. G. Holzhutter, A. Bauerfeind
et al., 2012 Multi-locus stepwise regression: a haplotype-based algorithm
for finding genetic associations applied to atopic dermatitis. BMC Med.
Genet. 13: 8. https://doi.org/10.1186/1471-2350-13-8

Laramie, J. M., J. B. Wilk, A. L. Destefano, and R. H. Myers,
2007 HaploBuild: an algorithm to construct non-contiguous associated
haplotypes in family based genetic studies. Bioinformatics 23: 2190–2192.
https://doi.org/10.1093/bioinformatics/btm316

Li, P., D. Filiault, M. S. Box, E. Kerdaffrec, C. Van Oosterhout et al.,
2014 Multiple FLC haplotypes defined by independent cis-regulatory
variation underpin life history diversity in Arabidopsis thaliana. Genes
Dev. 28: 1635–1640. https://doi.org/10.1101/gad.245993.114

Lin, S., A. Chakravarti, and D. J. Cutler, 2004 Exhaustive allelic trans-
mission disequilibrium tests as a new approach to genome-wide
association studies. Nat. Genet. 36: 1181–1188. https://doi.org/
10.1038/ng1457

Lippert, C., J. Listgarten, Y. Liu, C. M. Kadie, R. I. Davidson et al.,
2011 FaST linear mixed models for genome-wide association studies.
Nat. Methods 8: 833–835. https://doi.org/10.1038/nmeth.1681

Long, A. D., and C. H. Langley, 1999 The power of association studies to
detect the contribution of candidate genetic loci to variation in complex
traits. Genome Res. 9: 720–731.

Lorenz, A. J., M. T. Hamblin, and J. L. Jannink, 2010 Performance of single
nucleotide polymorphisms versus haplotypes for genome-wide associa-
tion analysis in barley. PLoS One 5: e14079. https://doi.org/10.1371/
journal.pone.001407

Mackay, T. F. C., 2014 Epistasis and quantitative traits: using model or-
ganisms to study gene-gene interactions. Nat. Rev. Genet. 15: 22–33.
https://doi.org/10.1038/nrg3627

McCarthy, M. I., G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J. Little et al.,
2008 Genome-wide association studies for complex traits: consensus,
uncertainty and challenges. Nat. Rev. Genet. 9: 356–369. https://doi.org/
10.1038/nrg2344

Volume 9 December 2019 | Exploiting Epistasis in Haplotype-GWAS | 4125

https://doi.org/10.1093/bioinformatics/btn359
https://doi.org/10.1093/bioinformatics/btn359
https://doi.org/10.1086/377106
https://doi.org/10.1038/35048692
https://doi.org/10.1038/35048692
https://doi.org/10.1093/bioinformatics/bth457
https://doi.org/10.1186/gb-2011-12-10-232
https://doi.org/10.1038/nrg3054
https://doi.org/10.1038/nrg3054
https://doi.org/10.1016/S0168-9525(03)00022-2
https://doi.org/10.1016/S0168-9525(03)00022-2
https://doi.org/10.1038/nrg1407
https://doi.org/10.1111/tpj.13415
https://doi.org/10.1111/tpj.13415
https://doi.org/10.1002/gepi.20025
https://doi.org/10.1002/gepi.20039
https://doi.org/10.1126/science.1141752
https://doi.org/10.1126/science.1141752
https://doi.org/10.1093/biostatistics/kxp023
https://doi.org/10.1038/nmeth.1785
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1086/422174
https://doi.org/10.1126/science.1069424
https://doi.org/10.1534/genetics.106.058859
https://doi.org/10.1038/nrg2575
https://doi.org/10.1007/BF01245622
https://doi.org/10.1007/BF01245622
https://doi.org/10.1016/0040-5809(88)90004-4
https://doi.org/10.1038/ng.2354
https://doi.org/10.1038/ng.2354
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1002/gepi.20242
https://doi.org/10.1002/gepi.20242
https://doi.org/10.1073/pnas.1600558113
https://doi.org/10.1093/pcp/pcs002
https://doi.org/10.1534/g3.117.300548
https://doi.org/10.1126/science.286.5446.1962
https://doi.org/10.1186/1471-2350-13-8
https://doi.org/10.1093/bioinformatics/btm316
https://doi.org/10.1101/gad.245993.114
https://doi.org/10.1038/ng1457
https://doi.org/10.1038/ng1457
https://doi.org/10.1038/nmeth.1681
https://doi.org/10.1371/journal.pone.001407
https://doi.org/10.1371/journal.pone.001407
https://doi.org/10.1038/nrg3627
https://doi.org/10.1038/nrg2344
https://doi.org/10.1038/nrg2344


Meuwissen, T. H. E., and M. E. Goddard, 2000 Fine mapping of quanti-
tative trait loci using linkage disequilibria with closely linked marker
loci. Genetics 155: 421–430.

Michaels, S. D., and R. M. Amasino, 1999 FLOWERING LOCUS C encodes
a novel MADS domain protein that acts as a repressor of flowering. Plant
Cell 11: 949–956. https://doi.org/10.1105/tpc.11.5.949

Moore, J. H., and S. M. Williams, 2005 Traversing the conceptual divide be-
tween biological and statistical epistasis: Systems biology and a more
modern synthesis. BioEssays 27: 637–646. https://doi.org/10.1002/bies.20236

Morris, R. W., and N. L. Kaplan, 2002 On the advantage of haplotype
analysis in the presence of multiple disease susceptibility alleles. Genet.
Epidemiol. 23: 221–233. https://doi.org/10.1002/gepi.10200

Pryce, J. E., S. Bolormaa, A. J. Chamberlain, P. J. Bowman, K. Savin et al.,
2010 A validated genome-wide association study in 2 dairy cattle breeds
for milk production and fertility traits using variable length haplotypes.
J. Dairy Sci. 93: 3331–3345. https://doi.org/10.3168/jds.2009-2893

R Core Team, 2017 R: A Language and Environment for Statistical
Computing. R Foundation for statistical Computing, Vienna.

Reif, J. C., A. E. Melchinger, and M. Frisch, 2005 Genetical and mathe-
matical properties of similarity and dissimilarity coefficients applied in
plant breeding and seed bank management. Crop Sci. 45: 1–7. https://
doi.org/10.2135/cropsci2005.0001

Schaid, D. J., 2004 Evaluating associations of haplotypes with traits. Genet.
Epidemiol. 27: 348–364. https://doi.org/10.1002/gepi.20037

Schwarz, G., 1978 Estimating the dimension of a model. Ann. Stat.
6: 461–464. https://doi.org/10.1214/aos/1176344136

Sung, S. B., and R. M. Amasino, 2004 Vernalization in Arabidopsis thaliana
is mediated by the PHD finger protein VIN3. Nature 427: 159–164.
https://doi.org/10.1038/nature02195

1001 Genomes Consortium, 2016 1,135 Genomes reveal the global pattern
of polymorphism in Arabidopsis thaliana. Cell 166: 481–491. https://
doi.org/10.1016/j.cell.2016.05.063

Tibshirani, R., 1996 Regression shrinkage and selection via the Lasso. J. R.
Stat. Soc. B 58: 267–288.

Trégouët, D. A., I. R. Konig, J. Erdmann, A. Munteanu, P. S. Braund et al.,
2009 Genome-wide haplotype association study identifies the SLC22A3-
LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat.
Genet. 41: 283–285. https://doi.org/10.1038/ng.314

Yang, Y., S. S. Li, J. W. Chien, J. Andriesen, and L. P. Zhao, 2008 A systematic
search for SNPs/haplotypes associated with disease phenotypes using a
haplotype-based stepwise procedure. BMC Genet. 9: 90. https://doi.org/
10.1186/1471-2156-9-90

Yu, J. M., G. Pressoir, W. H. Briggs, I. V. Bi, M. Yamasaki et al., 2006 A
unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat. Genet. 38: 203–208. https://doi.org/
10.1038/ng1702

Yu, Z. X., and D. J. Schaid, 2007 Sequential haplotype scan methods for
association analysis. Genet. Epidemiol. 31: 553–564. https://doi.org/
10.1002/gepi.20228

Zhang, K., M. H. Deng, T. Chen, M. S. Waterman, and F. Z. Sun, 2002 A
dynamic programming algorithm for haplotype block partitioning. Proc.
Natl. Acad. Sci. USA 99: 7335–7339. https://doi.org/10.1073/
pnas.102186799

Zhao, H. Y., R. Pfeiffer, and M. H. Gail, 2003 Haplotype analysis in pop-
ulation genetics and association studies. Pharmacogenomics 4: 171–178.
https://doi.org/10.1517/phgs.4.2.171.22636

Communicating editor: P. Morrell

4126 | F. Liu et al.

https://doi.org/10.1105/tpc.11.5.949
https://doi.org/10.1002/bies.20236
https://doi.org/10.1002/gepi.10200
https://doi.org/10.3168/jds.2009-2893
https://doi.org/10.2135/cropsci2005.0001
https://doi.org/10.2135/cropsci2005.0001
https://doi.org/10.1002/gepi.20037
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1038/nature02195
https://doi.org/10.1016/j.cell.2016.05.063
https://doi.org/10.1016/j.cell.2016.05.063
https://doi.org/10.1038/ng.314
https://doi.org/10.1186/1471-2156-9-90
https://doi.org/10.1186/1471-2156-9-90
https://doi.org/10.1038/ng1702
https://doi.org/10.1038/ng1702
https://doi.org/10.1002/gepi.20228
https://doi.org/10.1002/gepi.20228
https://doi.org/10.1073/pnas.102186799
https://doi.org/10.1073/pnas.102186799
https://doi.org/10.1517/phgs.4.2.171.22636


18 

 

Exome association analysis sheds light onto leaf rust (Puccinia triticina) 

resistance genes currently used in wheat breeding (Triticum aestivum L.) 

 

Published in: 

Plant biotechnology journal (2020) 

DOI: 10.1111/pbi.13303 

 

Authors: Fang Liu, Yusheng Zhao, Sebastian Beier, Yong Jiang, Patrick Thorwarth, C. Friedrich 

H. Longin, Martin Ganal, Axel Himmelbach, Jochen C. Reif and Albert W. Schulthess 

 

The original paper has been published and available online: 

https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.13303 

  

https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.13303


Exome association analysis sheds light onto leaf rust
(Puccinia triticina) resistance genes currently used in
wheat breeding (Triticum aestivum L.)
Fang Liu1 , Yusheng Zhao1 , Sebastian Beier1 , Yong Jiang1 , Patrick Thorwarth2, C. Friedrich H. Longin2,

Martin Ganal3, Axel Himmelbach1, Jochen C. Reif1,* and Albert W. Schulthess1

1Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Germany
2State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
3TraitGenetics GmbH, Gatersleben, Germany

Received 9 September 2019;

revised 6 November 2019;

accepted 17 November 2019.

*Correspondence (Tel +49 (0)394825840;

fax 039482/5 - 137; email

reif@ipk-gatersleben.de)

Keywords: leaf rust, hybrid wheat,

exome capture, association mapping,

candidate genes, independent

validation.

Summary
Resistance breeding is crucial for a sustainable control of leaf rust (Puccinia triticina) in wheat

(Triticum aestivum L.) while directly targeting functional variants is the Holy Grail for efficient

marker-assisted selection and map-based cloning. We assessed the limits and prospects of

exome association analysis for severity of leaf rust in a large hybrid wheat population of 1574

single-crosses plus their 133 parents. After imputation and quality control, exome sequencing

revealed 202 875 single-nucleotide polymorphisms (SNPs) covering 19.7% of the high-

confidence annotated gene space. We performed intensive data mining and found significant

associations for 2171 SNPs corresponding to 50 different loci. Some of these associations

mapped in the proximity of the already known resistance genes Lr21, Lr34-B, Lr1 and Lr10, while

other associated genomic regions, such as those on chromosomes 1A and 3D, harboured several

annotated genes putatively involved in resistance. Validation with an independent population

helped to narrow down the list of putative resistance genes that should be targeted by fine-

mapping. We expect that the proposed strategy of intensive data mining coupled with validation

will significantly influence research in plant genetics and breeding.

Introduction

Wheat (Triticum aestivum L.) is the world’s second most cultivated

cereal after maize and provides one-fifth of the calories intake of

human population (FAO, 2019). Leaf rust, caused by Puccinia

triticina f. sp. tritici, is one of the most widespread wheat diseases,

which can cause up to 40% loss of wheat yield mainly by reducing

kernel weight and decreasing the number of kernels per spike

(Khan et al., 2013). Resistance breeding, an economic and

environment friendly approach, is critical for the sustainable

control of wheat leaf rust (Oliver, 2014). Many researchers have

studied the genetic architecture of leaf rust in order to efficiently

increase the resistance level of cultivars. For instance, more than

70 leaf rust resistance genes (Lr) have been identified in wheat

(Kassa et al., 2017) and a few of them have been cloned, including

the seedling stage resistance genes Lr1, Lr10 and Lr21, as well as

the adult plant resistance Lr34 and Lr67 loci (Cloutier et al., 2007;

Feuillet et al., 2003; Huang et al., 2009; Krattinger et al., 2011;

Moore et al., 2015). Most of the discovered Lr genes confer all-

stage resistance and are race-specific, with only a few exceptions

like Lr34, Lr46 and Lr67 which confer non–race-specific resistance
during adult plant stages (da Silva et al., 2018). Race-specific

resistance proves to be ineffective after a few years of introduction

because of the high mutation rate or virulence dynamics of

pathogen populations (Lowe et al., 2011; McCallum et al., 2016).

Thus, researchers and breeders are trying to understand the

diversity of resistance genes currently used in elite breeding

populations and are continuously searching for novel Lr genes.

Genome-wide association mapping is often used to dissect the

genetic architecture of important agronomic traits (Gong et al.,

2017) such as leaf rust resistance of wheat (Gao et al., 2016;

Juliana et al., 2018; Kertho et al., 2015; Maccaferri et al., 2010).

Association mapping can provide a high mapping resolution,

particularly in genetically diverse populations, and in some cases

facilitates the detection of functional quantitative trait nucleo-

tides (Yano et al., 2016). The high resolution, however, requires

the characterization of the mapping population with a high

density of markers. Given the advances in next-generation

sequencing techniques and reduced sequencing costs, whole

genome sequencing (WGS) has been suggested as a method to

characterize the genetic variants of mapping populations (Sch-

neeberger, 2014). Nevertheless, the price of WGS in wheat

remains high due to the large genome and its allohexaploid

nature, making it necessary to have enough coverage to

distinguish homologs and homeologs (Appels et al., 2018).

Therefore, resistance gene enrichment sequencing (RenSeq)

focusing on genes exclusively encoding intracellular nucleotide-

binding/leucine-rich repeat immune receptor proteins has been

suggested. In fact, combining RenSeq with association genetics

allowed to clone four stem rust resistance genes in wheat (Arora

et al., 2019). Exome capture sequencing is an alternative solution

to dramatically reduce sequencing costs by focusing on gene
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coding regions (Mo et al., 2018). The potential of using exome

sequencing has been demonstrated in a pioneering study in

wheat where genes underlying wheat improvement and envi-

ronmental adaptation could be identified (He et al., 2019).

Our study is based on a large elite wheat population (Longin

et al., 2013; Zhao et al., 2013) including ~1800 single-cross

hybrids and their 135 parental lines adapted to the growing

conditions of Central Europe: The population was phenotyped in

multi-environmental field trials for leaf rust resistance and

fingerprinted using exome capture sequencing. Extensive data

mining facilitated to broaden our insights into the diversity of leaf

rust resistance genes currently used in wheat breeding in Central

Europe. Resistance genes Lr1, Lr10, Lr21 and Lr34-B are already

exploited by breeders but also novel candidate regions on

chromosome 1A or 3D were detected. The latter were validated

in an independent population of 128 single-cross hybrids, which

facilitated to narrow down the list of putative resistance genes.

We expect that the outcomes will benefit marker-assisted

selection of leaf rust resistance and represent promising targets

to clone novel resistance genes.

Results

Exome sequencing revealed a broad nucleotide and
haplotype diversity

Since two female parents failed to produce meaningful read

coverage during exome capture sequencing and enough seed

was available for 1604 of the potential 120 9 15 = 1800 single-

cross hybrid combinations, our study is based on 1574 hybrids

generated by crossing 118 female and 15 male elite winter wheat

lines. The 133 wheat lines were selected to cover a broad range

of diversity currently exploited in elite breeding in Central Europe

(Zhao et al., 2015). We performed exome capture sequencing of

the 133 parental lines based on the NimbleGen array (Winfield

et al., 2012) and using an Illumina HiSeq 2500 platform. This

resulted in 10.6 billion 100 bp reads (10.4 billion paired-end and

200 million single-end) that were mapped against the reference

genome of ‘Chinese Spring’ (Appels et al., 2018), unravelling

7 253 398 single-nucleotide polymorphism (SNP) sites. Only

0.37% (about 40 million reads) of the reads could not be

mapped to the reference sequence. The mean coverage of called

sites amounted to 1.5 (Figure S1). After imputation using FILLIN

(Swarts et al., 2014), we selected SNPs with minor allele

frequency (MAF) larger or equal than 0.05 and missing rate

smaller than 0.05, resulting in 202 875 SNPs used for subsequent

analyses. Although rare resistance/susceptible loci may be

underdetected by using a MAF threshold of 0.05, this filtering

criteria should avoid the increased false-positive rate expected for

rare variants in large-scale exome association studies of human

diseases (Akle et al., 2015). Prediction of the functional effect

revealed that 22 166 SNPs induced non-synonymous variants and

144 687 out of the 202 875 SNPs (71.32%) were located in

genic regions flanked by an upstream and downstream window

of 1kb (Table S1). We identified SNPs for 21 249 genes (about

19.7% of all 107 891 high-confidence genes, Figure S2), with

13 399 genes (63.1%) exhibiting at least two SNPs.

Principal coordinate analysis (PCoA) on the pairwise Rogers’

distances suggested an absence of obvious subpopulations

among the 133 parents (Figure 1d), which is in line with previous

findings based on a 90k SNP array (Wurschum et al., 2013). These

results were further supported by the tight positive correlation

(Pearson’s r = 0.911, P < 0.001 using a Mantel test, Figure S3)

between the genetic distances estimated using the exome

sequencing and those estimated based on the 90k SNP array.

Molecular and nucleotide diversity was greater for the B than

for the A genome and these two genomes, in turn, have a much

higher diversity than the D genome (Figures S4 and S5). Analysis

of linkage disequilibrium (LD) showed that the LD decay varied

among subgenomes and chromosomes. On average, the esti-

mated LD decayed to an r2 = 0.2 at a distance of 7 Mb (Figure 1

and Table S2). LD decayed faster in the A genome than in B and D

genomes, while LD curves were virtually the same for B and D

genomes (Figure S6). Even though most studies have reported

that LD decays slower for the D genome (e.g. Chen et al., 2012;

Liu et al., 2017; Lopes et al., 2015; Sukumaran et al., 2015), there

have been also some studies showing LD decay values for the D

genome that are similar to or even lower than those of the A and/

or B genomes (Sehgal et al., 2017; Zhang et al., 2013). One

possible explanation for this discrepancy are the differences in

number of marker pairs as a function of physical distance

observed in our study (Figure S7). In this sense, a great proportion

(~27%) of marker pairs in the D genome is located within very

short physical distances, whereas this percentage is clearly smaller

for the A and B genomes. This higher density of marker pairs at

short physical distances for the D genome can cause a leverage

effect that artificially forces the LD curve to be fitted towards the

origin of the plot. Therefore, LD comparisons among genomes

should take this issue into consideration. Chromosomes 1D and

6D presented the slowest and fastest decay, respectively, and fell

below the r2 = 0.2 threshold at 1 and 20 Mb, correspondingly.

This rapid decay revealed the broad haplotype diversity in the

underlying mapping population. Considering that a gene is the

basic physical and functional unit of heredity, we estimated the

LD within genes and found that the LD varied between SNPs

within the same gene. In this respect, about 25% of the

estimated LD values were less than r2 = 0.5 (Figure 1e) while

some marker pairs even approached linkage equilibrium.

Bimodal distribution of the hybrid performance for leaf
rust severity

The 1574 hybrids and their 133 parents were phenotyped for leaf

rust severity in 5 environments, that is year 9 location combina-

tions (Table 1). Correlations between the performances of

different environments ranged between 0.37 and 0.89, which

suggests the existence of genotype 9 environment interaction

effects influencing leaf rust severity. According to these

Figure 1 Linkage disequilibrium decay and diversity analysis in a wheat population composed by 1574 hybrids plus their 118 female and 15 male parent

lines. Linkage disequilibrium (LD, as r2) decay plots as a function of physical distance (Mb) within each chromosome for subgenomes A (a), B (b) and D (c).

(d) Diversity among the 133 parent lines of the studied hybrid wheat population portrayed in a biplot of the first two principal coordinates from a principal

coordinate analysis on the pairwise Rogers’ distance matrix calculated using exome capture single-nucleotide polymorphisms (SNPs) profiles. (e) Boxplot

charts showing the distributions of average LD within a gene and of LD between adjacent SNPs. Bins in the lower x-axis correspond to the region defined by

a gene or to regions defined by adjacent SNPs separated by certain physical distance (100 Kb). The upper x-axis shows the number of SNP pairs belonging to

each corresponding bin in the lower x-axis.
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estimates, the most abrupt changes in phenotype rankings are

expected for HHOF2012 when compared with ROS2012 and

ROS2013. We adjusted for the effects of environments and

obtained best linear unbiased estimations (BLUEs) for the 1707

genotypes. The BLUEs were widely distributed ranging from 0.5

to 7.4 for leaf rust severity assessed by using a 1 (fully resistant) to

9 (fully susceptible) scoring scale (Figure 2a). The heritability

amounted to 0.81 for hybrids and 0.82 for parent lines, while

variation due to general combining abilities (GCAs) was 16.12

times the variance attributed to specific combining abilities (SCAs)

(Table S4). Overall, the male parents were more susceptible than

the female parents, while the severity of hybrids followed a

bimodal distribution (Figure 2a). We decided to look in more

detail into this bimodal distribution and split the hybrids into two

subpopulations according to the resistance of the female parents:

The hybrids based on crosses involving the top 25% resistant

female parents form the Top25% subpopulation and the hybrids

from the remaining 75% female parents formed the Inferior75%
subpopulation. In this regard, the BLUEs of these two subpop-

ulations followed two different normal distributions with a mean

of 1.42 and 3.61, respectively (Figure 2b). This trend was also

visible – but less pronounced – when splitting the population into

a Top50% and Inferior50% subpopulation. Interestingly, we

observed much more pronounced average midparent heterosis

for Top25% with �39.5% compared to 4.69% for Inferior75%
(Figure 2c). Hierarchical cluster analysis was used to search for

genetic similarities among the parents of the Top25% and

Inferior75% population. The phylogenetic tree revealed a tendency

for female parents from Top25% to cluster together, with the

exceptions of lines F004, F011, F021, F029, F059, F086, F098,

F100, F101 and F112 (Figure 2d).

Detection of subpopulation specific marker-trait
associations pointing to known resistance genes

Using a mixed linear model to correct for population stratification,

we firstly performed association mapping for leaf rust in the total

population (Figure 3a, d). In this scan, 1565 SNPs exceeded the

significant threshold of �log10(P-value) = 5.44, defined by apply-

ing the multiple-test correction suggested by Gao (Gao et al.,

2008; Figure S8). The 1565 SNPs trace back to 45 independent

loci. The most significant SNPs were located on chromosome 4A

and mapped as close as 7.2 Mb from the previously described

resistance gene Lr34-B; a homolog of Lr34 (Krattinger et al.,

2011). Lr34maps on chromosome 7D (Dakouri et al., 2010; Dyck,

1987) and functions in adult plants by encoding an ATP-binding

cassette (ABC) transporter. Interestingly, Lr34-B does not map on

chromosome 7B as it would be expected due to chromosome

homology, which is explained by a translocated segment from

7BS to the 4A chromosome in Chinese Spring (Krattinger et al.,

2011). In addition to Lr34-B, several significantly associated loci

on chromosome 1D mapped approximately 0.4Mb away from

another previously described causal gene: Lr21 (Huang et al.,

2009; Figure 3d, Table 3).

We explored whether the phenotypic structure of our mapping

population – as indicated by the bimodal distribution of the

phenotypic values – has an effect on our association mapping

results (Figure 3a). To do so, we divided the total population into

resistant (Top25%, Top50%) and susceptible subpopulations (Infe-

rior75%, Inferior50%) as outlined in detail above (Figure 3). The

amount of markers differed in the subpopulations owing to the

quality control of minor allele frequency (MAF, Table 2) with

following ranking: Total > Inferior75% > Top50% � Inferior50%-

> Top25%. Among the significant SNPs that were detected in

the total population, 429 (27.4%) were detected again as

significantly associated in at least one of the four subpopulations

(Figure S8). In particular, SNP S15_2077073, which is located

proximal to Lr21, was significant again in the subpopulation

Top25% while significant associations for loci mapping as close as

7.1 Mb away from Lr34-B were also successfully identified in

subpopulation Inferior75% and Top50% (Table 3 and Figure 3h, j).

Interestingly, for both of the resistant subpopulations Top25% and

Top50%, we detected new marker-trait associations mapping as

close as 1.4 Mb away from the known leaf rust resistance gene

Lr1 (Cloutier et al., 2007), which is located on chromosome 5D

(Figure 3j, i). Moreover, a strong marker-trait association on

chromosome 1A was exclusively observed in the subpopulation

Inferior50%. The SNPs of this region were located 5.9 Mb away

from the CC-NBS-LRR type resistant gene Lr10 (Feuillet et al.,

2003; Table 3).

Validation of marker-trait associations in an
independent population

We used an independent wheat population, further denoted as

validation set that comprised 128 hybrids from crosses between

24 female and 16 male parents to validate the detected marker-

trait associations. Genomic data for the validation set were

obtained again by exome capture sequencing, resulting in

129 818 SNPs with MAF larger or equal than 0.05 and missing

rate smaller than 0.05. Out of the 1565 SNPs presenting

significant marker-trait associations in the mapping population

comprising the 1707 wheat genotypes, 466 were polymorphic in

the independent validation set. These polymorphic SNPs reflect

15 independent loci. From the 466 SNPs, 23 were significant in

the validation set at a threshold of P < 0.01 after applying the

method for correction for multiple testing suggested by Gao et al.

(2008). Marker effects for the 23 SNPs were estimated in the

population of the 1,707 hybrids and used to predict the leaf rust

severity of the hybrids in the validation set. The predicted and

observed phenotypic values were significantly (P-

value = 2.676 9 10�7) correlated with a Pearson correlation of

0.384.

Independent validation facilitates to narrow down the
list of putative resistance genes

We detected in the population of 1707 genotypes, a pronounced

peak spanning a 25 Mb region on chromosome 3D (590–
615 Mb). The SNPs were in high LD, which makes the identifi-

cation of the underlying candidate gene difficult (Figure S9a).

Interestingly, the diversity and pattern of LD among SNPs in this

region were different in the validation set (Figure S9b), which

Table 1 Correlations among environment-specific and across-

environment best linear unbiased estimations of leaf rust severity

scores of a hybrid population (1574 hybrids plus their 118 female and

15 male parent lines) tested in five environments

Correlation HAD2012 HHOF2012 ROS2012 ROS2013 BLUEs

BOH2012 0.66 0.45 0.71 0.71 0.89

HAD2012 0.42 0.52 0.52 0.75

HHOF2012 0.38 0.37 0.59

ROS2012 0.70 0.87

ROS2013 0.85
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allowed us to narrow down the list of candidate SNPs to 6 SNPs

that were significant in the validation set. Within the 1Mb

candidate region (597.1–598.1 Mb), four protein-coding genes

(TraesCS3D01G513000, TraesCS3D01G513200, TraesCS3D01

G513400 and TraesCS3D01G513500) were annotated as poten-

tial disease resistance-related genes and each of them encoded

the NB-ARC domain, an important part of many plant resistance

proteins (Van Ooijen et al., 2008). These four genes are a

promising target for further functional validation strategies such

as virus-induced gene silencing or overexpression.

Another example was the region around 532.5–533.2 Mb on

chromosome 1A. We identified 14 SNPs significantly associated

with leaf rust severity in the population of 1707 genotypes. In

Figure 2 Bimodal distribution of leaf rust severity in a wheat population of 1574 hybrids plus their 118 female and 15 male parent lines. Genotypes from

Top25% and Inferior75% subpopulations are indicated in blue and red, respectively. (a) Leaf rust severity scores (1 = fully resistant and 9 = fully susceptible)

shown according to the different groups (females, hybrids and males). (b) Histogram of leaf rust severity scores of hybrids. (b) Histogram of midparent

heterosis. (d) Dendrogram constructed by performing hierarchical clustering based on the pairwise Rogers’ distance matrix among 133 parent genotypes

calculated using exome capture single-nucleotide polymorphisms profiles. Solid and dashed lines represent the female and male parents, respectively.

Table 2 Composition, size and number of informative exome capture

sequencing single-nucleotide polymorphisms (SNPs) of each

population/subpopulation for genome-wide association analysis

Female Male Hybrids SNPs

Total population 118 15 1574 202 875

Top25% subpopulation 30 15 425 162 327

Inferior75% subpopulation 88 15 1149 191 377

Top50% subpopulation 59 15 788 180 942

Inferior50% subpopulation 59 15 786 184 498

Validation population 24 16 128 112 587
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total, 24 genes were located in this candidate region and the LD

among SNPs was very high (r2> 0.65). Interestingly, the extent of

LD decreased in the validation set and only 5 out of the 14 SNPs

surpassed the significance threshold in the validation set (Fig-

ure 4). These SNPs were located at 532.7Mb and were linked with

each other (r2 > 0.84). We detected three genes in this region,

which are putatively related with disease resistance. Two of them

(TraesCS1A01G345400 and TraesCS1A01G345500) were anno-

tated with protein kinase activity and the remaining one

(TraesCS1A01G345600) encodes the LRR receptor-like serine/

threonine-protein kinase domain. In more detail, annotated genes

TraesCS1A01G345400 and TraesCS1A01G345500 presented

Figure 3 Genome-wide exome association scans for additive effects underlying leaf rust severity in a hybrid wheat population and its different

subpopulations. Left panel: Histogram of leaf rust severity in: (a) a hybrid wheat population of 1574 hybrids plus their 118 female and 15 male parent

lines and its subpopulations (b) Top25%, (c) Inferior75%, (d) Top50% and (e) Inferior50%. Right panel: Manhattan plots of genome-wide exome

association scans for additive effects underlying leaf rust severity in: (f) total population, (g) subpopulation Top25%, (h) Inferior75%, (i) Top50% and (j)

Inferior50%. –log10(P-value)s of the significance test are plotted against physical positions on chromosome. Black horizontal dashed lines indicate the

genome-wide multiple test corrected significance threshold for association analysis. The candidate region of Lr10, Lr21, Lr1 and Lr34-B homologous

gene of Lr34 is marked with vertical dashed lines and triangles. Blue triangles mean that these loci were detected in total population and

subpopulations, while red triangles mean those are only significant in subpopulations.

Table 3 Significantly associated single-nucleotide polymorphisms (SNP)s from exome capture sequencing that map closest to already known leaf

rust resistant genes and located within a 10 Mb window away from the known candidate gene

Population SNP Chromosome Position (bp) P-value† Gene‡ Distance (Mb)

Total S15_2077073 1D 2 077 073 1.88E-07 Lr21 0.4

Total S4_669444522 4A 669 444 522 3.86E-11 Lr34-B 7.2

Top25% S15_2077073 1D 2 077 073 1.95E-06 Lr21 0.4

Top25% S19_554396794 5D 554 396 794 3.76E-08 Lr1 7.5

Inferior75% S15_99767 1D 99 767 2.80E-06 Lr21 2.4

Inferior75% S4_669441424 4A 669 441 424 1.09E-07 Lr34-B 7.1

Inferior75% S19_560500848 5D 560 500 848 1.94E-06 Lr1 1.4

Inferior75% S7_55412966 7A 55 412 966 3.21E-06 Lr34-B 5.4

Top50% S4_669444182 4A 669 444 182 7.17E-08 Lr34-B 7.2

Top50% S19_554396794 5D 554 396 794 3.46E-08 Lr1 7.5

Inferior50% S1_3668532 1A 3 668 532 2.45E-09 Lr10 5.9

*P-value of the significance test for additive effects.
†Resistance genes: Lr21 (Huang et al., 2009), Lr34-B (Krattinger et al., 2011), Lr1 (Cloutier et al., 2007) and Lr10 (Feuillet et al., 2003).
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SNPs with significant associations in both populations, while

TraesCS1A01G345600 has no significant SNPs in any of the

studied populations (Figure S18). Similarly, as for the narrowed-

down region on chromosome 3D, this region on chromosome 1A

carries promising targets for further detailed validation studies.

Discussion

Exploiting environmentally stable QTL for durable
resistance breeding

Our study showed that the phenotypic variation of leaf rust

resistance is influenced by major and minor-effect loci (Figure S10)

with the most important major effect loci located on chromo-

some 4A proximal to Lr34-B. Thus and as often suggested by

several authors (Nelson et al., 2018), a strategy combining major-

and minor-effect genes could provide durable resistance. More-

over, resistance loci, especially those with major effects, should

ideally provide race nonspecific resistance, because this type of

resistance has proven to be longer lasting as compared to the

race-specific one (Nelson et al., 2018). For instance, the Lr34 gene

has provided resistance against several pathogens, including leaf

rust, stem rust, stripe rust and powdery mildew, for over

100 years (Moore et al., 2015). Obviously, whether or not these

loci would provide durable resistance will be determined by the

evolution of leaf rust populations in the field, which is, to a

greater extent, determined by good and bad practices of

integrated pest management used by wheat growers (Mundt,

2014). Nonetheless, even though the term durability can only be

defined in a retrospective fashion (Nelson et al., 2018), analysing

the environmental stability of marker-trait associations may give

some insights into it. At this stage, loci whose associations are

environmentally unstable are obviously too risky to be used in

marker-assisted selection. Thus, we fitted a multiple linear

regression model for each marker on the environmental BLUEs

of genotypes that included main environment and marker effects

plus their interactions. Interestingly, these analyses revealed that

only for 3.4 % of the associated loci, the marker by environment

interaction components explained an equal or higher amount of

variation on leaf rust severity as compared to the main locus

effects (Figure S12). On the other hand, the most environmentally

stable locus was located in the 4A QTL region, with main effects

explaining 13.6-fold the amount of variation explained by the

interaction components. Moreover, this QTL region harboured 6

additional highly environmentally stable loci, with main effects

Figure 4 Candidate region associated with leaf rust resistance on chromosome 1A in a hybrid wheat population and narrowed down using an

independent validation population. Manhattan plots showing the significant exome associations for additive effects underlying leaf rust within a candidate

region on chromosome 1A found in: (a) a hybrid wheat population of 1574 hybrids plus their 118 female and 15 male parent lines and (b) a validation

population of 128 hybrids plus their 24 female and 16 male parent lines. –log10(P-value)s of the significance test of additive effects are plotted against

physical positions on chromosome 1A. Red horizontal dot-dashed lines indicate the multiple test-corrected significance thresholds for association analysis.

Single-nucleotide polymorphisms (SNPs) significantly associated in the two data sets are shown as blue points and other SNPs are shown as red points. The

genes with annotated resistance function and others are shown as vertical boxes in blue and grey, respectively. The upper-triangular halves of the linkage

disequilibrium (LD, as r2) matrices between SNPs within the candidate region are shown as heat maps below Manhattan plots. Blue stars in LD plots indicate

the physical positions of SNPs with significant associations.
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explaining at least 10 times the amount of leaf rust severity

variation attributed to their interactions with the environment.

Considering that we could not find significant associations for

SNPs directly targeting Lr34-B in our population, our results point

to potentially new sources of resistance mapping on chromosome

4A. In fact, some of these strongly associated loci were located

within annotated genes with putative disease resistance activity

(Table S5). Interestingly, by sorting SNPs according to the physical

map positions of the reference sequence of Chinese Spring,

associated loci portrayed two regions on chromosome 4A

influencing leaf rust resistance, whose peaks were separated by

43 Mb (Figure S11). This observation was surprising considering

the very high LD (r2 = 0.9) between both peaks. One plausible

explanation for this discrepancy is a lack of structural collinearity

between the reference genome and those of our studied

population due to insertions and deletions, translocations, among

other genome rearrangements (Dvorak et al., 2018; Helguera

et al., 2015; Thind et al., 2018). Nonetheless, reverse and forward

genetic techniques would be necessary to elucidate if these highly

promising loci mapping on chromosome 4A confer new sources

of resistance against leaf rust or, to the contrary, belong actually

to Lr34-B.

Data mining broadened insights into the gene portfolio
currently used in wheat breeding in Central Europe

Factors influencing the statistical power for QTL detection in

association mapping are very well known (Myles et al., 2009).

Although the size of the association mapping population is

certainly the key factor influencing statistical power, the ability to

detect true QTL signals can also be improved by a decreased

correlation between genetic and phenotypic similarity as well as

by increased frequencies of rare alleles at functional loci. In this

respect, our strategy of subdividing the total hybrid population

into four different subpopulations based on the bimodal leaf rust

severity distribution of parents decreased the correlation between

genetic and phenotypic distances (rRD,PD) in subpopulations

Inferior75%, Top50% and Inferior50% as compared to that of the

total population (Table S3). Therefore, a general increment in QTL

detection power was expected for these three subpopulations,

obviously, at expenses of the general power achieved by an

increased size in the total population. Moreover, some associa-

tions found in the proximity of already known resistance loci such

as Lr1 and Lr10 were only detected in subpopulations (Figure 3,

Table 3), which further highlights the advantage of our strategy.

In addition, analysing subpopulations improved QTL detection

power by increasing MAF in some cases. For instance and

compared to the total population, �log10(P-value)s of loci on

chromosome 6A were higher in subpopulations Top25% and

Top50% (Figure 3g, i and Figure S15), while MAF of most of these

loci was concomitantly higher in both subpopulations. A similar

observation was done for loci on chromosome 6B in the Top50%
subpopulation (Figures 3i and S14). Nonetheless, there were

some increases in QTL detection power in subpopulations whose

causal factors could not be elucidated. For example, associations

in the proximity of Lr10 were only detected in the Inferior50%
subpopulation. However, neither the differences in MAF (Figures

3j and S17), nor the changes in rRD,PD nor the presence/absence

of a confounding genetic background (i.e. when genetic

distances are more/less correlated with those distances portrayed

by associated loci; Table S3), can explain the improved detection

ability for this QTL in this particular subpopulation (Figure 3f-j).

Although some driving forces underlying the improved QTL

detection ability remain hidden for some subpopulations, the

combined analysis of a large population plus its subpopulations

increased the number of associations by ~37% compared to the

total population (Figure S8), thus providing a robust strategy for

QTL detection in our study.

Exploiting dominance effects through hybrid wheat
breeding

The quantitative inheritance of leaf rust resistance is predom-

inantly of additive nature, although past studies have shown that

dominance effects at some loci also contribute to the genetic

variation (Ahamed et al., 2004; Jacobs and Broers, 1989; Navabi

et al., 2003). The additive nature is also supported by the

associations for leaf rust severity detected by our approach, with

2151 (45 independent loci, 90%) being of additive type

(Figure 3f-j). Despite this, 20 (5 independent loci, 10%) promi-

nent dominance association effects were detected. Among them,

a locus on chromosome 5A appeared as highly significant

(�log10(P-value) = 8) in the Top25% subpopulation (Figure S13).

In this respect, hybrid breeding provides a straightforward

manner for their exploitation. This is in particular attractive

considering that midparent heterosis reached desired negative

values of up to �82.89% (Figures 2c, S14).

Prospects of exome sequencing association studies in
resistance breeding: a critical view

Association mapping has gained much popularity in the plant

breeding community because it provides a very straightforward

and cheap way to discover new marker-trait associations that

could be exploited by means of marker-assisted selection.

Nevertheless, true genetic linkage to the functional causal

variant(s) underlying trait(s) is not always the cause of marker-

trait association(s). In this respect, linkage disequilibrium decay

between associated marker(s) and functional variant(s) in the

material under selection will reduce the efficiency of marker-

assisted selection (Lande and Thompson, 1990). Theoretically,

one way to overcome this limitation is to focus on protein-coding

regions (Hayes and Szucs, 2006), that is genes, by relying on

targeted sequence methods such as exome capture. In this sense,

whole-exome association mapping has proven to be beneficial for

dissecting human diseases in the past (Carter et al., 2014; Guo

et al., 2018; Kim et al., 2012) and lately, exome association

mapping has been also conducted using plant populations (He

et al., 2019; Henry et al., 2014; Looseley et al., 2017; Pont et al.,

2019; Russell et al., 2016). For instance, exome capture revealed

regions containing genes that are associated to traits involved in

adaptation and also subjected to selection due to domestication

and plant breeding in a population composed of 487 genotypes

of wheat and related species (Pont et al., 2019). Taking into

account the size of our association mapping population, we

expected to find associations that were narrowed down to the

level of true functional associations. It is important to consider

that due to the presence/absence nature of genetic variants

conferring resistance (Arora et al., 2019), insertions and deletions

may play a central role when detecting candidate resistance

genes based on a reference genome. In this sense, our candidate

search was confined to those resistance genes annotated for

Chinese Spring. In a first step, we considered already known Lr

genes (Table 3) as a kind of proof-of-concept and in the best case;

we were able to approach Lr genes as close as 0.4 Mb. As

discussed for the Lr34-B on chromosome 4A; a lack of structural

collinearity with the reference genome can explain an imprecise
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mapping of known leaf rust resistance loci and their associations

in our mapping population. In addition, limited allelic variation

and recombination rates are also plausible causes for this

restricted ability. For instance, even though 10 SNPs were found

and tested for significant associations within Lr1, their low MAF

values (MAF = 0.05–0.08) limited our detection ability. Particu-

larly, this gene was presumably almost fixed in all parent lines due

to selection and breeding. We were able to overcome some of

these challenges by using an independent population as a way to

narrow down and statistically validate new associations. This

strategy allowed us to increase mapping precision by, for

example, narrowing down an extensive 25-Mb region on

chromosome 3D found as associated in the population of 1707

genotypes to a 1-Mb region in the validation population

(Figure S8). Despite this and partly because regions harbouring

SNPs in strong LD and with similar allele frequency result in similar

P-values in association mapping, we were not able to validate and

narrow down associations to the level of one single gene. This last

ability may also be limited in our study by the overall low gene

coverage of exome capture (Figure S2, Table S1). On the other

hand and due to the evolution of resistance genes, many of them

lie together within clusters of highly linked resistance genes

(Dilbirligi et al., 2004; Liu et al., 2015); an issue that clearly

challenges the detection of single functional variants. At this

stage, we expect that deep next-generation sequencing

approaches or whole genome sequencing can shed some light

into this issue. Alternatively, if the goal is the detection of new

functional genes with resistance activity against biotrophic fungi,

RenSeq approaches (Steuernagel et al., 2018) targeting

sequences such as nucleotide-binding site–leucine-rich repeats

(NB-LRRs) with known participation in plant resistance should be

also appropriate.

Experimental procedures

Plant material and phenotypic data analyses

The phenotypic data are based on 1749 wheat genotypes

including 10 checks, 1604 F1 factorial hybrids, and their 120

female and 15 male parental lines (Longin et al., 2013; Zhao

et al., 2013). Leaf rust disease severities were evaluated based on

natural infection or deliberate inoculation in four locations

(B€ohnshausen, Hadmersleben, Harzhof and Rosenthal) in 2012

as described in detail elsewhere (Gowda et al., 2014; Longin

et al., 2013). An additional field trial was conducted based on

natural infection in Rosenthal during 2013 using the same

experimental procedures. The leaf rust disease severities were

scored at the date of flowering on the flag leaf using a scale from

1 (fully resistant) to 9 (fully susceptible) referring to the guidelines

of the German Federal Plant Variety Office (Bundessortenamt,

2000).

Best linear unbiased estimations (BLUEs) of genotypes, variance

components, and broad-sense heritabilities for parent lines and

hybrids were estimated as outlined in detail elsewhere (Zhao

et al., 2015).

Genotypic data and diversity analyses

The 135 elite parental lines were genotyped with exome capture

sequencing using an Illumina HiSeq 2500 platform. Sequencing

data were mapped to the reference genome of Chinese Spring

(Appels et al., 2018). This landrace is susceptible against leaf rust

at the seedling stage (Li et al., 2010), but carries adult plant

resistance (Dyck, 1991; Kerber and Aung, 1999). Details of the

bioinformatics pipelines used for read mapping and variant calling

are described in a previous study (Milner et al., 2019). Briefly,

BWA-MEM (Li, 2013) and SAMtools (Li et al., 2009) were used to

align reads to the reference sequence and convert them to binary

format (BAM), respectively. GATK (DePristo et al., 2011; version

v3.8) was applied to realign reads near indels. Variant calling was

performed with the SAMtools/BCFtools pipeline (version 1.6; Li,

2011).

A custom awk script was used for gentle filtering of variants,

retaining VCF file entries with a minimum number of reads set to

one for homozygous and two for heterozygous calls, respectively.

Minimum SNP quality was set to 40. The resulting VCF file was

imported into R statistical environment (version 3.4.3) for further

filtering. Applying the SeqArray package (Zheng et al., 2017) we

set polymorphisms detected on chrUn to missing and filtered

remaining SNPs for a minor allele count of at least one and a

minimum number of present calls of 0.05. Missing genotype calls

were imputed with FILLIN (Swarts et al., 2014) from the TASSEL5

(Bradbury et al., 2007) software suit.

After imputation with FILLIN (Swarts et al., 2014), only bi-allelic

variants with MAF ≥ 0.05 and missing rate < 0.05 were used for

subsequent analyses. Following quality control, two female

parental lines were excluded, resulting in SNP profiles for 118

female and 15 male parental lines. The genotypes of 1574 hybrids

were derived from the genotypes of their parental lines. Predic-

tion of the functional effect was performed with the tool SnpEff

version 4.3 (Cingolani et al., 2012) based on the IWGSC_v1.1

gene models of high confidence. Nucleotide diversity p was

calculated with 1Mb non-overlapping sliding window using the

software vcftools version 0.1.12b (Danecek et al., 2011). The

linkage disequilibrium (LD) of each chromosome was calculated

using the r2 statistic (Hill and Robertson, 1968). We applied a

non-linear regression model described by Hill and Weir (Hill and

Weir, 1988) to estimate the LD decay. We used the average r2 of

all SNPs within the same gene to represent LD of genes. LD within

a specific genomic region was calculated based on parental lines

and visualized with the R package LDheatmap (Shin et al., 2006).

Principal coordinate analysis and hierarchical cluster analysis were

performed based on pairwise Rogers’ distances among genotypes

(Reif et al., 2005). In a previous study (Wurschum et al., 2013),

parents were characterized by using a 90K Infinium SNP chip

(Wang et al., 2014) and pairwise Rogers’ distances based on

these marker profiles were also considered for comparative

purposes. These analyses were performed within R environment

(version 3.4.3).

Genome-wide association mapping

Genome-wide association mapping was implemented in R

environment (version 3.4.3) using a linear mixed model consid-

ering additive and dominance effects (Zhao et al., 2013). In brief,

the model can be described as follows:

y ¼ 1nlþ Aaþ Dd þ gþ e; (1)

where y are the observed phenotypic values, 1n corresponds to a

n-length vector of ones, µ denotes a common intercept term, a

and d represent the additive and dominance effect of the tested

SNP, respectively, while A and D stand for the design matrices

relating y to a an d, correspondingly, g is a vector of genotypic

effects or polygenic background effects and e indicates the error

term of the model. For each tested SNP, genotypes homozygous

for the first allele, heterozygous and homozygous for the
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alternative allele were coded as �1, 0 and 1, respectively, in the

case of the A matrix. In the D matrix, homozygous and

heterozygous genotypes were coded as 0 and 1, respectively.

For the model (1), we assumed that µ, a and d are fixed factors,

while g and e were considered random, with g�N 0;r2gK
� �

and

e�N 0; r2e I
� �

, where K is a marker-derived kinship matrix, I is an

identity matrix, r2g and r2e are the corresponding variance

components. Each kinship coefficient between two parent

genotypes within K was computed as twice the difference of

one minus the corresponding Rogers’ distance (Reif et al., 2005)

between them. In the case of hybrids, the additive polygenic

background is decomposed as the sum of the general combining

abilities of female (GCAF ) and male (GCAM) parents, thus, the

kinship matrices for hybrids model the covariance among GCA

effects of the respective female and male parents (Bernardo,

1994). Linear mixed models for the phenotypic data analyses as

well as for association mapping were solved using the ASReml-R

package (Butler et al., 2009).

Validation of marker-trait associations in an
independent population

The validation population is a fraction of another large hybrid

wheat population, which consists of 41 male lines, 189 female

lines and their 1815 single-cross hybrids produced using an

incomplete factorial mating design. The 230 parental lines were

tested together with 1815 hybrids and 11 commercial check

varieties in 7 environments in un-replicated field trials based on an

alpha design with block size equals to 11 plots. Infection of

genotypes with leaf rust occurred naturally and was scored at the

date of flowering on the flag leaf as described in detail above.

Across environments, BLUEs of lines and hybrids from valida-

tion population were obtained as outlined in detail elsewhere

(Zhao et al., 2015). For 24 female and 16 male parental lines,

exome capture data were obtained as already detailed in the

‘Genotypic data and diversity analyses’ section. The genotypes of

hybrids were deduced according to the genotypes of their

parents. The 40 lines served as parents for 128 hybrids, which

were denoted in the following as the validation population.

To validate the significant SNPs found in the population of the

1707 genotypes (133 parental lines and 1574 hybrids), we first

identified common markers between the two populations. Then,

all the common markers were used to predict the phenotype of

lines in the validation population using a linear model, in which

the markers were sorted by physical position on the chromosome.

Finally, we calculated the Pearson correlation coefficient between

the predicted and observed phenotypic values.

Narrow down candidate regions combining information
of the two populations and identification of candidate
genes

For the novel candidate regions, we used all the markers in those

regions that were found in the validation population and

performed association tests based on a linear regression model.

The detected potential disease resistance-related genes (R genes)

were annotated with the pipeline RGAugury (Li et al., 2016). R

genes were classified as CC (coiled-coil), NBS (nucleotide-binding

site), CN (CC-NBS), NL (NBS-LRR), CNL (CC-NBS-LRR), RLK

(receptor-like kinase), RLP (receptor-like protein) and TM-CC

(Transmembrane-CC). Moreover, we double-checked the func-

tional annotation of these genes in the candidate region IWGSC

(Appels et al., 2018).
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Abstract 

Resistance breeding is crucial for sustainable control of wheat leaf rust and single nucleotide 

polymorphism (SNP)-based genome-wide association studies (GWAS) are widely used to dissect 

leaf rust resistance. Unfortunately, GWAS based on SNPs often explained only a small proportion 

of the genetic variation. We compared SNP-based GWAS with a method based on functional 

haplotypes (FH) considering epistasis in a comprehensive hybrid wheat mapping population 

composed of 133 parents plus their 1574 hybrids and characterized with 626 245 high-quality SNPs. 

In total, 2408 and 1 139 828 significant associations were detected in the mapping population by 

using SNP-based and FH-based GWAS, respectively. These associations mapped to 25 and 69 

candidate regions, correspondingly. SNP-based GWAS highlighted two already-known resistance 

genes, Lr22a and Lr34-B, while FH-based GWAS detected associations not only on these genes 

but also on two additional genes, Lr10 and Lr1. As revealed by a second hybrid wheat population 

for independent validation, the use of detected associations from SNP-based and FH-based GWAS 

reached predictabilities of 11.72% and 22.86%, respectively. Therefore, FH-based GWAS is not 

only more powerful for detecting associations, but also improves the accuracy of marker-assisted 

selection compared with the SNP-based approach. 

 

The original paper has been published and available online:  

https://doi.org/10.1093/jxb/eraa387  
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General Discussion  

Genetic variant for GWAS: SNP or haplotype? 

Theoretically, the haplotype-based GWAS can provide additional benefits compared to SNP-based 

GWAS. Some empirical studies indeed demonstrated that haplotype-based GWAS was able to 

detect loci, which failed to be identified in single SNP-based GWAS (Pryce et al., 2010; Tregouet 

et al., 2009). However, contrasting results were also reported in previous studies regarding the 

performance of haplotype-based and SNP-based GWAS (Lorenz et al., 2010; Sato et al., 2016). 

Whether it is beneficial to use haplotypes as variants in GWAS depends on a case by case basis 

(Long and Langley, 1999). Thus, it is important to know in which situation haplotype-based GWAS 

would (or not) be recommended for association analysis. Several hypotheses have been proposed 

to clarify specific situations in which the haplotype-based approach might be beneficial: 1) 

haplotype-based GWAS can identify rare variants associated with quantitative traits or complex 

diseases (Wang and Lin, 2015); 2) haplotype-based association is expected to provide higher power 

of detection than single marker when the maker density is limited. Especially when medium-

density SNP panels were used, haplotype could be in higher LD with the causative variants (Ding 

et al., 2015); and 3) haplotype-based approach can capture variants associated with structural 

variants (i.e. deletion, duplication, insertion, inversion, translocation etc.) that could not be 

accounted for in SNP-based GWAS (Sato et al., 2016). 

For empirical data, the genetic architecture are complex and causal loci are usually unknow so that 

it’s difficult to be used to illustrate the underlying reasons. Alternatively, simulation is often used 

as a methodology for testing hypothesis as it circumvents the problem that the causal loci are 

usually unknown in reality. However, as the simulated data are usually much simpler and in an 

ideal situation, the results always act as what they simulated. In this PhD work, we tackled the 

questions using not only simulations but also the empirical data from Arabidopsis and wheat (Fig. 

4). The simulation studies were performed to illustrate under which circumstances FH-based 

GWAS outperforms SNP-based GWAS considering the influence of minor allele frequency (MAF) 

and LD (three MAF and LD ranges). The results of simulations revealed that when the MAF is low 

(MAF belong 0-0.1), both FH- and SNP-based GWAS have low power to detect the causal loci, 

but the FH-based approach provided higher power than the SNP-based approach when the LD 
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between causal loci were medium (0.3-0.6). This may suggest that haplotype-based approaches 

could provide potential advantage in detecting rare variants but only in certain scenarios, which is 

partly consistent with the first hypothesis mentioned above. Besides, FH-based GWAS presented 

higher power when the LD between those SNPs used to construct haplotypes is low, while 

haplotypes consisting of SNPs with strong LD could not improve the power compared with the 

SNP-based GWAS. A possible explanation is that haplotypes cannot provide additional 

information when the SNPs are with high LD (Pinnaduwage and Briollais, 2005). 

 

Fig. 4. Outline of the PhD work. 

The second hypothesis is about maker density. As the decay of LD may be rapid in the diverse 

population, high-density markers are usually desired for SNP-based GWAS. In the HYWHEAT 

population, the decay of LD happened even within the genes (Fig. 5). Thus, in our study, numerous 

SNPs (626,245 SNPs obtained from exome capture, 48 per Mb) were used for GWAS. Although 

it was hypothesized that haplotype-based approaches are most beneficial in medium-density 

marker panels, we still observed the additional superiority of haplotype-based GWAS with respect 
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to the explained phenotypic variation of leaf rust. Even though very high-density markers (756,005 

SNPs from WGS, 6,353 per Mb) were used in Arabidopsis, the advantage of haplotype-based 

GWAS was observed again in the empirical data of flowering time. This suggested that despite 

using high-density marker panels, haplotype-based GWAS can still be performed as a 

complementary approach of SNP-based GWAS to find new marker-traits associations. In contrast, 

if the marker density is too low, there might be no difference between SNP-based and haplotype-

based GWAS, because in this situation both approaches have low power (Pinnaduwage and 

Briollais, 2005). 

Testing the third hypothesis is important but challenging because structural variation can frequently 

have functional impact on gene structure or dosage, however, the accurate calling and genotyping 

of structural variants in an individual genome is typically more challenging than those of SNPs 

(Fuentes et al., 2019). Some studies have revealed that haplotype-based GWAS can efficiently 

capture variants linked with the structural variants, such as copy number variants (Zhang et al., 

2012). In our study, the FH-based GWAS found additional new candidate regions associated with 

leaf rust in wheat. Some of the candidate haplotypes are significant due to the cumulative additive 

effect or the local epistatic interaction of the SNPs or both, while others are in more complex 

scenario that the cumulative additive or epistatic effects do not exhibit great difference. This might 

possibly indicate that those haplotypes are linked with structural variants. However, further studies, 

e.g. providing the exact sequences around the significant regions, are needed to tackle the problem. 
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Fig. 5. Linkage disequilibrium among markers for a selected set of nine sequenced genes in the 

HYWHEAT population. 

Functional haplotype and other haplotype based GWAS approaches  

In this study, we have compared the developed FH-based GWAS approach with other two 

commonly used haplotype-based GWAS approaches (sliding-window-based haplotypes and LD-

based haplotypes). We found that FH-based GWAS outperformed the other two approaches in 

terms of the power of detection, i.e. FH-based GWAS detected more significant regions. In 

particular, we found a novel candidate region on chromosome 4 associated with the trait flowering 
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time in Arabidopsis. The possible reasons why FH-based GWAS performed better can be 

summarized as follows: 1) FH-based GWAS constructs haplotypes allowing for non-contiguous 

SNPs, which excludes the noise from trait-unrelated markers locating between the associated SNPs; 

2) Additive as well as local epistatic effects are taken into account for haplotype construction, thus 

the significance of a haplotype effect can be solely a result of significant epistatic effects, or 

cumulative (non-)significant additive and epistatic effects among the SNPs. However, the 

application of FH-based GWAS might be hampered by the computational load which is highly 

dependent on the marker density and the chosen window size. For the data set with very high 

marker density, a mild preselection of SNPs according to their additive effects can greatly reduce 

the computational load for the remaining steps. Determining an appropriate window size is critical 

but challenging. A too small window size can lead to high LD among markers within the window, 

resulting in low efficiency of the FH-based GWAS as shown in our simulation study, while an 

oversized window may yield functional haplotypes spanning large genomic regions with many 

candidate genes. 

In addition to the LD-based haplotype approach considered in this study, many other LD-based 

approaches were used in construction of haplotypes. For example, Haploview is a tool for 

haplotype pattern analysis and visualization, including three LD-based methods to define 

haplotypes (Barrett et al., 2005). The first method defines haplotype blocks using a 95% confidence 

bound for the LD measure D’ (Gabriel et al., 2002). The second method was proposed by Wang 

and coauthors (Wang et al., 2002) and defines LD blocks as a set of contiguous and ordered SNP 

markers without evidence for recombination events that are identified by performing four-gamete 

test between each pairwise SNPs. The third method constructs LD blocks using the algorithm 

‘Solid Spine’, in which the haplotype blocks comprise all the SNPs that are in strong LD with the 

first and last SNPs in the block (Barrett et al., 2005). However, all these three methods fail to 

consider possible correlation among LD blocks. Namely, they do not allow intermediate regions 

of low LD between strongly associated SNP pairs and tend to split them in to small blocks without 

considering the high correlation between LD blocks. In this regard, Kim and coauthors (Kim et al., 

2018) proposed a new method called Big-LD that is implemented in R. This method overcomes 

the problem of interrupting low LD SNPs in the middle of high LD region by an agglomerative 

approach that firstly identify small communities of SNPs using the CLQ-D algorithm (a modified 

version of LD bin construction algorithm CLQ) (Yoo et al., 2015) and then merge these 
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communities with high correlation. However, the haplotype blocks implemented in these LD-based 

approaches are still a subset of contiguous SNPs with high LD, which may lead to redundant 

information included in the haplotype. Besides, as shown in the simulation studies, the strong LD-

based haplotypes did not perform better than single SNPs in GWAS. Therefore, they are not 

expected to outperform our FH-based GWAS approach. 

Another haplotype-based GWAS considered in this study is based on fixed-size sliding window. 

The choice of window size is critical because too small window size results in loss of information 

whereas too large window size may introduce excessive noises. Furthermore, when the fixed 

window size is used for whole genome analysis, it may be problematic because the LD pattern 

changes in different regions. Alternatively, variable-length Markov chains (VLMCs) and variable-

size sliding window avoid the problem of choosing an appropriate window size. The VLMCs 

method proposed by Browning (Browning, 2006) can automatically balance the degree of LD 

between markers and number of tests with maximal information extraction, which improves the 

power of detecting associations. For variable-size sliding window (Li et al., 2007), the maximum 

size of a sliding window is determined by the local haplotype diversity and the sample size. 

Variable-size sliding window should outperform the fixed-size sliding window especially for large-

scale haplotype analyses (such as a whole-genome scan) where the LD patterns are expected to 

vary widely. Additionally, HapConstructor (Abo et al., 2008) constructs multi-loci SNP sets as 

haplotypes through a forward-backward stepwise process. Due to the high computational burden 

of exhaustive process, it has only been applied in the analysis of candidate regions instead of 

haplotype-based GWAS. HaploBlocker (Pook et al., 2019) defines and infers haplotype blocks 

based on linkage instead of the commonly used population-wide measures of LD. Overall, these 

haplotype-based approaches have different advantages and limitations (summarized in Table 2).  
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Table 2. Comparison of different haplotype-based approaches. 

Method  Software/code Advantages Limitations  Reference  

confidence 

interval 

method 

Haploview  simple (using 95% 

confidence bound 

for LD measure D’) 

Not consider 

possible correlation 

among LD block 

Gabriel et 

al., 2002 

four-gamete 

test 

Haploview  Consider evidence 

for recombination 

using four-gamete 

test 

Not consider 

possible correlation 

among LD block 

Wang et 

al., 2002 

Solid-Spine of 

LD 

Haploview  the first and last 

markers are in 

strong LD with all 

intermediate 

markers 

Not consider 

possible correlation 

among LD block 

Barrett et 

al., 2005 

Big-LD R package considering 

possible correlation 

among LD block 

Only construct 

contiguous SNP 

subsets for 

haplotypes 

Kim et al., 

2018 

VLMCs 

(variable-

length Markov 

chains) 

R package Automatically 

balance the degree 

of freedom and 

number of tests 

Problem may 

happen for the data 

with complex LD 

patterns 

Browning, 

2006 

variable-size 

sliding window 

Code in R window size 

depends on the 

basis of local 

haplotype diversity 

as well as sample 

size 

detection power for 

the region with 

relatively low LD is 

low (<40%) 

Li et al., 

2007 

hapConstructor hapConstructor allowing for non-

contiguous SNPs 

for haplotype 

construction  

Only for candidate 

regions owing to 

computational 

burden 

Abo et al., 

2008 

HaploBlocker R package allowing for non-

contiguous SNPs 

for haplotype 

construction  

For phase-unknown 

genotype data, it 

needs additional 

phasing step 

Pook et 

al., 2019 

FH (functional 
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Data mining considering population structure helps to increase the power of GWAS 

The statistical power for QTL detection in association mapping are influenced by several factors 

including population size, population structure, allele frequency and effect size of the causal variant 

(Shin and Lee, 2015). Population structure can decrease power and are prone to cause false-positive 

results. Thus, many methods were proposed to correct for population structure, such as the method 

using the Q matrix (treating population structure as fix effect that can be obtained by genomic 

control (GC), structured association analysis (SA) or principal component analysis (PCA)), the 

MLM using the K (kinship) matrix or the Q+K model (Xu et al., 2017). Currently, although MLM 

has been successfully used to account for population structure, it may also mask true QTLs that are 

strongly correlated with population structure. It has been widely accepted that correcting for 

population structure in GWAS will cause many false negatives for such confounded traits (Huang 

and Han, 2014). For instance, only one gene (ZmCCT) was revealed in the GWAS of flowering 

time using a diverse maize association population (consisting of 500 inbred lines) because 

flowering time is a typical adaptive trait and is always confounded with population structure (Yang 

et al., 2013). Thus, for the traits confounded with population structure, it is not possible to identify 

marker-traits association using GWAS with routine MLM. One of possible solutions is to attempt 

different statistical models to explore the confounded traits. For example, Fixed and random model 

Circulating Probability Unification (FarmCPU) is based on a multiple loci linear mixed model with 

two parts: fixed effect model and a random effect model, controlling false positives and 

simultaneously reducing both false negatives and computing time (Liu et al., 2016), while 

Quantitative Trait Cluster Association Test (QTCAT) overcomes the need for population structure 

correction and controls false positives by accounting for the correlation between the markers 

(Klasen et al., 2016).  

Another reasonable solution is subdividing the diverse population into subpopulations and 

analyzing each subpopulation independently. Taking rice for example, as we known that the 

genetic architecture in rice is quite different between the two subspecies: indica and japonica. Thus, 

Chen and coauthors (Chen et al., 2014) analyzed metabolites within different subpopulation and 

found that many loci under genetic control were distinct in the different subspecies. In our study 
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of leaf rust in the total HYWHEAT population, the distribution of phenotypic values of leaf rust 

severity is not normal (which is desired in our statistical model conducting GWAS) but bimodal, 

and the correlation between genetic and phenotypic distances (rRD,PD) is moderate (r=0.23, P=0.001) 

evaluated using all the parents. In this respect, the strategy is to divide the total hybrid population 

into four different subpopulations based on the bimodal distribution of parents. As expected, rRD,PD 

in subpopulations Inferior75%, Top50% and Inferior50% were decreased compared to that of the total 

population. Subsequently, the GWAS in subpopulations found additional new candidate regions 

that were close to some of the known resistant genes. Notably, the loci that were only detected in 

subpopulation using SNP-based GWAS were found again in FH-based GWAS using the total 

population. A possible reason is that the population structure is estimated using SNPs instead of 

haplotypes, suggesting that haplotype-based GWAS may provide a solution to detect the masked 

QTLs confounded with population structure.  

To summarize, there is no single best GWAS method which is sufficient to dissect the genetic 

architecture of complex traits in all different situations. The FH-based GWAS is a promising and 

powerful complementary approach to the standard SNP-based approach.  
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Outlook 

Despite great efforts to remove undesired noise (such as the different models for GWAS and the 

using of fairly stringent thresholds), false-positive association can still occur in GWAS due to the 

enormous number of statistical test and other unaccounted factors, i.e., small population size, rare 

allele frequency, inaccurate genotype calling at some variants. This calls for an independent 

validation process, which requires substantial amount of time (or labor) and is therefore often 

avoided to be incorporated into GWAS design. Such validation process can be functional validation 

(including genetic complementation, candidate gene over-expression and knock-out etc.) or 

independent validation using a different population. For independent validation, independence and 

choice of the validation population is critical. Firstly, the population size should be taken under 

consideration to provide sufficient statistic power. Otherwise, the significant markers or 

associations may fail to validate just because of the limited power of small population. Secondly, 

the relatedness between validation and detection population should also be cautiously considered 

to avoid the same population structure and genetic background. For instance, if a significant marker 

is detected in a parental population of wheat, and then the marker is validated in their offspring 

(i.e., F1 population or F2 population). In this case, there is high possibility that the two population 

have the same population structure and genetic background, which may lead to apparent validation 

of what is actually a false positive result. A convincing independent validation should be based on 

an appropriate validation with independent pedigree structure. The traditional aim of validation is 

to decrease false positive association and increase the level of trust. Our study revealed that 

validation could also benefit from narrowing down the candidate regions because the LD phase 

was different between detection and validation population, which would accelerate the speed of 

searching candidate genes. Thus, we suggest to incorporate validation process into future GWAS 

design. 
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Summary 

In facing the challenge of meeting the demand of a growing population for sufficient food in times 

of climate change, plant breeders are striving to develop improved crops with higher productivity 

and better adaptability. A deeper understanding of the genetic basis for important traits is the key 

to marker-assisted selection (MAS), which allows efficient crop improvement. Currently, genome-

wide association mapping (GWAS) based on single nucleotide polymorphisms (SNPs) is the most 

commonly used method to study the genetic architecture of complex traits. However, a single SNP 

explains only a small proportion of the genetic variation. In addition, epistatic interactions, which 

play a critical role in the regulation of many complex traits in plants, are difficult to detect by single 

SNP-based GWAS. Haplotype-based GWAS is a good alternative, since haplotypes can be used to 

take into account local epistasis between the SNPs. Therefore, a functional haplotype-based GWAS 

(FH-based GWAS) was developed in the context of this PhD thesis, which selects SNPs based on 

additive and epistatic effects in order to construct haplotypes. To test the performance of the FH-

based GWAS, simulation studies were performed. These studies showed that FH-based GWAS 

outperformed SNP-based GWAS at a higher minor allele frequency (MAF) and lower linkage 

disequilibrium (LD) between the SNPs. Secondly, empirical data on the flowering time of the 

model plant Arabidopsis was used to compare FH-based GWAS with other approaches, including 

SNP-based and two further haplotype-based GWAS. Using FH-based GWAS, all candidate regions 

were identified that were also detected in SNP-based and two other haplotype-based approaches. 

Besides, a novel region on chromosome 4 was detected exclusively by FH-based GWAS. Thirdly, 

the FH-based GWAS was tested with data from the important crop wheat to study resistance to leaf 

rust, one of the most widespread diseases of wheat. In addition to the region found by SNP-based 

GWAS, new candidate regions were discovered by the FH-based GWAS. Furthermore, an 

independent validation showed that the predictabilities with FH-based GWAS was nearly doubled 

compared to SNP-based GWAS. In conclusion, FH-based GWAS offers a higher detection power 

compared to the SNP-based approach and can also improve the predictability and accuracy of MAS. 

Consequently, FH-based GWAS is a powerful approach to increase the selection gain in breeding.  
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Zusammenfassung 

Angesichts der Herausforderung, den Bedarf einer wachsenden Bevölkerung nach genügend 

Nahrungsmittel in Zeiten des Klimawandels zu decken, streben Pflanzenzüchter danach, 

verbesserte Nutzpflanzen mit höherer Produktivität und besserer Anpassungsfähigkeit zu 

entwickeln. Ein vertieftes Verständnis der genetischen Basis wichtiger Merkmale ist der Schlüssel 

zur markergestützten Selektion (MAS), die es erlaubt Nutzpflanzen effizient zu verbessern. 

Gegenwärtig ist die genomweite Assoziationskartierung (GWAS), die auf einzelnen 

Nukleotidpolymorphismen (SNPs) basiert, die am häufigsten verwendete Methode, um die 

genetische Basis komplexer Merkmale zu untersuchen. Ein einziger SNP erklärt jedoch nur einen 

kleinen Teil der genetischen Variation. Hinzu kommt, dass epistatische Interaktionen, die bei der 

Regulation vieler komplexer Merkmale in Pflanzen eine entscheidende Rolle spielen, durch eine 

einzelne SNP-basierte GWAS nur schwer erfasst werden können. Alternativ bietet sich eine 

haplotypbasierte GWAS an, da durch Haplotypen die lokale Epistasie zwischen SNPs 

berücksichtigt werden kann. Daher wurde im Rahmen dieser Doktorarbeit eine funktionelle 

haplotypbasierte GWAS (FH-basierte GWAS) entwickelt, welche SNPs auf der Grundlage 

additiver und epistatischer Effekte auswählt, um Haplotypen zu konstruieren. Um die 

Leistungsfähigkeit der FH-basierten GWAS zu testen, wurden Simulationsstudien durchgeführt. 

Diese zeigen, dass GWAS auf FH-Basis bei einer höheren Frequenz kleinerer Allele (MAF) und 

eines geringeren Kopplungsungleichgewichts (LD) zwischen den SNPs deutlich besser 

abschneidet als GWAS auf SNP-Basis. Zweitens wurde mittels empirischer Daten zum 

Blühzeitpunkt der Modellpflanze Arabidopsis die FH-basierte GWAS mit anderen Ansätzen 

verglichen, zu denen die SNP-basierte und zwei weitere haplotypische GWAS gehören. Mittels 

FH-basierter GWAS wurden alle Kandidatenregionen identifiziert, die auch in SNP-basierten und 

den zwei anderen haplotyp-basierten Ansätzen erkannt wurden. Außerdem wurde eine neue Region 

auf Chromosom 4 ausschließlich durch FH-basierte GWAS nachgewiesen. Drittens wurde die FH-

basierte GWAS mit Daten der wichtigen Kulturpflanze Weizen getestet, um die Resistenz gegen 

Blattrost, eine der am weitesten verbreiteten Krankheiten von Weizen, zu untersuchen.  Zusätzlich 

zu der Region, die durch die SNP-basierte GWAS gefunden wurde, konnte durch die FH-basierte 

GWAS neue Kandidatenregionen entdeckt werden. Darüber hinaus ergab eine unabhängige 

Validierung, dass die Vorhersagbarkeiten mit FH-basierte GWAS im Vergleich zur SNP-basierten 
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GWAS nahezu verdoppelt werden konnten. Zusammenfassend lässt sich sagen, dass FH-basierte 

GWAS im Vergleich zum SNP-basierten Ansatz eine höhere Detektionskraft bietet und auch die 

Vorhersagbarkeit und Genauigkeit der MAS verbessern kann. Folglich ist FH-basierte GWAS ein 

leistungsfähiger Ansatz, um den Selektionsgewinn in der Züchtung zu steigern.  
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