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Abstract: The article discusses the task of automatic labelling of texts to improve the efficiency of processing 
unstructured text data. An overview of existing software products for solving the problem is given, showing 
the need to develop its own solution specialized in the processing of Russian-language texts. The problem of 
assigning labels is considered from a mathematical point of view as a problem of multilabel classification, 
with corresponding mathematical models analysed and described. Based on this, models, algorithms, and a 
software product for automatically assigning labels to texts have been developed. Numerical experiments 
were carried out that showed the universality of the method and the possibility of application both in non-
specialized and specialized fields, in particular, for processing medical documents.

1 INTRODUCTION 

Information systems are becoming more and more 
loaded and complex year after year, and the volume 
of information is growing at a tremendous rate. 
According to experts [1], by 2025 the volume of 
accumulated information will reach 175 zettabytes 
compared to 33 zettabytes in 2018 (1 zettabyte = 1012 
gigabytes = 1 trillion gigabytes). 

At the same time, most of the information is 
stored in unstructured form, mainly, as texts. In 
particular, among medical documents, structured data 
account for up to 20% of all available information [2]. 

In such circumstances, natural language 
processing tools are needed, since structuring the 
accumulated data significantly increases the 
efficiency of their use. 

In working with text information, several large 
tasks may be distinguished, such as categorization 
task, identification of authorship, extraction of 
keywords and sentences, extraction of emotional 
context etc. 

This article discusses the task of automatic 
assigning labels to texts, i.e., the so-called text 
tagging task, where each document from the corpus 
(set of texts) is mapped to tags (keywords, labels) 

from a certain set, helping to determine the content or 
purpose of the considered document. 

Automatic labelling of texts is an urgent problem, 
since its implementation is necessary when solving 
problems in a variety of areas: in recommendation 
systems, electronic document management, in 
knowledge bases, etc. Text tagging tasks can vary 
significantly in specific cases and depend on the 
purpose, subject area, type, quantity and format of 
documents, language, etc. Accordingly, the methods 
of solving this problem can vary, making the choice 
of the appropriate method even more complicated. 

The second part of the article presents related 
works in the field of text tagging; the third part is 
devoted to setting the task; the fourth part describes 
the proposed solution; results are discussed in part 5, 
and the sixth part contains the main conclusions. 

2 RELATED WORKS 

The relevance of the text tagging task contributes to 
its study by many researchers. As a result, several 
methods have been developed to solve it. 

TextRank [3] is an adaptation of the PageRank [4] 
algorithm developed by Google to rank web pages. 
PageRank, in general, can be used to rank any group 
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of objects represented as a graph. TextRank converts 
the text into a graph and extracts keywords or 
sentences from it. 

LDA (Dirichlet Latent Allocation) [5] uses the 
concept of hidden groups to determine text topics. It 
is assumed that each document may address several 
topics, and the appearance of a word in the text is 
related to one of these topics. In this way, labels can 
be assigned to the text corresponding to the themes of 
the package. A modification of LDA has also been 
developed to work with bigrams (two-word      
phrases) [6]. 

The RAKE (Rapid Automatic Keyword 
Extraction) [7] algorithm is based on the observation 
that keywords often consist of several words and, as 
a rule, do not include stop words (service parts of 
speech and the most used words). RAKE extracts 
phrases from the text using stop words as delimiters, 
and then counts estimates for them depending on how 
often words from these combinations are found in the 
document. Combinations with the highest scores are 
selected as keywords. 

An algorithm has also been developed that 
simultaneously uses graph representation of text, 
LDA and RAKE [8]. 

In the application software market, there are many 
finished products for automatic tagging of texts. 
 Dcipher Analytics [9] is a set of analytical tools

for working with data, including text analysis.
As the main areas of its work, Dcipher
identifies Data Mining in the field of social
media, automatic image processing, analysis of
customer opinions, analysis of processes in the
enterprise, etc. The platform provides the
ability to build pipelines of data processing
from a set of ready-made operations: importing
data, collecting statistics, cleaning, and
filtering data, training a model, etc. [9]

 MonkeyLearn [10] provides a service for
automatic analysis of text data, such as
automatic tagging, routing, and prioritization
of requests from customers, analysis of user
reviews, determination of customer mood, etc.
The platform provides a comprehensive set of
ready-made models from the built-in set [10].

 TwinWord [11] is a set of tools for developing
texts based on the extraction and analysis of
keywords, including analysis of the emotional
connotation of the text, classification of texts,
recommendation systems [11].

The main disadvantage of most such products is 
low flexibility in configuring the models to be used. 
Most often, only ready-made templates can be 

employed. Almost all existing solutions are close-
ended, most of them have to be purchased for a fee, 
and, as a rule, they require an additional 
configuration. Additionally, there are practically no 
ready-made solutions focused on Russian-language 
texts. 

All solutions available on the market are SaaS-
based and provide APIs for integration into their own 
products. 

A comparison of the software product 
characteristics described above is shown in Table 1. 

Table 1: Product Comparison Results. 

Dcipher 
Analytics 

Monkey 
Learn 

TwinWord 

Russian 
language 

— — — 

Documentation — Sufficient Not 
sufficient 

Price From 
$3600 per 

year + 
trial 

From 
$3600 per 

year + 
trial 

Depends 
on the 

number of 
requests 

Model 
Flexibility 

High Low Low 

Usability Low High High 

As a result of the analysis of the current state of 
research and software solutions in this field, it may be 
concluded that to fully support Russian-language 
texts and the ability to flexibly customize models, it 
is necessary to develop specific targeted solutions to 
the text tagging problem with the final 
implementation in the form of software. 

3 PROBLEM DEFINITION 

The product required for development should allow 
to create, edit, and delete text documents, label them, 
and merge them into collections. When new 
documents are added to existing collections, they 
must be automatically labelled (Figure 1). 

Figure 1: Task Setting. 

Assigning labels to texts fits the classification task 
definition: given a set of classified objects 
𝑋 = 𝑥1, … , 𝑥𝑛 (i.e. corpus of texts) and a set of 
classes 𝐶 = {𝑐1, … , 𝑐𝑚} (i.e., label set). Objects and 
classes are related by a Φ:𝑋 → 𝐶 relationship. 
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Labelling in this formulation is suitable, for 
example, for categorizing documents. In this way, 
news may be classified ascribing each one of them 
into one of the categories such as «society», 
«politics», «sports», etc. 

However, labelling in practice usually implies that 
documents are assigned more than one label. 
Returning to the above example, the same news item 
can simultaneously have labels «politics» and 
«economy». 

Such a relationship between objects and classes 
may be described as follows (1): 

Φ: 𝑋 × 𝐶 → 𝑌 = {0; 1}|𝐶|, (1)
where 𝑦𝑖𝑗 = 1 means that the object 𝑥𝑖 belongs to 

the class 𝑐𝑗. 
This describes the task of multilabel 

classification, i.e., such classification when one 
object can belong to several classes [12]. 

Thus, the task of text tagging is to construct a 
classifier (2): 

Φ′: 𝑋 × 𝐶 → 𝑌 = {0; 1}|𝐶|, (2) 
where X = {𝑥1, … , 𝑥𝑛} is a corpus of documents, 

𝐶 = {𝑐1, … , 𝑐𝑚} is as set of labels, and y𝑖𝑗 = 1 means 
that the label c𝑗 assigned to the document x𝑖, while Φ 
is the desired dependency between documents and 
labels. 

4 SUGGESTED SOLUTION 

There are several approaches to solving the problem 
of multilabel classification, which, in fact, are 
approaches with training potential.  
 Reduction to binary classification [13]: its own

binary classifier is built for each label
separately, and the final set of labels for the
document is created by determining which of
these classifiers will give a positive result. It
should be noted that such a solution loses some
information, since correlations between labels
are not taken into account.

 Reduction to multiclass classification [14]: in
this case, label sets assigned to documents are
perceived as separate classes. For example, for
a set of two labels, 
𝐶 = {[0,0], [0,1], [1,0], [1,1]} will be 
considered classes. A clear disadvantage of this 
approach is the large computational costs 
(exponential complexity) and the tendency to 
retrain, since not all possible sets of labels may 
occur in test data. 

 Adaptation of multiclass classification methods
is based on multilabel variations of the methods

of kNN (ML-kNN [15]), decision trees 
(modification of the algorithm C4.5 [16]), and 
artificial neural networks (BP-MLL [17]). 

As part of this work, adapted methods are 
considered because they take into account the 
correlation between assigned labels and are almost as 
computation-efficient as their multiclass 
counterparts. 

In general, as with the other cases of using 
methods with training potential, the proposed 
solution can be divided into the following steps 
(Figure 2): 
 preparation of data – the corpus of documents;
 feature extraction;
 model training;
 labelling new documents using a trained model.

Figure 2: Algorithm of Text Tagging Task Solving as 
Multilabel Classification. 

Let us take a closer look at each step. 

4.1 Preprocessing 

Among the obvious difficulties while solving this 
problem, one can distinguish the congestion of any 
text with service parts of speech: prepositions, 
conjunctions, particles, etc. They do not significantly 
affect the formation of the text topic but prevent the 
selection of keywords by frequency. Therefore, it is 
necessary to pre-process the text which is called 
normalization. 

It is necessary to carry out lemmatization [18] – to 
bring all words to lemmas, their initial forms. For 
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example, for the word «stimulates», the lemma will 
be «stimulate», for «analysing» – «analyse». 

An alternative to lemmatization is stemming – 
finding the basis (stem) of the word. For example, for 
the word «regulated», the stem will be «regul» which 
will allow to find such word forms as «regulate», 
«regulating», «regulation», etc. 

The text normalization algorithm also includes the 
removal of punctuation signs and special characters, 
tokenization (division into word lists), the removal of 
stop words (using prepared in advance stop word 
lists) and the bringing of words to initial forms (using 
prepared in advance dictionaries). 

Thus, the normalization of the text may happen 
according to the following algorithm (Figure 3): 

Figure 3: Text Corpus Preprocessing Algorithm. 

4.2 Feature Extraction 

TF-IDF model is used to extract features from pre-
processed text corpus [19]. 

TF (Term Frequency) is the ratio for the number 
of occurrences of a given word to the total number of 
words in the text. The importance of the word is 
evaluated by the following (3): 

𝑡𝑓(𝑡, 𝑑) =
𝑛𝑡

∑ 𝑛𝑘𝑘
(3)

where 𝑛𝑡 is the number of occurrences of the word 
𝑡 in the document 𝑑, and the sum in the denominator 
is the total number of words in the document. 

IDF (Inverse Document Frequency) is an 
inversion of the frequency with which a word occurs 
in body texts. Accounting for this indicator reduces 
the weight of words often used. Each word within a 
document collection has a value (4): 

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
|𝐷|

|𝑑𝑖∈𝐷:𝑡∈𝑑𝑖|
(4) 

where |𝐷| is the total number of documents in 
collection 𝐷, and the denominator is the number of 
documents in the collection in which the word 𝑡 
appears. 

The TF-IDF measure is calculated as the product 
of the multipliers (5): 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ⋅ 𝑖𝑑𝑓(𝑡, 𝐷) (5) 

4.3 Learning Algorithms 

To train models in the work, the algorithms ML-kNN, 
Decision Tree and Random Forest were used. 

4.3.1 ML-kNN 

ML-kNN is a modification of the kNN method for
multilabel classification. ML-kNN first determines
the k nearest neighbours of the object. For those, it is
already known which classes they belong to. Then,
based on the maximum a posteriori estimation
(MAP), it determines which labels to assign to the
object in question.

The object 𝑥 from the test sample with the label 
set 𝑌𝑥 is considered. Let 𝑦𝑥⃗⃗  ⃗ be the label vector for 𝑥, 
where the 𝑙-th component 𝑦𝑥⃗⃗  ⃗(𝑙) is 1 if the label 𝑙 is 
assigned to the object 𝑥, that is, if 𝑙 ∈ 𝑌𝑥, and 0 
otherwise. Let 𝑁(𝑥) be the set of indices 𝑘 closest to 
𝑥 neighbors from the training sample. 

Then, knowing a set of tags of these neighbours, 
we can define a membership counting vector (6): 

𝐶𝑥
⃗⃗⃗⃗ (𝑙) = ∑ 𝑦𝑎⃗⃗⃗⃗ (𝑙), 𝑙 ∈ 𝑌𝑎∈𝑁(𝑥)  (6)

That is, this vector counts the number of 
neighbours labelled 𝑙. 

Let the event 𝐻1
𝑙  indicate that the object in 

question has the label 𝑙, and 𝐻0
𝑙  indicates that it does 

not. Let the event 𝐸𝑗
𝑙 , 𝑗 ∈ {0,… , 𝑘} show that among

the 𝑘 closest neighbours of object 𝑥 there are exactly 
𝑗 objects with the label 𝑙. 

Then, based on the membership calculation vector 
and using the maximum a posteriori estimation, it is 
possible to determine the vector of labels 𝑦𝑥⃗⃗  ⃗  for 𝑙 ∈
𝑌 in this way: 

𝑦𝑥⃗⃗  ⃗(𝑙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈{0,1}𝑃 (𝐻𝑏
𝑙 |𝐸

𝐶𝑥⃗⃗ ⃗⃗  (𝑙)
𝑙 ) (7)
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Using Bayes’ theorem, this expression can be 
brought to the form: 

𝑦𝑥⃗⃗  ⃗(𝑙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈{0,1}

𝑃(𝐻𝑏
𝑙 )⋅𝑃(𝐸

𝐶𝑥⃗⃗ ⃗⃗  ⃗(𝑙)
𝑙 |𝐻𝑏

𝑙 )

𝑃(𝐸
𝐶𝑥⃗⃗ ⃗⃗  ⃗(𝑙)
𝑙 )

(8) 

Probability 𝑃 (𝐸
𝐶𝑥⃗⃗ ⃗⃗  (𝑙)
𝑙 ) = 1, therefore: 

𝑦𝑥⃗⃗  ⃗(𝑙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈{0,1}𝑃(𝐻𝑏
𝑙 ) ⋅ 𝑃(𝐸

𝐶𝑥⃗⃗ ⃗⃗  (𝑙)
𝑙 |𝐻𝑏

𝑙 )  (9) 

Probabilities 𝑃(𝐻𝑏
𝑙 ) and 𝑃(𝐸

𝐶𝑥⃗⃗ ⃗⃗  (𝑙)
𝑙 |𝐻𝑏

𝑙 ) can be 
calculated on a training sample. 

4.3.2 Decision Tree 

The C4.5 algorithm uses the concepts of entropy and 
information gain criteria to determine an attribute for 
better splitting a training set into a tree. 

Let be given a training set 𝑆 containing 𝑚 
attributes and 𝑛 objects belonging to 𝑘 classes. The 
tree is built from the root node to the leaves, that is, 
from top to bottom. 

In the first step, an empty tree is built, consisting 
only of a root that includes the entire set 𝑆. 

Next, the root is split into subsets and child nodes 
are defined. To do this, one of the attributes is selected 
and a rule is formed that breaks the set of objects into 
𝑝 subsets, where 𝑝 is the number of unique values of 
the selected attribute. The procedure is then repeated 
for each of the received subsets and the child nodes. 
The procedure continues until the stop condition is 
reached. 

Let 𝑁(𝑐𝑗 , 𝑆) denote the number of objects of class
𝑐𝑗 in the set 𝑆, and 𝑁(𝑆) denote the total number of 
examples in the set 𝑆. Then, the relative frequency of 
class 𝑐𝑗 in the set 𝑆 can be determined: 

𝑝(𝑐𝑗) =
𝑁(𝑐𝑗,𝑆)

𝑁(𝑆)
(10)

Variable 
𝐻(𝑆) = −∑ [𝑝(𝑐𝑖) ⋅ 𝑙𝑜𝑔 (𝑝(𝑐𝑖))]

𝑘
𝑖=1  (11)

is an entropy of a set 𝑆 and shows the average 
amount of information needed to determine an object 
class from that set. 

After dividing the set by attribute A, this estimate 
can be written as: 

𝐻𝐴(𝑆) = ∑ [𝑝(𝑐𝑖) ⋅ 𝐻(𝑆𝑖)]
𝑘
𝑖=1 , (12)

where 𝑆𝑖  is the 𝑖-th node that was obtained during 
the partition. Then the best split attribute can be 
selected using the information gain criterion: 

𝐼𝐺(𝐴) = 𝐻(𝑆) − 𝐻𝐴(𝑆)                   (13)
For partitioning, an attribute is selected, for which 

the gain in information is the greatest. 
If an empty node is formed during the split 

process, it becomes a sheet, and a class which more 

often was met among objects of the parent node G is 
associated with it. 

The above formulas apply to discrete attributes. In 
the case of a continuous attribute having 𝑛 different 
values, the set of its values is divided into 𝑛 subsets 
using (𝑛 − 1) threshold values. Using the 
information gain criterion, the threshold value that 
gives the largest information gain is selected. 

To use the C4.5 algorithm for multilabel 
classification, the entropy count is changed as 
follows: 

𝑘𝐻′(𝑆) = − ∑𝑖=1(𝑝𝑖 + 𝑞𝑖),               (14)
where 𝑝𝑖 = 𝑝(𝑐𝑖) ⋅ log 𝑝(𝑐𝑖), 𝑞𝑖 = 𝑞(𝑐𝑖) ⋅ log 𝑞(𝑐𝑖),

 𝑞(𝑐𝑖) = 1 − 𝑝(𝑐𝑖). 

4.3.3 Random Forest 

The standard implementation of the random forest 
method with trees described in paragraph 4.3.2 was 
used. 

For a training sample 𝑆 of size 𝑁 with 𝑀 
attributes, a random forest is described as: 

{ℎ(𝑥, 𝛩𝑘), 𝑘 = 1,… },  (15)
where ℎ(𝑥, Θ𝑘) is a separate tree built on a subset

Θ𝑘 of the training set. 
The forest building algorithm includes the 

following steps: 
1) From the training sample 𝑆, a subset Θ𝑘 of size

𝑁 is randomly generated with repetitions: some
objects will be included more than once, some
will not be included at all.

2) On the obtained sub-sample, a tree ℎ(𝑥, Θ𝑘) is
built using not the entire set of features, but
only 𝑚 randomly selected.

Thus, several trees are built. Their optimal 
number is selected to minimize classification errors 
on the test sample. 

5 RESULTS 

The above algorithms were used to implement the 
software TextTagger [20], designed to automatically 
assign labels to texts. 

The machine learning module is implemented 
using Python and the main libraries for machine 
learning and NLP (nltk, sclearn, etc).  The business 
logic module is implemented on the .NetCore 
platform, while the web client is developed using the 
Vue framework. 

During operation, the user generates collections 
consisting of text documents. The first added 
documents are labelled manually, and later this initial 
classification will be used to train a model. 
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After adding several documents to the collection, 
one of the above models (ML-kNN, Decision Tree or 
Random Forest) can be trained. The user selects the 
model manually. 

When a new document is added to a collection 
with a trained model, the system automatically 
prompts to assign the most appropriate labels to it. 

Figure 4 and Figure 5 show the main steps of 
working with the system using the example of 
accumulating a collection of medical documents. 

Figure 4: Collection Overview Page. 

Figure 5: Adding a New Document with the System 
Proposed Labels. 

Based on experimental data, the quality of the 
algorithms was analysed. Accuracy (𝐴), 
precision (𝑃), recall (𝑅) and F1-score (𝐹1) are used 
as quality metrics [21]. 

𝐴 =
1

𝑛𝑖
∑

|𝑌𝑖∩𝑍𝑖|

|𝑌𝑖∪𝑍𝑖|
𝑛
𝑖=1 , (16)

𝑃 =
1

𝑛𝑖
∑

|𝑌𝑖∩𝑍𝑖|

|𝑍𝑖|
𝑛
𝑖=1 , (17)

𝑅 =
1

𝑛𝑖
∑

|𝑌𝑖∩𝑍𝑖|

|𝑌𝑖|
𝑛
𝑖=1 , (18)

𝐹 =
1

𝑛𝑖
∑

2⋅|𝑌𝑖∩𝑍𝑖|

|𝑌𝑖|+|𝑍𝑖|
𝑛
𝑖=1 , (19)

where 𝑌𝑖 = {0; 1}𝑘 are the labels assigned to the
document 𝑥𝑖 (actual) and 𝑍𝑖 = {0; 1}𝑘  are the labels
predicted by the model. 

The closer the scores are to 1, the higher the 
quality of the model. 

Several prepared in advance and labelled datasets 
from different subject areas were used to conduct 
quality analysis of algorithms: 

Set A: abstracts from literature texts; labels are 
age groups to which texts are oriented (for children, 
for adults, for children and adults at the same time). 
This dataset consists of 75 documents, the labels are 
evenly distributed. 

Set B: synopsis of films; tags are their genres 
(drama, comedy, etc). This dataset consists of 50 
documents, the labels are unevenly distributed. 

Set C: annotations to articles from the Russian 
Medical Journal; labels are medical concepts referred 
to in the articles (cognitive impairment, therapy, etc. 
This dataset consists of 56 documents, the labels are 
unevenly distributed. 

The quality metrics for the Decision Tree, 
Random Forest and ML-kNN algorithms are shown 
in Table 2. 

Table 2: Quality Metrics. 

Method Data 
set 

A P R F1 

DT A 0.94 0.97 0.97 0.96 
B 0.27 0.50 0.41 0.38 
C 0.36 0.46 0.42 0.41 

RF A 0.78 0.86 0.80 0.81 
B 0.25 0.65 0.27 0.36 
C 0.23 0.27 0.26 0.26 

ML-kNN A 0.94 0.94 1.0 0.96 
B 0.32 0.56 0.38 0.42 
C 0.60 0.69 0.64 0.64 

The quality of the models used depends 
significantly on the specific training data, especially 
on the uniformity of the distribution by labels. 
However, overall quality allows models to be used to 
solve some of the practical problems or as a basis for 
further development and improvement. 
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Random Forest (metric F1 on average in three 
datasets 0.47) generally showed itself worse than 
Decision Tree (0.58), and Multilabel KNN (0.67) 
showed the best result. 

In the future, the quality can be increased, for 
example, due to heuristics. On different types of data, 
different models work with different efficiencies. It 
makes sense to identify the appropriate patterns and 
select the most suitable models for specific data sets, 
based on the uniformity of the data, the volume of 
texts and other characteristics of the cases. 

Even though the solution is initially aimed at 
working with Russian-speaking corpuses, it can be 
applied to other languages as well, in particular, to 
English. 

Considering further improvement of quality, the 
product can be used in decision support systems or be 
integrated into knowledge bases. It seems promising 
to use it to mark-up texts of medical topics for 
highlighting the main concepts in them, which can be 
used to structure texts and further process them. One 
of the methods of application planned by the authors 
is to highlight keywords in the texts of clinical 
recommendations to further structure them for use in 
clinical decision support systems. 

6 CONCLUSIONS 

The problem of automatically assigning labels to texts 
is current, and its solution is in demand in many tasks 
of processing unstructured texts. The analysis of 
methods and existing software products for the text 
tagging task showed the lack of ready-made tools for 
processing Russian-language texts and the need to 
solve the text tagging problem with the final 
implementation in the form of software.  

As a solution, it is proposed to consider text 
tagging as a problem of multilabel classification. A 
comparison of the known methods of solving the 
problem of multilabel classification was made, and, 
subsequently, the following methods with training 
were selected: ML-kNN, Decision Tree (ML-C4.5), 
and Random Forest. Additionally, TF-IDF method 
was included to extract features. 

Based on the selected models, algorithms have 
been developed for automatically assigning labels to 
texts, and then implemented as the TextTagger 
software product. 

The computational experiment showed a fairly 
high efficiency of the developed models for         ML-
kNN (metric F1-Measure 0.67) and the average for 
Decision Tree (0.58) and Random Forest (0.47), 
which indicates the possibility of their use in practice. 

Further quality improvement is possible by refining 
the process of normalizing texts and introducing 
heuristics to select the best possible model for a 
specific data set. 

The developed software product is universal, 
applicable in various subject areas for processing 
texts in Russian, and applicable to other languages. 
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