
Models and Algorithms for Automatic Labelling of Unstructured
Texts (Text Tagging)

Gyuzel Shakhmametova and Ilshat Ishmukhametov
Computer Science and Robotics Department, Ufa State Aviation Technical University, K. Marks Str. 12, 450008 Ufa,

Russian Federation
shakhgouzel@mail.ru, mail@ishmukhamet.xyz

Keywords: Automatic Labelling of Texts, Unstructured Text, Text Tagging, Multilabel Classification, Keywords
Extraction.

Abstract: The article discusses the task of automatic labelling of texts to improve the efficiency of processing
unstructured text data. An overview of existing software products for solving the problem is given, showing
the need to develop its own solution specialized in the processing of Russian-language texts. The problem of
assigning labels is considered from a mathematical point of view as a problem of multilabel classification,
with corresponding mathematical models analysed and described. Based on this, models, algorithms, and a
software product for automatically assigning labels to texts have been developed. Numerical experiments
were carried out that showed the universality of the method and the possibility of application both in non-
specialized and specialized fields, in particular, for processing medical documents.

1 INTRODUCTION

Information systems are becoming more and more
loaded and complex year after year, and the volume
of information is growing at a tremendous rate.
According to experts [1], by 2025 the volume of
accumulated information will reach 175 zettabytes
compared to 33 zettabytes in 2018 (1 zettabyte = 1012
gigabytes = 1 trillion gigabytes).

At the same time, most of the information is
stored in unstructured form, mainly, as texts. In
particular, among medical documents, structured data
account for up to 20% of all available information [2].

In such circumstances, natural language
processing tools are needed, since structuring the
accumulated data significantly increases the
efficiency of their use.

In working with text information, several large
tasks may be distinguished, such as categorization
task, identification of authorship, extraction of
keywords and sentences, extraction of emotional
context etc.

This article discusses the task of automatic
assigning labels to texts, i.e., the so-called text
tagging task, where each document from the corpus
(set of texts) is mapped to tags (keywords, labels)

from a certain set, helping to determine the content or
purpose of the considered document.

Automatic labelling of texts is an urgent problem,
since its implementation is necessary when solving
problems in a variety of areas: in recommendation
systems, electronic document management, in
knowledge bases, etc. Text tagging tasks can vary
significantly in specific cases and depend on the
purpose, subject area, type, quantity and format of
documents, language, etc. Accordingly, the methods
of solving this problem can vary, making the choice
of the appropriate method even more complicated.

The second part of the article presents related
works in the field of text tagging; the third part is
devoted to setting the task; the fourth part describes
the proposed solution; results are discussed in part 5,
and the sixth part contains the main conclusions.

2 RELATED WORKS

The relevance of the text tagging task contributes to
its study by many researchers. As a result, several
methods have been developed to solve it.

TextRank [3] is an adaptation of the PageRank [4]
algorithm developed by Google to rank web pages.
PageRank, in general, can be used to rank any group

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

69

of objects represented as a graph. TextRank converts
the text into a graph and extracts keywords or
sentences from it.

LDA (Dirichlet Latent Allocation) [5] uses the
concept of hidden groups to determine text topics. It
is assumed that each document may address several
topics, and the appearance of a word in the text is
related to one of these topics. In this way, labels can
be assigned to the text corresponding to the themes of
the package. A modification of LDA has also been
developed to work with bigrams (two-word
phrases) [6].

The RAKE (Rapid Automatic Keyword
Extraction) [7] algorithm is based on the observation
that keywords often consist of several words and, as
a rule, do not include stop words (service parts of
speech and the most used words). RAKE extracts
phrases from the text using stop words as delimiters,
and then counts estimates for them depending on how
often words from these combinations are found in the
document. Combinations with the highest scores are
selected as keywords.

An algorithm has also been developed that
simultaneously uses graph representation of text,
LDA and RAKE [8].

In the application software market, there are many
finished products for automatic tagging of texts.
 Dcipher Analytics [9] is a set of analytical tools

for working with data, including text analysis.
As the main areas of its work, Dcipher
identifies Data Mining in the field of social
media, automatic image processing, analysis of
customer opinions, analysis of processes in the
enterprise, etc. The platform provides the
ability to build pipelines of data processing
from a set of ready-made operations: importing
data, collecting statistics, cleaning, and
filtering data, training a model, etc. [9]

 MonkeyLearn [10] provides a service for
automatic analysis of text data, such as
automatic tagging, routing, and prioritization
of requests from customers, analysis of user
reviews, determination of customer mood, etc.
The platform provides a comprehensive set of
ready-made models from the built-in set [10].

 TwinWord [11] is a set of tools for developing
texts based on the extraction and analysis of
keywords, including analysis of the emotional
connotation of the text, classification of texts,
recommendation systems [11].

The main disadvantage of most such products is
low flexibility in configuring the models to be used.
Most often, only ready-made templates can be

employed. Almost all existing solutions are close-
ended, most of them have to be purchased for a fee,
and, as a rule, they require an additional
configuration. Additionally, there are practically no
ready-made solutions focused on Russian-language
texts.

All solutions available on the market are SaaS-
based and provide APIs for integration into their own
products.

A comparison of the software product
characteristics described above is shown in Table 1.

Table 1: Product Comparison Results.

Dcipher
Analytics

Monkey
Learn

TwinWord

Russian
language

— — —

Documentation — Sufficient Not
sufficient

Price From
$3600 per

year +
trial

From
$3600 per

year +
trial

Depends
on the

number of
requests

Model
Flexibility

High Low Low

Usability Low High High

As a result of the analysis of the current state of
research and software solutions in this field, it may be
concluded that to fully support Russian-language
texts and the ability to flexibly customize models, it
is necessary to develop specific targeted solutions to
the text tagging problem with the final
implementation in the form of software.

3 PROBLEM DEFINITION

The product required for development should allow
to create, edit, and delete text documents, label them,
and merge them into collections. When new
documents are added to existing collections, they
must be automatically labelled (Figure 1).

Figure 1: Task Setting.

Assigning labels to texts fits the classification task
definition: given a set of classified objects
𝑋 = 𝑥1, … , 𝑥𝑛 (i.e. corpus of texts) and a set of
classes 𝐶 = {𝑐1, … , 𝑐𝑚} (i.e., label set). Objects and
classes are related by a Φ:𝑋 → 𝐶 relationship.

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

70

Labelling in this formulation is suitable, for
example, for categorizing documents. In this way,
news may be classified ascribing each one of them
into one of the categories such as «society»,
«politics», «sports», etc.

However, labelling in practice usually implies that
documents are assigned more than one label.
Returning to the above example, the same news item
can simultaneously have labels «politics» and
«economy».

Such a relationship between objects and classes
may be described as follows (1):

Φ: 𝑋 × 𝐶 → 𝑌 = {0; 1}|𝐶|, (1)
where 𝑦𝑖𝑗 = 1 means that the object 𝑥𝑖 belongs to

the class 𝑐𝑗.
This describes the task of multilabel

classification, i.e., such classification when one
object can belong to several classes [12].

Thus, the task of text tagging is to construct a
classifier (2):

Φ′: 𝑋 × 𝐶 → 𝑌 = {0; 1}|𝐶|, (2)
where X = {𝑥1, … , 𝑥𝑛} is a corpus of documents,

𝐶 = {𝑐1, … , 𝑐𝑚} is as set of labels, and y𝑖𝑗 = 1 means
that the label c𝑗 assigned to the document x𝑖, while Φ
is the desired dependency between documents and
labels.

4 SUGGESTED SOLUTION

There are several approaches to solving the problem
of multilabel classification, which, in fact, are
approaches with training potential.
 Reduction to binary classification [13]: its own

binary classifier is built for each label
separately, and the final set of labels for the
document is created by determining which of
these classifiers will give a positive result. It
should be noted that such a solution loses some
information, since correlations between labels
are not taken into account.

 Reduction to multiclass classification [14]: in
this case, label sets assigned to documents are
perceived as separate classes. For example, for
a set of two labels,
𝐶 = {[0,0], [0,1], [1,0], [1,1]} will be
considered classes. A clear disadvantage of this
approach is the large computational costs
(exponential complexity) and the tendency to
retrain, since not all possible sets of labels may
occur in test data.

 Adaptation of multiclass classification methods
is based on multilabel variations of the methods

of kNN (ML-kNN [15]), decision trees
(modification of the algorithm C4.5 [16]), and
artificial neural networks (BP-MLL [17]).

As part of this work, adapted methods are
considered because they take into account the
correlation between assigned labels and are almost as
computation-efficient as their multiclass
counterparts.

In general, as with the other cases of using
methods with training potential, the proposed
solution can be divided into the following steps
(Figure 2):
 preparation of data – the corpus of documents;
 feature extraction;
 model training;
 labelling new documents using a trained model.

Figure 2: Algorithm of Text Tagging Task Solving as
Multilabel Classification.

Let us take a closer look at each step.

4.1 Preprocessing

Among the obvious difficulties while solving this
problem, one can distinguish the congestion of any
text with service parts of speech: prepositions,
conjunctions, particles, etc. They do not significantly
affect the formation of the text topic but prevent the
selection of keywords by frequency. Therefore, it is
necessary to pre-process the text which is called
normalization.

It is necessary to carry out lemmatization [18] – to
bring all words to lemmas, their initial forms. For

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

71

example, for the word «stimulates», the lemma will
be «stimulate», for «analysing» – «analyse».

An alternative to lemmatization is stemming –
finding the basis (stem) of the word. For example, for
the word «regulated», the stem will be «regul» which
will allow to find such word forms as «regulate»,
«regulating», «regulation», etc.

The text normalization algorithm also includes the
removal of punctuation signs and special characters,
tokenization (division into word lists), the removal of
stop words (using prepared in advance stop word
lists) and the bringing of words to initial forms (using
prepared in advance dictionaries).

Thus, the normalization of the text may happen
according to the following algorithm (Figure 3):

Figure 3: Text Corpus Preprocessing Algorithm.

4.2 Feature Extraction

TF-IDF model is used to extract features from pre-
processed text corpus [19].

TF (Term Frequency) is the ratio for the number
of occurrences of a given word to the total number of
words in the text. The importance of the word is
evaluated by the following (3):

𝑡𝑓(𝑡, 𝑑) =
𝑛𝑡

∑ 𝑛𝑘𝑘
(3)

where 𝑛𝑡 is the number of occurrences of the word
𝑡 in the document 𝑑, and the sum in the denominator
is the total number of words in the document.

IDF (Inverse Document Frequency) is an
inversion of the frequency with which a word occurs
in body texts. Accounting for this indicator reduces
the weight of words often used. Each word within a
document collection has a value (4):

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
|𝐷|

|𝑑𝑖∈𝐷:𝑡∈𝑑𝑖|
(4)

where |𝐷| is the total number of documents in
collection 𝐷, and the denominator is the number of
documents in the collection in which the word 𝑡
appears.

The TF-IDF measure is calculated as the product
of the multipliers (5):

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ⋅ 𝑖𝑑𝑓(𝑡, 𝐷) (5)

4.3 Learning Algorithms

To train models in the work, the algorithms ML-kNN,
Decision Tree and Random Forest were used.

4.3.1 ML-kNN

ML-kNN is a modification of the kNN method for
multilabel classification. ML-kNN first determines
the k nearest neighbours of the object. For those, it is
already known which classes they belong to. Then,
based on the maximum a posteriori estimation
(MAP), it determines which labels to assign to the
object in question.

The object 𝑥 from the test sample with the label
set 𝑌𝑥 is considered. Let 𝑦𝑥⃗⃗ ⃗ be the label vector for 𝑥,
where the 𝑙-th component 𝑦𝑥⃗⃗ ⃗(𝑙) is 1 if the label 𝑙 is
assigned to the object 𝑥, that is, if 𝑙 ∈ 𝑌𝑥, and 0
otherwise. Let 𝑁(𝑥) be the set of indices 𝑘 closest to
𝑥 neighbors from the training sample.

Then, knowing a set of tags of these neighbours,
we can define a membership counting vector (6):

𝐶𝑥
⃗⃗⃗⃗ (𝑙) = ∑ 𝑦𝑎⃗⃗⃗⃗ (𝑙), 𝑙 ∈ 𝑌𝑎∈𝑁(𝑥) (6)

That is, this vector counts the number of
neighbours labelled 𝑙.

Let the event 𝐻1
𝑙 indicate that the object in

question has the label 𝑙, and 𝐻0
𝑙 indicates that it does

not. Let the event 𝐸𝑗
𝑙 , 𝑗 ∈ {0,… , 𝑘} show that among

the 𝑘 closest neighbours of object 𝑥 there are exactly
𝑗 objects with the label 𝑙.

Then, based on the membership calculation vector
and using the maximum a posteriori estimation, it is
possible to determine the vector of labels 𝑦𝑥⃗⃗ ⃗ for 𝑙 ∈
𝑌 in this way:

𝑦𝑥⃗⃗ ⃗(𝑙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈{0,1}𝑃 (𝐻𝑏
𝑙 |𝐸

𝐶𝑥⃗⃗ ⃗⃗ (𝑙)
𝑙) (7)

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

72

Using Bayes’ theorem, this expression can be
brought to the form:

𝑦𝑥⃗⃗ ⃗(𝑙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈{0,1}

𝑃(𝐻𝑏
𝑙)⋅𝑃(𝐸

𝐶𝑥⃗⃗ ⃗⃗ ⃗(𝑙)
𝑙 |𝐻𝑏

𝑙)

𝑃(𝐸
𝐶𝑥⃗⃗ ⃗⃗ ⃗(𝑙)
𝑙)

(8)

Probability 𝑃 (𝐸
𝐶𝑥⃗⃗ ⃗⃗ (𝑙)
𝑙) = 1, therefore:

𝑦𝑥⃗⃗ ⃗(𝑙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈{0,1}𝑃(𝐻𝑏
𝑙) ⋅ 𝑃(𝐸

𝐶𝑥⃗⃗ ⃗⃗ (𝑙)
𝑙 |𝐻𝑏

𝑙) (9)

Probabilities 𝑃(𝐻𝑏
𝑙) and 𝑃(𝐸

𝐶𝑥⃗⃗ ⃗⃗ (𝑙)
𝑙 |𝐻𝑏

𝑙) can be
calculated on a training sample.

4.3.2 Decision Tree

The C4.5 algorithm uses the concepts of entropy and
information gain criteria to determine an attribute for
better splitting a training set into a tree.

Let be given a training set 𝑆 containing 𝑚
attributes and 𝑛 objects belonging to 𝑘 classes. The
tree is built from the root node to the leaves, that is,
from top to bottom.

In the first step, an empty tree is built, consisting
only of a root that includes the entire set 𝑆.

Next, the root is split into subsets and child nodes
are defined. To do this, one of the attributes is selected
and a rule is formed that breaks the set of objects into
𝑝 subsets, where 𝑝 is the number of unique values of
the selected attribute. The procedure is then repeated
for each of the received subsets and the child nodes.
The procedure continues until the stop condition is
reached.

Let 𝑁(𝑐𝑗 , 𝑆) denote the number of objects of class
𝑐𝑗 in the set 𝑆, and 𝑁(𝑆) denote the total number of
examples in the set 𝑆. Then, the relative frequency of
class 𝑐𝑗 in the set 𝑆 can be determined:

𝑝(𝑐𝑗) =
𝑁(𝑐𝑗,𝑆)

𝑁(𝑆)
(10)

Variable
𝐻(𝑆) = −∑ [𝑝(𝑐𝑖) ⋅ 𝑙𝑜𝑔 (𝑝(𝑐𝑖))]

𝑘
𝑖=1 (11)

is an entropy of a set 𝑆 and shows the average
amount of information needed to determine an object
class from that set.

After dividing the set by attribute A, this estimate
can be written as:

𝐻𝐴(𝑆) = ∑ [𝑝(𝑐𝑖) ⋅ 𝐻(𝑆𝑖)]
𝑘
𝑖=1 , (12)

where 𝑆𝑖 is the 𝑖-th node that was obtained during
the partition. Then the best split attribute can be
selected using the information gain criterion:

𝐼𝐺(𝐴) = 𝐻(𝑆) − 𝐻𝐴(𝑆) (13)
For partitioning, an attribute is selected, for which

the gain in information is the greatest.
If an empty node is formed during the split

process, it becomes a sheet, and a class which more

often was met among objects of the parent node G is
associated with it.

The above formulas apply to discrete attributes. In
the case of a continuous attribute having 𝑛 different
values, the set of its values is divided into 𝑛 subsets
using (𝑛 − 1) threshold values. Using the
information gain criterion, the threshold value that
gives the largest information gain is selected.

To use the C4.5 algorithm for multilabel
classification, the entropy count is changed as
follows:

𝑘𝐻′(𝑆) = − ∑𝑖=1(𝑝𝑖 + 𝑞𝑖), (14)
where 𝑝𝑖 = 𝑝(𝑐𝑖) ⋅ log 𝑝(𝑐𝑖), 𝑞𝑖 = 𝑞(𝑐𝑖) ⋅ log 𝑞(𝑐𝑖),

 𝑞(𝑐𝑖) = 1 − 𝑝(𝑐𝑖).

4.3.3 Random Forest

The standard implementation of the random forest
method with trees described in paragraph 4.3.2 was
used.

For a training sample 𝑆 of size 𝑁 with 𝑀
attributes, a random forest is described as:

{ℎ(𝑥, 𝛩𝑘), 𝑘 = 1,… }, (15)
where ℎ(𝑥, Θ𝑘) is a separate tree built on a subset

Θ𝑘 of the training set.
The forest building algorithm includes the

following steps:
1) From the training sample 𝑆, a subset Θ𝑘 of size

𝑁 is randomly generated with repetitions: some
objects will be included more than once, some
will not be included at all.

2) On the obtained sub-sample, a tree ℎ(𝑥, Θ𝑘) is
built using not the entire set of features, but
only 𝑚 randomly selected.

Thus, several trees are built. Their optimal
number is selected to minimize classification errors
on the test sample.

5 RESULTS

The above algorithms were used to implement the
software TextTagger [20], designed to automatically
assign labels to texts.

The machine learning module is implemented
using Python and the main libraries for machine
learning and NLP (nltk, sclearn, etc). The business
logic module is implemented on the .NetCore
platform, while the web client is developed using the
Vue framework.

During operation, the user generates collections
consisting of text documents. The first added
documents are labelled manually, and later this initial
classification will be used to train a model.

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

73

After adding several documents to the collection,
one of the above models (ML-kNN, Decision Tree or
Random Forest) can be trained. The user selects the
model manually.

When a new document is added to a collection
with a trained model, the system automatically
prompts to assign the most appropriate labels to it.

Figure 4 and Figure 5 show the main steps of
working with the system using the example of
accumulating a collection of medical documents.

Figure 4: Collection Overview Page.

Figure 5: Adding a New Document with the System
Proposed Labels.

Based on experimental data, the quality of the
algorithms was analysed. Accuracy (𝐴),
precision (𝑃), recall (𝑅) and F1-score (𝐹1) are used
as quality metrics [21].

𝐴 =
1

𝑛𝑖
∑

|𝑌𝑖∩𝑍𝑖|

|𝑌𝑖∪𝑍𝑖|
𝑛
𝑖=1 , (16)

𝑃 =
1

𝑛𝑖
∑

|𝑌𝑖∩𝑍𝑖|

|𝑍𝑖|
𝑛
𝑖=1 , (17)

𝑅 =
1

𝑛𝑖
∑

|𝑌𝑖∩𝑍𝑖|

|𝑌𝑖|
𝑛
𝑖=1 , (18)

𝐹 =
1

𝑛𝑖
∑

2⋅|𝑌𝑖∩𝑍𝑖|

|𝑌𝑖|+|𝑍𝑖|
𝑛
𝑖=1 , (19)

where 𝑌𝑖 = {0; 1}𝑘 are the labels assigned to the
document 𝑥𝑖 (actual) and 𝑍𝑖 = {0; 1}𝑘 are the labels
predicted by the model.

The closer the scores are to 1, the higher the
quality of the model.

Several prepared in advance and labelled datasets
from different subject areas were used to conduct
quality analysis of algorithms:

Set A: abstracts from literature texts; labels are
age groups to which texts are oriented (for children,
for adults, for children and adults at the same time).
This dataset consists of 75 documents, the labels are
evenly distributed.

Set B: synopsis of films; tags are their genres
(drama, comedy, etc). This dataset consists of 50
documents, the labels are unevenly distributed.

Set C: annotations to articles from the Russian
Medical Journal; labels are medical concepts referred
to in the articles (cognitive impairment, therapy, etc.
This dataset consists of 56 documents, the labels are
unevenly distributed.

The quality metrics for the Decision Tree,
Random Forest and ML-kNN algorithms are shown
in Table 2.

Table 2: Quality Metrics.

Method Data
set

A P R F1

DT A 0.94 0.97 0.97 0.96
B 0.27 0.50 0.41 0.38
C 0.36 0.46 0.42 0.41

RF A 0.78 0.86 0.80 0.81
B 0.25 0.65 0.27 0.36
C 0.23 0.27 0.26 0.26

ML-kNN A 0.94 0.94 1.0 0.96
B 0.32 0.56 0.38 0.42
C 0.60 0.69 0.64 0.64

The quality of the models used depends
significantly on the specific training data, especially
on the uniformity of the distribution by labels.
However, overall quality allows models to be used to
solve some of the practical problems or as a basis for
further development and improvement.

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

74

Random Forest (metric F1 on average in three
datasets 0.47) generally showed itself worse than
Decision Tree (0.58), and Multilabel KNN (0.67)
showed the best result.

In the future, the quality can be increased, for
example, due to heuristics. On different types of data,
different models work with different efficiencies. It
makes sense to identify the appropriate patterns and
select the most suitable models for specific data sets,
based on the uniformity of the data, the volume of
texts and other characteristics of the cases.

Even though the solution is initially aimed at
working with Russian-speaking corpuses, it can be
applied to other languages as well, in particular, to
English.

Considering further improvement of quality, the
product can be used in decision support systems or be
integrated into knowledge bases. It seems promising
to use it to mark-up texts of medical topics for
highlighting the main concepts in them, which can be
used to structure texts and further process them. One
of the methods of application planned by the authors
is to highlight keywords in the texts of clinical
recommendations to further structure them for use in
clinical decision support systems.

6 CONCLUSIONS

The problem of automatically assigning labels to texts
is current, and its solution is in demand in many tasks
of processing unstructured texts. The analysis of
methods and existing software products for the text
tagging task showed the lack of ready-made tools for
processing Russian-language texts and the need to
solve the text tagging problem with the final
implementation in the form of software.

As a solution, it is proposed to consider text
tagging as a problem of multilabel classification. A
comparison of the known methods of solving the
problem of multilabel classification was made, and,
subsequently, the following methods with training
were selected: ML-kNN, Decision Tree (ML-C4.5),
and Random Forest. Additionally, TF-IDF method
was included to extract features.

Based on the selected models, algorithms have
been developed for automatically assigning labels to
texts, and then implemented as the TextTagger
software product.

The computational experiment showed a fairly
high efficiency of the developed models for ML-
kNN (metric F1-Measure 0.67) and the average for
Decision Tree (0.58) and Random Forest (0.47),
which indicates the possibility of their use in practice.

Further quality improvement is possible by refining
the process of normalizing texts and introducing
heuristics to select the best possible model for a
specific data set.

The developed software product is universal,
applicable in various subject areas for processing
texts in Russian, and applicable to other languages.

ACKNOWLEDGMENTS

The reported study was funded by RFBR according
to the research projects No 19-07-00780, 19-07-
00709.

REFERENCES

[1] D. Reinsel, J. Gantz, and J. Rydning, “The Digitization
of the World – From Edge to Core,” IDC white paper,
November 2018, Doc# US44413318.

[2] A. M. Nancy and R. Maheswari, "Review on
unstructured data in medical data," Journal of Critical
Reviews, 2020, pp. 2202-2208, doi:
10.31838/jcr.07.13.342.

[3] R. Mihalcea and P. Tarau, “TextRank: Bringing Order
into Text,” EMNLP, 2004.

[4] S. Brin and L. Page, “The Anatomy of a Large-Scale
Hypertextual Web Search Engine,” Comput.
Networks, vol. 30, 1998, pp. 107-117.

[5] S. Tasci and T. Güngör, “LDA-based keyword
selection in text categorization,” 24th International
Symposium on Computer and Information Sciences,
2009, pp. 230-235.

[6] A. Sedova and O. Mitrofanova, “Topic Modelling of
Russian Texts based on Lemmata and Lexical
Constructions,” Saint-Petersburg State University,
2017.

[7] S. Rose, D. Engel, N. Cramer, and W. Cowley,
“Automatic Keyword Extraction from Individual
Documents,” 2010.

[8] M. Thushara, M. Krishnapriya, and S. N. Sangeetha,
“A model for auto-tagging of research papers based on
keyphrase extraction methods,” International
Conference on Advances in Computing,
Communications and Informatics, 2017, pp. 1695-
1700.

[9] Dcipher Analytics official web-site [Online].
Available: http://www.dcipheranalytics.com.

[10] MonkeyLearn official web-site [Online]. Available:
https://monkeylearn.com/.

[11] TwinWord official web-site [Online]. Available:
https://www.twinword.com/.

[12] J. Read , B. Pfahringer, G. Holmes, and E. Frank,
“Classifier chains for multi-label classification,”
Machine Learning, vol. 85, 2011, pp. 333-359.

[13] S. Godbole and S. Sarawagi, “Discriminative Methods
for Multi-labeled Classification,” PAKDD, 2004.

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

75

[14] G. Tsoumakas and I. Katakis, “Multi-Label
Classification: An Overview,” Int. J. Data Warehous,
Min. 3, 2007, pp. 1-13.

[15] M. Zhang and Z. Zhou, “ML-KNN: A lazy learning
approach to multi-label learning,” Pattern Recognit,
vol. 40, 2007, pp. 2038-2048.

[16] A. Clare and R. King, “Knowledge Discovery in
Multi-label Phenotype Data,” PKDD, 2001.

[17] M. Zhang and Z. Zhou, “Multilabel Neural Networks
with Applications to Functional Genomics and Text
Categorization,” IEEE Transactions on Knowledge
and Data Engineering, vol. 18, 2006, pp. 1338-1351.

[18] V. Balakrishnan and E. Lloyd-Yemoh, “Stemming and
lemmatization: A comparison of retrieval
performances,” 2014.

[19] B. Trstenjak, S. Mikac, and D. Donko, “KNN with TF-
IDF based Framework for Text Categorization,”
Procedia Engineering, vol. 69, 2014, pp. 1356-1364.

[20] TextTagger online demo [Online]. Available:
https://texttagger.ishmukhamet.xyz.

[21] A. Luque, A. Carrasco, A. Martín, and A.
D. L. Heras, “The impact of class imbalance in
classification performance metrics based on the binary
confusion matrix,” Pattern Recognit., vol 91, 2019, pp.
216-231.

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

76

