
thomas wilde

F L O W M A P P R O C E S S I N G

D I S S E RTAT I O N

Flow Map Processing

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik der
Otto-von-Guericke Universität Magdeburg

von Thomas Wilde geb. Seidl
geb. am 18. Februar 1984 in Annaberg-Buchholz

Gutachter

Prof. Dr. Holger Theisel
Prof. Dr. Gerik Scheuermann
Prof. Dr. Markus Hadwiger

Magdeburg, den 26. März 2021

Thomas Wilde: Flow Map Processing,
Dissertation, 26. März 2021
c© Alle Rechte vorbehalten.

A B S T R A C T

This thesis presents new techniques to the field of Flow Visualization
that are based on the flow map.

Water flowing down a river, the aerodynamics of a car, the air we
breathe – flows, i.e., liquids or gases in motion, play an essential role
in our everyday life. Understanding flows is essential in various fields.
Therefore, they are of substantial research interest. The discipline of
Flow Visualization aims for a meaningful visualization of information
contained in flows. The techniques we can apply heavily depend on
how the data is represented. One way that has gained research interest
in the last years is the flow map. Flow maps are Lagrangian flow
representations, i.e., they describe the movement of massless particles in
the flow. They have particular properties that make them complex data
structures. This thesis shows different ways to work with flow maps
that can be classified into two parts.

In the first part of this thesis, we consider the flow map structure and
directly address its data. Based on a sound introduction, we develop a
concept to modify flow maps. Each modification happens in a local area
defined in space-time and entails a global adaption of different flow map
parts. We present efficient techniques that handle this process while
maintaining inherent flow map properties. Furthermore, we present
drift fields, a novel technique to present flow data from the Lagrangian
perspective. Drift fields implement advantages of flow maps but are
easier to handle. We show their relation to flow maps and how to
compute them.

The second part of this thesis is related to flow features that we derive
from the flow map. The extraction of ridge structures from finite-time
Lyapunov exponent fields is a widely used approach for the computation
of Lagrangian coherent structures. We present an approach that uses
intermediate time steps and extracts highly resolved ridge geometries.
Furthermore, we consider the phenomenon of recirculation in unsteady
3D flows. We show that particles with recirculating behavior form 2-
manifolds and present recirculation surfaces – the first flow feature that
incorporates the full 5D flow map for 3D unsteady flows.

v

vi

Z U S A M M E N FA S S U N G

Diese Arbeit stellt neue Techniken im Bereich der Strömungsvisualisie-
rung vor, die auf der Flow Map basieren.

Wasser, das einen Fluss hinunterfließt, die Aerodynamik eines Autos,
die Luft, die wir atmen - Strömungen, d.h. Flüssigkeiten oder Gase in
Bewegung, spielen eine wesentliche Rolle in unserem täglichen Leben.
Das Verständnis von Strömungen ist in unterschiedlichen Bereichen
essenziell. Strömungen sind daher von erheblichem Forschungsinteresse.
Das Forschungsfeld der Strömungsvisualisierung zielt auf eine sinnvolle
Visualisierung der in Strömungen enthaltenen Informationen ab. Die
anwendbaren Techniken, hängen stark davon ab, wie Strömungsda-
ten dargestellt werden. Eine Variante, die in den letzten Jahren an
Forschungsinteresse gewonnen hat, sind Flow Maps. Flow Maps sind
Lagrangesche Darstellungen, d.h. sie beschreiben die Bewegung von mas-
selosen Teilchen in der Strömung. Sie haben besondere Eigenschaften,
die sie zu komplexen Datenstrukturen machen. In dieser Arbeit werden
verschiedene Möglichkeiten aufgezeigt, mit Flow Maps zu arbeiten.

Im ersten Teil dieser Arbeit betrachten wir die Flow Map Struktur und
befassen uns direkt mit den enthaltenen Daten. Basierend auf einer
fundierten Einführung entwickeln wir ein Konzept zur Modifikation
von Flow Maps. Jede Modifikation geschieht in einem lokalen Bereich,
der in der Raum-Zeit definiert ist und zieht eine globale Anpassung
verschiedener Flow Map Teile nach sich. Wir stellen effiziente Techniken
vor, die diesen Prozess unter Beibehaltung der inhärenten Flow Map
Eigenschaften ermöglichen. Darüber hinaus stellen wir Drift Felder vor,
eine neuartige Technik zur Darstellung von Strömungsdaten aus der
Lagrangeschen Perspektive. Drift Felder implementieren einige Vorteile
von Flow Maps, sind aber einfacher zu verwalten. Wir zeigen ihre
Beziehung zu Flow Maps und wie man sie berechnet.

Der zweite Teil dieser Arbeit befasst sich mit Strömungsmerkmalen, die
wir aus der Flow Map ableiten. Die Extraktion von Ridge Strukturen aus
FTLE (finite-time Lyapunov exponent) Feldern ist ein weit verbreiteter
Ansatz zur Berechnung von Lagrangesche-kohärenten Strukturen. Wir
stellen einen Ansatz vor, der mehrere Zeitschritte einbezieht und extra-
hieren hochaufgelöste Ridge Geometrien. Weiterhin betrachten wir das
Phänomen der Rezirkulation in zeitabhängigen 3D-Strömungen. Wir zei-
gen, dass Partikel mit rezirkulierendem Verhalten 2-Mannigfaltigkeiten
bilden und präsentieren recirculation surfaces - das erste Strömungs-
merkmal, das die vollständige 5D-Flow Map für zeitabhängige 3D-
Strömungen verwendet.

vii

C O N T E N T S

1 introduction 1
1.1 Contributions . 3
1.2 Thesis Structure . 5
1.3 List of Publications . 6
1.4 Notation . 7

I background
2 introduction to flow visualization 11

2.1 Scalar Fields . 12
2.1.1 Definition . 12
2.1.2 Visualization . 13
2.1.3 Relevance for this Thesis 17

2.2 Vector Fields . 17
2.2.1 Definition . 17
2.2.2 Visualization . 18
2.2.3 Relevance for this Thesis 22

2.3 Particle Integration & Integral Curves 22
2.3.1 Streamlines . 23
2.3.2 Pathlines . 24
2.3.3 Streaklines . 24
2.3.4 Timelines . 25
2.3.5 Relevance for this Thesis 25

2.4 Flow Maps . 26
2.4.1 Definition . 26
2.4.2 Defining Properties 29
2.4.3 Relations to Velocity Fields 29
2.4.4 Relevance for this Thesis 30

2.5 LCS & FTLE . 30
2.5.1 Lagrangian Coherent Structures 31
2.5.2 Finite-Time Lyapunov Exponent 31
2.5.3 Relevance for this Thesis 32

2.6 Discretization, Reconstruction & Derivatives 33
2.6.1 Discretization of Data 33
2.6.2 Reconstruction of Discretized Data 35
2.6.3 Derivatives of Discretized Data 35
2.6.4 Relevance for this Thesis 38

3 double gyre 39
3.1 Explanation & Definition 39
3.2 Relevance for the Visualization Community 42
3.3 Relevance for this Thesis 43

ix

contents

II flow map processing
4 flow map modification by space-time defor-

mation 47
4.1 Related Work . 48
4.2 Flow Map Modification 50

4.2.1 Definition of a Space Deformation 51
4.2.2 Definition of a Modification Area 53
4.2.3 Local Modification & Global Adaption 55
4.2.4 Discretization of the Flow Map 55
4.2.5 Modification of the Discrete Flow Map 56
4.2.6 Lookup-Cells for Fast Sample Retrieval 57

4.3 Implementation . 57
4.4 Results & Discussion . 58

4.4.1 Translation Tool 59
4.4.2 Twist Tool . 60

4.5 Conclusion & Future Research 62
5 drift fields for flow map processing 63

5.1 Definition . 64
5.2 Properties . 64
5.3 Relations . 65

5.3.1 Relation to Velocity Fields & Flow Maps 65
5.3.2 Relation to Feature Flow Fields 66
5.3.3 Relation to Stream Functions 66

5.4 Existence & Uniqueness of Drift Fields 67
5.5 Computing Drift Fields 67

5.5.1 Step 1 – Create an Initial Field for One Time Slice 67
5.5.2 Step 2 – Determine Best Time t0 for Initialization 68
5.5.3 Step 3 – Compute the Remaining Time Slices . . 69

5.6 Computing Pathlines from Drift Fields 69
5.6.1 Step 1 – Selection of Seeding Location 69
5.6.2 Step 2 – Determine (as, bs) 69
5.6.3 Step 3 – Selection of Destination Time td 69
5.6.4 Step 4 – Searching for Isolines at Time td 70
5.6.5 Step 5 – Intersecting Isolines 70

5.7 Modifying Drift Fields 71
5.8 Results . 72

5.8.1 Rotating Flow 74
5.8.2 Double Gyre . 75
5.8.3 Cavity Flow . 78
5.8.4 Piped Cylinders Flow 80

5.9 Discussion & Limitations 82
5.10 Open Problems & Future Research 83

III flow features from flow maps
6 ftle ridge lines for long integration times 87

6.1 Introduction . 88

x

contents

6.2 Related Work . 89
6.2.1 Ridge Concepts 89
6.2.2 FTLE & FTLE Ridges 89

6.3 Background . 90
6.4 Problem Analysis . 91

6.4.1 Importance of FTLE Ridges 91
6.4.2 Importance of Ridge Statistics 92
6.4.3 Importance of Ridge Separation 92
6.4.4 Analysis of FTLE in 1D 92
6.4.5 Sampling Density 93
6.4.6 Main Idea . 94

6.5 Finding a Sufficient Sampling 94
6.5.1 Algorithm Specification 95
6.5.2 Domain Discretization & Initialization 95
6.5.3 Refinement of the Sampling 96
6.5.4 Additional Parameters ∆τ & θ 97

6.6 Ridge Extraction . 98
6.6.1 Cell Filtering . 98
6.6.2 Ridge Clustering 98
6.6.3 Post-Processing 99

6.7 Implementation . 99
6.8 Results . 99

6.8.1 Double Gyre . 100
6.8.2 Forced Duffing 102
6.8.3 Boussinesq . 103
6.8.4 ECMWF Reanalysis 104
6.8.5 Timings & Memory Usage 105

6.9 Discussion . 107
6.10 Limitations & Future Research 109

7 recirculation surfaces 111
7.1 Introduction . 112
7.2 Related Work . 112

7.2.1 Recirculation as a Phenomenon 113
7.2.2 Isolated Closed Orbits for Steady Vector Fields . 113
7.2.3 Extraction of Isolated Critical Points 114
7.2.4 Tracking Critical Points 114

7.3 Definition of Recirculation Surfaces 115
7.3.1 Definition . 115
7.3.2 Properties . 116
7.3.3 The Particular Case τ → 0 118
7.3.4 Properties of the 3D Surface Y 119

7.4 Extraction of Recirculation Surfaces 119
7.4.1 Algorithm Overview 120
7.4.2 Step 1 - Sample s on a Regular Grid 120
7.4.3 Step 2 - Locate Intersection Between Line l & Y 121
7.4.4 Step 3 - Extract the Boundary Curves of Y . . . 122

xi

contents

7.4.5 Step 4 - Visualize the Recirculation Surface Y . . 123
7.4.6 Surface Reconstruction 123

7.5 ICS in 3D Steady Vector Fields 124
7.6 Results . 126

7.6.1 Double Gyre . 127
7.6.2 Aneurysm Flow 129
7.6.3 Cavity Flow . 132
7.6.4 Square Cylinder Flow 133

7.7 Discussion . 135
7.7.1 Relation to Other Flow Visualization Techniques 135
7.7.2 Degeneration of Recirculation Surfaces 135
7.7.3 Recirculation as a Phenomenon 136
7.7.4 Computation Time 136
7.7.5 Parameters . 136

7.8 Limitations & Future Research 138

IV conclusion & future research
8 conclusion 141
9 future research 143

V appendix
a modification by space-time deformation keeps

flow map properties 147
b elements of matrix h for drift fields 149
c relation between vector field & flow map

derivatives 153

bibliography 155

xii

1
I N T R O D U C T I O N

Blackground & The Black Trap in Munich. Beautiful patterns emerge
when ink or varnish drops into water. (Images courtesy Alberto Seveso [143])

‘Blackground’ and ‘The Black Trap in Munich’ are the titles of two
photo series by the artist and photographer Alberto Seveso. He made
them by dropping varnish and ink into a water tank. With the proper
equipment, light conditions, view angle, patience, and experience, these
impressive images were created. They are stunning examples of the
complexity and beauty of liquids or gases that are in motion.

Especially when two different media interact with each other, we become
aware of flows. Wind blowing snow or dust over the ground, smoke
rising from a blown-out candle, pouring milk into coffee, or the perfume
smell of a person walking by are more examples of situations where
we realize flows. Even though we do not recognize it most of the time,
flows impact our everyday life. They can be found almost everywhere
and in all scales, from microscopic to global size. Cytoplasmic streams
influence the transport of nutritions in cells. The blood flow in our body
and the air we breathe in and out keep us alive. The wind passing our
skin cools us down. The flying skills of birds depend on their ability to

1

introduction

control the air around their wings. Vertical airflow next to doors keeps
the heat inside buildings. Managing the drainage of rain avoids damage
to buildings and streets. The airflow around a car influences its driving
stability and fuel consumption.

Scientists put considerable effort into global climate models that describe
air movement in the atmosphere and water flows in the oceans. They
predict the weather for the next days or the pollution transport after
a volcanic eruption or an oil spill in the ocean. Biology, medicine,
engineering, meteorology, oceanography – flows are essential in many
fields. Researchers try to understand, explain, and control them by
searching for models representing flow phenomena and interactions.

Flow Visualization, as a subfield of Scientific Visualization, is an essential
tool during this process. It has gained importance during the last
years and is an active research field. Flow Visualization aims to find
and visualize relevant information contained in flows. New algorithms
and methods for analyzing and describing flow data get developed
continuously. Flow data grows in size and complexity, especially when
dealing with time-dependent data sets. With the increasing computing
power and storage capacity of modern computers, researchers can handle
this data.

A large number of data sets stem from simulations and contain a variety
of information. Examples for such data range from scalar values like
temperature, pressure, or salinity to more complex data described by
tensors, like stress or diffusion. The data we consider in this thesis is
the velocity data. Velocity data expresses flow direction and flow speed.
Typically, velocity data is represented by time-dependent vector fields.
A common way to investigate flows is to analyze these vector fields
directly. Direct techniques evaluate the vector field usually pointwise at
single locations – they use the Eulerian point of view. Another group of
approaches uses the Lagrangian point of view. For this, one observes and
analyzes the behavior of particles advected by the vector field. Massless
particles are virtually placed in the vector field. A numerical integration
determines the trajectory a particle takes – its pathline. This thesis’s
primary focus is a powerful tool to describe such pathlines – the flow
map.

The flow map directly encodes particle trajectories. It is a complex data
structure in different ways. To obtain a flow map, one has to perform a
significant number of numerical integrations, which is computationally
expensive. Flow maps are high-dimensional, which leads to a consid-
erable amount of memory to store them. They have a complex and
highly connected inner structure. Furthermore, they can show ‘strange’
behavior for long integration times, e.g., they develop huge gradients.
To handle flow maps is challenging but rewarding. Due to increased
computing power, flow maps have gained research interest over the last
years. Several visualization techniques utilize them already. Though,

2

1.1 contributions

most of these techniques use only a small part of it. In this thesis, we
aim to go a step further and focus on the full flow map.

1.1 contributions

We separate the contributions of this thesis into two parts. Both of them
deal in different ways with the flow map. The first part is concerned with
the inherent structure of the flow map itself, a particular representation
form, and its processing. In the second part, we present two flow features
relying on large parts, respectively, the full flow map.

Flow Map Processing

We give compact theoretical background about flow maps, explain what
they are, and their relation to vector fields. Based on a solid math-
ematical foundation, we characterize the general intrinsic properties.
For vector fields, well-established approaches exist to model, construct,
deform, simplify, and compress them. In comparison, there is a lack of
such processing techniques for flow maps. The main reason for this is
their complex inner structure, making it hard to modify them. To tackle
this problem, we present a technique for flow map modification. Based
on a space-time deformation, we locally change flow map entries. We
propagate these local adaptions to the overall global structure. This way,
we explicitly ‘repair’ the flow map and keep the inherent properties.

After that, we introduce drift fields – a new form of Lagrangian flow
representation situated between velocity fields and flow maps. We give a
concrete theoretical definition and present particular properties. More-
over, we show how to modify drift fields without losing their character-
istics and present an efficient way to convert them to flow maps. We
see the presented methods as the first steps towards further flow map
processing techniques.

Flow Features from Flow Maps

We present two approaches to flow feature extraction that relies on large
parts of the flow map. The first one deals with detecting Lagrangian
coherent structures (LCS) based on ridge detection in finite-time Lya-
punov exponent (FTLE) fields. LCS are robust structures that describe
global flow properties. Uncovering these flow structures is a promis-
ing way to gain a simplified understanding of global flow behavior. A
widely used tool to compute LCS is ridge detection in FTLE fields.
With ongoing integration time, FTLE ridges tend to become sharp
and thin. It is challenging to detect them once they have gained this
shape. Then again, ridges emerge slowly over time and are easier to
detect for short integration times. Based on this insight, we present an

3

introduction

approach that weakens the finite-time in the FTLE computation. By
considering multiple time steps during ridge detection, we utilize a more
significant part of the flow map than standard techniques. Furthermore,
we suggest a statistical consideration of extracted ridge geometry for
flow characterization. Though we vary the integration time for this
technique, we are still bound to a fixed starting time and use only a
part of the flow map.

The second approach we present goes to the final step we want to achieve
in this thesis. We introduce an entirely new flow feature that takes the
full flow map into account – recirculation surfaces. Recirculation is a
phenomenon that influences many effects in 3D time-dependent flows.
An intuitive understanding of the term recirculation refers to a moving
particle that reaches its starting point again. Different communities
observed this phenomenon already, ranging from biology, chemistry, and
physics to Flow Visualization. Though, there seems to be no unique
standard description of the concept of recirculation. We address this
problem by giving a concrete definition. Based on this, we define re-
circulation surfaces as 2-manifolds embedded in the 5D space of the
flow map. They represent the first comprehensive flow feature described
in the definition space of the full flow map. We study their properties,
provide an algorithm for their computation, and demonstrate their
extraction on different data sets. Furthermore, we show that the finding
of isolated closed orbits in steady vector fields occurs as a particular
case of recirculation surfaces.

4

1.2 thesis structure

1.2 thesis structure

This thesis is divided into four parts.

Part I gives the essential background information that we see as a
prerequisite to understanding the presented work.

• Chapter 2 gives a short introduction to the field of Flow Visual-
ization. It covers concepts used throughout the thesis like scalar
fields, vector fields, and integral curves. We introduce the flow
map, give a theoretical foundation, discuss its properties and its
relation to velocity fields. Furthermore, we give a brief overview
of the FTLE.

• Chapter 3 is dedicated to a data set – the Double Gyre. It is a
synthetic velocity field that we use as a benchmark for all presented
approaches. It plays a notable role in our research and took a
decisive influence on this thesis.

Part II is related to the flow map itself and contains our contributions
to flow map processing.

• Chapter 4 presents a flow map modification approach by space-
time deformation.

• Chapter 5 introduces drift fields as a new form of Lagrangian
flow representation. We give a formal definition, discuss their
properties, and their relation to velocity fields and flow maps. We
show how to convert them and illustrate their deformation.

Part III presents our contributions to flow feature extraction utilizing
the flow map.

• Chapter 6 shows an approach for the computation of FTLE ridge
lines for long integration times by an adaptive grid refinement.

• Chapter 7 defines the phenomenon of recirculation and presents
recirculation surfaces.

Part IV finally concludes this thesis by giving a summary in Chapter 8
and showing possible future research in Chapter 9.

5

introduction

1.3 list of publications

The following articles have been published in peer-reviewed international
conferences as a result for the research of this thesis:

• T. Wilde, C. Rössl, H. Theisel
FTLE Ridge Lines for Long Integration Times
IEEE Scientific Visualization Conference, 2018, Short Paper

• T. Wilde, C. Rössl, H. Theisel
Recirculation Surfaces for Flow Visualization
IEEE Transactions on Visualization & Computer Graphics, 2019

• S. Wolligandt, T. Wilde, C. Rössl, H. Theisel
Static Visualization of Unsteady Flows by
Flow Steadification
Proceedings of Vision, Modeling, and Visualization, 2020

• S. Wolligandt, J. Zimmermann, T. Wilde, M. Motejat, H. Theisel
Lagrangian Q-criterion and Transport of
Salt and Temperature
IEEE Scientific Visualization Contest, 2020

• T. Wilde, C. Rössl, H. Theisel
Flow Map Processing by Space-Time Deformation
Advances in Visual Computing – International Symposium, 2020

• S. Wolligandt, T. Wilde, C. Rössl, H. Theisel
A Modified Double Gyre with Ground Truth Hyperbolic
Trajectories for Flow Visualization
Computer Graphics Forum, 2020

• T. Wilde, S. Wolligandt, C. Rössl, H. Theisel
Drift Fields for Flow Map Processing
submitted to EuroVis Conference 2021

6

1.4 notation

1.4 notation

The following table lists the mathematical notation we use in this thesis.
We introduce more specialized notations in the respective section, if
necessary.

General Notation

x, t, τ Scalar value
f(...) Scalar-valued function
x Vector in nD-space (column-wise)
xi Component of a vector
f (...) Vector-valued function
D,T Spatial or temporal domain
M Matrix
xT, MT Tranpose of a vector or matrix
M−1 Inverse of a matrix
xTx Dot product in matrix notation
M · x Matrix-vector product
M ·N Matrix-matrix product
det(M) Determinant of a matrix
df/ dt Total derivative of a (multivariate) function
∂f/∂t Partial derivative of a multivariate function
M Set
t0, x1,Tτ Particular instance of an element
ṽ, φ̃ Modified or extended version of an element

7

introduction

Common Symbols

0 Zero vector (column-wise)
ε Small quantity
I Identity matrix
t Time
τ Integration time
v(x) Steady (time-independent) vector field
v(x, t) Unsteady (time-dependent) vector field
φ(x, t, τ) = φτt (x) Flow map
∇ Nabla operator
J = (∇v)T Jacobian matrix (first-order partial derivatives)
λ Eigenvalue of a matrix
e Eigenvector of a matrix

8

Part I

B A C K G R O U N D

2
I N T R O D U C T I O N T O F L O W V I S U A L I Z AT I O N

“The Purpose of Computing Is Insight, Not Numbers” is the motto of
the book Numerical Methods for Scientists and Engineers by Richard
Hamming, published in 1962 [69]. The author himself states out that
many people misinterpret it, especially when dealing with computers.
In 1973 he clarified that this statement not only refers to the results
achieved with increasing computing power. It covers the whole process
of encountering a problem. Defining the problem, selecting appropriate
formulas to describe it, implementing the algorithms, extracting the
results, choosing the methods to present them, and many more. One
can take each of these steps in different ways, and every path will lead
to further insights into the whole process. When we interpret the quote
this way, it perfectly fits the research field of Scientific Visualization.
Scientific Visualization is concerned with techniques to extract and
visualize knowledge from scientific data [10]. It emerged as a discipline
in the 1980s and became of interest with increasing computing power.
McCormick et al. [104] shaped the term in a publication in 1987. In their
work, they listed short and long-term goals and pointed out principal
conclusions and recommendations. The report also specified the term
scientific data as data that results from simulations or computations.
Scientific Visualization combines aspects from several different areas,
like computer graphics, image processing, signal processing, and user-
interface methodology. During the following years, many activities all
over the globe advanced Scientific Visualization research in different
fields like physics, meteorology, biology, medicine, chemistry, and engi-
neering [17]. Specialized workgroups, with the knowledge and primarily
powerful computational architecture, appeared and visualized scientific
data. In recent years the nature of Scientific Visualization has changed
again. The necessary computational power is ubiquitous. Easy-to-use
software, online tools, cloud computing, and professional software pack-
ages filled with complex techniques for high-dimensional data are readily
available not only for experts. Even though Richard Hamming’s quote
is still valid today, we have to see the process of scientific visualization
as a whole and make thoughtful decisions at each step. Otherwise, "we
run into the risk of using the computer to make clever rubbish" (Helen
Wright) [181].
We assign this work to the field of Flow Visualization, which is a part of
Scientific Visualization. The following sections give a brief introduction
to this research field and provide the necessary background for this
thesis. We will cover the essential data types – scalar fields, vector

11

introduction to flow visualization

fields, and flow maps. We give a formal definition for each and introduce
established mathematical concepts and visualization techniques. We
explain what pathlines, streamlines, streaklines, and timelines are and
how they connect vector fields and flow maps. In the latter part of this
chapter, we introduce the finite-time Lyapunov exponent. We use it
on different occasions throughout the thesis. Furthermore, we explain
how we handle most data types – discretized on a regular sampling
grid. However, we only focus on the concepts relevant to this thesis.
For additional material, we refer to the literature and the sources cited
throughout the work.

2.1 scalar fields

This section introduces scalar fields, one of the essential data formats
used in Scientific Visualization. We begin with a formal definition and
discuss basic visualization techniques afterward.

2.1.1 Definition

definition
scalar field

We define the scalar field f(x) as a scalar-valued function over the
spatial domain D that assigns a scalar value s ∈ R to each position
x = (x1,x2, ...,xn)T

f : D → R ,
f(x) = s ,

with x ∈ D. The domain D is a subset of the vector space Rn, i.e.,
D ⊆ Rn . Usually, n has the value of 1, 2, or 3. We may refer to the spatial
dimensions as x, (x, y) or (x, y, z) in these cases. In this thesis, most
often, n = 2. In many scientific applications, time plays an important
role. For example, in simulations, a state’s change is computed for a
particular period. We may save the results in multiple scalar fields, one
for each simulated time step. Alternatively, we can save the data in
a single scalar field that changes over time. For this, we extend the
definition of scalar fields by an additional parameter t ∈ T that refers
to the current time

f : D× T → R ,
f(x, t) = s .

T depicts the temporal dimension, which is usually an interval of R.

For this thesis, we assume the scalar fields are differentiable. Thus we cangradient &
∇-operator compute the spatial gradient of the scalar field for each time step t ∈ T

at each position x ∈ D. The gradient combines the partial derivative in
each spatial dimension to the gradient vector j = (j1, j2, ..., jn)T ∈ Rn.

12

2.1 scalar fields

It gives the direction with the steepest slope of scalar values. Formally
we define the spatial gradient for the scalar field as follows:

∇f : D× T → Rn ,

∇f(x, t) =
(
∂f(x, t)
∂x1

, ∂f(x, t)
∂x2

, ..., ∂f(x, t)
∂xn

)T
= j .

The symbol ∇ denotes the Nabla-operator, a vector combining the
partial derivatives for the spatial dimensions. We use it to simplify the
notation of several differential quantities. It is defined as:

∇ =

(
∂

∂x1
, ∂

∂x2
, ..., ∂

∂xn

)T
.

For scalar fields also the Hessian matrix is of interest. The Hessian is Hessian
matrixan (n× n)-matrix that combines the second-order partial derivatives of

the scalar field. It is used to classify critical points, and it is defined as:

Hf =



∂2f (x,t)
∂x2

1

∂2f (x,t)
∂x1∂x2

· · · ∂2f (x,t)
∂x1∂xn

∂2f (x,t)
∂x2∂x1

∂2f (x,t)
∂x2

2
· · · ∂2f (x,t)

∂x2∂xn

...
...

∂2f (x,t)
∂xn∂x1

∂2f (x,t)
∂xn∂x2

· · · ∂2f (x,t)
∂x2
n


.

Examples of scalar fields are charts representing the value of stock
markets (1D), a map showing the temperature of a weather forecast
(2D), or a Computer Tomography scan (3D).

2.1.2 Visualization

Depending on the data encoded and the particular used application,
several approaches exist to display scalar fields. We pick up the classifi-
cation for these techniques given by Oster [113]. We focus on methods
relevant to this thesis and divide techniques into image-based methods
and geometry-based methods.

Image-Based Methods

Image-based methods try to give a dense visualization of the scalar
field’s data. Therefore, we map each position’s scalar value to a specific
property used for the visualization.

A common approach is to map the scalar value to a spatial position. If line plot
we have a 1D scalar field, we can picture the scalar field as a function
graph or line plot. Today’s office applications implement this technique.
Therefore it is well known and understood even for non-experts. Fig-
ure 2.1 shows an example – the intra-day development of a stock market
index.

13

introduction to flow visualization

Figure 2.1: Line Plot. A visualization of the value development of a stock
market index. Such graphs are an example of a widely used visu-
alization technique of 1D scalar fields. They are so common that
the google search engine generates them automatically for some
queries. The shown example is a screenshot of the top result after
performing a search for “DAX performance index.” (Image adapted
from www.google.com [5])

For 2D scalar fields, the according technique exists; it is called height-height-
mapping mapping. We interpret the scalar values as intensity levels and map

them to particular heights. Thus the 2D field gets transformed into a
3D surface. Figure 2.2 (left) shows an artificial scalar field with the
corresponding surface obtained by height-mapping.

A technique we regularly use in this thesis is color-mapping. This methodcolor-
mapping maps scalar values to colors from a predefined color map. Thereby, the

scalar field gets transformed into an image or a texture. Images are
displayed directly; textures are mapped to a surface. Color-mapping is
a simple yet powerful technique that is easy to implement and quickly
gives insights into data. Physical maps that can be found in atlases are
a well-known example. The height of a landmass is mapped to a color
ranging from green to brown, sea levels are shown as blue. Figure 2.2
(right) shows a picture of an Augmented Reality Sandbox [126] that
uses a similar blue-green-brown map to color a scanned landscape. The
selection of the color map plays an essential role in this technique and
needs special attention. Research in color-theory and cartography shows
a strong influence of the selected color map on the data’s intuitive
interpretation. We refer to the literature for more information on this,
especially the works from the research groups around Brewer [15, 16],
Kindlmann [81], Bujack [20, 110, 136], and Crameri [29] are a good
start.

14

2.1 scalar fields

Figure 2.2: Height-mapping and color-mapping. Two examples of scalar
field visualization. Left: A combination of height-mapping and color-
mapping. The height of the surface depicts the underlying scalar
values. Right: A picture of an Augmented Reality Sandbox. The
measured landscape is colored based on its height and resembles
physical maps known from atlases. (Image source for left picture:
Gerrits [57])

Geometry-Based Methods

Geometry-based methods do not aim for the visualization of the data
itself. Instead, they try to extract meaningful features from the scalar
fields and display them. We want to introduce the following features
relevant to this thesis: isocontours, critical points, and ridge lines.

The term iso has an ancient Greek origin and means equal. All locations isocon-
tours &
isolines

of a scalar field with the same scalar value form a set of isocontours,
i.e.,

C(s) = {x ∈ D | f(x) = s} . (2.1)

For isocontours in 2D scalar fields, we also use the term isolines. In the
previous section, we explained color-mapping that assigns colors to par-
ticular scalar values. Usually, the color maps show a smooth transition
between the different color values. Isolines break this smooth transition
between colors. We visualize isolines with a color that is distinct from its
surrounding; therefore, they become visible. Figure 2.2 (right) shows an
example, the dark lines are isolines. When the underlying scalar field is
smooth and continuous, isolines always form closed curves or end in the
domain border. Note, Equation (2.1) and the described properties are
valid for any dimension, i.e., isocontours form closed manifolds in higher
dimensions. Isocontours are a standard technique in cartography and
meteorology. They are well researched [17, 35, 156, 166], and efficient
algorithms for their computation exist [98].

Critical points are locations where the scalar field shows a local ex- critical
pointtremum. At these positions, the gradient ∇f(x, t) maps to the zero

vector 0. These locations have to be isolated, meaning there is no other
location in their neighborhood showing the same behavior. Otherwise,

15

introduction to flow visualization

x y

x y

Figure 2.3: Ridge and Valley Lines. Different visualizations for a scalar
field. Left: Height field visualizations of a scalar field and the
inverted field. Center: Color-mapping of the same fields. Right:
Ridge and valley networks with prominent ridge lines (red) and
valley lines (blue). (Image adapted from Anand et al. [2])

it will no longer be a point, which implies furthermore critical points
have a dimensionality of 0. We distinguish between local maxima, local
minima, and saddles. To determine the type, we have to perform an eige-
nanalysis of the Hessian matrix at the point’s location. If the Hessian’s
eigenvalues are all negative, it is a local maximum; if all are positive,
it is a local minimum. If it has positive and negative eigenvalues, we
classify the point as a saddle.

Unlike critical points, ridge lines are geometric features that have aridge &
valley
lines

dimensionality of 1. One can imagine them as curves that show local
maximum behavior. Depending on the use case, there exist several
formal definitions for ridges [120, 141]. An elegant and often used one is
the definition as height ridges given for arbitrary dimensions by Eberly
[35]. There exist different techniques to extract feature lines that fulfill
the height ridge definition. Depending on the particular implementation,
additional filtering steps are necessary to remove false positives or less
significant ridge lines [117]. Valley lines are the opposite of ridge lines,
i.e., curves with local minimum behavior. If we are interested in valley
lines, we can search for height ridges in the inverted scalar field −f(x, t).
Figure 2.3 shows height-mappings, color-mappings, and extracted ridge
and valley lines of a scalar field.

16

2.2 vector fields

2.1.3 Relevance for this Thesis

We use scalar fields in different parts of this thesis. In many cases, we
use color-mapping to visualize them. Chapter 5 presents drift fields. In
essence, a drift field is a combination of two scalar fields with special
relations to each other. Furthermore, we extract isolines from drift fields
to describe particle movement. In Chapter 6, we compute FTLE fields as
scalar fields and extract ridge lines. Chapter 7 introduces recirculation
surfaces. For their computation, we derive a distance function that can
be interpreted as a scalar field. We then search for all locations where
this field becomes 0.

2.2 vector fields

Vector fields are similar to scalar fields, but they map to vectors rather
than scalars. We typically use them to describe a movement or a force;
examples are velocity fields, magnetic fields, or gravity fields. The
standard way to represent flows is to use vector fields. Therefore, they
are the primarily used data format for Flow Visualization. When a
vector field describes a flow, it usually contains the velocity at discrete
locations, i.e., it uses the Eulerian point of view. We also use the terms
(unsteady) flow field or velocity field as synonyms.

2.2.1 Definition

definition
vector field

We distinguish between steady and unsteady vector fields. A steady
vector field is time-independent, i.e., it does not change over time. We
define the steady vector field v(x) as a vector-valued function over the
spatial domain D that assigns a vector u = (u1,u2, ...,un)T to each
position x = (x1,x2, ...,xn)T

v : D → Rn ,
v(x) = u ,

with x ∈ D, D ⊆ Rn and u ∈ Rn. If the vector field is unsteady, it
varies over time. We extend the definition by an additional parameter
t ∈ T that refers to the time. Hence we define a time-dependent vector
field as:

v : D× T → Rn , (2.2)
v(x, t) = u . (2.3)

17

introduction to flow visualization

The temporal domain T is an interval in R. Projecting an unsteady
vector field v(x, t) into (n+ 1)-dimensional space allows us to interpret
it as a steady vector field ṽ(x, t) in space-time

ṽ : D× T → Rn+1 ,

ṽ(x, t) =

v(x, t)
1

 =

 u
1

 .

We can define vector fields for arbitrary dimensions. In this thesis, we
consider flows. Hence in most cases, we set n = 2 for 2D flows or n = 3
for 3D flows. For 2D and 3D vector fields, we may refer to the spatial
dimensions as (x, y) or (x, y, z).

Just like scalar fields, we assume that vector fields are differentiable.
Therefore, we can compute the partial derivatives of a time-dependent
vector field

vi =
∂v(x, t)
∂xi

, vt =
∂v(x, t)
∂t

,

with i ∈ {1, ...,n}. The partial derivative with respect to t is only relevant
to unsteady vector fields. A combination of the spatial derivatives to aJacobian

matrix single matrix yields the Jacobian matrix

∇v : D× T → Rn×n ,

J = (∇v)T = (v1, v2, ..., vn) .

The Jacobian matrix is an (n×n)-matrix containing first-order informa-
tion about the current location’s flow behavior. We use an eigenanalysis
of the Jacobian matrix to classify first-order critical points. For more
information on this, we refer to the literature [74, 75, 171].

2.2.2 Visualization

There exist various methods to visualize vector fields. A widely used
categorization divides the methods into direct, texture-based, topology-
and feature-based, and geometry-based [14, 19, 123]. We adopt this
classification, give a short overview, and focus again on the techniques
relevant to this thesis.

Direct Methods

Direct methods are the most straightforward techniques to visualize
vector fields. They aim for a direct mapping of vectorial data and
derived quantities to a visual representation. There is no complicated
extraction or conversion step in between. Derived data is, e.g., velocity,
curl, divergence, or other characteristic field properties. If the derived
information is scalar data, we can apply color-mapping.

18

2.2 vector fields

Otherwise, we map the data to a set of simple visual objects referred to arrow plot
as glyphs [11]. Therefore, we evaluate the vector field at several positions
and place the corresponding glyph. Arrow plots are an intuitive and
straightforward example of this technique [83, 142]. The used arrow
glyphs encode the underlying vector. The arrow points in a particular
direction, and its length depicts the magnitude of the velocity. Depending
on the given data, the arrows need an appropriate scaling to result in a
meaningful picture. Hence the relation between different arrow glyphs
is essential. Due to occlusion, the number of glyphs that can be used is
limited. For 3D arrow plots, the occlusion problem increases. Besides,
the arrow’s position and orientation can be challenging to understand
due to the perspective. Figure 3.1 shows an example of an arrow plot.

Texture-Based Methods

Texture-based methods aim for a dense visualization by generating or
modifying a noise texture based on local flow attributes. The resulting
texture resembles the vector field behavior. These methods are primarily
of interest to 2D vector fields or vector fields on 2D manifolds. For 3D,
the occlusion problem arises.

One of the most popular techniques covering the vector field with dense LIC
visualization cues is Line Integral Convolution (LIC) [21]. We align a
random noise texture and a steady vector field on a Cartesian grid. To
determine the color for a position, we compute the streamline through it.
The color values of the noise texture along this streamline are combined
as a weighted integral. The combined value is used as the color value
for the particular position. The result is a smoothed image with similar
colors for locations along streamlines. One can also imagine this process
as ‘smearing’ out the noise texture along the vector field. In the past
decades, much research was dedicated to improving LIC [111], e.g.,
adding additional visual cues [167], extending LIC to unsteady flows
[70] and 3D [38], or decreasing the computation time [73, 151]. Figure 2.4
shows an example of a LIC texture visualization. For more information
on texture-based methods, we refer to the literature [19, 90, 91].

Topology- and Feature-Based Methods

Topology-based methods aim for a sparse representation of the vector
field by reducing the data to essential features. The first step for these
techniques is the extraction of meaningful flow features. Based on these,
we compute a topological skeleton. The skeleton separates the flow
into regions with similar behavior. Another option is to visualize the
extracted features themselves. Due to this, feature-based methods also
appear as a distinct class of techniques in the literature [19, 123]. In
the following, we introduce some of the most relevant features: critical
points and vortices.

19

introduction to flow visualization

Figure 2.4: Line Integral Convolution. Examples of different noise tex-
tures (left) and the resulting LIC images (right). The vector field
blurs the noise texture along its streamlines. Top: Dense white noise
texture. Bottom: Sparse noise texture with black spots. (Image
adapted from Netzel and Weiskopf [111])

A vector field v has a critical point at location x when it maps to thecritical
points zero vector 0. The critical point is isolated when v is different from the

zero vector in the vicinity of x

v(x, t) = 0 ,
v(x + εr, t) 6= 0 .

We classify critical points by flow behavior in their neighborhood de-
scribed by the Jacobian matrix J(x). If its determinant is non-zero,
then x is a first-order critical point, i.e., det(J(x)) 6= 0. An eigenanaly-
sis of J(x) helps to classify the critical point. If the real parts of the
eigenvalues are:

• all positive, x is a source with outflow behavior;

• all negative, x is a sink with inflow behavior;

• positive and negative, x is a saddle.

20

2.2 vector fields

Figure 2.5: Critical Points. LIC image of a vector field with critical points;
sources (red), sinks (blue), and saddles (yellow). (Image source:
Weinkauf [171])

If the eigenvalues have an imaginary part, the neighborhood of the
location x shows swirling behavior. Figure 2.5 shows a LIC visualization
combined with markers that indicate critical points. For more detailed
information about critical points and their meaning for vector field
topology, we refer to the literature by Helman and Hesselink [74, 75],
Weinkauf [171], and Scheuermann et al. [138, 139].

A vortex is a structure that shows swirling flow behavior around a center. vortex
A real-world example that everyone knows is a tornado. Vortices emerge
and persist; therefore, they are a defining feature for many flows. They
are of practical relevance in many applications, e.g., we initiate them to
stimulate fluid mixing or try to prevent them around aircraft. Vortices
are one of the most discussed flow features, and many different methods
for their extraction exist. Because they are not further relevant to this
thesis, we refer to the literature for more information, e.g., Günther
and Theisel recently presented an extensive survey regarding vortex
extraction [62].

Geometry-Based Methods

Geometry-based methods visualize the flow with geometric primitives
that are generated or transformed by the underlying flow data. Most
of the techniques we sort into this class rely on observing massless
particles in the flow [123]. We denote particles’ placement in the flow
as seeding. Geometry-based methods are classified further based on the particle

seedingseeding object’s dimensionality. For example, we have 0D objects if we
place individual particles as points, 1D if multiple particles form a line
segment or curve, and 2D if they create a planar object. Based on the
seeding structure’s advection, we can compute geometric objects that
present the flow behavior. Many methods provide different strategies for
seeding particles or a robust construction for the geometric primitives.

21

introduction to flow visualization

McLoughlin et al. [105], as well as Edmunds et al. [36], give useful
surveys on different methods.

2.2.3 Relevance for this Thesis

Vector fields appear throughout this whole thesis. Primarily we utilize
them to describe flow data sets. We use synthetic flows that we define as
analytic vector fields and simulated flows stored as discrete sampled vec-
tor fields. The vector fields appear in steady and unsteady form in 2D or
3D. Chapter 3 introduces the Double Gyre, an analytic unsteady vector
field we use as a benchmark for all developed approaches. Although
vector fields are not the final result for most of our approaches, we
utilize them as a computation tool and derive meaningful information.
In Chapter 4, we perform a deformation and use a vector field to control
its strength. We describe drift fields in Chapter 5 by combining two
scalar fields, which results in a vector field representation. The spatial
gradient of this representation plays an essential role in the drift field
definition. In Chapter 7, we utilize a derived vector field to find locations
that belong to recirculation surfaces.

This thesis’ primary focus is the flow map that encodes the trajectories
of particles in a flow. We describe these trajectories as curves and
compute them by numerical integration in vector fields. We will cover
this topic in the next section.

2.3 particle integration & integral curves

When we inspect a massless particle in a flow, we are usually interested
in the particle’s trajectory. Therefore we place the particle in a flow,
the underlying vector field then advects it, and we observe the path.

When we seed a massless particle at location x0 in a steady flow v(x),
we describe the resulting path as a curve c(τ). This curve yields the
location of the particle after the integration time τ . The integration
time τ denotes the period that has passed between the seeding and the
current observation. The location is the solution of the autonomousODE
ordinary differential equation (ODE)

d
dτ c(τ) = v (c(τ)) with c(0) = x0 . (2.4)

If we observe a particle in an unsteady flow v(x, t), we additionally
have to specify the seeding time t0. The following ODE then describes
the particle’s location:

d
dt c(t) = v (c(t), t) with c(t0) = x0 . (2.5)

22

2.3 particle integration & integral curves

If we augment the unsteady vector field v(x, t) by one dimension and
treat time t as an explicit state variable, we can rewrite Equation (2.5)
as an autonomous ODE

d
dτ

 c
t

 (τ) =

v(c, t)
1

 with

 c
t

 (0) =

x0

t0

 . (2.6)

In general, we cannot obtain an analytic solution for the ODE. To
solve them, we have to perform numerical integration. The seeding
position and seeding time (x0, t0) are our initial conditions. Numerical
integrators try to estimate the next location if the flow advects the
particle for a short period. The particle moves a small step in this
direction, and the time is advanced accordingly. We repeat this process
until we reach the desired integration time.

There exist many different methods for numerical integration. To esti-
mate particle trajectories in flows, we need an accurate prediction of the
next particle location. The fourth-order Runge-Kutta method is suitable
for this task [13]. It presents a fair tradeoff between computational
costs and accuracy. For the results presented in this thesis, we used
an implementation with an adaptive step size that follows Stalling and
Hege’s description [151].

Equation (2.4) puts a curve’s derivative with respect to τ in relation to tangent
curvesthe vector field. The first derivative at a location of c(τ) describes its

tangent. If a curve’s tangent coincides in every point with the underlying
vector field, we call it a tangent curve. When we integrate a massless
particle in a vector field v(x), we get its path through the corresponding
flow as a curve c(τ) – this is simultaneously a tangent curve.

Depending on the seeding strategy for the particles and the method integral
curvesfor path evaluation, we can derive different kinds of characteristic

curves that describe the flow. We compute these curves by numerical
integration; hence, we call them integral curves. For unsteady flows, we
distinguish between four types of integral curves: streamlines, pathlines,
streaklines, and timelines. Figure 2.6 illustrates the behavior in space-
time and gives examples of the different types of integral curves. With
the correct setup of the autonomous ODE in Equation (2.5), we can
describe all of these curves as tangent curves of derived vector fields
[169, 170].

2.3.1 Streamlines

stream-
lines

We consider a steady vector field v(x) and place a massless particle
in the flow. We can compute the particle’s path by solving the ODE
formulated in Equation (2.4) and describe it as a curve. This curve
is tangent to the vector field at every point, and we call it streamline.
Streamlines do not intersect. That implies, for every location exists
exactly one streamline that passes through.

23

introduction to flow visualization

For unsteady vector fields v(x, t), we have to extend the streamline
definition. A streamline is a curve tangent to the vector field in its
current state. We can compute it by integrating a particle in the vector
field for a fixed time tc. This is equivalent to increasing the dimension
of the vector field and integrating the particle trajectory in the new
derived vector field

s(x, t) =

v(x, t)
0

 .

Streamlines show a vector field’s current flow direction and are a useful
visualization tool for steady vector fields. Their suitability for unsteady
vector fields is limited. It is impossible to estimate a particle’s path
from a single streamline visualization because it does not incorporate
temporal information. For this case, pathlines, streaklines, and timelines
are the better choice.

2.3.2 Pathlines

pathlines We consider an unsteady vector field v(x, t) and place a massless
particle in the flow. The path this particle follows is called a pathline.
We can compute the pathline by solving the ODE from Equation (2.5).
Alternatively, we can increase the dimension of v(x, t) and estimate the
pathline as a tangent curve from the steady vector field

p(x, t) =

v(x, t)
1

 .

Pathlines visualize the behavior of particles in an unsteady flow over
time. They can intersect in the spatial domain. In fact, an infinite
number of pathlines passes through every location in space. Imagine
two particles placed at the same starting position x0 but at two slightly
different starting times in an unsteady flow. Usually, they will take
different paths through the flow, but their pathlines intersect in x0.
We keep this visual image of two different particles at the same start
position in mind. We extend it and use it to explain streaklines.

2.3.3 Streaklines

streak-
lines

Again, we consider an unsteady vector field v(x, t) that changes over
time. We pick a fixed location in the flow and continuously seed particles
at this position with ongoing time. The flow advects each of these
particles along a different path. If we connect the advected positions of
these particles to a curve, the result is a streakline. The smoke trail that
forms from a blown-out candle is a real-world example. Weinkauf and
Theisel [170] show that streaklines can be computed as tangent curves
of a derived vector field in higher dimensions.

24

2.3 particle integration & integral curves

t

x

y

streamline

Streamlines: Particle trajectories for constant time tc .

t

x

y

pathline

Pathlines: Particle trajectories for advancing time.

t

x

y

streakline

pathlines

Streaklines: Same seeding position results in a trail.

t

x

y

timeline

pathlines

Timelines: Particles form an advancing front.

Figure 2.6: Integral Curves. Left column: Space-time illustrations. Right
column: Examples of different types of integral curves. (Image
adapted from Günther [60])

2.3.4 Timelines

timelinesStreaklines are computed by seeding multiple particles in an unsteady
vector field v(x, t) at the same location but at varying time steps. We
compute timelines also by tracing multiple particles in an unsteady
flow. However, to compute a timeline, we use the same seeding time but
distribute the particles’ starting positions along a seeding curve; the
advected curve is a timeline. A thread floating on a river is a real-world
example. Like streaklines, Weinkauf et al. [169] formulate timelines as
tangent curves of particular vector fields in higher dimensions.

2.3.5 Relevance for this Thesis

Integral curves are the basic building block for many methods for
the visualization of vector fields. For this thesis, we are particularly
interested in pathlines. We use the Lagrangian point of view and must

25

introduction to flow visualization

compute them for our approaches. Usually, we do this by numerical
integration. Chapter 5 presents a new form for flow representation; we
use it to compute pathlines by local operations. This section explained
that we describe them as tangent curves. Another way to describe
pathlines is the flow map.

2.4 flow maps

The knowledge about massless particles’ movement in unsteady flows is
an essential tool for Flow Visualization. As we have seen in the previous
section, one way to determine this movement is to compute pathlines in
vector fields by numerical integration. Because we are mainly concerned
about flows, we will use the term velocity field instead of vector field
more often. When we consider a single pathline, we can evaluate it
for varying τ to get different particle locations on the pathline. The
current location where a particle is situated ultimately depends on
its seeding position x, its seeding time t, and the integration time τ .
However, for a single pathline, seeding position and seeding time are
fixed. Now, we want to extend the information from a single pathline
to a full set of pathlines, i.e., we want to gather a construct that holds
pathline information for all possible (x, t, τ)-combinations. This concept
is expressed by the flow map. In the following, we give a formal definition,
introduce the defining properties, and show the relations to velocity
fields.

2.4.1 Definition

velocity
field

We recapitulate the definition of unsteady velocity fields from Section 2.2,
but this time we are more specific about the temporal domain. We define
an unsteady velocity field as

v : D× Tt → Rn ,
v(x, t) ,

with x ∈ D and t ∈ Tt. The temporal domain has an additional subscript,
which explicitly refers to the current temporal state t of the velocity
field. It is part of the finite time interval Tt = [ts, te].

The flow map φ(x, t, τ) describing the same flow is a vector-valueddefinition
flow map function that contains the location of a particle seeded at (x, t) and

advected by the velocity field for a period τ . We define the flow map as:

φ : D× Tt × Tτ → D ,
φ(x, t, τ) .

For better readability, we also use the following abbreviations equiva-
lently φ(x, t, τ) = φτt (x) = φ, whenever seeding position, seeding time,
or integration time are negligible or should be clear from the context.

26

2.4 flow maps

D is the spatial domain containing all seeding and destination locations. spatial &
temporal
domain

Tt is the temporal range for possible seeding times. Tτ denotes a differ-
ent interval containing valid integration times, with Tτ = [τs, τe]. An
integration time is valid if

(t+ τ) ∈ Tt ,

i.e., we get a defined seeding time after the integration.

A flow map φτt (x) is a map Rn+2 → Rn, where n denotes the number of dimen-
sionalityspatial dimensions. The remaining two dimensions are the starting time

t and integration time τ . In the remainder of this thesis n ∈ {1, 2, 3},
i.e., we consider 1D, 2D, and 3D flows. We denote the spatial dimensions
as x, (x, y) or (x, y, z). We consider the following flow map types:

nD flow φ : Rn+2 → Rn

3D flow φ : R5 → R3

2D flow φ : R4 → R2

1D flow φ : R3 → R .

In practice, the use of 2D or 3D unsteady flows is common. In this thesis,
we also use the 1D case to clarify concepts. However, all presented flow
map properties and concepts hold for arbitrary dimensions.

The flow map encodes all possible locations for each pathline. To com-
pute a complete pathline starting at (x0, t0) we perform consecutive
evaluations of φ(x0, t0, τ) over a time interval τ ∈ [τ0, τ1] ⊆ Tτ .

For theoretical considerations, we assume that particles stay inside the
flow, i.e., they neither leave the spatial nor the temporal domain. This
constraint is necessary for some definitions we introduce in this thesis.
Though, for the practical use case, this would be problematic. We would
exclude many simulated flow data sets where particles enter or leave the
domain. If a flow contains such parts, they need a particular treatment
in each case or are treated as undefined.

Like scalar fields and vector fields, we assume that flow maps are smooth partial
derivativesand continuous in space and time. Therefore, we can compute the partial

derivatives for each dimension

φi =
∂φ(x, t, τ)

∂xi
with i ∈ {1, 2, 3} , (2.7)

φτ =
∂φ(x, t, τ)

∂τ
, (2.8)

φt =
∂φ(x, t, τ)

∂t
. (2.9)

The (spatial) flow map gradient ∇φτt (x) is a (2×2) respectively a flow map
gradient(3×3) matrix combining the partial derivatives from Equation (2.7).

27

introduction to flow visualization

Identity Additivity

Inversion Relation to Velocity Field

φ(x, t, 0)
=
x

φ(x, t, 2)
φ(x, t, 4)

φ(x, t, 6)

φ(x, t, 8)

φ (φ(x, t, 4), t+ 4, 4)
=

φ (x, t, 8))

φ (x, t, 4)
=

φ (φ(x, t, 4), t+ 4, 0)

φ(x, t, 0)

φ(x, t, 0)
=

φ (φ(x, t, 8), t+ 8,−8) φ (x, t, 8))
v(x, t)
=

∂φ(x,t,0)
∂τ

v(φ(x, t, 4), 4)
=

∂φ(x,t,4)
∂τ

v(φ(x, t, 8), 8)
=

∂φ(x,t,8)
∂τ

Figure 2.7: Flow Map Properties. Illustration of defining properties and
the relation between flow map and velocity field. The blue line
represents a single pathline seeded in an unsteady velocity field at
location (x, t) and integrated for a period τ ∈ [0, 8]. The integration
time τ controls the particle’s position on its pathline. The orange
dashed line shows parts of the pathline for varying τ . The time
derivative φτ corresponds to the velocity field represented by green
arrow glyphs. Color markers indicate the particle’s position on the
pathline.

It describes the separation of particles seeded near (x, t) after the
integration time τ . It is defined as:

2D: ∇φτt (x) =
(
∂

∂x1
φ, ∂

∂x2
φ

)
(2.10)

=

 ∂
∂x1

φx
∂
∂x2

φx

∂
∂x1

φy
∂
∂x2

φy

 , (2.11)

3D: ∇φτt (x) =
(
∂

∂x1
φ, ∂

∂x2
φ, ∂

∂x3
φ

)
(2.12)

=


∂
∂x1

φx
∂
∂x2

φx
∂
∂x3

φx
∂
∂x1

φy
∂
∂x2

φy
∂
∂x3

φy
∂
∂x1

φz
∂
∂x2

φz
∂
∂x3

φz

 . (2.13)

28

2.4 flow maps

2.4.2 Defining Properties

Not every map Rn+2 → Rn is a flow map. A map φτt (x) must fulfill
further defining properties to be a flow map:

Identity: φ(x, t, 0) = x , (2.14)

Additivity: φ(φ(x, t, τ1), t+ τ1, τ2) = φ(x, t, τ1 + τ2) , (2.15)

Inversion: φ(φ(x, t, τ1), t+ τ1,−τ1) = x , (2.16)

for all x ∈ D, {t, (t+ τ1), (t+ τ1 + τ2)} ∈ Tt, and {τ1, τ2} ∈ Tτ .

Equation (2.14) denotes the flow map’s identity for the particular case identity
τ = 0, i.e., a particle is mapped to its seeding position if there is no
integration time.

Equation (2.15) describes the flow map’s additivity, i.e., a particle stays additivity
on its pathline. It moves forward with increasing τ and backward with
decreasing τ . The movement happens in several small consecutive steps
or one big step. However, a particle never leaves its pathline.

Equation (2.16) denotes the inversion of the flow map. If τ is inverted, inversion
a massless particle has to move backward on its pathline, which means
it will reach its seeding position again. The inversion can be seen as
a particular case of additivity. Nevertheless, we list it explicitly as a
property because it clarifies that we can invert the flow map by changing
the sign of τ .

Figure 2.7 illustrates the defining properties using the example of a
single pathline. Depending on the integration time τ , the particle takes
different positions on the pathline. The flow map properties restrict this
movement.

2.4.3 Relations to Velocity Fields

Equation (2.8) shows the time derivative φτ concerning τ ; it is the
direction in which a massless particle currently moves. From this, we
can retrieve a particular connection between velocity fields and flow
maps. If v(x, t) and φτt (x) describe the same flow and are furthermore
both smooth and continuous, the following relations must hold:

φτ (x, t, 0) = v(x, t) ,
φτ (x, t, τ) = v(φ(x, t, τ), t+ τ) ,

i.e., the velocity field is the partial derivative of the flow map with
respect to the integration time τ . Figure 2.7 (bottom right) illustrates
the relation between the time derivative of the flow map and the velocity
field.

29

introduction to flow visualization

2.4.4 Relevance for this Thesis

The flow map is the main focus of this thesis. Flow maps are a full
Lagrangian representation of the corresponding flow.

If a full flow map is available, expensive numeric integration to compute
pathlines becomes obsolete. This is a considerable advantage, especially
for long integration times. In Chapter 4, we present the first systematic
approach to modify flow maps while keeping the defining properties.

The high dimensionality of flow maps leads to much higher storage
requirements when compared to velocity fields. In Chapter 5, we present
drift fields. Drift fields are a Lagrangian flow representation similar to
flow maps. Efficient local operations can extract pathlines, i.e., we do
not need an expensive numerical integration. Furthermore, drift fields
have the same dimensionality as the corresponding unsteady velocity
field. Therefore they are cheap to store.

A systematic analysis of flow map properties can lead to new visualiza-
tion techniques. Chapter 7 introduces recirculation surfaces, a new flow
feature that takes the whole 5D space of the flow map into account.

A common way to visualize flow maps is pathline plots. With an increas-
ing number of pathlines, the visualization quickly becomes cluttered
and confusing. Figure 3.2 presents an example of a small number of
pathlines, that already show this behavior. Therefore, dense pathline
visualization is hardly possible. FTLE fields result in a space-filling
dense visualization of Lagrangian flow properties. FTLE utilizes the
spatial flow map gradient ∇φ and is a standard tool to visualize derived
parts of the flow map. In the next section, we give a short introduction
to this topic.

2.5 lagrangian coherent structures &
the finite-time lyapunov exponent

Finding useful visualizations for unsteady flows is in the interest of
research for over two decades [19, 105]. To gain insights into the flow
data, we usually have to observe its behavior over time. We can do
this by observing the paths of massless particles in the flow. Because
the flow changes over time, a particle’s trajectory is sensitive to its
initial conditions like seeding time and seeding location. Therefore it is
often hard to extract meaningful information from a set of individual
pathlines. However, there exist flow features that help us to describe
the intricate movement patterns of massless particles. Some of these
features are robust over time. A good example is the core line of a
vortex – compare Section 2.2.2. Lagrangian coherent structures (LCS)
are another prominent feature. In the first part of this section, we give
an overview and explain what an LCS is. In the second part, we will
introduce a tool for their extraction, the finite-time Lyapunov exponent.

30

2.5 lcs & ftle

Figure 2.8: Coherent Lagrangian Patterns in Nature. Flows in nature
whose material transport is influenced by LCS. Left: Atmospheric
storms in Jupiter’s southern hemisphere, including the old Great
Red Spot and the young Clyde’s Spot. Right: Oil spill in the Gulf
of Mexico after the oil rig Deep Water Horizon exploded. (Image
source: NASA/JPL-Caltech/SwRI/MSSS, NASA/GSFC)

2.5.1 Lagrangian Coherent Structures

hyperbolic
LCS

As the name suggests, LCS are Lagrangian flow features that allow
global statements about the flow. They persist for a finite or infinite time.
For this thesis, we are interested in hyperbolic LCS. Hyperbolic LCS
show either attracting, repelling, or shearing behavior to nearby massless
particles. Furthermore, they act as barriers to material transport, e.g.,
a particle’s path is not likely to cross an LCS. When we combine LCS,
they form a robust skeleton of material surfaces that reveal ordered
patterns for the rest of the flow [68]. Therefore, they are an essential
tool to investigate the transport processes in unsteady flows. LCS are
of interest for a wide range of applications like spiraling eddies in the
Mediterranean Sea, prediction of ocean pollution, transport of warm
water in the Gulf Stream, or steam rings blown by a volcano. Figure 2.8
shows two examples of natural phenomena containing LCS; storms in
Jupiter’s atmosphere and an oil spill in the Gulf of Mexico. Haller gives
an excellent introduction to the topic of LCS, their properties, and their
meaning for flow analysis [68]. In the past years, researchers introduced
several methods to extract LCS from different data sets, summarized,
e.g., by Hadjighasem et al. [63].

2.5.2 Finite-Time Lyapunov Exponent

The finite-time Lyapunov exponent (FTLE) is one of the most promi-
nent tools to detect and analyze LCS in unsteady flows [120]. The
Lyapunov exponents go back to research by the Russian physicist and
mathematician Aleksandr Lyapunov in the 1890s. In the 1970s, they
were frequently used in physics and mathematics to analyze dynamic
systems’ stability and predictability. Researchers introduced multiple
different variants and techniques to compute Lyapunov exponents [114].

31

introduction to flow visualization

The finite-time variant became of interest in the late 1980s, especially
for systems resulting from numerical simulations [59]. Haller used them
for velocity fields of fluid flows and identified height ridges in FTLE
fields as LCS [65–67]. Shadden et al. [145] have shown in 2005 that LCS
computed from FTLE fields are an appropriate tool to describe the
global material transport in unsteady flow fields because the material
flux across them is negligible. Since then, FTLE became popular in the
Flow Visualization community, and many different methods utilize it.

The idea of FTLE is to measure the rate of separation between particlesFTLE
expla-

nation &
definition

by a single scalar value. A set of massless particles is seeded close to
each other. We observe the particles’ movement over a finite range of
time. Suppose the particles separate, then the FTLE increases. When
the particles stay close to each other, the FTLE is low. The FTLE for
a location x, a starting time t, and an integration time τ is defined as:

∇ := ∇φ(x, t, τ) , (2.17)
∆ := ∇T∇ , (2.18)

FTLE(x, t, τ) = 1
|τ |

ln
√
λmax(∆) . (2.19)

To compute the FTLE, we use the spatial flow map gradient ∇φτt (x).Cauchy-
Green
tensor

We use the abbreviation ∇ from Equation (2.17), specifically for this
definition. By multiplying ∇ with its transpose ∇T, we obtain the right
Cauchy-Green tensor ∆. The Cauchy-Green tensor is a strain tensor.
It contains information about the deformation of particles seeded very
close to each other at the location (x, t) after an integration by τ

[102]. As ∆ is symmetric and positive semi-definite by construction,
its eigenvalues λi ≥ 0 are real, and the associated eigenvectors ei are
orthogonal. The largest eigenvalue of this tensor corresponds to the
squared magnitude of the largest particle separation – therefore, the
square root is taken. Because the flow map gradient ∇φτt (x) grows
exponentially with increasing integration time, the natural logarithm is
used and the value is normalized by |τ |. When we do this computation
for the whole spatial domain, we obtain a field with scalars specifically
for the selected t and τ – the FTLE field. Figure 2.9 shows an example
of an FTLE field with a ridge that corresponds to an LCS. The pathlines
of two particles show separating behavior next to the ridge.

2.5.3 Relevance for this Thesis

FTLE fields are derived from the flow map gradient and visualize
Lagrangian flow behavior. When we modify the flow map at a point
in space-time, the FTLE for this location will also change. We take
advantage of this in Chapter 4, where we introduce an approach to
modify the flow map. We use FTLE fields to visualize the modified
areas.

32

2.6 discretization, reconstruction & derivatives

Figure 2.9: FTLE, LCS & Pathlines. Left: The FTLE field for the
Double Gyre with t = 0 and τ = 10 shows a solid ridge in the
center. This ridge reveals an LCS with separating behavior. Right:
Pathlines of two particles seeded above and below the LCS. The
markers indicate seeding positions (small) and the positions for
τ = 10 (medium). The particles stick together in the beginning
but separate after a certain time.

For the calculation of FTLE fields, we need to compute the flow map
gradient. A straightforward approach is to perform a discrete sampling
of the spatial domain and approximate the gradient based on this dis-
cretization. Chapter 6 introduces a technique for an adaptive refinement
of such a sampling grid to compute FTLE fields. However, first, we will
explain the discretization on a regular sampling grid in the next section.

2.6 discretization, reconstruction & derivatives

For many approaches in Scientific Visualization, we assume that the
data we want to visualize represents a field with a continuous function.
We can evaluate the data at any given point in the domain without
expecting sudden jumps or gaps. The continuity is especially relevant
to theoretical considerations. However, most visualization approaches
use discretization to represent data sets [156]. In this form, the data is
represented at discrete locations and not as a continuous function. We
omit the data between these locations. To gain the discretization, we
evaluate the data at specified locations and store the information we
need, e.g., the original data itself or derived information like derivatives.
The discrete representation is a sampling of the continuous field and
therefore liable to effects like aliasing. By a careful selection of the
discretization scheme and method, we can retain some properties of the
continuous data, but in general, not all of them [164].

2.6.1 Discretization of Data

The data sets we consider in Flow Visualization often originate from
simulation or measuring processes. We store the data as a set of samples.
In general, the samples form a grid representing a subdivision of the
domain into discrete non-overlapping cells. The samples serve as the cell
vertices. The cells usually form a grid consisting of a set of connected
lines in R, polygons in R2, polyhedra in R3, or polytopes in higher

33

introduction to flow visualization

Regular Grid Rectilinear Grid

Structured Grid Unstructured Grid

Figure 2.10: Grid Types. Examples of different grid types.

dimensions [156]. We can distinguish between two grid types: structured
grids and unstructured grids [8].

Structured Grids

structured
grids

The defining property of structured grids is the indexing of the sam-
ples. We identify each grid vertex by a tuple of continuous indexes
corresponding to coordinates in a Cartesian system. Regular polytopes
form the grid cells, e.g., quadrilaterals in 2D or hexahedra in 3D. These
polytopes may differ in size and form [8]. However, we can explicitly
specify cell locations as long as we keep the samples’ index-based ar-
rangement [156]. Structured grids are easy to handle, and elements can
be accessed quickly. Figure 2.10 shows examples of different grid types.regular

grids In this thesis, we primarily use regular grids, which are a subclass of
structured grids. The sampling cells are rectilinear and have a uniform
size in each dimension, i.e., the samples form a Cartesian grid.

34

2.6 discretization, reconstruction & derivatives

Unstructured Grids

unstruc-
tured grids

In unstructured grids, the vertices and cells do not follow a specific
layout. They are located quasi-randomly. Various element types may
form the cells, e.g., tetrahedra, hexahedra, or prisms. Unstructured
grids offer higher accuracy, especially when we approximate the border
of geometries. Unfortunately, data access is much more complicated and
computationally expensive, which led to different algorithms optimized
for specific grid types [8, 52, 88].

2.6.2 Reconstruction of Discretized Data

Due to the sampling, data is only available at the grid points. We want
to be able to evaluate the data at an arbitrary location in the domain.
Therefore, we have to be able to reconstruct the data at intermediate
locations between the samples. For this process, different techniques
exist [156].

One of the most popular approaches for structured grids is the multi multi
linear in-
terpolation

linear interpolation between neighboring grid samples [125]. In the lower
dimensions, we denote this as linear (1D), bilinear (2D), or trilinear (3D)
interpolation. This reconstruction scheme is sufficient for many cases in
Scientific Visualization. The majority of approaches in this thesis rely
on multi linear interpolation. When using this approach, it is necessary
to consider that the result is only C0-continuous at the cell borders,
i.e., the first derivative is not smooth. If necessary, we can achieve a
higher quality reconstruction at the costs of higher computational effort.
For example, we can use higher-order interpolation schemes that take
neighboring cells into account. For more information on this topic, we
refer to the literature [1, 8, 101, 156].

2.6.3 Derivatives of Discretized Data

finite
difference
method

Another problem we have to solve when working with discretized data
is the computation of derivatives. When we use regular grids, where the
samples lie on a Cartesian grid, we can estimate the derivatives with
the finite difference method. By a linear combination of neighboring
grid points, we can approximate the derivatives.

We explain the method for the 2D case; the procedure is analogous for
other dimensions. We assume that we have a continuous 2D function
f(x) sampled on a regular grid. Each sample’s location is described by
a pair of coordinates; x = (x, y) with x, y ∈ {0, 1, ...,n}. The number
of samples in each direction is denoted by n. We can approximate

35

introduction to flow visualization

h

h

f(x, y+ 1)

f(x+ 1, y)

f(x, y− 1)

f(x− 1, y)

f(x, y)

∂
∂xf :

∂
∂yf :

Figure 2.11: Finite Differences. We show an illustration of the stencil
scheme used for central differences on a regular sampling grid. We
want to approximate the derivative at the green marker. For the
derivative in x-direction, we use the stencil with the blue markers.
For the derivative in y-direction, we apply the stencil with the
orange markers.

the first-order derivative at location (x, y) by the following difference
schemes:

Forward Difference (2.20)

∂f

∂x
≈ f(x+ 1, y)− f(x, y)

h

∂f

∂y
≈ f(x, y+ 1)− f(x, y)

h

Backward Difference (2.21)

∂f

∂x
≈ f(x− 1, y)− f(x, y)

h

∂f

∂y
≈ f(x, y− 1)− f(x, y)

h

Central Difference: (2.22)

∂f

∂x
≈ f(x+ 1, y)− f(x− 1, y)

2h
∂f

∂y
≈ f(x, y+ 1)− f(x, y− 1)

2h .

The distance between two samples is denoted by h and is constant in
each direction. We control the samples we use for the computation with
a stencil. Equations (2.20) to (2.21) use a 2-point stencil, Equation (2.22)
uses a 3-point stencil; these are the most common schemes. Different
stencil sizes and sampling positions are possible but require separate
coefficients. In general, a bigger stencil leads to a better derivative
approximation at higher computational costs. Figure 2.11 illustrates
a sampled 2D grid and the stencil for the central difference in x- and
y-direction. If the data contains additional dimensions, we can perform

36

2.6 discretization, reconstruction & derivatives

the finite difference in each direction. More information on the finite
difference method can be found in [41, 152].

A prerequisite for the finite difference method is a uniform spacing
between the grid samples, i.e., a constant factor h. For varying distances
and stencils of 3 or more samples, a different scheme is required. A
possible solution is to find a polynomial that interpolates the sampled
values. We can then derive the polynomial and approximate the function
derivative. For this thesis, we use interpolating Lagrange polynomials.

Given is a set of a (n+ 1) samples in the form (xi, yi). The Lagrange Lagrange
polynomi-
als

polynomials Lnk (x)

Lnk (x) =
n∏
j=0
j 6=k

x− xj
xk − xj

, (2.23)

=
x− x0
xk − x0

... x− xk−1
xk − xk−1

· x− xk+1
xk − xk+1

... x− xn
xk − xn

,

provide a basis in the space of polynomials of degree n with the inter-
polating property

Lnk (xi) =

 0 if i 6= k

1 if i = k
.

For the given sample locations xi the polynomial Pn(x)

Pn(x) =
n∑
k=0

ykL
n
k (x) ,

= y0L
n
0 (x) + y1L

n
1 (x) + ... + ynL

n
n(x) ,

interpolates the values yi, i.e.,

Pn(xi) = yi , ∀i ∈ {0, ...,n} .

This means, the coefficients of Pn(x) are the interpolated values yi. The
(n+ 1) samples needed for the definition of Lnk , are the samples of the
discretized function f(x). Because Pn(x) is a 1D function, we have to
align it to the sampling grid. We can do this in each direction separately
by fixing one dimension to xc or yc. This way, we define the samples for
Equation (2.23) based on a sampled 2D function f(x) as:

x-direction
(xi, yi) = (xi, f(xi, yc)) , i, c ∈ {0, ...,n}, c is constant,

y-direction
(xi, yi) = (yi, f(xc, yi)) , i, c ∈ {0, ...,n}, c is constant.

37

introduction to flow visualization

Once we computed the interpolating polynomial, we can use the closed-
form solution to determine the derivative. Interpolation by polynomials
can show oscillating behavior around the sampled function, in particular
for higher degrees. In this thesis we use only quadratic P2(x) or cubic
P3(x) polynomials to avoid this problem. In general, this results in good
approximations of the first-order derivative.

2.6.4 Relevance for this Thesis

Discretization, reconstruction, and approximation of derivatives play an
essential role in this thesis. We created all results we present throughout
the thesis using discretized data sets. The complexity ranges from
simple 1D functions we use, e.g., for the colormaps, to highly resolved
discretizations of flow maps in 5D space. In almost all cases, we use
a uniform sampling in each dimension, i.e., the sampling distance can
differ in space and time. For the reconstruction, we utilize multi linear
interpolation. We obtain most of the derivatives by central differences.
Even though we created the results on discretized data, we used synthetic
benchmarks in the analytic form to develop our approaches. Analytic
benchmarks do not suffer from errors due to sampling. We can evaluate
them at any position in space-time, compute ground truths, and compare
them to sampled versions with different resolutions. Analytic data
sets support systematic research and help to identify shortcomings of
developed methods. One of the essential synthetic data sets for this
thesis is the Double Gyre. We introduce it in the next chapter.

38

3
D O U B L E G Y R E

This chapter is partly based on the publication:

S. Wolligandt, T. Wilde, C. Rössl, H. Theisel
A Modified Double Gyre with Ground Truth Hyperbolic
Trajectories for Flow Visualization
Computer Graphics Forum, 2020

We assume we have an idea for a new flow feature that can help
to understand flows better. We usually start by defining the specific
properties we expect and formulate a sound theoretical description. Then
we develop techniques to extract the new feature from flow data. Usually,
we aim for generic methods that cover arbitrary flows. We start by
solving simple cases and extend the technique to more difficult subjects
step by step. We check our algorithms with tests during this process,
each covering a particular issue on its own. When our implementation
passes all tests, we will use our method on complex data sets and
simulated flows. In this phase of development, we usually get results
that give us new information about the data. The problem is that the
results might look correct but are wrong. We still have to verify if the
outcome is right for more complex data sets.

Therefore, the use of benchmark data sets is helpful. It is an advantage if
benchmarks are well known and used by other researchers as well. They
cover different levels of complexity, and we know the results that our
new method should compute, or at least can predict them pretty well. A
benchmark data set that is essential for this thesis is the Double Gyre.

3.1 explanation & definition

double
gyre
pattern

The double gyre is a flow pattern that consists of two gyres located next
to each other. The gyres are oriented in opposite directions, i.e., one
rotates clockwise the other in a counterclockwise direction. This pattern
can be observed regularly in natural flows. For example, two counter-
oriented gyres appear next to the spoon when we move it in a straight
line through a cup of tea. Such gyres also appear on a global scale
in wind-driven ocean currents. For example, we can observe seasonal
gyres – a sub-polar gyre and a sub-tropical gyre – in ocean basins with
a diameter of several thousand kilometers [148]. Over the past decades,

39

double gyre

this pattern was studied several times in geophysical flow models [24,
109, 149].

For the 2D case, we can easily model a velocity field that mimicssteady
Double
Gyre

this behavior. We regard the stream function ψ(x, y) with its partial
derivatives in x- and y-direction

ψ(x, y) = sin(πx) sin(πy) , (3.1)

∂ψ

∂x
= π cos(πx) sin(πy) ,

∂ψ

∂y
= π sin(πx) cos(πy) .

From the partial derivatives, we can derive a 2D velocity field v(x, y)
as a co-gradient field

v(x, y) =

u(x, y)
v(x, y)

 ,

u(x, y) =− ∂ψ

∂y
= −π sin(πx) cos(πy) ,

v(x, y) = ∂ψ

∂x
= π cos(πx) sin(πy) .

Figure 3.1 illustrates the stream function using height-mapping, the
velocity field as an arrow plot, the corresponding LIC image, and a
streamline plot over the domain D = [0, 2] × [0, 1]. The data set is
periodic and repeats in x- and y-direction alternating as original and
mirrored version.

Shadden et al. [145] used this model as a starting point to study materialunsteady
Double
Gyre

transport over hyperbolic LCS. The LCS were extracted as height ridges
from FTLE scalar fields. Shadden wanted to know precisely: “Do LCS
(in FTLE fields) represent invariant manifolds?” [144]. As explained
in Section 2.5, LCS persist over time, even in time-dependent flows.
Therefore, Shadden et al. extended Equation (3.1) to a time-dependent
version that is known as the Double Gyre

ψ(x, y, t) = A sin(πf(x, t) sin(πy) , (3.2)

f(x, t) = a(t)x2 + b(t)x , (3.3)

a(t) = ε sin(ωt) , (3.4)

b(t) = 1− 2ε sin(ωt) . (3.5)

40

3.1 explanation & definition

0 1
2 1 3

2 2

1
2

1

1
2

1 3
2

20

1
2

1

1
2

1 3
2

20

1
2

1

Figure 3.1: Steady Double Gyre. Top-left: Stream function as height field.
Top-right: Arrow plot of the velocity field. Bottom-left: LIC image.
Bottom-right: Oriented streamlines.

We derive the 2D velocity field v(x, y, t) again as a co-gradient field
and get

v(x, y, t) =

u(x, y, t)
v(x, y, t)

 ,

u(x, y, t) =− ∂ψ

∂y
= −πA sin(πf(x, t)) cos(πy) ,

v(x, y, t) = ∂ψ

∂x
= πA cos(πf(x, t)) sin(πy)df

dx ,

df
dx = 2a(t)x+ b(t) .

Figure 3.2 shows visualizations for different states of the velocity field. explana-
tion &
parame-
ters

The velocity field is closed in the rectangular domain D = [0, 2]× [0, 1],
i.e., no particles leave or enter this area when advected by the field.
Equations (3.2) to (3.5) have some parameters that control the appear-
ance of the data set. Parameter A is a factor that controls the magnitude
of the velocity vectors. The function still describes two gyres that ro-
tate in counter-oriented directions. A vertical line, initially located at
x = 1, separates the gyres. The velocity field contains critical points:
static saddles in each corner and moving saddles on top and bottom of
the separation line. In the center of each gyre, we can locate another
critical point – a center. If ε 6= 0, the field becomes time-dependent.
The separation line between the gyres oscillates in the x-direction, i.e.,
the gyres are alternately compressed and stretched with ongoing time
t. ω controls this motion’s frequency, and ε determines its magnitude

41

double gyre

to the left and the right. Shadden et al. suggest to use the following
parameters:

A = 0.1, ω = 2π/10, ε =
1
4 ,

this is also the parametrization we use for this thesis.

The FTLE fields in Figure 3.2 show an emerging ridge that corresponds
to an LCS in the domain center. With increasing integration time, the
ridge structures become more complex. Particles placed on either side
of the ridge diverge when they reach a separating point at the bottom
of the domain. This separating point does not coincide with the saddle
point. There exists no closed-form solution that describes the exact
movement of this point. Neither exists one that describes the LCS, i.e.,
we have to determine it numerically [145, 180].

3.2 relevance for the visualization community

After Shadden et al. published their excellent paper [145] and the ac-
companying online tutorial [144], it became prevalent in the Scientific
Visualization community. The paper was cited over 1000 times. There-
fore, also, the Double Gyre became well known and gained interest.
Today it is one of the most used benchmarks. In the following, we list
some typical examples that use the Double Gyre to show its importance
and versatility.

Germer et al. [56] study guaranteed material separation along LCS.
Schindler et al. [141] evaluate new ridge concepts for LCS. Barakat et al.
[6] evaluate adaptive refinement strategies for the flow map as well as
extraction of ridge geometries. Kuhn et al. [86] present a new method
to detect LCS by tracking timeline cells. Machado et al. [99] extract
LCS via space-time bifurcation lines. Günther et al. [61] present a
method that computes high-quality FTLE ridges and ridge surfaces
based on Monte-Carlo path tracing. Hummel et al. [78] analyze an
error estimation for Lagrangian representations of flows. Hofmann et al.
[77] extract recirculation surfaces with the dependent vectors operator
in 2D. Froyland et al. [44] study mixing enhancement and consider
almost-invariant manifolds [43]. The Double Gyre comes with a set of
parameters that influence the behavior of the flow. Although most works
use the original parameters given by Shadden et al., other versions exist.
For instance, Sadlo et al. [130] extend the domain to receive a flow
field consisting of four rotating gyres. In Chapter 7, we present a 3D
version of the data set that we published in [177]. Wolligandt et al.
[180] present a modified version that is hardly distinguishable from the
original version. They can provide ground truth closed-form hyperbolic
trajectories and use them to compute LCS.

42

3.3 relevance for this thesis

t = 0

t = 2

t = 4

t = 6

t = 8

t = 10

t = 0, τ = 0

t = 0, τ = 2

t = 0, τ = 4

t = 0, τ = 6

t = 0, τ = 8

t = 0, τ = 10

t = 0, τ = 25

t = 0, τ = 2

t = 0, τ = 4

t = 0, τ = 6

t = 0, τ = 8

t = 0, τ = 10

Figure 3.2: Double Gyre Visualizations. Left column: LIC images for
different times t. Center column: Pathlines for selected positions and
varying integration time τ . Colored markers indicate the seeding
position (light) and the current position (saturated). Right column:
FTLE fields for varying integration times τ . Top-right: The FTLE
field for τ = 0 is not defined. Therefore, we show a field for a long
integration time with complex ridge structures.

3.3 relevance for this thesis

All the listed examples give only a small glimpse into the importance of
the Double Gyre. It has a simplistic and understandable analytic form
and covers different interesting flow patterns from simple to challenging.
In the remainder of this thesis we will see the Double Gyre, on several
occasions. We pick it up as a benchmark for every presented technique.

"If it works for the Double Gyre, the other data sets should work as
well." (Holger Theisel, September 2015)

43

Part II

F L O W M A P P R O C E S S I N G

4
F L O W M A P M O D I F I C AT I O N B Y S PA C E - T I M E
D E F O R M AT I O N

This chapter is based on the publication:

T. Wilde, C. Rössl, H. Theisel
Flow Map Processing by Space-Time Deformation
Advances in Visual Computing
(Proc. 15th International Symposium, ISVC 2020, Part I) 2020

In Sections 2.2 and 2.4, we introduced the two common ways to represent
flows: time-dependent velocity fields and flow maps. Both have their
advantages and disadvantages.

On the one side, we have velocity fields. They are of research interest
for several decades now. Velocity fields are lower-dimensional, easy to
store, and simple to handle. Besides many techniques to visualize them,
also established approaches for modeling, construction, deformation,
simplification, and compression exist. We refer to these approaches as
vector field processing and consider them an inevitable part of Flow
Visualization. The main drawback of velocity fields is the expensive
numerical integration we must perform to obtain particle trajectories.

On the other side, there are flow maps. They have gained increased
interest in recent years. Once we computed the flow map, they enjoy
a direct encoding of particle trajectories. We retrieve pathlines by an
evaluation – an expensive numerical integration is not necessary any-
more. The ultimate goal is to provide methods for flow map processing
comparable to vector field processing. Techniques to directly process
the data, such as smoothing, deformation, construction, and simplifi-
cation, are desirable. Nevertheless, considering the flow map is still a
challenging task. The reason for this is fourfold:

challenges1. Their computation is expensive – it involves massive numerical
particle integrations beforehand.

2. They are higher dimensional and need more storage space in
comparison to velocity fields.

3. The inherent properties lead to a complex inner structure with
highly connected data.

4. Their gradient shows exponential behavior with increasing inte-
gration time, making many standard techniques unusable.

47

flow map modification by space-time deformation

funda-
mental
problem

When we work with flow maps, we have to face another fundamental
problem: the result we get after a small modification is, in general, not
a flow map anymore but leaves the space of valid flow maps. The cause
of this is that a slight change would immediately destroy the inherent
properties we introduced in Section 2.4.2. We explain this by example
in Section 4.2. This is a substantial difference when we compare flow
maps and velocity fields. Nevertheless, the possibility to modify flow
maps is a prerequisite for further flow map processing techniques.

In this chapter, we present the first approach that tackles this prob-chapter
overview lem. We introduce a concept for modification techniques that keep the

properties intact. Section 4.1 gives a short overview of related work.
In Section 4.2, we present a function that remaps locations in space –
this is the basis for a flow map modification. We show how to restrict
this function to a specific area in space-time, making local changes
possible. Even if the deformation area is local, the impact it has is
global. We show which regions must be adapted to keep the global
flow map properties. Furthermore, we present a technique to lower the
computational effort regarding discretized data. Hence, we achieve a
performance that is suitable for interactive real-time modification. In
Section 4.3, we give details about the implementation of a demonstrator
we use to explore and deform flow maps. Finally, in Section 4.4, we
demonstrate our technique with two deformation tools we apply to the
Double Gyre.

4.1 related work

This section will give a short overview of previous research regarding
vector fields and flow maps. We already discussed visualization tech-
niques in Sections 2.2 and 2.4. Therefore, we will focus on design and
processing techniques.

Vector Field Design & Application

vector field
design

Before we can work with vector fields, the first step is to create them.
Velocity fields are often the results of flow simulations. Nevertheless,
the manual creation of velocity fields is necessary, e.g., for artistic
purposes or specific benchmarks. We need automated or user-controlled
techniques that allow the design of vector fields.

Theisel [158] presents an early approach to designing arbitrary 2D
steady vector fields based on a set of control polygons. With the help
of non-overlapping control polygons, we can describe a topological
skeleton. It contains critical points and separatrices and is used to
compute the vector field. Weinkauf et al. [173] extend this approach
to 3D. The topological skeleton is designed interactively by placing

48

4.1 related work

the control polygons. From this, a piecewise linear vector field with
the same topology is computed. The presented approach also contains
a visualization technique for higher-order critical points in 3D vector
fields.

Zhang et al. [183, 184] offer a system that aims for fast and inter-
active manipulation of vector fields on surfaces. The core idea is to
place, move, and remove singularities on surfaces to modify vector
fields. The authors demonstrate artistic purposes like texture synthesis
on 3D objects or painterly renderings of images. Chen et al. [25] con-
tribute an element-based framework for designing time-varying vector
fields. The framework includes several design metaphors like stream-
lines, pathlines, and singularity paths. Based on a key-frame-like design,
a spatio-temporal optimization is employed to compute vector fields.
The paper presents different application examples containing animated
images and animated textures on 3D objects.

Vector fields are a powerful tool to solve a variety of problems. For vector
field appli-
cation

example, many different approaches to texture synthesis on 3D surfaces
rely on vector fields, compare, e.g., Praun et al. [124], Turk [162], or
Wei and Levoy [168].

Funck et al. [45, 46, 165] present a new method for the deformation of
mesh-based 3D objects. The authors design deformation shapes that
contain vector fields. The shapes are placed on a 3D mesh, and the
mesh vertices are transformed based on the shape’s vector field. We
formulate our approach for flow map modification similarly.

For more information regarding vector field synthesis, design, and pro-
cessing, we refer to the survey by Vaxman et al. [164].

Flow Map Processing & Application

flow map
processing

Most visualization and simulation approaches use sampled representa-
tions of data sets [156]. During the sampling and reconstruction process,
an error is induced into the data. Hummel et al. [78] present a method
to estimate the upper error when reconstructing pathlines from sampled
short-time flow maps.

There exist different meaningful flow properties and features we derive flow map
applica-
tion

from flow maps. Many state-of-the-art Flow Visualization techniques
are based on advection in velocity fields [19, 91, 92, 135]. All of the
methods that rely on integrating massless particles use at least a part
of the flow map.

Another prominent example is the FTLE we introduced in Section 2.5.
Besides the FTLE, the finite-space Lyapunov exponent (FSLE) [4, 131]
is used in the Flow Visualization community. The FSLE rates the
time that passes until two closely seeded particles separated for a fixed
amount in space.

49

flow map modification by space-time deformation

Weinkauf and Theisel [170] derive streakline fields from the spatio-
temporal flow map gradient. Streakline fields are vector fields that
contain streaklines as tangent curves. Hence we can use standard tech-
niques to integrate streaklines.

Hlawatsch et al. [76] present an approach to speed up the process of
computing particle trajectories. They use parallel computation and
concatenation of short-time flow maps.

Besides the faster computation of flow maps, we are not aware of other
techniques that directly address flow map processing.

4.2 flow map modification

In this section, we introduce the theoretical foundation for a flow
map modification approach. A modification must preserve all defining
properties. Due to the highly connected data, it is impossible to change
the flow map in a small area without breaking the global flow map
properties. This is a fundamental problem, and we explain it in more
detail by example.

Flow maps explicitly encode pathlines, i.e., a modification changesexample
complex
structure

pathlines. When we think about deforming a single pathline, it finally
becomes clear why the flow map has a complex inner structure. Imagine
we seed a single particle in an unsteady flow at position x0 and seeding
time t0 = 0. We observe its movement for 10 discrete time steps,
i.e., the integration time τ0 ∈ {0, 1, ..., 9}. The flow map φτt (x) yields
this specific particle’s positions for any observed integration time, i.e.,
φ(x0, 0, τ0) with 0 ≤ τ0 ≤ 9. We now imagine placing another particle
at the same pathline but a little bit later for t1 = 1. We denote the
seeding position for this second particle as x1. Because x0 is a position
on the same pathline, we know φ(x0, 0, 1) = φ(x1, 1, 0) = x1. From
our initial observation, we can derive further flow map entries for the
particular second particle. We can immediately set all φ(x1, 1, τ1) with
−1 ≤ τ1 ≤ 8. More flow map entries become clear if we increase the
seeding time and pick other positions on the pathline. Hence, from

50

4.2 flow map modification

the observation, we can derive the flow map values for the following
(t, τ)-combinations:

t0 = 0 with τ0 ∈ {±0,+1,+2,+3,+4,+5∗,+6,+7,+8,+9} ,
t1 = 1 with τ1 ∈ {−1,±0,+1,+2,+3,+4∗,+5,+6,+7,+8} ,
t2 = 2 with τ2 ∈ {−2, −1,±0,+1,+2,+3∗,+4,+5,+6,+7} ,
t3 = 3 with τ3 ∈ {−3, −2, −1,±0,+1,+2∗,+3,+4,+5,+6} ,
t4 = 4 with τ4 ∈ {−4, −3, −2, −1,±0,+1∗,+2,+3,+4,+5} ,
t5 = 5 with τ5 ∈ {−5, −4, −3, −2, −1,±0∗,+1,+2,+3,+4} ,
t6 = 6 with τ6 ∈ {−6, −5, −4, −3, −2, −1∗,±0,+1,+2,+3} ,
t7 = 7 with τ7 ∈ {−7, −6, −5, −4, −3, −2∗, −1,±0,+1,+2} ,
t8 = 8 with τ8 ∈ {−8, −7, −6, −5, −4, −3∗, −2, −1,±0,+1} ,
t9 = 9 with τ9 ∈ {−9, −8, −7, −6, −5, −4∗, −3, −2, −1,±0} .

From the seeding of the initial particle and the observation of 9 further
discrete time steps, we already determine 90 flow map entries that
describe this particle’s movement.

We now want to modify the pathline at half the integration time, i.e.,
we change the value for φ(x0, t0, 5). This implies that we must adapt
all flow map entries that describe the same location on this pathline.
We marked these with a ‘∗’ in the (t, τ)-list. Because the flow map is
continuous in space-time, we also have to adapt the entries next to the
modified location. This includes locations on the initial pathline but
also other pathlines in the spatial neighborhood. Furthermore, we have
to make sure that all inverse mappings are still correct.

With this simple example, we can show that a small change always has
a global impact in the space-time domain. This makes modifications
of flow maps a challenging problem. In the following, we propose an
approach to solving this task, divided into three steps:

1. Define a space deformation function to modify flow map entries.

2. Define a local area in space-time to perform a modification.

3. Globally identify all influenced regions and adapt them.

In this section we use pathline plots to visualize the deformation process;
in the results section, we also use FTLE fields. To clarify ideas and
concepts, we will illustrate time-dependent flows in the 1D and 2D
spatial domain.

4.2.1 Definition of a Space Deformation

Given a flow map φ, we want to apply a local modification in space-time
such that the new map φ̃ is a flow map again. The conversion must
change the mapping of positions in space at selected domain locations

51

flow map modification by space-time deformation

in space-time. An example may be to pick a pathline and locally change
its shape. Due to continuity reasons, a modification must also affect
the region near the modified pathline, i.e., we also have to change the
shape of adjacent pathlines. Still, at a certain distance in space-time,
all remaining pathlines are untouched.

We model such behavior by defining a space deformation y(x, t) as:definition
space de-
formation y : D× T → Rn ,

y(x, t) = (x̃, t) .

D denotes the spatial domain and T the temporal domain. The functionproperties
space de-
formation

y maps a point (x, t) in space-time to the new point (x̃, t), i.e., the
spatial location is changed, but the time step stays the same. We demand
y to be:

• local – it affects only a particular limited region of the space-time
domain unless y is the identity;

• continuous – y is smooth and at least C1-continuous, i.e., it con-
tains no sudden jumps or gaps;

• invertible – the spatial gradient ∇y does have full rank, i.e., the
inverse map y−1 is well-defined.

We compute the new flow map φ̃τt (x) from φτt (x) and y by:

φ̃τt (x) = y(φ(y−1(x, t), t, τ), t+ τ) . (4.1)

Note that φ̃ is a flow map as well; we give proof for this in Appendix A.
We explain, why we demand y to be local, continuous, and invertible.

The transformation from φ to φ̃ should be local in space-double-time,local
i.e., position x, time t, and integration time τ . This way, we can define a
particular area in which y should perform a modification. The rest of the
flow map remains mostly untouched. In areas where no modification is
performed, φ̃τt (x) = φτt (x). We achieve this when y(x, t) is the identity

x = y(x, t) ,
φ(x, t, τ) = y(φ(y−1(x, t), t, τ), t+ τ) .

Nevertheless, global transformations are still possible by extending the
modified area to the whole domain.

In general, the flow map describes a smooth and continuous function. Ifcontinuous
y ∈ C1, we can keep this property even after a modification.

The space deformation y(x, t) also has to be invertible. The reasoninvertible
for this is not to undo the transformation φ̃ → φ. Instead, it keeps φ̃
continuous in space. Figure 4.2 illustrates this. Imagine we pick a part
of a pathline and move it a little bit. The pathline would move to a new
position and leave a gap. Another pathline fills this gap by moving up.
To identify this gap-filling pathline, we must invert y.

52

4.2 flow map modification

x0

t0

x

µs

t

µt

r2r2 r1r1

rtrt


xl

yl

tl



xl + 1
yl

tl




xl + 1
yl + 1
tl




xl

yl

tl + 1




xl

yl + 1
tl + 1



xl + 1
yl + 1
tl + 1



x
y

t

Figure 4.1: Modification Shape & Lookup Cells. Left: Illustration of
the modification shape S. Right: Illustration of a lookup-cell in
(x, y, t)-space.

4.2.2 Definition of a Modification Area

For an interactive manipulation of flow maps, we follow a metaphor
using interactive shape modeling by deformations [12, 45] and adapt
this to flow map modeling. We define the shape S in space-time, with n
dimensions in space and one dimension in time; therefore, S ⊂ D× T .
S describes an area of effect in which the modification is performed. It
is placed in the space-time domain, e.g., interactively at a user-defined
location.

We divide the shape into three parts: modifica-
tion area
shape1. An inner part, with a rigid modification.

2. An outer part, where no transformation takes place.

3. A middle part, where an energy minimization computes the defor-
mation to ensure continuity and other useful properties.

Figure 4.1 (left) illustrates the shape S for the 1D case, i.e., one spatial
dimension and one temporal dimension.

We define a local space deformation y by setting the following values
for the modification shape S: xc, tc, r1, r2, rt, xd. Here (xc, tc) denotes
the center position of S in space-time, and xd denotes a deformation
vector. Furthermore, we demand

0 ≤ r1 < r2 , 0 < rt , ‖xd‖ < r2 − r1 .

53

flow map modification by space-time deformation

t0

x0

t

x

S

tc

xc

t

x

t0

x0

t

x

Figure 4.2: Illustration of a Modification in 1D. Left: Original pathlines.
Center: Process of modification, it is strongest in the center of S.
Right: Smooth modified pathlines.

Then we define a space deformation as:

y(x, t) = x + µxd (4.2)

µ = µsµt , (4.3)
µs = (s3

x + 3s2
x(1− sx)) , µt = (s3

t + 3s2
t (1− st))

r = ‖x− xc‖ (4.4)

sx =


1 r < r1

r−r2
r1−r2

r1 ≤ r ≤ r2

0 r > r2

st =

 1− |t−tc|rt
|t− tc| < rt

0 else .
(4.5)

µ is a scaling factor for the deformation, defined in the dependency of
S. µ is 0 next to the border (no modification) and 1 at the center (full
modification) of S. This definition of the modification shape S leads to
a smooth transition from original to modified areas in the φ̃ domain.

Figure 4.2 gives an example of a modification of pathlines for the 1D
case. We place S at a specific location (xc, tc), e.g., guided by the user.
Figure 4.2 (left) shows pathlines extracted from the flow map. Note that
they are defined in space-time and do not necessarily start or end at the
same time t. Figure 4.2 (center) illustrates a modification in the form of
a translation in the positive x-direction. We show the modified pathline
pieces in orange; they stay inside S. Outside of the modification shape,
y maps to the identity, i.e., φ̃ = φ. This also holds for the particular
case τ = 0. Figure 4.2 (right) shows the final result.

Note that by construction, y is C1-continuous and invertible. However,
the inverse y−1 does not have a simple formula. Because of this, we
numerically precompute y−1 on a uniform grid in a space-time box with
the same size as S. We use this precomputed box as a lookup table to
estimate y−1.

54

4.2 flow map modification

t

τ

tc

tc − rt
tc + rt

2rt

2rt

xd

(x0, t)
= φ̃(φ̃(x0, t, τ), t+ τ ,−τ)

φ(x0, t, τ)
= y−1(y(φ(x0, t, τ), t+ τ), t+ τ)

y(φ(x0, t, τ), t+ τ)
= φ̃(x0, t, τ)

t

x

Figure 4.3: Affected Areas. Left: Areas with (t, τ)-pairs in which φ̃ has to
be updated. Right: The effect of y for two locations on a single
pathline.

4.2.3 Local Modification & Global Adaption

regions for
global
adaption

Having defined the space deformation y, we have to update the flow
map φ̃ accordingly by applying Equation (4.1). Since y is local, i.e., only
in a specific area, it is not the identity, φ̃ is local as well. To ensure the
flow map properties, we need to identify the parts we have to change
for a local modification process. We classify these parts into two groups:

1. Parts mapping from inside S to its outside, i.e. φ(x, t, τ) /∈ S with
(x, t) ∈ S.

2. Parts mapping to the inside of S, i.e., φ(x, t, τ) ∈ S.

Keep in mind that we define S in space-time. Therefore the terms inside
and outside also refer to space-time. For the spatial part, we have to
check if a location x or its mapping φ(x, t, τ) belongs to S.

Regarding the double-time dimensions, only specific (t, τ)-combinations
are relevant. However, we must compute the new flow map φ̃ only
for (t, τ)-pairs with (tc − rt) ≤ (t+ τ) ≤ (tc + rt). Figure 4.3 (left)
illustrates the relevant parts in the (t, τ)-domain. Regarding a single
pathline from the example given in Figure 4.2, the flow map needs to
be adapted for all locations on this pathline, where a (t, τ)-pair maps
into the modification area S. Figure 4.3 (right) illustrates this adaption
for two locations on a pathline. If we modify φ(x, t, τ), then we also
have to adapt φ(φ(x, t, τ), t+ τ ,−τ).

4.2.4 Discretization of the Flow Map

discretiza-
tion in
space-time

φ is defined as a continuous map describing particle trajectories in
flows from the Lagrangian reference frame. As described in Section 2.6,
we discretize it in space and time. We discretize the domain over a
regular grid. For the discretization scheme, we require the parameters

55

flow map modification by space-time deformation

τ

0 x

φ(5, t, 0)

φ(5, t, 5)

hx = 1hx = 1

ht = 1

φ((9, 5), t, 0)

φ((9, 5), t,ht)

φ((9, 5), t, 20ht)

0 x

y

hx = 1

hx

Figure 4.4: Flow Map Discretization in 1D & 2D. Left: Sampled pathlines
for different x, fixed t, and consecutive τ in 1D. Right: A pathline for
a fixed x, fixed t, and consecutive τ in 2D. Orange markers denote
(x, t)-coordinates of samples. Blue markers indicate τ -coordinates
and mapping destinations.

hx and ht. They denote the constant distance between two samples
in the spatial dimensions, e.g., (x, y) and the temporal dimensions t
and τ . This discretization of the domain results in a single slice for
each (t, τ)-combination containing the spatial grid samples. We perform
numerical integration in the underlying vector field for each discrete
(x, t, τ)-sample. The corresponding trajectory endpoint is stored for this
sample and builds a single entry in the discretized flow map. This way,
we get an approximation of the flow map in each dimension. Figure 4.4
gives an example of the 1D and 2D cases. The access to the flow map
entries is given by (x, t, τ)-coordinates for each sample. Furthermore,sample ID

for look-up
cell

each sample gets a unique ID. We need this ID to speed up the retrieval
of affected parts – we explain this in Section 4.2.6. Flow map values
between discrete samples are obtained by multi linear interpolation of
the corresponding neighboring samples. Pathlines for a fixed (x, t, 0)-
position can be extracted by evaluating the entries for consecutive
τ -coordinates.

4.2.5 Modification of the Discrete Flow Map

global
adaption

areas

We have to adapt the discrete samples’ entries when we modify the
discrete flow map. As stated out, we classify the involved samples into
two groups:

1. Samples located inside the modification area S mapping outside.

2. Samples mapping into the modification area S.

The samples covered by the modification area S belong to the first
group. They are easy to identify by their coordinates. The samples
belonging to the second group are not so easily identifiable. Potentially
we have to check all samples with a suitable (t, τ)-combination (see
Figure 4.3) for each modification. But in general, only a small group

56

4.3 implementation

of samples maps into S. To cope with this problem, we introduce a
different data structure.

4.2.6 Lookup-Cells for Fast Sample Retrieval

Based on the flow map sampling, we divide the discretization into
lookup-cells, defined by (x, t)-coordinates, i.e., we omit one temporal
coordinate τ . The adjacent samples of a location in (x, t)-space build the
vertices of the surrounding lookup-cell. For the 2D case, a lookup-cell
C at the sample (xl, tl) is given by the following coordinates:

C(xl,tl) = {(xl, yl, tl), (xl + 1, yl, tl),
(xl, yl + 1, tl), (xl + 1, yl + 1, tl),
(xl, yl, tl + 1), (xl + 1, yl, tl + 1),
(xl, yl + 1, tl + 1), (xl + 1, yl + 1, tl + 1)} .

Figure 4.1 (right) gives an illustration. For other dimensions, vertex-
coordinates follow the same scheme. 2(n+1) neighboring samples make
up a cell. Vice versa, each discrete sample is part of up to 2(n+1) adjacent
cells. Each lookup-cell C(xl,tl) holds the IDs of samples mapping into
its volume in discretized space-time. The set P of these samples for a
single cell is given by:

PC(xc,tc)
= {(x, t, τ) | φ(x, t, τ) ∈ C(xl,tl)} with tl ≤ (t+ τ) ≤ tl + 1 .

This way, fast retrieval of all parts that need to be adapted is possible.
The temporal domain of the lookup-cells covers the whole (t, τ)-space,
i.e., Tt × Tτ .

4.3 implementation

After precomputing the complete flow map in a particular resolution,
we can reformulate standard visualization approaches using pathline
integration as a simple array lookup. Based on this, we implemented an
interactive exploration tool for unsteady 2D flows. Since the pathline pathlines

plotstarting at (x, t) in a parametrization of τ is just φ(x, t, τ), we can
compute every point by a quadrilinear interpolation of the sampled flow
map. Note that this way, the pathline’s accuracy does not depend on
the pathline’s sampling density: even for a sparse sampling, the points
on the pathline are correct (up to the accuracy of the initial flow map
sampling). This is contrary to the numerical integration of pathlines,
where the integration’s step size influences the integration error. Besides FTLE plot
the exploration via pathlines, we also implemented a visualization via
FTLE fields. By a straightforward lookup, we can compute the FTLE
field in the discretized flow map. Given t and τ , we determine the
FTLE field at the same spatial resolution as the sampled flow map.
For this, we compute the flow map derivatives by central differences.

57

flow map modification by space-time deformation

Figure 4.5: The Pathline Explorer. Top-left: (t, τ)-space selection. Top-
right: FTLE visualization. Bottom: Random pathlines originate at
the circular markers.

Figure 4.5 shows a snapshot of our interactive viewer. The values t
and τ are modified either by sliders or by interactive selection in the
(t, τ)-space. According to this, we update the pathlines and the FTLE
fields in interactive real-time. Furthermore, we implemented a small
toolset based on the concepts presented in this chapter to demonstrate
interactive flow map modification. The tools include a translation and
a rotation of pathline positions.

4.4 results & discussion

test system We show the results as plots of selected pathlines and FTLE fields.
Timings were taken on an Intel Core i7-8700K CPU running at 3.70GHz
with 32GB of RAM. We executed all algorithms on a single core. The
data set we used is the Double Gyre.

Figure 4.5 shows pathlines and the FTLE field for t = 2.5 and τ = 15.data set
To obtain the discretized flow map, we sampled the domain with a reso-
lution of 300× 150 for (x, y) ∈ [0.0, 2.0]× [0.0, 1.0]. We discretized the
temporal dimension t ∈ [0.0, 20.0] by 100 samples and τ ∈ [−20.0, 20.0]
by 200 samples. This sums up to 9.0 · 108 samples, leading to a memory
usage of 13.7GB for the discretized flow map.

In a precomputation step, we performed a second-order Runge-Kuttaprecom-
putation integration for each sample; this took about 150 minutes. In another

58

4.4 results & discussion

t = 0
τ = +20

t = 0
τ = +20

t = +4.5
τ = +20

t = 0
τ = +11.5

t = 0
τ = +11.5

t = +13.0
τ = −1.5

Figure 4.6: Translation Tool. Top-left: Original pathlines before deforma-
tion. The circular markers indicate the modification areas (in space).
Center-left: Pathlines passing the deformed areas (in space-time)
are translated to the right. Dashed lines indicate original pathlines.
Bottom-left: The modifications have a global effect and influence
other start and integration times. The orange pathline starts in
the modified area. It is adapted to another pathline. Top-right:
Original FTLE field. Center-right: FTLE field after deformation.
Bottom-right: The changes have a global effect and influence other
times. Both arrows mark parts influenced by the rightmost modifi-
cation area, i.e., pathlines starting in these areas (in space-time)
pass the rightmost modification area (in space-time).

precomputation step, we computed the lookup-cells; this took approx-
imately 64 seconds and cost an additional 3.5GB of RAM. We show
results for two different interactive modification tools.

4.4.1 Translation Tool

The first tool performs a translation inside the modification area. The
user can interactively ‘drag & drop’ parts of the flow map to the desired
positions. Translation direction and amount are controlled with the
mouse cursor. For the experiments, we placed the modification area
at three different locations and performed a translation in the positive
x-direction, with xd = (0.075, 0.0).

We illustrate the results in Figure 4.6. The top row shows pathlines and
FTLE field before deformation. Top-left also shows the modification
tool at the three test locations. Two concentric black circles mark inner
and outer regions of the modification area S at each location.

59

flow map modification by space-time deformation

Location (x, y, t+ τ) Modified Entries Time in ms

Translation (1.15, 0.45, 4.5) 1.58 · 106 278
(1.38, 0.50, 11.5) 1.32 · 106 208
(0.70, 0.70, 9.5) 1.84 · 106 302

Σ 4.74 · 106 Σ 788
∅ 1.58 · 106 ∅ 262

Twist (0.70, 0.25, 1.55) 1.69 · 106 309
(0.46, 0.62, 5.00) 1.39 · 106 203
(0.30, 0.75, 10.00) 1.72 · 106 302
(1.00, 0.80, 13.35) 1.78 · 106 315
(1.50, 0.20, 17.15) 1.73 · 106 275

Σ 8.31 · 106 Σ 1405
∅ 1.67 · 106 ∅ 281

Table 4.1: Modification Info & Timings. The table lists the modification
areas’ locations, the number of modified entries, and the time needed
for the modification.

Figure 4.6 center-left shows a blue and an orange pathline, which passpathlines
& FTLE the altered areas. Dashed lines indicate the original trajectories before

deformation. Figure 4.6 center-right shows an FTLE field that differs
from the original one. Pathlines starting in the region marked with a
white arrow at t = 0 will pass the modified area after τ = 11.5. The
global influence of the modification is evident in the images in the bottom
row. Pathlines starting in the modified regions regarding space-time
get modified seed conditions. Therefore, they are ‘replaced’ by another
path. The global influence is also visible in the FTLE field. Please note,
we decided to show only two carefully selected pathlines to avoid visual
clutter. The selected ones and the shown (t, τ)-combinations give a
good impression of the global influence of (pseudo-)local modifications.

The modification area is defined in space-time and had an extent of 0.2timings &
samples in space and 1.0 in time. On average, 1.58 · 106 entries had to be modified,

which took 0.262 seconds on average. After the process, 4.74 · 106 flow
map entries were modified in total, which corresponds to approximately
0.52% of all flow map entries. Table 4.1 lists the center locations of the
modified areas, the times needed for modification and adaption, and
the total numbers of changed samples for each location.

4.4.2 Twist Tool

The second tool performs a twist of entries around the center of the
modification area. The twist describes a 90◦ counterclockwise rotation.
Figure 4.7 illustrates the modification and its effect. Figure 4.7 top-left

60

4.4 results & discussion

t = 0
τ = +20

t = 0
τ = +20

t = +5.0
τ = +20

t = 0
τ = +5

t = 0
τ = +5

t = +10
τ = −5

Figure 4.7: Twist Tool. Top-left: Original pathline before deformation, a
small solid circle marks the seed location. The circular markers
indicate the modification areas (in space). Center-left: The pathline
passes the modification areas (in space-time) and is twisted coun-
terclockwise. Bottom-left: The deformation has a global effect. The
purple pathline is seeded in a modified area and gets another trajec-
tory. Top-right: Original FTLE field. Center-right: FTLE field after
modification. Bottom-right: The global effect of the deformation is
visible at other times. The arrows mark parts that were influenced
(center-right and bottom-right) and the modification area causing
the effect (top-left).

pathlinesshows a single green pathline before modification and five locations
where deformation was performed. The center-left image shows the
pathline after the modification as a solid line. The dashed parts indicate
the original path. The purple pathline in the bottom-left image was
seeded at a later time t = 5 in a modified region. Hence, it gets modified
seed conditions and is adapted to another path. Later on, it passes
different deformed areas.

The right images in Figure 4.7 show the FTLE field before (top) and FTLE
after the deformation process. The center-right and center-bottom FTLE
field highlight regions that indicate the deformation caused by the area
marked in the top-left image.

All modification areas have the same extent of 0.2 in space and 1.0 in timings &
samplestime. On average, 1.67 · 106 entries were modified in each modification

area which took 0.281 seconds on average. After the whole process,
8.31 · 106 flow map entries were modified in total by the twist tool. This
corresponds to approximately 1% of all flow map entries. Table 4.1

61

flow map modification by space-time deformation

lists the locations of the modified areas, the times for modification and
adaption, and the numbers of modified flow map entries.

4.5 conclusion & future research

conclusion Flow map processing opens up new possibilities for efficient and effective
Flow Visualization – we expect it to be of more interest in future
research. An essential prerequisite for processing techniques is to perform
modifications without leaving the space of valid flow maps. In this
chapter, we introduced an approach for modifications of discretely
sampled flow maps. We define a local area in space-time. In this area, we
perform a change based on a space deformation. Afterward, we identify
all regions that must be adapted to keep global flow map properties.
Although we stick to the 1D and 2D cases to explain, all presented
concepts are valid for any dimension. We demonstrate the applicability
of our approach with two simple tools for pathline deformation.

Future research could be related to better tools and processing methods.future
research We divide these into two groups: user-guided and automatic techniques.

For user-guided techniques, better interaction is necessary. We modify
the flow map of a 2D unsteady flow by a tool in a 3D space-time domain.
Effectively the modification takes place in a 4D domain (x, y, t, τ). Tools
that better fit the modification’s 4D effect are desirable. Due to the data’s
high connectivity and the necessary global adaption, the modification
can lead to unexpected results in (space-time) areas currently not visible.
For instance, pathlines seeded in a modified area are adapted to entirely
different trajectories. This behavior is hard to predict. Therefore, better
usability can only be achieved by better techniques to visualize the
global behavior of flow maps in space-double-time. The mentioned
interaction problems will be more significant for 3D flows and need to
be addressed in future research.

We could think of transferring approaches from vector field processing to
flow maps for the automated techniques, e.g., smoothing, simplification,
or compression. The method presented in this chapter gives a solution
for a local transformation with global adaption. A straightforward
approach for global operation is to perform a local change consecutively
for each location. Even though our presented approach makes this
possible while keeping the defining properties, it is not clear if the result
is the desired one. Each of the small local operations makes a global
adaption necessary. The result could technically be a correct flow map,
but the data may have nothing to do with the initial flow anymore.
Imagine a flow map that maps only to the 0 vector. It fulfills all defining
flow map properties but obviously does not reflect a flow. Therefore,
global operations need to be addressed in the future.

62

5
D R I F T F I E L D S F O R F L O W M A P P R O C E S S I N G

This chapter is based on the paper:

T. Wilde, S. Wolligandt, C. Rössl, H. Theisel
Drift Fields for Flow Map Processing
submitted to EuroVis Conference 2021

In Chapter 4, we introduced an approach to modify flow maps while
maintaining flow map properties. We see this as an essential step towards
further flow map processing techniques. Nevertheless, when compared
to velocity fields, the flow map still keeps its drawbacks. It is high-
dimensional, needs more storage, is computationally expensive, and has
a complex structure.

This chapter proposes an alternative representation of flows that can drift field
propertiesbe considered a compromise between velocity fields and flow maps. We

call them drift fields, and they have the following properties:

• drift fields have the same size and dimensionality as velocity fields,
i.e., are lower-dimensional than flow maps;

• particle trajectories are directly encoded – to get pathlines, no
numerical integration, but a local search is necessary;

• drift fields are closed under perturbation – a small modification of
a drift field is still a drift field. Hence, we can use them to modify
pathlines.

Sections 5.1 to 5.3 give a formal introduction to drift fields, their chapter
overviewproperties, and their relation to other structures. In Section 5.4, we

show that we can find a drift field for each flow. Section 5.5 presents a
numerical approach to compute drift fields. An algorithm to compute
pathlines is presented in Section 5.6, followed by a method to modify
drift fields in Section 5.7. We apply our approach to different flow data
sets and present the results in Section 5.8. In Section 5.9, we discuss
drift fields and give an outlook on future research in Section 5.10.

63

drift fields for flow map processing

5.1 definition

definition
drift field

Given are a 2D time-dependent velocity field v(x, t) and the correspond-
ing flow map φτt (x). We define the drift field d(x, t) as a vector-valued
function, describing the same flow as:

d : D× Tt → R2 ,

d(x, t) =

a(x, t)
b(x, t)

 .

The drift field d covers the same domain D× Tt in space and time asspatial
gradient &

time
derivative

the velocity field v. It assigns each (x, t)-combination two particular
scalar values. We obtain these values by evaluating the scalar functions
a(x, t) and b(x, t). Because we define these functions over the spatial
domain D, each of them forms a 2D time-dependent scalar field. When
we consider each time step individually and fix the value for t, we can
imagine a(x, t) and b(x, t) as scalar fields constant for this particular
time step. Compare, e.g., Figure 5.3 to get an impression. Furthermore,
we describe its spatial gradient ∇d and its time derivative dt as:

∇d =
(
∇a,∇b

)T
=

ax ay

bx by

 , dt =

at
bt

 .

We demand the following two conditions to hold:

det(∇d) > 0 , (5.1)
d(x, t) = d(φ(x, t, τ), t+ τ) , (5.2)

for all x ∈ D, {t, (t+ τ)} ∈ Tt and τ ∈ Tτ . Equation (5.1) makes sure
the gradients ∇a and ∇b are not parallel and well defined, i.e., they do
not vanish. Equation (5.2) requires the drift field to contain the same
values for a(x, t) and b(x, t) along a pathline, which encodes the actual
flow behavior.

5.2 properties

convert
d to v
d to φ

If a drift field d exists for a given flow, it has a remarkable property –
it directly encodes the corresponding velocity field v and the flow map
φ. We can obtain them by simple local operations, i.e., without any
numerical integration

v = −(∇d)−1dt , (5.3)
φ(x, t, τ) = d−1(d(x, t), t+ τ) . (5.4)

We will explain this in more detail. Equation (5.3) comes from the
following observation: if we consider d as a time-dependent vector field,
we can regard v as the feature flow field [157] of d. The defining property

64

5.3 relations

of this feature flow field is precisely the condition we demand in Equa-
tion (5.2). The corresponding components of d remain constant when
we move along a pathline of v. Transforming the closed-form of feature
flow fields to this setup gives Equation (5.3) (compare Equation 26 in
[62]).

To interpret Equation (5.4), we first keep in mind that Equation (5.1) invert-
ibilitymakes sure d is invertible. Thus, we can use the inverse d−1 and get

d−1(d(x1, t1), t2) = x2 ,

for {x1, x2} ∈ D and {t1, t2} ∈ Tt. Then, we have a look at the right-
hand side of Equation (5.4). When we pick a single time slice from the
drift field by fixing t0, we get:

d(x, t0) =

a(x, t0)
b(x, t0)

 =

a0

b0

 .

That means d assigns a unique (a0, b0)
T to each location x ∈ D for the d is

constant
along
pathlines

fixed time t0. If we now vary the time by the factor τ , there must be a
unique location z in the corresponding time slice that fulfills

d(z, t0 + τ) =

a(z, t0 + τ)

b(z, t0 + τ)

 =

a0

b0

 =

a(x, t0)
b(x, t0)

 = d(x, t0) ,

(5.5)
with z ∈ D, {t0, t0 + τ} ∈ Tt, and τ ∈ Tτ . In other words, each (a0, b0)-
combination that we get from the drift field appears exactly once in each
time slice but at different locations. We can generalize Equation (5.5)
to cover all reasonable times for t0 and get:

d(z, t+ τ) = d(x, t) . (5.6)

When we put this all together, we gain Equation (5.4) that states that
this unique location z at the time (t+ τ) corresponds to the flow map
φτt (x). Moreover, we can obtain the flow map by a local search in d.
We will discuss this process in Section 5.6.

5.3 relations

In this section we will point out the relations of drift fields to velocity
fields, flow maps, feature flow fields, and stream functions.

5.3.1 Relation to Velocity Fields & Flow Maps

The overview in Figure 5.1 summarizes the complexity of a velocity field
v, a drift field d, and a flow map φ, respectively, their relations and
how to convert them. It shows that d contains the ‘best of both worlds’ :

65

drift fields for flow map processing

• d is a low-dimensional flow representation like v (in fact, it is
lower-dimensional than φ);

• d directly encodes v and φ, i.e., we can convert without any
numerical integration.

relation
v,φ, d

However, this holds only if we can show that there is always a valid drift
field for a flow. Furthermore, a stable numerical algorithm to extract d
is necessary.

Drift Field
d(x, t)

D× Tt → R2

Velocity Field
v(x, t)

D× Tt → R2

Flow Map
φ(x, t, τ)

D×Tt×Tτ→D

φ
op

tim
iza

tio
n via

loc
al

de
riv

ati
ve

local search

optimization

local derivative

integration

Figure 5.1: Relations & Complexity. Overview of the relations of velocity
field v, drift field d, and flow map φ and how to convert them.

5.3.2 Relation to Feature Flow Fields

relation to
FFF

Given a velocity field v, the feature flow field, as introduced by Theisel
[157], connects all points in space-time with the same value of v. Drift
fields describe precisely the opposite. We do not search for the feature
flow field but for an unknown field d, such that v is the feature flow
field of d.

5.3.3 Relation to Stream Functions

relation to
stream

function

Stream functions describe 2D steady flows such that the velocity is its co-
gradient field – compare Section 3.1 Figure 3.1. They allow considering
infinitely long integrations of streamlines by a local search. However,
we are restricted to divergence-free flows. Contrary, drift fields capture
pathlines of arbitrary velocity fields but only for a finite integration
time.

66

5.4 existence & uniqueness of drift fields

5.4 existence & uniqueness of drift fields

When we take a flow map φτt (x), it is easy to find a drift field d(x, t)
describing the same flow. The only thing we have to do is to select a t0
and set:

d(x, t) = φ(x, t, t0 − t). (5.7)

Equation (5.7) shows the existence of a drift field for any flow. However, good drift
fieldsit also reveals that d is not unique – every choice of t0 generally gives

another drift field representing the same flow. The goal is to find a
‘good’ drift field. A drift field is ‘good’ if it allows a fast, accurate, and
robust extraction of pathlines. We expect this to be the case if the
drift field’s gradient ∇d is smooth and behaves well in every location –
compare Equation (5.1). For an arbitrarily selected t0, ∇d is likely to
have strong gradients. These strong gradients originate from the flow
map gradients ∇φ that grow exponentially for an increasing integration
time τ (see, e.g., Kuhn et al. [87]). Therefore, we determine the drift
field d by a numerical optimization approach.

5.5 computing drift fields

We formulate the construction of d as a linear numerical optimization
problem over t0. For the computation, we utilize the spatial drift field
gradient ∇d and the spatial flow map gradient ∇φ. We divide the
computation into three steps.

5.5.1 Step 1 – Create an Initial Field for One Time Slice

In Section 5.1, we explained that a drift field assigns a unique (a, b)-
combination to each location when considering a single slice for a fixed
time t. When we observe a particular (a, b)-pair in other time slices, we
can find its corresponding locations along a single pathline in space-time.
This property directly follows Equations (5.2) to (5.6) and applies to
all valid (a, b)-combinations. Hence, the degrees of freedom available to
create a drift field reduce enormously. We only have to provide a single
initial time slice for the drift field. The pathlines of the flow define the
remaining time slices automatically.

Therefore, we aim for a ‘good’ initialization for a specific time t0. As
stated earlier, ‘good’ means that ∇d is smooth, e.g., it should have no
sudden jumps. It should behave well, e.g., it is not too strong. It should
fulfill Equation (5.1), i.e., it is invertible and does not vanish. Also, we
want to avoid numerical problems when determining ∇d−1.

If we consider all of these conditions, a rotation matrix would be a good initial-
izationsolution to describe ∇d. Therefore, if we pick a single time t0, a perfect

solution for∇d would be the identity matrix I at every point. We achieve
I at every point, when initializing d(x, t0) with linearly increasing scalar

67

drift fields for flow map processing

values in the x-direction for a(x, t0) and the y-direction for b(x, t0). Thus,
∇a = (1, 0)T and ∇b = (0, 1)T yield ∇d = I. Figure 5.3 in the results
section shows an example for t0 = 6. Two orthogonal linearly increasing
scalar fields for a(x, t0) and b(x, t0) proved to be the best solution for
the initialization even when considering further time steps.

5.5.2 Step 2 – Determine Best Time t0 for Initialization

The perfect drift field would result in ∇d describing a rotation matrix
for all (x, t) with smooth transitions over time. Only a minority of flows
fulfills this, but we can try to come as close as possible.

For this, we need a way to evaluate the development of ∇d along a∇d under
advection pathline. We utilize ∇φ and ∇d and consider

∇d(x, t) = ∇d(φτt0(x), t0 + τ)∇φτt0(x) , (5.8)

∇̂d := ∇d∇φ−1 = ∇d(φ, t0 + τ) , (5.9)

H(x, τ) := ∇̂d∇̂dT
=

h11 h12

h12 h22

 , (5.10)

for x ∈ D, {t0, (t0 + τ)} ∈ Tt, and τ ∈ Tτ . Equation (5.8) directly follows
from Equation (5.2) and the chain rule for derivatives. It describes the
demanded deformation of ∇d along the pathline trough (x, t0). The
goal is to keep ∇̂d as close as possible to a rotation matrix. This is the
case when ∇a and ∇b have unit-length and are orthogonal, i.e.,

∇aT∇a = 1 , ∇bT∇b = 1 , ∇aT∇b = 0 .

We express this behavior with Equation (5.10). The entries in H(x, τ)
correspond to:

h11 = ∇aT∇a , h22 = ∇bT∇b , h12 = ∇aT∇b .

We give proof for this in Appendix B. Therefore, we can useoptimiza-
tion

‖H(x, τ)− I‖Fr , (5.11)

to measure how close ∇d corresponds to a rotation matrix under ad-
vection. We construct a cost function that helps us find an optimal
drift field based on the initialization gained in Step 1. We evaluate
Equation (5.11) for all locations x and all possible integration times τ
and minimize∫

D

∫
τ

ln(‖H(x, τ)− I‖2Fr + 1) dτ dx→ min ,

for t0. Instead of using Equation (5.11) in the integral directly, we use
the ln function to cope with the flow map gradient’s exponential growth
for long integration times. Thus we reduce the search for a ‘good’ drift
field to a 1D optimization problem.

68

5.6 computing pathlines from drift fields

5.5.3 Step 3 – Compute the Remaining Time Slices

transfer by
advection

In Step 1, we compute a good initial slice for a fixed time step. In Step
2, we determine the best time t0 we should use for the initialization.
We can calculate all remaining values by advection along the pathlines.
We transfer the values of the initialized time slice by:

d(x, t) = d(φ(x, t, t0 − t), t0) ,

for all x ∈ D and {t, t0} ∈ Tt. We use the flow map to ‘walk’ along
the pathline from the current position at time t to the corresponding
location at time t0 and transmit the initial value. The result is a
fully initialized drift field d(x, t) that serves as a Lagrangian flow
representation comparable to the flow map. We use this for further
processing.

5.6 computing pathlines from drift fields

Computing pathlines is one of the main tasks we need to solve when
working with flows. We perform the computation of pathlines from drift
fields in 5 steps. The process is illustrated in Figures 5.2 and 5.3.

5.6.1 Step 1 – Selection of Seeding Location

select
seeding
position

Drift fields represent time-dependent flows. The trajectory a massless
particle describes depends on seeding position xs and seeding time ts
that we have to select. We must choose this location such that xs ∈ D
and ts ∈ Tt. This step is common for velocity fields, flow maps, and
drift fields.

5.6.2 Step 2 – Determine (as, bs)

determine
iso values

As described in Sections 5.1 and 5.2, the drift field assigns an (a, b)-
combination to each location, so it does for the start location d(xs, ts) =
(as, bs). This specific (as, bs) describes the position of the particle at
each time.

5.6.3 Step 3 – Selection of Destination Time td

select
integration
time

Besides selecting the seeding position and time, we have to choose the
particle’s movement period. For this, we select the destination time
td at which we want to determine the particle’s position. This step is
comparable to the definition of τ for flow maps. We can select any value
for td as long as td ∈ Tt. This is done in contrast to velocity fields, where
we have to integrate with continuous time steps.

69

drift fields for flow map processing

Step 1 Step 2 Step 3 Step 4

Step 5

a(x, t)

b(x, t)

Figure 5.2: Pathlines from Drift Fields. Illustration for the computation
of particle trajectories from drift fields. The isoline intersections
define the locations of the particle.

5.6.4 Step 4 – Searching for Isolines at Time td

local
search

The definition of drift fields implies that an (a, b)-combination exists
exactly once in each time slice. Nevertheless, we consider a specific
value for a in a(x, t) and a specific value for b in b(x, t). Each forms an
isoline in the particular scalar field. To determine the seeding particle’s
position at time td, we have to find the corresponding isolines in a(x, td)
and b(x, td). Therefore, we construct two new scalar fields

ã(x, td) = |a(x, td)− as| ,
b̃(x, td) = |b(x, td)− bs| .

We then perform a gradient descent in ã(x, td) and b̃(x, td), starting
at xs until we reach a 0. At this location, we found the corresponding
isoline and derive it. For more information on isoline extraction we refer
to Hanisch [71], and Lorensen and Cline [98].

Please note, we do not have to compute ã(x, td) and b̃(x, td) for the
whole spatial domain D. We can restrict the search to the current
location’s immediate vicinity.

5.6.5 Step 5 – Intersecting Isolines

determine
destina-

tion
position

The last step we have to take is to determine the crossing between the
found isolines. The intersection of isolines is also a solved problem and
easy to handle. Because drift fields describe closed flows, this intersection
must exist. The intersection corresponds to the location of the seeded
particle at time td.

Drift fields allow the extraction of particle locations for arbitrary desti-
nation times td. The difference (td − ts) corresponds to the integration
time τ . The effort to compute particle locations depends on the drift
field’s resolution and is the same in each time step. It does not increase
for longer τ . This is a significant difference to computing pathlines in
velocity fields, where the computation time linearly increases for longer

70

5.7 modifying drift fields

τ . If we compute a full pathline with consecutive locations, we can even
speed up the extraction of pathlines from drift fields. Therefore, we
extrapolate the movement of the particle in the previous time step. We
use the extrapolated location as the starting point for Step 4. This
generally reduces the search area for isolines and leads to faster inter-
sections. Furthermore, when we seed particles at neighboring locations,
they likely end up in the same region. Hence, we can start our search
directly in the destination area next to the last isoline intersection.

5.7 modifying drift fields

Drift fields are just like flow maps a Lagrangian flow representation,
i.e., they encode massless particles’ trajectories. Chapter 4 introduced
a modification technique for flow maps. For the modification of drift
fields, we utilize the same concept of space-time deformation without
the necessity of the complex global adaption.

We define a deformation function y and shape S in space-time and place space-time
deforma-
tion

it in the drift field domain. A smooth and continuous transformation
is performed inside S, with a C1-continuous transition from original to
modified parts. We adopt Equations (4.2) to (4.5) from Section 4.2 and
slightly change Equation (4.2) to:

y(x, t) = x− µxd . (5.12)

x describes the current location that is modified, xd a deformation modified
drift fieldvector, and µ is a scaling factor. By applying y to the original drift field

d, we yield the modified drift field d̃ as:

d̃(x, t) = d(y(x, t), t) .

The effect we achieve is comparable to the well-known smudge tool smudge
toolthat is provided by many painting applications. We can imagine to

use this tool simultaneously on the scalar fields a(x, tc) and b(x, tc)
for a fixed time tc. The drift field would get smudged along the tool’s
path, with smooth transitions between original and modified areas. The
essential difference is that the smudge tool for drift fields also changes
neighboring time slices.

This way, we obtain an easy and intuitive deformation of drift fields.
We can directly manipulate pathlines and still keep the Lagrangian flow
representation consistent. Because we can transform drift fields back
into flow maps, our approach implicitly serves as a tool for manipulating
flow maps. Unlike the method from Chapter 4, we do not have to ‘repair’
the data because we preserve inherent field properties. Furthermore,
the new technique is easy to understand and predict because it only
transforms a 3D space and mimics a well-known tool.

71

drift fields for flow map processing

5.8 results

data sets We compute drift fields for four different data sets:

• Rotating Flow, an analytic benchmark ,

• Double Gyre, an analytic benchmark ,

• Cavity Flow, a simulated velocity field ,

• Piped Cylinders Flow, a simulated velocity field .

Each data set will be described in more detail in this section’s remainder.
All data sets are provided as velocity fields either as an analytic formula
or sampled on a regular spatio-temporal grid from a simulation.

We sampled a discrete flow map from each velocity field by gener-data
prepara-

tion
ating pathlines starting from points in a regular grid. For numeri-
cal integration, we applied a fourth-order Runge-Kutta scheme. We
chose the sampling for analytic flows such that the time derivative
estimated from discrete differences is sufficiently smooth. We sampled
the Cavity Flow at the resolution of the discrete input data. Due to the
flow map’s memory consumption, we had to reduce the sampling for
the Piped Cylinders Flow.

We computed the drift field from the flow map and then reconstructedexperi-
ment

explana-
tion

the original flow map to quantify the accuracy of the drift field model. For
the reconstruction, we sampled the drift field as described in Section 5.6
for all times (t, τ) and all initial positions x0 as required by the given
spatio-temporal grid, i.e., we reconstructed the full sampled flow map
from the drift field. We measured the mean error as absolute difference
per grid point averaged over all (t, τ)-combinations. As the error encodes
a distance, we visualize the error relative to the size of the spatial grid
cells. For each data set we

• summarize timings for flow map computation by integration of
the velocity field vs. local search in the drift field, finding optimal
t0 with respect to our cost function, and computing the drift field
from the flow map via advection from t0;

• compare the memory consumption for drift field and flow map;

• show the drift field for selected time slices;

• study the error from the reconstruction of the original flow map
from the drift field;

• compare pathlines from drift fields vs. flow maps.

Besides, we study the modification of a Double Gyre drift field.

72

5.8 results

Time in Seconds Memory in MB
v→ φ t0 φ→ d d→ φ ēr v d φ

Rotating Flow
[0, 3] 80 260 0.098 46 < 0.5% <1 10 576
[0, 6] 149 269 0.094 46 < 0.5% <1 10 576
[0, 12] 278 267 0.097 46 ≈ 1.0% <1 10 576
Double Gyre
[0, 10] 1808 560 0.038 279 ≈ 4.0% 32 32 3200
Cavity Flow
[1, 4] 183 38 0.038 6 < 3.5% 5 5 138

Piped Cylinders Flow
[2, 4] 228 352 0.024 108 < 0.4% 25 25 2464

Table 5.1: Timings & Memory Consumption. The table lists the timings for
different operations, relative mean errors for flow map reconstruction,
and memory consumptions.

Table 5.1 summarizes timings and relative mean errors. All timings are
given in seconds. All experiments were run on a computer equipped
with an Intel Core i7-8700K CPU at 3.70GHz with 32GB RAM. All
algorithms were executed on a single core. The column labels are as
follows:

• v→ φ denotes the time for computing the full flow map φ from
the velocity field v;

• t0 denotes the time for finding the optimal initialization times for
the drift field;

• φ→ d denotes the time for the construction of the drift field d
from the flow map φ;

• d → φ denotes the time for the reconstruction of the full flow
map φ from the drift field d;

• ēr displays the mean error for all samples relative to the sampling
grid cell size;

• v, d,φ list the memory consumptions for the velocity field, the
drift field, and the flow map.

color-
maps

We visualize selected time slices of drift fields with the Viridis color map
[150] (compare Figure 5.3), and the relative mean error for flow map
reconstruction with the Lajolla color map [28] (compare Figure 5.4).
Please note, we do not list absolute values for drift field color maps
because they are irrelevant. In Section 5.4, we explained that only the
spatial gradient ∇d influences a drift field. It is even possible to shift
or scale all values without changing the quality or the result of the drift
field.

73

drift fields for flow map processing

a(x, t)

b(x, t)

t
0 3 6 = t0 9 12

Figure 5.3: Rotating Flow Drift Field. Top and center row: Selected time
slices of the drift field components d = (a, b). Times as indicated
on the t-axis. The drift field was initialized at t0 = 6 and advected
to t = 0 and t = 12. Bottom row: Intersections of isolines indicate
the trajectory positions of a particle.

The definition of drift fields requires that any advected particles stayclosed
domain
concept

inside the domain. If particles leave the domain, e.g., due to outflow
regions, the flow map gradient becomes undefined. In this case, we need
to restrict drift fields to a subdomain D◦ ⊆ D, such that no particle
leaves D◦. We determine D◦ by pathline integration for points in D

until the maximum time or a domain boundary is reached. Regions for
which this integration stopped early at a boundary are excluded from
D◦. We use the restricted domain D◦ to compare flow maps and drift
fields.

5.8.1 Rotating Flow

description
&

sampling

The Rotating Flow benchmark is defined as:

v(x, y) =

−y (1− x2 − y2)

x (1− x2 − y2)


in the domain [−1

2 , 1
2]× [−1

2 , 1
2]× [0, 12]. It describes a steady flow with

a counter-clockwise rotation. The pathlines form perfect circles. We
sample the flow map on a uniform 100× 100× 60 grid.

For timings, we compare different temporal domains with tmax =timings &
memory {3, 6, 12} but always use the same discrete sampling grid, i.e., 60 sam-

ples for the time interval [0, tmax]. Table 5.1 summarizes timings, rel-
ative mean error, and memory consumptions. Due to the additional
τ dimension of the flow map, the used memory is much higher. The
Rotating Flow is an analytic flow, therefore, the column for v is an
artificial value. It lists the memory that is needed, if we sampled the

74

5.8 results

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0%

1%

Figure 5.4: Rotating Flow Pathlines and Reconstruction Error.
Left and Center: Comparison of a single pathline constructed
from d (left) and φ (center). The circular markers indicate the
seed location x0 = (1

4 , 1
4) (dark blue) for ts = 6 and the final

destinations (light blue) after integration for τ = ±6. Note that
pathlines cover multiple periods of the circle. Right: Mean error of
the reconstruction of φ from d relative to cell size.

flow in the same spatial resolution as d. Because it is a steady flow,
only one time slice is necessary.

Figure 5.3 shows the drift field components d = (a, b) for selected drift field
time slices with tmax = 12. The optimal initialization time was found
at t0 = 6. The bottom row of Figure 5.3 shows isolines for a and b.
Intersections of isolines are the corresponding loci of a particular particle
at each time.

Figure 5.4 shows a single pathline constructed from the drift field pathlines
(left) and the flow map (center). We seed a particle at ts = 6. The
circular markers indicate the seed position at x0 = (1

4 , 1
4) and the final

destination after integration in the forward and backward direction for
τ = ±6.

Figure 5.4 right shows the average reconstruction error for d→ φ relative mean
errorto the spatial sampling distance. The relative mean reconstruction error

is always below 1% of the cell size.

Table 5.1 shows that the computation v → φ linearly grows with τ . discussion
Contrary the computation d→ φ is constant for all τ . The mean recon-
struction error for d→ φ slightly grows with increasing τ . Nevertheless,
the reconstructed φ is almost identical to the original φ, which shows
that drift fields work well for this data set. This is especially surprising
when comparing the necessary memory to store d compared to φ – the
memory consumption of φ is more than 50 times higher.

5.8.2 Double Gyre

sampling,
timings &
memory

We sampled the flow map and the drift field for the Double Gyre on a
200× 100× 100 grid in the domain [0, 2]× [0, 1]× [0, 10]. In the selected
time interval, the Double Gyre describes one full period. Table 5.1
summarizes timings, relative mean error, and the memory consumption
needed for storing the flow with the listed sampling for v, d, and φ.

75

drift fields for flow map processing

a(x, t) b(x, t)
t

0

3

6

10

Figure 5.5: Double Gyre Drift Field. Selected time slices of the drift field
d = (a, b). The best initialization time was determined with t0 = 5.

Due to the dense sampling in the temporal domain, the number of
possible (t, τ)-combinations is high. This leads to significant memory
consumption and computation time for the full flow map.

Figure 5.5 shows the drift field components d = (a, b) at selected timesdrift field
(see axis). We found the optimal initialization time at t0 = 5, i.e., in
the middle of the investigated range. This is not surprising because the
Double Gyre is a periodic data set with a period length of 10.

Figure 5.6 compares pathlines constructed from the drift field and thepathlines
flow map. The top row shows pathlines for different seeds in space
and time. The bottom row shows pathlines for a fixed seed position
and varying seed times. Spatial seeds are indicated as circular markers.
Pathlines from the drift field correspond well to pathlines from the flow
map in all regions.

The right image of Figure 5.7 displays the mean error relative to cellmean
error size. The mean reconstruction error is below 10% in all regions, which

means that the pathline accuracy is pretty good even for a medium
integration time of τ = 10. The error grows in areas where the flow

76

5.8 results

Pathlines from Drift Field p Pathlines from Flow Map

Figure 5.6: Double Gyre Pathlines. Comparison of pathlines from drift
field and flow map. Color markers indicate seeding positions. Top:
Varying seeding positions and constant time. Bottom: Constant
seeding position and varying time.

shows shearing behavior. In the other areas, the reconstruction works
well. This is surprising because we expected the largest error in the
center of the domain around the LCS.

For the Double Gyre we applied a local modification on the drift field modifica-
tionand reconstructed pathlines. This experiment is interesting because it

lays the ground for editing flow maps. A locally modified drift field can
still be interpreted as a drift field; in particular, one can reconstruct
a consistent flow map. This property enables an indirect flow map
modification via editing drift fields.

Figure 5.8 shows the results of this experiment. The left image illustrates
the modification area; the regions in the two circles were ‘smeared out’
in an up direction. The left circle modified the time range t = [2, 4], the
right circle modified t = [6, 8]. The left image shows pathlines extracted
from the original drift field. The right image shows pathlines after the
modification. Pathlines passing the modified area and pathlines starting
in this area are deformed. Please note that the red marker’s seeding
time equals ts = 8, i.e., the deformation affects only the ‘earlier’ left
part of the pathline. The modification results in smoothly changed
pathlines for all affected regions. The left image of Figure 5.7 shows
the deformation’s effect on the drift field; the darker blue areas were
smeared upwards.

Table 5.1 shows that the flow map computation time v → φ is 6.5 discussion
times higher than d→ φ, i.e., a conventional integration in the velocity
field is more expensive than the reconstruction from the drift field.
The mean reconstruction error for d→ φ grows in areas with shearing
behavior but is still < 10% of the sampling distance in most areas. A
higher spatial sampling could increase the accuracy at the cost of more

77

drift fields for flow map processing

10%

0%

Figure 5.7: Double Gyre Modification & Reconstruction Error.
Left: a(x, t) part of modified drift field d, for t = 3. Right: Mean
error for reconstruction of φ from d relative to cell size.

Figure 5.8: Double Gyre Modification. We show pathlines extracted from
the drift field. Color markers show the seeding locations; the marker
position along the pathline indicates the seeding time; ts = 0 for
green and blue, ts = 5 for orange and purple, ts = 8 for red
pathline. Left: The original pathlines and the deformation areas
in the spatial domain illustrated by black circles. Right: Pathlines
after the deformation.

memory consumption. Due to the high temporal resolution, the memory
consumption for φ is much higher than for d; compare Table 5.1.

5.8.3 Cavity Flow

description The Cavity Flow data set is a velocity field describing the flow over a 2D
cavity. It was simulated with the compressible Navier-Stokes equations.
The flow moves from left to right. Inside the cavity, the flow exhibits a
non-zero divergence, while outside the cavity, a quasi-divergence-free
behavior is present. Caraballo et al. [23] kindly provided this data set.

Cavity flows (i.e., laminar flows passing over an open cavity) are of
interest in many applications in engineering, ranging from the small
cavities due to gaps in the bodywork of vehicles, the shapes of river
channel beds, via cargo bays on aircraft, to the large scale flows in urban
street canyons.

The Cavity Flow is defined on the domain [−1, 8]× [−1, 1.5]× [0, 5] andsampling
given on a 256× 96× 51 grid with non-uniform cells. For constructing
drift fields, we consider the region [−0.45, 5.15]× [−1, 0.5]× [1, 4] and
take 160× 60× 30 samples. We had to trim a considerable amount
of the domain; otherwise, too many particles would have left the do-

78

5.8 results

a(x, t) b(x, t)
t

1

2

3

4

Figure 5.9: Cavity Flow Drift Field. Selected time slices of the drift field
components d = (a, b). The best initialization time was determined
to be t0 = 3.5.

main and resulted in an undefined flow map gradient ∇φ. The optimal
initialization time for the drift field was found at t0 = 3.5.

Table 5.1 summarizes timings, relative mean error (with respect to timings &
memoryspatial cell diagonal), and lists the memory consumption. The sam-

pling is relatively coarse; therefore, the memory consumption and the
computation time are moderate. However, the time needed to compute
the flow map φ from the velocity field v is 30 times higher than the
computation of the flow map from the drift field d.

Figure 5.9 visualizes the drift field d = (a, b) at selected times. The drift field
initialization time t0 = 3.5 is close to the upper bound of the selected
time range. Hence, the advection time to the lower bound is longer.
This results in a smooth drift field for higher time steps and a turbulent
drift field for lower time steps.

Figure 5.10 compares pathlines reconstructed from the drift field and pathlines
& mean
error

the flow map. Circular markers indicate the seeding positions of the
particles. The pathline reconstruction from drift fields works well in
most areas but becomes inaccurate in highly turbulent areas and some
areas next to the border. This becomes visible in Figure 5.11, which
displays the relative mean error. We use a non-uniform spacing between
samples in x- and y-direction, which resembles the sampling of the
simulated velocity field. Therefore, we show the mean error for the flow

79

drift fields for flow map processing

Figure 5.10: Cavity Flow Pathlines. Left: Pathlines reconstructed from
drift field. Right: Pathlines reconstructed from flow map.

0%

35%

Figure 5.11: Cavity Flow Reconstruction Error. Mean error for the
reconstruction of φ from d relative to the diagonal of sampling
cells. The error grows in turbulent areas and next to the walls.

map reconstruction from the drift field relative to the sampling cells’
diagonal.

The spatial and temporal resolution of the sampled flow is relativelydiscussion
low. This impacts the quality of the reconstruction d → φ, which is
flawed in turbulent areas and next to the walls. On the other hand, due
to the low resolution, the reconstruction d → φ takes only a couple
of seconds and results in low memory usage for d; compare Table 5.1.
Nevertheless, the mean error falls under sampling cells’ size, and the
reconstructed pathlines represent the flow very well.

5.8.4 Piped Cylinders Flow

description
&

sampling

The Piped Cylinders Flow is the result of a simulation of a step-shaped
pipe and two cylinders inside. The simulation was done with Gerris Flow
Solver [122] and is provided by Baeza Rojo and Günther [129]. The flow
enters the pipe at the left border and leaves at the right border. In the
back of the cylinders and the corners, highly turbulent areas appear. The
spatio-temporal simulation domain is [−0.5, 5.5]× [−0.5, 1.5]× [0, 15],
and the data is given on a 450× 150× 1501 grid. For our experiments,
we consider the subdomain [1.0, 4.5]× [−0.5, 1.25]× [2, 4] sampled on a
175× 88× 100 grid. Due to the high velocity, particles leave the domain
relatively fast, resulting in an undefined flow map gradient. Therefore,
we had to trim the domain, and the left cylinder is not contained in the
drift field.

80

5.8 results

a(x, t) b(x, t)
t

2

2.5

3.5

4

Figure 5.12: Piped Cylinders Flow Drift Fields. Selected time slices of
d with t0 = 2.8. The field clearly shows turbulent areas.

Table 5.1 summarizes timings, relative mean error for the flow map timings &
memoryreconstruction, and memory consumption. The computation of the flow

map from the drift field is only twice as fast when compared to a
traditional integration in the velocity field. We see the reason for this
in the relatively short integration time τ = 2. The temporal resolution
must be high to cover the high velocity of particles. This results in
high memory consumption for the flow map. Many time samples lead
to more (t, τ)-combinations, which have to be checked to compute the
best initialization time.

Figure 5.12 visualizes the drift field for selected times. The optimal drift field
initialization time was found at t0 = 2.8, i.e., it is shifted to the lower
bound of the temporal domain. The drift field becomes quickly turbulent
in the back of the corners and below the second cylinder.

Figure 5.13 shows reconstructions of selected pathlines from the drift pathlines,
mean
error &
discussion

field compared to the flow map. Figure 5.14 shows the relative mean
reconstruction error compared to the flow map. The circular markers
denote the particle seeds. Pathlines in laminar regions can be constructed
from the drift field well. In turbulent areas, the sampling is not dense
enough to reconstruct adequate pathlines. While the reconstructed

81

drift fields for flow map processing

Figure 5.13: Piped Cylinders Flow Pathlines. Pathline reconstruction
from the drift field d is accurate in front of the cylinder; it fails in
turbulent regions. Left: Pathlines from drift field. Right: Pathlines
from flow map.

0%

20%

Figure 5.14: Piped Cylinders Flow Reconstruction Error. Relative
mean error for the reconstruction of the flow map from the drift
field. The error grows in turbulent regions underneath the cylinder.

pathlines are reasonably accurate in front of the cylinder, it fails behind
and underneath it. This is also indicated globally by the visualization
of the relative mean error, which becomes unacceptable in turbulent
regions. It is still remarkable that pathlines become accurate again when
entering less turbulent areas behind the cylinder.

5.9 discussion & limitations

This section discusses the pros and cons of drift fields, particularly the
relation to the established representations of flows: velocity fields and
flow maps.

Drift fields do not attempt to replace velocity fields and flow maps asdiscussion
flow representations. Instead, they are an alternative representation
complementing the suite of available flow representations. We see several
scenarios where drift fields are the representation of choice. This includes:

• Cases where fast access to the flow map is required, but the flow
map cannot be precomputed entirely and stored due to limited
resources. In this case, a local search in the (precomputed) drift

82

5.10 open problems & future research

field can be more efficient and less error-prone than a numerical
integration in the velocity field, particularly for longer integration
times.

• Cases where local modifications of the flow map are required. For
instance, pathlines’ behavior is locally adapted to a designer’s
needs, while the global behavior of the pathline is not affected.
Such modifications cannot be modeled by directly modifying the
velocity field: a local change in the velocity field results in a global
change of all pathlines passing through the region of interest.
Further, in a flow map representation, a local modification usually
requires a global update to stay within the space of flow maps. In a
drift field, such local modifications are possible in a straightforward
way.

limitationsDrift fields are relatively expensive to compute. In fact, we need both
the velocity field and the flow map to precompute the drift field (even
though the flow map does not need to be stored to compute drift fields).

For highly turbulent flows with a strong mixing component, pathline
reconstruction in drift fields becomes unstable. This is due to the fact
that the gradient of the drift field is directly correlated to the gradient
of the flow map. However, in this case, also a flow map representation
becomes unstable because an extremely high resolution is necessary to
reconstruct trajectories reliably.

By now, we do not see an approach to compute drift fields in an in-situ
environment. This is due to the fact that our algorithm needs access to
the complete velocity field multiple times.

5.10 open problems & future research

future
research

For future research, we see the following tasks and problems that could
be addressed:

• 3D drift fields: While we restrict ourselves to drift fields for 2D
time-dependent flows in this chapter, there is no fundamental
reason that prevents extension to 3D. In this case, the drift field
consists of 3 scalar fields.

• Further design approaches: While in this chapter, we have consid-
ered a relatively simple approach of modifying flows as a proof-of-
concept, more complex operations for local flow modifications are
possible. Going this way, a fully-fledged flow modeler is ultimately
envisioned.

• Further flow map processing approaches: Other approaches based
on a repeated local modification of a field can be transferred to
flow maps, such as flow map smoothing or flow map simplifications.
For this, a drift field representation can be superior because such

83

drift fields for flow map processing

local modifications do not leave the space of drift fields, contrary
to flow maps.

• Find better drift fields: Our approach so far considers only a subset
of all existing drift fields for searching the optimal one. Currently
we initialize one time t0 with linearly increasing scalar values in
x- and y-direction. This is a good solution, but we are convinced
there must be more appropriate initial fields. Considering more
potential drift fields may find better solutions for globally optimal
drift fields.

84

Part III

F L O W F E AT U R E S F R O M F L O W M A P S

6
F T L E R I D G E L I N E S F O R L O N G I N T E G R AT I O N
T I M E S

This chapter is based on the publication:

T. Wilde, C. Rössl, H. Theisel
FTLE Ridge Lines for Long Integration Times
IEEE Scientific Visualization Conference, 2018, Short Paper

max

0

Figure 6.1: FTLE Field for the Double Gyre. Left: The long integration
time τ = 30, leads to a high number of clearly distinct ridges.
Right: The adaptively refined grid shows a high resolution in areas
where ridges are located.

Part II of this thesis was dedicated to flow map processing, i.e., working
directly on the flow map data. In the following Part III of the thesis,
we deal with features that we extract from the flow map and utilize for
visualization.

This chapter presents an approach to extracting FTLE ridges for 2D
unsteady vector fields under long integration times. Ridge extraction for
long integration times is challenging because such FTLE ridges tend to
be sharp and close to each other. Convenient FTLE computation sets
seeding time t and integration time τ to fixed values. Our approach’s
main feature is that it not only uses an FTLE sampling at the desired
final integration time τe but incorporates samples from prior integration
times τ as well. Therefore, we set only one temporal dimension to a
fixed value and incorporate a more significant amount of the flow map.
With this additional information, the new method produces more and
finer ridge lines than existing approaches. Based on this output, we
can consider FTLE ridge statistics. We test the approach on synthetic
benchmarks and simulated data sets.

87

ftle ridge lines for long integration times

This chapter is structured as follows. Section 6.1 gives a short intro-chapter
overview duction to the overall problem and motivates our solution’s basic idea.

Section 6.2 presents related work with a focus on FTLE and ridge
concepts. Then we recapitulate the definition of FTLE and introduce
the sampling problem in Section 6.3. In Section 6.4, we give a detailed
discussion of the main problem, followed by a description of our solution
in Section 6.5. We explain our method to extract ridges from FTLE
fields in Section 6.6 and give implementation details in Section 6.7.
Section 6.8 contains our results, followed by a discussion of the results
in Section 6.9. Finally, Section 6.10 concludes this chapter with the
limitations of our approach and possible future research.

6.1 introduction

In Section 2.5, we gave an introduction to LCS and FTLE. LCS are a
prominent and promising approach for extracting and visualizing the
global behavior of time-dependent velocity fields. We consider LCS
commonly as extremal structures, i.e., ridges of flow map derivatives.
Among the various alternatives proposed in recent years, ridges in FTLE
fields are one of the most typical LCS representatives. Such ridges in
FTLE fields are structures that separate regions with different flow
behavior. This chapter presents an approach to extracting ridge lines of
2D FTLE fields focusing on long integration times.

At first glance, this seems to be a common problem. The FTLE fieldchallenges
for the desired integration time is a scalar field for which a suitable
adaptive sampling has to be computed, and then standard numerical
ridge extraction can be applied. However, it turns out that the problem
is much harder for the following reasons:

1. FTLE computation is expensive since every sample of the FTLE
field requires numerical integration.

2. FTLE ridges tend to be thin and sharp for long integration times.

3. Adjacent ridges tend to be close to each other for long integration
times.

We argue that a sufficient adaptive sampling of the FTLE field for a
fixed, long integration time cannot be computed with reasonable effort.
This is the reason why existing approaches either restrict themselves
to considering only the FTLE field – without any extraction of the
ridge geometry – or to extracting only simple non-sharp ridges for short
integration times.

The main idea to solve the sampling problem is based on the insightmain idea
that an adaptive sampling of the FTLE field should incorporate samples
at the desired integration time and intermediate times. This is because
FTLE ridges that are sharp – and hard to extract – have been non-sharp

88

6.2 related work

– and easier to extract – at shorter integration times. Based on this
key insight, we construct an algorithm for adaptive FTLE sampling
and FTLE ridge extraction. The algorithm is based on a quadtree
subdivision of the domain where the subdivision criterion evaluates the
FTLE in the whole range of integration times from zero to the desired
time.

6.2 related work

In Sections 2.1.2 and 2.5, we give a brief overview of ridge lines, LCS,
and FTLE. This section gives a more detailed summary to work on
the definition and use of ridges in general and in Flow Visualization,
followed by work on FTLE and ridges in FTLE fields.

6.2.1 Ridge Concepts

ridge
concepts

There are various ridge definitions along with numerical extraction
techniques in image and shape analysis and Scientific Visualization. In
particular, ridges serve as a standard extractor for edges in images. We
refer to the discussion presented by Eberly et al. [34] for an overview of
the most common ridge definitions, such as height ridges [72], curvature
ridges [108], watershed ridges [54], or medial axes [119]. A discussion
about the quality of different ridge extractors is given in [9] and [85].
Algorithms for the extraction of ridge surfaces in medical images are
given in [48, 49], while [95] describes a polygonal approximation of
extremal surfaces. Since ridge structures are sensitive to noise, scale
space approaches are standard to deal with this problem [30, 96]. In

ridge ap-
plications

Scientific Visualization, ridges are known to show relevant structures in
many applications, and a number of ridge extraction algorithms have
been proposed. In [107, 134], ridge lines are extracted for detecting
vortex core lines in flow fields. Most of the different concepts of vortex
core lines can be formulated by the parallel vectors operator proposed by
Peikert and Roth [115]. Recently Gerrits et al. [58] presented a solution
to find approximately parallel vector lines in 3D vector field ensembles.
Characteristic lines in symmetric second-order tensor fields are treated
by Tricoche et al. [160]. Kindlmann et al. [82] extract ridge surfaces
from diffusion tensor magnetic resonance imaging data, whereas Sadlo
and Peikert [131] describe a modified Marching Cubes algorithm with
eigenvector orientation for ridge extraction. Sahner et al. [134] describe
an approach for watershed ridges.

6.2.2 FTLE & FTLE Ridges

FTLE
ridges

One of the most prominent approaches to extract LCS is the computation
of ridges in FTLE fields, as Haller [65–67] presented. FTLE ridges have
been used for a variety of applications [67, 93, 146, 176]. Shadden et al.

89

ftle ridge lines for long integration times

[145] have shown that FTLE ridges are approximate material structures,
i.e., they converge to material structures for increasing integration times.
This fact was used by Sadlo and Peikert [132] to extract topology-like
structures. Schindler et al. [141], and Lipinski and Mohseni [97] introduce
methods for tracking FTLE ridges by locally sampling the FTLE field
and estimating the ridge direction and location. Due to the discrete
sampling used, the accuracy is limited, especially for very sharp ridges.
Farazmand and Haller [39] integrate the minor eigenvector of the Cauchy-
Green tensor to track ridge structures. This approach is, however, prone
to accumulating integration errors. Also, in the visualization community,
different approaches have been proposed to increase the performance,
accuracy, and usefulness of FTLE as a visualization tool [50, 51, 56,
121, 131, 133]. Haller and Sapsis [64] additionally explore the smallest
FTLE values.

While most approaches mentioned above restrict themselves to ridgeFTLE in
3D curves in 2D flows, a few approaches extract ridge surfaces in 3D flows

for reasonable integration times. Schindler et al. [141] show both stan-
dard height ridge extraction and C-ridge tracking to get 3D surfaces.
Furthermore, the same group utilizes C-ridge surfaces for an analysis
of revolving doors [140]. Sadlo and Peikert [131] present an adaptive
grid generation for FTLE computation and extract FTLE ridge sur-
faces. Üffinger et al. [163] present streak surfaces as approximations to
FTLE ridges. Depending on the seed structures’ accuracy (obtained
by extremely high sampling), streak surfaces and FTLE ridges show
strong agreement. Barakat et al. [6] propose a smooth adaptive recon-
struction of the flow map field from the sample points based on Sibson’s
interpolant on which the ridge extraction is more stable than on the
original sampling. Günther et al. [61] present an approach to compute
ground truths for FTLE fields based on unbiased Monte Carlo rendering.
Rojo et al. [128] accelerate this rendering process significantly.

6.3 background

FTLE In Section 2.5, we give a formal definition and explanation of how to
compute the FTLE. Accordingly, FTLE is defined as:

FTLE(x, t, τ) = 1
|τ |

ln
√
λmax(∆) ,

where λmax(∆) denotes the largest eigenvalue of the (right) Cauchy-
Green strain tensor.

90

6.4 problem analysis

The standard approach to the numerical evaluation of FTLE(x, t, τ) FTLE
evaluation
&
sampling
distance

uses a discrete approximation of the flow map gradient ∇φ(x, t, τ) from
finite differences of φ. When using central differences, this requires four
evaluations of the flow map, i.e., four times a numerical integration of
v. Any discrete difference scheme requires size parameter h, which here
denotes the spatial distance of two initial points before advection on the
flow. The smaller h, the more accurate the derivative’s approximation –
the error is of order h2 for central differences. However, if h is chosen
too small, other sources of error, e.g., interpolation or the numerical
integration, may dominate the result. For ridge extraction, in particular,
smaller h – or observing a smaller region that is advected – will decrease
the ‘probability’ that a ridge is passing this region and is detected due
to a high separation and a local maximum of FTLE. There is, however,
no information about how many, possibly sharp ridges pass the support
of finite differences, which disqualifies the choice of a larger h for our
purpose.

In order to find ridges, we have to evaluate FTLE. Throughout this
chapter, we use the term sampling for any set of FTLE samples that sup-
ports ridges’ extraction. Samples are parametrized by (x, t, τ) without
an assumption of a particular distribution, e.g., a uniform grid.

Based on the above considerations, we can formulate the problem as sampling
problemfollows: Given a fixed starting time t and a fixed, positive – long –

integration time τe, find a sampling of a scalar field FTLE(x, t, τe)
sufficient for extracting all ridges within a maximum resolution that is
prescribed by numerical methods. We call this the sufficient sampling
problem.

6.4 problem analysis

The solution of the sufficient sampling problem is the main challenge
in FTLE ridge extraction. Given a desired final integration time τe
and a fixed starting time t, a sampling of FTLE(x, t, τe) in the spatial
domain is searched, which sufficiently supports all ridges’ extraction.
We analyze this problem in the following.

6.4.1 Importance of FTLE Ridges

ridge com-
pleteness

Explicit ridge geometry gives more information than the scalar FTLE
field alone. An FTLE field and its ridges have a similar relationship as a
scalar field and, e.g., its isosurface geometry – both representations have
been established in coexistence. For volume data, both direct volume
rendering and isosurface extraction are well-accepted techniques. In
particular, the extraction of FTLE ridge geometry allows considering
ridge statistics.

91

ftle ridge lines for long integration times

6.4.2 Importance of Ridge Statistics

ridge
statistics

FTLE is usually applied to non-turbulent flows. The transition to
turbulent flows makes ridges behave ‘wild’, i.e., they become sharp and
dense. In this case, the behavior of one particular ridge is of less interest.
Instead, insights can be gained from statements on the set of all ridges.
Ridge statistics can help manifest such statements and enable the use
of FTLE to justify the transition towards turbulent flows.

6.4.3 Importance of Ridge Separation

ridge
distinction

Adjacent FTLE ridges generally correspond to separating events that
occur at different integration times. Imagine a group of spatially close
particles traveling with the flow. If, after a particular time, a separation
takes place, the particles divide into two subgroups, each showing
different further flow behavior. After an even longer integration time,
each subgroup could be separated again into new subgroups. This
results in spatially close FTLE ridges around the initial locations of the
particles.

6.4.4 Analysis of FTLE in 1D

ridge
sharpness
& distance

We simplify the analysis by restricting the domain of FTLE to a straight
line in the flow domain, where FTLE ridges are the local maxima of a
1D FTLE function. Figure 6.2 (left) illustrates a typical behavior of such
a function; it is relatively small and almost zero outside a narrow band.
Within this band, there are local maxima, each representing a ridge.
We consider the distance d between two ridges and the sharpness s of
a single ridge. We measure d as the distance between two consecutive
maxima. The function decreases to the left and the right of a maximum.
If the function reached half of its maximum, we measure the span at
that location. We denote this span as the sharpness s of a ridge – the
smaller s, the sharper the ridge.

We observe how d and s change with increasing integration time τ andproperties
P1 & P2 formulate

• Property 1 (P1): The sharpness s of an FTLE ridge tends to
decrease exponentially for linearly increasing integration time τ .

• Property 2 (P2): The distance d to the next ridge tends to decrease
exponentially for linearly increasing integration time τ ,

Here, ‘tend to’ means that there exist realistic flows that show this
behavior. Both properties were observed and stated similarly by Kuhn et
al. [87].

For demonstration, we consider the Double Gyre data set. We study a1D
example horizontal 1D cut through the domain and place dense samples along a

92

6.4 problem analysis

FT
LE

d

s

0.
2

0.
4

0.
6

1.
0

1.
2

0.
0

1.
4

0.
8

1.1 1.2 1.3 1.4 1.5
x τ

0 5 10 15 20 25

10
−

5

s
d

10
−

4
10
−

3
10
−

2
10
−

1

Figure 6.2: Ridge Behavior in 1D. Left: Illustration of the measures for
sharpness s and the distance d of ridges. Right: Example for sharp-
ness s and distance d plotted in a semi-log graph. Sharpness and
distance decrease exponentially, i.e., ridges get sharper and come
closer together.

τ = 3 τ = 5 τ = 7 τ = 9 τ = 10

Figure 6.3: Emerging FTLE Ridge. FTLE time series of the Double Gyre’s
center region, [1.2, 1.4]× [0.65, 0.85]. The ridge emerges over time
and becomes sharp.

line at y = 0.75. We compute the FTLE values for these samples with
a fixed t = 0 and increasing τ , with τ = k/10, k ∈ {1, 2, . . . , 250}.

The plot in Figure 6.2 (left) shows a part of the resulting FTLE function
for τ = 6.5. The strong center ridge appears ‘early’ after a few discrete
time steps. Shortly after, the two smaller ridges to the left and right
emerge. Figure 6.2 (right) shows the development of the ridge sharpness
and distance with increasing τ . We plot the sharpness s for the center
ridge and the distance d between the left and center ridges on a semi-log
scale.

Figure 6.3 illustrates this ridge in a 2D domain. The ridge slowly emerges
and gets quickly strong and sharp with ongoing integration time. The
sampling density is almost too low to resolve the ridge at τ = 10. Further
ridges located to the left and the right of the center ridge become visible.
Graph and images confirm properties P1 and P2.

6.4.5 Sampling Density

sampling
criteria

In order to capture a ridge in the FTLE field, the sampling density
must not fall below the ridge sharpness s. Otherwise, the ridge may be
missed entirely. This and P1 mean that for a large τe, we would need an

93

ftle ridge lines for long integration times

extremely dense regular sampling to capture the ridge. Even if we had
such a sampling, there is no guarantee that an even denser sampling
does not reveal more ridges. This problem cannot be solved by adaptive
sampling either. Starting with a coarse initial grid, we would need two
local criteria for steering the adaptive sampling:

(a) Subdivide a cell because a ridge is expected to pass through it.

(b) Stop further subdivision of a cell containing a ridge because it is
sure that only one ridge is passing through. A further subdivision
would increase the accuracy of the ridge location but would not
reveal new ridges.

A criterion for (a) is challenging because if a ridge falls between two
samples, it may be missed entirely and therefore does not give informa-
tion that a further subsampling is necessary. This problem is central to
any sampling. One common way to circumvent it is to increase the size
parameter h when estimating the flow map gradient ∇φ. Coupling h
and the sampling density may help answer whether there are any ridges
present.

However, it will generally not help to separate multiple close ridges
or even distinguish between detecting a single or multiple ridges. We
are not aware of any existing criteria for (b). We believe that such a
criterion does not exist because of P2. This is why we believe that it
is impossible to get sufficient sampling by considering FTLE values for
the final integration time only.

6.4.6 Main Idea

observa-
tion &

main idea

As a solution to this problem, we propose to steer an adaptive subdivision
by incorporating FTLE sampling for shorter integration times. The
following observations justify this. Ridges emerge (slowly) over time; a
very sharp ridge that is close to its neighbors at the final integration
time τe was ‘better behaved’ at a shorter integration time τ < τe. Stable
ridge extraction is possible for shorter integration times, as P1 and P2
indicate. Increasing the integration time from τ to τe makes a further
subdivision necessary due to the ridge’s increased sharpness and spatial
motion. However, ridge motion decreases with ongoing integration time,
which corresponds to the fact that FTLE ridges converge to material
separation structures for increasing integration time (see [145]). This
way, we can make sure that all ridges of FTLE(x, t, τe) are resolved.

6.5 finding a sufficient sampling

We first construct an algorithm for finding a sufficient sampling that
supports the extraction of FTLE ridges.

94

6.5 finding a sufficient sampling

6.5.1 Algorithm Specification

algorithm
input

The input is a flow field v(x, t) in a domain D and a final integration
time τe. The period τe is high such that we expect sharp ridges, which
are close to each other. Two ridges cannot get arbitrarily close to each
other and still be robustly separated. At some point, numerical errors,
e.g., from interpolation and integration or floating-point precision, will
put a practical limit on computing ridge locations precisely enough to
distinguish the two different ridges. For this reason, the algorithm takes
a final input parameter, the maximum resolution ε, which limits the
minimal spatial distance between two samples. We assume that there
will be no gain of information if samples get closer than ε. Even worse, a
denser sampling may lead to inconsistent information due to numerical
noise and is therefore not reliable.

The algorithm’s output is a set of samples (x, t, τ) that supports ridges’ algorithm
outputextraction within the maximum resolution ε. For each sample, τ ≤ τe

denotes the maximum integration time until either the desired τe was
reached, i.e., τ = τe or the maximum spatial resolution ε was reached
and would have been exceeded at τe, i.e., τ < τe. In the first case,
the sampling locally supports the extraction of ridge geometry. In the
second case, a reliable ridge extraction is possible only for the returned
τ < τe.

6.5.2 Domain Discretization & Initialization

We discretize the domain by a coarse grid of square cells, where a
quadtree subdivision refines each grid cell. The algorithm then finds the
minimal amount of subdivisions for all quadtrees and yields samples
defined by quadtree leaf cells.

We use a coarse grid to get a certain amount of refinement that is needed discretiza-
tionfor the initialization. Otherwise, we would lack information about the

interior of the domain. Alternatively, we could prescribe a minimum
quadtree depth but decided not to ‘waste’ refinement. Also, the grid
facilitates domain decomposition for parallel processing independent
of quadtree hierarchy. We use square cells to get the same resolution
for the dimensions. This is also convenient and not a limitation; the
algorithm would work similarly for rectangular cells.

We decided to use a quadtree for adaptive refinement of the domain quadtree
because it is a relatively simple data structure with mature and efficient
operations, e.g., traversal, finding neighbors, and inserting elements
(compare, e.g., [40, 42]). While there are established algorithms for the
computation of FTLE on unstructured meshes (compare, e.g., [94]),
their refinement is more complicated. The regular structure of the
quadtree fits our needs best. Note that the choice of the quadtree limits
the approach to isotropic refinement. Refinement and alignment of an

95

ftle ridge lines for long integration times

anisotropic, possibly unstructured grid over time τ would lead to a
significantly more complex data structure and algorithm.

The domain D gets covered with square cells. Each cell represents aquadtree
initializa-

tion
quadtree of depth 0; the cell itself is the tree’s root and the only leaf
node. We found that the algorithm is not sensitive to the size of the
initial square cells. For this reason, we do not list it with the input
parameters but suggest squares with a size 1% of the total area of
D. Usually, D is rectangular. For instance, if D has the dimensions
200× 600, the initial grid will have 20× 60 cells.

6.5.3 Refinement of the Sampling

FTLE at
cell center

We associate a sample with each quadtree cell. The spatial position x is
the cell’s center. Assuming a fixed start time t, we store with each cell
the current integration time τ and FTLE(x, t, τ), which we compute
from finite differences of φτt (x) evaluated at the four cell corners.

The refinement iteratively increases the integration time τ by a stepincrease τ
∆τ . We sample the flow map at each time step for computing finite
differences. This sampling is decoupled from the integration (compare
Section 6.7), and the choice of ∆τ does not interfere with the adaptive
step-size chosen for numerical integration. We enumerate iterations
k = {1, 2, . . . } and set τ = min{k · ∆τ , τe} until τ = τe. Each iteration
proceeds in two steps:

1. Update FTLEτ and τ for all leaf cells.

2. Mark all leaf cells that must be split, then apply the splits.

Here, the term ‘leaf cells’ refers to all leaf nodes of all quadtrees.

The first step is straightforward. With a simple bookkeeping of flowupdate
FTLE map values, the FTLE update requires only continuation of integration

from (k− 1) · ∆τ to k · ∆τ if an integration had been started from the
same domain point before. This requires few(er) integration steps, at
the cost of additionally storing results of flow map evaluations.

The second step eventually splits quadtree cells at the cell center andsplit leaf
cell refines the sampling locally. A quadtree cell that is split becomes an

internal node with four new leaves as children. If a cell’s size is within
the maximum resolution ε, it can be split. We mark a cell for splitting
if one of the following conditions is violated for this cell and any of its
quadtree neighbors:

(a) The absolute difference of their depth in the quadtree must not
exceed 1.

(b) The absolute difference of their FTLEτ values must not exceed a
threshold θ.

96

6.5 finding a sufficient sampling

Here, two cells are neighbors, if they share a corner, an edge, or part of
an edge.

Condition (a) accounts for a regular refinement of the quadtree. This quadtree
split
condition

means that neighboring cells are either on the same level or have at
most one level difference. This way, information from the comparison of
FTLEτ values is reliable for neighboring cells.

Condition (b) is the essential one, and it is motivated as follows. Ridges FTLE
split
condition

gain sharpness over the integration time. They are ‘thicker’ and ‘lower’
for shorter τ and become ‘thinner’ and ‘higher’ with increasing τ .
Whenever we observe an FTLEτ value that gets locally maximal ‘higher’
for some τ , the cell is a candidate for supporting a ridge. Also, its
neighbors are of interest as we do not know the ridge’s exact position,
and it may move between cells in the future. Therefore, the condition is
symmetric and tests absolute difference, regardless of the observed cell.
While this reads trivial, the only reason why this refinement rule can
work reliably is that the algorithm tracks ridges and their development
over time. At observation time, the ridge is not yet too sharp, and it
may become sharper in the future. The refinement takes care of this
and adapts the resolution locally – and exponentially – such that the
ridge can be tracked further and such that the event that new, close
ridges develop can be detected.

The maximum resolution ε may stop further refinement locally, and it
restricts the maximum depths of the quadtrees. If a cell cannot be split
anymore, the algorithm still updates FTLEτ for the current integration
time, but the τ value stored with the cell is not updated anymore.
This identifies regions of missing resolution and provides the maximum
integration time until ε is reached as output.

6.5.4 Additional Parameters ∆τ & θ

We introduced two additional parameters in the previous section, ∆τ
and θ.

The step size ∆τ determines the sampling density of the integration time step size
∆ττ up to the target time τe. Smaller values will lead to more iterations of

the main loop. However, the overall cost does not increase drastically.
This is because splitting events occur at specific times and independently
of a higher sampling density. The total number of splits remains the
same. A smaller value of ∆τ brings additional cost for the extra tests in
each loop. It may slow down progress if it limits an adaptive step size
in flow map integration. If ∆τ is chosen too large, split events may be
missed. The extreme case is a standard adaptation that considers FTLE
only for the final τe. We recommend a choice in the order ∆τ = 1%τe. We
use ∆τ = 1/10 in all examples. The algorithm’s output is not sensitive
to this choice unless a much larger time step is used.

97

ftle ridge lines for long integration times

In contrast, the algorithm is sensitive to the choice of the thresholdFTLE
threshold θ θ, which steers the local refinement. If this threshold is too large,

there is not enough adaptation, and the generated sampling is not
sufficient as ridges may be missed. If it is too low, the refinement will
be too aggressive. The extreme is an exhaustive subdivision for θ = 0,
representing a uniform grid at maximum resolution, i.e., with cell size ε.
We recommend a value of 1% of the maximum FTLE value at τe that is
estimated from a coarse sampling. This worked fine for our benchmarks.

6.6 ridge extraction

The adaptive quadtree refinement provides a sufficient sampling for the
extraction of ridges that can be reliably observed within the maximal res-
olution. A three-step process of filtering, clustering, and post-processing
is used for extracting ridges from quadtree cells.

6.6.1 Cell Filtering

determine
ridge

candidates

In the first step, we find or filter out cells, i.e., leaf nodes of the quadtree,
that are candidates for supporting a ridge. We reject all other cells.
We propose doing this, similar to edge extraction in image processing.
Therefore, we utilize the spatial gradient of the cells’ FTLE values,
estimated from a neighborhood.

In the first filtering stage, we consider a cell as a candidate only if its
FTLE value is a local maximum in the co-gradient direction, i.e., it may
support a ridge in the orthogonal gradient direction. The second stage
filters these preliminary candidates and rejects those not supported
by at least one other candidate. Candidates support each other if the
two cells are neighbors in one or the other gradient direction. This rule
rejects isolated candidates and filters out those which support a ridge.

6.6.2 Ridge Clustering

connect
ridge

candidates

The second step partitions the filtered candidates into groups of con-
nected ‘chains’ of neighboring cells such that each group supports a
ridge. This step is essentially a simple bottom-up clustering of candi-
date cells. Due to the prior filtering, the candidates are just ‘chained
up’ by the local neighborhood. A prerequisite is that each candidate
has at most two other candidates as neighbors – one in forward and
one in backward direction along the ridge. More than two neighboring
candidates exist when two ridges come too close. At some point, they
will undergo the maximum resolution and cannot be separated anymore.
For three neighbors, we select the two with the most similar FTLEτ
values. For more than three neighbors, the candidate, which introduces
a cluster boundary or ‘gap’, is rejected.

98

6.7 implementation

6.6.3 Post-Processing

fill gapsIn the last step, we connect clusters if a single cell separates them.
Effectively, this stage closes small gaps that may arise from filtering. If a
cell’s choice for connecting is not unique, FTLEτ is examined similarly
as for clustering. Clusters are connected only if the result is a distinct
ridge, i.e., it will not modify the special case’s handling from clustering.

Finally, we extract ridge lines from cells. We do not aim to find the extract
ridge lines‘exact’ ridge locations but instead output a polyline with the ridge

cells as vertices. This gives lines suitable for ridge statistics and avoids
pretending exactness by an interpolation or a potentially error-prone
optimization near the maximum resolution.

6.7 implementation

implemen-
tation
details

We implemented the algorithm in C++. For flow map integration, we
use a fourth-order Runge-Kutta integration with adaptive step size.
At every grid point (which emerges possibly during refinement), we
compute and store the flow map once and for the maximum time range
as a discrete function of t. The integration up to τe yields a cubic C1-
continuous spline. Storing the Hermite spline costs memory but frees us
from storing or proper reinitialization of the ODE solver state. This also
ensures no interference between the adaptive integration step size and
the time-step ∆τ . We use the latter only to evaluate the precomputed
spline. Flow map integration is the only part of the algorithm executed
in parallel on multiple CPU cores using OpenMP. All floating-point
arithmetic is carried out in double precision.

Our experiments restrict the cell size and set the maximum resolution ε maximum
resolutionto values between 10−2 and 10−5. We advise not to use smaller values as

we observe that the amount of ‘numerical noise’ from FTLE computation
may otherwise be in a similar order of magnitude and render ‘high
resolution’ results meaningless. Experiments by Kuhn [87] also back this
observation. The exact choice of ε within this range controls the result’s
accuracy and the overall computational cost (compare Section 6.8).

Despite the adaptive sampling, memory usage can get high for small split com-
putationε depending on the data set. We leverage this by treating cells of the

coarse grid – each represents a quadtree – individually. This can be
done sequentially or in parallel on multiple machines. We summarize
typical execution times and memory usage in the next section.

6.8 results

data setsThere are many examples of FTLE fields in the literature. In most
of them, ridges are well-behaved, i.e., there are a few well-separable
ridges. We are interested in challenging cases and test the algorithm on

99

ftle ridge lines for long integration times

Figure 6.4: Double Gyre with Ridge Geometry: FTLE field for t = 0
and τ = 25 with overlaid ridge geometry.

analytic 100× 50× 60 50× 25× 60 50× 25× 30

Figure 6.5: Double Gyre FTLE for Sampled Velocity Fields. Com-
parison between analytic benchmark and discrete sampled versions
of the velocity field v(x, t). We use (nx × ny × nt) samples for x,
y, and t and a trilinear interpolation. The overall ridge structure
stays the same.

four different data sets. The Double Gyre and the Forced Duffing are
synthetic data sets, which can be evaluated at arbitrary resolution. The
Boussinesq and ECWMF data sets stem from simulations and are given
as discrete samples on uniform grids.

For all FTLE fields we use the blue-yellow-red color map. We show itcolor map
in Figure 6.1 at the beginning of this chapter. Although FTLE fields
contain (almost) linearly increasing values, we decided to use a diverging
color map. Thus the ridges are better visible.

6.8.1 Double Gyre

FTLE &
ridge

geometry

Shadden et al. [145] introduced the Double Gyre specifically to examine
LCS as ridges in FTLE fields. Figure 6.1 shows the result of our algorithm
for τ = 30 and a close-up with the quadtree. The quadtree shows a high
subdivision in areas with ridges.

Figure 6.4 shows a combination of ridge geometry and FTLE field for
τ = 25. For such a long integration time, the overall ridge structure

100

6.8 results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

100

200

300

400
to
ta
ll
en
gt
h

Double Gyre

100 longest ridges
1000 longest ridges
all ridges ridges

τ 100 longest 1000 longest all

5 1.82 1.82 1.82
10 16.06 16.06 16.06
15 51.95 52.33 52.33
20 105.97 111.56 111.56
25 192.73 216.33 216.33
30 290.14 389.46 395.29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

100

200

300

400

500

Forced Duffing

τ 100 longest 1000 longest all

5 12.53 13.45 13.45
10 51.07 63.11 63.38
13 95.36 118.05 119.83
14 118.24 176.21 187.21
17 167.60 302.04 325.58
20 194.38 428.54 503.92

Figure 6.6: Ridge Statistics for Double Gyre & Forced Duffing. We
list the accumulated ridge lengths over τ . Left: The ridge geometry
of the Double Gyre shows exponential increase with a few long
ridges. Right: The ridge geometry of the Forced Duffing contains
sudden jumps and more medium-long ridges.

is complex and leads to a highly subdivided quadtree in most areas.
Due to high memory consumption, we split the domain into eight parts.
This leads to missing ridge connections between the domain parts.

The most prominent FTLE ridge for the Double Gyre emerges with
increasing integration time in the domain center. The time series in
Figure 6.3 shows close-ups of this ridge for different (short) τ .

The Double Gyre flow is a synthetic benchmark, which can be evaluated sampling
testcontinuously at any domain point. Real-world data sets are discrete data

sets, typically the result of a simulation. Therefore, a flow evaluation
requires the reconstruction from samples or equivalently interpolation
on a finite basis. We ‘simulate’ this setting by sampling the Double Gyre
and evaluating the flow v(x, t) from a trilinear interpolation in space-
time.

We compare the original benchmark with samplings at different resolu-
tions in Figure 6.5. The global structure of FTLE ridges remains the
same despite the loss of information from sampling and interpolation.
This experiment confirms that FTLE in general and extracted ridges
are stable under small perturbations, here the added ‘noise’ from inter-
polation errors. However, for the lowest resolution FTLE shows visible
artifacts due to lack of information and the fact that the piecewise
trilinear interpolation is not sufficiently smooth. This can be seen in
Figure 6.5 (right).

101

ftle ridge lines for long integration times

Figure 6.7: Forced Duffing FTLE & Ridge Geometry. Results for the
domain [−2.0, 2.0]× [−1.5, 1.5] with t = 0 and τ = 15. Left: FTLE
field with long distinct ridges. Right: Extracted ridge geometry as
vector graphic.

Figure 6.6 provides ridge statistics for the Double Gyre. For the givenridge
statistics integration times τ , we sum the length of the 100 longest, 1000 longest,

and all ridges. The plot reveals that the total ridges lengths grow
exponentially with increasing integration time. Nevertheless, only a
small number of ridges dominate the domain, i.e., we have a few long
ridges. Such behavior might be typical for non-turbulent flows.

6.8.2 Forced Duffing

description The Forced Duffing equations are a set of differential equations com-
monly used to model complex, chaotic oscillatory movements [37]. There
is a variety of different versions, which describe damped and undamped
motions.

We use the Forced Duffing oscillator as described in [64] as:

v(x, y, t) =

 y

x− x3 + 1
10 sin t

 .

This velocity field describes a 2D undamped, area-preserving motion, and
it leads to complex ridge structures after short integration times, which
makes it a good benchmark. We computed the FTLE for τ = 15 in the
domain [−2.0, 2.0]× [−1.5, 1.5] with maximum resolution ε = 7.8 · 10−5.

Figure 6.7 (left) shows the FTLE field and Figure 6.7 (right) theFTLE &
ridge

geometry
corresponding ridge geometry for t = 0 and τ = 15. The ridges form
a double-loop in the center of the domain. New ridges emerge at the
border and quickly move towards the double-loop. Although we allow a
high resolution, the ridges are already too close to be entirely resolved.

Figure 6.6 gives the ridge statistics. We accumulate the length of the 100ridge
statistics longest, 1000 longest, and all ridges for the listed integration times τ .

The plot reveals an exponential growth of ridge lengths with a sudden
increase of medium-long ridges at τ = 17 and τ = 20. This might

102

6.8 results

Figure 6.8: Boussinesq FTLE. Top: Field with t = 5 and τ = 10. Bottom:
Field with t = 5 and τ = 15. The right images show close-up views
of the marked regions. The flow shows a huge number of complex
ridges.

indicate a sudden separation of many particles at these integration
times.

6.8.3 Boussinesq

descriptionThe Boussinesq data set represents the natural convection generated
by a heated cylinder. A stagnant fluid is heated and, after a short time,
develops a highly turbulent plume above the cylinder. The flow is a
result of a simulation with Gerris Flow Solver [122] using Boussinesq
approximation. The data is given as a series of 1.600 time steps for
t ∈ [0, 20] of 100× 300 spatial grids for [−0.5, 0.5]× [−0.5, 2.5]. The
flow field is reconstructed by trilinear interpolation.

103

ftle ridge lines for long integration times

Figure 6.9: Boussinesq Ridge Geometry. The FTLE field with a part of
the extracted ridge geometry with t = 5 and τ = 15 for the center
left area of the domain. We show the geometry as vector graphics.

Figure 6.8 shows FTLE for t = 5.0 with τ = 10 (top) and τ = 15FTLE
(bottom) for the ‘interesting’ region [−0.45, 0.45]× [−0.45, 0.9] of the
domain. Figure 6.9 shows a close-up view for t = 5.0 and τ = 15 with
overlaid ridge geometry extracted with maximum resolution ε = 7.5 ·
10−5. Due to the quadtree’s high memory consumption, we divided the
domain into eight equal-sized parts and computed each part individually.

Please note that we only show the 1000 longest extracted ridges, meaningridge
geometry the most relevant ones for describing the flow. In the FTLE field, there

are other ridges visible that are not covered by overlaid geometry lines.
The Boussinesq is a highly turbulent flow, which leads to a lot of short
and interrupted ridges. We decided not to show these here, to give
an uncluttered view of the underlying FTLE field and the geometry
of the connected ridges. Furthermore, this example demonstrates the
limitations of our ridge extraction technique.

Figure 6.11 shows statistics for the accumulated ridge length withridge
statistics respect to the integration time τ . The total ridge length shows almost

linear increase with a dominance of short and medium-long ridges. This
might be the expected behavior for a highly turbulent flow.

6.8.4 ECMWF Reanalysis

description The European Centre for Medium-Range Weather Forecasts (ECMWF)
provides this data set. It contains a reanalysis simulation of the wind
velocity field from April 10th to 19th in 2010 based on the forecast
models and previously recorded data. The simulation covers the area
from America to Europe in the northern hemisphere (longitude −120◦
to 60◦ with 1200 cells, latitude 30◦ to 90◦ with 400 cells, height from
0m to 1050m with 90 cells). Due to our algorithm’s restriction to 2D,
we cut out a single height slice of the dataset. We chose the 40th slice,

104

6.8 results

Figure 6.10: ECWMF Flow. Top: FTLE field for t = 0 and τ = 10. Bottom-
left: Close-up view of the FTLE field. Bottom-right: Ridge geom-
etry of the close-up area as vector graphics.

which contains the wind velocity field at the height of approximately
470m. This part contains areas with different flow behavior due to
characteristic atmospheric features.

Figure 6.10 shows the FTLE field for the whole domain for this height FTLE,
ridge
geometry
& ridge
statistics

slice with t = 0 and τ = 10 and a close-up with ridge geometry.
Areas, where the integrated particles left the domain are marked with
a grey mask. Stream-like features can be recognized over the Atlantic
Ocean, whereas vortical structures of cyclones are visible over Europe.
Figure 6.11 gives the corresponding ridge statistics.

6.8.5 Timings & Memory Usage

test systemThe algorithm was run on a virtual machine that could access 18 Intel
Xeon E5-2690v3 (virtual cores) running at 2.6GHz with 128GB RAM.
We used multiple CPUs that could process different parts of the domain –
coarse grid cells – in parallel. We add up the times for all parts equivalent
to a sequential processing on a single CPU.

The Double Gyre was processed in the domain [0, 2]× [0, 1] and with t = data set
domains0, τe = 30. The Forced Duffing equation was processed in the domain

[−2, 2] × [−1.5, 1.5] with t = 0, τe = 30. The Boussinesq flow was
processed in the domain [−0.48, 0.48]× [−0.48, 0.96] with t = 5, τe = 15.

105

ftle ridge lines for long integration times

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

13
.5

14
.0

14
.5

15
.00

100

200

300

to
ta
ll
en
gt
h

Boussinesq

100 longest ridges
1000 longest ridges
all ridges ridges

τ 100 longest 1000 longest all

5.5 14.90 19.17 19.17
7 42.35 67.46 67.46
9 60.64 127.36 135.11

11 75.14 181.10 212.19
13 79.12 212.87 284.25
15 81.74 232.11 346.84

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

0.5

1

·105 ECWMF

τ 100 longest 1000 longest all

5 13333.39 46026.55 121213.44
10 16863.88 49034.94 91095.78
15 21377.68 50719.85 70613.11
20 22739.54 49241.72 59067.42
25 24668.56 47200.10 52681.51
30 24458.76 41610.56 44302.59

Figure 6.11: Ridge Statistics for Boussinesq & ECWMF. We list the
accumulated ridge lengths over τ . Left: The ridge geometry of
the Boussinesq shows almost linear increase with many short and
medium-long ridges. Right: The ridge geometry of the ECWMF
decreases over time because particles leave the domain and cause
undefined FTLE regions.

The ECWMF data set was processed in the domain [0, 1200]× [0, 400]
with t = 0, τe = 30. Table 6.1 lists the used domain settings for all data
sets.

For all data sets, we used ∆τ = 1/10 and chose θ as 1% of max FTLEτeexperi-
ment

descrip-
tion &
timings

that was estimated on the initial coarse grid. Timings are summarized in
Table 6.2 for all data sets at maximum resolution ε in hours. The columns
show times for integrating the flow map φτ (OpenMP, multi-core),
quadtree operations (includes splits, neighbor search, computation, and
analysis of FTLE), and ridge extraction, which was performed in every
time step. Times for ridge extraction appear in two versions – one for
the full extraction process and one without post-processing (gap-filling).
Thus the total time appears also in two columns, the latter excludes the
post-processing. As can be expected, times for tree operations depend
on the maximum resolution ε and the domain’s size. Times for flow
map integration additionally depend on the integration time. Surprising
are the times for ridge extraction that even dominate the total cost for
Boussinesq flow regardless of ε. A detailed examination revealed that
up to 98% of the extraction process is used for filling gaps between
ridge clusters. The reason for this is a brute force implementation of
gap-filling, which continually checks if a new ridge can be connected
to any existing ridge. This leads to costly computations if the data

106

6.9 discussion

Data Set Spatial Domain t τ

Double Gyre [0, 2]× [0, 1] 0 30
Forced Duffing [−2.0, 2.0]× [−1.5, 1.5] 0 20

Boussinesq [−0.48, 0.48]× [−0.48, 0.96] 5.5 15
ECWMF [0, 1200]× [0, 400] 0 30

Table 6.1: Spatial & Temporal Domains. Listed are the domain settings
for the computations for each data set.

Data Set ε Total φτ Tree Ridge w/o Fill

Double Gyre 7.8 · 10−5 82 21 49 12 5
Forced Duffing 7.8 · 10−5 145 20 81 44 8

Boussinesq 6.0 · 10−4 246 1 3 242 4
Boussinesq 7.5 · 10−5 247 68 58 121 15
ECWMF 6.2 · 10−2 187 89 62 36 10

Table 6.2: Timings. Listed are the computation times in hours (rounded) and
the maximum resolution for each data set.

contains many short ridges, whose distances furthermore undergo the
spatial resolution as for the Boussinesq flow.

The peak memory usage was 12GB for the Double Gyre and 20GB for memory
usagethe Forced Duffing. The Boussinesq flow required 8GB and 16GB for

ε = 6 · 10−4 and ε = 7.5 · 10−5, respectively. The ECWMF is the largest
data set and required 36GB peak memory usage.

The memory usage primarily depends on the number of cells and flow
maps that have to be kept. If memory is limited, one can resort to
domain decomposition and sequential processing of parts. We did this,
e.g., for the Double Gyre and the Boussinesq. However, this comes at
the cost of missing ridge connections at the parts’ borders, visible as
horizontal ‘artifacts’ in Figure 6.4.

6.9 discussion

ridge
extraction

For all test data sets, our approach was able to compute high amounts
of ridge geometries. The Double Gyre, the Forced Duffing, and the
Boussinesq were considered in a comparable domain with side lengths
in the order of 1-2 length units. We were able to extract 350 to 500
length units of ridge lines for all three data sets. To the best of our
knowledge, no other approach comes even close to extracting such a
rich ridge line geometry. This is mainly made possible by a sampling
that is tuned to the particular problem: It is based on a sampling of
FTLE at the final integration time and at intermediate times. Even

107

ftle ridge lines for long integration times

though the computing time is relatively high, a dense sampling would
have led to prohibitively higher computing times – if the memory limit
was not reached before.

Based on the extraction of the line geometry, ridge statistics for increas-ridge
statistics ing integration times became possible. We do not know any previous

publications that compute ridge statistics in this or a similar way. In
our opinion, the statistics have the potential to characterize the global
behavior of FTLE ridges over time. Hence they could be a future tool
for the transition from long integration times to even longer ones. With
ongoing integration, distances and sharpness of ridges fall beyond the
boundaries of being numerically computable. In this case, a single ridge
is of no importance anymore, making the statistics about all ridges the
relevant item.

The test data sets show significantly different behavior regarding ridgediscussion
Double
Gyre &
Forced
Duffing

statistics. The statistics for the Double Gyre and the Forced Duffing
are shown in Figure 6.6. Both exhibit an exponential behavior in the
total amount of ridges. The Double Gyre has a few ridges that become
longer over time – rapidly but smoothly. This reflects the behavior of
the underlying flow field, which changes continuously but smoothly
over time. The Forced Duffing instead shows three sudden jumps in the
summed up ridge lengths. These originate from an abrupt increase of
medium-length ridges (green bars). Between these jumps, the changes
are negligible. The flow is much more chaotic and comes up with some
sudden changes in the flow field.

The length of the ridge lines grows approximately linearly for thediscussion
Boussi-

nesq
Boussinesq flow. We show its statistics in Figure 6.11 (left). The plot
reveals that only a few long ridges (blue bars) do not become longer
over time. For additional integration times, we expect the number of
short ridges (orange bars) to increase. The Boussinesq flow becomes
turbulent after short integration times, explaining the lack or stagnation
of long ridges.

Interestingly, the plot of the ECWMF data set shows a different behavior.discussion
ECWMF It is shown in Figure 6.11 (right). Contrary to the other test cases, the

total ridge length is vastly higher after short integration times and
decreases in the ongoing process. The general decrease can be explained
by more and more particles leaving the domain, which leads to fewer
areas with well-defined FTLE. The amount of long (blue bars) and
medium-long (green bars) ridges becomes stable after a few time steps.
However, the amount of short ridges (orange bars) is substantial in
the beginning and decreases rapidly afterward. We interpret this as a
dominance of the turbulent parts of the flow, which leads to a high
number of short ridges at low integration times. After a short time,
these turbulent parts become less important. Short ridges vanish or
merge and are soon outnumbered by medium-length and long ones.

108

6.10 limitations & future research

The constant west-east flow over the Atlantic Ocean becomes more
significant in the ongoing process and leads to more elongated ridges.

6.10 limitations & future research

limitationsIf the flow v is smooth and differentiable, FTLE is smooth and differ-
entiable as well for a finite integration time. This means that there is
only a finite number of ridges, and ridges have finite lengths. It would
be desirable to give guarantees that our algorithm finds all of them.
However, this cannot be guaranteed because the algorithm depends on
numerical integration, which introduces errors, especially for estimating
the flow map gradient. This also leads to some separate or uninten-
tionally merged ridge lines. While these numerical artifacts occur to
particular lines, they do not impact the ridge statistics.

For future research, an extension to 3D ridge surfaces is desirable. There future
researchis no conceptional reason that prohibits the extension. Also, in 3D,

ridge surfaces become sharper and closer to each other with increasing
integration times, and similarly, an FTLE sampling is required that
incorporates intermediate time steps. In order to compute statistics,
the FTLE surfaces need to be extracted. We expect this to be the most
challenging task for the step to 3D.

109

7
R E C I R C U L AT I O N S U R FA C E S

This chapter is based on the publication:

T. Wilde, C. Rössl, H. Theisel
Recirculation Surfaces for Flow Visualization
IEEE Transactions on Visualization & Computer Graphics, 2019

0

10
t

0

10
τ

Figure 7.1: Recirculation in the 3D Double Gyre. We show recircula-
tion surfaces and recirculating pathlines. The colors of the surfaces
indicate start time t (left) or integration time τ (right). The tubes
show a random selection of recirculating pathlines with τ encoded
as constant color. The spheres show their start points on the re-
circulation surface with color-coded t. The boundary curves of
the surfaces are defined by the paths of critical points, which are
depicted as blue tubes.

In Chapter 6, we introduced a method to compute LCS for 2D unsteady
flows. We extracted ridges from FTLE fields to detect LCS. FTLE uses
the spatial flow map gradient ∇φτt (x). Usually, we compute it for a
fixed starting time t and a fixed integration time τ . In the presented
approach, we also vary the integration time and incorporate shorter τ
values for the computation. Hence, we use several parts of the flow map
for the computation – the full spatial domain and parts of one temporal
dimension τ . Nevertheless, due to the fixed starting time t, a large part
of the flow map is not utilized for the feature extraction.

In this chapter, we present a new flow feature – recirculation surfaces. recircula-
tion
surfaces

Recirculation surfaces are the first comprehensive flow feature that uses
the full 5D flow map of a 3D unsteady flow. Recirculation surfaces are
the loci where massless particle integration returns to its starting point
after some variable, finite integration. They present a formal approach
to the visual analysis of recirculation in flows.

111

recirculation surfaces

This chapter has the following structure. Section 7.1 gives a short in-chapter
overview troduction to the phenomenon of recirculation and possible meanings.

In Section 7.2, we discuss related work considering recirculation and
standard approaches we need for our algorithm, e.g., the extraction of
critical points from vector fields. In Section 7.3, we give a rigorous defini-
tion of recirculation surfaces as 2-manifolds embedded in 5D space and
study their properties. We construct an algorithm for their extraction
that we present in Section 7.4. Finding isolated closed orbits in steady
vector fields occurs as a particular case of recirculation surfaces. We
discuss this in Section 7.5. Section 7.6 presents the results we obtained
from different data sets, followed by a discussion of our approach in
Section 7.7. Section 7.8 lists the limitations of our method and concludes
the chapter with possible future research.

This chapter uses some special notations and abbreviations, which wechapter
remarks introduce at the corresponding places. We will also repeat some elements

already introduced if we think they will help to follow the content of
this chapter.

7.1 introduction

Recirculation is a phenomenon that influences many effects in 3D un-
steady flows. Several approaches study recirculation or other phenomena
in the presence of recirculation. Recirculation has been covered in quite
diverse areas, from biology, chemistry, and physics to Flow Visualization.

There seems to be a common intuitive understanding of what recircula-recircula-
tion

meaning
tion is. The term may refer to locations where moving particles return to
their starting locations after a specific time. Alternatively, recirculation
describes regions of particles that do not leave a particular region –
but may move within this region. Recirculation can also describe areas
where particles move ‘backwards’ or ‘against the main flow direction,’
which requires a proper definition of what ‘backwards’ means. For steady
flows, recirculation is related to closed orbits. Surprisingly, there seems
to be no unique standard definition of the concept of recirculation — a
property that recirculation shares, e.g., with the concept of a vortex.

7.2 related work

Recirculation is an important phenomenon that has been studied in
various application domains. This section provides a brief review of
related work on recirculation and algorithms that are the basis for our
approach.

112

7.2 related work

7.2.1 Recirculation as a Phenomenon

In physics and computational fluid mechanics, recirculation can be
essential for controlling the flow in specific manners. For instance, physics
Gautier et al. [55] use a machine learning approach to reduce the
recirculation zone of a backward-facing step flow, and Debien et al. [31]
apply genetic programming for a flow of the turbulent boundary layer
downstream from a sharp edge ramp. Brunton and Noack [18] give a
recent overview of turbulence control. Tadmor and Banaszuk [155] track
a reference orbit in a combustor recirculation zone to control vortex
motion. Chen et al. [26] and Laramee et al. [89] identify recirculating
flow behavior as a feature for describing combustion processes in an
engine. Noack et al. [112] optimize coarse-scale mixing in a recirculation
zone with a simple vortex model by Suh [154].

Shadden et al. [147] analyze aortic blood flow using LCS that separate medicine
& biologyregions of recirculation flow. Mittasch et al. [106] introduce a method

for influencing cytoplasmic streaming and identify intracellular flows
that show recirculating behavior.

Recirculation and related phenomena have been studied in Flow Visu- Flow Visu-
alizationalization. Weinkauf et al. [172] present a method to extract cores of

particles with swirling motion. Peikert and Sadlo [118] study vortex
rings in recirculating flows. Sanderson et al. [137] extract orbits for a
magnetic field by exploiting a natural Poincaré section.

7.2.2 Isolated Closed Orbits for Steady Vector Fields

closed
orbits in
2D

For steady vector fields, recirculation is related to closed orbits. There
exist several methods for finding closed orbits in 2D fields. Wischgoll and
Scheuermann [179] provide the first approach to the detection of closed
streamlines in planar flows. Theisel et al. [159] compute closed orbits in
2D by intersecting 3D stream surfaces. Morse decomposition provides a
combinatorial approach to vector field topology and is used to detect
closed streamlines in a series of articles by Chen et al. [26, 27]. Existing
2D techniques make use of the fact that closed orbits have either a
source or a sink behavior. Their extension to 3D is straightforward as
long as the closed orbits show source or sink behavior [127].

In 3D, however, a closed orbit can also have a saddle behavior, i.e., closed
orbits in
3D

almost all streamlines in the closed orbit’s neighborhood move away
under both forward and backward integration [3, 116]. For such orbits,
the known 2D techniques do not carry over. The only existing solution
so far is by Kasten et al. [79]: The intersections of the closed orbit with
a plane are obtained by computing the intersection of FTLE ridges in
forward and backward integration.

113

recirculation surfaces

7.2.3 Extraction of Isolated Critical Points

analytic
methods

3D steady vector fields generally have isolated critical points. We can
compute them analytically for a piecewise linear field as a solution
system of three linear equations. For piecewise trilinear vector fields, an
analytic solution does not exist. Mann and Rockwood [100] utilize an
octree-like approach and divide the domain into cells. For each cell, an
index is computed, which decides if the cell contains a critical point. If
so, the cell gets subdivided. An approach designed explicitly for electric
fields defined by a set of point charges was presented by Max and
Weinkauf [103].

Weinkauf [171] uses a recursive algorithm to locate critical points. Therecursive
method values at all vertices spanning a trilinear cell are examined. If all values

share the same sign, a critical point cannot occur in the cell, and the
recursion stops. Otherwise, the cell is subdivided, and each subcell is
examined recursively until a certain threshold is reached, i.e., the critical
point’s location is bounded within the smallest subcell. This sign test is
easy to implement, fast to compute, and works for arbitrary dimensions.
For instance, one must compare the signs for the (x, y, z)-components
individually to use it for 3D vectorial data. This algorithm typically
generates multiple ‘candidates’ for the same root, which is resolved by
a local clustering. We use the same approach to locate critical points in
derived vector fields.

7.2.4 Tracking Critical Points

Several methods for tracking critical points exist. Tricoche et al. [161]
consider piecewise linear 2D vector fields and compute and connect
the critical points on the faces of a prism cell structure obtained by a
tetrahedral grid. Garth et al. [53] give an extension to 3D flows defined
piecewise on a tetrahedral partition with linear interpolation in both
space and time. An adaptation to quadrilinear vector fields, i.e., linear
interpolation in each spatial dimension and time, is straightforward.
In this case, the restriction to cell boundaries of 4D hypercubes gives
3D trilinear vector fields. Then the extraction of critical points on
hypercube faces can proceed as described above. An alternative class
of algorithms for tracking critical points uses feature flow fields [157],
i.e., they construct space-time vector fields with tangent curves corre-
sponding to the critical points’ searched paths. Klein et al. [84] use this
approach to track critical points in scale space. Weinkauf et al. present
an out-of-core version [174] and a stabilized version [175] of feature flow
fields.

114

7.3 definition of recirculation surfaces

7.3 definition of recirculation surfaces

velocity
field &
flow map

We consider a 3D time-dependent velocity field v(x, t), and the corre-
sponding flow map φτt (x):

v : D× Tt → R3 ,
φ : D× Tt × Tτ → D .

The spatial domain is denoted by D, the temporal intervals are denoted
by Tt and Tτ . We define the vector field and the flow map in vectorial
space, i.e., D ⊆ R3, Tt ⊆ R, Tτ ⊆ R.

Therefore, the flow map φτt (x) is defined in the 5D space (x, t, τ)T. In x & x
order to search for recirculation, we have to explore this space. When
we refer to elements in this 5D space, we indicate this by a double-bar
notation, i.e., x= (x, t, τ)T ∈ R5.

In the following, the capital letter Y denotes implicitly defined recircu- Y & Y

lation surfaces. We use the double-bar notation similarly to distinguish
between recirculation surfaces Y ⊂ R3 in 3D space, and Y ⊂ R5 in 5D
space.

Furthermore, we want to emphasize that 0 denotes the scalar value, 0 & 0
the bold version 0 denotes the zero vector, and I denotes the identity
matrix.

7.3.1 Definition

definition
recircula-
tion
surface

We describe a recirculation surface implicitly as the set of all 5D points,
for which the flow map gives the identity, i.e., the loci of particles that
return to their starting point after a finite integration time. Therefore,
we define a recirculation surface in 5D space as:

Y =

{
(x, t, τ)T ∈ D× Tt × Tτ |

φ(x, t, τ)− x
τ

= 0 ∧ τ 6= 0
}

.
(7.1)

The projection of Y from 5D space to Y in 3D (spatial) space is given
by:

Y =
{

x ∈ D | (x, t, τ)T ∈ Y
}

.

Figure 7.2 illustrates a recirculation surface. Note that the dependence denom-
inator τon the denominator τ in Equation (7.1) is necessary to treat the case

τ → 0 properly. Without the term 1/τ, any point in the 5D domain
would be part of a recirculation ‘surface’ for vanishing integration time
τ → 0, which is clearly undesired. With the term included, there exists a
well-defined limit surface for τ → 0, as will be explained in Section 7.3.3.

115

recirculation surfaces

pathline of v

v(x, t)

v(φτt (x), t+ τ)
x

Figure 7.2: Illustration of a Recirculation Surface. Starting a pathline
from a surface point x returns to x after a finite integration time.
The flow direction is not necessarily the same. The illustration
shows the projection of Y in 5D space to Y in 3D space.

7.3.2 Properties

The following sections require some concepts from differential geometry
of manifolds, e.g., the tangent space, and concepts from linear algebra,
e.g., the null space and its basis. Furthermore, we apply multivariate
calculus and provide non-trivial derivations. For more information, we
refer to the literature by Do Carmo [32, 33] and Strang [153].

The null space N of a matrix A is defined asnull space
& tangent

space N(A) = {x | A · x = 0 } .

LetM be a differentiable manifold. The set of all vectors at a location
x ∈ M that are tangent to M build a vector space – it is called the
tangent space TxM.

To keep the notation clear, we will use the following abbreviations:φ,v2,G

φ := φ(x, t, τ) ,
v2 := v(φ, t+ τ) = ∇φ · v + φt , (7.2)
G := ∇φ− I .

Note that the definition of v2 in Equation (7.2) uses a property of the
flow map that we prove in Appendix C. The symbols v2 and G will be
used literally as ‘abbreviations’ to facilitate expressions and comparing
coefficients/factors in expressions.

Equation (7.1) defines recirculation surfaces as the set of all 5D points indistance
function s the flow map that map to their starting point. We consider the following

vectorial function to identify locations with this behavior:

s(x, t, τ) = φ− x
τ

. (7.3)

The zeros of s define the recirculation surface, i.e., s(x, t, τ) = 0. We
remark that the denominator τ is necessary for the same reason as for
the definition of Y in Equation (7.1).

116

7.3 definition of recirculation surfaces

To study the properties of s, we consider its (spatial) directional deriva-
derivatives
of s

tive in direction r, which we obtain by elementary differentiation rules:

ds
dr = ∇s · r =

∇φ · r− r
τ

=
G · r
τ

.

Furthermore, the partial derivatives of s with respect to starting time t
and integration time τ are defined as:

∂s
∂t

=
φt
τ

,

∂s
∂τ

=
v2 − s
τ

.

This allows us to assemble the 5D gradient ∇s as the matrix

M := ∇s =
1
τ

[
G φt v2 − s

]
∈ R3×5 . (7.4)

The recirculation surface Y is defined implicitly as a point set. We study tangent
spacethe neighborhood of a point x0 ∈ Y by constructing the tangent space

Tx0
Y = {x | M(x−x0) = 0 } , (7.5)

which provides a local linear approximation to Y .

The null space of M provides a basis for this affine subspace of R5. We Y is a
2-manifoldgenerally expect M to have full rank, i.e., rank(M) = 3. Then the null

space has dimension 5− 3 = 2, and Y is indeed locally a 2-manifold,
which justifies the term recirculation surface.

Local configurations where M has a smaller rank are structurally un- Y is struc-
turally
stable

stable. With a small perturbation, like adding some noise, all singular
values will become non-zero and M is ‘regularized’ to have full rank.
Note that the null space dimension can only grow with a rank deficit of
M. In particular, the dimension cannot become less than 2.

We remark that the QR-decomposition MT = QR provides an efficient null space
basisway to compute an orthonormal basis of the null space of M. The

first two columns of the orthogonal matrix Q span the null space and
hence the tangent space of Y at x0. While this is more efficient than a
singular value decomposition of M (or likewise a spectral decomposition
of MTM), it assumes full rank, whereas singular values (or eigenvalues)
would reveal a rank deficit directly.

The norm of the vector function s gives a pseudo-distance to the recir- ‘project’
points to Yculation surface. This can be used for the ‘projection’ of points onto

the surface using a minimization approach. The gradient of the squared
distance can be expressed as:

1
2∇||s||

2 =
1
2
(
(∇s)Ts + sT(∇s)

)
= ∇sTs = MTs . (7.6)

117

recirculation surfaces

This allows moving points z0 ∈ R5 that are close to the surface towards
and onto the surface. In the simplest case, we can use gradient descent.
Also, a more sophisticated nonlinear solver that minimizes, e.g.,

||s(z)||2 + µ||z−z0||2 ,

can be used. Here the weighted term accounts for finding the surface
point z with the shortest (Euclidean) distance to z0, i.e., get close to a
projection.

Standard solvers can use the gradient vector ∇||s||2, and the ‘closed
form’ of Equation (7.6) instead of a finite differences approximation. We
note that the computation of ∇φ and hence s typically involves finite
differences in 3D.

7.3.3 The Particular Case τ → 0

The case τ = 0 was excluded from the definition of recirculation surfaces.
This is due to the denominator τ in the definition. Without this term,
any domain point would be part of a recirculation ‘surface’ for τ → 0.
Also, a numerical root-finding may fail for small τ as the absolute
difference φ(x, t, τ)− x becomes arbitrarily small.

For the given definition of recirculation surfaces based on the scaledthe case
τ → 0 distance in Equation (7.3) there is a well-defined limit for τ → 0 as:

lim
τ→0

s = lim
τ→0

φ− x
τ

= lim
τ→0

φ(x, t, τ)− φ(x, t, 0)
τ

=
∂φ

∂τ

= v(x, t) .

(7.7)

and

lim
τ→0

G
τ

= lim
τ→0

∇φ− I
τ

= lim
τ→0

∇φ(x, t, τ)−∇φ(x, t, 0)
τ

= ∇v(x, t) .

Furthermore, we can derive

lim
τ→0

M =

[
∇v vt ∇v · v + vt

]
.

Equation (7.7) states that isolated critical points of the vector field v
are on the recirculation surface Y , i.e.,

v(x, t) = 0 ⇒ (x, t, 0)T ∈ Y . (7.8)

118

7.4 extraction of recirculation surfaces

7.3.4 Properties of the 3D Surface Y

open
surface Y

We have shown that Y is, in general, a closed implicit surface in 5D.
However, its projection Y ⊂ R3 is an open surface that is circumscribed
by boundary curves. Consider a location (x, t, τ)T that belongs to the
surface Y . A particle seeded at (x, t) reaches its seeding position x
again after the integration time τ . If we now take the same particle at
its destination (x, t+ τ) and integrate it backward, it shows the same
behavior. Both points must be on the surface, i.e.,

(x, t, τ)T ∈ Y ⇐⇒ (x, t+ τ ,−τ)T ∈ Y .

This means that almost every point on Y corresponds to two original boundary
curvespoints on Y . The points on Y where both originals collapse in a single

point build the boundary curves of Y . Since this occurs for τ = 0,
the paths of critical points of v are the boundary curves of Y due to
Equation (7.8).

In general, Y ∈ R3 is locally manifold. However, the projection R5 → R3

may result in self-intersecting surfaces and possibly ‘degenerate’ (locally)
to a curve. Both effects are visible in Figure 7.6.

7.4 extraction of recirculation surfaces

In this section, we describe an algorithm for the extraction of recircula-
tion surfaces. When we consider the properties of Y , there are several
starting points for constructing such an algorithm.

One possible approach is using a brute force sampling and moving from gradient-
based
methods

random seed points in 5D onto Y using ||s||2 and its gradient from
Equation (7.6). This works reasonably only for seeds that are close
enough to the surface. The generation of the seeds should be adjusted,
e.g., with some sort of importance sampling. The collected surface points
can be triangulated or rendered as splats – similar to a particle-based
extraction of 3D ridge surfaces presented by Kindlmann [80].

A different approach would start from a seed point x0 ∈ Y and apply a
surface growing algorithm that propagates a front over the surface by
‘moving’ in the tangent space followed by a back-projection onto the
surface. The propagating front would expand, e.g., a triangulation, and
possibly split and merge.

Unfortunately, both approaches become numerically unstable, especially problems
with ∇φfor longer integration times, because both rely on the flow map gradient

∇φ. We have seen in Chapter 6, that ∇φ grows for longer integration
times and tends to show ‘extreme behavior’ in the sense that its norm
grows exponentially.

For this reason, we introduce an extractor that requires only the flow
map but not its gradient. The algorithm is based on a repeated search

119

recirculation surfaces

of isolated critical points in steady 3D vector fields – a common problem
with well-established and robust numerical solutions.

7.4.1 Algorithm Overview

main idea The core algorithm aims at finding all intersections of Y with straight
lines parallel to the coordinate axes. For instance, we define the line

l = { (x, y, z)T | x = x̂, y = ŷ } ,

that is parallel to the z-axis for fixed x̂, ŷ. We reduce the problem to
finding intersections of Y with this line l. For this restriction, we extract
isolated critical points of the 3D vector field

sx̂,ŷ(z, t, τ) := s((x̂, ŷ, z)T, t, τ) .

If we find a critical point sx̂,ŷ(z0, t0, τ0) = 0, then Y intersects the line
in (x̂, ŷ, z0)

T. Similarly, intersections of Y with lines parallel to the x-
or the y-axis can be computed. We decompose the spatial domain using
a uniform grid and apply this search along all grid lines.

We summarize the algorithm for the extraction of Y from v into thealgorithm
overview following steps:

1. Sample s on a regular grid and assume a piecewise quintilinear
(i.e., linear in every of the five dimensions) interpolation inside
the grid cells in 5D.

2. Find the intersections of Y with all 3D grid lines in x-, y-, and
z-directions.

3. Extract the boundary curves of Y by tracking the critical points
of v(x, t).

4. Visualize the sampled surface Y .

Figure 7.3 gives an illustration of the first two steps of the extraction
algorithm. We explain the steps in the following in more detail.

7.4.2 Step 1 - Sample s on a Regular Grid

regular
grid in

(x, t, τ)T

In Step 1, we cover the domain of s with a regular grid. The distance
function s is defined in a domain in space-double-time, i.e., (x, t, τ)T.
Therefore, we must define the sampling grid also in space-double-time.

A complete sampling of s in 5D is challenging, both in terms of compu-
tation time and memory requirements. The choice of the grid resolution
should reflect a trade-off between accuracy and performance. A reason-
able starting point for a suitable grid resolution is the original grid on
which v is given. However, a denser sampling grid for s gives better
results because s collects information over several grid cells of v.

120

7.4 extraction of recirculation surfaces

x

y

z

x

y

z

τ

t

z

τ

t

z

τ

t

z

x

y

z

x

y

z

x

y

z

(i) (ii) (iii)

(iv)(v)(vi)

(vii) (viii) (ix)

Figure 7.3: Illustration of the Extraction Algorithm.
(i) Sample the spatial space with an axis aligned grid.
(ii) Select a single line l by fixing x̂, ŷ.
(iii) Line l spans a 3D space in (z, t, τ)T.
(iv) Consider sx̂,ŷ(z, t, τ) ∈ R3 as a piecewise trilinear vector field
over a regular grid.
(v) Locate critical point at (z0, t0, τ0) in this vector field.
(vi+vii) ((x̂, ŷ, z0), t0, τ0)

T is a single point on Y (and Y).
(viii) The correpsonding pathline shows recirculating behavior.
(ix) The location belongs to a recirculation surface.

To save memory, we use an on-the-fly computation of s. Instead of
a precomputation of s on the whole 5D grid, we compute each line l
defined by two varying (spatial) grid samples individually and go on
with Step 2.

7.4.3 Step 2 - Locate Intersection Between Line l & Y

intersect
l and Y

We assume a multilinear interpolation in Step 1. Then the restriction
to a grid line l with x = x̂, y = ŷ yields sx̂,ŷ(z, t, τ) ∈ R3 as a piecewise

121

recirculation surfaces

trilinear vector field over a regular grid. To find a intersection between
Y and the line l, we have to search for critical points in this vector field.
Finding its isolated critical points is a solved standard problem in Flow
Visualization.

We use the approach described by Weinkauf in [171] that we brieflyrecursive
0 search explained in Section 7.2. We check the vertices that define the current

cell of the vector field sx̂,ŷ(z, t, τ). If each of the components x, y, and
z appears with positive and negative values, the cell might contain a
critical point. We subdivide the cell and repeat the test recursively until

• one component contains the same sign for all vertices, i.e., no
critical point was found;

• a desired (small) cell size is reached.

In the second case, the cell center of the last recursion step is treated
as critical point location.

Since Y is double folded in 3D, we can restrict the search to positivearbitrarily
oriented
lines l

integration times τ . Furthermore, we restrict the search space to grid
lines that are parallel to coordinate axes. The algorithm would work
similarly with a restriction to any line (1− α)x1 + αx2 in 3D.

7.4.4 Step 3 - Extract the Boundary Curves of Y

critical
points for
boundary

curves

In Section 7.3.4 we explained, that the movements of critical points
in v yield the boundary curves of Y . Therefore, we have to track
the movement of critical points in the vector field v to determine Y ’s
boundary. This is another solved standard problem in Flow Visualization.
We use an approach similar to [53] for a piecewise quadri-linear vector
field.

We consider each 4D hypercube [xi,xi+1] × [yj , yj+1] × [zk, zk+1] ×
[t`, t`+1] in which a quadri-linear interpolation of v is assumed. In
order to search for the intersections with the paths of critical points,
we search the isolated critical points in the 8 boundary cubes of the
hypercube:

[yj , yj+1]× [zk, zk+1]× [t`, t`+1] at x = xi

[yj , yj+1]× [zk, zk+1]× [t`, t`+1] at x = xi+1

[xi,xi+1]× [zk, zk+1]× [t`, t`+1] at y = yj

[xi,xi+1]× [zk, zk+1]× [t`, t`+1] at y = yj+1

[xi,xi+1]× [yj , yj+1]× [t`, t`+1] at z = zk

[xi,xi+1]× [yj , yj+1]× [t`, t`+1] at z = zk+1

[xi,xi+1]× [yj , yj+1]× [zk, zk+1] at t = t`

[xi,xi+1]× [yj , yj+1]× [zk, zk+1] at t = t`+1 .

122

7.4 extraction of recirculation surfaces

We find the critical points of v in each subcube by the same algorithm
as in Step 2. To describe the boundary curve of Y , we connect the points
by a simple heuristic preferring spatially close points to be connected.

7.4.5 Step 4 - Visualize the Recirculation Surface Y

visualize
Y

Step 3 generates point samples on Y . In Step 4 we triangulate their
projection to 3D space. The resulting triangle mesh is a piecewise
linear approximation to Y , which can be rendered with an additional
color-coding of either t or τ .

7.4.6 Surface Reconstruction

surface Y
from
samples

Surface reconstruction from point samples is a non-trivial problem that
is well-studied in Computer Graphics. However, there are no methods
readily available for the triangulation of Y , a closed 2-manifold in
5D. Likewise, reconstruction algorithms for closed or open surfaces
in 3D typically assume 2-manifolds, i.e., they cannot deal with self-
intersections and degenerate situations that may occur due to the
projection Y ∈ R5 → Y ∈ R3.

Also, an assumption on either the sampling rate, e.g., in terms of
Nyquist frequency, or equivalently the minimum local feature size is
required to guarantee an accurate reconstruction. Unfortunately, we
cannot guarantee a sufficient sampling of either Y or Y . Ideally, we
would like to work in the original sampling space and reconstruct by
triangulation of the samples. However, we note that the projection to a
3D triangle mesh that approximates Y may locally degenerate due to
topology changes, which, e.g., may lead to overlapping triangles, and
due to the unacceptable ‘distortion’ from the projection.

We leave surface reconstruction of Y and Y with guarantees as an open
problem and do not claim any novel contribution.

In our experiments, we used the ball pivoting algorithm [7] to triangulate ball
pivotingY . This standard surface reconstruction method served well for our

purpose for two reasons:

1. It can handle surfaces with boundaries.

2. It propagates a ‘front’ on the surface, which allows for partial
processing of surface patches defined by specific t and τ intervals.

The second reason is a simple way to deal with self-intersections (or like-
wise surface sheets that get very close to each other). They are avoided
by generating the intersecting patches sequentially and combining them
into a single surface. While this works reasonably well in practice, there
is of course no guarantee. Our results show that – as expected – the
reconstruction suffers from local undersampling, e.g., in regions of high

123

recirculation surfaces

Z

X Y

Z

τ Y

Z

X Y

Figure 7.4: Closed Streamlines for the Closed Orbit Flow. Left:
Place a fixed plane in x = x̂ (orange rectangle). Center: Compute
s(x̂, y, z, τ) for this plane and extract critical points. Right: Repro-
ject the critical points back into the plane x = x̂ and integrate
closed streamline.

curvature. Figure 7.14 shows an extreme example. We note, that ball
pivoting may be a promising candidate for an extension to 5D. How-
ever, it is unclear whether a denser sampling is required. The presented
algorithm does not provide an adaptive sampling. While possible in
principle, a proper adaptation is non-trivial as it must adapt to the
differential geometry of a 2-manifold embedded in 5D. Nevertheless, a
naïve dense sampling of the search space is too expensive, making the
use of a multiresolution approach mandatory.

We apply a simple modification to the algorithm that introduces tworefine
sampling fixed sampling resolutions. An initial, coarser sampling grid is used

to detect the presence of recirculation. Whenever a candidate sample
is found on an edge of this grid, we sample a local region at a finer
resolution. In our experiments, the local region’s size is twice the cell
size in every dimension, and the sampling rate is quintupled in space
and doubled in time dimensions.

7.5 isolated closed streamlines in 3d steady vector
fields

isolated
closed

streamline

For 3D steady vector fields v(x, t) = v(x) , isolated closed streamlines
are a particular (and degenerate) case of recirculation surfaces. In the
steady case, the flow map simplifies to φ(x, τ), and the vector field from
Equation (7.3) writes as s(x, τ).

We adapt the extraction of recirculation surfaces and provide an algo-algorithm
steps rithm for finding isolated closed streamlines:

1. Specify a plane perpendicular to one of the coordinate axes, e.g.,
the plane x = x̂ for some constant x̂.

2. Determine the intersections of closed streamlines with the defined
plane. Therefore, search for the isolated critical points in the

124

7.5 ics in 3d steady vector fields

3D vector field sx̂(y, z, τ) = s(x̂, y, z, τ). If (y0, z0, τ0)
T is such a

point, then the point (x̂, y0, z0)
T lies on the closed streamline of

v. Note that in this case, the closed streamline has at least two
intersections with the plane.

3. Integrate v from (x̂, y0, z0)
T to get the complete closed streamline.

Repeat Steps 1 and 2 to find more seeds on the closed streamline
if the integration time is too large for ‘stable’ integration. Due to
numerical inaccuracies during integration, there may be a slight
deviation between the start and target positions. The integration
is considered ‘stable’ if this deviation is sufficiently small.

sampling
planes

In the first step, one has to make sure that the considered ‘search’
planes are set up densely enough to intersect all closed orbits. This
plane selection problem is shared with other algorithms for 3D closed
orbit extraction based on, e.g., FTLE [79] or the Poincaré map [127].
We do not provide a new contribution in this part of the algorithm.

We sample sx̂(y, z, τ) on a regular hexahedral grid and apply a piecewise search 0
in sx̂linear interpolation. Therefore, we can use the same algorithm to find

critical points as in Section 7.4. The problem of multiple intersections
of a closed orbit with the plane is also shared with existing approaches.
Also, this part does not provide a new contribution.

We apply our algorithm to a simple Closed Orbit test data set Closed
Orbit
data set

v(x) =


1−r
r x− 1

2y
1−r
r y+ 1

2x

z

 with r =
√
x2 + y2 . (7.9)

This test data has an isolated closed orbit with a saddle behavior – saddle
behaviorthe unit circle in the (x, y)-plane. An extraction approach based on

the Poincaré map fails because the Poincaré map on a plane does not
converge to its invariants depicting the closed orbit. Also, the FTLE-
based approach by Kasten et al. [79] fails in this simple example because
for a positive integration time τ , FTLE of Equation (7.9) gives a constant
value due to the linear third component. This means that it does not
build the ridge structures which the algorithm by Kasten et al. requires.

Our algorithm extracts the closed orbit, as shown in Figure 7.4. This
result is a new contribution. To the best of our knowledge, no existing
algorithm can handle this simple example. Our algorithm covers cases
that so far cannot be handled otherwise.

Section 7.6 presents isolated closed orbits with a saddle characteristic
in a real data set – a time slice of a blood flow simulation in a cerebral
aneurysm (compare Figure 7.9). This is – to the best of our knowledge
– the first saddle closed orbit on real data shown in the Visualization
community, which comes as a side-product of our general approach.

125

recirculation surfaces

Number of Samples Time in h
Grid Initial Refine Initial Refine Integr.

Double Gyre 5 · 109 2.3 · 104 4.5 · 105 4 2 90%
Aneurysm 1.3 · 1010 2.9 · 104 4.6 · 105 124 46 98%
Cavity 5.6 · 108 2.6 · 105 — 11 — 60%
Square Cylinder 1.2 · 1011 2.7 · 105 2.2 · 106 43 25 75%

Table 7.1: Samples & Timings. The table lists the number of samples for
the sampling grid and the recirculation samples found before and
after refinement. Furthermore, timings for the initial search and the
refinement are listed and the percentage used for pathline integration.
The times are rounded to full hours.

7.6 results

test system We show results for one synthetic data set and three simulated flows.
Our algorithm was run in parallel on a virtual machine that could access
18 Intel Xeon E5-2690v3 CPUs at 2.6GHz with 128GB RAM.

We project Y ∈ R5 to Y ∈ R3 and show the resulting 3D surface.color maps
Color-mapping is used to show the additional coordinates start time t
and integration time τ . We use the Viridis color map [150] to visualizet→Viridis

τ→Magma t and the Magma color map to visualize τ – compare Figure 7.1 to
get an impression. The particular mapping depends on the extrema
of the current data set. Recirculation surfaces are shown with color-
mapping for either t or τ . All recirculating pathlines are rendered as
tubes, color-coded with integration time τ as constant color. Seeding
positions for recirculating pathlines are shown as spheres, color-coded
with start time t as constant color. In Figures 7.1, 7.5 and 7.6, we show
boundary curves depicted with blue color.

For the sampling, we give the resolution of the initial sampling grid. Weinitial grid
& timings used the initial grid to compute candidates for recirculation points on

the surface. The candidates were locally refined in a second extraction
step, as described in Section 7.4.6. Furthermore, we provide the timings
for the computation of the initial recirculation points, the refinement,
and the percentage of the time used for pathline integration. The
remaining computation time was used for managing the sampling grid
and searching for critical points. Table 7.1 lists the sample numbers and
the timings for all data sets.

126

7.6 results

0

10
t

0

10
τ

Figure 7.5: Recirculation in the 3D Double Gyre. Top: Random path-
lines, including pathlines with recirculation. Recirculating pathlines
(constant color τ) are shown with their start points (spheres of
color t). Bottom: Recirculation surfaces. The color of the surface
indicates start time t. Boundary curves are depicted in blue color.

7.6.1 Double Gyre

3D versionThe Double Gyre is a synthetic data set, which we introduced in Chap-
ter 3. In the original form, it represents a periodic 2D unsteady velocity
field. We add a third component and define

v(x, t) =


− π

10 sin(πf(x, t)) cos(πy)
π
10 cos(πf(x, t)) sin(πy) d

dxf(x, t)
1
5 z (1− z) (z −

1
4 sin(2

5πt)−
1
2)

 with

f(x, t) = a(t) x2 + b(t) x ,

a(t) = 1
4 sin(π5 t) , b(t) = 1− 1

2 sin(π5 t) .

Particles advected in the domain [0, 2]× [0, 1]× [0, 1] never leave this
domain. The third component adds a slight sine-like movement in z-
direction around the particle’s seeding ‘height.’ The effect is strongest
around z = 1

2 and vanishes at the borders, i.e., z = 0 and z = 1.
Particles with z0 ≥ 1

2 get dragged slightly to the top of the domain,
particles z0 <

1
2 to the bottom.

Figure 7.5 (top) gives an overview of the data by visualizing random recirculat-
ing
pathlines

pathlines in gray color. This includes a few examples of pathlines that
show recirculation. Their color indicates the integration time τ , the

127

recirculation surfaces

0

10
t

0

10
τ

Figure 7.6: Recirculation Surface in the 3D Double Gyre. Recircula-
tion surfaces and recirculating lines. The color map of the surface
indicates integration time τ . Recirculating pathlines (constant color
τ) are shown with their start points (spheres of color t). Boundary
curves are depicted in blue color.

starting points are depicted as spheres, and their color encodes the start
time t. Note that generally only limited insight into the data can be
obtained from rendering pathlines simply because of the sheer amount
of existing pathlines.

Figure 7.5 (bottom) shows a reconstruction of recirculation surfacesrecircula-
tion

surfaces
with t mapped as color. Figure 7.1 shows the same view with t and
τ mapped as color and randomly selected pathlines. The close-up in
Figure 7.6 maps integration time τ as color and includes few recirculating
pathlines (t and τ encoded as for Figure 7.5). We can also see the paths
of critical points of v as boundaries of the recirculation surfaces. The
corresponding boundary curves are depicted in blue color.

The search space was restricted to (x, t, τ)T ∈ [0, 2]× [0, 1]× [0, 1]×domain,
sampling
& timings

[0, 10]× [0, 10]. The size of the initial sampling grid was 200× 100×
100× 50× 50. We found 22 667 initial candidates on the recirculation
surfaces, which took 254 minutes. Local refinement of the initial can-
didates generated a total of 445 062 samples and took additional 92
minutes. Nearly 90% of the computation time was spent on pathline
integration. Timings and samples are summarized in Table 7.1.

128

7.6 results

0.005

0.400 t

0.120

0.240τ

Figure 7.7: Pathlines in the Aneurysm Flow. Left: Random pathlines
illustrate flow behavior. The flow passes from the left (inflow) to
the right (outflow). Right: Some recirculation pathlines – spheres
mark the seed positions. Curves are color-coded to show total
integration time τ . Spheres are color-coded to show seeding time t.

7.6.2 Aneurysm Flow

descriptionThe Aneurysm Flow data set is a 3D unsteady blood flow simulation
in a geometric model of a cerebral blood vessel containing a strongly
developed aneurysm. The research question behind the simulation is
related to rupture prediction. Rupture of an aneurysm is associated with
a high mortality rate. Depending on the rupture prediction, decisions
about possible surgeries are to be made. Rupture prediction of cerebral
aneurysms is still largely unsolved [182].

However, it is known that rupture risk is related to whether the flow
in the aneurysm is ‘cut-off’ and disconnected from the vessel’s main
flow. The (un-)connectedness of the flows in the aneurysm and the main
vessel is related to recirculation. If the main flow mostly passes through
the aneurysm, few or no recirculation areas are within the aneurysm.

Our approach finds several recirculation surfaces that cover large areas
within the aneurysm. On the other hand, there are also large areas
without recirculation surfaces, indicating that the main flow and the
aneurysm flow are partly connected. While this does certainly not solve
the rupture prediction problem, the systematic study of recirculation in
many aneurysm data sets may reveal correlations between the presence,
shape, and size of recirculation surfaces and likely rupture events.

Figure 7.7 shows the results as pathlines. Few random pathlines illus- recirculat-
ing
pathlines

trate the flow, which enters the domain from the left side and leaves to
the right. A collection of recirculating pathlines indicate the presence of
recirculation. The spheres indicate the start positions on the recircula-
tion surfaces with color encoding start time t. The colors of the curves
encode the integration time τ .

129

recirculation surfaces

0.005

0.400
t

0.120

0.240
τ

Figure 7.8: Recirculation Surfaces in the Aneurysm Flow. Top: Recir-
culation surfaces, color encodes t. Bottom: Recirculation surfaces,
color encodes τ . The center surfaces were cut out in the bottom
image to clear the view on the surfaces in the center region.

Figure 7.8 shows recirculation surfaces. The color encodes start timerecircula-
tion

surfaces
t (top) and integration time τ (bottom). In the bottom image, we
removed parts of occluding surfaces. Therefore, recirculation surfaces in
the domain’s center are better visible.

The search space was restricted to (x, t, τ)T ∈ [−0.0155,−0.025] ×domain,
sampling
& timings

[0.2245, 0.2355]× [−0.1765,−0.1645]× [0.0, 0.75]× [0.0, 0.25] and the
size of the initial sampling grid was 130× 110× 120× 150× 50. We found
29 228 candidates, which took 124 hours. The refinement resulted in
458 362 total samples, and needed additional 46 hours. The integration
of pathlines accounts for 98% of the time. Timings and samples are
listed in Table 7.1.

130

7.6 results

Figure 7.9: Isolated Closed Streamlines in the Aneurysm Flow. We
show the results for a constant time. The single time slice defines a
steady vector field, which contains two isolated closed streamlines.
The spheres denote the start positions.

Figure 7.10: Poincaré Maps. The planar curves in each row visualize the
Poincaré maps for both isolated closed streamlines at the start
positions (colored spheres). The columns show the circular seed
structure (left), the seed advected by one turn in the forward
(center), and the backward direction (right). Both isolated closed
streamlines show saddle behavior.

In addition, we examined a single time slice of the Aneurysm Flow data isolated
closed
stream-
lines

and searched for isolated closed streamlines in the steady flow. We found
two closed streamlines, both with saddle behavior. Figure 7.9 shows the
streamlines. Figure 7.10 visualizes the Poincaré maps. For the Poincaré
map visualization, we consider planes through the red and blue points
orthogonal to the velocity direction. In each plane, a small closed seed
curve – a circle – is constructed; see left column in Figure 7.10. This
circle’s points are integrated both in the forward and backward direction
until they intersect the plane again. The resulting intersection curves
are the closed curves in the center and right columns of Figure 7.10. The
relation of these integrated curves and the seed circle characterize the
closed orbit. Since the curves are partially inside and partially outside
the seed circle, we have a closed orbit with saddle behavior.

131

recirculation surfaces

0

10
τ

Figure 7.11: Pathlines in the Cavity Flow. Top: Random pathlines –
seeded particles move from left to right. Bottom: Collection of
recirculating pathlines in and behind the cavity. The spheres mark
the seed; color encodes integration time τ (curves) and t (spheres).

0

10
τ

Figure 7.12: Recirculation Surfaces in the Cavity Flow. Recirculation
surfaces extended to (x, y, t)T-space. The surface color encodes
the integration time τ .

7.6.3 Cavity Flow

description The Cavity Flow data set is a vector field describing the flow over a 2D
cavity. We introduced it already in Section 5.8.3. One of the primary
analysis question for the data set is: do particles in the cavity always
move out after a while, and if so, what is the maximal dwell time in
the cavity? This question is strongly related to recirculation within the
cavity.

As this is a 2D time-dependent flow, recirculation surfaces are definedrecirculat-
ing

pathlines
& recircu-

lation
surfaces

in 4D (x, y, t, τ)T-space. We found a relatively dense set of recirculation
surfaces with rather long τ values inside the cavity, which indicate a
high number of particles that remain in the cavity for a longer period.
Further, we found more recirculation surfaces downstream outside the
cavity, which indicate the cavity’s impact even at a certain distance.
Figure 7.11 shows randomly selected pathlines (top) and randomly
selected recirculating pathlines (bottom). We use the same color-coding
as for the previous figures. Figure 7.12 shows recirculation surfaces in

132

7.6 results

0

6
t

0

4
τ

Figure 7.13: Pathlines in the Square Cylinder Flow. Left: Random
pathlines next to the obstacle. Right: Recirculating pathlines
close behind the obstacle, color encodes total integration time τ
(curves) and t at the start (spheres).

the Cavity Flow. Because the Cavity Flow is a 2D data set, we can
use the third spatial dimension for the visualization. We use the start
time t as the third dimension and visualze the recirculation surfaces in
(x, y, t)T-space. The integration time τ is mapped to the surface color.

The search space was restricted to (x, t, τ)T ∈ [−1, 8] × [−1, 1.5] × domain,
sampling
& timings

[0, 10]× [0, 10], and the size of the initial sampling grid was 900× 250×
50× 50, i.e., there is no z-direction. We computed 257 080 samples on
the recirculation surface, which took 10.7 hours. No refinement was
done because the initial result was sufficient for surface reconstruction.
About 60% of the computation time was used for pathline integration.
Table 7.1 lists samples and timings.

7.6.4 Square Cylinder Flow

descriptionThe Square Cylinder Flow data set describes the simulated flow around
a 3D square cylinder based on the Navier-Stokes simulation by Ca-
marri et al. [22]. Tino Weinkauf provided the uniformly resampled
version of this velocity field (compare [47]).

Figure 7.13 shows a few random pathlines (left) and recirculating path- recirculat-
ing
pathlines

lines (right) in a region close behind the obstacle. We use the same style
as for previous figures. The image shows recirculating loops with short
integration time and ‘curvy’ pathlines with long integration time.

Figure 7.14 shows recirculation surfaces in the same region of the domain. recircula-
tion
surfaces

The recirculation surfaces near the obstacle show high curvature, and
the reconstruction algorithm could not generate a consistent surface
mesh due to undersampling. The recirculation surfaces at higher times
show smaller curvature and we thus obtained a more sufficient sampling
and a better reconstruction.

133

recirculation surfaces

0

6
t

0

4
τ

Figure 7.14: Recirculation Surfaces in the Square Cylinder Flow.
Top: Recirculation surfaces behind the obstacle, color encodes
t. Bottom: Same with color-coded τ . The surface shows a high
spatial curvature directly behind the cylinder. The sampling
was not dense enough to capture the recirculation everywhere
sufficiently. Therefore the reconstructed surface has jagged borders
and some holes.

The search space was restricted to (x, t, τ)T ∈ [0.5, 2.5]× [−0.65, 0.65]×domain,
sampling
& timings

[0, 6]× [0, 6]× [0, 6]. The size of the initial sampling grid was 400× 270×
1200× 30× 30, and we obtained 269 187 candidates at the surface. A
local refinement generated a total of 2 217 204 samples. The computation
of the initial samples took 43 hours, the refinement additional 25 hours.
About 75% of the computation time was spent on pathline integration.
Timings and sampling information is summarized in Table 7.1.

134

7.7 discussion

7.7 discussion

In the following, we discuss recirculation surfaces, their value for Flow
Visualization and their algorithmic reconstruction.

7.7.1 Relation to Other Flow Visualization Techniques

Y uses
complete
flow map

There is a variety of visualization techniques that locally focus on the
velocity field. In recent years, integration based techniques moved into
the focus of research, i.e., techniques that apply a visual analysis of
the flow map. We claim that our technique is the first comprehensive
feature extraction approach incorporating the complete flow map. Our
technique opts for a strong abstraction – we search for a steady 3D
surface representing the relevant information of a complete 5D field.
Domain experts would like to see a ‘still image’ – that can be physically useful for

still
images

printed as a figure in an article – that tells as much as possible of the
story of a 3D unsteady flow. While there exist several solutions for
steady flows, we are not aware of any similar approaches for unsteady
flows. In this sense, this work could be considered as the first one in
this direction.

Because of the high computational complexity, existing methods for compari-
son to
FTLE

flow map analysis focus on subsets of φ. For instance, the well-known
FTLE visualization techniques usually pick a particular t and τ to either
volume render or do feature extraction on the resulting 3D scalar field.
Further, different t or different τ can be shown via animations. We are
not aware of any approach to systematically computing and visualizing
FTLE fields for all t and all τ values. We are neither aware of any other
technique that systematically explores the whole 5D flow map.

7.7.2 Degeneration of Recirculation Surfaces

degen-
eration is
unstable

Recirculation surfaces can degenerate to points, lines and volumes, but
these cases are structurally unstable. Adding noise to the data will
break the points, lines, or volumes into a finite number of surfaces. An
exception is the case of steady flows where – as shown in Section 7.5 –
recirculation surfaces degenerate to structurally stable isolated closed
streamlines.

To illustrate the idea of structural stability, consider algorithms for
isosurface extraction in 3D scalar fields. Such isosurfaces can collapse to
a single point (for instance, the scalar field s(x) = xTx = 0 in its origin)
or a volume (for instance s(x) ≡ 0). These cases are usually excluded
from an isosurface extraction algorithm because of their structural
instability. We do the same for recirculation surfaces.

135

recirculation surfaces

7.7.3 Recirculation as a Phenomenon

We are not sure if recirculation surfaces are the best approach to treat
recirculation as a phenomenon. Neither exists a standard definition of
recirculation nor are there ground truth data or other approaches to
compare with. Thus, a final answer can only be given in the future by
a test of time.
However, some points give evidence on the usefulness of our approach:

• User feedback: We presented the approach to domain experts thatpositive
feedback are involved in numerical flow simulation. They acknowledged the

usefulness and found the detected structures interesting and infor-
mative. However, we consider this positive feedback as anecdotic.
A formal user study was neither done nor are we aware of a proper
approach to the verification – or falsification – of recirculation
surfaces by a user study.

• A mixture of expected and surprising results: The found recircula-surprising
results tion surfaces mainly correspond with the expectation. For instance,

for the Square Cylinder Flow, we expected recirculation behind
the cylinder, and our approach confirms this. On the other hand,
there were surprising results. For the Cavity Flow, we found recir-
culation surfaces both inside the cavity and outside downstream
the flow.

• Closed orbits: We interpret the fact that a particular case of ourclosed
orbits algorithm solves the problem of extracting isolated closed orbits

with saddle behavior as a point of evidence for the usefulness of
recirculation surfaces.

7.7.4 Computation Time

high com-
putational

costs

The computation time is long. The reason is in the nature and inherent
properties of flow maps. We have to integrate vast amounts of pathlines
to locate samples on the recirculation surface. This is the most expen-
sive part of the algorithm. Our experiments show that up to 98% of
processing time is used for pathline integration. We are not aware of
any faster algorithm doing a systematic analysis of the whole flow map.
However, our approach can be seen as a preprocessing step. Recirculation
surfaces are computed once and stored along with the flow data. Then
recirculation surfaces can be explored by interactively seeding path lines
on them and observing their behavior.

7.7.5 Parameters

The presented algorithm comes with some parameters that can be
divided into two classes:

136

7.7 discussion

1. Parameters of the existing standard algorithms that our algorithm
is based upon.

2. New parameters that are inherent to the new algorithm.

inherited
parame-
ters

The first group includes the choice of ODE solver and its parameters
required for numerical pathline integration. For instance, we use a fourth-
order Runge-Kutta solver with an adaptive step size controlled, e.g., by
error tolerance and maximum step size. Furthermore, there is the initial
grid resolution for finding isolated critical points and the maximum
recursion depth to limit the subdivision and a strategy for clustering
multiple detected points. Finally, a heuristic is required to track critical
points, that decides when to connect extracted critical points at different
time steps. We do not further discuss these parameters here because
they are well-discussed in the original publications. Instead, we consider
the algorithms as black-boxes for our approach.

The parameters of the second group reduce to the grid resolution for inherent
parame-
ters

sampling s. Its variation does not show any surprising behavior. A higher
sampling rate increases accuracy and computation time. In theory, the
sampling rate should not fall below the Nyquist frequency to capture
the recirculation surfaces. It can be bounded by using assumptions on
the local feature size or curvature of the surface. However, we currently
see no way to reliably determine the (local) sampling rate.

The situation is significantly more difficult as for surface reconstruction sampling
& recon-
struction

in 3D – which is a difficult problem already. Sampling and reconstruction
must account for the curvature of a 2-manifold embedded in a 5D space.
We know that this manifold has regions of high curvature. Moreover,
the differential geometry in 5D does not carry over to the projection
to 3D, the ultimate visualization space. For instance, the projection
Y ∈ R3 is, in general, a 2-manifold.

However, configurations in the projection can lead to different topologies
of the projected surface in 3D;

• The points (x, t, τ)T and (x, t+ τ ,−τ)T ∈ Y in 5D are mapped
to the same point on the surface Y in 3D, i.e., Y is double-folded
(see Section 7.3.4).

• The points (x, t, 0)T ∈ Y build boundary curves of Y (see Sec-
tion 7.3.4).

• The closed streamlines in steady flows v(x, t) = v(x) constitute
a degenerate recirculation surface (see Section 7.5).

In this work, we chose the most straightforward approach and used
regular sampling. The disadvantages of this approach are potential
undersampling, i.e., loss of information, or oversampling, i.e., waste of
computation time. Both are likely to occur at least locally – the grid
provides no means of adaptation. However, this property is shared with

137

recirculation surfaces

many very successful algorithms that restrict themselves to operating
on uniform grids. The simplicity of this approach is, at the same time,
its most significant advantage. Our setting allows to rely on relatively
simple and proven standard methods, and it comes with a moderately
complex implementation.

7.8 limitations & future research

conclusion Recirculation is an important phenomenon that is studied in many
application domains. Recirculation can be explained and understood
intuitively. Surprisingly there existed no formal definition so far. In
Section 7.3, we gave a formal definition and properties of recirculation
surfaces and showed how to compute them in Section 7.4. We search
the surface in 5D by intersections with lines. This way, we can project
the problem to a search for critical points in linear steady 3D vector
fields. The search for isolated closed streamlines is a particular case of
our approach, which was explained in Section 7.5. In Section 7.6 we
showed results followed by a discussion in Section 7.7.

Our approach provides points of the recirculation surface on the edgeslimitation
& future
reserch

of a regular grid. On the one hand, this ensures a certain minimum
density of sample points (within the range covered by the grid). On
the other hand, it hinders a higher density of the samples, leading to
artifacts in the point-based rendering. We see two ways to deal with
this:

1. A modification of the algorithm to adaptive grids.

2. The reconstruction of a triangle mesh from sample points.

For the latter option, surface extraction could be carried out by an
algorithm similar to Marching Cubes [98]. However, in addition to the
standard Marching Cubes configurations, few more cases have to be
considered. The 3D surface Y can have self-intersection and therefore
it can have more than one intersection point with an edge of a cell.
Moreover, in the presence of boundary curves, Y may enter a cell but
does not necessarily leave it and end in the boundary curve instead.

Another current limitation is performance. The apparent solution for
future research is adaptive sampling in 5D, which has the potential to
speed up the algorithm. Then again, no extreme improvement of the
performance can be expected since our algorithm does an exhaustive
feature extraction in an expensive 5D space.

138

Part IV

C O N C L U S I O N & F U T U R E R E S E A R C H

8
C O N C L U S I O N

This thesis contributed different approaches to Flow Visualization that
are entirely related to the flow map.

In Part I, we set the theoretical background. Chapter 2 gave a short part I
backgroundintroduction to the field of Flow Visualization. We introduced velocity

fields and flow maps – the two common ways to represent flow data
in Flow Visualization. Visualization techniques were listed, and we ex-
plained the inherent properties of flow maps. In Chapter 3, we discussed
the Double Gyre as an important benchmark data set used throughout
the thesis.

Part II was dedicated to the field of flow map processing. Many tech- part II
flow map
processing

niques for the synthesis, design, and processing of vector fields exist.
There is a lack of similar methods for the flow map. We see the rea-
son for this in the complexity of the flow map. In Chapters 4 and 5,
we presented research results as the first step towards powerful and
comprehensive flow map processing techniques.

Chapter 4 introduced an approach to modify flow maps directly. Based flow map
deforma-
tion

on a space deformation, we change flow map entries in a local area
defined in space-time. The deformation ensures a continuous transition
between original and modified regions. Local changes entail a global
adaption of connected flow map parts. To quickly identify related areas,
we use a lookup table that contains global mapping information. The
affected regions are then explicitly adapted to the modification. We
demonstrated the applicability of the concept with an interactive tool to
transform pathlines. We can modify the flow map at arbitrary locations
with the presented approach and ensure the defining flow map properties
are kept. We see this as a prerequisite for further flow map processing
techniques.

Chapter 5 introduced drift fields – a new approach to represent flows drift fields
from the Lagrangian perspective. Drift fields are situated between veloc-
ity fields and flow maps. They are low dimensional like velocity fields but
directly encode particle trajectories like flow maps. We gave a formal
definition of drift fields, discussed their properties and their relation
to velocity fields and flow maps. An optimization-based approach to
compute them was introduced. We presented a method for pathline
extraction from drift fields that relies on local operations. The compu-
tational effort to gain pathlines increases with the sampling resolution
but is independent of the integration time τ . Pathline extraction can be
used to convert drift fields to flow maps. Drift fields are closed under

141

conclusion

perturbation, i.e., a small change of a drift field is still a drift field. We
adapted the space-time deformation technique to get an intuitive tool
for modifying them. Hence, we can utilize drift fields as a convenient
way to deform flow maps. We applied drift fields to different data sets
and discussed their advantages and disadvantages.

In Part III, we studied flow features that are extracted from the flowpart III
flow

features
map. Many flow visualization and feature extraction techniques rely on
massless particle integration. Hence, they use the flow map, but in most
cases, only a small part of it. In Chapters 6 and 7, we presented two
flow features that use a more significant part of the flow map.

In Chapter 6, we developed a method to determine LCS based on ridgeFTLE
ridge lines extraction from FTLE fields. Computing LCS from FTLE fields is a

well-studied technique that was used several times in the past decades
in Flow Visualization. The standard approach integrates particles for
a finite time interval with fixed starting and end times. Hence, only
a limited part of the flow map is used. We presented a method to
compute FTLE fields also using intermediate times. The additional
information is used to steer the refinement of an adaptive sampling grid.
Thus, we can resolve thin and dense ridge structures for long integration
times. Furthermore, we extracted statistical information about the ridge
geometry for the observed time interval. We applied our method to
different synthetic and simulated velocity fields and discovered different
behavior in the ridge statistics for each data set.

Chapter 7 introduced recirculation surfaces. To the best of our knowledgerecircula-
tion

surfaces
it is the first flow feature that incorporates the full 5D flow map of
a 3D unsteady flow. A particle has recirculating behavior in a flow
if it reaches its starting position after a finite integration time. We
showed that the set of particles with this behavior builds a 2-manifold
in 5D space – the recirculation surface. We presented a flow map
based distance function that implicitly defines recirculation surfaces
and studied its properties. Furthermore, we explained an algorithm that
extracts samples on recirculation surfaces by intersections with lines.
Thus the problem is transformed into a search for critical points in
steady 3D vector fields. With a small adaption, our algorithm can find
isolated closed streamlines with saddle behavior in steady 3D vector
fields. We extracted recirculation surfaces from four different data sets
and presented the results.

142

9
F U T U R E R E S E A R C H

We already pointed out some possible ways for future research in each
chapter.

The theoretical foundations of the presented approaches should hold extension
to 3Dfor arbitrary dimensions. Nevertheless, only recirculation surfaces were

realized for 3D unsteady flows. Hence, the most obvious extension is
the implementation of the remaining three methods for 3D unsteady
flows. This sounds easy at the first moment but is indeed not trivial.
The problems that have to be solved for higher dimensions are either
of technical or conceptual nature. On the technical side, we need new technical

problemsdata structures that also work for 3D. Furthermore, the additional
dimension leads to linear growth of the computational effort and memory
consumption. A portation to GPU can compensate for the increase of the
computational effort. Especially when it comes to particle integration,
massively parallel computation is possible. On the conceptual side, we conceptual

problemshave to think about solutions for one additional dimension. For instance,
where we have ridge lines in FTLE fields in 2D, we get ridge surfaces
in 3D. The presented deformation of drift fields is intuitive. Flow map
modification by space-time deformation is already hard to predict for
2D flows. Both approaches rely on a deformation area in space-time,
i.e., a deformation sphere. For 3D flows, we would need a 4D sphere or
complete new tools for an interactive modification. Furthermore, for a
higher dimension, the visualization gets more complex. 2D FTLE fields
and 2D time slices of drift fields would become 3D volumes that are hard
to visualize. In summary, we have to deal with the same problems as
many other approaches when we want to realize 3D unsteady flows. The
questions get more exciting when we think about an approach-oriented
improvement.

With the presented approach, local modifications of flow maps are flow map
deforma-
tion

possible. For instance, we could think about smoothing a local area by
‘averaging’ flow map entries. Is it possible to extend such an operation
to a global scale? In theory, we could extend the method to the full
flow map by a repeated local smoothing operation at all positions. Each
local smoothing entails a global adaption to keep the inherent flow map
properties. The result would be a valid flow map, but it is not clear if it
still represents a ‘useful’ flow. A possible solution could be to rate the
quality of a flow map. This implies measures that evaluate whether a
flow map is ‘good’ or ‘bad.’ If these measures were present, we could
decide if a deformation improves or worsens the flow map.

143

future research

A desirable improvement of drift fields lies in their initialization. For ourdrift fields
approach, we use linearly increasing scalar fields and determine the best
initialization time. We are convinced that there must be better solutions,
but we could not find a robust algorithm for their determination yet.
We see two possible ways to go – either a new way to rate a drift field’s
quality or a different approach for their initialization.

Our approach for FTLE ridge computation would benefit from a betterFTLE
ridge lines extraction of ridge geometries. Furthermore, it would be interesting to

evaluate if the proposed ridge statistics and their development give useful
insights into flow behavior. Therefore a large collection of statistics for
different flows would be necessary to compare them.

A similar question arises for recirculation surfaces: Where are theyrecircula-
tion

surfaces
useful? We presented our results to experts in different domains. Most
of them were surprised that such structures even exist. Recirculation,
as a phenomenon, was discussed in many different areas. Therefore, we
are convinced that recirculation surfaces deliver useful information for
some application areas.

We see further improvements in the computation of the surfaces. The
current technique related to an initial sampling grid is straightforward
but computationally expensive. A possibly better solution could be an
advancing front algorithm that expands the surface in 5D. Experiments
have shown that these kinds of solutions suffer from extreme numerical
instability. Furthermore, we do not know any method that evaluates
whether the initial sampling grid is good or bad, i.e., is it too sparse or
too dense. Another sampling strategy could be a solution, e.g., some
kind of Monte Carlo method, that randomly samples the domain and
possibly delivers a ground truth surface.

Recirculation surfaces would also benefit from a better surface recon-
struction either in 3D or even better in 5D. We could think about
a version of the ball-pivoting algorithm particularly customized for
recirculation surfaces in space-time.

The last research direction we want to point out is related to the flowflow map
represen-

tation
map representation. We sampled the flow map on a regular grid in
(x, t, τ)T space and used multi linear interpolation for reconstruction
in all our algorithms. It would be desirable to have a data structure
that is optimized for each particular flow map. A straightforward ap-
proach would be an adaptive or an unstructured grid whose cells are
defined in 5D space. Another solution could be a completely different
representation. For instance, one could think about a representation in
frequency space, similar to the Fourier transformation for images. This
would open entirely new ways to work with the flow map.

144

Part V

A P P E N D I X

A
M O D I F I C AT I O N B Y S PA C E - T I M E
D E F O R M AT I O N K E E P S F L O W M A P
P R O P E RT I E S

H. Theisel has developed the following proof in [178].
In Section 2.4, we introduce the defining properties of a flow map φ.
These properties are the identity, the additivity, and the inversion. We
define them as:

Identity: φ(x, t, 0) = x , (A.1)

Additivity: φ(φ(x, t, τ1), t+ τ1, τ2) = φ(x, t, τ1 + τ2) , (A.2)

Inversion: φ(φ(x, t, τ1), t+ τ1,−τ1) = x , (A.3)

In 4, we present an approach for the modification of flow maps by space
deformation. We define a space deformation y : Rn+1 → Rn that maps
a point (x, t) in space-time to the new point y(x, t). We demand y to
be local, continuous, and invertible. For this proof, only the invertibility
is relevant - it means, y−1 is well defined. The modified flow map φ̃ can
be computed from φ and y by:

φ̃(x, t, τ) = y(φ(y−1(x, t), t, τ), t+ τ)

We want to show that φ̃ is also a flow map. Hence the deformation must
keep all flow map properties. The inversion is a particular case of the
additivity. Therefore it is sufficient to show that φ̃ fulfills the identity
and the additivity.

Lemma 1. If φ is a flow map, then φ̃ is a flow map as well.

Proof.
We show the identity of φ̃:

φ̃(x, t, 0) = y(φ(y−1(x, t), t, 0), t)
= y(y−1(x, t), t)
= x .

We show the additivity of φ̃:

φ̃(φ̃(x, t, τ1), t+ τ1, τ2)

= y(φ(y−1(y(φ(y−1(x, t), t, τ1), t+τ1), t+τ1), t+τ1, τ2), t+τ1+τ2)

= y(φ(y−1(x, t), t, τ1 + τ2), t+ τ1 + τ2)

= φ̃(x, t, τ1 + τ2) .

147

B
E L E M E N T S O F M AT R I X H F O R D R I F T F I E L D S

Chapter 5 introduces a numeric approach to compute drift fields. The
pathline extraction from drift fields works best when the spatial gradients
of the scalar field components ∇a(x, t) and ∇b(x, t) are orthogonal to
each other and have unit length. ∇a and ∇b combined build the spatial
drift field gradient ∇d = (∇a,∇b). In the ideal case, ∇d describes a
rotation matrix, i.e., the following equations hold:

∇aT∇a = 1 , ∇bT∇b = 1 , ∇aT∇b = 0 .

The greater the difference to these values, the more ∇d differs from a
rotation matrix. The behavior of ∇d under advection is described by:

∇̂d := ∇d∇φ−1 = ∇d(φ, t0 + τ) .

For the drift field computation, we utilize the following matrix:

H(x, τ) := ∇̂d∇̂dT
=

h11 h12

h12 h22

 .

Remarks regarding the notation: For better readability, we denote
the inverted flow map gradient ∇φ−1 as (φ̄1, φ̄2). Furthermore, we use
a second index for the inverted flow map gradient, that indicates the x-,
or y-component, e.g., φ̄1y is the y-component of the first column vector
of ∇φ−1. ∇̂d denotes the drift field gradient under advection.

149

elements of matrix h for drift fields

Proof.
We show that entries in H(x, τ) correspond to:

h11 = ∇aT∇a , h22 = ∇bT∇b , h12 = ∇aT∇b .

∇d = (∇a,∇b)T =

ax ay

bx by

 ,

∇φ−1 = φ̄ =

φ̄1x φ̄2x

φ̄1y φ̄2y

 ,

∇̂d = ∇d∇φ−1 = ∇dφ̄ =

ax ay

bx by

φ̄1x φ̄2x

φ̄1y φ̄2y



=

axφ̄1x + ayφ̄1y axφ̄2x + ayφ̄2y

bxφ̄1x + byφ̄1y bxφ̄2x + byφ̄2y


=
(
∇̂a, ∇̂b

)T
,

H(x, τ) = ∇̂d∇̂dT

=

axφ̄1x + ayφ̄1y axφ̄2x + ayφ̄2y

bxφ̄1x + byφ̄1y bxφ̄2x + byφ̄2y

axφ̄1x + ayφ̄1y bxφ̄1x + byφ̄1y

axφ̄2x + ayφ̄2y bxφ̄2x + byφ̄2y



=



(axφ̄1x+ayφ̄1y)2 (axφ̄1x+ayφ̄1y)(bxφ̄1x+byφ̄1y)

+ +

(axφ̄2x+ayφ̄2y)2 (axφ̄2x+ayφ̄2y)(bxφ̄2x+byφ̄2y)

(axφ̄1x+ayφ̄1y)(bxφ̄1x+byφ̄1y) (bxφ̄1x+byφ̄1y)2

+ +

(axφ̄2x+ayφ̄2y)(bxφ̄2x+byφ̄2y) (bxφ̄2x+byφ̄2y)2



=

h11 h12

h12 h22

 ,

150

elements of matrix h for drift fields

∇̂a
T
∇̂a =

axφ̄1x + ayφ̄1y

axφ̄2x + ayφ̄2y

Taxφ̄1x + ayφ̄1y

axφ̄2x + ayφ̄2y


= (axφ̄1x + ayφ̄1y)

2 + (axφ̄2x + ayφ̄2y)
2 = h11 ,

∇̂b
T
∇̂b =

bxφ̄1x + byφ̄1y

bxφ̄2x + byφ̄2y

Tbxφ̄1x + byφ̄1y

bxφ̄2x + byφ̄2y


= (bxφ̄1x + byφ̄1y)

2 + (bxφ̄2x + byφ̄2y)
2 = h22 ,

∇̂a
T
∇̂b =

axφ̄1x + ayφ̄1y

axφ̄2x + ayφ̄2y

Tbxφ̄1x + byφ̄1y

bxφ̄2x + byφ̄2y


= (axφ̄1x + ayφ̄1y)(bxφ̄1x + byφ̄1y)+

(axφ̄2x + ayφ̄2y)(bxφ̄2x + byφ̄2y) = h12 .

151

C
R E L AT I O N B E T W E E N V E C T O R F I E L D & F L O W
M A P D E R I VAT I V E S

H. Theisel and C. Rössl have developed the following proof in [177].

In Chapter 7 we introduce recirculation surfaces. We use the vector
function

s(x, t, τ) = φ− x
τ

. (C.1)

Each location (x, t, τ)T with s(x, t, τ) = 0 is a point on the recirculation
surface. To study the properties of s we use partial derivative

∂s
∂τ

=
v2 − s
τ

.

The abbreviation

v2 := v(φ, t+ τ) = ∇φ · v + φt

uses a particular property of the flow map, that is not obvious.

Proof.
We show

∇φ · v + φt = v(φ, t+ τ)

for v = v(x, t) and φ = φ(x, t, τ).

We consider the 3D time-dependent velocity field v as 4D steady velocity
field

p̃ =

 v
1

 .

This gives the 4D flow map φ̃ for p̃ as

φ̃ =

 φ

t+ τ

 ,

and its (space-time) gradient ∇φ̃ as

∇φ̃ =

∇φ φt

0 1

 .

153

relation between vector field & flow map derivatives

Consider a point (x0, t0) under integration of p̃. Further, consider a
point (x1, t1) in a small linear neighborhood of (x0, t0):

(x1, t1) = (x0, t0) + εr̃

for a small ε. Then the definition of the flow map gradient gives

1
ε

(
φ̃(x1, t1, τ)− φ̃(x0, t0, τ)

)
=

∇φ̃(x0, t0, τ) r̃ .

If we place (x1, t1) on the pathline through (x0, t0), i.e., r̃ = p̃(x0, t0),
it remains on the same pathline during integration. This gives:

1
ε

(
φ̃(x1, t1, τ)− φ̃(x0, t0, τ

)
=

∇φ̃(x0, t0, τ) p̃(x0, t0)
=

p̃(φ̃(x0, t0, τ)) .

We expand the last two elements for the general case and receive

∇φ̃(x, t, τ) p̃(x, t) = p̃(φ̃(x, t, τ))
= =∇φ φt

0 1

 ·
 v

1

 p̃

 φ

t+ τ


= =∇φ · v + φt

1

 =

v(φ, t+ τ)

1


Rewriting this condition in the spatial coordinates yields the postulated
equation.

154

B I B L I O G R A P H Y

[1] M. D. Ament, “Computational Visualization of Scalar Fields,”
PhD thesis, University of Stuttgart, 2014 (cit. on p. 35).

[2] S. Anand, M. Hooshyar, J. Nordbotten, and A. Porporato, “A
Minimalist Model for Co-Evolving Supply and Drainage Net-
works,” 2020, Adaptation and Self-Organizing Systems, e-print
on arXiv.org (cit. on p. 16).

[3] D. Asimov, “Notes on the Topology of Vector Fields and Flows,”
NASA Ames Research Center, Tech. Rep., 1993 (cit. on p. 113).

[4] E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpi-
ani, “Predictability in the large: an extension of the concept of
Lyapunov exponent,” Journal of Physics A: Mathematical and
General, vol. 30, no. 1, pp. 1–26, 1997 (cit. on p. 49).

[5] Auto-generated line-plot of the DAX Performance Index,
https://www.google.com/search?q=dax+performance+index,
visited on 23-10-2020 (cit. on p. 14).

[6] S. S. Barakat and X. Tricoche, “Adaptive Refinement of the Flow
Map Using Sparse Samples,” IEEE Transactions on Visualization
and Computer Graphics, vol. 19, no. 12, pp. 2753–2762, 2013
(cit. on pp. 42, 90).

[7] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G.
Taubin, “The Ball-Pivoting Algorithm for Surface Reconstruc-
tion,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 5, no. 4, pp. 349–359, 1999 (cit. on p. 123).

[8] J. Blazek, Computational Fluid Dynamics, 3rd. Butterworth-
Heinemann, 2015, p. 466 (cit. on pp. 34, 35).

[9] H. Blum and R. N. Nagel, “Shape Description Using Weighted
Symmetric Axis Features,” Pattern Recognition, vol. 10, no. 3,
pp. 167–180, 1978, The Proceedings of the IEEE Computer
Society Conference (cit. on p. 89).

[10] G.-P. Bonneau, T. Ertl, and G. M. Nielson, Scientific Visu-
alization: The Visual Extraction of Knowledge from Data, 1st.
Springer, 2006, p. 434 (cit. on p. 11).

[11] R. Borgo, J. Kehrer, D. H. S. Chung, E. Maguire, R. S. Laramee,
H. Hauser, M. Ward, and M. Chen, “Glyph-based Visualization:
Foundations, Design Guidelines, Techniques and Applications,”
in Eurographics 2013 - State of the Art Reports, The Eurographics
Association, 2013 (cit. on p. 19).

155

bibliography

[12] M. Botsch and L. Kobbelt, “An Intuitive Framework for Real-
Time Freeform Modeling,” Association for Computing Machinery
Transactions on Graphics, vol. 23, no. 3, pp. 630–634, 2004 (cit.
on p. 53).

[13] W. E. Boyce and R. C. DiPrima, Elementary Differential Equa-
tions and Boundary Value Problems, 10th. Wiley Abridged, 2012,
p. 832 (cit. on p. 23).

[14] A. Brambilla, R. Carnecky, R. Peikert, I. Viola, and H. Hauser,
“Illustrative Flow Visualization: State of the Art, Trends and
Challenges,” in Eurographics 2012 - State of the Art Reports,
Eurographics Association, 2012, pp. 75–94 (cit. on p. 18).

[15] C. A. Brewer, “Color Use Guidelines for Mapping and Visual-
ization,” in Visualization in Modern Cartography, ser. Modern
Cartography Series, vol. 2, Academic Press, 1994, pp. 123–147
(cit. on p. 14).

[16] C. A. Brewer, “Guidelines for Use of the Perceptual Dimensions
of Color for Mapping and Visualization,” in Color Hard Copy
and Graphic Arts III, vol. 2171, SPIE, 1994, pp. 54–63 (cit. on
p. 14).

[17] K. W. Brodlie, J. R. Gallop, C. D. Osland, L. A. Carpenter, R. J.
Hubbold, P. Quarendon, R. A. Earnshaw, and A. M. Mumford,
Eds., Scientific Visualization. Springer, 1992, p. 284 (cit. on
pp. 11, 15).

[18] S. L. Brunton and B. R. Noack, “Closed-Loop Turbulence Con-
trol: Progress and Challenges,” Applied Mechanics Reviews,
vol. 67, no. 5, 2015 (cit. on p. 113).

[19] R. Bujack and A. Middel, “State of the Art in Flow Visualization
in the Environmental Sciences,” Environmental Earth Sciences,
vol. 79, no. 2, pp. 1–10, 2020 (cit. on pp. 18, 19, 30, 49).

[20] R. Bujack, T. L. Turton, F. Samsel, C. Ware, D. H. Rogers, and
J. Ahrens, “The Good, the Bad, and the Ugly: A Theoretical
Framework for the Assessment of Continuous Colormaps,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24,
no. 1, pp. 923–933, 2018 (cit. on p. 14).

[21] B. Cabral and L. C. Leedom, “Imaging Vector Fields Using Line
Integral Convolution,” in Proceedings of the Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH
’93, Association for Computing Machinery, 1993, pp. 263–270
(cit. on p. 19).

[22] S. Camarri, M. V. Salvetti, M. Buffoni, and A. Iollo, “Simulation
of the Three-Dimensional Flow Around a Square Cylinder Be-
tween Parallel Walls at Moderate Reynolds Numbers,” in XVII
Congresso AIMeTA di Meccanica Teorica e Applicata, vol. 1,
2005, pp. 23–34 (cit. on p. 133).

156

bibliography

[23] E. Caraballo, M. Samimy, and J. DeBonis, “Low Dimensional
Modeling of Flow for Closed-Loop Flow Control,” in Aerospace
Sciences Meeting and Exhibit. American Institute of Aeronautics
and Astronautics, 2003 (cit. on p. 78).

[24] G. F. Carrier and A. R. Robinson, “On the Theory of the Wind-
Driven Ocean Circulation,” Journal of Fluid Mechanics, vol. 12,
no. 1, pp. 49–80, 1962 (cit. on p. 40).

[25] G. Chen, V. Kwatra, L.-Y. Wei, C. D. Hansen, and E. Zhang, “De-
sign of 2D Time-Varying Vector Fields,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 10, pp. 1717–
1730, 2012 (cit. on p. 49).

[26] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E.
Zhang, “Vector Field Editing and Periodic Orbit Extraction Us-
ing Morse Decomposition,” IEEE Transactions on Visualization
and Computer Graphics, vol. 13, no. 4, pp. 769–785, 2007 (cit. on
p. 113).

[27] G. Chen, K. Mischaikow, R. S. Laramee, and E. Zhang, “Efficient
Morse Decompositions of Vector Fields,” IEEE Transactions on
Visualization and Computer Graphics, vol. 14, no. 4, pp. 848–862,
2008 (cit. on p. 113).

[28] F. Crameri, Scientific Colour Maps, 2020
www.fabiocrameri.ch/lajolla.php, visited on 23-10-2020 (cit. on
p. 73).

[29] F. Crameri, G. E. Shephard, and P. J. Heron, “The Misuse of
Colour in Science Communication,” Nature Communications,
vol. 11, no. 1, 2020 (cit. on p. 14).

[30] J. Damon, “Generic Structure of Two-Dimensional Images Under
Gaussian Blurring,” SIAM Journal on Applied Mathematics,
vol. 59, pp. 97–138, 1998 (cit. on p. 89).

[31] A. Debien, K. A. F. F. von Krbek, N. Mazellier, T. Duriez, L.
Cordier, B. R. Noack, M. W. Abel, and A. Kourta, “Closed-loop
Separation Control Over a Sharp Edge Ramp Using Genetic
Programming,” Experiments in Fluids, vol. 57, no. 3, 2016 (cit.
on p. 113).

[32] M. P. Do Carmo, Differential Geometry of Curves and Surfaces.
Dover Publications, 1976, p. 503 (cit. on p. 116).

[33] M. P. Do Carmo and F. Flaherty, Riemannian Geometry, 1st.
Birkhäuser, 1992, p. 315 (cit. on p. 116).

[34] D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach,
“Ridges for Image Analysis,” Journal of Mathematical Imaging
and Vision, vol. 4, no. 4, pp. 353–373, 1994 (cit. on p. 89).

157

bibliography

[35] D. Eberly, Ridges in Image and Data Analysis, ser. Computa-
tional Imaging and Vision. Springer, 1996, vol. 7 (cit. on pp. 15,
16).

[36] M. Edmunds, R. S. Laramee, G. Chen, N. Max, E. Zhang, and
C. Ware, “Surface-based Flow Visualization,” in Computers &
Graphics, vol. 36, Elsevier, 2012, pp. 974–990 (cit. on p. 22).

[37] R. H. Enns and G. McGuire, “Forced Duffing Equation,” in
Laboratory Manual for Nonlinear Physics with Maple for Scien-
tists and Engineers, Birkhäuser Boston, 1997, pp. 37–42 (cit. on
p. 102).

[38] M. Falk and D. Weiskopf, “Output-Sensitive 3D Line Integral
Convolution,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 14, no. 4, pp. 820–834, 2008 (cit. on p. 19).

[39] M. Farazmand and G. Haller, “Computing Lagrangian Coherent
Structures from their Variational Theory,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science, vol. 22, no. 1, 2012 (cit. on
p. 90).

[40] R. A. Finkel and J. L. Bentley, “Quad Trees: A Data Structure
for Retrieval on Composite Keys,” Acta Informatica, vol. 4, pp. 1–
9, 1974 (cit. on p. 95).

[41] B. Fornberg, “Generation of Finite Difference Formulas on Ar-
bitrarily Spaced Grids,” Mathematics of Computation, vol. 51,
no. 184, pp. 699–706, 1988 (cit. on p. 37).

[42] S. F. Frisken and R. N. Perry, “Simple and Efficient Traversal
Methods for Quadtrees and Octrees,” Journal of Graphics Tools,
vol. 7, p. 2002, 2002 (cit. on p. 95).

[43] G. Froyland and K. Padberg, “Almost-invariant Sets and In-
variant Manifolds – Connecting Probabilistic and Geometric
Descriptions of Coherent Structures in Flows,” Physica D: Non-
linear Phenomena, vol. 238, no. 16, pp. 1507–1523, 2009 (cit. on
p. 42).

[44] G. Froyland and N. Santitissadeekorn, “Optimal Mixing En-
hancement,” SIAM Journal on Applied Mathematics, vol. 77,
no. 4, pp. 1444–1470, 2018 (cit. on p. 42).

[45] W. von Funck, H. Theisel, and H.-P. Seidel, “Vector Field Based
Shape Deformations,” Association for Computing Machinery
Transactions on Graphics, vol. 25, no. 3, pp. 1118–1125, 2006
(cit. on pp. 49, 53).

[46] W. von Funck, H. Theisel, and H.-P. Seidel, “Explicit Control
of Vector Field Based Shape Deformations,” in 15th Pacific
Conference on Computer Graphics and Applications (PG’07),
IEEE, 2007, pp. 291–300 (cit. on p. 49).

158

bibliography

[47] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel, “Smoke
Surfaces: An Interactive Flow Visualization Technique Inspired
by Real-World Flow Experiments,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 14, no. 6, pp. 1396–1403,
2008 (cit. on p. 133).

[48] J. Furst, S. Pizer, and D. Eberly, “Marching Cores: A Method
for Extracting Cores from 3D Medical Images,” in Proceedings
of the Workshop on Mathematical Methods in Biomedical Image
Analysis, IEEE Computer Society, 1996, pp. 124–130 (cit. on
p. 89).

[49] J. D. Furst and S. M. Pizer, “Marching Ridges,” in Proceedings
of the IASTED International Conference – Signal and Image
Processing, ACTA Press, 2001, pp. 22–26 (cit. on p. 89).

[50] C. Garth, G. Li, X. Tricoche, C. Hansen, and H. Hagen, “Vi-
sualization of Coherent Structures in Transient 2D Flows,” in
Topology-Based Methods in Visualization, Springer, 2007, pp. 1–
13 (cit. on p. 90).

[51] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen, “Efficient
Computation and Visualization of Coherent Structures in Fluid
Flow Applications,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, 2007 (cit. on p. 90).

[52] C. Garth and K. I. Joy, “Fast, Memory-Efficient Cell Location
in Unstructured Grids for Visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 16, no. 6, pp. 1541–
1550, 2010 (cit. on p. 35).

[53] C. Garth, X. Tricoche, and G. Scheuermann, “Tracking of Vec-
tor Field Singularities in Unstructured 3D Time-Dependent
Datasets,” in Proceedings of the Conference on Visualization
’04, IEEE Computer Society, 2004, pp. 329–336 (cit. on pp. 114,
122).

[54] J. Gauch, “Image Segmentation and Analysis via Multiscale
Gradient Watershed Hierarchies,” IEEE Transactions on Image
Processing, vol. 8, no. 1, pp. 69–79, 1999 (cit. on p. 89).

[55] N. Gautier, J.-L. Aider, T. Duriez, B. R. Noack, M. Segond,
and M. Abel, “Closed-Loop Separation Control Using Machine
Learning,” Journal of Fluid Mechanics, vol. 770, pp. 442–457,
2015 (cit. on p. 113).

[56] T. Germer, M. Otto, R. Peikert, and H. Theisel, “Lagrangian
Coherent Structures with Guaranteed Material Separation,”
Computer Graphics Forum (Proceedings EuroVis), vol. 30, no. 3,
pp. 761–770, 2011 (cit. on pp. 42, 90).

[57] T. Gerrits, “Visualization of Second-Order Tensor Data and Vec-
tor Field Ensembles,” PhD thesis, Otto-von-Guericke-Universität
Magdeburg, 2021 (cit. on p. 15).

159

bibliography

[58] T. Gerrits, C. Rössl, and H. Theisel, “An Approximate Parallel
Vectors Operator for Multiple Vector Fields,” Computer Graphics
Forum (Proceedings EuroVis), vol. 37, no. 3, pp. 315–326, 2018
(cit. on p. 89).

[59] I. Goldhirsch, P.-L. Sulem, and S. A. Orszag, “Stability and Lya-
punov Stability of Dynamical Systems: A Differential Approach
and a Numerical Method,” Physica D: Nonlinear Phenomena,
vol. 27, no. 3, pp. 311–337, 1987 (cit. on p. 32).

[60] T. Günther, “Opacity Optimization and Inertial Particles in
Flow Visualization,” PhD thesis, Otto-von-Guericke-Universität
Magdeburg, 2016 (cit. on p. 25).

[61] T. Günther, A. Kuhn, and H. Theisel, “MCFTLE: Monte Carlo
Rendering of Finite-Time Lyapunov Exponent Fields,” Computer
Graphics Forum, vol. 35, no. 3, pp. 381–390, 2016 (cit. on pp. 42,
90).

[62] T. Günther and H. Theisel, “The State of the Art in Vortex
Extraction,” Computer Graphics Forum, vol. 37, no. 6, pp. 149–
173, 2018 (cit. on pp. 21, 65).

[63] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland,
and G. Haller, “A Critical Comparison of Lagrangian Methods
for Coherent Structure Detection,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 27, no. 5, 2017 (cit. on p. 31).

[64] G. Haller and T. Sapsis, “Lagrangian Coherent Structures and the
Smallest Finite-Time Lyapunov Exponent,” Chaos: An Interdis-
ciplinary Journal of Nonlinear Science, vol. 21, no. 2, p. 023 115,
2011 (cit. on pp. 90, 102).

[65] G. Haller and G. Yuan, “Lagrangian Coherent Structures and
Mixing in Two-Dimensional Turbulence,” Physica D: Nonlinear
Phenomena, vol. 147, no. 3–4, pp. 352–370, 2000 (cit. on pp. 32,
89).

[66] G. Haller, “Distinguished Material Surfaces and Coherent Struc-
tures in Three-dimensional Fluid Flows,” Physica D: Nonlinear
Phenomena, vol. 149, no. 4, pp. 248–277, 2001 (cit. on pp. 32,
89).

[67] G. Haller, “Lagrangian Coherent Structures from Approximate
Velocity Data,” Physics of Fluids, vol. 14, no. 6, pp. 1851–1861,
2002 (cit. on pp. 32, 89).

[68] G. Haller, “Lagrangian Coherent Structures,” Annual Review of
Fluid Mechanics, vol. 47, no. 1, pp. 137–162, 2015 (cit. on p. 31).

[69] R. W. Hamming, Numerical Methods for Scientists and Engineers.
McGraw-Hill, Dover Publications, 1962 (1st), 1973 (2nd) (cit. on
p. 11).

160

bibliography

[70] Han-Wei Shen and D. Kao, “UFLIC: A Line Integral Convolution
Algorithm for Visualizing Unsteady Flows,” in Proceedings of
IEEE Visualization Conference ’97, IEEE, 1997, pp. 317–322
(cit. on p. 19).

[71] F. Hanisch, “Marching Square,” in CGEMS - Computer Graphics
Educational Materials, The Eurographics Association, 2004 (cit.
on p. 70).

[72] R. Haralick, “Ridges and Valleys on Digital Images,” Computer
Vision, Graphics and Image Processing, vol. 22, pp. 28–38, 1983
(cit. on p. 89).

[73] H.-C. Hege and D. Stalling, “Fast LIC with Piecewise Polynomial
Filter Kernels,” in Mathematical Visualization - Algorithms and
Applications, 1998, pp. 295–314 (cit. on p. 19).

[74] J. Helman and L. Hesselink, “Representation and Display of
Vector Field Topology in Fluid Flow Data Sets,” Computer,
vol. 22, no. 8, pp. 27–36, 1989 (cit. on pp. 18, 21).

[75] J. Helman and L. Hesselink, “Visualizing Vector Field Topology
in Fluid Flows,” IEEE Computer Graphics and Applications,
vol. 11, no. 3, pp. 36–46, 1991 (cit. on pp. 18, 21).

[76] M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Hierarchical Line
Integration,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 8, 2011 (cit. on p. 50).

[77] L. Hofmann and F. Sadlo, “The Dependent Vectors Operator,”
Computer Graphics Forum, vol. 38, no. 3, pp. 261–272, 2019
(cit. on p. 42).

[78] M. Hummel, R. Bujack, K. I. Joy, and C. Garth, “Error estimates
for Lagrangian flow field representations,” Proceedings of the
Eurographics / IEEE VGTC Conference on Visualization: Short
Papers, pp. 7–11, 2016 (cit. on pp. 42, 49).

[79] J. Kasten, J. Reininghaus, W. Reich, and G. Scheuermann, “To-
ward the Extraction of SaddlePperiodic Orbits,” in Topological
Methods in Data Analysis and Visualization III, Springer, 2014,
pp. 55–69 (cit. on pp. 113, 125).

[80] G. L. Kindlmann, R. S. J. Estépar, S. M. Smith, and C. F. Westin,
“Sampling and visualizing creases with scale-space particles,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 6, pp. 1415–1424, 2009 (cit. on p. 119).

[81] G. Kindlmann, E. Reinhard, and S. Creem, “Face-based Lumi-
nance Matching for Perceptual Colormap Generation,” in Pro-
ceedings of the Conference on Visualization ’02, IEEE Computer
Society Press, 2002, pp. 299–306 (cit. on p. 14).

161

bibliography

[82] G. Kindlmann, X. Tricoche, and C.-F. Westin, “Delineating
White Matter Structure in Diffusion Tensor MRI with Anisotropy
Creases,” Medical Image Analysis, vol. 11, no. 5, pp. 492–502,
2007 (cit. on p. 89).

[83] R. V. Klassen and S. J. Harrington, “Shadowed Hedgehogs:
A Technique for Visualizing 2D Slices of 3D Vector Fields,”
in Proceedings of the Conference on Visualization ’91, IEEE
Computer Society Press, 1991, pp. 148–153 (cit. on p. 19).

[84] T. Klein and T. Ertl, “Scale-space Tracking of Critical Points in
3D Vector Fields,” in Topology-Based Methods in Visualization,
Springer, 2007, pp. 35–49 (cit. on p. 114).

[85] J. J. Koenderink and A. J. van Doorn, “Local Features of Smooth
Shapes: Ridges and Courses,” in Geometric Methods in Computer
Vision II, International Symposium on Optics, Imaging, and
Instrumentation, vol. 2031, 1993, pp. 2–13 (cit. on p. 89).

[86] A. Kuhn, W. Engelke, C. Rössl, M. Hadwiger, and H. Theisel,
“Time Line Cell Tracking for the Approximation of Lagrangian
Coherent Structures with Subgrid Accuracy,” Computer Graphics
Forum, vol. 33, no. 1, pp. 222–234, 2014 (cit. on p. 42).

[87] A. Kuhn, C. Rössl, T. Weinkauf, and H. Theisel, “A Benchmark
for Evaluating FTLE Computations,” in 2012 IEEE Pacific
Visualization Symposium, 2012, pp. 121–128 (cit. on pp. 67, 92,
99).

[88] M. Langbein, G. Scheuermann, and X. Tricoche, “An Efficient
Point Location Method for Visualization in Large Unstructured
Grids.,” in VMV 2003, 2003, pp. 27–35 (cit. on p. 35).

[89] R. Laramee, D. Weiskopf, J. Schneider, and H. Hauser, “Investi-
gating Swirl and Tumble Flow with a Comparison of Visualization
Techniques,” in Proceedings of the Conference on Visualization
’04, IEEE Computer Society, pp. 51–58 (cit. on p. 113).

[90] R. S. Laramee, G. Erlebacher, C. Garth, T. Schafhitzel, H.
Theisel, X. Tricoche, T. Weinkauf, and D. Weiskopf, “Applica-
tions of Texture-Based Flow Visualization,” Engineering Appli-
cations of Computational Fluid Mechanics, vol. 2, no. 3, pp. 264–
274, 2008 (cit. on p. 19).

[91] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf, “The State of the Art in Flow Visualization: Dense
and Texture-Based Techniques,” Computer Graphics Forum,
vol. 23, no. 2, pp. 203–221, 2004 (cit. on pp. 19, 49).

[92] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post, “Topology-
Based Flow Visualization, The State of the Art,” in Topology-
based Methods in Visualization, Springer, 2007 (cit. on p. 49).

162

bibliography

[93] F. Lekien, C. Coulliette, A. J. Mariano, E. H. Ryan, L. K. Shay,
G. Haller, and J. Marsden, “Pollution Release Tied to Invariant
Manifolds: A Case Study for the Coast of Florida,” Physica D:
Nonlinear Phenomena, vol. 210, no. 1-2, pp. 1–20, 2005 (cit. on
p. 89).

[94] F. Lekien and S. D. Ross, “The Computation of Finite-Time
Lyapunov Exponents on Unstructured Meshes and for Non-
Euclidean Manifolds,” Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 20, no. 1, 2010 (cit. on p. 95).

[95] R. Li, L. Liu, L. Phan, S. Abeysinghe, C. Grimm, and T. Ju,
“Polygonizing Extremal Surfaces with Manifold Guarantees,” in
Proceedings of the 14th Association for Computing Machinery
Symposium on Solid and Physical Modeling, Association for
Computing Machinery, 2010, pp. 189–194 (cit. on p. 89).

[96] T. Lindeberg, “Edge Detection and Ridge Detection with Auto-
matic Scale Selection,” in Proceedings of the 1996 Conference on
Computer Vision and Pattern Recognition, ser. CVPR ’96, IEEE
Computer Society, 1996, pp. 465– (cit. on p. 89).

[97] D. Lipinski and K. Mohseni, “A Ridge Tracking Algorithm and
Error Estimate for Efficient Computation of Lagrangian Coherent
Structures,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 20, no. 1, 2010 (cit. on p. 90).

[98] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Association for
Computing Machinery SIGGRAPH Computer Graphics, vol. 21,
no. 4, pp. 163–169, 1987 (cit. on pp. 15, 70, 138).

[99] G. Machado, S. Boblest, T. Ertl, and F. Sadlo, “Space-Time
Bifurcation Lines for Extraction of 2D Lagrangian Coherent
Structures,” Computer Graphics Forum, vol. 35, no. 3, pp. 91–
100, 2016 (cit. on p. 42).

[100] S. Mann and A. Rockwood, “Computing Singularities of 3D
Vector Fields with Geometric Algebra,” in Proceedings of the
Conference on Visualization ’02, IEEE Computer Society, 2002,
pp. 283–289 (cit. on p. 114).

[101] S. Marschner and R. Lobb, “An Evaluation of Reconstruction
Filters for Volume Rendering,” in Proceedings of the Conference
on Visualization ’94, IEEE Computer Society, 1994, pp. 100–107
(cit. on p. 35).

[102] G. T. Mase, R. E. Smelser, G. E. Mase, and J. S. Rossmann,
Continuum Mechanics for Engineers, 3rd. CRC Press, Compu-
tational Mechanics and Applied Analysis, 2009, p. 398 (cit. on
p. 32).

163

bibliography

[103] N. Max and T. Weinkauf, “Critical Points of the Electric Field
from a Collection of Point Charges,” in Topology-Based Methods
in Visualization II, ser. Mathematics and Visualization, Springer,
2009, pp. 101–114 (cit. on p. 114).

[104] B. H. McCormick, T. A. Defanti, and M. D. Brown, “Visual-
ization in Scientific Computing,” in Advances in Computers, C,
vol. 21, 1987, pp. 247–307 (cit. on p. 11).

[105] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and
M. Chen, “Over Two Decades of Integration-Based, Geometric
Flow Visualization,” Computer Graphics Forum, vol. 29, no. 6,
pp. 1807–1829, 2010 (cit. on pp. 22, 30).

[106] M. Mittasch, P. Gross, M. Nestler, et al., “Non-Invasive Pertur-
bations of Intracellular Flow Reveal Physical Principles of Cell
Organization,” Nature Cell Biology, vol. 20, no. 3, pp. 344–351,
2018, issn: 1465-7392 (cit. on p. 113).

[107] H. Miura and S. Kida, “Identification of Tubular Vortices in
Turbulence,” Journal of the Physical Society of Japan, vol. 66,
pp. 1331–1334, 1997 (cit. on p. 89).

[108] S. Musuvathy, E. Cohen, J. Damon, and J.-K. Seong, “Prin-
cipal Curvature Ridges and Geometrically Salient Regions of
Parametric B-spline Surfaces,” Computer-Aided Design, vol. 43,
pp. 756–770, 2011 (cit. on p. 89).

[109] B. T. Nadiga and B. P. Luce, “Global Bifurcation of Shilnikov
Type in a Double-Gyre Ocean Model,” Journal of Physical
Oceanography, vol. 31, no. 9, pp. 2669–2690, 2001 (cit. on p. 40).

[110] P. Nardini, M. Chen, F. Samsel, R. Bujack, M. Bottinger, and
G. Scheuermann, “The Making of Continuous Colormaps,” IEEE
Transactions on Visualization and Computer Graphics, vol. 14,
no. 8, 2020 (cit. on p. 14).

[111] R. Netzel and D. Weiskopf, “Texture-Based Flow Visualization,”
Computing in Science & Engineering, vol. 15, no. 6, pp. 96–102,
2013 (cit. on pp. 19, 20).

[112] B. R. Noack, I. Mezić, G. Tadmor, and A. Banaszuk, “Optimal
Mixing in Recirculation Zones,” Physics of Fluids, vol. 16, no. 4,
pp. 867–888, 2004 (cit. on p. 113).

[113] T. Oster, “New Visualization Techniques for Engineering Simu-
lations,” PhD thesis, Otto-von-Guericke-Universität Magdeburg,
2019 (cit. on p. 13).

[114] E. Ott, Chaos in Dynamical Systems. Cambridge University
Press, 2002 (cit. on p. 31).

[115] R. Peikert and M. Roth, “The Parallel Vectors Operator - A
Vector Field Visualization Primitive,” in Proceedings of the Con-
ference on Visualization ’99, 1999, pp. 263–270 (cit. on p. 89).

164

bibliography

[116] R. Peikert and F. Sadlo, “Topology-guided Visualization of Con-
strained Vector Fields,” in Topology-based Methods in Visualiza-
tion, ser. Mathematics and Visualization, Springer, 2007, pp. 21–
34 (cit. on p. 113).

[117] R. Peikert and F. Sadlo, “Height Ridge Computation and Filter-
ing for Visualization,” in IEEE Pacific Visualization Symposium,
2008, pp. 119–126 (cit. on p. 16).

[118] R. Peikert and F. Sadlo, “Flow Topology Beyond Skeletons:
Visualization of Features in Recirculating Flow,” in Topology-
Based Methods in Visualization II, Springer, 2009, pp. 145–160
(cit. on p. 113).

[119] S. M. Pizer, C. A. Burbeck, J. M. Coggins, D. S. Fritsch, and
B. S. Morse, “Object Shape Before Boundary Shape: Scale-space
Medial Axes.,” Journal of Mathematical Imaging and Vision,
vol. 4, no. 3, pp. 303–313, 1994 (cit. on p. 89).

[120] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H.
Theisel, K. Matković, and H. Hauser, “The State of the Art
in Topology-Based Visualization of Unsteady Flow,” Computer
Graphics Forum, vol. 30, no. 6, pp. 1789–1811, 2011 (cit. on
pp. 16, 31).

[121] A. Pobitzer, R. Peikert, R. Fuchs, H. Theisel, and H. Hauser,
“Filtering of FTLE for Visualizing Spatial Separation in Un-
steady 3D Flow,” in Topological Methods in Data Analysis and
Visualization II, Springer, 2012 (cit. on p. 90).

[122] S. Popinet, “Free Computational Fluid Dynamics,” ClusterWorld,
vol. 2, no. 6, 2004 (cit. on pp. 80, 103).

[123] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch,
“Feature Extraction and Visualisation of Flow Fields,” in Euro-
graphics 2002 State of the Art Reports, Eurographics Association,
2002, pp. 69–100 (cit. on pp. 18, 19, 21).

[124] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-Time
Hatching,” in Proceedings of the Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’01,
Association for Computing Machinery, 2001 (cit. on p. 49).

[125] B. Preim and C. Botha, Eds., Visual Computing for Medicine,
2nd. Elsevier, 2014 (cit. on p. 35).

[126] S. E. Reed, O. Kreylos, S. Hsi, L. H. Kellogg, G. Schladow, M. B.
Yikilmaz, H. Segale, J. Silverman, S. Yalowitz, and E. Sato,
“Shaping Watersheds Exhibit: An Interactive, Augmented Reality
Sandbox for Advancing Earth Science Education,” American
Geophysical Union Fall Meeting, vol. ED34A-01, 2014 (cit. on
p. 14).

165

bibliography

[127] W. Reich, D. Schneider, C. Heine, A. Wiebel, G. Chen, and G.
Scheuermann, “Combinatorial Vector Field Topology in Three
Dimensions,” in Topological Methods in Data Analysis and Visu-
alization II, Springer, 2012, pp. 47–59 (cit. on pp. 113, 125).

[128] I. B. Rojo, M. Gross, and T. Günther, “Accelerated Monte
Carlo Rendering of Finite-Time Lyapunov Exponents,” IEEE
Transactions on Visualization and Computer Graphics, vol. 26,
no. 1, pp. 708–718, 2020 (cit. on p. 90).

[129] I. B. Rojo and T. Günther, “Vector Field Topology of Time-
Dependent Flows in a Steady Reference Frame,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 26, no. 1,
pp. 280–290, 2020 (cit. on p. 80).

[130] F. Sadlo and D. Weiskopf, “Time-Dependent 2-D Vector Field
Topology: An Approach Inspired by Lagrangian Coherent Struc-
tures,” Computer Graphics Forum, vol. 29, no. 1, pp. 88–100,
2010 (cit. on p. 42).

[131] F. Sadlo and R. Peikert, “Efficient Visualization of Lagrangian
Coherent Structures by Filtered AMR Ridge Extraction,” IEEE
Transactions on Visualization and Computer Graphics, vol. 13,
no. 6, pp. 1456–1463, 2007 (cit. on pp. 49, 89, 90).

[132] F. Sadlo and R. Peikert, “Visualizing Lagrangian Coherent Struc-
tures and Comparison to Vector Field Topology,” in Topology-
Based Methods in Visualization II, ser. Mathematics and Visual-
ization. Springer, 2009, pp. 15–29 (cit. on p. 90).

[133] F. Sadlo, A. Rigazzi, and R. Peikert, “Time-dependent Visual-
ization of Lagrangian Coherent Structures by Grid Advection,”
in Topology-Based Methods in Visualization II, ser. Mathematics
and Visualization, Springer, 2009, pp. 151–165 (cit. on p. 90).

[134] J. Sahner, T. Weinkauf, N. Teuber, and H.-C. Hege, “Vortex
and Strain Skeletons in Eulerian and Lagrangian Frames,” IEEE
Transactions on Visualization and Computer Graphics, vol. 13,
no. 5, pp. 980–990, 2007 (cit. on p. 89).

[135] T. Salzbrunn, H. Jänicke, T. Wischgoll, and G. Scheuermann,
“The State of the Art in Flow Visualization: Partition-based Tech-
niques,” in Simulation and Visualization 2008, SCS Publishing
House, 2008, pp. 75–92 (cit. on p. 49).

[136] F. Samsel, T. L. Turton, P. Wolfram, and R. Bujack, “Intuitive
Colormaps for Environmental Visualization,” in Workshop on
Visualisation in Environmental Sciences (EnvirVis), The Euro-
graphics Association, 2017 (cit. on p. 14).

166

bibliography

[137] A. Sanderson, G. Chen, X. Tricoche, and E. Cohen, “Understand-
ing Quasi-Periodic Fieldlines and their Topology in Toroidal
Magnetic Fields,” in Topological Methods in Data Analysis and
Visualization II, ser. Mathematics and Visualization, Springer,
2012, pp. 125–140 (cit. on p. 113).

[138] G. Scheuermann, H. Hagen, H. Kruger, M. Menzel, and A. Rock-
wood, “Visualization of Higher Order Singularities in Vector
Fields,” in Proceedings of the Conference on Visualization ’97,
IEEE Computer Society, pp. 67–74 (cit. on p. 21).

[139] G. Scheuermann, H. Hagen, H. Kruger, and A. Rockwood, “Visu-
alizing Critical Points of Arbitrary Poincaré -Index,” in Scientific
Visualization Conference (Dagstuhl ’97), IEEE Computer Society,
1997, pp. 277–277 (cit. on p. 21).

[140] B. Schindler, R. Fuchs, S. Barp, J. Waser, K. Matković, A.
Pobitzer, and R. Peikert, “Lagrangian Coherent Structures for
Design Analysis of Revolving Doors,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 12, pp. 2159–
2168, 2012 (cit. on p. 90).

[141] B. Schindler, R. Peikert, R. Fuchs, and H. Theisel, “Ridge Con-
cepts for the Visualization of Lagrangian Coherent Structures,”
in Topological Methods in Data Analysis and Visualization II,
ser. Mathematics and Visualization, Springer, 2012, pp. 221–235
(cit. on pp. 16, 42, 90).

[142] W. Schroeder, K. Martin, and B. Lorensen, The Visualization
Toolkit an Object-Oriented Approach to 3D Graphics, 4.1. Kitware,
2018 (cit. on p. 19).

[143] A. Seveso. (2020, www.burdu976.com). Alberto Seveso - Illustra-
tion and Photography (cit. on p. 1).

[144] S. C. Shadden, Lagrangian Coherent Structures - Analysis of
Time-dependent Dynamical Systems Using Finite-time Lyapunov
Exponents, 2020
shaddenlab.berkeley.edu/uploads/LCS-tutorial, visited on 20-12-
2020 (cit. on pp. 40, 42).

[145] S. C. Shadden, F. Lekien, and J. E. Marsden, “Definition and
Properties of Lagrangian Coherent Structures from Finite-Time
Lyapunov Exponents in Two-Dimensional aperiodic Flows,”
Physica D: Nonlinear Phenomena, vol. 212, no. 7, 2005 (cit.
on pp. 32, 40, 42, 90, 94, 100).

[146] S. C. Shadden, F. Lekien, J. D. Paduan, F. P. Chavez, and J. E.
Marsden, “The correlation between surface drifters and coherent
structures based on high-frequency radar data in Monterey Bay,”
Deep Sea Research Part II: Topical Studies in Oceanography,
vol. 56, no. 3—5, pp. 161–172, 2009 (cit. on p. 89).

167

bibliography

[147] S. C. Shadden, M. Astorino, and J.-F. Gerbeau, “Computational
Analysis of an Aortic Valve Jet with Lagrangian Coherent Struc-
tures,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 20, no. 1, 2010 (cit. on p. 113).

[148] J. Shen, T. T. Medjo, and S. Wang, “On a Wind-driven, Double-
gyre, Quasi-geostrophic Ocean Model: Numerical Simulations
and Structural Analysis,” Journal of Computational Physics,
vol. 155, pp. 387–409, 1999 (cit. on p. 39).

[149] S. Shimokawa and T. Matsuura, “Chaotic Behaviors in the
Response of a Quasigeostrophic Oceanic Double Gyre to Seasonal
External Forcing,” Journal of Physical Oceanography, vol. 40,
no. 7, pp. 1458–1472, 2010 (cit. on p. 40).

[150] N. Smith and S. van der Walt, MPL Colormaps, 2015,
bids.github.io/colormap, visited on 14-01-2021 (cit. on pp. 73,
126).

[151] D. Stalling and H.-C. Hege, “Fast and Resolution Indepen-
dent Line Integral Convolution,” in Proceedings of the Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’95, Association for Computing Machinery, 1995,
pp. 249–256 (cit. on pp. 19, 23).

[152] G. Strang, Computational Science and Engineering. Wellesley-
Cambridge Press, 2007, p. 750 (cit. on p. 37).

[153] G. Strang, Introduction to Linear Algebra. Wellesley-Cambridge
Press, 2016, p. 584 (cit. on p. 116).

[154] Y. K. Suh, “Periodic Motion of a Point Vortex in a Corner
Subject to a Potential Flow,” Journal of the Physical Society of
Japan, vol. 62, no. 10, pp. 3441–3445, 1993 (cit. on p. 113).

[155] G. Tadmor and A. Banaszuk, “Observer-based Control of Vortex
Motion in a Combustor Recirculation Region,” IEEE Transac-
tions on Control Systems Technology, vol. 10, no. 5, pp. 749–755,
2002 (cit. on p. 113).

[156] A. C. Telea, Data Visualization - Principles and Practice, 2nd.
CRC Press Taylor & Francis Group, 2015, p. 612 (cit. on pp. 15,
33–35, 49).

[157] H. Theisel and H.-P. Seidel, “Feature Flow Fields,” in Eurograph-
ics IEEE VGTC Symposium on Visualization, G.-P. Bonneau,
S. Hahmann, and C. D. Hansen, Eds., The Eurographics Associ-
ation, 2003 (cit. on pp. 64, 66, 114).

[158] H. Theisel, “Designing 2D Vector Fields of Arbitrary Topology,”
Computer Graphics Forum, vol. 21, no. 3, pp. 595–604, 2002
(cit. on p. 48).

168

bibliography

[159] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, “Grid-
Independent Detection of Closed Stream Lines in 2D Vector
Fields.,” in VMV, vol. 4, 2004, pp. 421–428 (cit. on p. 113).

[160] X. Tricoche, G. Kindlmann, and C.-F. Westin, “Invariant Crease
Lines for Topological and Structural Analysis of Tensor Fields,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 14, no. 6, pp. 1627–1634, 2008 (cit. on p. 89).

[161] X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen,
“Topology Tracking for the Visualization of Time-dependent
Two-Dimensional Flows,” Computers & Graphics, vol. 26, no. 2,
pp. 249–257, 2002 (cit. on p. 114).

[162] G. Turk, “Texture Synthesis on Surfaces,” in Proceedings of the
Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’01, Association for Computing Machinery,
2001, pp. 347–354 (cit. on p. 49).

[163] M. Üffinger, F. Sadlo, and T. Ertl, “A Time-Dependent Vector
Field Topology Based on Streak Surfaces,” IEEE Transactions
on Visualization and Computer Graphics, vol. 19, no. 3, pp. 379–
392, 2013 (cit. on p. 90).

[164] A. Vaxman, M. Campen, O. Diamanti, D. Bommes, K. Hilde-
brandt, M. B.-C. Technion, and D. Panozzo, “Directional Field
Synthesis, Design, and Processing,” SIGGRAPH ’17, 2017 (cit.
on pp. 33, 49).

[165] W. Von Funck, H. Theisel, and H.-P. Seidel, “Implicit Boundary
Control of Vector Field Based Shape Deformations,” in Proceed-
ings of the 12th International Conference on Mathematics of
Surfaces, Springer, 2007, pp. 154–165 (cit. on p. 49).

[166] D. F. Watson, A Guide to the Analysis and Display of Spatial
Data, 1st. Pergamon, 1992, p. 314 (cit. on p. 15).

[167] R. Wegenkittl, E. Groller, and W. Purgathofer, “Animating
Flow fields: Rendering of Oriented Line Integral Convolution,” in
Computer Animation, Conference Proceedings, IEEE Computer
Society, 1997, pp. 15–21 (cit. on p. 19).

[168] L.-Y. Wei and M. Levoy, “Texture Synthesis over Arbitrary
Manifold Surfaces,” in Proceedings of the Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’01,
Association for Computing Machinery, 2001, pp. 355–360 (cit. on
p. 49).

[169] T. Weinkauf, H.-C. Hege, and H. Theisel, “Advected Tangent
Curves: A General Scheme for Characteristic Curves of Flow
Fields,” Computer Graphics Forum, vol. 31, pp. 825–834, 2012
(cit. on pp. 23, 25).

169

bibliography

[170] T. Weinkauf and H. Theisel, “Streak Lines as Tangent Curves
of a Derived Vector Field,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 1225–1234, 2010
(cit. on pp. 23, 24, 50).

[171] T. Weinkauf, “Extraction of Topological Structures in 2D and
3D Vector Fields,” PhD thesis, Otto-von-Guericke-Universität
Magdeburg, 2008 (cit. on pp. 18, 21, 114, 122).

[172] T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege, “Cores of
Swirling Particle Motion in Unsteady Flows,” Proceedings of the
Conference on Visualization ’07, vol. 13, no. 6, pp. 1759–1766,
2007 (cit. on p. 113).

[173] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel, “Topolog-
ical Construction and Visualization of Higher Order 3D Vector
Fields,” Computer Graphics Forum, vol. 23, no. 3, pp. 469–478,
2004 (cit. on p. 48).

[174] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel, “Feature
Flow Fields in Out-of-Core Settings,” in Topology-based Methods
in Visualization, ser. Mathematics and Visualization, Springer,
2007, pp. 51–64 (cit. on p. 114).

[175] T. Weinkauf, H. Theisel, A. Van Gelder, and A. Pang, “Stable
Feature Flow Fields,” IEEE Transactions on Visualization and
Computer Graphics, vol. 17, no. 6, pp. 770–780, 2011 (cit. on
p. 114).

[176] M. Weldon, T. Peacock, G. B. Jacobs, M. Helu, and G. Haller,
“Experimental and Numerical Investigation of the Kinematic
Theory of Unsteady Separation,” Journal of Fluid Mechanics,
vol. 611, 2008 (cit. on p. 89).

[177] T. Wilde, C. Rössl, and H. Theisel, “Recirculation Surfaces for
Flow Visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 25, no. 1, pp. 946–955, 2019 (cit. on
pp. 42, 153).

[178] T. Wilde, C. Rössl, and H. Theisel, “Flow Map Processing by
Space-Time Deformation,” in Advances in Visual Computing, G.
Bebis, Z. Yin, E. Kim, J. Bender, K. Subr, B. C. Kwon, J. Zhao,
D. Kalkofen, and G. Baciu, Eds., Springer, 2020, pp. 236–247
(cit. on p. 147).

[179] T. Wischgoll and G. Scheuermann, “Detection and Visualization
of Closed Streamlines in Planar Flows,” IEEE Transactions on
Visualization and Computer Graphics, vol. 7, no. 2, pp. 165–172,
2001 (cit. on p. 113).

[180] S. Wolligandt, T. Wilde, C. Rössl, and H. Theisel, “A Modified
Double Gyre with Ground Truth Hyperbolic Trajectories for
Flow Visualization,” Computer Graphics Forum, vol. to appear,
no. to appear, to appear, 2020 (cit. on p. 42).

170

bibliography

[181] H. Wright, Introduction to Scientific Visualization. Springer,
2007, p. 147 (cit. on p. 11).

[182] J. Xiang, V. Tutino, K. Snyder, and H. Meng, “CFD: Compu-
tational Fluid Dynamics or Confounding Factor Dissemination?
The Role of Hemodynamics in Intracranial Aneurysm Rupture
Risk Assessment,” American Journal of Neuroradiology, vol. 35,
no. 10, pp. 1849–1857, 2014 (cit. on p. 129).

[183] E. Zhang, J. Hays, and G. Turk, “Interactive Tensor Field Design
and Visualization on Surfaces,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 13, no. 1, pp. 94–107, 2007
(cit. on p. 49).

[184] E. Zhang, K. Mischaikow, and G. Turk, “Vector Field Design on
Surfaces,” Association for Computing Machinery Transactions
on Graphics, vol. 25, no. 4, pp. 1294–1326, 2006 (cit. on p. 49).

171

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Thesis Structure
	1.3 List of Publications
	1.4 Notation

	 Background
	2 Introduction to Flow Visualization
	2.1 Scalar Fields
	2.1.1 Definition
	2.1.2 Visualization
	2.1.3 Relevance for this Thesis

	2.2 Vector Fields
	2.2.1 Definition
	2.2.2 Visualization
	2.2.3 Relevance for this Thesis

	2.3 Particle Integration & Integral Curves
	2.3.1 Streamlines
	2.3.2 Pathlines
	2.3.3 Streaklines
	2.3.4 Timelines
	2.3.5 Relevance for this Thesis

	2.4 Flow Maps
	2.4.1 Definition
	2.4.2 Defining Properties
	2.4.3 Relations to Velocity Fields
	2.4.4 Relevance for this Thesis

	2.5 LCS & FTLE
	2.5.1 Lagrangian Coherent Structures
	2.5.2 Finite-Time Lyapunov Exponent
	2.5.3 Relevance for this Thesis

	2.6 Discretization, Reconstruction & Derivatives
	2.6.1 Discretization of Data
	2.6.2 Reconstruction of Discretized Data
	2.6.3 Derivatives of Discretized Data
	2.6.4 Relevance for this Thesis

	3 Double Gyre
	3.1 Explanation & Definition
	3.2 Relevance for the Visualization Community
	3.3 Relevance for this Thesis

	 Flow Map Processing
	4 Flow Map Modification by Space-Time Deformation
	4.1 Related Work
	4.2 Flow Map Modification
	4.2.1 Definition of a Space Deformation
	4.2.2 Definition of a Modification Area
	4.2.3 Local Modification & Global Adaption
	4.2.4 Discretization of the Flow Map
	4.2.5 Modification of the Discrete Flow Map
	4.2.6 Lookup-Cells for Fast Sample Retrieval

	4.3 Implementation
	4.4 Results & Discussion
	4.4.1 Translation Tool
	4.4.2 Twist Tool

	4.5 Conclusion & Future Research

	5 Drift Fields for Flow Map Processing
	5.1 Definition
	5.2 Properties
	5.3 Relations
	5.3.1 Relation to Velocity Fields & Flow Maps
	5.3.2 Relation to Feature Flow Fields
	5.3.3 Relation to Stream Functions

	5.4 Existence & Uniqueness of Drift Fields
	5.5 Computing Drift Fields
	5.5.1 Step 1 – Create an Initial Field for One Time Slice
	5.5.2 Step 2 – Determine Best Time t0 for Initialization
	5.5.3 Step 3 – Compute the Remaining Time Slices

	5.6 Computing Pathlines from Drift Fields
	5.6.1 Step 1 – Selection of Seeding Location
	5.6.2 Step 2 – Determine (a,b)
	5.6.3 Step 3 – Selection of Destination Time td
	5.6.4 Step 4 – Searching for Isolines at Time td
	5.6.5 Step 5 – Intersecting Isolines

	5.7 Modifying Drift Fields
	5.8 Results
	5.8.1 Rotating Flow
	5.8.2 Double Gyre
	5.8.3 Cavity Flow
	5.8.4 Piped Cylinders Flow

	5.9 Discussion & Limitations
	5.10 Open Problems & Future Research

	 Flow Features from Flow Maps
	6 FTLE Ridge Lines for Long Integration Times
	6.1 Introduction
	6.2 Related Work
	6.2.1 Ridge Concepts
	6.2.2 FTLE & FTLE Ridges

	6.3 Background
	6.4 Problem Analysis
	6.4.1 Importance of FTLE Ridges
	6.4.2 Importance of Ridge Statistics
	6.4.3 Importance of Ridge Separation
	6.4.4 Analysis of FTLE in 1D
	6.4.5 Sampling Density
	6.4.6 Main Idea

	6.5 Finding a Sufficient Sampling
	6.5.1 Algorithm Specification
	6.5.2 Domain Discretization & Initialization
	6.5.3 Refinement of the Sampling
	6.5.4 Additional Parameters dTau & Theta

	6.6 Ridge Extraction
	6.6.1 Cell Filtering
	6.6.2 Ridge Clustering
	6.6.3 Post-Processing

	6.7 Implementation
	6.8 Results
	6.8.1 Double Gyre
	6.8.2 Forced Duffing
	6.8.3 Boussinesq
	6.8.4 ECMWF Reanalysis
	6.8.5 Timings & Memory Usage

	6.9 Discussion
	6.10 Limitations & Future Research

	7 Recirculation Surfaces
	7.1 Introduction
	7.2 Related Work
	7.2.1 Recirculation as a Phenomenon
	7.2.2 Isolated Closed Orbits for Steady Vector Fields
	7.2.3 Extraction of Isolated Critical Points
	7.2.4 Tracking Critical Points

	7.3 Definition of Recirculation Surfaces
	7.3.1 Definition
	7.3.2 Properties
	7.3.3 The Particular Case tau to 0
	7.3.4 Properties of the 3D Surface Y

	7.4 Extraction of Recirculation Surfaces
	7.4.1 Algorithm Overview
	7.4.2 Step 1 - Sample s on a Regular Grid
	7.4.3 Step 2 - Locate Intersection Between Line l & Y
	7.4.4 Step 3 - Extract the Boundary Curves of Y
	7.4.5 Step 4 - Visualize the Recirculation Surface Y
	7.4.6 Surface Reconstruction

	7.5 ICS in 3D Steady Vector Fields
	7.6 Results
	7.6.1 Double Gyre
	7.6.2 Aneurysm Flow
	7.6.3 Cavity Flow
	7.6.4 Square Cylinder Flow

	7.7 Discussion
	7.7.1 Relation to Other Flow Visualization Techniques
	7.7.2 Degeneration of Recirculation Surfaces
	7.7.3 Recirculation as a Phenomenon
	7.7.4 Computation Time
	7.7.5 Parameters

	7.8 Limitations & Future Research

	 Conclusion & Future Research
	8 Conclusion
	9 Future Research

	 Appendix
	A Modification by Space-Time Deformation Keeps Flow Map Properties
	B Elements of Matrix H for Drift Fields
	C Relation Between Vector Field & Flow Map Derivatives
	 Bibliography

