ZEITSCHRIFT FÜR GESCHICHTE DER ARABISCH-ISLAMISCHEN WISSENSCHAFTEN

herausgegeben von
Fuat Sezgin
in Zusammenarbeit mit
M. Amawi, F. Benfeghoul,
Jan P. Hogendijk, E. Neubauer

Band 13

Anschrift der Redaktion:
Institut für Geschichte
der Arabisch-Islamischen Wissenschaften
Westendstraße 89, D-60325 Frankfurt am Main
Federal Republic of Germany

©2000 by Institut für Geschichte der Arabisch-Islamischen Wissenschaften Frankfurt am Main
All rights reserved. No part of this book may be reproduced or translated in any form, by print, microfilm or any other means without written permission from the publisher.

Druck: Strauß Offsetdruck, Mörlenbach.
Einband: Buchbinderei Schaumann, Darmstadt.

INHALT DES DREIZEHNTEN BANDES

AUFSÄTZE
Matthias Schramm: Verfahren arabischer Nautiker zur Messung von Distanzen im Indischen Ozean 1
Paul Kunitzsch: Three Dubious Stars in the Oldest European Table of Astrolabe Stars 57
W. S. RadA: A Catalogue of Medieval Arabic and Islamic Observations of Comets During the Period AD 700-1600 71
Rudiger Arnzen: Vergessene Pflichtlektüre: Al-Qabiṣiss astrologische Lehrschrift im europäischen Mittelalter 93
Jan P. Hogendijk: Traces of the Lost Geometrical Elements of Menelaus in Two Texts of al-Sijzī 129
J. L. Berggren and G. Van Brummelen: Abū Sahl al-Kūhī on "Two Geo- metrical Questions" 165
Ulrich Rebstock: The Kitāb al-Kāfī fī mukhtașar (al-ḥisāb) al-hindī of al- Șardafi 189
Ulrich Schädler: Sphären-"Schach". Zum sogenannten "astronomi- schen Schach" bei al-Mas'üdī, al-Āmolī und Alfons X. 205
Jafko Hämeen-Anttila: 1000 Years of Maqãmas: a List of Maqāma Authors 243
Eckhard Neubauer: Glimpses of Arab Music in Ottoman Times from Syrian and Egyptian Sources 317
BUCHBESPRECHUNGEN
Wolfhart Heinrichs über Irfan Shahîd: Byzantium and the Arabs in the Sixth Century. Vol. I. Part 1: Political and Military History. Part 2: Ecclesiastical History 367
Carl Ehrig-EgGert über L.S. Filius (Ed.): The Problemata physica attributed to Aristotle. The Arabic version of Hunain ibn Ishaq and the Hebrew version of Moses ibn Tibbon 374
Jan P. Hogendijk über Menso Folkerts: Die älteste lateinische Schrift über das indische Rechnen nach al-Hwārizmi. Edition, Übersetzung und Kommentar, unter Mitarbeit von Paul Kunitzsch. 376
Paul Kunitzsch über Michio Yano [Ed., Trans.]: Kūshyār ibn Labbān's Introduction to Astrology 378
Paul Kunitzsch über Keij Yamamoto, Charles Burnett [Eds., Transs.]: Abū Ma'shar On Historical Astrology. The Book of Religions and Dynasties (On the Great Conjunctions). I: The Arabic Original. II: The Latin Versions 380
Ewald Wagner über Christophe Picard: L'océan Atlantique musulman. De la conquête arabe à l'époque almohade. Navigation et mise en valeur des côtes d'al-Andalus et du Maghreb occidental (Portugal- Espagne-Maroc) 384
Ewald Wagner über Miklos Muranyi: Die Rechtsbücher des Qaira- wāners Saḥnūn b. Sa'id. Entstehungsgeschichte und Werküberliefe- rung 387
Ewald Wagner über George Makdisi [Hrsg.]: Al-Wädih fí uṣūl al-figh. Abū'l-Wafā' 'Alī b. 'Aqil b. Muḥammad b. 'Aqīl al-Ḥanbalī al-Bagh- dādī az-Zafarī ... (431-513/ 1040-1119). Arabic text ed. with introd. and notes. Vol. 1: Kitāb al-Madhhab 389
Ewald Wagner über Manfred Götz: Islamische Handschriften. Teil 1: Nordrhein-Westfalen (VOHD, Bd. 37, 1) 390
Carl Ehrig-Eggert über Álvaro Galmés de Fuentes: Los manuscritos aljamiado-moriscos de la Biblioteca de la Real Academia de la Histo- ria (Legado Pascual de Gayangos). 392
Dymitr Ibriszimow über Arabic Literature of Africa. Vol. I: The Writ- ings of Eastern Sudanic Africa to c. 1900. Compiled by R.S. O'Fahey et. al. 394
Martina MÜller-Wiener über Science, Tools \& Magic. The Nasser D.Khalili Collection of Islamic Art. Vol. XII. Part one: Body and spir-it. Mapping the universe. By Francis Maddison and Emilie Savage-Smith. Part two: Mundane worlds. By Emilie Savage-Smith et al. .395

ARABISCHER TEIL

Inhaltsverzeichnis

THE KITĀB AL-KĀFĪ F̄̄ MUKHTASAR (AL-HISĀB) AL-HIND \bar{I}
 OF AL-ṢARDAFĪ

Ulrich Rebstock*
Yemenite authors of $h i s a \bar{b}$-treatises are rare. ${ }^{1}$
However, this finding does not allow us to conclude that Yemenites collectively refrained from mathematics. Rather it is to be assumed that the relative geographical isolation of the southern part of the Arabian peninsula kept much scientific information from being included in the biographical dictionaries of the Islamic heartlands. The confusion
 seems to confirm this suspicion. The aim of this article is neither to present a complete portrait of this author nor to describe completely his hisāb-treatise titled Kitāb al-Kāfi. Instead, both the biographical and textual aspects will be merged in order to evaluate the composition of a hisa $a b$-text of marginal scientific significance and its importance for recognizing a local mathematical tradition that has until now escaped our attention.

a) The Author

All hitherto knowledge on the life and work of this person has been drawn from a single entry in Kashf al-zunūn of Hبājjī Khalīfa (died 1657). From an unspecified source Heājji Khalifa identifies him as a scholar from Șardaf, an area to the East of Janad in Yemen, who had written among other works a Käfi fi al-hisāb and a Käfi$f i ̄ a l-f a r a \bar{a} i d$ and died 505/1111 [14, I 200/-1f - 201/3]. H. Suter (who slightly misread the nisba given by Ḥājjī Khalīfa into "Ṣardī"), C. Brockelmann [10, I 470], G. P. Matvievskaja / B. A. Rozenfeld [23, II no. 260, p. $311]$ and D. King $[20,53]$ repeated the dates of Kashf with two minor changes: The year of his death is advanced to 500/1106 [10, ibid.; 30, ibid.; 20, ibid.] and his ḥisäb-treatise is called Mukhtaṣar al-Hindī [10,

[^0]ibid.; 30, ibid.]. ${ }^{3}$ As to this title, it is evident that H. Suter profited from the reading of $M a^{\text {' }}$ unat al-țullāb, a commentary on the Kitāb al-Käfi by a later Yemenite scholar who calls his original copy Mukhtaṣar [3, fol. 2a/9]. The manuscript at hand, though, carries the simple title Kitāb al-Hindī. ${ }^{4}$ Nine copies of it have survived in European, five in Oriental libraries, four others of the Kāfi fì al-farā'id. ${ }^{5}$ The number of copies existing is evidently at variance with the silence with which al-Sardafì was treated by the medieval collectors of scientific biographies. ${ }^{6}$ New evidence contained in Shadharāt al-dhahab of Ibn al-'Imād al-Hanbalī (died 1679) [10, S II 403] may explain this silence. Ibn al-'Imād cites a certain Ibn al-Ahdal as his authority for the entry on al-Șardafí [17, III 411/5]. The biographical work Ghirbāl al-zamān of this Ibn al-Ahdal, a Yemenite Muftī who died 1451 [10, S II 238-239], extended the scope of the Shadharāt to the Yemenite milieu. The content of the report on al-Sardafi reflects the intimacy of the author with his subject. He first praises the artistic composition of the Kāfi $f \bar{l}$ al-farā̀id. In fact, the Käfi follows a unique method to teach the rules of far \bar{a} 'id. The classes of heirs and their shares are not arranged according to the prescriptions of the shari^{-}' a but along arithmetical fractions [25, 223-230]. The widely used epithet of al-Sardafī, "al-Faradī" - i.e. calculator of inheritance shares -, therefore was possibly less inspired by the legal knowledge of his bearer than his skill to make the sharí a rules arithmetically transparent. Ibn al-Ahdal yet does not mention al-Șardafí's qualification in hisāb. He talks about the tribal affiliation of the author to the famous Yemenite tribe of Banū Ma'āfir and about his family. Quite obviously, al-Ṣardafī was a bibliophile. He married

[^1]his two daughters, one to a prominent faqih and the other to the Imām of Janad and so managed to secure the library of the $f a q \bar{i} h$ for the son of his one daughter, the later Imām of the Friday mosque, and his own library for the son of his other daughter [17, III 410/-3-411/5]. Certainly, al-Șardafi's concern for books would be more informative if the contents of his shelves were listed. Yet the texts he left, as written by the owner of a library, must now be regarded as being the product of a well-read person whose acquaintance with the literature of his discipline must be anticipated to a certain degree. This short biographical survey should not end without mentioning an irritating mistake of Ibn al-'Imād. He, in fact, calls al-Sardafî "al-Sarūfí". According to the recently edited Mu'jam al-buldān wa al-qabā̉il al-yamanīya $[18,378$ b] this must have slipped into the Shadharāt by misreading or misprinting. The author of the dictionary makes clear, that it was Șardafi, a mountainous region to the East of the city of al-Janad, which lent its name to the famous local scholar "al-Faradī al-Ṣardafī".

b) The Text

The Kitāb al-Kāfí can roughly be divided into two parts. Part one (fols. 90a-115b/13) contains a concise introduction into the methods of calculation with 'Indian' numerals. The shape of the rarely used numbers, especially the 4,5 and 6 , is clearly of Eastern origin [19, 492-495; 26, 12]. After describing the multiplication of units, tens, hundreds separately and mixed, al-Ṣardafi proceeds to a detailed representation of the multiplication of 54.321 by itself. With the verbal elements eliminated, the figure representation runs as follows [7, fol. 94a/lf]:
[scribe's negligence?]
1)

54321
54321
2)

2716054321
54321

2933334321 54321
1)

54321
54321
3)

2949630321
54321

5)	$\begin{array}{rl} 295071671 \\ & 5 \\ 5 & 4 \\ \hline \end{array}$	[modern notation:]	
		1)	$54321 \cdot 54321$
6)	2950771041		
	54321	2)	271605
		3)	$\begin{array}{rlllll} 293 & 3 & 3 & 3 & 4 \\ \\ {[1} & 6 & 2 & 9 & 6 & 3] \end{array}$
		4)	29496303
			. . . 2

Compared with the methods current at this time, as demonstrated for example by al-Uqlīdisī:

374.256:	374		374	374			374
	256	\rightarrow	256	\rightarrow	256	\rightarrow	256
			768		9472		95744

a remarkable change can be detected.
Al-Uqlīdisī argues for this scheme with the words: "We may have to multiply two numbers one by the other so that we know the product with the two numbers not rubbed out, but standing safe. ${ }^{77}$ But, what he evidently took for unavoidable, the intermediate products had to be rubbed out in order to complete the following multiplication. Apart from this minor blemish the basic problem of all contemporary variants remains untouched: the multiplication starts from the highest place and proceeds to the lower ones. A. Saidan adds: "The major characteristic of it that the Islamic reckoners, including al-Kāshī [- who, by the way, avoids all dust board methods -], could not avoid is that multiplication starts from the highest places, highest times highest, and so on."8 Obviously, al-Şardafī ignored this limitation and presented a method that could do without rubbing out, that required only one gradually enlarged figure and that was composed of no more steps than the multiplicand (or multiplicator) had places - and that could easily be reexamined after the completion.

[^2]On one of the next pages al-Sardafì explains that "to multiply 4 by 4 murabba‘ a^{9} means $4^{16}=4.296 .967 .296$. By the term murabba' a he illustrates the consecutive squaring of the products, that is the doubling of the powers. Furthermore, when listing different mīzān-methods (casting-out) with whole numbers and fractions, he uses the completely unusual word jubūr (sing. jabr) for whole numbers [7, fol. 108a f.]. For mīzān he also uses the nominal derivations țarh and tatarruh of the verb taraha, to subtract [7, fol. 115b/13f]. The next chapter is dedicated to the extracting of roots (tajdhīr) [7, fol. 110a f.]. Three cases are differentiated.

1. Whole numbers

$$
\begin{aligned}
& \sqrt{N^{2}}=N \\
& \sqrt{N^{2}-1} \\
& \sqrt{\left(N+\frac{p}{q}\right)^{2}}
\end{aligned}
$$

2. Așamm numbers
3. Composite numbers

Before proceeding to the explanation a new terminology is introduced. Starting from the right the first place (manzila), i.e. the units, is called bait 4 witr ${ }^{\text {in }}$ (even 'house'), the second, i.e. the tens, is called bait ${ }^{4}$ shafin (odd 'house'), the third again witr, the forth again shaft and so on. ${ }^{10}$ Later on (fol. 112a/15) the rule is added that the root-extraction must always be started with the last witr-place from the right.

The first case is quickly dealt with. ${ }^{11}$
To the second case ${ }^{12}$ al-Sardafí adds a curious amendment which he calls hīlla (ruse) [7, fol. 111a/-5]. This hīla will be discussed immediately, but in a different context.
${ }^{9}[7$, fol. $95 \mathrm{a} / 1]$: represented as ${ }_{4}^{(4)}$.
${ }^{10}$ Cf. [26, 80-81, note 8.12, p. 439$]$ and $[4,106 / 5$ f.] who still uses the unspecific terms "is" (yakūn") and "is not" (lā yakūn") which were to be replaced by the specific terms zauj and fard.
${ }^{11}$ [7, fol. 110b/9f.]:
$\sqrt{2^{2}}, \sqrt{3^{2}}, \sqrt{10} \approx 3 \frac{1}{6}, \sqrt{11} \approx 3 \frac{1}{3}, \sqrt{12} \approx 3 \frac{1}{2}, \sqrt{13} \approx 3 \frac{2}{3}, \sqrt{14} \approx 3 \frac{5}{6}$;
[7, fol. $111 \mathrm{~b} / 9 \mathrm{f}$.$] :$
$\sqrt{16}, \sqrt{25}, \sqrt{36}, \ldots \sqrt{144}, \sqrt{841}, \sqrt{576}, \sqrt{1024}, \sqrt{6889} \sqrt{10004004}$;
${ }^{12}[7$, fol. $111 \mathrm{a} / 9]: \sqrt{15}, \sqrt{24}, \sqrt{35}, \ldots \sqrt{143}$;
$[7$, fol. $113 \mathrm{a} / 15]: \sqrt{9035} \approx 95 \frac{1}{19}$;
$[7$, fol. $114 \mathrm{~b} / 6]: \sqrt{1440044} \approx 1200 \frac{44}{2400}, \sqrt{7777777} \approx 2788 \frac{4933}{5576}$.
Evidently, aṣ-Șardafĩ mixed his two cases with squares of the general form $\sqrt{a^{2}+b}$.

On folio 115b/13 the second and smaller part of the Kitāb al-Käfi begins. Its main characteristic consists of demonstrating how variously disguised everyday problems can be resolved by reducing their conditions to general procedural steps.

It is introduced by a simple geometrical problem dealing with the measuring of areas. The units of the lengths and widths to be multiplied with each other are defined as labin, or libna (bricks), with the base 1 dhir $\bar{a}{ }^{〔}$ times 1 dhir \bar{a}^{c}. A remarkable parallel is to be found in the Kitāb al-Misāha of Abū 'Abdallāh M. b. Ibrāhīm al-Halabī al-Ḥanbalī (died 1563) ${ }^{13}$, a commentary on Ahmad b. Tabāt's Ghunyat al-hussāb [8]. al-Halabī quotes Ibn Țabāt who himself restricted the term labinī to rectangular solids [8, 127]. Since Ibn Tabāt does not mention his sources a direct relationship between the Ghunya and the Kitāb al-Kaffi cannot be drawn. It rather seems plausible to argue that labin, the word for the basic construction element, was gradually applied for terminological purposes when describing and measuring areas and solids. ${ }^{14}$ Thus, the terminological peculiarities of the Kitāb al-Kāfì turn out to be representative both of the variety of terms and of their tendency to be standardized in practical hisāb-treatises. Neither the general language dictionaries nor the only existing historical dictionary of Arabic mathematical terms [27] suffice for the understanding of these texts.

Next come several algebraic riddles of a stereotype form known since the Chinese Chin Chang [11, 86]. Worth mentioning is their application to Islamic tax calculations called șadaqāt-problems [7, fol. $117 \mathrm{~b} / 17 \mathrm{f}]$. Then the author poses a question which turns out to be a badly disguised form of the well-known duplication of the squares of the chess-board [19, 460-461]. "Suppose an employer hires a labourer for 1 dirham wage for the first day, two dirham for the second, four dirham for the third and so on. What's his wage on the $33^{\text {rd }}$ day?" The solution from al-Șardafi (or the scribe's representation) is in fact wrong, but the procedure used is interesting. By proposing to equate n with $2 k$ he decomposes the completely unworkable relation

$$
a_{n}=a_{1} \cdot q^{n-1}
$$

into three different steps, where starting with

$$
k=5,
$$

[^3]the exponent is doubled each time so that with
$$
a_{n_{1}}=q^{2 k-1}, a_{n_{2}}=q^{2(2 k-1)-1} \text { and so forth }
$$
the calculator arrives from 5 by way of 9 and 17 to the exponent 33 , having to square only three times. This is certainly a very practical interpretation of the rules of geometric progressions. But, again, more interesting is the fact that the only Arabic reckoner, I know of, who used this method was 'Abdalqāhir al-Baghdādī in his Takmila fì al-hisaāb written 150 years before. Al-Bagdādī explains the method but not the result [1,178 and note 29]. There is no direct indication that al-Șardafi borrowed this method from the Takmila (section: bāb fí hisāab al-yad!). 'Abdalqāhir lived and wrote in Isfarā̄in. But the impression is justified that by the end of the $11^{\text {th }}$ century this type of mathematical knowledge was 'domesticated' and introduced into the practical hisāb treatises. It not only begins to be included into the fund worthy of teaching, but it is also developed and diversified. At the end of the $14^{\text {th }}$ century a certain Taqīyaddīn al-Ḥanbalī already mentions in his K. Ḥāw $a l a l-l u b a \bar{b}$ min 'ilm al-hisāb [31, fols. 1a-44a, fols. 4b-5b] three methods to calculate the sum of a geometric progression and freely operates with the composition of n in q^{n-1} [31, fol. 5a/-4f].

c) The Continuation of the Text

As for the purely mathematical techniques of interest one could as well stop here with the description of the manuscript. But an almost unique fact justifies continuing the description, though indirectly. The Mukhtasar of Șardafí turns out to be one of the rare texts on applied reckoning that did not disappear in libraries or - at best - got worn out in the hands of practitioners - but rather experienced a literary career since a certain Sirāj al-Dīn Abū Bakr b. 'Alī b. Mūsā al-Hāmilī [$M T$ $25 \mathrm{a} / 10$], another Yemenite who died in $769 / 1367$, composed a commentary on it. ${ }^{15}$ The casual reader will be caught, presumably, first by the problem noted on the title page: Suppose a hermaphrodite marries a free woman, who delivers him a child; next, our hermaphrodite gives birth to a child; then he dies; who inherits what? asks the author. The solution given is less sexual than one would imagine. On the next page al-Hāmilī reports that his students had asked him whether he could compose a commentary on the K. Mukhtaṣar al-Hindī of a certain 'al-Șardafì'. Al-Hāmili's response, the text called Ma'ūnat al-țulläb fì

[^4]ma'rifat al-hisāb (The help for the students to study arithmetic), turned out to be - in fact - a selective, but close commentary of al-Șardafi's text, drawn probably from different sources. This conclusion can only be explained by a certain proliferation of the Mukhtaṣar between the author's death and the student's dialogue with his teacher. During these two and a half centuries the text must have circulated to some extent at least. Otherwise Hājjī̄ Khalīfa, the only biographer of al-Ṣardafī who mentioned the Mukhtaṣar [14, V, 200], could not have gained knowledge of its existence. Perhaps it was less the contents of the Mukhtaṣar that let it survive than the reputation of its author as a specialist on inheritance law. His before-mentioned treatise on hisāb al-farā'id, no biographer has failed to mention. The peculiar character of this text is described elsewhere [25, 223-230]. Its distinguishing feature is the stress laid on the facilitation of calculating juridically defined lots by analogy to arithmetical proportions. Bearing this rather one-sided representation of al-Şardafī in the biographical collections as an inheritance specialist in mind, one is surprised by the before-mentioned fact that while the $K a \bar{f} \imath \imath \imath$ al-farā'id has only survived in four Mss, the Mukhtaṣar has come down to us in more than a dozen known texts between Sanaa and Manchester. The key to understanding the misproportion of factual survival and biographical representation can be found in al-Hāmili's commentary. The selection he made to explain the Mukhtaṣar to his student must be interpreted as having been intentional. Scrutinized under this aspect the $M a^{〔} \bar{u} n a$ discloses a striking imbalance. Whereas al-Ṣardafĩ dedicated almost 60 of total 68 pages to more or less theoretical and methodical problems and demonstrated their application only briefly in the last part, called masā'il (practical solutions of questions posed, i.e. questions), al-Hāmilī dedicated almost two-thirds of his Ma‘ūna to these mas $\bar{a}^{\prime} i l$. In his introduction he argues explicitly for this selection: "Our Shaikh has not mentioned methods of mawāzīn (weights), nisba (proportion) and ma'rifat al-kusūr (fractions) which the scholars often use for solving problems of 'extension', 'inheritance' and $m u^{‘} a \overline{m a l a ̄ t}$ (everyday calculation)" [3, fol. $2 \mathrm{a} / 2$]. The intention to refine and enlarge al-Şardafi's text for practical purposes also dominates the first third, the introductory part.

- On fol. 3b/6f. he explains how to multiply economically numbers that can be decomposed in factors easy to handle:

$$
12 \cdot 13=[(3 \cdot 13) \cdot 4]
$$

- On fol. $7 \mathrm{a} / 18 \mathrm{f}$. he describes a method to square sums of whole
numbers - which again are called jubūr and not șihāh${ }^{16}$ - and fractions

$$
\left[\frac{\left.6 x^{2}\right]^{2}}{}\right.
$$

- On fol. 9a he reproaches al-Ṣardafî for not having explained the extraction of the root of the sum of whole numbers and fractions.
- On fol. 10b, he shows that by repeating the procedure the approximation of a composite square-root can be made more precise. [See next page.]

His concern appears to be much more 'practical' - as opposed to 'abstract' - than al-Sardafi's. Among his examples to make his method transparent we find (fol. 9b):

$$
\sqrt{45+\frac{1}{2}+\frac{1}{8}} \text { and } \sqrt{496+\frac{1}{5}+\frac{1}{10}}
$$

While the first root represents the class of fractions that "may have a root" (qad yumkin" an yakūna lahū jidhr) because both denominator and numerator end on one of the 'possible' numbers 6 and 9^{17}, that is

$$
\sqrt{\frac{729}{16}},
$$

and because the number of places, i.e. 3, is 'a possible one', he demonstrates with the second that the smallest common denominator,

$$
\text { i.e. } 10: \sqrt{\frac{4963}{10}}
$$

causes the square to belong to the group of the 'unextractable ones' (ghair majdhür). These numbers are called 'mute' (aṣamm) and can only be extracted by approximation. It is this approximation which is dealt with next (M, fol. 10af., see the foldout facing p. 198):

The development is peculiar in two aspects: first the approximation converges rapidly to the root - and second: the structure of r_{n} guarantees the steady decrease of the subtrahend and prevents at the same time the value of r_{n} from reaching zero.

It is worth mentioning that al-Hāmilī does not bother about what al-Şardafí (fol. 111a/13) explains to be a trick (hīla) with square-roots that display the peculiarity ($\mathrm{a}<\mathrm{b}$), for instance the root $\sqrt{15}$.

Since in this case $\frac{b}{2 a}$ yields 1 , which - added to $3^{[2]}$ - gives $\sqrt{16}$, the mistake is evident.

[^5]Therefore, the trick is to add two to the denominator and one to the numerator so that the root:

$$
a+\frac{b+1}{2 a+2}=3 \frac{7}{8}
$$

is found. Perhaps he did not mention this hīla because it had - long before - stopped being one. That by the time of al-Hāmilì this approximation variant was well-known has been shown by $\mathrm{A} . \mathrm{Sa}^{\text {©idā }}$, in his edition of Ya'īš b. Ibrāhīm al-Umawī al-Andalusī's Marāsim al-intisāb fì 'ilm al-hisāb. ${ }^{18}$ Al-Umawī, before turning to the cube root, is slightly more precise than al-Sardafì by distinguishing three cases

$$
b<a, b>a \text {, and } b \geq a
$$

but seems to be unaware of what his Yemenite contemporary al-Hāmilī proposed. In fact, the hīla of al-Șardafì is reported by older and modern historians of Arabic mathematics - I am referring to Heinrich Suter's paraphrased translation of the hisāb-treatise of Abū Zakarīyā' Muḥammad al-Hașṣār [29, 115-143; 21, 56-60] and Driss Lamrabet's Introduction à l'histoire des mathématiques Maghrébines - to have been introduced by the Maroccan al-Haṣṣār [29, 140-141; 21, 195] and repeated by Ibn al-Bannā $\quad[29,141 ; 16,64 / 3$ (ar.); 15, 286/10, 162; 24, 79/10]. Where al-Ṣardafĩ drew his knowledge, almost two generations earlier than al-Hașṣār, we do not know. ${ }^{19}$ The same holds for al-Hāmili's approximation method, although its chronological setting is less exciting. We shall see that - though relatively isolated in East-Yemen - this and the following efforts of al-Hāmilī must not necessarily be regarded as those of a lone wolf. There are indications that he must have been familiar with parts of the older Northern and perhaps Eastern mathematical traditions too.

[^6]10a/7: $\sqrt{40}=\sqrt{36+4}=6+\frac{4}{26}=6+\frac{1}{3} \quad\left(\sqrt{N}=\sqrt{a^{2}+b}=a+\frac{b}{2 a}\right)$

/11: al-Hāmilī: "al-Şardafī": $\quad a+\frac{b}{a}$	1.	$\sqrt{N}=\sqrt{a^{2}}$	$\frac{b}{2 a} \quad(=6.333333)$
13: "then square $6+\frac{1}{3}$ " $\sqrt{\left(6+\frac{1}{3}\right)^{2}}=\sqrt{40 \frac{1}{9}}$	2.	$\left(a+\frac{b}{2 a}\right)^{2}$	$\begin{aligned} & =a^{2}+2 a \frac{b}{2 a}+\frac{b^{2}}{4 a^{2}} \\ & =a^{2}+b+\frac{b^{2}}{4 a^{2}} \end{aligned}$
115: "If you want to extract the root more exactly:" 1. "Double" $\left(6+\frac{1}{3}\right)=12 \frac{2}{3}$	3.	$2\left(a+\frac{b}{2 a}\right)$	
2. "Divide the remainder": $\begin{aligned} & \left(\frac{1}{3}\right)^{2} \\ & \left.\frac{1}{9}: 12 \frac{2}{3}=\frac{1}{\left(\frac{1}{9}\right)}\right]^{2} \\ & \frac{1}{114}\left[F: \frac{1}{124}\right] \end{aligned}$	4.	$\left(a^{2}+b\right)+R_{1}$ R_{1}	$\begin{aligned} & =\left(a^{2}+b\right)+\frac{b^{2}}{4 a^{2}} \\ & =\frac{b^{2}}{4 a^{2}} \end{aligned}$

4. a)

$$
\frac{\frac{b^{2}}{4 a^{2}}}{2\left(a+\frac{b}{2 a}\right)}
$$

	$=\sqrt{\frac{1}{12996}}$	4. b)	$\begin{aligned} \sqrt{a^{2}+b}-a+\frac{b}{2 a}-\frac{\frac{b^{2}}{4 a^{2}}}{2\left(a+\frac{b}{2 a}\right)} & \\ & (=6.326389) \end{aligned}$
118	3. "If you want the result to be more exact (adaqq), proceed as before!"		(See below)

5.

$$
\sqrt{a^{2}+b} \propto a+\frac{b}{2 a}-\frac{\frac{b^{2}}{4 a^{2}}}{2\left(a+\frac{b}{2 a}\right)}-\frac{\frac{b^{2}}{4 a^{2}}}{2\left(a+\frac{b}{2 a}\right)}-\left(\begin{array}{rl}
\frac{b^{2}}{4 a^{2}} \\
2\left(a+\frac{b}{2 a}-\frac{b}{2\left(a+\frac{b}{2 a}\right)}\right) & \\
=6,325676 ; \\
\sqrt{40} & =6,324555 ; \\
\mathrm{D} & =0,001121)
\end{array}\right.
$$

But let us first reconsider his approximation. When discussing the extraction of mute roots and the methods of approximation at the beginning of the $14^{\text {th }}$ century, one immediately thinks of the achievements of the famous Maghribī scholar Ibn al-Bannā́ (died 1321) ${ }^{20}$ preserved in his Talkhīṣ ámāl al-hisāb and its commentary Raf́ al-hijā̄b. Neither Suter nor Tropfke [32, 277-278], neither of whom knew of the Raf ${ }^{c}$ al-haj $\bar{j} b \bar{b}$, were fully aware of the eminent role of Ibn al-Bannā' as a central link of a Maghribī school of mathematicians that had been started by al-Ḥasṣār at the end of the $12^{\text {th }}$ century [23, II Nr. 325d, p. $361 ; 13 ; 25,41]$ and flourished down to al-Qalaṣādī (died 1486) [23, II, Nr. 444, 510-2; 25, 53, 231-2]. For our purpose these connecting lines are of interest insofar as both texts of Ibn al-Bannā ${ }^{\prime}$ lack what al-Ḥasṣār had already fully described and al-Qalaṣādī uncompletely repeated, i.e. the repetitive subtraction of the correcting link as proposed by al-Hämilī [16, 64/9; 15, 285-7, 160-2]. Al-Haṣṣār, when extracting $\sqrt{5}$, subtracts from $\sqrt{N}<\sqrt{\left(a_{1}+r\right)^{2}}$ a second and a third remainder and adds literally: "[to make the result more precise] you can continue with that as long as you want". ${ }^{21}$

As to al-Qalaṣādī, his approximation method (tadqīq al-taqrīb) [24, 81f] resembles the second step of al-Hāmilī (=4). After having regularly extracted

$$
\sqrt{6} \approx 2 \frac{1}{2}
$$

and found out "a fourth of approximation" (taqrīb bi-rub), he orders this fourth to be divided by the double of the root - this is 4 of al-Hāmilī - and to subtract the result of the root $(=4 \mathrm{~b})$ which gives the more exact root (adaqq)

$$
2+\frac{1}{2}-\frac{1}{20}=2 \frac{2}{5} \frac{1}{20} .
$$

But he stops here by squaring the root found in order to check the difference between this and $\sqrt{6}$, that is $\frac{1}{400}$, while al-Hämilī continues with 5 by instructing one to repeat 4 a and 4 b (see above) to minimize this difference.

This short methodological and chronological comparison justifies

[^7]two remarks. The first is to qualify the mathematical importance of this repetitive approximation and its partial neglect by Ibn al-Bannā ${ }^{2}$. Since he, after all, mentions the one-fold subtraction of the remainder $[21,195]$ and since its repetition does not change the procedure essentially, one should not overvalue these divergencies.

The second refers to the possible background of al-Hämili's method. Driss Lamrabet pronounces explicitly what can now be contradicted: "La formule d'al-Ḥasṣār était inconnue des mathématiciens musulmans orientaux." [21, 197] Obviously, al-Hāmilī had known it and - given the complete unfamiliarity with al-Hasṣār outside the confines of the Maghrib and given the neglect of Ibn al-Bannā - had most probably not learnt it from North-African sources. Tropfke preserves an interesting note that could turn our attention into a wholly different direction [10, I 272]. The "Bakhshalī"-manuscript, a text from North-West India dated at the latest to the $12^{\text {th }}$ century, contains three examples of root approximations among which $\sqrt{41}$ is dealt with very similarly to the way al-Hāmilī took. Like al-Hämilī, the author gives two repetitive values of which the second is arrived at by subtracting

$$
\frac{\frac{b^{2}}{4 a^{2}}}{2\left(a+\frac{b}{2 a}\right)}
$$

But the indication that this process could be repeated is lacking. ${ }^{22}$ The similarity is striking but too isolated for speculation.

Before returning to al-Hāmilī's commentary on the second part of al-Ṣardafi's Mukhtaṣar, one impression can be anticipated: al-Hämilī is not trying to correct al-Ṣardafì but to complement him. On several occasions he adds general methods and specific solutions al-Ṣardafī did not deduce (lam yadhkurhu al-Shaikh). This is the case with the problem of a man who arrives in a city with a certain amount of capital which he manages to double each day, donates 4 dirham in exchange for his success as șadaqa and ends up on the fifth day with empty hands [3, fol. 23a/-1f; 7, fol. 118a/8]. The solution given is lengthy but very transparent:

$$
\begin{array}{rlccc}
\text { sadaqa } 4 & 4 \cdot 2+4 & 12 \cdot 2+4 & 28 \cdot 2+4 & 60 \cdot 2+4=\frac{124}{32}=3 \frac{7}{8} \\
\text { "always" 1 double } 2 & 4 & 8 & 16 & 32
\end{array}
$$

which represents a geometric progression

[^8]with $a_{k}=2 a_{k-1}-4 \Rightarrow a_{1}=\frac{2 a_{k-1}-4}{q^{k-1}} \quad(k \in\{2,3,4,5\})$
The indication "always to start with one and double consecutively in the lower line" makes clear that al-Hämilī is not only concerned about the proper solution of this merchant's misfortune but also about the general explication of the method to solve this type of problem. He therefore adds several similar masa $\vec{a} i l$ in order to practice this method.

Together with the explicable completion of al-Șardafi's Mukhtaṣar by al-Hāmilī, we realize here the second peculiarity of al-Hāmilī's commentary: the demonstration of general methods of solution.

In order to stress the uniformity of the procedure hidden behind the formulation of the problem, al-Hāmilī operates with variations. For demonstrating the solution of equations of the type: $x+a y=P($ rice $)$; $y+b z=P ; z+c x=P$, he camouflages the problem as masä̀ $i l$ al-širka (problems of financial partnership), masā̀il al-laila (day and night-problems), masā̀il al-ṭuyūr (purchase of birds), mas $\vec{a}^{\prime} i l ~ a l-t \underline{t} a u b$ (purchase of cloth) and masa $\vec{a} i l$ al-șand $\bar{u} q$ (problems of the box, where the box stands for a kind of savings bank book). Many of these masa'il possess an original and methodological setting. In view of the fact that the Ma'ünat al-țullāb contains - until now - the only indication that Indian arithmetical elements might have penetrated the Arabic ḩisäb by way of Yemen, the careful comparison of its 'problems' with Indian material seems to be a promising point of departure for further investigations.

It is this variability of application, which exceeds that of al-Sardafī by far, that delivers the third peculiarity of al-Hāmilī's commentary. Almost inevitably this variability is only achieved by tapping common and traditional hisāb texts. So al-Hāmilī cites the riddling love-poem mentioned by al-Sūulī, the teacher of the 'Abbāsid princes al-Rādī, al-Muqtadir and al-Muktafī in his Adab al-kuttāb [3, fol. 24a/15, p. 243, 3f.; 25, 61-3]. Shortly thereafter he cites verses of a scholar named Abū Bakr 'Abdallāh al-H.-'-r-m-1 whom I could not identify. The same holds true for a certain Yūsuf al-Muhalhal (Yūsuf 'the Slim'), a jurist whose verses on the method of mizān al-taṭarruh are inserted [3, fol. 8b/9]. Perhaps they belong to a local Yemenite tradition which has obviously contributed actively and passively to the text. According to al-Hāmilī, scholars from Shujaina and from Wādī Zabīd submitted mathematical problems to him which he introduced into the commentary [3 , fol. $24 \mathrm{~b} / 9$]. At the end of the text when explaining enlarged versions of the before-mentioned equations of the type $x+a y+b z=P$ etc. he explicitly refers to Abū Kāmil Shujā‘ b. Aslam. The wording of this
reference displays intimacy with Abū Kāmil's "Algebra". The problem tackled by al-Hāmilī is similar to a taub-problem Abū Kāmil dealt with [12, 73-74]. The text closes with the remark of the writer that the author (al-musannaf) finished with it in the year 724/1324.

Though the Mukhtasar ends here, we are not at the end of the manuscript. One and a half pages follow, written in the same ductus by a person who calls himself once more $m u^{\prime}$ allif hādhā al-kitāb (author of this book). This appendix contains rediscussions of problems of the Mukhtaṣar. Among them, this author shortly resumes what al-Hāmilī himself evidently had not regarded worth being included in his commentary on al-Ṣardafī's Mukhtașar: the calculation of the final wage of our hired labourer after 33 days. But, again, the conditions are changed and varied insofar as to the labourer's wage the double of what he had earned the previous day is added, which results in a progression with $q=3$ and the correct values ${ }^{23}$:

$\mathrm{k}=5$	$\mathrm{k}=9$	$\mathrm{k}=17$	$\mathrm{k}=33$
18 [sic!]	6.561	43.046 .721	1.853 .020 .188 .851 .841

c) Conclusion

Two observations can be summarized and perhaps be used for a more general conclusion.

First, the existence of a local literary hisāb tradition, widely ignored by the Islamic biographers and, hitherto, the historians of hisāb, must definitely be included as an important factor in research on applied hisāb down to the $12^{\text {th }}$ century. Through the identification of textual ramifications, we not only learn more about the significance of hisāb as a practical science exercised in local school traditions, but we also are occasionally put into a position to observe the creative circulation of more or less standard knowledge with the effect of modest but informative innovations.

Second, the direction of change is always pragmatical. Transparency, economy and simplicity are its motives. The degree of originality, though, is difficult to detect since the authors of this type of hisa $\bar{b} b$ treatise display proof of a certain familiarity with the widely accepted 'scientific' literature. The seam between this type of knowledge and its reception and transformation for practical purposes - be it just teaching

[^9]or even the practitioner's application - is more permeable than has been taken for granted until now.

Both observations combined, the conclusion suggests itself: Without the evaluation of the hundreds of untouched hisa \bar{b} manuscripts in European and Oriental libraries not only the cours and development of every-day hisāb in the Islamic medieval societies will remain spurious and incomplete but also the scope and role of the academical discipline 'ilm al-ḥisāb.

Literature

1. 'Abdalqāhir al-Baghdādī, al-Takmila fì al-ḥisāb, ed. A. Sa'īdān, Kuwait 1985.
2. Abū 'Abdallāh M. b. Ibrāhīm al-Ḥalabī al-Ḥanbalī, Mahāyil al-malāha fì masä’il al-misāha, Paris BN, MS 2474 (fols. lb-53b).
3. Abū Bakr 'Alī b. Mūsā al-Hāmilī, K. Ma'ūnat al-ṭullāb fî 'ilm (ma'rifat) al-hisā̈b, Berlin, Preußischer Kulturbesitz, MS 5977, fols. 2a-29a.
4. Abū al-Ḥasan Aḥmad ibn Ibrāhīm al-Uqlīdisī, Kitāb al-Fuṣul fì al-hisā̄b al-hind̄̄, ed. A. Sa‘īdān, ed. ${ }^{2}$ 'Ammān 1984 (1973).
5. Abū Kāmil Shujā‘ b. Aslam, see 'Die Algebra des ...'
6. Abū al-Wafā' al-Būzjānī, 'Ilm al-ḩisāb al-'arabī, ed. A. Sa'idān, 'Ammān 1971.
7. Abū Ya'qūb Isḥāq b. Yūsuf al-Ṣardafĩ, Kitāb al-Hindī, Berlin, MS 5960, fols. 90a-124a.
8. Aḥmad b. Tabāt, Die Reichtümer der Rechner (Ghunyat al-hussāb) von Ahmad b. Tِabāt (gest. 631/1234), ed. U. Rebstock, Walldorf-Hessen 1993.
9. Aḥmad Bābā al-Tinbuktī, Nail al-ibtihāj, ed. 'Abdalḥamīd 'Abdallāh, Ṭarābulus 1989 .
10. C. Brockelmann, Geschichte der arabischen Litteratur, I-II, S I-II, Weimar, Leiden 1898-1942.
11. Chin Chang Suan Shu, Neun Bücher Arithmetischer Technik, trans. and com. by R. Vogel, Braunschweig 1968.
12. Die Algebra des Abū Kāmil Šojā̄ ben Aslam, ed. Josef Weinberg, München 1935.
13. A. Djebbar, Quelques aspects de l'algèbre dans la tradition mathématique arabe de l'Occident musulman, ler Colloque international sur l'histoire des mathématiques arabes, 1-3 Déc. 1986, Alger 1988, pp. 99-123.
14. Ḥājjī Khalīfa, Kašf al-žunūn, I-VI, ed. G. Flügel, Leipzig, London 1835-58, repr. Beirut 1982.
15. Ibn al-Bannā', Raff al-hijāb 'an wujūh a'māl al-hisāb, ed. Muḥammad Aballāgh, Fes 1994.
16. Ibn al-Bannā’, Talkhīṣ ámāl al-ḥisāb, ed. Mohamed Souissi, Tunis 1969.
17. Ibn al-'Imād al-Ḥanbalī, Shadharāt al-dhahab fì akhbār man dhahab, I-VIII, Kairo 1350-1351, repr. Beirut 1979.
18. Ibrāhīm Ahmad al-Majhafī, Mu'jam al-buldān wa al-qabā’il al-yamañ̄ya, Șan‘ā’ 1988.
19. G. Ifrah, Histoire universelle des chiffres, Paris 1981.
20. David King, Mathematical Astronomy in Medieval Yemen. A bibliographical survey, Malibu 1983.
21. D. Lamrabet, Introduction à l'histoire des mathématiques maghrébines, Rabat 1994.
22. O. Löfgren and R. Traini, Catalogue of the Arabic Manuscripts in the Biblioteca Ambrosiana, vol. 1, Vicenza 1975.
23. G. P. Matvievskaja and B. A. Rozenfeld, Matematiki i Astronomy Musulmanskogo Srednevekovja i ix Trudy (VIII-XVII vv.), I-III, Moskau 1983.
24. Al-Qalaṣādī, Kashf al-asrār 'an 'ilm ḥurūf al-ghubār, ed. Mohamed Souissi, Carthage 1988.
25. Ulrich Rebstock, Rechnen im islamischen Orient. Die literarischen Spuren der praktischen Rechenkunst, Darmstadt 1992.
26. A. Saidan, The Arithmetic of Al-Uqlīdisī. The Story of Hindu-Arabic Arithmetic as told in Kitāb al-Fuṣūl fì al-Ḥisāb al-Hindī by Abū al-Ḥasan Ahmad ibn Ibrāhīm al-Uqlīdisī. Tr. and ann. by A. S. Saidan. Dordrecht 1978.
27. M. Souissi, La langue des mathématiques en arabe, Tunis 1968.
28. Sūryā Siddhānta, ed. R. Sh. Shukla, Lucknow 1957.
29. H. Suter, Das Rechenbuch des Abū Zakarījā el-Hașsār, Beiträge zur Geschichte der Mathematik und Astronomie im Islam, I-II, ed. Fuat Sezgin, Frankfurt 1986, II, pp. 115-143.
30. H. Suter, Die Mathematiker und Astronomen der Araber und ihre Werke, Leipzig 1900.
31. Taqīyaddīn al-Ḥanbalī, K. Ḥāw̄̄ al-lubāb min 'ilm al-ḥisāb, Paris BN, MS 2469.
32. J. Tropfke, Geschichte der Elementarmathematik in systematischer Darstellung, I-VII, Berlin, Leipzig 1921-1924; rev. ed. Vogel, Reich and Gericke, Berlin, New York 1980.
33. Ya‘īsh b. Ibrāhīm al-Umawī al-Andalusī, Marāsim al-intisāb fí 'ilm al-ḥisāb, ed. A. Sa‘īdān, Aleppo 1981.

[^0]: * Orientalisches Seminar der Albert-Ludwigs-Universität, D-79085 Freiburg, Fed. Rep. of Germany.
 ${ }^{1}$ See Appendix A in [20,53-60], where 16 Yemeni works on arithmetic, surveying and inheritance of 11 authors are listed.
 ${ }^{2}$ The passage [30,111, note c] referred to ("H. CH. V 21") does not contain news about a "Ṣardī". Probably a zero in '21' has been lost.

[^1]: ${ }^{3}$ [23, II, No. 260]: Kitāb Mukhtaṣar al-hindī.
 ${ }^{4}$ [7, fol. $\left.90 \mathrm{a} / 3\right]$; [20,53] records three different titles: K. al-Käfi fì mukhtaṣar al-Hindī, K. al-Darb al-Hindī, Mukhtaṣar (al-hisāb) al-hindī, but without relating them to specific manuscripts.
 ${ }^{5}$ See [23, II, ibid.], where a third text of the author is registered under the title: Kifāyat al-muhtadī wa-ijābat al-muj̄$[b]$, and $[20$, ibid. and 56] who identifies this treatise (Kifāyat al-muhtadā) as a commentary by a certain Abū 'Abdallāh M. b. 'Abdallāh on authority of [10, S II (= I!), 855]. Brockelmann's version of the title seems to be the correct one: Kifāyat al-muhtadī wa-ijäbat al-mahdī. Some confusion about this work remains yet, since D. King identifies it slightly later as a commentary on the Käfi $f i$ (grammalogue D 559). O. Löfgren and R. Traini [22,144] mention six copies of the Käfi in the Ambrosiana.
 ${ }^{6}$ None of Ibn Abī Ușaibi'a ('Uyūn al-anbā’), Ibn al-Qifṭī (Akhbār al-ḩukamā'), Zahīr ad-Dīn al-Baihaqī (Ta'rīkh al-hukamā), or Ibn Khallikān (Wafayāt al-a'yān) took notice of him.

[^2]: ${ }^{7}$ [26, 149]; cf. the shortly earlier published Arabic version [4, 198/13].
 ${ }^{8}$ [26, 391]; cf. the considerably shorter and slightly different commentary of the Arabic version [26, 470-472].

[^3]: ${ }^{13}$ [23, II No. 464, 556] with the title Mahāyil al-malāha fì masā̀il al-misāha, [2, fols. 1b-53b, fol. 46b].
 ${ }^{14}$ In a similar sense labinī is used by Abū 'I Wafā' al-Būzjān̄̄ $[6,262 / 10]$ and [1, 336/11].

[^4]: ${ }^{15}$ [10, S. II, 240-241]; [23, II No. 420b, p. 468]: 7394 (sic!) $=796$ h, misread from [30, 111, no. 260]: dies 769/1367-8; [3, fols. 2a-29a, fol. 25a/10].

[^5]: ${ }^{16}$ See note 9 .
 ${ }^{17}$ It is noteworthy that al-Hāmilī does not take up the witr-shaf ${ }^{\text {t }}$ terminology of as-S Sardafi.

[^6]: ${ }^{18}$ [33, 54 and note 66, p. 94]; cf. [26, 444-5]; [10, S II, 379]: "schrieb um 1489"; [23, II, Nr. 453, p. 538]: 15th century; Sa'īdān [33, 4, 9, where a misprint slipped in] mentions an $i j a \bar{z} a$ from the hand of al-Umawī in the year 774/1373 which would make him at least one century older.
 ${ }^{19}$ The most extensive comparative study on the (approximative) extraction of square-roots is contained in [4, 441-455]. After citing Heron's extraction of $\sqrt{720}$ (Metrica I. 8, cf. [26, 454]) A. Sa`idān points to the fact that "the Babylonians" used this process which produced the mean of the first and second approximation:

 $$
 \sqrt{a^{2}+r}-a+\frac{r+1}{2 a+2}
 $$

 To my knowledge, the only Arabic source, the undated and anonymous al-Hindi al-muntaza‘ min al-Käfi, that contains this approximation, operates with the special case $\sqrt{a+2 a} \approx a+\frac{2 a+1}{2 a+2}$
 [26, 448].

[^7]: ${ }^{20}$ For biographical data, see [23, II Nr. 399, p. 443]; [9, Nr. 51, 83-90] preserves an extensive article on this eminent personality. D. Lamrabet [21, 79-90] has summarized the numerous recent contributions to the knowledge of vita and opus of Ibn al-Banna $\overrightarrow{\text { ' }}$.
 ${ }^{21}$ [29, 141]; cf. [21, 196-197], where in formula 6 the denominator has to be corrected to $2\left(x+\frac{a}{2 x}\right)$.

[^8]: ${ }^{22}$ See $\mathrm{Sa}^{\text {© }}$ īān $[26,445]$ who refers to $[28,92]$ and adds that "this formula has not been traced in Arabic texts".

[^9]: ${ }^{23}$ [3, fol. 28a/14f]. Since the four sums as given in the text indicate each the basic wage of the following day $(=k), k$ must in fact be reduced by 1 .

