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A B S T R A C T

In scientific disciplines such as mechanics, medical imaging, or fluid
dynamics, simulations and measurements are used to gain an under-
standing of real-world phenomena. Working with and analyzing such
data allows scientists to derive better insights, improve current models
that try to describe real-world processes, or make better predictions
about future events. Increasing computing power as well as advances in
algorithms and measuring techniques allow for larger amounts as well
as for more accurate data. Additionally, to make data more reliable and
trustworthy, the uncertainty of the system or the measurements can
also be recorded, and the information made available. This, however,
also makes it harder to process, structure, and understand the resulting
information. Visualizing high-dimensional, uncertain, or multivariate
data has therefore grown to be a major challenge in the field of scientific
visualization.

The fields of our contributions are twofold:
First, we introduce novel visualization techniques for second-order ten-
sors. These mathematical objects are used to describe physical quantities
in a variety of applications, from diffusion tensor imaging (DTI) to de-
scribing derivatives of vector fields. Glyphs have proven to be a valuable
visualization for domain experts. While most of the known glyph tech-
niques are limited to symmetric second-order tensors only, we introduce
a new glyph design capable of encoding any given 2D or 3D second-
order tensor following a set of design principles. We further extend the
new construction which then allows the glyphs to represent Jacobian
matrices of unsteady vector fields. The final contribution in this field is
a novel extension for a variety of tensor glyphs to represent uncertain
symmetric second-order tensors.

Secondly, we deal with vector field ensembles. A single vector field often
describes the movement of liquids like wind or water. A vector field
ensemble is a collection of such fields over the same domain that might
either be the results of simulations with varying parameters or a set of
measurements of the same phenomenon. As such, ensembles provide a
way to have uncertainty represented with a collection of different repre-
sentations of the same experiment. Domain experts need appropriate
visualizations for finding trends, differences, and similarities within the
ensemble members. Side-by-side comparisons prove unsuitable for that
task when the number of fields is too high. A better strategy is to find
features that are able to represent or describe the whole ensemble. We,
therefore, introduce a new operator, called the Approximate Parallel
Vectors Operator. It finds all locations within an ensemble vector field,
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where the vectors of all ensemble members are approximately parallel
and thus very similar to each other.

All approaches and visualization techniques are applied to synthetic and
real-world data sets and therefore provide a number of novel visualization
tools for the investigation of scientific data.
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Z U S A M M E N FA S S U N G

Simulationen und Messungen helfen in vielen wissenschaftlichen Dis-
ziplinen wie der Mechanik, der Medizinischen Bildgebung oder der
Strömungsmechanik, ein besseres Verständnis für auftretende Phänome-
ne zu erhalten. Die Arbeit mit und die Analyse solcher Daten erlaubt
es Wissenschaftler*innen, bessere Einblicke zu erhalten, derzeit gängige
Modelle zu verbessern, die versuchen reelle Prozesse zu beschreiben oder
bessere Voraussagen über die Zukunft zu treffen. Der Anstieg der Re-
chenleistung sowie die Fortschritte bei Algorithmen und Messtechniken
sorgen für mehr Datenmengen und genauere Daten. Zusätzlich können
die Unsicherheiten von Systemen oder Messungen aufgezeichnet und
bereitgestellt werden, um Daten zu erlangen, die vertrauenswürdiger
und zuverlässiger sind. Dies sorgt allerdings dafür, dass das Verarbeiten,
Strukturieren und Verstehen der gesammelten Informationen komplizier-
ter wird. Daher ist das Visualisieren von hochdimensionalen, unsicheren
und multivariaten Daten zu einer massiven Herausforderung im Bereich
der wissenschaftlichen Visualisierung geworden.

Die Ansätze, die hier präsentiert werden können in zwei Bereiche aufge-
teilt werden:
Zuerst werden neue Techniken zur Visualisierung von Tensoren zwei-
ter Ordnung präsentiert. Diese mathematischen Objekte werden dazu
genutzt, physikalische Größen in verschiedensten Bereichen zu beschrei-
ben. Dies reicht von der Diffusionstensorbildgebung (DTI) bis hin zur
Ableitung von Vektorfeldern. Dabei haben sich Glyphen als wertvolles
Visualisierungswerkzeug für Fachexpert*innen erwiesen. Während die
meisten bekannten Konstruktionen von Glyphen allerdings auf den
symmetrischen Fall von Tensoren zweiter Ordnung limitiert sind, stellen
wir eine neue Konstruktion vor, welche einer Sammlung an Designgrund-
sätzen folgt und es ermöglicht, jeglichen 2D oder 3D Tensor zweiter
Ordnung zu repräsentieren. Außerdem erweitern wir diese Konstruktion,
sodass es ebenfalls möglich wird, Jacobimatrizen von zeitabhängigen
Vektorfeldern darzustellen. Der letzte Beitrag in diesem Bereich ist eine
neuartige Erweiterung für eine Vielzahl von Tensorglyphen, um ebenfalls
unsichere symmetrische Tensoren zweiter Ordnung darzustellen.
Der zweite Teil setzt sich mit Ensemblen von Vektofeldern auseinander.
Ein einzelnes Vektorfeld beschreibt oftmals die Bewegung von Flüssigkei-
ten wie Wind oder Wasser. Ein Vektorfeldensemble ist eine Sammlung
solcher Felder, die denselben Bereich beschreiben und beispielsweise
entweder das Ergebnis von Simulationen mit sich ändernden Parame-
tern, oder eine Sammlung an Messungen desselben Phänomens darstellt.
Es ist daher eine Möglichkeit, Unsicherheit durch eine Sammlung an
verschiedenen Realisierungen desselben Experiments zu repräsentieren.
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Fachexpert*innen benötigen passende Visualisierungen, um Tenden-
zen, Unterschiede und Ähnlichkeiten innerhalb der Ensemblemitglieder
zu finden. Wenn die Zahl der Felder zu hoch ist, stellen sich direkte
Gegenüberstellungen für diese Aufgaben als unpassend heraus. Eine
bessere Strategie stellt das Finden von Merkmalen dar, die das gesamte
Ensemble beschreiben oder repräsentieren können. Wir stellen daher
einen neuen Operator vor, den wir den Approximate Parallel Vectors
Operator nennen. Dieser findet alle Orte innerhalb eines Ensemblevek-
torfeldes, an denen die Vektoren aller Ensmemblemitglieder annähernd
parallel und somit sehr ähnlich zueinander sind.

Alle Ansätze und Visualisierungstechniken werden auf künstlich erstell-
ten sowie echtweltlichen Datensätzen angewandt und stellen somit eine
Reihe von neuartigen Visualisierungswerkzeugen für die Untersuchung
von wissenschaftlichen Daten dar.
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Part I

P R E L I M I N A R I E S





1I N T R O D U C T I O N

Scientific computing aims to model, simulate, and analyze phenom-
ena to help understand the world around and within us. By means of
simulations or measurements, domain experts produce large quantities
of numerical data in a variety of disciplines. This includes data such
as Computational Fluid Dynamic (CFD) simulations, that are used
to model complex processes like combustion or fluid motion, as well
as data obtained from Diffusion Tensor Magnetic Resonance Imaging
(DT-MRI) representing brain tissue structures. The resulting data is
manifold not only in its meaning but can also be high in its dimension-
ality. Understanding the acquired data is crucial to verify assumptions,
derive new information, or just explore a given set of data.
Scientific visualization aims to support these processes by transforming
abstract data into simpler representations, such as images or image
sequences, which then allow for faster and better understanding. This
utilizes the fact, that humans strongly rely on their visual perception
to interpret and perceive the world around them. From everyday appli-
cations such as maps indicating weather forecast data, to specific and
complex analysis tools to survey a patient’s blood flow: visualization can
help to drastically reduce the cognitive effort needed to comprehensively
study data.

Due to the ever-increasing computational power, growing available stor-
age as well as improving methods, not only the amount of data that is
produced and needs to be stored has raised significantly. Additionally,
several mappings into spaces of different dimensions, such as scalar,
vector, or tensor data, describing different aspects of a simulation or
measurement can be extracted at the same time.
In weather simulations, for instance, pressure or temperature are often
recorded as scalar fields, movement of particles or fluids, on the other
hand, can be described by vectorial data. Second-order tensors are
commonly used to represent quantities that describe even more complex
phenomena like mechanical stresses or diffusion processes such as those
described by the diffusion tensor within tissue. Further, the quality of
each of these data types can be evaluated in terms of how reliable a
given quantity is. Especially in applications where the consequences
of a wrong conclusion are connected with high risks, such as medical
applications, it is crucial that experts can assess the uncertainty of the
data. This has motivated scientists and engineers alike to collect and
save even more and higher-dimensional data. It seems only logical, that
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introduction

collecting all this information allows for a better and deeper understand-
ing of the overall processes. It may also lead to new knowledge about
correlations within the different quantities that were not clear before.
There is, however, one severe drawback that arises: processing all this
data mentally, connecting its meaning, and making sense of it becomes
increasingly difficult. This directly applies to scientific visualization as
well: present visualization techniques are often not able to cope with
the high amount of data, either in terms of their data management
and efficiency or in the resulting images, that might be too complex or
cluttered to serve its original purpose. Metaphors used before to com-
municate core insights, might not be applicable anymore. Adapting and
improving known approaches has the advantage, that users presented
with these visualizations might be able to understand and use them
with ease. For some types of data, however, there do not even exist
any known visualization approaches. Each data type has its own set
of difficulties and possibilities that each span research fields on their own.

Providing simple yet meaningful visualizations in the face of these chal-
lenges has led to numerous research contributions over the last few
years. Within these, especially visualization of second-order tensors has
gained a lot of momentum. These mathematical objects are a standard
choice to represent complex physical quantities such as the diffusion
within the human brain matter or the curvature of a smooth geometric
surface. This does, however, also mean that interpreting and working
with such tensor data is also complex and generally strongly application
dependent. That is why new mathematical concepts and frameworks
were developed over the years that allow for easier handling, processing,
and understanding of tensor objects. By decomposing tensors or deriving
tensor properties, these can be mapped to scalar or vectorial data that
is easier to understand and can be visualized with known techniques to
allow domain experts to gain insights into such fields. Specific tensor
properties can be used to classify tensors to then find structures in
tensor fields such as topological features. This does however omit parts
of the data encoded by the tensors. For deeper insight and analysis, a
complete and direct encoding of such data is often desirable. One possi-
ble way to do this is by the use of glyphs: the depiction of tensor data
at sampled locations by means of simple and comprehensible geometric
primitives has become a well-known and widely accepted technique,
known as tensor glyph visualization. Mapping multiple tensor values
to different aspects like size, shape, orientation, and color, provides a
powerful tool for investigating the underlying data. Most contributions
have however mostly been focused on restricted cases, demanding spe-
cific tensor properties such as symmetries or specific definiteness. This
does exclude data from various applications such as computational fluid
dynamics, where tensors are often found to be non-symmetric. Further,
tensor data is often treated as “certain”. Measured or simulated tensor
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fields, just as most data, often incorporate uncertainties that might be
of importance for domain experts especially in the context of medical
applications. Treating the data as uncertain increases the complexity of
these already high-dimensional objects even further, which most existing
glyph constructions cannot incorporate.

Similar to second-order tensor fields, dealing with uncertainty in vec-
tor fields has also received a lot of attention in recent years. Powerful
models exist that are used to describe meteorological phenomena like
wind movement or behavior of flow like blood or water. They can also
be used to predict such events by running numerical simulations. As
the complexity of involved and intercorrelated physical influences and
laws can only be modeled up to a certain degree, such models can only
provide results up to a limited accuracy. To account for this, uncertainty
can be estimated using not only one result. Multiple measurements can
be taken, or simulations are run several times with varying simulation
parameters or alternative models leading to a collection of data known
as an ensemble. Organizations that provide highly accurate weather
predictions, such as the European Centre for Medium-Range Weather
Forecasts (ECMWF), base their predictions on such ensemble forecasts.
When dealing with ensemble vector fields, each ensemble member is a
vector field defined on the same spatial and temporal domain. Here,
too, several works have been proposed over the last years that deal
with ensemble visualization. Often, known techniques from vector field
visualization are applied to each member independently leading to a
collection of images. If the number of members is small enough, they
can simply be but in juxtaposition. For large ensembles, this might,
however, be inefficient or lead to cluttering, making it difficult to ex-
plore the data. To get a better understanding of the entire ensemble,
statistical measures such as mean or standard deviation can be derived
and rendered in a single image. This might however lead to a loss of
important features and structures within the ensemble members.

This thesis is the result of the effort to analyze and tackle the problems
mentioned above. This includes reviewing current state-of-the-art visu-
alization approaches and further the development of new techniques for
the visual analysis of high-dimensional and uncertain data. We do not
limit the research on certain applications but want to provide general
ideas that can be applied to a variety of problems. We, therefore, focus
on glyphs for second-order tensors as well as vector field ensembles
and not only wish to extend the list of tools available to domain ex-
perts to explore, analyze and visualize such data, but further hope that
this research contributes to a better understanding of the data itself as
well as the development of suitable visualization techniques in the future.
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The thesis is structured as follows:
Chapter 2 serves as a general introduction to scientific visualization
and offers background to key concepts of visualization and their mathe-
matical properties used throughout this thesis. As the fields of research
contributions in this dissertation are twofold, Part ii introduces novel
glyph-based visualization techniques for second-order tensor data.

• First, we give suitable definitions of tensors and list not only
important tensor properties but also give several applications in
which such data is used and how it can be visualized.

• We then take a closer look at tensor glyphs as means of tensor
field visualization and discuss existing glyph techniques.

• We introduce and justify a set of strict design principles in Chap-
ter 5, which we set as a basis for further glyph design. Building
upon this list, we present a new glyph that is capable of repre-
senting any given 2D or 3D second-order tensor without further
requirements on tensor properties like symmetry or definiteness.

• Based upon this work, Chapter 6 shows, how the glyphs can further
be extended to also include time-dependent 2D or 3D Jacobian
matrices, which form a special case of second-order tensors.

• Finally, in Chapter 7 we propose a novel technique that allows
different classes of symmetric tensor glyphs to be extended with
an offset surface that represents uncertainty given by a covariance
matrix.

Glyphs are computed for a variety of data sets, including measured
diffusion tensor data, simulated stress tensors, and the derivative of flow
simulations.

In Part iii, we investigate the visualization of vector field ensembles.

• First, we introduce vector field ensemble data and challenges
in its visualization. We especially focus on the extraction and
visualization of line-type features such as vortex core lines.

• We introduce a new operator in Chapter 10, called the Approximate
Parallel Vectors Operator which introduces new line-type features
that are able to represent or describe the ensemble data as a
whole instead of looking at each ensemble member separately. It
is therefore a generalization of the well-known parallel vectors
operator. This, too, is applied to a variety of datasets.

The thesis is concluded by a summary as well as a section on future
work in Part iv.
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2S C I E N T I F I C V I S U A L I Z AT I O N

The term visualization refers to a multitude of techniques and a common
definition does not exist [24]. All of them do, however, share a similar and
simple goal: efficient communication of messages that can be extracted
from the given data by the use of images. Scientific visualization does
indeed share this goal, but deals, as the name indicates, with scientific
data. Whereas the term was first coined by McCormick et al. [119]
more than thirty years ago, the research areas it covers as well as the
challenges arising from new technological developments have grown
steadily over the years [62], [178], [206]. While implementations may
vary greatly, depending on the application, data type, and visualization
goal, they can be summarized by the following pipeline [59]:
First, scientific data, either taken from simulations or measured in
real-world situations is analyzed, followed by filtering, such that only
relevant data is used. Then, the data is mapped to a geometric model
which is then rendered to an image. Especially filtering and mapping
are the processes that allow for the most control over the expressiveness
and efficiency of the visualization. Depending on the data type and
application, it might be of interest to either try and find features within
a given set of data, that are able to describe a certain behavior of
the underlying phenomenon or using a direct visualization method
to explore what might be hidden within the data. We give a formal
introduction to the most relevant data types appearing in this thesis.
To serve as a background for the following parts, we further introduce
several visualization concepts or techniques relevant to these types.

2.1 data types and visualization

When considering data from scientific research, especially in an engi-
neering context, we often have to deal with sampled continuous data
defined in a spatial context. This means that measurements or simu-
lations collect information for distinct locations in space. Associating
each location with a piece of data is known as fields. Formally, a field is
given by a function

f : D→ C (2.1)

over the domain D ⊂ Rn which maps each location in an n-dimensional
space to a value in C ⊂ Rc. These are thus c-dimensional values, which
characterize the type of data, the visualization has to deal with. When,
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scientific visualization

for instance, the temperature within a region is measured as a scalar
value (c = 1) at each location, it can be described as a scalar field.
The same applies to vectors and tensors, resulting in vector fields and
tensor fields, respectively. In the following, scalar and vector fields are
introduced as well as common visualization techniques. Further, second-
order tensors as a special case of tensors are presented with several
examples to illustrate their usefulness. A more detailed discussion of
tensor concepts and their properties will be given in Section 3.1. Finally,
the general concepts of uncertainty and ensembles are introduced.

2.1.1 Notation

Unless stated differently, the notation throughout this work sticks to
the following convention:
Scalar fields and scalar-valued functions are denoted by lower-case let-
ters, e. g. s and s(x), x ∈ Rn, whereas bold lower-case letters indicate
points, vectors, and vector-valued functions, e. g. v and v(x).

A set is written using upper-case letters, e. g. S, while matrices, second-
order tensors as well as tensor-valued functions are depicted as bold
upper-case letters, e. g. T and T(x).

In the context of this work, v(x) represents steady or time-independent
vector fields, while v(x, t) represents unsteady or time-dependent vector
fields. In a similar fashion, symbols accented with a tilde denote data
including temporal information, e. g. ṽ and T̃. Symbols accented with a
bar denote a mean value, e. g. v̄ and T̄ while z is the complex conjugate
of a complex number z.

Further, some common operations will reappear throughout the thesis.
Using the transpose of a real vector or a real matrix is written as vT

and TT, the Hermitian transpose as T∗ and multiplication by a scalar
s as s · v or s ·T. Ofte, we omit the operator and write sT. The total
derivative of a function f with respect to an argument x is given by
df/dx and the partial derivative by ∂f/∂x. We also use the shorthand
notation fx. The inverse of a matrix is noted as T−1. While a Cartesian
product is denoted by the symbol ×, the tensor product is indicated by
⊗.

Common symbols to appear are the nabla operator ∇, especially in
the context of the vector field gradient as T = ∇v. It is defined as a
vector containing the partial derivative symbols with respect to the
given spatial dimensions ∇ = ( ∂

∂x1
, . . . , ∂

∂xn
). 0 is the zero matrix and

I the Identity matrix.
Decomposing matrices into eigenvalues and eigenvectors or singular
values and vectors is explained in greater detail in Section 3.1.1. Eigen-
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2.1 data types and visualization

values and singular values of a matrix T are named λi(T) and σi(T)

while i indicates the ith value. We assume eigenvalue subscripts to be
applied according to their order, such that λ1(T) ≥ · · · ≥ λn(T) for n
eigenvalues. The eigenvector ei(T) and the associated ith eigenvalue
share the same index.

Whenever the context is clear, we omit the explicit reference to the
matrix and write, e. g., λi instead of λi(T), which also applies to derived
matrix values such as γ mentioned in Section 3.2.4 instead of γ(T).

2.1.2 Scalars and Scalar Fields

Figure 2.1: A scalar field on a 2D domain visualized with a wireframe to
represent the scalar value as height and an additional projection
of the scalar value to a color map.

In scalar fields, a scalar value s(x, t) is assigned to each position x ∈ Rn

in an n-dimensional domain, where t denotes the time. When the scalar
field is steady, the parameter t can be omitted, resulting in s(x). The
value itself fully characterizes the quantity.
Due to their low dimensionality, scalar fields can be found in numerous
applications and can be considered part of a humans’ everyday life.
Temperature and pressure are typical results from meteorological mea-
surements or simulations. Computer Tomography (CT) and Magnetic
Resonance Imaging (MRI) both provide scalar values that allow for
the analysis of tissue properties. Scalars, however, can also be used to
describe derived properties of higher-order data types like vectors or
tensors.

Bars, charts, and line graphs are basic tools to visualize scalar values in
a one-dimensional space. Even users with little experience can commu-
nicate messages as such tools are included in standard office software
and available for free. Techniques that visualize the scalar value at each
position of the domain directly are known as image-based methods. In a
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two-dimensional domain, scalars can also be mapped to the intensity
values of a grey value image or color channels, which allows for a sim-
ple and efficient visualization. This color mapping produces heatmaps,
which are, for instance, used in weather forecasts, where scalar values
representing temperature are mapped to color values as seen in Fig-
ure 2.1. Alternatively, and also shown in Figure 2.1, height mapping
can be used to represent the scalar value as an actual height value of
a 3D surface. Scalar fields in 3D domains pose to be more challenging
to visualize due to visual cluttering. Color and opacity values have to
be chosen carefully resulting in suitable transfer functions that reveal
only the structures a user is interested in. This is known as volume
rendering and still contributes to a lot of scientific publications today.
Browsing through the volume with a slice view, while each slice shows
only a two-dimensional subset is a well-known technique in medical
applications to deal with this issue.
Alternatively, instead of visualizing the scalar values directly, one might
try to represent a whole field by only showing meaningful features. Such
approaches are known as geometry-based methods. Showing local and
global extrema by extracting critical points or ridge and valley lines
helps to understand the overall structure of a scalar field, without ob-
serving every single data value. Contour plots or isolines and isosurfaces
allow to find structures, that share the same value and can be found
in several applications from the well-known height lines in geographic
maps to the tracking of flame surfaces in combustion data.

2.1.3 Vectors and Vector Fields

Figure 2.2: A 3D rotational flow visualized with arrow glyphs at uniformly
sampled locations (left) and streamlines (right).

In a similar manner, vector fields are fields that assign a c-dimensional
vector value v(x, t) or v(x) where v(x, t) = (v1(x, t), . . . , vc(x, t))T

or v = (v1(x), . . . , vc(x))T respectively, to each position x ∈ Rn in
an n-dimensional domain. One way to interpret this is that vectors
represent not only a magnitude but also a direction. They can encode
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a location in space but also physical quantities like force, direction,
velocity, or gradients of scalar fields. When dealing with velocity in a 3D
Cartesian coordinate system, the vector components are often given as
v = (u(x), v(x),w(x))T, which represent the velocity in direction of the
coordinate axes. A vector field that changes over time is called unsteady
or time-dependent vector field, whereas one that does not change is
considered steady or time-independent. Especially in computational fluid
dynamics applications, vectors are used to represent the movement of
matter or particles within what is often called a flow field. Improving
methods of predicting the flow of liquids like water, gases, or even blood
and analyzing its behavior is still an ongoing research topic and has huge
implications in our everyday life from predicting weather to building
more aerodynamic transportation vehicles.

The scientific discipline concerned with the visualization of such vector
or flow fields is aptly called flow visualization or flowvis for short. The
image-based techniques from scalar fields can be used to visualize the
components of vector fields or derived quantities such as the magnitude.
In 2D and 3D, simple arrow glyphs can be used to directly represent
whole vectors at a given location resulting in so-called arrow plots as
shown in Figure 2.2 (left). Yet again, visual cluttering poses a challenge,
especially in 3D, which is why several alternatives have been proposed
over the years. A well-known texture-based visualization is given by
what is called a Line Integral Convolution (LIC) visualization, where
the single color values of a noise texture are advected within the vector
field and form lines that indicate the flow. This technique was intended
to work for steady 2D flows or on surfaces but has been extended to
deal with unsteady and 3D vector fields as well. Vector field features are
often using metaphors related to flow applications. Many features are
therefore based on the movement of particles within a flow and aim to
follow the trajectory of such particles over time. Integral lines such as
streamlines, pathlines, streaklines, or timelines indicate such paths and
are a powerful visualization tool for analyzing the global behavior of
the flow as indicated in Figure 2.2 (right). They all describe structures
that are generated by starting an integration process along the vectors
of a vector field from a seeding location. A detailed description is given
in Section 9.1. Similar concepts can be applied to start integration for
lines or even surfaces.
Analogous to scalar fields, vector fields can also be represented by
only considering their structure by extracting characteristic points or
features and visualizing them. This is known as vector field topology.
Locations where the flow vanishes, i. e., v = 0, are known as critical
points and separatrices are lines that connect such points with each other
segmenting the field into areas with different flow behavior. The local
description of the behavior of the flow can be encoded in a second-order
tensor known as the Jacobian matrix. Decomposing a Jacobian matrix
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into its eigenvectors and corresponding eigenvalues allows to characterize
critical points in flows depending on the behavior of particles in its
vicinity.
Locating regions of swirling motion within fluids is a major objective in
several applications. It can define the quality of combustion processes
by indicating, how well gases are mixed. Rotating air is also known to
produce drag which makes planes more inefficient. Therefore, extracting
vortices as flow features can help improve designs and increase efficiency.
This is why defining, finding, extracting, and visualizing vortices has
grown to be a major challenge in flow visualization. The background
section of Part iii is dedicated to discussing these challenges.

2.1.4 Tensors and Tensor Fields

Figure 2.3: Local curvature at a given point of a smooth surface describes how
the surface normal changes when moving away from the current
location into a given tangential direction. This information can
be completely described by a Hessian or curvature tensor. The
eigenvectors of the tensor correspond to the directions of the most
(red) and least (green) change of the normal (blue).

As phenomena described by scalar and vector data can be observed in
numerous everyday life situations, their motivation and use are often
straightforward. The concept of tensors on the other hand is more
complex. While we want to introduce a certain aspect of tensors here
already, Chapter 3 gives a detailed introduction and general discussion
of tensors. In the context of this work, we are dealing with second-order
tensors, also known as rank-2 tensors, which can be represented by
square matrices. Even though scalars and vectors can also represent
tensors, the term tensor often implies that we are dealing with tensors
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of that type. Such a tensor field can therefore be defined as a field that
assigns an m×m matrix T(x) where

T(x) =


t11(x) · · · t1m(x)

... . . . ...
tm1(x) · · · tmm(x)


to each position x ∈ Rn in an n-dimensional domain. If the tensor
changes over time, it is denoted as T(x, t) accordingly. Such a tensor
can be used to carry more information than scalar or vector quantities.
One example is depicted in Figure 2.3. The change of direction of a
normal vector on a surface, also known as curvature, is dependent on the
direction moved away from the current location. This information can
be fully described by collecting the partial derivatives of second-order
of the function describing the surface, which is known as the Hessian
matrix and in this specific context can also be called curvature tensor.
Other examples are discussed in Section 3.2.

While scalars can be directly mapped to points or color and vectors
to arrow glyphs, finding an appropriate and easy to understand visu-
alization for tensors proves to be a challenging task. Sure enough, all
matrix components can be visualized independently as independent
scalar quantities. This would however ignore the intrinsic meaning and
structure that is encoded within the tensor. There exist a number of de-
rived scalar and vectorial quantities, which can then be visualized using
the techniques mentioned above. A detailed discussion of visualization
methods for tensor data is given in Section 3.3.

2.2 uncertain and ensemble data

When analyzing visualizations, we often assume that the data that is
represented is accurate and free from uncertainty. In the real world,
this is seldom the case. A temperature might vary within a region, the
predicted path of a storm is often only the most likely route it may
take and diffusion tensor measurements in MRI scans are often highly
influenced by noise. The exact outcome of an experiment or value of
a measurement is not clear, thus, uncertainty can be understood as
the lack of information. We do, however, need information to make
decisions or derive further knowledge. Especially in critical applications
like medicine or meteorology, where decisions based on the data can
affect humans’ wellbeing, it is crucial that no wrong conclusions are
drawn. Therefore, it is desirable to introduce a notion of how trustwor-
thy the displayed data is or how reliable a shown result actually can be
reproduced.
The sources of such uncertainty can be manifold. Models used to simu-
late phenomena are mostly simplifying abstractions and often provide
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an incomplete description. Further, small changes in model parameters
or initial conditions might lead to strongly varying results. Measure-
ments can be biased, influenced by noise, or might only provide values
up to a certain accuracy. Processing the data, interpolating values and
even the rendering process itself can also introduce more uncertainty.
Due to the improvement of hardware as well as algorithms, such in-
formation on uncertainties can now be included in the measuring or
simulation processes. This does, however, lead to an increase in data
that needs to be processed and displayed. Including such information
in the visualization process is what is known as uncertainty visualization.

Mathematically, this can be modeled with probabilities. A probability
distribution is used to provide information on how likely it is, that an
experiment turns out in a specific way. Instead of assigning a certain
value to a location, we now describe, how likely it is, that a specific value
occurs. Given a field over the domain D and the c-dimensional data
attributes represented as a collection of continuous random variables
v = [v1, . . . , vc]T, the infinitesimal probability of any value can be
described by a probability density function (PDF) ρ(x; v), where

• x ∈ D and v ∈ Rc

• ρ(x; v) ≥ 0

•
∫∞
−∞· · ·

∫∞
−∞ ρ(x; v) dv1 . . . dvc = 1 for all x ∈ D.

A certain field, as described in the sections before, is therefore just a
special case of an uncertain field, where the probability is exactly 1
for a specific value and 0 for all others. The specific PDF for a sample
point is typically not known and is often only approximated. Simpler
parametric functions, such as the Gaussian distribution, also known as
Normal distribution, which can be described by only a few parameters,
can be assumed, which drastically reduces the complexity. If common
PDFs do not suffice, finite mixtures of them or more sophisticated
models might be used and fitted to the data to better represent the
actual distribution. Finding an appropriate model is crucial in making
assumptions or conclusions from the data.

Instead of describing uncertainty as a field of distributions, ensemble
visualization follows the idea, that the uncertainty can be represented by
a collection, called an ensemble, of possible certain fields. For instance,
a weather simulation might be run several times with slightly varying
simulation parameters, different models, or initial conditions, resulting
in a set of results, called ensemble members, showing the phenomenon
in the same domain. Analyzing the similarities and differences of the
members and their features allows for an understanding of the variability
of the data. In this work, we limit all ensemble members to have the
same data type. Therefore, an ensemble field with m members assigns
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Figure 2.4: Left: 1D boxplot visualization of uncertain unimodal scalar data.
Right: 2D uncertain vector represented by a mean vector in black
and uncertainty represented by an ellipse that indicates how the
vector might deviate from the mean.

m distinct c-dimensional attributes to each position x ∈ Rn in the n-
dimensional domain. Dealing with such data and how to find appropriate
visualizations is further elaborated in Chapter 9.

As seen in the previous section, each data type comes with its own
challenges for a suitable visualization. Adding uncertainty to the process
adds more parameters that need to be included and mapped onto free
visualization parameters like color or geometry. If suitable, existing
techniques might be enhanced or completely new approaches need to
be developed, depending on how the uncertainty is characterized. Un-
certainties in values, such as temperature or measured diffusion tensors,
are treated differently than location uncertainties, such as the location
of vortex core lines within a flow or isocontours in scalar fields. A
well-known approach to showing uncertain scalar data values is the
boxplot, as depicted in Figure 2.4 (left), which is a summary of the
distribution by displaying the minimum and maximum values, upper
and lower quartiles as well as the median. Numerous extensions, like
the range plot, vase plot, or violin plot, as well as evaluations, have
been proposed over the years and are still one of the most used tools to
compare data sets. When dealing with vector-valued data as directional
information, uncertainty may appear within direction and magnitude,
as indicated in Figure 2.4 (right). Using glyphs like the uncertainty
glyphs by Wittenbrink et al. [205] or texture-based methods allows for
local analysis of the uncertainty. Uncertainty visualization can also be
introduced to extracted features of vector fields such as integral lines or
surfaces, which is further discussed in Section 9.1. The high complexity
of second- or higher-order tensor data is even more challenging, as is
discussed in Chapter 7.

When dealing with ensembles as an indicator of uncertainty, there
exist two major strategies of visualizing the uncertainty. A pipeline
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Figure 2.5: Possible vector field ensemble visualization pipeline: A streamline
is extracted from each vector field ensemble member resulting in a
collection of curves. Different visualization approaches can now be
applied. The curves can be composited in a combined view such as
the spaghetti plot on the top right. Alternatively, information about
the curves such as mean and standard deviation can be aggregated
and used for uncertainty visualizations like at the bottom right.

showing this process with an ensemble of vector fields is shown in
Figure 2.5. One strategy is to aggregate information of all members
and display the results similar to the approaches that were listed above.
The bottom right image in Figure 2.5 shows the mean trajectory in red
computed from all input trajectories and an uncertainty visualization.
The other strategy is to treat the distinct members separately first and
combine the results. Features such as streamlines might be extracted
and visualized for each field and then put in a juxtaposition to compare.
As all members are describing the same domain, another option is to
display all the extracted features within a combined visualization such
as a spaghetti plot which is shown in the top right image in Figure 2.5.
When the number of ensemble members is high, this can lead to a list
of problems including visual cluttering, which leads to the demand for
more advanced visualization techniques. In Part iii, we focus on vector
field ensembles and discuss existing and new visualization techniques
for such data.
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V I S U A L I Z AT I O N O F S E C O N D - O R D E R
T E N S O R D ATA





3I N T R O D U C T I O N T O T E N S O R D ATA

Figure 3.1: When a drop of ink is placed on material such as absorbent paper,
the color spreads over time based on the structure of the material.
This process is called diffusion and can be captured by a diffusion
tensor. This figure shows two different examples where three suc-
cessive instances in time from left to right are shown. The upper
drop of ink diffuses similarly in all directions, which is known as
isotropic diffusion, whereas the lower one has a tendency to move
stronger into a certain direction, known as anisotropic diffusion.

Second-order tensors can describe more complex aspects of physical
phenomena and we briefly introduced the general idea of second-order
tensors and tensor fields in Section 2.1.2. As several contributions within
this thesis deal with the visualization of such data especially by using
so-called tensor glyphs, we discuss tensors in this chapter in greater
detail. To do so, we start by offering more detailed descriptions of these
objects and their properties in the background Section 3.1. We focus on
aspects that are relevant to either the contributions that we introduce
in this thesis or to existing related work, with the aim to understand the
rationale behind the used techniques. Further, we give some tangible
examples for second-order tensors from the scientific and engineering
context in Section 3.2 and introduce concepts related to analyzing
them. This will help us to further group and understand different
existing visualization approaches which are discussed in Section 3.3.
A special focus lies on tensor glyphs (Chapter 4) as a powerful direct
visualization tool. Listing and explaining related works, we point out
existing shortcomings and limitations, that we chose to address within
this work.
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3.1 background

T

Figure 3.2: Tensors as linear operators: a tensor acts as a linear operator that
maps a set of vectors (left) to new vectors (right).

There exist several different definitions of what a tensor is, depending
on application or generalization. They do however all describe the same
geometric concept and can be transformed into one another. Overly
simplified, tensors are mathematical objects that describe quantities
independently from their frame of reference, which is a desirable property,
especially in physical applications. It takes in a number of input vectors
and produces an output that is invariant under a change of basis. Further,
its components transform in specific and predictable ways. Thus, one
way to define a tensor T is as a scalar-valued multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
n

× V × · · · × V︸ ︷︷ ︸
m

→ R

where V is a vector space, V ∗ its corresponding dual space of covectors
and the mapping is linear in all of its arguments. Similarly, a tensor can
be described as an element of the tensor product of vector spaces:

T ∈ V⊗ · · ·⊗V︸ ︷︷ ︸
n

⊗V ∗⊗ · · ·⊗V ∗︸ ︷︷ ︸
m

The pair given by the number of vectors n and covectors m defines
the type of a tensor, namely an (n,m)-tensor, whereas the sum n+m

defines the rank or order of it. In the scope of this work, we are using
the Cartesian orthonormal coordinate system, which means that V and
V ∗ behave identically and are interchangeable. This allows a further
interpretation, which is especially useful in the context of this work:
a tensor of second-order can be seen as a linear operator that maps a
vector v ∈ V to another vector in the same vector space.

T : V → V

It describes how it acts on all unit vectors, indicated in Figure 3.2, and
the eigenvectors indicate the locations with the strongest deformation.
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As we are mainly interested in rank-2 or second-order tensors, the term
tensor in this thesis will from here on refer to tensors of second-order,
if not stated differently. Further, tensors will be represented as matrices
in orthonormal bases only, such that only Cartesian tensors are used.
Not only is this the standard representation in a computer science con-
text, it further ensures that tensors are uniquely defined by their matrix.

To further be able to analyze and distinguish different tensors and make
assumptions about how to deal with them mathematically, we first need
to introduce some terms that allow for a more specific description. A
tensor T represented by a square n× n matrix with components tij ,
i, j ∈ [1, . . . ,n], can be described in regard to its symmetries:
T is considered

• symmetric if tij = tji

• asymmetric otherwise.

Asymmetric tensors can further be described as

• skew- or anti-symmetric if tij = −tji

Further, for all vectors v distinct from the zero vector and with an
appropriate number of components, T is

• positive definite if vTT v > 0

• negative definite if vTT v < 0

• positive semi-definite if vTT v ≥ 0

• negative semi-definite if vTT v ≤ 0

• indefinite otherwise.

The tensor is considered traceless if tr(T) = t11 + · · ·+ tnn = 0.

Several of the properties above allow us to make assumptions about the
results of further analysis of a tensor, such as the signs of the eigenvalues
of an eigendecomposition.

3.1.1 Tensor Decomposition

As we can deal with tensors as linear operators and as such as matrices,
we can make use of numerous tools from linear algebra that appear in
the context of matrices. For a lot of applications, where this applies, it
makes sense to decompose a tensor into factors. This means, that the
tensor can be described as a sequence of operations, where each has
a distinct meaning. When talking about matrices specifically, this is
also known as matrix factorization (see, e. g., [174]). This can lead to
easier processing of data or describe a certain underlying behavior in
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a way that is more tangible. For instance, the major directions of the
diffusion described by a diffusion tensor as well as diffusivity strength
are captured within the eigenvectors and eigenvalues produced by such
a decomposition.

Eigenvalues and Eigenvectors

Any n-dimensional vector e 6= 0 is considered an eigenvector of a
square n× n matrix T ∈ R if T e = λ e and λ is the corresponding
eigenvalue. Geometrically, this means, that any linear transformation
described by a matrix T, maps an eigenvector e onto a scaled version
of itself, where the scaling factor is given by λ. The equation above is
known as the eigenvalue equation and allows us to derive what is known
as the characteristic equation or characteristic polynomial of a matrix

det(T− λ I) = 0.

This polynomial of degree n in λ has exactly n roots, which means that
for an n× n matrix, there exist n, neither necessarily real-valued nor
distinct eigenvalues λ1, . . . ,λn.

Eigendecomposition

Eigendecomposition, which is also known as spectral decomposition,
is a matrix factorization that expresses a matrix T uniquely in terms
of its eigenvalues and eigenvectors such that T = X Λ X−1. X is a
square n× n matrix where the ith column is the ith eigenvector ei of
T and Λ is a diagonal matrix, where the diagonal elements are the
corresponding eigenvalues Λii = λi. The ordering is often given by the
eigenvalues such that λ1 ≥ · · · ≥ λn. A matrix can only be decomposed
like this, if it is diagonalizable, i. e., there exist n linearly independent
eigenvectors. For symmetric matrices, where T = TT, the eigenvalues
are always real and eigenvectors are orthogonal, i. e., X−1 = XT and
the equation simplifies to

T = X Λ XT =

(
| | |

e1 e2 ... en
| | |

) λ1
λ2

. . .
λn

— e1 —
— e2 —

...
— en —

.

Further, within this work, the plane that is spanned by two eigenvectors
is referred to as an eigenplane.

Singular Value Decomposition (SVD)

Any real-valued m× n matrix T, which is not necessarily square, can
be decomposed into T = U Σ VT where U and VT are real orthogonal
matrices and Σ is a diagonal matrix. The orthonormal columns of U are
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also referred to as the left singular vectors, those of VT right singular
vectors accordingly and the elements on the diagonal of Σ are the non-
negative real singular values Σii = σi. Geometrically, this means that T
maps the ith basis vector of V to the ith scaled basis vector of U where
the scaling is given by the ith singular value such that T V = U Σ. It
can be shown that singular value decomposition and eigendecomposition
are related as we can apply the decomposition to TTT such that

TTT = V ΣT UTU Σ VT = V (Σ ΣT)VT.

As TTT is a square symmetric matrix and (Σ ΣT) a diagonal matrix, it
resembles a typical form of an eigendecomposition where V includes
the eigenvectors and the non-zero singular values are the square roots
of the non-zero eigenvalues. Similarly, it can be shown that the columns
of U are eigenvectors of T TT. One advantage of the singular value de-
composition is, that while eigenvalues of a matrix can turn out complex,
singular values are always real-valued.

Further, the singular value decomposition can be used to construct the
polar decomposition

T = U Σ VT = (U VT) (V Σ VT) = Q H ,

which can be used to factor any square real matrix into an orthogo-
nal matrix Q and a symmetric positive semidefinite matrix H with
λi(H) = σi(T). Geometrically, H can be understood as describing
scaling along orthogonal axes while Q resembles a distance preserv-
ing transformation, such as a rotation or a reflection, as the columns
form an orthonormal basis. If det(Q) = +1, Q is known as a special
orthogonal matrix and describes a rotation as opposed to reflections.
When dealing with matrices in R2, such a special orthogonal matrix Q
can be parametrized by an angle of rotation γ only, which is given as
tan γ = q21/q11.

Several tensor norms can be described by using the singular values. The
spectral norm of T given by ||T||2 is defined by the maximum singular
value such that

||T||2 = σ1(T) =
√
λ1(TT T) .

Additionally, the Frobenius norm can be described as

||T||F =
√
σ1(T)2 + . . .+ σn(T)2

or alternatively as

||T||F =
√∑n

i=0
∑n
j=0 t

2
ij .
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Further Decompositions

Besides the singular value decomposition and eigendecomposition, which
we will frequently refer to throughout this thesis, there exist a number
of further tensor decompositions such as a factorization of any tensor
into a symmetric and an antisymmetric part:

T = S + A =
1
2 (T + TT)︸ ︷︷ ︸

S

+
1
2 (T−TT)︸ ︷︷ ︸

A

.

In most physical applications, the antisymmetric part then contains
information on rotation while the symmetric part encodes scaling and
shear. A symmetric tensor can also be decomposed into an isotropic
and deviatoric factor. For 3× 3 tensors, it follows

T = Tiso + D =
1
3tr(T) I︸ ︷︷ ︸

Tiso

+ (T−Tiso)︸ ︷︷ ︸
D

.

These are used frequently within medical and mechanical tensor appli-
cations where domain experts are interested in areas in tensor fields
where the quantity encoded changes uniformly in all directions or favors
certain directions.

3.1.2 Tensor Invariants

Tensor invariants are derived properties of a tensor that do not change
under a change of the frame of reference. This means that while the
components of a tensor in matrix representation do change under changes
such as domain rotation, invariants do not and thus are objective
descriptions. For instance, the diffusion tensor itself, which is measured
in a DT-MRI scan, depends on how a patient is positioned for the scan.
Especially scalar invariants are frequently used to analyze and compare
the resulting data as they are easily visualized. The significance of a
specific invariant and its impact is highly application dependent. These
properties can describe different aspects of the tensor data such as the
degree to which diffusion is anisotropic. Three of such scalar invariants
often used in engineering and medical context that deal with 3D tensors
are called the principal invariants, which can be described in terms of
the trace and determinant of the tensor:

• I1 = tr(T) = λ1 + λ2 + λ3

• I2 = 1
2 ((tr(T))2 − tr(T2)) = λ1λ2 + λ1 λ3 + λ2 λ3

• I3 = det(T) = λ1 λ2 λ3

Further invariants especially developed for diffusion tensor analysis
include relative anisotropy (RA) and fractional anisotropy (FA) as pre-
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sented by Basser et al. [12], volume ratio and lattice index by Perpaoli
and Basser [145], shape descriptors like the linear, planar and spherical
shape measures by Westin et al. [201] or the tensor mode by Ennis and
Kindlmann [40].

3.1.3 Second-Order Tensors as Vectors

Symmetric tensors represented as matrices store redundant information.
While a 3× 3 tensor has 9 entries, there are in fact only 6 distinct values.
The Mandel notation allows to represent symmetric tensors as vectors.
We define the operator v(·) that transforms a symmetric second-order
(n× n) tensor T into a vector. In this work, we deal with tensors with
n = 2, 3, 6 which gives vectors of dimension 3, 6, 21, respectively, as

v(T) = (t11, t22,
√

2 t12)
T

v(T) = (t11, t22, t33,
√

2 t12,
√

2 t13,
√

2 t23)
T

v(T) = (t11, . . . , t66,
√

2 t12, . . . ,
√

2 t16, . . . ,
√

2 t56)
T.

Note that v(·) describes an isometric embedding of the tensor space
into R3/6/21, i. e., scalar products, and hence distances are preserved.
In particular, the following holds:

rT T r = v(rrT)
Tv(T) (3.1)

for a symmetric second-order tensor T and a vector r. Further, any
rotation R in domain coordinates acting on a tensor T corresponds to
a rotation R̂ acting on v(T) in the isomorphic vector space such that

v(R T RT) = R̂ v(T) . (3.2)

For details on notation and properties see, e. g., [66].

3.2 tensor field analysis

Tensor data is omnipresent in a variety of applications from medical
data such as the aforementioned diffusion data to applications in aerody-
namics and hydrodynamics. The analysis of tensor data therefore aims
towards a better understanding of these complex phenomena. However,
due to their high dimensionality, this poses a challenging task. Visual-
ization aims to support domain experts with that task by emphasizing
interesting structures or behaviors within the data or simplifying the
fields for the analysis of derived properties. Before we discuss visual-
ization approaches of tensor data, we first introduce different common
applications as well as the requirements that arise from them. Table 3.1
offers a short summary of selected tensor examples and their properties.
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3.2.1 Diffusion Tensor

Figure 3.3: Pictorial visualization of diffusion: the trajectory of a massless
particle within different media shows different diffusion behavior.
Unrestricted isotropic diffusion (left) in free water and restricted
anisotropic diffusion (right) along axon fibers in white matter.

Diffusion is the process of particle movement of material through an-
other. While in unrestricted fluid, such diffusion is constant, liquid
moving through tissue, however, is more likely to favor certain direc-
tions, depending on the tissue structure, which is known as anisotropic
diffusion. This behavior can be measured and made visible for particles
such as water molecules in brain tissue by using Diffusion-Weighted
Imaging (DWI), which is a non-invasive technique that uses magnetic
field gradients to measure how restricted particle motion happens at
voxels. In particular, Diffusion Tensor Magnetic Resonance Imaging
(DT-MRI) uses the so-called diffusion tensor, which describes the 3D
direction-dependent diffusion using a Gaussian model. It can be ac-
quired by solving a system of equations that use diffusion-weighted
measurements in at least six different directions, known as the apparent
diffusion coefficients (ADCs), as the results of the Stejskal-Tanner equa-
tion [10]. The diffusion tensor can be represented by a 3× 3 positive
semi-definite symmetric matrix, i. e., there are only 6 independent vari-
ables. This further implies that eigenvectors always form an orthonormal
basis and eigenvalues are always real and nonnegative values, such that
λ1 ≥ λ2 ≥ λ3 ≥ 0 as introduced in Section 3.1.1. The major eigenvector
represents the direction of the strongest diffusion and diffusion strength
is implied by the corresponding eigenvalue. When two eigenvalues are
repeated, all vectors that lay in the plane spanned by the corresponding
eigenvectors, are valid eigenvalue choices, which means there are in-
finitely many possible eigenvectors in that plane. This indicates isotropic
diffusion within this plane and is often referred to as a degenerate tensor.
When three eigenvalues are repeated, the tensor is purely isotropic, and
the diffusion is identical in all directions.
Neuroscience applications are mainly focused on anisotropy measures, as
well as the direction of the strongest diffusion as an indicator of neural
fibers. As the tube-like geometry of such fibers results in constraint mo-
tion of the particles into preferred directions as indicated by Figure 3.3,
this information can be used to get an idea of the structure of fiber
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tissue such as muscles or nerves. Finding such nerve tracts using the
tensor data and visualizing it is known as tractography. Analyzing those
allows experts to find abnormalities, diagnose diseases, and propose
treatments based on the data.

Even though diffusion tensor imaging offers valuable insights into medi-
cal applications such as brain network connectivities, it suffers from a
few limitations [124]. This is mainly due to the fact, that it represents
a rather oversimplified idea of the actual fiber structures with only
one main direction and it is not capable of modeling more complex
signals. One of the most discussed drawbacks is its poor fit to signals
acquired from voxels that exhibit “crossing fibers”, which include in-
tertwined, passing, or diverging fiber bundles. Applications that rely
on diffusion tensor data such as several tractography approaches will
therefore produce wrong or inaccurate results. Other approaches such
as High Angular Resolution Diffusion Imaging (HARDI) try to tackle
these issues by taking a far larger number of measurements which can
then be represented by probability functions which in turn also require
new visualization techniques.

3.2.2 Stress and Strain Tensor

Figure 3.4: A displacement force is applied to a steel connecting rod (left).
The color indicates the strength of the force applied. This produces
stresses within the material which can be described by a stress
tensor field. The derived von Mises stress value (right) indicates
where the material is more likely to fail.

In a physics context, stress describes the reactions within materials
based on external forces, as particles within the material are forced
to move and interact with one another. Similarly, strain describes the
deformation of the body based on external stress. Both stress and strain
tensors are therefore capable of describing how material is reacting
when loads are applied and therefore describe a materials’ strength. As
stress within a material in 3D is not only defined by the direction of
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the applied force, but also by the orientation of the surface it acts upon,
it can be described by a symmetric indefinite tensor

T =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 .

The diagonal elements σ11,σ22,σ33 are also referred to as the normal
stresses, whereas the off-diagonal elements are called shear stresses. The
signs of these components indicate if the stress is either compressive or
tensile. The eigenvectors are occasionally also referred to as the principal
stress axes and the eigenvalues as principal stresses. Unlike the diffusion
tensor, decomposing a stress tensor into eigenvalue-eigenvector pairs
might yield negative eigenvalues. Mechanical engineering applications
often make use of derived tensor quantities such as the maximum shear
stress or the von Mises stress to analyze under which circumstances a
material might fail.

3.2.3 Gradient Tensor of Vector Fields

Fluid flows are most commonly represented by vector fields that describe
the instantaneous movement of massless particles at each location with
a vector known as velocity. The velocity gradient holds the information,
how the velocity changes when moving away from the current location,
depending on the direction and it is derived from the first-order Taylor
series expansion of the velocity at that point. The matrix containing all
the first-order derivatives of v is known as the Jacobian matrix T:

T = ∇v =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 =


ux uy uz

vx vy vz

wx wy wz


Jacobian matrices are general, thus not necessarily symmetric and in-
definite tensors, which means that eigenvectors can be non-orthogonal,
and eigenvalues can be complex-valued. In 2D, they appear either as
two real or a pair of complex conjugate eigenvalues while in 3D, the
eigenvalues are either all real, or there is one real eigenvalue and a
complex conjugate pair. Assuming a linear vector field around a given
location, the Jacobian matrix can be used to assign a vector to these
domain locations x by v′ = T x. This is displayed in Figure 3.5.

This assumption can be used to analyze the local behavior of vector
fields. At critical points, where the velocity is zero, the eigenvectors and
eigenvalues of the Jacobian matrix with full rank can be used to classify
these first-order features within the flow: when eigenvectors are real,
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T(p) = ∇v(p)

Vectorfield v v′ = T(p)x

Figure 3.5: Left: LIC texture visualization of a 2D flow field v. The Jacobian
matrix T at a location p and its eigenvectors can be used to analyze
the local flow behavior at that point by assuming a linear vector
field (right).

the eigenvectors are tangent to streamlines ending at that point and
the eigenvalue signs indicate whether particles are flowing towards or
away from the point. When the eigenvalues are complex, this indicates
rotational flow behavior. Thus, within the analysis of 2D vector field
topology, the eigenvalues λi ∈ C allow classifying the flow behavior
around a point as a

• Saddle (Sa), if
Re (λ1) < 0, Re (λ2) > 0 and Im (λ1) = i2 = 0

• Repelling Node (RN), if
Re (λ1), Re (λ2) > 0 and Im (λ1) = Im (λ2) = 0

• Attracting Node (AN), if
Re (λ1), Re (λ2) < 0 and Im (λ1) = Im (λ2) = 0

• Repelling Focus (RF), if
Re (λ1) = Re (λ2) > 0 and Im (λ1) = − Im (λ2) 6= 0

• Attracting Focus (AF), if
Re (λ1) = Re (λ2) < 0 and Im (λ1) = − Im (λ2) 6= 0

• Center (C), if
Re (λ1) = Re (λ2) = 0 and Im (λ1) = − Im (λ2) 6= 0.

In 3D, these points have an additional in- or outflow component, de-
pending on the eigenvalue sign. The gist of a vector field can therefore
be described by finding and showing such locations [67]. The Jacobian
matrix is often used to identify even more topological structures such
as separatrices [68], attachment and separation lines [91] or interesting
features such as vortex core lines [86], [157], [175] which can then be
visualized.
While many analysis strategies for symmetric tensors often rely on
quantities based on real eigenvalues, they might not be applicable to
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Re
Im

Figure 3.6: Line glyphs indicating particle motion within a linear approxi-
mation of the 2D velocity field around a critical point. They are
classified from left to right as Saddle, Attracting Node, Repelling
Node, Attracting Focus, Repelling Focus, and Center.

asymmetric tensor fields. One strategy proposed by Delmarcelle and
Hesselink [32] is to decompose the tensor into its symmetric and anti-
symmetric parts as described in Section 3.1.1. The symmetric part can
then be analyzed with known strategies for symmetric tensors and the
antisymmetric part can be represented by a vector field. This does
however not capture the geometric meaning encoded by the tensor.
New analysis methods for asymmetric tensors have only recently been
developed [112], [210], [212] and are still an active research topic. When
dealing with such fields, parts of the domain, where eigendecomposition
still yields real eigenvalues are considered to be in the real domain,
whereas the others are located in the complex domain. It was further
shown that the locations where degenerate tensors appear, can then
form lines within the field, instead of isolated points, as it was the case
for symmetric tensors. In fields that have real and complex domains,
degenerate tensors are, in fact, the border between both domains and
thus a feature revealing the topological structure.

Tensor Encoded Quantity Symmetric Definiteness

Diffusion Diffusivity of mov-
ing particles depend-
ing on direction

yes positive semi-definite

Stress Material description
of internal forces
based on external
forces

yes indefinite

Strain Local change of a
body due to stress

yes indefinite

Surface Curvature Local change of the
normal of a smooth
surface depending on
direction

yes indefinite

Deformation Gradient Local deformation of
volume element

no indefinite

Velocity Gradient Local change of veloc-
ity depending on di-
rection

no indefinite

Table 3.1: Several different second-order tensors from real-world applications
and their properties.
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3.2.4 The (γ, r) Phase Space

Figure 3.7: Visual representations of the (γ, r) phase space by Theisel and
Weinkauf [181]. Left: sampled locations with the related linear
vector field visualized with LIC textures based on the represented
first-order critical points. Right: classification of first-order critical
points within different sections of the space.

By only looking at matrix representations of tensors, it is hard to
get an idea of how similar or dissimilar two tensors actually are. It,
therefore, makes sense to quantify a difference measure that allows to
better describe and distinguish classes of tensors as well as to find and
analyze transitions between different cases. Originally intended as a
tool for comparing vector fields based on their topology, Lavin et al.
[108] introduced the mapping of Jacobian matrices of critical points in
2D vector fields to an (α,β) phase plane and measuring what is known
as the earth mover’s distance. The main idea is, that this captures the
amount of work that needs to be performed in order to transform one
critical point into another. This idea was then extended by Theisel and
Weinkauf [181] to a new parametrization, which maps a given 2D tensor
to the so-called (γ, r) phase plane to allow for a complete classification
scheme for first-order critical points.

As shown by Rössl and Theisel in [47], the mapping can be calculated
based on a subspace of all 2D tensors where any of the tensors T∗ can
be described in terms of their polar decomposition

T∗ = Q H =
(

cos γ − sin γ
sin γ cos γ

)
( 1

σ2 ) , (3.3)
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such that the spectral norm of T∗ is constrained to 1, meaning ||T∗||2 =

1. Further, there is no orthogonal transform in H (i. e., the right singular
vectors V = I). This means that tensors mapped to the subspace have
domain scaling and rotation removed as these factors do not change
the behavior of the flow at a given location and thus form a collection
of what is called reference critical points. The parameter γ ∈ [0, 2π)
determines the amount of rotation, while r ∈ [0, 1] determines T∗’s
smaller singular value σ2 =

1−2
√

(1−r)r
2r−1 ∈ [−1, 1]. Additionally, the sign

of σ2 directs the sign of the determinant sgn(σ2) = sgn(det(T∗) ). This
now allows us to map any arbitrary tensor T to the (γ, r)-plane to get
a reference critical point T∗ which describes the same flow behavior.
The mapping can be achieved by using the polar decomposition to yield
γ and calculate r = 1

2 + det(T)/||T||2F = 1
2 + sgn(det(T) ) σ1σ2

σ2
1+σ

2
2
.

By analyzing T∗, we can derive a number of properties for a tensor T
following the statements of Theisel and Weinkauf [181]:

(i) Let r? = 1
1+sin2 γ

. Then r? ≥ 1
2 , and

T has eigenvalues


λ1 6= λ2 ∈ R for r < r?

λ1 = λ2 ∈ R for r = r?

λ1 = λ2 ∈ C else

.

(ii) det(T) = λ1λ2


< 0 for 0 ≤ r < 1

2

= 0 for r = 1
2

> 0 else

.

This is visualized in Figure 3.7, where the space is represented in polar
coordinates. Parameter r is the distance from the center and tensors that
lie on a ray from the center can be transformed into another by applying
a scaling, whereas γ denotes the angle and tensors lying on a circle
can be transformed into another by adding rotation. As it describes all
classes of tensors, all possible flow behaviors are also found within this
space. Figure 3.7 (left) shows LIC textures for sampled locations, while
on the right, the whole space is segmented into areas of similar flow
behavior. The inner circle describes critical points with saddle (Sa) flow,
divided into attracting (ASa) or repelling (RSa) saddle behavior. There
further are certain locations for attracting (AN) and repelling (RN)
nodes as well as attracting (AF) and repelling (RF) foci. On the outer
circle, tensors describe center flow (C) that differs in rotation strength
and direction (clockwise and anti-clockwise), whereas the special cases
γ = 0 and γ = π denote sources and sinks. Tensors on the border
of the inner circle itself are called degenerate cases (D). Beware that
this “degeneracy” is different from the definition of a degenerate tensor
that we introduced earlier where eigenvalues are repeated. In their
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work, it is used for tensors with a zero determinant such as when one
eigenvalue vanishes, and which does not resemble a first-order critical
point of a vector field. They further added attracting (AS) and repelling
stars (RS) as tensors on the boundary between the real and complex
domain, which is represented by the pill-like shape. The change of the
tensor while moving within the space can be analyzed in terms of how
the eigenvectors and eigenvalues change. While eigenvalues within the
inner circle are real-valued and eigenvectors orthogonal, the tensors
between the circle and the outer oval boundary have real eigenvalues, but
eigenvectors can be non-orthogonal. They do, however, all lie within the
real domain. The transition from the real to the complex domain follows
a specific pattern: while γ 6= 0 and γ 6= π, moving from the center
outwards by increasing r towards the oval decreases the angle between
the eigenvectors until they coalesce. Further, increasing r within the
real domain changes the relation of eigenvalues. This subspace allows
to study and describe all possible classes of 2D tensors and, more
importantly, smooth transitions between them, such that it is a useful
basis for designing tensor visualizations that capture all cases.

3.3 visualization of tensor fields

As we have seen, tensors do appear in a variety of applications, which
makes it important that visualization tools are available that support
the analysis of tensor properties in a way to draw conclusions from
them. As different kinds of tensors are used to describe different physical
phenomena, domain experts might be interested in different aspects of
the tensor. In this section, we will go through some general visualization
concepts, as well as domain-specific visualizations.

Vector field visualization and tensor field visualization are closely re-
lated. Instead of finding visual representations for two or three vector
components in 2D or 3D vector fields, tensors are typically represented
by 2× 2 or 3× 3 matrices, which increases the number of variables and
makes interpreting as well as finding appropriate visualizations a more
challenging task.
A straightforward solution for visualizing a single tensor is to treat
each of the components as another scalar field and use scalar field
visualization techniques such as mapping the scalar values to color or
luminance. Each scalar field can then be rendered separately as seen
in Figure 3.8. This technique does however ignore the structural or
geometric information, that is encoded by the tensor. A change of the
reference frame would also lead to a change in the scalar fields and thus
in the visualization, which conflicts with the general idea behind tensors
as reference independent descriptions.
Calculating scalar tensor invariants, as described in Section 3.1.2 is
therefore a viable option for tensor analysis. Especially in the medical
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min

max

tij

Figure 3.8: Visualization of a 2D slice of 3D Diffusion tensors: each tensor
component is visualized independently as a scalar field mapped to
color and presented in a combined matrix visualization.

context, it is common to analyze scalar quantities that describe the
anisotropy of diffusion tensors [7], [145], [201]. Similar quantities exist
for stress tensors [29], [35], [79], [100], which support the analysis of
properties like material failures. The resulting scalar fields can then
be analyzed using techniques from scalar field visualization such as
isosurface extraction [40], [149] or scalar field topology [183].

Figure 3.9: Streamline visualizations of the three eigenvector fields derived
from diffusion tensor data in a human brain. A transparent volume
rendering is added for context information.

Just as the eigenvalues are interesting scalar quantities of a tensor, the
eigenvectors do play an important role in tensor visualization. A tensor
field can be represented by the two (in 2D) or three (in 3D) eigenvector
fields as shown in Figure 3.9, which are similar to vector fields with
some differences: eigenvectors do not have an orientation, which means,
such an eigenvector field describes a bidirectional flow. Further, as every
scaled version of an eigenvector is also an eigenvector, it often makes
sense to use unit eigenvectors which means the Euclidean norm of the
vectors is 1. This decomposition of tensors to eigenvectors allows using
techniques from vector field visualization to visualize the resulting fields.
Especially the major eigenvector, which is corresponding to the largest
eigenvalue, is of interest. Tractography fiber tracking approaches for
instance use the major eigenvector as an indication of fiber direction
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in regions with strong anisotropy. A simple approach is to map the
components of the major eigenvector to the different channels of the
RGB color model [138]. In general, tensor field lines [160] or tensor
lines in short, are tangent lines to eigenvectors of the tensor and as
such similar to streamlines of vector fields. This also means that they
use only one of the existing eigenvector fields and ignore the remaining
tensor information. Additionally, care needs to be taken such that the
line integration does not switch orientation due to sudden changes in
eigenvector orientation. Delmarcelle and Hesselink propose a technique
that enhances such lines called hyperstreamlines [32], [33]. These line-
type features also result from the advection of particles in the direction
of the chosen eigenvector but are modified by the remaining information.
They are often represented as tubes or ribbons where diameter or width
is changed depending on the other eigenvalues. All these line techniques
however are relying on a stable ordering of the values. The choice is
problematic close to locations of degenerate tensors, where eigenvalues
are repeated and can be associated with different eigenvectors. When
integrating tensor lines in near-isotropic areas, the order might change
abruptly. Weinstein and Kindlmann introduced what they also call Ten-
sorlines [200] to address these issues by trying to preserve the directions
of the lines in the vicinity of such locations. The idea of hyperstream-
lines can also be extended to form so-called hyperstreamsurfaces [87]
by seeding several hyperstreamlines and connecting them.

Zheng and Pang propose an extension to the well-known line integral
convolution texture visualization for vector fields [25], [190] called Hy-
perLIC [211]. Instead of accumulating color values along one vector
directions, they filter a noise texture within small areas that are defined
and deformed by the eigenvectors and eigenvalues resulting in lines in
parts of the field, where one eigenvalue is dominant and blurry regions
in isotropic parts. Similarly, tensor fabrics [39], [80] produce continuous
tensor field visualizations on surfaces.

Tensor field topology, similar to vector field topology, extract locations
and features that describe the structure of tensor fields. The definition,
extraction, and visualization of topological features have been discussed
in a variety of contributions over the last years, especially for the sym-
metric case (see e. g., [5], [70], [109], [156], [184], [192], [213]). Whereas
in vector field topology, critical points are locations, where the vector
field vanishes and which can be classified by the vector field gradient,
in tensor fields, one is often interested in finding degenerate tensors. In
2D, where tensors can only be isotropic or anisotropic, these locations
can be classified by the tensor index into trisectors and different types
of wedges and are connected with separatrices. In 3D, tensors can also
show full (λ1 = λ2 = λ3) and partial (λ1 = λ2 or λ2 = λ3) isotropy
which leads to degenerate lines. Lately, the definition and extraction of
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Figure 3.10: The yellow tube represents a core line of a 3D second-order stress
tensor field. They are the center of swirling eigenvector trajectories.
Image by Oster et al. [130].

feature surfaces such as those indicating locations of traceless tensors,
neutral tensors [139], or extremal surfaces [216] have been added to the
list of available features. Many of these approaches do, however, rely on
real eigenvalues and eigenvectors as shown in Section 3.2 and are there-
fore not easily extended for asymmetric tensors. The concept of dual
eigenvectors [212] and pseudo-eigenvectors [210] allows for a continuous
extension of the eigenvector into the complex domain, such that tensor
lines and hyperstreamlines can be extended. Further publications that
discuss tensor field topology including the asymmetric cases are [65],
[107], [112].

Hagen et al. visualize deformation tensor fields [61] by extending the
idea of focal surfaces [60] for tensor properties like the maximum eigen-
value. Whereas parallel vectors of velocity fields and derived vector
fields, like acceleration, can indicate the existence of features such as
vortex core lines [54], Oster et al. [130] propose a similar approach
using parallel eigenvectors [129] of a given tensor field, as shown in
Figure 3.10. Further ideas that aid the process of tensor field analysis,
such as geodesics [38] or linked views for tensor field analysis [27], [88]
as well as more detailed discussions on tensor field visualization can be
found in a variety of works (see e. g., [16], [18], [71], [99], [100], [102]).

Besides those general visualization approaches, few techniques exist that
also investigate the development of tensors over time. In the context of
vector fields, pathlines of a finite set of seed points are used to visualize
flow in this case. Especially in topology-based visualization techniques,
some works have been proposed, where the path of features over time
is visualized as presented by Uffinger and Sadlo [188]. Regarding tensor
fields in general, Delmarcelle and Hesselink [34] as well as Trichoche et
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al. [185], [186] introduced tracking techniques for degenerate points in
time-dependent 2D symmetric tensor fields. The tracked points form
lines while separatrices form surfaces in the spatiotemporal domain.

Similarly, only little work can be found on the visualization of uncertain
tensor fields. Visualizing uncertainty is in general a challenging task,
as it adds another dimension to the visualization space. There exists a
multitude of literature on uncertainty visualization, see, e. g., the reviews
by Bonneau et al. [20] and Brodlie et al. [23], but high-dimensional
data is only sparsely covered. A notorious example of uncertainty in
tensor data is the diffusion tensor, which is obtained, e. g., from diffusion
tensor magnetic resonance imaging (DT-MRI). Uncertainty typically
stems from the measurement process, which introduces a significant
amount of Gaussian noise [11]. An alternative source of uncertainty is
the fusion of tensors from members of an ensemble. Several approaches
deal with visualizing the uncertainty in tensor fields by considering not
the whole tensor and its uncertainty but only derived scalar and vector
invariants such as Behrens et al. [14] or the work of Schultz et al. [168],
that presents fiber tracking methods for probabilistic tractography to
extract fuzzy features.

While techniques visualizing only derived quantities of a tensor are often
referred to as indirect visualizations, a very popular direct technique,
which shows all the information given by a tensor, is the use of glyphs,
which are then referred to as tensor glyphs. They are geometric objects
placed at sampled locations within a tensor field to display the local
tensor properties by mapping them to geometric variables like shape,
orientation, or color. Their construction, interpretation as well as related
work will be discussed in the following chapter.
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Figure 4.1: The construction of some existing tensor glyphs for symmetric
tensors such as the superquadric tensor glyphs [93], [165] is based
on the eigendecomposition of the tensor. The scaled eigenvectors
(left) are represented by the axes of a geometric object such as a
superellipsoid (center). The extend and orientation of the surface
fully captures the information encoded by the tensor without
explicitly showing arrow glyphs for the eigenvectors (right).

Glyphs are omnipresent in scientific visualization. Whenever multidi-
mensional information is to be visualized at a certain location, glyphs
are the standard choice. Essentially, glyphs are geometric objects that
represent data at a sampled location within the field. Tensor glyphs
are such glyphs that aim to represent a given tensor. When T(x) is
the tensor value at a given sample location x, we define G(T(x)) to
be its corresponding glyph representation. This is typically done for
a number of locations, such that several glyphs are placed next to
each other. For velocity data in R2 and R3 a straightforward choice is
to represent it as an arrow glyph encoding direction and magnitude.
For tensor data represented by matrices, there is no such easy direct
mapping. A common thing to do is therefore to map derived tensor
attributes onto geometric properties like shape, orientation, color, or
texture. For such multidimensional data of a certain type, there is
generally not one best glyph. The design choices are either highly tai-
lored to the application or based on general design rules [21], [111], [196].

Before we discuss such rules applicable to tensor data and desirable
properties in Section 5.1, we list and elucidate the development of
existing glyph constructions.

4.1 related work

One of the first known uses of glyphs representing tensor data was
already presented over 25 years ago by de Leeuw and van Wijk [31]. To
analyze not only the velocity of fluid flows, but also the local change,
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they use the vector field Jacobian matrix to produce what they call
a flow probe. Curvature, shear, acceleration, torsion, and convergence
are mapped to geometric primitives such as vectors, rings, and discs.
Besides flow analysis, it was especially diffusion tensor imaging that
became the most popular domain for glyph visualization. Therefore,
the earliest glyphs for direct tensor visualization arose in the context
of medical imaging. The eigenvectors and eigenvalues of a decomposed
tensor are capable of uniquely representing all the information that is
given by the tensor, thus a tensor is completely represented by a glyph
that encodes these attributes. As eigenvectors of symmetric positive
definite tensors, such as the diffusion tensor, always appear as mutually
orthogonal vectors, they can easily be mapped to the axes of geometric
objects. Due to the nature of eigenvectors being bidirectional, these
shapes should also exhibit mirror symmetry with respect to the axes.
Pierpaoli and Basser [145] used ellipsoid-shaped glyphs where the eigen-
vector orientations are aligned to the principal axes of the ellipsoid and
then scaled according to the eigenvalue. Figure 4.1 illustrates this map-
ping. The longer part of the ellipsoid is pointing in the direction of the
major eigenvector and can thus be used to indicate fiber directions when
dealing with diffusion tensors in brain matter data. Placing uniformly
distributed glyphs in slices of MRI data allows to analyze the overall
fiber distribution but also get the full tensor information at the sampled
locations. Laidlaw et al. [104] used normalized versions of such ellipsoids,
whereas several other mappings to different shapes such as cubes [215],
cylinders [204], and octahedra [197] exist. Rotations and minor changes
of these shapes are however hard to distinguish, due to their orthogonal-
ity as shown by Parker et al. [141]. Superellipsoids [46], which belong to
the class of superquadrics [9], are much better suited for that task [170].
A comparison of different glyphs with varying viewing directions is
given in Figure 4.2. Similar to Jankun-Kelly and Mehta [82], Kindlmann

Figure 4.2: Eight different tensors based on rotating the eigenvectors visualized
by three different types of tensor glyphs. First row: Ellipsoid glyphs.
Second row: Box glyphs. Third row: Superquadric tensor glyphs
[93], [165].

proposes to base the glyph construction upon the superellipsoid. These
glyphs are known as the Superquadric tensor glyphs [93]. Here, too,
the axes of the shape are aligned to the eigenvector directions and
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scaled based on the eigenvalues. Zhang et al. [209] use a combination
of such glyphs to indicate the difference between two tensors. These
techniques are however all limited to the symmetric positive-definite
case. For general symmetric tensors, such as stress tensors, eigenvectors
are still orthogonal, the eigenvalues can however also include negative
real numbers. Schultz and Kindlmann [165] made use of the fact, that
the elegant mathematical description of superquadrics allows to easily
alter the shape smoothly and even go from concave to convex shapes to
extend the glyphs. Concave shapes indicate eigenvalues with opposite
signs and color was added to indicate, whether the eigenvalue corre-
sponding to the eigenvector was positive or negative. Further, in the
case of degenerate tensors, where eigenvalues repeat and an infinite
number of eigenvectors are possible, the superquadric forms a circle
or a sphere, accordingly, indicating this ambiguity. Their construction
is based on a set of carefully chosen guidelines which is discussed in
greater detail in Section 5.1. An overview of glyphs specifically designed
for diffusion tensor imaging as well as design guidelines is given by
Ropinski et al. [151], [152].

There exist several approaches specially tailored to visualizing stress
tensors [97], [98], [100] in mechanical engineering. The glyph known
as Mohr’s circle [30] is a two-dimensional representation based on the
maximum shear stresses that occur on any arbitrary cutting plane
at a given position, which is helpful for failure analysis of materials.
Regardless of the mechanical background, it is capable of visualizing
any symmetric tensor. Haber glyphs [58] consist of an ellipsoid that is
shaped by the minor and medium eigenvectors and their corresponding
eigenvalues, as well as a rod, that highlights the major eigenvector. The
advantages, as well as limitations of these and further glyphs such as
the Reynolds tensor glyphs [123] and HWY glyphs [64], are discussed
by Kriz et al. [101].

Different from the examples listed above, vector field gradients do not
necessarily appear as symmetric matrices which poses a big challenge
in tensor glyph visualization. Relying on eigendecomposition is diffi-
cult, as non-orthogonal eigenvectors can occur and eigenvalues can be
complex. Similar to the aforementioned flow probe [31], several works
use glyphs to offer additional information within vector fields, such
as adding derived tensor information to vector glyphs [96] or placing
them along streamlines [110], [162]. Globus et al. [51] propose glyphs
placed only at critical points that consist of crossing lines representing
the eigenvectors. Similarly, Theisel et al. [57] propose icons at such
locations. The shape distinguishes between tensors with real eigenval-
ues and complex ones, while the color indicates eigenvalue signs. The
works from Loeffelmann et al. [117] and Wiebel et al. [203] further
show the behavior of the surrounding vector field at these locations
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without restricting themselves to the linear approximation. The first
approach places streamlets close to critical points, the latter introduces
a spherical surface around the critical point, which is then advected by
the flow. Auer et al. [6] place sketch-like representations based on tensor
information to indicate trends in the flow. Palke et al. [140] as well as
Chen et al. [26] present hybrid visualizations: they use hyperstreamlines
for the tensor field visualization and place ellipse glyphs in the complex
domain. For the continuity of the lines as well as the construction of the
glyphs, they make use of the dual eigenvectors or pseudo-eigenvectors
[210], [212]. Seltzer and Kindlmann [169] recently presented glyphs
for general – symmetric and asymmetric – second-order 2D tensors,
extending the superquadrics with textures that indicate rotational flow
behavior. Further approaches to visualizing non-symmetric tensors are
discussed by Kratz et al. [99].

The static display of dynamic or time-dependent behavior of data with
the help of glyphs is still a challenging task with a lot of open research
questions. When the data dimensionality is low enough, the temporal
development of quantities can be mapped to free geometric axes of
glyphs [182]. Tensors representing unsteady or time-dependent flow
fields as well as their gradients are only sparsely covered by glyph-based
approaches, as opposed to steady flow fields. The aforementioned glyphs
by Wiebel et al. [203] can indicate the temporal development of particles
close to critical points. The flow radar glyph by Hlawatsch et al. [72]
maps flow properties onto a radial glyph. Flow direction is mapped
onto angles while time is mapped onto the radius. Similarly, the path-
line glyphs by Hlawatsch et al. [73] represent flow behavior in a static
glyph by downscaling pathlines and placing them at certain locations in
the flow field thus combining both glyph and streamline visualization.
Concerning glyphs for time-dependent tensor fields themselves, Benger
and Hege [15] propose the use of tensor splats as a possible glyph for
time-dependent symmetric positive-definite tensors. They propose using
animation or superimpose transparent ellipsoid tensor glyphs to show
temporal development.

Few works are known to encode uncertainty within flow fields, such as
the flow-radar glyph by [72] again or Wittenbrink et al. [205]. Jones
introduced the cones of uncertainty [90] to encode the local variance of
eigenvector estimates by a confidence visualization. Schultz et al. [166]
provide a new glyph that aims at a more detailed understanding of the
distribution of fiber variability from DT-MRI. The construction is based
on decomposing the probability measure into a main direction and a
residual, combining both into what they call the HiFiVE glyph. Jiao et
al. [89] compute what they call SIP glyphs from orientation distribution
functions and volume rendering of a large number of samples from the
distribution. The volume data that results from superimposing these
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renderings can visualize the shape inclusion probability (SIP, see [118])
gives one possible geometric interpretation of uncertainty. Basser et
al. [11], [13] suggest two visualizations: First, they propose visualizing
the covariance matrix independently of the mean tensor. Their second
visualization proposes showing the mean tensor and its variance as three
isosurfaces representing mean and standard deviation. Abbasloo et al. [1]
provide another solution: the main idea is to consider a spectral analysis
and to visualize the tensor perturbations in the directions of the 6
eigenvectors of the covariance matrix. Then the whole covariance matrix
is covered by the simultaneous observation of 6 tensor deformations. It
is further discussed in Section 7.6. In a similar approach for ensembles of
tensor data, Zhang et al. [208] provide a framework to combine several
visualizations to gain a general overview of the whole ensemble, as
well as detailed information of distinct tensor properties. They divide
uncertainty into three independent parts (scaling, shape, and rotation)
and encode each with one variance number.

4.2 challenges in tensor glyph design

As we have seen, tensor glyphs are a good and often used choice for
direct visualization of tensor data and their construction has led to
a variety of publications within the last years. They can provide an
overview of the entire tensor field but also give a detailed description
of the tensor information at a given location. But we have also seen
that most of these glyphs are exclusively constructed for symmetric
tensors. And among these, the majority is further devoted to positive
definite tensors. As general tensors, including asymmetric and indefinite
matrices, appear frequently in applications such as computational fluid
dynamics and mechanical engineering, as shown in Table 3.1, suitable
glyph techniques represent a gap in the literature. The mapping of such
tensor data onto geometric glyph properties is a challenging task and
needs a thorough mathematical investigation. The same applies to the
visualization of time-dependent, as well as uncertain tensor data. In the
following chapters, we want to address and analyze these challenges.
Based on these observations, we propose possible solutions that allow
the use of tensor glyphs to represent such data.

There are, of course, further discussions that arise besides the construc-
tion of tensor glyphs, such as placement strategies [76], [95], [153], [195],
rendering of glyphs [207] or tensor field interpolation [2], [45], [136],
[137], [161], [198] that are important research topics in tensor glyph
visualization. We do however focus on the construction of new tensor
glyphs for general, time-dependent, and uncertain tensor fields.
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Figure 5.1: Glyphs for different general second-order 3D tensors. Their eigen-
values are plotted in the complex plane.

This chapter is based on the publication:

T. Gerrits, C. Rössl, and H. Theisel
Glyphs for General Second-Order 2D and 3D Tensors
IEEE Transactions on Visualization and Computer Graphics
(Proc. IEEE Scientific Visualization 2016), 2017

The previous chapter has shown how tensor glyphs can be used as a
useful tool for direct visualization of tensor data. Reiterating existing
literature did however also indicate, that most techniques are focused
on diffusion or stress tensors, which are symmetric. In this chapter, we
search for glyphs for general second-order tensors in 2D and 3D, i. e.,
tensors that are not necessarily symmetric. Such tensors appear in a
variety of applications, e. g., in computational fluid dynamics and flow
visualization as the Jacobian matrix of velocity fields. Therefore, intro-
ducing new glyphs can extend the set of available tools for investigating
and understanding such data.

In this chapter, general second-order tensors are considered as general
matrices in R2×2 or R3×3 without constraints like symmetry, i. e., the
space of all such tensors has 4 or 9 dimensions, respectively. The design
space of possible tensor glyphs for such tensors is extremely large, which
makes coming up with a new glyph a challenging task. It makes sense to
reduce the design space in search of a suitable glyph by introducing a list
of requirements or wishes as we call them, which ensures that the glyph
construction follows some specific rules or exhibits wanted behavior in
special conditions. This will ultimately limit the possible design choices
such as shape, color, or behavior of the glyph. Such properties must
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be chosen in a way, that the glyph is capable of transporting meaning-
ful and reliable information to the observer, based on mathematical
considerations of tensor properties. Therefore, the first section of this
chapter is dedicated to finding such rules and formulating them in a
mathematically rigorous manner.

5.1 a wish list for tensor glyph design

Listing desired behavior for tensor glyphs has been applied in previous
works on tensor glyphs, such as in the construction of the superquadric
tensor glyphs by Schultz and Kindlmann [165]. Incorporating the math-
ematic structures of the special case of symmetric tensors, the rules
they state in their work demand suitable glyphs to follow rules such
as symmetry preservation, invariance under scaling, disambiguity, and
continuity. These are useful restrictions that can also be applied to the
construction of general and possibly non-symmetric tensors. They fur-
ther demand a property called invariance under eigenplane projections.
This makes sense for symmetric tensors, as their eigenvalues are always
real and orthogonal. For general tensors, however, this property is not
well-defined as the eigenplanes may not be perpendicular or not even
real at all. A straightforward approach to solve this issue could be to
decompose a non-symmetric tensor into a sum of the symmetric part
and the antisymmetric part as shown in Section 3.1.1 and visualized
accordingly. This way, the information about the eigenvalues and eigen-
vectors of the original tensor T is lost, and no direct encoding of this
information is possible. We do however think, that using the original
tensor information is a desired property. Based on these observations,
we define our wish list as follows:

Let T be a general 2D or 3D tensor represented by a – not necessarily
symmetric – matrix and let G(T) be its corresponding glyph.

(a) Invariance under isometric domain transformation.
Let Q denote an isometric map, e. g., rotation or reflection, as an
orthogonal matrix. Then the domain transformation of the tensor should
result in the same transformation of the glyph.

G(Q T QT) = QG(T) . (5.1)

(b) Scaling invariance.
A uniform scaling of the tensor should result in the same scaling of the
glyph, i. e., for any s > 0 ∈ R

G(s T) = s G(T) .

(c) Direct encoding of real eigenvalues and eigenvectors.
If T has real eigenvalues and eigenvectors, they should be directly visible
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in the glyph. This is justified by the fact that the eigenvalues and eigen-
vectors capture all information of the tensor. If they are all real-valued,
they provide geometric information that is suitable for direct visualiza-
tion: direction of eigenvectors and magnitude of eigenvalues. This is the
case for symmetric tensors with orthogonal eigenvectors and also for
a class of non-symmetric tensors with real-valued but non-orthogonal
eigenvectors.

(d) Uniqueness.
A tensor T should result in a unique glyph. We also demand the reverse:
a glyph should have a unique tensor. For any two tensors T1, T2 we
demand

T1 6= T2 ⇒ G(T1) 6= G(T2) . (5.2)

We introduce weak uniqueness that requires Equation (5.2) only for ten-
sors of full rank, i. e., two lower-rank tensors may “share” the same glyph.

(e) Continuity.
Continuous changes of the tensor must result in continuous changes of
the glyph. In particular, there should be no instantaneous change of the
glyph appearance for a small change of the tensor. This includes the
transition from positive to negative determinant, from orthogonal to
non-orthogonal real eigenvectors, from distinct to multiple eigenvalues,
and from real to complex eigenvalues.

T1 ≈ T2 ⇒ G(T1) ≈ G(T2) .

As stated before, these wishes are similar to the guidelines for the
superquadric tensor glyphs. To address the problem that can arise from
dealing with non-real and non-orthogonal eigenvectors for eigenplane
projection, we replace their requirement for invariance under eigenplane
projection by the new property (c) which is stronger in some sense: it
generalizes explicitly to the case of real but non-orthogonal eigenvectors,
and it makes no assertion for the complex case.

We consider the properties stated as a guideline for glyph design and
further claim, that glyph constructions must follow them to be a suitable
visualization tool for general tensors. This further allows us to discuss the
existing work which was listed in Section 4.1 in terms of how they relate
to these properties and if they are suitable to be used for general tensors.

Similar to the superquadric tensor glyphs, most existing techniques
have been explicitly developed for symmetric tensors, such that their
construction demands real eigenvalues and eigenvectors. For instance,
the ellipsoid glyphs by Globus et al. [51] neither consider complex eigen-
values nor do they provide uniqueness for different eigenvalue signs thus
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lacking requirement (d). The glyph proposed by De Leeuw and van
Wijk [31] contains derived values from the Jacobian matrix, however,
the eigenvalues are not directly encoded, and thus lacking (c). Mohr’s
circles [30] visualize only eigenvalues and are therefore lacking invariance
to domain rotations (a) while the Haber glyphs [58] are not continuous
(lacking (e)) when the eigenvectors are not well-defined. The icon glyphs
for visualization of critical points in flows by Theisel et al. [57] lack
uniqueness (c). The hybrid visualization of Palke et al. [140] does not
cover the complete space of 2D tensors and they do not provide an exten-
sion to 3D. Similarly, the visualization by Zhang et al. [210] incorporates
discontinuities whenever eigenvectors are not well defined due to equal
eigenvalues. Further approaches to visualizing non-symmetric tensors
such as [35], [99], [100] also do not provide glyphs for the complete space
of non-symmetric tensors. All these do therefore not provide a suitable
starting point for a general glyph construction.
The recent work by Seltzer and Kindlmann [169] introduces glyphs
for general second-order tensors in 2D, but it is not able to meet the
continuity and rotation invariance requirements. An in-detail discussion
of the most relevant contributions as well as a comparison to our work
is given at the end of this chapter in Section 5.6.4.

The following table gives an overview of existing relevant work on 3D
general tensor glyphs. Existing techniques are evaluated with respect to
satisfying conditions (a)-(e) from Section 5.1. In addition, the column
(f) indicates if the technique is general, i. e., not restricted to symmetric
tensors.

method / satisfies (a) (b) (c) (d) (e) (f)

Kindlmann and Schultz [93], [165] 3 3 3 3 3 7

Seltzer and Kindlmann [169] 7 3 3 3 7 3

tensor decomposition 3 3 7 3 3 3

Globus et al. [51] 3 3 3 7 3 3

de Leeuw and van Wijk [31] 3 3 7 7 3 3

Theisel et al. [57] 3 3 3 7 7 3

Mohr’s circle [30] 7 7 3 7 3 3

Haber glyph [58] 3 3 3 7 7 3

After revisiting these works, we state, that we are not aware of existing
works, that present a glyph for general tensors – neither 2D nor 3D –
that fulfill all conditions (a)-(e).

5.2 glyphs for 2d tensors

In this section, we develop a new construction technique for glyphs for
2D tensors that meets all requirements (a)-(e) postulated in Section 5.1.
As the Jacobian matrix of a vector field is a prominent representative of
a general tensor, throughout the following sections, we will often make
use of the interpretation of a tensor as such. This might further support
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e1

e2

u1

u2

Figure 5.2: The characteristic ellipse interpolates both the endpoints of the
scaled real eigenvector e1, e2 as well as the scaled left singular
vectors u1, u2 of a decomposed tensor.

easier comprehensibility of design choices. The application is however
not limited to Jacobian matrices.

5.2.1 Preliminary Consideration

We start with a general observation that strongly influences the glyph
design:

Proposition 5.2.1. It is impossible to use only shape for defining a
glyph that satisfies conditions (a)-(e). At least one more continuous
value has to be encoded in a channel different from shape.

In short, a circle is the only shape that is capable of representing the
eigenvector directions of tensors with repeated eigenvalues, due to the
fact, that there exist infinite possible eigenvectors as stated in Sec-
tion 3.2. There are, however, multiple distinct tensors that can have
repeated eigenvalues. A proof can be found in Appendix A and a similar
proof is given by [169].

In the following, we separate the construction into designing shape and
mapping color.

5.2.2 Shape

Given is a tensor T ∈ R2×2 with eigenvalues λ1,2. The basic geometric
primitive for the construction of the shape of the associated glyph is the
characteristic ellipse of T that we define as the point set that satisfies

xT(T TT)
−1x = 1 . (5.3)

This implicit curve is an ellipse that interpolates for λ1,2 ∈ R the
eigenvectors scaled by eigenvalues, i. e., the columns of ±XΛ. Note
that in general, the eigenvectors X are not orthogonal. For complex
eigenvalues, the orthogonal axes of the ellipse are spanned by the left
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singular vectors U. This relationship is also illustrated in Figure 5.2. A
proof of these properties can be found in Appendix B.
We parameterize the implicitly defined characteristic ellipse as a piece-
wise rational quadratic Bézier curve [41], where each piece is an arc with
the scaled eigenvectors (or left singular vectors if λi ∈ C) as endpoints.
Each piece is defined by three control points bi and weights wi. Due to
endpoint interpolation, b0, b2 are given by the scaled eigenvectors with
standard weights w0 = w2 = 1. The center control point is

b1 = ω (b0 + b2) with weight w1 = cos α/2 ,

with

ω =
1

1 + cosα (5.4)

where α is the angle enclosed by b0, 0, b2 (or two eigenvectors, respec-
tively). This results in two rational pieces for the smaller and larger
enclosed angle, and the remaining two pieces can be determined from
symmetry. Figure 5.3a shows an example, and Appendix B describes a
detailed construction of the parametrization.

b2

b1

c2 = b0
c1

c0

(a) (b) (c)

Figure 5.3: (a) Characteristic ellipse of a non-symmetric tensor with real
eigenvalues. The black arrows denote the eigenvectors scaled by the
eigenvalues (XΛ ), and the green arrows show the orthogonal left
singular vectors scaled by singular values (UΣ ). The four arcs are
parametrized as rational quadratic Bézier curves shown in red ( )
and blue ( ). The control polygons bi, ci are shown for two arcs
(in gray ). Joining rational pieces smoothly at b0 requires that
c1, c2 = b0, and b1 are colinear. (b) For a saddle configuration,
the center control points, e. g., b1 of the original characteristic
ellipse configuration (dashed) are moved “beyond” 1

2 (b0 + b2) ( )
towards the origin to obtain a concave shape (solid). (c) For a
positive definite tensor, we introduce sharp bends to indicate the
directions of the eigenvectors. The center control points are moved
closer towards 1

2 (b0 + b2) (•).

We consider the mapping of T into the (γ, r)-plane as presented in
Section 3.2.4. Further, we make use of the statements by Theisel and
Weinkauf [181] about the derived properties of eigenvalues and determi-
nant of the given tensor, such that we can now use γ and r to distinguish
between different possible cases. Each case determines a modification of
the characteristic ellipse, and each modification is defined in a way that
guarantees requirements (a)-(d) and in particular (e), the continuous
transition between the different cases. We emphasize this by explicitly
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reviewing the transitions as special cases. All modifications are described
for one rational piece (bi,wi), i = 0, 1, 2, with α = ∠(b0, 0, b2). The
same modification is applied equally to all pieces.

Let r? = 1
1+sin2 γ

.

case 0 ≤ r < 1
2 . T has real eigenvalues and a negative determinant

λ1λ2 < 0. The glyph for this “saddle” configuration should be a concave
shape that conveys the directions and magnitude of eigenvectors and
eigenvalues, which can be interpreted as “inflow” and “outflow” if
the tensor is a Jacobian matrix of a vector field. Each arc of the
characteristic ellipse is modified such that the center control point is
moved to 1

2 |cosα| (b0 + b2). This yields a concave shape as b1 is closer
to the origin 0 than 1

2 (b0 + b2). Figure 5.3b shows an example.

case r = 1
2 . At this transition, rank(T) = 1, and one of the two real

eigenvalues vanishes, i. e., λ1λ2 = 0. As a consequence, the characteristic
ellipse “degenerates” to a line segment. The behavior is continuous as
for h→ 0, both r = 1

2 ± h result in the same glyph.

case 1
2 < r < r? . This can be seen as the simplest case of a positive

definite (λ1,2 > 0) or negative definite (λ1,2 < 0) tensor T. The glyph
should be convex and clearly indicate the directions and magnitude
of eigenvectors and eigenvalues. We modify the smooth characteristic
ellipse such that there are sharp bends in these directions, i. e., the curve
should be only C0-continuous at the endpoints ±XΛ of the elliptic arcs.
Note that X is orthogonal only for symmetric T. For general tensors,
the indicated directions do not coincide with the principal axes of the
characteristic ellipse.
For each arc, we move the center control point towards 1

2 (b0 + b2) as
follows:
Define the ratio τ = λ1/λ2 of eigenvalues and τ? = min{τ , 1/τ} ∈ [0, 1],
and let

ω? = (1− |sin γ|)
(
(1− τ?) 1

2 + τ? ω
)
+ |sin γ| ω . (5.5)

The new position of the center control point is b1 = ω? (b0 + b2).
In order to ensure that sharp bends develop more rapidly near the
transitions r = 1

2 and r = r?, we suggest applying an additional
transfer function and to replace τ? in the above formula by f(τ?) with
f(t) = 4 (t− 1

2 )
3 + 1

2 . Figure 5.3c shows an example.
The amount of “sharpening” is maximal at the transition r = 1

2 – think
of the “degenerated stick” as a “diamond” – and it gradually fades out
towards the smooth characteristic ellipse as r → r? and the smaller
angle enclosed by two eigenvectors vanishes.
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case r = r? . At this transition, the eigenvalues are equal λ1 = λ2,
and the eigenvectors are parallel, i. e., the smaller of the enclosed angles
is zero. The shape of the glyph is the characteristic ellipse without
modification.

case r? < r ≤ 1. T has complex eigenvalues λ1 = λ2. The principal
axes of the characteristic ellipse are spanned by the left singular vectors
of T. No modification is applied.

case r = 1. In the limit, T is a rotation matrix Q(γ) as with
r = 1 its singular values must be equal, σ1 = σ2. This follows from
the definition of the (γ, r) parametrization using the constrained-norm
tensor T with ||T||2 = σ1(T) = 1: with r = 1 we have also σ2(T) = 1.
Then T is invariant to domain rotation, and also the glyph must be
invariant to rotation. The shape of the glyph is just the characteristic
ellipse, which is a circle for σ1 = σ2. Figure 5.7 shows different shapes
in the (γ, r)-plane.

5.2.3 Color

We use color to encode the angle γ. For r ≥ 1
2 , each glyph is filled

with a single, “flat” color. Any continuous color map of the circle is
possible. We use the color map shown in Figure 5.4 that maps positive
and negative definite (γ = 0 and γ = π) tensors to red and blue tones,
and 90-degree rotations (γ = π/2 and γ = 3π/2) to yellow and green
tones, respectively.
The “saddle” case r < 1

2 is treated differently because we want to
distinguish the directions of inflow and outflow and thus use two colors.
First, we have to make sure that one color gives a continuous transition
along the circle r = 1/2 in the (γ, r)-space. Let λ1 ≤ 0 ≤ λ2, and the
corresponding eigenvectors X·1 and X·2 oriented such that det(X) < 0,
further let α ∈ [0,π] be the angle enclosed by X·1 and X·2. Then we
get two γ-values

γ1 =
π

2 + α and γ2 =
π

2 − α ,

that are color-coded as described above. The inner circles in Figure 5.4
show the two colors for the respective points in (γ, r)-space.
In addition, a partition of the glyph’s geometry is required.
Let fi(t) : [0, 1]→ R2, i = 0, . . . , 3, denote the four rational pieces that
define the boundary of the glyph. With a circular shift of the “global”
parametrization by 1/2 we obtain

gi(t) =

fi(t+ 1/2) for t ≤ 1/2

fi+1 mod 4(t− 1/2) for t > 1/2
, i = 0, . . . , 3 ,
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Figure 5.4: The glyph’s color is determined by the angle γ. The figure shows
the color map used in this chapter as the outer band (r ≥ 1/2)
of the color wheel with a superimposed polar coordinate system
(γ, r). Darker circles indicate r = 1/2. The color is constant for
1/2 ≤ r ≤ 1. Two colors are required for saddles (r < 1/2) to
indicate “inflow” and “outflow” directions. We use complementary
colors shown in the inner circles that also depend on the angle
enclosed by the (real) eigenvectors.

such that each image of gi(t) : [0, 1] → R2 consists of two half-arcs
that indicate the direction of an eigenvector. This partitions the glyph
symmetrically into four patches. Figure 5.7 shows different shapes and
colors in the (γ, r)-plane.

5.3 glyphs for 3d tensors

We utilize the 2D construction and in particular the (γ, r) parametriza-
tion as much as possible for the 3D setting for general tensors T ∈ R3×3.
This leads to two cases depending on the configuration of eigenvectors
and eigenvalues. In the first case, there is one distinct pair of eigenvalues
either having the opposite sign to the third one or being complex conju-
gates. In this case, the distinct pair of eigenvectors (for real eigenvalues)
or left singular vectors (for complex eigenvalues) span a uniquely defined
base plane. In the second case, no distinctive eigenvectors exist because
all three eigenvalues are real and positive (or all three are real and
negative). For both cases, we discuss first shape and then color of the
glyph.

5.3.1 Case 1: A Well-Defined Base Plane Exists.

shape. A well-defined base plane exists, if either all eigenvalues are
real and one differs in sign, or if two eigenvalues are complex conjugates.
In the first case (“saddle”), the plane is spanned by the eigenvectors
corresponding to the two eigenvalues with the same sign. In the second
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case (“swirling”), the plane is spanned by the left singular vectors. It is
straightforward, to extend the condition to eigenvalues equal to zero,
but it requires suitable solutions to known problems that can arise from
dealing with near-zero values, such as rendering issues.
We construct the shape from eight triangular patches. One of them is
shown in Figure 5.5a. Suppose that x1 and x2 are the scaled eigenvectors
spanning the base plane, and x3 is the remaining scaled eigenvector.
Then the intersection of the desired patch with the base plane is exactly
the solution of the 2D glyph in the base plane. Furthermore, we use
the information from the base plane as well as the ratio between the
associated eigenvalues and the remaining eigenvalue to determine the
shape outside the base plane. We describe the patch as a rational bi-
quadratic patch f (u, v) with a degeneracy, i. e., an undefined normal,
at x3, where the parameters w12,µ12, and ν12 (see Figure 5.5b) are
determined as follows. w12 and µ12 are chosen such that we get the 2D
glyph in the base plane: µ12 is obtained similarly to Equation (5.4),
and w12 is obtained similarly to Equation (5.5). The remaining ν12
determines the global convexity/concavity of the shape and is chosen as

λ12 =
λ1 + λ2

2 , ν12 =
1
2 +

1
2 sgn(λ12λ3)

(
|cos γ| |2λ12λ3|

λ2
12 + λ2

3

)n
where γ is from the (γ, r) parametrization of the projection of T into
the base plane and the exponent n controls “sharpness” of the shape
near discontinuities. This patch construction is repeated eight times for
each combination of ±xi as patch corners to obtain the entire shape.
The resulting patches have the following properties.

• fu(0, v) = h(v) fu(0, 0) for a certain function h(v). This means
that the partial derivative of f w.r.t. u does not change direction
along the boundary curve from x1 to x3. (A similar statement
holds for fu(1, v).) As a consequence, in case of the characteristic
ellipse as base shape, adjacent patches are G1-continuous along
the junction curves that are not in the base plane.

• If x1, x2, x3 build an orthonormal system, f (u, v) is the octant of
a sphere (see [144]).

Details of the patch construction are reviewed in Appendix C.

color. The glyph consists of the following colors: Close to the base
plane, we color code the γ value of the 2D case in the projection into
the base plane. Note that depending on the side of the base plane, this
requires two different colors. If from one side the value γ is encoded,
the view from the other side must encode −γ. This becomes clear when
interpreting the information as rotational behavior which changes from
clockwise to anticlockwise and vice versa. For the coloring of the regions
close to x3 a binary choice is sufficient: red for λ3 > 0, blue else. It
remains to define at what v-value the “hard” transition between the two
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colors takes place. We choose v = σ1
σ1+λ3

, where σ1 = σ1(TP ) = ||TP ||2
is the spectral norm of the projection of T into the base plane. This
makes sure that for λ3 → 0, the color of the whole 3D shape converges
to the color of the 2D glyph in the base plane.

5.3.2 Case 2: There is No Unique Base Plane.

shape. In this case, all pairs of eigenvectors can be chosen equally to
span a base plane. This means that depending on the particular choice,
we have three different patches for each octant of the shape. We propose
to blend patches using a weighted average. For this, two problems have to
be solved: (1.) The three patches are given in different parametrization,
which prohibits a direct blending. (2.) The blend weights must be chosen
to ensure a smooth transition of the shape between case 1 and case 2. To
solve the first problem, we apply a non-standard reparametrization of the
patch from u, v-coordinates to barycentric coordinates β1 + β2 + β3 = 1,
which is detailed in Appendix C.
To address the second problem, the blend weights for patch evaluation
are chosen as

W1 = |(λ3 − λ1) (λ3 − λ2) λ1λ2|
W2 = |(λ1 − λ2) (λ1 − λ3) λ2λ3|
W3 = |(λ2 − λ3) (λ2 − λ1) λ3λ1| .

(5.6)

This ensures that if, e. g., λ1 and λ2 get close to each other, W1 and
W2 get close to 0, meaning that we have the desired smooth transition
between case 1 and case 2. The same desired transition takes place for
λ3 → 0. If all eigenvalues are identical, the patches are also identical,
and all weights would equally evaluate to zero and would lead to a
degenerate patch. In this case, all weights are set to an equal, nonzero
value.

color. For color, we use the same weighted average as for shape.
For every barycentric coordinate β1,β2,β3 we have a γ value for each
patch (either the γ-value of the base plane or γ = 0 or γ = π towards
the patch corner away from the base plane). The three γ-values are
averaged by the same blend weights W1, W2, W3. Note that this way,
one final patch can consist of up to eight different colors. However, in
practice, they can hardly be distinguished: all of them are rather red
(for outflow) or rather blue (for inflow). This is desired because in this
case, all relevant information for uniqueness lies in the shape. We have
to apply this seemingly complicated color mapping to ensure continuity
between case 1 and case 2.
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x2

x1

x3

r > 1/2

(a)

x1 x2

x3

µ12 (x1 + x2)

ν12 (x2 + x3)ν12 (x3 + x1)

(b)

Figure 5.5: (a) If a base plane exists, it defines an ellipse, and every ratio-
nal piece (red ) defines a surface patch together with the two
other arcs (blue and gray ), which use a standard weight

√
2/2.

(b) Similar to 2D, the control points are determined as linear combi-
nations of scaled eigenvectors xi. Note that without a well-defined
base plane, all three possible patches are evaluated and “blended”.

Figure 5.6: Flat-shaped glyph without (left) and with eigenstick (right).

5.3.3 Eigensticks

Our 3D construction so far does not ensure uniqueness for the case
rank(T) = 2. In this case, no information about the direction of the
eigenvector corresponding to the zero eigenvalue is encoded in the glyph.
This can be fixed by additionally rendering eigensticks, i. e., carefully
scaled real eigenvectors of T as

± (λ1 − λ2) (λ1 − λ3)X·1 ,
± (λ2 − λ1) (λ2 − λ3)X·2 ,
± (λ3 − λ1) (λ3 − λ2)X·3 ,

with X·i denoting the i-th eigenvector. In most cases, eigensticks are
rendered inside the shape and therefore not visible. Only in the case
of flat shapes, i. e., there is one rather small eigenvalue, they become
visible. Figure 5.6 shows an example. Note that eigensticks also fulfill
the continuity condition for coinciding eigenvalues the corresponding
eigensticks converge to the zero vector.

5.4 results

Figure 5.7 samples the (γ, r)-plane and shows the corresponding glyphs.
Figure 5.8 shows (scaled) glyphs that visualize the Jacobian matrix of a
2D slice of the flow behind a square cylinder. The underlying flow field is
visualized by a LIC texture with the superimposed glyphs. The glyphs
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γ = 0

γ = π
2

γ = π

γ = 3
2π

r = 1
2

Figure 5.7: Sampling glyphs in the (γ, r)-plane. The circles on the top figure
indicate r = 1/2 (zero determinant on the transition between saddle
and definite) and r = 1 (equal eigenvalues), and the oval shape
is the curve r = r? (equal eigenvectors and eigenvalues on the
transition between real and complex). The bottom figure shows
sampled glyphs corresponding to the line segments. top row: solid
line γ ∈ {0,π}; center row: dotted line γ = 5π/4; bottom row:
dashed line (γ, r) = (1− t) (0, 1) + t (π/2, 1).

vary significantly in scale, and there are regions of rapid transition
between different glyphs. Two closeups zoom into interesting regions.
Figure 5.1 shows a selection of different glyphs for 3D tensors together
with the eigenvalues in the complex plane. More examples are given in
Figure 5.9 which includes two cases with one of the three real eigenvec-
tors getting close to zero: the corresponding glyphs have a flat shape
(not seen from the chosen perspective), and the eigensticks become
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Figure 5.8: Glyphs visualizing the Jacobian matrix of the flow around a square
cylinder with two closeups (rectangles). The underlying LIC image
visualizes the flow.

Re

Im

Figure 5.9: Selection of glyphs for 3D tensors with their eigenvalues plotted in
the complex plane. Note that the two center glyphs feature visible
eigensticks due to one of the three eigenvalues getting close to zero.

visible and convey the direction of the eigenvector associated with the
near-zero eigenvalue.
Figure 5.10 shows 3D glyphs in the Jacobian matrix field of a flow
that stems from a simulation of a Rayleigh-Bénard convection. The
underlying flow field is illustrated with a few illuminated streamlines.
3D glyphs that are close to rank 2 appear flat, which makes it difficult to
recognize the direction of the eigenvector corresponding to the near-zero
eigenvalue. Eigensticks as described in the previous Section 5.3.3 remedy
this deficiency. Figure 5.6 explicitly compares the same glyph with and
without rendering an eigenstick that emphasizes the direction of the
eigenvector.
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Figure 5.10: The glyphs depict the Jacobian matrices of a flow field from
the simulation of a Rayleigh-Bénard convection. The illuminated
streamlines give an impression of the flow.

5.5 how to read the glyphs

The glyphs proposed in this chapter encode a significant amount of
information. Moreover, the requirements (a)-(e) postulated in Section 5.1
constrain design choices and make the appearance of glyphs different
from previous works. In this section, we show that despite this fact the
new glyphs are easy to use by providing a few simple rules on how to
read the proposed glyphs.

shape. Convex shapes indicate that all real eigenvalues have the
same sign or positive determinant, while concave shapes indicate differ-
ent signs of eigenvalues.

An ellipse in 2D indicates that there are no unique real eigenvectors,
for either case of complex or identical real eigenvalues.

An ellipsoid, i. e., a smooth shape without discontinuities, in 3D is
only possible as a sphere, i. e., for three identical real eigenvalues (see
Figure 5.1, left). Shape discontinuities at sharp corners in 2D and
in addition sharp edges in 3D (see Figure 5.1, 2nd left) encode the
direction of real eigenvectors for symmetric and asymmetric tensors
without rotation.

Figure 5.11: The shape of the 2D tensor glyph indicates both, the relation of
eigenvalue signs, as well as information, whether the eigenvalues
are real-valued or complex.

color. Red indicates positive real eigenvalues, i. e., an outflow, and
blue indicates negative real eigenvalues, i. e., an inflow.

61



glyphs for general second-order 2d and 3d tensors

Yellow indicates counterclockwise swirling, and green indicates clockwise
swirling.

Figure 5.12: The color of the 2D tensor glyph indicates flow direction as well
as swirling direction.

5.6 discussion

In this section, we verify that the proposed glyphs fulfill the requirements
(a)-(e) postulated in Section 5.1, and we discuss our various design
decisions.

5.6.1 Fulfillment of Requirements

(a) Invariance under isometric domain transformations. The property
holds because all constructions are based on scaled eigenvectors X Λ of
T (in the real case) or on scaled left singular vectors U Σ (in the complex
case) and their linear combinations for determining control points. Both,
X and U are invariant under isometric domain transformations Q, as
for T = X Λ XT = U Σ VT, Q T QT has eigenvectors Q X and singular
vectors Q U and Q V regardless of the dimension.

(b) Scaling Invariance follows directly from the construction.

(c) Direct encoding of real eigenvalues and eigenvectors. This follows
also directly from the construction as all scaled eigenvectors appear
visually as points or curves of C0 continuity, i. e., as sharp bends due to
discontinuities of the glyph’s tangent field.

(d) Uniqueness. In 2D, it is sufficient to show that for every point in the
(γ, r) phase space there is a different glyph, i. e., two such glyphs are
not identical after rotation. For real eigenvalues, this follows directly
from (c) because a tensor is uniquely defined by its eigenvalues and
eigenvectors. In the complex case, the glyph is the characteristic ellipse.
Since its aspect ratio uniquely encodes r and its color uniquely encodes
γ, the glyph must be unique. Note that uniqueness also holds for 2D
tensors of rank 1: they are encoded as sticks of a unique color that
depends on γ.
In 3D, in the case of a well-defined base plane and non-zero third
eigenvalue, the property follows from the 2D case in the base plane and
the unique visibility of the third eigenvector. In the case of three all
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positive (or all negative) real eigenvalues, all eigenvectors are visible,
and the property follows from (c). With this, weak uniqueness in 3D is
shown.
A special case in 3D is rank(T) = 2, then the glyph is a 2D figure in
the plane of the non-zero eigenvectors. In this case, the direction of
the eigenvector corresponding to the 0 eigenvalue is not encoded in
the glyph’s shape and color. Hence, we do not have uniqueness. The
solution is the optional addition of the eigensticks (Section 5.3.3) that
ensures the uniqueness of this case.
Another special case in 3D is rank(T) = 1, which gives a stick as
glyph. To ensure uniqueness in this case, we additionally have to encode
the eigenplane of the zero eigenvalues. Since the space of all possible
eigenplanes is two-parametric, it cannot be encoded solely by color,
hence, the glyph is not unique in this case. We decided not to introduce
additional features to remedy this for the sake of avoiding further visual
clutter only for a case of minor practical relevance.

(e) Continuity. To show continuity, we have to consider all cases of
equal eigenvalues – and therefore undefined eigenvectors – as well as
all transitions from real to complex eigenvalues. In 2D, equal real
eigenvalues result in a circular glyph, whereas at the transition between
real and complex eigenvalues, the glyph is always the characteristic
ellipse.
In 3D, the following additional events have to be checked: The first case
is the transition from a unique base plane to all positive (or all negative)
real eigenvalues: the choice of the blend weights in Equation (5.6)
ensures that in the transition event exactly one weight is non-zero,
which gives continuity. The other case is the event of equal eigenvalues if
all eigenvalues are real and positive/negative: here also only one weight
is non-zero, giving continuity.

5.6.2 A Critical Review of Requirements

The set of requirements determines the glyph design and should be
chosen carefully because every desired property constrains the space of
admissible glyphs. In the extreme case, this space may even be empty
for contradicting requirements. More generally, the imposed conditions
may be “too strong” in the sense that the admissible glyphs do not
feature an intuitive interpretation anymore. This, however, is crucial in
any application of glyphs. In this case, one option is to remove or to
relax certain conditions, e. g., demanding only partial fulfillment like
“almost everywhere”.
We strongly advocate for meeting all requirements (a)-(e) for the general
design of tensor glyphs: these properties constitute a standard choice
that was established by Schultz and Kindlmann [165]. Moreover, Kindl-
mann and Scheidegger [94] proposed three general visualization design

63



glyphs for general second-order 2d and 3d tensors

principles: representation invariance, unambiguous data representation,
and visual-data correspondence. The conditions (a), (b), (d), (e) formally
implement these principles and guarantee their fulfillment. Missing in
this list is condition (c): the direct visual encoding of real eigenvalues
and eigenvectors, if present, seems to be nontrivial. At the same time,
this information is of such importance for the characterization of a
tensor in essentially every application that condition (c) appears as an
obvious choice for glyph design. As we have shown in Section 3.2.3,
for Jacobian matrices of vector fields for example, the eigenvalues and
eigenvectors give a direct classification of the flow around critical points.
For sure, different applications may require emphasis on different prop-
erties of the tensor and therefore relax certain conditions in favor of
a more intuitive interpretation. However, this holds for the particular
application or task and comes at the cost of losing possibly important
parts of the information. For a generic glyph design that is not a pri-
ory tailored toward a specific application, the theoretically sound and
hence “safe” option is to implement all conditions (a)-(e). This is not
necessarily complicated: in Section 5.5 we give a few simple rules on
how to read the proposed glyphs. This gives evidence that it is feasible
to learn to read the new glyphs such that they can be used in a variety
of applications.
Finally, this contribution focuses on the generic construction of a design
space for 2D and 3D glyphs that meet all of the mentioned requirements,
which has not been done before. It does neither formally measure the
intuitiveness of glyphs nor does it systematically explore this space with
the goal of finding glyphs within the constraints that are in some sense
“optimal” for a specific application. Possible directions are discussed
below.

5.6.3 Design Decisions

The space of all possible solutions to the construction of glyphs fulfilling
(a)-(e) is huge. In this chapter, we give only one sample (and to the
best of our knowledge the first one). This raises the question of how to
further explore the space.

Color schemes. We use a rather straightforward color scheme to encode
one continuous value, in 2D this is γ. We do so to ensure comparability
with similar approaches [57], [165] that proposed similar colors. Other
and in particular more perception-oriented color maps are possible.
We remark finally that [57], [165] only use few discrete colors whereas
Proposition 5.2.1 states that we have to use a continuous color wheel.

Encoding of eigenvectors. Our approach is based on an encoding of
the eigenvectors as discontinuities in the glyph’s shape. Even though
the human visual system reacts rather sensitive to discontinuities in
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a shaded scene, perception can be increased by ridge enhancement
methods. This makes illustrative techniques interesting candidates for
rendering our shapes. The main challenge here is to ensure a smooth
cease and disappearance of the enhancements in the case of equal eigen-
values.

Perceptional considerations. Small changes in the tensors should lead
to equally small changes in the perception of the glyphs. In order to
proceed in this direction, we first need a metric in the space of all
tensors, and it seems not at all obvious which one to choose. Only then
a study on the perception of the glyphs is meaningful.

Similarity to existing special cases. Another design goal for glyphs
could be the similarity to well-established glyphs in special cases, e. g.,
to Schultz’ and Kindlmann’s superquadrics [165] for symmetric tensors.
Our current approach disregards this goal.

5.6.4 Comparison with Existing Techniques

Parallel to this work, Seltzer and Kindlmann developed and published
an approach with the same goal: glyphs for general second-order ten-
sors [169]. Their construction applies only to the 2D case, seemingly
without a straightforward extension to 3D, and we give a comparison
with our 2D construction.
Seltzer and Kindlmann use a parametrization of the space of 2D tensors
that is similar to the (γ, r)-plane: they span the space in terms of
three parameters D,S,R, similar to the decompositions described in
Section 3.1.1, that generate isotropic, traceless symmetric, and antisym-
metric parts of the tensor. They similarly factor domain rotations and
constrain the Frobenius norm ||T||F =

√
D2 + S2 +R2 = 1 (instead

of the spectral norm as for (γ, r), which, after projection, leads to a
planar parameter space defined by barycentric coordinates. Given a
tensor T := T/||T||F with ||T||F = 1, the following relations hold for
D,S,R in [169] and γ, r:

tan γ =
R

D
and r = 1− S2 .

The first equation can be easily verified as follows. In 2D, the polar
decomposition of a matrix T =

[
a b
c d

]
can be expressed in closed form:

find a rotation matrix, parametrized by angle γ, that makes T symmetric.
This leads to tan γ = c−b

a+d and with Eq. (9) in [169] to the above
equation. The second equation is already given as Eq. (37) in [169]: in
det(T) = 1/2− S2 substitute r = 1/2− det(T) from Section 3.1.1.
For the (D,S,R)-parametrization, Seltzer and Kindlmann give a tangi-
ble interpretation: D = 0 refers to traceless tensors, for S = 0 tensors
are rotations (without shear or nonuniform scaling) and hence exhibit
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rotational symmetry, and R = 0 refers to symmetric tensors without
rotation. In the (γ, r)-space this refers to γ ∈ {π/2, 3π/2} or r = 0
and any γ for traceless tensors, r = 1 for rotational symmetry, and
γ ∈ {0,π} for symmetric tensors. Finally, the loci of det(T) = 0 are
S2 = 1/2 and r = 1/2, respectively. Note that the projection of D,S,R
to planar barycentric coordinates is nonlinear, and the projection of the
algebraic curve S2 = 1/2 is a conic section rather than a line.
Seltzer and Kindlmann also show – similar to this contribution – that
shape alone is not sufficient to ensure a unique encoding. Different from
this work, they propose a texture on the glyph. This gives an intuitive
encoding of the rotation/swirling at the price that continuity and
rotation invariance are not completely fulfilled anymore. Furthermore,
[169] demand as an ultimate design goal that for the special case of
symmetric tensors the well-established superquadric glyphs [93] appear
as a solution. Our approach is different, and the glyphs differ significantly
from superquadric glyphs: rather than treating symmetry as a special
case, our construction always encodes the direction of real eigenvectors
(and smoothly changes to left singular vectors in the complex case).
[169] lose this property for asymmetric tensors with real eigenvectors.

Figure 5.13: The proposed glyphs for symmetric positive definite 3D ten-
sors in a similar arrangement as in [93]: in contrast to Kindl-
mann’s superquadric glyphs, the shape discontinuities prevent
view-dependent visual ambiguities.

We finally compare this work to the superquadric glyphs by Kindl-
mann [93]. This refers to 2D and 3D glyphs, but only for the special
case of symmetric positive definite tensors. Figure 5.13 shows our glyphs
in a similar arrangement as in Figure 7 in [93]. Note that our solution is
different but shares an important design goal: due to the discontinuities
in the shape, there is no visual ambiguity regardless of which perspective
the glyph is rendered/viewed. This means that two of the proposed 3D

66



5.7 limitations and future work

glyphs can always be distinguished in the projection to 2D images. In
contrast, Kindlmann points out that for his superquadric tensors the
2D projections are not always unique, e. g., in case the 3D glyph is an
ellipsoid.

5.7 limitations and future work

The main theoretical limitation of our approach is the non-uniqueness
of 3D tensors of rank 1. We decided not to fix this shortcoming because
we consider this case as having only low relevance in practice. A direct
road-map for future research comes from the discussion in Section 5.6.3.
This includes in particular illustrative or stylized rendering to emphasize
relevant information such that visual perception is taken into account
and all postulated requirements are fulfilled.
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6G LY P H S F O R S PA C E - T I M E J A C O B I A N S O F
T I M E - D E P E N D E N T V E C T O R F I E L D S

Figure 6.1: Glyphs representing both spatial and temporal derivatives encoded
in different time-dependent 3D Jacobian matrices of vector fields.

This chapter is based on the publication:

T. Gerrits, C. Rössl, and H. Theisel
Glyphs for Space-Time Jacobians of Time-Dependent
Vector Fields
Journal of WSCG, 2017

With the newly proposed glyph technique from the previous chapter,
there now exists a glyph that is capable of representing, amongst other
tensors, the 2D or 3D Jacobian matrix of velocity fields at a given
location. The construction is, however, only based on the information
of time-independent vector fields, where no temporal information is
encoded within the Jacobian matrix.

In this chapter, we discuss the following problem:
given an n-dimensional (n = 2, 3) time-dependent vector field v(x, t),
can we construct an n-dimensional glyph that encodes the space-time
Jacobian matrix of v, i. e., all first-order derivatives, both spatial and
temporal? This means that we have to find a glyph representation for
a (n+ 1)× (n+ 1) Jacobian tensor. While this is straightforward for
n = 2 (ending up in visualizing a 3× 3 matrix), it is challenging for
n = 3 because this requires the 3D visualization of a 4× 4 space-time
Jacobian tensor. This specific matrix, however, which is not a general
4D second-order tensor, has some properties that allow for a 3D glyph
visualization that seamlessly extends existing 3D tensor glyphs.
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6.1 visualization of time-dependent flow

We coarsely classify visualization techniques for flow data in different
groups: topology-based techniques [146], dense flow visualization [105],
geometric flow visualization [120], and glyph-based approaches. While
several works exist for the first two groups, only a few known approaches
belong to the latter which we covered in Section 4.1. Techniques such
as the flow radar glyphs [72] or the pathline glyphs [73] focus on repre-
senting time-dependent flow by showing the temporal development of
either a location within a vector field or a particle transported within a
time-dependent vector field over time. Most of the information encoded
by the vector field Jacobian matrix at the glyph locations is ignored.

There exists, to the best of our knowledge, no glyph technique that is
capable of representing a time-dependent Jacobian tensor.

6.2 extension for time-dependent tensor glyphs

As the glyphs introduced in the previous Chapter 5 can visualize any
given 2D or 3D Jacobian matrix as long as the feature is steady, we use
them as a construction foundation to build upon. We further want to
make use of the same construction principles defined in Section 5.1. This
implies, that these glyphs need to be altered or extended in some way,
such that they are able to represent the additional information encoded
in time-dependent Jacobian matrices while still following the properties
defined in the wish list. To find a suitable extension, we need to analyze
the differences between the steady and unsteady case and discuss, how
a suitable mapping of the additional data to the same dimension as
the glyphs we build upon can be found. First, we do this for Jacobian
matrices of 2D unsteady vector fields and present an addition to the
glyph that keeps the requirements from Section 5.1 intact and later
extend the idea to the 3D case.

6.2.1 Time-Dependent 2D Tensor Glyphs

To make the extension clearer, it makes sense to revisit some of the
basic information on vector fields. The introduction on vector fields in
Section 2.1.3 has already stated, that a steady 2D flow at a location
x = (x, y) can be described by v(x) and the local behavior around it
by its Jacobian matrix T. As this is the spatial gradient of the vector
field, we hence call it the spatial Jacobian. Using eigendecomposition,
we obtain the eigenvalues λ1,λ2, and the corresponding eigenvectors
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e1, e2. An unsteady flow, however, has time as an additional dimension.
We define

ṽ(x, t) =


u(x, t)
v(x, t)

1


to be a time-dependent 2D vector field and the corresponding space-time
Jacobian as

T̃(x, t) =


ux uy ut

vx vy vt

0 0 0


with eigenvalues λ1, λ2, 0. The associated eigenvectors are

e1

0

 ,

e2

0

 , f̃ where f̃ : =


a

b

c

 .

This Jacobian matrix must not be mistaken with a general 3× 3 matrix.
Due to the fact, that the last row of T̃ is entirely made up of zeros, two
of the eigenvectors are simply the eigenvectors e1 and e2 of T with an
additional zero as their component in the new dimension. The additional
eigenvector f̃ with its components a, b, c ∈ R is associated with the zero
eigenvalue and fully encodes the temporal derivative, included in T̃.
We use the notation f̃ in reference to the works of Theisel, Seidel and
Weinkauf [179], [199] who show that this vector can be used to track
features over time in a derived vector field known as the feature flow field.
We can therefore use e1 and e2 to build the corresponding 2D glyph
G(T), which we call spatial glyph, using the glyph construction from
Chapter 5, and use only f̃ as the information that needs to be added to
it. As we want our new glyph G(T̃) to be of the same dimension as the
spatial glyph, we require a projection of f̃ ∈ R3 to a vector g ∈ R2 on
the visualization plane. To define an appropriate and unique projection,
we demand

1. Given two eigenvectors f̃1, f̃2 corresponding to the temporal deriva-
tive and the projected 2D vectors g1, g2, if f̃1 and f̃2 are parallel,
g1 and g2 have to be identical.

f̃1 ‖ f̃2 ⇒ g1 = g2 .

2. If f̃1 and f̃2 are not parallel, g1 and g1 must never be identical

f̃1 ∦ f̃2 ⇒ g1 6= g2 .
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3. When the field is stationary, g should not be visible. In this case,
the resulting glyph is identical to the glyph based on the stationary
Jacobian matrix G(T) = G(T̃). Therefore, the corresponding
vector g should be the zero vector. Additionally, the transition
from unstable to stable should result in a smooth transition to
the zero vector.

f̃ →


0
0
1

 ⇒ g→

0
0

 .

We propose the following projection that satisfies the above require-
ments:

g =
1∣∣∣∣f̃ ∣∣∣∣

a
b

 ,

where a and b are the first two components of f̃ .
This vector can then be visualized by adding two identical sticks to
the glyph, one representing g, the other −g and both given a length
of s||g||, where s > 0 ∈ R can be used as a constant scaling factor.
Both orientations of g need to be rendered due to the fact, that f̃ is
an eigenvector of T̃, and therefore must satisfy the same symmetry
properties. To reduce visual clutter, we move these sticks along the lines,
given by their directions to the locations where the line intersects the
boundary of the underlying spatial glyph’s shape. Figure 6.2a illustrates
this construction.

6.2.2 Time-Dependent 3D Tensor Glyphs

Finding new glyphs representing 3D time-dependent Jacobian matri-
ces is analogous to the 2D case. The additional temporal information
encoded by the Jacobian matrix T̃ ∈ R4×4 is given by the additional
eigenvector f̃ ∈ R4, where f̃ = (a b c d)T.

We propose projecting f̃ onto the 3D vector g ∈ R3 by using

g =
1∣∣∣∣f̃ ∣∣∣∣


a

b

c

 ,

and visualizing it by adding tubes to the spatial glyph, created by using
eigenvalues and eigenvectors of T. These tubes are then moved along
their vector directions as well until they reach the points, where their
corresponding elongations would intersect the glyph patch. In that way,
they are always visible and not rendered within the glyph, unless the
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(a) (b)

Figure 6.2: Adding sticks to the base glyphs allows the representation of time-
dependent Jacobians. The eigenvector f̃ corresponding to the time
derivation is projected onto the vector g ( ). A line cast from
the center of the glyph in forward and backward direction of g
intersects the boundary of the glyph exactly twice unless g is
the zero vector. Sticks ( ) representing g and -g are then added
at those locations. (a) Construction of the 2D time-dependent
Jacobian tensor glyph. (b) Construction of one patch and one stick
representing the eigenvalue f̃ of a 3D time-dependent Jacobian
tensor glyph.

Figure 6.3: Glyphs representing different 2D Jacobian matrices. The underlying
features are less temporally stable to the left and more stable to
the right. The stick has vanished in the last glyph, which shows
that this feature is completely stable.

Figure 6.4: 3D Glyphs representing Jacobians sampled at the same location
in an unsteady flow field over time. The glyph as well as the stick
representing the temporal derivative change smoothly over time.

temporal derivative is zero, in which case the new vector becomes the
zero vector as demanded.

Because both new constructions, 2D and 3D alike, follow the presented
set of rules, they are suitable for creating unique tensor glyphs for any
given 2D or 3D Jacobian matrix, unsteady or steady, and also follows
all of the glyph design requirements that were discussed earlier.
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6.3 results

First, we visualize a collection of 2D time-dependent Jacobian matrices.
Figure 6.3 shows a selection of 2D glyphs for different classes of Jacobian
tensors. The temporal derivative encoded within the Jacobian matrix
decreases from left to right. The spatial derivatives within the Jacobians
matrix result in glyphs based upon real-valued as well as complex-valued
eigenvalues and eigenvectors. The additional sticks are always moved to
the boundary of the spatial glyph, for any given shape.
In Figure 6.6 and Figure 6.7, our construction is applied to build
glyphs representing the Jacobian matrices at sampled locations of
one time slice of a 2D unsteady flow behind a cylinder. A variety
of different flow behaviors is present within the flow as can be seen by
the variety of different spatial glyphs. As time proceeds, alternating
vortices, as illustrated by the glyphs using yellow and green colors, are
created and transported to the right. Therefore, Jacobian matrices at
several locations comprise strong temporal derivatives, indicated by the
additional sticks being clearly visible. Locations where the derivative
vanishes are analogously indicated by small or even no sticks. While
Figure 6.6 shows the glyphs superimposed to an additional line integral
convolution (LIC) texture of the underlying flow field, Figure 6.7 displays
the same glyphs in front of a different LIC texture which represents
the feature flow field at the selected time. The projected additional
eigenvectors f are therefore tangent to this field at the given location.
Two closeups for each field show zoomed-in areas of interest inside those
fields.
To further highlight the sticks, the same domain is rendered without
any supporting background LIC texture in Figure 6.8.
Figure 6.4 presents the new 3D glyphs, as it shows sampled time steps of
the development of a 3D Jacobian matrix at the same location evolved
over time. The underlying changing Jacobian matrix is computed by
linear interpolation of two time slices of the vector field. The spatial
glyph changes independent of the temporal derivative, whereas the
added tubes change direction due to the projected vector and location
due to the change of glyph shape, as seen in Figure 6.5.
In Figure 6.9, the glyphs are used to visualize regularly sampled locations
in the 3D unsteady Jacobian matrix field of an analytical flow with
one moving center in the middle of the field. The whole flow is steadily
moved to the right over time. To illustrate the underlying flow field, a
set of illuminated streamlines is added. Here, too, the new glyphs show a
variety of different underlying Jacobian matrices, including constructions
based upon tensors with complex and real-valued eigenvalues.
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Figure 6.5: Sticks visualizing the temporal derivative are always moved along
their directions to the boundary of the glyph, so they are always
visible, no matter whether the spatial glyph is small (left) or large
(right).

Figure 6.6: Glyphs visualizing the Jacobian matrix of the flow around a square
cylinder with two closeups. The underlying LIC image visualizes
the fluid flow.

6.4 discussion

In this section, we evaluate, whether the new glyph construction is
capable of fulfilling all requirements of our wish list. We further discuss
how the glyphs can be read and possible alterations to the design.

By basing our construction on the newly introduced glyphs from the
previous chapter, we ensure that the spatial glyph will always follow all
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Figure 6.7: Glyphs visualizing the Jacobian matrix of the flow around a square
cylinder with two closeups. The underlying LIC image visualizes
the feature flow.

Figure 6.8: Glyphs visualizing the Jacobian matrix of the flow around a square
cylinder without additional supporting LIC textures with two
closeups.

postulated properties. Finding a mapping onto the same visualization
plane and moving it on the shape boundaries, encoding the additional
temporal information has not changed the spatial glyph such that
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Figure 6.9: 3D time-dependent flow with a moving vortex in the center. All
features are moving to the right over time. The newly constructed
glyphs are rendered at sampled locations at one time slice. Illumi-
nated streamlines illustrate the underlying flow.

the expressiveness is in no way impaired. Comparing Figure 6.6 and
Figure 5.8 from the previous chapter, the new 2D glyphs allow to see
the same structures of the underlying flow field as the steady or spatial
2D glyphs before. Therefore, rotational sections as well as laminar flows
can still be easily determined in the given example. Now, however, they
also convey the temporal information. The same statement holds for
the 3D case as displayed in Figure 6.9. We have to show, that this is
also true for our proposed extension.
By rendering the sticks or tubes added to the glyphs in both directions,
they follow eigenvector symmetry and are always visible, even in the
3D case, as long as the underlying Jacobian matrix is unsteady. As the
eigenvalue corresponding to f̃ is always zero, the temporal information
is completely encoded by f̃ . Due to our proposed mapping, the added
sticks also follow invariance to domain scaling and rotation and the
mapping is also unique. Further, a change of vector direction or vector
length of the temporal information is also smooth, which is displayed
in Figure 6.4, where a time series of the glyphs at the same location
over time is shown.
As f̃ also encodes the feature flow field, which allows tracking critical
points over time (see, e. g., [179]), the glyphs offer an insight into the
progression of flow. We can predict glyphs with longer sticks to be
moving or changing over time, while shorter or no sticks indicate that
a feature is quite stable. This is shown in Figure 6.7, where the flow
around the cylinder has vortices going along one axis to the right, which
is also indicated by the sticks of the glyphs in those areas pointing in
this direction. We can also remove all supporting LIC textures as in
Figure 6.8 and still understand the flow itself. Inquiring the analytic
flow shown in Figure 6.9, all the glyphs indicate a similar temporal
behavior as the added tubes are almost identical in terms of length and
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direction, as the whole underlying flow is moving horizontally along one
axis over time.

An appropriate scaling factor or a change of thickness can be chosen to
further emphasize this addition if necessary.

6.5 limitations and future work

Even though these extensions for the general second-order tensor glyphs
can be applied to any temporal derivative of first-order tensor fields,
this is not a construction method for general 4D second-order tensors.
It is the special property of the time derivative, that allows us to utilize
glyphs constructed in the remaining subspaces. This added dimension
can then be projected onto the subspace and added to the glyph.
Similar to the previous glyphs, this chapter did not address deeper
insights on visual perception of colors, controlled sampling of the un-
derlying domain, or user studies, about the acceptance of the newly
constructed glyphs. Dealing with cases of non-uniqueness when visual-
izing 3D tensors of rank 1 remains another inherited limitation of the
glyph design introduced in Chapter 5.
Our decision to move the sticks to the boundary of the glyph is mainly
due to reducing visual clutter as well as to ensure visibility in the 3D
case. However, in the 2D case, these sticks may give the impression to
be only overlapped by the geometry and therefore be much longer, when
the glyph is larger. As the two sticks represent the symmetry property
of an eigenvector, their directions are identical and only reflected. They
cannot, however, provide any information about which choice of sign
represents the actual change of position of the feature to the next time
step.
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7T O WA R D S G LY P H S F O R U N C E RTA I N
S Y M M E T R I C S E C O N D - O R D E R T E N S O R S

Figure 7.1: Left: superquadric tensor glyph representations of 12 members of
a tensor field ensemble sampled in each field at the same location.
Right: a superquadric tensor glyph representing the mean glyph
augmented with a wireframe offset surface encoding uncertainty.

This chapter is based on the publication:

T. Gerrits, C. Rössl, and H. Theisel
Towards Glyphs for Uncertain Symmetric Second-Order
Tensors
Computer Graphics Forum (Proc. EuroVis), 2019

Uncertainty visualization is one of the current challenges in scientific
visualization. Modern visual data analysis does not only focus on proper-
ties, features, and correlations in the data but also on their uncertainties.
As discussed in the introduction, this additional consideration comes
with a significant increase in data to be processed and visualized: instead
of scalar/vector/tensor samples at domain points, either ensembles of
scalar/vector/tensor samples or distribution functions have to be pro-
cessed. This challenge also applies to tensor data. In this chapter, we
investigate 3D uncertain symmetric second-order tensor fields under the
assumption of a normal distribution. These fields are usually obtained
from ensembles of tensor fields, which consist of multiple measurements
of a tensor per grid point. Such an uncertain symmetric tensor is rep-
resented by a mean tensor (consisting of 6 coefficients) and – after
embedding the tensors into a 6D vector space – by a 6× 6 covariance
matrix (consisting of 21 coefficients).
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In this chapter, we aim to find a generic approach to designing glyphs
that represent both simultaneously the 6 coefficients of the mean tensor
and the 21 coefficients of the covariance matrix. Similar to the last
chapter, it makes sense to start the new construction from some es-
tablished glyph representation for the mean tensor by a closed glyph
surface. We show that the information encoded in the covariance matrix
can be captured by a scalar field that lives on the glyph surface. The
scalar function encodes the local perturbation of the glyph surface under
applying a normal random perturbation to the mean tensor, where the
latter perturbation of the mean tensor is modeled by the covariance
matrix. We demonstrate this by visualizing the scalar field as an offset
surface to the surface that represents the mean glyph. This provides
an understanding of the impact of perturbations on the geometry of
the mean glyph or equivalently its shape variation under the given un-
certainty distribution function. We show that this new glyph uniquely
encodes the covariance matrix if the chosen mean glyph is “complicated
enough”, which is the case, e. g., for the standard representation by su-
perquadrics. In addition, we can measure the “stability” of the mapping
between any uncertain glyph and the associated covariance matrix as a
single number. We apply the technique to three standard glyphs for the
mean tensor: an ellipsoid representation for positive definite tensors, su-
perquadric glyphs [93], [165], and the glyphs introduced in Chapter 5 for
symmetric tensors. We show that the ellipsoid representation does not
give full coverage of the information encoded in the covariance matrix
whereas superquadric glyphs do. We provide examples and experiments
and apply our technique to ensembles of DT-MRI data and mechanical
stress tensors.

Throughout this chapter, we use S as a notation for the given tensor
to emphasize, that it is a symmetric second-order tensor and further
we make use of the fact, that such symmetric second-order tensors
can be represented as vectors v(S) as shown in Section 3.1.3. This
was done similarly in [1], [11] and not only leads to a more compact
representation but further allows us to describe the uncertainty of
second-order tensors in terms of standard matrix and vector operations
instead of non-standard higher-order tensor operations. As a reminder,
we use the standard nabla operator notation throughout this chapter
for derivatives of scalar functions g(s) and vector fields g(s) w.r.t. to a
vector s = (s1, . . . , sn):

∇sg =
∂g

∂s =

(
∂g

∂s1
, . . . , ∂g

∂sn

)T
and ∇sg =

∂g
∂s =

(
∂g
∂s1

, . . . , ∂g
∂sn

)T
.
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7.1 the visualization problem

We assume an uncertain tensor under normal distribution that is de-
scribed by the distribution function

p(S) = 1√
(2π)n det C

exp{−1
2v(S− S̄)T C−1 v(S− S̄) } . (7.1)

This function has two parameters: the mean tensor S̄ and the covari-
ance matrix C, which describes not only the variance of the individual
coefficients of v(S) but also their linear dependencies. So, we define an
uncertain tensor as a pair (S̄, C). Note that C is a symmetric positive
definite matrix. In 2D, it is a 3× 3 matrix with 6 distinct entries, while
in 3D it is a 6× 6 matrix with 21 entries.

Assuming a Gaussian distribution to describe uncertainty in tensor
data is common and widely accepted in the literature [1], [11], [13].
Alternative models exist and are used in settings, where this assumption
does not hold. For instance, [208], [209] use a modified mean tensor.

Given m tensor samples S1, . . .Sm, e. g., from an ensemble data set with
m members, the best-fitting uncertain tensor is given by

S̄ =
1
m

m∑
i=1

Si and C =
1
m

m∑
i=1

v(Si − S̄) v(Si − S̄)T . (7.2)

As symmetric tensors are closed under linear combination [214], S̄ will
also be symmetric.
We search for glyphs that encode both S̄ and C and satisfy a list
of properties. In order to express these properties, we first need to
specify the terms scaled and rotated uncertain tensor. Assume that
the same rotation or scaling is applied to all tensor samples in Equa-
tion (7.2). Then scaling by a factor ρ > 0 gives the scaled uncertain
tensor (ρ S̄ , ρ2 C), and rotation by R gives the rotated uncertain tensor
(R S̄ RT , R̂ C R̂T). The construction of R̂ from R was worked out by
Theisel and Rössl and is given in Appendix D.

7.2 an extended wish list for uncertain glyphs

As we have discussed before, the one and only perfect glyph to represent
data like this usually does not exist. So, again we want to set up some
required properties to constrain the search to conforming glyphs. We,
therefore, extend our “wish list” defined in Section 5.1 to apply to
uncertain tensors. Let (S̄, C) be an uncertain tensor and G(S̄, C) its
glyph representation.
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1. Rotation invariance: G(R S̄ RT, R̂ C R̂T) = RG(S̄, C) for any
rotation matrices R and R̂.

2. Scaling invariance: G(ρ S̄, ρ2 C) = ρG(S̄, C) for a positive scaling
factor ρ.

3. Continuity: Small changes in tensor or covariance matrix should
result in small changes in the glyph:
(S̄1, C1) ≈ (S̄2, C2)⇒ G(S̄1, C1) ≈ G(S̄2, C2).

4. Uniqueness: The glyph should contain information to uniquely
reconstruct the uncertain tensor: no two different tensors should
have the same glyph representation:
(S̄1, C1) 6= (S̄2, C2)⇒ G(S̄1, C1) 6= G(S̄2, C2).

5. Direct encoding of real eigenvectors/eigenvalues of S̄: Since the
eigenvectors/eigenvalues of S̄ have a well-defined meaning in most
applications, they should be directly encoded in G(S̄, C).

6. Convergence for C → 0: For vanishing uncertainty, G(S̄, C)

should converge to a well-defined glyph encoding all information
of S̄.

7. Intuitiveness: The glyph should be easily readable and should
have an intuitive interpretation.

Properties (1.–5.) are direct generalizations of the glyph properties for
the certain case, as formulated in Chapter 5. Property (6.) requires that
the certain case should be a well-defined special case in all uncertain
tensor glyphs. Property (7.) is the only one that cannot be shown by
mathematical proof, due to the lack of a mathematical definition of
the concept of intuitiveness. The main contribution in this chapter is
to prove that our new glyphs fulfill the properties (1.–6.). We then
search for intuitive glyphs in the subspace of all possible glyphs given
by properties (1.–6.).

7.3 related work

The aim of this work is to extend current glyph-based visualization
techniques for second-order tensors such as those presented in Chapter 5
or techniques presented in the related work Section 4.1 by additionally
encoding uncertainty. While uncertainty in tensor data is briefly covered
in Section 3.3, where we list a selection of works, we want to review
some of them in more detail to further analyze if they fulfill the newly
introduced properties.

The cones of uncertainty introduced by Jones [90] fail to show distribu-
tions as unique glyphs. Similarly, the HiFiVE glyphs by Schultz et al.
[166] visualize uncertainty in addition to the main direction of a given
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probability distribution but this construction leads to sudden changes
of the glyph when other directions are similarly strong as in isotropic
locations.
The technique used to create the Shape Inclusion Probability (SIP)
glyphs by Jiao et al. [89], where glyphs are created by superimposing a
large number of samples from the given distribution, is related to our
work because it is driven by geometry and even some of their glyphs may
appear similar to ours. However, it is also very different: firstly, it lacks
(provable) adherence to design principles summarized in the previous
section, e.g., directions of eigenvectors or magnitude of eigenvalues of
the mean tensor may not be directly visualized. Secondly, the glyph
encodes the uncertainty in a 3D scalar field, while we want to encode
the uncertainty in a 2D scalar field on the glyph surface. Finally, its
glyph computation is based on generating a large number of random
samples, which are “fused” to a glyph representation. In contrast, our
approach constructs a well-defined shape as a parametric or implicit
function.
The two visualizations proposed by Basser et al. [11], [13] also need
to be analyzed separately: while the independent visualization of the
covariance matrix provides a useful representation of the covariance
itself, it raises a number of problems. Firstly, the same covariance
matrix shows a different impact on different mean tensors. Secondly,
only a subset of the full covariance matrix is visualized. Thirdly, this
visualization is not invariant under rotation of the coordinate system or
tensors, respectively. The rendering of the mean tensor and the variance
as isosurfaces represented a first approach to visualizing the impact of
the covariance matrix on the mean tensor, however, only the totally
symmetric part of the covariance is used, resulting in a violation of
property (4.). These shortcomings are also discussed in the work of
Abbasloo et al. [1] who propose to render the six distinct glyphs that
show the impact of the covariance on the mean tensor. While this
gives a complete picture of the uncertain tensor, it does not satisfy the
continuity property (3.): if two eigenvalues of the covariance tensor get
close to each other, the corresponding eigenvectors (and therefore the 6
visualizations) may show discontinuities. Finally, the work of Zhang et
al. [208] only encodes a three-dimensional subspace of the complete
21-dimensional space spanned by an uncertain tensor.
The following table compares existing work on uncertain symmetric ten-
sor glyphs with respect to the design properties (1.–6.). The additional
last column (±) indicates whether the glyph visualization distinguishes
between indefinite and definite general symmetric second-order tensors.
Properties that could not be decided are indicated as "?".
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method / satisfies (1.) (2.) (3.) (4.) (5.) (6.) ±

Jones et al. [90] 3 3 7 7 ? ? 7

Basser et al. [13] 3 3 3 3 7 3 7

Jiao et al. [89] 3 3 3 7 ? 3 7

Schultz et al. [166] 3 3 7 7 ? ? 7

Abbasloo et al. [1] 3 3 7 3 7 3 3

Zhang et al. [208] 3 3 7 7 3 3 7

Our extended ellipsoid 3 3 3 7 3 3 7

Our extended superquadric 3 3 3 3 3 3 3

Our extended glyph from Chapter 5 3 3 3 3 3 3 3

We conclude this review of related works with the statement that –
to the best of our knowledge – no glyph for uncertain tensors exists
that fulfills properties (1.–6.). Moreover, [1] even state that due to the
high data complexity, “it does not seem promising to try and visualize
all aspects of tensor covariance simultaneously”. We disagree with this
statement and propose a solution to this visualization problem in the
following.

7.4 glyphs for uncertain symmetric tensors

We propose a generic approach that extends any glyph definition for a
“certain” tensor S to the uncertain case to provide a glyph for (S̄, C).
A variety of glyph definitions exist for the certain case. These glyphs
are often described as closed surfaces (or curves in 2D), sometimes with
additional color information. A glyph surface is either given in implicit
form

g(S, x) = 0 (7.3)

or in parametric form

g(S, θ,φ) , (7.4)

with surface parametrization (θ,φ). For the uncertain case, we represent
the mean tensor S̄ by a standard glyph surface. In addition, we define a
non-negative scalar field q on the glyph surface that encodes the impact
of the covariance C on S̄. We write q short for q(S, x) (for g(S, x) = 0)
and q(S, θ,φ), likewise, and define

q =
√

qT C q (7.5)

with

q = q(S, x) = ∇s g

||∇x g||
(7.6)
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Figure 7.2: The normal velocity r of a time-dependent surface in 2D (left) and
3D (right).

for the implicit case and

q = q(S, θ,φ) = (∇s g)n (7.7)

for the parametric case with s = v(S), and n = 1
||·||

(
∂g
∂θ ×

∂g
∂φ

)
is the

surface normal. Note that for the implicit case, ∇s g is a 3-vector in 2D
and a 6-vector in 3D. For the parametric case, ∇sg is a 3× 2 matrix in
2D and a 6× 3 matrix in 3D.

Derivation and Explanation

In order to explain the idea of the field q, we consider the concept of
normal velocity of a time-dependent surface. Assume a time-dependent
surface either in an implicit representation g(x, t) = 0 or in a parametric
representation g(θ,φ, t). The surface changes shape and location under
variation of the time parameter t. The normal velocity of the surface
describes the change of the surface in the direction of the surface normal
as

r = − gt
||∇x g||

(7.8)

with gt = ∂g
∂t for the implicit case and

r =
∂g
∂t

T
n = gtTn (7.9)

with gt = ∂g
∂t for the parametric case. Figure 7.2 gives an illustration.

Returning to tensors, we observe how a glyph surface behaves under a
perturbation

S→ S + t D (7.10)

to the tensor for a small t. We want to observe the directional deriva-
tive of v(S) in the direction v(D). We do so by considering the time-
dependent surfaces

g(v(S) + t v(D), x) = 0 and g(v(S) + t v(D), θ,φ) .
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Computing their normal velocity for t = 0 gives

r(S, D, x) = −v(D)Tq (7.11)

with q as defined in Equation (7.6) for the implicit case and

r(S, D, θ,φ) = v(D)Tq (7.12)

with q as defined in Equation (7.7) for the parametric case.

Equation (7.11) and Equation (7.12) describe the normal velocity of the
glyph surface under a particular perturbation D. In order to consider
the behavior of the glyph surface under all possible perturbations, we
consider r2 as

r2 = qTv(D) v(D)T q, (7.13)

and replace v(D) v(D)T by the covariance matrix C. This gives q =
√
r2

as defined in Equation (7.5). So, the field q describes the mean absolute
values of the normal velocities of an arbitrary glyph surface perturbation
D with the distribution of D given by C.

Computation and Visualization

Although the computation of q by Equations (7.5) to (7.7) is conceptu-
ally simple, the concrete implementation becomes involved for glyph
representations that require a spectral decomposition of the tensor:
in this case, the derivatives of the decomposition with respect to the
glyph components need to be computed, which is difficult and generally
unpractical in closed-from. However, the algorithmic computation of q
is indeed simple if derivatives are approximated numerically by finite
differences. This is what we use in our implementation. One potential
pitfall remains: care has to be taken when different parametric repre-
sentations exist for the same tensor (e. g., the superquadric glyphs). In
this case, we have to ensure that the same parametrization is used for
all samples required for estimating a derivative.
For visualization, we render two closed surfaces: the mean glyph surface
G, and a surface Q defined as Q = G+ q n where n is the surface normal
on G. This means that Q is a scaled offset surface of G where q dictates
the normal distance between G and Q. The joint visualization of the
two nested surfaces G and Q is a standard problem for visualization.
Here, we apply a straightforward rendering using semi-transparency.
A special case that should be considered consists of a mean glyph surface
G that is C0 continuous at certain locations, i. e., sharp edges or corners.
These locations result in a locally discontinuous Q, i. e., a surface with
boundaries at “jumps”. This can happen at single points as well as
along a closed line. We close such boundary loops with ruled surfaces
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to maintain a closed surface. At singularities, where different values can
be mapped to the same point, we chose to set the offset to zero.

7.5 analysis

In this section we show that the proposed glyphs fulfill properties (1.-7).
Properties (1.,2.,3.,5.) are generic properties. If they are fulfilled by the
underlying glyph for the mean tensor, Equations (7.5) to (7.7) ensure
that they carry over directly to the glyph for the uncertain tensor.
Property (6.) is simple: Equation (7.5) gives that for C → 0, we get
q → 0 and therefore convergence to the “certain” glyph.
Properties (4., uniqueness), and (7., intuitiveness) are harder to show.
Uniqueness is not generic: different choices of glyphs for the mean tensor
result in different statements about uniqueness.

7.5.1 Uniqueness

To prove or counter-prove the uniqueness of a glyph for an uncertain
tensor (S̄, C), we assume that the mean tensor S̄ is uniquely represented
by the glyph surface itself. It remains to show that all 21 coefficients of
C can be uniquely derived from the scalar field q on the glyph surface.
In fact, to show uniqueness, we have to show that there exist 21 sample
points g1, . . . , g21 on the glyph surface such that the corresponding
samples q1, . . . , q21 of the field q(g) enable a unique reconstruction of the
covariance matrix C. Let q1, . . . , q21 denote the corresponding samples
of the vector field q given in Equation (7.5) such that q2

i = qT
i C qi. Then

mapping the symmetric tensor in a vector space and Equations (3.1)
and (7.5) give

(q2
1, . . . , q2

21)
T
= MTv(C) (7.14)

with

M =
(
v(q1qT

1 ), . . . , v(q21qT
21)
)
∈ R21×21. (7.15)

In order to show that v(C) can be computed from (q2
1, . . . , q2

21)
T (and

vice versa), we have to show that M has full rank for the chosen sample
points.
Equations (7.14) and (7.15) show that the uniqueness of a glyph depends
on the behavior of q on the glyph surface. Let Q be the set of all vectors
q on the glyph surface. A characterization of Q is the key to study
uniqueness.

Lemma 7.5.1. An uncertain glyph is not unique iff all q ∈ Q live
on a common quadric,i. e., there exists a non-zero matrix A such that
qTA q = 0 for all q ∈ Q.
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A proof for Lemma 7.5.1 has been worked out by Theisel and Rössl
and is given in Appendix E and using it allows us to analyze particular
uncertain tensor glyphs. Therefore, we can make the following Theorems:

Theorem 7.5.2. Uncertain ellipsoid glyphs for positive definite tensors
are not unique.

We summarize the proof of Theorem 7.5.2 for uncertain tensors in
2D in Appendix E. It shows that we can find a non-zero matrix A,
such that q AT q = 0 for all q on the surface of ellipsoid glyphs. The
general construction is identical for the 3D case, however, the generated
expressions are significantly more complex.

Theorem 7.5.3. Uncertain superquadric glyphs for positive definite
tensors are unique if all eigenvalues of the mean tensor are nonzero and
distinct.

A proof of this theorem for the 2D case is found in Appendix E and the
basic idea is simple: find 6 samples of points on the glyph surface such
that the matrix M in Equation (7.15) has full rank. The difficulty of the
proof consists in the fact that the construction of superquadrics involves
a change of coordinates using the spectral basis of the mean tensor S̄,
i. e., it is parametrized by eigenvalues and eigenvectors, whereas partial
derivatives must be computed w.r.t. the entries v(S̄).

Quantifying uniqueness

As mentioned above, a formal proof that a new uncertain glyph is unique
can be difficult. The reason is that many glyph definitions – like the
superquadric glyphs – rely on the spectral decomposition of the tensor.
This makes finding a formal proof seemingly the hardest task when
establishing a new glyph for uncertain tensors – significantly harder
than the definition and implementation.
To cope with this, we introduce a measure of the “uniqueness” of an
uncertain glyph: we measure how stably the covariance matrix C can
be reconstructed from m samples (m ≥ 21) q1, . . . , qm of the function
q at the sample points g1, . . . , gm on the glyph surface G. In the ideal
case, a small perturbation in C results in small changes in q1, .., qm, and
vice versa. A low uniqueness number is therefore intuitively given, if
strong changes in C only lead to little or no changes in q1, .., qm and
conversely, if small changes in C lead to strong changes in q1, .., qm.
The reconstruction of q from C is defined by the linear mapping in
Equation (7.14) if m = 21. For m > 21 samples, the map is given by
the corresponding least-squares solution to

MMT v(C) = M (q2
1, . . . , q2

m)
T .
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The condition number κ = κ(M) measures the stability of this map (for
any m ≥ 21). The condition number is defined as the ratio of largest
and smallest singular values of M. This implies κ ≥ 1 and κ → ∞ if
M does not have full rank (i. e., M MT is not invertible). Numerical
applications commonly prefer specification of the reciprocal condition
number in order to have values in a finite interval. For the same reason,
we define the uniqueness number as

u(G) =
1

κ(M)
∈ [0, 1] ,

which has the following properties:

• u(G) depends only on the shape of the mean glyph. It is a measure
of how well an arbitrary covariance matrix C can be reconstructed
from sampling q on the mean glyph surface.

• u(G) is invariant under rotation and scaling.

• 0 ≤ u(G) ≤ 1. The larger u(G), the better C can be reconstructed
from sampling q.

• u(G) = 0 indicates that the glyph is not unique.

The uniqueness number depends on the number m ≥ 21 of samples as
well as on the sampling positions gi. Ideally, we would like to compute

inf{u(G) | given any possible sampling of G } ,

which is infeasible. However, any computed u(G) > ε provides evidence
of uniqueness for a suitable ε → 0, and any maximum of computed
values (e. g., for different samplings) gives a conservative estimate or a
lower bound on uniqueness.
We illustrate these properties and the behavior of u(G) in a few nu-
merical experiments. We start with 21 uniformly distributed random
samples on the glyph surface and compute the uniqueness number.
We observe that the particular sampling is generally not critical: the
computed values of u typically do not vary much. As the uniqueness
number depends on the selection of the sample points, one might be
tempted to construct a “smart selection” or use “deterministic samples”.
We decided to use random samples because deterministic sampling
would incorporate the orientation of the eigenvectors of S̄. This changes
discontinuously in regions of equal eigenvalues, which leads to a viola-
tion of the continuity condition (3.) for glyph design. By incorporating
additional samples, the number of rows in M typically increases, as this
typically “adds” new information, and the condition number of M tends
to decrease. This means the uniqueness number typically increases. The
more samples, the less likely are additional samples to capture new
information. Therefore, uniqueness changes at a slower and slower rate
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and is expected to converge to a limit. This is illustrated in Figure 7.3
for the same mean tensor and two different glyph constructions. With
a minimum at 21 values, u(G) rises rapidly until including about 150
additional samples and remains stable from thereon.
Since u(G) is independent of rotation and scaling, we can systematically
compute u(G) for all glyphs of a certain glyph type. For this, we consider
the three eigenvalues of the mean glyph λ1,2,3 as λ1 = 1, λ2,3 ∈ [−1, 1]
and compute u(G) for each (λ2,λ3) ∈ [−1, 1]2. The resulting plot
for the glyphs from Chapter 5 is shown in Figure 7.4. It shows that
u(G) > 0 if λ1,2,3 are distinct and nonzero. Hence Figure 7.4 shows
that the uncertain glyphs based on the 3D tensors glyphs introduced in
Chapter 5 are unique. The height surface in Figure 7.4 was computed
on a 151× 151 sampling grid.
An uncertain glyph is considered to be unique for u(G) > ε such that
it is numerically clearly distinguishable from 0. In practice, we expect a
significantly lower uniqueness for a close to minimal sampling (m = 21)
than for higher m (see Figure 7.3). However, even such cases correspond
to condition numbers in the range of 105, which is perfectly tolerable
for solving a linear system.

0 100 200 300 400 500 600
10−5

10−4

10−3

10−2

# samples m

u
(G

)

Superquadric Glyph
Glyph from Chapter 5

Figure 7.3: For an increasing number of samples on G, uniqueness u increases.
The experiment shows random samples on the tensor v(S̄) =

(1, 0.5, 0.4, 0, 0, 0)T. For both choices of Q, we observe a converging
behavior of u.

7.5.2 Intuitiveness

It remains to show that the field q on the mean glyph surface provides
an intuitive encoding of uncertainty. This cannot be proven formally.
Instead, we motivate and explain intuition with help of a few exemplary
settings in 2D.
Figure 7.5 shows different visualizations of an ensemble of 2D tensors,
which follow a given normal distribution. A 2D tensor can be consid-
ered as a point in the three-dimensional vector space of the tensor
components s11, s22,

√
2s12. Figure 7.5 (left) shows the tensors as 3D

points. The red point denotes the mean tensor, and the overlaid ellipsoid
denotes the covariance. Figure 7.5 (center) shows the same set of ten-
sors by overlaying their corresponding transparent superquadric glyph
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Figure 7.4: Uniqueness u(G) for different mean tensors using the glyphs pro-
posed in Chapter 5. λ1 = 1 is fixed, and λ2,λ3 ∈ [−1, 1] vary. The
tensor is unique if u(G) 6= 0.

surface (here: superellipses in 2D). We see that there are regions where
many curves coincide, whereas in other regions there is a larger spread.
Figure 7.5 (right) shows the same tensor ensemble with our visualization:
the orange curve is a superquadric representation of the mean tensor,
the field q is shown as the region bounded by offset curves in positive
and negative normal directions. The relation to Figure 7.5 (center) is
visually noticeable: in regions of high spread among the sampled glyph
curves, the offset q is rather large. Figure 7.5 also shows that our glyph
shows similarities with curve boxplots [122], even though the definition
and properties are different.
To further study the meaning of the field q, we conduct the following
experiment: we generate 5 samples of 2D tensors by varying properties
in the spectral domain. Then we compute the best-fitting uncertain
tensor by applying Equation (7.2) and visualize its glyph. The top
row of Figure 7.6 shows several collections of 5 tensors as overlaid
superquadric glyphs. In the columns we vary (from left to right) 1.
one eigenvalue (same signs), 2. one eigenvalue (opposite signs), 3. both
eigenvalues (same sign) with inverse correlation, 4. both eigenvalues
(opposite signs) with a positive correlation of the magnitudes. The
eigenvectors remain constant. The bottom row in Figure 7.6 shows
the corresponding uncertain glyphs. The relation between the overlaid
superquadric glyphs and our uncertain superquadric glyphs is clearly
noticeable.
In Figure 7.7 we conduct the same experiment with constant eigenvalues
and varying directions of eigenvectors. The amount of variation decreases
from left to the right. The top row shows overlaid superquadrics, and
the bottom row shows the corresponding uncertain glyphs. As before,
the relation between the overlaid samples and the fitted distributions
shown as uncertain glyphs is clearly noticeable.
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Figure 7.5: Three visualizations of the same 2D tensor ensemble: as points
in the vector space of tensor components s = v(S), the red point
denotes the mean tensor S̄ (left); as overlaid superquadric glyph
curves (center); as uncertain glyph: mean G(S̄) is depicted as
orange curve, the filled region is bounded by the outward/inward
offset curves defined by q (right).

Figure 7.6: Four different sets of tensor samples. Each set consists of 5 tensors
that are generated by varying the eigenvalues (with constant eigen-
vectors). The top row shows overlaid superquadric glyphs. The
bottom row shows our corresponding uncertain glyphs.

Figure 7.7: Five different sets of tensor samples. Each set consists of 5 tensors
that are generated by varying the direction of eigenvectors (with
constant eigenvalues). The top row shows overlaid superquadric
glyphs. The bottom row shows our corresponding uncertain glyphs.

We conduct similar experiments for 3D glyphs. Here, we compare dif-
ferent classes of glyphs that are extended to visualize uncertain ten-
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Figure 7.8: Glyphs for uncertain tensor with v(S̄) = (1, 0.8, 0.5, 0, 0, 0)T,
C = diag(0, 0, 0.2, 0, 0, 0). The tensor varies in one princi-
pal direction. From left: ellipsoid glyph with u(G) = 0, su-
perquadric glyph with u(G) ≈ 9.1 · 10−4, glyph based on Chap-
ter 5 with u(G) ≈ 1 · 10−4.

Figure 7.9: Glyphs for uncertain tensor with v(S̄) = (0.9, 0.7, 0.3, 0, 0, 0)T

and covariance that corresponds to varying plane rotation of
eigenvectors. From left: ellipsoid glyph with u(G) = 0, su-
perquadric glyph with u(G) ≈ 3.4 · 10−4, glyph based on Chap-
ter 5 with u(G) ≈ 2 · 10−6.

Figure 7.10: Glyphs for uncertain tensor with indefinite mean v(S̄) =

(1, 0.6,−0.5, 0, 0, 0)T and C = diag(0, 0.65, 0.03, 0, 0, 0). The
tensor varies in one principal direction. Left: superquadric
glyph with u(G) ≈ 1.5 · 10−4. Right: glyph based on Chap-
ter 5 with u(G) ≈ 3 · 10−6. (There exists no ellipsoid glyph
in the indefinite case.)

sors: simple ellipsoid glyphs (for positive-definite tensors), superquadric
glyphs [165], and the glyphs presented in Chapter 5 (for the case of sym-
metric tensors). Figure 7.8 and Figure 7.10 show glyphs for ensembles
with one varying eigenvalue, whereas Figure 7.9 shows glyphs for tensors
that are varied by a plane rotation of eigenvectors. Figure 7.11 visualizes
a randomly chosen uncertain tensor (S̄, C). For each glyph, we provide
a uniqueness number u(G) that was computed from sampling at 21
random points on the glyph surface. We emphasize again, that this is
no formal proof of intuitiveness but aims towards giving new insights
into the visualization of tensor uncertainty.
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Figure 7.11: Glyphs for uncertain tensor with

S̄ =
( 1 0.2 0.1

0.2 0.4 0.03
0.1 0.03 0.2

)
and C = 10−3 ·

 103 69 69 0 0 0
69 66 36 0 0 0
69 36 66 0 0 0
0 0 0 300 0 0
0 0 0 0 6 0
0 0 0 0 0 200

.

From left: ellipsoid glyph with u(G) = 0, superquadric
glyph with u(G) ≈ 3.6 · 10−4, glyph based on Chap-
ter 5 with u(G) ≈ 5.3 · 10−6.

(a) (b)

(c)

(d)

Figure 7.12: Uncertain superquadric glyphs for an ensemble of Diffusion Tensor
Imaging data of the human brain.

7.6 results

We demonstrate how our new uncertainty glyph can be used as a tool
for investigating uncertainty in tensor data by applying it to data from
medical imaging as well as mechanical engineering. First, we apply our
new tensor visualization to an ensemble of positive-definite symmetric
diffusion tensor data given in the DTI multiple atlas set. The Human
Brain Atlas was provided by the Johns Hopkins Medical Institute and
the Laboratory of Brain Anatomical MRI. A horizontal slice is sampled
for fourteen distinct members and a non-linear registration is applied
on a rectangular grid as seen in Figure 7.12a. The measured tensors
vary in magnitude and direction. We compute the mean tensor and
covariance matrix for each sample location. Figures 7.12b to 7.12d show
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the superquadric tensor glyph visualization and the offset surface that
indicates uncertainty. The produced glyphs allow to see the mean tensor
throughout the ensemble members for all locations as well as the local
uncertainty. Large offset surfaces indicate stronger variations among
the members and provide a geometric insight of this variation. Glyphs
shown at the bottom of Figure 7.12c encode a high uncertainty and
show, that tensors vary in rotation. Especially tensor data measured
close to the lateral ventricles show uncertainty.
Figure 7.13 shows one selected tensor of the same dataset. To illustrate
the effect of uncertainty and its correspondence to derived uncertainty
measures, we construct a traceless matrix C′ = C− diag(trace(C)) and
use it as covariance matrix. The top row shows a blending αC′ with the
zero matrix for α ∈ {0, 1

4 , 1
2 , 3

4 , 1}. This increases uncertainty which is
shown by the growing offsets. This offset is close to zero near the glyph
axes that represent eigenvector directions. Note that visualizing only
the trace of the covariance, which is often used as a derived uncertainty
measure, would give the impression that all tensors are equal and certain.
For the second row, we blend C′ and the original covariance C stepwise
from left to right as (1− α)C′ + αC, which results only in a change of
trace. This leads to an overall increase of the offset, also close to the
axes. The overall volume of the surface allows for a quick understanding
of the level of uncertainty, the glyphs, however, also include spatial
information and indicates the type of uncertainty.

We further show the visualization of a stress tensor ensemble from static
simulations of stresses applied to a steel cylinder. For the simulation,
the bottom end geometry is fixed, and rotational momentum is applied
to each axis of the top end. While a mean rotation is applied to the
longitudinal axis, three different additional torques are applied and
varied for each simulation following a Gaussian distribution to form
an ensemble of 10 different tensor fields where tensors are indefinite
symmetric stress tensors. Again, a slice orthogonal to the mean rotation
axis is sampled on a uniform grid to compute the mean tensor and
covariance matrix for each location and then visualized by applying
our technique to the superquadric tensor glyph. The resulting image in
Figure 7.14 clearly shows the rotational axis in the center of the slice,
where the tensor vanishes. For most glyphs, the offset surface is close
to the mean glyph surface, indicating a low uncertainty for the location.
Only tensors at the left and right border show a stronger uncertainty,
where eigenvalues vary while eigenvectors are stable.

parameter discussion

While the scalar field q defined on the glyph surface is parameter-free,
its visual representation is not. A global scaling parameter of the glyph
itself has been used to have the sampled tensors densely cover the
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Figure 7.13: Top: linear blending of zero matrix and traceless matrix. Bottom:
linear blending of traceless matrix and original covariance matrix.

Figure 7.14: Uncertain superquadric glyphs for an ensemble of simulated stress
tensors from changing torque applied to a steel cylinder. The
colors indicate the signs of eigenvalues, the transparent offset
surfaces indicate uncertainty.

area. Further, scaling the offset from the mean surfaces is possible
to emphasize uncertainty but has not been used in this work. As the
offset surface is encasing the mean tensor, we chose opacity to solve
the problem of overlapping. A suitable rendering needs to be applied
such that shape and color of both, offset as well as mean surface can
be perceived well. Other techniques for visualizing scalar fields on a
surface might be applicable, as long as they do not lead to a violation of
our wish list described in Section 7.1. Further parameters are related to
sampling: When using finite differences to approximate derivatives, the
step size between discrete points affects the accuracy. As described in
Section 7.5.1, determining a uniqueness measure relies on sampling the
glyph surface. For determining the uniqueness of the uncertain glyphs
shown in Figures 7.8 to 7.11 we chose the minimum sample number of
21. Values in Figure 7.4 are computed for a selection of 600 samples to
ensure the value is close to the tensor’s experimental limit.
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comparison to existing glyphs

To give a better understanding of how our contribution improves glyph
visualization of uncertain tenors, we compare them with existing glyph
techniques. As different mean tensors are affected differently by the same
covariance, we compare our uncertain tensor glyphs to visualizations by
Basser et al. [13] and Abbasloo et al. [1]. As mentioned in Section 7.3,
Basser et al. [13] use a radial projection of mean and covariance tensors.
Isosurfaces indicate mean tensor as well as standard deviation. Besides
the visual complexity produced by three superimposed surfaces, the
glyph construction cannot ensure unique representations. Due to the
projection, mean tensors that only differ by the sign of eigenvalues
will be mapped to the same scalar field. The same can be shown
for the covariance, as only the totally symmetric part of the tensor
is represented. Both mappings are not bijective. The bottom row of
Figure 7.15 demonstrates this behavior: the surfaces for the mean tensor
(shown in green) and standard deviation ±σstd (−σstd red, +σstd blue)
are superimposed and rendered translucent. Columns (a) and (b) show
glyphs for the same mean tensor v(S̄) = (1, 2, 5, 0, 0, 0)T but different
matrices as covariance tensors. While the first matrix can be written as
C1 = diag(0, 0, 0, 1, 2, 3), the second places the same non-zero values
on different off-diagonal locations. The two matrices used as covariance
tensors are given as

C1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 3


, C2 =



0 1 2 0 0 0
1 0 3 0 0 0
2 3 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

Columns (a) and (c) of Figure 7.15 show glyphs for the same covariance
matrix but different mean tensors, as the sign of the minor eigenvalue is
flipped such that v(S̄) = (−1, 2, 5, 0, 0, 0)T. The three resulting glyph
visualizations by [13] are identical, which is a violation of property (4.).
In comparison, the top row shows our new glyphs for the same input
tensors. They are clearly distinguishable and are capable to represent
each combination uniquely.

Abbasloo et al. [1] visualize the impact on the mean tensor by decompos-
ing the covariance into its eigentensors and rendering the effect of each
eigenmode separately. They offer an animation to show how the mean
tensor changes based on the different eigenmodes. Alternatively, these
glyphs can be presented as overlays, to indicate confidence intervals
of tensor distributions. The authors propose to add and subtract the
eigentensor scaled by three times the corresponding eigenvalue to the
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(a) (b) (c)

Figure 7.15: Three different uncertain tensors visualized by our method (top
row) and [13] (bottom row). While our method clearly shows
different glyphs, the glyphs by [13] are identical: [13] is not unique.

mean tensor and render two superimposed superquadric glyphs. As the
original mean tensor and thus its eigenvector directions are no longer
visualized, this poses as a violation of property (5.). Eigentensors do,
however, change in a discontinuous way when the covariance tensor is
nearly isotropic, which leads to a sudden change in visualization even
though the covariance tensors are virtually identical. This sudden change
can be observed in Figure 7.16. Both (b) and (d) show visualizations for
the same mean tensor v(S̄) = (1, 2, 5, 0, 0, 0)T. The six eigenvalues σi
and eigentensors Ei extracted from the fourth-order covariance tensor
are used to create six views. Each showing superquadric glyph repre-
sentations for Dblue = S̄− 3σiEi and Dred = S̄ + 3σiEi and labeled
as eigenmode i. Note, that we used a simple translucent rendering of
both glyphs, while [1] render both separately, adding a white core to
areas where they overlap. For both covariance tensors used in (b) and
(d), we use C = 0.3 · I and add random symmetric noise in the order
of 10−8. This slight noise leads to a sudden change in the eigentensors
and therefore in the visualizations, which is a violation of the continuity
property (3.). Our new glyph construction accounts for this problem.
Uncertain tensor glyphs for the given tensors are shown in (a) and (c).
The minimal change between both covariances results in a minimal
change between both uncertain glyphs.
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Ours

eigenmode 1 eigenmode 2 eigenmode 3

eigenmode 4 eigenmode 5 eigenmode 6

(a) (b)

1

Ours

eigenmode 1 eigenmode 2 eigenmode 3

eigenmode 4 eigenmode 5 eigenmode 6

(c) (d)

2

Figure 7.16: Two almost identical uncertain tensors (À,Á) having almost iden-
tical glyphs by our method ((a) and (c)) but significantly different
glyphs in the visualizations of [1] ((b) and (d)): [1] is not continu-
ous.

7.7 limitations and future work

The technique proposed in this chapter is a first step towards uncertain
glyphs. Therefore, there are limitations and areas that need further
research: the glyph extension described here is built upon and therefore
restricted to uncertain tensor data assuming a Gaussian distribution.
There are data sets where this model is not appropriate and other dis-
tributions are more capable of capturing the underlying data. Naturally,
all limitations arising from the chosen underlying glyph construction
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also apply to the augmented glyph. Our approach opens future research
in several directions:

Figure 7.17: 6 tensors simulating a HARDI data set. Left: the tensors in
overlaid superquadric representation. Center: uncertain glyph.
Right: overlay of input glyphs and the offset surface Q.

rendering. We distinguish surfaces G of the base glyph and the
offset surface Q, which encodes uncertainty. Our current rendering style
with a solid surface for the mean tensor and a transparent surface for
uncertainty is straightforward. More advanced rendering techniques are
possible, which may be optimized towards a simultaneous perception
of the shapes of both G and Q. This includes illustrative approaches,
opacity optimization for surfaces [53], or a piecewise rendering [209].

optimal uniqueness sampling. While the current implemen-
tation relies on a random point sampling for computing uniqueness
numbers, better sampling strategies may result in even smaller, i. e.,
better, uniqueness numbers for the uncertain glyphs. This, however,
does not affect the actual glyph design or visualization, it only provides
better information about uniqueness.

application to hardi data. In Section 3.2.1 we already dis-
cussed the limitations of diffusion tensors to represent crossing fiber
structures [75], [167] which has led to the use of high angular resolu-
tion diffusion-weighted imaging (HARDI) data to better capture such
structures. However, since multiple directional diffusion values can be
interpreted as an ensemble of second-order tensors, the higher-order
information could be represented by the covariance matrix. To test this,
we created a collection of diffusion tensors that represent such a case.
Figure 7.17 shows this “HARDI data simulation”: Figure 7.17 (left)
shows 6 cigar-shaped tensors in superquadric glyphs with their orien-
tation grouped into two clusters. This represents two crossing fiber
directions. Figure 7.17 (middle) shows our uncertain glyph based on su-
perquadric glyphs: while in the mean glyph the directional information
is canceled out, it is clearly visible in the offset surface Q that encodes
covariance. Figure 7.17 (right) is an overlay of the input glyphs and the
Q surface. We note that while this is an indicator of the applicability of
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our method to HARDI data, a formal establishment and comparison
with other HARDI visualization techniques is left to future research.

extension to general tensors. Similar to Chapter 5, it
seems desirable to extend the construction of tensor glyphs to general
second-order tensors. Such a general (non-symmetric) 3D tensor is,
however, represented by 9 coefficients for the mean tensor and 45 for
the covariance matrix. It seems to be challenging but not hopeless to
extend our approach to general tensors in future research.
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8C O N C L U S I O N S

In the Chapters 5 to 7 of this part, we covered the analysis and scientific
visualization of second-order tensor data by the use of tensor glyphs.
Even though such glyphs are a powerful and well-known tool, we showed
that most techniques are focused on symmetric tensors only and exclude
non-symmetric tensors where the eigenvectors can be non-orthogonal
and eigenvalues complex. We therefore presented a new technique for
visualizing general 2D and 3D tensors with glyphs in Chapter 5. To
find such glyphs, we first proposed our “wish list” for tensor properties
based on mathematical considerations of the underlying tensor data.
Therefore, the construction follows a specific set of carefully chosen
desired properties which consist of invariance to isometries and scaling,
direct encoding of all real eigenvalues and eigenvectors, one-to-one
relation between the tensors and glyphs and finally glyph continuity
under changing the tensor and is based on piecewise rational Bézier
curves and surfaces. These new glyphs therefore offer the first glyph
visualization technique that can be applied to general 2D and 3D tensors.
As vector field Jacobian matrices are one typical application where
such non-symmetric tensors appear, we further introduced an extension
to these new glyphs in Chapter 6. By finding a suitable mapping of
the additional temporal information onto a vector that lives in the
same dimension as the spatial glyph, these glyphs make it possible to
represent time-dependent Jacobian matrices. The new method provides
a visualization of the steadiness or unsteadiness of a vector field at a
given instance of time. This approach, too, follows the list of desired
tensor glyph properties and the extension is constructed such that the
glyph’s capability to encode the spatial derivatives is in no way impaired.
As the high dimensionality and complex nature of tensor data makes
it complicated to find suitable visualizations, including uncertainty
presents an even bigger challenge. The work proposed in Chapter 7
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conclusions

presents – to the best of our knowledge – the first approach to direct
visualization of uncertain tensors that incorporates all 21 parameters
when assuming Gaussian distribution in a single glyph. The new uncer-
tain glyph is based on some standard glyph for certain tensors, which
represents the mean tensor, and enriched by a scalar field that repre-
sents tensor covariance. As variance of intrinsic tensor properties can
be derived from the covariance matrix, the full uncertainty information
is encoded. The construction of the uncertain glyph is again based on
an extended version of the design principles introduced in Chapter 5
and provides a bijective map between the glyph and the uncertain
tensor (i. e., mean tensor and covariance). We derive formal criteria for
uniqueness that can be used in formal proofs as well as for measuring
“uniqueness” empirically for glyph instances. The empirical study is help-
ful because although the approach to proving or disproving uniqueness
is simple, the complexity of the formal expressions may “explode” if the
basis glyph is defined w.r.t. a spectral basis. The visual comparison of
the uncertain glyph for a best-fitting distribution with overlaid glyphs of
the given ensemble members, indicates that the additional uncertainty
can be encoded in a way that provides an idea of the given distribution.
This is also emphasized by experiments where ensembles are generated
by varying spectral parameters of the glyph. With this in mind, we
believe that this chapter provides a valuable insight into encoding the
effect of covariance on symmetric order tensors and the new glyphs
provide a valuable tool for visual assessment of uncertain tensor data.
All techniques have been applied to a number of data sets in 2D and
3D. We sincerely hope that these extend the palette of available tools
for tensor visualization and therefore provide a valuable contribution
for tensor analysis.
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V I S U A L I Z AT I O N O F V E C T O R F I E L D
E N S E M B L E S
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E N S E M B L E D ATA

Figure 9.1: Vector field ensemble generated from sampling a simulated vector
field describing flow inside a container with a rotating mixer at
different time steps. Streamlines are used to visualize the flow in the
distinct members (left). A spaghetti plot (right) of all streamlines
combined can be used to visualize the whole ensemble but suffers
greatly from visual cluttering and overlapping elements.

In Section 2.2 we defined an ensemble as a collection of “certain” fields
which in total represent the uncertainty of the data [20]. For vector field
ensembles we therefore deal with n vector fields v1, ..., vn as members
which all share the same domain and data dimension. Typically, such
fields are produced by means of numerical simulations where either
the simulation models, simulation parameters or initial configurations
are changed for each simulation run [52]. Ensembles can however also
arise from multiple measurements such as repeated experiments or
medical observations [69]. Typical applications of vector field ensembles
not only include meteorological and climatological research [19], [148],
[159], but also data from oceanography [77], [78] as well as blood flow
simulations [4]. For a general discussion and very detailed overview on
ensemble data visualization, including other data types, we refer to
Wang et al. [193].

Using ensembles allows to make stronger statements on the reliability
of the data and therefore for better decisions and more accurate repre-
sentations of complex phenomena. How to analyze the data is strongly
dependent on the task and ranges from just gaining an overview of all
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the acquired information to comparing distinct ensemble members, also
known as comparative visualization [50], [134]. Further tasks include
testing and adapting simulation model parameters [194] or forecasts
such as weather or hurricane track prediction [28]. The challenge lies
within the drastically increased amount of data: not only do acquisi-
tion, storing, and processing need to be repeated for each member of
the ensemble, several additional problems arise when trying to apply
standard visualization techniques. Each vector field can be investigated
individually by visualizing extracted features such as critical points or
vortex core lines. To get an overview of the whole ensemble, however,
these techniques can often not be directly applied to ensemble data.
Especially when the number of members is high, going through each
field individually and comparing them to each other is not only men-
tally challenging but also time consuming. Therefore, new visualization
techniques need to be used and developed.

In this part of the thesis, we search for new approaches for the visualiza-
tion of vector field ensembles. We first introduce background information
that helps understanding feature extraction and visualization of single
vector fields and put a special focus on line-type features. We then dis-
cuss existing works and approaches for dealing with the visualization of
vector field ensembles in 2D and 3D. Finally, based on the observations
made, we introduce a new operator that extracts features of vector field
ensembles, where all vectors are approximately the same. We test this
new operator on a number of vector field ensembles and discuss the
results, challenges and future work.

9.1 background and related works

Defining, extracting and visualizing features of multifield or ensemble
data – either derived from one field or independent fields – is a chal-
lenging task with a variety of applications as presented by Verma and
Pang [191]. Features can either be extracted from each single field or
from information given by a combination of multiple or all fields as
discussed by Obermaier and Peikert [126]. Depending on the data type
of the members within the ensemble, different challenges arise. It makes
sense to start the considerations with a single “certain” field of that type.
When working with vector fields, there exist a variety of visualization
techniques, which – following Post et al. [147] – can be grouped into four
different groups. Direct flow visualization, Texture-based flow visualiza-
tion, geometric flow visualization and feature-based flow visualization.
As an in-depth discussion on each of the categories is beyond the scope
of this work, we refer to related literature [106], [146], [147], [158] that
offer an extensive overview.
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9.1 background and related works

Section 2.1.3 already lists several well-known and widely used visual-
ization methods for certain vector fields including simple arrow glyphs
and streamlines. We want to put a stronger focus on techniques that
are not only used in the visualization of single vector fields but can also
be found in vector field ensemble visualizations. Whereas isocontours
can often be found when working with scalar fields, line-type features,
that are frequently used for vector field data analysis, are streamlines
and pathlines as well as feature lines such as vortex core lines.

Integral Lines

Integral lines such as pathlines and streamlines have become a well-
established visualization method, as they make it possible to visualize
and analyze the trajectory of massless particles within the flow. By
only following these paths, domain experts can classify regions within
the flow that indicate turbulent or laminar behavior, rotational flow or
separation structures. In general, integral lines can be defined as

d

dτ
x(τ ) = v(x(τ )) with x(0) = x0

where τ denotes the arc-length coordinate along the curve and can
also be interpreted as the integration time and x0 is the starting or
seeding position. This means, that the tangent of every location on
the curve shares exactly the same direction as the underlying vector
field. When dealing with steady vector fields, pathlines and streamlines
are identical. In time-dependent vector fields, pathline integration uses
the vector information based on the changing time parameter, while
streamline integration uses only the vector information of one specific
time step. In single vector fields, there exists only one unique curve
for each case of integral line at each location and point in time. For
ensemble vector fields, this number is evidently increased, such that
each ensemble member adds another possible curve per case. These
lines can take different paths and intersect one another several times as
is indicated in Figure 9.1. Besides information about the flow, integral
lines can further encode additional scalar values using color. Often, they
are colored based on the magnitude of the underlying vector field at
sampled locations or based on the ensemble member they belong to.

Vector Field Features and Topology

Instead of direct visualization of each vector value, which introduces a lot
of information at each location, important features can be extracted that
represent the structure of a vector field. Several approaches therefore
focus on the definition, extraction and visualization of such features
to aid analysis and deeper understanding of such fields. Depending on
the given data, features can be understood as an abstraction of the
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underlying field, as they often represent a certain aspect of interest,
such as physically meaningful structures or patterns. In flows, we might
be interested in locations where particles advected by the flow exhibit
specific properties. Features can be extracted directly from the given
field itself, or they take into account additional derived information
like the acceleration field. Especially, when dealing with flow fields
in a 3D domain, the areas where flow follows a swirling or rotating
motion are often of particular interest. In applications ranging from
engineering to medicine, extracting and visualizing such locations can
help to understand the flow and its impact on phenomena. These
include mixing of gases in combustions, testing aerodynamic properties
of objects or blood flow through aneurysms as indicated in Figure 9.2.
Finding a suitable definition for rotating flow, as well as finding and
extracting these features has produced numerous works and we refer to
Günther and Theisel for an extensive overview [54] of such techniques.
While definitions such as the Q-criterion [85] or the λ2-criterion [86]
result in regions that are considered to belong to a vortex, we want to
focus on the extraction of vortex core lines.

9.1.1 Vortex Core Lines

Figure 9.2: The path taken by the streamlines (blue) indicate regions of rota-
tional flow behavior in a blood flow simulation through an aneurysm.
The center of such rotational flow can be represented by a vortex
core line (yellow).

A well-known feature to represent locations of rotating motion in flow
fields are vortex core lines. These lines represent the centers of areas
of swirling behavior. They do, however, not provide any additional
information such as the border of rotational regions or the strength of
the rotation. Especially the definition and extraction method of Sujudi
and Haimes [175] has been used as a reliable technique for finding vortex
core lines. They propose looking for structures where the velocity vector
is parallel to the acceleration vector v ‖ (∇v)v and the Jacobian matrix
(∇v) must have complex eigenvalues. The eigenvectors corresponding
to the complex eigenvalues span a plane in which the swirling motion
occurs. In other words, to fulfill the above criterion, the projected flow
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vector onto the plane needs to be the zero vector, which means that
particles advected on the core line only move in the direction of the line
itself and exhibit no swirling. This however favors straight lines, while
core lines can form any arbitrary closed curve. Roth and Peikert [155]
use higher-order derivatives to improve results by finding locations
where velocity vectors are parallel to the second-order derivatives of
particle motion v ‖ (∇c)v where c = (∇v)v.

9.1.2 The Parallel Vectors Operator

Figure 9.3: When two vector fields (red and blue) are defined on the same
domain, the parallel vector operator finds all locations where both
are parallel. When the domain is discretized on a mesh of tetrahedra,
solutions (green) can be searched on the triangle surfaces first (left).
Solutions belonging to the same tetrahedron are connected by lines
(yellow) and solutions that are shared by neighboring tetrahedra
are further connected (right).

The well-known parallel vectors operator was introduced by Peikert and
Roth [142] and is used to find line-type features in a pair of vector or
scalar fields. Formally, it is defined as follows: given two vector fields
v1(x), v2(x) the parallel vectors (PV) operator yields all locations
where these fields are parallel, i. e.,

PV(v1, v2) = {x | v1(x) ‖ v2(x)} .

The set PV(v1, v2) generally represents line structures also called
parallel vectors lines.
For v1, v2 ∈ R3, PV can be implemented as finding the roots of
v1(x)× v2(x). For v1, v2 ∈ R2, the cross-product is replaced by the
determinant of the matrix (v1 |v2).
There are different algorithmic approaches to numerical root finding, the
Newton-Raphson method is one of the most well-known. Their success
often depends on an initial guess and the behavior of the function like
multiplicity of roots or crossing zero versus touching without change of
sign. Root finding is a non-trivial numerical task in general, even if the
vector fields are given as polynomials, i. e., from interpolated data.
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The setting is simpler for an appropriate discretization of the domain:
Peikert and Roth [142] give an analytic solution for piecewise linear
vector fields. The domain is partitioned such that parallel vector lo-
cations are searched on triangles. For instance, a bounded domain is
partitioned into tetrahedral pieces, and the search space is restricted
to their triangular faces. Each triangle supports a linear piece of the
vector fields. The restriction to a locally two-dimensional search domain
yields parallel vectors locations – if any – as isolated points, which are
connected to line features in a post-process as displayed in Figure 9.3.
Within each triangle ∆, solutions PV(v1(x), v2(x))|x∈∆ are found by
solving a generalized eigenvalue problem. This concept has been applied
to a wide variety of applications. Roth and Peikert list several problems,
including finding ridge and valley lines [63] or separation lines [91]. A
lot of effort has been put into finding the centers of vortices which are
the aforementioned vortex core lines. Whereas many methods differ in
the extraction of solution points and their connection, most of them
can be reformulated to be the result of the parallel vectors operator
applied to the velocity field and a second, derived field.

A number of works extend and improve the operator. In general, these
approaches can be divided into two stages: first, finding solution points
on a grid, and second, tracing feature lines from these locations. Banks
and Singer [8] use a predictor-corrector scheme that uses pressure
information for line tracing, which was later combined with the λ2
method [86] by Stegmaier [171]. Theisel et al. [180] show that tracing
solution lines from extracted points or from seed points can be refor-
mulated as a streamline integration in the feature flow field [179], [199].
This is extended for higher-order data by Pagot et al. [135]. Sukharev et
al. [176] define an analytical tangent instead for tracing solution lines. A
generalization of both of these is used by PVSolve, a method introduced
by Van Gelder and Pang [189].

9.2 visualization of vector field ensembles

The previous section has introduced approaches and their realization
for the visualization of single vector fields. When one is given ensemble
data, e. g., as produced by different Computational Fluid Dynamics
simulations, it is not only interesting to get an understanding of each
individual field but rather to gain additional insight in similarities or
dissimilarities of all ensemble members. Most techniques for single vector
fields, however, cannot be directly used or adapted to offer such insight.
To be able to make statements about the uncertainty encoded in the
ensemble, the variability within the ensemble members needs to be
analyzed. The more similar the members are, the lower the uncertainty
and vice versa. To help with the analysis of such data, there exist two
major approaches: either aggregate information of all members to single
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Figure 9.4: Comparative visualization via juxtaposition of selected members
of the North American Multi-Model Ensemble (NMME): multiple
side-by-side visualizations of different ensemble members with
varying models and initial conditions for meteorological simulation.
Vector direction indicated by arrow glyphs and vector magnitude
mapped to color.

data values and visualize the resulting field or use visual composition
of extracted features. Sometimes, a combination of both can also be
applied. A straightforward implementation of the latter is to deal with
each and every member separately and juxtapose the resulting visu-
alization. This leads to what is known as a stamp map as displayed
in Figure 9.4. For a very small numbers of flow fields, comparative
visualization techniques such as the UFLOW system [116] which com-
pares pairs of streamlines seeded at the same location, can be used and
Verma and Pang [191] give an extended overview of such techniques for
flow data. These techniques, however, struggle when a high number of
ensemble members are present. This is not only due to the limitation of
space, but especially due to massive amount of mental work that has
to be used to compare each and every member with another and spot
trends, differences, or similarities. When dealing with large ensembles of
curves, like pathlines or other feature lines, that are extracted from each
ensemble member, collecting and visualizing them collectively is often a
fast and simple technique. This is known as a spaghetti plot [28], [36],
which typically results in visual clutter as can be observed in Figure 9.1.
Their limitations are discussed in several recent publications [42], [44],
[122], [202]. The challenge of dealing with too many objects also applies
to further compositing approaches such as superimposing or nesting [84].

Aggregating information of vector fields usually makes use of statistical
tools to describe the variability at a given location or the whole vector
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field [37]. These range from simply calculating mean values of vectors to
fitting distribution functions to the data. How similar ensemble members
at given location are, can be expressed by comparing derived vector
quantities such as magnitude, pairwise angles or even combinations.
Sanyal et al. [159] propose to visualize the differences of the values of
each ensemble to the mean with the help of their graduated uncertainty
glyphs, which stack circles on top of each other. Also considering the
orientation of the vectors, Jarema et al. [83] propose lobular glyphs that
indicate the distribution of vector directions at each sample point.

As line-type features are a powerful tool to convey the movement and
paths of particles, that are advected by vector fields, curve-oriented
aggregation approaches have sparked a variety of visualization research.
There exist several approaches that try to extract only meaningful
selections from the different curve ensembles to give further insight.
This selection can be based on geometric properties [177] or the point
of view [55], but often takes into consideration their relevance to the
whole ensemble. For instance, Guo et al. [56] create a variation field that
is filtered for pathlines that best characterize the differences between
different fields. Lui et al. [115] create a similar variation field, based
on what they call the Longest Common Subsequences of pathlines. An
alternative approach is using features of a single field, which are then
modulated by the additional data, as seen in modulated streamlines or
streamtubes [187].
A standard approach that reduces the number of objects visible into
trends is clustering, only rendering representatives of each cluster or
bundling of similar curves. Clustering similar curves into groups has
been successfully applied to stream- and pathlines [127], [128], [154].
When pathlines pass through a shared location, several approaches
make use of visualization techniques known from statistics. Ferstl et al.
[42], [44] cluster such pathlines in major trends and provide a median as
well as a region of confidence, which they call variability plot. While a
similar technique was introduced for isocontours [202], Mirzargar et al.
[122] summarize trends of stream- and pathlines by introducing curve
boxplots, additionally showing outliers and selected pathline members.
Kern and Westermann [92] propose a clustering technique for ensembles
of core lines of jet-streams, that are often disconnected line segments
and thus highly fragmented line sets.
A very different approach, that forms a research field on its own, is to
deal with an uncertain vector field instead of a vector field ensemble.
In such a field, each location has an uncertain vector value assigned
to it, which can be represented by a probability density function. This
allows for new definitions and extraction of known vector field features
for uncertain vector fields such as integral lines or topological features
as proposed by Otto et al. [131], [132] and Petz et al. [143]. Further,
this led to new definitions for vortices in uncertain vector fields as
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proposed by Otto and Theisel [133], the introduction of texture-based
visualizations [3], [22] and glyphs [205]. Obermaier and Joy [125] clarify
however, that uncertain data neither contains information on how dif-
ferent ensemble outcomes relate, nor does it allow for a discrete analysis
of the input parameters, which is an important task for domain experts,
when improving their models.

Another field of research is concerned with giving domain experts
the option to explore more than one quantity at the same time, thus
combining multiple linked visualizations [148]. This might include one
or more of the techniques mentioned above as well as further tools
not restricted to vector fields relevant to the application. Especially
weather forecast ensembles have led to a variety of tools for the visual
analysis in combined visualizations [43], [148], [150]. Whereas many
of the visualization approaches are automatic or require the user to
define some parameters, Liu et al. [113], [114] propose a framework,
that allows the user to define features themselves such as user defined
pathlines and find these features within the ensemble.

9.3 challenges in vector field ensemble visualiza-
tion

It is only due to the recent advancements in computing hardware that
repeated calculations of complex simulations as well as storing and pro-
cessing massive amounts of data has become a feasible task. Therefore,
the visualization of ensemble data, especially vector field ensembles,
is still a young and advancing field. This means, that not only known
techniques need to be adapted to this new kind of data, but also new
approaches and tools must be developed. As the goal of visualization
is to enable the effective and efficient analysis and exploration of data,
such techniques and tools must be designed with several things in mind:
not only the efficient handling of massive amounts of data in terms of
storing, processing and rendering must be dealt with algorithmically.
Also, the support of analysis tasks of the users, which leads to reduced
complexity and faster and more accurate understanding of the data
should be a major intention in the development process.

The previous section has already listed several of these adaptations,
especially when dealing with line-type features. We may treat each
input field individually, compute such feature lines and then chose a
suitable visual representation. Whereas techniques such as clustering
could be considered, they all require the notion of distance, and many
different distance measures are available. Even though, clustering has
been successfully applied to isocontours, stream- and pathlines, it is,
however, not applicable to several feature lines such as vortex core
lines, which are an important tool for vector field analysis. Such line
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features that result from the ensemble members may differ significantly
in shape and topology: they may consist of several unconnected parts,
for example, due to the filtering, or some of the ensemble members
may give no such lines at all. There is no straightforward answer to
the question how to incorporate these cases into a stable clustering
algorithm. Calculating statistics to show representatives, as done with
the aforementioned curve boxplot or variability plots may be applied
to the set of core lines. These approaches rely either on implicit curve
representations or on a common parametrization of the curves. Such
parametrization does not exist for PV lines as input curves. Moreover,
due to the unconnectedness and even non-existence of core lines in
individual fields, we are not aware of straightforward approaches to
construct a common parametrization. And similarly, we are not aware
of straightforward extensions of variability plots to sets of core lines.

In the following chapter, we seek to build upon the extraction of core
lines in vector fields and extend it for vector field ensembles. We focus
on extracting a set of line-type features that take into account the
information given by all ensemble members at the same time.
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10A N A P P R O X I M AT E PA R A L L E L V E C T O R S
O P E R AT O R F O R M U LT I P L E V E C T O R F I E L D S

Figure 10.1: Left: eight different members of an ensemble dataset that represent
different outcomes of CFD simulations of blood flow through an
aneurysm with varying pressure parameters. Each member is
visualized with several streamlines seeded at the flow inlet as
well as parallel vectors feature lines calculated from the derived
acceleration field. Every member has a different color defined for
parallel vectors lines. Right: a spaghetti plot visualization of all
parallel vectors lines.

This chapter is based on the publication:

T. Gerrits, C. Rössl, and H. Theisel
An Approximate Parallel Vectors Operator for Multiple
Vector Fields
Computer Graphics Forum (Proc. EuroVis), 2018

The parallel vectors operator, illustrated in Section 9.1.2, is a concept
that enjoys a high popularity in visualization and other communities
because it is conceptually simple, generic, fast and easily computable,
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and applicable to a variety of problems. As we have listed, it can be
used for the extraction of vortex core lines, finding ridge structures,
or finding bifurcation lines in flow fields. The PV operator yields all
locations where two vector fields are parallel. These are structurally
stable line structures. Different types of input vector fields open a variety
of applications for the PV operator.
As we are dealing with ensemble flow data sets, i. e., a number of vector
fields in a common spatial domain, all describing the same flow phe-
nomenon with slightly varying parameters, in this chapter, we want to
search locations of vortex core lines that simultaneously describe the
vortical behavior of all fields best. Analyzing the literature in Section 9.2,
this problem can be solved using one of two general strategies: either
extract vortex core lines for each of the velocity fields along with a
visual representation of the resulting multiple line sets – including line
bundling, line clustering, or finding best representatives –, or directly
extract line structures that represent the vortices of all fields best in
an approximate sense. In this chapter, we present our approach using
the second strategy. We introduce a new generic concept called the
Approximate Parallel Vectors (APV) Operator that is applied to an
arbitrary number of vector fields.

Given m 3D vector fields v1, ..., vm, it is generally not useful to search
for locations where all vectors are parallel. For m > 2, such structures
– if there exist any at all – are structurally unstable: adding noise to
the fields will destroy line structures with all parallel vectors. Instead,
we develop a new operator that gives stable line structures at locations
where all m fields are maximally – but generally not perfectly – parallel.
The APV operator is rather simple in terms of computation: from
the given v1, ..., vm we compute two derived fields a, b and apply the
PV operator to these. Despite its computational simplicity, the APV
operator requires a rigorous mathematical analysis of its properties to
make it applicable.

10.1 the approximate parallel vectors operator

Given are m vector fields vi(x) with vi : R3 → R3 and i = 1, . . . ,m.
We assume simultaneous evaluation at the same location x and write
vi for short.
The parallel vectors operator is defined for m = 2: PV(v1, v2) gives all
locations where v1(x) and v2(x) are parallel. These are typically line
structures. For m > 2 distinct fields, e. g., multiple fields of an ensemble,
we would generally expect no such locations or just isolated points if we
require that vi ‖ vj for all i 6= j. The higher m the “more restrictive”
this condition is. Our goal is the construction of a new operator that

• relaxes the condition and measures if m vector fields are approxi-
mately parallel, and
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• does so in a parameter-free way by measuring if two derived fields
are parallel using the parallel vectors operator PV.

We stack all vectors vi as columns in the matrix V = (v1 | . . . |vm)
and compute the average

a =
1
m

m∑
i=1

vi =
1
m

V 1 ,

where 1 ∈ Rm is a column vector with all entries equal to 1. If we
subtract the mean vector field from all fields, we obtain columns vi − a
in the matrix

D = V− (a | . . . |a) = V− a 1T .

Then the symmetric operator

DDT =
m∑
i=1

(vi − a)(vi − a)T ∈ R3×3

measures the covariance of the vector fields and thus how much and in
which directions the fields “spread away” from the average field. The
quadratic form DDT is positive definite if vi are linearly independent. Its
spectral decomposition gives the directions of minimum and maximum
variance as eigenvectors. This is also known as the Principle Component
Analysis (PCA).
We take the mean vector field a as a representative for the whole
ensemble {vi}. We define {vi} being approximately parallel if their
variance obtains a maximum in direction of the mean a. A necessary
condition is that a must be an eigenvector of DDT, i. e.,

DDTa = λa . (10.1)

A further condition requires that the corresponding eigenvalue is maxi-
mal, i.e.,

λ = λmax(DDT) . (10.2)

approximate parallel vectors. We define the Approximate
Parallel Vectors operator (APV) as follows:
Let b = DDTa then

APV(v1, . . . , vm) = PV(a, b) .

In this definition the necessary condition 10.1 is expressed by the parallel
vectors operator as PV(a, b)⇔ a ‖ b⇔ a = λb.
We reduced the definition of APV to the standard PV operator. This
reduces the problem of finding APV lines to the application of PV
and makes the implementation straightforward.
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x /∈ APV
x /∈ fAPV

x ∈ APV
x ∈ fAPV

x ∈ APV
x /∈ fAPV

Figure 10.2: A location x is part of an APV line if the mean vector a
is an eigenvector of the covariance matrix DDT. The filtered
fAPV operator requires additionally that this is the eigenvector
corresponding to the largest eigenvalue.

filtered apv. The APV operator computes eigenvectors and
uses only the necessary condition (10.1). Among all APV lines, we are
only interested in those where the mean vector a is the major eigenvector
that corresponds to the largest eigenvalue. We implement the missing
condition (10.2) as a “filter” and define the Filtered Approximate Parallel
Vectors operator (fAPV) as

fAPV(v1, . . . , vm) = {x |DDTa = λmax(DDT) a}
= {x ∈ PV(a, b) |b = λmaxa}
⊂ APV(v1, . . . , vm) .

Figure 10.2 shows – from left to right – examples of a non-feature point
(no alignment), a point that is in fAPV and in APV (alignment with
the major eigenvector), and a point that is in APV but not in fAPV
(alignment with a minor eigenvector).

10.2 properties of apv

In this section, we summarize a number of properties of the APV
operator. The proofs have been established by Theisel and Rössl and
are provided in the Appendix F. In the remainder of this section, the
matrix of stacked vector fields V, the mean vector field a and the
derived field b are defined as in Section 10.1.

independence of order. For any permutation π of (1, 2, . . . ,m):

APV(vπi , . . . , vπm) = APV(vi, . . . , vm) . (P1)

relation to pv. For m = 2, fAPV and PV coincide:

fAPV(v1, v2) = PV(v1, v2) . (P2)

dependence on scaling. The PV operator is invariant to
scaling, i. e., PV(v1, v2) = PV(s1v1, s2v2) for any nonzero scalars

120



10.3 discretization and visualization

s1, s2. By construction, the APV operator depends on the scaling of
the vector fields as different scales weight their contributions to the
covariance matrix DDT. We study APV(v1, . . . , vm, svm+1) for the
edge cases s = 0 and s→∞:

APV(v1, . . . , vm, 0 vm+1) = APV(v1, . . . , vm) (P3)
lim
s→∞

APV(v1, . . . , vm, svm+1) = PV(a, vm+1) (P4)

The second Property (P4) is remarkable: if one single field is scaled
extremely such that it “dominates” all other fields, and both the average
a as well as b converge to vm+1, the APV operator gives a well-defined
line.

adding new vector fields. The APV operator is invariant
to adding a scaled mean vector field or zero fields. For any scalar s:

APV(v1, . . . , vm, s
∑
i

vi) = APV(v1, . . . , vm) (P5)

APV(v1, . . . , vm, 0, . . . , 0) = APV(v1, . . . , vm) (P6)

If we add the same field w extremely often, APV still yields a well-
defined result:

lim
k→∞

APV(v1, . . . , vm, w, . . . , w︸ ︷︷ ︸
k times

) = PV(VVTw−m ||w||2 a, w) .

(P7)

10.3 discretization and visualization

All datasets are given as sets of piecewise linear vector fields that are
defined w.r.t. a tetrahedral partition of the domain. We apply the APV
operator on all triangular faces of the tetrahedra. This way, we find point
locations on faces that are connected by line segments within tetrahedra,
which gives discrete APV lines. This is the same modus operandi as
for parallel vectors PVas illustrated in Figure 9.3 of Section 9.1.2.
At each feature point location x, we can quantify the “spread” of vectors.
For eigenvalues λ1 ≤ λ2 ≤ λ3 of DDT, we measure the ratio

ε =
λ3 − λ2

λ1 + λ2 + λ3
· χ with χ =

+1 if x ∈ fAPV

−1 else

We use the additional sign χ to distinguish between locations that
are part of the filtered fAPV and locations the are non-filtered APV
features but not part of fAPV. For the latter, the mean vector is
aligned to one of the minor eigenvectors corresponding to λ1 or λ2. We
color code ε (see Figure 10.6) and we place spheres in regions where
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ε ≈ 0, i. e., λ3 ≈ λ2 and thus the major eigenvector is undefined. As
PV feature lines always form closed lines, so do APV lines. Figure 10.7
compares the different filtering options:

• Figure 10.7 (a) shows all closed feature lines without filtering.

• In Figure 10.7 (b), connected components are discarded if ε < 0
for all locations, i. e., the remaining lines contain at least one
fAPV location (ε > 0). This is a non-local filter criterion on
structures that maintains closed lines.

• In Figure 10.7 (c), all line segments which are spanned by a location
with ε < 0 are discarded. This is essentially the “pointwise” fAPV
filter, which generally yields a set of open feature lines.

10.4 applications and results

In the following, we demonstrate the approximate parallel vector fields
operator. We start with an analytic ensemble and then examine three
different ensemble datasets from numerical simulations. For all shown
applications, the data consists of a number of 3D velocity fields v1, ..., vm.
We use the APV operator to analyze them in two ways:

• To analyze the alignment of the velocity fields, we compute
APV(v1, ..., vm). This gives corelines of best alignment of the
velocity fields. Along these lines the ensemble members have a
locally maximal parallelity to each other.

• To analyze the alignment of the vortex core lines of all fields,
we additionally consider the accelerations fields c1 = (∇vi) vi
of all ensemble members. Instead of computing the vortex core
lines vi ‖ ci of each ensemble member, our approach gives the
best approximated vortex core lines of all fields by considering
APV(v1, ..., vm, c1, ..., cm).

The acceleration fields are estimated on the same tetrahedral partition
as the velocity fields and represented as linear pieces in the tetrahedral
cells.

10.4.1 Linear Vector Field Ensemble

A family of linear vector fields is given by

v(x, y, z) =


0 a 0
−a 0 0
0 0 b



x+ x0

y+ y0

z + z0

 .

We created an ensemble of 250 velocity fields with randomly chosen
parameters a, b,x0, y0, z0 ∈ [−1, 1]. Then each member describes a rota-
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Figure 10.3: Streamlines and corresponding PV lines for three different mem-
bers of an ensemble of random linear flows rotating around a
vertical axis with varying locations, rotational direction and speed.

tional flow around a vertical core line with random location, rotational
speed and direction. Figure 10.3 displays some streamlines. For each
member and its acceleration, their PV lines are vertical lines that inter-
sect the x-y-plane close to the origin. Figure 10.4 shows seven of these
PV lines, colored in different shades of green and yellow.
A naïve approach to finding feature lines of the ensemble, consists in
applying the standard PV operator to the mean vector field and its
acceleration field. In the example, this gives the blue line in Figure 10.4,
which appears at a significant offset from the individual members’ PV
lines. In contrast, the APV line – displayed in red – intersects the x-y-
plane as expected close to the origin, i. e., which is obviously the better
representative or “mean feature line”. The reason for the misalignment
of the blue line lies in the fact that averaging the ensemble members
results in a field with an ill-conditioned Jacobian matrix, i. e., the matrix’
determinant is close to zero. Finding extremal lines in linear vector
fields with such Jacobians gives unstable results.
In order to compare and demonstrate alignment, we display glyphs
for velocity and acceleration vectors of all members sampled at three
different locations: on a PV solution line of a single member, on the
PV line of the mean velocity field, and on the APV line. The APV
solution indeed shows the smaller spread and hence the better alignment
of vectors. This is an indicator for the plausibility of our approach.
Figure 10.5 shows two scalar fields that are derived from the velocity
ensemble: the accumulated angles (Section 10.5.2) and the accumulated
norm of the cross products (Section 10.5.2) and provide an alternative
measure for “how parallel” vectors are at a domain point. The lowest
values in both fields are found in the center of the domain around a
vertical line which coincides with the location of the APV feature line.
This fact again indicates plausibility of APV features. We will discuss
in Section 10.5.2, why we prefer the definition of APV over alternative
concepts of approximately parallel line features.
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Figure 10.4: Several PV feature lines of the ensemble are shown in different
shades of green and yellow. The blue PV line of the mean velocity
and its acceleration appears at a significant offset, while the red
APV line is centered within the members’ PV lines and runs
closely through the origin. The close-ups right display velocity
and acceleration vectors of all members displayed at three distinct
points on a member, on PV and on APV: The alignment of
vectors seems best for the APV sample.

(a) (b)(b)
min

max

s

Figure 10.5: Scalar fields s that measure local alignment of ensemble members.
(a) Accumulated norm of the cross product of all vectors at a
given location (see Section 10.5.2). (b) Accumulated angle of all
vectors at a given location (see Section 10.5.2). Both fields indicate
that locations of high alignment of all vectors lie vertically in the
center of the domain.
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(a)

(b)

(c)

(d) (e)
−1

0

1
ε

Figure 10.6: APV lines for aneurysm ensemble: (a) using all eight velocity
fields. (e) using all eight velocity fields and their acceleration fields.
The closeups give examples for the color coding (right): (b) Loca-
tions with input vectors aligned closely with the major eigenvector
are depicted in red color. (c) Is an example of a non-feature loca-
tion. (d) Blue lines refer to locations with vectors aligned closely
to one of the minor eigenvalues. They would be removed in filtered
fAPV in Figure 10.7.

10.4.2 Aneurysm Ensemble

The Computational Fluid Dynamics Rapture Challenge 2013 [17], [81]
presented a velocity field ensemble data that was created by different
hemodynamics simulations inside an aneurysm geometry. Eight differ-
ent blood flow fields were simulated by varying the outlet boundary
conditions. This included a zero-pressure condition for both outlets as
well as seven simulations, where the pressure was split between the
outlets and changed in steps of 10% from 20% to 80% and vice versa.
Figure 10.1 shows streamlines of blood flow of each of the eight members
of the ensemble as well as the feature lines extracted with the standard
PV operator. Each member has a specific color assigned ranging from
green to yellow so the corresponding feature line can be located in the
combined spaghetti plot visualization on the right.
Figure 10.6 (a) shows APV feature lines derived from eight ensemble
members. Near the inlet (top) there is no significant difference between
members, and therefore many insignificant features are found. As the
flow progresses, the members start to divert. The closeups (b)-(d)
show single point locations x of different regions with vectors at x
drawn as arrows: (b) x ∈ fAPV, (c) x /∈ APV, and (d) x ∈ APV but
x /∈ fAPV. The latter is a mean vector aligned with a minor eigenvector
and would be removed by filtering. The resulting feature lines are shown
in Figure 10.6 (e).
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(a) (b) (c)

Figure 10.7: The APV operator finds structures of closed lines, which can be
filtered: (a) APV lines w/o filtering. (b) Only lines with at least
one fAPV segment. (c) Structures of fAPV line segments may
be non-closed.

The resulting APV lines give the locations, where all PV lines of the
ensemble are best aligned. This behavior can be observed in Figure 10.8:
we observe high ε near the locations where all PV lines are close to each
other. However, in regions where the PV lines start to diverge from each
other, ε decreases and eventually turns negative. In these locations, the
mean vector is aligned with a minor eigenvector as seen in Figure 10.6 (d).
Finally, we remark that computing PV lines for each ensemble member
and its derived acceleration field consumes significantly more time than
one single application of the APV operator for the same data.
To reduce visual clutter, we apply filtering as seen in Figure 10.7.

10.4.3 Helicopter in Ground Proximity

This dataset by Kutz et al. [103] simulates wind flow near a helicopter
that is hovering over ground. Figure 10.9 shows streamlines for a single
time step. We sampled the flow field uniformly in time such that the rotor
revolution increases by 10° for each time step and collect six time steps
in total in an ensemble. The difference between the ensemble members
is relatively small. This can be seen by computing PV features for each
member and its derived acceleration field as depicted in Figure 10.11 (a).
Figure 10.10 (a) shows all PV feature lines in a combined visualization.
We compute APV features on all velocity fields of the ensemble. This
is shown in Figure 10.10 (b) and (c). Figures (d) and (f) include in
addition the derived acceleration fields.
Note that this dataset is special, due to the lack of variance between PV
features. In this case the APV features resemble the “mean locations”
of PV features (although it is unclear how to average core lines). Indeed,
the comparison of PV and APV features in Figure 10.11 suggests that
the latter express the essence of the “ensemble” of PV core lines. The
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(a) (b)

(c)

Figure 10.8: (a) Spaghetti plot of all PV feature lines. (b) The APV operator
finds locations where the PV feature lines are close to each other.
(c) APV lines of all velocity and acceleration fields.
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Figure 10.9: Streamlines of the wind flow around a hovering helicopter for
a fixed time step. Swirling behavior can be seen behind the
helicopter.

additional streamlines for one single ensemble member in Figure 10.10 (d)
suggests that APV lines can yield locations similar to vortex core lines.

10.4.4 Rotating Mixer

The last ensemble was created by sampling a CFD simulation of flow
inside a container with a rotating mixer. Six time steps were chosen in
a way, that the three blades inside the container rotate by 120° each
time such that the blade geometry overlaps exactly for each ensemble
member. This is a turbulent flow and the members vary greatly. The
PV feature lines for one single member’s velocity and acceleration
shows already a complex behavior, which makes it difficult to identify
interesting structures. This is shown in Figure 10.13 (a). Figure 10.13 (b)
shows PV feature lines for all members. We compute APV features for
velocity and acceleration fields. The result is shown in Figure 10.13 (c).
Filtering reduces the feature regions significantly: Figure 10.13 (c) shows
fAPV features. The colors in (d) show regions with low “spread” of
ensemble members near the blades of the mixer. Figures (e) and (f)
show APV and fAPV features for only the given velocity members
without additional acceleration fields.

10.4.5 Performance

Table 10.1 summarizes the sizes of the ensemble data and timings
for feature extraction. All times were measured on an Intel Core i7-
6700K CPU at 4GHz with 32GB RAM available, this was always
enough memory to store the data. All algorithms were implemented
in C++. The time that is required for computing the derived fields a
and b = DDTa depends linearly on the number of input fields. For
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 10.10: Helicopter dataset. (a) All PV core lines from each ensemble
member displayed in different shades of green. They lie very
close to each other. (b)-(c) APV features for all velocity fields
and derived acceleration fields. (d)-(f): APV features for only
the velocity members. (d) additionally shows streamlines for one
of the members.

(a) (b)

Figure 10.11: (a) A combined visualization of all core lines extracted with
the PV operator from each ensemble member and its derived
acceleration field. (b) Same with an additional overlay of APV
feature lines for the same input data.
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Figure 10.12: Streamlines for one time step of rotating mixer dataset.

Dataset #Fields #Vertices #Vectors APV PV

Aneurysm Velocity 8 3, 501, 487 28, 011, 896 974ms 261, 571ms
Aneurysm Vel. + Acc. 16 3, 501, 487 56, 023, 792 1, 538ms 261, 668ms
Helicopter Velocity 6 4, 810, 000 28, 860, 000 1, 231ms 310, 260ms
Helicopter Vel. + Acc. 12 4, 810, 000 57, 720, 000 1, 884ms 288, 672ms
Mixer Velocity 6 1, 258, 759 7, 552, 554 312ms 99, 083ms
Mixer Vel. + Acc. 12 1, 258, 759 15, 105, 108 465ms 97, 529ms

Table 10.1: Timings for the given ensemble data. The column APV refers to
the computation of the derived fields, the mean a and b = DDTa.
The PV column refers to the extraction of PV(a, b).

a moderate number of ensemble members this cost is not significant
compared to the next step: the time for the subsequent computation of
PV(a, b) for all triangular faces is constant for the given tetrahedral
partition. Filtering (fAPV versus APV) and color coding require a
spectral decomposition of DDT at feature locations. The cost for their
computation is negligible as the number of feature locations is small
compared to the total number of triangular faces.

10.5 discussion and comparison

The APV operator computes core lines for ensembles of velocity fields.
In this section, we compare the new approach with other algorithms for
computing core lines for flow ensemble data.

10.5.1 Multiple Line Sets

When treating each input field individually and extracting core lines
using the standard PV operator, we end up with an ensemble of curves.
For these, a number of visual representations could be considered, that
have already been discussed in Section 9.2. While techniques such as a
simple spaghetti plot visualization comes with several limitations, we
already state in Section 9.3 that approaches that use clustering of line
features cannot be directly applied due to the nature of vortex core
lines as a feature, that might not appear in every ensemble member.
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(a)

(c)

(e)

(b)

(d)

(e)

Figure 10.13: Flow inside a rotating mixer. Top: (a) PV core lines extracted
from one member and the derived acceleration field. (b) Com-
bined visualization of all PV core lines extracted from each
ensemble member and derived acceleration fields. Middle: APV
features for the same data, unfiltered (c) and filtered (d). Bot-
tom: APV features for velocity members only, unfiltered (e)
and filtered (f).
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Further, as such curves are neither implicitly defined nor do they share
a common parametrization, techniques similar to the curve boxplot or
Variability plots are not directly applicable.

10.5.2 Lines on Derived Fields

As introduced in Section 10.4.1, in order to find core lines of multiple
fields, one may also consider extremal curves in a scalar field s derived
from v1, ..., vm such that summed angles or cross products of each pair
of vectors are considered as a measure of how “parallel” the m fields
are. The scalar field could be chosen as

s =
m∑
i=1

m∑
j=1
|∠(vi, vj)|, or (10.3)

s =
m∑
i=1

m∑
j=1
‖vi × vj‖. (10.4)

Ridge lines of s may also be interpreted as lines of “maximal parallelity”
of v1, ..., vm. However, we see the following potential problems with this
approach:

• Scaling: (as in Equation (10.3)) gives unstable results in areas of
small vectors vi.

• Numerical Stability: The numerical ridge extraction requires the
gradient and Hessian of s, e. g., as input to the PV operator.
The use of, possibly estimated, first- and second-order derivatives
makes the feature extraction significantly more sensitive to noise
in the data. Note that alternative ridge extraction methods are,
although well-understood, generally less stable than applying the
PV operator, because ridge extraction is based on searching for
local extrema. In contrast, PV is based on searching for zero
crossings of functions. In regions of strongly varying fields, zero
crossing is less prone to missing results than searching for extrema.

We are not aware of any existing approaches of this category that find
core lines of multiple velocity fields.

10.6 limitations and future work

APV feature lines provide an intuitive interpretation for locations
where the mean vector is aligned with the major eigenvector. In the
visualization, this was shown in red (ε > 0, and ideally ε → 1). For
locations where we observe the alignment with one of the minor eigen-
vectors – these are missing in fAPV – there is no such interpretation
(shown in blue as ε < 0). This is the reason why we offer a filter for
them. It may be worthwhile to try to derive some information that is
meaningful and helps understanding the data also from these locations.
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10.6 limitations and future work

In the future, the presented approach could be extended to an out-
of-core method for ensembles with very large numbers of members
such that members can be “streamed” into memory. This requires only
an “online” update of the mean a and the matrix DDT such that
only mean vectors and covariance matrices are held in main memory.
This type of update is certainly possible, however, the straightforward
formulas suffer significantly from numerical round-off errors. An out-
of-core method would require finding a balance between numerical
efficiency and sufficient accuracy.
Finally, the domain of applications can be extended by applying APV
to fields other than velocity and acceleration such as second derivatives
of particle trajectories, or pressure gradients.
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In the second part of the thesis, we studied the visualization of vec-
tor field ensembles. While the visualization of single vector fields has
been extensively studied over the years, the latest advancements in
computing hardware has enabled the use of ensemble vector fields to
analyze complex physical phenomena. The additional ensemble member
dimension not only leads to an increased amount of data that needs to
be processed, it also poses a challenge for visualization, as most of the
known approaches cannot be directly applied or adapted. Especially
the extraction of line-type features such as vortex core lines has mainly
been handled by using combined visualizations such as spaghetti plots,
which are limited in communicating trends of ensembles.
In this part, we developed a new tool in the visualization and analysis
of vector field ensembles. After carefully studying the current literature
on such data in Chapter 9 as well as discussing recent techniques
in the definition and extraction of vortex core lines, we introduced
a new operator for vector field ensembles in Chapter 10, called The
Approximate Parallel Vectors (APV) Operator. This new generic feature
extraction method for multiple 3D vector fields extracts lines where all
fields are approximately parallel. The definition of the APV operator
is based on the application of the Parallel Vectors (PV) operator for
two vector fields that are derived from the given set of fields. The
APV operator enables the direct visualization of features of vector field
ensembles without processing fields individually and without causing
visual clutter. We give a theoretical analysis of the APV operator and
demonstrate its utility for a number of ensemble data.
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12.1 conclusion

The advancements in computational power as well as the improvements
in measuring techniques and algorithms has not only increased the
amount of data to process, but also the complexity of the data. Visual-
ization is a powerful tool to grasp what is hidden in the data and must
therefore adapt to these new challenges. In this thesis we developed
new approaches for the visualization of tensor and vector field ensemble
data to aid the analysis and exploration.

In the first part we discussed general ideas within the field of scientific
visualizations as well as basic visualization approaches and concepts
that are used throughout the thesis. The contributions within this work
can be divided into two parts:

Part ii was dedicated to the visualization of second-order tensor data.
First, we reviewed important properties of second-order tensors, as
well as applications and visualization approaches and focused on the
use of tensor glyphs. Most of these geometric objects are based on
vectors and values of a tensor decomposition such as the eigenvalues
and eigenvectors. After reviewing the literature, we showed that most
glyph visualization approaches are limited to symmetric cases of ten-
sors only. These tensors are easier to handle as their eigenvalues are
always real-valued and their eigenvector orthogonal which allows for
a straightforward mapping to geometry. The decomposition of general
tensors however, which often appear in the context of fluid flow data,
might result in complex eigenvalues and non-orthogonal eigenvectors
and therefore pose a challenge to visualization. We developed the first
tensor glyph construction technique for general 2D and 3D second-order
tensors that is able to visualize any given tensor of that type, regardless
of symmetry. As the design space for possible glyphs is very large, we
started the new construction by finding useful limitations. This was
done by developing a list of carefully chosen properties or wishes that
ensure that the newly developed glyphs behave in desired ways. This
included invariance under domain rotation and scaling, the unique rep-
resentation of each class of tensor as well as continuity. Additionally,
we chose the direct rendering of real eigenvector and evaluated current
tensor glyph techniques in terms of how they do or do not fulfill these
wishes. We proposed a new glyph construction for 2D tensors based on
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a characteristic ellipse, that would transition smoothly between cases
where eigenvalues are real-valued and complex-valued and further use
color to indicate eigenvalue sign and direction of rotation. We then used
this construction as a base for developing glyphs for 3D tensors as well.
The new techniques were presented on a variety of 2D and 3D datasets.
Building upon this work, we further analyzed vector field Jacobian
matrices as they represent a special case of such a general second-order
tensor. Whereas Jacobian matrices of steady flow fields can be repre-
sented by general second-order tensors and can therefore be visualized
by the new glyph technique, Jacobian matrices of unsteady flow fields
additionally describe the temporal derivative at a given location. We
showed that such a Jacobian tensor can be decomposed into a spatial
and a temporal component, whereas the spatial component resembles
the information that would be given by a Jacobian matrix of a steady
flow. We thus proposed using the newly developed glyphs as a base to
represent this information. For the additional temporal information, we
proposed suitable mappings into the visualization domain and developed
the first glyphs capable of rendering the full information encoded by a
time-dependent vector field Jacobian matrix. This was, again, presented
by applying the visualization on a selection of 2D and 3D datasets.
We then analyzed uncertain symmetric second-order tensor data. When
assuming Gaussian distribution, such data can be described by a mean
tensor and a covariance tensor that encodes the uncertainty. We ex-
tended our list of desirable properties for uncertain tensors, requiring
each combination of mean and covariance to follow the same rules such
as uniqueness, while additionally requiring a certain tensor with no
uncertainty to be a well-defined special case. To solve this, we proposed
visualizing the mean tensor by any suitable tensor glyph technique such
as superquadric tensor glyphs or our newly proposed glyphs. We showed
that the covariance encodes the change of the mean glyph surface which
we encoded as a scalar field on the surface of the mean glyph. We used
the fact that symmetric second-order tensors have repeated components,
which allows the embedding into a vector space and thus easier handling
of the covariance. We proposed visualizing the resulting scalar field as
an offset surface and further evaluated if different certain glyphs could
be extended by our technique while fulfilling all requirements.

To summarize, we not only offered an overview on the visualization of
second-order tensors with the help of glyphs, but further introduced
two new glyph construction techniques as well as an augmentation for
existing glyphs to also represent uncertain tensor data.

In Part iii, we focused on vector field ensemble data. After explaining
the usefulness of such data as a tool to represent uncertainty, we stated
that it also poses a challenge to domain expert, due to its size and
complexity. We first reviewed well-known visualization techniques for
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single vector fields and emphasized vortex core lines as the result of the
Parallel Vectors (PV) Operator as these lines are able to capture impor-
tant structures within flow data. We showed that adapting or extending
visualization techniques especially based on extracting line-type features
to be used on vector field ensembles is not a trivial task. After reviewing
current strategies in state-of-the-art approaches, we concluded, that
techniques such as clustering cannot be applied to core lines and using
approaches such as spaghetti plots comes with significant limitations.
We therefore presented a new ensemble vector field operator called the
Approximate Parallel Vectors (APV) operator as a generalization of
the PV operator for an arbitrary number of vector fields. The operator
extracts all locations, where vectors of the different ensemble members
are approximately parallel to each other. We defined vectors to be
approximately parallel, if the direction of the largest spread from the
mean value is parallel to the mean vector. As this reduced the problem
of finding approximately parallel vector to finding parallel vector in two
newly derived vector fields, we showed that a standard PV operator can
be applied which results in closed line structures. We further analyzed
the behavior of the operator for different inputs and provided a solution
on how to do the calculations efficiently. The operator was applied to
several vector field ensembles.

We introduced several new tools for domain experts that can be used
to not only get an overview of the fields provided, but to further gain a
deeper understanding and find new structures within the high quantity
of data. Source code for the glyph construction in Chapter 5 has been
made publicly available and some of the techniques presented in this
thesis already have been or are currently being added to general purpose
scientific visualization software such that they can be used by the public.

12.2 future research

There are numerous directions for future research on the visualization
of scientific data. Some individual improvements and ideas are already
raised within the chapters such as finding glyphs that are capable of
representing general uncertain second-order tensors which is challenging
due to the high number of parameters encoded within the tensor. For all
proposed visualization techniques for second-order tensors with the help
of glyphs in this thesis, a rigorous evaluation of design choices might
further improve the glyphs. Similar studies have been applied to vector
glyphs [172], [173] and existing tensor glyphs [121]. This includes color
palettes as well as suitable rendering of geometry like the eigensticks or
the offset surface for uncertain tensors. As the glyphs are meant to be
a valuable tool for domain experts, user studies might be used to exam-
ine and improve readability, efficiency and effectiveness of the glyphs.
Further, searching general glyphs for tensors of higher-order such as the
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stiffness tensor or elasticity and compliance tensors which are tensors
of fourth-order is subject of ongoing research [74], [163], [164] with the
aim to find more efficient ways to convey the information within the data.

The effective visualization of vector field ensembles also offers several
directions to pursue. This includes incorporating temporal information,
thus finding new features to analyze ensembles of unsteady vector fields.
Extracting stable features such as other representative lines or surfaces
that better capture the gist of a vector field ensemble is still a new and
open challenge. New challenges also arise from dealing with ensembles
of other data types such as tensor field ensembles. Seeing if similar
concepts can be applied to such data and what challenges arise from it
is definitely an exciting direction to go. Finally, all approaches might be
improved in terms of algorithmic efficiency, which is important when
dealing with large amounts of data. This includes looking for possible
parallelization opportunities as well as efficient data management.
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AA D D I T I O N A L M A P P I N G O F T E N S O R
P R O P E RT I E S I N A D D I T I O N T O S H A P E I S
N E C E S S A RY

This proof has been developed by Theisel and Rössl in [47].

In Section 5.2.1 we state that shape alone cannot fully encode a general
2D or 3D tensor. To prove this, consider tensors T that are invariant
under domain rotation, i. e.,

Q T QT = T (A.1)

for any rotation matrix Q(γ). Choose two such tensors of equal scale
(norm) T1 = [ 1 0

0 1 ] , T2 =
[ 0 −1

1 0
]

. Then Equation (5.1) and Equa-
tion (A.1) require that QG(T1) = G(T1) and QG(T2) = G(T2),
i. e., an arbitrary rotation of the glyph gives the same glyph. The only
shape that fulfills this requirement is the circle. Hence, both T1 and
T2 must be encoded as the same circle. If glyphs are only determined
by shape, this violates the requirement for uniqueness (d) as listed in
Section 5.1. In general, every tensor of the form T = Q(γ) is constant
under domain rotation and must therefore be mapped to the circle.
Thus, we need at least one additional continuous channel to encode the
angle γ in the glyph. For our work, we use color.
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E L L I P S E

The insights on the following properties have been developed by Theisel
and Rössl in [47].

The glyph construction presented in Chapter 5 is based on a quadric
that interpolates both the scaled eigenvector endpoints as well as the
left singular vectors of a singular value decomposition. We prove this
property and give a possible representation in Bernstein-Bézier form.

characteristic ellipse

Given is a second-order tensor T ∈ R2×2 and real eigenvalues λ1,2 and
eigenvectors as columns of X. Its characteristic ellipse is determined by
Equation (5.3).

Proposition B.0.1. The implicit curve defined by Equation (5.3) is
an ellipse that interpolates ±λiX·i for i = 1, 2, i. e., the eigenvectors
scaled by the eigenvalues.

Proof. The equation xT(TTT)
−1x = 1 defines a quadric, i. e., the

implicit curve is a conic section [41]. It is indeed an ellipse as TTT

is symmetric and positive definite and so is its inverse as (TTT)
−1

=

(T−1)
TT−1.

The tensor has spectral decomposition T = XΛX−1 with unit length
eigenvectors ||X·i|| = 1 and singular value decomposition T = UΣVT.
We verify that Equation (5.3) holds for xi = λiX·i for i = 1, 2. In
matrix notation with xi as the two columns of XΛ we write

ΛXT (TTT)
−1 XΛ = XTVΣUT (UΣ−2UT)UΣVTX = XTX

using the identities TTT = UΣ2UT and XΛ = UΣVTX, obtained
from the factorizations, and then exploiting orthogonality of U and V.
The diagonal entries

(
XTX

)
ii
evaluate to 1 and are by construction

equal to xi(TTT)
−1xi, which shows that the equation holds. Obviously,

the same holds for −XΛ and hence −xi.

Equation (5.3) holds equally for non-real ±xi ∈ C, i = 1, 2. However,
the interpretation of the ellipse in the real plane (for x ∈ R) changes:
the complex eigenvectors are “replaced” by the left singular vectors U,
which span the orthogonal principal axes, and it is easy to verify that
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the ellipse interpolates the column vectors of ±UΣ. For rank(T) = 1,
the characteristic ellipse degenerates to a line segment.

rational parametrization of the characteristic el-
lipse

The quadric described by Equation (5.3) is an implicit representation
for the characteristic ellipse, which can be parametrized as a rational
quadratic curve [41]. A particularly simple construction is as follows:

Express the rational curve in Bernstein-Bézier form as

f (t) = w0b0 (1− t)2 + w1b1 2(1− t)t + w2b2 t
2

w0 (1− t)2 + w1 2(1− t)t + w2 t2
, t ∈ [0, 1] ,

with control points bi ∈ R. The weights wi ∈ R can always be chosen
such that at the end points w0 = w2 = 1. Figure 5.3a shows an example.
Assume T has eigenvalues λ1 = λ2 = 1, i. e., T = XIX−1, and construct
a parametrization of one arc of the unit circle that is enclosed by the
eigenvectors X·i. From end point interpolation of rational Bézier curves
the left and right control points b0 and b2 are determined as the unit
length eigenvectors X·i. The tangents of the curve at the end points are
given as tangents to the unit circle or a 90 degree rotation of X·i. End
points and tangent directions define two lines, and the center control
point b1 is determined as their intersection. Let α denote the angle
enclosed by the eigenvectors. To verify that ω in Equation (5.4) is to be
set as b1 = ω (b0 + b2), consider the following: w.l.o.g. use eigenvectors
(cos(α/2) , sin(α/2)) to exploit symmetry, and obtain b1 = ( 1

cos(α/2) , 0),
then compare to b0 + b2 = (2 cos(α/2) , 0) to determine the factor
ω = (1+ cosα)−1. The weights associated with the three control points
are w0 = w2 = 1 and for the center w1 = cos(α/2). For the general
construction with unconstrained eigenvalues, i. e., arcs of an ellipse,
the control points are transformed linearly as T bi for i = 0, 1, 2. The
weights remain unchanged. Due to the affine invariance property of
rational Bézier curves, mapping the circular arc results in the same
curve as performing the construction directly for a general ellipse. The
proposed parametrization can be applied similarly or symmetrically
to all four arcs of the characteristic ellipse. Finally, the construction
is straightforward for the degenerated case when rank(T) = 1 (or
cosα = −1): in this case b1 is undefined, however, as w1 = sinα = 0
the curve is just the line segment spanned by b0 and b2.
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CC R E AT I O N O F S U R FA C E PAT C H E S F O R
G E N E R A L 3 D T E N S O R G LY P H S

The following construction has been developed by Theisel and Rössl in
[47].

For the construction of tensor glyphs for general 3D second-order tensors
as introduced in Chapter 5, we construct surface patches from three
quadratic rational boundary curves in Bernstein-Bézier form. Although,
three such curves determine a triangular rational quadratic surface
patch, such patches are parts of ellipsoids, and in particular spheres,
only in special configurations [41]. In general, a rational surface patch
of total degree four is required. We follow the construction in [144]
that uses a rational bi-quadratic patch that is “degenerated” by the
map to the triangle domain. Then the 3× 3 control points and weights
(bij ,wij) of the patch are determined as

(x3, 1) (x3,w12) (x3, 1)

(ν12(x3 + x1),
√

2/2) (b11,
√

2/2w12) (ν12(x2 + x3),
√

2/2)

(x1, 1) (µ12(x1 + x2),w12) (x2, 1)

with the center control point b11 = ν12 (µ12 (x1 + x2) + x3)), and
±xi = λiX·i are scaled eigenvectors. Assume that the boundary curve
from x1 and x2 is located in the reference plane. This determines the
surface patches for the 3D glyph in the case of a well-defined base plane
(see Section 5.3) as reference plane, which gives the weight w12 and the
factor µ12 as in the 2D case.
In the case that no base plane can be established, we construct a contin-
uous surface patch by blending the results of the evaluation of the three
possible patches. While Section 5.3 discusses and justifies the choice of
blend weights, we need to clarify the surface evaluation, which defines
a different, non-standard class of surface patch.
Let fi : [0, 1] × [0, 1] → R3, i = 0, 1, 2, denote the three rational
patches with base curves from xi to xi+1 mod 3. The core idea is a
reparametrization of fi(u, v) as fi(β1,β2,β3) with barycentric coordi-
nates β1 + β2 + β3 = 1 such that

(β1x1 + β2x2 + β3x3) ‖ fi(u, v) , (C.1)
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i. e., the barycentric combination of scaled eigenvectors that span the
patch yields a vector that is parallel to the position vector f (u, v). In
this parametrization, we can evaluate the blend patch as

f (β1,β2,β3) =
1∑2
0Wi

2∑
0
Wi fi(β1,β2,β3) ,

using the blend weights Wi defined in Equation (5.6).
In order to construct the parametrization (C.1) – w.l.o.g. for f1 – consider
the roots of the norm of the cross product. Due to symmetries, the
solution can be expressed as follows. Find u(β1,β2,β3) ∈ [0, 1] as
solution of the quadratic equation

(1− u)2b0 + 2 (1− u)u b1 + u2b2 = 0 ,

for b0 = β2, b1 = w12µ12 (β2 − β1), b2 = −β1. The expression in the
quadratic Bernstein polynomials reveals immediately that there exists
one solution u0 ∈ [0, 1]. Then find v(β1,β2,β3) ∈ [0, 1] similarly as the
root

(1− v)2c0 + 2 (1− v)v c1 + v2c2 = 0 ,

with u := u(β1,β2,β3) = u0, ũ := 1− u, β̃ := β3 − β1 − β2, and

c0 =
√

2β3 (ũ
2 + 4w12µ12 u ũ+ u2) ,

c1 = ν12(β̃ũ
2 + 2w12 (2µ12 β3 − β1 − β2) u ũ+ β̃u2) , and

c2 = −
√

2(β1 + β2)(ũ
2 + 2w12 u ũ+ u2) .
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These proofs have been developed by Theisel and Rössl in [49].

Given is a symmetric tensor S ∈ R3×3. For any rotation matrix R in
Equation (3.2) as defined in Section 3.1.3 that acts on S, the corre-
sponding rotation R̂ that acts on v(S) ∈ R6 can be derived as

R̂ =

 R11 R12

R21 R22

 with (D.1)

R11 = R ◦R
R21 =

√
2 R(132)(123) ◦R(213)(123)

R12 =
√

2 R(123)(132) ◦R(123)(213)

R22 = 2 R(132)(132) ◦R(213)(213) −R(321)(321) ,

where ◦ denotes the entrywise Hadamard product of matrices and
the subindices (ijk) denote permutations of matrix rows and columns,
respectively. Note that [66] provides a different construction based on
plane rotations.
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These proofs have been developed by Theisel and Rössl in [49].

In order to proof if the scalar field q on the surface of a glyph from
Chapter 7 uniquely represents an uncertain tensor (S̃, C), we need to
show that the covariance matrix C can be reconstructed from sampling
the scalar field.

proof of Lemma 7.5.1

Lemma 7.5.1 states that an uncertain glyph is not unique if all q ∈ Q
live on a common quadric, which in turn means that there exists a
non-zero matrix A such that qTA q = 0 for all q ∈ Q. To prove this, we
first show that a glyph is not unique if such a matrix exists. Assume that
there exists a non-zero matrix A that fulfills qTA q = 0 for all q ∈ Q.
Then for any selection of sample points g1, . . . , g21 we have qT

i A qi = 0
for i = 1, . . . , 21. Writing this in matrix form using Equation (3.1) gives

MT v(A) = 021 (E.1)

with M as in Equation (7.15). Since v(A) is non-zero, Equation (E.1)
can only hold if MT has a zero eigenvalue with the corresponding
eigenvector v(A). Therefore, M has a rank deficit for any selection
of sample points, there is no unique solution to Equation (7.14), and
therefore the uncertain glyph is not unique.
For the reverse direction, we assume that an uncertain glyph is not
unique, i. e., we have chosen sample points g1, . . . , g21 such that the
matrix M is singular. Then there exists a (non-zero) eigenvector v(E)

that corresponds to a zero eigenvalue, i. e., MTv(E) = 021. Due to
Equation (3.1) and the definition of M in Equation (7.15), the latter
condition is equivalent to

v(qiqiT)
Tv(E) = qiTE qi = 0 for i = 1, . . . , 21 ,

which implies that the samples live on the common quadric defined by
E.
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sketch of proof of Theorem 7.5.2

Given is an uncertain tensor (S̄, C) with v(S̄) = s. The surface of the
ellipsoid glyph of the mean tensor is given as implicit surface g(S̄, x) = 0
with g(S̄, x) = xTS̄−2x−1 or equivalently as the image { S̄x |xTx = 1 }.
We want to show that for this choice of g there exists an A 6= 0 such
that qTAq = 0, which is equivalent to (∇sg)

TA∇sg = 0 after dropping
the normalization. Let x = (x1,x2) with ||x||2 = x2

1 + x2
2 = 1. Then

the evaluation of the gradient at a surface point gives

∇sg(S̄, S̄x) =
2

2s11s22 − s2
12


(2s22x1 −

√
2s12x2) x1

(
√

2s12x1 − 2s11x2) x2

s12 −
√

2(s11 + s22) x1x2

 ,

and for the further consideration we can drop the factor that is constant
in x. The remaining expression

q̃ := (s11s22 − 1
2s

2
12) · ∇sg(S̄, S̄x)

is linear in s, and we can write

q̃ = B r :=


2s22 0 −

√
2s12

0 −2s11
√

2s12

s12 s12 −
√

2(s11 + s22)



x2

1

x2
2

x1x2

 .

We will now show that the glyph is not unique by Lemma 7.5.1 and use
the fact that the above matrix B has full rank and is invertible.
We have q2 = ϕ q̃Tq̃ for some factor ϕ 6= 0 that is constant in x, i. e.,
independent of the chosen surface point. Consider the vector r and find
a matrix S 6= 0 such that rTS r = 0. In this case there are three distinct
choices up to scaling, e.g.,

S =

 0 1
2 0

1
2 0 0
0 0 −1

 .

We use that B is invertible in order to construct A = B−TS B−1, which
is similar to S, and for which ϕ−1qTAq = q̃TATq̃ = rTB−TS B−1r =

rTS r = 0 for all r and therefore also for all ||x|| = 1 and all surface
points Sx, respectively. With Lemma 7.5.1 this proves the theorem.

sketch of proof of Theorem 7.5.3

For the proof of Theorem 7.5.3, we restrict ourselves to the 2D case.
The basic idea is simple: provide 6 sample points on the glyph curve
and show that they give a full rank matrix M. The technical difficulty
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consists is the fact that the superquadric glyphs are parametrized in
the spectral basis, whereas partial derivatives must be computed w.r.t.
to the tensor components. We only give the (intermediate) results for
derivations. Given is a symmetric positive definite tensor S and its
spectral decomposition S = R Λ RT where R is a rotation matrix
with eigenvectors as columns, and Λ =

(
λ1 0
0 λ2

)
has the eigenvalues

0 < λ2 ≤ λ1 on its diagonal. Then the parametric representation of the
glyph is

g(S, θ) = R Λ

 cosα θ
sinα θ

 (E.2)

with α =
(

2λ2
λ1+λ2

)γ
, xα = sgn(x) |x|α, and γ ≥ 0 serving as a shape

parameter. W.l.o.g. we assume that S is diagonal, i. e., R = I. Note
that this can always be achieved by a change of the coordinate system.
However, the main diagonal S = Λ generally has non-vanishing partials
w.r.t. the off-diagonal entries s12, because any (infinitesimal) change of
the rotation results in a change of s12.
We compute the gradient for the factors of g and summarize the results
as

∇sR =

[
( 0 0

0 0 ), ( 0 0
0 0 ),

√
2

2(λ1 − λ2)

( 0 −1
1 0

)]
,

∇sΛ = [( 1 0
0 0 ), ( 0 0

0 1 ), ( 0 0
0 0 )] ,

∇sα = αγ
λ1+λ2

(
−1 , λ1

λ2
, 0
)T

.

Note that these expressions are well defined only for λ1 6= λ2 and
λ1,λ2 6= 0 as required in Theorem 7.5.3. This gives

∇sg = (∇sR Λ + R ∇sΛ)

cosα θ
sinα θ

 + R Λ ∇sα

cosα θ ln cos θ
sinα θ ln sin θ

 .

Now we select 6 sample points as

gi = g(S, i π6 ) for i = 0, . . . , 5 .

Then computing the gradients ∇sg(S, i π6 ) at the sample points, where
common factors that are constant in s – they do not affect the rank
of M – are dropped and some symmetries are exploited, gives sample
vectors qi of the form

(q1, . . . , q6) =


1 a c 0 −c −a
0 b d 1 −d −b
0 1 1 0 1 1

 (E.3)

155



uniqueness of uncertain tensor glyphs

Figure E.1: The proof of Theorem 7.5.3 involves two functions that must not
vanish iff M has full rank. The plots visualize f1 (left) and f1
(right) for λ1 = 1 in the range λ2 ∈ [0, 1] and γ ∈ [0, 2]

for certain terms a, b, c, d, which depend on λ1,λ2, γ. Applying Equa-
tion (7.15) (for the 2D case) to Equation (E.3) gives

M =



1 a2 c2 0 c2 a2

0 b2 d2 1 d2 b2

0 1 1 0 1 1
0
√

2ab
√

2cd 0
√

2cd
√

2ab
0
√

2a
√

2c 0 −
√

2c −
√

2a
0
√

2b
√

2d 0 −
√

2d −
√

2b


.

Since det M = 8
√

2 f1 f2 with

f1 = f1(λ1,λ2, γ) = (ad− bc)
f2 = f2(λ1,λ2, γ) = (ab− cd) ,

M has full rank if neither f1 nor f2 vanish, which is the case. Instead
of summarizing formal expressions for f1, f2 and a formal proof, we
provide “visual evidence” that f1f2 6= 0: Figure E.1 shows the functions
f1 and f2 plotted as height fields for λ1 = 1 in the range λ2 ∈ [0, 1] and
γ ∈ [0, 2]. It shows that f1, f2 do not vanish for γ > 0 and 0 < λ2 < λ1.
Showing Theorem 7.5.3 for the 3D case requires a sampling of 21 points
on the glyph surface. The basic idea is same as for 2D, however, the
involved expressions become significantly more complex.
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The following proofs have been developed by Theisel and Rössl in [48].

In the following, we give proofs for the Properties (P1)-(P7) summa-
rized in Section 10.2.

Property (P1) holds by construction as neither the mean vector a nor
the symmetric operator DDT =

∑n
i=1(vi − a)(vi − a)T (and hence b)

change on permutation of the columns vi of V.

Property (P2). Assume the parallel vectors condition holds for v1 and
v2, i. e., v1 = λv2. Then with V = (v1|λv1), a = 1+λ

2 v1 and

DDT = (1 + λ2)v1v1
T − 1

2 (1− λ)
2v1v1

T =: λ̃v1v1
T .

This implies b = DDTa = 1+λ
2 λ̃a, or equally the APV condition. The

symmetric matrix DDT has rank 1 and one single nonzero eigenvalue
λ̃v1

Tv1 therefore also the filtered APV condition holds. The reverse
direction (fAPV ⇒ PV) is straightforward to show using the same
argument.

The proofs of the remaining, more general properties are slightly more
complex. The essential argument, however, is similar.
Let 1n ∈ Rn denote the constant vector with all entries equal to 1 and
let 11n = 1n1T

n ∈ Rn×n denote the constant matrix with all entries
1. For the sake of a concise notation, we may omit the dimension n

whenever it is irrelevant or clear from the context.
Let V = (v1, . . . , vn) with vi ∈ Rm. Then a = 1

nV1n the mean of
column vectors for a matrix V ∈ Rm×n, and 1

nV11n gives the matrix
(a, . . . , a) ∈ Rm×n. So far, we considered (w.l.o.g.) the 3D case m = 3.
The following arguments apply for any dimension m ≥ 2.
The proposed algorithm requires the matrix D = V− 1

nV11n = VP
with P = I− 1

n11n. (I is the identity.)
In a slightly more general setting, we first summarize properties of
symmetric matrices Pn(α) := I− α11n.

Lemma F.0.1 (Spectral decomposition). For α > 0, matrices Pn(α)

have eigenvalues λi = 1 − αµi for µi = 0, . . . , 0,n, and they share
eigenvectors up to order and orientation.
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Proof. The following holds for eigenvalues λ and eigenvectors x.

(I− α11)x = λx ⇔ x− α11x = λx ⇔ α11x = (1− λ)x
11x = µx with eigenvalues µ = 1

α (1− λ)

The matrix 11 = 11n has rank 1 and eigenvalue 0 with multiplicity n− 1,
and the remaining eigenvalue must be equal to n. It is straightforward to
confirm that the first n− 1 eigenvectors of 11n provide an orthonormal
basis of the kernel {x |11nx = 0}, and the remaining last (unit length)
eigenvector is the constant vector q := 1√

n
1n. The eigenvalues are

shifted for P(α), and the eigenvectors are the same as for 11 up to order
and orientation.

Note that the constant eigenvector q of P(α) appears for the smallest
eigenvalue due to the shift of eigenvalues. In the following, we write the
eigenvectors as columns of the orthogonal matrix Q = (q|Q̂), where
the columns of Q̂ span the kernel of 11 (or equally the image of P(α)).
For the special case P = I− 1

n11n, this gives eigenvalues λi = 0, 1, . . . , 1.
The symmetric matrix P has rank n− 1 and is idempotent (i. e., PP =

P). It can be written in terms of its spectral decomposition as P =

Q diag(0, 1, . . . , 1)QT = Q̂Q̂T.
In the following, we consider the cases of n and n+ 1 vectors:
Let V = (v1| . . . |vn) ∈ R3×n and V̄ = (v1| . . . |vn+1) ∈ R3×(n+1).
Likewise, we denote

na =V1n and b = DDTa = VPVTV11n, and
(n+ 1) ā =V̄1n+1 and b̄ = D̄D̄Tā = V̄P̄V̄TV̄11n+1 .

For the sake of a concise notation, the bar over a quantity denotes
dimension n+ 1, e. g., D̄ ∈ R3×(n+1) and P̄ ∈ R(n+1)×(n+1), and we
omit explicit subscripts.
We show how the parallel vectors condition ā = λb̄ can be expressed in
terms of a and b using block decompositions of V̄ = (V|vn+1) and

P̄ =

 P̂ − 1
n+11

− 1
n+11T n

n+1

 with P̂ = Pn(
1

n+1 ) = I− 1
n+111n .

Then

D̄D̄T = V̄P̄V̄T =
(

VP̂− 1
n+1vn+11T n

n+1vn+1 − 1
n+1V1

)
(V|vn+1)

T

= VP̂VT − 1
n+1vn+11TVT + 1

n+1 (nvn+1 − V1)vT
n+1 .
(F.1)

Using Lemma F.0.1, we can express P̂ as a rank-1 update of P — the
zero eigenvalue becomes 1

n+1 — and obtain

P̂ = P + 1
n+1qqT = P + 1

(n+1)n11 .
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We use Equation (F.1) to show Properties (P3), (P4) and (P5), and
we use a similar block decomposition to show (P7).

Property (P3). Let vn+1 = 0. Then Equation (F.1) reduces to D̄D̄T =

VP̂VT. With (n+ 1) ā = na the parallel vectors condition b̄ = λā
becomes

VP̂VTV1 =λV1 ⇔

V
(
P + 1

(n+1)n11
)

VTV1 =λV1 ⇔

VPVTV1 + 1
(n+1)nV11VTV1 =λV1 ⇔

b + 1
(n+1)nV11VTa =λa .

Assume that b = µa holds. Then there exists an eigenvalue

λ = µ+
n

n+ 1aTa

for which the above equation becomes true because

b + 1
(n+1)nV11VTa =λa ⇔ µa + 1

(n+1)n n
2a(aTa) = λa .

It is straightforward to show the reverse by fixing λ rather than µ.

Property (P4). Assume b̄ = λā holds, i. e., an eigenvalue λ exists. We
consider the left-hand-side of the equation b̄− λā = 0 and substitute
vn+1 = sv. With V1 = na, this gives

b̄− λā = 1
n+1D̄D̄T(na + sv)− λ 1

n+1 (na + sv)

= n
n+1VP̂VTa− sn2

(n+1)2 vaTa− sn2

(n+1)2 avTa + s2n2

(n+1)2 vvTa

+ s
n+1VP̂VTv− s2n

(n+1)2 vaTv− s2n
(n+1)2 avTv + s3n

(n+1)2 vvTv

− λ n
n+1a− λ s

n+1v .

We choose and substitute

λ = n
n+1 (s

2 − 2µs)vTv ,

factor powers of s and obtain

b̄− λā =s2
(
− n

(n+1)2 vTva− n2

(n+1)2 vTva + n2

(n+1)2 aTvv− n
(n+1)2 aTvv

+ 2µn
(n+1)2 vTvv

)
+ O(s)

=s2 1
(1+n)2

(
(n2 − n)aTvv− (n2 + n)vTva + 2µnvTvv

)
+O(s) .

The computation of the above term is somewhat lengthy but elementary.
We give a few remarks: First, the choice of eigenvector λ requires a
term that is linear in s. Second, s3 is the highest power that appears in
the derivation. However, the cubic terms sum to zero and disappear in
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the result. (This is independent of the particular choice of λ. There the
additional linear term generates a term in s2 that is required to ensure
no solution is lost.)
We can now evaluate the limit lims→∞

1
s2 (b̄− λā) and obtain the equa-

tion

(n2 − n)aTvv− (n2 + n)vTva + 2µnvTvv = 0 ,

which holds iff the parallel eigenvectors condition a = µv is satisfied.

Property (P5). Let vn+1 = s
∑n
i=1 vi = sV1. Then

D̄D̄T = VP̂VT − s
n+1V11VT + s2 n

n+1V11VT − s
n+1V11VT

= VP̂VT +
n2(s2 n− 2s)

n+ 1 aaT

= VPVT + 1
(n+1)nV11VT +

n2(s2 n− 2s)
n+ 1 aaT

= VPVT +
n (1− s n)2

n+ 1 aaT .

With

ā = 1
n+1 (na + sV1) = 1

n+1 (na + s na) = 1+s
n+1a

we obtain

D̄D̄Tā = λā ⇔

VPVTa +
n (1− s n)2

n+ 1 a(aTa) = λa ,

which holds if b = µa. The argument is similar as for (P3) and uses
b = VPVTa = µa.

Property (P6) follows immediately from (P3) as

APV(v1, . . . , vn, 0, . . . , 0, 0︸ ︷︷ ︸
k+1

) = APV(v1 . . . , vn, 0, . . . , 0︸ ︷︷ ︸
k

) = . . .

= APV(v1 . . . , vn) .

Property (P7). Let W = w1k = (w, . . . , w) ∈ Rm×k. We consider
V̄ = (V|W) ∈ Rm×(n+k). Similarly, as before, we define

P̄ =

 Pn −α11n×k

−α11k×n Pk

 ∈ R(n+k)×(n+k)
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where α = 1
k+n and Pn = Pn(α) and Pk = Pk(α). Then

D̄D̄T =V̄P̄V̄T = VPnVT − αW11k×nVT − αV11n×kWT + WPkWT

=VPVT + αk nA ∈ Rm×m

with A = aaT − awT −waT + wwT and P = Pn(
1
n ). To confirm this

equivalence, we study each term of the quadratic form:
From Pn = P + k

k+nqqT = P + k
n(k+n)11 (rank update) we obtain

VPnVT =VPVT +
k

n(k+ n)
V11VT = VPVT +

k n

k+ n
aaT

=VPVT + αk naaT .

We have

−αW11VT = −αkw1T
nVT = −αkw(V1n)T = −αk nwaT

and −αV11WT = −αk nawT.
And finally, WPkWT = w1TPk1w = k n

k+nwwT = αk nwwT using
1TPk1 = (1− αk) k = αk n.
With the mean ā = α(na + kw) we write the condition

D̄D̄T ā = λ ā ⇔ (VPVT + αk nA) a = λa ,

which gives

n

k+ n
VPVTa +

k

k+ n
VPVTw

+
k n2

(k+ n)2 Aa +
k2 n

(k+ n)2 Aw− λn

k+ n
a− λ k

k+ n
w = 0.

In the limit k →∞ this reduces to the condition

VPVTw + n
(
aaT − awT −waT + wwT

)
w − λw = 0 ,

and with VPVT = DDT = VVT − naaT we obtain

VVTw + n
(
wwT − awT −waT

)
w − λw = 0 ⇔

VVTw − n ||w||2 a = µw for µ = λ + n(wTa− ||w||2) ,

which is the postulated parallel vectors condition.
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