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“It is good to love many things, for therein lies the true strength,
and whosoever loves much performs much, and can accomplish much,

and what is done in love is well done.”
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Abstract

Autonomous dynamical systems enter our daily lives and homes. They appear in the
form of self-driving cars, vacuum cleaning robots, and smart manufacturing cobots.
Hence, these systems inevitably interact with humans or their surroundings. Safety
and reliable performance are two critical aspects, which autonomous systems must
meet. These goals can only be achieved by a tight interconnection between several
technologies. This includes, among others, the dynamic control of systems and the
ability of these systems to learn from interactions. This thesis aims to interlink these
two concepts more closely. In particular, we propose to equip model-based controllers
with a measure and awareness of the system surroundings. This goal is tackled from
three perspectives:
First, model predictive control schemes for direct force control are proposed. This

tailored model predictive control formulation regulates the interaction forces between
a cobot and its environment. Since these forces quantify the interaction of the robotic
system with workpieces, other robots, or humans, direct control of contacts is achieved.
We hereby utilise the benefits of model predictive control, which allows handling the
nonlinearities of robotic systems, includes prior knowledge in terms of models, and
explicitly achieves constraint satisfaction. We show how constraints on the interaction
forces allow for improved performance and increased safety. They allow guaranteeing
tight contact without exceeding safety-critical force limitations. Consequently, the
developed model predictive force controller enable to extend the usage of cobots to
applications that might have been considered too delicate or dangerous until now.
Second, this thesis examines data- and learning-supported predictive force con-

trollers. We equip the developed model predictive force controllers with machine
learning models of the interaction. The contact forces are learned via Gaussian pro-
cesses, which perform well despite noise in sensor data and allow for incorporating prior
knowledge about the interaction. Inspired by force control, we develop a generalised
concept. We present how Gaussian processes can be included as system output models
in predictive controllers, while we provide closed-loop guarantees. The proposed con-
cepts of output learning for predictive controllers constitute a promising step towards
the integration of control engineering and computer science. In particular, we achieve
increased autonomy of robotic systems that interact with diverse environments via the
proposed algorithms. We enable the transfer of predesigned robot control setups to a
large variety of applications and environments with the developed learning-supported
force controller.
Third, this thesis introduces Gaussian processes reference generators for predictive
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Abstract

controllers to address the learning from interactions. Since model predictive controllers
rely on predictions of future evolutions, the knowledge of the desired motions over the
prediction horizon is required. In many cases, these references are not known a priori
but encoded by data and obtained via communication and interaction with other sys-
tems. Gaussian processes can be used to model, filter, and predict these signals such
that the model predictive controller can proactively and foresightedly steer the system
to follow the reference. This thesis proposes constrained learning algorithms for the
data-based reference generation by Gaussian processes. The proposed constraints in
the training phase of Gaussian processes encode trackability conditions. We guar-
antee the recursive feasibility of learning-supported model predictive control despite
uncertainties. The developed reference learning scheme for predictive control tackles
the integration of machine learning and control by including systems theory into the
data-based training of Gaussian processes. Hence, we achieve the incorporation of
extensive prior knowledge in machine learning to obtain reliable, realistic, and safe
references and controllers.
These three derived concepts for interactive and learning-supported model predictive

control are illustrated and evaluated in simulations and experiments. In particular,
real-time feasible implementations on lightweight robots are successfully conducted,
which underline the respective benefits of the developed approaches and prove the
applicability of our theoretical findings to real-world problems.
This work shows that model predictive controllers are very well suited to operate

systems in safety-critical and delicate tasks if the system’s interaction with the sur-
roundings is taken into account. We show that the awareness of interaction allows
systems to learn from the environment and to increase their autonomy while ensuring
safety.
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Deutsche Kurzfassung

Autonome dynamische Systeme wie beispielsweise selbstfahrende Autos, Staubsauger-
roboter und intelligente Fertigungsroboter halten Einzug in unser tägliches Leben.
Diese Systeme interagieren unweigerlich mit dem Menschen oder seiner Umgebung,
wodurch deren Zuverlässigkeit sowie Sicherheit unerlässlich wird. Diese beiden Ziele
können nur durch eine enge Verzahnung der eingesetzten Technologien erreicht werden.
Schlüsselkomponenten sind dabei die Regelung von Systemen und die Fähigkeit dieser
Systeme, aus Interaktionen zu lernen. Ziel der vorliegenden Arbeit ist es zu untersu-
chen, wie sich diese beiden Konzepte mit Garantien an die Sicherheit verschmelzen
lassen. Insbesondere wird in dieser Arbeit aufgezeigt, wie sich modellbasierte Reg-
ler mit einer Kenntnis beziehungsweise einem Bewusstsein für ihre Systemumgebung
ausstatten lassen. Die genannten Herausforderungen werden in drei Teilen adressiert:
Zunächst werden modellprädiktive Reglerformulierungen für die direkte Kraftrege-

lung vorgeschlagen. Eine neuartige modellbasierte Formulierung erlaubt es, Interak-
tionskräfte zwischen Robotern und ihrer Umgebung explizit zu berücksichtigen. Da
diese Kräfte die Interaktion des Robotersystems mit Werkstücken, anderen Robo-
tern oder Menschen beschreiben, ermöglicht dies eine direkte und gezielte Regelung
ihrer Kontaktkräfte. Hierbei werden die Schlüsselvorteile der modellprädiktiven Re-
gelung genutzt, die es erlauben, Nichtlinearitäten von Systemen zu berücksichtigen,
Vorwissen in Form von Modellen einfließen zu lassen und Beschränkungen einzuhal-
ten. Es wird gezeigt, wie eine Beschränkung der Interaktionskräfte eine verbesserte
Regelperformance und eine erhöhte Sicherheit ermöglicht. So kann mit dem Ansatz
ein gewünschter Kontakt garantiert werden, ohne sicherheitskritische Kraftbegrenzun-
gen zu überschreiten. Dieser modellprädiktive Kraftregler ermöglicht den Einsatz von
Robotern in Anwendungen, die bisher als zu kritisch oder gefährlich galten.
Zweitens werden in dieser Arbeit daten- und lerngestützte prädiktive Kraftregler

untersucht und entwickelt. Hierzu wird der vorgeschlagene modellprädiktive Kraft-
regler um maschinelle Lernmodelle, welche die Interaktion beschreiben, erweitert. Die
Kontaktkräfte werden dabei über Gaußsche Prozesse gelernt, welche Messrauschen ex-
plizit berücksichtigen und es erlauben, Vorwissen direkt einzubeziehen. Diese prakti-
sche Fragestellung wird abstrahiert und es wird aufgezeigt, wie sich Gaußsche Prozesse
zum Erlernen eines Ausgangsmodells verwenden und in prädiktive Regler integrieren
lassen, ohne Garantien für den geschlossenen Regelkreis zu verlieren. Die vorgeschla-
genen Konzepte zum Lernen des Ausgangsmodells für prädiktive Regler stellen einen
vielversprechenden ersten Schritt zur Verschmelzung von Regelungs- und Informa-
tionstechnik dar. Insbesondere erlauben die vorgeschlagenen Verfahren eine erhöhte
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Autonomie von Robotersystemen, die in wechselnden Umgebungen interagieren.
Drittens wird in dieser Arbeit aufgezeigt, wie sich Referenzen für prädiktive Regler

mittels Gaußscher Prozesse generieren lassen, die es ermöglichen, aus Interaktionen
zu lernen. Da modellprädiktive Regler auf der Vorhersage zukünftiger Entwicklungen
beruhen, ist es notwendig und vorteilhaft, dass die Referenzbewegung über den Prä-
diktionshorizont weitgehend bekannt ist. In vielen Fällen sind diese Referenzen jedoch
a priori unbekannt beziehungsweise nur in Form von Messdaten verfügbar. Gaußsche
Prozesse erlauben es, diese Signale zu modellieren, zu filtern und vorherzusagen, sodass
der prädiktive Regler das System proaktiv und vorausschauend steuern kann, um dem
Referenzsignal zu folgen. In dieser Arbeit werden neue Verfahren zum datenbasier-
ten Lernen von Referenzen mittels Gaußscher Prozesse entwickelt. Die Verfolgbarkeit
der gelernten Referenz durch das System wird hierbei durch geeignete Beschränkun-
gen während des Lernens realisiert. Diese Beschränkungen garantieren die wiederholte
Lösbarkeit der lerngestützten modellprädiktiven Regelung trotz Unsicherheiten. Das
entwickelte Verfahren kombiniert maschinelles Lernen mit grundlegenden Konzepten
der Regelungstechnik. Es bettet systemtheoretische Eigenschaften in das datengestütz-
te Training Gaußscher Prozesse ein. Dies ermöglicht die Integration von Vorwissen in
maschinelle Lernalgorithmen, um zuverlässige und realistische Referenzen für eine si-
chere und flexible Regelung zu erhalten.
Die entwickelten Konzepte zur interaktiven und lerngestützten modellprädiktiven

Regelung werden in Simulationen und in realen Experimenten veranschaulicht. Echt-
zeitfähige Umsetzungen für Leichtbauroboter unterstreichen den Nutzen der entwi-
ckelten Ansätze und untermauern die Anwendbarkeit der theoretischen Ergebnisse.
Diese Arbeit zeigt auf, dass modellprädiktive Regler sehr gut für die Regelung si-

cherheitskritischer und schwieriger Aufgaben geeignet sind, wenn die Interaktion des
geregelten Systems mit der Umgebung berücksichtigt wird. Die explizite Betrachtung
von Interaktionen des Systems ermöglicht es, von der Umgebung zu lernen und hier-
durch die Autonomie des Systems zu erhöhen, ohne die Sicherheit zu gefährden.
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1 Introduction

To improve their performance, decrease costs, and enhance usability, there exists a
strong desire to make systems “intelligent and autonomous”. This desire spans from
industrial production chains related to Industry 4.0, to self-driving cars, and home
automation. A key element to achieve autonomy is, and has been, the concept of
feedback and control. Feedback control allows systems to react to unplanned events,
disturbances, and changing references. Machine learning, which currently receives
considerable attention, tackles the same tasks – to increase the autonomy of systems
and to equip them with intelligence. Driven by the availability of large amounts of
data, machine learning gains more and more popularity to model systems and learn
relationships between data. As machine learning and control have common goals, one
should focus on merging them instead of regarding them independently from each
other. Doing so allows fusing their benefits and enables new developments. This
work combines methods from control theory and machine learning. Mainly we will
focus on model predictive control strategies on the control side and Gaussian processes
on the machine learning side. In particular, we propose new methods for Gaussian
processes learning by including notions from systems theory, hence, including and
exploiting control theory in machine learning. Vice versa, we support model predictive
controllers with Gaussian process models, thus explicitly including learning in control,
cf. Figure 1.1.
Model predictive control is an advanced control strategy that allows handling non-

linearities, multiple inputs and outputs, time-delayed systems, constraints, and various
task formulations such as setpoint regulation or path following [4, 28, 83, 189]. Due
to this versatility, it has been used in numerous applications spanning from process
systems industry [186], and biomedical applications [30], to automotive engineering
[15, 100]. Often, the satisfaction of constraints (for example on the temperatures in
reactors, the insulin delivery rate in the artificial pancreas, or the state of charge
in batteries of electric cars) is substantial for safe operation. Besides invariance-
based approaches that ensure constraint satisfaction via control invariance of a safe
set [66, 113, 123], model predictive controllers explicitly allow to take these require-
ments into account by including them in a constrained optimal control problem. The
cost function optimises the future system evolution based on a defined measure and
system model. This measure can, for example, penalise the deviation of a system
from a desired setpoint, from a time-dependent trajectory, or from a geometric ref-
erence path. For each of these references, specific formulations of model predic-
tive controllers are available and come along with a corresponding stability theory

1
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Machine Learning
Gaussian-Process-
based Learning

Control Theory
Model Predictive Control

and Trackability

dy
na
mic

prope
rties and constraints

learned prediction mode
ls

Figure 1.1: Coupling and fusing machine learning and control theory as considered in this
thesis.

[56, 136, 139, 140, 153, 162]. The predictions of the system are influenced by the
control inputs that the controller chooses. Once the controller has determined the
optimal input over the prediction horizon, it applies the first part of it to the real pro-
cess. Feedback from the plant is included by repeating this open-loop optimisation at
every sampling instance with new initial conditions obtained via measurements from
the real system.
The quality of the involved predictions has a large influence on the performance

of the closed-loop. The key influencing factors are the system model and the con-
troller’s knowledge about external signals such as references or disturbances. Often,
it is assumed that these models and references are known a priori. They might be
provided by higher-level planners, modelled via first principles, or obtained via system
identification. However, often models are uncertain. Thus, machine learning methods
are increasingly incorporated into the loop to account for limited insights into the
processes. For example, system models for prediction can be identified via neural net-
works or Gaussian processes [29, 42, 76, 93, 118–120, 135, 171, 180, 223, 237]. Model
predictive controllers provide the flexibility to include such models.
Gaussian processes build a particular class of these machine learning techniques

that can be used for regression or system identification [117, 235]. They are based
on conditional probabilities as well as Gaussian distributions and extend multivariate
normal distributions to the infinite-dimensional case. Due to their stochastic nature,
Gaussian processes often work particularly well with data that is corrupted with noise.
They can directly take the uncertainty in the measurements into account and are
considered not to be prone to over-fitting. Moreover, they allow predicting posterior

2



1.1 Contribution

distributions of the variables of interest, such that information about the model quality
can be inferred. In model predictive control, Gaussian processes have been used to,
for instance, provide disturbance models, learn dynamical system representations, or
extend existing first-principle models in a hybrid setting [93, 177, 180, 223, 231, 237].

1.1 Contribution

In this work, Gaussian processes will be merged with model predictive control in two
ways: The first approach uses Gaussian processes to obtain the output equations of
dynamical systems. The resulting hybrid model, consisting of a first-principle dy-
namic state equation and the data-based output equation, is embedded into a model
predictive control framework. The focus on the learning of output equations instead
of the full dynamical model is motivated by an application example, where uncer-
tainty mainly arises in the output. We consider a robotic application example, where
a model predictive controller is employed to control the robot’s position as well as the
interaction forces of the robot with its environment. This task is first addressed by a
pure “white-box” modelling approach. It shows the benefits of a new model predictive
force controller formulation, ensuring safe operation. This safety is accomplished via a
provably stable controller formulation, which takes constraints on positions and forces
into account. This way, safe interaction of the robot and its environment is achieved,
which is underlined by several simulation and hardware experiments on a lightweight
robot.
Operating the same robot and controller in different environments, however, re-

quires extensive recalibration and design decisions even though the parameters and
dynamics of the robot are unchanged. Hence, we propose an extension to this purely
first-principles-based controller design by including machine learning in the model
predictive controller to represent changing environmental conditions. The data-based
formulation enters the output of the dynamical system only. This structure reveals
useful properties compared to dynamical systems modelling via Gaussian processes,
which can be exploited in the controller design. Among others, it allows extending the
established stability conditions of the first-principles-based formulation to learning-
supported model predictive control.
The second way of merging Gaussian processes and model predictive control in this

thesis considers the learning of external signals such as references for the prediction
inside the controller. Even though in many cases references are a priori known, this is
not true for all applications. For example, a corporation between multiple robots can
require the negotiation of desired motions via data transmissions. Suppose one robot
should synchronise its movement to another robot or human. In that case, sensory
data about the robot’s surroundings encode its reference. Thus, the reference is a pri-
ori unknown and might be corrupted by noise. Learning of the reference via Gaussian
processes allows us to take the uncertainty into account. It enables the filtering, pre-

3
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diction, and, if necessary, modification or adaptation of the reference. A constrained
learning and update scheme for Gaussian processes is proposed. It guarantees that the
learned references are suitable for the model predictive controller and ensure recursive
feasibility and closed-loop stability. This way, model predictive controller formulations
are facilitated that can exploit their full potentials. Besides the closed-loop guarantees,
performance improvements are enabled via the prediction of the reference by Gaus-
sian processes, which allows a foresighted control. This concept of reference learning
is illustrated with several simulation examples as well as a hardware implementation
on a robot used in a minimally invasive medical treatment. This application example
requires precise positioning of surgical instruments with respect to a patient position.
The robot must accurately synchronise its movements to respiratory motions of pa-
tients while handling tools such as needles inserted in the patient’s body. As shown,
the learning-supported controller can meet the required sub-millimetre precision by
the combination of reference learning, prediction, and constrained optimisation.
In a nutshell, this work entails three main contributions, which are

• Interaction force learning and control while guaranteeing force limitation via
model predictive control for safe robot interaction.

• Constrained Gaussian process learning for prediction of references suitable for
model predictive control guaranteeing trackability and recursive feasibility.

• Experimental validation of the two proposed learning-supported model predictive
control schemes on robot force control and robotic respiratory motion compen-
sation.

Overall, the proposed learning-supported model predictive control schemes allow for
reliable and safe control of dynamical systems with improved control performance via
learning and adaptation of reference and output models based on noisy data.

1.2 Outline
The structure of this thesis is illustrated in Figure 1.2. A general introduction to
model predictive control is provided in Chapter 2. Particular emphasis is laid on the
formulation of model predictive controllers tailored for tasks spanning from setpoint
regulation, over trajectory tracking to path following, as also published in [153]. Be-
sides providing a mathematical description of each control task, stability conditions are
given for regulation, tracking, and path following, respectively. Similarities, connec-
tions, and differences between these formulations are illustrated by means of robotic
simulation examples. The bottom line of this comparison is to encourage the selection
of the controller formulation fitting for the specific task at hand.
In Chapter 3, a model predictive controller is proposed for the hybrid control of

positions and forces in robotics. This setup entails the benefits of taking the system
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1.2 Outline
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Models for MPC
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Figure 1.2: Structure of the remainder of this thesis.

dynamics as well as the environmental interactions of the robot into account. By doing
so, it accomplishes the desired interaction force and motion. Safety of the proposed
approach is ensured via the explicit consideration of motion and force constraints,
which allow establishing the desired contact with guaranteed force limits from above
and below. The results have been published in [154].
Chapter 4 provides an introduction to Gaussian processes, which are stochastic ma-

chine learning techniques. Besides the basic principles and mathematical formulations
for the learning and prediction with Gaussian processes, we highlight some proper-
ties that are especially interesting from the control perspective. Among others, their
differentiability is exploited in the following chapters. Based on the foundation laid
by Chapters 2 and 4, learning-supported model predictive control strategies can be
derived thereafter.
Chapter 5 proposes strategies of learning-supported model predictive control with

Gaussian processes. To do so, a general introduction into learning-supported model
predictive control is given. We propose two specific learning-supported controller se-
tups. First, Gaussian processes are used inside a predictive control formulation to
address uncertain output functions. Starting from the motivating example of con-
tact force control in robotics from Chapter 3, an adaptive, supervised, offline-learning
approach is presented, which guarantees closed-loop stability and increases the per-
formance of the controller. The proposed methodology is evaluated in real time via a
hardware implementation on a lightweight robot while providing comparisons to first
principle models. The second learning-supported control formulation includes dynam-
ical system properties in the training of Gaussian processes. Supervised offline and
online learning of references from data is considered, which ensures trackability of the
learned references. To do so, constrained training of Gaussian processes is proposed,
which guarantees the recursive feasibility of a tracking predictive controller using the
learned reference. The outlined findings led to a series of publications [156–158, 160].

5



1 Introduction

In Chapter 6, the proposed reference learning approach is used to control a light-
weight robot in a medical application. Here, respiratory motion signals from a patient
are learned, smoothed, predicted, and tracked by the learning-supported controller us-
ing online data updates. Superior prediction performance of the constrained Gaussian
process compared to unconstrained learning and standard filtering techniques is shown.
Moreover, the learning-supported model predictive controller achieves sub-millimetre
accuracy thanks to the provably trackable reference prediction.
Finally, Chapter 7 summarises the proposed algorithms and achieved results. It

reviews the established combination of control and machine learning via Gaussian-
process-supported model predictive control. The inclusion of learning into control
via Gaussian process output models, as well as the inclusion of control in learning
via constrained Gaussian process training conditioned on trackability properties is
discussed. An outline of interesting future research directions concludes this thesis.

6



2 Model Predictive Control

This chapter outlines and compares model predictive control approaches for setpoint
regulation, trajectory tracking, and path following. Besides, the basic conditions for
stability and recursive feasibility are reviewed. Simulation studies from robotics high-
light the differences between the approaches and provide insights into the controller
design for the different tasks.

2.1 Introduction and Setup

Model predictive control (MPC) is an optimal control strategy that enjoys great pop-
ularity in both industry and academia [64, 162]. This popularity originates from
advantages such as the ability and flexibility to explicitly handle soft and hard con-
straints, nonlinear system dynamics, and multi-input-multi-output (MIMO) systems.
Furthermore, a wide range of options is available to ensure stability, which builds the
basis for several extensions to robust and stochastic control in the presence of uncer-
tainty [64, 136, 162–164, 167, 187, 189]. From a practical side, MPC often leads to
explainable behaviour of the system under control since it is model-based. The in-
volved variables remain interpretable, which simplifies the tuning of the controller. In
general, the basic principle of MPC is easily comprehensible. At the same time it often
outperforms classical controllers as PID for complex problems such as the control of
constrained nonlinear MIMO systems.
The basic idea in MPC is the repeated solution of an optimal control problem to

obtain an optimal input for the system under consideration. The goal is to minimise
a cost function that represents the desired behaviour of the system over a given finite
prediction horizon. For example, the cost function may penalise the deviation of the
system states from a given setpoint over the prediction horizon. Besides the cost
function, constraints can be taken into account in the optimisation either for the
full prediction horizon or at specific time instances, such as the beginning (initial
condition) and at its end (terminal condition). Once an optimal input signal over
the prediction horizon is obtained, only the first part of the optimal input is applied
to the system. The prediction and optimisation are performed again with a receding
prediction horizon in the next iteration. To be able to predict the system behaviour
over the horizon, a system model is needed. This prediction model enables to evaluate
the performance of the system under specific input signals not only for the current time
instance but also for future times. The prediction allows the MPC to be “foresightful”,
which allows, for example, to reduce overshooting and oscillations. It avoids constraint
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2 Model Predictive Control

violation and prevents the controller from being short-sighted. The model quality has a
significant effect on the closed-loop performance of the controller. Since the calculation
of the optimal input is based on the predicted system behaviour, it is sensitive to
prediction errors originating from an imprecise system representation. Therefore, one
of the drawbacks of MPC is the necessity to have a suitable model that captures the
dynamic system as precise as possible. Obtaining such a precise system model is, in
general, not trivial. It needs insight into the underlying physical relationships and
processes as well as sufficient measurement data. Though, the system model should
not be too complex in terms of system order and degree of nonlinearity, as this increases
the computational demand. This issue is related to another drawback of MPC, as the
repeated online solution of a possibly nonconvex optimal control problem can require
high computational power to meet real-time requirements. Besides its effect on the
performance, the system model used in MPC also plays an essential role in closed-loop
stability. In nominal MPC schemes, stability proofs assume that the model is a perfect
representation of the system. Inherently, nominal MPC has certain robustness against
modelling errors as the repeated optimisation includes knowledge about the existing
system in terms of initial conditions each time new measurements are available. Based
on these general ideas, we can specify model predictive controllers more formally [153]:
We consider nonlinear, continuous-time, and time-invariant systems of the form

ẋ(t) = f(x(t), u(t)), x(0) = x0, (2.1a)
y(t) = h(x(t)), (2.1b)

where t ∈ R is the time, x(t) ∈ Rnx denotes the state, and u(t) ∈ Rnu is the input
of the system. The dimensions of the state and input are nx and nu, respectively.
The map f : Rnx × Rnu → Rnx describes the dynamics of the system. The mapping
h : Rnx → Rny represents the relationship from states to outputs y(t) ∈ Rny with
dimension ny

∗. In the context of this work, the system outputs y do not necessarily
correspond to the taken measurements but refer to the variables of interest.
We consider restricted systems, where additional constraints have to be taken into

account. One might consider constraints due to safety reasons by excluding some
regions of the state, input, or output space which are considered dangerous for the
system under control or its environment. Moreover, constraints can restrict the con-
sidered area where a model is valid or represent limitations in the available outputs.
They can also be used to influence the controller or closed-loop performance via tuning
or accelerate the solution if the search space is narrowed down. These restrictions can
take the form of state, input, and output constraints which are represented in this
work via the sets X ⊆ Rnx,U ⊆ Rnu and Y ⊆ Rny, respectively.
In this work, we rely on the following assumptions on the restricted system (2.1):

∗In general, the output function can also depend on the input u, which is not considered here for simplicity.
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2.2 Setpoint Regulation

Assumption 1. The state and output constraint set X and Y are closed, the input
constraint set U is compact.

Assumption 2. The system dynamics f : Rnx × Rnu → Rnx and the output map
h : Rnx → Rny are assumed to be sufficiently often continuously differentiable and
locally Lipschitz for all (x, u)> ∈ X × U .

Assumption 3. For any continuous input signal u(·) and for all initial points x0 ∈ X ,
system (2.1) admits a unique absolutely continuous solution.

Model predictive control can directly address the control of a constrained system. It
includes the restrictions and the dynamic system (2.1) in the optimal control problem,
in which a cost function is minimised. The reference definition influences the form
of the optimal control problem, which in consequence also influences the way how to
provide stability guarantees. One can use different formulations depending on the ref-
erence definitions, i.e. if the reference is constant (setpoint), explicitly time-dependent
(trajectory) or a geometric path. In the following, model predictive controllers for the
different references and goals are outlined. The presentation is mainly based on [153].

2.2 Setpoint Regulation

In setpoint regulation, the goal is to bring the controlled variables of a system to a
constant reference value rs ∈ Y . This task often occurs in practice when a system
should be operated at a steady state. Application examples of MPC for setpoint
regulation are temperature control in a greenhouse [48], the control of liquid level and
temperature in a continuous stirred tank reactor [203], or the control of the oxygen
level in a coke production [240]. The control error in setpoint regulation problems is
given by

es(t) := rs − y(t). (2.2)

Here, the controlled variable y(t) is subtracted from the time-independent reference
value or setpoint rs. Naturally, the reference should be designed such that it can be
reached and maintained by the system output, which is outlined below.

2.2.1 Definition of Setpoints

Often, the setpoint is a steady state. Thus, bringing the control error to zero by
driving the output y(t) to the setpoint rs corresponds to steering the state x(t) to a
value xs that satisfies rs = h(xs). The associated input to keep the system at xs is
denoted by us such that 0 = f(xs, us) with xs ∈ X and us ∈ U . Note that multiple
us and xs might exist such that rs = h(xs) and 0 = f(xs, us) are fulfilled. One way to
obtain the target state xs and the corresponding reference input us for a given rs ∈ Y
is the formulation of the following optimisation problem
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2 Model Predictive Control

(xs, us) = argmin
x,u

||u||

subject to
0 = f(x, u),
rs = h(x),
x ∈ X , u ∈ U .

(2.3)

Note that minimizing ||u|| is a design decision to obtain a solution which requires
minimal actuation and that other optimization criteria could be chosen as well. If
xs ∈ X , rs ∈ Y , and us ∈ U , we call the setpoint a feasible setpoint.
Assumption 4. We assume that there exists a solution to the regulation problem, i.e.
xs ∈ X , rs ∈ Y, and us ∈ U are given.

2.2.2 Model Predictive Control for Setpoint Regulation

As the goal of the controller design is to bring the output error to zero, the cost
functional of the model predictive controller can be formulated to minimise es(t).
Additionally the input error ws(t) = us − u(t) with ws(t) ∈ Rnu and the state error
εs(t) = xs − x(t) with εs(t) ∈ Rnx can be penalised. In this context, a typical cost
functional for the setpoint stabilisation problems is

Js (ēs, w̄s, ε̄s) :=
T∫

0
Ls (ēs(τ), w̄s(τ)) dτ + Es (ε̄s(T )) . (2.4)

Here, Ls : Rny × Rnu → R+
0 denotes the stage cost or cost function, Es : Rnx → R+

0
is called terminal penalty, and T is the prediction horizon. In this work, sampled-data
MPC formulations are used [63], as they build a bridge between real-world systems
operating in continuous time and discrete implementation of controllers.
The optimal control problem that is solved at every sampling instant tk can be

formulated as
min
ū∈C

Js (ēs, w̄s, ε̄s) (2.5a)

subject to ∀τ ∈ [0, T ]

˙̄x(τ) = f(x̄(τ), ūk(τ)), x̄(0) = x(tk), (2.5b)
ēs(τ) = rs − h(x̄(τ)), (2.5c)
w̄s(τ) = us − ū(τ), (2.5d)
ε̄s(τ) = xs − x̄(τ), (2.5e)
x̄(τ) ∈ X , ū(τ) ∈ U , h(x̄(τ)) ∈ Y , (2.5f)
x̄(T ) ∈ Fs. (2.5g)

10
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Here, (2.5b) defines the system dynamics with the initial condition x(tk). We use an
overline ·̄ to indicate predicted signals. The prediction horizon starts at 0 instead of
tk for notational simplicity and since the system and cost function are time-invariant.
We also ensure that the minimum is attained using min instead of inf in (2.5a). The
constraints (2.5c), (2.5d) and (2.5e) can be regarded as an extended system output
defining the output, input and state error, respectively. Note that both the desired
state xs and input us are based on the reference rs and therefore posses an inherent
dependency on it. In (2.5f), the state, input, and output constraints are covered and
(2.5g) restricts the state at the end of the prediction horizon to be inside the terminal
region Fs, which is often used to ensure stability [56, 163]. This terminal region Fs
should be a subset of the state constraint set X and the pointwise preimage of the
output constraint set Y , i.e. Fs ⊆ X ∩ h−1(Y). As pointed out in [56], the pointwise
preimage is not necessarily simply connected and in general hard to obtain. However,
by definition xs ∈ X ∩ h−1(Y) so that the intersection is at least non-empty.

2.2.3 Stability of MPC for Setpoint Regulation

It is well known that the repeated application of open-loop optimal control policies
(using finite time horizons) does not necessarily lead to a stable closed loop [163].
However, a comprehensive stability theory of model predictive control is available.
Various stability criteria exist which differ for each reference definition. This short
overview of nominal stability of MPC does not consider model-plant-mismatch, noise
or disturbances. In the following, a brief overview of stability criteria for setpoint
stabilisation is given based on [153]. Provable stable MPC formulations for setpoint
regulation often use appropriate terminal state constraints and end penalties, see, e.g.
[163] for an overview. However, also formulations without terminal constraints exist
[84, 104, 137]. In all these works, state feedback is used where the stage cost penalises
the system states. Whenever Ls penalises system outputs instead of states, additional
conditions must be included to cope for the semi-definiteness of Ls with respect to the
states. Stability guarantees can, for example, be obtained if additional detectability
properties are satisfied. For example, [189] relies on input/output-to-state stability of
the open-loop system, while [147] requires weak detectability of the considered system
and the usage of a weak detector.
In the present setup, we consider sampled-data MPC, for which we will state suitable

conditions to achieve stability in the sense of the convergence of the outputs. The
stage cost Ls, terminal cost Es, and terminal region Fs will be chosen according to the
following assumptions [63]:

Assumption 5. The stage cost Ls : Rny × Rnu → R+
0 is continuous, Ls(0, 0) = 0 and

it is lower bounded by a class K∞ function α1 such that Ls(es, ws) ≥ α1(‖es‖) for all
(es, ws).
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Assumption 6. The terminal cost Es : Rnx → R+
0 is positive semi-definite, Es(0) = 0,

and it is continuously differentiable.

Assumption 7. The terminal constraint set Fs ⊆ X is closed.

Assumption 8. For all x̃ ∈ Fs and the considered sampling time Ts > 0, there exists
an input uF(·) ∈ U such that, for all τ ∈ [0, Ts),

∂Es
∂x
· f(x(τ), uF(τ)) + Ls(es(τ), ws(τ)) ≤ 0

and the closed-loop solution stays in the terminal region x(τ) = x(τ, x̃|uF) ∈ Fs; i.e.
the terminal region Fs is control invariant.

Provided that these assumptions hold, one can state the following theorem:

Theorem 1. If the optimal control problem (2.5) is feasible for the initial time instant
t0 and its stage cost, terminal cost, and the terminal constraints satisfy Assumptions 5-
8, then the optimal control problem (2.5) is recursively feasible and the error es(t)
converges to zero under sampled-data NMPC.

A proof for convergence with sampled-data MPC, which applies also here, can be
found in [63]. Please note that, as already mentioned, the stage cost Ls does merely
penalise errors of the outputs of the system, which makes it semi-definite with respect
to the states. Therefore, convergence of the output error rather than the states is
achieved. However, the terminal cost Es and the terminal constraint set Fs depend
on the system states, such that these do not grow unbounded and end in the terminal
region in each iteration. Convergence of the state instead of the output (error) is
obtained, for example, by additionally assuming that the system is input/output-to-
state stable and by replacing the lower bound in Assumption 5 with Ls(es, ws) ≥
α1(‖es‖) + α1(‖ws‖).

2.2.4 Illustrative Example

We illustrate the setpoint regulation problem using the control of a robotic manipulator
as depicted in Figure 2.1a. We limit the problem to two joints of the seven-degrees-
of-freedom robot, which results in a planar arm configuration and a two-dimensional
workspace, cf. 2.1b. The dynamics of the robot can be described via

q̇(t) = ω(t) (2.6)
ω̇(t) = B−1(q(t))u(t), (2.7)
y(t) = hfk(q(t)) (2.8)

with the states x(t) = (q(t), ω(t))>, x(t) ∈ R4 where q(t) = (q1(t), q2(t))> describes
the angles of the two joints and ω(t) = (ω1(t), ω2(t))> their angular velocities. The
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(a) KUKA Lightweight robot.

q1

q2

l1

l2

x

y

(b) Planar two degrees of freedom (DOF) configuration.

Figure 2.1: Robotic manipulator considered as a control example.

input u(t) ∈ R2 represents the torques in each joint which are mapped to the angular
accelerations via the inverse of the inertia matrix B : R2 → R2×2. Note that this model
ignores friction, Coriolis and centrifugal effect, and assumes that gravity effects are
fully compensated internally or that the robot operates planar. Via forward kinematics
hfk : R2 → R2 of the robot, the Cartesian position y of the end-effector can be obtained.
To control the system, a nominal model predictive controller with quadratic cost
functions Ls = e>s Qses + w>s Rsws and Es = ε>s QE,sεs is used. The prediction horizon
is T = 0.5 s and the terminal constraint set Fs = xs is used. The constraint sets for
input, state, and output space are U = [−5 Nm, 5 Nm]× [−5 Nm, 5 Nm],X = [0, π]×
[0, π]× [−2 rad

s , 2
rad
s ]× [−2 rad

s , 2
rad
s ] and Y =

{
(y1, y2)|y2

1 + y2
2 ≤ (l1 + l2)2

}
, where l1

and l2 are the lengths of the links, see also Figure 2.1b. The involved parameter values
for the dynamic model and the controller are given in Appendix A.1. In the Cartesian
workspace a setpoint change for the end-effector from (0.4 m, 0.4 m) to (0.4 m, 0.5 m)
at t = 2.5 s is desired, cf. Figure 2.2 (black line). The resulting Cartesian end-effector
position of the robot in the vertical direction is depicted in Figure 2.2 as a blue
dashed line. Due to the predictive capability of the controller, the system begins to
move towards the new setpoint before 2.5 s. However, significant deviations from the
actual reference, see also Figure 2.3, and a visible overshooting occur. Different tuning
of the controller can reduce such an overshoot. For example, reducing the weights on
the control error makes the controller less aggressive. However, this might deteriorate
the position accuracy in the non-transient phase. Alternatively, tracking formulations
with smooth time-dependent reference trajectories can be exploited as outlined in the
following subsection.
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Figure 2.2: Cartesian vertical position y = y2 of the reference and the robot end-effector for
a 10 cm setpoint change from (0.4 m, 0.4 m) to (0.4 m, 0.5 m).
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Figure 2.3: Control error in Cartesian y-direction for MPC with a 10 cm setpoint change.

2.3 Trajectory Tracking

In trajectory tracking tasks, the reference is time-dependent. Application examples
where the tracking of a given trajectory is important are for instance the control of
unmanned aerial vehicles [2, 108], mobile robots [124], drinking water networks [182],
or the artificial pancreas [98]. The control error in trajectory tracking problems is
given by

ett(t) := rtt(t)− y(t), (2.9)

where rtt : R+
0 → Rny defines the time-dependent reference trajectory.

2.3.1 Time-dependent References

There exist several forms of reference trajectories depending on the application. They
can be given explicitly as an analytic function known to the controller, or only in terms
of the reference value at the current time. If the reference is known completely a priori,
this information can be exploited by a model predictive controller [57]. Alternatively,
the reference can be obtained via the solution of an exogenous system [103]. For
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both cases, stabilising MPC formulations exist if the reference is designed accordingly
[53, 56, 57, 147]. For instance, time-varying terminal conditions for given trajectories
are proposed in [56, 57]. In [53] and [147] exosystems for reference generation are
used. Stability is achieved via time-varying terminal constraints and by including an
additional model of the exosystem, respectively.
However, often one faces the problem that the references are not designed in a suit-

able and useful way. For instance, rapidly changing references might not be reachable
or trackable. Moreover, the following of an arbitrary reference could lead to constraint
violation. Reference governors can be used in such cases since they act as pre-filters
to guarantee specific properties of the reference. They modify the reference to avoid
state or input constraint violation of the system or to improve the performance, see,
e.g. [72] for an overview. The idea of reference adaptation inside a model predictive
controller was proposed in [139–141]. This concept is applicable, even if the reference
evolution is a priori unknown. An additional degree of freedom is added in the pre-
dictive controller via the adaptation of an artificial reference. The deviation of the
artificial reference from the original one is minimised. At the same time, the system
is controlled to follow the artificial reference. By modification of the control objective
via the artificial reference, recursive feasibility of the tracking MPC scheme is achieved
despite untrackable changes in the original reference.
In the following, we consider references which are planned offline such that they are

entirely or at least partially known to the controller. We show how to design the MPC
accordingly to guarantee stability. This framework is extended in Chapter 5 to include
machine learning as reference generators in case of limited knowledge of the reference.
We use the following definition, to ensure reliable behaviour and good performance of
the tracking controller:

Definition 1. (Trackability under Constraints).
A reference rtt : R+

0 → Rny is said to be trackable for the system (2.1) if it fulfils
the output constraints rtt(t) ∈ Y and can be followed given the system dynamics once
starting on it, i.e. ∃utt(t) ∈ U such that rtt(t) = h(xtt(t)) with ẋtt(t) = f(xtt(t), utt(t)),
rtt(0) = h(xtt(0)), and xtt(t) ∈ X for all ∀t ∈ R+

0 .

Though restrictive, trackability of the reference according to Definition 1 allows to
determine terminal cost and constraints to prove recursive feasibility of tracking MPC.
This constrained trackability guarantees that the system can stay on the reference
when starting on it under output, state, and input constraints.

2.3.2 Model Predictive Control for Trajectory Tracking

Instead of a constant value, in tracking MPC, a time-varying reference should be fol-
lowed, see for instance [57, 62, 65, 110, 139–141, 146, 161]. The formulation in error
coordinates allows reformulating this problem into the stabilisation of the origin. How-
ever, the tracking error ett possesses time-varying dynamics, such that the predictive
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control scheme must account for a time-varying system. The cost function for tracking
MPC can be defined as

Jtt (ētt, w̄tt, ε̄tt) :=
T∫

0
Ltt (ētt(τ), w̄tt(τ)) dτ + Ett (ε̄tt(T )) . (2.10)

In analogy to the setpoint stabilisation case, w̄tt(t) := utt(t)− ū(t) with w̄tt(t) ∈ Rnu,
and ε̄tt(t) := xtt(t)−x̄(t) with ε̄tt(t) ∈ Rnx. Furthermore, Ltt : Rny×Rnu → R+

0 denotes
the stage cost, and Ett : Rnx → R+

0 is the terminal penalty. In this formulation,
the cost function is not time-varying. Rather, the explicit time dependency enters
the optimal control problem via the constraints. The optimal control problem for
trajectory tracking can be formulated as

min
ū∈C

Jtt (ētt, w̄tt, ε̄tt) (2.11a)

subject to ∀τ ∈ [0, T ]

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(0) = x(tk), (2.11b)
ētt(τ) = rtt(tk + τ)− h(x̄(τ)), (2.11c)
w̄tt(τ) = utt(tk + τ)− ū(τ), (2.11d)
ε̄tt(τ) = xtt(tk + τ)− x̄(τ), (2.11e)
x̄(τ) ∈ X , ū(τ) ∈ U , h(x̄(τ)) ∈ Y , (2.11f)
x̄(T ) ∈ Ftt(tk + T ), (2.11g)

where Ftt(t) ⊆ X ∩ h−1(Y),∀t ∈ R+
0 . The difference to the MPC formulation for

setpoint stabilisation (2.5) is the time dependency of the reference rtt (and conse-
quently utt and xtt) as well as the time dependency of the terminal constraint set
Ftt in (2.11g). One possible choice of this time-dependent terminal constraint is an
equality constraint forcing the state to be on the state reference xtt(tk + T ). How
to obtain less restrictive terminal inequality constraints via time-varying level sets of
Lyapunov functions is shown, for example, in [57].

2.3.3 Stability of MPC for Trajectory Tracking

When considering the tracking of time-dependent references, stability conditions from
setpoint stabilisation cannot directly be applied. Instead, the time dependency of the
reference leads to time-varying error dynamics such that similarities to MPC designs
for time-varying systems appear. Setpoint changes can lead to the infeasibility of
the predictive controller if reachability is not considered, cf. [139]. Time-varying
terminal regions provide a possibility to achieve trackability. Here, knowledge about
the reference is directly exploited to calculate those terminal sets, see, e.g. [57, 65,
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110, 161]. Furthermore, trackability according to Definition 1 is used, such that the
existence of feasible inputs to follow the reference is guaranteed. If the reference is
designed accordingly, the following assumptions [56, 57] ensure convergence for output
tracking using sampled-data NMPC:

Assumption 9. The stage cost Ltt : Rny×Rnu → R+
0 is continuous, Ltt(0, 0) = 0 and

is lower bounded by a class K∞ function α1 such that Ltt(ett, wtt) ≥ α1(‖ett‖) for all
(ett, wtt).

Assumption 10. The terminal cost Ett : Rnx → R+
0 is positive semi-definite and

continuously differentiable in x.

Assumption 11. The terminal constraint set Ftt ⊆ X is closed and time-varying.

Assumption 12. For all x̃ ∈ Ftt and the considered sampling time Ts > 0, there
exists an admissible input uF(·) ∈ U such that, for all τ ∈ [0, Ts),

∂Ett
∂x
· f(x(τ), uF(τ)) + Ltt(ett(τ), wtt(τ)) ≤ 0

and the closed-loop solution fulfils x(τ) = x(τ, x̃|uF) ∈ Ftt(τ); i.e. the terminal region
is control invariant.

In contrast to setpoint stabilisation, the terminal constraint set Ftt depends on
time (see Assumption 11) due to the inherently time-varying tracking error. For a
detailed discussion on how to construct corresponding terminal regions, see [56, 57].
Please note, that these works depend on the knowledge of the reference evolution and
corresponding inputs to track it. Similarly to the previous subsection, stability of the
closed loop in the sense of convergence can be ensured:

Theorem 2 ([56, 57]). If the optimal control problem (2.11) is feasible for the initial
time instant t0 and the stage cost, the terminal cost and the terminal constraints
satisfy Assumptions 9-12, then (2.11) is recursively feasible and the tracking error ett
converges to zero under sampled-data NMPC.

2.3.4 Illustrative Example

We use the same robotic system and overall setup as the example in Section 2.2.4. The
model predictive controller uses the same model and control parameters (prediction
horizon, weightings, constraints) while the only difference lies in the reference defini-
tion. The planned reference is shown in black in Figure 2.4 (top). The transient time
of the reference trajectory is comparable to the time needed in the previous example
for the setpoint change. The desired position change does not take the system dynam-
ics and constraints into account. In such a case, trackability cannot be guaranteed.
The controlled robot cannot follow the reference, as this would require input torques
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Figure 2.4: Cartesian y-position of reference and robot end-effector.
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Figure 2.5: Control error in Cartesian y-direction for the same predictive controller with
two different reference trajectories.
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up to 13 Nm, which violates the upper bound of the input constraints of 5 Nm. Since
the MPC control input is limited by this upper bound, significant control errors occur,
which can also be seen in Figure 2.5, top. Trackability can be achieved if the reference
trajectory design accounts for the system dynamics and constraints. The tracking of
such a reference is depicted in Figure 2.4, bottom. Even though the transition time
is comparable to the previous reference (Figure 2.4, top) the tracking performance
with the same predictive controller is significantly increased, cf. Figure 2.5, bottom.
Please note, that both reference trajectories lead to the same Cartesian positions of
the end-effector (a straight vertical line) while they only differ in their timing laws.
Consequently, the timing law of a reference strongly influences the achievable tracking
precision. Sophisticated planning of the trajectories can help to meet the precision
requirements. Alternatively, the timing law of references can be adjusted online by
the controller, which leads to path-following MPC formulations as outlined in the
following subsection.

2.4 Path Following
While references formulated via trajectories have a specific and fixed timing law, this
might not be central in the desired control task. Rather often it is introduced by a path
planner which transfers the control task into the reference trajectory. For example, in
UAV inspection tasks, a specific geometric route should be visited by the vehicle. The
exact timing when to be where on that route might be secondary as long as the UAV
finishes its inspection mission in a specific time or as fast as possible. Another example
is the cutting of workpieces by a robot which should work precisely, but the velocity
along the cutting lines is less important. Often those and similar tasks are formulated
as trajectory tracking problems, where a path planner not only fixes the geometry of
the reference but also its velocity profile. The offline fixation of the reference velocity,
however, might not be optimal since disturbances, such as wind or changing material
properties, can not be included. In path following formulations, the velocity of the
reference is not fixed a priori [56, 153]. Instead, the planner provides a geometric curve,
and the velocity along it is adjusted online by the controller. Applications of MPC
for path-following problems span, for example, from robotic manipulators [61, 154],
an X-Y-table [126], and a tower crane [26] up to unmanned areal vehicles [101, 102].

2.4.1 Reference Path Definition

In path following, the reference path can be defined as a parametrised regular curve
in the output space

P := {yr ∈ Rny|yr = rpf(θ(t))} (2.12)

with the parametrisation rpf : Θ → Rny. The reference in path following is only
indirectly depending on time via the path parameter θ(t) ∈ Θ, see also Figure 2.6.

19



2 Model Predictive Control

time t

y1, y2

y1

y2

P
rtt : R+

0 → Rny ,
(t) 7→ (y1, y2)

Figure 2.6: Illustration of trajectory tracking (left) and path following (right).

In turn, the evolution of the path parameter over time is not fixed a priori. We will
consider constraints on the path parameter of the form Θ := [θstart, θend] and θ̇ ≥ 0.
In the controller, the path parameter is steered forward to its end value θend such that
the whole parametrised reference is transversed.

Remark 1. The parametrisation of the reference can be described by a virtual dynam-
ical single-input single-output system

ż(t) = g(z(t), v(t)),
θ(t) = l(z(t)),

(2.13)

where z(t) ∈ Rnz is the virtual state, v(t) ∈ R is the virtual input, and the output is the
path parameter θ(t) ∈ R. The virtual system dynamics are g : Rnz × R → Rnz, while
l : Rnz → R denotes the virtual output equation. The naming virtual indicates the
fact that this parametrisation is chosen freely and is not representing a real physical
system. Rather, it defines the time dependency of the path parameter, which is, as
already mentioned, not fixed a priori but depends on the virtual input v(t). Constraints
on the virtual states, inputs and the path parameter can be introduced via z(t) ∈ Z ⊆
Rnz, v(t) ∈ V ⊆ R, θ(t) ∈ Θ ⊆ R. For simplicity, the virtual dynamics (2.13) can
be chosen as an integrator chain. In this case, forward motion can be enforced by
choosing the virtual state constraints to restrict the derivative of the path parameter
to be positive until reaching θend.

The path following error is in general given by

epf(t) := rpf(θ(t))− y(t). (2.14)

If there exist inputs v and u which can guarantee that epf(t) = 0 if epf(0) = 0 for
t ∈ R+

0 , then the path is exactly followable by the system.

Definition 2. (Path followability under Constraints).
Followability of a path P for system (2.1) is given if the path fulfils the output con-
straints P ∈ Y and is followable given the system dynamics, i.e. ∃upf(t) ∈ U such
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2.4 Path Following

that for all t ∈ R+
0 holds that rpf(θ(t)) = h(xpf(t)), with ẋpf(t) = f(xpf(t), upf(t)) and

xpf(t) ∈ X , while the path parameter θ(t) evolves continuously with time, and θ̇ > 0
holds almost everywhere in [θstart, θend].

Convergence of the path following error epf to zero implies (under mild technical
assumptions) that the state x converges to a manifold in the state space [56, 153, 173,
174]. The corresponding reference input upf can be obtained for special system classes
analytically or by optimisation, see, e.g. [56, 59]. Unlike the trajectory tracking case,
these reference state and input are not given via functions of time directly. Instead,
they depend on the path parameter θ, which can be adjusted online by the controller
as outlined below.

2.4.2 Model Predictive Control for Path Following

The cost function used for path following MPC is defined as

Jpf
(
ēpf, θ̄, ū, v̄, x̄, z̄

)
:=

T∫

0
Lpf

(
ēpf(τ), θ̄(τ), ū(τ), v̄(τ)

)
dτ + Epf (x̄(T ), z̄(T )) . (2.15)

Here, Lpf : Rny × R × Rnu × R → R+
0 denotes the stage cost or cost function and

Epf : Rnx ×Rnz → R+
0 is the terminal penalty for path following MPC. As we consider

a form with virtual path dynamics the cost additionally depends on the predictions
of the virtual state z, input v and output θ. The end cost penalises the predictions of
original system states x as well as the virtual states z.
The optimal control problem for path following can be formulated as

min
ū∈C,v̄∈C

Jpf
(
ēpf, θ̄, ū, v̄, x̄, z̄

)
(2.16a)

subject to ∀τ ∈ [0, T ]

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(0) = x(tk), (2.16b)
˙̄z(τ) = g(z̄(τ), v̄(τ)), z̄(0) = z(tk), (2.16c)

ēpf(τ) = rpf(l(z̄(τ))− h(x̄(τ)), (2.16d)
θ̄(τ) = l(z̄(τ)), (2.16e)
x̄(τ) ∈ X , ū(τ) ∈ U , h(x̄(τ)) ∈ Y , (2.16f)
z̄(τ) ∈ Z, v̄(τ) ∈ V , θ̄(τ) ∈ Θ, (2.16g)

(x̄(T ), z̄(T ))> ∈ Fpf, (2.16h)

where Fpf ⊆ (X ×Z)∩ (h−1(Y)× l−1(Θ)). Additionally to the original system dynam-
ics (2.16b) the virtual system dynamics (2.16c) are added. The control error (2.16d)
thus is a function of the outputs of an extended system with states xext := (x, z)>.
Via (2.16f) and (2.16g) state, input, and output constraints of this extended system
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representation are considered. In the same way, the terminal constraint (2.16h) con-
sider both x and z. Important to note is that the terminal constraint set Fpf does not
depend on time. This is caused by the path following error dynamics, which are not
time-variant as in the tracking case. Instead, they depend on the extended system
states, which can be influenced via the two inputs u and v. Via the virtual input v, the
controller has an additional degree of freedom compared to the tracking formulation.
In general, this allows for improved performance.

2.4.3 Stability of MPC for Path Following

The error dynamics in path following formulations are not time-varying as in the
tracking case. Instead, path following MPC can be viewed as the stabilisation of the
origin for an extended error system which includes both the original and the virtual
system. The following assumptions are required for concluding convergence:

Assumption 13. The stage cost Lpf : Rny × R× Rnu × Rnv → R+
0 is continuous and

is lower bounded by a class K∞ function α1 such that Lpf(epf, θ, u, v) ≥ α1(‖(epf, θ −
θend)>‖) for all (epf, θ, u, v).

Assumption 14. The terminal cost Epf : Rnx × Rnz → R+
0 is positive semi-definite

and continuously differentiable in x and z.

Assumption 15. The terminal constraint set Fpf ⊆ X × Z is closed.

Assumption 16. For all (x̃, z̃)> ∈ Fpf and the considered sampling time Ts > 0, there
exist inputs (uF , vF)>(·) ∈ U × V such that for all τ ∈ [0, Ts)

(
∂Epf
∂x

,
∂Epf
∂z

)
·

f(x(τ), uF(τ))
g(z(τ), vF(τ))


 + Lpf(epf(τ), θ(τ), uF(τ), vF(τ)) ≤ 0

and the closed-loop solution x(τ) = x(τ, x̃|uF) and z(τ) = z(τ, z̃|vF) stay in Fpf; i.e.
the terminal region is control invariant.

With these assumptions the following convergence and stability results for predictive
path following is obtained [56, 58]:

Theorem 3. If the optimal control problem (2.16) is feasible for the initial time instant
t0 and the stage cost, the terminal cost, and the terminal constraints are chosen to fulfil
Assumptions 13-16, then (2.16) is recursively feasible and the path-following error epf
converges to zero under sampled-data NMPC.

Proving Theorem 3 relies on the possibility of reformulating the path-following prob-
lem into the setpoint stabilisation of an extended system. For an extensive discussion
and a complete convergence proof as well as insights into the computation of suitable
terminal control laws and terminal regions to fulfil the stated assumptions, the reader
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Figure 2.7: Cartesian y-position of the reference and the robot end-effector for an MPC
path following formulation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−1

−0.5

0

0.5

1 ·10−3

time t/s

er
ro

r
e p

f,2
/m

Figure 2.8: Control error in Cartesian y-direction for MPC with path following formulation.

is referred to [56, 58]. Stability proofs for path following for discrete-time systems and
state feedback can be obtained in a straight forward manner from setpoint stabilisation
problems, following the classical ideas, for example, presented in [163].

2.4.4 Illustrative Example

Whenever a control task does not require a specific fixed velocity profile (for instance
in contrast to synchronisation tasks) path following builds an alternative to tracking
formulations. In this example, the same setup as in the previous examples on setpoint
regulation (Section 2.2.4) and trajectory tracking (Section 2.3.4) is used. Instead of
fixing the reference timing law as in Section 2.3.4 the reference path is given in terms
of a geometric curve P = {y ∈ Rny|y1 = 0.4, y2 ∈ [0.4, 0.5]} with the parametrisation
rpf = (0.4, 0.4+0.1(θ+1))>. The path parameter is limited by θstart = −1 and θend = 0.
Its evolution over time is driven by the virtual system ż1(t) = z2(t), ż2(t) = v(t),
where z1(t) = θ(t). Additional constraints for the virtual system are included in the
predictive controller, which are −10 ≤ v(t) ≤ 10 and 0 ≤ z2(t) ≤ 2. The additional
entries in the weighting matrices for the virtual system are chosen to achieve a similar
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transition time as in the previous examples and are given in Appendix A.1. The
Cartesian reference and the end-effector position for the vertical motion are depicted
in Figure 2.7. The corresponding control error is depicted in Figure 2.8. Even though
a larger control error occurs compared to the trackable trajectory reference case, the
control error is significantly smaller than in the untrackable case, cf. Figure 2.5. The
benefit of the path following over the tracking case with a trackable reference is that
the reference planner does not need to define a velocity profile a priori. As we have
seen in the untrackable trajectory case, an inadequate velocity profile can lead to a
significant decrease in controller performance, which is prevented by the path following
setup.

2.5 Summary
In this chapter, we have introduced and compared different formulations of model
predictive controllers tailored towards the solution of regulation, tracking, and path
following tasks. Besides the summary of state-of-the-art approaches, we have high-
lighted differences, similarities, and connections between the controller formulations
both from the theoretical and practical side. Various simulation studies approached
the latter for a robotic manipulator. These studies have been performed with a realis-
tic manipulator model, which was reduced to obtain easily comprehensible yet realistic
insights into the predictive controller design and evaluation. The main intention of
this chapter was to give an overview of existing approaches, relate them to each other,
and lay the foundation for the advances in the remainder of this work. This chapter
builds the basis for the design of interaction force controllers in the following chapter.
The presented control formulations will be used and extended in Chapter 5 to incorpo-
rate learning in MPC. In particular, tracking formulations will be used in Chapter 5,
since it allows for timed and synchronous motions. In conclusion, we would like to
emphasise that each of the presented control formulations has specific advantages.
Accordingly, the choice of the control concept should always be made concerning the
task at hand to exploit the corresponding benefits.
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3 Model Predictive Force Control

In this chapter, we propose model predictive controllers for contact control in robotics.
The direct consideration of the force in the cost function and the constraints allows for
safe interaction of the robot with its environment. MPC force control allows flexibility
in the formulation and obtaining guarantees such as limited contact forces, prevention
from contact loss, and overall closed-loop stability. To do so, we extend the path
following formulation from Chapter 2. We underline the applicability of the proposed
controllers in simulations and experiments.

3.1 Introduction to Force Control

In many applications, robots interact with their environment. For example, robots are
used in handling and pick-and-place tasks where they should grab different objects and
move them to a desired position [218]. In milling, grinding, or polishing, robots have
to work on object surfaces to process them [41, 217, 220]. Interactions between several
robots occur, for example, in cooperative handling tasks [85, 175, 190]. Moreover,
robots are also increasingly interacting with humans in manufacturing, teleoperation,
health care, and home assistance [40, 49, 95, 125, 166, 168, 176, 234, 241]. For success-
ful task completion, this interaction must be quantified and needs to be considered in
the used controllers. A natural measure for the interaction are interaction forces that
occur between the robot and its surroundings. Robotic force control is a well known yet
still very active research area, cf. [115, 211, 228] and the aforementioned publications.
Mainly, force control strategies can be categorised into direct and indirect approaches
[211, 228]. Direct force control is used when the applied forces should follow desired
values, and a “direct” force-feedback loop is closed to ensure this. In indirect force con-
trol, the robot’s position or velocity is controlled to achieve a dynamically compliant
behaviour to external forces. The controllers ensure that the closed-loop system dy-
namics represent a desired mechanical compliance/stiffness or impedance/admittance.
Indirect force controllers add an additional layer of compliance, to among others, pre-
vent oscillations, which are a common issue in direct force control via PID controllers.
In principle, model predictive controllers are not as prone to oscillations or overshoots
as PID controllers due to their predictive capabilities if suitable models are available.
As we will show, MPC based direct force control schemes are interesting tools when-
ever the contact forces should adopt desired values instead of behaving like artificial
springs or dampers. Using force control is also helpful in partially unknown environ-
ments where pure position control can lead to undesired collisions with potentially
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high impact forces or contact loss during manipulation. Note that if contacts only
occur in a subspace of the workspace of a robot, hybrid force-position control can
be used, where some directions are position-controlled, and some are force-controlled
[211, 228].
Limiting the occurring contact forces can provide additional safety. Damage of the

robot, a workpiece, or harm to a human could occur if the contact forces become too
large, making it safety-critical to ensure force limitation. On the other side, contact
forces, e.g. during grasping tasks, should not drop below a certain threshold to ensure
a safe and reliable grasp or contact.
Different approaches that allow limiting contact forces exist. They can be classified

based on the primary control goal, i.e. by whether the controllers consider position
control with force limitation or a combination of position and force control with con-
straints. The latter type addresses indirect and direct force controllers.
In [241], a fully counter-balanced robot is used for ultrasonic probe placement. The

mechanical construction allows compensating the gravity forces, such that only small
actuation is needed to perform motions. This construction allows to limit contact
forces by the design of the actuators but is therefore limited to specific robotic sys-
tems. A more general way to ensure constraints on contact forces is the use of model
predictive controllers. Position control tasks can be performed with MPC while tak-
ing force constraints into account. For example, [111, 112] consider a robot arm that
reaches out to a desired goal posture, where the cost function to be optimised is
based on the positioning errors. Additionally, the contact forces, which occur due to
a cluttered environment with possibly multiple contacts, should be limited. A soft
constraint is included in the cost function to limit the forces. A mobile robot, which
should reach a particular goal position, is controlled with MPC in [170]. Constraints
in the optimal control problem formulation are used to limit the occurring contact
forces due to obstacle collisions. Unmanned aerial vehicles are position controlled via
MPC in [116] and [36], where contact forces are limited via constraints from above
and below, respectively. Contact force constraints in MPC position control are con-
sidered in [21, 38] for ground reaction forces in legged robot walking. In contrast to
[111, 112, 170], the contact forces serve as an input to the robot. These can be mapped
to joint torques, which often serve as inputs in robot control. Constraints on these
torque inputs have been considered in pure position control MPC schemes as well
[60, 61]. A position control MPC scheme with contact forces as inputs has also been
considered for robotic food cutting [130, 169], where the end-effector contact forces
are limited via selected feasible sets. For robot-assisted placement of an ultrasound
probe on a patient’s skin, a position control MPC has been proposed in [172]. While
the respiratory motion is compensated primarily via position control, an additional
force constraint is included in the MPC formulation for the experiments to keep the
desired contact force.
There exist a series of results where in the MPC controller combined position and
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force control tasks are considered. Simultaneous position and force control via MPC
is considered in [49] for robot-assisted dressing. The optimisation goal is to obtain
a forward motion with the robot while minimising forces on the human arm. These
forces are exerted by the cloth, which is held by the robot. However, no constraints on
the maximum force are included. A combination of position and force control is often
also considered in bilateral teleoperation, where a human operates a master device
and a slave robot should follow the commanded motion or force. The contact forces
encountered at the slave robot can provide useful feedback to the human operator. In
[212], an unconstrained linear quadratic Gaussian regulator performs combined posi-
tion and force tracking in medical teleoperation. In [125, 209], MPC force controllers
are employed on the master robot while the former also limits the motor torques.
However, the focus in these papers is often laid on the compensation of communi-
cation delay instead of explicit contact force consideration, modelling or limitation.
Besides application-oriented research, conceptual work to combine MPC with indirect
force control has been conducted. Hybrid admittance control of robotic manipula-
tors with MPC is considered in [109] and [230]. In [109], constraints on the contact
forces are only indirectly considered by constraining the admittance-based position-
reference update. In [230], constraints on the contact forces are explicitly included in
the admittance MPC formulation to prevent contact loss or excess of maximum forces.
While in [109] torque control with nonlinear MPC is considered, in [230] the MPC is
based on a velocity controlled robot and a linearised system model. In both cases, the
admittance-based MPC adjusts a position reference the robot should follow. Hybrid
impedance control of robotic manipulators with MPC is considered in [14]. The cost
function of the controller is designed to represent an impedance control law, while
additional constraints on the position, velocity, and acceleration are included. As
shown, the limitation of the acceleration of the linearised model indirectly also limits
the contact forces.
Instead of adding additional admittance dynamics or imposing impedance behaviour

in the MPC formulation, force control can also be achieved by the combination of MPC
and direct approaches. Unlike direct force control with PID controllers, direct force
control with MPC potentially lowers the tendency for oscillations that can lead to
instability due to the model-based prediction. These predictions allow evaluating the
long term effect of controller actions. Consequently, this makes the controller fore-
sighted and less prone to oscillatory behaviour or overshooting. Hence, MPC force
control does not necessarily need the intermediate layer of artificial compliance. This
allows for reduced computational complexity, as no dynamics for the admittance are
added. Rather, compliance can also be obtained in direct predictive force control via
tuning of the weights in the cost function and the length of the prediction horizon.
Direct force control with MPC in a medical setup for beating heart motion compen-
sation was proposed in [40]. The MPC formulation is based on a linearised system
model representing the force and its derivative as system states. Constant reference
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forces and no constraints on the forces have been included. In [154], direct and hybrid
position-force control is considered. Besides the explicit limitation of contact forces
even in case of disturbances, the MPC follows a non-constant desired force reference.
In contrast to [109, 230], no update of position references is used to encode the de-
sired forces. A generic framework for model predictive force control is presented in
[80, 81], where the force is added as an additional state variable. We refrain from the
additional differentiation and state expansion and propose a model predictive force
controller that considers the force as an output of the dynamic system. Our approach
reduces the computational burden, especially when extending the force models by
machine learning parts as outlined in later chapters. In the following, direct hybrid
force-position control based on [154] is proposed. It makes the benefits of MPC avail-
able to force control without adding artificial dynamic equations of the forces or for
the interaction. Hence, reduced computational complexity compared to indirect force
control with MPC is achieved, while the drawbacks of classical direct PID force control
such as oscillations are minimised.

3.2 Direct Force Control with MPC
Following the lines of [154], we show how model predictive controllers can be used to
control the contact force together with the manipulator position explicitly. A short
introduction to robot and contact force modelling is given in the following before
designing the controllers and evaluating them in simulations and experiments.

3.2.1 Dynamic Modelling of a Robotic Manipulator

For visualisation and explanation, we consider the control of a robotic manipulator
in contact with an environment, cf. Figure 3.1a. The dynamical model of a robotic
manipulator with nq links can in general be obtained via the Lagrangian formulation
[210]. The Lagrangian L : Rnq × Rnq → R is given by

L(q, q̇) := T (q, q̇)−W(q),

where W : Rnq → R and T : Rnq × Rnq → R are the potential and kinetic energy.
Since the kinetic and potential energy of a rigid link manipulator depend on the joint
coordinates q ∈ Rnq and their derivatives q̇ ∈ Rnq the equations of motions can be
derived via the Lagrangian equation

d
dt
∂L
∂q̇

>
+ ∂L
∂q

>
= ξg.

Here, ξg ∈ Rnq encodes the generalised forces which are composed of joint actuation
torques τ , gravitational torques τg, friction torques τf and external torques τext applied
by an interaction with the environment. Following standard modelling schemes and
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(a) Seven link KUKA Lightweight robot in the control
theory laboratory of our institute writing on a surface
(picture similar to [61]).

(b) Coordinate assignment in accordance to
the Denavit-Hartenberg convention. Pic-
ture adjusted based on [11].

Figure 3.1: Robotic manipulator considered for model predictive force control.

assumptions for the kinetic and potential energy of a robot manipulator [210] a second
order dynamical model of the form

B(q)q̈ + C(q, q̇)q̇ + τf(q̇) + τg(q) = τ − τext (3.1)

can be obtained. The configuration dependent inertia matrix of the robot is denoted
by B : Rnq → Rnq×nq and the Coriolis and centrifugal effects are captured by C :
Rnq × Rnq → Rnq×nq. While the gravitational force τg : Rnq → Rnq for a rigid link
manipulator depends only on joint positions, the friction torque τf : Rnq → Rnq can be
modelled via viscous and Coulomb friction such that is depends on joint velocities. We
consider contact of the robot with the environment at the end-effector. The contact
forces and moments occurring at the end-effector in a three-dimensional Cartesian
space are captured by F ∈ R6. They can be mapped to the corresponding joint
torques via τext = J(q)>F with the manipulator Jacobian J : Rnq → R6×nq.

To obtain a state space representation of (3.1) we consider the system states x =
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(q, q̇)>, x ∈ R2nq and inputs u = τ with u ∈ Rnq. Hence, (3.1) can be rewritten into



ẋ1
...
ẋnq

ẋnq+1
...

ẋ2nq




=




xnq+1
...

x2nq

B−1(x1, . . . , xnq)
(
u− J>(x1, . . . , xnq)F −N(x)

)




︸ ︷︷ ︸
f(x,u)

(3.2)

with N(x) = C(x)




xnq+1
...

x2nq


 + τf(xnq+1, . . . , x2nq) + τg(x1, . . . , xnq).

3.2.2 System Output and Task Definition

Equation (3.2) describes the state space dynamics of a fully actuated, rigid, open-chain,
multiple-link robotic arm in joint coordinates. In Chapter 2, all MPC controllers are
designed in the output space such that the variables of interest, i.e. the controlled
variables, are selected via the definition of the system output. Given this setup,
the same dynamical model (e.g. equation (3.2)) can be used while different control
goals can be pursued via the selection of different system outputs and references. For
hybrid position and force control, some parts of the output and the corresponding
reference are poses, and some are forces. To avoid conflict between position and force
references, position- and force-controlled subspaces can be defined. This separation
requires knowledge about the task to be performed. For example, if we consider
a robot writing on a whiteboard, cf. Section 3.3, the force acts perpendicular to
the whiteboard. The movement along its surface, i.e. in the orthonormal directions,
is position controlled. Classical hybrid force position control aims at decoupling the
closed-loop control for position and force completely. However, in our setup, the model
predictive control is simultaneously controlling all outputs to follow their respective
references. Exact trackability or followability can be achieved if the references are
designed appropriately. To do so, the references for the position and force must not
contradict themselves. From a practical point of view, MPC can also tradeoff between
conflicting control goals based on the specific weightings defined in the cost functional.
We consider unilateral, single-point contact of the end-effector with the environment,

such that one component of the reference is selected to be the contact force normal to
the environments surface with dimension nF = 1. A complementary subspace of the
task space is chosen via the selection matrix S ∈ R(ny−nF)×ny, which is position con-
trolled. This decoupling can be achieved, for instance, if the force-controlled direction
builds one axis of the base frame and the robot end-effector pose is controlled only
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along the remaining directions. Consequently, the system output is defined as

y =

Shfk(q)
hF (q, q̇)


 , (3.3)

where hfk : Rnq → Rny represents the forward kinematics of the robot mapping from
joint space to the end-effector pose and hF : Rnq × Rnq → RnF is a static prediction
model describing the interaction force. More details on the forward kinematics, as
well as the coordinate transformations and parameters involved in this mapping, can
be found in Appendix A.2.
Setting up the base frame, the selection matrix S, and the desired motions and

forces via rs, rtt, or rpf, is in general part of path or motion planning. In this chapter,
we focus on the control to achieve a given task defined via a preplanned reference.
However, by considering setpoint regulation, trajectory tracking and path following,
different requirements on the path planning are specified. While in setpoint regulation
the reference is constant, trajectory tracking uses a time-dependent trajectory with
fixed speed along the reference. Path following uses a parametrised curve composed of
positions and corresponding forces at these positions without explicit time dependency.
Path-following control can lower the effort for the path planner compared to tracking
and brings the two concepts of motion planning and control closer together. Hence,
path following merges aspects which are traditionally considered during planning with
those from online control. In the following, three tasks are specified, which consider
hybrid position and force control for robotic manipulators. They consider setpoint
regulation, trajectory tracking and path following, respectively. The task definition
formulations follow along the lines of [56, 153, 154].
First, a constant pose and force reference rs is considered, which is assumed to be

feasible. It contains ny − 1 pose references and one desired force value, which reflects
the desired normal contact force. Examples are control tasks where the robot should
hold a specific posture while applying a constant force as e.g. in assembling, when a
workpiece should be glued to another by pressing it against it for some time while the
glue is drying. The related control task is specified as follows:

Task 1 (Constant pose and force reference). Given the system (3.2) with output (3.3)
and the reference point rs ∈ Y, design a controller that achieves:

(i) Convergence: The system output (3.3) converges to the constant reference rs such
that lim

t→∞
y(t)− rs = 0.

(ii) Constraint Satisfaction: The constraints on states x ∈ X , inputs u ∈ U and
outputs y ∈ Y are satisfied for all times.

The second task considers trajectory tracking of force and pose references. To this
end, a reference trajectory rtt : R+

0 → Rny is defined, which consists of ny − 1 poses
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and one force component. It is assumed that this reference is known a priori and fulfils
constrained trackability according to Definition 1. Based on this setup, the following
control task can be posed.

Task 2 (Reference tracking). Given the system (3.2) with output (3.3) and the refer-
ence trajectory rtt(t) ∈ Y, design a controller that achieves:

(i) Convergence: The system output (3.3) converges to the reference trajectory rtt
such that lim

t→∞
y(t)− rtt(t) = 0.

(ii) Constraint Satisfaction: The constraints on states x ∈ X , inputs u ∈ U and
outputs y ∈ Y are satisfied for all times.

Alternatively, many robotic control tasks can be formulated as path following prob-
lems. The path planner does not need to assign a velocity profile to the path. In-
stead, the evolution of the reference is determined by the controller via the virtual
system (2.13). Examples are polishing, deburring tasks, as well as robot-supported
rehabilitation where given positions and forces should be transversed without explicit
time dependency. The path P from (2.12) describes pose and force references. This
time, the reference for the force (and the pose) does not explicitly depend on time via
a fixed timing law. Rather, the desired force is assigned to each pose reference and
these are jointly defined in P . The path P is assumed to be known a priori and is
followable according to Definition 2. The following control task can then be specified:

Task 3 (Path following force control). Given the system (3.2) with output (3.3), and
the path P, design a controller that achieves:

(i) Convergence: The system output (3.3) converges to the set P such that lim
t→∞

y(t)−
rpf(θ(t)) = 0.

(ii) Forward Motion along the Path: The reference rpf(θ(t)) moves in P along the
direction of increasing values of θ, i.e. θ̇(t) ≥ 0 and lim

t→∞
θ(t) = θend.

(iii) Constraint Satisfaction: The constraints on states x ∈ X , inputs u ∈ U and
outputs y ∈ Y are satisfied for all times.

Tasks 1-3 contain the requirement of constraint satisfaction in the output space. In
hybrid position and force control, this also encodes constraints on the minimum and
maximum normal contact forces. This way, the fulfilment of Task 1, 2, and 3 encodes a
notion of safety that prevents from contact loss and potential damage by high contact
forces, which is important in industrial settings (damage on workpieces or the robot)
as well as in human-robot cooperation. To obtain a measure for the considered contact
force, a short recap on contact force modelling is given in the following.
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δ

Fn

end-effector

environment

pe = hfk(q)

p0

Figure 3.2: The penetration depth δ is defined as the distance between the end-effector
pose pe = hfk(q) and the initial contact position p0 along the normal of the
environment surface. The resulting normal force Fn is modelled as a function of
this penetration depth.

3.2.3 Contact Force Modelling

The output (3.3) contains a model of the contact forces besides the forward kinematics
of the robot. When the robot is in contact with a compliant environment, a static
linear or nonlinear model can be used to describe this interaction forces. We consider
the contact force normal to the environment surface hence nF = 1. Note that several
other choices to quantify the interaction are possible as, e.g., taking the full six-
dimensional force-torque vector F in the end-effector coordinate frame into account.
Still, it has to be ensured that nu = ny to preserve full actuation of the manipulator. In
[67], an overview, literature review, and comparison of different commonly used force
models for the normal force are presented. Four of these modelling approaches for the
normal contact force are given in the following. Each of these models depends on the
penetration depth δ, cf. Figure 3.2. For a static environment it can be modelled as
a function of the joint coordinates via hδ : Rnq → R, (q) 7→ δ := hδ(q). Here, hδ(q) =
hp(hfk(q)) is the composition of the functions hp : Rny → R and hfk : Rnq → Rny,
where the end-effector pose pe := hfk(q) is obtained via the forward kinematics, cf.
Figure 3.2 and Appendix A.2.
Among the purely elastic models, which can be used to quantify the interaction, are

the linear spring model of Hook

hFHk(q) := Keδ = Kehδ(q) (3.4)

and the nonlinear spring model of Hertz

hFHz(q) := Keδ
α = Ke(hδ(q))α, (3.5)

where Ke ∈ R is a spring constant and the coefficient α ∈ R+
0 introduces nonlinearity
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and is equal to 1.5 in the original work of Hertz. Another popular choice is to model
the interaction forces via a parallel linear spring and damper system (Kelvin-Voigt
model)

hFKV(q, q̇) := Keδ +Deδ̇ = Kehδ(q) +Dehδ̇(q̇) (3.6)

where δ̇ := hδ̇(q̇), with hδ̇ : Rnq → R, is the penetration velocity and De is the damping
coefficient of the environment. The Hunt-Crossley model builds a nonlinear extension
of the Kelvin-Voigt model and is given by

hFHC(q, q̇) := Keδ
α +Deδ

αδ̇ = Keh
α
δ (q) +Deh

α
δ (q)hδ̇(q̇) (3.7)

where the coefficient α is usually chosen between 1 and 2. Especially the dependency of
the damper on the penetration depth makes the Hunt-Crossley model a more realistic
representation of physical interactions than the Kelvin-Voigt model [67]. Additionally,
the nonlinear nature allows obtaining better representations of interactions with soft
materials, such as for the interaction of robotic surgical systems with human tissue
[39, 86]. In MPC related publications, often purely elastic models are used, cf. [111,
112, 125, 154, 170]. Especially for more rigid materials, these build a suitable first-
order approximation of the occurring normal contact forces. At the same time, the
effort for the identification of model parameters reduces significantly, cf. [86, 134] for
an overview of identification methods for the different model structures.

The elastic and dissipative contact force models are valid only if the robot is in
contact with the environment. For example, a linear spring model produces negative
sticking or pulling forces for negative penetrations, i.e. if the robot is not in contact.
Some spring models might not even be defined for negative penetrations and would re-
sult in imaginary forces. Consequently, to obtain globally valid models often piecewise
definitions of the maps such as

hF (q, q̇) =




hFi(·) δ ≥ 0,
0 else

are used. Clearly, hF is in general nonlinear even for linear functions hFi with
i ∈ {Hk,Hz,KV,HC}. In the general case, hF will not be continuously differen-
tiable, which makes it unsuited for many classical control schemes, including the MPC
schemes proposed in Chapter 2. Either an approximation to avoid the discontinuity,
for instance proposed in [70] and depicted in Figure 3.3, can be used or an expan-
sion to hybrid MPC is necessary. Alternatively, the considered motions of the robot
should ensure contact for all times to ensure differentiability in the feasible area. MPC
can be used to achieve the second idea via constraining the force to be greater than
zero. All in all, each of the force models (3.4)-(3.7) can be used as part of the system
output (3.3) such that

hF (q, q̇) = hFi(q, q̇) (3.8)
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Figure 3.3: Two nonlinear elastic contact force models. The solid line is a nonlinear spring
model with discontinuity at δ = 0 and the dashed line is an exponential spring
model proposed in [70], which is continuously differentiable everywhere.

with i ∈ {Hk,Hz,KV,HC} under the assumption that the model predictive controller
ensures contact for all times.

3.2.4 Model Predictive Force Control: Task Solution and Stability

The nominal MPC schemes presented in Chapter 2 allow to fulfil the requirements
stated in the Tasks 1, 2, and 3. Constraint satisfaction, as demanded in Task 1(ii),
2(ii), and 3(iii) can explicitly be addressed by the constraints (2.5f), (2.11f), and
(2.16f) in the optimal control problems (2.5), (2.11), and (2.16). Moreover, forward
motion (Task 3(ii)) of the reference in path following can be incorporated in MPC
via constraints on the virtual system states, cf. (2.16g), and the design of the cost
function that includes θ, cf. (2.15).
Convergence of the output to the respective reference from Tasks 1(i), 2(i), and

3(i), can be achieved if the MPC is provably converging or stable. Conditions to prove
stability have been outlined in Chapter 2. Besides the design decisions for the setup of
the stage cost, terminal cost, and terminal constraints given in the Subsections 2.2.3,
2.3.3 and 2.4.3, Assumptions 1-3 must be fulfilled. As we have specified the dynamic
model (3.2) and the system output (3.3) with (3.8) in this chapter, Assumption 2 must
be verified. Differentiability of f from (3.2) is ensured whenever each of the involved
mappings is differentiable. The entries of τg, B, J , and C consist of additive and
multiplicative composition of trigonometric functions, see also [210]. Consequently,
the elements of τg, B, J , and C are continuously differentiable with respect to q and
q̇ and so are τg, B, J , and C. The derivative of the inverse of the inertia matrix
can be expressed via d

dqB
−1(q) = −B−1(q) d

dqB(q)B−1(q). It exists when B(q) is of
full rank such that det(B(q)) 6= 0. This invertibility does not hold in general for all
q ∈ Rnq. Instead, singularities of B occur, for instance, when the robotic arm is fully
stretched (boundary singularity) or if rotation axes are aligned (internal singularities).
The Jacobian builds a useful tool to determine these singularities such that the path
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planner and the controller can avoid those points, cf. [210]. Hence, we restrict the
joint angles via q ∈ proj1,...,nq(X ), where proj1,...,nq(X ) denotes the components of the
constraints restricting the joint angles, such that the following assumption is fulfilled

Assumption 17. The state constraints X are chosen such that det(B(q)) 6= 0 for all
q ∈ proj1,...,nq(X ).

Given Assumption 17, B−1(q) is differentiable. Finally, differentiability of τf must
be given to conclude differentiability of f . Standard assumptions for modelling viscous
and Coulomb friction, such as Fvq̇ and FC sgn(q̇) with friction constants Fv and FC,
do not fulfil this requirement. Therefore, we propose to use the arctangent function
to approximate the signum function such that τf = Fvq̇ + FC arctan(Mq̇), where M ∈
R+

0 is a large positive number. Using this modelling ansatz, differentiability of all
components in the system model are given such that f is continuously differentiable
in x and u. Moreover boundedness of the first derivative of f is given at least locally,
such that f is locally Lipschitz.
The system output (3.3) contains the forward kinematics hfk and the force model

hF from (3.8). Similar to τg, B, J , and C, the forward kinematics hfk consist of ad-
ditive and multiplicative composition of trigonometric functions, cf. Appendix A.2.
Hence, hfk is continuously differentiable. The proposed force models (3.4)-(3.7) in
(3.8) are continuously differentiable for positive penetrations and consequently for
positive forces. Therefore we include the following condition on the constraints:

Assumption 18. The state constraints X are chosen such that hδ(q) > 0 for all
q ∈ proj1,...,nq(X ).

Alternatively, we can formulate output constraints such that contact is ensured:

Assumption 19. The output constraints Y are chosen such that Fn = hFi(q) ≥ 0 for
all q ∈ proj1,...,nq(X ), i.e. projny(Y) = [0, Fmax], with Fmax ∈ R+.

All in all, we can conclude that Assumption 2 is fulfilled for the hybrid position
and force control task under the given modelling assumptions and constraints. Hence,
model predictive control is a provable stable and safe way to achieve a hybrid position
and force control if the weights and parameters are suitably chosen. The MPC formu-
lations of Chapter 2 can directly be applied to the hybrid position and force control
tasks 1-3. In the following, an application example illustrates these findings.

3.3 Application Example
In this section, the proposed hybrid force and position control is applied to a KUKA
Lightweight robot writing on a compliant surface, cf. Figure 3.1a. The provided results
have appeared in [154]. A more detailed description, as well as extended results, are
presented here. The goal is to control the robot such that its end-effector (the pen
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x y

z

Figure 3.4: Illustration of the base frame and the reference for the robot writing task.

tip) is following a two-dimensional position reference while applying varying forces
along it on the whiteboard, i.e. writing with different stroke width. For this purpose,
the reference consists of a position-controlled sine curve along the whiteboard surface
and a composition of exponential functions for the desired force perpendicular to the
whiteboard surface. The whiteboard placement accounts for this task. The base frame
y- and z-axes are parallel to the whiteboard, while the x-axis is normal to the surface,
see also Figure 3.4. The position reference is depicted as a black line in Figure 3.4
and the force reference is indicated via a blue shaded area along the x-axis. Since
the reference consists of three directions, we consider the control of three joints of the
robot to obtain a square input-output structure ny = nu = 3. Robotic writing tasks
have, for example, been considered in [61, 154, 234]. In each of these references, some
notion of path following is applied. The reference can be adjusted by the controller to
react on unforeseen disturbances and to increase control performance. Pure position
control with MPC is used in [60, 61] such that interaction forces act as disturbances
or model-plant mismatch. In [234] an active compliance control, i.e. an indirect force
control method, is used. In contrast to [234] we assume a fixed board position and
MPC similar to [61, 154], which allows to consider constraints. In [36], a writing task is
performed with a quadcopter. There, a position-controlled MPC is used which includes
force constraints to prevent from contact loss, while the positional reference for the pen
tip is 5 cm behind the undeformed contact surface. By applying the hybrid position
and force controller proposed in this chapter, we directly control the interaction forces
with varying desired contact forces. This task is defined via trajectory tracking and
path following, such that a comparison between the two approaches is possible. In
the following, the description of the involved software and hardware components for
simulation and lab experiments is given before discussing the achieved results.
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3.3.1 Software and Hardware Setup

We use a KUKA Lightweight robot as depicted in Figure 3.1, with active actuation
of the joints one, two and four. To measure the contact forces, a 6DOF force-torque
sensor is attached to the wrist of the robot. Moreover, a three-fingered robotic hand
is attached to hold the pen. Specifications of the sensor and the robotic hand can
be found in [12]. The fast research interface establishes the communication between
the robot and the work station PC [206], and a CAN-bus builds the connection to
the wrist sensor. The communication interface for the control of the robot from
MATLAB was designed in [11]. The sensor interface was set up in [18]. The controller
implementation in Matlab uses the code-generation toolkit of ACADO to solve the
involved optimisation problem in real-time [7]. The computations are performed on a
Linux workstation PC with Ubuntu 12.04 and an Intel Xeon(R) X5675 processor with
3.07 GHz x6.

3.3.2 Control Setup and Parameters

We compare the performance of two model predictive controllers for tracking and path
following designed in accordance with (2.11) and (2.16). The system model used in
(2.11b) and (2.16b) is (3.2), with x = (q1, q2, q4, q̇1, q̇2, q̇4)>. The robot parameters were
identified in [11] and adjusted by [18] to include the Barrett hand and force-torque
sensor. This dynamical model is used for simulations as well as for prediction in the
model predictive controller. However in contrast to [11], N(x) = 0 is considered.
Several design choices justify this simplification. First, the gravity is compensated
by an internal controller provided by the KUKA control setup. Second, friction and
Coriolis effects only have a minor influence at the considered small velocities. Third,
a compensation of external torques outside of the predictive controller is added to
the optimal inputs just as the torques for gravity compensation. The contact force
model was designed and parametrised in [18] and corresponds to the linear spring
model (3.4). Damping effects have been neglected due to noisy sensor readings in the
joint velocities as well as small penetration velocities.
In the path following case, the double integrator ż1 = z2, ż2 = v is used as virtual

system (2.16c). The system outputs are given via ytt = (pe,y, pe,z, Fn)> (see also (3.3))
and ypf = (pe,y, pe,z, Fn, z1)>, where pe,y and pe,y are the end-effector (pen tip) position
in y- and z-direction, while Fn denotes the normal contact force between the pen
and the whiteboard in x-direction of the base frame. Note that in path following, an
additional output is included, which represents the path parameter θ = z1.
We refer to the outputs of the system as variables of interest, which might or might

not be directly measurable. For instance, the Cartesian positions of the end-effector
are not measured directly. As our robot is equipped with a force-torque sensor at
the wrist, we would like to incorporate these measurements besides the joint sensor
readings on positions and velocities. In the nominal case, this additional information
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is unnecessary. In the experimental setup, however, a model-plant mismatch exists.
Incorporating additional information can lower its effect. If the contact force would
have been modelled via a dynamic equation, this information is naturally included via
the initial conditions. Inspired by this principle, the model-plant mismatch for the
contact force will be used to update the output model such that for the optimisation
starting at time tk the prediction model for the contact force model is

F̄n = Kehδ(q̄) + F̃n(tk). (3.9)

Here, F̃n ∈ R denotes the model-plant mismatch based on measurements at tk which
is given by F̃n(tk) = hn(F̃ (tk)) − Kehδ(q̃(tk)). The predictions inside the controller
are denoted by ·̄ while ·̃ indicate sensor readings. The map hn : R6 → R denotes
the transformation of the measured end-effector wrench into the normal contact force.
This formulation is equivalent to a dynamic interpretation of the contact force model
and its differentiation to include the force as a part of the system states. At the same
time, it does not require the solution of an artificially added dynamic, which is not
necessary to describe the physical relations.
The mathematical equations for the reference definition in the path following case

is given in Appendix A.4. For trajectory tracking, the reference is defined according
to the first three components of rpf. As discussed in Chapter 2, this includes the
specification of a timing law. To make a fair comparison between path following and
tracking, the same timing law as in the path following case is assigned. In other
words, the timing law provided by path-following MPC is used for the tracking MPC
as an a priori planned, timed trajectory. The cost functions of the involved predictive
controllers are given by Li = e>i Qiei + u>i Riui, Ei = ε>i QE,iεi, with i ∈ {tt, pf}.
The weighting matrices, controller parameter values, and constraints are given in
Appendix A.4.

3.3.3 Simulation Results

Figure 3.5 depicts the system outputs and corresponding output errors for the im-
plementation of a trajectory tracking MPC (dashed black line) and path following
MPC (solid blue line). In path following, the evolution of the reference (thin black
line) is determined by the predictive controller. This is done simultaneously to the
control of the robotic system following the reference. The optimal evolution of the
virtual system state z1 = θ is shown in Figure 3.6, top left. It is determined via the
choice of the virtual input v in Figure 3.6, bottom left and its double integration. The
virtual state z2 = θ̇ shows the reference velocity profile. The same optimised profile
is chosen for the tracking trajectory. Hence in Figure 3.5, both the trajectory track-
ing controller and the path following controller achieve the same accuracy. However,
this is only true in the nominal case when no disturbances or uncertainties occur. In
the following, a reproducible input disturbance of −3 Nm is added to the first joint
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Figure 3.5: System outputs and control errors for tracking and path following MPC.
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Figure 3.7: End-effector position in Cartesian plane for tracking and path following MPC.

0 10 20

0

2

4

time t/s

τ
4
/N

m

0 10 20

0

2

4

time t/s

τ
2
/N

m

0 10 20

0

2

4

time t/s

τ
1
/N

m

Figure 3.8: Control input torques of the considered joints for tracking and path following
MPC.
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Table 3.1: Maximum and average computation times for simulations and experiments.

Total time OCP Wrist Sensor
trajectory tracking max. aver. max. aver. max. aver.

in simulation 1.2 ms 1.0 ms 0.8 ms 0.6 ms - -
path following max. aver. max. aver. max. aver.
in simulation 8.7 ms 2.1 ms 8.5 ms 1.8 ms - -
path following max. aver. max. aver. max. aver.
in experiment 10 ms∗ 6.5 ms 10 ms∗ 3.7 ms 7.2 ms 2.5 ms

during t ∈ [13 s, 13.7 s] for both cases. In such a situation, the path following MPC
and trajectory tracking MPC behave differently, which is shown in Figure 3.7. While
the disturbance acts on the system, precise tracking of the reference becomes more
difficult. The path following controller can adjust the speed of the reference via the
virtual input to compensate for the effect of the disturbance. In the presented case, it
slows down the reference, cf. Figure 3.6 right. In contrast, the tracking MPC cannot
adjust the predefined reference and tries to follow it. This inflexibility results in larger
Cartesian deviations in Figure 3.7 compared to the path following case. The torque
control inputs in both cases are close to each other, cf. Figure 3.8. The main difference
arises from the additional degree of freedom of the path following MPC to adapt the
reference.

Besides a deviation from the Cartesian path, the input disturbance has a large effect
on the contact force. Figure 3.9 (left) shows a drastic increase of the contact force
during disturbance. Large forces are often undesired to prevent tool or environment
damage. In the case of the robotic writing task, the pen tip is very fragile and pressed
flat if the contact forces become too high. One of the benefits of direct force control
with MPC is the possibility to include force constraints. Hence, a constraint on the
maximum force is included besides the lower constraint to prevent from contact loss.
The output constraints are chosen to be Y = [0, 6.5 N] in a subsequent trial, which
is shown in Figure 3.9, right. A significant reduction of the contact force despite the
disturbance is achieved. However, a small violation of the constraints occurs. This
violation occurs as the disturbance directly acts at the input of the robot and is un-
known to the controller. Hence, a mismatch between predictions of the controller,
which satisfies the constraints, and the actual contact forces appears. From the prac-
tical side, a backoff of the constraints to robustify the closed-loop control performance
can cope with this effect. All in all, safe performance with reduced and limited contact
forces (besides consideration of multiple other constraints) can be achieved.

∗package drop for times greater than Ts = 10 ms
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Figure 3.10: Control errors (left) and virtual system evolution (right) for path following
MPC in experiments with and without actively constrained maximum force.

3.3.4 Experimental Results

Based on the successful evaluation of the proposed hybrid position and force control
MPC scheme in simulations in the previous section, lab experiments on the robot
have been performed. Preliminary work for these experiments, especially setting up
the communication, models and a preliminary implementation of a predictive, hybrid
position-force controller, can be found in [18]. The results presented here build upon
these preliminary works and were published in [154]. The same controller setup is
used as in the previous section. Only the Cartesian reference is slightly shifted in
z-direction compared to the simulations due to imprecise manual board placement.
To evaluate the real-time feasibility of the simulations and experiments, the average
and maximum computation times are listed in Table 3.1. This table shows the total
computation times as well as the time needed to solve the optimal control problem
(OCP) and the time for the sensor communication, which build the most extensive
parts of the total times. In all simulations, the total maximum computation times lie
below the sampling time of Ts = 10 ms, even though the path following implementation
has higher calculation times. This difference originates mainly from the inclusion
of constraints for the virtual system, which are active most of the time. Since the
path following case is superior to the tracking formulation in terms of performance
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when disturbances occur, we present and compare two path-following MPC schemes
in the following. In both cases the same input disturbance of −3 Nm is applied at
t ∈ [13 s, 13.7 s] to the first joint. In the second trial, an additional force restriction
to Y = [0, 5.5 N] is added. The respective computation times are shown in Table 3.1.
Even though the average total computation time is below Ts, the maximum total
computation time occasionally would have exceeded this threshold. This resulted in
up to five communication package drops by the fast research interface to the robot
in the experiments. These outliers always occur at the end of the path when the
path parameter θ becomes zero. However, stable communication despite the small
amount of dropped packages was achieved. The achieved control errors are shown in
Figure 3.10 (left) for the case with and without this additional force constraint. In
Figure 3.10 left, solid blue lines indicate the case without active force constraints, while
the black dashed line shows the case with active maximum force constraint of 5.5 N.
The control errors are noisy and significantly larger than in the ideal simulations. This
originates from several aspects: First, the sensor data is corrupted with noise, which
is significant especially in the joint velocities, joint torques, and in the force sensor,
see also [12, 18]. Second, there exists a model-plant mismatch between the prediction
model also used for simulation and the real system. For example, Coriolis and friction
effects have been neglected during prediction. Moreover, the considered force model
is linear. Nevertheless, the designed MPC allows the robot to follow the reference
path with control errors smaller then 1.53 mm and 1.04 N in the undisturbed case and
with 3.38 mm and 2.94 N in the disturbed case. When the disturbance occurs, the
virtual system is adjusted by the controller to lower the effect of it, cf. Figure 3.10,
right. Loosely speaking, the reference is forced to wait for the disturbed system to
minimise the control errors. At the same time, the chosen torque control inputs lower
the effect of the disturbance further, see also Figure 3.11. The position-controlled
subspace of the experimental path following MPC is shown in Figure 3.12. In both
cases (with and without active maximum force constraint), the deviation from the
path is restricted to a small area in the Cartesian space thanks to the additional
degree of freedom in path-following MPC. A more visible difference between the two
experiments can be seen in the force-controlled subspace depicted in Figure 3.13. The
disturbance leads to a significant increase in the contact force. When adding the
force constraints this effect is lowered by 0.73 N, which corresponds to a reduction of
24.8 %, cf. Figure 3.13. However, as in the simulations, there exists a small violation
of the constraints. This results from the model-plant mismatch, that is significantly
increased during the disturbance and is unknown to the controller. Nevertheless, we
could show that the proposed hybrid position and force controller can successfully be
applied to simulation and experimental setups. It runs in real-time, achieves proper
tracking and path-following performance, and allows to limit the occurring contact
forces next to the satisfaction of input torque and state constraints.
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Figure 3.11: Control inputs for path following MPC in experiments with (black) and with-
out (blue) active maximum force constraints.
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Figure 3.12: Cartesian end-effector position for disturbed path following MPC in experi-
ments with (dashed) and without (solid blue) active maximum force constraint.
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Figure 3.13: Normal contact force for disturbed path following MPC in experiments with
(dashed black, right) and without (blue, left) active maximum force constraint.
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3 Model Predictive Force Control

3.4 Summary
In this chapter, a new direct force controller based on MPC has been proposed. The
concept makes the benefits of MPC accessible for interaction tasks in robotics. Among
others, we achieved the explicit consideration of constraints, the reduced tendency of
oscillations and overshooting thanks to prediction, and the applicability to nonlinear
MIMO systems. As an application example, a robot writes on a compliant surface in
simulations and experiments. We achieved real-time-feasible optimal control for non-
linear prediction models in these implementations. In the nominal case, we guarantee
closed-loop stability in robotic interaction tasks. At the same time, the experimental
validation verified additional inherent robustness of the proposed approach concerning
sensor noise, disturbances, and modelling inaccuracies. The implementations show
that the proposed direct force control via MPC entails a considerable potential for
robotic applications. It can increase the flexibility in robotic manufacturing since the
precise positioning of the manipulated objects is not required anymore. At the same
time, fragile objects can be handled while guaranteeing force limitation such that new
fields of applications for robots are possible. Moreover, safety for human-robot inter-
actions is enhanced by the explicit consideration of contact forces allowing for closer
integration of robotic and human co-workers.
All in all, the proposed approach for direct force control with MPC allows for in-

creased safety and autonomy of dynamical systems that interact with the environment.
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4 Gaussian Processes

In the previous chapters, knowledge of all components in the predictive controller,
such as system dynamics, references, and possible disturbances, is assumed. This
assumption is often not fulfilled, especially when operating a system in dynamical or
changing environments. In such cases, machine learning can support the predictive
controller and provide information about the system and its environment based on
data. One specific machine learning approach, which is frequently used to do so, are
Gaussian processes (GPs).
This chapter provides a general introduction to Gaussian processes. We will use

GPs as elements to extend the first-principles based controllers to learning-supported
MPC. For this purpose, we outline the basic concepts of data-based learning and
regression using Gaussian processes, tailored for use in feedback systems. Loosely
speaking, GPs calculate conditional probability distributions at the points of interest,
for instance to obtain predictions of states, disturbances, or other model components,
while taking data and the corresponding measurement noise into account. This allows
us to obtain a prediction via the conditional mean and a reliability measure of these
predictions via the associated variances. We outline the influence of prior knowledge,
design decisions, and data on a trained Gaussian process. Furthermore, the control-
relevant properties of Gaussian process models, such as differentiability and predictive
capabilities, are discussed. In the following, we assume that the reader is familiar with
basics in stochastics [213, 235].

4.1 Introduction to Gaussian Processes

Gaussian processes are a data-based, stochastic machine learning approach. GPs can
be used for system identification, regression, as well as disturbance prediction, and
have gained increasing attention in the control community for the modelling of static
and dynamic systems, cf. [13, 16, 114, 119, 150, 157, 158, 180, 235]. This popular-
ity arises from several appealing properties of GPs compared to first-principle models
and other machine learning concepts such as neural networks: One benefit of Gaussian
processes is the natural handling of uncertainty in the data. Noise in observations is
explicitly considered in GP formulations. Moreover, GPs allow expressing uncertainty
in models and predictions via distributions and confidence intervals. So to say, Gaus-
sian processes provide an assessment of their approximation and prediction quality
while avoiding overfitting noisy data. An additional advantage of GPs is that they al-
low for incorporating prior knowledge. This allows, if done suitably, that the involved
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Figure 4.1: Illustration of a Gaussian process.

parameters and structural assumptions are physically interpretable and enables the fu-
sion of first-principles modelling and machine learning. For example, prior covariance
functions can be chosen to encode smoothness or periodicity of the system and signals
to be learned. Furthermore, prior mean functions can be built using first-principle
models. For example, the prior mean can be represented by a linear first-principle
model, while the GP is used to capture the underlying system’s nonlinearities.
Let us consider the following static system

γ = ϕ(χ) + η (4.1)

mapping from the input χ ∈ Rnχ to the one-dimensional output γ ∈ R, where this is
corrupted by the uncertainty or noise η. This noise is assumed to follow an indepen-
dent, identically distributed Gaussian distribution η ∼ N (0, σ2) with zero mean and
variance σ2. The underlying functional relationship between the independent vari-
ables or input data χ and dependent variables or output data γ is represented by the
mapping ϕ : Rnχ → R.
We use Gaussian processes to model the unknown or only partially known underlying

function ϕ in (4.1), cf. Figure 4.1. In other words, we consider regression problems
to find the relationship between the input and output data. This relation is used to
predict or infer outputs for previously unseen input data. GPs allow to estimate not
only a deterministic value for the input but provide a Gaussian probability distribution
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4.2 GP System Structure and Prior Belief

over all possible values of the output. A formal definition of GPs is [235]:

Definition 3. A Gaussian process is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution.

Therefore, Gaussian processes can be interpreted as an extension from normally
distributed variables to distributions over functions, see also Figure 4.1. They are
characterised by a mean function m : Rnχ → R and a covariance function κ : Rnχ ×
Rnχ → R and we will shortly denote them by

ϕ(χ) ∼ GP (m(χ), κ (χ, χ′)) . (4.2)

Hereby, the covariance function κ is a measure of the joint variability of two random
variables. It is positive semi-definite and symmetric κ(χ, χ′) = κ(χ′, χ).

Our overall goal is to predict or infer the distribution of the output ϕ(χ∗) at (possibly
unseen) points χ∗. Formulating a GP model to make those predictions involves the
following steps: First, one needs to choose the structure of the GP. This involves
the formulation of the prior belief about the mean and covariance functions m and
κ. Second, a collection of input-output-observation should be selected to build data
sets Dφ and Dpred used for the training and prediction or estimation as outlined later.
Here, the index φ stands for the hyperparameters, which result from the training with
the data set Dφ. Whether these data sets are fixed or adapted once new data becomes
available distinguishes between offline and online learning of GPs. Third, the GP trains
or learns based on the data set Dφ via optimising the so-called hyperparameters φ of
the mean and covariance function. Finally, inference or prediction via the GP utilises
the structure, the prior, the determined hyperparameters, and the data Dpred.

These four topics, including structure, data, hyperparameters, and predictions, are
outlined in the following sections.

4.2 GP System Structure and Prior Belief

In the design of a GP to represent a (dynamic) system, the model structure, the re-
gressors or inputs, the prior mean function, and the prior covariance functions must
be chosen. In this step, knowledge about the underlying structure of the system can
be incorporated if available. This possibility of including prior knowledge discrimi-
nates GPs from pure data-driven black-box modelling. Even with no or only few a
priori information, GPs can produce accurate inference and function approximation
performance. Several model structures can be used depending on whether a static or
a dynamic mapping should be modelled via the GP. As GPs are widespread in data
analysis, input-output-data-based formulations of dynamic systems like autoregres-
sive models are common, see [117, 149]. Furthermore, state-space models learned via
Gaussian processes can be considered as in [184, 223, 226]. We use GPs to learn and
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4 Gaussian Processes

model external signals such as references (Section 5.4) and output maps of dynamical
systems (Section 5.3). In both cases, the GP reflects a static mapping such that nei-
ther delayed input regressors, as in autoregressive models, nor recursive predictions
based on previous GP evaluations must be performed, see also Section 4.6.
Additionally to selecting a model structure, the choice of prior mean and covariance

functions m and κ allows us to reflect assumptions and knowledge over the modelled
system (4.1). If knowledge of the underlying system is available, inclusion via the prior
allows for improved inter- and extrapolation quality. Two specific types of covariance
functions will be considered in the following chapters which are:

Definition 4. A covariance function κ : Rnχ × Rnχ → R is called periodic if there
exists a period ∆χ ∈ Rnχ such that κ(χ, χ′) = κ(χ, χ′ + i∆χ) with i ∈ N0.

Definition 5. A covariance function κ : Rnχ×Rnχ → R is called a decaying covariance
function if it fulfils:

(i) The covariance function κ is stationary and monotonously decreasing κ(χ1, χ
′) ≤

κ(χ2, χ
′) for all |χ1 − χ′| ≥ |χ2 − χ′|.

(ii) There exists a finite bound ς : Rnφ → R+
0 for which the absolute values of the time

derivatives κ(β) : R × R → R, κ(β) = ∂βκ(·, χ′)
∂χβ

up to order β of the covariance

function κ are monotonously decreasing such that |κ(β)(χ1, χ
′)| ≤ |κ(β)(χ2, χ

′)| at
least for all |χ1 − χ′| ≥ |χ2 − χ′| ≥ ς(φ).

For instance, the so called squared exponential covariance function

κse(χ, χ′) = σ2
se exp

(
−(χ− χ′)2

2l2se

)

with hyperparameters φ = (σse, lse) is a decaying covariance function for order β = 2
with ς(φ) =

√
3lse, which is illustrated in Figure 4.2.

The prior mean and prior covariance functions involve hyperparameters φ ∈ Rnφ,
where nφ depends on the selected functions m and κ. The hyperparameter values can
be learned based on a hyperparameter training set, as outlined in Section 4.4. The
selection of the involved data sets is discussed in the following section.

4.3 Data Collection
The number and location of the data points influence the approximation capability and
the computational complexity of the GPs. While large training data sets can improve
the approximation quality, they increase the computational load of the inference or
prediction. Therefore, data pre-processing to obtain useful training data sets is an
essential step in GP modelling and design, just as in any other machine learning
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Figure 4.2: Squared exponential covariance function and its derivatives with hyperparame-
ters σse = 1 and lse = 2. The covariance is stationary and strictly monotonously
decreasing for all |χ − χ′|, while the absolute values of its first and second
derivative are strictly monotonously decreasing for |χ − χ′| > lse = 2 and
|χ− χ′| >

√
3lse ≈ 3.46, respectively.

algorithm. A tradeoff between information quality and computational complexity must
be found, such that a reduced amount of data with high informative content is obtained
for training. While a detailed discussion on data selection, pre-processing, and the
curse of dimensionality is beyond the scope of this work, interesting approaches using
Gaussian processes are sparse GPs [34], latent variable GPs [221] and GP autoencoder
[105]. Moreover, data selection for dynamical systems’ modelling via GPs in multiple
tasks was recently addressed in [31]. An analysis of the effect of the data distribution
on controller performance was performed in [127], while [225] identifies the number of
training points to learn asymptotically stable GP state-space models.
In general we distinguish two types of training data sets in GPs: The hyperparam-

eter training set Dφ, and the training data set used for inference or predictions Dpred.
They are defined via

Dφ :=
{

(χφ,i, γφ,i) ∈ Rnχ × R | i = 1, 2, . . . , nDφ

}
(4.3)

and
Dpred :=

{
(χpred,i, γpred,i) ∈ Rnχ × R | i = 1, 2, . . . , nDpred

}
, (4.4)

where nDφ
and nDpred are the number of data points for hyperparameter estimation
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4 Gaussian Processes

and prediction/inference, respectively. For ease of notation, we define

χφ := (χφ,1, . . . , χφ,nDφ ), (4.5)
γφ := (γφ,1, . . . , γφ,nDφ ), (4.6)
χ := (χpred,1, . . . , χpred,nDpred

), (4.7)
γ := (γpred,1, . . . , γpred,nDpred

), (4.8)

such that Dφ = (χ>φ ,γ>φ ) and Dpred = (χ>,γ>). Especially in offline learning, these
two data sets are often assumed to be identical. However, different data sets for
prediction and hyperparameter optimisation can be used in both offline and online
learning. For example, an online update of the prediction training data set Dpred can
be performed separately from an offline determination of the hyperparameters via Dφ

as was done, e.g., in [157].

4.4 Hyperparameter Determination

The mean and covariance functions involve hyperparameters φ ∈ Rnφ. For example,
if we have a constant mean function m(χ) = µ and a squared exponential covariance
function κse(χ, χ′) = σ2

se · exp
(
− (χ−χ′)2

2l2se

)
we have in the scalar case in total three

hyperparameters φ = (µ, σse, lse), which are the constant value of the mean µ, a vertical
scaling σse, and a horizontal length scale parameter lse. Often also the measurement
noise standard deviation σ is considered as one of the hyperparameters. Note that,
given the data χφ,γφ and the functions κ and m, the hyperparameters θ will be
uncertain and posses distributions. However, their distribution can be learned based
on the hyperparameter training set Dφ. Using Bayes rule the posterior probability
distribution p(φ|χφ,γφ) of the hyperparameters can be inferred by

p(φ|χφ,γφ) =
p(γφ|χφ, φ)p(φ)

p(γφ|χφ) . (4.9)

Here, p(φ) is the prior belief about the hyperparameter distribution, p(γφ|χφ, φ) is
the evidence or marginal likelihood, and p(γφ|χφ) is a normalising constant. Unfortu-
nately, analytic calculation of p(γφ|χφ) is in most cases intractable [117]. Numerical
approximation methods as Monte Carlo simulations can be used to approximate the
distribution, which are computationally expensive. Therefore, often a point estimate
φ̂ instead of a full distribution is used. This estimate can, for example, be obtained
by maximising the logarithmic marginal likelihood. Under the assumption of a uni-
formly prior hyperparameter distribution, the hyperparameter posterior distribution is
proportional to the marginal likelihood [117, 235]. Thus, maximising the logarithmic
marginal likelihood corresponds to finding the most likely hyperparameters φ̂. Assum-
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4.5 Inference and Prediction

ing a deterministic constant prior mean with unknown value µ and let µ be a vector
with appropriate length composed of µ, the logarithm of the marginal likelihood is
given by

ln p(γφ|χφ, φ) =− 1
2 ln(|(Kφ + σ2I)|)− 1

2(µ− γφ)>(Kφ + σ2I)−1(µ− γφ)

− nDφ

2 ln(2π).
(4.10)

Here, Kφ is the covariance matrix of the training data with size nDφ
×nDφ

whose entries
are calculated based on the covariance function κ. Specifically, Ki,j

φ = κ(χφ,i, χφ,j)
with i, j ∈ {1, . . . , nDφ

}. While the first term in (4.10) penalises the complexity of
the model and thereby reduces overfitting, the second term fits the model to the data.
The third term is a normalisation constant. By maximising (4.10) the most likely
hyperparameters φ̂ are obtained by finding a tradeoff between model complexity and
data consistency. The hyperparameter optimisation can, thus, be written as

φ̂ := argmax
φ

ln p(γφ|χφ, φ) (4.11)

with the logarithmic marginal likelihood ln p(γφ|χφ, φ) as objective function. The
evaluation of the objective function includes the inversion of Kφ, which relates to a
computational complexity of O(n3

Dφ
). In Chapter 5, we will derive extensions to this

way of hyperparameter determination such that additional constraints in the optimi-
sation can be considered. Though the addition of constraints in general increases the
computational complexity of the optimization, often hyperparameters are determined
offline or at certain events and not at every iteration of a control loop [157, 224].

4.5 Inference and Prediction

The overall goal in supervised learning with GPs is to obtain a model of (4.1) such
that we can infer or predict the distribution of its output at possibly unseen points χ∗.
This prediction is based on the prior belief, the training data Dpred, and the hyper-
parameters φ (or their estimates φ̂) as introduced in the previous sections. The joint
distribution of the noisy training data output γ and the desired predicted output ϕ∗
which estimates ϕ(χ∗) is given by


 γ
ϕ∗


 ∼ GP




m(χ)
m(χ∗)


 ,


K + σ2I k

k> κ(χ∗, χ∗)




 ,

wherem(χ) := (m(χpred,1), . . . ,m(χpred,nDpred
))>. The entries of the covariance matrix

K are calculated using the covariance function κ such that K is of dimension nDpred ×
nDpred and specifies the covariance between all of the training data points. The entries
of the vector k (with dimension nDpred×1) are calculated with the covariance function
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Figure 4.3: Inference or prediction with a GP.

using test and training data points such that ki = κ(χi, χ∗) with i ∈ {1, . . . , nDpred}. It
defines the cross correlation between test and training data points. The scalar κ(χ∗, χ∗)
is the auto covariance of the test data. Given this joint probability distribution, the
conditional posterior distribution of ϕ∗ given the data Dpred = {χ,γ} is

p(ϕ∗|χ,γ) = N (m+(χ∗), κ+(χ∗)), (4.12)

where the posterior mean function m+ : Rnχ → R is defined by

m+(χ∗) :=m(χ∗) + k>(K + σ2I)−1
(
γ −m(χ)

)
(4.13)

and the posterior covariance κ+ : Rnχ × Rnχ → R+
0 is given by

κ+(χ∗, χ∗) :=κ(χ∗, χ∗)− k>
(
K + σ2I

)−1k.

Please note that inherently these posteriors depend on the hyperparameters φ via the
involved prior covariance and mean as well as on the involved data Dpred. Whenever
beneficial, we will denote this dependency bym+(χ∗;Dpred, φ) and κ+(χ∗, χ∗;Dpred, φ).
However, in most of the cases this notation is omitted for brevity. An illustration of
GP inference given the hyperparameters is displayed in Figure 4.3. The computational
complexity of inference is mainly influenced by the inversion of K, such that is scales
with O(nDpred).
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4.6 Gaussian Processes and Control

4.6 Gaussian Processes and Control

When using Gaussian processes in a control context, some properties of them need
special consideration or can be of particular use. Three of those, namely the prediction
for multiple steps into the future, the prediction of multi-dimensional outputs, and the
derivatives of GPs, will be briefly discussed in the following.

Multi Step Ahead Predictions

When using Gaussian processes in a model predictive control framework, they are
often utilised to model (parts of) the system dynamics, see e.g. [29, 93, 94, 118–
120, 135, 149, 171, 178, 180, 223, 225, 237]. This requires a recursive evaluation of
the GP to obtain multiple-step-ahead predictions that cover the prediction horizon.
This recursive evaluation requires a GP prediction where the input to the GP is the
predicted output distribution of that GP from a previous time step. This input has a
Gaussian distribution and is not a deterministic value. Calculating a posterior distri-
bution from uncertain inputs is in general intractable, and the posterior distribution
then is non-Gaussian [93]. Nevertheless, there are approximation techniques to over-
come this issue. One straightforward strategy is to use only the predicted mean value
as a deterministic input. It was shown in [79, 94] that this leads to a poor estimation of
the actual uncertainty of the predictions. Numerical Monte Carlo simulations can ap-
proximate the actual distribution, which is associated with a high computational load.
Alternatively, analytical approximations as exact moment matching and Taylor series
approximations can be used to obtain Gaussian distributions, which approximate the
actual non-Gaussian distribution, see [78, 93]. Additionally, a recursive evaluation
of a GP to obtain multi-step ahead predictions is often based on an independence
assumption that ignores the recursive nature. This assumption can also lead to an
underestimation of the real uncertainty in the predictions. To overcome this issue, in
[92] correlation between iterations is included to obtain more realistic predictions and
uncertainty estimates.
In this work, we do not use GPs to model dynamical system mappings. Instead, we

use Gaussian processes to model static mappings, which describe either the reference
or the system outputs. This way, no recursive GP calls are necessary, which eliminates
the aforementioned issues in our context.

Multiple Outputs

In this chapter, we assume the map ϕ in (4.1) maps into a one-dimensional space.
As we use GPs, among others, as reference predictors, a one dimensional GP could
model the reference of a SISO system under output feedback. However, in general, we
are interested in multi-dimensional predictions via GPs, such as modelling a reference
in a higher dimensional state space. In the following chapters, we will train multiple
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Figure 4.4: GP posterior with and without derivative observations.

GPs to cope with those higher dimensional mappings, also known as multi-kriging
[23]. The covariance between the individual processes is not considered during pre-
diction. This approach possesses an essential advantage over fully coupled GPs, as
the implementational cost is significantly lower. This results from the inversion of the
covariance matrix K, which causes a computational load that is cubic in its size, i.e.
in the number of the training data points. For ny uncoupled GPs with nDpred data
points, the computational complexity of prediction scales as O

(
ny · n3

Dpred

)
, whereas

coupled GPs have O((nynDpred)3). However, extensions to include dependencies, which
might occur due to correlated measurement noise or correlations in the system itself,
exist, see [23, 32, 235]. In geostatistics, the field of correlated multi-dimensional GPs is
known as co-kriging [33]. Correlations between the multiple outputs can also appear in
the form of constraints, such as linear and quadratic dependencies, see [106, 201, 202].
In this work, constraints are included in the learning phase to express correlations be-
tween multiple GPs. Coupled higher dimensional GPs with decoupled covariances are
obtained. This setup increases the computational complexity of the hyperparameter
optimisation while lowering the computational demand in the predictions. For offline
learning with online data updates, this shifts the computational burden from online to
offline calculations. Hence, real-time-feasible implementations are enabled by efficient
usage of available resources.

Derivatives of Gaussian Processes

When using differentiable covariance functions, such as the squared exponential co-
variance, periodic covariances, or specific parametrisation of the Matérn covariance
[235], derivatives of Gaussian processes can be obtained. As differentiation is a linear
operation, the derivative of a GP is also a GP [214]. This property brings two ad-
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vantages: On one side, derivative information can be included in the learning phase.
This additional information is beneficial as it allows for better predictions with a
smaller number of data points, see also Figure 4.4. On the other side, we can predict
derivatives that might be desired in (dynamical) systems modelling. The posterior
distribution of the derivative of GP (4.2) with respect to the ath component of χ∗ is
defined via the derivative of the posterior mean

∂m+(·)
∂χa

∣∣∣∣∣
χ∗

:= ∂m(·)
∂χa

∣∣∣∣∣
χ∗

+ ∂k>(χ, ·)
∂χa

∣∣∣∣∣
χ∗

(
K + σ2I

)−1 (
γ −m(χ)

)
(4.14)

and the derivative of the posterior covariance

∂κ+(χ∗, ·)
∂χa

∣∣∣∣∣
χ∗

:= ∂2κ(χ∗, ·)
∂χa∂χa

∣∣∣∣∣
χ∗

− ∂k>(χ∗, ·)
∂χa

∣∣∣∣∣
χ∗

(
K + σ2I

)−1 ∂k(χ∗, ·)
∂χa

∣∣∣∣∣
χ∗

. (4.15)

In a setup where GPs are used to model references for a controller, derivative predic-
tions are useful when the controlled dynamic system includes e.g. integrator chains.
In Section 6 equations (4.14) and (4.15) will be used to predict velocities in multiple
coordinates which build the basis for the reference definition. The prediction of the
derivative of the GP (4.2) adds no additional hyperparameters to be determined. Fur-
thermore, it only includes observations of the function itself and not of its derivatives.
However, if derivative observations are available, they can be included in the training
data set, which leads to an augmented covariance matrix. This augmented covariance
matrix takes the covariances between the original observations and the derivative ob-
servations as well as the autocorrelation of the derivative observations into account,
see also [185]. Including derivative observations can highly increase the approximation
capability. Thus, it can also reduce the number of training data points while main-
taining the prediction quality. Moreover, instead of actual derivative measurements,
monotonicity assumptions can be included in a similar way [192]. We exploit this fact
in the constrained hyperparameter optimisation in Chapter 5.

4.7 Summary
This chapter gives a basic introduction to Gaussian processes and shows their ap-
plicability in a control context. While the posterior mean of a GP can be used for
data-based prediction of static and dynamic systems, the posterior variance allows for
evaluation of the prediction model quality, which can be useful both in offline mod-
elling and online control. These characteristics will be used in the following chapters
to support model predictive controllers with learning-based GP models. This combi-
nation allows for explicit consideration of noise in measurements and the inclusion of
prior knowledge in the training process.
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5 Learning-supported Model Predictive Control

In this chapter, we merge the outlined MPC and GP concepts to obtain a model pre-
dictive control formulation that is supported by learning. In contrast to the nominal
MPC cases of Chapter 2, we do not assume perfect knowledge of all components in
the predictive controller. In particular, the reference and the output of the system
are assumed to be unknown a priori. We will use Gaussian processes to obtain a
representation of these model components from data and supply the predictive con-
troller with this information. Based on the discussions and outlined properties of
MPC and GPs from the previous chapters, we analyse the stability properties of the
learning-supported controllers. Furthermore, application examples illustrate the pro-
posed concepts in simulations and experiments. The robotic force control example
from Chapter 3 is extended to include a learning- and data-based force model.

5.1 Introduction to Machine Learning and Control

Model predictive control is a popular control strategy due to its versatility, concep-
tual simplicity, and superior performance to linear or decoupled controllers in many
cases. Most importantly, MPC can handle constraints directly during control, which
makes it attractive for delicate control tasks. Additionally, a comprehensive theory
exists, which allows us to give stability guarantees, see also Chapter 2. The nominal
stability guarantees, however, often assume perfect knowledge about the system and
its environment. Robust MPC strategies extend this scope to give guarantees despite
uncertainty in the model and signals [121, 136, 162, 164, 167, 187, 189]. However,
if the uncertainty is considerable, robust concepts become quite conservative or even
infeasible. Moreover, the performance of nominal and robust MPC highly depends on
its prediction quality. This includes the quality of the system model as well as knowl-
edge about external signals as disturbances and references. Therefore, it is beneficial
to minimise the uncertainty in the predictive control framework in nominal as well as
in robust approaches. Machine learning methods are suited strategies to do so. In-
cluding information about the system and its environment in a learning-based fashion
can lower the needed effort to obtain models for dynamics and external signals and
allows to adapt the controller online. Consequently, we will use Gaussian processes to
support model predictive controllers. However, an arbitrary update of the controller,
e.g. via an update of the prediction model or the reference, can lead to a loss of guar-
antees as stability and does not guarantee performance improvement. Consequently,
development of trustable strategies on how to incorporate learning in MPC is needed.
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machine
learning

supervised learning:
system identification,

modelling and prediction
via regression or
classification

unsupervised
learning:

fault diagnosis and
model reduction via
clustering or principle
component analysis

reinforcement
learning:

adaptive optimal
control and dynamic

programming

Figure 5.1: Classification of machine learning algorithms and their possible fields of appli-
cation in control.

In the next sections, we address these demands by supporting MPC with learning
of prediction models as well as by supporting and tailoring the learning of GPs by
dynamic system properties. In order to better classify these concepts, we give a short
overview of the combination of machine learning and control in the following.

5.1.1 Machine Learning for Control

Machine learning is a way to achieve artificial intelligence of computer systems where
data is used to find coherence and generalise from it automatically. Often, machine
learning algorithms are classified based on how the learning task is achieved, cf. Fig-
ure 5.1. In supervised learning, for each input data, the corresponding output data is
given. The task is to find a mapping between the input and the output. Once this
mapping is identified for the given training data, generalisation for unseen input data
points is possible. Thus, supervised learning can be used for system identification
and modelling. Gaussian-process-based learning is a supervised learning approach. In
unsupervised learning, a given set of input data should be analysed. Often, similarity
in the data should be found, which can be represented via clustering of the data. In
that case, the learning task is not to find a relation between inputs and outputs but to
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5 Learning-supported Model Predictive Control

analyse and structure the data. Consequently, unsupervised learning is useful for fault
detection via finding outliers in the data or model reduction via finding redundancies.
Reinforcement learning represents a third category of learning, which is closer to the
way humans or animals learn. The task is to find an optimal strategy of perform-
ing a quest by learning from the interaction with the system and its environment via
trial and error. Input and output data becomes available with an assigned reward.
Maximising this reward relates to learning the best strategy. Therefore, some rein-
forcement learning strategies resemble optimal control, adaptive control and iterative
learning control, as they try to find an optimal way to operate systems.
In this work, supervised learning is used to support model predictive control using

GPs. We do not consider model reduction, fault diagnosis, or learning a controller.
Instead, we use supervised learning of Gaussian processes to obtain prediction mod-
els for the controller. Specifically, learning of static prediction models for reference,
signals, and output maps is considered.

5.1.2 Learning of Different Components in MPC

Supervised learning can be used to learn various components in a predictive controller.
In [29, 93, 94, 118–120, 135, 171, 178, 180, 223, 237] the dynamical system is learned
partially or completely, while [196–199] use supervised learning to iteratively update
the terminal cost and constraint. When disturbance models are learned and used
in a robust predictive controller such as tube MPC, they can also be used to adjust
the tightening of constraints. This way, an additive part in the system model (the
disturbance) and the constraints are adjusted simultaneously via learning, see, for
example, [231]. Similar connections exist between the learning of the system model and
the adaptation of constraints in robust and stochastic control, cf. [93, 135, 215, 232].
Specifically, MPC with GP system models allows quantifying the uncertainty or

trustability of the model predictions via the variance. This measure can be incor-
porated as hard or soft constraint to avoid regions of the state space for which only
limited information or measurements are available. Consequently, the constraints or
the cost function of the predictive controller are learned, see [10, 118, 171].
The focus of this chapter lies on learning external signals, such as references and

disturbances, as well as static output maps of the prediction model. References and
disturbances are two particular types of external signals, which we want to model,
learn, and predict. They differ with respect to the control perspective we embed them
in. While references should be tracked or followed by the system, disturbances should
be rejected. In the following, a short overview of related works that focus on the
learning of external signals is given. Learning a dynamical system that serves as a
reference prediction model is done in [143] for platooning, where the velocity of the
leading vehicle is learned and used as a reference for the following vehicle. A periodic
reference is learned via Gaussian processes in [114], and the approach is applied to
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the precise positioning of telescopes. A similar idea is used in [177] for blood glucose
control. However, the learned signal is interpreted as a disturbance. A dynamic
disturbance model to predict demands in water networks is considered in [231, 233]
including GPs in robust MPC.
Besides uncertainty in external signals, uncertainties can affect parts of the pre-

diction models. In particular, the output map (2.1b) might not be perfectly known
while the system dynamics (2.1a) are well understood. In such a case, the output map
can be learned separately from the dynamics. For example, kinematics in flexible or
cable-driven robots are hard to model based on first principles but can be learned via
Gaussian processes, cf. [55, 148]. Moreover, contact with objects might be hard to
model based on first principles due to unknown material properties or positions. In
[160], learning-supported MPC is designed based on a Gaussian process that models
the contact force as system output in a robotic system. Here, the system dynamics of
the robot are known, while external contact forces, which depend statically on states,
are learned.

5.1.3 Online, Offline, and Iterative Learning

Nominal MPC strategies, as outlined in Chapter 2, rely on a priori knowledge about
the system and the control task. This knowledge takes the form of the system model,
the cost function, the constraints, or the reference. These components are traditionally
designed based on first-principles models and are physically interpretable. However,
machine learning can be used to obtain them, as outlined in the previous subsection.
If this learning task is performed separately from the controller execution, it refers to
offline learning. Offline learning entails the benefit that the computational complexity
needed to obtain a learned model is detached from real-time demands of the closed-
loop controller. Furthermore, it allows for the evaluation of model accuracy before
controller execution, such that approximation errors can be estimated and bounded.
These benefits are used, for example, in [29, 117, 119, 120, 135] where offline learning
with Gaussian processes for MPC is considered.
When the same or a similar task is performed repeatedly, machine learning can be

used to incorporate knowledge from previous executions. In between each execution
machine learning based on the gathered data can be used to adapt learning-supported
controllers. We refer to this type of learning as iterative learning while being aware
that classically iterative learning control (ILC) is not restricted to the use of machine
learning algorithms and often directly updates the control input instead of components
in a predictive controller. In contrast, the works [178, 180] update the prediction model
in an MPC based on data from a previous execution of a repetitive task. The concept
is applied to an autonomous vehicle on a particular route. The GP models a part
of the system dynamics, which includes the effect of the environment. As in offline
learning, the computational demand of the learning is detached from online execution
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times. The works [196–199] use iterative learning to update the terminal cost and
constraint after each batch execution. They use a reference-free MPC formulation, i.e.,
they consider cases where the desired reference to be followed is unknown. Instead
of learning the reference, learning of a safe set from state trajectories of previous
executions is performed, which builds the basis for the terminal constraint set. The
reference for a model predictive controller is updated via iterative learning in [236].
In contrast, iterative learning of a cost function is proposed in [219]. In [208], a
disturbance is learned from previous executions. This learned disturbance is used in
the system model of the MPC at each consecutive iteration. Moreover, it iteratively
updates a reference generator in between the control executions.
Online learning builds a third possibility to combine machine learning and con-

trol, where the controller is updated during runtime. Online learning-based control is,
therefore, closely related to adaptive control techniques. In online machine learning-
supported MPC, an update of the system model or other components in the optimal
control problem during runtime is performed. This requires special care to maintain
the feasibility of the control problem as well as to ensure closed-loop stability guaran-
tees. A drawback of online learning is the increased computational complexity, which
has to be handled online while meeting real-time requirements. At the same time,
online learning allows for direct incorporation of new measurement data, which can
improve the prediction accuracy. Furthermore, it allows the controller to adapt to
time-varying systems or changing environmental conditions as disturbances. Online
learning of MPC system models with GPs is done, for example, in [171] where online
training data updates, as well as hyperparameter optimisations, are performed. In
[114] and [177], external signals, interpreted as references and disturbances respec-
tively, are learned online via GPs.
In this work, offline and in principle also iterative learning of system model out-

puts for predictive control is proposed. The derived formulation allows us to provide
guarantees for nominal stability. Moreover, the predictive controller can use its full
potential when the learning-supported system representation is known from the first
control iteration. Furthermore, offline and online learning of references for MPC is
proposed, which provides closed-loop guarantees of the controller. While offline refer-
ence learning provides nominal stability, the online learning of references is designed
to be robust against online training data updates.

5.2 Guarantees despite Learning

Even though the incorporation of learning into control allows for performance improve-
ments, adaptation to changing situations, and can decrease manual effort, one crucial
aspect is the potential loss of provable properties. In general, machine learning does
not provide guarantees for closed-loop behaviour. It should, therefore, be equipped
with additional features when used in a control framework to obtain those. In the
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context of learning-supported predictive control, desirable guarantees are constraint
satisfaction, recursive feasibility, convergence, stability, and robustness.
Combination of nominal MPC with Gaussian processes does not consider the stochas-

tic nature of the GP. In those cases, often only the mean function of a GP is used
[150, 157, 178]. For stability guarantees, the assumptions outlined in Chapter 2 can
often not be used by the learning-supported MPC. To overcome this, combinations
of learning-supported MPC with additional safety layers have been proposed. For
example, in [3, 113, 123], and [66], a subset of the state space is considered to be safe.
Any control action that keeps the system inside this set is assumed to be safe as well.
As inside the safe set any control action is permitted, learning-supported MPC can
be used. As soon the learning-supported controller steers the system to the boundary
of the safe set a safe controller is employed to steer the system back into the interior
of the safe set. This way, certain constraints in the state space are always fulfilled,
which is, however, not guaranteed by the learning-supported MPC itself.
Unlike nominal MPC, stochastic MPC allows incorporating the probabilistic nature

of GPs directly. If the states of the system model are stochastic (e.g. due to a GP
system model) chance constraints instead of deterministic hard constraints on the
states can be considered, see [93, 135, 232]. This way, probabilistic guarantees for
constraint satisfaction are given instead of deterministic guarantees.
Recently, realisations of functions from a GP (see also Figure 4.3) were interpreted

as scenarios such that scenario MPC can be used [223]. This formulation allows
for deterministic handling of the uncertainty via the sampled functions from the GP
distribution, which are deterministic. For the linear case, probabilistic performance
guarantees of the controller are provided in [223].
Instead of handling uncertainties in a probabilistic way, set-based methods rely

on bounded uncertainty set descriptions. Robust MPC utilises those set based uncer-
tainty descriptions to obtain robust stability guarantees, i.e. stability despite bounded
uncertainty. A learning-supported robust MPC formulation based on tube MPC was
proposed in [8], where constraint tightening is used. This allows decoupling perfor-
mance improvement via learning and safety via robust constraint satisfaction. Unlike
the outlined safe set methods, this separation is achieved inside the MPC formulation
instead by an additional encasing safety layer. Two system prediction models inside
the predictive controller are considered, where one model ensures robust stability and
constraint satisfaction. In contrast, the other model is learned online and used inside
the cost function for performance improvements. The authors prove robust asymp-
totic stability with the learning-based predictive controller independently from the
used learning algorithm. The approach was, for instance, applied to heat ventila-
tion systems and quadcopters in [9] and [22]. Extensions of this idea are proposed in
[138, 151] for nonlinear systems and in [19] for multi-mode systems. Alternative robust
learning-based MPC formulations are given in [215] for state dependent uncertainties,
and [91] for input uncertainties.
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In Section 5.4, we will show how nominal MPC stability can be guaranteed despite
learning of external reference signals offline or online. Moreover, we outline how to
design a Gaussian process used as an output model to meet the requirements for
nominal stability in Section 5.3. Furthermore, we discuss possibilities on how to extend
these guarantees to a stochastic setting by incorporating the model uncertainty.

5.3 Learning of Outputs

In the following, we extend the presented nominal model predictive control schemes
described in Chapter 2 by incorporating GP output models. We outline differences
which occur compared to the case of first-principles model predictive control in theory
and practise for the force control example presented in Chapter 3.

5.3.1 Basic Idea and Motivation

We want to use learning techniques to obtain components of the system model (2.1) in
a model predictive controller using Gaussian processes. In contrast to existing works,
such as [29, 93, 94, 118–120, 135, 171, 178, 180, 223, 237], we do not aim at learn-
ing the full dynamical system, the right-hand side of the differential equation (2.1a),
or an input-output representation of the system. Instead, the output map of the
system (2.1b) should be learned. These output maps can, for instance, incorporate
nonlinear coordinate transformations that might be uncertain due to unknown param-
eters. For example in robotics, the direct kinematics might not be entirely known due
to manufacturing inaccuracies or flexibility of certain components. Moreover, maps
for the inverse kinematics are only locally defined and challenging to identify based on
first principles such that learning-based methods might be helpful tools. Especially for
flexible, soft or cable-driven robots, the kinematics are often hard to model based on
first principles. Gaussian processes were used, for instance, in [148] to obtain a kine-
matic correction for a surgical robotic system, while in [55], the GP models the inverse
kinematics. Other examples are output models describing the interaction of a robot
with its environment, which might involve significant uncertainties stemming from un-
known object positions, friction, damping or stiffness coefficients. In all these cases,
machine learning can be used to obtain these mappings instead of using parametric
models, cf. [27, 160, 183, 229].
One key difference in using learned output models in MPC instead of learned system

dynamics is their independence of previous predictions. Unlike for dynamic system
equations, no recursive evaluation of predictions must be carried out. In the context
of stochastic Gaussian process models, multiple-step-ahead predictions with a (par-
tially) learned dynamical system involves the evaluation of the GP at uncertain inputs.
This recursion leads to predictions that are not normally distributed and thus are not
entirely in line with the Gaussian process framework, see also Section 4.6. Different
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techniques have been investigated to approximate the distributions via Gaussian dis-
tributions, see [78, 93]. However, when the GP model represents (parts of) the output
map (2.1b) no uncertainty in the input occurs despite multiple evaluations over the
prediction horizon. At each prediction step, the input to the GP output model is the
deterministic state x obtained via the dynamic system equation (2.1a) which does not
involve uncertainties. Consequently, variance information of the GP output prediction
model can be determined exactly. Moreover, uncertainty does not grow over time, but
it only depends on the current position in the state space.

5.3.2 Mathematical Formulation

We assume that the output equation y = h(x) of a dynamical state space model is not
perfectly known. Instead, noisy observationsD =

(
x>, ŷ>

)
with x = (x1, . . . , xnD) , ŷ =

(ŷ1, . . . , ŷnD) are available describing the relation

ŷi = h(xi) + η, (5.1)

where we assume that η ∼ N (0, σ2) for i ∈ {1, 2, . . . , nD}. To identify or closely
approximate h(x) based on D, the following output model structure

h̃(x) := hfp(x) + hml(x) (5.2)

is used. Here, hfp : Rnx → Rny describes a first-principles output model which might
encode prior knowledge about h(x). The term hml : Rnx → Rny denotes a data-driven
model part obtained via machine learning. So to say, we use a hybrid modelling
approach merging the benefits from first principles such as the quality of extrapolation
with advanced learning strategies allowing for more detailed and specific models. Each
of the ny components of hml will be obtained via a Gaussian process trained on a
modified subset of the data set D while only taking the corresponding component of
the output data ŷ into account. In particular, the prediction data set Dpred,j and the
training data set Dφ,j for the jth component are

D◦,j ⊆
{

(xi, ŷi,j − hfp,j(xi)) ∈ Rnx × R | i = 1, 2, . . . , nD
}

(5.3)

with ◦ ∈ {pred, φ}, with j ∈ {1, 2, . . . , ny} pointing to the components of the out-
put observation ŷi =

(
ŷi,1, ŷi,2, . . . , ŷi,ny

)> and with the first-principles model hfp =
(
hfp,1, hfp,2, . . . , hfp,ny

)>. For a more compact notation we define

y̌j =
(
ŷ1,j − hfp,j(x1), . . . , ŷnD,j − hfp,j(xnD)

)>
.

The resulting data-based model part becomes

hml(x) = (yml,1(x), yml,2(x), . . . , yml,ny(x))> (5.4)
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with
yml,j(x) ∼ N (m+

j (x), κ+
j (x, x)) (5.5)

and the posterior means m+
j (x) and variances κ+

j (x, x). As a consequence, the mod-
elled system output is not deterministic, but follows a normal distribution. Hence, the
model predictive control formulations from Chapter 2 have to be reformulated to be
able to deal with this type of model. Specifically, the mean and the variance of the
predicted output will be explicitly considered in the control problem formulation.
Unlike [10, 29, 166, 171, 238], we do not include the variance in the cost function to

penalise or exploit areas where the prediction model is uncertain. Instead, the mean of
the output is used in the cost function as in [178–180]. For linear systems and quadratic
costs, this is equivalent to the use of the expected value of the stochastic cost, which
is often used in stochastic MPC, see [88, 145]. For nonlinear systems and quadratic
cost function, the variance of the output would influence the optimal solution, see
also [29, 93]. However, we use the variance to modify the original system constraints
to ensure the safe performance of the learning-supported model predictive controller
similar to [82, 179]. The output constraints are reformulated as chance constraints
and tightened by a set which includes most of the uncertainty. This strategy is based
on:

Assumption 20. There exists a finite bound bj : X̃ → R for each approximation error(
hj(x)− E

(
h̃j(x)

))
on a compact set X̃ ⊂ Rnx such that

p
(
|hj(x)− E(h̃j(x))| < bj(x)

)
< 1− ε (5.6)

for all x ∈ X̃ and ε ∈ (0, 1).

As outlined in [122], Assumption 20 can not be fulfilled for arbitrary functions h.
Nevertheless, error bounds for functions stemming from reproducing kernel Hilbert
spaces are derived in [122]. In [128] the probabilistic error bounds bj are derived from
posterior Gaussian distributions under some mild assumptions including Lipschitz
continuity of the involved covariance function and h. For a more detailed review of
existing approaches and underlying assumptions to calculate error bounds, we refer to
[128] and references therein.
In practice, often the posterior variance of a GP is assumed to approximate these

error bounds bj directly, cf. [29, 82, 215], without scaling and shifting the resulting
variance in accordance to the system properties encoded for instance via the Lipschitz
constants as proposed in [128]. It has been reported that this posterior variance can
be a poor approximation of the actual approximation error if underlying assumptions
on the GP prior or hyperparameters are wrongly made [205]. Moreover, an under-
estimation of the uncertainty can occur, especially in multi-step-ahead predictions as
reported, for instance, in [92]. Nevertheless, the posterior variance of a GP is the
main ingredient in the derived error bounds in [128]. It, therefore, is a valuable tool to
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obtain a relative measure related to the error bounds if reasonable prior assumptions
are posed. Moreover, in our setup, no approximations of the posterior variances are
involved due to multiple-step-ahead predictions. For simplicity of presentation, we
exploit multiples of the posterior standard deviation as a measure for the approxi-
mation quality. Consequently, the optimal control problems (2.5), (2.11) and (2.16)
are slightly modified. In particular the constraints (2.5c), (2.11c), and (2.16d) for the
control error are changed into

es(τ) = rs − E
(
h̃(x(τ))

)
, (5.7a)

ett(τ) = rtt(tk + τ)− E
(
h̃(x(τ))

)
, (5.7b)

epf(τ) = rpf (l(z(τ)))− E
(
h̃ (x(τ))

)
. (5.7c)

This way, the control errors and the objective function are deterministic. Additionally,
the output constraints in (2.5f), (2.11f), and (2.16f) are altered into chance constraints

p
(
h̃(x(τ)) ∈ Y

)
≥ pY , (5.8)

where pY ∈ (0, 1) denotes a chosen probability for the satisfaction of the constraints.
As the output is following a normal distribution, this chance constraint can be refor-
mulated into a deterministic constraint for the mean of the output distribution via
the shrinking of the original constraint set Y . In particular, (5.8) is equivalent to

E
(
h̃(x(τ))

)
∈ Ỹ , (5.9)

where the modified constraint set Ỹ is defined via

Ỹ := Y 	R. (5.10)

The set R is constructed via the respective confidence level or error bound that belong
to the desired reliability pY , Note that 	 denotes the Pontryagin set difference, cf.
Appendix A.3. For example, R = [−2σy(x), 2σy(x)] for a one dimensional output
with pY ≈ 95.45, where σy is the standard deviation of the learning based output
h̃(x). In general the standard deviation σy(x) =

√
κ+(x, x) depends on the system

state. Hence the tightening of the constraints can lead to state dependency of the
output constraint set Ỹ even if the original constraint set Y does not depend on
x. Alternatively, the constraint tightening can consider the worst case realisation of
the uncertainty over a compact set X̃ such that σy,max := max

x∈X̃
σy(x) is used in the

construction of R instead of σy. Figure 5.2 illustrates the constraint tightening. In
both cases, we need to ensure feasibility of the resulting optimal control problem with
tightened constraints. Therefore, we rely on the following assumptions.

Assumption 21. The shrunken output constraint set Ỹ is closed, nonempty and con-
tains the references rs, rtt or rpf for setpoint regulation, tracking or path following.
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(a) Based on the posterior variance (gray area) of
the output model the original constraints (red
dashed line) are tightened.
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(b) Based on the maximum value σy,max of the
posterior variance (gray area) the original con-
straints (red dashed line) are tightened robustly.

Figure 5.2: Constraint tightening.

Assumption 22. The intersection of the state constraint set X and the preimage
h−1

(
Ỹ
)
of the shrunken output constraint set Ỹ is closed and nonempty.

These assumptions limit in a way the tolerable degree of uncertainty in the map
h̃. A proper selection of training data in a specific region of the state space can be
utilised to fulfil Assumptions 21 and 22. So to say, the variance information provided
by the GP allows to “evaluate” the model quality and builds a basis to decide which
and how much data should be incorporated to obtain a reliable model.

5.3.3 Stability of MPC with Learned Outputs

Recursive feasibility and convergence of the optimal control problem formulations for
setpoint regulation (2.5), tracking (2.11), and path following (2.16) for the general
system representation (2.1) are given in Theorems 1, 2, and 3. We want to establish
similar recursive feasibility and convergence for systems with a (partially) learned
output model (5.2). Let us consider the nominal case, where the posterior mean
of the GP together with the first-principles model part is a perfect representation
of the output map. In this nominal case, E

(
h̃(x)

)
= h(x) and no uncertainty or

noise occurs such that σy = 0. Hence, the output constraint set is given by Ỹ = Y .
Consequently the optimal control problem formulations (2.5), (2.11), and (2.16) are
directly applicable for systems with the dynamics (2.1a) and the output (5.2). For
this nominal case, we can state the following theorem.

Theorem 4. A model predictive controller of the form (2.5), (2.11) or (2.16) with a
(partially) learned output model (5.2) is recursively feasible and the respective control
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error converges to zero if E
(
h̃(x)

)
= h(x) and the prior mean function m, prior covari-

ance function κ, and the first-principles model part hfp are continuously differentiable.

Proof. Recursive feasibility and convergence according to Theorems 1, 2, and 3 rely
upon the satisfaction of Assumption 2. To apply the same reasoning for the modified
setup with the output model (5.2), differentiability and local Lipschitz continuity needs
to be verified for h. The output function h is given by h(x) = E(h̃(x)) = hfp(x) +
m(x) + k>(K + σ2I)−1

(
γ −m(χ)

)
, where the entries of K and k are Ki,j = κ(xi, xj)

and ki = κ(xi, x) with i, j ∈ {1, . . . , nDpred} cf. (5.2) and (4.13). Differentiability of
h is guaranteed via differentiability of the summands hfp, m and κ. Local Lipschitz
continuity of h on each compact set X̃ ⊂ X follows directly since the restriction of
any continuously differentiable function on a compact set is Lipschitz. Consequently,
Assumption 2 is fulfilled for h(x) = E(h̃(x)) and recursive feasibility and convergence
according to Theorems 1, 2, and 3 can be concluded.

Consequently, standard MPC stability/convergence proofs as outlined in Chapter 2
can be applied in the nominal case for common prior mean and covariance functions,
such as the squared exponential covariance, periodic covariances, or specific parametri-
sation of the Matérn covariance [235]. When considering the uncertainty in the output
via shrunken constraints, the following can be concluded from Theorem 4.

Corollary 1. Consider a model predictive controller for setpoint regulation (2.5),
trajectory tracking (2.11) or path following (2.16) with a (partially) learned output
model h̃(x) = hfp(x) + hml(x) included via the control error formulations es, ett and
epf from (5.7) instead of the original error formulations (2.5c) for setpoint regulation,
(2.11c) for tracking, or (2.16d) for path following. Furthermore, consider the shrunken
output constraint set Ỹ instead of Y in the optimal control problem constraints (2.5f),
(2.5g), (2.11f), (2.11g), (2.16f), and (2.16h). Given Assumptions 21 and 22 on the
shrunken constraint set Ỹ, the respective predictive controller is recursively feasible
with the probabilistic satisfaction of the constraints and the corresponding control er-
rors es, ett and epf converge to zero if the prior mean m and covariance κ for the output
h̃(x) are continuously differentiable.

Since the Assumptions 21 and 22 guarantee non-emptiness of the output and termi-
nal constraints despite a backoff, the nominal MPC guarantees directly apply to the
control errors defined in (5.7) following the same reasoning as in Theorem 4. Conse-
quently, the Theorems 1, 2, or 3 apply directly to the posed learning-supported MPC
with constraint backoff. When the backoff set R reflects a reliable error bound as,
for instance, proposed in [128], constraint satisfaction of the true outputs h(x) can
be guaranteed via satisfaction of the shrunken constraints by h̃(x) with a probability
related to pY . Since the posterior variance and the backoff set R depend on the used
prediction training dataDpred and the involved hyperparameters φ an offline constraint
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Figure 5.3: Data from the baseline controller performing multiple sinusoidal motions, where
the line colour describes the normal force Fn in N.

backoff can be calculated if the output model is not adapted online. As stated in the
previous subsection, we do not include the variance in the cost as we do not want to
obtain a risk-seeking behaviour. Hence, our main objective in this learning-supported
controller design is not to explore the uncertain areas of the state space to improve the
model during runtime. However, extensions to online learning and an online update
of the shrunken constraints is possible.
It should be noted that issues as recursive feasibility in classical stochastic MPC

mainly stem from the fact that the predicted states from the previous iteration are
not identical to the measured states used as initial conditions at the next iteration.
For the output learning case, however, the uncertainty affects the output map rather
than the dynamical system states. Hence, the uncertainty is considered mainly via
the constraint tightening, such that safe performance and recursive feasibility can be
guaranteed. If deterministic instead of probabilistic constraint satisfaction is desired,
extensions of GP models with truncated multinormal distributions can be considered.
For instance, in [35] posterior mean and variance for GPs with truncated distributions
are derived. These could be used in set-based and robust MPC approaches, which is,
however, beyond the scope of this work.

5.3.4 Illustrative Example: Learning-supported Force Control

For manipulators such as soft robots or manipulators with pneumatic actuators, dy-
namic models can be hard to obtain via first principles. Gaussian processes can be
used to acquire the dynamic robot model for prediction inside an MPC [76, 99]. We
assume that the robot dynamics are known as they have been identified to the de-
sired degree of precision based on first principles, cf. Chapter 3. While the direct
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kinematics in many setups are also known, a model of the environment is often not
available. It is subject to frequent changes when the robot handles different objects
with a varying size or material. Therefore, in this section, Gaussian processes are used
to model the interaction force. We do not explicitly consider grasping tasks, such as
[133, 229], where friction and grasping forces are learned via GPs. However, our mod-
els for the contact force can also be extended to these type of contacts. A force sensor
is modelled via GPs in [97] to map between the tactile sensor values and the contact
forces. In our setup, we use a 6DOF-force torque sensor instead of tactile arrays and
predict upcoming contacts instead of post-processing the sensor data. Contact forces
which occur in human-robot-interactions are modelled in [165] via GPs. These contact
force predictions rely on impedance-based modelling of a human arm and a predic-
tion of desired human motions. The posteriors of the desired human motions and the
expected contact forces form a joint distribution. In our setup, static but unknown
environments are modelled. Hence, our GP force prediction depends on the robot’s
motions instead of the motions of a human arm. These robot motions are free for the
controller to choose and do not have to be estimated along with the contact forces as
in [165, 166]. In contrast to [160], a hybrid modelling approach for the contact force is
used instead of a purely learning-based contact force model. The robotic force control
example from Chapter 3 is used to illustrate the proposed learning of output models
via GPs. To this end, the MPC from Section 3.3 is used as a baseline controller.
It is applied in a similar setup with a different environment. Since the environment
material is softer than before, the previously used force model does not represent the
true interaction with satisfactory accuracy. The baseline MPC is used to obtain data
for system identification and machine learning.

Data Acquisition

The robot with the baseline controller performs several sinusoidal motions compa-
rable to the reference tracking in Chapter 3. For this purpose, the Cartesian and
force reference is shifted manually, resulting in varying forces over a multitude of po-
sitions. Based on the measured joint angles, the Cartesian end-effector position can
be calculated via the forward kinematics. Figure 5.3 shows the performed motions in
Cartesian space together with the captured force data. The measured normal contact
force lies between 0.19 N and 5.58 N and is depicted via the line colour in dependence
of the end-effector position in Cartesian space. Based on this experiments, a data set
D := {((q1, q2, q4)>i , Fn,i)|i = 1, 2, . . . , nD} is defined which is composed of the joint
angles q with corresponding normal force Fn consisting of nD = 26013 data points.

Contact Force Model Identification

The parameters of two first-principles models are identified using this data set and
the foreward kinematics of the robot. Due to small penetration velocities the linear
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Figure 5.4: Measured and modelled forces plotted over Cartesian x-direction.
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spring model of Hook (3.4) and the nonlinear spring model of Hertz (3.5) are chosen.
The undeformed board position in x-direction used for identification is p0 = −0.488 m
and the parameters of (3.4) and (3.5) are obtained via least squares optimisation
and a two stage identifaction for the nonlinear spring model similar to [39]. The
determined optimal exponent for the nonlinear Hertz model is α = 3.49 and the
stiffness parameters are Ke,Hk = 307.6Nm and Ke,Hz = 4.9090 · 107 N

mα . These linear and
nonlinear spring models (3.4) and (3.5) result in predictions of the contact normal
force which are displayed in Figure 5.4, 5.5, and 5.6. Here, the data (depicted as grey
crosses) and the prediction of the models are shown in dependence of the Cartesian x-,
y- and z-direction separately for illustrative purposes, though the data is inherently
coupled. The contact force obtained via the linear spring model of Hook is depicted as
a solid grey line, while the nonlinear spring model of Hertz is shown as the black dashed
line. Figure 5.4 shows the most intuitive model representation over the Cartesian x-
direction which directly links to the penetration depth δ.
As shown in Figures 5.4, 5.5 and 5.6 both the Hertz and Hook models cannot capture

the true relation between robot position and contact force precisely. This deviation
results from the inflexible model structure with only a few adjustable parameters as
well as from underlying assumptions such as that the whiteboard surface is a perfect
plane. The latter is not true as small irregularities are present mainly due to the
attachment of a whiteboard foil on the soft sponge material. The proposed hybrid
model h̃FHkGP, combining the linear first-principles model with a Gaussian process,
is trained using the available data. The GP captures all nonlinear effects reflecting
material properties as well as unevenness of the surface. The hybrid model is given by
hFHkGP(q) = hFHk(q) + m+

F (q), where m+
F (q) denotes the posterior mean of a Gaussian

process residual force model with the joint angles q as regressor. A squared exponential
covariance function κse and a zero prior mean m = 0 with hyperparameters σse =
23 N, lse = 0.1 rad, σn = 0.5 N are used. For computational reasons the training data
set Dpred is based on a subset of the full data set D with nDpred = 60. The data
point locations for Dpred were chosen based on a threshold of 0.015 rad minimum
Euclidean distance between the angular positions. They are displayed as black crosses
in Figure 5.3 in Cartesian space. The output training data is constructed based on
the measured forces at these positions and the subtraction of the linear spring model
values at these points according to (5.3). The resulting posterior mean plus the first-
principles linear spring model force is depicted in Figures 5.4, 5.5 and 5.6 as blue
dots. Even though the training input data of the GP are joint angles, the predicted
force is shown in the Cartesian space for illustrative reasons. As can be seen, the
hybrid model consisting of a linear first-principles model and the GP can represent
the measured forces without overfitting the noise. A comparison of the maximum and
root-mean-square error of the linear, nonlinear, and hybrid model (Hook+GP) is given
in Table 5.1. As can be seen, the nonlinear spring results in smaller maximum and
root-mean-square errors than the linear one. However, the hybrid model outperforms
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Table 5.1: Validation of force models over the full data setD with nD = 26013 via maximum
and root-mean-square error (RMSE).

linear spring (Hook) nonlinear spring (Hertz) Hook+GP
maximum error 2.9568 N 2.6717 N 1.4031 N

RMSE 1.1843 N 0.9125 N 0.3754 N
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Figure 5.7: Constraint tightening based on posterior variance.

both first-principles models by a root-mean-square error reduction of around 68 %
compared to the linear model and around 58 % compared to the nonlinear model.
The spatial distribution of the model error is shown in Appendix A.5. For further
illustration of the model quality the 2σy confidence regions are depicted in Figure 5.7.
The left plot in Figure 5.7 shows the evaluation of the posterior GP prediction at test
points from the data set obtained by the baseline controller. The right plot shows
the posterior of the GP along the corresponding reference. The force constraints
proj3(Y) = [0 N, 7.5 N] shown as dashed line in Figure 5.7 are tightened by the 2σy
confidence bounds. The complement of the tightened set is shown as a red shaded
area. In both plots, the posterior mean of the trained GP (solid blue line) does not
violate or activate the tightened constraints. Moreover, the variance along the path
and in its vicinity shows only small variation, which indicates a suitable choice of
the training data. For this setup, a constant over-approximation of the 2σy bound
with 0.75 N seems possible. However, this over-approximation only is suitable in the
vicinity of the reference path and not in the full state space. Due to the additional
computational complexity for high numbers of training data and the used compilers of
the ACADO code-generation toolbox, a state-dependent online constraint tightening
was not implemented. Validation of each simulation and experiment with tightened
constraints was performed instead. As will be shown, these tightened constraints are
never active or violated, cf. Appendix A.5.
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Controller Design

Based on the derived models, three different model predictive controllers for a path
following task are designed. Their setup is equivalent to the path following controller
used in Section 3.3. Hence, we use the same reference path to define a desired motion
and contact force to encode the interactive writing task. A slight modification in the
hardware setup (the pen is held by a small rigid penholder instead of the Barrett
hand) leads to minor changes in the kinematic and dynamic parameters of the robot
model. The corresponding transformations are given in Appendix A.2. The system
states, outputs and inputs are equal to Section 3.3. The output map for the contact
force, however, will be selected among the previously identified linear spring, nonlinear
spring, and hybrid learning-based model.
A simulation study compares these three output models used in a path following

controller. The dynamic system simulation model used inside the optimal control
problems as well as to simulate the real system measurements is identical. Only the
force model inside and outside of the predictive controller will deviate. In all three
simulations, the real interaction force is simulated with a Gaussian process that was
trained directly on the measurements in Figure 5.3. This model has no hybrid structure
and uses a prediction data set of nD = 419 data points. This setup allows obtaining
an exact model of the real interaction, which is however not tailored towards the use
in a real-time optimisation-based predictive controller, see also Appendix A.5.

Simulation Results

In Figure 5.8, a comparison of the closed-loop performance of three different controllers
is given, where each of them uses one of the identified contact force models from Fig-
ure A.2 and Table 5.1. Details of the chosen tuning parameters and further simulation
results are given in Appendix A.5. The controlled Cartesian output direction and the
corresponding path following errors are shown in Figure 5.8 top and middle. As can
be seen, the path reference (thin black line) is followed precisely with tracking errors
under 0.1 mm each. While the controller with the linear spring (Hook) and the hybrid
GP model perform similarly well, slightly larger tracking errors occur for the nonlinear
spring (Hertz) especially in the beginning of the path between 2 s and 3 s. The path
following performances in the force-controlled output direction is shown in Figure 5.8,
bottom. The linear spring shows the worst behaviour resulting in control errors up
to 6.58 N. These errors originate from the large model-plant mismatch between the
simulation of the real interaction and the linear model in the MPC. They cause con-
straint violation of both the maximum allowed force of 7.5 N as well as the minimum
allowed force of 0 N to prevent from contact loss. The root-mean-square control error
is 3.24 N. In comparison, the nonlinear spring model performs significantly better in
the closed-loop. No constraint violation occurs, the maximum control error is 1.63 N,
and the root-mean-square control error is 0.85 N. The hybrid model consisting of
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Figure 5.8: System outputs and control errors for path following MPC.

the linear spring plus a GP model outperforms the nonlinear spring in terms of the
root-mean-square control error which is 0.45 N. Hence it reduces this error by around
47 % compared to the Hertz model. Nevertheless, large maximum errors up to 1.79 N
occur. Consequently, this controller setup should be improved before performing ex-
periments. We propose to include online measurements in the predictive controller to
adapt the force models online as also outlined in Chapter 3.

Adaptive Force Models

We want to adapt the force model online. The model-plant mismatch F̃n,k ∈ R at
time tk is calculated via F̃n,k = hn(F̃k) − hFi(q̃(tk)). The simulated force hFi(q̃(tk))
is subtracted from the normal contact force based on the actual measured contact
wrench F̃k at tk. In this example hFi is either the linear spring, the nonlinear spring
or the learned hybrid model, i.e. i ∈ {Hk, Hz, HkGP}. The output is ypf = h̃(x) =
(pe,y, pe,z, Fn, z1)> where the prediction of the normal contact force starting at time
tk is F̄n(τ) = hFi(q̄(τ)) + F̃n(tk) for all τ ∈ [tk, tk + T ]. The predictions inside the
controller are denoted by ·̄ while ·̃ indicate sensor readings. As discussed in Chapter 3,
this formulation is equivalent to an update of the initial conditions in a differential
equation. A comparison between a dynamic interpretation of the static force model
and this adaptive setup is provided in Appendix A.6. Including the available measure-

76



5.3 Learning of Outputs

-0.05

0

0.05

0.1

e y
/m

m

-0.05

0

0.05

0.1

e z
/m

m

0.65

0.7

0.75

0.8

z/
m

0 5 10 15 20
−5

0

5

10

time t/s

F
n
/N

0.1

0.2

0.3

0.4

y
/m

Hk
Hz
Hk+GP
reference

0 5 10 15 20

−0.5

0

0.5

time t/s

e F
/N

Figure 5.9: System outputs and control errors for adaptive path following MPC.

ments via the model adaptation similar to an initial condition allows for a significant
increased closed-loop control performance, as shown in Figure 5.9. The same controller
parameters as in Figure 5.8 are used. The effect of the model-plant mismatch is dras-
tically reduced in all three model scenarios. The maximum control errors in the force
direction are 0.60 N, 0.30 N, and 0.25 N for linear, nonlinear and hybrid model respec-
tively. The respective root-mean-square errors are 0.09 N, 0.05 N, and 0.05 N. Hence,
the root-mean-square error for the nonlinear spring is equivalent to the hybrid model
in the adaptive case. The adaptation and online feedback of the force sensor informa-
tion compensate the substantial model-plant mismatch for the nonlinear spring model
adequately. This performance improvement also shows the inherent robustness of the
model predictive controller, which can cope with non-perfect models. Still, it is not
always trivial to come up with a suitable (nonlinear) first-principles model. In these
cases, machine learning approaches like the proposed Gaussian-process-based force
model provide an appealing strategy as they allow to obtain precise output represen-
tations. While the proposed hybrid model outperforms the nonlinear first-principles
model in the non-adaptive case, it performs equally well in terms of the root-mean-
square error. It results in smaller maximum errors when both are used in an adaptive
setting. In both cases, a significant improvement compared to the linear case is visible.
Since these simulation results show promising controller performance, a validation of
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Table 5.2: Evaluation of experimental closed-loop performance via maximum and root-
mean-square error (RMSE).

eF ey ez
max. RMSE max. RMSE max. RMSE

Hook 1.28 N 0.49 N 1.54 mm 1.09 mm 1.79 mm 0.76 mm
Hertz 0.71 N 0.26 N 1.33 mm 0.96 mm 1.47 mm 0.73 mm

Hook+GP 0.79 N 0.23 N 1.55 mm 1.13 mm 1.40 mm 0.71 mm

the approach was performed in experiments.

Experimental Results

The adaptive control setup allows constraint satisfaction that is critical for safe evalu-
ation of the different controller concepts in experiments. Hence, the adaptive strategy
for the MPC with the linear, nonlinear, and hybrid model is applied to the real robot.
Again, the same controller setup and parameters as in the simulations are used. The
resulting closed-loop behaviour of the output is shown in Figure 5.10, while further
figures are provided in Appendix A.5. In all three cases, the closed-loop controller is
real-time feasible and satisfies the state, input, and output constraints. Moreover, a
comparable qualitative closed-loop performance is obtained in all cases as the path
following errors in the Cartesian and the force-controlled subspaces lie in the same
order of magnitudes, cf. Figure 5.10. In Table 5.2, a detailed numerical compari-
son of the control errors in the linear, nonlinear, and hybrid case is provided. The
root-mean-square errors for the Cartesian y-direction differ only up to 0.17 mm in
magnitude between the three control setups, cf. Table 5.2 fifth column. In the Carte-
sian z-direction the average performance of all three force model setups deviates even
less with 0.05 mm maximum difference (Table 5.2 last column). However, the control
errors in Cartesian y- and z-direction are more than a magnitude larger than in the
simulations. In Figure 5.10, a clear trend for the control error evolution depending on
the path can be seen. While the control error ey grows along the path, ez changes its
sign when the movement changes from upwards to downwards motion. A model-plant
mismatch exists, which causes this effect depending on the motion along the path. We
assume that the unmodelled friction along the path as well as other unmodelled com-
ponents in the contact wrench cause this effect. Hence, future work should consider
these additional contact effect besides the normal contact force that was investigated
here. The normal contact force Fn and the corresponding control errors eF are de-
picted in Figure 5.10, bottom. Here the MPC with a linear contact force model shows
a deviation from the reference with maximum control errors of 1.28 N and root-mean-
square error of 0.49 N. As in the simulations, the predictive controllers with nonlinear
and hybrid force model outperform the linear case with a maximum force reduction of
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Figure 5.10: Experimental results for adaptive path following MPC with linear spring model
(Hk), nonlinear spring model (Hz), and hybrid model (Hk+GP).

around 44.5 % and 38.2 % each, cf. Table 5.2. The controllers with nonlinear spring
and learning-based hybrid model both show a significant reduction of the contact force
error compared to the linear spring MPC, as shown in Table 5.2. The MPC with the
hybrid model based on the Gaussian process exhibits the best control performance
regarding the root-mean-square error of 0.23 N.
As a conclusion, we can state that the proposed learning-supported model predictive

controller enables the direct control of contact forces in robotics. The hybrid GP model
allows for a significantly improved model quality. Moreover, we have shown that the
hybrid model can be used in an experimental, real-time feasible, adaptive setting where
it performs at least equally well compared to detailed nonlinear first-principles models
while using less prior knowledge and it outperforms the baseline controller with linear
contact force model.

5.4 Learning-supported MPC for Reference Tracking

In this section, we derive a way to combine machine learning via Gaussian processes
for reference learning with model predictive control while giving stability guarantees.
There exist many applications where the reference for a controlled system is obtained
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via interaction of the system with the environment. One example are chemical reactors
in a plant in which the reference of one process depends on the operation of other
processes, e.g. due to changing compositions of the feed streams. Another example
is hand guiding of robots by human operators to teach the robot a desired motion
or the cooperative manipulation of objects by multiple robots. Motion compensation
in medical robotics also requires a synchronised movement to human motions, see
Chapter 6. Moreover, autonomous cars in a platooning scenario can improve their
performance by learning a desired motion or velocity given by the leading vehicle.
In all these cases, the reference is contained in data, which can be corrupted with

measurement noise or suffer from data loss due to communication. This can be tackled
by modelling of the reference and using the reference model as a back-up or pre-filter.
Moreover, reference models allow predicting likely future reference values. This predic-
tion of the future can improve the performance of model predictive control. Naturally,
the control inputs in MPC are results of an optimisation over the prediction horizon.
When changing references for trajectory tracking or path following are considered, their
future values should be available to the controller. Otherwise, performance might de-
teriorate, and stability might be lost. Consequently, we propose to use a data-based
approach to model the reference.
Gaussian processes allow coping with noisy data since their stochastic nature allows

to incorporate noise information directly while avoiding overfitting. This is funda-
mental, as noisy references might not be followable or trackable. Moreover, noisy
references should not be followed or tracked exactly since they do not reflect the orig-
inally desired evolution. On top, references might not be followable or trackable from
the beginning, even in the nominal case. Constraints in the learning of the GP are pro-
posed to handle such situations. Unlike [1, 35] or [202], these constraints do not refer
to truncated multi-normal distributions or implicit correlations of multidimensional
GPs. Moreover, we do not learn constrained dynamics, as done in [75]. Instead, the
constraints are included in the training of the GP via a constrained hyperparameter
optimisation. All in all, we use GPs to learn, predict, filter, and if necessary, modify a
given reference such that the proposed learning-supported MPC is recursively feasible,
and the control error converges to zero. Thereby, tasks and benefits of reference gov-
ernors [72] and prediction filters [107] are merged into a data-based machine learning
framework suitable for MPC. While we focus on continuous-time systems with flat-
ness properties, the results can be generalised, see, e.g. [156] and [158] where we use
reachability analysis to inform the learning about system properties for time-discrete
systems.
We decompose our task as shown in Figure 5.11. Gaussian processes serve as a

reference generator, where the posterior mean of the GP provides the reference. In case
of multiple outputs, we will use ny individual GPs motivated by our results in [157].
The output reference r̂(t) is the function we want to learn. The data D = {(ti, ri)}
with i ∈ {1, 2, . . . , nD} is depicted as black crosses in Figure 5.11 and describes the
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Figure 5.11: Learning-supported model predictive controller with GP reference generator.
With the data available up to time tk the GP learns a trackable reference
(solid) enabling prediction (t > tk) and constraint satisfaction. Hence, exact
tracking (dotted line) can be achieved.

desired reference r̂ (depicted as gray dashed line) with some additive noise η. The
hyperparameter training data Dφ might use all data in D or can be a subset of it,
such that χφ = (t1, t2, . . . , tnDφ ) and γφ = (r1, r2, . . . , rnDφ ). The red shaded area in
Figure 5.11 depicts constraints that the reference should fulfil. These can be composed
of output constraints represented by Y and preimages of the state constraint set X
under the output map h. The original reference r̂ might or might not fulfil those
constraints. Furthermore, due to noise in the training data, constraints might be
violated even if the original reference fulfils them. The GP reference predictor should
use the data and learn a reference rtt that satisfies the constraints. Moreover, it
should take the dynamics of the system into account while learning a reference such
that it can be tracked exactly. This learned reference (depicted as a solid black line)
enters the model predictive controller. The GP reference generator should be designed
such that stability conditions for the predictive controller apply. We use the following
formalisation of reference learning for trajectory tracking:

Task 4. (Reference generator for trajectory tracking with output data).
Given the system (2.1), a prediction horizon T , and data/measurements D ∈ D :=
nD∏
i=0

R+
0 × Rny describing the desired reference r̂ : R+

0 → Rny. Design a reference
generator g : R+

0 × [0, T ]×D → Y, which at time tk provides a reference rtt : [tk, tk +
T ]→ Y , (t) 7→ rtt(t) := g(tk, τ,D), which fulfils:

(i) Trackability: The reference rtt is trackable, i.e it fulfils the output constraints
rtt(t) ∈ Y and can be followed given the system dynamics once starting on it,
hence ∃utt(t) ∈ U such that rtt(t) = h(xtt(t)).

(ii) Data fitting: The reference rtt finds a trade off between model complexity and
data consistency, i.e. rtt(ti) ≈ ri for (ti, ri) ∈ D.

In the following, we outline how to achieve Task 4 by addressing the prediction of
the reference, fitting of data, and ensuring trackability.
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Reference Prediction: GPs allow building data-based prediction models, where the
posterior mean of the GP can perform predictions and thereby addressing Task 4.
However, in the considered case, the prediction involves extrapolation into the future,
while the available data lies in the past. In general, extrapolation is a non-trivial
task with purely data-based prediction models. Extrapolation with GP models, in
particular, is challenging, as the posterior mean approaches its prior if the distance
between test and training data points is large. An illustration of this is effect is
shown in Figure 4.1a where the posterior mean (depicted in solid blue) approaches the
value of the prior mean m = 2.78 in areas with few data. Nevertheless, the internal
structure of specific references can be exploited in the Gaussian process design to
allow for prediction with better approximation quality. The Sections 5.4.1-5.4.3 show
extrapolation for asymptotically constant and periodic references with GPs. Different
distance measures (included via the prior covariance function κ and the contained
hyperparameters) and a priori knowledge is used for this purpose. This highlights a
general benefit of Gaussian processes, as GPs allow to include knowledge of the system
in a structured way.
Data Fitting: Gaussian processes as reference generators naturally fulfil the filtering

properties (Task 4(ii)): The inference of a GP is based on conditioning its distribution
on the data. Loosely speaking, it prioritises sample functions which are consistent with
the data and assigns low probabilities to functions which are not, see also Figure 4.3.
Nevertheless, the measurement noise η, which is encapsulated in the training data, is
taken into account during inference via the measurement noise variance σ2, cf. (4.13).
This way, sample functions with exact fit to the noisy data are not necessarily pre-
ferred or more probable than sample functions with approximate fitting. Moreover,
the hyperparameter optimisation via the logarithmic marginal likelihood (4.11) allows
finding hyperparameter while trading off model complexity and data fitting, cf. Sec-
tion 4.4.
Trackability: The obtained references rtt should be trackable. To address output

trackability, which is hard to verify in general, we exploit the concept of differential
flatness. Following [56, 131, 200] differential flatness for systems can be defined as

Definition 6. The system (2.1) is differentially flat with respect to the output ξ =
(ξ1, . . . , ξnu)> if (at least locally) the variable ξ can be written as a function of the
state x, the input u, and a finite number of time derivatives of the input variable such
that ξ = Π

(
x, u, u̇, . . . , u(λ)

)
.

Flatness implies that the system variables x and u can be expressed as functions of
the variable ξ and a finite number of time-derivatives of ξ. Hence,

x = Φ
(
ξ, ξ̇, . . . , ξ(β−1)

)
(5.11)

and
u = Ψ

(
ξ, ξ̇, . . . , ξ(β)

)
. (5.12)
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We exploit this property by assuming:

Assumption 23. The system (2.1) is differentially flat with respect to its output y.

Differential flatness of system (2.1) with respect to the output y allows to connect
the output, state, and input via (5.11) and (5.12). We enforce this connection via
constraints in GP learning, which boils down to a constrained hyperparameter opti-
misation. Moreover, the proposed constraints guarantee the satisfaction of the state,
input, and output constraint sets X , U , and Y . In combination, this allows for tracka-
bility of the learned reference. The resulting constrained hyperparameter optimisation
problem can be written as

φ̂ := argmax
φ

ln p(γφ, |χφ, φ) (5.13a)

subject to ∀τ ∈
[
0, t̄

]

m+ (τ ;Dφ, φ) ∈ Y (5.13b)
Φ
(
m+(τ ;Dφ, φ), ṁ+(τ ;Dφ, φ), . . . ,m+(β−1)(τ ;Dφ, φ)

)
∈ X (5.13c)

Ψ
(
m+(τ ;Dφ, φ), ṁ+(τ ;Dφ, φ), . . . ,m+(β)(τ ;Dφ, φ)

)
∈ U . (5.13d)

As before, the cost (5.13a) is the logarithmic marginal likelihood, while additional
constraints have been included: Via (5.13b), the posterior mean m+ of the GP, which
models the output reference rtt, is constrained by the output constraint set Y . The
corresponding reference state and input expressions are obtained due to flatness via the
mappings Φ and Ψ from (5.11) and (5.12). They are constrained to X and U via (5.13c)
and (5.13d). The necessary derivatives ṁ+, m̈+, . . . ,m+(β) of the posterior mean with
respect to time (which is the regressor) can be obtained via (4.14). Regarding the
proposed constrained learning of GPs, we can state the following proposition:

Proposition 1. If optimisation problem (5.13) is feasible, the GP provides a trackable
reference rtt(τ) = m+

(
τ ;Dφ, φ̂

)
for all τ ∈

[
0, t̄

]
.

Note that one can conclude trackability of the reference only up to time t̄. In
the following, two common types of references, namely asymptotically constant and
periodic references, will be considered to establish trackability for all times.

5.4.1 Asymptotically Constant References

Asymptotically constant references change for a limited time span Ttrans and converge
to a constant afterwards, see Figure 5.12. For instance, asymptotically constant ref-
erences can be used to describe set point transitions. Examples for asymptotically
constant references are the transition of a chemical plant from one operating point to
another or the parking of a car. The basic idea to show trackability for all times is
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Figure 5.12: Illustration of an asymptotically constant reference. During the transient phase
(grey area) the reference varies arbitrary whereas after Ttrans it converges to a
constant.

to split the problem into two phases. The first phase covers the transient phase with
the constraints in problem (5.13). At the same time, we propose to encode knowledge
about the reference in the prior mean and covariances for the steady state to guarantee
trackability for the asymptotic phase. The aim is to find a time t̄ for which constraints
are satisfied for all times t > t̄. To do so, we enforce the learned reference at time t̄ to
lie in suitably calculated invariant sets as outlined in the following.

We use a decaying covariance function κ and a constant prior mean m(τ) = µ ∀τ ∈
R. Assuming fixed hyperparameters φ and a fixed training data set Dφ the posterior
mean (4.13) can be reformulated as a weighted sum

m+(τ) = µ+
nDφ∑

i=1
ciκ(ti, τ). (5.14)

Here, ti ∈ χφ from Dφ. The constant coefficients ci depend on the fixed hyperparam-
eters φ and the training data Dφ. A bound on m+ can be obtained via the triangular
inequality such that

|m+(τ)− µ| ≤ m̄(τ) :=
nDφ∑

i=1
|ci|κ(ti, τ), (5.15)

where m̄ is monotonously decreasing for τ ≥ ti. Similar to (5.14) and (5.15) the βth

derivative of m+ can be expressed via

m+(β)(τ) =
nDφ∑

i=1
ciκ

(β)(ti, τ),
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with a corresponding bound

|m+(β)(τ)| ≤ m̄(β)(τ) :=
nDφ∑

i=1
|ci||κ(β)(ti, τ)|. (5.16)

The bound m̄(β) is monotonously decreasing for all τ ≥ ti and |τ−ti| ≥ ς(φ). Based on
these bounds, invariant sets for the output, state, and input references can be obtained
assuming that the maps Φ and Ψ are bounded:

Y (τ) := [µ− m̄(τ), µ+ m̄(τ)], (5.17a)
X (τ) :=

{
x
∣∣∣x = Φ

(
y, ẏ, . . . , y(β−1)

)
, y ∈ Y (τ), ẏ ∈ [− ¯̇m(τ), ¯̇m(τ)], . . . ,

y(β−1) ∈ [−m̄(β−1)(τ), m̄(β−1)(τ)]
}
, (5.17b)

U(τ) :=
{
u
∣∣∣u = Ψ(y, ẏ, . . . , y(β)), y ∈ Y (τ), ẏ ∈ [− ¯̇m(τ), ¯̇m(τ)], . . . ,
y(β) ∈ [−m̄(β)(τ), m̄(β)(τ)]

}
, (5.17c)

Once these sets satisfy the output, state, and input constraints, we can guarantee
the satisfaction of those constraints for all times since we use a decaying covariance
function. To satisfy these conditions, we propose an iterative learning procedure with
sampling time Ts:

Algorithm 1 GP Learning for asymptotically constant references
1: Init training data set Dφ and transition time t̄ > ti ∀i ∈ {1, . . . , nDφ

}
2: while true do
3: obtain φ̂ via (5.13) using

(
t̄, Dφ

)

4: if |ti − t̄| > ς
(
φ̂
)
then

5: compute m+(t̄), m̄(t̄), ¯̇m(t̄), . . . , m̄(β)(t̄) via (4.13),(5.15),(5.16) using φ̂
6: compute Y ,X ,U via (5.17)
7: if Y ⊆ Y ,X ⊆ X ,U ⊆ U then
8: break
9: end if
10: end if
11: t̄← t̄+ Ts
12: end while
13: return t̄, φ̂

If Algorithm 1 terminates in finite time, the following Lemma can be stated:

Lemma 1. Consider a differential flat system (2.1) and a Gaussian process trained via
Algorithm 1 with constant prior mean m and decaying prior covariance function κ.
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The reference rtt(t) = m+
(
t;Dφ, φ̂

)
provided by this GP is trackable according to

Definition 1 for system (2.1) for all times t > 0.

Proof. Once Algorithm 1 converges, the time t̄ and the optimised hyperparameters φ̂
are obtained. The constrained optimisation problem (5.13) guarantees the trackability
of the learned reference up to time t̄ via imposing constraints (5.13b)-(5.13d) on the
learned GP mean m+ and its derivatives. From time t̄ on, the monotonicity of the
mean and its derivatives is fulfilled (cf. Line 5 in Algorithm 1). Given monotonicity of
κ, |κ̇|, . . . , |κ(β)| the bounds m̄, ¯̇m, . . . m̄(β) are monotonously decreasing for all t ≥ t̄.
It follows that Y (t) ⊆ Y

(
t̄
)
,X (t) ⊆ X

(
t̄
)
,U(t) ⊆ U

(
t̄
)
for all t ≥ t̄, i.e. the sets

Y
(
t̄
)
,X

(
t̄
)
, and U

(
t̄
)
are invariant. Line 8 in Algorithm 1 implies that Y (t) ⊆

Y ,X (t) ⊆ X , and U(t) ⊆ U for all t ≥ t̄. Consequently, trackability of the reference
rtt = m+ is guaranteed via the satisfaction of the output, state, and input constraints
for all times t ∈ R+

0 .

Example 1. We consider the control of a well-mixed continuously stirred tank reactor
(CSTR) with an irreversible, exothermic reaction A→ B, see Figure 5.13. The CSTR
is equipped with a cooling jacket where the coolant flow rate is the control input to the
system u = Fc. The inlet flow rate to the reactor is assumed to be equal to the outlet
flow rate such that the volume inside the reactor is constant. Based on the energy and
mass balances, a system of nonlinear differential equations can be derived [152]. Those
describe the dynamic behaviour of the two states of the reactor x = [cA, TR]> which
are the concentration of species A and the reactor temperature. A linearisation of the
system around the operating point cA = 0.265 kmol

m3 , TR = 394 K, Fc = 15 m3

min leads to
the following linearised system

ẋ =

−7.5763 −0.0935

854.9129 5.8153


x+


 0
−6.0831


u,

y =
(
1 0

)
x,

(5.18)

where the output of the system is the concentration of A. The task is to bring the
system from an operating point of cA = 0.305 kmol

m3 to the considered linearisation point
cA = 0.265 kmol

m3 . Meanwhile, constraints in the output concentration, the temperature,
and the coolant flow rate must be satisfied. These are Y = [0.165 kmol

m3 , 0.365 kmol
m3 ],X =

[0.165 kmol
m3 , 0.365 kmol

m3 ] × [389 K, 394.1 K], and U = [13 m3

min , 18 m3

min ]. The reference tra-
jectory for the transition originates from a downstream process which demands spe-
cific amounts of concentrations. This reference is not provided as a smooth, analytic
function r̂ but in terms of noisy data ri, as shown in Figure 5.14. Based on this
training data Dφ, the constrained hyperparameter optimisation (5.13) is performed via
Algorithm 1. We use the squared exponential covariance function as a prior and a
zero prior mean. Algorithm 1 is initialised with t̄ = 5 min. At time t̄ = 7.7 min,
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Figure 5.13: Schematic depiction of a continuously stirred tank reactor with a cooling jacket.
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Figure 5.14: The desired reference (solid gray) is unknown analytically, but available in
terms of noisy data (black crosses).

all constraints are satisfied such that Algorithm 1 terminates and provides valid hy-
perparameters φ̂ = (σ̂se, l̂se) = (0.014, 0.94) that guarantee trackability of the learned
reference for all times. The resulting references rtt, xtt and utt, which satisfy all con-
straints (depicted as red shaded areas), are shown in Figure 5.15 in blue solid line. For
comparison, a GP is trained on the same data with an unconstrained hyperparameter
optimisation and the resulting learned references are depicted in Figure 5.15 in black
dash-dotted lines. In contrast to the constrained GP, the references provided by the un-
constrained GP violates the state constraints for t ∈ [4.72 min, 6.7 min]. Consequently,
this reference would not be trackable for system (5.18) and can lead to the infeasibil-
ity of a model predictive controller that uses this reference. As a side effect, adding
constraints can lead to an improvement in the approximation quality if the original
unknown reference r̂ fulfils these constraints since additional information is included
during the learning phase. The approximation errors for the output references are de-
picted in Figure 5.16 for the constrained and unconstrained case. As can be seen in
Figure 5.16, the maximum approximation error is reduced by adding the constraints
into the learning.
Based on the learned references, a model predictive controller according to (2.11) can

be designed. In this example, the cost function has quadratic form Ltt = e>ttQttett +
w>ttRttwtt and Ett = ε>ttQE,ttεtt with Qtt = 1000, Rtt = 0.1 and QE,tt = diag(0.1, 0.1).
At the prediction horizon T = 0.5 min x(tk+T ) = xtt(tk+T ) is chosen as the terminal
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Figure 5.15: Learned references from GP hyperparameter optimisation with and without
constraints.

constraint set Ftt. The resulting control errors are shown in Figure 5.17. Therein, the
control errors of the same MPC with different reference formulations are shown. When
unfiltered noisy observations are used, the control errors (grey dashed lines) become
large as the reference is not trackable. Moreover, the OCP is infeasible at several time
instances. Using an unconstrained GP leads to smoother references and smaller control
errors (black dash-dotted). However, the OCP is infeasible for t ∈ [4.35 min, 6.4 min]
as the terminal equality constraint violates the state constraints. In contrast to those
references, the constrained GP learning leads to a trackable reference and recursive
feasibility of the OCP. Moreover, it results in the smallest control errors (solid blue
line). The corresponding control inputs, as well as their learned references, are depicted
in Figure 5.18. While the control inputs (thin black line) and their references for
the unconstrained and constrained case (middle and bottom) show decent values, the
unfiltered reference leads to noisy and non-admissible input references (grey dashed).
The MPC tries to follow the noisy reference, which leads to a noisy input as well.
This overfitting is undesirable in most cases, e.g. due to wear and tear of actuators.
Overall this example illustrates the ability of constrained GP learning to predict, filter
and modify references such that they are suited for controller design and MPC in
particular.
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Figure 5.16: Output error to the ground-truth function of the GP.
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Figure 5.17: Control error to the learned reference of the MPC.
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5.4.2 Learning of Periodic References

Periodic references occur for example in cyclic operations of chemical reactors, day-
night-cycles in building climate control, or in robot manufacturing, where the same
item is produced repeatedly. Gaussian processes are suitable to learn periodic refer-
ences and to predict them since the periodicity of the signal can be included in the
structure of the GP. This can be achieved by choosing periodic covariance functions,
cf. Definition 4. An example for a periodic covariance function is

κper(t, t′) = σ2
per exp


− 2

l2per
sin2

(
π

Tper
(t− t′)

)
 ,

where the hyperparameters φ are the period time Tper, and the length scales σper and
lper. One can obtain periodicity of the references using a periodic covariance κ and a
constant prior mean m(t) = µ skipping the decaying condition on κ. Trackability can
be enforced for all times via solution of (5.13) using t̄ larger than the period length Tp
of the signal r̂. As the period length Tp is approximated via the hyperparameter Tper of
the periodic covariance function, this can be realised by adding an additional constraint
on the hyperparameters in (5.13). The slightly modified constrained hyperparameter
optimisation problem becomes

φ̂ := argmax
φ

ln p(γφ, |χφ, φ) (5.19a)

subject to ∀τ ∈
[
0, t̄

]

m+ (τ ;Dφ, φ) ∈ Y (5.19b)
Φ
(
m+(τ), ṁ+(τ), . . . ,m+(β−1)(τ)

)
∈ X (5.19c)

Ψ
(
m+(τ), ṁ+(τ), . . . ,m+(β)(τ)

)
∈ U (5.19d)

Hφ ≤ t̄. (5.19e)

Here, (5.19b)-(5.19d) enforce similar constraints as in (5.13). Merely, an additional
linear constraint on the hyperparameters via (5.19e) is included, where H is a vector
of size 1×nφ which is multiplied to the hyperparameter vector φ such that Hφ = Tper.
This additional constraint allows learning of references that are trackable for all times:

Lemma 2. Consider a flat dynamical system (2.1) and a Gaussian process with con-
stant prior mean m and periodic prior covariance function κ. A reference rtt(t) =
m+(t;Dφ, φ̂) provided by such a GP trained via (5.19) is trackable according to Defi-
nition 1 for system (2.1) for all times t > 0.

Proof. The constraints in (5.19) use the flatness property of the system to ensure
trackability of the reference up to time t̄. The constant prior mean and periodic prior
covariance guarantee that m+(t) = m+(t+Tper), ṁ+(t) = ṁ+(t+Tper), . . .m+,(β)(t) =
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Figure 5.19: Mobile robot (black) in a cooperative task synchronising its motion to a second
robot (gray). The desired reference (dashed line) is learned based on sensor
data capturing the motion of the second robot (gray solid line) and a desired
distance to it.

m+,(β)(t + Tper) such that rtt(t) = rtt(t + Tper), xtt(t) = xtt(t + Tper), and utt(t) =
utt(t+Tper) for all t ∈ R+

0 . Since rtt(t) ∈ Y , xtt(t) ∈ X , and utt(t) ∈ U for all t ∈
[
0, t̄

]

and t̄ ≥ Tper it can be concluded that rtt(t) ∈ Y , xtt(t) ∈ X , and utt(t) ∈ U for all
t ∈ R+

0 , i.e. the reference is trackable according to Definition 1 for system (2.1).

Example 2. A mobile robot is considered which should synchronise its motion to
another mobile robot for example to transport heavy items in a cooperative manner.
This task leads to periodic motions if the same track is driven repeatedly as for instance
in manufacturing processes where items are produced and handled repeatedly. This
cooperative task is illustrated in Figure 5.19. The nonlinear dynamics of the mobile
robot are given by

ẋ1 = u1 sin(x3) (5.20)
ẋ2 = u1 cos(x3) (5.21)
ẋ3 = u2 (5.22)

where the states x1 and x2 describe the Cartesian horizontal and vertical position of
the robot and x3 is the heading angle. The system is controlled via the speed u1 and
the turning rate u2. The inputs are constrained by U = [1.88 m

s , 2.1
m
s ]× [−1 rad

s , 2
rad
s ].

The considered flat output of the system is

y =
(
x1 x2

)>
. (5.23)

This system has multiple inputs and outputs, such that we need to train multiple GPs to
learn the desired reference motion. Even though the two GPs for the two dimensional
output do not capture dependencies between the output distributions, the learning of
them is coupled by the considered constraints and due to shared hyperparameters. The
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Figure 5.20: Based on the captured reference data (marked with crosses) the reference out-
put trajectories are learned with a constrained (blue, solid line) and an uncon-
strained (black, dashdotted line) optimisation.

same covariance function κper is used for both GPs where the period length hyperpa-
rameter Tper is identical for each, such that the optimisation variables in total are
φ = (σper,1, σper,2, lper,1, lper,2, Tper). The training data Dφ for the hyperparameter op-
timisation with a standard deviation of σ = 0.001 m is depicted as black crosses in
Figure 5.20. Based on this data the constrained hyperparameter optimisation (5.19)
results in the hyperparameter values φ̂ = (4.18, 2.14, 0.79, 0.79, 12.5 s). The system
outputs (mean of GPs) with those parameter values are shown in Figure 5.20 in solid
blue line. The corresponding state and output evolutions over time are depicted in
Figure 5.21 (solid blue line). For comparison, an unconstrained GP is trained on the
same data and is depicted in black dash-dotted line in Figures 5.20 and 5.21. Both
GPs show a similar evolution at first glance with only small deviations from the true
underlying function. These deviations, i.e. the GP approximation errors, are depicted
in Figure 5.22. However, the maximum and average errors for both outputs of the
constrained GP (solid blue) are smaller than the approximation errors of the uncon-
strained GP (black dash-dotted line). Furthermore, the unconstrained GP learns an
output reference trajectory whose corresponding reference input violates the input con-
straints of the robot, cf. Figure 5.23 black dash-dotted line. In contrast, the constrained
GP learns a reference trajectory which takes all constraints into account, see the solid
blue line in Figure 5.23. This constrained learning allows for trackability of the learned
reference.
A model predictive controller is designed to track the references. The stage and ter-

minal cost have quadratic form (as in Example 1) with weightings Qtt = diag(100, 100),
Rtt = diag(0.1, 0.1) and QE,tt = diag(0.1, 0.1, 0.1). The prediction horizon is T = 0.5 s
and we use a terminal equality constraint x(tk + T ) = xtt(tk + T ). The resulting
control errors of this controller for both references are depicted in Figure 5.24. The
same MPC shows different performance while tracking the learned references. While
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Figure 5.21: Reference trajectories rtt,1 and rtt,2 are learned from noisy output data (black
crosses) and mapped to state reference trajectories via xtt,1 = rtt,1, xtt,2 = rtt,2
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ṙtt,1

)
+ iπ, where i is the number of periods.
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Figure 5.22: Approximation error of a constrained and an unconstrained GP e := r̂ − rtt.

93



5 Learning-supported Model Predictive Control

1.6

1.8

2

2.2

u
tt
,1

/
m s

U ′ constrained GP unconstrained GP

0 5 10 15 20 25 30
−2

0

2

time t/s

u
tt
,2

/
ra
d s

Figure 5.23: Corresponding input references utt to the learned output references rtt obtained
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different references.
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Figure 5.25: The chosen control inputs u (thin black solid) and the input references utt for
the constrained (blue solid) and unconstrained GP (black dashdotted).

the reference in the constrained GP learning case enables precise tracking, the refer-
ence obtained via unconstrained learning is not exactly trackable. The latter results in
tracking errors which are up to 77 times bigger than in the constrained learning GP
reference, cf. Figure 5.24. These errors occur as the MPC saturates the control input
to its feasible region, see Figure 5.25. Exact tracking of the unconstrained learned ref-
erences is impossible despite the satisfaction of the state and output constraints since
it does not satisfy the input constraints. In contrast to this, the constrained learning
ensures trackability.

Example 3. We aim to show the benefit of constrained learning via training of mul-
tiple GPs for systems with output size larger one. To this end, the planar robot of
Section 2.3.4 and Figure 2.1 should perform a continuous circular motion in Carte-
sian space as required, for instance, in polishing tasks. The planar Cartesian reference
is a circle with a radius of 20 cm centered at x = y = 0.4 m. This reference is not
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Figure 5.26: Cartesian workspace of the planar two degree of freedom robot with a circular
reference, which should be learned.
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Figure 5.27: GP approximation error for the constrained and the unconstrained case.
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Figure 5.28: Output control errors of the model predictive controller for the learned refer-
ence in the constrained GP case.

known analytically and should be learned. It is represented by the data set Dφ with a
noise standard deviation of σ = 5 mm depicted as black crosses in Figure 5.26. When
two GPs are learned independently from each other to capture the two dimensional
motion they might identify slightly different period lengths for each dimension. This
case is shown in Figure 5.26 as black dashdotted line, where the estimated hyperpa-
rameters are σ̂per,1 = 2.11, σ̂per,2 = 2.09, l̂per,1 = 21.32, l̂per,2 = 20.79, T̂per,1 = 6.26 s,
and T̂per,2 = 6.31 s. Even though the approximation quality in Cartesian space in the
beginning is good, the learned Cartesian reference positions for the robot end-effector
will change over time as T̂per,1 6= T̂per,2. In contrast to this, the proposed constrained
learning algorithm couples the learned output references via the constraints and the
shared hyperparameters Tper,1 = Tper,2 = Tper. This way, the same Cartesian position
reference is predicted for each circular round, see Figure 5.26, blue solid line for which
σ̂per,1 = 2.23, σ̂per,2 = 2.16, l̂per,1 = 22.48, l̂per,2 = 21.59, and T̂per,1 = 6.28 s. The corre-
sponding approximation errors of the constrained and unconstrained GP are depicted
in Figure 5.27. Moreover, the missing synchronisation in the unconstrained case leads
to a constraint violation in the output space, cf. Figure 5.26. In this case, the output
constraint set Y, indicated via its complement by the red shaded area in Figure 5.26,
restricts the reference to the physically reachable workspace of the robot. The map-
pings from the flat output to the states and inputs do not exist when this constrained
is violated. Since the references xtt and utt cannot be calculated for the unconstrained
case, it is impossible to set up an MPC controller as outlined in Section 2.3 for this
case. Rather, only the constrained GP learning allows designing an MPC appropri-
ately. The MPC control errors in the output space for the tracking of the constrained
GP reference are depicted in Figure 5.28. The magnitude of the control errors lies in
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the submillimeter range. This precision affirms the trackability of the reference learned
via constrained optimisation.

5.4.3 Learning of Periodic References with Online Data Update

So far, a learning procedure for periodical references is proposed that guarantees con-
straint satisfaction and trackability for all times. Therein, the hyperparameters are
learned offline, and the training data is not updated. These assumptions entail a se-
vere drawback which is outlined below. Assume the hyperparameter optimisation led
to an estimated period length of Tper ≈ Tp with an estimation error eT = Tper − Tp,
where Tp is the true period length of the reference. For large times (and consequently
large distance to the training data) this error will add up to a significant phase shift.
This shift does not affect the trackability of the reference but degrades its approxima-
tion quality. An update of the prediction training data Dpred during run time (online)
eliminates this issue. However, increasing the number of training data points nDpred

leads to an increased computational load and is consequently undesirable. Therefore
we propose an update strategy which keeps the prediction data set size nDpred con-
stant. Every time a new data point (tnew, rnew) is included in the set, another (old)
data point is excluded. A common approach to do so are shifted horizons or windows
of past measurements similar to moving horizon estimation [117, 189]. Windowing
for periodic references was, for instance, considered in [157] to eliminate a potential
phase shift. We extend this idea to include a distance measure d : Rny×Rny → R+

0 in
the update strategy to evaluate distances or similarities between the data points. The
map d can hereby be chosen to encode a desired distance measure, as e.g. Euclidean,
Chebychev, or more general Minkowski distances. This distance is calculated between
the new reference data rnew and all components γpred,i of the prediction data set Dpred.
To this end the index set

I :=
{
i ∈ {1, 2, . . . , nDpred}|d (rnew, γpred,i) < d̄

}
(5.24)

contains all components for which the distance measure fulfils a certain threshold
d̄ ∈ R+

0 . The oldest (and potentially most outdated) data point from I is excluded
from the training data set and replaced by the new one. This data update is described
in Algorithm 2.

Algorithm 2 Data Update
1: Input training data set Dpred, new data point (tnew, rnew), distance threshold d̄
2: find index set I of training data points close to new data via (5.24)
3: find oldest among the close points î = arg mini∈Iχpred,i
4: obtain Dpred,up by replacing (χî, γî) by (tnew, rnew) in Dpred
5: return Dpred,up
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The update criterion reduces data lumping in specific areas compared to window-
ing, especially if new data is not available at equidistant time instances. Therefore,
situations are prevented where data updates reduce the approximation quality due to
imbalanced spatial distribution of the training data. A theoretical analysis of the effect
of data distribution on closed-loop performances is performed in [127]. Furthermore,
an event-triggered update of data with a safe forgetting scheme, as proposed in [224],
could be considered in future work.
To guarantee that nDpred is constant, the following assumption on d̄ is used:

Assumption 24. The threshold d̄ is chosen such that the index set I is non-empty
for all times.

Instead of Assumption 24, one could also use windowing (excluding the oldest data
point) as a backup if I is empty. If a large threshold is chosen, more possible data
points for exclusion are compared, and their actuality becomes more important then
their location. Consequently, the threshold d̄ can be used to find a trade-off between
the importance of actuality and location. Note that in the limit of an infinite threshold
d̄→∞ this strategy is equal to windowing. Overall, the combination of location and
actuality information for online updates allows for improvements in the prediction
accuracy of the GP.
However, such updates of the data set Dpred can lead to a loss of trackability guar-

antees. Thus, an additional updating criterion is included, which prevents from losing
these guarantees. Trackability loss can occur due to two circumstances: Either the
predicted reference with the updated training data Dpred,up is not trackable (it cannot
be followed when starting on it), or the difference between the current reference and
the updated one is so large that the transition leads to the trackability loss. To lower
the chances for the second case, the transient between the previous prediction and the
new one is designed based on a smooth blending. This blending at time tk is realised
via a Cβ sigmoid function α : R→ [0, 1] such that

r̃tt(t) := m+
(
t;Dpred, φ̂

)
(1− α(∆t)) +m+

(
t;Dpred,up, φ̂

)
α(∆t) (5.25)

with t ≥ tk and ∆t = t − tk − Tα
2 . Here, the sigmoid function converges to one

and is assumed to be equal to one from time Tα on, see also Figure 5.29. Only
if the prediction r̃tt(t) with the updated training data Dpred,up and the blending α is
trackable for t ∈ [tk, tk+ τ̄ ] with τ̄ ≥ Tper+Tα, the prediction is used, i.e. rtt(t) = r̃tt(t)
for all t ≥ tk. Otherwise, the data Dpred is not updated and a prediction based on
it is performed as before. This allows for example to exclude outliers or data points
which lead to singularities in the covariance matrices. This way, the GP prediction of
the learned reference is robustly trackable despite an online prediction training data
update.
The proposed update scheme is described in detail in Algorithm 3. To check the

trackability, the time derivatives of (5.25) up to degree β are needed which can be
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Figure 5.29: Sigmoid function α used for smooth blending.

Algorithm 3 GP online learning and prediction for periodical references
1: Init k = k0, t̄,Y ,X ,U , Dφ, Tα, T

2: obtain φ̂ via (5.19) using
(
t̄,Y ,X ,U , Dφ

)

3: choose τ̄ such that τ̄ ≥ Tα +Hφ̂

4: initialise Dpred = Dφ

5: while true do
6: if new data (tnew, rnew) available then
7: obtain Dpred,up by Algorithm 2
8: τ ← [tk, tk + τ̄ ]
9: calculate r̃tt, ˙̃rtt . . . , r̃

(β) via (5.25) and (5.26) for times τ
10: if r̃tt ∈ Y then
11: determine x̃tt = Φ(r̃tt, ˙̃rtt, . . . , r̃

(β−1)
tt ) and ũtt = Ψ(r̃tt, ˙̃rtt, . . . , r̃

(β)
tt )

12: if x̃tt ∈ X and ũtt ∈ U then
13: t← [tk, tk + T ]
14: calculate rtt, ṙtt . . . , r

(β) via (5.25) and (5.26) for times t
15: compute xtt = Φ(rtt, ṙtt, . . . , r

(β−1)
tt ) and utt = Ψ(rtt, ṙtt, . . . , r

(β)
tt )

16: Dpred ← Dpred,up
17: else
18: t← [tk, tk + T ]
19: calculate rtt = m+(t;Dpred, φ̂), . . . , r(β)

tt = m+,(β)(t;Dpred, φ̂)
20: compute xtt = Φ(rtt, ṙtt, . . . , r

(β−1)
tt ) and utt = Ψ(rtt, ṙtt, . . . , r

(β)
tt )

21: end if
22: else
23: t← [tk, tk + T ]
24: calculate rtt = m+(t;Dpred, φ̂), . . . r(β)

tt = m+,(β)(t;Dpred, φ̂)
25: determine xtt = Φ(rtt, ṙtt, . . . , r

(β−1)
tt ) and utt = Ψ(rtt, ṙtt, . . . , r

(β)
tt )

26: end if
27: end if
28: use learned reference rtt, xtt, utt in a model predictive controller
29: k ← k + 1
30: end while
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obtained via the general Leibniz rule

r̃
(β)
tt =

β∑

j=0

(
β
j

)
m+,(j)

(
t;Dpred, φ̂

)
(1− α(∆t))(β−j)

+
β∑

j=0

(
β
j

)
m+,(j)

(
t;Dpred, φ̂

)
α(∆t)(β−j), (5.26)

where
(
β
j

)
denotes binomial coefficients. Note that the optimisation (5.19) is only

performed once, offline, whereas the training data Dpred,up is updated online. This
separation is beneficial in terms of calculation times, as the optimisation has higher
computational demand then inferring the posterior distribution.

Lemma 3. Consider a differentially flat system (2.1) and a Gaussian process with
constant prior mean m and a periodic prior covariance function κ. A reference rtt(t)
provided by the posterior mean (4.13) of the GP trained with (5.19) under the As-
sumption 24 and with τ̄ ≥ Tper + Tα is trackable for all times t ≥ 0 in the sense of
Definition 1 for system (2.1) despite online training data update of the form described
in Algorithm 3.

Proof. Problem (5.19) guarantees for all t ∈
[
0, t̄

]
that rtt(t) = m+

(
t|Dφ, φ̂

)
∈ Y ,

xtt(t) = Φ
(
m+

(
t;Dφ, φ̂

)
, ṁ+

(
t;Dφ, φ̂

)
, . . . ,m+(β−1)

(
t;Dφ, φ̂

))
∈ X and ũtt(t) =

Ψ
(
m+

(
t;Dφ, φ̂

)
, ṁ+

(
t;Dφ, φ̂

)
, . . . ,m+(β)

(
t;Dφ, φ̂

))
∈ U . From the constant prior

mean m(t) = µ, the periodic prior covariance κ, and due to t̄ ≥ Tper it follows that
rtt(t) = rtt(t + Tper), xtt(t) = xtt(t + Tper), and utt(t) = utt(t + Tper) for all t ∈ R+

0 .
Consequently, the prediction based on the set Dφ guarantees rtt(t) ∈ Y , xtt(t) ∈ X
and utt(t) ∈ U for all t ∈ R+

0 .
The data set Dpred is initialised with Dpred = Dφ and an update of Dpred by Dpred,up

at time tk is only performed when r̃tt(t) ∈ Y , x̃tt(t) ∈ X , and ũtt(t) ∈ U for t ∈
[tk, tk+τ̄ ]. If this is fulfilled, r̃tt, x̃tt, and ũtt are used as rtt, xtt, and utt from tk on. This
way, trackability at least up to tk +Tper +Tα is guaranteed. As τ̄ ≥ Tper +Tα it covers
both the smooth transient from the old to the new reference as well as at least one
period of periodic predictions of the new reference. Since we assume that α(∆t) = 1
for t ≥ tk+Tα we can conclude that rtt(t) = rtt(t+Tper) ∈ Y , xtt(t) = xtt(t+Tper) ∈ X ,
and utt(t) = utt(t + Tper) ∈ U for all t ≥ tk + Tα at each time tk even if the update
is performed. Consequently, trackability despite online training update is guaranteed
for all times t ≥ 0.

Example 4. The planar robotic manipulator, cf. Figure 2.1 and Example 3, is used
to perform periodic motions while synchronising this motion to a second manipula-
tor. A constrained hyperparameter optimisation is used to learn the Cartesian motion
which is depicted in Figure 5.30. The hyperparameter optimisation is performed on
the training data depicted in black crosses. The number of data points is nDφ

= 50 and
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Figure 5.30: Learned reference for the end-effector position in Cartesian space.
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Figure 5.31: GP approximation error with and without online prediction training data up-
date.
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Figure 5.32: Cartesian reference prediction r̃tt with an outlier in the data Dpred,up as well
as a prediction of rtt based on Dpred which excludes the outlier.
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Figure 5.33: Learned reference input ũtt for the references r̃tt with outlier in Dpred,up and
reference input utt for rtt without outlier in data Dpred.
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Figure 5.34: MPC output control errors to follow a learned reference with online data up-
date. The small axes show the error for 60 s while the larger figures show the
first period of this motion in more detail.

the standard deviation of the noise in the data is σ = 0.5 mm. For comparison, two
GP predictions with the same hyperparameters φ̂ = (σ̂per,1, σ̂per,2, l̂per,1, l̂per,2, T̂per) =
(1.11, 1.77, 4.01, 5.00, 6.30 s) are depicted in Figure 5.30. One GP prediction uses
the online data update described in Algorithm 3 (depicted as a solid blue line), while
the other (depicted as a black dashed line) is based purely on the offline data (black
crosses). As a distance measure the Euclidean distance d =

√
y2

1 + y2
2 with the thresh-

old d̄ = 5 cm is used in the online update. Both the offline and online case show
good approximation quality in the Cartesian space. However, in both cases, the period
length Tp = 2π s of the motion was overestimated. The prediction errors of the Carte-
sian positions over time are shown in Figure 5.31. While the online update allows
compensating the estimation error, the prediction error increases over time for the of-
fline learning due to a phase shift, cf. Figure 5.31, black dashed line. As a result, the
online update allows for a significant increase in the approximation quality. Still, it
allows for guaranteed trackability due to the smooth blending and the included update
criteria. At time tk = 27.26 s an outlier in the online captured data occurs such that
tnew = tk, rnew = (0 m, 0 m)>. This situation can appear, for example, if data loss
during communication or a malfunction of a sensor occurs. This outlier would lead
to a significant performance loss. In Figure 5.32 the prediction r̃tt starting at tk and
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based on Dpred,up including the outlier is shown as gray solid line. Starting from around
y1 = x = 0.29 m and y2 = y = 0.26 m the blending over to the new prediction can be
seen as slightly s-shaped curve. Even though no output constraints are violated, the
gray curve is not trackable for the system as the demanded inputs to follow it exceed the
input constraints, cf. Figure 5.33. Therefore this data point is not included in Dpred.
The prediction on this set without the new data point is shown in Figure 5.32 as a
black dotted line. This restricted update maintains trackability of the reference as well
as prevents from prediction errors due to outliers. Consequently, it can be used in con-
junction with a model predictive controller allowing for guaranteed recursive feasibility
and potentially small control errors, as shown in Figure 5.34. Larger control errors
occur if the change in the reference due to an updated data set is more dominant. Still,
all updates in the reference allow for trackability and result in submillimeter control
errors.

5.5 Summary

In this chapter, we proposed different ways to support model predictive control with
machine learning. Gaussian processes were used to learn the output model of an MPC
while guaranteeing nominal stability as well as including chance constraints. This
learning-supported model predictive control scheme has been applied to a robotic
example in simulation and experiment, where the interaction of the robot with its
environment is learned and controlled. The hybrid GP model reduces the modelling
error by more than 58 % compared to the first principles models. The closed-loop
simulations show the superior average performance of the learning-supported MPC
over the first principle model predictive controllers. In the adaptive case, where the
influence of the model-plant mismatch is reduced as much as possible, the learning-
supported force controller still shows 50 % smaller errors than the controller with linear
force model. At the same time, it requires less insight and manual design decisions than
nonlinear first-principle models and performs at least equally well. We accomplished
a real-time feasible experimental validation that underlined these simulation results.
Furthermore, Gaussian processes have been used to learn external reference signals

that take the system dynamics and constraints into account. The developed concept
allows for direct use of the GP predictions inside a model predictive controller. Al-
gorithms for constrained GP hyperparameter learning have been proposed to ensure
the trackability of the learned references. As a consequence, we guarantee the recur-
sive feasibility of the controller, which is a fundamental property in MPC from the
theoretical and practical perspective. Various simulation examples were conducted
to illustrate the applicability as well as the benefits of the proposed algorithms. It
was shown, that the proposed constrained learning algorithms increase the reliability
and performance of the GP prediction models compared to classical unconstrained
learning.
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All in all, this chapter outlines different possibilities on how to merge machine learn-
ing and model predictive control safely and reliably. Benefits from both disciplines
such as easy adaptation, handling of noisy measurements, explicit consideration of
constraints and closed-loop guarantees have been merged in an interactive way. Conse-
quently, the proposed algorithms and achieved results build an important step toward
the autonomy of dynamical systems.
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6 Respiratory Motion Compensation

As an application example for the presented approaches, robot-supported interventions
in the spine, such as radio frequency ablation, are investigated, cf. Figure 6.1. The
robot should assist the physician in the precise positioning of surgical instruments while
compensating for the patient’s movements. We propose to use Gaussian processes to
learn and predict these motions. The predicted motion signals serve as references for
a model predictive controller that proactively controls the robotic system to track the
motions.

6.1 Radio Frequency Ablation

We consider radiofrequency ablation in the spine [43, 74, 239]. The goal is to destroy
a tumour or metastasis, which afflicts the vertebral bodies of the spine, via heating
of the malignant cells, cf. Figure 6.1. A high-frequency alternating current induces
heat between electrodes, which must be inserted in the target area. For a successful
treatment, the control of the electrical energy and the positioning of the needle-shaped
electrodes is of significant importance. The former can be achieved via preoperative
modelling of the expected temperature distributions over time in the area of interest
for varying electrode activations and placements [5, 191, 207]. This therapy planning
involves the modelling of the tissue temperature distribution via partial differential
equations. In spinal applications, spatially varying tissue properties such as electrical
and thermal conductivity of the involved tissue types such as bone, muscular or soft
tissue must be incorporated [155, 159, 242]. This planning phase results in an optimal
operating mode and needle position, where the necrosis zone covers the metastasis
while minimising harm for surrounding healthy tissue. Besides the sensitivity of the
temperature profile and distribution to mis-estimated tissue properties, it is also sen-
sitive to the needle position. Therefore, the electrodes must be precisely positioned for
successful treatment. Moreover, precision in needle placement is essential to minimise
harm to surrounding structures by unwanted mechanical penetration. Especially in
the spine, precise insertion is crucial to avoid paralysis or other harm to the nervous
system in the spinal cord. For this chapter, we consider the transpedicular insertion,
as illustrated in Figure 6.1.
To meet the high positioning accuracy demands, one can support the physicians

in the electrode placement with a robotic system. Various robotic assistant systems
have been proposed for spinal interventions and are already in clinical use [17, 37, 47,
129, 195]. Most of these systems require a rigid attachment to the spine or represent
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(a) Robot-assisted insertion of a trocar. (b) Isometric view of inserted elec-
trodes in vertebral body.

Figure 6.1: Illustration of transpedicular electrode placement for a radio frequency ablation
in the spine.

highly specified and not very generic solutions. Instead of considering a bone mounted
setup or a parallel manipulator, we rely on a versatile robotic arm registered to the
patient, similar to the setup used in [87, 157], cf. Figure 6.1a. This setup requires the
synchronisation of the robot motion to the movements of the patient to avoid harming
the patient. These movements can, for instance, occur due to respiration [132, 144].

6.2 Motion Capturing, Modelling, and Prediction
The movements of the patient can be measured during an intervention via optical
tracking systems [129, 216]. If this tracking data is used directly as a reference for
the robot, precise tracking of the actual motion is often not achieved. The deviation
originates from an inherent delay in the acquired tracking data due to data processing.
Moreover, the tracking data can be corrupted with noise and might not even be avail-
able for some times, for example when the line of sight is interrupted by the surgeon.
These issues are not only related to percutaneous interventions of the spine but also la-
paroscopic procedures, cardiac interventions or radiotherapy [194, 204]. Hence, various
prediction filters are proposed in the literature to compensate for the motion, which
often focus on delay compensation in a feed-forward manner. For example, Kalman
filters estimate amplitudes, phases and frequencies of multiple augmented sinusoidal
signals representing the motion [188]. Other model-based approaches use autoregres-
sive models with moving average (ARMA) and adjust the involved weights based on
the data via recursive least squares [50]. A weighted frequency linear combiner was
used in [132] and [193] for motion prediction in spinal and urological procedures, re-
spectively. Learning based approaches span from neural networks [142] over support
vector regression [51] to Gaussian processes [44–46]. Several review studies have been
reported to compare the different approaches [50, 52, 107]. Among other findings,
it was shown that the motion compensation algorithm included in available robotic
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systems in radiotherapy (an ARMA model with weight adjustment via normalised
least mean squares) shows significant space for improvement when compared to the
aforementioned algorithms [50]. In [52] it was observed that an extended Kalman filter
was not outperforming model-free prediction algorithm, but led to a smoother predic-
tion. Hence, a model-free, stochastic learning algorithm such as Gaussian processes
appears promising since it combines the benefits from stochastic Kalman filters and
model-free approaches. In [107] it has been concluded that noise in the data has a
significant effect on the quality of the predictions. Therefore, Gaussian processes are
an appealing strategy for motion prediction as they can directly handle the noise in
the captured data.
In [24] a combination of a Kalman filter and a Gaussian process is used for motion

prediction and extended in [25] for higher dimensions. The Kalman filter is used
for prediction, while the GP corrects the prediction. Furthermore, the GP evaluates
the model quality via the posterior variance. Instead of using a squared exponential
covariance function and outsourcing the prediction into a Kalman filter as done in [24,
25], we directly tackle the overall task with a Gaussian process capable of prediction,
modelling, and filtering of the motions. In [54] a GP is used in combination with a
relevance vector machine. The GP corrects the predictions of the relevance vector
machine and finds correlations between multiple output dimensions. In our setup,
the GP is used not only for correction purposes but covers the whole prediction.
In our case, multiple GP outputs are coupled via the constrained hyperparameter
optimisation, instead of taking the full cross-correlation matrix into account. This
coupling is beneficial in terms of calculation times, especially for online prediction.
In [44–46] Gaussian processes are used for motion prediction in radiotherapy, while
using the GP to merge information from multiple optical marker positions. In our
setup, spine motions for patients in the prone position are predicted rather than organ
motions in the supine pose. Also, we do not use multiple optical markers and merge
their information to a one-dimensional position but use one Moiré phase marker that
provides three Cartesian positions and three orientations at once [222]. Again, we do
not use all correlations between the GP outputs but encode their dependency in the
constrained hyperparameter optimisation.
In contrast to all these existing approaches, our proposed learning algorithm includes

constraints on the learned posterior. Furthermore, our approach updates data online
in a safe manner, for example, excluding outliers. This update leads to a smoother
prediction of the reference that is provably trackable by the robotic manipulator.
Hence, only safe and plausible predictions are made.

6.3 Model Predictive Motion Compensation Control

In this example, model predictive control tracks the predicted reference. Instead of
controlling the surgical couch as done in [89, 90, 181], we use MPC for control of the
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robotic arm to eliminate relative motion between the goal structure and the surgical
device. In contrast to [40], optical instead of haptic feedback is used. Moreover we
tackle the reference prediction with the aformentioned machine learning algortihms
instead of keeping the reference constant over the prediction horizon as in [40]. In
[6], different controllers including repetitive, adaptive, feed-forward and model predic-
tive controllers were compared. The feed forward and the model predictive controller
showed superior performance. As we directly want to consider constraints, the choice
of MPC as motion compensation control is justified. While in [71, 77] unconstrained
MPC for motion compensation in teleoperated robots is considered, we include con-
straints in our setup to incorporate additional safety feature which are also linked to
the GP reference predictor. Since safety is a dominant feature of our coupled motion
prediction and compensation algorithm, it is suited for delicate control tasks such as
the considered robot-supported spine interventions.

General Control Setup for Motion Compensation

The overall setup of the proposed motion compensation algorithm is shown in Fig-
ure 6.2. The preoperative intervention planning (Figure 6.2, top) provides a desired
goal position and orientation of the needle pgoal(t) ∈ R6 relative to the patient which
allows for optimal treatment. Based on this goal position, an entry path is planned for
the robot joint coordinates. This path consists of the angular positions qpath(t) ∈ Rnq

and velocities q̇path(t) ∈ Rnq. The path planner allows obtaining the needle insertion
path while taking into account access path limitations. These limitations should be
considered in the planning as well as in the motion compensation control since the nee-
dle can not be inserted arbitrarily to reach the goal posture. Such a path planning in
joint coordinates allows obtaining a collision-free motion in the operating suite. At the
same time, optimal robot configurations in terms of robustness to external deflection
can be determined. The third component of the offline phase is the hyperparameter
optimisation for the Gaussian process motion model, cf. Figure 6.2. This optimi-
sation is executed on captured motion data directly before the robot-assisted needle
insertion is performed. This way, patient-specific respiratory motion models can be
learned. The optimal hyperparameters are then used online in a GP motion prediction
to obtain smooth values and predictions of the goal structure pose pGP(t) ∈ R6 and its
derivative ṗGP(t) ∈ R6. An inverse kinematics algorithm merges the information from
the online GP motion prediction and the preoperatively planned insertion path. As a
result, a trajectory of predicted angular positions qr(t) ∈ Rnq and velocities q̇r(t) ∈ Rnq

is obtained which reflects the superimposed Cartesian path. These predictions serve
as a reference for the model predictive controller. The MPC, which is formulated in
joint space, steers the robot to follow the references qr and q̇r in an optimal way while
including constraints to ensure safety.
In the following, the used Gaussian process, the inverse kinematics algorithm, and
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Figure 6.2: System setup including the predictive controller which uses a reference predic-
tion provided by the GP.

the controller will be presented in more detail.

Gaussian Process

The Gaussian process predicts the motion of the goal structure in the spine based
on interventional data. This data is obtained via a camera system and a marker
placed on the skin of the patient. In our setup, we use a single camera and a Moiré
phase marker, which provides six-dimensional data, reflecting the Cartesian position
and orientation∗. This data is shown in Figure 6.3. Here, x, y, and z denote the
Cartesian position in the base frame, while A, B, and C denote the Tait-Bryan Euler
angles around y, x, and z (intrinsic) representing the orientation. The camera does
not provide the data in an equidistant grid, but whenever data processing is finished.
The average sampling time of the camera is 15.6 ms, which is 3.9 times larger than
the sampling time of the considered robot controller of 4 ms. The hyperparameter
optimisation is performed on data of the first 15.57 seconds, which cover nearly four
periods. This time is indicated by a grey vertical line in Figure 6.3. Every 15th data
point is used for the optimisation leading to nDφ

= 67. The training data is depicted in
Figure 6.3 as black crosses. For each dimension, a single output GP is used, while the
six Gaussian processes are coupled via the hyperparameters, such as a shared period
length. The periodic covariance κper is used. The optimal hyperparameters obtained
via (5.19) are listed in Table 6.1. The trained GP is evaluated on the data shown
in Figure 6.3. This evaluation includes interpolation for the first 15.57 seconds and
extrapolation thereafter. The performance is shown in Figure 6.3 in blue, while the

∗The data was provided by our project partner the Fraunhofer Institute for Factory Operation and
Automation IFF in the framework of the Forschungscampus STIMULATE.
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Figure 6.3: The training data Dφ (black crosses) is a subset of the captured motion data
(grey solid). The GP predictions are based on a constrained (blue solid) and
unconstrained (black dashdotted) hyperparameter optimisation on this data.

considered constraints are depicted as red shaded areas. These include constraints
on the maximum insertion depth in the Cartesian z-direction as well as orientational
constraints to cover the limitations in the access path through the pedicle of the ver-
tebral body. These constraints are fulfilled and non-active during the optimisation, cf.
Figure 6.3. As a comparison, six completely decoupled GPs are learned in an uncon-
strained manner. Their hyperparameters are also given in Table 6.1. In Figure 6.3 the
unconstrained prediction is shown as a black dash-dotted line. Since the constraints
are not active during learning of the constrained GP, both GPs perform similarly in
most of the directions. However, the shared period length in the constrained case
(see also Table 6.1 column 6) prevents from asynchronous prediction as in the uncon-
strained case. The unconstrained GP misestimated the period length for angle C, see
Table 6.1 column 3. This leads to growing errors for larger time spans, cf. Figure 6.4
bottom right. The coupled and constrained GP can compensate for that by taking
measurements from all directions into account. All in all, the constrained learning of
GPs allows us to obtain reliable and realistic estimates for filtering and prediction of
respiratory motion signals.
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Figure 6.4: Prediction error for unconstrained and constrained GP learning.

Inverse Kinematics Algorithm

The inverse kinematics algorithm merges the predicted pose of the GP with the pre-
operatively planned insertion path. Moreover, it maps the superimposed path to a
desired joint angles motion of the robot. To do so, the inverse kinematic algorithm

q̇r = J†A(qr)
(
ṗGP +KP(pGP − hfk(qr))

)
+
(
I − J†A(qr)JA(qr)

)
q̇path

from [210] is used. Here, J†A(qr) ∈ Rnq×6 is the pseudo inverse of the analytic Jacobian
of the manipulator and I is an identity matrix of size nq×nq. The term (pGP−hfk(qr))
defines the error between the predicted Cartesian pose pGP and the desired pose hfk(qr).
So to say, it can be viewed as a control error. The matrix KP ∈ Rnq×6 can be seen as
a proportional controller matrix where qr is the feedback. The controller matrix KP
should be chosen such that the inverse kinematic algorithm is asymptotically stable.
Besides this feedback, two feed forward terms are included in the algorithm to track
the change ṗGP and to assign a desired elbow motion via q̇path. This algorithm uses the
derivative of the patient motion ṗGP. We explicitly exploit the fact that the GP allows
us to predict the derivative of its output, as outlined in Section 4.6. Without a GP, the
noisy data needs to be differentiated numerically to obtain the velocity information.
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Table 6.1: Optimal hyperparameters for the constrained and unconstrained case.

unconstrained GP training constrained GP training
l̂per T̂per σ̂per l̂per T̂per σ̂per

x 6.346 4.044 s 0.049 6.002 4.044 s 0.010
y 61.035 4.042 s 0.102 49.409 4.044 s 0.100
z 7.803 4.041 s 0.065 6.686 4.044 s 0.100
A 5.928 4.043 s 0.198 4.953 4.044 s 0.301
B 1.464 4.035 s 0.099 1.391 4.044 s 0.202
C 23.082 4.171 s 0.017 19.886 4.044 s 0.100

Figure 6.5 shows the result of a numerical differentiation via finite differences with and
without a low pass filter. Moreover, it compares these velocities to the GP derivative
prediction. Even though the low pass filter drastically reduces the noise, the GP
allows for even smoother predictions. The GP outperforms standard filtering and the
use of unfiltered data such that the inverse kinematics algorithm can work efficiently.
Supplementary material on the performance of the inverse kinematics algorithm can be
found in Appendix A.7. All in all, the proposed reference generator provides suitable
references for the model predictive controller steering the robotic manipulator.

Model Predictive Control

In the simulations and experiments, we use the model predictive controller to manipu-
late a Franka Emika Panda robot, which holds the medical instrument, see Figure 6.6.
The Franka Emika Panda is a seven degree of freedom lightweight robot [68]. It is
designed for human-robot interactions and allows control on torque level, similar to
the KUKA lightweight robot. In [73] the dynamic model (3.1) of the Franka Emika
Panda has been parametrised. Based on this dynamical model, a feedback linearisa-
tion is performed [210]. The MPC including the feedback linearisation is illustrated
in Figure 6.7. The state space formulation of the linearised model used in the MPC
is given by

ẋ =

0 I

0 0


x+


0 0
I 0


u (6.1)

y = x, (6.2)

where 0 ∈ Rnq×nq denotes a matrix of zeros, I ∈ Rnq×nq is the identity matrix, and
the states are x = (q1, q2, . . . , qnq, q̇1, . . . , q̇nq)>. The input u ∈ Rnq is the input to the
linearised system and refers to the acceleration of the joints. The surgical needle is
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Figure 6.5: Comparison of velocity predictions based on finite difference, finite differences
with low pass filter and GP.

aligned with the rotational axis of the sevens joint of the Panda. Since the needle is
rotation symmetric, rotations around the last joint are redundant. Hence, we consider
nq = 6 in this example, while the last joint is kept constant. The MPC controller is
designed according to Section 2.3 as a trajectory tracking controller using optimisation
problem (2.11). In contrast to the robotic force control examples from Chapter 3 and
Section 5.3.4, the reference speed cannot be used as an additional degree of freedom.
This is because the motion of the robot must be synchronised to the patient respiratory
motion to compensate it. Hence, this example is a typical trajectory tracking case,
where we encounter time-dependent references.

The implementation of the overall control setup as shown in Figure 6.2 was done
in MATLAB and acados [227]. Specifications on the objective function and the con-
trol parameters can be found in Appendix A.7. The optimal control problem was
implemented in acados using a MATLAB interface. For the experiments, the com-
munication between the controller and the robot was designed and setup in [96]. It
uses an ethernet connection based on user datagram protocol (UDP). A C++ gateway
function enables a real-time communication between MATLAB and the robot with
user defined sampling times. In this work, 4 ms have been chosen as sampling time.
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Figure 6.6: Illustration of Franka Emika Panda robot [69] in a minimally invasive treatment
on the spine.
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Figure 6.7: Model predictive controller with feedback linearisation.

6.4 Simulation Results

The simulation results for the model predictive controller for motion compensation
are shown in Figure 6.8. The reference which is based on the Gaussian process and
the inverse kinematics algorithm is depicted in dashed black. It represents a straight
insertion path in Cartesian space along the needle with additional respiratory motion
compensation. The insertion is finished after 14 s. Afterwards, the robot should holds
its position while compensating respiratory motion of the patient. The controlled
robot position is shown as a blue solid line in Figure 6.8. As can be seen, each joint
angle follows its respective reference. The corresponding optimal inputs as well as the
angular velocities and joint torques can be found in Appendix A.7. All control errors
are below 0.06 ◦, see also Figure A.19 in Appendix A.7. Since the errors in joint space
are often hard to interpret, we also discuss the control errors in the Cartesian space.
Figure 6.9 shows the Cartesian pose errors in black. A comparison to the achievable
performance of the same controller with different reference definitions is also shown in
Figure 6.9. The solid light grey line describes the control error if the reference is using
the data directly, and the dotted dark grey line uses low pass filtered data. In these
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Figure 6.8: Angular positions for motion compensation in simulation.

two cases, no prediction of the upcoming references is performed. Hence, the current
reference value is held constant over the prediction horizon. As we can see, the control
error of the same controller (identical tuning, sampling and prediction horizon) varies
significantly for different references. The noisy reference MPC produces the largest
control errors of up to 1.1 mm and 0.15 ◦. The low pass filter exhibits smaller control
errors up to 0.6 mm and 0.08 ◦. The best control performance is achieved by the
GP-supported model predictive controller with maximum errors of 0.3 mm and 0.05 ◦.
Overall, we were able to show that the GP based MPC outperforms non-learning based
approaches. Besides the satisfactory performance, the proposed learning based MPC
provides additional safety by incorporating constraints in the learning and control.
Based on this successful evaluation in simulation of the Gaussian process based motion
compensation via MPC, experiments on the real robot can be performed.

6.5 Experimental Validation

An experimental validation of the learning-supported motion compensation was per-
formed. The same controller parameters as in the simulation are used, cf. Ap-
pendix A.7. The joint positions encountered in the experiments are shown in Fig-
ure 6.10 in blue. The robot follows its reference (black dashed) despite a model plant
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Figure 6.9: Cartesian errors for motion compensation in simulation.

mismatch. In Figure 6.11, a close-up of angle three is depicted to show the effect of the
model-plant mismatch. The predictions of the optimal controller for every 50th itera-
tion are shown in gray. These predictions start at the current measurement and move
towards the reference (black). However, the actual robot (blue) moves not exactly
along the predictions resulting in a small offset from the reference. This model-plant
mismatch leads to higher control errors compared to the simulations, which assume
perfect cancellation of the non-linearities via the model-based feedback. The control
errors of the joint angles are shown in Figure 6.12. Figure 6.12 shows that the con-
trol error is larger during the insertion phase than during pure motion compensation
in most of the joints. This can originate from non-compensated nonlinearities which
have a higher effect for larger or faster motions. During the compensation phase, an
oscilation in the control error can be seen which synchronously moves with the desired
reference. Since the motion repeatedly changes its direction for each of the joints,
friction has a relatively high impact on the robot. Unfortunately, the friction model
used for compensations from [73] does not represent all occurring effects in our robotic
system. Especially joints four to six require much higher inputs than the model sug-
gests to overcome the friction. The corresponding control inputs and joint torques are
depicted in Appendix A.7. Nevertheless, all control errors are smaller than 0.75 ◦. The
corresponding pose errors in Cartesian space are depicted in Figure 6.13. The absolute
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Figure 6.10: Angular positions for motion compensation in experiment.

Table 6.2: Cartesian pose errors for the experiments on learning-supported motion com-
pensation.

ex ey ez eA eB eC
maximum error 2.76 mm 0.90 mm 2.10 mm 0.54 ◦ 0.25 ◦ 0.45 ◦

RMSE 0.97 mm 0.20 mm 0.78 mm 0.23 ◦ 0.10 ◦ 0.19 ◦

maximum errors of 2.76 mm and 0.54 ◦ occur in the Cartesian x-direction and by the
rotation around the x-axis during the insertion, cf. Figure 6.13 and Table 6.2. The
root mean square error in all directions lies below 1 mm and 0.3 ◦, respectively. Hence
we obtained a submillimeter precision for the robot assisted needle placement. These
high accuracies show the capabilities to improve treatments like the radio frequency
ablation or pedicle screw placement in the spine by robotic assistance.

6.6 Summary

Experimental validation of the proposed learning-supported MPC for periodic ref-
erences in robot-assisted surgery was conducted. Human respiratory motions were
learned and compensated. Comparisons to standard filtering as well as non-predictive
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Figure 6.13: Cartesian position errors for motion compensation in experiment.

approaches for reference definitions showed the superior performance of the GP refer-
ence generator. The introduced constraints in the GP reference learning allowed for
an implicit coupling of multiple GPs for each pose and orientational direction. We
obtained improved prediction performance compared to unconstrained and fully decou-
pled GPs while also outperforming standard filtering techniques. Using the predicted
respiratory motions in a model predictive controller enabled the precise positioning of
surgical instruments relative to the anatomical goal structures while satisfying con-
straints on the actuators and the insertion path. We achieved a sub-millimetre pre-
cision of the needle tip in terms of the root mean square control error in Cartesian
space. Hence, our concept allows precise positioning of medical equipment relatively
to a moving goal position to support physicians in demanding medical treatments.
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7 Conclusion and Perspective

This thesis aims at the development of new approaches to increase the autonomy
of dynamical systems safely and reliably. To do so, we proposed model predictive
control strategies for systems that interact with their environment and learn from this
interaction. In particular, we considered robotic systems that are supposed to exert
various forces on their surroundings or should synchronise their motions to them.
In the first part, we developed interaction force control schemes based on model

predictive control. The proposed model predictive controller directly controls the
interaction force. This allows the system to follow desired force profiles while ensuring
safety by taking constraints on the contact forces into account. Loss of contact or
damage by too high forces is prevented. In comparison to existing predictive force
controllers, no artificial dynamics for the interaction need to be added. This lowers
the computational complexity, while the controller tuning and prediction achieve the
reduction of oscillations. To increase the performance even in the case of disturbances,
path-following formulations were utilised. Consequently, the robot is behaving not
only compliant in the force-controlled directions but also along the geometric reference
path. For all approaches, we can establish stability. An experimental validation next to
several simulation studies has underlined these advantages. It illustrates the increased
autonomy for systems that perform motions with desired contact forces while the
developed controller guarantees safe interaction. However, we have not leveraged all
possible benefits from the proposed control setup. In the experiments, the surrounding
materials have been homogeneous in space. Since model predictive control provides
foresight, it would outperform non-predictive controllers all the more in environments
with distributed material properties. Hence, an experimental validation with a more
diverse environment should be considered in future work.
While the model-based force controller design allows for convergence, constraint

satisfaction, and closed-loop stability, the performance and transferability of the con-
troller can benefit from machine learning. Thus, we proposed Gaussian processes to
learn static output maps from noisy data. With the devised setup, adaptation to
varying environments is achieved without manual effort by experienced control en-
gineers. Instead of including the machine learning scheme into the whole system
model, we specialised the proposed approach on the learning of output maps. This
perspective eliminated the necessity of uncertainty propagation through the dynam-
ics, and hence, the approximation of non-Gaussian distributions. As shown, we can
guarantee stability under reasonable conditions. The performance of the approach
was compared to linear and nonlinear first-principle based controllers in simulations
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and experiments. We showed that the learned contact force controller outperforms
non-adaptive first-principle controllers by over 47 % in terms of the root mean square
error for a given reference task. Moreover, the learning-supported controller showed
superior performance over linear and adaptive first-principle models in both simula-
tions and experiments. We validated the reliability of the learning-supported model
predictive controller via an a posteriori constraint tightening based on the variance in-
formation of the Gaussian process. Overall, we accomplished an increased autonomy
of systems that operate in varying environments, accompanied by additional safety
features. However, online constraint tightening based on recently proposed approxi-
mation error bounds [122, 128] should be addressed in future research.
Besides the learning of outputs, we also addressed the task of a priori unknown

references. In many corporative tasks, systems should synchronise their motions to
other systems, humans, or follow a desired reference. In such cases, references are not
known a priori but described via data. Future references might be unknown while past
and current information can be corrupted with noise. We proposed the framework of
Gaussian processes reference generators for model predictive control to tackle these
issues. The Gaussian processes are trained on noisy and past data to predict references
over the horizon of the model predictive controller. These references should be smooth
and trackable, such that closed-loop stability of the control system under the learned
references is maintained. To learn trackable references, we proposed a new constrained
hyperparameter optimisation for the learning of Gaussian processes, which encodes the
system properties. We outlined how this setup can be used for asymptotically constant
and periodic references resulting in trackability and stability guarantees. Online data
update schemes were proposed to include data on the fly while preventing trackability
loss. The derived approach closely interconnects machine learning and control theory.
Hence, we accomplished autonomous behaviour of dynamical systems that receive
external signals as references while providing feasibility guarantees that enable reliable
control. Besides several simulation examples, an experimental validation in robot-
supported medical tasks was achieved. In robot-assisted surgery, precise placement
of surgical instruments is needed, while the respiratory motions of patients must be
compensated. The proposed learning-supported model predictive controller allows for
such precise placement and compensation. It achieved a submillimeter precision in
terms of the root mean square error in experiments.
While we tackled trajectory tracking formulations for the reference learning model

predictive control setup, an extension to path following formulations is interesting as
well. Future research could focus on the utilisation of the variance provided by the
Gaussian process to extend a reference path to a corridor [56]. Moreover, a fusion
of the proposed learning-supported force control with the reference generator would
allow for more sensitive robot control. As Gaussian processes easily allow for sensor
fusion, haptic and optical data could be merged in future work to equip robots with
tact, sense and sensibility in delicate control tasks.
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A Appendix

A.1 Parameters of Planar Robot Example

The inertia matrix B used in the examples of the Sections 2.2.4, 2.3.4, 2.4.4, and in
Example 3, and 4 for the planar two degree of freedom robot is

B =

 b5 sin(q2) + b1 cos(q2) + b2 −b6 sin(q2) + b3 cos(q2) + b4
−b6 sin(q2) + b3 cos(q2) + b4 −b4


 , (A.1)

with the parameters

b1 = 1.0645822136, b4 = −0.443227999912,
b2 = 1.747789839512, b5 = 0.0137409152,
b3 = −0.5322911068, b6 = 0.0068704576.

These values were identified in [11]. The output y = (y1, y2)> of the system is the
Cartesian end-effector position, which can be obtained from the joint angles q1 and q2
via the forward kinematics

y1 = l1 sin(q1) + l2 sin(q1 − q2)
y2 = l1 sin(q1) + l2 cos(q1 − q2).

Here, l1 = 0.4 m and l2 = 0.39 m are the link lengths, see also Figure 2.1b. The weight-
ing matrices of the model predictive controller in Sections 2.2.4, 2.3.4, Example 3, and
Example 4 are

Qi = diag(1 · 104, 1 · 104)
Ri = diag(0.01, 0.01)

QE,i = diag(0.1, 0.1, 0.01, 0.01),

with i ∈ {s,tt}. For the path following case (Section 2.4.4), extended matrices are
used to cope for the extended number of states, inputs, and outputs due to the virtual
system. They are chosen to be

Qpf = diag(1 · 104, 1 · 104, 1000)
Rpf = diag(0.01, 0.01, 0.01)

QE,pf = diag(0.1, 0.1, 0.1, 0.1, 0.01, 0.01, ).
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A Appendix

A.2 Direct Kinematics

The goal of direct kinematics is to express the end-effector coordinates in a base frame
in dependence of the joint coordinates. A short overview about the involved transfor-
mations is given in the following based on [210]. Since the KUKA Lightweight robot
and the Franka Emika Panda robot consist of seven revolute joints, the joint coordi-
nates are the angular positions q ∈ R7. Following the Denavit-Hartenberg convention,
a coordinate frame in each link of the manipulator is attached. The transformation
from coordinate frame i to frame i − 1 can be expressed by a homogeneous transfor-
mation matrix

T i−1
i (qi) =




cos(qi) − sin(qi) cos(αi) sin(qi) sin(αi) ai cos(qi)
sin(qi) cos(qi) cos(αi) − cos(qi) sin(αi) ai sin(qi)

0 sin(αi) cos(αi) di
0 0 0 1



. (A.2)

This transformation matrix contains the translation by di along the z-axis of Frame
i− 1, rotation by qi around this axis, translation by ai along the x-axis of the rotated
frame, and rotation by αi around this axis. The Denavit-Hartenberg parameter for
the KUKA Lightweight robot with frames assigned as in Figure 3.1b are given in
Table A.1. The Denavit-Hartenberg parameter for the Franka Emika Panda robot
are listed in Table A.2. Based on this transformations, the overall mapping for the
position and orientation of Frame 7 to Frame 0 is given by

T 0
7 (q) = T 0

1 (q1) · T 1
2 (q2) · . . . T 6

7 (q7). (A.3)

Using this direct kinematics the transformation between the end-effector and a base
frame can be obtained via

T b
e (q) = T b

0 · T 0
7 (q) · T 7

e , (A.4)

where T b
0 and T 7

e denote configuration independent transformations, which denote the
position and orientation of frame 0 with respect to the base frame and the end-effector
pose and orientation with respect to the seventh frame of the robot. For more details,
see for instance [210].

In all examples in this work the transformation matrix T b
0 is the identity. The

transformation from the last joint of the KUKA robot to the end-effector, i.e. the pen
tip, is

T 7
e =




1 0 0 0
0 1 0 0
0 0 1 0.232 m
0 0 0 1




(A.5)
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for the implementations in Chapter 3 while it is

T 7
e =




1 0 0 0
0 0 −1 0
0 1 0 0.183 m
0 0 0 1




(A.6)

in Section 5.3.4. This difference originates from the different mountings of the wrist
sensor and the way of holding the pen. While in Chapter 3 the pen is held by the
Barrett hand, in Section 5.3.4 the pen is placed in a small metal cylinder. The transfor-
mation from the last joint of the Panda robot to the end-effector, i.e. the needle-shaped
electrode for the radio frequency ablation, is

T 7
e =




1 0 0 0
0 1 0 0
0 0 1 0.1 m
0 0 0 1



. (A.7)

Table A.1: Denavit-Hartenberg parameter for KUKA Lightweight robot for coordinate
frames depicted in Figure 3.1b.

Joint ai [rad] di[m] αi [rad]
1 0 0.31 π/2
2 0 0 -π/2
3 0 0.4 -π/2
4 0 0 π/2
5 0 0.39 π/2
6 0 0 -π/2
7 0 0.078 0

Table A.2: Denavit-Hartenberg parameter for Franka Emika Panda.

Joint ai [rad] di[m] αi [rad]
1 0 0.33 -π/2
2 0 0 π/2
3 0.0825 0.316 π/2
4 -0.0825 0 -π/2
5 0 0.384 π/2
6 0.088 0 π/2
7 0 0.107 0
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A.3 Minkowski Sum and Pontryagin Set Difference
According to [20] the Minkowski sum of two polytopes A1 ∈ Rn,A2 ∈ Rn is defined as

A1 ⊕A2 := {a1 + a2|a1 ∈ A1, a2 ∈ A2}. (A.8)

The Pontryagin set difference, which is denoted by 	, is given by

A1 	A2 := {a1 ∈ A1|a1 + a2 ∈ A1,∀a2 ∈ A2}. (A.9)

A visualization of the these operators is given in Figure A.1. Please note, that the
Pontryagin difference is not the complement of the Minkowski sum, since (A1	A2)⊕
A2 ⊆ A1, see [20].

−2 0 2
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0

2

A1 ⊕A2

A2

A1

a1

a
2

(a) Minkowski sum.

−2 0 2

−2

0

2

A1

A1 	A2

A2

a1

a
2

(b) Pontryagin difference.

Figure A.1: Set addition and subtraction.

A.4 Supplementary Material for Direct Force Control
In the robotic writing example from Chapter 3, the reference for the path following
case is chosen to be

rpf(θ) =




rpf,y(θ)
rpf,z(θ)
rpf,F (θ)
rpf,θ(θ)




=




ay,0 + ay,1θ

az,0 + az,1 sin(2πθ)

aF,0

3∑

i=1

aF,1,i
exp(aF,2θ + aF,3,i) + 1

θend




(A.10)

with ay,0 = −0.4761 m, ay,1 = 0.2 m, az,0 = 0.6015 m, az,1 = 0.04 m, aF,0 = 2 N, aF,1,1 =
−1 N, aF,1,2 = −2 N, , aF,1,3 = 3 N, aF,2 = 120, aF,3,1 = 100, aF,3,2 = 62, aF,3,3 = 12 and
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θend = 0. The weightings in the cost function for tracking and path following are

Qpf = diag(2 · 105, 4 · 105, 0.4, 40),
Rpf = diag(0.4, 0.3, 0.3, 0.06),

QE,pf = diag(0, 0, 0, 0, 0, 0, 40, 0),
Qtt = diag(2 · 105, 4 · 105, 0.4),
Rtt = diag(0.4, 0.3, 0.3),

QE,tt = diag(0, 0, 0, 0, 0, 0).

In this example, a prediction horizon of T = 150 ms is used. The input is assumed to be
piecewise constant between sampling times Ts = 10 ms. The robot joint and velocity
limits define X = [−170◦, 170◦]× [−120◦, 120◦]× [−120◦, 120◦]× [−100◦s−1, 100◦s−1]×
[−110◦s−1, 110◦s−1] × [−130◦s−1, 130◦s−1]. The virtual states in path following are
constrained by Z = [−1, 0]× [0 s−1, 0.07 s−1]. The following box constraints have been
added for the inputs U = [−13 Nm, 10 Nm]× [−5 Nm, 5 Nm]× [−5 Nm, 5 Nm] and for
the virtual input V = [−10 s−2, 0.1 s−2]. Please note that these input torque constraints
refer to the control of the robot where the gravity torques τg and the external torque
τext are compensated additionally. The former is compensated by inbuild controllers of
the KUKA Lightweight robot. The latter is compensated via an additional feedback
controller designed in [18] based on the six-dimensional measured forces and torques
at the wrist. Hence, the input constraints do not reflect the actual physical limitations
of the robot but a more narrow area of the desired operation which covers the required
inputs for the considered motions.

A.5 Supplementary Material for Learning-supported Force
Control

Additionally to the discussions provided in Section 5.3.4, this appendix gives details on
the modelling errors and approximation qualities of the derived force models. More-
over, the used parameters for the controller design as well as complementary figures
of the control signals are given.

Controller Parameters

For the controller simulation and experiments in Section 5.3.4 the same cost function
and control parameters are used for all MPC independent of their respective force
models. The quadratic cost functions of the involved predictive controllers are given
by Lpf = e>pfQpfepf + u>pfRpfupf, Epf = ε>pfQE,pfεpf as in Chapter 3. The weightings are
Qpf = diag(9 · 106, 9 · 106, 6, 4 · 103), Rpf = diag(6, 6, 6, 6), QE,pf = diag(0, 0, 0, 0, 0, 0, 4 ·
103, 0). A prediction horizon of T = 150 ms and a sampling time of Ts = 10 ms are
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Figure A.2: Error between measured and modelled forces ranging from around −2 N to 3 N.

used. The state constraints are X = [−170◦, 170◦] × [−120◦, 120◦] × [−120◦, 120◦] ×
[−100◦s−1, 100◦s−1]× [−110◦s−1, 110◦s−1]× [−130◦s−1, 130◦s−1]. The virtual states in
path following are constrained by Z = [−1, 0] × [0 s−1, 0.07 s−1]. The following box
constraints have been added for the inputs U = [−13 Nm, 10 Nm] × [−5 Nm, 5 Nm] ×
[−5 Nm, 5 Nm] and for the virtual input V = [−10 s−2, 0.1 s−2]. Furthermore, the
contact force is constrained by proj3Y = [0 N, 7.5 N] while these constraints could also
build the basis for a constraint tightening.

Modelling

Figure A.2 shows the model errors, i.e. the deviation of the force model output from
the measured values, for each of the considered models. As can be seen from the colour
code, a significant reduction of the model error is achieved by the hybrid model (Fig-
ure A.2, right) compared to the first-principles models (Figure A.2, left and middle).
In Figure A.3 the training data set for the large GP used in the simulations outside

of the optimal control problem is shown. Its approximation performance can be seen in
Figures A.4-A.6. As a comparison the hybrid model with nDpred = 60 is shown in blue
in Figures A.4-A.6. The root-mean-square error between the data and the large GP
is 0.3148 N, while the maximum absolute error is 1.1968 N. It approximates the data
slightly better than the hybrid model to the price of using a nearly seven times larger
data set, cf. Table 5.1. Taking the computational burden into account which grows
cubically with the number of data points for every iteration in the optimal control
problem, the hybrid model finds the desired trade-off between model complexity and
accuracy, while the large GP builds a more precise representation of the underlying
true relation useful for simulations.

Simulation and Experimental Results

As supplementary material, the states and inputs of the controllers shown in Figure 5.8
are depicted in Figure A.7 for the robot and in Figure A.8 for the virtual system.
Small differences between the state evolutions of the true system for each controller
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Figure A.3: Black crosses show the prediction data set (nDpred = 419) of the GP that is
used in simulations outside of the optimal control problem to replace the real
system.

can be seen leading to the different control performances discussed in Section 5.3.4,
cf. Figure A.7. Nevertheless, constraints on the virtual system are satisfied for all
controllers for all times, cf. Figure A.8 (left). Figure A.8 (right) shows the simulated
closed-loop forces based on the large GP (blue) for the MPC with linear spring model
(top), nonlinear spring (middle), and hybrid model (bottom). The predictions of the
optimal control problems are shown as dashed black line. While the predictions of
the controllers satisfy all constraints, the closed-loop system violates them in some
cases. In the hybrid case, constraint tightening based on the posterior variances is
shown in Figure A.8 (bottom right) for validation purposes. As can be seen, the OCP
predictions (black, dashed) satisfy the shrunken constraints (red area), such that the
closed loop response (blue) satisfies the original constraints (Fn > 0).

The joint angles and torques for the experiments from Section 5.3.4 are shown in
Figure A.9. Clearly the noise in the sensor data including position, velocity, force,
and torque measurements leads to larger variations in the control inputs as in the
simulations. The corresponding virtual system evolution in the experiments is shown
in Figure A.10, left. All input constraints, both for the torques as well as for the
virtual input, are satisfied. In Figure A.10 right, the contact force with the hybrid
model MPC is depicted. The top plot shows the full path with the simulation time
from 0 s to 20 s. The middle plot shows a zoomed area in the first four seconds,
while the lower plot shows the last six seconds. For validation purposes, the tightened
constraints Ỹ are shown in red. As can be seen, these constraints are never active or
violated.
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Figure A.9: States and inputs for the experiments shown in Figure 5.10.
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Figure A.10: Virtual system and contact force for the experiments shown in Figure 5.10.
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A.6 Comparison of Adaptive Force Model and State Force
Model

The model predictive controllers for the robotic manipulator in Chapter 3 and Chap-
ter 5 rely on an output control error formulation. Hence, both the dynamic state
and the output maps influence the controller performance. In these formulations the
outputs are not nessesarily defined via the availablitiy of the measurements but are
selected to represent the variables of interest we want to control. For example, the
force model maps from joint angles to the contact force, which both can be measured.
Hence, state feedback is possible without the nessecity of estimating the joint angles
from the force measurements. Due to the relatively precise joint angle sensors com-
pared to the force sensor, we use the joint angle sensor reeding directly. Therefore, in
principle no online force measurments are nessesary from the theoretical perspective.
However, the control performance will then entirely depend on the quality of the used
contact force model. The resulting control performance for this setup is shown in Fig-
ure 5.8. Clearly, without force feedback, the influence of the model-plant mismatch is
quite significant. In MPC, feedback is incorporated via the initial conditions of the
states. If the contact force is considered as a dynamical state instead of an output of
the system, force feedback can easily included via initial force values. To do so, the
derivative of the output equation h or h̃ and the contact force Fn can be included in an
extended system model. This was done for the linear and nonlinear spring model from
Section 5.3 as well as for the hybrid model including the derivative of the posterior
mean, cf. (4.14). This reformulation bears the drawback of including an additional
differentiation in the design phase and consequently an additional integration in the
numerical solution and optimisation. As an alternative, in Sections 3.3 and 5.3.4 an
update of the output model is proposed which includes the same feedback information
as an initial condition in a dynamic state equation. This update was implemented in
the ACADO toolkit via the use of online data [7].
The control performance in Cartesian space of the derivative formulation is shown

in Figure A.11. A comparison with the performance of the adaptive case shown in
Figure 5.9 reveals no difference in the performances. The comparison of the contact
force and the corresponding control errors for the derivative and the adaptive setup
is provided in Figure A.12. As can be seen, both controller setups behave identical
for the linear (Figure A.12, top), the nonlinear (Figure A.12, middle) and the hybrid
force model (Figure A.12, bottom). However, the required computation times differ
as depicted in Figure A.13. For the first-principles models no significant increase in
the computation times for the extended dynamical system including the artificial force
dynamics is visible, cf. Figure A.13 left and middle. In other word, the additional
computational complexity of the added dynamical force equations is negligible for the
first-principles models. However, the Gaussian-process-based hybrid model is consid-
erably more complex. Hence it shows higher computational time in the dynamic force
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Figure A.13: Comparison of calculation times for the optimal control problem with adaptive
force model (black dashed) and the derivative of the force model included in
the dynamic system equations (gray solid).

case compared to the adaptive case, cf. Figure A.13 right. The average time for the
differential formulation is 2.43 ms while the adaptive MPC only needs 1.37 ms in aver-
age to solve the optimal control problem. Consequently, the same control performance
with lower computational time can be achieved via the proposed adaptation scheme.
Moreover, the adaptive output model does not suffer from recursive evaluations of
the GP at uncertain inputs as in a dynamical system. Hence, variance information
does not need to be approximated but can be determined via the posterior covariance
function as usual.

A.7 Supplementary Material for the Motion Compensation
Example

The inverse kinematics algorithm merges the motions captured in Cartesian space and
the planned insertion path in joint space. It involves the gain KP which was chosen to
be KP = diag(160, 160, 160, 40, 40, 40). To evaluate the inverse kinematics algorithm,
three different inputs to the algorithm are tested. In the first scenario, the inverse
kinematics algorithm uses the captured motion data directly. A low pass filter is used
in a second scenario. In the third scenario, the inverse kinematics algorithm uses the
proposed Gaussian process for prediction and filtering. A comparison of the resulting
joint space references is shown in Figures A.14 and A.15. The grey line denotes the
solution of the inverse kinematic algorithm based on the unfiltered data. As can be
seen, the noise from the Cartesian space is propagated through the inverse kinematics
mapping. Especially the joint velocity references are heavily affected by the noise in
the data. The low pass filter is lowering this effect, cf. Figures A.14 and A.15 blue
dashed lines. Even more smooth references are obtained when the inverse kinematics
use the GP filtered predictions, cf. Figures A.14 and A.15 black lines. Moreover, the
low pass filter introduces a noticeable delay, cf. Figure A.14 (left middle). The basic
idea of the GP prediction is to eliminate the issues via a smooth prediction of the
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Figure A.14: Angular position references from inverse kinematics.

motions. This goal has been accomplished.
For the simulation and experiments in Chapter 6 the cost functions Ltt = e>ttQttett +

u>ttRttutt, and Ett = ε>ttQE,ttεtt are used. The involved weighting matrices used for
simulations and experiments are

Qtt = diag(106, 106, 106, 1.2 · 106, 1.6 · 106, 1.4 · 106, 100, 100, 100, 1, 0.1, 0.1)
Rtt = diag(1, 0.1, 1, 0.5, 0.001, 0.01)

QE,tt = 107 · I,

with I ∈ R2nq×2nq.
The state constraints according to the Panda data sheet [68] including a reduction of

the allowed maximum velocities are X = [−166◦, 166◦]×[−101◦, 101◦]×[−166◦, 166◦]×
[−176◦,−4◦]× [−166◦, 166◦]× [−1◦, 215◦]× [−115◦s−1, 115◦s−1]× [−115◦s−1, 115◦s−1]×
[−115◦s−1, 115◦s−1]× [−115◦s−1, 115◦s−1]× [−143◦s−1, 143◦s−1]× [−143◦s−1, 143◦s−1].
Constraints on the optimal inputs are U = [−8.5 · 103 ◦s−2,−8.5 · 103 ◦s−2]× [−8.5 ·

103 ◦s−2,−8.5·103 ◦s−2]×[−8.5·103 ◦s−2,−8.5·103 ◦s−2]×[−8.5·103 ◦s−2,−8.5·103 ◦s−2]×
[−8.5 · 103 ◦s−2,−8.5 · 103 ◦s−2]× [−8.5 · 103 ◦s−2,−8.5 · 103 ◦s−2]. A prediction horizon
of T = 80 ms and a sampling time of Ts = 4 ms are used.
Supplementary information for the simulation results are given in Figures A.16-

A.20. Figure A.16 shows the optimal inputs, while Figure A.17 displays the resulting
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Figure A.15: Angular velocity references from inverse kinematics.
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Figure A.17: Joint torques in simulation.
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Figure A.18: Angular velocities in simulation.
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Figure A.19: Angular position errors for motion compensation in simulation.

joint torques according to the diagram in Figure 6.7. The angular velocities for the
GP supported MPC are depicted in Figure A.18. The simulation control errors are
depicted in Figure A.19. The scattering in the error origins from the online update
of the reference with noisy data. The prediction data set Dpred is updated whenever
new optical data is available and if this update allows for trackability according to
Algorithm 3. Additionally to the control error comparison in Figure 6.9 we also wanted
to show the error between the robot pose and the original unfiltered data. In general,
the errors made by the GP, the inverse kinematics, the controller, and the linearisation
might add up. Hence, the errors ẽi with i ∈ {x,y,z,A,B,C} of the robot pose with
respect to the data are of additional interest. Figure A.20 displays the errors ẽ between
hfk(q) and the data instead of the control errors e between hfk(q) and hfk(qr). Most of
the curves in Figure A.20 only show the noise of the data instead of an actual error.
However, the MPC based on a low pass filter is performing significantly worse than the
GP-based MPC. This originates from the delay the low pass filter introduces. Hence,
even if the control error in the MPC is low, the error of the filter adds on top leading
to larger deviations from the actual patient position. The GP supported MPC does
not suffer from this issue, due to the smooth predictions provided by the GP as a
reference to the MPC.
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Figure A.20: Errors of robot position compared to original data.

Supplementary plots for the experimental evaluation of the learning supported MPC
scheme are provided in Figures A.21-A.23. In Figure A.21, the angular velocities (blue)
as well as the corresponding references (black) are shown. Even though the effect of
the noise on the references is about one magnitude smaller compared to the unfiltered
data, it is still noisy. Nevertheless, the controller tuning emphasises the minimisation
of the joint angle error more than the joint velocity error by the chosen weights.
Hence, the actual robot motions shows slightly smoother curves than its reference.
The optimal inputs are shown in Figure A.22. They are magnitudes larger than the
simulated inputs in Figure A.16. This origins from the model-plant mismatch. Since
the robot at each sampling is not exactly on the reference, the controller chooses large
inputs to drive the system to its reference. Nevertheless, all constraints for the control
inputs are satisfied. The corresponding joint torques send to the robot are depicted
in Figure A.23. These are larger than the torques in the simulations to overcome the
uncompensated friction, cf. Figure A.17. Hence, the model predictive controller shows
a certain inherent robustness despite the existing model-plant mismatch.
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Figure A.21: Angular velocities in experiment.
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Figure A.22: Angular accelerations as optimal inputs for linearised system in experiment.
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Figure A.23: Joint torques in experiment.
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