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Abstract
As a part of the experiments of the Atlas collaboration, protons are accelerated and
brought to collision in the Large Hadron Collider (Lhc) at Cern. So-called top-quark
pair production events take place in which a top-quark and an antitop-quark are created
from the parton interactions from the underlying proton collision. These particles then
decay into new particles in the final state. To study the top-quark, the decay products
must be reconstructed in the detector which is complicated by background processes and
measurement uncertainties. In order to obtain the best possible reconstruction of the top-
quark events, the permutations of possible particle assignments and their probabilities are
calculated with the help of the Kinematic Likelihood Fitter.
Based on Kinematic Likelihood Fitter and a boosted decision tree enhancement to it, in

a first step a deep neural network was developed to reconstruct and improve the evaluation
of the most probable particle permutation. Subsequently, another deep neural network
architecture was developed which allows statements about parts of the reconstruction.
This enables users to filter out a larger dataset of relevant events from the originally
measured data, which can be tailored to their problem and has a higher purity and
precision.

Zusammenfassung
Im Rahmen der Atlas-Kollaboration werden am Cern im Large Hadron Collider (Lhc)
Protonen beschleunigt und zur Kollision gebracht. Dabei finden unter anderem sogenannte
Topquark-Paarproduktionen statt, bei welchen aus dem Protonenzusammenstoß Parto-
nen und aus deren Interaktion ein Topquark und ein Antitopquark entstehen. Diese Teil-
chen zerfallen dann in weitere Teilchen im Endzustand. Um das Topquark untersuchen
zu können, müssen die Zerfallsprodukte im Detektor rekonstruiert werden, was durch
Untergrundprozesse und Messungenauigkeiten erschwert wird. Um eine möglichst gute
Rekonstruktion der Top-Quark-Ereignisse zu erhalten, werden verschiedene Teilchenzu-
ordnungen und und deren Wahrscheinlichkeiten mit Hilfe des Kinematic Likelihood Fitter
berechnet.
Aufbauend auf Kinematic Likelihood Fitter und einer Erweiterung durch einen Boos-

ted Decision Tree, wurde ein tiefes neuronales Netz entwickelt, um die Bewertung der
wahrscheinlichsten Teilchenzuordnung in einem ersten Schritt zu rekonstruieren und zu
verbessern. Im Anschluss daran wurden weitere tiefe neuronale Netze entwickelt, wel-
che Aussagen zu Teilen der Rekonstruktion ermöglichen. Dadurch erhalten dessen Nutzer
die Möglichkeit, zugeschnitten auf ihre Problemstellung und mit einer höheren Präzisi-
on, einen größeren Datensatz an relevanten Ereignissen aus den ursprünglich gemessenen
Daten herauszufiltern.
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1 Introduction

The research field of particle physics is currently based on analyses of very large datasets.
Whether simulated or generated in particle accelerators, the volume of data poses in-
creasing information technology problems. Researchers are faced with issues like storing,
evaluating and keeping data available. Current trend topics such as grid computing and
data science were, to a large extent, developed in the context of particle physics research
and others, like machine learning, are used frequently [1–4]. The Atlas Collaboration,
one of the research collaborations at Cern, is involved in many of these research fields
and development projects. Top-quark-antitop-quark-events (tt̄-events) are part of this
research and provide the raw data for the studies presented in this thesis. They will be
explained in detail in Chapter 2 together with the Standard Model of Particle Physics
(SM). Once the data has been collected, the reconstruction of the events is an important
step. As much information as possible must be collected correctly in order to have enough
data for further analyses like the top-quark decay width measurement. The Kinematic
Likelihood Fitter (KLFitter) has been developed for this purpose [5]. It builds the basis
for this thesis and will be explained in Chapter 4. Several tailored extensions to KLFit-
ter have been developed whenever a researcher needed an additional step of analysis for
his/her work. The boosted decision tree (BDT) developed by T. Dado is one of them,
which increases the precision of the KLFitter results [6]. Both KLFitter and the BDT ex-
tension aim at finding the completely correct reconstruction of the measured or simulated
event. Depending on the subsequent research, completely correct events are not neces-
sarily required. In some cases, however, a partly correct reconstructed event is sufficient.
For this purpose, a new extension to KLFitter, based on deep neural networks, is to be
developed. After introducing machine learning, especially neural networks, in Chapter 5,
the existing BDT approach is reimplemented with a neural network in Section 6.1 and
compared in Section 6.2. Subsequently, the new extension to KLFitter is summarised.
First, the selection of the new reconstruction hypotheses and then the workflow of the
approach and its implementation are discussed. This new extension is evaluated in Sec-
tion 6.4 and compared with the other approaches. Finally, the results are summarised
and the potential for optimisation and further development is shown in Chapter 7.
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2 Fundamentals of Particle Physics

To solve a problem in computer science, detailed domain knowledge is often indispensable.
Although one might not need and will probably not reach a domain expertise as big as
that of the domain experts, it is important to share a common language and to understand
logical implications and problems in that particular domain. This chapter will give an
overview over the basics of particle physics in terms of the SM. Subsequently, a deeper
dive is taken into the kind of events this thesis deals with.

2.1 Standard Model of Particle Physics

The SM is the current attempt to explain the knowledge of the basic components of our
universe and most of their interactions within one model. It contains information about
three out of four of the elementary interactions and the particles which either mediate
them or experience them. The particles which mediate the interactions are called gauge
bosons and so far four of them are known. The W -boson and the Z -boson which mediate
the so-called weak interaction [7–10], the difference being that the W -boson is charged
and the Z -boson is not. The strong interaction is mediated by the gluons [11–14]. It
describes the attraction of particles based on their colour charge which can be (anti-)red,
(anti-)green or (anti-)blue. The third interaction is the electromagnetic interaction which
is transferred by the photons. In addition to the four gauge bosons, there is the Higgs
boson. It is the most recently discovered particle [15, 16], although it has already been
postulated in 1964 [17–19]. This boson does not mediate any interaction but is needed to
explain why W -bosons, Z -bosons and fermions are massive.
The fermions are the 12 basic particles which experience the described interactions and

they can be divided into two groups and three generations: The six quarks which then
are divided into up-type quarks and down-type quarks are one of the groups. Its first
generation consists of the up-quark (u) and the down-quark (d), the second generation
of the charm-quark (c) and strange-quark (s) and the third generation of top-quark (t)
and bottom-quark (b). u, c and t are the up-type-quarks which have a charge of +2

3e

and d, s and b are the down-type-quarks which have a charge of −1
3e, where e means the

3



2 Fundamentals of Particle Physics

elementary charge e ≈ 1.602 · 10−19 C [20].

The second group of fermions are the leptons which can be divided into charged leptons
and neutral leptons, also called lepton neutrinos. Electron (e), muon (µ) and tau (τ) in
this order are the charged leptons of the three generations and their corresponding lepton
neutrinos are the electron neutrino (νe), the muon neutrino (νµ) and the tau neutrino
(ντ ). Neither charged leptons nor their uncharged correspondent have a colour charge
and therefore do not experience the strong interaction and while charged leptons have an
electric charge of -1 and therefore experience the electromagnetic interaction, the lepton
neutrinos are not charged and do not experience the electromagnetic interaction either.

Using this model, many phenomena can be explained. A proton for example consists
of one down-quark and two up-quarks. The electro static charges (+2

3 + 2
3 −

1
3) sum up to

one positive charge. The three quarks need to have different colour charges such that red,
green and blue sum up to a colourless state (white). For each particle there is an anti-
particle with the opposite electromagnetic charge and opposite (negative) colour charge.
This gives an explanation why antimatter can exist and how mesons, which consist of one
quark and one anti-quark can be stable considering that, for example, a red quark and
an anti-red quark build form colourless state (anti-white/ black).

Other phenomena cannot be explained with the SM and are still to be explained. This
gives a hint that the SM is not complete yet or might be just another step on the way
to a more detailed and sophisticated model to explain nature. Gravity, the fourth inter-
action, is not explained so far and no boson which could mediate this interaction, e.g. a
“Graviton”, has been found yet. Also the question of why the universe consists mainly of
matter and not antimatter, so why is there so much more matter than antimatter, cannot
be explained with the SM. Another example is that lepton neutrinos are defined as being
massless by the SM but other experiments [21–23] proved that they need to have mass in
order to make the observations from these experiments explicable.

In conclusion, the SM is an attempt, and the best so far, to explain and define the basic
nature of our universe. The model predictions have proven to be accurate several times,
e.g. when particles like the top-quark and the Higgs boson were postulated in advance
and then were found later, although that, like for the lepton neutrinos, deviations between
theory and practice occurred.
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2.2 Top-Antitop Production and Decay

2.2 Top-Antitop Production and Decay

As explained in the previous chapter, there are six quarks and they differ in their prop-
erties. The top-quark is the latest found quark and was discovered at the Tevatron in
1995 [24, 25]. It is of particular interest because of its high mass at approximately 173GeV
[26]. It is so heavy that it decays into other particles before it can hadronise. The same
applies to the antimatter version of the top-quark, which is called the antitop-quark (t̄).
To work with and do researches on them, they need to be produced in a particle

accelerator. From a physics perspective, there are two possibilities to produce a top-
antitop-pair. The quark-antiquark annihilation is the production of a top-antitop-pair
from the collision of a quark and an antiquark and is shown in Figure 2.1(a), whereas
Figure 2.1(b) shows the gluon-gluon fusion in which the collision takes place between two
gluons.
After the top-quark and antitop-quark are produced, they decay almost immediately.

The total electric charge of a system is always constant and the top-quark (charge = +2
3)

decays almost exclusively into a bottom-quark (charge = +2
3) and a W+-boson (charge =

+1) [27]. Analogous to this the antitop-quark decays almost always into an antibottom-
quark (b̄) and a W−-boson, where the antimatter versions of the particles are charged op-
positely. The bottom-quark and the antibottom-quark build hadrons which decay again.
The decay products then build hadrons again and so on which results in the formation
of a shower of particles, also called particle jet. This is called hadronisation. Each of the
two W -bosons can decay either leptonically or hadronically which results in four possible
Feynman diagrams which are shown in Figure 2.2.
A hadronic decay which occurs around 67.4% of the time [28] means that a W -boson

decays into two quarks of which one is an antimatter-quark. Figure 2.2(a) shows the

q

q

g t

t
(a) Quark-antiquark annihilation.

g

g

g t

t
(b) Gluon-gluon fusion.

Figure 2.1: Top-antitop-pair productions, where two different production processes are
possible. The quark-antiquark annihilation as shown in Figure 2.1(a) con-
sists of the collision of a quark and its respective antiquark. Figure 2.1(b)
shows the gluon-gluon fusion process which is the dominant one at the top-
antitop-production at the Lhc.
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2 Fundamentals of Particle Physics

case where both W -bosons decay hadronically. To preserve the electric charges, the W+-
boson has to decay into an up-type-quark and an anti-down-type-quark 1 which both
hadronise. If both W -bosons decay leptonically, as shown in Figure 2.2(b), no quarks
are produced but, instead, each W -boson decays into one charged lepton and one lepton
neutrino. Since the lepton neutrino has no electric charge, the charged lepton carries the
whole electric charge of the W -boson. Figure 2.2(c) and Figure 2.2(d) show the cases
where one W -boson decays hadronically and the other decays leptonically, following the
rules as previously described.

q

q

g t

t

W+

b

q

q̄

W−

b

q

q

(a) Fully hadronic decay.

q

q

g t

t

W+

b

νl

l+

W−

b

l−

νl

(b) Di-leptonic decay.

q

q

g t

t

W+

b

νl

l+

W−

b

q

q

(c) W+ decays leptonically.

q

q

g t

t

W+

b

q

q̄

W−

b

l−

νl

(d) W− decays leptonically.

Figure 2.2: Feynman diagrams of top-antitop-decay processes.

These last two, also called semi-leptonic decay processes, are subject of the analysis
presented in this thesis. Other decay processes are filtered out and will not be considered
further. To note also is that the different possibilities of the production of a top-antitop-
pair and the possible decay processes are independent from each other. Therefore, the
Feynman diagrams in Figure 2.2 do not imply that certain productions of the top-antitop-
pair result in certain decay processes of it or vice versa.

1the W−-boson vice versa
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3 The Atlas Detector

The dataset which defines the basis for the studies presented in this thesis is artificially pro-
duced by a Monte Carlo simulation. This simulation consists of multiple steps and models
the technical conditions under which data is normally produced at the Large Hadron Col-
lider (Lhc) at the European Organization for Nuclear Research (Cern). Therefore in this
chapter a closer look is taken towards the experimental setup to produce and measure tt̄-
events. Atlas [29] is together with Alice [30], Cms [31] and Lhcb [32] a detector at the
Lhc, which is currently the largest particle accelerator worldwide. Atlas and Cms are
multipurpose detectors. Both are doing research in various fields of particle physics, test
the theory and try to disprove the predictions of the SM. Lhcb, which stands for “Lhc
beauty”, is an experiment that is dedicated towards hadron and bottom-quark physics and
the charge conjugation parity violation. The Alice experiment focuses on physics at high
densities and temperatures, whereas the main focus is on quark-gluon plasma formation.
The Atlas experiment is located approximately 200m underground and has a circum-
ference of 27 km. The colliding particles in this case are protons which are produced and
pre-accelerated by older particle accelerators to get the needed energy for the collision in
the Lhc. These protons collide at the so-called Interaction Points of which four exist, one
for each detector. The protons have a center-of-mass energy of 13TeV when they collide.
This collision leads to the processes and decays explained in 2.2. The resulting particle
jets and the charged lepton can then be measured with the Atlas detector.

7



3 The Atlas Detector

Figure 3.1: Cross section of the Atlas detector © Cern.

The detector, which can be seen in Figure 3.1, consists of multiple layers in concentric
arrangement. The Inner Detector measures the tracks of particles which pass through it.
The movement of charged particles within the strong magnetic field inside the detector
generates a Lorenzforce which deflects them. From the diffraction of the track the charge
and traverse momentum (pT) can be calculated. The Calorimeters, which are further
away from the center, are for the measurement of the particle energies. In the case of the
tt̄-event, this applies to the particle jets, of which the single energies of the particles get
combined to the total energy of the particle jet. At this stage, errors can occur due to
additional radiation or merging of jets. Additional radiation can cause the production of
additional jets and the merging of particle jets leads to less jets measured than present
if two or more jets are too close to each other such that they get combined to one large
jet by the detector. The outermost part are the Muon chambers. Muons barely interact
with matter and therefore pass the Inner Detector and the Calorimeters with almost no
energy loss. Their energy is then measured in the Muon chambers.

8



4 Event Selection and Top-Quark
Reconstruction

This chapter gives an overview about how the dataset was generated which is used for
the studies presented in this thesis. Section 4.1 explains the simulation of the generated
events. Subsequently, Section 4.2 introduces the Kinematic Likelihood Fitter (KLFitter)
which builds the starting point for the further development.

4.1 Monte Carlo Simulation and Event Selection

To precisely measure parameters and whether they are in accordance with their SM
prediction, simulations of its physics processes are needed which then can be compared
with real data measurements in the Atlas detector. The dataset which is used for the
studies presented in this thesis is not collision data recorded with the Atlas detector but
is simulated by a Monte Carlo (MC) simulation.
The MC simulation consists of multiple steps. At first the tt̄-events are simulated

at matrix element level. Additional processes like the radiation explained in Chapter 3
are mimicked. Subsequently, the hadronisation and particle showers are simulated. The
response of the Atlas detector to these events is then mimicked with the GEANT4
detector simulation [33] and the events get reconstructed with the same software which is
used for real events in the detector. Since this thesis was motivated by a recent top-quark
decay width analysis [6], the same dataset is used in this thesis which also keeps the
results comparable to those of the top-quark decay width analysis. Therefore, detailed
information about the used simulation programs can be obtained from this analysis as
well and are not described in detail.
After the dataset has been produced, the relevant events are selected. For the tt̄-events

in the semi-leptonic decay channel, a lepton and at least four jets are required. All events
that do not have exactly one electron or muon are therefore filtered out. In respect to
the jets, at least four have to be measured with a transverse momentum pT > 25GeV
out of which two have to originate from bottom-quarks. To determine whether or not a

9



4 Event Selection and Top-Quark Reconstruction

jet originated from a bottom-quark, the Atlas MV2c10 b-tagging algorithm is used [34].
It uses a boosted decision tree (BDT) and is calibrated to four different target tagging
efficiencies, also called working points (WP). For the selection used in this thesis, the
60%-WP is used which means that 60% of the jets which are really bottom-quark-jets
(b-jets) pass the selection. In addition, for the e+ jets channel, the missing transverse
energy, Emiss

T , and the transverse mass of the W -boson, mW
T , both have to be larger than

30GeV, for µ+ jets Emiss
T +mW

T > 60GeV has to be fulfilled.

4.2 Kinematic Likelihood Fitter

As described in the previous section, a measured event consists of multiple measured jets,
a charged lepton and some missing transverse energy from the lepton neutrino. The values
which are obtained are energies, angles and momenta and, additionally, some constraints
like the conservation of energy and momentum are known. With this information, the goal
is to find pairings between the measured jets and the partons in the semi-leptonic decay
channel which are expected to produce jets. If four jets are expected to be produced from
a tt̄-event and in total n jets are measured, then there are

(
n
4

)
· 4! = n!

4! · (n−4)! · 4! = n!
(n−4)!

assignments possible for n ≥ 4. If less than four jets are measured or errors occur as
explained in the previous chapter, the event cannot be reconstructed correctly.
KLFitter is a software tool which was implemented to solve this problem [5]. In terms

of software, it is based on the Bayesian Analysis Toolkit [35], which is a toolkit for particle
physics calculations. From a conceptual perspective, it combines two prior approaches, the
pT

max-method and the χ2-method. The new approach, which is introduced in KLFitter,
is the likelihood based method.
This method calculates for each chosen assignment a likelihood which indicates if the

given permutation represents a tt̄-event. Since the calculation of the likelihoods is expen-
sive in terms of calculation time in respect to millions of events, the set of jets to choose
from can be reduced. Additionally, the number of permutations to calculate is reduced by
leaving out the light jet swapping. Light jet swapping refers to two permutations which
only differ in the assignment of the jets from the hadronically decaying W -boson. Since
the algorithm is not sensitive to the difference between these two assignments, the number
of permutations which needs to be considered is reduced by a factor of 2.
To calculate the likelihood of one permutation, its kinematics are fitted to the assumed

assignment by using a likelihood fit. The likelihood gets stored and the procedure is
repeated for the rest of the permutations. Based on these likelihoods, an event probability
can be calculated to decide which permutation is then assumed to be the correct one.

10



5 Fundamentals of Machine
Learning

In classic programming, the program represents a set of rules and instructions to produce
outputs for given inputs. In contrast to this, machine learning represents a programming
paradigm where the rules are not given explicitly. Instead, an artificial intelligence has to
learn the rules from a set of inputs and their respective outputs. One of these machine
learning techniques is the neural network (NN). This chapter will give a short overview
over neural networks and some additional techniques which are used in the context of the
studies presented in this thesis.

5.1 Neural Networks and Deep Learning

In 1943, the first attempt was made to describe an artificial neuron from a mathematical
perspective by McCulloch and Pitts [36]. Based on this idea, Rosenblatt developed the
Perceptron in 1958 which was the first neural network [37] consisting of an input layer and
an output layer. With adding at least two additional hidden layers, the multi layer per-
ceptron, also called deep neural network (DNN), can be created as shown in Figure 5.1(a).
As long as the output of a node is not fed into its own layer or a layer before, the NN
is called a feedforward neural network. Today, DNNs are a widely used machine learning
techniques [38–41].

The concept of a DNN is to map an input vector also called a feature vector ~x ∈ Rn to
an output vector ~y ∈ Rm where usually n > m withm,n ∈ N. This is achieved by training
the DNN with a training dataset. Each elementary unit in the DNN, node, gets a number
n of inputs ik which are weighted with a weight wk. The sum of these weighted inputs and
an optional additional bias term b is then the input for the activation function f . The
node, shown in Figure 5.1(b), calculates one value v as output as shown in Equation (5.1)
which then is either the input for the next hidden layer or part of ~y.

11



5 Fundamentals of Machine Learning

(a) Example plot of a neural network. The two hidden layers
define it as a deep neural network. It maps the feature vector
~x ∈ R4 to the output vector ~y ∈ R2.

(b) Example plot of a single node within
a neural network. The inputs ik,
weighted with wk, are in addition with
the bias term b the input for the activa-
tion function f which returns the output
v. v is used as part of the output vector
~y or as input in the next layer.

Figure 5.1: Example plots of a feedforward neural network. Figure 5.1(a) shows a whole
neural network architecture while Figure 5.1(b) shows a single node with
its in and output values.

v = f(
n∑
k=1

(wk · ik) + b) wk, ik ∈ R for 1 ≥ k ≥ n; b, v ∈ R; k, n ∈ N. (5.1)

The goal of the training is to find a set of weights along the edges between the nodes
such that the model minimises its loss. During the training based on a given input, the
prediction is calculated which differs from the expected output depending on how well
trained the model already is. After a certain number, the so-called batch size, of these
calculations, an overall error is determined. The overall error is effected by the weights
of the different training events, if they are given, and is used to adjust the weights of
the model. This algorithm is called backpropagation [42]. The learning rate effects how
large these adjustments are and, therefore, how fast the DNN learns. This procedure is
repeated until every data point in the dataset is evaluated once by the model. This is
called an epoch. After each epoch, the performance of the model can be evaluated which
results in some key figures like loss and accuracy. These key figures can be used to monitor
the training over multiple epochs and sum up the training history in learning curves.

Normally the accuracy rises with the number of epochs while the loss decreases. De-
pending on the separation power of the input data and hyperparameters such as the
number of layers and nodes, an optimum will be reached where further training will not
have any beneficial effect on the model’s performance. An issue here is the so called
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overfitting. This can occur if the model is trained too long on the same dataset. The
model then tends to learn the given training data points by heart which results in a worse
performance at predicting data which is not in the training dataset. Therefore validation
datasets can be used to check whether or not the model generalises well or starts to overfit.
A prominent misconception in training neural networks is the so-called curse of dimen-

sionality which occurs when ~x has many entries. Against the idea that more information
gives more separation, it gets harder for the DNN to learn. The more dimensions the
phase space has in which the input vectors lie and the more possible values in this di-
mensions exist, the harder the training is. This is because there are many more possible
configurations for an input vector. Without enough data points to populate this phase
space, no generalised learning is possible. Generalised learning is mainly based on the
finding of nearest neighbours and the assumption that neighbouring data points are alike.
With increasing distances between data points and empty spots in the phase space, the
model can only remember the results for the training data. The model overfits [43].

5.2 Additional Techniques

Although artificial intelligence algorithms are improving further and the computing re-
sources available increase as well as the training datasets grow quickly, artificial intelli-
gence is often limited by the quality of the data provided and the constraints set. To
prevent some of the most common problems during the training, many additional tech-
niques have been developed in the past of which a few will be presented in this section.

Input Normalisation

If the numeric values of one feature are much higher or smaller than for the other features
the DNN tends to correct this by adjusting the weights of this feature. This is a disad-
vantage because big deviations in the weights lead to large deviations in propagating back
errors from the loss calculations after one batch was evaluated. Input Normalisation, also
called scaling of input variables, is an additional step before training in which all input
variables are scaled into the same interval [44].

Reweighting

Reweighting is a technique to prevent biases during the training due to highly imbalanced
training datasets [45]. Imbalanced training datasets occur when the dataset contains
many examples of one category c and only a few of the others. The DNN tends to predict
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every input vector as a member of the majority class to minimise the loss. However the
goal of the training is usually not to minimise the loss. To prevent this behaviour each
event gets a weight such that:

∑
(wci

) =
∑

(wcj
) ∀i, j. (5.2)

As mentioned, the weights are used during the evaluation of the current batch during the
training. Therefore, events with a larger weight have a larger impact on the error and
therefore on the learning.

Dropout

Dropout is a regularisation technique to prevent overfitting [46]. To apply dropout, some
of the edges are selected randomly and blocked. Therefore, the model has to learn cor-
relations and separation redundantly and generally. The dropout rate defines how many
of the edges are blocked per epoch. This procedure is repeated for each epoch such that
different edges are selected for blocking.

Early Stopping

The loss values per epoch will asymptotically approach a minimum. This means the first
few epochs boost the performance of the DNN significantly stronger than later epochs in
which the learning effect per epoch decreases and the learning gets slower. As soon as
the DNN can not improve any more in terms of generalised learning, it starts to overfit.
To prevent this behaviour the training can be stopped as soon as the performance of a
DNN does not increase by a predefined amount within a certain number of epochs. This
procedure is defined as early stopping [47].

Cross Validation and Bagging

An issue during the training of a DNN is the evaluation of the current model. If data is
used for the loss calculation, which is also used for the training, the model has seen the
data before and therefore the loss value might be less expressive. On the other hand, it
is not desirable to minimise the dataset since normally more training data gives better
training results. To solve this conflict, cross validation can be used. This is a technique in
which the dataset is split into n = t+v parts of which t parts are used for the training and
v parts for the validation. In total, n models are trained in which each part of the dataset
is t times a part of the training dataset and v times a part of the validation set [48]. In
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the end, the n models can be evaluated to check if they perform similar. Subsequently,
either one of the models can be selected to be used further or bagging can be done in
which multiple predictions are combined to retrieve one statistically more independent
prediction [49].

Weight Initialisation

The goal of a DNN is to adjust its weights along the edges to minimise the loss. These
weights have to be initialised in the beginning. During the analysis presented in this thesis,
the Keras [50] framework is used. Its default initialisation algorithm is the Glorot Uniform
Initialiser [51]. It assigns the weights per layer to each edge as shown in Equation (5.3)
whereas nj is the number of input nodes for these weights and nj+1 the number of output
nodes for these weights. The bias node weights are initialised with zeros such that the
DNN does not start with any bias term.

W ∼ U

[
−
√

6
nj + nj+1

,

√
6

nj + nj+1

]
. (5.3)
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6 Development

Given the base conditions from the previous chapters, this chapter will summarise the
development of the extension framework to KLFitter. This can be divided into two main
steps. The first step is the development of a binary classifier motivated by previous
approaches in Section 6.1. Subsequently, a new extension was conceptualized and imple-
mented. Section 6.3 gives a summary over the different steps of this new extension. Both
parts of the development are evaluated, respectively, in Section 6.2 and Section 6.4.

6.1 Implementation of a Binary Classifier

For the implementation of a binary classifier, an already existing solution with a BDT is
mimicked. This BDT solution was part of a top-quark decay width analysis [6] of which
the framework is used for the analysis in this thesis. As a machine learning technique, the
DNN is chosen because a DNN has the advantage that it can take correlations between
different features into account. The data set used for the training contains approximately
610,000 tt̄-events.
The goal of the DNN is to learn whether the KLFitter permutation with the highest

event probability value is actually the correct permutation. Since this is a binary question,
a binary classifier is used. The training dataset needs to contain samples where the selected
permutation is the correct one and some where it is not. Whether the permutation is
correct is determined by checking if all four simulated jets of the tt̄-event are paired with
one of the measured jets whereas “paired” refers to a ∆R smaller than 0.3 between the
two jets. Since, by construction, only one KLFitter permutation can be correct, there are
eleven wrong permutations per four-jets-event (≈ 47%) and 59 wrong permutations per 5-
or-more-jets-event (≈ 53%). Additionally, events have to be taken into account where none
of the permutations is correct because jets are merged or one of the correct jets was not
selected or measured in the detector simulation. This leads to a large imbalance between
correct and wrong permutations (≈ 1 correct : 36 wrong). Additionally, the problem
occurs that most of the wrong permutations differ significantly from the assignment in
the correct permutation. This can lead to the problem that the DNN learns to classify
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Configuration Parameter Choosen Value

Input Features 19
Hidden Layers (HL) 4 layers á 25 nodes
Output Layer (OL) 1 node
Optimizer Adam [52]
Activation Function (HL) ReLu(Equation (6.3))
Activation Function (OL) Sigmoid(Equation (6.1))
Loss Function Binary Cross Entropy
Validation Split 0.2
Cross Validation 5-fold
Trained Epochs 50
Batchsize 10000
Early Stopping None
Dropout None

Table 6.1: Configuration of the trained binary classifier. The chosen values are the
product of multiple different test trainings during the implementation and
showed good model performance. More training effort in terms of additional
or larger hidden layers showed no significant performance increases which
would justify the investment of additional computational resources.

almost correct permutations in the same category as completely correct permutations
and only the permutations which differ significantly from the correct one are predicted
as wrong permutations. To avoid this, the correct permutation (if present) is selected as
signal and the most probable permutation for each number of wrong jet assignments (1
- 4 jets incorrect) are selected as background. As mentioned in Section 4.2, the set of
permutations is calculated from a reduced set of jets. If more than five jets are measured,
the two jets with the highest b-tagging value are selected as well as the three jets with
the highest pT of the remaining jets. The MC event weights are reweighted to balance
signal and background data and the input features are normalized in the interval 0-1.
This is done by subtracting the minimum and dividing by the maximum per variable.
This dataset is used to train the binary DNN. The details of the model trained are shown
in Table 6.1.

The sigmoid function, which is shown in Equation (6.1) is often chosen as activation
function because of its easy derivability shown in Equation (6.2). Additionally, its outputs
are always in the interval 0-1 which is helpful since the binary DNN is supposed to predict
values between 0 and 1. However, the sigmoid function comes with a problem concerning
the backpropagation. It is called the vanishing gradient problem [53–55]. Due to the fact
that the maximum value of the derivative of the sigmoid function is 1

4 , the backpropagation
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6.2 Comparison Binary Classifier and BDT

σ(x) = 1
1 + e−x

x ∈ R. (6.1) ∂

∂x
σ(x) = σ(x) · (1− σ(x)) x ∈ R. (6.2)

ReLU(x) =
{
x if x ≥ 0
0 if x < 0 x ∈ R. (6.3) ∂

∂x
ReLU(x) =

{
1 if x > 0
0 if x < 0 x ∈ R. (6.4)

Table 6.2: Activation functions and their derivatives. The sigmoid function, Equa-
tion (6.1), is often used in binary classifiers because of its range 0-1 and its
simple derivative shown in Equation (6.2). The rectified linear unit (ReLU)
function, Equation (6.3), is widely used especially in hidden layers. Due to
the property of its derivative, shown in Equation (6.4), of having 0 or 1 as
gradient, it is used to avoid the vanishing gradient problem.

of the error gets smaller with each layer. With an increasing amount of hidden layers, the
learning of the DNN gets slower. To avoid this problem, the rectified linear unit (ReLU)
function, which is shown in Equation (6.3), is used in all hidden layers. Its derivative
is not limited to a maximum value of 1

4 as it can be seen in Equation (6.4). Therefore,
it does not have the vanishing gradient problem. The ReLU, however, is not limited to
output values in the interval 0-1 which is why the combination of both is chosen for the
binary classifier.

6.2 Comparison Binary Classifier and BDT

To evaluate a binary classifier, in general, the separation power between signal and back-
ground samples is a good key figure. Equation (6.5) shows how the separation is calcu-
lated. Figure 6.1(a) and Figure 6.1(b) show the separation power of the BDT and the
DNN approach where it can be seen that the DNN outperforms the BDT by approximately
2%.

separation = 0.5 ·
n∑

k=1

(sk − bk)2

(sk + bk)

n ...number of bins
si...fraction of signal events in bin i
bi...fraction of background events in bin i.

(6.5)

19



6 Development

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
BDT output

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
er

m
ut

at
io

ns
 / 

0.
05

Signal (test) Signal (train)

Background (test) Background (train)

 = 13 TeVs

Chi2/NDF signal: 1.28

Chi2/NDF background: 0.86

Separation: 64.43(64.57)%

(a) Separation plot of the BDT.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
DNN Output

0.0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

of
 E

ve
nt

s

Separation: 66.53(66.5)%

Signal (Test)
Signal (Train)
Background (Test)
Background (Train)

(b) Separation plot of the DNN.

Figure 6.1: Separation plots of the two approaches of the binary classifier. The plots of
the BDT (a) and the DNN (b) show the classifier output values grouped in
signal and background data. The BDT separation plot is a reconstruction
result of the top-quark decay width analysis framework which forms the
basis for this thesis [6]. The DNN separation plot is as the DNN itself
inspired by its BDT counterpart.

Another option to evaluate the performance of a binary classifier is to use receiver
operating characteristic (ROC) curves. Figure 6.2(a) and Figure 6.2(b) show the ROC
curves of the BDT and the DNN approach. Here the goal is to see how much background
is still rejected (specificity) if a certain signal efficiency (sensitivity) is forced by setting
a threshold on the output values of the binary classifiers. The area under curve (AUC)
values shown in the figures are an often used technique to classify the power of a binary
classifier on a scale between 0.5 and 1 [56]. The AUC values of the DNN are approximately
0.004 larger which proves that it is slightly better than the BDT. Additionally, the DNN
ROC plot shows all five folds from the cross validation. If the curves of training and
testing dataset overlap, this is a sign that the models did not overfit. If the different
folds look alike, this is a sign that the datasets of training and testing data are evenly
distributed in the folds. In this case, both conditions are fulfilled.
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Figure 6.2: Receiver operating characteristic (ROC) plots of the two binary classifiers.
The plots of the BDT (a) and the DNN (b) set background rejection rate
and signal efficiency in relation. The background rejection rate shows how
large the fraction is of actual background events which are classified as
background. The signal efficiency shows the same situation applied to the
signal events. The area under curve (AUC) values confirm the superiority
of the DNN approach.

6.3 Development of a Multi-Class Approach

Based on the idea of the binary classifier, a multi-class approach is developed. Instead of
classifying a single permutation as correct or wrong, the goal is to find the correct one
from a set of permutations. This chapter provides an overview over this approach which
contains a description of the data used in the different parts, the concept of the approach,
the implementation and evaluation.

6.3.1 Definition of Labels and Test Hypotheses

To improve the tt̄-event reconstruction, a new approach to classify the data is needed.
The goal is to allow partly correct reconstructions to be found in case, that for a certain
analysis, a complete reconstruction is not necessary. The idea of the new approach is the
prediction and combination of multiple elementary hypotheses to find out whether the
event is reconstructed correctly instead of predicting the complete reconstruction directly.
The particle jet pairing is the fundamental concept of the reconstruction which is used
by KLFitter and therefore also builds the basis for the new approach. This already
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gives four of the elementary hypotheses which are “The hadronic b-jet (bhad) is assigned
correctly.”, “The leptonic b-jet (blep) is assigned correctly.”, “The first light jet (lj1) is
assigned correctly.” and “The second light jet (lj2) is assigned correctly.”.
One of the input variables is the b-tagging value as explained previously. The data in

the used dataset is selected such that two of the jets are tagged as b-jets with the 60%
WP. The problem might occur that the two assigned b-jets are swapped. Therefore, the
additional hypothesis “The b-jets are swapped.” is introduced.
Another goal of the new approach is to learn the correct assignment of the two light

jets. They differ mostly in the flavour of the particles they originated from. One of them
originated from a light quark with an up-type flavour. The other light jet originated from
a down-type light quark. Both of them are quarks of the lighter first two generations. To
train especially the difference between the correct and the swapped light jet assignment,
the sixth hypothesis “The light jets are swapped.” is used.
These six hypotheses form the basis for further combined reconstruction hypotheses.

For example, the correct reconstruction of the hadronic top-quark thad can be retrieved
from logical combinations of the basic labels as shown in Equation (6.6).

thadcorrect ≡ bhadcorrect ∧ ((lj1correct ∧ lj2correct) ∨ ljswapped). (6.6)

The dataset has to provide the truth information for each permutation per event such
that the classifiers can learn from this truth information. Therefore, for each permutation
the six elementary labels are calculated and combined into one label. This label is the
integer representation of the sum of elementary labels where each elementary hypothesis
represents a power of 2. Table 6.3 shows the labels and their values. This relation will
be used during the implementation. In total, 64 labels would be possible but some of
these labels cannot occur by definition. Additionally, the permutations are ordered in
a special scheme. This allows to retrieve additional information and implies additional
restrictions on the possible label vectors. Figure 6.3 shows the distributions of the labels
per permutation in percent of all permutations at this position. It can be seen that the
labels from 40 onwards do not occur as well as the intervals 5-7, 13-15, 21-23, 29-31 and
37-39. This is due to the fact that, in these cases, either the light jets or the b-jets are
swapped but at least one of those which should be swapped is assigned correctly. This
cannot happen as shown by the logical implications Equations (6.7) and (6.8).

ljswapped ⇐⇒ ¬(lj1correct ∨ lj2correct). (6.7)

b-jetsswapped ⇐⇒ ¬(bhadcorrect ∨ blepcorrect). (6.8)
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Elementary Hypothesis/ Label Integer Representation
Binary 2x Decimal

The hadronic b-jet (bhad) is assigned correctly. 0000012 20 1
The leptonic b-jet (blep) is assigned correctly. 0000102 21 2
The b-jets are swapped. 0001002 22 4
The first light jet (lj1) is assigned correctly. 0010002 23 8
The second light jet (lj2) is assigned correctly. 0100002 24 16
The light jets are swapped. 1000002 25 32

Table 6.3: The integer representations of the elementary hypotheses. They are summed
up per permutation and create a unique label in the interval 0-63. Elementary
labels can be extracted later by division and modulo operations.

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
bhad 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
blep 2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3
lj1 3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2
lj2 4 3 4 2 3 2 4 3 4 1 3 1 4 2 4 1 2 1 3 2 3 1 2 1

Table 6.4: Permutation scheme of the multi-class approach. Each column represents
one permutation and shows which of the measured jets is assigned to which
position. The numbers of the measured jets are defined as: 1 = jet with the
highest MV2c10 b-tagging-value; 2 = jet with the second highest MV2c10
b-tagging-value; 3 = jet with the highest pT-value of the remaining jets; 4 =
jet with the second highest pT-value of the remaining jets.

What is also visible in Figure 6.3 are patterns between the different labels and permu-
tations. The values for (permutation 1, label 3) and (permutation 7, label 4), for example,
are the same. To explain this, Table 6.4 is needed which shows the assignment order of
the measured jets to the slots of the expected jets. In this case, permutation 1 and 7 differ
only in the assignment of the two b-jets. Whenever in permutation 1, the two b-jets are
assigned correctly (label 3) they have to be assigned swapped (label 4) in permutation
7. These patterns can be found for many of these pairs, which reduces the number of
possible label vectors significantly and, additionally, provides a new source of information
for a classifier.
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Figure 6.3: 2D-histogram of the label distribution among the different permutations.
Each column sums up to 100%. The range of shown labels is limited to 36
since labels from 37-63 cannot appear due to the logical implications within
the label definitions. From 40 onwards, always both light jets would be
swapped but also at least one of them would be assigned correctly, which
cannot happen. The other empty intervals are empty for the same reason
applied to the b-jet-labels.
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6.3.2 Variables

The input features of the multi-class approach are the ones of the binary classifier and in
addition some new variables have been added which are described in this chapter. Each
event consists of one variable which gives the number of jets measured in the detector
simulation and 23 other variables which are included once per permutation.
Table 6.5 gives an overview over the variables which are included multiple times. Mo-

tivated by the new labels and hypotheses explained previously, the following variables
have been added. The cos(θ)-values are added to improve the predictions in respect to
the correctness of the chosen light jets in the permutation. θ is the polar angle, the angle
between ~n and ~p where ~n is the normal of the transversal plane and ~p is the direction
vector of the particle θ is calculated for. Figure 6.4 shows the separation power of cos(θ)lj1
in two different contexts. In Figure 6.4(a), it is shown that cos(θ)lj1 is a variable which
can be used to differentiate between the assignment of the correct light jet and the wrong
light jet. Although the separation power is just ≈1%, the cos(θ)-values still can help
to improve the performance of the classifier. Additional correlations with other input
variables could increase the separation power for the “light jet 1 correct” and “light jet 2
correct” hypotheses. As shown in Figure 6.4(b), cos(θ)lj1 is not a good variable to sepa-
rate between the correct and the swapped light jet assignment. The separation power of
cos(θ)lj2 does not vary significantly from the ones shown in Figure 6.4.
Another variable which has been studied in detail are the transverse momenta of the

light jets. Figure 6.5 shows two separation plots of combinations of both light jet pT-
distributions. Since values of both light jets are shown at the same time, the separation
categories have to make statements about the assignment of both light jets at the same
time as well. Here, the categories “light jets correct”, “light jets swapped” and “min.
1 light jet wrong” are chosen. The results show that the transverse momentum of the
light jets has almost no separation power for the correct vs. the swapped assignment.
The wrong assignment of at least one light jet can be separated, but only with 1.26%
and 0.51% separation power. This information can still be used to determine wrong
assignments which would lead to wrong reconstructions of the hadronic W -boson or the
hadronic top-quark. The ratio pT(lj1)

pT(lj2) is used as an additional variable as well but shows
the same results in terms of separation power as Figure 6.5.
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(a) Separation plot of cos(θ)lj1 . The values are cat-
egorised in events in which the first light jet is as-
signed correctly and in events in which it is not.
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(b) Separation plot of cos(θ)lj1 . The values are cat-
egorised in events in which both light jets are as-
signed correctly, in events with swapped assignment
and events with at least one wrong light jet.

Figure 6.4: Separation studies of cos(θ)lj1 . This plots have been created to study
whether or not helpful information can be retrieved from the cos(θ)jet-values.
Figure 6.4(a) shows that this value can be used to check whether or not
a light jet is assigned correctly. For the separation between correct and
swapped assignment of the light jets the separation power is too small as
shown in Figure 6.4(a).
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(a) Separation plot of the difference between lj1 and
lj2. The difference between the momenta is not a
good separation value.
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(b) Separation plot of the difference between lj1 and
lj2. This more complex combination of the light
jet transverse momenta does not separate between
correct and swapped light jet assignments either.

Figure 6.5: Both subfigures show different arithmetic combinations of the light jet trans-
verse momenta. These distributions do not support the separation for the
“light jets swapped”-hypothesis but can still be used to identify events with
wrong light jet assignments. Otherwise, these wrong assignments would
lead to wrong reconstructions of the hadronic W -boson or the hadronic
top-quark.
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Variable Meaning Unit

KLFitter-log-
likelihood

The logarithm of the likelihood KLFitter fitted for this per-
mutation. 1

b-tag(jet)
The MV2c10 b-tagging-WP passed by the given jet repre-
sented as integer in 0-4. Calculated for bhad, blep, lj1 and
lj2.

1

pT(jet)
The transverse momentum of the given jet. Calculated for
bhad, blep, lj1 and lj2.

GeV

∆R(lj1, lj2) The angular distance between the light jets in the detector. 1

∆R(blep, e|µ) The angular distance between the leptonic b-jet and the
charged lepton. 1

∆R(bhad, blep) The angular distance between the hadronic and the leptonic
b-jet. 1

pT(thad) Reconstructed transverse momentum of the hadronic top
quark. GeV

η(thad)
η = -ln[tan(θ/2)], where θ in this case is the polar angle
between the direction of the hadronic top quark and the
normal of the transverse plane.

1

m(thad) Reconstructed mass of the hadronic top quark. GeV

m(Whad) Reconstructed mass of the hadronic W -boson. GeV

pT(blep + e|µ) The transverse momentum of the leptonic b-jet and the
charged lepton. GeV

m(tlep) Reconstructed mass of the leptonic top quark. GeV

Table 6.5: Table of variables per permutation. bhad, blep, lj1 and lj2 represent the jets
which are assumed to be the jet indicated by the respective index. Corre-
spondingly, Whad, thad and tlep stand for the assumed reconstructions of the
named partons. The transverse plane is the plane perpendicular to the beam
pipe of the Lhc. Since the accelerated particles have only energy in the
direction of the beam pipe, the sum of transverse momenta must be 0.
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6.3.3 Workflow

The workflow of the multi-class approach is shown in Figure 6.6. It looks at two different
parts of the approach: the data used and the machine learning stages. The multi-class
approach is unlike the binary classifier a stacked approach in which multiple stages of
machine learning get the data several times as input or outputs of one stage are inputs
for the next stage. In theory, they could use different machine learning techniques but
in the multi-class classifier presented here only DNNs are used. The workflow describes
the different stages of machine learning and what the data between those stages look like.
The single steps of the workflow are described below.

Stage 1 – The Input Data

The input data for the whole multi-class approach consist of approximately 610,000 semi-
leptonic tt̄-decays. Each of these events contains 24 ·23+1 = 553 different input variables.
which have been described previously.

Stage 2 – Reshaping to Single-Permutation-Events

The data has to be reshaped such that every single permutation is counted as its own
input vector. The size of the input dataset increases by a factor of 24 giving a dataset of
14.68 million input elements. This is larger than the HEMPASS and the HIGGS dataset
[57–60]. These events are than fed into the first machine learning stage.

Stage 3 – Six Binary Classifiers

The first machine learning stage of the new approach are six binary classifiers in parallel.
Each of these classifiers is used for the prediction of one of the six elementary hypotheses
which have been presented in Table 6.3. The goal is to find out for each single permu-
tation whether or not this particular hypothesis is true. The classifiers used are binary
DNNs and since they evaluate each permutation on its own, correlations between different
permutations cannot be taken into account as shown in Figure 6.3.

Stage 4 – The Prediction-Matrix

The predictions of the six binary DNNs are then combined for each permutation to a
prediction vector. Subsequently, the dataset is reshaped back to the representation where
one event consists of 24 permutations. Therefore, the new dataset has the size of the
number of tt̄-events of which each event is represented by a 6× 24 matrix.
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6.3 Development of a Multi-Class Approach

Stage 5 – The Multi-Class Classifier

This prediction matrix is the input for the second machine learning stage, the multi-
class DNN. It is remarkable, that this DNN only gets prediction values as input. The
physical variables are not used anymore. This reduces the number of input dimensions
significantly. In this stage correlations between the different permutations can also be
taken into account, which is necessary to find the correct permutation in the event.

Stage 6 – The Best Permutation

Based on the training of the last classifier, it is possible to decide which of the given 24
permutations is the best one. As motivated at the beginning, the goal is to customize
the definition of “the best permutation” such that any reconstruction hypothesis can be
combined from the six basic hypotheses. The desired label combination can be retrieved
from the compound label as shown in Table 6.3.
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Figure 6.6: Scheme of the workflow of the multi class extension. The dataset which is
fed into the classifier (1.) is reshaped to look at one permutation at a time
solely. These single permutations (2.) are fed into each of the six binary
classifiers (3.) which return the predictions for the elementary hypotheses.
The permutations and their predictions are reshaped to the original format
(4.). Subsequently, the predictions are input for the multi-class classifier
(5.) which then gives the best permutation (6.) as output.
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6.3.4 Implementation

In the following, the implementation of the DNN extension is summarised. The starting
point is the originally simulated N-tuples set from the top-decay width analysis. The
KLFitter algorithm has already been run on these events but taking only a maximum of
five jets into account per event. The two jets with the highest MV2c10 b-tagging values
and the three jets with the highest pT-values from the remaining jets are selected. From
these five jets, 60 different permutations have been created and fitted. If only four jets
have been measured in one event, 12 permutations are calculated, respectively. At this
point, the development of this approach starts.
From each event, only four of the reconstructed jets are selected. The two with the

highest MV2c10 b-tagging values and the two jets with the highest pT-values from the
remaining jets. Henceforth, these four reconstructed jets will be called the r-jets. Half
of the permutations of the r-jets and their KLFitter results have been calculated before.
The other half with the swapped light jet assignments is assigned manually and the same
KLFitter log likelihoods are assigned. These 24 permutations are ordered based on the
ordering scheme in Table 6.4.
Subsequently, for each event, the truth quarks, henceforth called t-quarks, have to be

calculated and the r-jets are matched with the t-quarks. This is done recursively. This
algorithm finds the best pairing between one r-jet and one t-quark which is then stored
and both are deleted from the respective sets. The best pairing is defined as the smallest
∆R between one r-jet and one t-quark which also has to be smaller than 0.3. Therefore,
the pairing with the smallest ∆R is selected first. The algorithm is invoked with the
reduced set of r-jets and t-quarks until either all t-quarks have been paired or no pairing
can be found. If none of the pairings is smaller than 0.3, the pairing algorithm terminates.
Therefore, it is possible that some of the t-quarks are not matched by any of the r-jets
which have been selected. Figure 6.7 shows an activity diagram of the matching algorithm.
As shown, the pairing of t-quarks with r-jets is not allowed if the r-jet originated from a
gluon since all truth jets are jets with a quark origin. The truth origin of a jet is given as
truth information but is not contained in the reconstructed values of a jet.
For each of the 24 permutations, the variables shown in Table 6.5 are calculated and

saved. From the found jet-pairings and Table 6.4, the labels in Table 6.3 are calculated,
added up and saved. Additionally, per event, the MC simulation weights and the number
of originally measured jets (njet) is saved. This saved data builds the dataset which is the
starting point of the workflow presented in Figure 6.6.
These implementation steps are programmed in C++11.
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Figure 6.7: Activity diagram of the matching algorithm. Truth jets which originated
from the truth partons and reconstructed jets are matched based on the
∆R between them. The pairings with smallest ∆R values are taken first.

The data produced in the previous step is saved in a .root file. This format is part of
the ROOT Framework which is a data analysis framework and provides many predefined
classes for scientific work with large amounts of data [61, 62]. It is especially used for
particle physics at high energy scales and was and is still developed at Cern. Since the
machine learning parts of the new approach are coded in Python with the help of the
packages Tensorflow [63] and Keras [50], the data has to be in a readable format for these
libraries. To do so and to ease the work with the dataset in the python environment, the
.root file is converted into a pandas dataframe and saved as .hdf5 file [64] with the help
of the libraries Pythonic ROOT [65], Numpy [66] and Pandas [67]. Pythonic ROOT is
a community driven project to convert .root files into numpy arrays which are special
array representations and provide many scientific operations with them. These numpy
arrays can be used as data sources for pandas dataframes, which is an often used data
structure which represents data in a way similar to a database. They also provide the
possibility to access and modify data with querys similar to SQL.
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After the conversion, the dataset is reshaped as explained in step 2 of the workflow.
This is done by concatenating the 24 data columns of the same physical value per event
into one column in a new dataset. While this can be done without problems for the 23
different variables which occur once per permutation, the procedure has to be adjusted to
reshape njet. This value exists only once per event instead of once per permutation. To
include it, the value is replaced by a vector of length 24 which only contains the value of
njet. Subsequently, the transformation can be applied without problems. This procedure
is also applied to the MC simulation weights, whereas, additionally, all negative weights
are set to 0 because negative weights cannot be used as training weights and would have
ambiguous effects on the loss function. Subsequently, the input variables are normalised
by subtracting the minimum value per data column and then divide by the maximum
value unless the maximum is 0 which may not occur.

To use this dataset for training, training weights and labels are needed. The training
labels for the first machine learning stage need to be in a binary form since all of the six
DNNs are supposed to answer a yes-no-question in the form of “Is hypothesis X true for
this permutation?”. The corresponding labels can be retrieved from the compound label
per permutation, as shown in Table 6.3. For each of the six binary hypotheses, a label
column is created. For the four “Jet X is assigned correctly.”-hypothesis, every event gets
a 0 or 1 as its label. The “Jets are swapped.”-labels are either 0, 1 or 2. Since the goal
is to differentiate between the assignments in which both jets are assigned correctly and
in which both jets are swapped, the events where one or both jets are assigned incorrect
cannot be considered in these trainings. They get a 2 as label which indicates that they
are not used for the trainings. Based on these labels, the training weights are calculated
from the MC simulation weights. The reweighting is applied to the subset of training
events with the label 0 and the label 1 such that the sum of the weights of these two
categories is equal. The events with the label 2 are weighted with 0 in the datasets,
respectively, to the DNNs for the swapped assignment trainings.

This creates, in total, one dataset of the input features which is used for all six binary
DNNs and six datasets of training labels and weights. Each of them is used for one of the
trainings. These trainings are conceptualized and executed the same way with the minor
difference, that in the trainings for the swapped-hypotheses, the events with the label two
are cut out.

The training of the six binary DNNs starts with loading the datasets. Subsequently, the
cross validation is applied. The dataset is split into five parts of which in each iteration
one is used as a testing dataset and four as training datasets. These parts are taken from
the input datasets and fed into the DNN model which is summarised in Table 6.6. The
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Configuration Parameter Choosen Value

Input Features 24
Hidden Layers (HL) 4 layers á 30 nodes
Output Layer (OL) 1 node
Optimizer Adam [52]
Activation Function (HL) ReLu(Equation (6.3))
Activation Function (OL) Sigmoid(Equation (6.1))
Loss Function Binary Cross Entropy
Validation Split 0.2
Cross Validation 5-fold
Trained Epochs 40
Batchsize 10000
Early Stopping None
Dropout 25% Dropout rate between HLs

Table 6.6: Configuration of the six trained binary classifiers for the multi-class approach.
The chosen values are the product of multiple different test trainings during
the implementation and showed good model performance. More training
effort in terms of additional or larger hidden layers showed no significant
performance increases which would justify the investment of additional com-
putational resources.

indexes of the validation events are saved and the training is started.
The model and its training are similar to the binary classifier which mimics the BDT.

Due to the larger number of input features, the size of the hidden layers has been increased
to 30 nodes. At the same time, the number of training epochs is reduced to 40. This is
motivated by the fact that the number of training instances is approximately 14.68 million
due to the single permutations. Therefore, the model is expected to improve quickly at the
beginning of the training, asymptotically reaching a limit after a few epochs. Additionally,
in these models dropout is applied between the hidden layers. A 25% dropout rate means
that, per epoch, approximately 25% of the edges are blocked randomly.
During the training, the loss and the accuracy are tracked epoch-wise and saved for

later. When the training is done, the resulting training history is saved. This enables to
later plot learning curves and see whether or not the model improved over time and if
it underfitted or overfitted. The next step is the prediction of the events with the final
model. Each event is fed into the model once to get the prediction of the model for this
event. Subsequently, these predictions and the model itself are saved as well.
These steps are done for all five folds. Although some events have been cut from

the training of the swapped-hypotheses, they are classified by the model as well. For
the multi-class DNN, predictions for each permutation in each event are needed to have
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complete feature vectors as input.
The next step is the preparation of the prediction matrices for the final DNN. Therefore,

at first the predictions of the six binary DNNs have to be shaped back into a format in
which one event consists again of its 24 permutations. Information that is included once
per permutation but only needed once per event is dropped and copied only once. This
is the information in which of the five cross-validation folds this permutation was used as
validation data and njet. This data is then combined into 6 × 24 matrices which is the
input dataset for the multi-class DNN. For this stage of the training, once again weights
and labels have to be calculated.
This time, the label depends on which reconstruction hypothesis is to be found. This re-

construction hypothesis is a combination of the elementary labels. For the example train-
ing in the context of this thesis, the “Everything is reconstructed correctly.”-hypothesis
is used to keep the reconstruction efficiency comparable with the previous approaches.
However, the concept of the final training stays the same for all possible combined recon-
struction hypotheses.
For each event, a label vector is assigned containing 25 elements. 24 of these 25 elements

represent the 24 permutations per event and are set to 1 if the combined reconstruction
hypothesis is true for this permutation if not, it is set to 0. The 25th element in this
vector represents the case in which none of the permutations meets the requirements.
In the case of the “Everything is reconstructed correctly.”-hypothesis, the logical com-

bination of the elementary hypotheses consist of all four “Jet X is assigned correctly.”-
hypotheses as shown in Equation (6.9). Therefore, the integer label of this hypothesis
calculated from Table 6.3 is 1+2+8+16=27.

all correct ≡ bhadcorrect ∧ blepcorrect ∧ lj1correct ∧ lj2correct . (6.9)

Subsequently, the training weights have to be calculated based on the original MC
simulation event weights. Negatively weighted events are reweighted with 0. The other
events are reweighted such that each category has an equal sum of weights. At this point
an extra analysis is done. Figure 6.3 shows that the “all correct”-label is not equally
distributed among the 24 permutations. While the permutations 1, 2, 7 and 8 are correct
in ≈7% of all events, the other permutations are correct in less than 0.2% of the events. If
the additional possibility is taken into account that none of the permutations represents
the completely correct reconstruction, the amount of events which belong to either one of
the four 7%-permutations or to the label where none of the permutations is the correct
reconstruction is 99%. This means that 99% of all events can be described with five of
the 25 possible labels which also draws the conclusion that the other 20 permutations
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together only account for 1% of all events. Since this dataset is highly imbalanced, the
labels of these 20 permutations are not considered during the training and the events
are weighted with 0. The other, in this case five, categories are balanced as described
previously and the labels and the new weights are saved as well.
This new dataset is the input for the final DNN. Table 6.7 summarises the model

trained in this stage. The number of input features increased significantly which is why
the number of nodes per hidden layer has been increased as well to 50. At the same
time, the complexity of the problem decreased. The final DNN does not have to learn
any physical correlations and reconstructions. The elementary hypotheses have already
been answered. To be learned are the patterns from Figure 6.3 and the combinations
of the labels. Therefore, the number of hidden layers has been decreased to 2. The
output layer now has 25 nodes. A problem here could be that an output value, e.g. 0.4,
can mean different things depending on the other output values. If the other values are
higher, this could mean that other permutations are more likely to be the correct one. If
they are smaller than the given 0.4-permutation, this one could be the correct one. To
keep the values interpretable some constraints might be helpful. Therefore, the softmax
function, shown in Table 6.8, is chosen in the output layer. Its purpose is to return an
output vector of which all elements sum up to one. The softmax function is shown in
Equation (6.10). softmax(z): R25 → R1, since for each node all other output node values
are taken into account. Therefore, its gradient depends on the index of the input feature
as shown in Equation (6.11). The loss function has been changed from the binary cross
entropy to the categorical cross entropy since this DNN is no longer binary. Also new for
the training of the multi-class DNN is the usage of early stopping. Here its configuration
is to check whether or not the loss decreased within the last 20 epochs about at least
0.001. Otherwise the training will stop.
After the model is trained, it calculates predictions for all events and categorises them

in training and validation data predictions. Subsequently, these predictions are saved and
the next iteration through the cross validation starts. From the prediction vector of an
event, a prediction can be retrieved of which permutation is the best one for the selected
hypothesis. In this case, the overall prediction can either be in which permutation all
jets are assigned correctly or that none of the permutations reconstructs the tt̄-decay
completely correctly.
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Configuration Parameter Choosen Value

Input Features 144
Hidden Layers (HL) 2 layers á 50 nodes
Output Layer (OL) 25 nodes
Optimizer Adam [52]
Activation Function (HL) ReLu(Equation (6.3))
Activation Function (OL) Softmax(Equation (6.10))
Loss Function Categorical Cross Entropy
Validation Split 0.2
Cross Validation 5-fold
Trained Epochs dynamic
Batchsize 10000
Early Stopping modus = minimising loss

patience = 20 epochs
∆min = 0.001

Dropout 25% Dropout rate between HLs

Table 6.7: Configuration of the multi-class classifier of the DNN extension to KLFitter.
The chosen values are the product of multiple different trainings and showed
good model performance. More training effort in terms of additional or larger
hidden layers showed no significant performance increases which would justify
the investment of additional computational resources.

softmax(z)i = ezi∑n
j=1(ezj) i, j ∈ Nn; z = (z1, ..., zn) ∈ Rn. (6.10)

∂

∂zj
softmax(z, i) =

{
zi(1− zj) if i = j
−zizj if i 6= j i, j ∈ Nn; z = (z1, ..., zn) ∈ Rn. (6.11)

Table 6.8: The softmax function shown in Equation (6.10) and its derivative shown in
Equation (6.11).
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6.4 Evaluation

This chapter gives an overview over the performances of the different steps of the new
extension to KLFitter. This evaluation is split into two parts, each of them evaluating
one of the two machine learning stages of the multi-class approach.

6.4.1 Evaluation of the 6 Binary DNNs

The trainings of the six binary DNNs and the performances of the models which originated
from them can be evaluated with multiple plots and benchmarks. In the context of
the binary DNNs three parts have to be considered: the training of the models, the
performance of the trained classifier and a glance at the traceability of the predictions.

Training of the Models

To evaluate the training performance of the models, the training histories are saved.
Different values can be tracked of which in this thesis the accuracy and the loss are
chosen. Figures 6.8 and 6.9 show the training histories of the different hypotheses. An
untrained classifier predicts random values. This means that it is in approximately 50%
of all cases correct if the classification task is binary as it is for the six binary DNNs. The
accuracy should rise over time and reach 100% in the ideal case. The loss should gradually
decrease. It is expected that the classifier is slightly biased towards the training dataset.
Figure 6.8 shows that the trainings of the b-jet hypotheses produced better results than
those of the light jet hypotheses shown in Figure 6.9. The accuracy plots show the effect
of the large training dataset. The first values are tracked after the first epoch was trained.
Therefore the plots show that the accuracy rises within the first epoch significantly from
0.5 to 0.68 for the light jets and 0.5 to 0.84 for the leptonic b-jet. The only training in
which the values do not improve is the training of the “light jets swapped”-hypothesis.
Its models stay at the initial values which indicates no improvements during the training
and, therefore, no learning of the classifier.
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Figure 6.8: Training history plots for accuracy and loss values of the binary DNNs which
predict a hypothesis connected to the b-jets. Shown are always the results
of training and validation datasets of all five cross-validation-folds.
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Figure 6.9: Training history plots for accuracy and loss values of the binary DNNs
which predict a hypothesis connected to the light jets. Shown are always
the results of training and validation datasets of all five cross-validation-
folds.
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Performance of the Trained Classifier

After the training ended, the training dataset and the testing dataset are classified by the
trained model. The resulting predictions for the different hypotheses are saved and used
afterwards. As explained in Section 6.2, two possibilities to evaluate the performance of
a trained classifier are histograms of the classifier output values and ROC curves. They
are produced for the six binary DNNs as well. The data has been divided by hypotheses,
cross-validation-folds and permutations since these dimensions have an impact on the
performance. This results in a total of 720 histograms and 144 ROC curves of which,
in this thesis, only a few are shown to explain the different impacts and compare the
performances. Additionally, to the ROC curves, precision recall curves (PRCs) are used
to evaluate the performances of the models [68, 69]. PRCs show the recall, which is the
same as sensitivity or true positive rate, and the precision. The precision is calculated as

true positives
true positives + false positives . Therefore, this type of diagram shows the relation between the
fraction of events that are actually signal, if predicted so and the fraction of classified-
as-signal-events if they actually are signal events. In PRCs, the untrained classifier is
represented as a horizontal line at yno skill = 〈number of signal events〉

〈total number of events〉 .
For the evaluation of the binary DNNs, the first and 24th permutation are chosen. The

first permutation (perm1) represents a case which is more likely than the 24th permutation
(perm24). This is as shown in Table 6.4 because of the assumptions made in the different
permutations. In perm1, the two jets with the highest b-tagging values are assumed to be
the b-jets from the event and the other two the light jets. In perm24, these assignments
are swapped. It is less likely that the two jets which are actually the b-jets have neither
the highest b-tagging value nor the second highest. Therefore, perm24 represents the case
which is highly unlikely. This is particularly interesting to check if the binary classifiers
can perform well on these permutations too.
The evaluation of the bhadcorrect-DNN and the blepcorrect-DNN are shown in Figures 6.10

and 6.11. The histograms Figures 6.10(a) and 6.11(a) show mainly how good the classifiers
are in distinguishing the correct b-jet from the incorrect one. The background events in
these diagrams consist almost entirely of the respective other b-jet. The jet which is
assumed to be the expected b-jet is most likely either this particular jet or the respective
other b-jet. The signal fraction is ≈ 45% which indicates an almost balanced dataset.
However the blepcorrect-DNN performs better which can be seen from the separation values
of both plots whereas the bhadcorrect-DNN has a separation power of ≈ 39% and the blepcorrect-
DNN of ≈ 44%.
In contrast to perm1, perm24 is highly imbalanced in terms of the correct assignment

of the b-jets. As shown in Figures 6.10(b) and 6.11(b), the jets are now more likely to
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actually be the true light jets or jets that do not belong to the event at all rather than
being one of the assumed b-jets. Less than 2% of all events have the b-jet assignment of
perm24 as the correct one. Under this circumstance, it is remarkable that the blepcorrect-
DNN performs approximately 10% better than on perm1 while the bhadcorrect-DNN has a
separation power which is approximately 27% worse than on perm1.

This difference can be seen in Figure 6.10(f) and Figure 6.11(f) as well. The PRC
AUC values are higher for the blepcorrect-DNN than for the bhadcorrect-DNN. However, in the
ROC plots, Figures 6.10(c), 6.10(d), 6.11(c) and 6.11(d), these differences and also the
differences between perm1 and perm24 are not visible. This is due to the fact that the
ROC curves are not sensitive to imbalanced datasets. The ≈ 2% of actual correct b-jet
assumptions in perm24 do not have a large effect on the true positive rate and the false
positive rate. However, this is covered by the precision of the PRCs which makes them
useful in this context. In the context of perm1, they are not necessarily needed. Here the
datasets are almost perfectly balanced and the PRCs (Figures 6.10(e) and 6.11(e)) do not
set the respective ROC curves in a different context.

The binary DNNs for the “light jet correct”-hypotheses show a smaller separation power
and, therefore, performance of the classifiers than the performance of the b-jet DNNs.
Figure 6.12(a) and Figure 6.13(a) show the separation and the prediction distribution.
Additionally, the background distribution is shown which shows the positions to which the
as-light-jet-assumed jets actually belong to. In perm1, the two jets which do not belong
to the jets with the two highest b-tagging values are assumed to be the light jets. This is
more likely than the correct assignment of a strongly b-tagged jet (60%-WP) to a light jet
which can be seen in the fractions of the signal events for perm1 of approximately 31% for
the first light jet and approximately 26% for the second light jet. In contrast to this, in
perm24, the fractions of signal events for the first and second light jet are approximately
1.7% and 0.4%.

Figure 6.12(b) and Figure 6.13(b) show that these DNNs cannot differentiate whether
or not a jet is the correct light jet for perm24. Even with applying training weights during
the training, the imbalance cannot be resolved. This is remarkable since the bhadcorrect-
DNN has ≈ 8% separation power and the blepcorrect-DNN even ≈ 54%. Although the b-jet
DNNs are distinguishing b-jet and light jets from each other at these separation powers
for perm24, the light jet DNNs perform much worse in distinguishing b-jet and light jets.
One possibility to explain this is that the binary DNNs are trained on all permutations
at once and that the overall signal-background-ratio is different for the jets. For the
light jet DNNs in total, approximately 15% of all permutations are signal permutations
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where the light jet is assigned correctly. For the b-jet DNNs the permutations represent
a correct assignment in approximately 24% of all events. The imbalance here has to exist
by definition. Each possible expected jet can only be assigned correctly in 6 out of 24
permutations and, therefore, the fraction of signal permutations can be at most 25%.

The ROC curves and the PRCs of perm24 of the lj1correct-DNN (Figures 6.12(d)
and 6.12(f)) and the lj2correct-DNN (Figures 6.13(d) and 6.13(f)) show again the effect of
the large imbalance of the dataset on its performance. The PRCs are almost identical
with those of an untrained classifier which shows the small performance in respect to
the large imbalance in the datasets. Additionally, it is shown that the ROC curves have
increasing differences between the cross-validation-folds which originate from the small
number of signal events which causes the statistics to fluctuate more.

The ROC curves and PRCs of perm1 can be used to analyse where thresholds could
possibly be set to decide in which category an event is sorted. This decision has con-
sequences on the different statistics which can be seen in the diagrams. E.g. if for lj1

80% of all correct assignments in perm1 are to be found (sensitivity = recall = 0.8) this
implies that, of all assignments which are then predicted as correct, 40% (precision =
0.4) are actually correctly assigned. This is shown in Figure 6.12(e). Additionally, from
Figure 6.12(c), it can be concluded that this also implies that approximately 55% (false
positive rate = 0.55) of all wrong assignments are also predicted as correct assignments.

The last two binary DNNs are the “jets swapped”-DNNs for which the evaluation is
different compared to the other DNNs. Their hypotheses split the dataset in three parts:
the correct assignment, the swapped assignment and the wrong assignment. This is why
they are not trained on the complete datasets. ROC curves and PRC plots are not meant
to be applied for a multi-class problem. Here, they could only be used between two of the
three classes at once. However, histograms can still be used. Figures 6.14 and 6.15 show
the histograms of the two “jets swapped”-DNNs for perm1 and perm24.

The b-jets-swapped DNN has a separation power of approximately 50% for perm1,
where this separation is calculated between the correct and the swapped light jet assign-
ment predictions. As shown in Figure 6.14(a), the fractions of either correct or swapped
assignments is approximately 84%. This large value is caused by the assumption that both
highly b-tagged jets are assumed to be the correct b-jets. The distributions for perm2,
perm7 and perm8 would look similar. However, by definition, only two out of the 24
permutations can represent a correct and two others a swapped b-jet assignment. There-
fore, on average, only four out of 24 permutations can be not-wrong. If the additional
possibility is taken into account that some of the hadronic and leptonic b-jets have not
been reconstructed correctly and are, therefore, not existing in the event this fraction is
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reduced to approximately 15%. The other 85% represent wrong b-jet assignments. This,
and the unequal distribution of the remaining 15% among the permutations, lead to the
results shown in Figure 6.14(b). Here, almost all b-jet assignments are wrong. From the
approximately 610,000 events the 24th permutation is only correct in approximately 122
events and swapped in 122 different events. This also explains the differences between
the training and testing datasets, in this plot.
The trained classifier for the swapping of the light jets has not improved in comparison

with the untrained classifier. This was already shown in the history plots (Figures 6.9(e)
and 6.9(f)) of the classifier. Therefore, the classifier has almost no separation power which
can be seen in Figure 6.15. The phenomena explained for Figure 6.14(b) is visible in
Figure 6.15(b) as well. The number of interesting assignments is so small that the already
small separation becomes negligible. If the number of correct and swapped assignments
is larger, the separation power does not increase either, although the interval of the
histogram has already been reduced to [0.48, 0.52], as shown in Figure 6.15(b). The
problem here is probably missing input features which provide separation power between
the correct and swapped assignments of the two light jets.
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Figure 6.10: Evaluation plots of the bhad-DNN. Shown are the permutations 1 and 24.
The different fractions of signal events is a consequence of the assignment
of a b-jet and a light jet to the position of the hadronic b-jet. A b-tagged
jet is more likely to be the correct choice.
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Figure 6.11: Evaluation plots of the blep-DNN. Shown are the permutations 1 and 24.
The less likely assignments of jets with a low b-tagging to the position of
the leptonic b-jet cause the differences in the fractions of signal events.
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Figure 6.12: Evaluation plots of the lj1correct-DNN. Shown are the permutations 1 and
24. The different fractions of signal events is a consequence of the as-
signment of a b-jet and a light jet to the position of the first light jet.
Assignments of not-b-tagged jets are more likely than others.
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Figure 6.13: Evaluation plots of the lj2correct-DNN. Shown are the permutations 1 and
24. Due to more unlikely assignment of b-tagged jets to the second light
jet, the permutations show different fractions of signal events.
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Figure 6.14: Evaluation plots of the “b-jets swapped”-DNN. Shown are the permuta-
tions 1 and 24. The different fractions of signal events are a consequence of
the assignment of b-jets and light jets to the b-jet positions. The majority
of the events have the assignment of b-tagged jets to the b-jet positions as
correct assignments.
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Figure 6.15: Evaluation plots of the “light jets swapped”-DNN. Shown are the permu-
tations 1 and 24. The different fractions of signal events is a consequence
of the assignment of b-jets and light jets to the light jet positions. Less
events have the b-tagged jets assigned correctly to the light jets.

49



6 Development

Traceability of the Trained Classifiers

A common problem with DNNs is that they function like a black box. Although the
trained weights are readable in the end, this does not allow the reconstruction of a read-
able function which would allow an analysis of how input features influence the results.
Therefore, it is not clear what the DNN learned exactly and it is not predictable how a
trained DNN will respond to data it has not been trained on. However, some attempts
have been made to get a glance of how the network deals with the input features. One of
them, which is presented here, is the permutation importance. This attempt is based on
the shuffling of the input features. Particularly, one of the input features is selected as
whole column and is shuffled across all events. The shuffled column is then saved for the
events. Subsequently, the events with the shuffled input feature are fed into the trained
classifier, the predictions are calculated and the performance is evaluated again. This
is done for every feature in the input vector. The corresponding assumption is that the
higher the importance of one feature is, the more the performance of the classifier should
drop if this input feature is shuffled across all events.
The permutation importance has been applied for each of the binary DNNs. At first,

the selected feature is shuffled. Secondly, per fold 100,000 elements from the testing
dataset are selected and evaluated. The selection of 100,000 elements is done 5 times to
compensate for statistical fluctuations. From the resulting predictions, the ROC curve
AUC score is calculated and kept for plotting.
Figure 6.16 shows the results of the feature importance calculations.
As shown in Figure 6.16(a) the bhadcorrect-DNN relies strongly on the b-tagging value.

Its shuffling decreases the ROC AUC value of the classifier by approximately 0.35. The
features concerning the hadronic top-quark were expected to be important as well since
the hadronic b-quark is needed for its reconstruction and the top-quark has a certain
mass, which is a constraint.
The classifier for the leptonic b-jet is remarkable in the context that the most important

features belong to the light jets. These do not belong to any reconstruction in combination
with the leptonic b-quark or the leptonic hemisphere. One possible explanation could
be that the DNN checks whether the light jets look like they are correctly assigned.
Depending on this, the number of possible other correct assignments is reduced and the
classification in correct or wrong assignments is simplified. Here again, the features of the
reconstructions connected to the leptonic b-jet seem to be less important.
The two light jet DNNs (Figures 6.16(d) and 6.16(e)) seem to rely both on the cos(θ)

values of the light jets and the b-tagging values, which seems reasonable. The features
of the reconstructed partons, like the hadronic W -boson or the hadronic top-quark, are
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important as well since the AUC values decrease with the shuffling of them.
For the b-jets swapped-DNN, multiple features are important: the b-tagging values of

the two bjets as well as the reconstructed values of the hadronic and the leptonic top-
quark. For this DNN, many different features have a high impact on the AUC values
as shown in Figure 6.16(c). This could indicate the necessity for this DNN to combine
multiple values and learn from the combinations and correlations of these values.
The “light jets swapped”-DNN (Figure 6.16(f)) does not vary in its performance no

matter which of the features was shuffled. This indicates, again, that this DNN learned
nothing and outputs approximately 0.5 no matter which input is fed into it.
Although results of the feature importance are not complete proofs, they are a useful

possibility to check if physical and logical expectations are met by the learning of the
classifier. The existence of correlations cannot be proofed completely, but, if multiple
shufflings let the performance drop to the same value, this can be a hint that these two,
or more, features have only been in combinations meaningful for the classifier.
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co
s(
θ)
lj 2

co
s(
θ)
lj 1

b-t
ag

(l
j 2

)

b-t
ag

(b h
ad
)

b-t
ag

(l
j 1

)

m
(t
op

le
p
)

m
(W

ha
d
)

pT
(b l

ep
+
e|µ

)

b-t
ag

(b l
ep
)

pT
(lj

2
)
je
t n

no
th

in
g

pT
(lj

1
)

pT
(lj

1
)/
pT

(lj
2
)

di
ff(l
jp

T
)/

su
m

(l
jp

T
)

η(
to
p ha

d
)

m
(t
op

ha
d
)

pT
(t
op

ha
d
)

∆
R
(b h

ad
, b

le
p
)

pT
(b l

ep
)

pT
(b h

ad
)

∆
R
(b l

ep
, (
e|µ

))

∆
R
(lj
et
s)

K
LF-lo

g-l
ik
el
ih

oo
d

pT
(lj

1
)−
pT

(lj
2
)

Shuffled Features

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1-
AU

C

Hypothesis: lj2 correct

(e) Feature importance diagram of the lj2correct -
DNN.

co
s(
θ)
lj 2

η(
to
p ha

d
)

b-t
ag

(b l
ep
)

co
s(
θ)
lj 1

b-t
ag

(l
j 2

)

pT
(lj

1
)

pT
(lj

1
)−
pT

(lj
2
)

b-t
ag

(b h
ad
)
je
t n

∆
R
(b h

ad
, b

le
p
)

pT
(b l

ep
+
e|µ

)

∆
R
(b l

ep
, (
e|µ

))

di
ff(l
jp

T
)/

su
m

(l
jp

T
)

pT
(t
op

ha
d
)

m
(W

ha
d
)

K
LF-lo

g-l
ik
el
ih

oo
d

no
th

in
g

m
(t
op

le
p
)

pT
(b l

ep
)

pT
(lj

1
)/
pT

(lj
2
)

m
(t
op

ha
d
)

b-t
ag

(l
j 1

)

pT
(lj

2
)

∆
R
(lj
et
s)

pT
(b h

ad
)

Shuffled Features

0.50

0.52

0.54

0.56

0.58

0.60

1-
AU

C

Hypothesis: light jets swapped

(f) Feature importance diagram of the light-jets-
swapped-DNN.

Figure 6.16: Feature importance plots of the binary DNNs. In the figures, the perfor-
mance of the binary DNNs are shown depending on which feature has been
selected for the permutation importance algorithm. In this algorithm, one
of the input features is shuffled over all events. A stronger decreasing
performance is associated with a higher importance for the classification.52
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6.4.2 Evaluation of the Multi-Class DNN

The last step of the new approach is the evaluation of the multi-class classifier, which
is supposed to find the best permutation in the end. To do so, training history and the
performance of the trained classifier are evaluated. The importance of input features is not
dealt with since the different logical combinations and reconstructions of more complex
hypotheses are already known.

Training of the Model

Figure 6.17 shows the training history of the multi-class DNN. As listed in Table 6.7, the
training of the multi-class DNN is terminated by early stopping. Therefore, the different
folds stopped after a different number of epochs, where the longest fold took 136 epochs
and the shortest 86 epochs. This gives a maximum relative difference of approximately
0.63. As shown in the plots, all folds converge to the same values of accuracy and loss.
Therefore, the different training lengths have no significant impact on the convergence of
the tracked values.
Figure 6.17(a) shows the accuracy history. As explained previously, the multi-class

DNN was trained on five different but balanced labels. Therefore, an untrained classifier
which guesses randomly the correct class would be correct in 20% of all cases, which gives
a start accuracy of approximately 0.2. Within the first ten epochs, the accuracy rises up
to approximately 0.5 and starts to asymptotically approach an accuracy of 0.55 within
the rest of the training. The loss decreases exponentially, as shown in Figure 6.17(b).
Additionally, it can be seen that the validation results are slightly better than the training
results, which indicates that the model did not start to overfit. The accuracy fluctuations
indicate that the model parameters reached a point near the global optimum.
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(b) Loss history of multi-class DNN.

Figure 6.17: Training history plots for accuracy and loss values of the multi-class DNN
which predicts whether or not a correct permutation exists among the
given 24. If yes it predicts which of the given 24 permutations is the
wanted.

Performance of the Trained Classifier

The results of the multi-class DNN are shown in Figure 6.18. The separation powers of
the DNN for the different permutations (Figures 6.18(a) to 6.18(d)) are all approximately
53%. The separation of label 25 (Figure 6.18(e)), which stands for “no correct permutation
present”, is approximately 48%. Conspicuous features in these plots is the distribution of
the output values of the labels 1, 2, 7 and 8. Here, the DNN predicts only values less than
0.6, in contrast to the last histogram which uses the full range between 0 and 1. This is
caused by the softmax activation function of the output layer in the multi-class DNN. It
forces the values of the output vector to sum up to 1.
Therefore, the values of the output vector can be interpreted as probabilities, which

concludes that the DNN is never more confident than 60% that a certain permutation
is the correct one. However, it can predict that no permutation in the events represents
the correct assignment with 100% confidence. This can be explained by looking at the
correlations between different output vector elements. These correlations are shown in
Figure 6.19.
The predictions of permutation 1 and 2 and permutation 7 and 8 are highly corre-

lated. This indicates that the problem is the swapped assignment of the light jets. The
binary DNN, which is responsible for this distinction was not able to learn anything and,
therefore, the multi-class DNN cannot use any information about these assignments. Due
to this, the DNN predicts both permutations of one of these pairs with almost equal
probabilities, which leads to the distribution stopping at 0.6.

54



6.4 Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DNN Output Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

ct
io

n 
of

 E
ve

nt
s

Signal (Test)
Background (Test)
Signal (Train)
Background (Train)

Hypothesis: permutation 1 is correct
Separation: 53.64(53.79)%
Fraction of correct events: 6.74%
Fraction of wrong events: 93.26%

(a) Output value histogram of permutation 1 of
the multi-class DNN.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DNN Output Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

ct
io

n 
of

 E
ve

nt
s

Signal (Test)
Background (Test)
Signal (Train)
Background (Train)

Hypothesis: permutation 2 is correct
Separation: 53.96(53.87)%
Fraction of correct events: 6.68%
Fraction of wrong events: 93.32%

(b) Output value histogram of permutation 2 of
the multi-class DNN.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DNN Output Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

ct
io

n 
of

 E
ve

nt
s

Signal (Test)
Background (Test)
Signal (Train)
Background (Train)

Hypothesis: permutation 7 is correct
Separation: 52.56(52.94)%
Fraction of correct events: 6.71%
Fraction of wrong events: 93.29%

(c) Output value histogram of permutation 7 of
the multi-class DNN.
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(d) Output value histogram of permutation 8 of
the multi-class DNN.
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(e) Output value histogram of the “no permuta-
tion is correct”-label of the multi-class DNN.

Figure 6.18: Evaluation plots of the bhad-DNN. Shown are the permutations 1 and 23.
The different fractions of signal events is a consequence of the assignment
of a b-jet and a light jet to the position of the hadronic b-jet. A b-tagged
jet is more likely to be the correct choice.
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(a) Correlation between the output values of
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(b) Correlation between the output values of
permutation 7 and 8 of the multi-class DNN.
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(c) Correlation matrix between the output values for the different labels of the multi-class DNN.

Figure 6.19: Correlation plots of the multi class DNN. Shown are the correlations be-
tween the output values of permutation 1 and 2 and permutation 7 and
8. These pairs of permutations only differ in the swapped assignment of
the light jets. The b-jets are the same. Additionally, the correlation coef-
ficients between all labels are shown whereas label 25 symbolises the case
in which no permutation is correct.
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The correlation factors of all other permutation pairs are shown in Figure 6.19(c). The
predictions of the permutations which have not been trained are correlated (correlation
factor ≈ 0.3). Since no training data element was used where one of these permutations
was correct, the DNN learns that these permutations are never correct. Therefore, the
reason for these correlations is not so much based on the similarity between those per-
mutations but rather on the common property of never being correct. The untrained and
trained permutations are not correlated. The trained permutations are anti-correlated
(correlation factor between -0.3 and -0.5) with each other except for the pairings shown
in Figures 6.19(a) and 6.19(b)(correlation factor ≈ 0.3). These anti-correlations give a
hint that the b-jet swapping values improve the predictions, although the anti-correlations
between the groups of permutations 1 and 2 and permutations 7 and 8 are not as large
as those between one of the groups and the “no permutation is correct”-label.

Finally, the performance of the multi-class approach is evaluated in terms of the recon-
struction efficiency of the different hypotheses. Table 6.10 shows these results, in addition
to the performances of the KLFitter approach, where the permutation with the highest
event probability is assumed to be the correct one, and the BDT approach, which, based
on the KLFitter approach, does one additional check if this permutation is the correct
one. As it is shown the DNN approach outperforms the previous approaches in every
category. The reconstruction efficiencies in respect to events where reconstructions could
have been found correctly increased by approximately 11% in the b-jet categories and by
approximately 15% for the combined reconstructions.

The evaluation contains some problematic categories. One of them is the definition of
“present”. This definition has been altered and split such that it corresponds better with
the intuitive understanding of “present” and the new category “matched”. For KLFitter
and the top-decay width analysis “present” is calculated by checking for each t-parton
if a r-jet exists such that they can be paired with a ∆R < 0.3. The order here is
bhad → blep → lj1 → lj2 which concludes that the true hadronic b-jet has the highest
chance of getting matched. All of the following t-partons can only be paired with one of the
remaining r-jets. This is unintuitive since there is no natural order in these jets. The new
definition of “present” is calculated the same way but without the constraint that r-jets
that have been used for a pairing already cannot be used again. This causes the slightly
higher values for the light jets. This, of course, is not ideal either. Therefore, the category
“matched” has been created. This category is calculated by the algorithm represented in
Figure 6.7. Based on the present or matched jets, the reconstructed particles can also be
present or matched. The training is based on the “matched”-labels.

The other problematic definition is whether or not a light jet is assigned correctly. The
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Fractions[%] blep bhad 1st light jet 2nd light jet Whad tophad All

KLF + BDT present 96 96 74 74 53 51 49
DNN present 96 96 75 75 54 52 50
DNN matched 93 93 59 59 31 29 28

Table 6.9: In this table the fractions of events are shown in which a certain recon-
struction could possibly be found correctly by a classifier. The definition of
“present” was altered and slightly loosened to a more intuitive understand-
ing. Additionally, a new category “matched” is introduced which represents
a stricter definition of whether jet assignments can be found correctly.

Reco eff[%] blep bhad 1st light jet 2nd light jet Whad tophad All

KLF correct vs. total 57 58 63 58 39 30 28
KLF correct vs. present 59 60 85 79 74 39 57
BDT correct vs. total 75 74 68 58 41 36 35
BDT correct vs. present 79 77 91 79 77 71 71
DNN correct vs. total 81 82 51 49 29 25 24
DNN correct vs. matched 87 88 97 93 93 85 85

Table 6.10: Performance comparison of the DNN approach with previous approaches.
The reconstruction of the hadronic W -boson, the hadronic top-quark and
the whole event is not sensitive to the light jet swapping to keep the results
comparable with the previous approaches.

Definition correct vs. matched correct vs. total

lj1 correct (strict) 49.31% 26.13%
lj2 correct (strict) 46.87% 24.84%
One light jet correct (strict) 49.82% 26.4%
Two light jets correct (strict) 46.36% 24.57%
One light jet correct (swapping ok) 96.52% 51.16%
Two light jets correct (swapping ok) 93.05% 49.32%

Table 6.11: Different definitions of correct light jet reconstruction. The first two rows
represent the most intuitive definition of a correct assignment. The previous
approaches use a definition similar to the last two rows. They are of special
interest when it comes to the combined reconstructions like the hadronic
W -boson since a swapped assignment does not matter for this hypothesis.

definition of the previous approaches is constructed such that, at first, it is attempted
to pair the true first light jet with one of the two assumed light jets from the “best
permutation” and then the true second light jet. Therefore, the true second light jet has
a smaller chance to be matched correctly. This procedure is an artefact caused by the
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fact that, in previous approaches, the correct reconstruction of light jets was not part of
the research interest and, therefore, neglected. Table 6.11 gives an overview over different
possible definitions of a correct light jet assignment, where the last row is equivalent to
the hypothesis “Whad reconstructed correctly” in Table 6.10. This definition is applied for
the DNN as well to keep the results comparable with those of the previous approaches.
However, this is not the most intuitive definition. The other rows show other possible

definitions and how the DNN performs if they are applied. The first two rows represent
the most intuitive definition.
Figure 6.20 shows the predictions divided into several categories, depending on the

actual truth label of the event and the label vector the multi-class DNN assigned to
the event. The label which is predicted to be the correct one is calculated by finding
the trained label with the minimal summed cross-entropy to the predicted label vector.
The true negatives are the events where no permutation with all jets assigned correct
could have been found and the DNN predicted this correctly. The false positives are
the cases where the DNN determined a “best permutation”, although there was none.
If the DNN predicted that no permutation exists although one could have been found,
this is categorised as a false negative. The other segments represent the predictions of
the correct permutations, the permutations with the swapped light jet assignment and
the wrong predicted permutations. The near by identical fractions of correctly predicted
permutations and predicted permutations with the swapped light jet assignment reflect
the problem with the untrained “light jets swapped”-assignment and resulting correlations
between permutation in the prediction vector of the multi-class DNN.
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45.94%

11.04%

11.09% 26.27%

3.07%
1.59%
1.00%

True Negatives
Correct Permutation
Swapped Permutation
False Positives
Wrong Permutation
False Negatives
Not trained

Figure 6.20: Pie chart of the prediction of the multi-class DNN. The segments of the
true negatives and the correct permutations represent the fraction of events
which are predicted correctly. The prediction of a hypothesis with swapped
light jet assignment is separated from the wrong predictions since these
permutations still can be used for the reconstruction. An example for the
“Wrong Permutation” segment is an event in which permutation 1 would
be the correct permutation but a different permutation than 1 or 2 are
selected. False positives are the events in which no correct permutation
exists but the DNN predicts one. False negatives are the events in which
the DNN predicted that no correct permutation exists although one could
be found.
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7 Summary and Outlook

Concluding this thesis, a brief summary and conclusion are given in this chapter. Subse-
quently, possible ways to continue the studies presented in this thesis are shown.

7.1 Summary

This thesis presented the development of a new extension framework to KLFitter using a
stacked machine learning approach consisting of DNNs. Furthermore, previous approaches
have been explained which built the basis for the studies presented in this thesis. The
predecessor approach was rebuilt and reimplemented forming a stepping stone towards
concepts of the new approach. The concept of compound reconstruction hypotheses mo-
tivated the architecture of the stacked multi-class classifier. The implementation has
been documented and carried out. The resulting classifiers were evaluated in respect to
multiple properties and the performance results were interpreted.
The reconstruction efficiency for b-jets is improved to 87% for hadronic and 88% for

leptonic b-jets. This is an 11% increase with respect to the BDT and a 28% increase to
KLFitter. Using a similar definition of correctly reconstructed light jets the performance
has reached 97% for one and 93% efficiency for two light jets. Especially the case of
two correctly reconstructed light jets is improved by 14% with respect to both: the
BDT and KLFitter. These improvements allow an increased efficiency for the combined
reconstructions as well. The hadronic W -boson can be found correctly 16% more often
than with the BDT and 19%more than with KLFitter. This, again, improves the efficiency
for hadronic top-quarks as well. Here the performance improved from KLFitter to the
BDT by 32% from 39% to 71% and from the BDT again by 14% to 85% of the DNN
approach. Complete tt̄-decays can be reconstructed correctly in 85% of all cases with the
DNN approach which is 14% more compared to the BDT and 28% compared to KLFitter.
This new classifier approach provides the possibility of a higher reconstruction efficiency

of tt̄-decays. Therefore, using this tool can improve studies of the top-quark and its
properties. Additionally, the multi-class DNN can be retrained to predict a different
hypothesis. The hadronic W -boson, for example, can be reconstructed in 93% of all cases
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if the DNN is trained to reconstruct the complete event. With a retraining to especially
this hypothesis, the reconstruction efficiency could improve even more. Therefore, the new
approach does not only provide a better tt̄-decay reconstruction efficiency, but a basis for
multiple other trainings as well. Furthermore, it provides a blue print for other possible
machine learning tasks based on the prediction of one or more hypotheses combined from
several elementary hypotheses which can be predicted on their own. Several particle
physics processes ,including reconstructions of decay products, could be addressed with
an approach based on the one successfully presented here.

7.2 Outlook

Based on the results from the presented approach, recommended actions can be identified.
The primary problem during the reconstruction of the events is the assignment of the light
jets. The reconstruction efficiency of single light jets in terms of a strict assignment has
to be larger and, additionally, the light jet swapping detection should be improved. One
way to do so could be to use flavour information of the jets. A constraint that one light jet
has to originate from an up-type-flavour-quark and one from a down-type-flavour-quark
might be useful. Figure 7.1 shows potential separation power between light jets based
on this idea. The values shown in this figure are already present on the simulation level.
So far, no sufficient way of reconstructing these values has been developed. Currently,
development is done towards c-tagging to classify whether or not a jet originated from a
charm-quark. If this development is successful, at least cases in which both chosen light
jets have large c-tagging values assigned could be rejected. Further development towards
tagging algorithms for other quark flavours will be helpful as well.
An additional analysis that could be conducted and might be successful, is using con-

volutional neural networks which are especially aimed at image recognition. The 6 × 24
prediction matrices of each event can be interpreted as a “picture of an event”.
In general, other input features could improve the model performance. As shown in

Figure 6.16, not all currently used variables increase the performance of all binary DNNs.
A more individualised input variable selection could lead to better performances.
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(b) Separation plot of a more complex pT-
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Figure 7.1: Separation plots of pT-distributions of up-type-flavour-quarks and down-
type-flavour-quarks. Using and improving flavour reconstruction, could in-
crease reconstruction efficiencies towards the correct light jet assignment.
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Im Rahmen der Atlas-Kollaboration werden am Cern im Large Hadron Collider 

(Lhc) Protonen beschleunigt und zur Kollision gebracht. Dabei finden unter 

anderem sogenannte Topquark-Paarproduktionen statt, bei welchen aus dem 

Protonenzusammenstoß Partonen und aus deren Interaktion ein Topquark 

und ein Antitopquark entstehen. Diese Teilchen zerfallen dann in weitere 

Teilchen im Endzustand. Um das Topquark untersuchen zu können, müssen 

die Zerfallsprodukte im Detektor rekonstruiert werden, was durch 

Untergrundprozesse und Messungenauigkeiten erschwert wird. Um eine 

möglichst gute Rekonstruktion der Top-Quark-Ereignisse zu erhalten, werden 

verschiedene Teilchenzuordnungen und und deren Wahrscheinlichkeiten mit 

Hilfe des Kinematic Likelihood Fitter berechnet.

Aufbauend auf Kinematic Likelihood Fitter und einer Erweiterung durch einen 

Boosted Decision Tree, wurde ein tiefes neuronales Netz entwickelt, um die 

Bewertung der wahrscheinlichsten Teilchenzuordnung in einem ersten Schritt 

zu rekonstruieren und zu verbessern. Im Anschluss daran wurden weitere tiefe 

neuronale Netze entwickelt, welche Aussagen zu Teilen der Rekonstruktion 

ermöglichen. Dadurch erhalten dessen Nutzer die Möglichkeit, zugeschnitten 

auf ihre Problemstellung und mit einer höheren Präzision, einen größeren 

Datensatz an relevanten Ereignissen aus den ursprünglich gemessenen

Daten herauszufiltern.
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