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Abstract

Many optimization problems in science, engineering, and medicine can be modeled by dif-
ferential equations that can be steered via discrete control functions and are therefore called
mixed-integer optimal control problems. The challenge of solving these problems lies in
combining an infinite-dimensional optimization problem with discrete-valued optimization
functions. After discretization, these problems become mixed-integer nonlinear programs for
which the combinatorial integral approximation decomposition was proposed. The decompo-
sition solves one nonlinear problem and one rounding problem formulated as a mixed-integer
linear program.

This thesis generalizes and extends the combinatorial integral approximation decomposition
algorithm. We define a framework that, through a sequence of several nonlinear optimization
and rounding problems with increasing numbers of fixed integer variables, is designed to trans-
fer feasibility from the obtained relaxed solution to the rounded solution. We derive several
rounding problem versions based on different norms, the structure of the dynamical system,
and the temporal ordering of the control approximation constraints. Based on the constructed
integer control functions, we propose recombination strategies for generating promising can-
didate solutions with respect to the objective. For the combinatorial integral approximation
decomposition in the unconstrained case, convergence to the optimal solution can be achieved
by grid refinement. However, when refinement is not applicable or desirable, recombination
methods are useful.

We provide an overview of a range of time-coupled combinatorial constraints that are com-
mon in practical applications. Specifically, we investigate decomposition algorithms for mixed-
integer optimal control problems under minimum dwell time and bounded discrete total vari-
ation constraints. Typically, state constraints also arise in application-driven problems. We
therefore propose methods for incorporating information from the nonlinear problem step
into the rounding problem constraints to generate state constraint feasible integer control solu-
tions. Independent of the additional constraints, we derive different, partly approximate algo-
rithms to solve the mixed-integer linear rounding problem and perform a theoretical analysis
by proving tight bounds in terms of the integral deviation gap.

Efficient software is indispensable for problem solving in practice. In this context, we present
the package pycombina, which provides solution algorithms for the mixed-integer linear prob-
lem. Computational results from benchmark problems and real-world case studies of a hybrid
electric vehicle and a heart assist device system highlight the relevance and applicability of the
proposed algorithms.
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Zusammenfassung

Viele Optimierungsprobleme aus den Natur- und Ingenieurwissenschaften sowie der Medizin
können mit Differentialgleichungen modelliert werden, die über diskrete Steuerungsfunktio-
nen geregelt werden können und daher als gemischt-ganzzahlige Optimalsteuerungsproble-
me bezeichnet werden. Die Herausforderung bei der Lösung dieser Probleme liegt in der Kom-
bination eines unendlich-dimensionalen Optimierungsproblems auf der einen Seite und dis-
kretwertigen Optimierungsfunktionen auf der anderen Seite. Diese Probleme werden nach der
Diskretisierung zu gemischt-ganzzahligen nichtlinearen Problemen. Für deren Lösung wur-
de wiederum die combinatorial integral approximation Dekomposition vorgeschlagen, welche
aus dem Lösen eines nichtlinearen Optimierungsproblems und eines Rundungsproblems, das
als ein gemischt-ganzzahliges lineares Problem formuliert werden kann, besteht.

Diese Arbeit verallgemeinert und erweitert den Dekompositions-Algorithmus in vielerlei
Hinsicht. Wir definieren einen algorithmischen Rahmen, der durch eine Folge von mehreren
nichtlinearen Optimierungs- und Rundungsproblemen mit zunehmender Anzahl von fixier-
ten ganzzahligen Variablen die Zulässigkeit der konstruierten relaxierten zur gerundeten Lö-
sung übertragen soll. Wir leiten mehrere Rundungsproblemversionen ab, die auf verschiede-
nen Normen, der Struktur des dynamischen Systems und der zeitlichen Anordnung der Ne-
benbedingungen der Steuerungs-Approximiation beruhen. Auf der Grundlage der konstruier-
ten ganzzahligen Steuerungsfunktionen schlagen wir Rekombinationsstrategien vor, um viel-
versprechende Kandidatenlösungen im Hinblick auf die Zielfunktion zu generieren. Während
im unbeschränkten Fall für den Dekompositionsalgorithmus eine Konvergenz zur optimalen
Lösung durch Gitterverfeinerung bewiesen werden kann, sind Rekombinationsstrategien nütz-
lich, wenn eine Verfeinerung nicht anwendbar oder erwünscht ist.

Wir geben einen Überblick über eine Reihe von zeitgekoppelten kombinatorischen Neben-
bedingungen, die in vielen praktischen Anwendungen üblich sind. Insbesondere untersuchen
wir Dekompositionsalgorithmen für gemischt-ganzzahlige optimale Steuerungsprobleme un-
ter minimaler Verweilzeit und einer beschränkten Anzahl erlaubter Wechsel der aktiven diskre-
ten Steuerungsfunktion. Typischerweise treten auch Beschränkungen der differentiellen Zu-
stände bei anwendungsgetriebenen Problemen auf. Für die Konstruktion zulässiger ganzzahli-
ger Steuerungslösungen schlagen wir Methoden vor, um Informationen aus dem nichtlinearen
Problemschritt in das Rundungsproblem einzubeziehen. Unabhängig von den zusätzlichen
Nebenbedingungen leiten wir verschiedene, teilweise approximative Algorithmen zur Lösung
des gemischt-ganzzahligen linearen Rundungsproblems her und führen eine theoretische Ana-
lyse durch, indem wir scharfe Schranken in Bezug auf den Rundungsfehler beweisen.

Effiziente Software ist für die Problemlösung in der Praxis unumgänglich. In diesem Kontext
stellen wir das Paket pycombina vor, das Lösungsalgorithmen für das gemischt-ganzzahlige
lineare Problem bereitstellt und im Rahmen eines Gemeinschaftsprojekts mit anderen For-
schern entwickelt wurde. Numerische Ergebnisse aus Benchmark-Problemen und realen Fall-
studien aus einem Hybrid-Elektrofahrzeug und einem Herzunterstützungssystem heben die
Relevanz und Anwendbarkeit der diskutierten Algorithmen hervor.
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Chapter 1

Introduction

As a method for formulating and solving complex problems, mathematical optimization can
serve as a comprehensive framework for providing decision support. The usual optimization
procedure is to specify an objective function that is to be minimized and to identify constraints
that limit the scope of action. An example of such an approach which is further investigated in
this thesis is “How should we steer a given vehicle so that we use as little fuel as possible on a
given route?”. Physical limitations of the vehicle represent the optimization constraints.

This thesis follows a model-driven optimization approach: we assume that the processes
underlying a problem can be mapped into mathematical relationships. In fact, numerous (dy-
namic) processes in various fields of science [262] and engineering [237] are well described by
ordinary differential equations (ODEs) that quantify time-varying behaviors. In the above ex-
ample, the vehicle dynamics can be characterized by a dynamical system based on ODEs. In
the optimization context, it is natural to ask how these processes can be optimally controlled by
external input functions, thus giving rise to optimal control theory and optimal control prob-
lems (OCPs).

A particular subclass of OCPs represent mixed-integer optimal control problems (MIOCPs) in
which the dynamical process exhibits a discrete nature because the external control function
only assumes a finite number of values. Typically, discrete control functions express on-off
switching decisions or specific configurations of machines. The abruptly changing dynamics
of MIOCPs can also result from switching events that occur when a specific differential state
attains a threshold value. The switches may occur at any time point in the given time hori-
zon. Discrete choice examples related to the vehicle driving optimization problem include
“Should we propel the vehicle via the combustion engine or the electric motor?” and “Which
gear should we choose?”. Another mixed-integer optimal control (MIOC) application investi-
gated in this thesis is the control of left ventricular assist devices (LVADs) where the dynamical
system switches based on the opening and closing of the heart valves or by varying the piece-
wise constant rotational pump speed of the heart assist device.

Efficient and accurate solution methods are crucial for optimization problems in general and
for MIOCPs specifically. The class of MIOCPs is challenging because it combines the difficul-
ties of several optimization disciplines, namely integer and nonlinear programming as well as
(continuous) optimal control theory. A useful approach to optimization problems is complex-
ity reduction via decomposition, which refers to breaking up a complex problem into smaller
ones and then solving the smaller problems separately. The advantage of decomposition stems
from the fact that problem complexity grows more than linearly with size. Solving the smaller
problems is therefore more efficient, albeit at the expense of a possible loss of optimality. Time-
discretized MIOCPs result in mixed-integer nonlinear programs (MINLPs) [160], which are
known to be generally NP hard [21], making decomposition relevant. Sager [218] proposed
solving the partially outer convexified [72] MINLP, in which the integrality constraints are re-
laxed, making it an nonlinear program (NLP) problem. The obtained relaxed control values can
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CHAPTER 1 INTRODUCTION

be approximated with integral values via the sum-up rounding (SUR) [218] algorithm. For the
second step of the decomposition, Sager, Jung, and Kirches [224] proposed solving the so-called
combinatorial integral approximation (CIA) problem, which constitutes an mixed-integer lin-
ear program (MILP), instead of applying SUR. We call the solution method based on outer con-
vexification, relaxation, and subsequent projection to integer controls the CIA decomposition.
We write (CIA) for denoting the rounding subproblem of the decomposition.

The CIA decomposition has attracted attention for its numerical efficiency and for a con-
vergence result: the constructed solution can be made arbitrarily close to the optimal solu-
tion by refining the discretization grid. This doctoral thesis investigates the algorithm from an
application-oriented perspective, for which time-coupled combinatorial constraints are usu-
ally required. In the vehicle optimization context, these constraints include that the combus-
tion engine must stay on for at least a few seconds after being switched on and that only certain
gears can be selected given the current active gear. Another common feature of application-
driven MIOCPs is that refinement of the discretization may be impractical for huge problem
instances or time-critical solution requirements, as in model predictive control (MPC). We
therefore propose algorithms that can create feasible and near-optimal solutions for a fixed
discretization of a given MIOCP, and we quantify the resulting approximation errors.

1.1 Contributions

This thesis contributes to the theory and numerical methods of ODE constrained MIOCPs. We
take the application-driven perspective in which combinatorial constraints on the integer con-
trols play a major role. For this purpose, we propose several problem-specific and efficient
algorithms as variants of the CIA decomposition. We describe the novel methods and results in
the following.

A generalized CIA decomposition framework

Thus far, the CIA decomposition has mainly been considered an algorithm that involves two
subsequent problems [218, 219, 145, 149]. In a few cases, three subproblems have been consid-
ered, where an NLP with fixed integer controls is the third step [135]. We generalize and extend
the decomposition idea by defining a framework of multiple subsequent NLP and CIA prob-
lem steps. We derive different versions of the (CIA) problem, leading to multiple MILPs. The
different (CIA) problem versions are based on different norms, the scaling information of the
dynamical system, and the temporal ordering of the control approximation constraints. The
solutions of the problem versions are themselves candidate solutions, and they can be recom-
bined into new switching sequences. We propose several strategies for generating promising
candidate solutions for the binary control functions in the original problem. These extensions
are designed to construct a feasible solution with a near-optimal objective value for complex
MIOCPs that entail multiple constraints. Sager [225] established that the quality of the solution
obtained from the CIA decomposition can be improved by refining the discretization grid. The
proposed generalization is particularly beneficial when refinement of the problem discretiza-
tion is not applicable. Nevertheless, we prove that the established convergence result still holds
for the extended CIA decomposition.

2



INTRODUCTION CHAPTER 1

Mixed-integer optimal control under switching constraints

In this thesis, we discuss a broad range of switching restrictions on the integer control that arise
in real-world application problems. For instance, tailored MIOC policies are usually required
to avoid rapid successive changes of the active integer control. This requirement is expressed
by minimum dwell time (MDT) constraints, which can be further identified as minimum up
time and down time constraints. Another way to avoid unrealistic frequent switching is to con-
strain the number of switches between active integer controls. Such bounded discrete total
variation (TV) constraints have been already included into the CIA problem [224, 137, 135]. Fi-
nally, we discuss further switching restrictions on the integer control, such as mode transition
constraints.

Incorporation of path constraint information from the NLP into the (CIA) problem step

The solution obtained from the CIA decomposition may be infeasible with respect to path con-
straints on the differential states of the MIOCP. It has been established that the constraint vio-
lation can be made arbitrarily small by refining the discretization grid [225, 149]. To extend the
CIA decomposition without grid refinement, we propose methods for incorporating the state
constraint information from the nonlinear problem step into the rounding problem constraints
to generate state constraint feasible integer control solutions. We propose forward integration
of the differential states as part of a branch-and-bound (BnB) algorithm so that compliance
with the path constraint can be checked directly. Moreover, we derive constraints for the (CIA)
problem based on a first-order Taylor approximation of the path constraints.

Algorithms for solving (CIA) problems

The classic SUR [218] provides an approximate way to solve a (CIA) problem with the maximum
norm and without combinatorial constraints on the integer controls. The (CIA) problem can
also be formulated as an MILP; for its solution, Jung proposed and implemented an efficient
BnB algorithm [224, 137]. We derive an extended formulation variant of this MILP that is based
on the introduction of variables for tracking the switches of active controls. Furthermore, we
introduce several rounding schemes for solving the (CIA) problem. Specifically, we propose
dwell time sum-up rounding (DSUR) and dwell time next-forced rounding (DNFR) for MIOCPs
under MDT constraints and adaptive maximum dwell rounding (AMDR) when the number of
allowed switches is limited.

Integral deviation gap results and analysis of (CIA) problem solution algorithms

We investigate the integral deviation gap of the (CIA) problem based on the maximum norm.
In this context, we prove tight upper bounds for the (CIA) problem without combinatorial con-
straints, with MDT, and with limited switching constraints. We also analyze the approximation
error resulting from the different proposed rounding schemes. The derivation of the bounds is
accompanied by results on the problem and run time complexity, for which we establish a link
to scheduling theory.

3



CHAPTER 1 INTRODUCTION

Implementations for the solution of (CIA) problems

All algorithms for the solution of (CIA) problems that we introduce and discuss in this the-
sis, in particular BnB and rounding schemes, are implemented in the open-source software
tool pycombina, which provides a comprehensive framework for formulating and solving (CIA)
problems. Significant parts of the package and the user interface are written in Python, while
the BnB algorithm relies on an efficient C++ implementation.

Moreover, we implemented the postprocessing heuristics and different (CIA) problem vari-
ants in AMPL [79] using the code ampl_mintoc, which is a modeling framework for handling
OCPs.

Benchmarking the algorithms via case studies

The efficacy of the proposed algorithms and problem models is demonstrated via an adsorp-
tion cooling machine problem [48, 49], the Lotka-Volterra fishing problem, the Egerstedt stan-
dard problem, a three-tank flow system problem, and further MIOCPs from the benchmark
library https://mintOC.de [221]. We illustrate our findings and discuss best practice usage of
the CIA decomposition.

Multiphase mixed-integer optimal control of hybrid electric vehicles

In recent years, hybrid electric vehicles (HEVs) have become more common since they can re-
duce greenhouse gas emissions and fuel consumption while providing a high-quality ride. We
consider the problem of computing a non-causal minimum-fuel energy management strategy
for a given driving cycle of an HEV. When searching for the optimal gear choice, torque split,
and engine on/off controls during off-line evaluations, the problem can be formulated as a
multiphase MIOCP. We propose an efficient model by introducing vanishing constraints and
a phase-specific right-hand side function that accounts for the different powertrain operating
modes. The gearbox and drivability requirements are translated into combinatorial constraints
that have not been included in previous research; however, they are part of the algorithmic
framework for this investigation. Numerical experiments were performed to illustrate the pro-
posed tailored CIA decomposition algorithm in terms of its solution quality and run time.

Mixed-integer optimal pump speed control of ventricular assist devices

A promising therapy for patients with congestive heart failure is the implementation of a left
ventricular assist device that works as a mechanical pump. Modern devices work with a con-
stant rotor speed and therefore, provide continuous blood flow; however, there have been re-
cent attempts to generate pulsatile blood flow by oscillating the pump speed. We propose an
MIOCP framework for constructing and evaluating optimal pump speed policies. We consider
implicit switches enforced by system changes, such as valves opening and closing, and explicit
system switches that stem from varying the constant pump speed. The developed algorithm
can also be used to adapt the underlying model to patient-specific data. We suggest basing the
in silico analysis on a model that captures the atrioventricular plane displacement, a physio-
logical indicator of heart failure. As a proof-of-concept study, we personalize the model for a
selected patient and present numerical results of the constructed optimal pump speed policies.

4
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1.2 Contributions to publications

Major parts of this work are based on publications to which the author of this thesis made
significant contributions. In the following, we list these articles and indicate their connection
with the chapters of this thesis. Moreover, the contributions of the author of this thesis to the
respective publications are summarized.

[282] C. Zeile, N. Robuschi, and S. Sager. Mixed-integer optimal control under minimum
dwell time constraints. Mathematical Programming, pages 1–42, 2020. doi: https:
//doi.org/10.1007/s10107-020-01533-x

All chapters associated with MDT constraint methods are based on this publication, namely,
Sections 6.5, 6.6, 7.2, 7.3, 7.4, and 9.3. As the main author, C. ZEILE developed the algorithmic
ideas as well as the mathematical proofs and worked out the computational results and the first
draft of the article. N. ROBUSCHI and S. SAGER contributed with discussions and reviewed the
paper before submission.

[222] S. Sager and C. Zeile. On mixed-integer optimal control with constrained total varia-
tion of the integer control. Computational Optimization and Applications, 2020. doi:
10.1007/s10589-020-00244-5

Sections 6.7, 7.5, and 9.4 deal with models and approaches for limiting the number of
switches allowed between active controls and are based on the above article. The study was
designed and conducted by C. ZEILE as the main author. S. SAGER contributed to discussions
and writing the final manuscript.

[280] C. Zeile, T. Weber, and S. Sager. Combinatorial integral approximation decompositions
for mixed-integer optimal control. Technical report, 2018. (preprint available under
http://www.optimization-online.org/DB_HTML/2018/02/6472.html)

This paper develops generalizations of the CIA decomposition to different MILP formula-
tions and recombination strategies. Major parts of Chapters 4, 5, 6.1, and 9.1 are based on this
study. C. ZEILE, the main author of this paper, conducted the implementations and the numer-
ical study, and he was responsible for writing most of the article. T. WEBER contributed major
algorithmic ideas and proofread the manuscript. S. SAGER contributed to the research design
and discussions of the algorithmic ideas and wrote parts of the paper.

[48] A. Bürger, C. Zeile, Altmann-Dieses, S. A., Sager, and M. Diehl. An algorithm for mixed-
integer optimal control of solar thermal climate systems with MPC-capable runtime.
In 2018 European Control Conference (ECC), pages 1379–1385. IEEE, 2018

[49] A. Bürger, C. Zeile, Altmann-Dieses, S. A., Sager, and M. Diehl. Design, implementation
and simulation of an MPC algorithm for switched nonlinear systems under combina-
torial constraints. Journal of Process Control, 81:15–30, 2019

[50] A. Bürger, C. Zeile, M. Hahn, A. Altmann-Dieses, S. Sager, and M. Diehl. pycombina: An
open-source tool for solving combinatorial approximation problems arising in mixed-
integer optimal control. In Proceedings of the IFAC World Congress, 2020. accepted

5
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These publications present the application of an MIOCP to solar thermal cooling in buildings
and the software package pycombina for solving CIA problems. Parts of Section 6.1 and Chap-
ter 8 describe ideas and methods from these three papers. In these publications, A. BÜRGER,
the main author, designed the study and the mathematical models, and performed the nu-
merical tests. C. ZEILE, the second author, contributed to algorithmic ideas and wrote minor
parts of the articles. Furthermore, he was involved in general discussions of the papers and the
implementations of pycombina. The other co-authors contributed to discussions and proof-
reading of the papers.

[211] N. Robuschi, C. Zeile, S. Sager, and F. Braghin. Multiphase mixed-integer nonlinear
optimal control of hybrid electric vehicles. Automatica, 123:109325, 2021. doi: https:
//doi.org/10.1016/j.automatica.2020.109325

Section 10.1 is based on this article. This work resulted from the research visit of N. ROBUSCHI

in Magdeburg in the summer of 2018. N. ROBUSCHI and C. ZEILE wrote the article together, and
therefore share the first authorship. While N. ROBUSCHI was responsible for the engineering-
related aspects, such as the conceptual aim and design of the study as well as the powertrain
modeling, C. ZEILE’s role was to advance the mathematical aspects. N. ROBUSCHI performed
major parts of the numerical results study, to which C. ZEILE adapted the software package
pycombina. S. SAGER and F. BRAGHIN contributed to discussions and reviewed the paper before
submission.

[281] C. Zeile, T. Rauwolf, A. Schmeisser, J. Mizerski, R. C. Braun-Dullaeus, and S. Sager. A
personalized switched systems approach for the optimal control of ventricular assist
devices based on atrioventricular plane displacement. IEEE Transactions on Biomedi-
cal Engineering, 2020. submitted

Section 10.2 is based on this publication. C. ZEILE, as the main author, proposed the study
design, performed the numerical computations, and wrote the manuscript. T. RAUWOLF and J.
K. MIZERSKI contributed to interpreting results, the medical background, and general discus-
sions on the study design. The clinical data for the experiments were provided by T. RAUWOLF

and A. SCHMEISSER. All authors contributed to writing the final manuscript.

[114] M. Hahn, C. Kirches, P. Manns, S. Sager, and C. Zeile. Decomposition and approx-
imation for PDE-constrained mixed-integer optimal control. In M. H. et al., editor,
SPP1962 Special Issue. Birkhäuser, 2019. (accepted)

Since this publication reviews the CIA decomposition for partial differential equation (PDE)-
constrained problems, it only overlaps slightly with this thesis, but Chapter 4 shares some of its
ideas. The main contributions of C. ZEILE were Chapters 3.2 and 4 and discussions of the gen-
eral study design. While P. MANNS contributed to Chapters 1, 2, and 3.1, M. HAHN performed
major parts of the numerical experiments and wrote the corresponding chapter. C. KIRCHES

and S. SAGER contributed to discussions and reviewed the paper before submission.

[278] C. Zeile, E. Scholz, and S. Sager. A simplified 2D heart model of the Wolff-Parkinson-
White syndrome. In Proceedings of the Foundations of Systems Biology in Engineering
(FOSBE) Conference, volume 49, pages 26–31. Magdeburg, Germany, Elsevier, 2016
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[279] C. Zeile, T. Rauwolf, A. Schmeisser, T. Weber, and S. Sager. The influence of right ven-
tricular afterload in cardiac resynchronization therapy: A circadapt study. In Comput-
ing in Cardiology 2017 -PapersOnLine Proceedings, 2017

These publications resulted from a project on modeling the human heart that the author of
this thesis worked on during the course of his doctoral studies. However, they are not directly
related to MIOCP and are therefore not included in this thesis.

1.3 Thesis outline

We relate the chapters of this work to the individual contributions described above and catego-
rize the publications according to their thematic content. This subdivision facilitates a proper
overview of certain aspects of the thesis, such as the algorithms or the theoretical analysis as
a whole. This doctoral thesis is divided into three parts with eleven chapters in total and one
appendix.

First, Part I introduces the problem class of MIOCPs and its background. We summarize
relevant aspects and methods from optimal control theory in Chapter 2. We continue with an
overview of the research field of MIOCPs in Chapter 3. To this end, we define a generic problem
class in Section 3.1 and provide a survey of relevant numerical methods in Section 3.4.

Part II provides the algorithmic framework and a theoretical analysis of the CIA decomposi-
tion. Chapter 4 addresses the different algorithm versions of the CIA decomposition. In par-
ticular, Sections 4.1 and 4.2 respectively define the partial outer convexification technique and
the steps of the basic decomposition. We review the contributions that led to this algorithm in
Section 4.3 and discuss generalizations and extensions in Sections 4.4 and 4.5.

Chapter 5 analyzes approximation properties of the solutions constructed by the CIA de-
composition to the optimal solution. In particular, we discuss the inherited properties of the
algorithmic extensions.

The principal focus of this thesis is the solution of (CIA) problems, which we address in Chap-
ter 6. We present a problem size reduction heuristic based on singular arcs in Section 6.1. Com-
plexity results and a novel link to scheduling theory reveal insights into the (CIA) problem’s na-
ture and are given in Section 6.2. Based on these results, we present a method for solving the
MILP to optimality without additional combinatorial constraints via a simple algorithm. Sec-
tion 6.3 describes a BnB method established in [224, 137] with time-dependent mode variables.
We consider extended formulations of the (CIA) problem in Section 6.4, where we also eluci-
date their advantages. A widely used method for obtaining fast, robust (CIA) problem solutions
is the SUR algorithm. In Section 6.5, we introduce this rounding family and discuss extensions
to the MDT setting. Next-forced rounding is another approach that we generalize to the DNFR
algorithm in Section 6.6. We propose solving (CIA) problems with MDT or limited switching
constraints via AMDR, which is a fast heuristic algorithm that is presented in Section 6.7. Sec-
tion 6.8 reviews other solution methods. Finally, we summarize this chapter, which contains
abundant solution methods, in Section 6.9.

An appropriate way to provide a theoretical justification of the novel solution methods is to
analyze their integral deviation gap, which we do in Chapter 7. After deriving auxiliary lemmata
in Section 7.1, we derive bounds on this rounding error for the constructed solutions of the
SUR and DNFR algorithms in Sections 7.2 and 7.3, respectively. The DNFR scheme gives rise to
insights into bounds for the (CIA) problem itself and under MDT constraints, as highlighted in
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Section 7.4. The situation with a limited number of allowed switches is highly complex, but we
are able to deduce bounds using properties of the AMDR scheme in Section 7.5. We summarize
the obtained results in Section 7.6.

In Part III, we consider practical implementation of the CIA decomposition. This first in-
volves efficient software, which is the focus of Chapter 8 where we introduce pycombina.

In Chapter 9, we present results from numerical benchmark computations. We first provide
the results for different (CIA) problem variants and postprocessing heuristics in Section 9.1.
Then, our algorithmic idea for the incorporation of path constraint information is presented in
Section 9.2. Finally, we illustrate and discuss our findings for MIOCPs with MDT and bounded
discrete total variation constraints in Sections 9.3 and 9.4.

This application-driven thesis is enriched by two realistic case studies, which are included in
Chapter 10. In this context, Section 10.1 presents an MIOCP from the automotive field, where
the minimum fuel policy of a hybrid electric vehicle is sought for a given driving cycle. We also
provide a case study from cardiology in Section 10.2, where the problem of finding an optimal
pump speed control for a heart assist device is formulated as an MIOCP.

The results and implications of this thesis are reviewed in Chapter 11. We also give an out-
look for this work, where we discuss future work. We provide function space definitions in
Appendix A.
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Chapter 2

Concepts and methods from optimal control theory

Since we base our investigations of mixed-integer optimal control problems (MIOCPs) on op-
timality concepts and methods from optimal control theory, this chapter introduces the fun-
damentals of optimal control problems (OCPs). To this end, we define the general problem
class in Section 2.1, and we address optimality concepts and problem properties in Section 2.2.
There are three main solution methods for OCPs, which are introduced in Section 2.3. An
overview of the direct method, which is the method of choice for the combinatorial integral
approximation (CIA) decomposition algorithm, is provided. For greater detail about the theory
and methods of OCPs, we refer to [151, 218, 145]. The structure and content of this chapter
follow those of [135].

2.1 Definition of the continuous optimal control problem

We consider a given, fixed time horizon T := [t0, t f ] ⊂R. With problem-specific dimensions for
the differential states nx, control function nu , and mixed control–state constraint nc , we utilize
the following functions:

Φ : Rnx → R, (2.1)

Ψ : T ×Rnx ×Rnu → R, (2.2)

f : T ×Rnx ×Rnu → Rnx , (2.3)

c : T ×Rnx ×Rnu → Rnc . (2.4)

We assume that these functions are sufficiently smooth. Common regularity assumptions are
Φ ∈C 0(Rnx ,R), Ψ ∈C 0(T ×Rnx×Rnu ,R), f ∈C 0(T ×Rnx×Rnu ,Rnx ), and c ∈C 1(T ×Rnx×Rnu ,Rnc ).

Definition 2.1 (Continuous optimal control problem)
Let the time horizon T and the functions Φ,Ψ, f , and c be given as above. The continuous
optimal control problem (2.5) is defined as

min
x ,u

C (x ,u) :=Φ(x(t f ))+
∫ t f

t0

Ψ(t , x(t ),u(t )) dt (2.5a)

s. t. ẋ(t ) = f (t , x(t ),u(t )), for t ∈T , (2.5b)

0nc ≤ c(t , x(t ),u(t )), for t ∈T , (2.5c)

x(t0) = x0, (2.5d)

x(t f ) = x f , (2.5e)

u ∈ U , (2.5f)

where x0, x f ∈Rnx denote the initial and terminal values for the dynamic process. We express the
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feasible space of the control function u as U ⊂ L∞(T ,Rnu ). We minimize the cost functional C

in (2.5a) over the control u and the differential state x ∈W 1,∞(T ,Rnx ). The latter is governed by
a system of ordinary differential equations (ODEs) with right-hand side function f and affected
by u (2.5b). Mixed control–state constraints (2.5c) as well as boundary conditions (2.5d)-(2.5e)
represent the restrictions of the problem.

The objective functional C is of the so-called BOLZA type, consisting of a MAYER term Φ and
LAGRANGE termΨ. From Chapter 3 on, the cost function C and the LAGRANGE termΨwill also
depend on an integer control.

We defined the generic OCP with explicit dependency of the constraint and objective func-
tions on the time t . Such problems are referred to as non-autonomous. We can equivalently
reformulate the dynamic system to eliminate the explicit dependency on t by introducing an
additional state, allowing for the consideration of autonomous problems.

It is typical to require f to be LIPSCHITZ continuous in order to ensure the existence and
uniqueness of the solution of the dynamic system by the PICARD-LINDELÖF theorem [200, 169].

We use u to denote all control subfunctions ui ∈ L∞(T ,R), i ∈ [nu] and therefore write u(t ) =
(u1(t ), . . . ,unu (t ))T ∈ Rnu . The mixed control-state constraints c may consist of pure state or
control path constraints, and the OCP may appear without the boundary constraint (2.5d) or
(2.5e).

terminal
constraints
x(t f ) = x f

6 mixed state-control constraints 0 ≤ c(x(t ),u(t ))

initial value
constraint

x(t0) = x0 s
states x(t )

controls u(t )
-p

t0 t
p
t f

Figure 2.1: Example illustration of the state, control, and constraint trajectories of problem
(2.5), adopted from [106, 218].

2.2 Problem concepts and properties

This section establishes definitions of concepts relevant to the OCP and provides results with
respect to the optimal solutions.

Definition 2.2 (Feasibility of OCPs)
We define a state–control trajectory pair (x ,u) ∈ W 1,∞(T ,Rnx )×U to be feasible for the contin-
uous OCP (2.5) if it satisfies constraints (2.5b)-(2.5e). A control trajectory u ∈U is called feasible
if the corresponding state trajectory x is feasible, i.e., if (x ,u) is feasible.

We note that the term feasible is sometimes used interchangeably with admissible.
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Definition 2.3 (Optimality of OCPs)
A feasible state–control trajectory pair (x∗,u∗) ∈ W 1,∞(T ,Rnx )×U is defined to be globally op-
timal if

C (x∗,u∗) ≤C (x ,u) (2.6)

holds for all feasible pairs (x ,u). We define (x ,u) to be locally optimal if there exists ε > 0 such
that (2.6) is true for all feasible state–control trajectory pairs (x ,u) with

‖u −u∗‖L∞ ≤ ε.

To refer to a feasible or optimal trajectory, we also write feasible or optimal solution.

2.2.1 Pontryagin’s maximum principle

PONTRYAGIN’s maximum principle [202] formulates first-order necessary optimality conditions
for OCPs. It is based on the HAMILTONIAN function. We consider a less restrictive variant of
problem (2.5) to illuminate the essential points. We refer to [151, 182] for more details.

Definition 2.4 (HAMILTONIAN function)
Consider the autonomous OCP (2.5) without constraints (2.5c) and (2.5e). The function

λ : T → Rnx

is called an adjoint or costate variable. We define the Hamiltonian as

H (x(t ),u(t ),λ(t )) :=Ψ(x(t ),u(t ))+λ(t )T f (x(t ),u(t ) for t ∈T . (2.7)

We retain the term maximum in the following theorem for historical reasons, although this
work deals with a minimization problem.

Theorem 2.1 (PONTRYAGIN’s maximum principle)
Consider the autonomous OCP (2.5) without constraints (2.5c) and (2.5e), and let (x∗,u∗) be a
local minimum of this problem. Then, there exists an adjoint functionλ∗ such that the following
conditions hold:

(i) ODE model: ẋ∗(t ) = dH

dλ
(x∗(t ),u∗(t ),λ∗(t )) = f (x∗(t ),u∗(t )) for t ∈T ,

(ii) Initial values: x∗(t0) = x0,

(iii) Adjoint equations:
(
λ̇∗(t )

)> =−dH

dx
(x∗(t ),u∗(t ),λ∗(t )) for t ∈T ,

(iv) Final values of adjoints:
(
λ∗(t f )

)> =−dΦ

dx
(x∗(t f )),

(v) Minimum principle: u∗(t ) = argmin
u∈U

H (x∗(t ),u(t ),λ∗(t )) for t ∈T .

Proof. A proof of this or similar versions of the maximum principle can be found in, e.g., [90],
Theorem 3.4.4.

This principle provides the basis for the indirect solution methods, as pointed out in Sec-
tion 2.3.2. Since we build our algorithmic framework on direct methods, we do not rely heavily
on these conditions. Nevertheless, they are useful for the specific rounding schemes in Sec-
tion 6.5. Further intuitions about necessary conditions for OCPs can be found in [46, 120].
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2.2.2 The Hamilton-Jacobi-Bellman equation

Broadly summarized, BELLMAN’s principle of optimality [20] states that any subtrajectory of
an optimal trajectory is optimal. This is expressed by the partial differential equation (PDE)
system introduced in the following definition.

Definition 2.5 (HAMILTON-JACOBI-BELLMAN equation)
Consider the autonomous OCP (2.5). The function J ∈ L∞(T ×Rnx ,R) is implicitly defined via
the following PDE system and boundary condition:

J (t f , x(t f )) =Φ(x(t f )), (2.8)

∂J

∂t
(t , x(t )) = min

u∈U

(
Ψ(x(t ),u(t ))+ dJ

dx
(t , x(t )) f (x(t ),u(t ))

)
, for t ∈T . (2.9)

This system is referred to as the Hamilton-Jacobi-Bellman equation.

Remark 2.1
The optimal control function u∗ of the autonomous OCP (2.5) can be found by solving the
HAMILTON-JACOBI-BELLMAN equation. here is a recognizable connection to the Hamiltonian
and Theorem 2.1, where we can set the adjoint variables to be

λT (t ) = dJ

dx
(t , x(t )) for t ∈T .

We refer to [218, 170] for further explanation of the link between the maximum principle and
the HAMILTON-JACOBI-BELLMAN equation.

To structurally exploit BELLMAN’s principle, we set up the cost-to-go function, yielding in-
sight into the remaining costs of an optimal state-control trajectory beginning at a fixed time.

Definition 2.6 (Cost-to-go function)
Let t̃ ∈T and x̃ := x∗(t̃ ), where x∗ is the optimal state solution of Problem (2.5). The cost-to-go
function J for t̃ and x̃ is given by

J (t̃ , x̃) := min
x ,u

Φ(x(t f ))+
t f∫

t̃

Ψ(t , x(t ),u(t )) dt , (2.10)

such that x(t̃ ) = x̃ , and x ,u are feasible.

The optimal cost-to-go function is discretized and recursively minimized in the dynamic pro-
gramming approach that we review in Section 2.3.1. Although this is not the solution approach
of the CIA decomposition, we exploit this concept for specific variants of (CIA) rounding prob-
lems in Section 4.5.

2.2.3 Control solution structure

The structure of an optimal control solution u∗ can be determined in specific cases, and it may
be important for possible re-optimization stages. We thus take a closer look at the underlying
relationships of the solution.
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Definition 2.7 (Bang-bang and singular arcs)
Consider OCP (2.5) without constraints (2.5c) and (2.5e). Furthermore, assume that U restricts
u via box constraints in the (component-wise) sense of

ulb ≤ u(t ) ≤ uub, for t ∈T ,

where ulb,uub ∈ Rnu . Let u∗ denote the optimal control trajectory. We call the control function
component u∗

i of u∗, i ∈ [nu], on t ∈Tarc ⊂T singular if

ulb
i < u∗

i (t ) < uub
i for t ∈Tarc.

Consequently, we call Tarc a singular arc if there is a singular control u∗
i on Tarc. In contrast,

we define a control as non-singular or bang-bang if it attains its lower or upper bounds, i.e.,
u∗

i (t ) = ulb
i or u∗

i (t ) = uub
i for all i ∈ [nu] on the bang-bang arc Tarc.

The definition of singular control functions used here differs from that used in other works
in this research area, where singular controls and arcs are defined using the structure of the
switching function, which is the derivative of the HAMILTONIAN with respect to u [106, 218].
When the switching function is not invertible with respect to u, one speaks of a singular arc
and when it is invertible, of a bang-bang arc.

Remark 2.2 (Bang-bang principle)
The situation described in Definition 2.7 can be further exploited in the case of control affine
dynamics:

f (x(t ),u(t )) = Ax(t )+Bu(t ), for t ∈T ,

where A,B are matrices of appropriate sizes. Here, the so-called bang-bang principle can be
proven, asserting that the reachable set of differential state trajectories induced by all feasible
controls is identical to the reachable set of bang-bang controls [123]. This implies that an opti-
mal control solution with bang-bang structure can be found. For further details and proofs, we
refer to [218, 182].

In this subsection, we neglect path constrained problems via Constraint (2.5c). In path con-
strained problems, one may analyze the problem structure with respect to constraint-seeking
arcs as in Definition 2.7, see [218].

The concept of singular arcs is useful for our investigations as part of the outer convexifica-
tion technique in Section 4.1. Solving the relaxed MIOCP can already result in integer control
values by means of bang-bang arcs. The presence of singular arcs, conversely, gives rise to (CIA)
rounding problems. Specifically, we exploit knowledge about singular arcs in the recombina-
tion strategies in Section 4.5 and to reduce the size of the (CIA) rounding problem in Section 6.1.

2.3 Solution methods

We note that OCP (2.5) is an infinite-dimensional optimization problem, as the trajectories of
x and u are sought in function space. Therefore, this problem class is generally challenging,
and various solution methods have been proposed. This section reviews the three main ap-
proaches.
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2.3.1 Dynamic programming

Dynamic programming is based on the principle of optimality that led to the HAMILTON-
JACOBI-BELLMAN equation in Definition 2.5 and the cost-to-go function given in Definition 2.6.
The idea is to first discretize the problem in time, e.g., via an explicit EULER method, so that a
state-space tabulation can be achieved. Second, the cost-to-go function is applied recursively
to each discretization interval, and for each subproblem, the discretized control values that re-
sult in state values with the minimal objective value are sought. The advantage of this method is
that the obtained solution is globally optimal with respect to the chosen discretization because
all feasible solutions are evaluated. The main disadvantage stems from BELLMAN’s “curse of
dimensionality”, which states that dynamic programming suffers severely from an increasing
number of differential states or controls as the computational burden increases (exponentially
in this case). The approach is thus restricted to small state dimensions. We refer to [26] for
more information on the usage of dynamic programming for OCPs.

2.3.2 Indirect methods

The indirect approach follows the idea to first optimize, then discretize. By first optimize, we
indicate that the necessary optimality conditions from PONTRYAGIN’s maximum principle as
stated in Theorem 2.1 are considered, thereby yielding a multipoint boundary value problem
after deriving an analytical solution for the control u in the associated equations. The bound-
ary value problem is then discretized with respect to time and solved via a method such as
indirect multiple shooting [188, 32] or indirect collocation [15, 18]. This approach is advanta-
geous because the obtained state and control trajectories are highly accurate since the infinite-
dimensional problem has been solved. However, the approach also includes pitfalls: it is nec-
essary to compute problem-specific derivatives of the HAMILTONIAN function to obtain the
first-order optimality conditions. This can be challenging for large systems, and the boundary
problem is often ill-conditioned such that nontrivial analytical considerations are necessary
to solve it. This is particularly true for path-constrained problems, which result in even more
complex optimality conditions. Related discussion of aspects of the indirect methods can be
found in [120, 106].

2.3.3 Direct methods

In contrast to the indirect approach, direct methods follow the idea to first discretize, then op-
timize. This method parameterizes the infinite-dimensional optimization problem finitely by
means of decision variables, notably the states x and the controls u, such that the original
problem is approximated by a finite-dimensional one, which is generally a nonlinear pro-
gram (NLP). This is what is referred to by “first-discretize”. The NLPs can be addressed in
the second step, for which tailored and structure-exploiting numerical solution methods exist
[264, 53]. That is, “then-optimize” refers to solving the resulting finite-dimensional optimiza-
tion problem numerically to optimality.

Direct methods allow a general problem class, including inequality constraints such as path
constraints (2.5c), to be handled with high flexibility and robustness, making direct methods
suitable for the optimal control of large systems of practical relevance. This is due to the ex-
istence of well-developed NLP methods that can appropriately treat structural changes in the
active constraints during the optimization procedure.
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Because of these advantages over dynamic programming and indirect methods, the CIA de-
composition is built on direct methods. We therefore introduce the approach of direct meth-
ods in greater detail. More extensive overviews of direct methods for continuous OCPs can be
found in, e.g., [31, 91].

In the following, we review the relevant discretization steps of controls, states, constraints,
and objective functions as well as the subsequent NLP solution methods. Throughout this the-
sis, we will apply the following, not necessarily equidistant, grid given in Definition 2.8.

Definition 2.8 (Discretization grid GN ,∆i ,∆̄,∆)
Consider a given time horizon T . Let N ∈ N denote the number of discretization intervals. We
define the (discretization) grid with N +1 grid points as the ordered set

GN := {t0 < t1 < . . . < tN = t f }.

Further, let the grid length quantities ∆ be given by

∆ j := t j − t j−1, with t j , t j−1 ∈GN , j ∈ [N ], ∆̄ := max
j∈[N ]

∆ j , ∆ := min
j∈[N ]

∆ j .

Note that this grid is employed for the control discretization and that different (superset)
grids may be used for the differential states. In later chapters, for the sake of simplicity, we refer
only to grid GN , which is not restrictive since the proposed methods can be directly applied to
finer state grids.

Control discretization

The approximation of the control function u, which consists of input controls u = (u1, . . . ,unu )T ,
can be achieved by different types of base functions such as B-Splines [246]. Even though high
order parametrized base functions yield more accurate problem solutions, the most widespread
parameterizations are piecewise constant controls because they require far lower computa-
tional effort [247]. To this end, consider the piecewise constant control functions ui , i ∈ [nu]:

ui (t ) := ui j , for t ∈ [t j−1, t j ), with t j , t j−1 ∈GN , j ∈ [N ], (2.11)

where ui j are the variables to be optimized. Hence, we allow the controls to change value
solely on grid points,1 and the discretized control function u(·) can be uniquely represented by
the matrix (ui j )i∈[nu ], j∈[N ].

State discretization

The approximation of differential states is typically performed by applying a sequential (single
shooting) or simultaneous (multiple shooting or collocation) approach.

1. Direct Single Shooting. This method is attributable to HICKS and RAY [127] as well as
Sargent and Sullivan [231]. It is based on the idea of regarding the states x as dependent
variables that are constructed by forward integration of the dynamic system, starting at

1Note that u is unspecified on tN according to the definition on half-open intervals. Since it is defined as L∞
representatives of an equivalence class in L∞, it is justified for u to be unspecified on sets of measure zero, such
as grid points of GN .
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x0 and using the discretized controls (ui j ). For this purpose, a numerical integration
scheme, also called an integrator, is used to obtain the state trajectory as the result of an
initial value problem (IVP). A common example of an integrator is the family of Runge-
Kutta methods [156, 216]. Single shooting is relatively easy to implement and leads to
a small problem size. Nevertheless, using this method it is impossible to use a priori
information of the state trajectory as an initial guess. Furthermore, convergence issues
often occur with stiff or highly nonlinear systems due to numerical error propagation.

2. Direct Multiple Shooting. This method was introduced by Bock and Plitt [34]. It proposes
to solve the ODE separately on each discretization interval [t j−1, t j ], j ∈ [N ]. For this,
artificial initial values s j are introduced as additional shooting variables of the discretized
problem, and the corresponding IVPs are solved:

ẋ(t ; s j ,u j ) = f (t , x(t ; s j ,u j ),u j ), t ∈ [t j−1, t j ],

x(t j ; s j ,u j ) = s j ,

where x(t ; s j ,u j ) indicates the dependency of x(t ) on the initial value s j and control value
u j . As in the single shooting method, a numerical integrator is used to forward calculate
the trajectory and to obtain x(t j+1; s j ,u j ). Because the piecewise solution is generally
not continuous at the shooting nodes, a continuity condition is required to ensure equal-
ity between the constructed state value at the end of the previous interval and the next
shooting variable:

x(t j+1; s j ,u j ) = s j+1, for j ∈ [N −1]0.

The main advantages of direct multiple shooting are that initial guesses of the state tra-
jectory can be applied and that it leads to superior local convergence properties, partic-
ularly for unstable or highly nonlinear systems [106]. Compared with single shooting,
the NLP problem size increases, but tailored solution methods such as condensing [106]
exist.

3. Direct Collocation [253, 18, 30]. In this approach, both the controls and states must be
discretized on the same (relatively fine) grid GN . Rather than using a numerical inte-
gration scheme as in single or multiple shooting, the state trajectory is approximated on
each (collocation) interval [t j−1, t j ] by a polynomial P c

j (t , pc
j ) with a coefficient vector

pc
j that needs to be optimized. Consequently, each collocation interval corresponds to

an integrator step. Exemplary variants are the RADAU [31] and LEGENDRE [14] colloca-
tion. For each interval, there are m collocation points on which the time derivative of the
polynomial must be equal to the evaluated right-hand side f of the ODE. Moreover, ini-
tial value variables s j are introduced, and continuity of the state solution across interval
boundaries is enforced, as in the multiple shooting method. Collocation methods share
similar advantages and disadvantages with the multiple shooting approach, particularly
with respect to stability and state initialization.

We stress that our algorithmic ideas regarding the CIA decomposition can be applied indepen-
dently of the discretization method that is used, though we typically employ direct multiple
shooting or direct collocation because of their favorable numerical performance.

18



CONCEPTS AND METHODS FROM OPTIMAL CONTROL THEORY CHAPTER 2

Constraint and objective discretization

A common approach is for the constraint (2.5c) to only be enforced at the discrete grid points
and to rely on the approximated state and control values. Hence, the same grid is chosen as for
the controls and states, but it is possible to check the constraints for a finer sampling, such as
the collocation points, or on intermediate integrator steps in the case of multiple shooting.

The Bolza objective value can be computed numerically through the chosen integrator for
both the single and multiple shooting methods. In the case of collocation, the integral term of
the objective can be approximated by a quadrature formula [205] using the collocation points.

Solution of NLPs

The obtained NLP is typically solved via NEWTON-type optimization methods [106]. Such
methods find a (local) optimum iteratively from a given starting point, which is the initial guess.
The choice of the initial guess is crucial since it affects not only the solution time but also the
quality of the solution. These methods exploit (numerically approximated) first- and second-
order derivatives and can be divided into two widely used approaches: sequential quadratic
programming-type [195, 36] and nonlinear interior point [181, 259, 264] methods. While the
latter is based on solving a sequence of linear problems with penalized constraint violations,
the former transforms the NLP into quadratic problems that are solved iteratively. We will rely
mostly on the interior point solver IPOPT [264] in the computational experiments due to its
robustness in achieving an optimal solution.
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Chapter 3

Mixed-integer optimal control

MIOCPs can be seen as a generalization of OCPs in which the right-hand side function f of the
ODE depends not only on continuous controls but also on discrete-valued control or switching
functions. These discrete-valued control functions can be interpreted as different operation
modes of the ODE. Depending on the type of control function – continuous or discrete – we
distinguish different types of constraints. In particular, discrete control functions may have
to obey combinatorial constraints that would not make sense in the continuous setting. This
chapter first defines a generic MIOCP class and introduces explicit and implicit switches in
Section 3.1. We then classify possible combinatorial constraints in Section 3.2. Finally, we con-
duct a literature survey and review solution approaches in Sections 3.3 and 3.4, respectively.

3.1 Problem statement

We begin this section with a definition of integer and binary control functions.

Definition 3.1 (Integer and binary control function v )
We define an integer control v to be a function whose image space is a finite discrete set with
nω ∈N different realizations v i ∈Rnv , i ∈ [nω]:

v ∈ L∞(T ,V ), with V := {v 1, v 2, . . . , v nω}.

We call v a binary control function if v i ∈ {0,1}nv for all i ∈ [nω].

The discrete nature of v is manifested in its nω different realizations, which implies that there
exists ε> 0 such that for all i 6= j , i , j ∈ [nω], we have ‖v i −v j‖ > ε, where ‖·‖ represents an arbi-
trary norm. The term integer control can be misleading since the discrete values v i do not need
to be integers by definition. Nevertheless, we use this term because the discrete values can be
translated into different modes of the dynamic system, as explained in Remark 3.2, and there-
fore the discrete-valued control v has an integer nature. We use this type of control function in
the following definition of a general MIOCP.

Definition 3.2 (Mixed-integer optimal control problem (MIOCP))
For a given time horizon T , consider the integer control function v from Definition 3.1. We
denote the space of feasible integer controls by V ⊆ L∞(T ,V ), which represents combinatorial
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constraints. We refer to the following control problem (3.1) as (MIOCP).

inf
x ,u, v

C (x ,u, v ) :=Φ(x(t f ))+
∫ t f

t0

Ψ(t , x(t ),u(t ), v (t )) dt (3.1a)

s. t. ẋ(t ) = f (t , x(t ),u(t ), v (t )), for a.a. t ∈T , (3.1b)

x(t0) = x0, (3.1c)

x(t f ) = x f , (3.1d)

0nc ≤ c(t , x(t ),u(t )), for a.a. t ∈T , (3.1e)

0nd ≤ d (t , x(t ),u(t ), v (t )), for a.a. t ∈T , (3.1f)

u ∈ U , v ∈ V , (3.1g)

where x0, x f ∈ Rnx respectively denote the initial and final values of the dynamic process. We
reuse the definitions of the differential states x , the path constraint function c , and the feasi-
ble space U of the continuous control from Definition 2.1 in Chapter 2. Here, the cost func-
tion C and Lagrange term Ψ also depend on the integer control, in contrast to Definition 2.1.
The aim of the problem (3.1) is to find continuous and integer controls u and v , respectively,
and the differential state x that minimize the performance index C such that x satisfies the
dynamic process constraint (3.1b), which is an ODE governed by the right-hand side function
f : T ×Rnx ×Rnu ×V → Rnx . The dynamic process is further restricted by the initial and termi-
nal value constraints (3.1c) and (3.1d), respectively. Additionally, the mode–independent and
mode–dependent mixed control–state constraints, (3.1e) and (3.1f), must be fulfilled by con-
straint functions c and d : T ×Rnx ×Rnu ×V →Rnd , respectively.

terminal
constraints
x(t f ) = x f

6 mode–independent constraints 0 ≤ c(x(t ),u(t ))

mode–dependent constraints 0 ≤ d (x(t ),u(t ), v (t ))

integer controls v (t )

initial value
constraint

x(t0) = x0

s states x(t )

cont. controls u(t )

-p
t0 t

p
t f

Figure 3.1: Example illustration of the state, control, and constraint trajectories of problem
(MIOCP).

Remark 3.1 (Use of min instead of inf )
Following the convention in the optimization community, we write “min” instead of “inf” in
the following problem definitions even though the existence of an optimal solution of (MIOCP)
is not guaranteed.

The problem class (MIOCP) is of central importance since this dissertation deals mainly with
solution algorithms for this problem. We pay special attention to combinatorial constraints on
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the integer control, which are expressed by the function space V ; these constraints are defined
in Section 3.2. We notice that v induces discontinuities into f because it only assumes discrete
values leading to jumps in f each time v changes value. This behavior is characterized as a
switch in Definition 3.4. First, we examine another possible source of discontinuities in f : a
so-called switching function.

Definition 3.3 (Implicit switching function s)
Consider the set

S := {s1, s2, . . . , snι}, si ∈Rns , for all i ∈ [nι],

where ns ,nι ∈ N with ns ≤ nι. We define an (implicit) switching function s via its domain and
codomain:

s : T ×Rnx → S.

We assume s to be sufficiently smooth in its state component. Note that the above defini-
tion does not specify the particular outcome of the switching function. Typically, it expresses
state-dependent conditions ι(x(t )) ≶ 0, where ι denotes a sufficiently smooth vector-valued
function, and s assumes a different value as soon as a component of ι crosses zero. Based on
this notion, the switching function can also be defined by the sign structure of the function ι,
as in many works [35, 150]. The term “implicit” derives from the condition that changes in s,
unlike those in the integer control v , are not explicitly controllable but rather implicitly depend
on the differential states or time. The following definition concretizes the two different types of
switches.

Definition 3.4 (Explicit and implicit switch)
Let v be an integer control and s be a switching function, as respectively introduced in Defini-
tions 3.1 and 3.3. We call a discontinuity in at least one component of v at time t1 ∈ (t0, t f ) an
explicit switch of v at time t1. Analogously, we refer to an implicit switch of s at time t1 if there
is a discontinuity in at least one component of s(t1). We also say that f switches at time t1 if it
depends on v or s and that an explicit or implicit switch occurs at time t1. The time point t1 is
referred to as switching time.

Other names of switch types, such as externally forced or controllable instead of explicit and
internally forced or autonomous instead of implicit [285], are common in the literature. As im-
plicit switches are not the main focus of this thesis, we omit a thorough specification and fur-
ther details on useful theoretical concepts such as the consistency and transversality of implicit
switches here but refer to [35, 182]. Nevertheless, we address an MIOCP with implicit switches
as part of the applications in Chapter 10 and thus introduce the corresponding problem class.

Definition 3.5 (MIOCP with implicit switches (MIOCPi) and multiphase MIOCP (MMIOCP))
Consider the setting of Definition 3.2, and let s be a given implicit switching function. We refer
to the following control problem (3.2) as (MIOCPi):

min
x ,u, v

C (x ,u, v ) (3.2a)

s. t. ẋ(t ) = f (t , x(t ),u(t ), v (t ), s(t )), for a.a. t ∈T , (3.2b)

(3.1e) − (3.1g),

where the ODE is determined by the right-hand side function f : T ×Rnx ×Rnu ×V ×S → Rnx .
(MIOCPi) is the same as (MIOCP) from Definition 3.2 except that f also depends on the switching
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function s. If s is independent of the differential states x but depends on t, we call (MIOCPi) a
multiphase mixed-integer optimal control problem, in short (MMIOCP).

We note that in (MMIOCP) the function f switches every time a specific switching time
t1 ∈T that marks the beginning of a new model phase is reached; this explains the term mul-
tiphase. This problem class is included in our algorithmic and theoretical investigations in
Chapters 4 and 5 before the presentation of an application in Chapter 10.

Of course, it is also possible to define an MIOCP based only on implicit switches, i.e., in-
dependently of any explicit switches. Let I (P ) denote the set of all problem instances of an
optimization problem class (P ). Then, by Definition 3.5 and by considering generalizations of
the defined problems, we get the inclusion

I (MIOCP) ⊂I (MMIOCP) ⊂I (MIOCPi).

In view of the occurrence of switches, we can interpret the different realizations of v and s as
modes of operation of the model function f . The following remark establishes this perspective,
which is commonly applied in the research area of MIOCPs, also referred to as optimal control
of switched systems.

Remark 3.2 (Switched systems and switching signal)
The IVP composed of the ODE (3.1b) or (3.2b) together with the initial value constraint (3.1c) is
called a switched system. The discrete event dynamics of a switched system can also be written
in terms of modes i (t ) ∈ [nω ·nι], t ∈T , for f :

ẋ(t ) = fi (t )(t , x(t ),u(t )), for a.a. t ∈T ,

where each realization of the integer control function v and the implicit switching function s
corresponds to a mode-specific function fi . Then, solving MIOCPs can also be described as
finding the optimal switching signal Ξ, which is a timed sequence of active modes i combined
with its switching time instants, i.e.,

Ξ= {(t0, i0), (t1, i1), . . . , (tK , iK )},

where K ∈N0, t j ∈T and i j ∈ [nω ·nι] for j ∈ [K ]0.

3.2 Classification of combinatorial constraints

Combinatorial constraints on the integer control are significant in many applications, as illus-
trated in Chapter 10. This section discusses different variants of these restrictions. We first
introduce so-called vanishing constraints that are defined pointwise in time before we elabo-
rate constraints that couple over time, typically rendering them very challenging to handle.

We now assume that v is a binary control function, i.e., V = {0,1}nv . This is not a restriction
since it is possible to transform the model function f such that binary controls replace the
integer controls. For the transformation, assume the integer control ṽi , i ∈ [nv ], enters f with
codomain Ṽ ⊂N. Then, the control can be represented with binary control functions v j (nω ∈N
sufficiently large):

ṽi (t ) := 1+
dlog2 nωe∑

j=0
2 j v j (t ).
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We say that the i th component of v is activated or active at time t ∈ T , if and only if vi (t ) = 1.
Similarly, saying that vi is deactivated at time t indicates that vi (t ) = 0. Next, we focus on the
switching properties of v in order to later define the time-coupled constraints.

Definition 3.6 (Switching variation SV (v ,T̃ ))
Consider an integer control v ∈ V with finitely many switches. Further, let T̃ ⊆T . The switching
variation of v on the interval T̃ is defined as

SV (v ,T̃ ) := ∣∣{t j ∈ T̃ | t j is switching time for v }
∣∣ , (3.3)

where we apply Definition 3.4, and | · | denotes the cardinality of the set. By SV (vi ,T̃ ), we denote
the switching variation of the i th component of v , which is defined analogously.

Remark 3.3 (Total variation T V (v ))
We introduced the concept of switching variation, because the total variation generally differs
from the number of switches. The total variation T V (vi ) of the i th component of an integer
control v is defined to be the quantity

T V (vi ) := sup
P∈P

{ ∑
j∈[nP ]

|vi (t j )− vi (t j−1)|
}

, (3.4)

where P = (t0, . . . , tnP ) is a partition from the set of all partitions P of the interval T , and nP de-
notes the partition-specific number of time points. If v is a binary control whose switches lead
to an exclusive change of values in two components, we can define its total variation T V (v ) as
follows:

T V (v ) := sup
P∈P

{
1

2

∑
i∈[nv ]

∑
j∈[nP ]

|vi (t j )− vi (t j−1)|
}

. (3.5)

In this case, we have T V (v ) = SV (v ,T ), so we often refer to the more common concept of total
variation instead of switching variation.

Remark 3.4 (Alternative definition of total variation)
For the sake of completeness, we mention that the total variation of the i th component of a
binary control v can also be defined as

T V (vi ) := sup

{∫
T

vi (t )ϕ′(t ) dt | ϕ ∈C 1
c (T ), ‖ϕ‖L∞ ≤ 1

}
,

where C 1
c (T ) is the set of continuously differentiable functions with compact support. This

definition is standard in the field of measure theory [214] and yields the same quantity as the
one in Remark 3.3.

Some of the definitions of combinatorial constraints rely on the one-sided limit of ts ∈ T

from below, which we define as v (t−s ) := lim
t→t−s

v (t ).

3.2.1 Vanishing constraints

The constraint (3.1f) depends on v and can therefore be interpreted as a combinatorial con-
straint. It is possible to reformulate these constraints via outer convexification into vanishing
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constraints, as we show in Section 4.1. Vanishing constraints are inequalities of the type

0 ≤ vi (t )di (t , x(t ),u(t )), i ∈ [nv ], t ∈T , (3.6)

where the constraint function di depends on the mode i ∈ [nv ]. This constraint sets up a con-
ditional requirement that 0 ≤ di (t , ·) holds true if vi (t ) is activated. In the context of mixed-
integer optimal control (MIOC), vanishing constraints have been investigated in various stud-
ies [136, 138, 149, 179, 194]. The discretized problem generally falls into the class of Mathema-
tical Programs with Vanishing constraints, which are particularly studied in [2, 128].

3.2.2 Limited switching constraints

Limited switching constraints are designed to limit the number of switches used on the defined
time horizon. Let σi ,max ∈ N denote the maximum number of allowed switches for the i th
component of v . This limitation is imposed by

SV (vi ,T ) ≤σi ,max, i ∈ [nv ]. (3.7)

Rather than limiting the number of mode-specific switches, it is also possible to bound the total
number of switches σmax ∈N via

SV (v ,T ) ≤σmax. (3.8)

As mentioned in Remark 3.3, for specific binary controls, this constraint may be equivalently
imposed via the concept of total variation. Thus, we also call the above restriction a bounded
total variation constraint [222]. This constraint has been investigated in various publications,
particularly related to the CIA decomposition [218, 145, 224, 207]. These works were extended
in [222], which constitutes significant parts of this thesis.

3.2.3 Minimum dwell time constraints

Minimum dwell time constraints freeze the current value of a mode i after a switch occurs. We
distinguish between minimum up (MU) time spans Ci ,U ≥ 0, in which a mode i must remain
active once it has been switched on, and minimum down (MD) time spans Ci ,D ≥ 0, in which
a mode i must stay inactive after it has been deactivated. For this, let S v denote the set of
switching time points for v ∈ V , which is assumed to be finite. For ts ∈ S v , we define C

t f

i ,U :=
min{Ci ,U , t f − ts} and similarly C

t f

i ,D := min{Ci ,D , t f − ts}. The constraints read

vi (ts)− vi (t−s ) ≤ vi (ts + t ), for i ∈ [nv ], ts ∈S v , and t ∈ [0,C
t f

i ,U ), (3.9)

vi (t−s )− vi (ts) ≤ 1− vi (ts + t ), for i ∈ [nv ], ts ∈S v , and t ∈ [0,C
t f

i ,D ). (3.10)

MU time constraints are expressed in (3.9), while (3.10) enforces MD time restrictions. The
restrictions can also be formulated in terms of the switching variation:

SV (vi , (t , t +Ci ,U ))+ vi (t +Ci ,U )− vi (t ) ≤ 2, for i ∈ [nv ], t ∈ (t0, t f −Ci ,U ). (3.11)

We note that the above formulation imposes both an MU time and an MD time of Ci ,U for
mode i ∈ [nv ]. Recent case studies of MIOCPs with minimum dwell time (MDT) considera-
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tions can be found in the literature, e.g., for pesticide scheduling in agriculture [4], electric
transmission lines [103], solar thermal climate systems [49], and hybrid electric vehicles [211].
MDT constraints have also attracted substantial attention as part of mixed-integer linear pro-
grams (MILPs), see [203] for a study of unit-commitment problems and [161] for a correspond-
ing polytope investigation. For a recent work on model predictive control (MPC) under MDT
constraints see [56].

As part of the direct method and variable time transformation approaches [275, 16, 89],
MDT have been addressed; see [4, 193]. Another approach that includes MDT constraints into
MIOCPs is the application of dynamic programming, which is, however, computationally ex-
pensive; see [51]. Other recent approaches have used the framework of approximate dynamic
programming [126] or command governors [80]. Due to its relevance for practical applications
and the increased attention it has received in the literature, the CIA decomposition was recently
investigated in relation to MDT constraints in [282], which provides a basis for major parts of
this thesis.

3.2.4 Maximum dwell time constraints

In contrast to MDT conditions, we can also limit the activation length from above, for which
we introduce the term maximum dwell time. If Ci ,M ≥ 0 is such a time span for mode i ∈ [nv ],
then the condition can be formulated as:

SV (vi , (t −Ci ,M , t ))+ vi (t )− vi (t −Ci ,M , t ) ≥ 2, for all t ∈ (Ci ,M , t f ). (3.12)

3.2.5 Total maximum up time constraints

In some cases, it makes sense to limit the total activation time over the entire time horizon of
specific modes. Let Ci ,max ≥ 0 denote such a time span for mode i ∈ [nv ]. Then, this constraint
is imposed by ∫

T
vi (t ) dt ≤Ci ,max, i ∈ [nv ]. (3.13)

3.2.6 Mode transition constraints

It is sometimes necessary to exclude the activation of specific modes if a certain other mode is
currently active. We therefore define the modes that can be followed or preceded by another
mode by introducing the set I A

i , which denotes the modes that are allowed to be activated
directly after mode i has been active. Further, we reuse the set of switching time points S v and
assume that exactly one mode i is active for all time points. The mode transition requirements
then read

vi (t−s )+ ∑
j∉I A

i

v j (ts) ≤ 1, for i ∈ [nv ] and all ts ∈S v . (3.14)

These constraints take effect when, e.g., modeling a sequence of gear shifts, see [211]. They are
discussed in Section 10.1.

27



CHAPTER 3 MIXED-INTEGER OPTIMAL CONTROL

3.2.7 Other constraints

There is no limit to the variety of combinatorial constraints, and indeed all the conditions of
combinatorial optimization [270, 154] can conceivably be included in problem (3.1). For ex-
ample, another simple but practically relevant requirement is to restrict the allowed modes for
defined time periods T̃ ⊂T . This is realized for mode i ∈ [nv ] by trivially setting

vi (t ) = 0, for t ∈ T̃ . (3.15)

3.3 Literature survey

The study of MIOCPs has received substantial attention over the last decades. This is because
many different application problems can be modeled as switched systems, making the problem
class a powerful tool. Along with their practical relevance, the interesting theoretical nature of
MIOCPs has prompted researchers from different communities in mathematics, science, and
engineering to investigate them. In addition to mixed-integer optimal control and optimal con-
trol of switched systems, alternate names for the same or similar problem classes have been
established, such as mixed-logic dynamic optimization [191], mixed logical dynamical systems
[22], mixed-integer programming for control [206], and hybrid optimal control or optimal con-
trol of hybrid systems [10, 235, 249]. In fact, hybrid systems can be described as general hetero-
geneous dynamical systems that involve both continuous models that classify the physical part
and discrete event models that define the logical behavior [285]. This combination explains the
term “hybrid” and classifies switched systems as a particular kind of hybrid system. Hybrid sys-
tems are suitable for modeling state jumps, i.e., discontinuities in x (see e.g. [150]), which are
usually not covered by switched systems and are therefore excluded from our considerations.

Due to the abundance of literature (with specific topical journals such as Nonlinear Analysis:
Hybrid Systems), different research communities, terms, and problem variants, no approach
or methodology for MIOC has emerged as the most established. For these reasons, there have
even been parallel developments of similar algorithms with different names. As an example
that is relevant to this thesis, in the mid-2000s SAGER [218] and BENGEA together with DECARLO

[24] independently developed a convexification idea for MIOCPs on which the CIA decomposi-
tion is based. In the control engineering community, the term embedding transformation was
coined to describe this idea, leading to various subsequent publications [255, 260, 204, 184].
Nevertheless, in these works and the survey [285], there is no reference to Sager’s works or
those based on them. In the mathematics community, this connection seems to similarly have
gone unnoticed, although here, individual cross-references to the embedding transformation
method have recently begun to appear [149, 35, 212]. We provide details on the (partial outer)
convexification idea and identify the differences between the CIA decomposition and the em-
bedding transformation in Chapter 4. The literature concerning MIOC can be classified with
regard to the following:

1. Underlying dynamics: ODEs, differential-algebraic equations (DAEs), or PDEs;

2. Type of switches: explicit or implicit;

3. Problem structure: linear, linear-quadratic, or nonlinear;

4. Further restrictions: state, mixed control-state, combinatorial, or no constraints;
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5. Open-loop (feedforward) and closed-loop (feedback) control;

6. Aim of study: theoretical oriented or solution method oriented;

7. Algorithmic approach: dynamic programming, direct, indirect, or other methods; and

8. Usage of learning: mixed data-model or pure model-driven.

Next, we briefly review some of these aspects and also address recent applications, disser-
tations, surveys, and software packages. As part of the next chapter, we comment on solution
methods for the problem (MIOCP), which is the ODE-constrained, explicit switches, generally
nonlinear and restricted, open-loop, and pure model-driven variant of the above aspects.

DAE- and PDE-constrained MIOC

GERDTS and SAGER investigate the necessary optimality conditions for a switched DAE system
of index 1 and derive lower bounds [92]. For further studies, we refer to the references therein
and to [252].

MIOC under PDE constraints, also known as MIPDECO, has emerged in recent years as an
intensively investigated, highly salient research field. HANTE and SAGER extended the par-
tial outer convexification approach from [218] to semilinear evolution equations [117]. HANTE

also contributed several further works to other variants of MIPDECOs, e.g., [118, 119]. MANNS

and KIRCHES proposed methods based on relaxation and rounding approximations for general
MIPDECO problem classes by applying, e.g., space-filling curves [177, 178]. LEYFFER has also
contributed to the development of this field via reviewing approaches and introducing bench-
mark problems [164]. Recently, HAHN proposed a set optimization framework [115] that can
be applied to both ODE- and PDE-constrained MIOCPs and that seems to provide auspicious
results. Other recent methods have address a KOOPMAN operator-based model reduction [198]
and penalty algorithms [87]. For a more detailed overview, we refer to the excellent synopsis in
MANNS’ dissertation [176] and to [114].

Problems involving implicit switches

In the context of implicit switches, the literature largely focuses on piecewise affine problems,
where it is possible to partition the state space into polyhedral regions [243, 285]. These sys-
tems can be appropriately handled by the mixed logical dynamic framework, which consists of
a collection of linear (boolean) difference equations [22]. In terms of solution methods, mixed-
integer programming [213] and dynamic programming variants [59] have been the main pro-
posals. MEYER et al. proposed an approach to solving problems that involve both implicit and
explicit switches [35]. The approach uses partial outer convexification [218] and translates im-
plicit switches into variables, reducing the problem to a mathematical program with vanishing
constraints. For further literature on implicit switches, see [35] and the references therein.

Mixed-integer (nonlinear) model predictive control

Works concerning online MIOCPs are abundant due to their application orientation [40]. In
principle, all solution methods for offline MIOCPs can be used. In this sense, KIRCHES has
successfully investigated the CIA decomposition with sum-up rounding (SUR) as a rounding

29



CHAPTER 3 MIXED-INTEGER OPTIMAL CONTROL

step in the MPC context. More recent forms of the CIA decomposition applied to MPC can be
found in [49] and [56]. In this context, the already mentioned mixed logical dynamic framework
[81] and a direct discretization of linearized problems have already been used; the latter leads to
solving MILPs [142]. Recent studies have also investigated warm-starting or updating strategies
[180, 125, 174]. The MIOC turnpike property can be interpreted as such [78].

System-theoretical investigations

Apart from tailor-made optimal control method solutions, the theoretical investigation of the
problem structure of switched systems has received notable attention in the literature. This in-
cludes the stability [165], stabilizability [168], controllability [248], average dwell-time stability
[124], and Lyapunov function [65] of switched systems.

Learning supported MIOC

Artificial intelligence frameworks such as machine learning and deep learning have become
increasingly popular in recent years and can therefore be considered a hot topic. This develop-
ment does not stop at MIOC, where the first beginnings of the use of artificial intelligence have
appeared. Methods of reinforcement learning [71, 42, 55] and machine learning [276] have
been used, for example, to assist in solving MIOCPs by applying pre-calculated solutions and
neural networks.

Literature reviews and Ph.D. theses

Recent detailed overviews of solution methods for MIOC were given by ZHU and ANTSAKLIS

[285], who survey approaches for both explicit and implicit switches, and in the Ph.D. thesis
of PASSENBERG [196]. A review of the theoretical aspects of switched systems can be found in
[95]. Recent Ph.D. theses in the area of solution methods for MIOC include SCHORI [233] for
indirect methods, STELLATO [244] and PALAGACHEV [193] for two-level approaches as part of
direct methods; JUNG [135], LENDERS [162], RIECK [207] and MEYER [182] for CIA decompo-
sition related approaches as part of direct methods, MANNS [176], and RÜFFLER [215] for PDE
constraints; and BÜRGER [47], ROBUSCHI [210], SIRVENT [239], and NAIK [186] for application-
oriented results.

Applications

The problem class (MIOCP) is ubiquitous in various application areas as it can be a powerful
modeling tool. Apart from the applications presented in Chapter 10, other application areas
include water, gas, traffic, and supply chain networks [52, 70, 153, 107, 82, 102, 101, 100]; dis-
tributed autonomous systems [1]; processes in chemical engineering that involve valves [140,
242]; the choice of gears in automotive control [89, 146]; thermodynamics [104]; systems biol-
ogy [159]; and chemotherapy [271]. Further real-world problem applications can be found in
the Ph.D. theses listed in the previous paragraph.

30



MIXED-INTEGER OPTIMAL CONTROL CHAPTER 3

Software packages

Due to the heterogeneity of solution methods for MIOCPs, there are various software pack-
ages for specific approaches. An online benchmark collection of MIOCPs and their modeling
with a range of software tools is presented in [220]1. There are MATLAB packages for general
OCPs that can handle switched systems, such as the Multi-Parametric Toolbox [157], the
Convex Dynamic Programming tool [122], and the FALCON toolbox [207]. An open source SCIP

plug-in, which uses direct method relaxations based on piecewise linearization, is available at
[261]. Further modeling frameworks with the capability to handle MIOCPs are GEKKO [19] and
APMonitor [121]. An AMPL extension, which interfaces with the MIOC extension MS-MINTOC

[219] of MUSCOD-II [69], is described in [147]. In this dissertation, we describe the software
package pycombina [50] for solving CIA problems in Chapter 8.

3.4 Algorithms for mixed-integer optimal control

We give an overview of solution methods for (MIOCP). The dynamic programming technique is
applicable to MIOCPs and is advantageous since global optimality is achieved. It has been used
in many studies [122, 39] and is constantly being investigated [171, 283]. However, the curse of
dimensionality remains a key issue and prevents the application of dynamic programming to
large, general problems.

In the early 1980s, BOCK and LONGMAN had already applied indirect methods to MIOC [33].
Their approach was based on PONTRYAGIN’s maximum principle with disjoint integer control
sets and is referred to as the Competing Hamiltonian approach. Hybrid variants of the maxi-
mum principle were established in several further works (see, e.g. [249, 235, 251, 92]) and were
then used to derive algorithmic implications. As pointed out in Section 2.3.2, indirect methods
have multipoint boundary problem-related drawbacks when compared to direct methods, and
it is not clear how combinatorial constraints could be incorporated in them. Nevertheless, the
indirect approach is beneficial for analyzing necessary optimality conditions and is thus still
observed in many current studies [266, 192].

A study on global optimization of an MIOC gas network problem was recently performed
by HABECK et al. through spatial branching with convex under- and concave over-estimators
[112]. Alternative works aiming for global optimality are related to particle swarm optimization
[139] or genetic algorithms [228]. Global MIOC can also be investigated via moment relaxations
[226, 60] or semidefinite programming [66, 284].

Discretizing (MIOCP)in the spirit of first-discretize-then-optimize methods generally results
in an mixed-integer nonlinear program (MINLP). The already mentioned mixed logical dynam-
ics approach can then be used to approximate the MINLP via piecewise system linearizations
by an MILP or mixed-integer quadratic program (MIQP) [213]. Another option is to apply so-
lution methods from MINLP, such as branch-and-bound (BnB), to provide global optimality
[54, 88]. While these two approaches are useful for specific applications, they often lead to an
excessive computational burden. To this end, it is preferable to consider reformulations, relax-
ations, and heuristics of the discretized (MIOCP), giving rise to the CIA decomposition. In the
following, we summarize three methods that transform (MIOCP) into simpler subproblems to
which concepts from both direct and indirect methods are applicable.

1See also https://mintOC.de.

31

https://mintOC.de


CHAPTER 3 MIXED-INTEGER OPTIMAL CONTROL

3.4.1 Bilevel optimization

A common approach for addressing MIOCPs is to consider two separate stages of optimization
and solve them at different levels [275, 23]. The optimal switching sequence is searched for
at the upper level, whereas at the lower level, the cost function is optimized over the space of
switching time instants under a fixed switching sequence. Hence, the method can be summa-
rized with by the following steps:

1. Start with an initial guess for the switching signal.

2. Repeat until the termination criterion is reached:

a) Update the mode sequence, and possibly insert new modes.

b) Perform switching time optimization.

In practice, step 2.a) can be solved by evaluating a mode insertion gradient [99, 98]. The
upper-level problem can generally be approached with dynamic programming [274], indirect
methods [16], or direct methods [193]. In step 2.b), the algorithm aims to minimize the cost
functional with respect to the switching times and continuous control input u, if available.
This problem is referred to as switching time optimization and is discussed in the following
subsection. Despite successful case studies [4, 193], the bilevel optimization strategy is limited
by the restriction to a fixed mode sequence at the upper level.

3.4.2 Switching time optimization

Although we list switching time optimization as the second step of the bilevel algorithm, we
explain this method separately since it can also serve as a stand-alone approach. In fact, if the
number of active modes in the fixed switching sequence is large enough, this approach yields
a bijective transformation of (MIOCP), as stated in [92].

The idea of switching time optimization relies on the time transformation t = (t2−t1)τ, which
exploits the fact that dt = (t2 − t1)dτ holds. Then,

ẋ(t ) = f (t , x(t ),u(t ), v (t )), for a.a. t ∈T ,

is equivalent to

ẋ(τ) = (t f − t0) f (τ, x(τ),u(τ), v (τ)), for a.a. τ ∈ [0,1].

This can be applied to several subintervals of T with different model functions f1, f2 that cor-
respond to different control realizations of v . Hence,

ẋ(t ) =
{

f1(t , x(t ),u(t )), if t ∈ [t0, t1],

f2(t , x(t ),u(t )), if t ∈ [t1, t f ],

is transformed into

ẋ(τ) =
{

(t1 − t0) f1(τ, x(τ),u(τ)), if τ ∈ [0,1],

(t f − t1) f2(τ, x(τ),u(τ)), if τ ∈ [1,2].
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In this way, the switching times ti enter the problem as continuous variables, transform-
ing the original discrete optimization problem into a continuous one. This justifies common
names for this approach such as transition-time optimization [75, 74] and variable time trans-
formation method [89]. It has been extended to various settings, such as switching costs [67],
vanishing constraints [194], and structure-exploiting linearization [245]. Its advantage lies in
eliminating the discrete variables. Nevertheless, numerical convergence issues may arise, and
the mode sequence may impact the computational performance, as discussed in [208]. We
employ switching time optimization in the heart assist device application in Section 10.2.

3.4.3 Embedding transformation

The embedding transformation technique [24] is equivalent to the partial outer convexifica-
tion method [218], which we introduce in Section 4.2. It is based on reformulating the model
equation (3.1b) into

ẋ(t ) =
nω∑
i=1

vi (t ) fi (t , x(t ),u(t )), vi (t ) ∈ [0,1],
nω∑
i=1

vi (t ) = 1, for a.a. t ∈T , (3.16)

where fi denotes the model function with the fixed i th mode represented by the binary con-
trols vi . The main difference from the CIA decomposition lies in its originally theoretical
view. Rather than suggesting an algorithm for constructing binary controls from relaxed ones,
BENGEA and DECARLO used indirect methods to prove that the binary solutions are dense in the
relaxed ones and argued that singular arcs are uncommon [24]. The embedding transforma-
tion technique has been extended and applied in various subsequent publications. MEYER et
al. compared and differentiated the approach from bilevel optimization, multi-parametric pro-
gramming [157], and hybrid maximum principle-based methods in [183]. To create binary con-
trols from relaxed ones, VASUDEVAN et al. proposed a projection method in which the MIOCP
objective function is accounted for in contrast to the CIA rounding method. The embedding
transformation was successfully applied for MIOCPs in automotive control [184] and cancer
chemotherapy [271]. Recently, WU has extended the approach with penalty functions and a
time transformation to avoid the rounding step [272].
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Chapter 4

Combinatorial integral approximation decompositions

This chapter defines the CIA decomposition algorithm. Section 4.1 summarizes the partial
outer convexification reformulation method, which is equivalent to the embedding transforma-
tion from Section 3.4.3. Based on this method, we describe the CIA decomposition in basic
form in Section 4.2. The ideas and methods behind the algorithm have been developed since
the mid-2000’s, and we provide a literature review of these results in Section 4.3. Section 4.4
deals with approaches for constructing binary control functions that are feasible in terms of dif-
ferent constraints, such as combinatorial or path constraints. Finally, in Section 4.5, we discuss
generalizations of the CIA decomposition. These include different MILP variants, a sequence
of several rounding and NLP steps, and recombinations of binary control functions.

4.1 The partial outer convexification reformulation

We now consider a convex reformulation of (MIOCP) introduced by SAGER in his dissertation
in 2006. The idea is to replace the integer controls v that enter the model function f with bi-
nary controls ω that the dynamics linearly, by introducing a binary control function for each
possible mode, respectively control realization, of v . The term partial refers to the fact that
only the input of the discrete-valued controls is convexified. However, the dynamics can still
be non-convex due to the function f . The benefit of this reformulation is the suitable sub-
sequent relaxation of the problem using continuous control functions α that assume values
on the interval [0,1]. We open this section by introducing the spaces of the control functions
before we define the convexified problem (BOCP) and its relaxation (ROCP). Throughout this
thesis, we assume a problem involving nω ≥ 2 modes of the integer control, i.e., ω can assume
nω different binary control realizations.

Definition 4.1 (Binaryω and relaxed control functionsα)
Let the vector of binary controlsω on the simplex and its corresponding vector of relaxed controls
α be defined by their function space domains

Ω :=
{
ω ∈ L∞(T , {0,1}nω) | ∑

i∈[nω]
ωi (t ) = 1, for a.a. t ∈T

}
,

A :=
{
α ∈ L∞(T , [0,1]nω) | ∑

i∈[nω]
αi (t ) = 1, for a.a. t ∈T

}
.

In the following, we sometimes write in short control i to abbreviate a control realization,
respectively control mode, ωi (·), i ∈ [n], of a control function ω(·) = (ω1(·), . . . ,ωn(·))ᵀ.

Definition 4.2 ((BOCP),(ROCP))
Consider the time horizon T , the initial and terminal values x0, x f , the objective function C , the
differential states x , the path constraint function c , and the feasible space U for the continuous
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control function u from Definition 3.1 for the problem (MIOCP). Let Ψi , i ∈ [nω], denote the
function Ψ with the i th control realization of v fixed. We denote the space of feasible binary
control functions by Ωcomb ⊆ Ω, which represents combinatorial constraints. We refer to the
following control problem (4.1) as (BOCP):

min
x ,u,ω

C (x ,u,ω) :=Φ(x(t f ))+
∫ t f

t0

∑
i∈[nω]

ωi (t )Ψi (t , x(t ),u(t )) dt (4.1a)

s. t. ẋ(t ) = f0(t , x(t ),u(t ))+ ∑
i∈[nω]

ωi (t ) fi (t , x(t ),u(t )), for a.a. t ∈T , (4.1b)

x(t0) = x0, (4.1c)

x(t f ) = x f , (4.1d)

0nc ≤ c(t , x(t ),u(t )), for a.a. t ∈T , (4.1e)

0nd ≤ ωi (t ) di (t , x(t ),u(t )), for a.a. t ∈T , i ∈ [nω], (4.1f)

u ∈ U , ω ∈ Ωcomb. (4.1g)

Constraint (4.1b) expresses the dynamical system as a switched system in partial outer convexi-
fied form, i.e., as a sum of a drift term f0 and control-specific functions fi , both with the domain
and codomain: T ×Rnx ×Rnu →Rnx . The mode–dependent mixed control–state constraint (4.1f)
must be fulfilled for the functions di : T ×Rnx ×Rnu → Rnd . We define (ROCP) as the canonical
relaxation of problem (BOCP), where we optimize overα ∈A instead ofω ∈Ωcomb.

We recognize that the partial outer convexification addresses not only the dynamics in (4.1b)
but also the Lagrange term and the mode–dependent mixed control–state constraint (4.1f),
which are in fact vanishing constraints, as introduced in Section 3.2.1. In his dissertation [135],
JUNG investigated other reformulations, such as inner convexification, and showed that outer
convexification is favorable because it yields a tight relaxation.

Remark 4.1 (Assumption on the existence of a solution for (ROCP))
We assume that there exists an optimal solution x∗ for the problem (ROCP). Thus, we may
assume that a uniform Lipschitz estimate on f exists so that the theorem by Picard–Lindelöf
[200] is applicable. This assumption is essential for the applicability of the CIA decomposition
because it is based on the optimal solution of the relaxed problem.

Proposition 4.1 (Equivalence of (MIOCP) and (BOCP))
The problems (MIOCP) and (BOCP) are equivalent in the sense that there is a bijection between
any feasible, respectively optimal, solution for (MIOCP) to a feasible, respectively optimal, solu-
tion for (BOCP).

Proof. The mapping

Ω→ L∞(T ,V ), ω(t ) 7→ v (t ) := ∑
i∈[nω]

ωi (t )v i , for a.a. t ∈T , v i ∈V

is the desired bijection and preserves both feasibility and objective function value. Further-
more, we can identify fi (·, ·, ·) with f (·, ·, ·, v i ) for i ∈ [nω] and analogously identify di (·, ·, ·) with
d (·, ·, ·, v i ).
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Remark 4.2 (Large number of possible modes nω due to several integer controls)
Enumerating all possible modes as combinations of several integer control functions v may
result in exponentially many control functionsωi . However, one may reduce the number nω of
feasible combinations by exploiting separability properties of fi , i.e., by decoupling and con-
sidering the integer control functions independently, see [135]. Still, it remains an open re-
search question whether it is beneficial to directly relax integer controls without partial outer
convexification if they enter the dynamics and constraints in an already linear fashion.

4.2 The basic combinatorial integral approximation decomposition

This section is dedicated to recapitulating the decomposition approach that was proposed in
similar form in [218, 224, 135].

4.2.1 Problem discretization of (BOCP) and (ROCP)

The CIA decomposition relies on the use of direct methods (the first discretize, then optimize
approach) introduced in Section 2.3.3. Thus, we explain and define the temporal discretization
of the problem and the subproblems that constitute the decomposition algorithm. We reuse
Definition 2.8, which formalizes the discretization grid. If not declared otherwise, we assume
N ∈N discretization intervals and nω to be the number of binary controls throughout this the-
sis. Next, we define the matrix sets of the discretized binary and relaxed control functions ΩN ,
AN .

Definition 4.3 (Convex combination constraint (Conv),ΩN , AN )
Let N ∈N. We express the requirement that the columns of a matrix (mi , j ) ∈ [0,1]nω×N sum up to
one by ∑

i∈[nω]
mi , j = 1, for j ∈ [N ], (Conv)

and call this the convex combination constraint (Conv) in the remainder. Based on this con-
straint, we define

ΩN := {
w ∈ {0,1}nω×N | w satisfies (Conv)

}
, AN := {

a ∈ [0,1]nω×N | a satisfies (Conv)
}

.

We note the geometric nature ofΩN and AN : they are the vertices, respectively the set of faces,
of the N -fold iterated standard simplex without the origin and spanned by the nω unit vectors.

We define the discretizations of (BOCP) and (ROCP) below.

Definition 4.4 ((MINLP),(NLPrel), (NLPbin))
Consider the problems (BOCP) and (ROCP) with the following modifications:
• We discretize (4.1b) and the differential states x with GN and by using direct collocation or

direct multiple shooting together with an appropriate integrator function (e.g., Runge-Kutta
methods [216, 156]).

• The control functions u andω, respectivelyα, are assumed to be piecewise constant on GN as
defined in (2.11) in Section 2.3.3.

We denote the resulting discretized optimization problem with binary control functions w ∈ΩN

and relaxed binary control functions a ∈ AN by (MINLP) and (NLPrel), respectively. We refer to
(NLPbin) when we consider (MINLP) with given and fixed binary control functions.
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In the case of absent continuous controls, the problem (NLPbin) reduces to a forward inte-
gration of the differential states and, hence, to an evaluation of the objective function.

Remark 4.3 (w and a interpreted as control functions)
Although w and a were introduced as matrices, Definition 4.4 establishes a canonical way to
consider their values as well-defined control functions:

ω(t ) =
N−1∑
j=1

w·, jχ[t j−1,t j )(t )+w·,Nχ[tN−1,tN ](t ).

α can be defined analogously. Hence, when we speak in the following of control functions w
or a, we are referring to its corresponding piecewise constant function.

4.2.2 Definition of the rounding problem (CIA)

The optimal objective value of (ROCP) represents a lower bound for that of (BOCP). Let α∗

denote the optimal relaxed binary control for (ROCP). To construct a binary control functionω
that is close to the optimum, we aim to minimize the so-called integral deviation gap:

min
ω∈Ω

max
t∈T

∥∥∥∥∥∥
t∫

t0

α∗(s)−ω(s) ds

∥∥∥∥∥∥ , (4.2)

where ‖·‖ is an unspecified norm, and the integral applies component-wise to the difference of
α∗(s) andω(s). For the moment, we neglect combinatorial constraints and consider the space
Ω instead of Ωcomb, but we return to their formulation in the discretized setting in Section 4.4.
In Chapter 5, we make use of the integral deviation gap to prove convergence properties of the
CIA decomposition. We formalize the integral deviation gap for the discretized setting with the
commonly applied maximum norm, as this is relevant for the practical solution process.

Definition 4.5 (Discretized integral deviation gap θ(w ))
Consider a∗ ∈AN . The integral deviation gap θ(w ) for w ∈ΩN is defined as

θ(w ) := max
i∈[nω], j∈[N ]

∣∣∣∣∣ ∑
l∈[ j ]

(a∗
i ,l −wi ,l )∆l

∣∣∣∣∣ .

Expressed in words, the integral deviation gap refers to the accumulated control deviation be-
tween a∗ and w . We note that the term integrality gap has been used for the same mathe-
matical term [149, 282]. However, the term integrality gap is already used in combinatorial
optimization for the ratio of integer to relaxed optimal solutions of an MILP, so we deliberately
avoid this term in this thesis. The integral deviation gap can be formulated as an MILP, which
gives rise to the following definition.

Definition 4.6 (CIA)
Let a∗ ∈AN be given. Then, we define the problem (CIA) to be

min
w∈ΩN ,θ≥0

θ (4.3)

s. t. θ ≥± ∑
l∈[ j ]

(a∗
i ,l −wi ,l )∆l , for i ∈ [nω], j ∈ [N ]. (4.4)
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The following property will be useful for proving near-optimality for (BOCP) of the binary con-
trol functions constructed by the CIA decomposition in Chapter 5.

Definition 4.7 (Rounding gap consistency property)
Consider any a∗ ∈AN and any grid GN . We say an algorithm has the rounding gap consistency
property if it produces a binary control w ∈ΩN with

θ(w ) ≤C (nω)∆̄, (4.5)

where C (nω) ∈R+ is a positive constant that depends on nω.

A heuristic way to solve the (CIA) problem is to run SUR, which is widely used due to its sim-
plicity and short run time.

Definition 4.8 (Sum-up rounding (SUR) [218])
For given a∗ ∈AN and j = 1, . . . , N , the sum-up rounding (SUR) scheme computes

wi , j :=

1, if i = argmax
k=1,...,nω

{ j∑
l=1

a∗
k,l∆l −

j−1∑
l=1

wk,l∆l

}
(break ties arbitrarily),

0, else,

for i = 1, . . . ,nω.

It has been proven that SUR fulfills the rounding gap consistency property [225]. This has a
direct consequence for (CIA), as the following proposition reveals.

Proposition 4.2 ((CIA) has rounding gap consistency property)
(CIA) fulfills the rounding gap consistency property in the sense that its optimal solution w∗

satisfies
θ(w∗) ≤C (nω)∆̄.

Proof. SUR constructs a feasible solution w SUR for (CIA), but the solution is not necessarily
optimal, i.e., θ(w SUR) ≥ θ(w∗). Since SUR fulfills the rounding gap consistency property, we
conclude this property is inherited by (CIA).

We prove specific values of C (nω) for optimal solutions of (CIA) in Chapter 7. In Chapter 6,
we discuss algorithms that solve (CIA) or that provide heuristic solutions with near-optimal
objective values.

4.2.3 Definition of the algorithm

With the subproblem definitions from the previous subsections, we can summarize the CIA
decomposition in Algorithm 4.1. We first solve the relaxed problem (NLPrel) and approximate
the resulting relaxed binary controls with binary values in the (CIA) problem. The last step con-
sists of solving (NLPbin) with a fixed binary control function w∗ in order to obtain the objective
value of (MINLP).

Rather than solving (NLPbin), it is possible to fix the continuous controls u so that the third
step only consists of an evaluation of the objective function in (MINLP). This happens regard-
less if (BOCP) involves no continuous controls. We stress that the above algorithm solves three
problems, all of which are easier to solve than the original (MINLP). The CIA decomposition is
now well-established in the literature due to the following advantages:
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Algorithm 4.1: CIA decomposition algorithm for error-controlled solution of (BOCP)

Input : (MINLP) instance with time grid GN as discretization of (BOCP).
1 Solve (NLPrel) → x∗, u∗, a∗, C ∗;
2 Solve (CIA) for a∗ → w∗;
3 Solve (NLPbin) with w = w∗ fixed → x∗∗, u∗∗, C ∗∗;
4 return: (x ,u, w ,C ) = (x∗∗,u∗∗, w∗,C ∗∗);

1. MINLPs generally fall into the class of NP-hard problems; using approaches that bypass
the direct solution of such problems is therefore computationally favorable.

2. Convergence results have been proven for (BOCP) without combinatorial constraints in
the sense that under mild assumptions, the obtained solution has been shown to be ar-
bitrarily close to the optimal solution with grid length ∆̄ going to zero [218, 225, 177]; we
elaborate on this in Chapter 5. Moreover, the solution of (NLPrel) represents a useful a
priori lower bound on the objective if solved to global optimality.1 Hence, one may loop
over the discretization grid and iteratively apply Algorithm 4.1 with a refined grid until the
obtained solution is satisfactorily close to the computed objective lower bound value, re-
spectively the constraint violation is as small as desired, as proposed in the algorithm MS
MINTOC in [223].

3. An MILP enables the intuitive inclusion of a large variety of combinatorial constraints.
Numerical case studies have shown that the resulting feasible solution is close to the
relaxed solution as long as the applied combinatorial constraints are not too restrictive
[48, 49].

We note that any rounding gap consistency algorithm, particularly SUR, can be applied to
achieve the convergence result in Chapter 5, though (CIA) is favorable in terms of the inclu-
sion of combinatorial constraints. Figure 4.1 illustrates the relationship of the subproblems
introduced in this chapter and to the CIA decomposition as a whole.

4.3 A brief survey of the combinatorial integral approximation decomposition

The main contributions and developments that led to the CIA decomposition are listed in Ta-
ble 4.1 (not intended to be a complete list). In his dissertation, SAGER introduced the idea of
reformulating (MIOCP) into (BOCP) (respectively a similar problem version of thereof) by using
outer convexification [218] and proved that under mild conditions, there is no integer objec-
tive value gap between (BOCP) and (ROCP). For the practical construction of binary controls,
he proposed the SUR scheme. KIRCHES investigated the outer convexification of constraints as
well as applied SUR to nonlinear MPC in his dissertation [145].

1 Solving an NLP to global optimality is generally computationally expensive. We are therefore content with a local
solution constructed by a solver such as IPOPT [264], as elaborated in the numerical results chapter.
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(MIOCP)

(BOCP)

(ROCP)

(MINLP)

(NLPrel)

(NLPbin)

(CIA)
convexification

equivalence
relaxation
α ∈A

discretization

discretization

relaxation
a ∈AN

solving → a∗

rounding a∗ → w∗

solving → x∗ ,u∗ ,C ∗
near-optimality

Figure 4.1: Schematic representation of the CIA decomposition: (MIOCP) can be equivalently
reformulated into its partially outer convexified counterpart problem (BOCP), which
is then transformed into (MINLP) via a temporal discretization. Next, allowing a
convex combination a in (Conv) yields the relaxed problem (NLPrel). After solving
this problem, we obtain a∗, which is then approximated with binary values w∗ in
the rounding problem (CIA). Finally, we use w∗ as fixed variables to solve (NLPbin)
as a continuous variable problem. The constructed solution is (almost) feasible and
(sub)optimal for (MINLP).

Year Author & Study Contribution

2006 · · · · · ·• Sager [218]
Partial outer convexification reformulation,
SUR, proof: no integer gap

2009 · · · · · ·• Sager [219] Overview article

2010 · · · · · ·• Kirches [145] Extension to MPC and path constraints

2011 · · · · · ·• Sager, Jung, Kirches [224] (CIA) problem, BnB algorithm

2012 · · · · · ·• Gerdts, Sager [92]
Sager, Bock, Diehl [225]

DAE extension
Exact error estimates

2013 · · · · · ·• Jung [135]
Hante, Sager [117]

Next-forced rounding, relaxations
Time-dependent PDE extension

2015 · · · · · ·• Jung, Reinelt, Sager [135]
Sager, Clayes, Messine [226]

Lagrangian relaxation for (CIA)
Comparison with other approaches

2017 · · · · · ·• Hante [118] Hyperbolic PDE extension

2018 · · · · · ·•
Zeile, Weber, Sager [280]
Bock et. al [35]
Hahn, Sager [113]
Bürger et. al [48, 49]

Generalizations of CIA decomposition
Extension to implicit switches
(CIA) for PDE case
MPC extension of (CIA)

2019 · · · · · ·•
Kirches, Lenders, Manns [149, 179, 162]
Manns, Kirches [177, 176]
Göttlich et. al [102]
Hahn et. al [114]

Inclusion of vanishing constraints
General PDE cases
ADMM for combinatorial constraints
Overview article with PDE focus

2020 · · · · · ·•
Bürger et. al [50]
Zeile, Robuschi, Sager [282, 222]
Bestehorn et. al [27, 28]

Software pycombina
Rounding gap results, rounding algorithms
Switching costs, shortest-path algorithm

Table 4.1: Timeline of contributions to and developments of the CIA decomposition. ADMM
refers to the alternating direction method of multipliers.
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Several refinements were provided by SAGER, DIEHL, and BOCK in their article [225] in which
they proved exact error estimates between the relaxed and binary control constructed problem
solutions. They used SUR as a constructive element in the proof and showed a linear depen-
dence on the grid length ∆̄. The rounding step was generalized to solve (CIA), i.e., to solve an
MILP, by SAGER, JUNG, and KIRCHES in [224]. They proposed an efficient BnB algorithm and
argued for the intuitive inclusion of combinatorial constraints in (CIA) [137]. In his dissertation
[135], JUNG examined further relaxation approaches and proposed next-forced rounding (NFR)
to construct feasible binary controls.

Definition 4.9 (Next-forced rounding (NFR))
Consider a given a∗ ∈ AN on a grid GN . For all i = 1, . . . ,nω and iteratively for j = 1, . . . , N , we
define the quantity

N j (i ) :=
 argmin

k= j ,...,N

{∑k
l=1 a∗

i ,l∆l −
∑ j−1

l=1 wi ,l∆l > ∆̄
}

, if
∑N

l=1 a∗
i ,l∆l −

∑ j−1
l=1 wi ,l∆l > ∆̄,

∞, else.
(4.6)

A control with index i? ∈ [nω] on interval j is defined to be next-forced, if and only if

N j (i?) = min
i∈[nω]

N j (i ) and N j (i?) <∞. (4.7)

Then, the NFR algorithm iteratively sets the next forced control i equal to one (break ties arbitrar-
ily), i.e., wi , j = 1, for j = 1, . . . , N . If there is no such control, the active control is chosen according
to the SUR scheme.

KIRCHES, LENDERS, and MANNS proved tight bounds on the integral deviation gap for SUR-
constructed solutions in their article [149]. They also extended the rounding scheme to the
vanishing constrained case and proved δ-feasibility of the produced solution [162, 179]. More
recent results focus on problems with greater real-world applicability and can be divided into
the following areas:

• Solving problems with PDE constraints [117, 118, 177],

• Algorithms for (nonlinear) MPC [48, 49, 56],

• The efficient inclusion of time-coupled combinatorial constraints [282, 222, 28, 102], and

• Generalizations of the CIA decomposition and algorithms for other problem settings
[280, 35, 277].

As of 2020, the research field of MIOCPs is still being actively investigated.

4.4 Incorporation of constraints

In this chapter, we present different ways of considering the combinatorial constraints from
Section 3.2, path constraints of type (4.1e), and multiphase dynamics from (MMIOCP) in the
CIA decomposition.
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4.4.1 Combinatorial constraints

There are essentially two different ways for the CIA decomposition to construct binary controls
that satisfy combinatorial constraints:

1. Impose the constraints in the rounding problem (CIA) or apply rounding algorithms that
consider these constraints.

2. Add the constraints or auxiliary variants for a ∈AN into (NLPrel).

Combinations of the above options are possible.

Incorporation into (CIA)

The possibility of including combinatorial constraints into (CIA) arises naturally since MILPs
provide the necessary modeling capability. Here, we consider discretized versions of the limited
switching and MDT constraints from Section 3.2. We also call the requirement to limit the
number of switches used the discrete total variation (TV) constraint.

Definition 4.10 (Discrete bounded total variation (TV) constraint)
Let a maximum number of switches σmax ∈ N be given together with the grid GN . The TV con-
straint for w ∈ΩN is defined as

σmax ≥ 1

2

∑
i∈[nω]

∑
j∈[N−1]

|wi , j+1 −wi , j |. (4.8)

In terms of the T V concept introduced in Section 3.2, the constraint (4.8) indicates σmax ≥
T V (ω), whereω is discretized with w . In fact, we count the switches in (4.8) twice since we sum
the control that has just been deactivated with the one that has just been activated, explaining
the factor of one-half in (4.8). We need the following differentiable reformulation of the TV
constraint in order to solve the upcoming (CIA) subproblems efficiently.

Remark 4.4 (Reformulation of (4.8))
Let GN andσmax ∈Nbe given. We use the auxiliary variablesσi , j ∈N and obtain a reformulation
of the TV constraint (4.8) without the absolute value term by

σmax ≥ 1

2

∑
i∈[nω]

∑
j∈[N−1]

σi , j , (4.9)

σi , j ≥±(wi , j+1 −wi , j ), i ∈ [nω], j ∈ [N −1]. (4.10)

Here we do not assume any mode-specific switching limits, which could be imposed by split-
ting up (4.9) into nω inequalities and dropping the first sum.

Remark 4.5 (Alternative TV reformulations)
Alternatives to (4.9)–(4.10) for reformulating the TV constraint (4.8) include, e.g., facet defining
inequalities, as proposed in [224]. KIRCHES [145] suggested introducing further convex multi-
pliers βi , j ∈ [0,1] and replacing (4.10) by setting

σi , j = (2βi , j+1 −1)(wi , j+1 +wi , j −1)+1 for i ∈ [nω], j ∈ [N −1].
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A similar reformulation was introduced by RIECK [207]:

σi , j = wi , j−1 +wi , j+1 +2wi , j (1−wi , j−1 −wi , j+1) for i ∈ [nω], j ∈ {2, . . . , N −1}.

These reformulations can be beneficial for the solution process with MILP solvers.

The following definition addresses the formulation of MDT constraints in the discretized set-
ting.

Definition 4.11 (Discretized minimum dwell time constraints)
Let a grid GN be given together with an MU time CU ≥ 0 and an MD time CD ≥ 0. For w ∈ΩN ,
we refer to the following constraints as MDT constraints:

wi ,l ≥ wi ,k+1 −wi ,k , for i ∈ [nω], k ∈ [N −1], l ∈Jk+1(CU ), (4.11)

1−wi ,l ≥ wi ,k −wi ,k+1, for i ∈ [nω], k ∈ [N −1], l ∈Jk+1(CD ), (4.12)

where we denote the intervals affected by the MDT C1 =CU ,CD from interval k ∈ [N ] on with the
set

Jk (C1) := {k}∪ { j | t j−1 ∈GN ∩ [tk−1, tk−1 +C1)}.

If a binary control is active after a switch on t j , it must remain active for a time period of at
least CU , as required by the MU constraint (4.11), whereas the MD constraint (4.12) enforces
the analogous case for the deactivation of a control. We remark that we assume no mode-
specific MU times Ci ,U or MD times Ci ,D , which may by included by setting CU = maxi∈[nω] Ci ,U

and accordingly CD = maxi∈[nω] Ci ,D , even though this simplification may result in suboptimal
solutions.

Remark 4.6 (MDT reformulations)
Concerning the constraints (4.11) and (4.12), we stress that there are other, often computation-
ally more efficient, formulations of MDT constraints, e.g., in the spirit of extended formulations
[161]. Extended formulations may lead to relaxations that are less likely to deliver fractional so-
lutions [161] and may therefore facilitate including the constraints (4.11) and (4.12) into the
NLP solving procedure. We propose an extended formulation of (CIA) that allows us to deal
with such reformulations in Chapter 6.

Due to their importance in applications, we will elaborate on tailored algorithms for (CIA)
with TV and MDT constraints (Chapter 6) and investigate the resulting integral deviation gap
(Chapter 7). To this end, we introduce specific (CIA) problem variants here.

Definition 4.12 (Problems (CIA-U), (CIA-D), (CIA-UD), and (CIA-TV))
Consider (CIA) from Definition 4.6. We define the (CIA) problem with the added MU time con-
straint (4.11) from Definition 4.11 as (CIA-U). We call (CIA) with an added MD time constraint
(4.12) (CIA-D), and we call (CIA) with both (4.11) and (4.12) (CIA-UD). Finally, (CIA) with added
TV constraints (4.9)-(4.10) is hereafter referred to as (CIA-TV).

Other combinatorial constraints, as defined in Section 3.2, can be discretized and included in
(CIA) in a straightforward manner. Moreover, the idea of the SUR-VC algorithm [149], which is
to prefix controls wi , j = 0 if ai , j = 0, can be directly transferred to (CIA) so that the constructed
controls inherit the properties of SUR-VC with respect to vanishing constraints.

46



COMBINATORIAL INTEGRAL APPROXIMATION DECOMPOSITIONS CHAPTER 4

Incorporation into the NLP step

Combinatorial constraints cannot be modeled by (NLPrel) in a natural way since it does not
include binary variables. Nevertheless, there are auxiliary ways of accommodating these re-
strictions in this problem step. First, the constraints from the Remark 4.4 and Definition 4.11
can be applied to a and added to (NLPrel). There is no guarantee that the optimal a∗ is binary,
but it may appear that it structurally almost obeys the constraints. Numerical studies indicate,
however, no apparent effect of adding the constraints on a [282]; moreover (NLPrel) becomes
more challenging to solve because of the increased number of constraints.

Another possibility, at least for MDT constraints, are blocking constraints [56]. In this ap-
proach, the intervals j ∈ [N ] are sorted into K ∈N subsequent subsets Ik , k ∈ [K ], representing
the MDT periods. The values a·, j are then set to be equal on these subsets, i.e., for all k ∈ [K ],
we impose

ai , j = ai ,l , for j , l ∈Ik , i ∈ [nω].

As an advantage, the SUR scheme can be applied to these blocks of intervals, and the con-
structed solution satisfies MDT constraints. Nevertheless, the number of degrees of freedom in
(NLPrel) is already greatly reduced, which can lead to highly suboptimal solutions.

To avoid fractional values and a large number of switches in the relaxed solution a∗, it has
been proposed [218] to add penalty terms Φpen of the following form to the (NLPrel) objective:

Φpen =β ∑
i∈[nω]

∑
j∈[N ]

ai , j (1−ai , j ),

where β ≥ 0 refers to a penalty factor that can be iteratively scaled down. The issue with this
approach is that the relationship between the optimal solutions of the penalized and original
problems remains unclear [218], and the penalties may attract solutions in which switches ap-
pear more frequently [145].

Considering the aspects discussed above, it seems advisable to add combinatorial con-
straints to (CIA) as a standard case and to only consider modifications of (NLPrel) in specific
cases.

4.4.2 Path constraints

Even if (NLPrel) is feasible and the optimal solution a∗ is used to construct a binary control
function w∗ in (CIA), the resulting problem (NLPbin) with fixed w∗ is not necessarily feasible
due to the path constraint (4.1e). As we show in Chapter 5, the possible infeasibility disappears
as the problem discretization becomes finer. However, in many applications the grid is fixed
or refinement is undesirable, so a workaround is needed to construct binary controls w∗ that
lead to a feasible problem (NLPbin).

Forward integration of differential states in (CIA)

Consider given u∗
·, j from (NLPrel) with j ∈ [N ], a chosen integrator function, and initial state

values x0. Then, the validation of the discretized path constraint (4.1e) is possible as soon as
x·, j is known, which is through the dynamic system (4.1b)-(4.1c) and given u∗

·, j and x0 a depen-
dent variable of w . We can thus reinterpret the path constraint as a nonlinear constraint on w
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evaluated on the intervals j ∈ [N ]:

g j (w ) := c(t j , x·, j (w ),u∗
·, j ) ≥ 0nc , (4.13)

where the constraint function g j depends on the outcome of x·, j , i.e., the ODE constraint and
the integration scheme. The constraint (4.13) may be added to (CIA) to ensure feasibility with
respect to (4.1e). However, we note that this constraint induces a nonlinear structure into the
MILP since the discretized ODE is generally nonlinear. Moreover, (4.13) can only be evaluated
on the interval j ∈ [N ] if x , and thus w is known for all previous intervals k ≤ j . This time-
dependent structure induces a huge number of possible outcomes for g j and therefore a huge
number of constraints. In Sections 6.3 and 6.4, we discuss time-exploiting BnB algorithms that
branch forward in time. These algorithms can be extended to save the state values and thus
check the feasibility of the path constraints. This algorithmic idea was tested in [166] with the
result of guaranteed feasibility at the expense of decreased run time performance.

A heuristic first-order Taylor approximation constraint

After solving (NLPrel), the intervals on which the optimal solution fulfills (4.1e) with (close to)
equality can be identified. On these intervals, the variables w may be critical in terms of path
constraint violations if they are “rounded in the wrong direction” such that (4.1e) can no longer
be satisfied in (NLPbin). To this end, we approximate the path constraint function value of
the state trajectory x w (t ) that is based on the binary controls w with a first-order Taylor poly-
nomial. The latter consists of the path constraint function value of the state trajectory x a (t ),
which is based on the relaxed controls a∗, and of a product term of the difference of the state
trajectory of the relaxed and binary controls multiplied by the path constraint function deriva-
tive with respect to x . The idea is to impose a constraint in (CIA) that restricts the first-order
Taylor term on the intervals that could be critical with respect to path constraint violations. We
first introduce the evaluated model function terms f̃i , j ,k and then express this constraint idea
in Definition 4.14.

Definition 4.13 (Evaluated model function f̃i , j ,k )
Let x∗, u∗ be the (discretized) optimal solution of (NLPrel). We define the evaluated right-hand
side function terms from (4.1b) as

f̃i , j ,k := 1

∆ j

∫ t j

t j−1

fi ,k (t , x∗(t ),u∗(t )) dt , for i ∈ [nω], k ∈ [nx]. (4.14)

Definition 4.14 (Path constraint Taylor approximation)
Consider a grid GN . Let x∗, u∗, and f̃ be given after solving (NLPrel). Further, let Jpath ⊆ [N ]
denote the intervals on which the optimal solution of (NLPrel) is constrained by (4.1e). We abbre-
viate the partial derivative of c with respect to x by cx := dc

dx . Then, we define the path constraint
Taylor approximation constraint as

0nc ≤ cx (t j , x∗
·, j ,u∗

·, j )
∑

l∈[ j ]

∑
i∈[nω]

(wi ,l −a∗
i ,l )∆l f̃i ,l ,·, for j ∈Jpath. (4.15)

The above constraint is a heuristic approach to preventing path constraint infeasibilities, and
it can be added to (CIA) without changing the linear problem nature. We motivate the con-
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straint approximation in Section 5.5, where we compute the (vanishing) distance of the two
state trajectories based on relaxed and binary controls.

4.4.3 Multiphase dynamics

We recall the multiphase problem (MMIOCP), where the model function f depends on the
switching function s(t ) that maps each time point t ∈T to its associated phase p ∈ [np ], np ∈N:

s : T → [np ].

Next, we define the corresponding partial outer convexification variant of (MMIOCP).

Definition 4.15 (Multiphase binary optimal control problem (MBOCP))
Consider the function space for the multiphase binary controls defined by

Ωp :=
{
ω ∈ L∞ (

T , {0,1}nω×np
) | ∑

i∈[nω]

∑
p∈[np ]

ωi ,p (t ) = 1, for a.a. t ∈T

}
.

We define (MBOCP) as the problem (BOCP), in which the ODE constraint (4.1b) is replaced by

ẋ(t ) = f0(t , x(t ),u(t ))+ ∑
i∈[nω]

∑
p∈[np ]

ωi ,p (t ) fi (t , x(t ),u(t ), s(t )), for a.a. t ∈T , (4.16)

and the vanishing constraint (4.1f) holds for all p ∈ [np ] with ωi ,p applied instead of ωi . More-
over, the Lagrange objective term is altered by an additional sum over all phases.

Proposition 4.3 (Equivalence of (MBOCP), (MMIOCP), and (BOCP))
The problems (MBOCP), (MMIOCP), and (BOCP) are equivalent in the sense that there is a bijec-
tion between any feasible, respectively optimal, solution for any of these problems to a feasible,
respectively optimal, solution for any of the other problems.

Proof. The equivalence of (MBOCP) and (MMIOCP) can be analogously shown as in the proof
of Proposition 4.1. For the equivalence of (MBOCP) and (BOCP), we first observe that every
solution of the latter problem corresponds to a solution of the former with only one phase, i.e.,
np = 1. For the other direction, we argue that if we set fi (·, s(t )) to zero outside the correspond-
ing phase p for all i ∈ [nω], we obtain an equivalent (BOCP) with np ·nω modes. In this way,
each phase in (MBOCP) induces nω additional modes in (BOCP).

With the above proposition at hand, the CIA decomposition is generally applicable to the
multiphase setting. We briefly outline the practical outcome of the algorithm. First, the dis-
cretized relaxed and binary control functions are also indexed by the phases p ∈ [np ], i.e.,
ai , j ,p ∈ [0,1] and wi , j ,p ∈ {0,1}. We need to fix the controls outside their corresponding phases
because otherwise, we might accumulate controls that do not belong to the same phase and
thus the same model function fi ,p :

wi , j ,p = 0, for i ∈ [nω], j ∈ [N ] if s(t j−1) 6= p. (4.17)

We note that the above constraint corresponds to simple variable fixing since s(t j−1) is known
beforehand. Finally, we introduce the multiphase CIA problem.
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Definition 4.16 (MCIA)
Let a∗ ∈ [0,1]nω×N×np be given. We define the multiphase CIA (MCIA) problem as

min
wi , j ,p∈{0,1}, θ≥0

θ

s. t. 1 = ∑
i∈[nω]

∑
p∈[np ]

wi , j ,p , j ∈ [N ],

θ ≥ ± ∑
l∈[ j ]

(a∗
i ,l ,p −wi ,l ,p )∆l , i ∈ [nω], j ∈ [N ], p ∈ [np ],

Phase fixing constraint (4.17).

We apply this multiphase CIA decomposition in Section 10.1. We remark that for each phase
(MCIA) may be further decomposed into (CIA) subproblems for complexity reduction; how-
ever, this comes at the expense of possible suboptimal solutions when combinatorial con-
straints are included.

4.5 Generalized combinatorial integral approximation decompositions

This section is largely based on [280] and [212]. The solution constructed by the CIA decom-
position for (BOCP) can be improved in terms of the objective function value and constraint
violations by applying the algorithm on a finer discretization grid [225]. Nevertheless, in some
cases, it is not possible or desirable to apply grid refinement:

1. In time-critical settings, such as MPC, another round of problem solving with an in-
creased problem size may not be applicable [49].

2. The problem size of some instances of discretized MIOCP may already huge, as in PDE
constrained problems [114], limiting the possibility for refinement.

3. There are applications in which the discretization is fixed or confined to narrow limits.

We therefore propose generalizations of the decomposition approach that work without grid
refinement. One of these approaches is to apply different rounding problems, instead of (CIA).
For instance, one may construct a second-order Taylor approximation modification of the bi-
nary controls in the optimal solution of (NLPrel). This results in an MIQP based on a Gauss-
Newton-type linear-quadratic expansion that is currently being investigated.

4.5.1 Different MILP formulations

We introduced (CIA) as the problem of minimizing the discretized integral deviation gap from
Definition 4.5. We now consider control approximation problems that rely on different scal-
ings. The following definition provides a notion of these problems, in which the vector norm
‖ ·‖ remains unspecified.

Definition 4.17 (λ̃ j ,k ,θ∗CIA,θ∗SCIA,θ∗
λCIA)

Let a∗ ∈ AN be the given optimal solution of (NLPrel), and let the evaluated model function
values f̃ be given as introduced in Definition 4.13. We denote by λ̃ j ,k ∈ R, j ∈ [N ], k ∈ [nx ], the
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discretized and evaluated dual variables of the ODE constraint (4.1b) in (NLPrel). Consider a
vector norm ‖ ·‖. We introduce the following optimization problems:

θ∗CIA := min
w∈ΩN

max
j∈[N ]

∣∣∣∣∣
∣∣∣∣∣ ∑
l∈[ j ]

(a∗
·,l −w·,l )∆l

∣∣∣∣∣
∣∣∣∣∣ , (4.18)

θ∗SCIA := min
w∈ΩN

max
j∈[N ]

∣∣∣∣∣
∣∣∣∣∣ ∑
l∈[ j ]

∑
i∈[nω]

(a∗
i ,l −wi ,l )∆l f̃i ,l

∣∣∣∣∣
∣∣∣∣∣ , (4.19)

θ∗λCIA := min
w∈ΩN

max
j∈[N ]

∣∣∣∣∣ ∑
k∈[nx ]

λ̃ j ,k

∑
l∈[ j ]

∑
i∈[nω]

(a∗
i ,l −wi ,l )∆l f̃i ,l ,k

∣∣∣∣∣ . (4.20)

Norm dependent MILP formulation

Thus far, we have considered the maximum norm in (CIA). We now introduce the 1-norm MILP
analogue with auxiliary variables ζi , j ≥ 0, i ∈ [nω], j ∈ [N ], and thereby specify the norm choices
for Definition 4.17.

Definition 4.18 (CIA1)
Let a∗ ∈AN and a grid GN be given. We define (CIA1) as the problem

min
w∈ΩN ,θ,ζi , j≥0

θ (4.21)

s.t. θ ≥ ∑
i∈[nω]

ζi , j , for j ∈ [N ], (4.22)

ζi , j ≥± ∑
l∈[ j ]

(a∗
i ,l −wi ,l )∆l , for i ∈ [nω], j ∈ [N ]. (4.23)

The next definition is dedicated to θ∗SCIA and both the maximum norm and 1-norm.

Definition 4.19 ((SCIAmax),(SCIA1))
Let a∗ ∈ AN , the evaluated model functions f̃ ∈ Rnω×N×nx , and a grid GN be given. We define
(SCIAmax) as

min
w∈ΩN ,θ≥0

θ (4.24)

s.t. θ ≥± ∑
l∈[ j ]

∑
i∈[nω]

(a∗
i ,l −wi ,l )∆l f̃i ,l ,k , for j ∈ [N ], k ∈ [nx ]. (4.25)

We introduce the auxiliary variables ζ j ,k ≥ 0, j ∈ [N ], k ∈ [nx ], and define (SCIA1) as

min
w∈ΩN ,θ,ζ j ,k≥0

θ (4.26)

s.t. θ ≥ ∑
k∈[nx ]

ζ j ,k , for j ∈ [N ], (4.27)

ζ j ,k ≥± ∑
l∈[ j ]

∑
i∈[nω]

(a∗
i ,l −wi ,l )∆l f̃i ,l ,k , for j ∈ [N ], k ∈ [nx ]. (4.28)

In the context of different MILP formulations, we refer to the problem (CIA) as (CIAmax) to
emphasize the application of the maximum norm. The following definition presents an MILP
variant that takes the dual variables into account.
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Definition 4.20 (λCIA1)
Let a∗ ∈ AN , the evaluated model functions f̃ ∈ Rnω×N×nx , the discretized and evaluated dual
variables λ̃ j ,k ∈R, j ∈ [N ], k ∈ [nx ], and a grid GN be given. We define (λCIA1) as

min
w∈ΩN ,θ,ζ j ,k≥0

θ (4.29)

s.t. θ ≥ ∑
k∈[nx ]

ζ j ,k , for j ∈ [N ], (4.30)

ζ j ,k ≥±λ̃ j ,k

∑
l∈[ j ]

∑
i∈[nω]

(a∗
i ,l −wi ,l )∆l f̃i ,l ,k , for j ∈ [N ], k ∈ [nx ]. (4.31)

Of course, other norms, such as the Euclidean norm, can be used. We do not consider them
here since they would impose nonlinear constraints on the MILPs.

Chronologically ordered constraints

A further possibility for modifying the (CIA) problems is to alter the chronological order in the
constraints for the accumulated difference ‖∑

l∈[ j ](a∗
·,l −w·,l )∆l‖ for j ∈ [N ]. Instead of starting

from the first interval j = 1, we may use an arbitrary ordering of time intervals. We consider
backward accumulation, starting from the interval with index j = N , i.e., [tN−1, tN ]:

θ ≥±
N∑

l= j
(a∗

i ,l −wi ,l )∆l , for i ∈ [nω], j ∈ [N ]. (4.32)

We denote the problem in which (4.32) replaces (4.4) in (CIAmax) by (CIAmaxB). The other
defined MILPs can be modified analogously with backward time accumulation and are named
accordingly; e.g., (SCIA1B) refers to (SCIA1) with backward accumulation.

4.5.2 Recombination as postprocessing

We group the following CIA-type MILP formulations from Section 4.5.1 into the set SCIA.

Definition 4.21 (SCIA, SREC)
We define the set of CIA problems SCIA from the previous section via

SCIA := {(CIAmax),(CIA1), (CIAmaxB),(CIA1B),(λCIA1),(λCIA1B),

(SCIAmax), (SCIA1), (SCIAmaxB),(SCIA1B)} .

For a subset S̃CIA ⊆ SCIA, let nCIA := |S̃CIA| denote the number of different CIA problem formula-
tions. Let the elements of S̃CIA be numbered by 1, . . . ,nCIA. We define the set SREC of recombination
mappings F rec ∈ SREC via

F rec : ×
k∈[nCIA]

ΩN →ΩN , F rec (
w 1, . . . , w nCIA

) 7→ w rec, (4.33)

where w k denotes the optimal solution of the problem (milp)k ∈ S̃CIA.

In Algorithm 4.2, we present a generalized CIA decomposition based on the solution of differ-
ent (CIA) problems and recombination heuristics. We solve different MILPs to approximate the
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Algorithm 4.2: Generalized CIA decomposition algorithm with several MILPs and re-
combination for error-controlled solution of (BOCP)

Input : (MINLP) instance with time grid GN as discretization of (BOCP), algorithmic
choices of sets S̃CIA ⊆ SCIA and S̃REC ⊆ SREC.

1 Solve (NLPrel) → x∗, u∗, a∗, C ∗;
2 for m ∈ S̃CIA do
3 Solve m for a∗ → w m ;
4 Solve (NLPbin) with w = w m fixed → xm , um , C m ;

5 for F rec ∈ S̃REC do
6 Create w rec using F rec(w m), C m from all m ∈ S̃CIA.
7 Solve (NLPbin) with w = w rec fixed → xrec, urec, C rec;

8 Find opt ∈ S̃CIA ∪ S̃REC with C opt = min

{
min

m∈S̃CIA
C m , min

F rec∈S̃REC
C rec

}
;

9 return: (x ,u, w ,C ) = (xopt,uopt, w opt,C opt);

relaxed controls with binary ones (lines 2–3). Their performance is evaluated (line 4) by solv-
ing (NLPbin) and thus, calculating their corresponding state trajectories and objective values.
We use the binary controls in several recombination heuristics to create new candidate binary
controls (lines 5–6), which we also evaluate (line 7). Finally, the best performing binary control
is selected as a solution (line 8). We note that the objective C may include a constraint violation
term C pen and a tracking term C track that minimizes the approximation error between differ-
ential states of the relaxed and binary controls. Algorithm 4.2 is a generalization of the basic
CIA Algorithm 4.1 in the sense that for the latter, S̃REC is empty and S̃CIA contains only one CIA
problem formulation. In the case of a highly constrained (BOCP), Algorithm 4.2 can be altered
such that the recombination heuristics aim to create binary controls that result in a feasible
problem (NLPbin). The algorithms can be adapted to check the feasibility of the constructed
solution for (MINLP), but we argue that the algorithm may construct a feasible solution by us-
ing C pen and a tracking term C track in the objective. The general framework is open to the
application of different heuristics, such as genetic algorithms [97]. In the following, we provide
examples of the recombination heuristics in SREC.

GreedyTime recombination

Algorithm 4.3 establishes a routine for using the MILP solutions in a greedy approach with the
aim of constructing solutions w with an improved objective value C (w ), where we write C (w )
to indicate the (indirect) dependency of the objective on the specific binary control function
w .

GreedyTime iterates over all intervals j ∈ [N ] in chronological order (line 1). In line 2, on every
interval we check if there are MILP pairs (m1,m2) that differ in their binary control vectors. For
each of these pairs, we recombine the m1 solution with the binary control vector from m2 at
interval j to create a temporary solution w̃ m1 (line 3). Then, we evaluate the objective of this
new solution in line 4 and overwrite the binary control w m1 with the recombined solution w̃ m1

if that latter results in a better objective value (lines 5–6). In the same way, we proceed with the
second solution m2 when the (same) pair (m2,m1) appears in the inner loop.
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Algorithm 4.3: GreedyTime heuristic for recombining binary controls w m , m ∈ SCIA.

Input : Grid GN , binary controls w m as optimal solutions of m ∈ SCIA, corresponding
objective values C (w m).

1 for j ∈ [N ] do
2 for (m1,m2) ∈ SCIA ×SCIA, m1 6= m2, w m1

·, j 6= w m2
·, j do

3 Set w̃ m1

·,k = w m1

·,k ,k 6= j ,k ∈ [N ] and w̃ m1
·, j = w m2

·, j ;

4 Solve (NLPbin) with w = w̃ m1 fixed → C (w̃ m1 );
5 if C (w̃ m1 ) ≤C (w m1 ) then
6 Set w m1

·, j = w̃ m1
·, j and C (w m1 ) =C (w̃ m1 );

7 return: C (w rec) := min
m∈SCIA

C (w m);

Note that with a large number of calculated MILPs, there may also be a large number of pairs
with unequal solutions. Instead of swapping and testing each variation for every w m1 , it is ad-
visable to only swap the w m2 solution with the currently smallest objective value. When there
are no continuous controls u, it is straightforward to evaluate (NLPbin) in line 4 with the previ-
ously found and fixed x until grid interval j . Since (NLPbin) needs to be solved iteratively, this
speeds up the process in problems with fine grids and numerous MILP solutions. Moreover,
if an MILP solution m1 differs from two MILPs m2,m3 with identical binary control vectors
w m2

·, j = w m3

·, j , it is sufficient to test recombination with only one of the two. Fig. 4.2 illustrates an
example recombination step for the pairs (CIA,SCIA) and (SCIA,CIA).

0

0

1

1

...

...

Figure 4.2: Visualization of the GreedyTime algorithm. Two candidate controls, here from (CIA)
and (SCIA), are used to construct new candidates. An enumeration between 0 and
1 is performed at all intervals j when the input vectors differ. The two candidate
controls w are fixed and (NLPbin) is solved for both vectors. The resulting objective
function values are compared with their previous values, and the vectors w·, j with
the smaller objective values are fixed in the candidate solutions. This procedure is
repeated on the subsequent intervals with unequal candidate solutions.
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Remark 4.7 (GreedyTime modifications)
1. The outer loop in Algorithm 4.3 can also be applied backward in time. We name the

backward version GreedyTimeBackward.

2. Instead of looping over all intervals, we may consider only singular arcs since the con-
structed binary controls are likely to be equal on bang-bang-arcs. Following Defini-
tion 2.7, here by singular arcs, we refer to intervals on which ε < ai , j < 1− ε holds, for
a certain threshold ε> 0.

3. Greedy-cost-to-go: Assume we have calculated the dual variables λ̃ j ,k , j ∈ [N ],k ∈ [nx],
as introduced in Definition 4.17. Then, re-sort the intervals [N ] in descending order ac-
cording to

∑
k∈[nx] |λ̃ j ,k |, j ∈ [N ]. This results in a new ordered grid G λ̃

N to be applied in
Algorithm 4.3.

We test GreedyTime and its modifications in Section 9.1.

Singular arc recombination

Usually, when a∗ is (almost) binary on certain intervals, w should attain these binary values
as well as an optimal solution of a CIA rounding problem – regardless of the MILP choice. To
this end, we formalize singular arcs of a∗ as sets of consecutive intervals on which the relaxed
control takes values smaller than ε or larger than 1−ε, where ε> 0 is a chosen tolerance.

Definition 4.22 (Singular arc interval sets J
sing
l , number of singular arcs nsing)

Consider a∗ ∈ AN and a small chosen tolerance ε > 0. Let kend
0 := 0. We define the following

singular arc interval index sets iteratively for l ≥ 1:

kstart
l := min

{
j ∈ [N ] | j > kend

l−1 ∧∃i ∈ [nω] : a∗
i , j ∈ [ε,1−ε]

}
,

kend
l := max

{
j ∈ [N ] | ∀r = kstart

l , . . . , j ∃i ∈ [nω] : a∗
i ,r ∈ [ε,1−ε]

}
,

J
sing
l =

{
kstart

l , . . . ,kend
l

}
.

Moreover, we introduce the number of singular arcs nsing as

nsing := argmax
l∈N

{
kend

l

}
.

Algorithm 4.4 aims to recombine singular arc realizations of the different MILP solutions
from SCIA.

The algorithm initializes the set of visited binary controls as empty and sets the so-far best
objective value C rec to infinity (line 1). We set the temporary binary control w tmp on the bang-
bang arcs as equal to the rounded relaxed control (line 2). Then, we test every possible variation
(line 3) of the different MILP solutions on the singular arcs to fill up the singular arcs of the
temporary binary control w tmp (line 4). We check the constructed control w tmp if it has already
been visited (line 5), and if so, the algorithm jumps to the next iteration (line 6). Otherwise,
w tmp is included in the set of visited controls (line 8), and we evaluate its objective value (line 9).
When a recombination has a lower objective value than the so-far best control, it will be saved
as the so-far best control (lines 10–12). Figure 4.3 illustrates the algorithm.
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Algorithm 4.4: Singular arc block heuristic for recombining binary controls w m , m ∈
SCIA

Input : Grid GN , small singular arc tolerance ε> 0, singular arcs interval sets J
sing
l ,

relaxed control a∗ ∈AN , binary controls w m, m ∈ SCIA, corresponding objective
values C (w m).

1 Set Svis =; and C rec =∞;

2 Set w tmp
i , j = ba∗

i , j +εc, for i ∈ [nω], j ∈ [N ] \
{
J

sing
l

}
l∈[nsing]

;

3 for (m1, . . . ,mnsing ) ∈ ×
l∈[nsing]

SCIA do

4 Set w tmp
·, j = w ml

·, j , for j ∈J
sing
l , l ∈ [nsing];

5 if w tmp ∈ Svis then
6 continue;

7 else
8 Set Svis = Svis ∪ {w tmp};
9 Solve (NLPbin) with w = w tmp fixed → C

(
w tmp

)
;

10 if C
(
w tmp

)<C rec then
11 Set C rec =C

(
w tmp

)
;

12 Set w rec = w tmp;

13 return: w rec together with C rec.

To avoid a combinatorial explosion, one has to take care of the number of possible variations
of singular blocks and MILP solutions |SCIA|narc . It is therefore advisable to choose S̃CIA in Al-
gorithm 4.2 with a small number of MILPs. Usually, only a few singular arcs result after solving
(NLPrel). For more than four singular arcs, Algorithm 4.4 may be modified to be greedy, i.e., to
apply the idea of GreedyTime on arcs instead of on single intervals.

The singular arc recombination yields an objective value that is at least as good as those pre-
viously constructed via the MILPs. However, no framework for quantifying these possible im-
provements in terms of new rounding errors of the objective currently exists.

4.5.3 Several rounding and NLP steps

This section is based on [212]. In contrast to the previous section where the primary aim was
to improve the objective value C , here we deal with a generalization of the CIA decomposition
that addresses feasibility issues in (NLPbin) for a fixed binary control. The large number of bi-
nary variables in the “all-at-once” rounding in (CIA) and other MILPs from SCIA can lead to an
infeasible (NLPbin) related to terminal (4.1d), path (4.1e), or vanishing (4.1f) constraints that
cannot be met. Our idea is therefore to apply more than one rounding step to create greater
freedom for achieving a feasible solution. To this end, we propose solving a sequence of al-
ternating NLP and (CIA) problems, where the number of fixed binary variables is gradually
increased. The following definition formalizes this idea.

Definition 4.23 (Binary subset (CIA)-(NLP) sequence: ndec,S j ,(CIA(S j )), (NLP(S j )))
Let a number of decompositions 2 ≤ ndec ≤ nω be given. Let S1 := [nω] be the index set of all bi-
nary control variables. We denote by S j , j = 2, . . . ,ndec, a chosen sequence of binary control index
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Recombination

1st sing.

arc

2nd sing. arc 3rd sing.

arc

1st sing.

arc

2nd sing. arc 3rd sing.

arc

SCIACIA

1

0

1

0

Figure 4.3: Exemplary visualization of the singular arc block recombination heuristic for two
MILP control vectors with three singular arcs. We generate every possible varia-
tion from the singular arcs and candidate controls and solve (NLPrel) for each con-
structed variation. The minimal objective value of all the variations represents the
heuristic’s output.

subsets Sndec ⊂ . . . ⊂S2 ⊂S1, where we set Sndec :=;. We define (CIA(S j )), j = 1, . . . ,ndec −1, as
the problem (CIA), in which the binary variables with control indices out of S j are optimized
for a given, corresponding relaxed control a∗, and all other variables are fixed. Analogously,
(NLP(S j )) refers to (NLPrel), where we relax all wi ,·, i ∈S j , and all wi ,·, i ∈ [nω]\S j , are consid-
ered to be fixed with values from (CIA(S j−1)).

In Algorithm 4.5, we present a tailored version of the CIA decomposition that consists of
solving ndec NLPs and (ndec − 1) (CIA) problems with a gradually decreasing number of free
binary controls, as in Definition 4.23. We illustrate this algorithm in Fig. 4.4.

Algorithm 4.5: Generalized CIA decomposition algorithm with several (CIA) and
(NLPrel) steps for error-controlled solution of (BOCP)

Input : (MINLP) instance with time grid GN as discretization of (BOCP), chosen binary
control index subsets S j , j ∈ [ndec].

1 Solve (NLP(S1)) → x∗, u∗, a∗, C ∗;
2 for j = 2, . . . ,ndec do
3 Solve (CIA(S j−1)) → w∗∗;
4 Solve (NLP(S j )) → x∗∗, u∗∗, a∗∗, C ∗∗;

5 return: (x ,u, w ,C ) = (x∗∗,u∗∗, w∗∗,C ∗∗);
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(MINLP) (NLP(S1)) (CIA(S1))

(NLP(S2))· · ·(CIA(Sndec−1))(NLP(Sndec ))

relaxation
a ∈AN

solving
→ a∗i ,· , i ∈S1

solving with a∗i ,·
→ w∗∗

i ,· , i ∈S1

solving with a∗∗i ,·
→ w∗∗

i ,· , i ∈Sndec−1

solving with all

binary controls fixed

→ (x∗∗ ,u∗∗ ,C ∗∗)

Figure 4.4: Conceptual illustration of the generalized CIA decomposition in Algorithm 4.5. The
original (MIOCP) instance can be transformed via outer convexification and dis-
cretization into (MINLP), as highlighted in Figure 4.1. We relax this problem by
removing the integrality constraint. The algorithm involves solving an alternating
sequence of (CIA) and (NLP) problems. The number of free variables in these prob-
lems is represented by S j according to the binary subset CIA-NLP sequence in Def-
inition 4.23 and is gradually reduced until all variables a are fixed in (NLP(Sndec )).
The objective value of the latter problem serves as an approximation to (MINLP).
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Chapter 5

Approximation properties of the CIA decomposition

This chapter is largely based on [280]. SAGER, BOCK, and DIEHL proved that the optimal solu-
tion of the modified (ROCP)1 can be approximated with arbitrary precision by a binary control
solution [225]. The proof itself is insightful since it avoids using the Krein-Milman theorem,
which states the existence of a solution that may switch infinitely often. We recapitulate the
proof of approximation of the differential state trajectories based on relaxed and binary con-
trols in Section 5.1. The associated Theorem 2 from [225] has already been presented in other
publications; e.g., it was transferred to the discrete setting in [135] and was improved by MANNS

and KIRCHES in the sense that the new result holds under milder regularity assumptions [177].
MANNS also investigated convergence in the weak∗ topology of Lp spaces of the differential
state trajectories for a general class of partial differential equation (PDE)-constrained prob-
lems [176]. Nevertheless, we repeat the proof of Theorem 2 from [225] as it motivates various
extensions and generalizations of the CIA decomposition presented in Chapter 4. To this end,
we discuss the implications of approximating the differential state trajectories for the basic
combinatorial integral approximation (CIA) decomposition, different MILP variants, general-
ized CIA decompositions, and the inclusion of constraints in the CIA decomposition in Sec-
tions 5.2, 5.3, 5.4, and 5.5, respectively.

5.1 Approximation of differential states under integrality restrictions

The idea here is to analyze the evolution of two trajectories x and y that are based on the same
ordinary differential equation (ODE) system but driven by two different controlsα ∈A andω ∈
Ω. We want to compare the distance between the two trajectories depending on the distance of
the controls. The main theorem relies on a variant of Grönwall’s Lemma, which we recapitulate
based on [225].

Lemma 5.1 (A variant of GRÖNWALL’s Lemma, see [225], Lemma 1)
Let z1, z2 : T →R be real-valued integrable functions and let z2 also belong to L∞(T ,R). If for a
constant L ≥ 0 the following holds:

z1(t ) ≤ z2(t )+L
∫ t

t0

z1(τ) dτ for a.a. t ∈T ,

then, we have
z1(t ) ≤ ‖z2‖∞ eL(t−t0) for a.a. t ∈T . (5.1)

Proof. See [225], proof of Lemma 1.

We now state the main theorem, which is based on [280], Theorem 4.2.

1The exact modified setting is specified in Section 5.1.
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Theorem 5.1 (Approximation of differential state trajectories)
Considerα ∈A andω ∈Ω. We reuse the model functions f0, fi : T ×Rnx ×Rnu →Rnx from Defi-
nition 4.2 for i ∈ [nω]. Furthermore, let u∗ ∈U be given, where U is defined as in Definition 4.2.
Let x(·) and y(·) be the unique solutions of the initial value problems (IVPs):

ẋ(t ) = f0(t , x(t ),u∗(t ))+
nω∑
i=1

αi (t ) fi (t , x(t ),u∗(t )), x(t0) = x0, (5.2a)

ẏ(t ) = f0(t , y(t ),u∗(t ))+
nω∑
i=1

ωi (t ) fi (t , y(t ),u∗(t )), y(t0) = y0, (5.2b)

where x0, y0 ∈ Rnx . Assume that there are positive constants L,CB ∈ R+, together with a vector
norm ||·|| such that for a.a. t ∈T holds:∣∣∣∣ fi (t , x(t ),u∗(t ))− fi (t , y(t ),u∗(t ))

∣∣∣∣≤ L
∣∣∣∣x(t )− y(t )

∣∣∣∣ , for i ∈ [nω]0, (5.2c)∣∣∣∣∣∣∣∣ d

dt
fi (t , x(t ),u∗(t ))

∣∣∣∣∣∣∣∣≤CB , for i ∈ [nω]. (5.2d)

Furthermore, let fi (·, x(·),u∗(·)), i ∈ [nω] be essentially bounded by ĈB ∈ R+ on T , and assume
that for all t ∈T and i ∈ [nω] it holds that∣∣∣∣∫ t

t0

αi (τ)−ωi (τ) dτ

∣∣∣∣≤ ε, (5.2e)

with the constant ε ∈R+. Then, for a.a. t ∈T we also have∣∣∣∣x(t )− y(t )
∣∣∣∣≤ (∣∣∣∣x0 − y0

∣∣∣∣+εnω
(
ĈB +CB (t − t0)

))
eL(nω+1)(t−t0). (5.2f)

Proof. We conclude fromα ∈A ,ω ∈Ω that

|αi (t )| ≤ 1, |ωi (t )| ≤ 1, for i ∈ [nω], t ∈T . (5.3)

For brevity, we write2 fi (x(t )) instead of fi (t , x(t ),u∗(t )), and for i ∈ [nω], we introduce the
abbreviation

µi (t ) :=
∫ t

t0

αi (τ)−ωi (τ) dτ.

Note that |µi (t )| ≤ ε holds because of (5.2e). For (5.2a, 5.2b) and t ∈T , the Lebesgue differenti-
ation theorem yields

x(t ) = x0 +
∫ t

t0

ẋ(τ) dτ= x0 +
∫ t

t0

f0(x(τ))+
nω∑
i=1

αi (τ) fi (x(τ)) dτ,

y(t ) = y0 +
∫ t

t0

ẏ(τ) dτ= y0 +
∫ t

t0

f0(y(τ))+
nω∑
i=1

ωi (τ) fi (y(τ)) dτ.

Using this, we approximate the normed difference of x and y for a.a. t ∈T :

‖x(t )− y(t )‖ =
∥∥∥∥∥x0 − y0 +

∫ t

t0

f0(x(τ))+
nω∑
i=1

αi (τ) fi (x(τ))− f0(y(τ))−
nω∑
i=1

ωi (τ) fi (y(τ)) dτ

∥∥∥∥∥
2We note that fi stays non-autonomous due to its dependency on u∗(t )
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=
∥∥∥∥∥x0 − y0 +

∫ t

t0

f0(x(τ))+
nω∑
i=1

αi (τ) fi (x(τ))− f0(x(τ))−
nω∑
i=1

ωi (τ) fi (x(τ))

+ f0(x(τ))+
nω∑
i=1

ωi (τ) fi (x(τ))− f0(y(τ))−
nω∑
i=1

ωi (τ) fi (y(τ)) dτ

∥∥∥∥∥
≤ ‖x0 − y0‖+

∥∥∥∥∥
∫ t

t0

f0(x(τ))+
nω∑
i=1

αi (τ) fi (x(τ))− f0(x(τ))−
nω∑
i=1

ωi (τ) fi (x(τ)) dτ

∥∥∥∥∥
+

∥∥∥∥∥
∫ t

t0

f0(x(τ))+
nω∑
i=1

ωi (τ) fi (x(τ))− f0(y(τ))−
nω∑
i=1

ωi (τ) fi (y(τ)) dτ

∥∥∥∥∥
≤ ‖x0 − y0‖+

∥∥∥∥∥
∫ t

t0

nω∑
i=1

(αi (τ)−ωi (τ)) fi (x(τ)) dτ

∥∥∥∥∥
+

∫ t

t0

[∥∥ f0(x(τ))− f0(y(τ))
∥∥+ nω∑

i=1

∥∥ fi (x(τ))− fi (y(τ))
∥∥ |ωi (τ)|

]
dτ

≤ ‖x0 − y0‖+
∥∥∥∥∥ nω∑

i=1
fi (x(t ))µi (t )−

∫ t

t0

µi (τ)
d

dt
fi (x(τ)) dτ

∥∥∥∥∥+
∫ t

t0

nω∑
i=0

L
∥∥x(τ)− y(τ)

∥∥ dτ

≤ ‖x0 − y0‖+
nω∑
i=1

|µi (t )|∥∥ fi (x(t ))
∥∥+∫ t

t0

|µi (τ)|
∥∥∥∥ d

dt
fi (x(τ))

∥∥∥∥ dτ

+L(nω+1)
∫ t

t0

∥∥x(τ)− y(τ)
∥∥ dτ

≤ ‖x0 − y0‖+εnω
(
ĈB +CB (t − t0)

)+L(nω+1)
∫ t

t0

∥∥x(τ)− y(τ)
∥∥ dτ.

We added a zero in step 2, applied the norm triangle inequality in step 3, used partial integra-
tion and the Lipschitz assumption (5.2c) in step 5, and applied the other assumptions in step
7. In order to apply Lemma 5.1, we define the integrable functions z1, z2 for t ∈T :

z1(t ) := ‖x(t )− y(t )‖,

z2(t ) := ‖y0 −x0‖+εnω
(
ĈB +CB (t − t0)

)
,

which satisfy the assumptions of the lemma. Using the result of the lemma on the last inequal-
ity yields the claim that for a.a. t ∈T∣∣∣∣x(t )− y(t )

∣∣∣∣≤ (∣∣∣∣x0 − y0
∣∣∣∣+εnω

(
ĈB +CB (t − t0)

))
eL(nω+1)(t−t0).

The main consequence of Theorem 5.1 is the linear dependency of the state approximation
error on the integrated difference between the two control functionsα andω, which we refer to
as the integral deviation gap in Definition 4.5. Hence, if we minimize the integral deviation gap,
we do so for the upper bound of the differential state approximation error. This relationship is
elaborated in more detail in the following sections.

Remark 5.1 (Improved regularity assumptions for Theorem 5.1)
Recently, MANNS and KIRCHES demonstrated convergence in the weak∗ topology of Lp spaces
of the differential state trajectories for a general class of PDE-constrained problems [176],
which affects Theorem 5.1. In particular, in Remark 2.4 in [176], they established that the reg-
ularity assumptions that fi , i ∈ [nω]0, is essentially bounded and bounded as in (5.2d), can be
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weakened to the assumption
fi (·, x(·),u∗(·)) ∈ L1(T ,Rnx ).

5.2 Implications for the basic CIA decomposition

Theorem 5.1 has direct consequences for the solutions constructed by the basic CIA decompo-
sition.

Corollary 5.1 (Approximation properties for Algorithm 4.1)
Consider (BOCP) without the vanishing constraint (4.1f) and with dropped time-coupled com-
binatorial constraints, i.e., ω ∈Ω. Let fi , i ∈ [nω]0, be essentially bounded by ĈB and Lipschitz
continuous, and let their time derivatives be bounded by CB , as required in Theorem 5.1. For a
given discretization with grid GN , let x∗,u∗ denote the optimal solution of (NLPrel) with objec-
tive value C ∗. Let y∗ denote the state trajectory obtained by solving the IVP (4.1b)–(4.1c) with
fixed u∗ and w∗ constructed by solving the (CIAmax) problem. Then, we have for a.a. t ∈T

‖x∗(t )− y∗(t )‖ ≤C (nω)∆̄nω
(
ĈB +CB (t − t0)

)
eL(nω+1)(t−t0), (5.4)

where C (nω) is a positive constant. Assume further that the functions C and c j , j ∈ [nc ], in (4.1e)
are continuous. Then, for every δ > 0, there is a grid GN with grid length ∆̄ such that the con-
structed solution from the CIA decomposition (Algorithm 4.1) satisfies

|C (x∗,u∗,ω∗)−C (x∗∗,u∗∗,ω∗∗)| ≤ δ, (5.5)

|x∗(t f )−x∗∗(t f )| ≤ δ, (5.6)

|c j (t , x∗(t ),u∗(t ))− c j (t , x∗∗(t ),u∗∗(t ))| ≤ δ, for j ∈ [nc ], and a.a. t ∈T . (5.7)

Proof. We apply Theorem 5.1. The initial values are identical, i.e., x0 = y0, and Proposition 4.2
establishes that ε can be exchanged with C (nω)∆̄. Hence, inequality (5.4) holds true. Re-
sults (5.5)–(5.7) follow directly from (5.4), the definition of continuity, and from eL(nω+1)(t−t0) ≤
eL(nω+1)(t f −t0) for all t ≤ t f .

The above corollary relates the (global) optima of relaxed and binary control-related solu-
tions to each other. In fact, Theorem 5.1 establishes an approximation bound for all feasible
trajectories of (ROCP) and (BOCP) without combinatorial restrictions on ω. We explain the
setting and consequences of the corollary with the following remarks.

Remark 5.2 (Convergence to the optimal solution of (BOCP))
The optimal objective value of (NLPrel) (if solved to global optimality) represents a lower bound
on the optimal objective value of (MINLP). Therefore, an arbitrarily close approximation of the
optimal solution of (MINLP) can be achieved by refining the grid. This can be done by ex-
tending the basic CIA decomposition with an outer loop that checks if C ∗∗ is sufficiently close
to C ∗. If not, the grid GN is refined. In this sense, we establish that the constructed solution
of the CIA decomposition converges to the optimal solution of (BOCP)(without combinatorial
constraints) if ∆̄→ 0.

Remark 5.3 (Relation to the rounding gap consistency property)
The convergence result of the CIA decomposition holds true for any rounding algorithm with
the rounding gap consistency property from Definition 4.7, and which is applied in step 2
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instead of solving (CIAmax). In particular, sum-up rounding (SUR) and next-forced round-
ing (NFR) produce analogous approximation results.

Remark 5.4 (Convergence under combinatorial constraints)
The results in Corollary 5.1 are established for (BOCP) without combinatorial constraint re-
striction on ω. In [149], Theorem 3.6, KIRCHES, LENDERS, and MANNS showed that the con-
straint violation of vanishing constraints can also be made arbitrarily small by refining the grid.
The situation is different when time-coupled combinatorial constraints, such as total varia-
tion (TV) or minimum dwell time (MDT) constraints, restrict ω, in which case the integral de-
viation gap does not vanish with the vanishing grid length. In Chapter 7, we investigate tight
bounds on the (discretized) integral deviation gap that are independent of ∆̄.

5.3 Implications for different MILP variants

In this section, we investigate how the approximation results for Algorithm 4.1 behave if the
rounding problems from Section 4.5.1 are applied in place of (CIAmax). We first recognize
that Theorem 5.1 is applicable for any vector norm (as can be guessed from the equivalence of
norms).

Corollary 5.2 (Independence from the applied (CIA) vector norm)
Consider the setting of Theorem 5.1; in particular, let the regularity assumptions on fi , i ∈ [nω]0,
hold. Assume that x and yCIA are the solutions of the IVP (4.1b)–(4.1c), where x is based on a
given a ∈ AN and yCIA is based on w∗, which is the optimal solution of (CIAno), no ∈ {max,1},
with objective value θ∗CIA from Definition 4.17. Then, the state approximation error is bounded
for a.a. t ∈T by

‖x(t )− yCIA(t )‖ ≤ θ∗CIA(ĈB +CB (t − t0))eL(t−t0). (5.8)

Proof. We recognize that θ∗CIA expresses the norm of the accumulated control deviation, while
ε from Theorem 5.1 bounds the component-wise accumulated control deviation. Thus, for
applying the proof of Theorem 5.1, we rewrite the ODE with the linear mapping F : Rnω+1 →
Rnx , where fi (t , x(t ),u∗(t )) is the i th column vector of F (t , x(t ),u∗(t )), multiplied by (1,α(t ))>,
respectively (1,ω(t ))>. We eliminate with this reformulation the summation over [nω] in the
proof and, hence, the factor nω in the upper bound is eliminated. In addition, µi is replaced
by θ∗CIA from the 5th step on. In this way, the proof of Theorem 5.1 can be analogously applied
with the linear mapping F and the result follows.

With the above corollary at hand, we can argue that the results from Corollary 5.1 are applicable
not only for (CIAmax) but also for (CIA1).

5.3.1 Control approximation scaled with model function

The proof of Theorem 5.1 motivates the (SCIA) problems.

Corollary 5.3 (State approximation bounds via (SCIAmax),(SCIA1))
Consider the setting of Theorem 5.1, and let ‖ · ‖no refer to the maximum or 1-norm, i.e., no ∈
{max,1}. Assume that x and yCIA are the solutions of the IVP (4.1b)–(4.1c), where x is based on a
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given a ∈AN , and yCIA is driven by w∗, which is the optimal solution of (SCIAno). Then for a.a.
t ∈T , the state approximation error is bounded by

‖x(t )− ySCIA(t )‖ ≤ θ∗SCIAeL(t−t0) ≤ θ∗CIA(ĈB +CB (t − t0))eL(t−t0), (5.9)

where θ∗SCIA is the optimal objective value of (SCIAno), no ∈ {max,1}.

Proof. From the second and last inequalities in the proof of Theorem 5.1 and Corollary 5.2, it
follows that for t ∈T and anyω ∈Ω∥∥∥∥∥

∫ t

t0

nω∑
i=1

(αi (τ)−ωi (τ)) fi (x(τ)) dτ

∥∥∥∥∥≤
∥∥∥∥∫ t

t0

α(τ)−ω(τ) dτ

∥∥∥∥ (ĈB +CB (t − t0)).

LetωCIA denote the control based on the optimal solution w∗ of (CIAno), no ∈ {max,1}. Taking
the minimum in the above inequality yields

θ∗SCIA ≤
∥∥∥∥∥
∫ t

t0

nω∑
i=1

(αi (τ)−ωCIA
i (τ)) fi (x(τ)) dτ

∥∥∥∥∥≤ θ∗CIA(ĈB +CB (t − t0)).

As a consequence of Corollary 5.3, the approximation and convergence results of the CIA de-
composition still hold if (SCIAno), no ∈ {max,1}, is used to construct the binary control. The
approximation bound based on (SCIAno) is tighter than the existing (CIAno)-related bound.
Thus, consulting these alternative binary controls for an approximation study is an obvious
choice. Ideally, a binary control constructed in this way will result in an improved state approx-
imation and objective value for (MINLP). Nevertheless, we oppose this hope next.

Remark 5.5 (Construction by (SCIA) does not guarantee superior quality)
Using (SCIAno), no ∈ {max,1}, to construct the binary control in the CIA decomposition does
not necessarily result in a state approximation or objective value that is superior to that ob-
tained using (CIAno). Using the notation from Corollaries 5.2 and 5.3, we may have that

‖x(t )− yCIA(t )‖ < ‖x(t )− ySCIA(t )‖ < θ∗SCIA, for some t ∈T .

Even if the above inequality does not hold, the computed trajectories may lead to a superior ob-
jective value for the solution based on (CIAno) compared with that based on (SCIAno) because
of a non-convex objective.

5.3.2 Control approximation scaled with dual variables

We recapitulate the cost-to-go function and the adjoint trajectory λ, which is its differential
state derivative from Section 2.2.2. The idea of (λCIA1) does not stem from approximating
the differential state values but from an approximation of the cost-to-go function values. The
evaluated dual variable values of the constraints (4.1b) serve as an adjoint trajectory approxi-
mation.

Corollary 5.4 (Approximation bounds via (λCIA1))
Consider the setting of Theorem 5.1. In particular, let the regularity assumptions (5.2d), (5.2c),
and essential boundedness of f be true. Assume that x and yλCIA are the solutions of the IVP
(4.1b)–(4.1c), where x is based on a given a ∈AN , and yλCIA is based on w∗, which is the optimal
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solution of (λCIA1). Let J be the cost-to-go function as defined in Definition 2.6 for (BOCP) and
λ(t ) be the adjoint vector at t ∈T . For a.a. t ∈T , it follows that

|J (x(t ), t )− J (yλCIA(t ), t )| ≤ θ∗λCIAeL(nω−1)(t−t0) +o
(‖x(t )− yλCIA(t )‖2) ,

where o refers to Landau’s little-o notation.

Proof. We consider the difference of the cost-to-go functions by approximation with a partial
first-order Taylor expansion around J (x(t ), t ). The approximation is performed with respect to
the trajectories x , yλCIA. Hence, we apply Taylor’s theorem for t ∈T :

J (x(t ), t )− J (yλCIA(t ), t ) = dJ

dx
(x(t ), t )

(
x(t )− yλCIA(t )

)+o
(∥∥x(t )− yλCIA(t )

∥∥2
)

. (5.10)

As pointed out in Remark 2.1, the dual variables of the ODE constraint (4.1b) are equal to
dJ
dx (x(t ), t ). We use the notation ‖x(t )‖λ(t ) := ∣∣∑

k∈[nx ]λk (t )xk (t )
∣∣ for t ∈ T , which defines a

semi-norm. Then for a.a. t ∈ T , we transfer the proof of Theorem 5.1 to this notation and
to (5.10):

|J (x(t ), t )− J (yλCIA(t ), t )| ≤ ∥∥x(t )− yλCIA(t )
∥∥
λ(t ) +o

(∥∥x(t )− yλCIA(t )
∥∥2

)
≤ . . . (as in proof of Theorem 5.1 until second inequality)

≤ ∥∥x0 − y0
∥∥
λ(t ) +

∥∥∥∥∥
∫ t

t0

nω∑
i=1

(αi (τ)−ω∗
i (τ)) fi (x(τ)) dτ

∥∥∥∥∥
λ(t )

+L(nω+1)
∫ t

t0

∥∥x(τ)− yλCIA(τ)
∥∥
λ(t ) dτ+o

(∥∥x(t )− yλCIA(t )
∥∥2

)
.

The second summand of the last inequality represents the objective θ∗
λCIA that is to be mini-

mized in (λCIA1). Finally, we use x0 = y0 and apply the Grönwall Lemma 5.1 with the integrable
functions

z1(t ) = ∥∥x − yλCIA
∥∥
λ(t ) , z2(t ) =

∥∥∥∥∥
∫ t

t0

nω∑
i=1

(αi (τ)−ω∗
i (τ)) fi (x(τ)) dτ

∥∥∥∥∥
λ(t )

,

proving the claim.

We note that due to the first-order Taylor approximation, (λCIA1) requires that the relaxed
trajectory x can be well approximated by a trajectory y that is based on binary controls. If there
is no such trajectory in a close neighborhood of x , (λCIA1) may have an unintuitive binary
control as its optimal solution.

5.3.3 Backward accumulating constraints

For an (MIOCP) instance with fixed terminal state values x f ∈ Rnx and a Lagrangian objective
type, we can also apply the altered setting to Theorem 5.1. The following corollary addresses
with this issue.
Corollary 5.5 (Approximation bounds via backward constraints)
Consider the setting of Theorem 5.1. Let x and y be the state trajectory solutions of the terminal
value problems (4.1b) with x(t f ) = x f and y(t f ) = y f for x f , y f ∈ Rnx . Assume that for all t ∈
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T , εb ∈R+, and for all i ∈ [nω] it holds that∥∥∥∥∫ t f

t
αi (τ)−ωi (τ) dτ

∥∥∥∥≤ εb . (5.11)

Then, for a.a. t ∈T it also holds that∣∣∣∣x(t )− y(t )
∣∣∣∣≤ (∣∣∣∣x f − y f

∣∣∣∣+εbnω
(
ĈB +CB (t f − t )

))
eL(nω+1)(t f −t ). (5.12)

Proof. The proof of Theorem 5.1 can be applied to the altered setting, where we integrate over
[t , tf] instead of integrating over [t0, t ].

We highlight that with the assumption that ‖x(t f )−y(t f )‖ is small, the backward (CIA) round-
ing problem approach from Section 4.5.1 is not only applicable for terminal constraint prob-
lems but is also appropriate for an (MIOCP) instance with a given initial value x0 and variable
final state values.

5.4 Implications for generalized CIA decompositions

As soon as (CIAmax) is included in the set S̃CIA from Definition 4.21, the approximation results
from Corollary 5.1 and Remark 5.2 for the basic CIA decomposition can be transferred to Algo-
rithm 4.2 since the recombination algorithms are intended to improve the previous solution.

Corollary 5.6 (Approximation properties of the generalized CIA decomposition 4.2)
Let (CIAmax) ∈ S̃CIA be chosen in Algorithm 4.2. If we further assume that the regularity assump-
tions (5.2d), (5.2c), and essential boundedness of f hold, then the approximation quality results
for differential states (5.4), constraint violations (5.6)–(5.7), and the objective value (5.5) from
Corollary 5.1 are also true for the solution constructed by Algorithm 4.2.

Proof. In Section 4.5.2, we assume that the recombination algorithms in S̃REC account for the
differential state approximation C track in the objective and that in this way, they solely con-
struct solutions of (BOCP) that do not deteriorate the approximation quality with respect to
the optimal relaxed trajectory x∗. The claim then follows directly from Corollary 5.1.

The example algorithms in Section 4.5.2, i.e., GreedyTime and Singular arc recombination, are
designed to construct binary controls associated with (BOCP) objective values that are at least
as good as those of the chosen mixed-integer linear programs (MILPs) from S̃CIA. We remark
that no framework currently exists to quantify these possible improvements theoretically.

Remark 5.6 (Other bounds for the generalized CIA decomposition 4.2)
We assume (CIAmax) ∈ S̃CIA in Corollary 5.6. The approximation quality established by Corol-
laries 5.2, 5.3, 5.4, and 5.5 for other CIA rounding problems also hold for the generalized CIA
decomposition from Algorithm 4.2 if the corresponding MILPs are included in S̃CIA.

The final result in this section addresses the properties of the generalized CIA decomposition
in Algorithm 4.5, where multiple steps of nonlinear program (NLP) and (CIA) problems are
applied, and the number of fixed binary variables is gradually increased.
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Proposition 5.1 (Approximation properties of the generalized CIA decomposition 4.5)
Consider (BOCP) without the vanishing constraint (4.1f) and with dropped time-coupled com-
binatorial constraints, i.e., ω ∈ Ω. Let the regularity assumptions (5.2d), (5.2c), and the es-
sential boundedness of f be true. Furthermore, let a sequence of binary control index subsets
S j , j = 1, . . . ,ndec, be given as introduced in Definition 4.23. Assume that xS1 and xSndec

are the
optimal differential state solutions of (NLP(S1)) and (NLP(Sndec )), respectively, in Algorithm 4.5.
Finally, assume that the normed difference of the trajectory yS j , j = 2, . . . ,ndec, driven by the op-
timal solution w∗ of (CIA(S j )), and xS j−1 does not increase if yS j is replaced by xS j . Then for
a.a. t ∈T , we have that

‖xS1 (t )−xSndec
(t )‖ ≤C (nω)∆̄nω

(
ĈB +CB (t − t0)

)
eL(nω+1)(t−t0), (5.13)

where C (nω) is a positive constant.

Proof. Let θ∗j denote the optimal objective value of (CIA(S j )), j = 2, . . . ,ndec. For a.a. t ∈T , we
obtain

‖xS1 (t )−xSndec
(t )‖ =

∥∥∥∥∥xS1 (t )−xSndec
(t )+

ndec−1∑
j=2

(xS j (t )−xS j (t ))

∥∥∥∥∥
≤

ndec∑
j=2

∥∥∥xS j−1 (t )−xS j (t )
∥∥∥

(1)≤
ndec∑
j=2

θ∗j nω
(
ĈB +CB (t − t0)

)
eL(nω+1)(t−t0)

(2)≤ C (nω)∆̄nω
(
ĈB +CB (t − t0)

)
eL(nω+1)(t−t0).

In (1), we applied Corollary 5.1 and the assumption that using the NLP state solution xS j , in-
stead of the (CIA(S j ))-based state solution yS j , does not worsen the approximation quality. In
(2), we exploit the fact that every variable fixing in (CIA(S j )) corresponds to a maximum objec-
tive value of C (nω)∆̄ such that the rounding error may accumulate3 to ndecC (nω)∆̄, which can
be set as the new constant C (nω).

Even though Algorithm 4.5 was not designed for grid refinement, from the dependency on ∆̄

we conclude that the convergence result from Remark 5.2 is still valid in this setting.

5.5 Implications for the inclusion of path constraints into the CIA decomposition

The following proposition establishes that under certain assumptions, the path constraint Tay-
lor approximation from Definition 4.14 included in (CIA) limits the path constraint violation of
the constructed differential state trajectory.

Proposition 5.2 (Approximation bound for path constraint inclusion from Definition 4.14)
Consider problem (BOCP). Let the path constraint function c in (4.1e) depend only on the dif-
ferential state x(t ). Let x∗ be the optimal differential state solution of (NLPrel). Let y∗ denote the
state trajectory obtained by solving the IVP (4.1b)–(4.1c) with fixed u∗ and w∗ constructed from

3We quantify the constant C (nω) in Chapter 7 and find that ndecC (nω)∆̄ is an overestimation.
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the basic CIA decomposition (Algorithm 4.1) after step 2 and with the first-order approximation
constraint (4.15) from Definition 4.14 included in (CIA). We assume that for a.a. t ∈ T and for
u∗ obtained from solving (NLPrel) it holds that

| fi (t , y∗(t ),u∗(t ))− fi (t , x∗(t ),u∗(t ))| ≤ δ 1nx , for i ∈ [nω]0, (5.14)

where δ ≥ 0, and | · | refers here to the absolute value of each vector component. Moreover, let
R(x∗, y∗) denote the remainder term of a first-order Taylor approximation around c(y∗(t )):

R(x∗(t ), y∗(t )) := c(y∗(t ))−c(x∗(t ))−cx (x∗(t ))(y∗(t )−x∗(t )), (5.15)

where cx := dc
dx . Then for a.a. t ∈T , we have that

c(y∗(t )) ≥−ε(δ,R), (5.16)

where ε(δ,R) := |cx (x∗(t ))(1+nω)(t−t0)δ 1nx+R[x∗(t ), y∗(t )]| (component-wise absolute value).

Proof. We abbreviate fi (y∗(τ)) := fi (τ, y∗(τ),u∗(τ)) and for a.a. t ∈T calculate

c(y∗(t )) = c(x∗(t ))+cx (x∗(t ))[y∗(t )−x∗(t )]+R(x∗(t ), y∗(t ))

≥ cx (x∗(t ))

[∫ t

t0

(
f0(y∗(τ))+ ∑

i∈[nω]
ω∗

i (τ) fi (y∗(τ))− f0(x∗(τ))− ∑
i∈[nω]

α∗
i (τ) fi (x∗(τ))

)
dτ

]
+R(x∗(t ), y∗(t ))

= cx (x∗(t ))

[∫ t

t0

(
f0(y∗(τ))+ ∑

i∈[nω]
ω∗

i (τ) fi (y∗(τ))− f0(x∗(τ))− ∑
i∈[nω]

ω∗
i (τ) fi (x∗(τ))

)
dτ

]

+cx (x∗(t ))

[∫ t

t0

( ∑
i∈[nω]

(ω∗
i (τ)−α∗

i (τ)) fi (x∗(τ))

)
dτ

]
+R(x∗(t ), y∗(t ))

≥ cx (x∗(t ))

[∫ t

t0

(
f0(y∗(τ))+ ∑

i∈[nω]
ω∗

i (τ) fi (y∗(τ))− f0(x∗(τ))− ∑
i∈[nω]

ω∗
i (τ) fi (x∗(τ))

)
dτ

]
+R(x∗(t ), y∗(t ))

≥− ∣∣cx (x∗(t ))(1+nω)(t − t0)δ 1nx +R[x∗(t ), y∗(t )]
∣∣=−ε(δ,R).

We use c(x∗(t )) ≥ 0nc in the first inequality and apply (5.15). The second inequality exploits that
the constraint (4.15) is included in (CIA) thus, the second summand can be dropped. Finally,
we integrate and use (5.14) in the last inequality.

We remark that fi (y∗(τ)) ≈ fi (x∗(τ)) should hold, meaning that the constraint violation in
(5.16) should be small, which motivates the idea of including (4.15) in (CIA). Moreover, solving
(NLPbin) after (CIA) is likely to be an improvement with respect to path constraint feasibility.
On the other hand, the first-order Taylor approximation can be weak, and we stress that the
approach is only a heuristic without guaranteed constraint feasibility.
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Chapter 6

Algorithms for solving (CIA) problems

This chapter presents algorithms for solving (CIA) with and without combinatorial constraints.
As an MILP, special solver programs such as Gurobi [109] can clearly be applied to (CIA). How-
ever, custom-made algorithms can solve (CIA) more efficiently, as shown in [224] using branch-
and-bound (BnB). When time-coupled combinatorial constraints, such as TV or MDT con-
straints, have to be considered, tailor-made algorithms are especially useful. SUR and NFR
have already been introduced in Definitions 4.8 and 4.9, respectively, as possibilities for solving
(CIA) heuristically, i.e., not necessarily to optimality. This chapter discusses how these algo-
rithms and other heuristics can be extended to combinatorial constraints.

Section 6.1 describes a heuristic for reducing the problem size based on singular arcs, which
is especially useful for large problems. In Section 6.2, we establish a connection to schedul-
ing theory and show that (CIA) is up to ε-optimality solvable in polynomial time if the grid is
equidistant. We restate JUNG’s [135] BnB algorithm, which is based on time-dependent vari-
ables and branching, in Section 6.3. In contrast, in Section 6.4, we consider the lifted problem,
i.e., an extended formulation of (CIA), which works with switching-dependent variables. We
formulate the associated MILP and a corresponding BnB algorithm. Different SUR variants are
introduced in Section 6.5. We also introduce an MDT extension, which we also do for the NFR
scheme in Section 6.6. The maximum dwell rounding (MDR) algorithm is specifically designed
to (heuristically) solve the (CIA) quickly under TV constraints. It is also applicable to MDT
constraints and is defined along with its properties in Section 6.7. In Section 6.8, we discuss al-
ternative approaches before concluding the chapter with a summary in which we recommend
which algorithms are most advantageous depending on the (CIA) problem.

Section 6.5 and Section 6.6 are mainly based on [282], while the adaptive maximum dwell
rounding (AMDR) scheme results and the algorithm itself, presented in Section 6.7, were intro-
duced in [222]. Moreover, Section 6.2 and Section 6.3 use ideas from [49] and [114], respectively.

6.1 A problem size reduction heuristic based on bang-bang arcs

In Section 4.5.2, we used the idea of bang-bang arcs of the relaxed solution a∗, and we argued
that w should attain these (almost) binary values as an optimal solution of (CIA). We recycle
this idea for a heuristic that reduces the problem size. To this end, we come back to Defini-
tion 4.22, where the singular arc interval sets J

sing
l and the number of singular arcs nsing are

introduced for a given relaxed control a∗ and a small rounding tolerance ε > 0. Based on the
identified singular arcs, our idea for problem size reduction is to fix the variables w·, j on com-
plementary intervals, i.e., on the bang-bang arcs:

wi , j = ba∗
i , j +εc, for i ∈ [nω], j ∈ [N ] \ {J sing

l }l∈[nsing]. (6.1)
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In the above equation, we fix the variables wi , j to one if the associated a∗
i , j is in an ε- neighbor-

hood of one and analogously fix the complementary case. Variable fixing in this way can greatly
reduce the number of degrees of freedom in (CIA); however, it may also lead to infeasibilities
with respect to combinatorial constraints, such as the TV constraint since the bang-bang arcs
imply a certain minimum number of switches.

For the run time performance of algorithms such as BnB, it is beneficial to exclude the fixed
variables on bang-bang arcs directly. Such a variable reduction algorithm was presented in [49],
and we restate it in a similar form in Algorithm 6.1. Unlike the fixing in (6.1), we exclude only
those variables on bang-bang arcs whose length exceeds a chosen MDT CD ≥ 0. Furthermore,
we do not fix the variables at the edges of bang-bang arcs to allow more flexibility regarding
the switching interval and, thus, the combinatorial constraints. For this purpose, we introduce
the parameter nivl ∈ N, which specifies the number of intervals at the beginning and end of a
bang-bang arc, at which points the variables wi , j are left unfixed.

Algorithm 6.1: Problem size reduction heuristic based on bang-bang arcs

Input : Grid GN , relaxed control a∗ ∈AN , singular arc interval sets J
sing
l , dwell time

parameter C1 ≥ 0, interval unfixing parameter nivl ∈N.
Output: Reduced grid GÑ , reduced relaxed control ã∗.

1 Set kend
0 = 0, kstart

nsing+1 = N +1;

2 Initialize GÑ =GN , ã∗ = a∗, Ñ = N , nshift = 0;
3 for l = 1, . . . ,nsing +1 do

4 if
∑kstart

l −1−nshift

j=kend
l−1+1−nshift

∆ j ≥C1 then

5 if l = 1 then
6 Set ntemp ← kstart

l −kend
l−1 −nivl −1;

7 Set t j ← t j+ntemp , for j = 0, . . . , N −ntemp;

8 Set ã∗
·, j ← ã∗

·, j+ntemp
, for j = 1, . . . , N −ntemp;

9 else if l < nsing +1 then
10 Set ntemp ← kstart

l −kend
l−1 −2nivl −1;

11 for j = 1, . . . , Ñ − (kend
l−1 +nivl +ntemp) do

12 Set tkend
l−1+nivl+ j ← tkend

l−1+nivl+ j−1 +∆kend
l−1+nivl+ j+ntemp

;

13 Set ã∗
·,kend+nivl+ j

← ã∗
·,kend

l−1+nivl+ j+ntemp
;

14 else
15 ntemp ← kstart

l −kend
l−1 −nivl −1;

16 Set Ñ ← Ñ −ntemp, nshift ← nshift +ntemp;

17 return: (GÑ , ã∗);

In Algorithm 6.1, we loop over all bang-bang arcs, i.e., the number of singular arcs plus one
(and we assume that there is at least one singular arc). We check whether the chosen bang-bang
arc fulfills the MDT (line 4). If so, we shift a∗ and the grid points t in GN by a shift parameter
ntemp, representing the number of intervals of the bang-bang-arc minus the number of unfixed
edge intervals nivl (line 5-13). Thereby, we overwrite the chosen values a∗ and grid points asso-
ciated with the selected bang-bang arc. Consequently, we update the number of total intervals
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Ñ and the number of total shifted intervals nshift (line 16). We recognize that this algorithm
reduces the number of intervals for the (CIA) problem, the optimal solution of which will be
projected back to the original grid GN .

6.2 On the complexity of (CIA) and the connection to scheduling theory

This section is dedicated to complexity investigations of (CIA). For this purpose, we define its
decision version.

Definition 6.1 (CIA-DEC)
Let a (CIA) problem instance be given. We denote by (CIA-DEC) the decision version of (CIA),
which can be stated as follows: For K ≥ 0, is there a feasible solution w ∈ΩN of (CIA) with θ(w ) ≤
K ?

The similarity of the (CIA) approximation inequality (4.4) with the capacity constraint of
a knapsack problem, where the grid intervals ∆̄ represent capacity weights, is striking. The
decision version of the knapsack problem itself is NP-complete, but there exists a pseudo-
polynomial time algorithm using dynamic programming [270]. We leave open the question of
the complexity class of (CIA) on a general grid and remark that in the TV constrained case, i.e.,
(CIA-TV), a polynomial number of solutions O (Nσmax ) has been established in [137], Corollary
7, independent of the applied discretization.

In the following, we assume an equidistant grid, i.e., ∆ j = ∆̄, for all j ∈ [N ], and prove that in
this case (CIA) can be solved in polynomial time. First, we introduce its corresponding schedul-
ing problem class.

On a single machine, there are n ∈ N jobs to be sequenced. We assume the processing time
of all jobs to be equal, i.e. p j = p ∈ R+ for j ∈ [n]. The processing of job j ∈ [n] must begin
no sooner than its release time r j ∈ N, shall be completed no later than its due time d j ∈ N,
with r j ≤ d j , and may not be preempted. With respect to the release times, we are interested in
finding a feasible schedule that minimizes the maximum tardiness Tmax. The latter is defined as
the maximum lateness over all jobs with respect to their due times. The described scheduling
problem is formally introduced in the following definition. We refer to [105] for further details
on scheduling notation and the problem class.

Definition 6.2 (CIA-Sched)
We define the scheduling problem (CIA-Sched) by its scheduling notation

(
1 | r j ,d j , p j = p | Tmax

)
.

The first field indicates that we are concerned with one machine. The second field lists the jobs
characteristics. Each job j ∈ [N ] has a release time r j , a due time d j , and a processing time p j

which is assumed to be equal for all jobs. Finally, the third field represents the objective, which is
to minimize the maximum tardiness Tmax

min Tmax, with Tmax := max
j∈[n]

T j , and T j := max{0,C j −d j },

where C j denotes the completion time of job j ∈ [n].

It turns out that (CIA-DEC) and (CIA-Sched) are closely connected, as established by the fol-
lowing theorem.

Theorem 6.1 (Equivalence of (CIA-DEC) and (CIA-Sched))
(CIA-DEC) with an equidistant grid is a special case of the decision version of (CIA-Sched).
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Proof. The decision version of (CIA-Sched) can be stated as follows: ‘For Ks ≥ 0, is there a fea-
sible schedule with Tmax ≤ Ks?’ Such a schedule exists if and only if a feasible schedule without
late jobs exists where Ks is added to the due time of each job, i.e.,

d̃ j := d j +Ks .

The decision version thus amounts to solving the feasibility problem
(
1 | r j , d̃ j , p j = p | −)

.

Now, we construct a specific outcome of this scheduling problem that is equivalent to (CIA-
DEC) with K ≥ 0. Assume there are nω given job families each with n f , f ∈ [nω], tasks and
that altogether n = ∑nω

f =1 n f jobs are to be processed. Let ( f ,k) be the kth job of family f . We

consider the problem (CIA-Sched-f):= (
1 | r f ,k ,d f ,k , p f ,k = ∆̄ | −)

with the number of jobs per
family given via

n f := max

{
i ∈N

∣∣∣∣∣ N∑
l=1

a f ,l − i ≥−K /∆̄

}
.

We specify the release times and due times for each job ( f ,k) of the problem:

r f ,k := min

{
j ≥ r f ,k−1 +1

∣∣∣∣∣ j∑
l=1

a f ,l −k ≥−K /∆̄

}
, with r f ,0 := 0, (6.2)

d f ,k :=


∞, if
∑N

l=1 a f ,l −k ≤ K /∆̄,

max

{
j

∣∣∣∣ j∑
l=1

a f ,l −k ≤ K /∆̄

}
, else.

(6.3)

(CIA-Sched-f) is an instance of the decision version of (CIA-Sched), where we set p = ∆̄, Ks =
K /∆̄, and the number of jobs to be processed; the release times and due times are defined
as above. It remains to be shown that (CIA-Sched-f) has a feasible solution if and only if the
corresponding (CIA-DEC) problem has a feasible solution.

Let w ∈ ΩN be a feasible solution of (CIA-DEC). We construct a feasible schedule of (CIA-
Sched-f) by providing the positions pos f ,k ∈ [n] of all jobs ( f ,k), f ∈ [nω],k ∈ [n f ]:

pos f ,k := min

{
j

∣∣∣∣∣ j∑
l=1

w f ,l = k

}
.

If
∑N

l=1 w f ,l < k, we set the position pos f ,k = pos, where pos is arbitrarily chosen from among
{N +1, . . . ,n} and is not yet taken by another job. The release times and due times (6.2)–(6.3)
of all jobs are satisfied since w fulfills the approximation inequality (4.4). Hence, we have cre-
ated a feasible schedule. For the other direction, we assume there is a given feasible schedule
of (CIA-Sched-f) with job positions pos f ,k . Let the corresponding solution of (CIA-DEC) be
defined by

wi , j :=
{

1, if ∃ (i ,k) : posi ,k = j ≤ N ,
0, else.

By the definitions of release times and deadlines (6.2)–(6.3), w is feasible for (CIA-DEC).

Remark 6.1 ((CIA-Sched) can be efficiently solved by Horn’s rule)
From the scheduling literature, the earliest due date heuristic, also known as Horn’s rule [129],
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can be stated as ‘At any time, schedule an available job with the smallest due date.’ The result-
ing schedule is known to be optimal for minimizing the maximum tardiness on single-machine
problems, e.g., problems of type (CIA-Sched). Horn’s rule can be executed in O (n logn) time,
where n is the number of jobs. Therefore, the decision version of (CIA-Sched) is in the com-
plexity class P. Transferred to the setting of (CIA-DEC), this rule is equivalent to the NFR scheme
from Definition 4.9, where K /∆̄ is applied as a next-forced rounding threshold instead of ∆̄.

Corollary 6.1 ((CIA) solvable in polynomial time up to T OL-accuracy)
Consider (CIA) with equidistant discretization. Its optimal solution up to an objective accuracy
of T OL > 0 can be found in polynomial time with complexity O

(
nωN log(nωN ) log

(d∆̄/T OLe)).

Proof. Combining Theorem 6.1 with Remark 6.1 implies that we can solve (CIA-DEC) by a mod-
ified NFR scheme (i.e., Horn’s rule) in the setting of (CIA-Sched-f), in O (n logn), where n are the
number of jobs. The optimal objective of (CIA) is bounded by ∆̄, see [135], Proposition 4.8. We
therefore conclude that there are at most N jobs for each job family. Because nω job families ex-
ist, the problem involves at most nωN jobs. (CIA) can be solved by iteratively solving (CIA-DEC)
as part of a bisection algorithm. It is sufficient to consider K ≤ ∆̄ as a fixed objective value for
(CIA-DEC) due to the boundedness of the optimal objective of (CIA) by ∆̄. Hence, we execute
Horn’s rule as part of the bisection algorithm at most log

(d∆̄/T OLe) times, which concludes the
claimed complexity.

6.3 Branch-and-bound with time dependent branching

Sophisticated MILP solvers such as Gurobi struggle to solve (CIA) efficiently, see [135]. This
may be due to the fact that its canonical linear programming relaxation, i.e. (CIA) with wi , j ∈
[0,1], yields only trivial lower bounds in the case without additional combinatorial constraints.
To this end, SAGER, KIRCHES, and JUNG suggested a tailored BnB scheme for solving (CIA) more
efficiently, see [135, 137, 224]. Algorithm 6.2 describes the main steps. The algorithm exploits
that an evaluation of the objective function up to the current grid interval yields a valid lower
bound due to the maximization operator over all intermediate steps in the objective function.
This lower bound is exceptionally cheap to compute, and it is tighter than canonical relaxations
[137]. We select nodes from a queue Q until it is empty or until a termination criterion, such
as a maximum number of iterations or a time limit (line 2), is reached. The selected node n

is pruned if its lower bound θ is greater than the global upper bound U B (lines 4 - 5), or we
update the currently best node n∗ to be n if its depth equals the number of intervals N (lines
6 - 7). We branch forward with respect to the interval index j ∈ [N ], whereby for each child
node creation, all control entries wi , j become fixed with exactly one index set to be active (line
9). Nodes contain information on their depth, which is the interval number index; their so-
far largest accumulated control deviation θ; and the accumulated deviation for each control
realization θi . Depending on the imposed combinatorial constraints, we also save information
about the previous wi , j values in the nodes and only add their child nodes if they satisfy these
constraints (line 10). We note that the practical performance of a depth-first node selection
strategy is usually superior to that of a θ ordered (breadth-first) node selection strategy [49].
For further details and numerical examples benchmarking Algorithm 6.2 with MILP solvers, we
refer to [49, 135].
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Algorithm 6.2: Branch-and-bound for solving (CIA)

Input : Relaxed control values a∗ ∈AN , grid GN , termination criterion, parameters for
combinatorial constraints.

Output: (Optimal) solution (θ∗, w∗) of (CIA).
1 Initialize node queue Q with empty node, and set upper bound U B .
2 while Q 6= ; and termination criterion not reached do
3 Choose n ∈Q according to node selection strategy.
4 if n.θ >U B then
5 Prune node n.
6 else if n.depth = N then
7 Set new best node n?← n and U B = n.θ
8 else
9 Create nω child nodes ci , i ∈ [nω] with

ci .depth ← d := n.depth +1,

ci .wi ,d (k) ←
{

1 if k = i ,

0 otherwise,

ci .θk ← n.θk + (a∗
k,d −wk,d ) ·∆d

ci .θ← max
(
{n.θ}∪{|ci .θk | | k ∈ [nω]

})
.

10 Add ci to Q if and only if it satisfies all combinatorial constraints.

11 return: (θ∗, w∗) = (n∗.θ,n∗.w );

The BnB algorithm can also be adapted to solve (CIA1). In that case, one needs to apply a
different objective function θ by using the modified child node objective calculation

ci .θ← max
(
{n.θ}∪{ ∑

k∈[nω]
|ci .θk |

})
(6.4)

in line 9, the fourth update. The objective value θ of any node still serves as a lower bound to the
optimal objective. However, the 1-norm structure can cause large objective function values to
accumulate mostly close to the end of the time horizon, yielding a weak lower bound for early
intervals compared with the lower bound of the maximum norm node. A similar modification
of the objective calculation according to scaled (CIA) problem formulations such as (SCIAmax)
can be analogously made.

6.4 The extended formulated (CIA) problem

The interest in extended formulations of MILPs comes from the fact that the two programs

max{g (x) : x ∈ projx (F )} and max{g (x)+0 · z : (x, z)> ∈F }

are equivalent, where projx denotes the projection of the feasibility set F to the domain of x
[61]. However, solving the second problem is sometimes easier than solving the first problem
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because the set F may be easier to describe than its projection. Generally, a polytope F1 is an
extended formulation of the polytope F2 if F2 is a projection of F1. We apply the concept of
extended formulations to the (CIA) setting in the sense that we introduce new integer variables
that indicate whether there is a switch from one mode to another on a specific interval. This re-
formulation can be seen as a switching time optimization perspective on the (CIA) problem, but
without the direct opportunity to eliminate integrality constraints. We discuss two approaches
to an extended formulation based on tracking the switching events by employing new variables.

We first briefly consider switching variables based on a variable switching sequence. For this,
we replace w ∈ΩN by the switching variables zi1,i2, j , which indicate whether there is a switch
between modes i1 and i2, i1, i2 ∈ [nω], between the ( j −1)th and j th intervals. We clarify that
switches occur solely on grid points t j ∈GN , j ∈ [N−1], since the binary control w is discretized
to be piecewise constant on the intervals j ∈ [N ]. Because t0 and t f cannot be switching points,
the switches can happen at the beginning of the intervals j = 2, . . . , N . With this explanation,
we introduce the variables zi1,i2, j :

zi1,i2, j := 1

2

[
(wi1, j−1 −wi1, j )+ (wi2, j −wi2, j−1)

]
, for j = 2, . . . , N , i1, i2 ∈ [nω], i1 6= i2.

Thus, zi1,i2, j = 1 if and only if there is a switch from mode i1 to mode i2 at the beginning of
interval j , and zi1,i2, j = −1 for the reverse switch from i2 to i1. We still need variables wi ,1,
i ∈ [nω] that indicate the active mode of the first interval. With these variables, it is possible
to reformulate the approximation inequality constraint (4.4) from (CIA) and hence to receive
a lifted version of (CIA). However, we omit presenting it here because we postulate that an
extended formulation based on a fixed switching sequence is computationally more promising.
Let us assume that there is a given sequence of activated controls in the sequel and that only the
switching times are sought. To do so, in Section 6.4.1 we introduce the corresponding variables
that we use in Section 6.4.2 to define a (CIA)-equivalent MILP, which can be solved by a BnB
algorithm from Section 6.4.3.

6.4.1 Definition of switching variables

The motivation to take the sequence of active modes as given stems from preliminary infor-
mation about the solution structure. For example, bang-bang arcs in the relaxed solution a∗

or a priori information about the structure of the underlying (BOCP) indicate a certain mode
sequence. Nevertheless, assuming a given mode sequence is not a restriction because we can
include arbitrarily many additional modes whose duration shrinks to zero if they are skipped
in the optimal solution (see Remark 6.2).

Definition 6.3 (Sequence of active controlsΠ, active control mappingπ)
Let the given sequence of active controls be denoted by [nω]nσ+1 3 Π := (i1, i2, . . .) with i1, i2 ∈
[nω], i1 6= i2, where nσ denotes the number of switching events, i.e., |Π| = nσ+1. Furthermore,
we define π : {1, . . . ,nω}× {1, . . . ,nσ + 1} → {0,1} as the mapping that indicates whether the i th
mode is active in the kth position ofΠ:

π(i ,k) :=
{

1, if i =Π(k),

0, otherwise.
(6.5)

We clarified above that switches may occur only on grid points t j ∈ GN , j ∈ [N − 1]. In the
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extended formulated (CIA) problem, however, we allow switches to occur on t0 and tN = t f to
skip activations of the sequenceΠ. Tactically, we introduce switching indicator variables κ that
comprise a representation of these artificial switches for this purpose.

Definition 6.4 (Switching indicator variablesκ)
For each switch s ∈ [nσ], we introduce the given set of feasible time point indices J

f
s ⊆ [N ]0 on

which s may occur. The variable κs, j , j ∈J
f

s , indicates on which time point t j ∈GN the switch s
takes place:

κs, j :=
{

1, if switch s happens on t j ,

0, otherwise.
(6.6)

Remark 6.2 (Artificial switches and empty activation intervals)
Rather than to stating that a switch s occurs on t j , we could equivalently write that it occurs at
the beginning of the ( j +1)th interval. In this sense, κs,0 = 1 indicates that switch s is artificial
since it takes place at the beginning of the first interval (t0). In the same way, κs,N = 1 implies
that switch s appears at the beginning of interval N+1; hence, it is also omitted from the control
problem. Furthermore, the definition of κ deliberately permits more than one switch on each
grid point so that the duration of certain mode activations given by Π can shrink to zero.

Definition 6.5 (Activation duration η between two switches)
We define the auxiliary variables ηk ,k ∈ [nσ+1], which are the duration between two switches,
as follows:

η1 := ∑
j∈J

f
1

κ1, j
∑

l∈[ j ]
∆l ,

ηk := ∑
j∈J

f
k

κk, j

∑
l∈[ j ]

∆l −
∑

i∈[k−1]
ηi , for 2 ≤ k ≤ nσ,

ηnσ+1 := t f − t0 −
∑

k∈[nσ]
ηk .

6.4.2 MILP formulation

We derive the constraints for the extended formulated version of (CIA). First, all control activa-
tion durations need to be non-negative:

ηk ≥ 0, for all k ∈ [nσ], (6.7)

where ηnσ+1 ≥ 0 holds by Definition 6.5. Constraint (6.7) also implies that the s1th switch does
not occur before any of the previous switches s2 < s1, s1, s2 ∈ [nσ]. Second, we require that every
switch s happens on exactly one time point:∑

j∈J
f

s

κs, j = 1, for all s ∈ [nσ]. (6.8)

It remains to state the max-norm-induced approximation inequality constraint (4.4) in the
lifted setting. Therefore, we make the following observation. With fixed wi ,· the expression∑

l∈[ j ](a∗
i ,l − wi ,l )∆l is monotonically increasing (if wi ,· = 0) or monotonically decreasing (if

wi ,· = 1) with increasing interval j . Therefore, the absolute value of this term is maximal on
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an interval directly before a switch. We conclude that the approximating inequalities only need
to be formulated for the respective active modes before and after the corresponding switch. We
exploit this argument by formulating the approximating inequalities for all switches, expressed
by the indicator variable κs, j :

θ ≥±κs, j

( ∑
l∈[ j ]

a∗
Π(s),l ·∆l −

∑
k∈[s]

ηk ·π(Π(s),k)

)
, for all s ∈ [nσ], j ∈J

f
s , (6.9)

θ ≥±κs, j

( ∑
l∈[ j ]

a∗
Π(s+1),l ·∆l −

∑
k∈[s]

ηk ·π(Π(s +1),k)

)
, for all s ∈ [nσ], j ∈J

f
s . (6.10)

We recognize that in these constraints we subtract the total activation length of mode Π(s), re-
spectively Π(s + 1), from the accumulated relaxed control values until interval j . Finally, one
approximation inequality needs to hold at the end of the time horizon for each control – inde-
pendent of its activation:

θ ≥±
( ∑

l∈[N ]
a∗

i ,l ·∆l −
∑

k∈[nσ]
ηk ·π(i ,k)

)
, for all i ∈ [nω]. (6.11)

With this preliminary work we are able to introduce the corresponding MILP.

Definition 6.6 (STO-CIA)
For given a∗ ∈AN and a sequence of modesΠ ∈ [nω]nσ+1, we define the problem (STO-CIA):

min
θ≥0,κ∈{0,1}nσ+1×N

θ

s. t. Nonnegativity of activation intervals (6.7),

Switch to time point matching constraint (6.8),

Approximation inequalities (6.9), (6.10), (6.11).

We omit the exact proof of the equivalence of the optimal solutions of (STO-CIA) and (CIA)
here but claim that w∗ can be uniquely constructed from the optimal κ∗ via

w∗
i , j :=



1, if there is a k ∈ [nσ+1] with i =Π(k) and for j holds:

j ≤ ∑
l∈J

f
1

κ∗1,l l for k = 1,

∑
l∈J

f
k−1

κ∗k−1,l l < j ≤ ∑
l∈J

f
k

κ∗k,l l for 2 ≤ k ≤ nσ,

∑
l∈J

f
nσ

κ∗nσ,l l < j for k = nσ+1.

0, otherwise.

The term
∑

l∈J
f

k−1
κ∗k−1,l l identifies the interval of the (k −1)th switch, which is useful for iden-

tifying the intervals j of the active mode i in the above mapping. We briefly discuss adding
of the MDT and TV constraints to (STO-CIA). MDT constraints can be easily added by restrict-
ing the duration variables ηk . These variables are also useful for limiting the number of actual
switches. Let ξ ∈ {0,1}nσ+1 indicate whether the kth control activation, k ∈ [nσ+1], takes place
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(equivalent to ηk > 0) or is skipped (equivalent to ηk = 0). Then, the number of actual con-
trol activations, i.e. switches, can be limited by σmax ∈ N, with nσ > σmax, by means of the
constraints

(1−ξk ) ·ηk ≤ 0, for k ∈ [nσ+1], (6.12)∑
k∈[nσ+1]

ξk ≤σmax +1. (6.13)

Note that the above cardinality constraints (6.12) contain bilinear terms. Therefore, by
adding these conditions to (STO-CIA), we obtain a mixed-integer quadratic program (MIQP).

We conclude this subsection with a comparison of the number of feasible solutions in (STO-
CIA) and (CIA).

Remark 6.3 (Complexity reduction through (STO-CIA))
If we consider a fixed sequenceΠ and allow the omission of control activations (meaning ηk = 0

for some k ∈ [nσ + 1]), then we are left with
(N−1+nσ−1

nσ

)
feasible solutions κ for (STO-CIA). If

we require the control activations to be strictly positive, this number reduces to
(N−1

nσ

)
feasible

solutions. For comparison, the number of feasible solutions w for (CIA) is nωN . If we restrict
the number of switches by σmax, i.e., we consider (CIA-TV), the number of feasible solutions
reduces to

|ΩN (σmax)| = nω ·
σmax∑
s=0

(nω−1)s ·
(

N −1

s

)
.

On the other hand, if we assume that the optimal solution takesσmax switches, we deduce from
this equation that we would have nω · (nω−1)σmax

(N−1
σmax

)
candidate sequences for (STO-CIA).

6.4.3 A switching time branch-and-bound algorithm

(STO-CIA) can be efficiently solved by a tailored BnB scheme that branches forward over all
switches s ∈ [nσ]. Thus, the branching rule is different from the version of BnB described in
Algorithm 6.2, where the node depth indicates the associated interval index. Because the ob-
jective value θ of (STO-CIA) is extremal on an interval right before a switch, branching over
switches is beneficial with respect to obtaining tight lower bounds of (STO-CIA). The BnB for
(STO-CIA) is described in Algorithm 6.3. The input is similar to that for Algorithm 6.2, with the
addition of the sequence of active control modes Π and of the index sets of feasible switch-
ing time points J

f
s for each switch s ∈ [nσ]. The following information about the investigated

solutions κ is saved in the nodes n:

• n.depth: the number of switches taken,

• n.t : the index j of the time point t j ∈GN until κ is constructed,

• n.θ: the lower bound on the objective value of κ,

• n.θi : mode specific accumulation values for the computation of θ,

• n.T : a vector that indicates the last activation time point index for each mode.

We select nodes from a queue Q until it is empty or a termination criterion is reached (line 2).
A selected node n is pruned if its lower bound θ is greater than the global upper bound U B (lines
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Algorithm 6.3: Branch-and-bound for solving (STO-CIA)

Input : Relaxed control values a∗ ∈AN , grid GN , sequence of active modesΠ, index

sets of feasible switching time points J
f

s ⊆ [N ]0 for each switch s ∈ [nσ],
termination criterion, parameters for combinatorial constraints.

Output: (Optimal) solution (θ∗,κ∗) of (STO-CIA).
1 Initialize node queue Q with empty node and set upper bound U B .
2 while Q 6= ; and termination criterion not reached do
3 Choose n ∈Q according to node selection strategy.
4 if n.θ >U B then
5 Prune node n.
6 else if n.depth = nσ or n.t = N then
7 Set new best node n∗ ← n and U B = n.θ
8 else

9 Create child nodes ck , k ∈J
f
n.depth+1, k ≥ n.t with

ck .depth ← d := n.depth +1, and ck .t ← k,
10 if k > n.t then
11 ck .T [Π(d)] ← k,

12 ck .θΠ(d) ← n.θΠ(d) +
∑k

l=n.t+1(a∗
Π(d),l −1)∆l ,

13 ck .θΠ(d+1) ← n.θΠ(d+1) +
∑k

l=n.T [Π(d+1)]+1 a∗
Π(d+1),l∆l ,

14 if k = N or d = nσ then
15 ck .θi ← ck .θi +∑N

l=ck .T [i ]+1 a∗
i ,l∆l , for i ∈ [nω], i 6=Π(d +1)

16 ck .θΠ(d+1) ← ck .θΠ(d+1) +
∑N

l=k+1(a∗
Π(d+1),l −1)∆l

17 ck .θ← max
(
{n.θ}∪{|ck .θi | | i ∈ [nω]

})
.

18 Add ck to Q if and only if it satisfies all combinatorial constraints.

19 Reconstruct κ∗ from switching points n∗.t of parent nodes of n∗;
20 return: (θ∗,κ∗) = (n∗.θ,κ∗);

4 - 5). We update the currently best node n∗ to be n if the depth of the selected node is equal
to the number of switches nσ or its time index t equals N (lines 6 - 7). Otherwise, concerning
the switch index, we branch forward and create child nodes for all feasible switching points
with index k associated with the dth switch (line 9 - 10). The index of the switching point is
set to be t = k for each child node. If the activation duration is strictly positive (k > n.t ), the
time point index T of the active mode Π(d) on which it was last activated is updated (line 11).
Also, the control accumulation values θi are updated according to the derived approximation
inequalities (6.9), (6.10), and (6.11) (line 12 - 16). Based on these values, the associated objective
lower bound of the child node is computed, and the node is added to Q if and only if it satisfies
the combinatorial constraints (line 17-18). We remark that the empty node initialization of Q
means that all node features are set to zero.

To limit the number of switches by σmax in Algorithm 6.3, there are two options. First, one
can choose the length of the mode sequence Π to be less than or equal to σmax +1. Second, it
is possible to count the actual switches, i.e., k > n.t in line 10, and save the count as additional
information in the nodes. MDT constraints can also accounted for by means of the activation
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duration k −n.t .

Most relevant for the node selection strategy are the lower bound θ, the switch index depth,
and the time point index t . In terms of all three parameters, it is advantageous to select nodes
with maximum values, and different rankings of priorities of the three parameters make sense
as a node selection strategy.

Remark 6.4 (Lower bound calculation)
In lines 12 - 16 of Algorithm 6.3, we update only the values θi of the active mode before and after
the switch d , which areΠ(d) andΠ(d +1), respectively, except when we reach the last switch or
the end of the time horizon (checked in line 14). Alternatively, we could also update θi for all
other control modes i . This would yield a better lower bound but higher computational costs.
Hence, both variants are useful.

6.5 Sum-up rounding variants

The basic SUR scheme has already been introduced in Definition 4.8. Recently, MANNS showed
that it could also be successfully applied to the PDE setting, where mesh cell volumes are used
as weights instead of interval lengths [176]. This section is dedicated to further modifications
of SUR that are based on the different MILP formulations from Section 4.5.1 and that extend
SUR to the MDT constraint context. First, we recapitulate a modification that establishes con-
vergence properties of SUR-constructed solutions to satisfy vanishing constraints (4.1f) up to
ε-feasibility [149].

Definition 6.7 (Sum-up rounding under vanishing constraints [149], Def. 5.4)
Let a∗ ∈AN be given. The SUR scheme vanishing constraint modification computes w ∈ΩN for
j = 1, . . . , N and i = 1, . . . ,nω as follows:

wi , j :=

1, if i = argmax
k=1,...,nω

{ j∑
l=1

a∗
k,l∆l −

j−1∑
l=1

wk,l∆l

∣∣∣ a∗
k, j > 0

}
(break ties arbitrarily),

0, else.

6.5.1 Sum-up rounding based on different MILP formulations

The control approximation problem (CIA1) based on the 1-norm was introduced in Defini-
tion 4.18. Here, we suggest a SUR variant that constructs an approximate solution of the latter.

Definition 6.8 (1-norm-SUR)
Let a∗ ∈AN be given. We define the 1-norm SUR scheme for constructing w ∈ΩN for j = 1, . . . , N
as follows (break ties arbitrarily):

w·, j := argmin
w·, j∈{0,1}nω ,∑

i∈[nω] wi , j=1

{ ∑
i∈[nω]

∣∣∣ j∑
l=1

(a∗
i ,l −wi ,l )∆l

∣∣∣ }
.

Analogously, a modified SUR scheme can be obtained based on the evaluated model function
values f̃ and Definition 4.19.
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Definition 6.9 (Scaled-SUR)
Let a∗ ∈AN and the evaluated model function values f̃ from Definition 4.13 be given. We define
the Scaled-SUR scheme for constructing w ∈ΩN for j = 1, . . . , N as follows:

wi∗, j :=

1, if i∗ = argmin
i=1,...,nω

{
max
k∈[nx]

∣∣∣ j∑
l=1

(a∗
i ,l −wi ,l )∆l f̃i ,l ,k

∣∣∣} (break ties arbitrarily),

0, else.

We note that Scaled-SUR should be applied with caution in case f̃ is zero for some controls
and intervals or in case it comprises both negative and positive values. In this case, w can
be discursive because the sum term in the above scheme cancels. The final definition in this
subsection proposes rounding schemes that use the evaluated adjoint variables λ and exploit
the maximum principle from Theorem 2.1, (v). In the absence of a Lagrangian term in the
objective function and assuming fixed continuous controls, the maximum principle yields for
a.a. t ∈T

ω∗(t ) = argmin
ω∈Ω

H (x∗(t ),ω(t ),λ∗(t )) = argmin
ω∈Ω

(
λ∗(t )

)> (
f0(x∗(t ))+ ∑

i∈[nω]
ωi (t ) fi (x∗(t ))

)
.

Definition 6.10 (H -Rounding, H -SUR)
Let a∗ ∈ AN , the evaluated model function values f̃ from Definition 4.13, and the evaluated
dual variables λ̃ of the ODE constraint (4.1b) be given. The H -Rounding constructs w ∈ΩN for
j = 1, . . . , N as follows:

wi∗, j :=


1, if i∗ = argmin

i=1,...,nω

{ ∑
k∈[nx]

λ̃ j ,k wi , j f̃i , j ,k

}
(break ties arbitrarily),

0, else.

We define the H -SUR scheme for constructing w ∈ΩN for j = 1, . . . , N as follows:

wi∗, j :=

1, if i∗ = argmin
i=1,...,nω

{ j∑
l=1

∑
k∈[nx]

λ̃l ,k (a∗
i ,l −wi ,l )∆l f̃i ,l ,k

}
(break ties arbitrarily),

0, else.

While H -Rounding aims to directly minimize the Hamiltonian, H -SUR is designed to mini-
mize the accumulated difference of the Hamiltonian based on the relaxed and binary control
values, respectively.

6.5.2 Dwell time sum-up rounding

This subsection is based on [282], Section 6. Since the SUR scheme is very often used to find ap-
proximative solutions of (CIA), but it does not necessarily fulfill MDT constraints, in this section
we discuss a canonical extension of the algorithm to this setting. To this end, we first introduce
the concept of a currently activated control and dwell time interval blocks that depend on the
initial interval and the MDT duration C1.
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Definition 6.11 (Initial interval dwell time block index sets J SUR
k )

Let an MDT C1 ≥ 0 be given. For all intervals k ∈ [N ], we define the initial interval dependent
dwell time index sets to be

J SUR
k (C1) := {k}∪ { j | t j−1 ∈GN ∩ [tk−1, tk−1 +C1)}.

Definition 6.12 (Currently activated control)
We call a control index i currently activated at interval j = 2, . . . , N if

wi , j−1 = 1

holds. Otherwise, or if j = 1, we say that the binary control i is currently deactivated.

A grouping of down time forbidden controls for each interval into sets I SUR
j is suggested in

the following definition.

Definition 6.13 (SUR down time forbidden control set)
Let a minimum down (MD) time CD ≥ 0 be given. We define the set of down time forbidden
controls I SUR

j ⊂ [nω] on interval j ∈ [N ] as follows:

I SUR
j := {i ∈ [nω] | ∃k < j : t j−1 ≤ tk−1 +CD , tk−1 ∈GN ∧ wi ,k = 1}.

We say i ∈ [nω] is MD time admissible on j ∈ [N ] if i ∉I SUR
j holds.

Note that the above definition assumes implicitly fixed control variables for the previous in-
tervals [N ] 3 k < j . We have I SUR

1 = ; because there are no down time forbidden controls on
the first interval. Moreover, the set I SUR

j may contain several controls, and it contains at most
nω−1.

Next, we give a definition of the dwell time sum-up rounding (DSUR) scheme in Algo-
rithm 6.4. It iterates over all intervals j ∈ [N ] and initially selects the interval representing
the beginning of the time horizon, where a currently activated control does not yet exist. The
control-dependent MDT Ci is updated in lines 3 - 4 for each iteration inside the while loop so
that Ci equals the maximum of the minimum up (MU) time CU and MD time CD for a currently
activated control, and otherwise it is set to the MU time CU . The algorithm sets Ci =CU for all
controls in the first while iteration. Next, in line 5, one searches for the MD time admissible
control i? with maximum forward control deviation on the upcoming intervals that cover the
dwell time Ci? . If i? is the currently activated control, we fix it to also be active on the cur-
rently selected interval j and increase the interval index (lines 7-8). Otherwise, the control is
activated on the whole dwell time block represented by its interval indices J SUR

j (Ci?), and the
interval index is updated accordingly (lines 9-11). Finally, DSUR updates the set of down time
forbidden controls for the next iteration in line 12. The algorithm stops as soon as the control
choice has been made for the last interval N .

Clearly, w DSUR is a feasible solution for (CIA) because exactly one control is active per inter-
val. It is also feasible for (CIA-U) since whenever a currently deactivated control is activated,
it remains active for at least the duration CU (lines 9-11). The solution also satisfies MD time
constraints by the definition of I SUR

j , making w DSUR an overall feasible solution for (CIA-UD).
We have transferred the main idea from the original SUR scheme to the problem setting with

MDT constraints by selecting the control with the maximum forward control deviation in each
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Algorithm 6.4: DSUR algorithm for approximate solution of (CIA-UD).

Input : Relaxed control values a∗ ∈AN , grid GN , MU time CU , MD time CD .
Output: Feasible solution w DSUR of (CIA-UD).

1 Initialize w = 0, j = 1, and I SUR
j =;.

2 while j ≤ N do
3 Set Cia ← max{CU ,CD } for the currently activated control ia ;
4 Set Ci ←CU for all other controls i 6= ia ;
5 Find the control with maximum deviation (break ties arbitrarily):

6 i?← argmax
{∑ j−1

l=1 (a∗
i ,l −wi ,l )∆l +

∑
l∈J SUR

j (Ci ) ai ,l∆l | i ∈ [nω]\I SUR
j

}
;

7 if i? = ia then
8 Set wi?, j ← 1 and update j ← j +1;
9 else

10 Set wi?,l ← 1, l ∈J SUR
j (Ci?,1);

11 Update j ← max
{

l | l ∈J SUR
j (Ci?,1)

}
+1;

12 Update the set of down time forbidden controls I SUR
j ;

13 return: w DSUR = w ;

iteration. In the presence of MU time requirements, we need to calculate the forward accumu-
lation for the set of next intervals with total length of at least CU . For a given MD time larger
than the MU time, Algorithm 6.4 compares the forward accumulation with length at least CD

of the currently activated control with that of other controls with length of at least CU . The idea
behind this approach is to prevent a situation in which a control is deactivated though it will
accumulate a large control deviation during its down time forbidden period.

Remark 6.5 (Run time of DSUR)
Algorithm 6.4 is in O (nωN 2) since it sums up the relaxed control values a∗ on the next dwell
time induced intervals on each interval and for all controls.

6.6 Dwell time next-forced rounding

This section is based on [282], Section 4. In Definition 4.9 the NFR scheme was introduced as
an algorithm that can compute approximations to solutions of (CIA) in O (nωN 2) [135] and that
constructs feasible solutions of (CIA) with an objective no larger than ∆̄. In this section, we in-
troduce dwell time next-forced rounding (DNFR) as a generalization, aiming for a scheme that
constructs solutions that are feasible for MDT constraints and from which we derive bounds
for the (CIA) objective and its MDT variants in Chapter 7. Several definitions are needed for
DNFR, and we begin with a definition of sequences of intervals that are grouped into blocks in
the presence of MDT constraints.

Definition 6.14 (Dwell time block interval sets)
Let an MDT C1 ≥ 0 be given. We iteratively define the dwell time invoked interval sets Jb and
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their last indices lb for b = 1, . . . ,nb and with l0 := 0:

Jb := {lb−1 +1}∪ { j | t j−1 ∈GN ∩ [tlb−1 , tlb−1 +C1)},

lb := max{ j | j ∈Jb},

where nb := min{b | lb = N } represents the number of interval blocks.

In the following, we will sometimes loosely write block instead of dwell time block for brevity.
We next establish the lengths of the dwell time blocks.

Definition 6.15 (Dwell time block length)
Let a family of dwell time block interval sets {Jb}b∈[nb ] be given. We denote by Lb the length of
dwell time block b ∈ [nb] and name the maximum, respectively minimum, length of all dwell
time blocks L , respectively L , i.e.,

Lb := tlb − tlb−1 , b ∈ [nb],

L := max
b∈[nb ]

Lb , L := min
b∈[nb ]

Lb .

By the definition of dwell time blocks, we see that Lb depends both on the time discretization
GN and on C1. If C1 ≤∆, then the blocks are in fact the grid intervals, i.e., L j =∆ j , j ∈ [N ] and
nb = N . As soon as C1 >∆ holds, there is at least one block b with the length of two consecutive
intervals Lb = ∆ j +∆ j+1, j ∈ [N −1]. Overall, one recognizes that L increases monotonically
with increasing C1, obviously stopping as soon as C1 > t f −t0. The DNFR scheme relies crucially
on the block-dependent accumulated control deviation, which is why we introduce it as an
auxiliary variable in the next definition.

Definition 6.16 (Accumulated control deviation θi , j ,Θi ,b ,γi , j ,Γi ,b )
Let a ∈ AN and w ∈ΩN . For controls i ∈ [nω], we define the accumulated control deviation on
interval j ∈ [N ] as

θi , j :=
j∑

l=1
(ai ,l −wi ,l )∆l , γi , j :=

j∑
l=1

ai ,l∆l −
j−1∑
l=1

wi ,l∆l ,

and further define θi ,0 := 0 for all i ∈ [nω]. For blocks b ∈ [nb], we introduce the analogous vari-
ables

Θi ,b := θi ,lb , Γi ,b :=Θi ,b−1 +
∑

j∈Jb

ai , j∆ j .

In what follows, we sometimes write forward control deviation for control i in order to distin-
guish γi , j ,Γi ,b from the (accumulated) control deviation θi , j ,Θi ,b .

The quantities from Definitions 6.14 – 6.16 are illustrated in Figure 6.1.

Remark 6.6 (Θi , j as generalization of θi , j )
If a small MDT C1 ≤ ∆ is given, Θi , j trivially equals θi , j , and the same holds for Γi , j and γi , j .
Nevertheless, with an MDT of C1 >∆, one needs interval and block related variables to distin-
guish clearly between both values.
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Remark 6.7 (Link between θi , j and the (CIA) objective value)
Let w ∈ΩN and denote by θ(w ) its (CIA) objective value. By the above definition, we conclude
θ(w ) = max

i∈[nω], j∈[N ]
|θi , j |. Generally, one notices that the maximum of the |θi , j | values must be

assumed in an interval before a switch happens (i.e., w·, j 6= w·, j+1) or in the last interval since
|θi , j | increases monotonically with constant w·, j and increasing j . Hence, with constant w·, j

on the dwell time blocks, we also have that θ(w ) = max
i∈[nω],b∈[nb ]

|Θi ,b |.
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Figure 6.1: Left: Example binary and relaxed control values on nine intervals ∆ j and three
blocks Lb . Right: Corresponding accumulated control deviation. With respect to
intervals, the forward control deviation γi is greater than or equal to θi with equality
if the control i is inactive. Also, Γi ,b is greater than or equal to Θi ,b , where by defi-
nition the latter equals the last θi before block b begins. Note that Γi ,2 sums up the
weighted α values for intervals 3–6, resulting in a large value.

We introduced in Definition 4.9 the concept of a next-forced control that depends on the
maximum grid length ∆̄. We generalize this concept by using blocks and a generic rounding
threshold factor C2 > 0, instead of always using C2 = 1 as in the NFR scheme. To this end, we
present a definition of different types of control variable activations that depend on the choice
of prior variables and on a∗ ∈AN .

Definition 6.17 (Admissible, forced, and future forced activation)
Let the rounding threshold factor C2 > 0 and a∗ ∈ AN be given. The choice wi , j = 1 for i ∈
[nω], j ∈Jb , b = 1, . . . ,nb is admissible if

Γi ,b ≥−C2L +Lb

holds. Denote by Ωb
a the set of admissible controls for block b. Similarly, the choice wi , j = 1 for

i ∈ [nω], j ∈Jb , b = 1, . . . ,nb is forced if

Γi ,b >C2L

holds. We define a control i ∈Ωb
a on block b to be l-future forced if

Θi ,b−1 +
l∑

k=b

∑
j∈Jk

a∗
i , j∆ j >C2L
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holds, with the special case l = b indicating that i is actually forced on b. If the above inequality
holds for any l ≤ nb , we say that the control i ∈Ωb

a on block b is future forced and group these
controls into the setΩb

f .

Definition 6.18 (Down time forbidden control)
We introduce the parameter χD ∈ {0,1}. If the CIA problem involves an MD time constraint with
CD > ∆, we set χD = 1 and otherwise set χD = 0. We define i D

b , b = 3, . . . ,nω, as the index of the
control that has been activated on block b −2 and deactivated on block b −1 – if such a control
exists:

∃i ∈ [nω] : wi , j = 1, j ∈Jb−2 ∧ wi , j = 0, j ∈Jb−1 ⇒ i D
b := i .

Then, let I D
b denote the χD -dependent set of the down time forbidden control:

I D
b :=

{
{i D

b }, if χD = 1, and b ≥ 3,

;, otherwise.

Note that I D
b is either the empty set or contains exactly one control index. It may seem un-

intuitive to declare only one control per block as down time forbidden because a sufficiently
large chosen MD time can comprise more than two intervals, and therefore, more than one
control could be minimum down forbidden on certain blocks. However, in such situations,
where several controls are minimum down forbidden, only one control may be allowed to be
active, resulting in a large control deviation. Consequently, a fine granular definition is critical
for deriving bounds for (CIA-UD) using the DNFR scheme. We will specify such a worst case
in Example 7.1 in Section 7.3, where we argue for tolerating at most one down time forbidden
control per block.

We illustrate the different control activation types of Definitions 6.17 and 6.18 in Figure 6.2.

tb j tb j+1 tb j+2 tb j+3 tb j+4

0

0.25

0.5

0.75

1

· · · · · ·

Lb j Lb j+1 Lb j+2 Lb j+3

Control values

αi

ωi

b j b j+1 b j+2 b j+3

−C2L̄

+Lb

C2L̄

nb

Accumulated deviation

Γi

Θi

Figure 6.2: Exemplary visualization of the defined quantities. Left: Binary and relaxed control
values on four blocks. Right: Corresponding block accumulated control deviation.
Control i is admissible on block b j , not admissible on block b j+1, down time forbid-
den and b j+3-future forced on block b j+2, and forced on block b j+3.

Finally, we use these control properties to declare the DNFR scheme in Algorithm 6.5. In
contrast to the original NFR, we do not iterate over all intervals but rather over all dwell time
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C1 invoked blocks (line 2). We check whether there is a forced control on each block and if so,
activate it (lines 3-4). Otherwise, we test if there is an earliest future forced control, and if so, we
set it to be active (lines 5-8). Else, the algorithm selects the control with the maximum forward
control deviation (lines 9-12), which represents a fallback to the classical SUR scheme. If the
MD mode is turned on by setting χD = 1, we exclude the set I D

b from our control selection task
(lines 3, 5, 11). This consideration of down time forbidden controls is a further extension of the
original NFR scheme.

Algorithm 6.5: DNFR algorithm for heuristic solution of (CIA-UD).

Input : Relaxed control values a∗ ∈AN , grid GN , parameters C1,C2,χD .
Output: Feasible solution w DNFR of (CIA-UD) with approximation quality depending on

C1,C2,χD .
1 Initialize w ← 0;
2 for all dwell time blocks b = 1, . . .nb do
3 if there is a control i ∈ [nω] \I D

b with forced activation then
4 Set wi , j ← 1, j ∈Jb ;

5 else if it exists a future forced control, i.e.,Ωb
f \I D

b 6= ; then

6 Identify control with earliest future forced activation (break ties arbitrarily):

7 i ← argmin
{
b(i ) ∈ [nb] | i ∈Ωb

a \I D
b , i is b(i )-future forced

}
;

8 Set wi , j ← 1, j ∈Jb ;

9 else
10 Find admissible control with maximum control deviation:

11 i ← argmax
{
Γi ,b | i ∈Ωb

a \I D
b

}
(break ties arbitrarily);

12 Set wi , j ← 1, j ∈Jb ;

13 return: w DNFR = w ;

6.7 Adaptive maximum dwell rounding

This section is based on [222], Sections 4 and 5. In order to accelerate the (CIA-TV) solution
process, we propose the maximum dwell rounding (MDR) scheme, which is a fast rounding
heuristic. It is based on the idea of activating a chosen control mode for as long as possible
without violating a desired integral deviation gap θ̄ and then performing this idea with the next
promising mode. We apply the scheme iteratively as part of the AMDR algorithm for finding bi-
nary controls that satisfy time-coupled combinatorial constraints, such as a TV bound, and de-
rive optimality conditions of the obtained binary control function with respect to the (CIA-TV)
problem. Thus, we examine the algorithm mainly from the point of view of limited switch con-
straints (4.9)–(4.10) but emphasize that it can also be applied to MDT constraints. The AMDR
scheme is motivated by the fact that in some instances, efficient BnB algorithms, such as the
one presented in Section 6.3, struggle to find the (CIA) optimal solution quickly because the
node relaxation can be relatively weak [50]. Therefore, we present a polynomial-time algorithm
that constructs good initial guesses for BnB and that in some situations, even solves (CIA-TV)
to optimality. We proceed by introducing MDR and AMDR in Section 6.7.1. In Section 6.7.2, we
introduce auxiliary (CIA) problems that are useful for investigating the approximation quality
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and properties of MDR and AMDR presented in Section 6.7.3.

6.7.1 Definition of the algorithm

The concepts of inadmissible, next forced, and forced activation were introduced in the context
of (dwell time) next-forced rounding in Definition 6.17. There, the rounding threshold was cho-
sen to be the maximum dwell time block L or the maximum grid length ∆̄. Here, in contrast,
we introduce a flexible rounding threshold θ̄ > 0 and therefore slightly modify these activation
concepts.

Definition 6.19 (θ̄-inadmissible, θ̄-next-forced, and θ̄-forced activation)
Consider a rounding threshold θ̄ > 0 and a∗ ∈ AN . Let the values of w ∈ ΩN be given until
interval j −1, with j ≥ 2. The choice wi , j = 1 for i ∈ [nω], j ∈ [N ] is θ̄-admissible if we have that

θi , j ≥−θ̄.

Otherwise, we call the control i θ̄-inadmissible. Similarly, the choice wi , j = 1 is θ̄-forced if we
have that

γi , j > θ̄.

Further, let N j (i ) ∈ { j , . . . N } denote the next interval on which control i would become θ̄-forced
without activation after interval j −1:

N j (i ) :=
 argmin

k= j ,...,N

{
θi , j−1 +∑k

l= j a∗
i ,l∆l > θ̄

}
, if θi , j−1 +∑N

l= j ai ,l∆l > θ̄,

∞, else.

Then, we define a control i? ∈ [nω] on interval j to be θ̄-next-forced if and only if

N j (i?) = min
i∈[nω]

N j (i ) and N j (i?) <∞.

The above definition permits more than one control to be θ̄-next-forced or θ̄-forced for an
arbitrary interval j ∈ [N ]. This is not the standard case in our discussion, but it will be ac-
counted for in our considerations. The guiding idea behind the above control activations is
that we include more and more summands of w into the computation of θ(w ) and can thereby
choose the next row of w accordingly. The following definition classifies feasible control mode
activations on the first interval.

Definition 6.20 (Initially admissible control)
We define a control i ∈ [nω] to be initially admissible if it is θ̄-admissible on the first interval and
if there is no other control i1 6= i that is θ̄-forced on the first interval.

We are now able to define the MDR scheme in Algorithm 6.6.
The MDR algorithm assumes a given initial control i0 and activates it until it becomes θ̄-
inadmissible or until there is another θ̄-forced control. We require the control i0 to be initially
admissible because otherwise, w MDR would violate the control accumulation constraint (4.4).
Otherwise, the control i with the maximum forward control deviation γi , j is set to be active and
remains so until it becomes θ̄-inadmissible or another control becomes θ̄-forced. This proce-
dure is performed forward in time until the end of the time horizon N is reached. We call the
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Algorithm 6.6: Maximum dwell rounding

Input : Relaxed control values a∗ ∈AN , rounding threshold θ̄, initially admissible
control i0 ∈ [nω].

1 Initialize w ← 0, wi0,1 ← 1, and i ← i0.
2 for j = 2, . . . , N do
3 if i is θ̄-inadmissible or there is a θ̄-forced control i f 6= i then
4 Set i ← argmax

k∈[nω]
γk, j (ties may be broken arbitrarily);

5 Set wi , j ← 1;

6 return: w MDR = w ;

algorithm “maximum dwell rounding” because it tries to dwell in the current mode for as long
as possible without violating the given rounding threshold.

Algorithm 6.7: Adaptive maximum dwell rounding

Input : Relaxed control values a∗ ∈AN , optimum tolerance T OL > 0, allowed number
of switches σmax .

1 Initialize LB ← 0; U B ← θ̄ = t f − t0.
2 while U B −LB > T OL do
3 for i = 1, . . . ,nω do
4 if i is an initially admissible control then
5 Run MDR with i as initial control and set w ← w MDR(i );
6 if w satisfies TV constraints (4.9)-(4.10) and θ(w ) <U B then
7 U B ← θ(w );
8 θ̄←U B −0.5 · (U B −LB);
9 w AMDR ← w ;

10 break;

11 else if i = nω then
12 LB ← θ̄;
13 θ̄← LB +0.5 · (U B −LB);

14 return: (w AMDR,U B);

AMDR is defined in Algorithm 6.7 and can be described as a bisection method. It is initialized
with a trivial lower bound LB and upper bound U B for (CIA-TV). The algorithm runs MDR
iteratively with different thresholds θ̄ and initially admissible control as long as the difference
between the lower and upper bounds exceeds the chosen tolerance T OL (lines 2 - 5). If the
computed control function satisfies the TV constraints and exhibits a (CIA-TV) objective value
that is smaller than the current U B , we update U B , reset the rounding threshold θ̄ via interval
halving of U B−LB , and save the current best solution (lines 6 - 10). The evaluation θ(w ) is nec-
essary since MDR may construct a control function with an integral deviation gap larger than
the desired gap θ̄, as discussed in the following subsections. If no computed control function
w with given initial control and θ̄ fulfills the TV constraints, we increase the LB (lines 11 - 13).
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6.7.2 (CIA−θ̄), (CIA−θ̄−init), and an associated lower bound
In this subsection, we address a problem that minimizes the switches used in w subject to a
given control approximation error, i.e., the integral deviation gap θ̄ that is not to be exceeded
by the accumulated control deviation. We then aim to construct a lower bound on its objective
that will be useful in the next subsection and for which we introduce useful auxiliary variables
and definitions.

Definition 6.21 ((CIA−θ̄), (CIA−θ̄−init))
For given a∗ ∈AN , θ̄ > 0, and initial active control i0 ∈ [nω], the problem (CIA−θ̄−init) is defined
to be

σ? := min
w∈ΩN

1

2

N−1∑
l=1

nω∑
i=1

|wi ,l+1 −wi ,l | (6.14)

s. t. θ̄ ≥±
j∑

l=1
(a∗

i ,l −wi ,l )∆l i ∈ [nω], j ∈ [N ], (6.15)

wi0,1 = 1. (6.16)

We define the problem (CIA−θ̄) to be (CIA−θ̄−init) without the constraint (6.16).

Ignoring the fixed initial active control, the problems (CIA−θ̄) and (CIA-TV) are closely con-
nected because the TV constraints (4.9) and (4.10) can be reinterpreted as an objective function
subject to a fixed approximation error θ̄. This justifies the naming. In fact, (CIA−θ̄) is the same
as problem (CIA-DEC) from Definition 6.1, but with an altered objective function and K = θ̄.

The MDR algorithm from the previous subsection (heuristically) solves (CIA−θ̄−init), and by
applying this algorithm to all i ∈ [nω] as initial active controls, we exploit this relationship to
solve (CIA−θ̄) as well, providing a link to the AMDR scheme. We stress that fixing the initial
active control i0 may seem odd. Nevertheless, fixing it reduces the problem complexity, which
later yields an optimality result in Theorem 6.2, Section 6.7.3, for the solution constructed by
the MDR algorithm with respect to (CIA−θ̄−init).

We note that (CIA−θ̄−init) is similar to (SCARP) from [27, 28]. (SCARP) aims to minimize the
switching costs and represents a generalized objective function, whereas in (CIA−θ̄−init) the
initial active control is fixed.

Remark 6.8 (Link to scheduling theory)
On an equidistant grid, (CIA−θ̄) can be reformulated into the following equivalent scheduling
problem [155]: On a single machine, minimize the total setup costs (TSC) until the N th pro-
cessed job, N ≤ n, so that n jobs ( f ,k) are processed within f ∈ [nω] job families subject to
release times r f ,k , deadlines d f ,k , equal processing times ∆̄, and sequence-independent setup
costs; this can be summarized in scheduling notation [105] as(

1|r f ,k ,d f ,k ,SCsi,b = 1, p f ,k = ∆̄| TSC|N1
)

.

In other words, the formation of batches is the subject of the scheduling problem, where a batch
is a set of jobs of the same family that is processed between two setups of a given schedule or
between the beginning/end of the schedule and a setup. We note that the above problem is very
similar to (CIA-Sched), which is not surprising given the similarity of (CIA-θ̄) and (CIA-DEC).
In the following, we revert to scheduling-like concepts but explicitly dispense with scheduling
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notation to prevent confusion with the usual mixed-integer optimal control problem (MIOCP)
notation.

We next need to establish several definitions to derive a lower bound for (CIA−θ̄−init) at the
end of this subsection. We stress that we establish our results on an equidistant grid but that
this assumption is dropped in some of the definitions used in later sections.

Definition 6.22 (Activations, release ri ,k , and deadline intervals di ,k )
For each control i ∈ [nω] on an equidistant grid GN , we introduce the number of possible activa-
tions ni as

ni := max

{
k ∈N

∣∣∣∣∣ N∑
l=1

a∗
i ,l −k ≥−θ̄/∆̄

}
.

Each activation k ∈ [ni ] is associated with a release and a deadline interval, which are defined
by

ri0,1 := 1, di0,1 := 1, (6.17)

ri ,k := min

{
j ≥ ri ,k−1 +1

∣∣∣∣∣ j∑
l=1

a∗
i ,l −k ≥−θ̄/∆̄

}
, with ri ,0 := 0, (6.18)

di ,k :=


∞, if

∑N
l=1 a∗

i ,l −k ≤ θ̄/∆̄,

max

{
j

∣∣∣∣ j∑
l=1

a∗
i ,l −k ≤ θ̄/∆̄

}
, else.

(6.19)

Finally, we call the kth activation of control i necessary if di ,k <∞.

Definition 6.23 (Interval of j th switch τ j , activation block B , length of block δ)
Consider w ∈ ΩN . Let the number of switches of w be defined as nσ := |T V (w )| with T V as
introduced in (3.5). We denote by τ j ∈ {2, . . . , N } the corresponding interval of the j th switch
of w , where we set τ0 := 0, τnσ+1 := N . On an equidistant grid and if control i ∈ [nω] is active
between two consecutive switches or between one switch and the first/last interval, we define the
set of activations of i between these switches as an activation block B ⊆ [ni ]. On a general grid,
we further define the length of the j th activation block between the ( j −1)st switch on, i.e., τ j−1,

and before the j th switch, i.e., τ j −1, via the auxiliary variable δ j =∑τ j−1
l=τ j−1

∆l for j ∈ [nσ+1].

We note that the switches actually occur on the grid points. However, we have indexed the vari-
ables wi , j according to the intervals, and therefore, for simplicity, we refer to switches on inter-
vals in this subsection. In the following, we sometimes abbreviate activation block as block. To
keep the number of used switches small and when deciding to set up a new block, it is highly
relevant to know the maximum number of activations that could be included into the block,
beginning with activation k. An activation j > k cannot be included in the block if its release
interval begins later than the deadline interval of activation k plus the number of activations
between k and j . We give a definition that formalizes these deadlines for initial activation-
dependent block deadlines. Based on these block deadlines, it is straightforward to introduce
the notion of a block deadline feasible partition of activations into blocks. Due to the con-
straint (6.16), the first activation of control i0 must be executed on the first interval, for which
we introduce the definition of fixed initial active control feasibility.
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Definition 6.24 (d bi ,k , block deadline and fiac feasible partition)
Consider an equidistant grid. For i ∈ [nω], the deadline of a block that begins with the kth acti-
vation, k ∈ [ni ], is defined by

dbi ,k := di ,l , where l := max{ j ≥ k | ri , j ≤ di ,k + j −k}. (6.20)

Let Pi denote a partition of all activations [ni ] for i ∈ [nω]. We call Pi block deadline feasible if
and only if for all subsets B ∈ Pi , i.e., all blocks, the following holds:

ri ,max{k∈B} ≤ di ,min{k∈B} +|B |−1.

Furthermore, we refer to Pi as a fixed initial active control (fiac) feasible partition if and only if
for all k ∈ B1 it holds that

ri ,k = k,

where B1 ∈ Pi denotes the first activation block of Pi .

In the last definition, we provided the concept of a control specific partition of all activations.
The kth activation of control i ∈ [nω] generally does not coincide with the kth interval. The
following example illustrates the concepts introduced in this section and in particular, demon-
strates that in total there may be more possible but fewer necessary activations than intervals
N .

Example 6.1
Let the following matrices a∗ ∈AN and w ∈ΩN be given for equidistant discretization:

a∗ :=

 1 1 0.8 0 0 0 0 0 0.5
0 0 0.2 0 0.1 0.8 1 1 0.5
0 0 0 1 0.9 0.2 0 0 0

 , w :=

 1 1 1 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0
0 0 0 1 1 0 0 0 0

 ,

where nω = 3, N = 9. Consider i = 1 to be the fixed initial active control, and set a rounding
threshold of θ̄ = 1∆̄. Then in total, there are eleven possible activations with their release and
deadline intervals:

i = 1 : [r1,k ,d1,k ] = [1,1], [2,3], [3,9], [9,∞],

i = 2 : [r2,k ,d2,k ] = [1,6], [6,7], [7,8], [8,∞],

i = 3 : [r3,k ,d3,k ] = [1,5], [4,6], [6,∞].

There are 4,3, and 2 activations in w for the controls i = 1,2, and 3, respectively. These ac-
tivations are grouped into four activation blocks so that w uses three switches. For instance,
the first block of control i = 1 has a length of δ1 = 3∆̄, and its deadline is db1,1 = d1,3 = 9.
The partition P1 = {{1,2,3}, {4}} is fiac feasible for i = 1. For control i = 3, the partitions
P3 = {{1,2,3}}, {{1,2}, {3}} are, amongst others, block deadline feasible.

As illustrated in Example 6.1, a feasible solution w of (CIA−θ̄−init) may not use all possible
activations. To this end, we define an extension of the set of blocks of w to become a partition of
[ni ] for all i ∈ [nω] in the following lemma. The extension may seem arbitrary, but it is necessary
to compare any w ∈ΩN with partitions of [ni ]. Thereby, we establish a connection between the
above feasibility concepts and a feasible solution w of (CIA−θ̄−init).
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Lemma 6.1
For an equidistant grid, let w ∈ΩN be feasible for (CIA−θ̄−init) and let P ′

i denote the set of blocks

of w for control i ∈ [nω]. We define P ′
i := {k ∈ [ni ] | @ B ∈ P ′

i : k ∈ B} and Pi := P ′
i

⋃
k∈P ′

i

{k}. Then, Pi

is a block deadline feasible partition and if i = i0, Pi is also fiac feasible.

Proof. We first argue that Pi is by definition a partition of [ni ]. We need to prove that these
partitions are block deadline feasible, respectively fiac feasible. If for i ∈ [nω] and an activation
block B ∈ Pi it holds that

ri ,max{k∈B} > di ,min{k∈B} +|B |−1,

it implies that the (max{k ∈ B})th activation of i has been processed before its release inter-
val because B cannot be interrupted by activations from other controls. Therefore, the above
inequality does not hold and block deadline feasibility is established. We apply the same argu-
ment to confirm fiac feasibility. By constraint (6.16), the first activation of i0 is scheduled on
the first interval. Hence, all activations k ∈ B1 of the first block B1 must be processed on the kth
interval and therefore require a release interval that is no later than k.

Remark 6.9 (Necessary condition for feasibility of (CIA−θ̄−init))
The formation of activations into block deadline and for i0, into fiac feasible partitions is a nec-
essary feasibility criterion of w ∈ΩN for (CIA−θ̄−init) by virtue of Lemma 6.1. Nevertheless, it
is not a sufficient criterion since the order of the processing of blocks is not clarified. In par-
ticular, one might order the blocks such that one block contains an activation whose release
interval is later than its executed interval.

Next, we formalize specific partitions of the possible activations ni of control i , whose blocks
are constructed to include as many activations as possible without violating their block dead-
lines. These quantities serve as tools for deriving a lower bound of necessary blocks per control
independent of the blocks of other controls. This results in a lower bound for (CIA−θ̄−init) in
Proposition 6.2. We distinguish between the case in which i is the fixed initial active control,
i.e., i = i0, and that in which it is not.

Definition 6.25 (Pi ,min, P init
i ,min)

Consider an equidistant grid and the controls i0, i ∈ [nω]. Let

k1 := max{ j ≤ ni | di , j ≤ dbi ,1}, Bi ,1 := {1, . . . ,k1}, (6.21)

k init
1 := max{ j ≤ ni | ri0, j = j }, B init

i0,1 :=
{

1, . . . ,k init
1

}
. (6.22)

We write (·) (init)
i to indicate that equations or inequalities apply to both the parameters (·)i and

(·) init
i0

. We define the blocks B (init)
i ,l recursively for l ≥ 2 and while k (init)

l < ni by

k (init)
l

:= max
{

j ≤ ni | di , j ≤ dbi ,k (init)
l−1 +1

}
, B (init)

i ,l
:=

{
k (init)

l−1 +1, . . . ,k (init)
l

}
. (6.23)

Let nb (init)
i ,min denote the number of blocks B (init)

i ,l and P (init)
i ,min the partitions of [ni ] constructed by the

latter:
P (init)

i ,min :=
{

B (init)
i ,l | l ∈

[
nb (init)

i ,min

]}
.
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The MDR scheme creates switches on intervals that resemble the above k (init)
l terms. The latter,

however, only expresses the grouping of activations, whereas the switches also explicitly specify
the corresponding intervals. It turns out that the partitions Pi ,min and P init

i0,min are minimal in the
number of blocks, as indicated in the following proposition.

Proposition 6.1 (Pi ,min and P init
i0,min are minimal in the number of blocks)

For i0, i ∈ [nω], let the partitions Pi ,min, P init
i0,min be given as in Definition 6.25. For any partition

Pi of [ni ], with i = i0 included, we define its restriction to the first ñi ≤ ni activations as

Pi |ñi
:= {B ∩ [ñi ] | B ∈ Pi } .

Then for any ñi ≤ ni , the partition Pi ,min, respectively P init
i0,min, consists of a minimal number of

blocks on the first ñi activations compared with all other block deadline feasible, respectively
both block deadline and fiac feasible, partitions Pi :∣∣∣∣P (init)

i ,min

∣∣∣
ñi

∣∣∣∣≤ ∣∣Pi |ñi

∣∣ . (6.24)

Proof. We consider first Pi ,min
∣∣
ñi

. It is block deadline feasible because the deadline of the last
activation for each block is defined in (6.21) and (6.23) to be less than or equal to the corre-
sponding block deadline. Assume there is a block deadline feasible partition Pi for the control

i ∈ [nω] with
∣∣Pi |ñi

∣∣ < ∣∣∣Pi ,min
∣∣
ñi

∣∣∣. In other words, there exists a subset of the first j blocks of

Pi |ñi
that includes more activations than the ones included into the first j blocks of Pi ,min

∣∣
ñi

.
We consider the minimal number of blocks j with this property:

j := min
{

l ∈ [nbi ,min] | Bi ,l ∈ Pi ,min
∣∣
ñi

, B ′
i ,l ∈ Pi |ñi

: max{k ∈ Bi ,l } < max{k ∈ B ′
i ,l }

}
. (6.25)

The block index j is unique since the association of activations to blocks is monotonically in-
creasing, meaning that there are no k1th, k2th activations, k1 < k2, with k1 ∈ Bi ,l1 ,k2 ∈ Bi ,l2 , and
l1 > l2. We conclude

min{k ∈ B ′
i , j } ≤ min{k ∈ Bi , j }, B ′

i , j ∈ Pi |ñi
, Bi , j ∈ Pi ,min

∣∣
ñi

, (6.26)

such that the first activation k ′ of block B ′
i , j is smaller than or equal to k, which marks the

earliest activation of Bi , j . The definition of release intervals (6.18) implies ri ,k ′ ≤ ri ,k for k ′ ≤ k.
Similarly, the definition of block deadlines (6.20) implies dbi ,k ′ ≤ dbi ,k for ri ,k ′ ≤ ri ,k , and in
particular, with (6.26) we find

dbi ,min{k∈B ′
i , j } ≤ dbi ,min{k∈Bi , j }. (6.27)

On the other hand, the definition of Pi ,min in (6.23) implies

dbi ,k j−1+1 = max{k ∈ Bi , j }. (6.28)

Then, the definition of j yields

dbi ,min{k∈Bi , j }
(6.23)= dbi ,k j−1+1

(6.28)= max{k ∈ Bi , j } < max{k ∈ B ′
i , j } ≤ dbi ,min{k∈B ′

i , j }, (6.29)
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where the last inequality must hold due to the assumption that Pi is block deadline feasible.
Inequality (6.27) contradicts inequality (6.29); equivalently, there are no such partitions Pi and
Pi ,min that indeed use a minimal number of blocks on any [ñi ] ⊆ [ni ].

For j ≥ 2, the same argumentation in equation (6.25) can be applied in order to prove the
result for P init

i0,min since Pi0 is also assumed to be block deadline feasible in this case; the same

holds for P init
i0,min from the second block on. We still need to deal with the case when j = 1, i.e.,

if Bi0, j , respectively B ′
i0, j , is the first block of control i0. Here, max{k ∈ Bi0,1} < max{k ∈ B ′

i0,1}
cannot occur since Pi0 is assumed to be fiac feasible and the construction of the first block of
P init

i0,min implies that no further activation can be added to Bi0,1 without violating fiac feasibility.

Thus, j = 1 is impossible in (6.25), and P init
i0,min is also minimal in the number of blocks.

Corollary 6.2 (Pi ,min and P init
i0,min involve the minimal number of blocks until N )

Consider the setting of Proposition 6.1 and the controls i0, i ∈ [nω]. We define

ñi ,N := max{k | di ,k ≤ N }, nbN
i ,min :=

∣∣∣Pi ,min
∣∣
ñi ,N

∣∣∣ , nbN ,init
i0,min :=

∣∣∣∣P init
i0,min

∣∣∣
ñi0,N

∣∣∣∣ .

There is no block deadline feasible partition, respectively block deadline and fiac feasible parti-
tion, that uses less than nbN

i ,min blocks on [ñi ,N ], respectively nbN ,init
i0,min blocks on

[
ñi0,N

]
.

Proof. The result follows directly from Proposition 6.1 with ñi = ñi ,N and ñi0 = ñi0,N .

As final result for this section, we establish a lower bound for (CIA−θ̄−init) that will be useful
in Theorem 6.2.

Proposition 6.2 (Lower bound for (CIA−θ̄−init))
Let σ? be the objective of (CIA−θ̄−init) with equidistant discretization and i0 be the fixed initial

active control, as defined in Definition 6.21. Let nbN
i ,min for all i 6= i0 and nbN ,init

i0,min be given as in
Corollary 6.2. This gives the result:∑

i∈[nω],i 6=i0

nbN
i ,min +nbN ,init

i0,min −1 ≤σ?. (6.30)

Proof. By virtue of Lemma 6.1, a feasible solution of (CIA−θ̄−init) satisfies the necessary condi-
tion of generating only block deadline feasible partitions Pi , and if i = i0, the activation partition
Pi is also fiac feasible. Moreover, all activations are executed no later than their deadline inter-
val. In particular, this holds for those activations that are due no later than N . Hence, we can
apply Corollary 6.2 and thus conclude that the minimum number of blocks of a feasible solu-
tion until the N th activation is nbN

i ,min, respectively nbN ,init
i0,min. Finally, we obtain the claim (6.30)

by summing over all controls and using the fact that the setup of the first block does not count
as a switch.

6.7.3 Solution quality and properties of MDR and AMDR

Although the MDR algorithm may seem simple, it generates optimal solutions w AMDR for
(CIA−θ̄−init) under certain conditions, for which we need the following definition.

Definition 6.26 (Canonical switch)
Consider a given θ̄ > 0. We define a switch j to be canonical if on interval τ j the following holds:
exactly one control i1 is θ̄-inadmissible, and exactly one control i2 6= i1 is θ̄-forced.

95



CHAPTER 6 ALGORITHMS FOR SOLVING (CIA) PROBLEMS

We build the theoretical results in this section primarily on the following assumption.

Assumption 6.1 (MDR uses only canonical switches)
Suppose w MDR ∈ ΩN has been generated by MDR. We assume that all switches of w MDR are
canonical.

Properties of the MDR algorithm

Assumption 6.1 may seem restrictive, although it is satisfied under certain conditions. The
following lemma is not only useful for Proposition 6.3 but is also required for Lemma 7.9 on
page 127.

Lemma 6.2 (Properties of Control Accumulation γ and θ)
Consider a∗ ∈AN and w ∈ΩN . For each j ∈ [N ] it holds that∑

i∈[nω]
θi , j = 0,

∑
i∈[nω]

γi , j =∆ j .

Proof. These equations follow directly from Definition 6.16 of θ and γ as well as from the con-
vexity property of a∗ and w .

Proposition 6.3 (MDR with nω = 2 and θ̄ ≥ 1
2 ∆̄ uses canonical switches)

Consider nω = 2, a∗ ∈AN , and any grid GN . If we choose θ̄ ≥ 1
2 ∆̄, then the control function w MDR

constructed by the MDR scheme uses only canonical switches.

Proof. We have to prove

1. If control i1 is θ̄-forced on interval j ≥ 2, then it is θ̄-admissible.

2. For all intervals j ≥ 2, control i1 is θ̄-inadmissible if and only if i2 6= i1 is θ̄-forced.

The first statement follows from the definition of θ̄-forced activation and from θ̄ ≥ 1
2 ∆̄:

θi1, j = θi1, j−1 +a∗
i1, j∆ j −∆ j > θ̄−∆ j ≥−1

2
∆̄≥−θ̄.

To prove the second statement, assume i1 is θ̄-forced on j ∈ [N ], i.e., γi1, j > θ̄. By virtue of
Lemma 6.2 for γi2, j , we derive

θi2, j−1 +a∗
i2, j∆ j = γi2, j <−θ̄+∆ j ,

which means that i2 is θ̄-inadmissible on j . Conversely, if i1 is θ̄-inadmissible on j , we
conclude from θi1, j−1 + (a∗

i1, j − 1)∆ j < −θ̄ and from the equation for θ in Lemma 6.2 that

γi2, j = θi2, j−1 +a∗
i2, j∆ j > θ̄. Therefore, i2 is θ̄-forced.

Remark 6.10
Assumption 6.1 is not necessarily true for a control problem that involves more than two binary
controls. It may, however, hold for special cases of such problems. For instance, if the relaxed
values are of the bang-bang type and θ̄ is chosen to be smaller than the smallest activation
block, then the situation resembles the case nω = 2, and Assumption 6.1 may hold (without
proof). On the other hand, Example 6.3 demonstrates that this assumption can indeed be quite
restrictive.
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Assumption 6.1 allows us to favorably prove properties of control functions obtained by MDR
and AMDR. The first result demonstrates that the MDR scheme indeed produces control func-
tions that exhibit an integral deviation gap smaller than or equal to θ̄.

Lemma 6.3 (MDR solution satisfies θ̄ bound)
Let Assumption 6.1 hold, and let w MDR ∈ ΩN be constructed by MDR with given threshold θ̄.
Then, we obtain θ(w MDR) ≤ θ̄.

Proof. As soon as the activated control becomes θ̄-inadmissible or there is a θ̄-forced control
on interval j ≥ 2, by the definition of MDR, w MDR has a switch. By Assumption 6.1, the newly
activated control is both θ̄-forced and θ̄-admissible. Hence, θi , j ≥ −θ̄, and there is no other
θ̄-forced control on j ; thus, θi , j ≤ θ̄.

The following example demonstrates that θ(w MDR) > θ̄may generally appear without Assump-
tion 6.1.

Example 6.2 (Counterexample for Assumption 6.1)
Consider an equidistant discretization and a∗ ∈AN with the first values given as a∗

1,1 = 1, a∗
2,1 =

0, a∗
1,2 = 0.5, a∗

2,2 = 0.5. For this relaxed value, let w MDR ∈ΩN be the corresponding binary con-

trol function computed by MDR with given threshold θ̄ = 0.4∆̄ and initial control i = 1. Then,
wMDR

1,2 = 0, wMDR
2,2 = 1 holds since the second control becomes θ̄-forced on the second interval.

At the same time, control i = 2 is θ̄-inadmissible on the second interval; hence Assumption 6.1
is violated, and it results θ2,2 =−0.6∆̄<−θ̄.

The following theorem states that under certain assumptions MDR constructs a binary control
that uses a minimum number of switches. We reuse concepts from the previous subsection,
especially activations and their grouping into blocks, and build the proof upon Proposition 6.2.

Theorem 6.2 (Least switches property of MDR)
Let Assumption 6.1 hold. For given a∗ ∈AN and an equidistant grid, let w MDR be constructed by
MDR with i as initial control and any θ̄ > 0, where we assume that i is initially admissible. Let
σ(w MDR) denote the number of switches used by w MDR. Then, for the optimal objective value σ∗

of (CIA−θ̄−init) with i0 = i as initial control, it holds that

σ∗ =σ(
w MDR)

. (6.31)

Proof. We can conclude w MDR is a feasible solution of (CIA−θ̄−init) by Lemma 6.3. Combining
this with Proposition 6.2 yields∑

i∈[nω],i 6=i0

nbN
i ,min +nbN ,init

i0,min −1 ≤σ∗ ≤σ(
w MDR)

. (6.32)

To prove optimality, we note that w MDR constructs partitions of the activations [ni ], i ∈ [nω],
that are due no later than N and denote these partitions by P MDR

i . Using the notation from
Corollary 6.2, we want to show that these partitions coincide with the partitions constructed in
Definition 6.25:

P MDR
i0

= P init
i0,min

∣∣∣
ñi0,N

, P MDR
i = Pi ,min

∣∣
ñi ,N

, for i 6= i0 (6.33)
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because Corollary 6.2 would then imply that w MDR has
∑

i∈[nω],i 6=i0
nbN

i ,min +nbN ,init
i0,min activation

blocks or equivalently that

σ
(
w MDR)= ∑

i∈[nω],i 6=i0

nbN
i ,min +nbN ,init

i0,min −1.

The claim follows from inequality (6.32). Consider the first blocks B1 ∈ P MDR
i0

and B init
1 ∈ P init

i0,min.

By Assumption 6.1, the MDR algorithm activates i0 until it becomes θ̄-inadmissible on interval
τ1 of the first switch:

θi0,τ1 =
τ1∑

l=1
ai0,l −wi0,l <−θ̄/∆̄.

We compare this inequality with Definition 6.22 of release intervals and note that either the
next activation τ1 of control i0 has a release interval that is later than τ1 or there is no further
possible activation. Thus, if the τ1th activation exists, then its release interval has not yet been
reached:

ri0,τ1 = ri0,max{k∈B1}+1 > max{k ∈ B1}+1.

By the definition of P init
i0,min, we conclude that B1 = B init

1 . We now consider the j th blocks

B j ∈ P MDR
i0

and B init
j ∈ P init

i0,min

∣∣∣
ñi0,N

, where j ≥ 2. Again by the definition of MDR and Assump-

tion 6.1, i0 is θ̄-forced on interval τ j , which is equivalent to di0,min{k∈B j } = τ j . The MDR scheme

activates i0 either until N (at which point B j = B init
j trivially) or until it becomes θ̄-inadmissible

on interval τ j+1 (by Assumption 6.1). With the argument for j = 1, θ̄-inadmissible means
hereby the (max{k ∈ B j }+1)th activation has a release interval greater than τ j+1. Because the
first activation τ j of the block is processed on its deadline interval di0,min{k∈B j }, we get

ri0,max{k∈B j }+1 > di0,min{k∈B j } +|B j |−1.

The above inequality demonstrates that B j contains as many activations as possible without
violating its block deadline dbi0,min{k∈B j } and by construction of P init

i0,min, this is equivalent to

B j = B init
j . This settles the case i = i0 in (6.33). We can reuse the above arguments about θ̄-

forced and θ̄-inadmissible activation for j ≥ 2 in order to analogously prove the case i 6= i0 in
(6.33).

Remark 6.11 (Equidistant discretization is critical)
Theorem 6.2 is predicated on the assumption of an equidistant grid. We stress that after grid
refinement of the MIOCP, i.e., after several rounds of applying the CIA decomposition, this
might be a restriction.

The following corollary establishes a way to find the optimum of (CIA−θ̄−init) in the setting of
Theorem 6.2.

Corollary 6.3 (Using MDR to find a control function with the minimum number of switches)
Consider the setting of Theorem 6.2. A control function w∗ that uses a minimum number of
switches, i.e., σ (w∗) =σ∗, can be found by running MDR.

Proof. Let i be the initial control of w∗. Execute MDR with i as the initial control so that the
result follows directly from Theorem 6.2.
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It is not clear which initial active control is optimal for minimizing the number of switches. In
practice, MDR must be executed for all controls i ∈ [nω], one after the other, as the initial active
control. This is expressed by the following corollary.

Corollary 6.4 (Link between MDR and (CIA−θ̄))
Consider the setting of Theorem 6.2. We assume that for all i ∈ [nω] as initial active controls the
MDR algorithm constructs the control functions w MDR that use only canonical switches. Then,
there is a minimizing control w∗ ∈ΩN for (CIA−θ̄) that only uses canonical switches. Moreover,
there exists i0 ∈ [nω] such that running MDR with i0 as the initial control produces w MDR ∈ΩN

that minimizes (CIA−θ̄).

Proof. If the MDR algorithm produces w MDR, which only uses canonical switches, w MDR is
optimal by Theorem 6.2 for (CIA−θ̄−init) with the corresponding initial control fixed. Then,
the result follows from the fact that the optimal solution of (CIA−θ̄) is contained in the set
of optimal solutions for the set of problems (CIA−θ̄−init) with each control i ∈ [nω] initially
fixed.

Lemma 6.4 (Implication of θ(w MDR) > θ̄ for nω = 2)
Consider a∗ ∈ AN on an equidistant grid, and assume nω = 2. Let w MDR denote the control
function constructed by MDR with θ̄ > 0 and given initial control. If θ(w MDR) > θ̄, then there is
no control function w ∈ΩN with the same initial active control and θ(w ) ≤ θ̄.

Proof. We consider the first interval j on which the accumulated control deviation of w MDR is
greater than θ̄. Let control i1 be active on j . By definition of the MDR scheme, |θi1, j | > θ̄ or
|θi2, j | > θ̄ can only appear if there is a switch on interval j and

1. i1 is both θ̄-forced and θ̄-inadmissible on interval j , or

2. both i1 and i2 are θ̄-inadmissible on interval j .

Proposition 6.3 establishes that w MDR uses only canonical switches for θ̄ ≥ 1
2 ∆̄, and thus, the

above cases cannot appear for θ̄ ≥ 1
2 ∆̄. Let us focus on θ̄ < 1

2 ∆̄. In order to create a control
function w that fulfills θ(w ) ≤ θ̄, we need to change at least one activation of w MDR on an earlier
interval l < j . However, we recognize that any earlier change of activation is not possible:
• We cannot extend an activation block at its end since the active control is θ̄-inadmissible.
• If the active control i1 is θ̄-admissible on l , then the other control i2 is not θ̄-forced on l

– otherwise it would be active in the MDR scheme. This means that θi2,l−1 + ai2,l ∆̄ ≤ θ̄.
Activating i2 on l results in

θi2,l = θi2,l−1 + (ai2,l −1)∆̄≤ θ̄− ∆̄<−1

2
∆̄<−θ̄,

where we applied θ̄ < 1
2 ∆̄. This indicates that the integral deviation gap of w is again greater

than θ̄.
Hence, no previous activation w MDR can be changed such that there is no w with θ(w ) ≤ θ̄.

Properties of the AMDR algorithm

Theorem 6.3 states that the AMDR algorithm can find the optimal solution of (CIA-TV) for nω =
2 and equidistant discretization. Otherwise, strict assumptions are required for optimality, and
in general, the feasible solution that is found represents only a promising upper bound.
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Theorem 6.3 (Properties of AMDR)
AMDR terminates for given a∗ ∈AN , T OL > 0, and σmax ∈N after a finite number of iterations.
Furthermore, consider an equidistant grid GN . Let w AMDR denote the solution constructed by
AMDR. It follows that

1. w AMDR is a feasible solution of (CIA-TV).

2. a) If nω = 2, for the optimum θ∗ of (CIA-TV), we have θ(w AMDR) ≤ θ∗+T OL.

b) Let nω > 2. We assume that in every run the AMDR scheme uses only canonical
switches. Furthermore, suppose we have the following: If the MDR scheme constructs
a solution with θ(w MDR) > θ̄, then there is no control function w ∈ΩN with the same
initial active control and θ(w ) ≤ θ̄. With these assumptions, for the optimum θ∗ of
(CIA-TV), we obtain θ(w AMDR) ≤ θ∗+T OL.

3. AMDR has time complexity O (nω ·CMDR · log2(d(t f − t0)/T OLe)), where CMDR ∈ O (N ) de-
notes the time complexity of the MDR scheme.

Proof. AMDR is a bisection algorithm that either decreases U B (lines 7 - 8) or increases LB
(lines 12 - 13) by at least one half of (U B −LB) in every while loop iteration (line 2). Because
of this and T OL > 0, we conclude that the while loop and AMDR as a whole terminate after
finitely many iterations.

1. The objective of (CIA-TV) cannot be greater than t f − t0, even when no switches are al-
lowed, i.e., σmax = 0. Since we initialize the AMDR algorithm with U B = t f − t0, it finds a
feasible solution in any case.

2. Every w MDR generated by MDR in line 5 that satisfies the TV constraints together with
θ(w MDR) <U B represents an upper bound on θ∗, i.e., U B = θ(w MDR) ≥ θ∗. To prove that
AMDR constructs valid lower bounds LB on θ∗, we exploit that w MDR only uses canonical
switches for nω = 2 and by assumption for nω > 2, making Corollary 6.4 applicable. For
given θ̄, if there is no initial control i ∈ [nω] for which MDR produces w MDR that uses
fewer or an equal number of switches as required by the TV constraints, we conclude
that there exists no such w ∈ΩN for this specific threshold θ̄ by Corollary 6.4. Therefore,
LB = θ̄ ≤ θ? is a true lower bound on the optimal (CIA-TV) objective value. Moreover,
if for a given θ̄ and all initial controls i ∈ [nω], MDR constructs control functions w MDR

with θ(w MDR) > θ̄, Lemma 6.4 and the assumption in (b) guarantee that this θ̄ is also a
true lower bound on the optimal (CIA-TV) objective value. Altogether, AMDR iteratively
generates valid lower bounds LB and upper bounds U B for θ∗ and produces a feasible
solution that is optimal up to the chosen tolerance T OL.

3. MDR runs forward in time and computes solely the accumulated control deviation γ and
θ for all intervals j ∈ [N ]; therefore, CMDR ∈O (N ). The interval halving in AMDR ensures
that we execute the while loop a maximum of log2((t f − t0)/T OL) times. Inside this loop,
in the worst case, we need to run the MDR scheme with all nω controls as initial controls.
Combining these findings yields the asserted complexity.
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Remark 6.12 (AMDR modifications)
Several meaningful modifications are available for the AMDR algorithm. We may also use it to
find control functions that fulfill other combinatorial constraints, such as MDT constraints, by
checking them together with the TV constraint in line 5. As part of the MDR scheme, the control
with maximum forward control deviation γ is activated if the previously active control is θ̄-
inadmissible. One might choose a less greedy variant instead. For instance, we could activate
the θ̄-next-forced and θ̄-admissible control. Lastly, the initial upper bound U B can be reduced,
as we point out in Section 7.5.

Remark 6.13 (AMDR viewed as a generalization of SUR)
If we drop the TV constraint on w , the AMDR scheme finds a control function with the same
objective value as that obtained by the control function of SUR (without proof).

Most of the results in this section are based on the assumption of an equidistant discretization,
which is common in practice. The assumption of dealing only with canonical switches in the
produced control function is critical. The following example demonstrates that a control func-
tion generated by MDR with non-canonical switches may use more switches than needed or
may not satisfy the rounding bound θ̄.

Example 6.3 (Possible MDR outcome without Assumption 6.1)
Consider an equidistant grid. Let the two relaxed values a1, a2 ∈AN be defined as

(
a1

i , j

)
i∈[3], j∈[3]

:=

 1 0.25 0
0 0.375 0.5
0 0.375 0.5

 ,
(
a2

i , j

)
i∈[3], j∈[3]

:=

 1 0.2 0
0 0.4+ε 0
0 0.4−ε 1

 , 0 < ε< 0.4.

Then, MDR with i = 1 as the initial control and θ̄1 = 0.75∆̄, respectively θ̄2 = (0.6+ ε)∆̄, con-
structs the following control functions:

(
wMDR,1

i , j

)
i∈[3], j∈[3]

:=

 1 1 0
0 0 1
0 0 0

 ,
(
wMDR,2

i , j

)
i∈[3], j∈[3]

:=

 1 0 0
0 1 0
0 0 1

 .

In the first example, two controls are simultaneously θ̄-forced on the third interval; the (CIA-TV)
objective value would be smaller if w3,2 = 1 was chosen. In the second example, the MDR con-
structs a control function that uses two switches, although activating the third control on the
second interval would result in only one switch with almost the same (CIA-TV) objective value.
The examples have the use of non-canonical switches in common. Hence, the improved con-
trol functions would be

(
wOPT,1

i , j

)
i∈[3], j∈[3]

:=

 1 0 0
0 0 1
0 1 0

 ,
(
wOPT,2

i , j

)
i∈[3], j∈[3]

:=

 1 0 0
0 0 0
0 1 1

 .

6.8 Other approaches

A common approach to solving MILPs that has not been mentioned in this chapter is Branch-
and-Cut. This method investigates the polyhedral structure of the constraints of the MILP.
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JUNG used the software Porta [58] to find the describing facets of the polytope that corresponds
to the feasible set of (CIA) [135]. However, it turns out that the facets to the approximation
inequality constraints (4.4) contain many non-zero coefficients and are abundant. Therefore,
JUNG concluded “we assume that there is no good cutting plane approach for this problem
class” (page 122 in [135]).

Recently, BESTEHORN et al. [28] proposed a shortest-path approach for solving (CIA−θ̄), us-
ing a generalized objective function that aims to minimize a switching costs function FC over
w ∈ΩN :

FC (w ) := F s
c (w·,1)+

N∑
j=2

F j
c (w·, j−1, w·, j )+F e

c (w·,N ),

where F s
c ,F e

c , and F j
c denote the initial, terminal, and switching costs, respectively. This objec-

tive can also be used to minimize the total number of switches by setting F j
c = 1 and F s

c = F e
c = 0.

The authors of [28] derive a parameterized directed acyclic graph that represents the feasible
solutions of the altered (CIA−θ̄) problem. The graph is constructed with the following proper-
ties:

• The vertices represent different activations of control modes in w .

• Each vertex of the j th layer of the graph, with j ∈ [N ], indicates a feasible combination of
fixed activations in w up to and including the j th interval.

• There are only directed arcs from nodes of the j th layer to nodes of the ( j +1)st layer.

• An arc exists between two nodes w1, w2 if and only if w2 equals w1 up to and including
the j th interval and the realization of w2 on the ( j +1)st interval is feasible with respect
to the approximation inequality constraint (6.15), i.e., θi , j+1 ≤ θ̄ for all i ∈ [nω].

• Apart from the initial and terminal costs, the costs of a path in the graph are associated
with arcs that connect vertices with different control mode activations on intervals j and
( j +1).

Assuming an equidistant grid, one can exploit that for any control mode i ∈ [nω], and for any
layer, respectively interval, the order of the activations on previous intervals is irrelevant for
checking the feasibility of outgoing arcs to the next layer because only the number of intervals
on which i is active is necessary for evaluating the approximation inequality constraint (6.15).
By this assumption and observation, the size of the graph can be reduced considerably since
nodes with the same number of activations per control mode can be aggregated to an equiv-
alent node in the layer. Only the following information the j th layer needs to be stored in the
nodes themselves:

• its predecessor node,

• a label vector that includes the number of activations
∑

l∈[ j ] wi ,l per mode i up to and
including the j th interval, and

• the associated costs.

With these ideas at hand, a shortest path algorithm similar to Dijkstra’s algorithm can be ap-
plied to on the graph. The numerical results reported in [28] are promising with respect to the
run time. Moreover, it is mentioned that the graph can model MDTs.
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6.9 Summary

This chapter has introduced a variety of algorithms that solve (CIA) under different restrictions
and situations. The complexity reduction heuristic 6.1 is distinct in that it does not solve (CIA),
but reduces the problem size. We use Table 6.1 to classify the algorithms presented in this
chapter in terms of their applicability. The algorithms are listed in ascending order with respect
to their anticipated run time, e.g., SUR should (heuristically) solve a (CIA) problem faster than
NFR does.

For the sake of completeness, as an algorithmic option, we also list standard MILP solvers,
which are usually based on BnB methods but are not tailor-made for (CIA) problems like the
BnB methods from Sections 6.3 and 6.4. An MILP model can generally include a large class
of constraints, making MILP solvers a powerful tool for testing new constraint models. How-
ever, because of the shorter computation times of custom-made algorithms [135, 50], they are
recommended over MILP solvers when possible.

SUR is widely applied to heuristically solve the unconstrained (CIA). Its success is due to
its speed (run time complexity O (N )) and robust approximation properties. For the case nω =
2 and equidistant discretization, it even computes optimal solutions. If an optimal solution
on an equidistant grid is desired, a bisection using NFR with an adaptive rounding threshold
should be applied; it performs in polynomial time, see Corollary 6.1. On a general grid, the
BnB algorithms, which are often still very fast (with an order of magnitude of 10−2 seconds for
medium-size problems [50]), compute optimal solutions. We group the algorithms BnB and
STO-BnB together since their run times have not yet been intensively compared. STO-BnB is
advantageous for problems with few switches, whereas BnB is preferable for a large number
of switches. The shortest path approach involves a lower anticipated run time than the BnB
algorithms because it was designed specifically for equidistant problems.

For (CIA) problems with MDT constraints, DNFR and DSUR are the methods of choice if
computational speed is the top priority, e.g., in the context of nonlinear model predictive con-
trol (MPC). AMDR is also a heuristic algorithm but constructs a binary control solution in poly-
nomial time, too. For the general (CIA-UD) problem, BnB and STO-BnB compute optimal so-
lutions in reasonable times and are therefore recommended.

The situation with TV constraints is similar to that with MDT constraints, though the AMDR
algorithm is custom-made for the (CIA-TV) problem class and constructs optimal solutions for
nω = 2 and equidistant discretization. Thus, AMDR represents a valid alternative to BnB and
STO-BnB for large problem sizes.

We list the shortest path approach with a question mark for (CIA) problems with general
combinatorial constraints since the constraints that it can handle are not discussed in detail
in [28]. We assume that it is a beneficial algorithm for the equidistant case. The BnB algo-
rithm implementation of pycombina (see Chapter 8) accommodates a range of combinatorial
constraints beyond MDT and TV constraints and is therefore recommended for the general
(multiple) constrained case.

To construct binary controls that incorporate further data from (NLPrel), such as the eval-
uated model function f̃ or the cost-to-go λ̃, as suggested in Section 4.5.1, so far only MILP
models are available, apart from the heuristic rounding schemes H -SUR, H -Rounding, and
Scaled-SUR. We also use the MILP model to test the first-order Taylor path constraint approxi-
mation approach from Definition 4.14 since it provides high flexibility for further constraints.
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Problem type Algorithms

(CIA) SUR‡, NFR?, Bisection-NFR†, Shortest path†,
BnB/ STO-BnB, MILP solver

(CIA-U), (CIA-D), (CIA-
UD)

DNFR?, DSUR?, AMDR?, Shortest path†, BnB/
STO-BnB, MILP solver

(CIA-TV) AMDR‡, Shortest path†, BnB/ STO-BnB, MILP
solver

(CIA) with multiple com-
binatorial constraints

Shortest path†?, BnB/ STO-BnB, MILP solver

Including further data
from (NLPrel) into (CIA)

H -SUR?, Scaled-SUR?, MILP solver

Table 6.1: List of (CIA) rounding problems and the corresponding applicable algorithms. The
problems and their features are marked in dark-blue, and algorithms are highlighted
in burgundy red. We distinguish between the unconstrained problem (CIA); the min-
imum dwell time-constrained problems (CIA-U), (CIA-D), (CIA-UD); and the total
variation constrained problem (CIA-TV) in the first, second, and third rows, respec-
tively. The fourth row includes algorithms that can deal with multiple combinatorial
constraints, including minimum dwell time and total variation constraints. In the
last row, we list algorithms designed to incorporate further information from (NLPrel),
such as data with respect to the path constraints or the evaluated model function f̃ ,
into the rounding problem. Bisection-NFR refers to Remark 6.1 and Corollary 6.1,
where we pointed out that (CIA) can be solved via bisection and NFR. The shortest
path approach refers to the one proposed by BESTEHORN et al., discussed in Sec-
tion 6.8. By MILP solver, we refer to a black-box solver program such as Gurobi.
The algorithms are listed in ascending order with respect to their anticipated run
time. Heuristic algorithms are marked with ?, optimal algorithms that work only for
equidistant grids are marked with †, and algorithms that construct optimal solutions
for nω = 2 and equidistant grids are marked with ‡; all other algorithms construct
optimal solutions.
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Chapter 7

Approximation results for the integral deviation gap

This chapter investigates approximation bounds of the binary controls constructed by the new
algorithms introduced in Chapter 6. For this, we return to the integral deviation gap θ(w ) for
w ∈ ΩN as defined in Definition 4.5. The aim of (CIA) is to minimize the integral deviation
gap, i.e., minw∈ΩN θ(w ). Since the lower bound on the integral deviation gap is trivially zero
(and can be reached), when we refer to bounds in this chapter, we always mean upper bounds.
Thus, we investigate how large the objective function value θ∗ of (CIA) and its combinatorial
constraint variants can become. In other words, we examine

θmax := max
a∈AN

min
w∈ΩN

max
i∈[nω], j∈[N ]

| θi , j | s.t. combinatorial constraints. (7.1)

We observe the trivial upper bound

θmax ≤ ∑
j∈[N ]

∆ j = t f − t0

and another weak result in the following remark.

Remark 7.1 (Upper bound for θmax from Minimax theory)
Neglecting combinatorial constraints for a moment, it is known from Minimax theory [268] that

max
a∈AN

min
w∈ΩN

max
i∈[nω], j∈[N ]

|θi , j | ≤ min
w∈ΩN

max
a∈AN

max
i∈[nω], j∈[N ]

|θi , j |

holds. On the right side of the inequality, we maximize over a for given w and check which
value of w leads to an overall minimum objective. In this way, a manipulates the control de-
viation to be as large as possible. That is, for a given w , it is possible to set ai min, j = 1, j ∈ [N ],
where i min is the control with the smallest total accumulation

∑
j∈[N ] wi , j∆ j such that we ob-

tain the (CIA) objective value θ∗ =∑
j∈[N ](1−wi min, j )∆ j . With these arguments, one can derive

θmax ≤
(

N −
⌊

N

nω

⌋)
∆̄.

We omit the exact proof since this bound is generally weak, as we will see later in this chapter.

In this chapter, we derive bounds for θmax for (CIA) under the predominantly investigated
combinatorial constraints: the MDT constraints (4.11) and (4.12) as well as the TV constraints
(4.9) and (4.10). Section 7.1 establishes auxiliary lemmata for our results. In Sections 7.2 and
7.3, we investigate the integral deviation gaps of DSUR and DNFR each for MDT constraints.
It emerges that the DNFR scheme is particularly suitable for deriving integral deviation gap
bounds on (CIA) and its MDT constraint variants. We state approximation results for (CIA),
(CIA-U), (CIA-D), and (CIA-UD) by means of DNFR-constructed solutions in Section 7.4. For
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the AMDR algorithm, we have already proven approximation properties related to the optimal
solution in Section 6.7. We use these properties and the MDR scheme to derive bounds on the
integral deviation gap of (CIA-TV) in Section 7.5. Finally, we summarize the obtained bounds
and previously established approximation results for the rounding algorithms in Section 7.6.

7.1 Auxiliary lemmata

We present a series of lemmata that are necessary for the proofs of Theorem 7.3 and Theo-
rem 7.4, which establish DNFR-related approximation results. These lemmata are based on
[282], Section 5, as well as Appendix A.1 and build on Definitions 6.14- 6.17.

Lemma 7.1 (Family of dwell time block sets)
The family of dwell time block interval sets {Jb}b∈[nb ], as introduced in Definition 6.14 is a par-
tition of the set of all interval indices [N ].

Proof. This follows directly from the definition of dwell time block interval sets.

Lemma 7.2 (Block-accumulated control deviation properties of Γi ,b andΘi ,b )
For all b ∈ [nb] we have that ∑

i∈[nω]
Γi ,b =Lb ,

∑
i∈[nω]

Θi ,b = 0.

Proof. From Lemma 6.2 we know that∑
i∈[nω]

θi , j = 0 for all j ∈ [N ] (7.2)

holds. We use this and rearrange the sums in order to prove the first assertion:

∑
i∈[nω]

Γi ,b = ∑
i∈[nω]

(
θi ,lb−1 +

∑
j∈Jb

a∗
i , j∆ j

)
= 0+ ∑

i∈[nω]

∑
j∈Jb

a∗
i , j∆ j =

∑
j∈Jb

∑
i∈[nω]

a∗
i , j∆ j

(Conv)= ∑
j∈Jb

∆ j

=Lb .

The auxiliary result is also useful for the second statement:∑
i∈[nω]

Θi ,b = ∑
i∈[nω]

θi ,lb−1

(7.2)= 0.

Lemma 7.3 (Accumulated difference of Γ andΘ over active controls)
Let b1,b2 ∈ [nb], and define Sb1,b2 as the set of active controls between b1 and b2:

Sb1,b2 := {i ∈ [nω] | ∃b : b1 < b < b2 with wi , j = 1, ∀ j ∈Jb}.

Then, we have ∑
i∈Sb1,b2

(
Γi ,b2 −Θi ,b1

)≤L .
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Proof. Using Definition 6.16 of Γ,Θ and rearranging the sums yields

∑
i∈Sb1,b2

(
Γi ,b2 −Θi ,b1

)= ∑
i∈Sb1,b2

(
b2∑

b=b1+1

∑
j∈Jb

a∗
i , j∆ j −

b2−1∑
b=b1+1

∑
j∈Jb

wi , j∆ j

)

=
b2∑

b=b1+1

∑
j∈Jb

∆ j
∑

i∈Sb1,b2

a∗
i , j︸ ︷︷ ︸

≤1

−
b2−1∑

b=b1+1

∑
j∈Jb

∆ j
∑

i∈Sb1,b2

wi , j︸ ︷︷ ︸
=1

≤
b2∑

b=b1+1

∑
j∈Jb

∆ j −
b2−1∑

b=b1+1

∑
j∈Jb

∆ j

=Lb2 ≤L .

Note that Sb1,b2 is trivially the empty set if b2 ≤ b1 + 1, but the result remains true in this
case. We employ the concept of Sb1,b2 for a contradiction in the proofs of Theorem 7.3 and
Theorem 7.4.

Lemma 7.4 (Control with negative Γ value has not been future forced)
Let (C1,C2,χD ) be given, and assume that after executing DNFR (Algorithm 6.5), the forward
control deviation of a control i ∈ [nω] and a block b2 ≥ 2 satisfies:

Γi ,b2 ≤C2L −L , and Γi ,b2 < 0.

Then, there is an earlier activation of i on some block b1 < b2, and this activation has not been
b2-future forced on b1.

Proof. Note that Γi ,b is monotonically increasing in b for deactivated controls i . We conclude
from this and Γi ,b2 < 0 that there is an earlier activation of i on some block b1 < b2. We take a
closer look at the forward control deviation on block b2:

C2L −L ≥ Γi ,b2 =
b2∑

k=1

∑
j∈Jk

a∗
i , j∆ j −

b1∑
k=1

∑
j∈Jk

wi , j∆ j =
b2∑

k=1

∑
j∈Jk

a∗
i , j∆ j −

b1−1∑
k=1

∑
j∈Jk

wi , j∆ j −Lb1 .

Rearranging the terms implies

b2∑
k=1

∑
j∈Jk

a∗
i , j∆ j −

b1−1∑
k=1

∑
j∈Jk

wi , j∆ j ≤C2L −L +Lb1 ≤C2L .

The last inequality shows that i has been not b2-future forced on b1.

We introduce a grid on which an MDT C1 > 0 overlaps the grid points by a small ε > 0. This
grid represents a worst case for the accumulated control difference and is therefore useful for
evaluating the tightness of bounds.

Definition 7.1 (Minimal C1-overlapping grid)
Consider a non-degenerate MDT length, i.e., C1 > 0, and let for ε hold C1 À ε > 0. Further, let a
time horizon [t0, t f ] be given with length at least 4C1, i.e.,

t f ≥ t0 +4C1.
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We define a minimal C1-overlapping grid GN recursively as follows:

t1 := t0 +C1 −ε,

t2 := t1 +C1,

t j :=
{

t j−1 +C1 −ε, if j odd,

t j−1 +C1, if j even,
for j = 3, . . . , N −1,

where we set N −1 := max
{

j |t j < t f
}
, so that GN consists of N intervals.

t0 t1 t2 t3 t4 · · · tN−1 tN

C1 −ε C1 C1 −ε C1 ≤C1

L1 L2

Figure 7.1: Visualization of a minimal C1-overlapping grid.

We determine the length of the resulting dwell time blocks in the following lemma.

Lemma 7.5 (Block length in a minimal C1-overlapping grid)
The dwell time-invoked blocks Jb , b ∈ [nb], of a minimal C1-overlapping grid, as introduced in
Definition 7.1, have the length

Lb = 2C1 −ε, b ∈ [nb −1],

Lnb = t f − (t0 + (nb −1)(2C1 −ε)) .

Moreover, we have
∆̄=C1, L = 2C1 −ε.

Proof. We refer to Definition 6.14 from which we deduce J1 = {1,2} because t0+C1 (minimally)
overlaps t1. The next dwell time block begins at t2 = t0 + 2C1 − ε and again consists of two
intervals. This argumentation can be extended to the first nb−1 blocks, and by the definition of
block lengths, we conclude Lb = 2C1 −ε. The length of the last block Lnb is directly computed
from the definition of N −1 to be the last index of the grid point recursion before t f . Finally, the
definition of a minimal C1-overlapping grid and the obtained block lengths imply

∆̄=C1, L = 2C1 −ε.

The following technical lemma is taken from [222], Lemma 8, and is used in the proof of
Theorem 7.6.

Lemma 7.6
For N ,σmax ∈N, where 1 ≤σmax ≤ N −2, let R ∈Q be defined by

R := N

3+2σmax
.

We have

2dRe0.5 −1 ≤
⌊

N −dRe
σmax +1

⌋
, (7.3)
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where we indicate by dxe0.5 the rounding up of x ∈ R to the next multiple of 0.5 as defined in
Appendix A.

Proof. Since R is a rational number with 3+2σmax in the denominator, we have

dRe0.5 ≤
N

3+2σmax
+0.5

(
1− 1

3+2σmax

)
. (7.4)

Moreover, using basic properties of the floor and ceiling functions yields

dRe ≤ dRe0.5 +0.5, (7.5)

N −dRe
σmax +1

− σmax

σmax +1
≤

⌊
N −dRe
σmax +1

⌋
. (7.6)

Next, we calculate

2(dRe0.5 −1) = (2dRe0.5 −1)(σmax +1)−1

(σmax +1)
− σmax

σmax +1

= (2dRe0.5 −1)(σmax +1)+dRe0.5 −1

(σmax +1)
− dRe0.5

(σmax +1)
− σmax

σmax +1

= dRe0.5 (3+2σmax)− (σmax +1)−1

(σmax +1)
− dRe0.5

(σmax +1)
− σmax

σmax +1

(7.4)≤
(

N
3+2σmax

+0.5− 1
2(3+2σmax)

)
(3+2σmax)− (σmax +2)

(σmax +1)
− dRe0.5

(σmax +1)
− σmax

σmax +1

= N −0.5

(σmax +1)
− dRe0.5

(σmax +1)
− σmax

σmax +1
− 1

2(σmax +1)
(7.5)≤ N

(σmax +1)
− dRe

(σmax +1)
− σmax

σmax +1
− 1

2(σmax +1)

= N −dRe
(σmax +1)

− σmax

σmax +1
− 1

2(σmax +1)
(7.6)≤

⌊
N −dRe
σmax +1

⌋
− 1

2(σmax +1)

<
⌊

N −dRe
σmax +1

⌋
.

Both 2(dRe0.5 −1) ∈ Z and
⌊

N−dRe
σmax+1

⌋
∈ Z are valid, so from the above inequality we can deduce

that

2(dRe0.5 −1) ≤
⌊

N −dRe
σmax +1

⌋
−1.

7.2 Bounds for dwell time sum-up rounding

This section is based on Chapter 6 and Appendix C in [282]. We investigate bounds of DSUR
under minimum up (MU) and minimum down (MD) time constraints. Kirches et al. [149]
proved the tightest possible bound on the integral deviation gap for SUR. From this, we can
derive implications for DSUR in the absence of MD conditions.
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Theorem 7.1 (Tight bound for SUR integral deviation gap, Theorem 6.1 in [149])
Let w SUR be constructed from a∗ ∈ AN by means of SUR for an equidistant discretization of
[t0, t f ], and denote by θ(w SUR) its (CIA) objective value. Then, the rounding gap is bounded by

θ(w SUR) ≤ ∆̄
nω∑
i=2

1

i
,

which is the tightest possible upper bound.

Corollary 7.1 (Tight bound for DSUR integral deviation gap without MD times)
For the MD time CD , let CD <∆ hold, and let an MU time CU > 0 be given. Let the time horizon
[t0, t f ] be discretized with a minimal CU -overlapping grid, and let w DSUR be constructed from
a∗ ∈ AN by means of DSUR. Then, the rounding gap θ(w DSUR) of the (CIA-UD) objective value
is bounded by

θ(w DSUR) ≤ (CU + ∆̄)
nω∑
i=2

1

i
,

which is the tightest possible upper bound.

Proof. As in the proof of Theorem 7.1 in [149], a dynamic programming argument can be ap-
plied, here with an equidistant dwell time block length of (CU +∆̄−ε), as derived in Lemma 7.5.
With a time horizon length of nω(CU + ∆̄− ε), analogous to the proof of Theorem 7.1, we may
construct an example that indicates the tightness of the bound as follows:

ai , j :=


0, if 2i +1 ≤ j ≤ N ,

1/(nω+1− j /2), if j is even,

1/(nω+1− ( j +1)/2), if j is odd,

1 ≤ j ≤ N = 2nω.

For this example, the DSUR scheme constructs a binary control solution that switches directly
after each dwell time block with length (CU +∆̄−ε). Moreover, the controls i ∈ [nω−1] are each
active on dwell time block i so that the last control nω accumulates the asserted rounding gap
until the end of dwell time block nω−1.

Remark 7.2 (DSUR as a generalization of SUR)
The last corollary implicitly states that DSUR can be seen as a generalization of the original
SUR algorithm since it reduces to the latter for a negligible MDT CU ,CD ≤∆.

Theorem 7.1 does not allow a direct conclusion for the case with absent MU times and an
active MD time CD >∆. It is at least possible to provide worst-case examples for a ∈AN to get
a rough idea of how large the upper bound can be for the DSUR integral deviation gap without
MU times. This is expressed in the following theorem.

Theorem 7.2 (Integral deviation gap for DSUR without MU times)
Consider an inactive MU time constraint, i.e., CU ≤ ∆ and an equidistant grid GN . We assume
for the MD time

CD > (2(nω−1)−1)∆̄. (7.7)

For the grid, let the following hold:

N ≥ (nω−1)(1+MD )+dMD /2e−1, (7.8)
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where MD denotes the number of MD time intervals constructed by CD , i.e., MD := dCD /∆̄e. Then,
there is an a ∈AN that yields a (CIA-D) objective value θ(w DSUR) of w DSUR constructed by DSUR
with

θ(w DSUR) ≥
(

MD

2
+ (nω−2)

)
∆̄. (7.9)

Proof. Using (7.7) and the definition of MD , we obtain MD ≥ 2(nω − 1). Notice that even if
CD /∆̄ ∉N, for the cardinality of the dwell time index sets, we still find |J SUR

k (CD )| = MD ∈N for
k ≤ N −MD because we are using an equidistant grid. Hence, we calculate the forward control
deviation of the currently activated control in the DSUR algorithm (line 3) on the subsequent
MD intervals.

We prove the claim by proving the following claims: for any nω ≥ 2, CD , and N fulfilling (7.7)
and (7.8), there is an a ∈AN with

ai , j = 0, for i = 2, . . . ,nω, j = 1, . . . , i −1, (7.10)

resulting in a constructed w DSUR with

wDSUR
i , j = 0, for i = 2, . . . ,nω, j = 1, . . . , i −1, (7.11)

and

θ2, j =
(

MD

2
+ (nω−2)

)
∆̄, j = (nω−1)(1+MD )+dMD /2e−MD . (7.12)

This implies Claim (7.9) by the definition of the objective value of (CIA-D). We proceed via
induction.
Base case:
nω = 2: By assumption we have MD ≥ 2∆̄ and thus, a nontrivial MD time. We construct a ∈AN

on N = (1+MD )+dMD /2e−1 intervals. If Claim (7.12) is true for this a, it also holds for N ≥
(1+MD )+dMD /2e−1 because we can extend a by inserting arbitrary unit vector columns after
the last column without affecting Claim (7.12). We consider

a :=



(
1 0 · · · 0 1 · · · 1

0 ︸ ︷︷ ︸
j ∈ J̃1

1 · · · 1 ︸ ︷︷ ︸
j ∈ J̃2

0 · · · 0

)
,

J̃1 = {2, . . . , MD /2+1},

J̃2 = {MD /2+2, . . . , N },
if MD even,

(
1 0 · · · 0 0.5 1 · · · 1

0 ︸ ︷︷ ︸
j ∈ J̃1

1 · · · 1 0.5 ︸ ︷︷ ︸
j ∈ J̃2

0 · · · 0

)
,

J̃1 = {2, . . . ,dMD /2e},

J̃2 = {dMD /2e+2, . . . , N },
if MD odd.

Because a2,1 = 0, (7.10) is true. The DSUR algorithm activates the first control on interval j = 1.
Then, i = 1 is the currently activated control. Assuming i = 1 is active until 2 ≤ k −1 ≤ MD /2
when MD is even, respectively 2 ≤ k −1 ≤ dMD /2e when MD is odd, its dwell time block index
set is J SUR

k (CD ) = {k, . . . ,k +MD −1} and its forward control deviation on interval k, as given in
line 5 of DSUR amounts to

θ1,k−1 +
∑

l∈J SUR
k (CD )

a1,l ∆̄=−(k −2)∆̄+ (MD /2+ (k −2))∆̄= MD

2
∆̄.

111



CHAPTER 7 APPROXIMATION RESULTS FOR THE INTEGRAL DEVIATION GAP

On the other hand, the forward control deviation for i = 2 on interval k amounts to

γ2,k = θ2,k−1 +a2,k ∆̄=
{

(k −2)∆̄+0.5∆̄= MD /2, if MD odd and k −1 = dMD /2e,

(k −2)∆̄+1∆̄= (k −1)∆̄≤ MD /2, else.

We observe that for all intervals k, the forward control deviation for control i = 1 is greater
than or equal to that of i = 2, and we let DSUR deliberately choose i = 1 to be active in case
of equality. Hence, wDSUR

1, j = 1, for j ∈ [N ]. This implies that control i = 2 stays inactive and in
particular, that (7.11) is true. Combining this with the above forward control deviation for i = 2
yields

θ2,1+dMD /2e = MD

2
∆̄,

which settles Claim (7.12) for nω = 2.

Inductive step: We show that if the claim holds for nω−1, then it is also true for nω.

Let a(nω−1) ∈ [0,1](nω−1)×((nω−2)(1+MD )+dMD /2e−1) denote a matrix for which DSUR constructs a
w DSUR that satisfies Claims (7.10)-(7.12) for nω−1 controls. We construct a ∈AN on N = (nω−
1)(1+MD )+dMD /2e−1 intervals and with nω controls. As for the base case, we can argue for
neglecting the case N > (nω − 1)(1+ MD )+ dMD /2e − 1. Let Ik denote the identity matrix of
dimension k ×k, and let 0k denote the zero matrix of dimension k ×n, where n is specified by
the dimension of the block matrix below the zero matrix. We consider the following matrix

(ai , j )i∈[nω], j∈[N ] :=
(

Inω

Inω−1 0nω−1 a(nω−1)

0 · · · 0 ︸ ︷︷ ︸
j ∈ J̃

1 · · · 1 0 · · · 0

)
, J̃ = {2nω, . . . , MD +1},

where the third block of columns may be nonexistent if 2nω > MD +1. The first two blocks of
columns, however, are well-defined since MD ≥ 2(nω−1) by (7.7) and thus, 2nω−1 ≤ MD+1. The
above matrix is defined on N intervals, with N chosen as above, since we add MD +1 intervals
to the existing (nω−2)(1+MD )+dMD /2e−1 intervals from a(nω−1). We first note that (7.10) is
satisfied by a. Second, we claim that DSUR constructs the following w DSUR ∈W :

(wDSUR
i , j )i∈[nω], j∈[N ] :=

(
Inω

0nω−1 w DSUR,(nω−1)

︸ ︷︷ ︸
j ∈ J̃

1 · · · 1 0 · · · 0

)
, J̃ = {nω+1, . . . , MD +1},

where w DSUR,(nω−1) denotes the solution obtained by DSUR for a(nω−1). We first justify this
value for the intervals k = 1, . . . ,nω:

• k = 1: DSUR selects control i = 1 because a1,1 = 1.

• k = 2: Control i = 1 is currently activated with a forward control deviation of ∆̄, calculated
on the subsequent MD intervals. The forward control deviation for control i = 2 amounts
to γ2,2 = θ2,1 +a2,2∆̄= 0+ ∆̄. Therefore, DSUR may set the control i = 2 to be active.

• k = 3: We use the inductive hypothesis for a(nω−1) and Claim (7.10), which yields a(nω−1)
2,MD+2 =

0. Thus, the forward control deviation of control i = 2 is ∆̄, which is the same as for i = 3.
We let DSUR deliberately set the control i = 3 to be active.
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• k = 4, . . . ,nω: We argue analogously to the case k = 3.

Hence, (7.11) is established. After control i = nω has been activated on interval k = nω, all other
controls are down time forbidden until interval MD +1. Thus, control i = nω stays active up to
and including interval MD +1. Because the controls i = 1, . . . ,nω−1 are only active once before
interval MD + 1, but

∑
k∈[MD+1] ai ,k∆̄ = 2∆̄, we conclude that θi ,MD+1 = ∆̄. This justifies why

DSUR constructs w DSUR,(nω−1) after interval MD +1:

• The controls i = 2, . . . ,nω − 1 are down time forbidden on the intervals k = (MD + 1) +
1, . . . , (MD +1)+ i −1, but they are not activated these intervals in w DSUR,(nω−1) anyway,
according to the inductive hypothesis (7.11).

• The control deviation for control nω is negative, i.e., θnω,k = −(MD + 1 − nω)∆̄ for k ≥
MD +1, so control nω is not activated after interval MD +1.

• All other controls 1, . . . ,nω − 1 start with the same control deviation θi ,MD+1 = ∆̄ when
DSUR iterates on interval MD +2. Thus, DSUR constructs the same w from a(nω−1) as it
would construct from a(nω−1) starting with the first interval and θi ,0 = 0. By the inductive
hypothesis, this implies that DSUR generates w DSUR,(nω−1).

The inductive hypothesis regarding (7.12) implies for w DSUR,(nω−1)

θ2, j =
(

MD

2
+ ((nω−1)−2)

)
∆̄, j = ((nω−1)−1)(1+MD )+dMD /2e−MD .

We argued that this control deviation value is increased by ∆̄ in w DSUR and that before the
choice of w DSUR,(nω−1) there exist MD +1 columns in w DSUR. So, (7.12) is also true for nω con-
trols.

Remark 7.3 (Rounding gap for DSUR with MU and MD constraints)
Generally, when the problem setting involves both MU and MD time constraints, i.e., CD ,CU >
∆, the worst-case integral deviation gap constructed by the DSUR scheme is at least the maxi-
mum of the bounds obtained in Corollary 7.1 and Theorem 7.2.

7.3 Bounds for dwell time next-forced rounding

We investigate the integral deviation gap for binary controls constructed by DNFR with speci-
fied parameter choices for C2 and χD . These investigations are presented as two theorems; the
proofs of which follow a similar approach as that for Proposition 4.8 in [135]. In Theorem 7.3,
we examine how large the control deviation can become as part of the DNFR algorithm during
an MD time phase. Based on this result, in Theorem 7.4, we derive that DNFR constructs (CIA)
feasible solutions with objective bounds that depends on the rounding threshold C2 and on
whether down time forbidden controls are allowed, i.e., χD = 1. This section reproduces results
from Section 5.1 in [282].

Theorem 7.3 (Γ of a down time forbidden control as part of DNFR)
Let a∗ ∈ AN , (C2,χD ) = (3

2 ,1
)
, and C1 ≥ 0 be given and assume there is a down time forbidden

control iD ∈ I D
b on dwell time block b ≥ 3 after DNFR has been executed. Then, the forward

control deviation satisfies
ΓiD ,b ≤ 3

2L .
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Proof. We proceed via induction.
Base case: We consider the first block b on which a down time forbidden control iD ∈ [nω] ap-
pears and assume that

ΓiD ,b > 3
2L (7.13)

holds; we prove that this results in a contradiction. It follows from Lemma 7.2 that

3
2L ≥Lb = ∑

i 6=iD

Γi ,b +ΓiD ,b ,

so there must be a control i1 6= iD with negative forward control deviation on b:

∃ i1 6= iD : Γi1,b < 0.

We apply Lemma 7.4 to the last inequality: i1 has not been b-future forced on its last activation,
and we denote the dwell time block of this activation by b1. In other words, we know that there
is at least one dwell time block b1 and one control i1 that was not b-future forced on b1 and was
still activated on b1. We denote by i1 the control of this property with the last activation before
b. By this definition, we observe that all controls that are activated after b1 would become
forced until b. We notate

Fb1,b := {i ∈ [nω] | ∃k(i ) : b1 < k(i ) ≤ b on which i is forced or b-future forced}.

In particular, we have iD ∈ Fb1,b . For i ∈ Fb1,b\{iD } we conclude

Γi ,b =Θi ,b−1 +
∑

j∈Jb

ai , j∆ j =
b∑

k=1

∑
j∈Jk

ai , j∆ j −
k(i )−1∑

k=1

∑
j∈Jk

wi , j∆ j > 3
2L ,

and therefore,
Γi ,b > 3

2L −Lk(i ), i ∈ Fb1,b\{iD }. (7.14)

The last inequality holds, since control i was last activated at dwell time block k(i ). For dwell
time block b1, we know that i1 was chosen, despite not being b-future forced. We use this
observation and our assumption that b > b1 is the first dwell time block with a down time
forbidden control to conclude that all controls from Fb1,b were inadmissible on b1. Hence, for
i ∈ Fb1,b , it results that

Γi ,b1 <−3
2L +Lb1 , ⇒ Θi ,b1 <−3

2L +Lb1 . (7.15)

We sum up the inequalities (7.13) and (7.14) over Fb1,b and similarly for (7.15), which yields∑
i∈Fb1,b

Γi ,b > 3
2L + (|Fb1,b |−1)

(
3
2L −Lb2

)
, (7.16)

∑
i∈Fb1,b

Θi ,b1 < |Fb1,b |
(
−3

2L +Lb1

)
, (7.17)

where we set b2 := argmin{Lk | b1 < k ≤ b} and denote by |Fb1,b | the cardinality of Fb1,b . Sub-
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tracting (7.17) from (7.16) results in∑
i∈Fb1,b

(
Γi ,b −Θi ,b1

) > 3
2L + (|Fb1,b |−1)

(
3
2L −Lb2

)
−|Fb1,b |(−3

2L +Lb1 )

= 3
2L + (2|Fb1,b |−1) 3

2L − (|Fb1,b |−1)Lb2 −|Fb1,b |Lb1

≥ 3
2L + (2|Fb1,b |−1) 1

2L

>L . (7.18)

We used Lb1 ,Lb2 ≤ L in the second inequality. We finish our calculations by considering the
property of Fb1,b comprising all control activations between dwell time block b1 +1 and b −1.
Therefore, we can apply Lemma 7.3 with Fb1,b = Sb1,b and obtain∑

i∈Fb1,b

(
Γi ,b −Θi ,b1

)≤L ,  (7.19)

which contradicts inequality (7.18).
Inductive step: Let the assertion hold until any dwell time block b −1 ∈ [nb]; we prove that the
statement holds for b. Again, we consider iD ∈ [nω] and assume that

ΓiD ,b > 3
2L (7.20)

holds; we prove that this results in a contradiction. With similar argumentation as in the base
case we deduce that there is a control i1 that has not been b-future forced on dwell time block
b1 < b and reuse the definition of Fb1,b . Thus, inequality (7.14) still holds. Now, we distinguish
between two cases in which the controls from Fb1,b were not activated on b1. If all controls
i ∈ Fb1,b were inadmissible on b1, we can argue as in the base case. Hence, we focus on the
other case: there is an i2 ∈ Fb1,b that was down time forbidden on b1, while all other controls i ∈
Fb1,b\{i2} were inadmissible. By the inductive hypothesis and the previously derived inequality
(7.15) we have

Θi2,b1 ≤ 3
2L , Θi ,b1 <−3

2L +Lb1 , i ∈ Fb1,b\{i2}.

Summing up these inequalities over Fb1,b therefore results in∑
i∈Fb1,b

Θi ,b1 < 3
2L +|Fb1,b −1|

(
−3

2L +Lb1

)
. (7.21)

Next, we argue that Fb1,b contains at least two controls: the case b1 = b −1 is not possible since
iD is forced and down time forbidden on b by assumption and hence admissible on b−1. There-
fore, b1 ≤ b −2, and there is a control i 6= iD , i ∈ Fb1,b , that is activated on b −1. Altogether, we
have |Fb1,b | ≥ 2. With this observation we subtract inequality (7.21) from (7.16):∑

i∈Fb1,b

(
Γi ,b −Θi ,b1

) > 3
2L + (|Fb1,b |−1)

(
3
2L −Lb2

)
−

(
3
2L + (|Fb1,b |−1)(−3

2L +Lb1 )
)

= 3(|Fb1,b |−1)L − (|Fb1,b |−1)Lb2 − (|Fb1,b |−1)Lb1

≥ (|Fb1,b |−1)L

≥L .
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Note that |Fb1,b | ≥ 2 is used in the last inequality. Finally, we again build on Lemma 7.3, where
it is justified to set Fb1,b = Sb1,b . The above inequality thus contradicts the inequality from the
lemma, and we have shown that the assertion holds for all b ∈ [nb] on which a down time
forbidden control exists.

With the last theorem, we already have a statement about the control deviation for down time
forbidden controls. The next result goes further and establishes a connection between DNFR
and (CIA).

Theorem 7.4 (Rounding gap of solution constructed by DNFR)
Let a∗ ∈AN and the following parameter settings be given:

I. (C2,χD ) =
(

2nω−3
2nω−2 ,0

)
,

II. (C2,χD ) = (3
2 ,1

)
,

and C1 ≥ 0. Then, w DNFR obtained by DNFR is a feasible solution of (CIA) for both cases with
approximation quality

θ(w DNFR) ≤ C2L .

Proof. The assertion can be shown in a very similar way for the parameter choices I and II, and
we therefore prove both cases in parallel. Since for each dwell time block b ∈ [nω], the algorithm
activates either a forced, future forced, or admissible control and the family of dwell time blocks
is a partition of [N ] by Lemma 7.1, exactly one control is activated on each interval j ∈ [N ].
Therefore, the (Conv) constraint is satisfied. Hence, DNFR guarantees the feasibility of w DNFR.
If down time forbidden controls are neglected, i.e., χD = 0, w DNFR yields an objective value with
at most the claimed upper bound by the definitions of admissible and forced activation. The
same holds for the choice χD = 1 since by Theorem 7.3, the control deviation does not exceed
the claimed upper bound during an MD time phase. Therefore, we only need to prove that
DNFR always provides a solution. To this end, we show that for each interval there is 1.) at least
one admissible control and 2.) at most one forced control.

1.) We prove by contradiction that there exists at least one admissible control. Assume that
there is no admissible activation for dwell time block b ∈ [nb] and distinguish between
the following cases:

I. With C2 = 2nω−3
2nω−2 , we assume

Γi ,b <−2nω−3

2nω−2
L +Lb , i ∈ [nω],

and we prove that this results in a contradiction. It follows from summing up all
controls and from Lemma 7.2 that

Lb = ∑
i∈[nω]

Γi ,b < nω

(
−2nω−3

2nω−2
L +Lb

)
=−nω

2nω−3

2nω−2
L +nωLb .

Subtracting nωLb from the right-hand side yields

(1−nω)L ≤ (1−nω)Lb <−nω
2nω−3

2nω−2
L =−nωL+ nω

2(nω−1)
L

nω≥2≤ (1−nω)L .  
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II. If there is no down time forbidden control on b, we can proceed as in I. Otherwise,
there may be one control iD that is down time forbidden. We assume all other con-
trols are inadmissible, i.e.,

Γi ,b <−3
2L +Lb , i ∈ [nω], i 6= iD ,

and we prove that this results in a contradiction. By Lemma 7.2

Lb = ∑
i∈[nω]

Γi ,b = ∑
i 6=iD

Γi ,b +ΓiD ,b < (nω−1)(−3
2L +Lb)+ΓiD ,b ,

and therefore,

3
2 (nω−1)L − (nω−2)Lb ≤ 3

2L < ΓiD ,b .  

The last inequality is a contradiction of Theorem 7.3.

We conclude that there must be an admissible activation for all dwell time blocks and
thereby for all intervals.

2.) If there were more than one forced controls at a time step, the algorithm would be am-
biguous in lines 3-4. Moreover, in this case, DNFR would provide a solution that does not
satisfy the upper bound on the objective. Therefore, we prove that this case is impossible
and again do so by contradiction. Assume that b ∈ [nb] is the dwell time block with the
smallest index on which at least two controls i1, i2 are forced, i.e.,

I . Γi1,b ,Γi2,b > 2nω−3
2nω−2L , I I . Γi1,b ,Γi2,b > 3

2L . (7.22)

In the proof of Theorem 7.3, we showed how to obtain a contradiction with only one for-
ward control deviation Γi ,b greater than the rounding threshold, which settles case II. We
thus focus on case I. for which we proceed very similarly as in the proof of Theorem 7.3.
We first apply Lemma 7.2:

L ≥Lb = ∑
i∈[nω]

Γi ,b = ∑
i∈[nω],
i 6=i1,i2

Γi ,b +
∑

i=i1,i2

Γi ,b > ∑
i∈[nω],
i 6=i1,i2

Γi ,b +2
2nω−3

2nω−2
L .

Hence, we have ∑
i∈[nω],i 6=i1,i2

Γi ,b <L −2
2nω−3

2nω−2
L =−2nω−4

2nω−2
L ,

which implies that there is at least one control i3 such that

Γi3,b <− 1

nω−2

2nω−4

2nω−2
L =− 2

2nω−2
L .

Then by Lemma 7.4, there is an earlier activation of i3 on some dwell time block b3 < b,
and this activation has not been b-future forced on b3. Let i3 denote the control of this
property with the last activation before b. This definition implies that all controls that are
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active between b3 and b become forced until b. We reuse the notation

Fb3,b := {i ∈ [nω] | ∃k(i ) : b3 < k(i ) ≤ b on which i is forced or b-future forced.}.

In particular, we find i1, i2 ∈ Fb3,b . For i ∈ Fb3,b\{i1, i2}, we apply the definition of Fb3,b and
Γ:

Γi ,b =Θi ,b−1 +
∑

j∈Jb

ai , j∆ j =
b∑

k=1

∑
j∈Jk

ai , j∆ j −
k(i )∑
k=1

∑
j∈Jk

wi , j∆ j .

Since control i was last activated on dwell time block k(i ) and b- future forced on k(i ),
we have

Γi ,b > 2nω−3

2nω−2
L −Lk(i ), i ∈ Fb3,b\{i1, i2}. (7.23)

For dwell time block b3, we know that i3 has been chosen even though it is not b-future
forced. This implies that i3 was selected on b3 because none of the controls from Fb3,b

were admissible at this dwell time block. Hence, for i ∈ Fb3,b , it results that

Γi ,b3 <−2nω−3

2nω−2
L +Lb3 , ⇒ Θi ,b3 <−2nω−3

2nω−2
L +Lb3 . (7.24)

Now, we consider the sum of inequalities (7.23) and (7.22) and sum up (7.24) over Fb3,b ,
yielding

∑
i∈Fb3,b

Γi ,b > 2
2nω−3

2nω−2
L + (|Fb3,b |−2)

(
2nω−3

2nω−2
L −Lb2

)
, (7.25)

∑
i∈Fb3,b3

Θi ,b3 < |Fb3,b |
(
−2nω−3

2nω−2
L +Lb3

)
, (7.26)

where b2 := argmin{Lk | b3 < k ≤ b}. Subtracting (7.26) from (7.25), we obtain

∑
i∈Fb3,b

(
Γi ,b −Θi ,b3

) > 2
2nω−3

2nω−2
L + (|Fb3,b |−2)

(
2nω−3

2nω−2
L −Lb2

)

−|Fb3,b |
(
−2nω−3

2nω−2
L +Lb3

)
= 2|Fb3,b |

2nω−3

2nω−2
L − (|Fb3,b |−2)Lb2 −|Fb3,b | Lb3

≥L

(
2|Fb3,b |

2nω−3

2nω−2
−2|Fb3,b |+2

)
(7.27)

=L

(
2− |Fb3,b |

nω−1

)
≥L . (7.28)

In (7.27) we used Lb2 ,Lb3 ≤L , while the last inequality holds since |Fb3,b | ≤ nω−1. As in
the proof of Theorem 7.3, we invoke Lemma 7.3 with Fb3,b = Sb1,b to raise a contradiction
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with inequality (7.28). Overall, we have shown that there is at most one forced activation
per dwell time block and thereby per interval. This completes the proof.

Remark 7.4 (Known integral deviation gap result for NFR as a special case of Theorem 7.4)
On closer inspection, the proof of Theorem 7.4 shows us that DNFR provides a solution with

control deviation bounded by C2L in the absence of MD time constraints, i.e., χD = 0, and for
any chosen rounding threshold C2 ≥ 2nω−3

2nω−2 and any dwell time block length parameter C1 ≥ 0.

This implies that the previously known result for NFR in Proposition 4.8, [135], θ(w NFR) ≤ ∆̄, is
a special case of DNFR with C1 = 0, and C2 = 1.

7.4 (CIA) with and without minimum dwell time constraints

We deduce specific bounds on the integral deviation gap for (CIA) and (CIA-U) as well as for
(CIA-D) and (CIA-UD) in Sections 7.4.1 and 7.4.2, respectively. The DNFR scheme and the
associated results from Section 7.3 are crucial for this section, the content of which comes from
Sections 5.2 and 5.3 in [282].

7.4.1 Implications for (CIA) and (CIA-U)

Theorem 7.4 states only generic approximation results for (CIA) with an MDT parameter C1. We
assess the consequences for (CIA-U) by specifying C1 and proving the tightness of the resulting
upper bound. Clearly, (CIA) is a special case of (CIA-U), where CU = 0, so results for (CIA-U) are
inherited by (CIA).

Proposition 7.1 (Upper bound for (CIA-U))
Let any MU time CU ≥ 0, grid GN and a∗ ∈AN be given. Then, for (CIA-U) the following holds:

θ∗ ≤ 2nω−3

2nω−2

(
CU + ∆̄)

.

Proof. We consider the DNFR scheme with (C1,C2,χD ) =
(
CU , 2nω−3

2nω−2 ,0
)
. Then, w DNFR is a fea-

sible solution by Theorem 7.4 and according to the property that DNFR activates dwell time
blocks of intervals with length at least C1 = CU . From the definition of block length, we con-
clude L <CU + ∆̄, and the assertion follows directly from Theorem 7.4.

We show that the deduced MU time bound is tight.

Proposition 7.2 (Tightness of the bound for (CIA-U))
Let an MU time CU ≥ 0 and a grid GN be given with

t f − t0 ≥ 2CU (nω−1).

Then, the objective bound for (CIA-U) mentioned in Proposition 7.1 is the tightest possible bound.

Proof. We first consider CU > 0 and construct an example with the desired objective value by
means of a minimal C1-overlapping grid, where we set C1 = CU . The proposition assumes a
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time horizon length of at least 2C1(nω−1), so the grid induced by Lemma 7.5 consists of at least
nb ≥ nω−1 dwell time blocks. Let a∗ ∈AN be given as

(ai , j )∗i∈[nω], j∈[N ] :=


1
2

1
2 0 · · · 0

1
2nω−2

1
2nω−2

1
nω−1 · · · 1

nω−1
...

...
...

. . .
...

︸ ︷︷ ︸
j ∈J1

1
2nω−2

1
2nω−2

1
nω−1 · · · 1

nω−1

 .

Consequently, in a∗, all controls i ∈ [nω], i 6= 1, assume the same values on each interval. After
the first dwell time block, we set control i = 1 to zero, while all other variables are set to 1

nω−1
for the remaining intervals, i.e., dwell time blocks. Next, we discuss how the optimal solution of
(CIA-U) on the first nω−1 dwell time blocks might be chosen. We calculate the control deviation
if we were to activate a control i = 2. . .nω on the first dwell time block:

Θi ,1 =
∣∣∣∣∣ ∑

j∈J1

1

2nω−2
∆ j −L1

∣∣∣∣∣= 2nω−3

2nω−2
L1 = 2nω−3

2nω−2
(2CU −ε) = 2nω−3

2nω−2
(CU + ∆̄−ε).

In the second and third equalities, we used Lemma 7.5. For i = 2. . .nω and dwell time blocks
1, . . . ,nω−1, the values of the relaxed controls a∗ sum up to

∑
b∈[nω−1]

∑
j∈Jb

a∗
i , j∆ j = 1

2nω−2
L1 +

∑
b=2,...,nω−1

1

nω−1
Lb

= 1

2nω−2
(CU + ∆̄−ε)+ ∑

b=2,...,nω−1

1

nω−1
(CU + ∆̄−ε)

= 2nω−3

2nω−2
(CU + ∆̄−ε).

Thus, there are nω − 1 controls with this control accumulation on nω − 1 dwell time blocks;
however, activating any of these controls on the first dwell time block yields the same control
deviation. Hence, the objective value of (CIA-U) with this a∗ is at least 2nω−3

2nω−2 (CU +∆̄−ε), where

ε is arbitrarily small. If we combine this result with Proposition 7.1, we find that 2nω−3
2nω−2 (CU + ∆̄)

is the tightest possible bound. We argue for the degenerate case, CU = 0, that we can create an
example with the length of all dwell time blocks set to ∆̄ and obtain the same tight bound.

Corollary 7.2 (Tight bound on the integral deviation gap for (CIA))
Consider GN and a∗ ∈AN . The optimal objective value of (CIA) is bounded by

θ∗ ≤ 2nω−3

2nω−2
∆̄.

If N ≥ nω−1 holds, then this bound is tight.

Proof. The bound follows from Proposition 7.1 with CU = 0 and if N ≥ nω− 1, we are able to
construct the same worst-case example as in the proof of Proposition 7.2, with intervals applied
instead of dwell time blocks.

120



APPROXIMATION RESULTS FOR THE INTEGRAL DEVIATION GAP CHAPTER 7

7.4.2 Implications for the objectives of (CIA-D) and (CIA-UD)

The bound obtained for (CIA-U) can be transferred in a straightforward manner to (CIA-D) by
using C1 = CD as the MDT in the DNFR scheme. However, we note the increased number of
degrees of freedom when dealing with MD times rather than MU times: only the down time
forbidden control is fixed for a specific time duration in contrast to the MU time constraint
situation in which all controls are fixed due to the fixed active control. With this observation,
we introduced in the DNFR scheme the min down mode χD = 1 and subsequently deduce
an alternative upper bound to that obtained for DNFR with χD = 0. As will be shown, this
alternative bound is independent of nω but is not always an improvement. We therefore declare
the minimum of both bounds as the upper bound in the following proposition.

Proposition 7.3 (Bounds on the objectives of (CIA-D) and (CIA-UD))
Consider any grid GN and a∗ ∈AN . Let the MU and MD times CU ,CD ≥ 0 be given. Then

1. (CIA-D) is bounded by

θ∗ ≤ min

{
3

4
CD + 3

2
∆̄,

2nω−3

2nω−2

(
CD + ∆̄)}

.

2. (CIA-UD) is bounded by

θ∗ ≤


2nω−3
2nω−2

(
CU + ∆̄)

, if CU ≥CD ,

min
{

3
2CU + 3

2 ∆̄, 2nω−3
2nω−2

(
CD + ∆̄)}

, if CD >CU >CD /2,

min
{

3
4CD + 3

2 ∆̄, 2nω−3
2nω−2

(
CD + ∆̄)}

, if CD /2 ≥CU .

Proof. Generally, if CD > CU or if MU constraints are absent, we may apply the DNFR scheme

with (C1,C2,χD ) =
(
CD , 2nω−3

2nω−2 ,0
)
, this constructs feasible solutions for (CIA-D), respectively

(CIA-UD), with the objective bound 2nω−3
2nω−2 (CD + ∆̄). We are left with the case χD = 1:

1. If we set C1 = 1
2CD , we have L < 1

2CD + ∆̄. With this MDT and the choice χD = 1, the
DNFR scheme constructs a feasible solution for (CIA-D). Then, by virtue of Theorem 7.4,
case II., with C2 = 3

2 we deduce the bound 3
4CD + 3

2 ∆̄.

2. a) If CU ≥ CD is given, we can set C1 = CU , and all block lengths are at least as large
as those of the MD time CD . Therefore, the binary control solution constructed by
DNFR with χD = 0 and C2 = 2nω−3

2nω−2 fulfills both the MU and MD time constraints.

b) We set χD = 1, C1 =CU , and C2 = 3
2 , when CD >CU >CD /2 is given. By this choice,

the solution of DNFR fulfills an MD time of 2CU because

2L > 2CU > 2CD /2 =CD .

Furthermore, by setting C1 =CU , it is clear that w DNFR does not violate the MU time.

(c) CD /2 ≥ CU : With down time configuration χD = 1 and C1 = CD /2 ≥ CU , C2 = 3
2 ,

DNFR can be executed without violating the MU time constraint.
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For the problems (CIA-D) and (CIA-UD), it is not as straightforward to obtain tightness results
as for (CIA-U). Nevertheless, we discuss the quality of the bounds obtained in Proposition 7.3
in terms of the DNFR scheme.

Proposition 7.4 (Tightness of the bound for (CIA-D))
Assume the MD time constraint is active, i.e., CD >∆ is given. Then the following is true:

1. The bound for (CIA-D) stated in Proposition 7.3 cannot be improved by the DNFR scheme
with χD = 1 for nω ≥ 3.

2. The bound for (CIA-D) is tight up to at most the constant 1
4CD + ∆̄.

Proof. The assumption of an active MD time constraint ensures that the bound cannot be im-
proved by the bound for MU times from Proposition 7.2. We again use the concept of a minimal
C1-overlapping grid, here with C1 =CD /2.

1. We want to prove that the DNFR scheme with χD = 1 and C2 < 3
2 may provide solutions

with a (CIA-D) objective value greater than C2L . First consider C2 ≤ 3
2 −ε1, with 0 < ε1 ≤

0.5. We present example values for a∗ ∈ AN with a time horizon length of at least 12C1,
so that by Lemma 7.5 at least six blocks with length L exist. Let 0 < ε2 < ε1 be small, and
let the relaxed control values a∗ be given as

(a∗
i ,b)i∈[nω],b∈[nb ] :=



1 0.5−ε1 +ε2 1−ε2 2ε1 −2ε2 0.5 0.5 · · · 0.5
0 0.5+ε1 −ε2 0 1−2ε1 +2ε2 0.5 0.5 · · · 0.5
0 0 ε2 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · 0


.

With these example values, we discuss the thereby constructed DNFR solution as well its
objective quality.

- First dwell time block: i1 is 2-future forced and activated.

- Second dwell time block: Both i1 and i2 are 4-future forced. The DNFR algorithm
breaks ties arbitrarily, so activating i2 is legitimate.

- Third dwell time block: i1 is down time forbidden, while i2 is not admissible. DNFR
therefore activates i3.

- Fourth dwell time block: i1 is activated since it is forced.

- Fifth dwell time block: In the meantime we haveΘi1,4 = (0.5+ε1−2ε2)L andΘi2,4 =
(0.5− ε1 + ε2)L . Since ε2 satisfies ε2 < ε1, both controls are 6-future forced on the
fifth block. Let DNFR activate i2.

- Sixth dwell time block: i1 is still down time forbidden and cannot be active, which
implies

Θi1,6 = (0.5+ε1 −2ε2 +1)L > ( 3
2 −ε1)L =C2L ,

so the proposed control deviation bound is not fulfilled.
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Finally, if ε1 > 0.5 and thus, C2 < 1, we can construct a similar example for which the
control i1 is already forced on the first dwell time block and the control deviation again
exceeds C2L .

2. The MD time constraints are equivalent to MU time constraints with CU =CD for a prob-
lem with only two controls nω = 2. Proposition 7.2 provides an example for this case,
where θ∗ ≥ 1

2 (CU +∆̄) holds. This example can also be applied for more than two controls
by setting the relaxed control values a∗

i ,b to zero, for i > 2. Then, the difference from the

upper bound 3
4CD + 3

2 ∆̄ in Proposition 7.3 is as stated in the assertion.

Proposition 7.4 tells us that the DNFR scheme with C2 = 3
2 and χD = 1 cannot be improved. The

following example motivates why we have chosen the set of the down time forbidden control
in Definition 6.18 such that the active control can only be changed after a duration of CD /2 at
the earliest. If it is already possible to switch after one interval ∆ j , DNFR may construct greedy
solutions with a large control deviation at long MD times CD . The following example illustrates
why this occurs.

Example 7.1 (Modified DNFR scheme iterating over intervals yields no improved bounds)
Let nω = 3 and a rounding threshold C2 ≥ 2nω−3

2nω−2 be given. We alter DNFR in the following
way: instead of iterating over dwell time blocks, we iterate forward over all intervals. For a
given MD time C1 = CD , we keep the threshold C2L for forced, future forced, and admissible
activation. To construct feasible solutions for (CIA-D), we extend Definition 6.18 of I D

b by
letting all controls that are inactive and were active in the previous period of length CD be down
time forbidden. Next, we construct exemplary relaxed values for this modified DNFR scheme
with a large control deviation. We first recursively introduce the indices

ji := min
{

j ∈ [N ] | ∑ j
l= ji−1

∆l >C2L
}

, i = 1,2,3,

where j0 := 1. Let the relaxed values be given as follows:

(ai , j )∗i∈[nω], j∈[N ] :=

 1 · · ·
j1︷︸︸︷
1 0 · · ·

j2︷︸︸︷
0 0 · · ·

j3︷︸︸︷
0 · · ·

0 · · · 0 1 · · · 1 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 1 · · · 1 · · ·

 .

Then, the modified DNFR can construct the following binary control:

(wi , j )i∈[nω], j∈[N ] =

 1 0 0 · · ·
j4︷︸︸︷
0 · · ·

0 1 0 · · · 0 · · ·
0 0 1 · · · 1 · · ·

 ,

where j4 := max{ j ∈ [N ] | ∑
l∈[ j ]∆l < CD +∆1} is the last index before the MD phase of i1 ends.

At first, i1 is the earliest future forced control, but it is not after being active on j = 1. Then i2 is
activated on the second interval before i3 becomes the earliest future forced control and needs
to stay active until j4 since the other controls are down time forbidden. We notice that with
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small ∆1,∆2, it can result that j4 ≤ j2, and therefore

|θi3, j4 | =
∣∣∣∣∣ j4∑
l=3

(0−1)∆l

∣∣∣∣∣≤ |CD + ∆̄−∆2| ≤CD + ∆̄−∆.

If we compare the term on the right side of the inequality with the bound from Proposition 7.3,
i.e., 2nω−3

2nω−2 (CD +∆̄) = 3
4 (CD +∆̄), we conclude that the former is smaller only if CD < 4∆−∆̄. Since

∆ can be arbitrarily small and we assumed CD to be big compared with the grid length, the
modified DNFR scheme will not construct improved bounds. Similar “greedy” examples can
be constructed for nω > 3 and dwell time block lengths greater than ∆.

Comments on these tightness properties are in order.

Remark 7.5 (Quality of the bound for (CIA-D))
The MD time configuration of DNFR, i.e., χD = 1, only yields smaller upper bounds than the
DNFR algorithm with MU time configuration, i.e. χD = 0 and C1 =CD , for instances with more
than three controls and a large MD time CD compared with the grid length ∆̄. In fact, for any
nω, we conjecture that the upper bound on (CIA-D) is θmax = 1

2CD + ∆̄, that is, only slightly
greater than that for nω = 2. By taking 1

2CD +∆̄ as an activation threshold as part of DNFR, there
would be no forced control until the first down time forbidden control appears. We postulate
that active controls that become forced without activation during the next CD time duration
may stay active without other controls becoming forced. Of course, this argumentation does
not constitute a proof – together with Example 7.1, Proposition 7.4 states that a generic solution
that fulfills this bound cannot be found by means of the DNFR scheme, and it is presumably
hard, if not impossible, to construct it by another polynomial-time algorithm.

Remark 7.6 (Quality of the bound for (CIA-UD))
As stated in Proposition 7.3, the integral deviation gap bound for (CIA-UD) is tight for CU ≥CD

by the result of Proposition 7.2. For CU <CD , the bound is not necessarily tight, but it is again
difficult to prove tight bounds due to the combinatorial structure of the problem.

Remark 7.7 (Implications of MDT as a multiple of the grid intervals)
If we deal with an MDT C1 that begins and ends exactly on the grid points, the upper bounds

become 2nω−3
2nω−2CU for (CIA-U), 3

4CD for (CIA-D), and are accordingly reduced for (CIA-UD).

7.5 (CIA) with bounded discrete total variation

This section establishes bounds on the integral deviation gap for (CIA-TV). For this, we use
the AMDR algorithm and the associated concepts introduced in Section 6.7. In particular, we
argue with activation blocks, which are not to be confused with dwell time blocks in the context
of MDT, the corresponding lengths δ, and the switching interval variables τ, all of which were
introduced in Definition 6.23. We prove the tightest possible upper bound on the integral de-
viation gap for equidistant discretization and the case of two binary controls in Corollary 7.3.
We distinguish between the cases nω = 2 and nω > 2 in Subsections 7.5.1 and 7.5.2, respectively.
This section is based on Sections 6 and 7 from [222].
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7.5.1 Upper bounds on (CIA-TV) with nω = 2

Here, we use the MDR algorithm and previous results from Section 6.7.3 in order to deduce
bounds on (CIA-TV) for two binary control modes, i.e., nω = 2. We consider a given (CIA-TV)
problem with grid GN , relaxed value a∗ ∈AN , and maximum number of switchesσmax > 0. The
idea in the following is to construct a generic control function w MDR that bounds the objective
of (CIA-TV). For finding an appropriate initial active control for the MDR scheme, we introduce
an auxiliary grid G̃N that ends at t̃ f and has Ñ intervals:

G̃N :=GN ∩
[

t0, t0 +
5(t f − t0)

3+2σmax

]
, Ñ := |G̃N |−1, t̃ f := max

{
t j | t j ∈ G̃N

}
.

In the definition of G̃N , we intersect two sets because we consider the given GN and σmax.
To specify the rounding down of a value t0 ≤ t to the next grid point, we utilize the following
brackets notation

btcGN
:= max

{
t j ∈GN | t j ≤ t

}
.

If we are dealing with an equidistant grid, we can prove a sharp bound for (CIA-TV). We dis-
tinguish between the cases with and without an equidistant grid in the upcoming results and
introduce the following constant:

C̃1 :=
{

1
3+2σmax

, if GN equidistant,

0, else.
(7.29)

We propose applying the rounding threshold

θ̄ := t f − t0

3+2σmax
+ 1

2
∆̄− C̃1

2
∆̄ (7.30)

in the MDR scheme, and claim that this choice is beneficial for proving upper bounds on
(CIA-TV). Next, we establish useful properties of rounding to the next grid point b·cGN .

Lemma 7.7 (Distance to the next grid points for b·cGN )
Consider σmax > 0 and the rounding threshold θ̄ defined as in (7.30). The following holds:

1. bt0 + j θ̄cGN ≥ t0 + j θ̄− ∆̄+ C̃1∆̄, for j ∈ [2],

2.
⌊

t0 + 5(t f −t0)
3+2σmax

⌋
GN

≥ t0 + 5(t f −t0)
3+2σmax

− ∆̄+ C̃1∆̄.

Proof. 1. We first consider the non-equidistant case. If t0 + j θ̄ ≤ t f , we deduce that the
maximum distance from t0+ j θ̄ to the next smaller or equal grid point is ∆̄. If t0+ j θ̄ > t f ,
we have bt0 + j θ̄cGN = t f , and obtain

t0 + j θ̄ ≤ t0 +2θ̄ ≤ t0 +2
t f − t0

3+2 ·1
+ ∆̄= 3

5
t0 + 2

5
t f + ∆̄< t f + ∆̄.

This settles the non-equidistant case: bt0 + j θ̄cGN ≥ t0 + j θ̄− ∆̄. For the equidistant case,
we observe

θ̄ = t f − t0

3+2σmax
+ 1

2
∆̄− 1

2(3+2σmax)
∆̄= N ∆̄+ (σmax +1)∆̄

3+2σmax
= (N +σmax +1)∆̄

3+2σmax
.
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We note that the numerator of the right fraction consists of a product of an integer and
∆̄, whereas the denominator is the integer 3 + 2σmax. Thus, the maximum cut-off by
rounding down to the closest grid point is 3+2σmax−1

3+2σmax
∆̄, which is equal to ∆̄−C̃1∆̄, proving

the claim.

2. This follows from a similar argument as that for claim 1. For the non-equidistant case, we

only need to consider t0 + 5(t f −t0)
3+2σmax

≤ t f ; for the equidistant case, we again take advantage

of t f − t0 = N ∆̄.

We continue with a lemma that quantifies the length of the activation blocks in w MDR.

Lemma 7.8 (Length of activation blocks δl )
Consider a feasible control solution for (CIA−θ̄) that only uses canonical switches. Then, for the
length of its activation block δl , 2 ≤ l ≤σmax, it follows that

δl ≥ 2θ̄− ∆̄+C1∆̄.

Proof. Let i be the active control on activation block l . We use the assumption regarding
canonical switches twice. First, control mode i is θ̄-forced for the earlier switch l −1:

θi ,τl−1−1 +a∗
i ,τl−1

∆τl−1 > θ̄, (7.31)

and, second, it is θ̄-inadmissible on interval τl :

θi ,τl−1−1 +
τl−1∑

j=τl−1

(a∗
i , j −1)∆ j + (a∗

i ,τl
−1)∆τl = θi ,τl−1 + (a∗

i ,τl
−1)∆τl <−θ̄. (7.32)

By Definition 6.23 of activation blocks, we have δl =
∑τl−1

j=τl−1
∆ j , so by rearranging (7.32), we

obtain

δl > θi ,τl−1−1 + θ̄+
τl−1∑

j=τl−1

a∗
i , j∆ j + (a∗

i ,τl
−1)∆τl .

Plugging (7.31) into the above inequality yields

δl > 2θ̄−a∗
i ,τl−1

∆τl−1 +
τl−1∑

j=τl−1

a∗
i , j∆ j + (a∗

i ,τl
−1)∆τl = 2θ̄+

τl∑
j=τl−1+1

a∗
i , j∆ j −∆τl ≥ 2θ̄− ∆̄,

which settles the non-equidistant case. For an equidistant grid, we compute

2θ̄− ∆̄= 2N ∆̄

3+2σmax
+ ∆̄− C̃1∆̄− ∆̄= 2N −1

3+2σmax
∆̄,

and because δl is a multiple of ∆̄, it follows from δl > 2θ̄− ∆̄ that

δl ≥
2N −1

3+2σmax
∆̄+ 1

3+2σmax
∆̄= 2θ̄− ∆̄+ C̃1∆̄.

Next, in Algorithm 7.1, we propose a specification of the initial active control i0 for the MDR
scheme.
We observe that at most one switch occurs on G̃N , as quantified in the following lemma.
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Algorithm 7.1: Detecting the initial active control for MDR that results in at most one
switch on G̃N .

Input : Relaxed control values a∗ ∈AN , where nω = 2, rounding threshold θ̄ from (7.30).
1 if there is a control i1 with

∑Ñ
j=1 a∗

i1, j∆ j ≤ θ̄ then

2 Set i0 = i2 6= i1;

3 else if there is a control i1 with
∑Ñ

j=1 a∗
i1, j∆ j ≤ 2θ̄− ∆̄+ C̃1∆̄ then

4 Set i0 = i1;
5 else
6 Set i0 = i1, where i1 is a θ̄-next forced control on interval j = 1;

7 return: i0 as initial control;

Lemma 7.9 (w MDR has at most one switch on G̃N )
The MDR algorithm applied to the auxiliary grid G̃N with rounding threshold θ̄ from (7.30),
nω = 2, and i0 from Algorithm 7.1 as the initial control, constructs a control function w MDR that
uses at most one switch on G̃N .

Proof. We distinguish between the three possibilities for the initial control in Algorithm 7.1.

1. If MDR is initialized with i2, and for i1,
∑Ñ

j=1 a∗
i1, j∆ j ≤ θ̄ holds, i1 does not become θ̄-

forced on G̃N . For this reason there is no switch.

2. If i1 with
∑Ñ

j=1 a∗
i1, j∆ j ≤ 2θ̄− ∆̄+ C̃1∆̄ is the initial active control, a switch must occur

when i2 is θ̄-forced on some interval τ1 ∈ [Ñ ]. We need to prove that i1 does not become
θ̄-forced after the first switch. This is equivalent to i2 not becoming θ̄-inadmissible due
to nω = 2 and Lemma 6.2 because in that case, there is no other switch. For this, we
derive a lower bound on the length of the first activation block δ1, where i1 is active. At
the earliest, the control i1 becomes θ̄-inadmissible when it has been active on intervals
j with a∗

i1, j = 0 whose lengths sum up to be more than θ̄, i.e., a length of bt0 + θ̄cGN − t0.
With this observation and Lemma 7.7.1, we derive

δ1 =
τ1−1∑
j=1

∆ j ≥ bt0 + θ̄cGN − t0
Lemma 7.7.1≥ θ̄− ∆̄+ C̃1∆̄.

Note that γi1, j is monotonically increasing with the increasing interval j > τ1 as long as
i1 is inactive, i.e., wi1, j−1 = 0. Hence, if we are able to prove γi1,Ñ ≤ θ̄ when wi1, j = 0
for j > τ1, we also have that γi1, j ≤ θ̄ for any j > τ1, meaning there is no second switch.
Altogether, with the above inequality, we obtain

γi1,Ñ =
Ñ∑

j=1
a∗

i1, j∆ j −δ1 ≤ 2θ̄− ∆̄+ C̃1∆̄− (θ̄− ∆̄+ C̃1∆̄) ≤ θ̄,

so w MDR switches no more than once on G̃N .
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3. Otherwise, we have

Ñ∑
j=1

a∗
i , j∆ j > 2θ̄− ∆̄+ C̃1∆̄, for i = i1, i2, (7.33)

in the else case. We can argue similarly to the previous case, which is why we only have
to prove γi1,Ñ ≤ θ̄. Since control mode i1 is a θ̄-next forced control on the first interval,

there is an interval l ≤ τ1 with
∑l

j=1 a∗
i1, j∆ j > θ̄. This implies that the interval τ1 of the

earliest possible switch is given by

τ1 = argmin
l∈[Ñ ]

{
l∑

j=1
(a∗

i1, j −1)∆ j <−θ̄
∣∣∣ l∑

j=1
a∗

i1, j∆ j > θ̄
}

from which we find
∑τ1

j=1∆ j > 2θ̄. We conclude for the grid point tτ1 = bt0 +∑τ1
j=1∆ j cGN >

bt0 + 2θ̄cGN , which implies tτ1−1 = bt0 +∑τ1−1
j=1 ∆ j cGN ≥ bt0 + 2θ̄cGN . This is equivalent to∑τ1−1

j=1 ∆ j ≥ bt0 +2θ̄cGN − t0 and thus

δ1 =
τ1−1∑
j=1

∆ j ≥ bt0 +2θ̄cGN − t0
Lemma 7.7.1≥ 2θ̄− ∆̄+ C̃1∆̄. (7.34)

Using the (Conv) property yields
∑Ñ

j=1 a∗
i1, j∆ j =∑Ñ

j=1∆ j −∑Ñ
j=1 a∗

i2, j∆ j , and therefore,

γi1,Ñ ≤
Ñ∑

j=1
a∗

i1, j∆ j −δ1
(7.34)≤

Ñ∑
j=1

∆ j −
Ñ∑

j=1
a∗

i2, j∆ j − (2θ̄− ∆̄+ C̃1∆̄)

(7.33)< t̃ f − t0 − (2θ̄− ∆̄+ C̃1∆̄)− (2θ̄− ∆̄+ C̃1∆̄)

=
⌊

t0 +
5(t f − t0)

3+2σmax

⌋
GN

− t0 −
4(t f − t0)

3+2σmax

≤ t0 +
5(t f − t0)

3+2σmax
− t0 −

4(t f − t0)

3+2σmax

= (t f − t0)

3+2σmax

< θ̄,

where we used t̃ f =
⌊

t0 + 5(t f −t0)
3+2σmax

⌋
GN

in the third equation. To conclude, there is again at

most one switch.

The above three lemmata are crucial for the following theorem, which provides an upper bound
on the integral deviation gap for (CIA-TV).

Theorem 7.5 (Bound on the integral deviation gap for (CIA-TV) and nω = 2)
Consider any grid GN , relaxed values a∗ ∈AN , and maximum number of switchesσmax > 0. The
optimal objective value of (CIA-TV) is bounded by

θ∗ ≤ N

3+2σmax
∆̄+ 1

2
∆̄− C̃1

2
∆̄.
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Proof. We want to prove that the control function w MDR constructed by MDR with rounding
threshold θ̄ from (7.30) and initial control from Algorithm 7.1 is feasible and that it satisfies
the claimed bound. We observe θ̄ ≥ 1

2 ∆̄ from its definition in (7.30) and the definition of C̃1 in
(7.29). Thus, we can apply Proposition 6.3 in connection with Lemma 6.3 so that w MDR indeed
fulfills the claimed bound:

θ(w MDR) ≤ θ̄ = t f − t0

3+2σmax
+ 1

2
∆̄− C̃1

2
∆̄.

What remains to be shown is that w MDR is a feasible solution for (CIA-TV), i.e., that it does not
use more thanσmax switches. In the sequel, we write n =σmax in the variable indices to improve
the readability of the latter. We assume that σmax switches have already been taken in w MDR

and calculate the maximum length of a final possible activation block, i.e., δn+1 = t f − tτn−1.
In Lemma 7.9, we derived that at most one switch is used until t̃ f on the reduced grid G̃N ,
but another switch may follow shortly afterward, i.e., τ2 ≥ Ñ + 1. For the remaining σmax − 2
activation blocks until tτn−1, we can apply Lemma 7.8 since Proposition 6.3 states that MDR
uses canonical switches for nω = 2. Lemma 7.8 establishes that

δl ≥ 2θ− ∆̄+C1∆̄, for 3 ≤ l ≤σmax.

Combining these findings and using Lemma 7.7.2 results in

t f − tτn−1 = t f −
σmax∑
j=1

δ j ≤ t f −
[
t̃ f + (σmax −2)(2θ̄− ∆̄+ C̃1∆̄)

]
≤ t f −

⌊
t0 +

5(t f − t0)

3+2σmax

⌋
GN

− (σmax −2)(2θ̄− ∆̄+ C̃1∆̄)

≤ t f − (t0 +
5(t f − t0)

3+2σmax
− ∆̄+ C̃1∆̄)− (σmax −2)(2θ̄− ∆̄+ C̃1∆̄)

= (3+2σmax)(t f − t0)

3+2σmax
− 5(t f − t0)

3+2σmax
+ ∆̄− C̃1∆̄− (σmax −2)

(
2(t f − t0)

3+2σmax

)
= 2(t f − t0)

3+2σmax
+ ∆̄− C̃1∆̄. (7.35)

Let i denote the control mode that is active after the σmaxth switch of w MDR. Note that θi , j

is monotonically decreasing with the increasing interval j ≥ τn since i is chosen to be active
on j . Hence, if we are able to show that control i is θ̄-admissible on interval N , then it is also
θ̄-admissible on earlier intervals, and there will be no further switch until N . For this, let us
assume control i is θ̄-inadmissible on interval N . We obtain

−θ̄ > θi ,N−1 + (a∗
i ,N −1)∆N

= θi ,τn−1 +a∗
i ,τn

∆τn︸ ︷︷ ︸
>θ̄

−∆τn +
N−1∑

j=τn+1
(a∗

i , j −1)∆ j + (a∗
i ,N −1)∆N

> θ̄+
N∑

j=τn+1
a∗

i , j∆ j −
N∑

j=τn

∆ j
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(Continuation of the estimate of −θ̄ > . . .):

≥ θ̄+0− (t f − tτn−1)

(7.35)≥ θ̄−
(

2(t f − t0)

3+2σmax
+ ∆̄− C̃1∆̄

)
= −

(
t f − t0

3+2σmax

)
− 1

2
∆̄+ C̃1

2
∆̄

= −θ̄.  

In the second inequality, we used that control i is θ̄-forced on interval τn of the nth, respectively
σmaxth, switch. With this contradiction, there cannot be a further switch after τn . In other
words, w MDR uses at most σmax switches and is a feasible solution of (CIA-TV). This completes
the proof.

The obvious question arises of whether the upper bound from Theorem 7.5 is sharp. The fol-
lowing theorem gives a positive answer. We exclude the case σmax ≥ N −1 because otherwise,
the TV constraints (4.9)-(4.10) would be no longer restrictive.

Theorem 7.6 (Lower bound on θmax for (CIA-TV) and nω = 2)
For N ,σmax ∈ N, where 1 ≤ σmax ≤ N −2, there is an equidistant grid GN and an a∗ ∈ AN such
that (CIA-TV) has an optimal objective value of

θ∗ ≥
⌈

N

3+2σmax

⌉
0.5
∆̄. (7.36)

Proof. If σmax+2 ≤ N < 3+2σmax, we can define a∗ by specifying the values of control mode i1

for the intervals j ∈ [N ] as

a∗
i1, j :=

{
1, if j odd,
0, if j even.

Since there are more intervals N than the maximum number of switchesσmax plus one, there is
an interval j on which the optimal solution w of (CIA-TV) has the value wi1, j = 1, while a∗

i1, j = 0

holds. This results in θ∗ ≥ 1∆̄= d N
3+2σmax

e0.5∆̄.
Otherwise, if N ≥ 3+2σmax, we proceed as follows:

1. We construct a specific matrix a∗ that depends on the choice of σmax and N .

2. We prove that for both initial active controls, for this a∗ matrix and with a rounding
threshold of

θ̄ :=
⌈

N

3+2σmax

⌉
0.5
∆̄−ε, for any 0 < ε<

⌈
N

3+2σmax

⌉
0.5
∆̄, (7.37)

the MDR scheme constructs control functions w MDR that use more than σmax switches.
Then, we return to the idea of the AMDR scheme and Theorem 6.3.1., which states that
w AMDR is feasible for (CIA-TV), i.e., that it uses at most σmax switches, and conclude⌈

N

3+2σmax

⌉
0.5
∆̄≤ θ (

w AMDR)
.
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Theorem 6.3, 2. (a), also provides a statement about the relation of AMDR to the optimal
solution of (CIA-TV):

θ
(
w AMDR)≤ θ∗+T OL.

Because the tolerance T OL can be arbitrarily small, we conclude that the optimal solu-

tion of (CIA-TV) involves an objective value of at least
⌈

N
3+2σmax

⌉
0.5
∆̄.

1. We reuse the notation of R from Lemma 7.6 and introduce the auxiliary constant nI ∈N:

R := N

3+2σmax
, nI :=

⌊
N −dRe
σmax +1

⌋
.

Next, we are interested in designing a specific a∗ ∈ AN that has the property of enforcing an
improper covering by any w ∈ ΩN that involves a (CIA-TV) objective value of at most θ̄. By
improper covering, we mean that w ∈ΩN has to use more than σmax switches in order to yield
the desired (CIA-TV) objective value of at most θ̄. We create sets of consecutive intervals for a∗

on which either a∗
i1,· or a∗

i2,· is set to one (and the other control is thereby set to zero). Here, we
call these sets of consecutive intervals with the same value index sections. We generateσmax+2
index sections, where the two control modes are alternately set to one in a∗, implementing the
idea that a feasible solution w of (CIA-TV) with at most σmax switches shall contain at most
σmax + 1 activation blocks. The first index section includes bRc intervals, followed by index
sections with nI intervals. The last index section arises from the remaining intervals until N is
reached. After conveying some intuition of the specific a∗ ∈AN , we continue with a technical
definition of the index set J i1 that specifies the index sections on which a∗

i1,· is set to one:

J
i1
even := [bRc]∪{

j | dRe+ (2k −1)nI +1 ≤ j ≤ dRe+2knI , k ∈ [bσmax/2c]
}

,

J i1 :=
{

J
i1
even, if σmax is even,

J
i1
even ∪ { j | dRe+ (2bσmax/2c+1)nI +1 ≤ j ≤ N }, if σmax is odd.

With these definitions, we introduce a∗ by fixing the values of control i1.

a∗
i1, j =


1, if j ∈J i1 ,
0.5, if j = dRe , and bRc < R ≤ bRc+0.5,
1, if j = dRe , and R > bRc+0.5,
0, else.

(7.38)

The value of a∗
i1,· on the (dRe)th interval may seem unintuitive in the second and third case. The

idea of this construction is that it results in θi1,dRe = dRe0.5 ∆̄ if control i1 is neither active on the
first index section nor on the (dRe)th interval. In this way, control i1 needs to already be active
on the first index section to maintain an (CIA-TV) objective value of at most θ̄.

2. We want to prove that the MDR scheme with the rounding threshold from (7.37) and with a∗

defined in (7.38) constructs a control function that uses more thanσmax switches, independent
of the initial active control. For this, we are going to establish the following claim:

a) If i1 is the initial active control, the kth switch of w MDR happens before the
(dRe+knI )th interval, where k ∈ [σmax +1].
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b) If i2 is the initial active control, the kth switch of w MDR happens before the
(dRe+ (k −1)nI )th interval, where k ∈ [σmax +1].

Assuming that the claim is true, w MDR indeed uses more than σmax switches because the
(dRe+ (σmax +1)nI )th interval exists; i.e., it is smaller than or equal to N :

dRe+ (σmax +1)nI = dRe+ (σmax +1)

⌊
N −dRe
σmax +1

⌋
≤ dRe+ (σmax +1)

N −dRe
σmax +1

= N .

The above inequality shows that there are indeed σmax +2 index sections for a∗ as described
above. With this information, we deduce that θ̄ < 1

2 ∆̄directly results in more thanσmax switches
or in control solutions that do not satisfy the claimed optimal (CIA-TV) objective value from
(7.36):

• If a∗ consists only of zeros and ones and θ̄ < 1
2 ∆̄, the MDR algorithm creates switches on

all intervals j for which a∗
·, j 6= a∗

·, j−1 holds true. In this way, the activation blocks of w MDR

match the index sections of a, i.e. w MDR = a∗. Because we derivedσmax+2 index sections
for a, there are σmax +2 blocks for w MDR and therefore, σmax +1 switches.

• If a∗
i1,dRe = 0.5, then there is no w with θ(w ) < 1

2 ∆̄ regardless of which control is active on
interval dRe since a∗ is either zero or one on all other intervals. Hence, we can exclude
the case θ̄ < 1

2 ∆̄ from further consideration.

Thus, we are left with the case θ̄ ≥ 1
2 ∆̄, for which we can apply Proposition 6.3 and conclude

that we deal only with canonical switches. We now return to proving the claim and proceed via
induction.
Base case:
a) We consider k = 1 and conclude from N ≥ 3+2σmax that dRe0.5 ≥ 1 holds. Plugging this into
inequality (7.3) from Lemma 7.6 results in dRe0.5 < nI , and thus

θ̄ < nI ∆̄. (7.39)

By construction of a∗, the values a∗
i1, j are equal to one for 1 ≤ j ≤ bRc. The value a∗

i1,dRe is either

0.5 or 1. Therefore, −0.5∆̄ ≤ θi1,dRe ≤ 0 holds for the accumulated control deviation of w MDR

with i1 as the initial active control. After the (dRe)th interval, nI intervals follow on which a∗
i1, j

is zero. We conclude that i1 becomes θ̄-inadmissible before interval dRe+nI by (7.39) and that
the first switch thus appears before this interval.
b) We demonstrate the claim for the first two switches because we are interested in a switch
that occurs after interval dRe in the inductive step. Let k = 1. Since

dRe∑
j=1

(a∗
i2, j −1)∆̄= (dRe−dRe0.5 −dRe)∆̄<−dRe0.5 ∆̄+ε=−θ̄,

we conclude that control i2 becomes θ̄-inadmissible at the latest on interval dRe when it is the
initial active control and equivalently, that w MDR has a switch on interval dRe at the latest. This
is equivalent to at least one activation of control i1 up to and including interval dRe, which we
use for proving the assertion for k = 2. Assume that the second switch happens on or after
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interval dRe+nI . This implies that i1 is θ̄-admissible on that interval, and we derive

−θ̄ ≤ θi1,dRe+nI = θi1,dRe+
dRe+nI∑

l=dRe+1
(0−1)∆̄

Case k=1≤ dRe0.5 ∆̄− ∆̄−nI ∆̄

Lemma 7.6≤ dRe0.5 ∆̄− ∆̄− (2dRe0.5 −1)∆̄

= −dRe0.5 ∆̄<−θ̄.  

Consequently, the second switch happens before the (dRe+nI )th interval.

Inductive step:
Assume that the assertion holds for k−1 ≤σmax; we show that it is also true for k. We first prove
an auxiliary result. For i ∈ [2] and j ≥ dRe, we have that

θi , j = dRe0.5 ∆̄+ z∆̄, for some z ∈Z. (7.40)

We prove Equation (7.40) by computing the accumulated control deviation:

θi1, j = ∆̄
(dRe∑

l=1
a∗

i1,l +
j∑

l=1+dRe
a∗

i1,l −
j∑

l=1
wi1,l

)
= dRe0.5 ∆̄+

(
j∑

l=1+dRe
a∗

i1,l −
j∑

l=1
wi1,l

)
∆̄.

For j > dRe we defined a∗
i1, j ∈ {0,1}, so (7.40) holds with z =

(∑ j
l=1+dRe a∗

i1,l −
∑ j

l=1 wi1,l

)
. On the

other hand, for the other control i2, it holds that

θi2, j = ∆̄
(dRe∑

l=1
a∗

i2,l +
j∑

l=1+dRe
a∗

i2,l −
j∑

l=1
wi2,l

)
= (dRe−dRe0.5)∆̄+

(
j∑

l=1+dRe
a∗

i2,l −
j∑

l=1
wi2,l

)
∆̄,

and therefore, (7.40) is satisfied with z =
(
dRe−2dRe0.5 +∑ j

l=1+dRe a∗
i2,l −

∑ j
l=1 wi2,l

)
.

To make use of the established auxiliary result for the induction step, we need to argue that
the (k −1)st switch happens after the interval dRe. In case a), the MDR algorithm will not deac-
tivate i1 since a∗

i1, j = 1 before the dReth interval. So it does on the dReth interval if a∗
i1,dRe = 0.5

because we have established θ̄ ≥ 1
2 ∆̄. In case b), we use the base case for the second switch. We

consider the interval τ1 of the first switch in case a) and compare the two accumulated control
deviations for cases a) and b) on τ1: we obtain θi1,τ1 (b) ≥ θi1,τ1 (a) because i2 has already been
activated in case b) unlike in case a). Since τ1 > dRe, we are done.

Now, without loss of generality, let i1 be the active control after the switch on interval τk−1. We
know that i2 is active, and thus admissible, on interval τk−1 −1:

−θ̄ ≤ θi2,τk−1−1,
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which for the control mode i1 implies the following by Lemma 6.2:

θi1,τk−1−1 ≤ θ̄ = dRe0.5 ∆̄−ε.

We exploit the above inequality in the sense that by equation (7.40), for some zi1 ≥ 1, we have

θi1,τk−1−1 = dRe0.5 ∆̄− zi1∆̄≤ (dRe0.5 −1)∆̄. (7.41)

The control i2 is θ̄-inadmissible on interval τk−1 as there are only canonical switches. If
a∗

i2,τk−1
= 1 were true, then i2 would have already been θ̄-inadmissible on interval τk−1 − 1.

Furthermore, a∗
i2,τk−1

= 0.5 is not possible because we derived τk−1 > dRe. We conclude that
a∗

i2,τk−1
= 0. From this and the inductive hypothesis, which states that the (k −1)st switch ap-

pears before the (dRe+ (k −1)nI )th interval, it follows that a∗
i1, j = 1 for the intervals j between

τk−1 and (dRe+ (k −1)nI ). Hence, θi1,dRe+(k−1)nI ≤ (dRe0.5 − 1)∆̄ holds due to (7.41). Finally,
we assume that i1 can stay active up to and including interval dRe + knI without becoming
θ̄-inadmissible. This and a∗

i1, j = 0 for dRe+ (k −1)nI +1 ≤ j ≤ dRe+knI imply that

−θ̄ ≤ θi1,dRe+knI

= θi1,dRe+(k−1)nI +
dRe+knI∑

l=dRe+(k−1)nI+1
(a∗

i1,l −1)∆̄

≤ (dRe0.5 −1)∆̄+0∆̄−nI ∆̄

Lemma 7.6≤ (dRe0.5 −1)∆̄+0− (2dRe0.5 −1)∆̄

< −θ̄  .

Thus, control i1 is not active until the (dRe+knI )th interval, and, with an analogous computa-
tion for case b), control i1 is not active until the (dRe+ (k −1)nI )th interval. We have thereby
shown that the assertion holds for k. Altogether, the constructed control function w MDR uses
more than σmax switches for the chosen rounding threshold θ̄ so that the optimal (CIA-TV)
objective value is at least θ̄, and we conclude that the claimed theorem is true.

We complete this subsection by concluding Theorems 7.5 and 7.6.

Corollary 7.3 (Tightest possible bound on the integral deviation gap for (CIA-TV) and nω = 2)
Consider an equidistant grid GN , a∗ ∈ AN , and 1 ≤ σmax ≤ N − 2. The optimal objective of
(CIA-TV) is bounded by

θ∗ ≤ N +σmax +1

3+2σmax
∆̄, (7.42)

which is the tightest possible bound.

Proof. The inequality (7.42) is achieved by applying Theorem 7.5 to the equidistant case and
rearranging the terms:

θ∗ ≤
(

N

3+2σmax
+ 1

2
− 1

2(3+2σmax)

)
∆̄= N +σmax +1

3+2σmax
∆̄.
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It is the tightest possible bound by Theorem 7.6 and the case N = k(3+2σmax)+2+σmax, k ∈N0:

θ∗ ≥
⌈

k(3+2σmax)+2+σmax

3+2σmax

⌉
0.5
∆̄= (k +1)∆̄= N +σmax +1

3+2σmax
∆̄.

7.5.2 Upper bounds on (CIA-TV) with nω > 2

The number of feasible solutions (CIA-TV) increases significantly for nω > 2 compared with
the case nω = 2, making it challenging to derive bounds for this setting. Recall the definition
of θmax in (7.1), and here let it denote the maximum optimal objective value of any (CIA-TV)
problem instance. First, we use known results to derive lower and upper bounds on θmax. Then,
we dedicate ourselves to the continuous relaxation of (CIA-TV), allowing us to prove a sharper
lower bound. Based on this, we state a conjecture about the actual value of θmax.

Corollary 7.4 (Lower bound on θmax for nω > 2)
Let 1 ≤σmax ≤ N −2 and nω > 2. For (CIA-TV) it holds that θmax ≥ N+σmax+1

3+2σmax
∆̄.

Proof. This bound was established in Theorem 7.6 and Corollary 7.3 for the case nω = 2. The
example provided in the proof of Theorem 7.6 can also be applied to the case nω > 2 by setting
the values of the relaxed controls a∗

i ,· to zero for all i ∈ [nω] with i > 2.

Corollary 7.5 (Upper bound on θmax for nω > 2)
Let 1 ≤σmax ≤ N −2 and nω > 2. We have that θmax ≤ 2nω−3

2nω−2

(
t f −t0

σmax+1 + ∆̄
)

holds for (CIA-TV).

Proof. In Proposition 7.1, we provided a sharp bound for (CIA-U):

θ∗ ≤ 2nω−3

2nω−2

(
CU + ∆̄)

.

If, for a binary control solution w , we require that an activated control remains active for a time
period of at least

t f −t0

σmax+1 , at most σmax switches take place. Thus, the TV constraints (4.9)–(4.10)
serve as a relaxation of the MU time constraint. This implies that θmax for (CIA-TV) is smaller
than or equal to θmax for (CIA-U).

We tighten the above results by investigating the continuous version of the (CIA-TV) problem.

Definition 7.2 (CCIA-TV)
Let α ∈A , a time horizon T , and σmax ∈N be given. Then, we define the continuous combina-
torial integral approximation problem (CCIA-TV) subject to total variation (TV) constraints to
be

min
θ≥0,ω∈Ω

θ (7.43)

s. t. θ ≥±
t∫

t0

[αi (s)−ωi (s)] ds, for all i ∈ [nω], t ∈T , (7.44)

σmax ≥ T V (ω), (7.45)

where T V is defined as in (3.5).
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Obviously, the problem (CCIA-TV) is a reformulation of

min
ω∈Ω

max
t∈T

∥∥∥∥∫ t

t0

(α(s)−ω(s)) ds

∥∥∥∥ , s.t. TV constraint (7.45).

We stress that for (CCIA-TV) the given dataα does not live in AN but in A , and analogously, we
try to find a binary control functionω ∈Ω. We obtain a lower bound for the maximum optimal
objective of (CCIA-TV) over all α ∈ A by constructing a specific instance, as indicated in the
following proposition.

Proposition 7.5 (Lower bound on the maximum optimal objective of (CCIA-TV))
There is a relaxed control functionα ∈A and a time horizon T such that for the optimal objec-
tive value θ∗ of (CCIA-TV) the following holds:

θ∗ ≥


t f −t0

σmax+2 , if σmax ≤ nω−2,

t f −t0

2σmax+4−nω
, else.

(7.46)

Proof. We first prove the inequality for σmax ≤ nω−2. We abbreviate t̃ := t f −t0

σmax+2 and construct
the following instance:

αi (t ) :=
{

1, for t ∈ [t0 + (i −1) · t̃ , t0 + i · t̃ ),
0, else,

for all i ∈ [σmax +2],

αi (t ) := 0 for all i =σmax +3, . . . ,nω, and t ∈T .

We conclude thatα ∈A since the convex combination constraint is satisfied on the entire time
horizon T . It results that

∫
T αi (s) ds = t̃ for all i ∈ [σmax +2]. Thus, we would need to activate

each control ωi for some time to achieve a smaller objective value than t̃ . However, because
the number of switches is restricted to be at most σmax, this is not possible. Hence, θ∗ ≥ t̃ .

Next, we considerσmax > nω−2 and again construct a specific instance with the claimed objec-
tive value of θ∗ ≥ t f −t0

2σmax+4−nω
. We abbreviate t̄ := t f −t0

2σmax+4−nω
. Similar to the above example, we

first let the relaxed controls αi be active sequentially for a period of length t̄ . After all relaxed
controls have been active once and while the end of the time horizon has not yet been reached,
we activate each control for a period of length 2t̄ according to the ascending index i ∈ [nω] un-
til we reach the end of the time horizon. We express this idea by introducing the domains of
activation for all i ∈ [nω]:

T A
i :=[t0 + (i −1) · t̄ , t0 + i · t̄ )

∪
{[

t0 + [nω+2( j −1)]t̄ , t0 + (nω+2 j )t̄
) ∣∣∣ j ∈ [σmax +2−nω], j ≡ i mod nω

}
.

Based on these domains we define the functions αi (t ) via

αi (t ) :=
{

1, for t ∈T A
i ,

0, else,
for all i ∈ [nω].

Fig. 7.2 provides a visualization of the specifically defined control function α, which depends
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t f

α1(t ) = 1

α2(t ) = 1

...

αnω
(t ) = 1

· · · · · ·

· · ·
· · ·
· · ·
· · ·

· · · · · · · · ·

t̄ t̄ t̄ 2t̄ 2t̄ 2t̄ 2t̄ 2t̄

Relaxed binary control values based on T A
i

Figure 7.2: Exemplary visualization of the relaxed control functionα from the proof to Proposi-
tion 7.5; it results in an optimal (CCIA-TV) objective value of t̄ . Since i = 2 is the last
activated control mode in this example, the maximum number of allowed switches
is σmax = knω+2−2 = knω, for k ≥ 2.

on σmax. We have
nω t̄ + (σmax +2−nω)2t̄ = t f − t0,

such that ∪i∈[nω]T
A

i = T follows, and because the intervals T A
i are all disjoint, we obtain

αi (t ) = 1 for exactly one control mode i and for all t ∈ T . Hence, α ∈ A . The next observa-
tion about α is that it consists of nω+ (σmax +2−nω) =σmax +2 activation blocks (interpreted
in this continuous setting), meaning that there are σmax+1 changes of the active control. Now,
assume we can approximate α with a binary control function ω ∈ Ω that yields a (CCIA-TV)
objective value that is less than t̄ . We have

t0+i t̄∫
t0

αi (t ) dt = t̄ , for all i ∈ [nω].

Each control ωi , i ∈ [nω] thus needs to be active for some time up to and including t0 + i t̄ ,
resulting in at least nω−1 switches up to and including t0 +nω t̄ . Then, we have that

t0+nω t̄∫
t0

αi (t )−ωi (t ) dt < t̄ , for all i ∈ [nω].

This, and using that the next activation blocks of α last for a period of 2 t̄ , implies that each
control ωi needs to be activated again up to and including t0 + (nω+2i )t̄ . If it were possible for
some control i ∈ [nω] to skip the activation of ωi without violating the control deviation bound
t̄ , it would result in ∣∣∣∣∣∣∣

t0+(nω+2i )t̄∫
t0

αi (t )−ωi (t ) dt

∣∣∣∣∣∣∣< t̄ ,
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while it would simultaneously hold that

t0+(nω+2i )t̄∫
t0+(nω+2(i−1))t̄

ωi (t ) dt = 0,

which implies ∣∣∣∣∣∣∣
t0+(nω+2(i−1))t̄∫

t0

αi (t )−ωi (t ) dt

∣∣∣∣∣∣∣> t̄

because of
∫ t0+(nω+2i )t̄

t0+(nω+2(i−1))t̄
αi (t ) dt = 2 t̄ . We apply this argument for all activation blocks of α

until t f and conclude that ω must use at least one switch for each activation block of α after
t0+nω t̄ , i.e., it must use at least (σmax+2−nω) switches. Overall, there are at least nω−1+(σmax+
2−nω) = σmax +1 switches. Therefore, any ω ∈Ω that uses at most σmax switches involves an
(CCIA-TV) objective value of at least t̄ , which settles the claim for the case σmax > nω−2.

(CIA-TV) can be interpreted as a discretized version of (CCIA-TV). Thereby, we deduce the
following corollary.

Corollary 7.6 (Lower bound on θmax for nω > 2 deduced from (CCIA-TV))
Let 1 ≤σmax ≤ N −2 and nω > 2. For the maximum optimal objective value θmax of (CIA-TV), we
obtain

θmax ≥


t f −t0

σmax+2 , if σmax ≤ nω−2,

t f −t0

2σmax+4−nω
, else.

(7.47)

Proof. (CCIA-TV) is a relaxation of (CIA-TV) since every feasible solution of (CIA-TV) corre-
sponds to a feasible solution of (CCIA-TV). Thus, the claim follows from Proposition 7.5.

The lower bound in Corollary 7.6 is sharp in the sense that there are combinations of nω, σmax,
and GN such that θmax equals the claimed lower bound. The following example illustrates this
relationship.

Example 7.2 (Tightness of the bound in Corollary 7.6)
Let the grid be equidistant with N = 3, and assume nω = 3. Consider the following two in-
stances:

(a1
i , j )i∈[3], j∈[3] :=

 1 0 0
0 1 0
0 0 1

 , (a2
i , j )i∈[3], j∈[3] :=

 1 0.5 0
0 0.25 0.5
0 0.25 0.5

 .

Consider σmax = 1 in the first example. Then, θ∗ = ∆̄, and θmax ≥ ∆̄ follows from the above
corollary. Any asymmetric modification of (a1

i , j ) with unequal control accumulation
∑3

j=1 a1
i1, j 6=∑3

j=1 a1
i2, j would result in a binary control function w∗ that activates the control mode with the

largest control accumulation and hence θ∗ < ∆̄. We conclude that the claimed bound is sharp,
i.e., θmax = ∆̄.

Assume σmax = 2 for the second instance. Then, w∗
i , j = 1 for (i , j ) = (1,1), (1,2), (2,3) and thus

θ∗ = 0.75∆̄. Therefore, the bound in Corollary 7.6, which amounts to θmax ≥ 3
5 ∆̄, is not tight for

this instance.
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Finding the exact value of θmax is difficult due to the nonconvex objective and the tremen-
dously increased number of different ω ∈ Ω when nω > 2. Nevertheless, we conjecture that
the lower bound in Proposition 7.5 cannot be improved. We recognize the symmetry of the
constructed α in the proof: any modification of α that alters the length of its activation blocks
would result either in fewer thanσmax+2 activation blocks or in at least one block with a length
smaller than its previous length. The length of the latter activation block would be smaller
than

t f −t0

2σmax+4−nω
if the block were the activation of the first control, respectively smaller than

2 · t f −t0

2σmax+4−nω
else. Using the argumentation from the proof of Proposition 7.5, this would allow

us to choose a control function ω ∈ Ω with a (CCIA-TV) objective value that is smaller than
t f −t0

2σmax+4−nω
. Furthermore, we argue that the optimal objective value of (CCIA-TV) is smaller

than that of (CIA-TV) by at most 1
2 ∆̄ because the switching times of the optimalω ∈Ω differ by

at most one half of the maximum grid length from the optimal w ∈ΩN . We close this section
by summarizing these thoughts in the following conjecture.

Conjecture 7.1 (True value of θmax for (CIA-TV) with nω > 2)
Let 1 ≤ σmax ≤ N −2. We conjecture that for the maximum optimal objective value θmax of all
(CIA-TV) instances the following holds:

θmax =


t f −t0

σmax+2 + 1
2 ∆̄, if σmax ≤ nω−2,

t f −t0

2σmax+4−nω
+ 1

2 ∆̄, else.
(7.48)

7.6 Summary

This chapter established upper bounds on the integral deviation gap for the (CIA) problem it-
self and under MDT and TV constraints. We used the rounding algorithms DNFR and AMDR as
tools for constructing generic binary control solutions that comprise a bounded integral devi-
ation gap, thereby implying bounds for the integral deviation gaps of (CIA-UD) and (CIA-TV).
We then investigated the tightness of the bounds by providing examples a∗ ∈AN that result in
the proven integral deviation gap. We similarly examined the behavior of DSUR in terms of the
integral deviation gap.

We summarize the established integral deviation gap bounds for the NFR and SUR schemes
from the literature in the form of θ(w ) ≤C (nω)∆̄ in Table 7.1.

NFR SUR SUR with vanishing constraints

C (nω) = 1, see [135],
nω∑
i=2

1
i , see [149], bnω/2c, see [179].

Table 7.1: Integral deviation gap bounds from the literature for binary control approximation
algorithms.

Table 7.2 lists the results from this chapter for the various (CIA) problem settings. We use the
notation from Equation (7.1) for θmax, indicating the maximum integral deviation gap over all
instances a ∈AN .

We remark that an algorithm that solves (CIA) to optimality is a rounding gap consistent al-
gorithm as introduced in Definition 4.7, while the problems with MDT or TV constraints do
not satisfy this property. Consequently, the convergence property for the CIA decomposition
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Problem type Established result Statement

(CIA) θmax = 2nω−3
2nω−2 ∆̄ Corollary 7.2

(CIA-U) θmax = 2nω−3
2nω−2 (CU + ∆̄) Proposition 7.1-7.2

(CIA-D) θmax ≤ min
{

3
4CD + 3

2 ∆̄, 2nω−3
2nω−2

(
CD + ∆̄)}

Proposition 7.3

(CIA-UD) Proposition 7.3
if CU ≥CD : θmax ≤ 2nω−3

2nω−2

(
CU + ∆̄)

if CD >CU >CD /2 : θmax ≤ min
{

3
2CU + 3

2 ∆̄, 2nω−3
2nω−2

(
CD + ∆̄)}

if CD /2 ≥CU : θmax ≤ min
{

3
4CD + 3

2 ∆̄, 2nω−3
2nω−2

(
CD + ∆̄)}

(CIA-TV)

nω = 2 θmax ≤
(

N
3+2σmax

+ 1
2

)
∆̄ Theorem 7.5

nω = 2, ∆ j = ∆̄ θmax = N+σmax+1
3+2σmax

∆̄ Corollary 7.3

nω > 2 N+σmax+1
3+2σmax

∆̄≤ θmax ≤ 2nω−3
2nω−2

(
t f −t0

σmax+1 + ∆̄
)

Corollary 7.4-7.5

nω > 2, σmax ≤ nω−2 θmax ≥ t f −t0

σmax+2 Corollary 7.6

nω > 2, σmax > nω−2 θmax ≥ t f −t0

2σmax+4−nω
Corollary 7.6

nω > 2, σmax ≤ nω−2 θmax ?= t f −t0

σmax+2 + 1
2 ∆̄ Conjecture 7.1

nω > 2, σmax > nω−2 θmax ?= t f −t0

2σmax+4−nω
+ 1

2 ∆̄ Conjecture 7.1

Table 7.2: Established results for the integral deviation gap of the problems (CIA), (CIA-U),
(CIA-D), (CIA-UD), and (CIA-TV) with references to the corresponding statement.
If θmax equals the upper bound, we proved a tight upper bound on the integral devi-
ation gap. We indicate that the bound is conjectured with a question mark.

achieved in Chapter 5 does not hold if (BOCP) is restricted by these time-coupled combina-
torial constraints. In particular, in this situation, the optimal solution of (BOCP) cannot be
approximated arbitrarily close by the solution constructed by the (CIA) decomposition and by
refining the discretization grid. Nevertheless, the proven integral deviation gaps are useful for
quantifying the approximation errors.

Table 7.3 presents the integral deviation gap results for the algorithms DSUR, DNFR, and
AMDR. Our analysis did not include other possible combinatorial constraints, such as the pre-
fixing (3.15) or the mode transition (3.14) constraint. Without providing rigorous proof for these
constraints, we note that the integral deviation gap can theoretically become very large (i.e.,
t f − t0) when there are indices i ∈ [nω], j ∈ [N ] with ai , j = 1 and wi , j = 0 is fixed.
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Algorithm Established result Statement

DSUR

CD <∆ θ(w ) ≤ (CU + ∆̄)
nω∑
i=2

1
i Corollary 7.1

∆ j = ∆̄, CU < ∆̄ ∃ a∗ : θ(w ) ≥
( dCD /∆̄e

2 + (nω−2)
)
∆̄ Theorem 7.2

DNFR θ(w ) ≤C2L , Theorem 7.4

(C2,χD ) =
(

2nω−3
2nω−2 ,0

)
,
(3

2 ,1
)

AMDR, ∆ j = ∆̄, θ(w ) ≤ θ∗+T OL Theorem 6.3

if nω > 2, assume
only canonical
switches

Table 7.3: Established results for the integral deviation gap of the constructed binary control w
of the rounding algorithms DSUR, DNFR, and AMDR. Further details on the assump-
tions and parameters are given in the referenced result statement.

141



142



Part III

Implementation, numerical results, and applications
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Chapter 8

Implemented software: pycombina

To solve mixed-integer optimal control problems (MIOCPs) using the combinatorial integral
approximation (CIA) decomposition, the solutions of nonlinear programs (NLPs) and a mixed-
integer linear program (MILP) are necessary. While advanced programs for modeling and solv-
ing NLPs like Casadi [9] and Ipopt [263] already exist, the (CIA) problem, representing an MILP,
can be highly complex to solve. Therefore, tailor-made algorithms are beneficial for this de-
composition step. pycombina is a software package designed for the formulation and solving
of (CIA) rounding problems. The tool is mainly developed in Python, facilitating integration
into existing projects. The performance-critical parts of the BnB solver are written in C++, and
we use pybind11 [133] to interface Python with the solver.

pycombina emerged as part of the publications [48, 49, 50]. This chapter is inspired by [50],
where the tool has already been described. The author of this thesis contributed to the concep-
tion and development of the software package and implemented solver classes related to this
thesis. ADRIAN BÜRGER implemented most parts of the Python interface and the BnB solver,
while MIRKO HAHN contributed implementation-related improvements of the BnB solver.

Section 8.1 introduces the underlying code design and the usage of the pycombina tool. The
different available combinatorial constraint options and solver classes are discussed in Sec-
tion 8.2 and 8.3, respectively, before we exemplify applications of the tool in Section 8.4.

8.1 Basic code design and usage structure

Figure 8.1 illustrates the usage of pycombina in a flowchart pattern. We assume that (NLPrel)
has been solved and that the optimal relaxed controls a∗ are thus available. This matrix of
relaxed control values and a vector of the time grid points are necessary for setting up a (CIA)
problem. We implemented the Python class BinApprox to store and handle (CIA) problem data.
Initialization of a BinApprox object is performed by providing the relaxed control value and grid
data. pycombina computes internally auxiliary variables, such as the number of control modes
and the grid lengths. If additional combinatorial constraints restrict the (CIA) problem, the cor-
responding constraint parameters need to be provided. The BinApprox class facilitates meth-
ods to set up these constraints. We give more details on available combinatorial constraints in
Section 8.2.

The next task is to choose a solver. Most of the algorithms mentioned in Chapter 6 are avail-
able as part of pycombina, for instance, CombinaSUR and CombinaBnB, which respectively repre-
sent SUR and BnB. The solvers are accessible via dedicated solver classes, all of which initialize
a solver object with the BinApprox object data. Afterward, the (CIA) problem data is inter-
nally preprocessed; e.g., inactive controls are removed. These tasks are performed by the class
BinApproxPreprocessed, which is a child class of BinApproxBase, like BinApprox.

After a solver object has been initialized, the final step is to solve the problem (depending on
the chosen solver, it may only be heuristically), using the solve()-method of the solver class.
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(NLPrel) solution

(CIA) problem in-
put: grid GN and

relaxed control a∗

Initialize BinApprox ob-
ject with input data

Combinatorial
constraints?

Provide constraint
parameters, e.g.,

switching limit σmax

Set up combinatorial con-
straints in BinApprox object

Choose solver and create
solver object, e.g. CombinaSUR,

using BinApprox data

Internal preprocessing:
BinApproxPreprocessed

object created

Solver
options

Input of options
dictionary with,

e.g., max_cpu_time

Solve problem via the solve()-
method of the solver object

Output: optimal solu-
tion of (CIA) problem
w∗ and objective θ∗

Use w∗ to solve (NLPbin)

no

yes

specific

default

Figure 8.1: Flowchart overview of the application of pycombina. Stadium (white), rectan-
gle (red), rhombus (gray), and rhomboid (blue) respectively indicate the begin-
ning/ending of the process, a set of operations, a process of inputting/outputting
data, and a conditional operation.

Specific solver options can be chosen for some of the solver classes, e.g., a maximum run time
can be set up via max_cpu_time and passed to the solve function within an options dictionary.
The optimization output can be accessed via the solution class attributes eta for the objective
value and b_bin for the resulting w value. The latter is used to solve (NLPbin).
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8.2 Available combinatorial constraints

We list the different pycombina functions for setting up combinatorial constraints, and creating
a connection to Section 3.2:

• set_n_max_switches: This function allows us to set up mode-specific limiting switch-
ing constraints as defined in Constraint (3.7). It requires switching limits, i.e., positive
integers, as the input vector for every control mode.

• set_total_n_max_switches is equivalent to Constraint (3.8). Thus, in the discretized
setting, it represents the total variation (TV) constraint. We need to provide σmax ∈N as
input.

• set_min_up_times enforces mode-specific minimum up (MU) time spans as defined in
Constraint (3.9). The MU time span for each mode needs to be provided.

• set_min_down_times is analogous to set_min_up_times but with minimum down (MD)
time spans. It is the implementation of Constraint (3.10), where a vector of MD times is
needed for all control modes.

• set_max_up_times: This sets the maximum up time per control, i.e., the maximum
time that a control mode can stay active once it has been activated, as defined in Con-
straint (3.12). The user needs to provide as input a vector of time spans for the corre-
sponding modes.

• set_total_max_up_times is the pycombina function for enforcing Constraint (3.13). A
vector of mode-specific float numbers is taken as input, limiting the mode-specific ac-
tivation time over the entire time horizon.

• set_valid_controls_for_interval: As introduced in Constraint (3.15), certain control
modes can be excluded on specific time intervals. The function takes a time interval and
a binary vector indicating the allowed modes on this interval as input. A “zero” in the
nth position of the vector indicates that the nth control mode is forbidden on the chosen
interval.

• set_valid_control_transitions corresponds to Constraint (3.14) in pycombina. This
function requires the control mode index i for which valid mode transitions are defined
together with a binary vector that indicates the allowed transitions. A “zero” in the nth
position of this vector indicates that the nth control mode cannot be activated directly
after control mode i has been active.

• set_b_bin_pre defines an active control mode on the hypothetical interval before t0.
With this pre-activated control mode, a change of activation on t0 can be counted as a
switch. This feature appears to be relevant in model predictive control (MPC) applica-
tions [49]. As input, it requires a binary vector, indicating which mode was pre-activated.
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8.3 Available solver classes

We differentiate between rounding, MILP, and branch-and-bound (BnB) solver classes. In the
following, we discuss available solver algorithms according to these groups and in connection
with Chapter 6.

1. Rounding algorithms: We list the various rounding algorithms with their solver options
and functionality to construct binary controls fulfilling combinatorial constraints.

• CombinaSUR and CombinaNFR correspond to the classical SUR and NFR schemes,
respectively. They are not designed to construct combinatorial constraint feasible
solutions.

• CombinaDSUR and CombinaDNFR are the implementations of DSUR and DNFR, re-
spectively. These solvers can handle MU and MD time constraints. Since these algo-
rithms are designed to include mode-independent MU and MD times, the current
implementation uses the maximum MU and MD times of all modes as the dwell
time parameter.

• CombinaAMDR is the solver implementation of AMDR. The constructed solution sat-
isfies TV constraints and MU times. It is possible to specify the T OL parameter
via eta_tol. The rule for choosing the next active control as part of the MDR al-
gorithm can be set to either “argmax” or “adm_next_forced” via the parameter
mdr_strategy . While the first rule selects the control with the maximum γ value
(as defined in MDR), the admissible next-forced control is chosen as part of the
second rule. If the admissible next-forced control is chosen as activation strategy,
the solver is equivalent to Bisection-NFR from Chapter 6. Thus, the (CIA) problem
can be solved to optimality up to a tolerance T OL by using CombinaAMDR with this
activation strategy.

2. Interface to MILP solver programs: CombinaMILP automatically sets up an MILP that
can be solved by Gurobi [109]. The implementation relies on Gurobi’s Python inter-
face gurobipy. All the combinatorial constraints mentioned in this thesis are available
for this solver option. This solver class is, in particular, suitable for testing new con-
straint types due to the straightforward implementation of constraints in gurobipy. The
constraint method set_state_cnstr_apprx provides the possibility of setting up the
first-order Taylor path constraint approximation from Definition 4.14. For this purpose,
the corresponding constraint derivative and model function weights are provided as in-
put. Gurobi’s regular solver options, such as a time limit, can be passed to Gurobi via
CombinaMILP. The extended formulated (CIA) problem from Section 6.4.2 can be ad-
dressed with the class CombinaSTOMILP, though only TV constraints are currently avail-
able. Before applying this solver, a predefined active control sequence needs to be pro-
vided through the function set_predef_control_seq.

3. BnB algorithms: CombinaBnB is the solver corresponding to the BnB algorithm from Sec-
tion 6.3; it has proven beneficial for real-world applications [49]. All the mentioned com-
binatorial constraints are available for this solver. The algorithm can take considerable
time for big problems, so the solver options max_iter and max_cpu_time are available
to abort it prematurely. The choice of the node selection strategy can have a significant
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influence on the solution time. Example implementations are depth-first and best-first
strategy accessible via the solver option bnb_search_strategy. A draft of the extended
formulated BnB algorithm, i.e., STO-BnB from Section 6.4.3, is implemented as the solver
class CombinaSTOBnB.

8.4 Exemplary application of the tool

Figure 8.2 presents a code snippet that illustrates the usage of the Python interface. We use the
relaxed control data from Problem (P2), Section 9.3. We follow the main problem set up and
solution steps described in Section 8.1. To demonstrate the usage of combinatorial constraints,
we add mode-specific switching limits for the three control modes. The example problem in-
stance is solved with the NFR scheme and with the BnB algorithm to include TV constraints.
The constructed control solutions, together with the relaxed control solution, are depicted in
Figure 8.3. While the control solution constructed by NFR switches frequently, the number of
switches in the BnB solution has been reduced to the induced switching limits.

1 import pycombina

2

3 # (CIA) problem data:

4 G = [0.0, 0.075, 0.15, 0.225, 0.3, ..., 11.925, 12]

5 a = [[0.0, 0.0, 0.0, 0.0, 0.0, ..., 0.2773, 0.3874],

6 [1.0, 1.0, 1.0, 1.0, 1.0, ..., 0.7227, 0.6126],

7 [0.0, 0.0, 0.0, 0.0, 0.0, ..., 0.0, 0.0]]

8

9 cia_problem = pycombina.BinApprox(G,a)

10

11 # First, solve with NFR:

12 nfr_solver = pycombina.CombinaNFR(cia_problem)

13 nfr_solver.solve()

14

15 # Second, limit the number of switches and solve with BnB:

16 cia_problem.set_n_max_switches([4,6,4])

17 bnb_solver = pycombina.CombinaBnB(cia_problem)

18 bnb_opts = {"max_iter": 1e8}

19 bnb_solver.solve(**bnb_opts)

Figure 8.2: Example Python code to illustrate the usage of pycombina. By providing the time
grid G and the relaxed control value matrix a, a BinApprox object can be initial-
ized. This (CIA) problem instance, referred to as cia_problem, is used to create an
NFR solver object in line 12. The problem can be (heuristically) solved by applying
the solve() method of the initiated solver object. The cia_problem can be modi-
fied with optional combinatorial constraints, as performed in line 16 with limiting
switching constraints. We use the BnB solver CombinaBnB to solve the modified (CIA)
problem. Here, specific solver options, such as an iteration limit, are available.
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Figure 8.3: Control trajectory results for the example code from Figure 8.2 and data from the
test problem (P2). Left: Constructed binary control solutions based on NFR. Right:
Constructed binary control solutions based on BnB with TV constraints.
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Chapter 9

Numerical results

This chapter presents the computational results of solving MIOCPs with the CIA decomposition
based on the methods that have been described in the previous chapters. In particular, we
address

1. The generalized CIA decomposition based on different MILP formulations and recombi-
nation heuristics in Section 9.1,

2. The incorporation of path constraints into the (CIA) problem in Section 9.2,

3. MIOCPs under minimum dwell time constraints in Section 9.3, and

4. MIOCPs under bounded discrete total variation constraints in Section 9.4.

All computational experiments were executed on a workstation with 4 Intel i5-4210U CPUs
(1.7 GHz) and 7.7 GB RAM. We tested the proposed algorithms with benchmark examples from
the https://mintOC.de library [221]. We used the AMPL [79] code ampl_mintoc, which is a
modeling framework for handling optimal control problems, to produce the results in Sec-
tion 9.1. Sections 9.2–9.4 involve implementations in Python v3.7.1, where we applied CasADi

v3.4.5 [9] to parse the NLP models with an efficient derivative calculation of the Jacobians and
Hessians for the solver IPOPT v3.12.3 [264]. Details on the applied rounding problem-solving
procedures are given in the individual sections. Sections 9.1, 9.3, and 9.4 are based on the nu-
merical results chapters of the publications [280], [282], and [222], respectively.

9.1 Benchmark computations of different MILPs and recombination heuristics

We test the computational performance of the generalized CIA decomposition from Section 4.5
here; in particular, we test the different MILP formulations (Section 4.5.1) and recombination
as postprocessing (Section 4.5.2). In accordance with Section 4.5, we emphasize that we use
the term (CIAmax) to highlight the application of the maximum norm, in contrast to other
applicable norms, in the (CIA) problem.

The outline of this section is as follows. We describe the practical implementation of the tests
in Section 9.1.1, present results for the different MILP formulations in Sections 9.1.2–9.1.4, and
present results for the postprocessing heuristics in Section 9.1.5 before performing an analysis
of the run times in Section 9.1.6. Details on the discretization of the instances and individual
problem results are given in Section 9.1.7 and 9.1.8.

9.1.1 Practical implementation and instances

The ampl_mintoc code used here is advantageous for our purpose since it includes automatic
differentiation, it interfaces to MILP and NLP solvers, and its problem implementation stays
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close to the mathematical formulation. Furthermore, AMPL is beneficial since it provides the
evaluated dual variables λ̃. We used the Radau collocation from [31] for discretizing the (BOCP)
problems. Throughout the numerical study in this section, we applied Gurobi v8.1 [109] as an
MILP solver and IPOPT v3.12.4 as an NLP solver. We assumed that the choice of the MILP solver
has little influence on the solution quality and verified this by comparison with CPLEX v12.9.
We discretized the test problems with a control grid with N intervals and a finer grid for the
differential states with M intervals. We chose M such that the objective value changes only in
the 5th decimal place with a finer discretization and constant N . Afterward, we varied N with
fixed M to create several instances. For further details, we refer to Section 9.1.7. The problems
involving path or terminal constraints can result in infeasible solutions after solving the binary
approximation problem and solving (NLPbin) with fixed binary controls. To this end, we relaxed
these constraints and applied a merit function that penalizes constraint violations as part of the
objective with a sufficiently high penalty factor.

9.1.2 Control approximation scaled with the model function

We hypothesized that the MILPs based on the model function-scaled combinatorial integral
approximation, i.e., (SCIAmax) and (SCIA1), perform the best on instances where the binary
control enters the control-dependent right-hand side terms fi of the ordinary differential equa-
tion (ODE) in an affine way:

ẋ(t ) = f0(t , x(t ))+
nω∑
i=1

ωi (t )ci , for a.e. t ∈T , (9.1)

where ci ∈ R. If fi depends on x(t ), it may change rapidly over time resulting in possibly inac-
curateω solutions because we only have the discretized state trajectory x(t ) value at hand. We
identified the MIOCPs "Double tank (Multimode)" and "Lotka Volterra (absolute fishing vari-
ant)" as candidate problems from https://mintOC.de with the above right-hand side struc-
ture and calculated their solutions for different discretizations, both with and without the
TV constraints (4.9)–(4.10). In Section 9.1.7, we list the detailed discretization and maximum
switches parameters. The results are presented in Fig. 9.1.

We chose to evaluate the (BOCP) solutions based on both (CIA) and (SCIA) binary controls
according to the distance in the ‖ · ‖∞-norm of the differential state trajectories corresponding
to binary and relaxed controls. The theoretical justification of the CIA decomposition is built
on this distance, as pointed out in Chapter 5, and particularly, the proximity of objective values
and constraint satisfaction follows. The performance plot shows that the differential state tra-
jectories based on the (SCIAmax) and (SCIA1) binary control solutions are significantly closer
to the relaxed solution than are their (CIA) counterparts. There are hardly any differences be-
tween the ‖ ·‖1- and ‖ ·‖∞-norm results, although the ‖ ·‖∞-variants tend to perform better.

We examined whether the solutions constructed by (CIAmax) or (CIA1) outperform those
computed by (SCIAmax) and (SCIA1) if the state trajectory distance is measured by the ‖ ·‖1-
norm or if the objective value deviation from the relaxed solution is considered: the (SCIA)
variants are the clear winners. The result is similar when comparing the algorithms solely for
instances with and without TV constraints.
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Figure 9.1: Performance profile comparing the deviation of the differential states based on the
(SCIA) and (CIA) solutions from the differential states based on relaxed control val-
ues: The difference is evaluated in terms of the maximum norm in log-scale. The
results are based on the instances "Double tank (Multimode)" and "Lotka Volterra
(absolute fishing variant)" from the mintoc.de benchmark library. Using (SCIAmax)
or (SCIA1) can significantly improve the performance of the CIA decomposition.

9.1.3 Control approximation scaled with dual variables

We derived (λCIA1) as an approximation approach of the cost-to-go function difference based
on the binary and relaxed control solutions. Since this approximation is linear, we assume that
the (CIAmax) approach is more suitable for most (nonlinear) MIOCPs. We postulated that the
situation differs when a regularization term enters the objective function, accounting for the
cost of activating binary controls in the form of, e.g.,

C (x ,ω) =Φ(x(tf))+
∫

t∈T

nω∑
i=1

ωi (τ)ci dτ,

with constants ci ∈ R. The problem "Quadrotor (binary variant)" from https://mintOC.de

includes a cost function in the above form, so we used it with different discretizations and
both with and without the TV constraints (4.9) and (4.10) to compare the (λCIA1)-constructed
(BOCP) solutions with those obtained from (CIAmax) and (CIA1). In Fig. 9.2, we present the
computational results. In contrast to scaling with the model function, here we compared the
objective deviations of the (BOCP)-feasible solutions to the relaxed solution in terms of percent
since (λCIA1) aims to improving the objective values directly. We remark that (λCIA1) performs
worse than (CIAmax) and (CIA1) when the distance to the relaxed solution is measured in dif-
ferential state space.

The performance plot shows that in some instances (λCIA1) provides solutions with an im-
proved objective value when compared with those of (CIAmax) and (CIA1) but in many others,
it does not. Since (λCIA1) provided even weaker approximations of the relaxed solutions for
other MIOCPs, as shown in Section 9.1.5, we do not, in general, recommend using it as a sin-
gle rounding problem approximation step. It does serve, however, as a beneficial candidate
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Figure 9.2: Performance profile comparing the objective value deviation of the (λCIA1)-,
(CIAmax)-, and (CIA1)-based solutions to the relaxed control-based solution in
terms of percent in log-scale. The results are based on different discretization in-
stances of "Quadrotor (binary variant)" from the https://mintOC.de benchmark
library. (λCIA1) appears to provide no clear improvement over the (CIA) solutions.

solution for recombination and might be useful for as of yet unexplored problem classes.

9.1.4 (CIA) with backward accumulating constraints

We hypothesize that the MILP variants based on backward accumulated constraints from
Equation (4.32) are beneficial for MIOCP involving terminal equality constraints on the dif-
ferential states. The standard (CIAmax) approach may construct a binary control that re-
sults in an infeasible terminal constraint because the deviation from the relaxed solution is
too large. However, the direct incorporation of terminal constraints into (NLPrel) may already
lead to numerical difficulties. We decided to deal with soft constraints, meaning that we intro-
duce auxiliary variables to penalize deviation of the differential states from a desired terminal
value. We identified the candidate problem "Lotka Volterra (terminal constraint violation)"
from https://mintOC.de and calculated its solutions for different discretizations, both with
and without the TV constraints (4.9) and (4.10). Fig. 9.3 illustrates the objective deviation from
the relaxed solution in percent of (CIA) and its backward variant solutions.

We chose the objective deviation as the performance metric for our comparison study since
the objective accounts for violations of the terminal constraints via an auxiliary variable penalty
term. The graphs of (CIAmaxB) and (CIA1B) indicate that their corresponding (BOCP) solutions
yield lower objective values than their forward accumulation (CIA) counterparts. We observe
that this result seems to be independent of the chosen norm since the performance differences
between (CIAmaxB) to (CIA1B) are negligible.

9.1.5 Recombination heuristics

We used the MILP solutions constructed by (CIAmax), (CIA1), (SCIAmax), (λCIA1), and (CIA-
maxB) as a base to run the recombination heuristics from Section 4.5.2 on a set of thirteen
MIOCPs from the benchmark collection site https://mintOC.de with different discretizations
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Figure 9.3: Performance profile comparing the objective deviation of (CIA) and its backward
variant solutions from the relaxed solution in percent and log-scale: The results
are based on the instance "Lotka Volterra (terminal constraint violation)" from the
mintoc.de benchmark library. Using (CIA1B) or (CIAmaxB) can substantially im-
prove the performance of the CIA decomposition.

(see Section 9.1.7 for details). The box plot in Figure 9.4 depicts the numerical results with
respect to the percent deviation of the (BOCP) objective value of each algorithm from the ob-
jective value of the relaxed solution.

The boxes for the (SCIAmax), (SCIA1), and backward approaches appear to have slightly
higher median values than those of the (CIA) MILPs, while their mean values and outliers ap-
pear to be slightly lower. The numerical study revealed several instances in which (SCIAmax)
and (SCIA1) encounter a binary control solution with active controls on some intervals that
have relaxed values close to zero. Under the assumption that the combinatorial approximation
is mainly made on singular arcs, these cases might be called degenerate. We found underper-
forming (BOCP) objective values for (SCIAmax)- and (SCIA1)-based solutions in the case of
degenerate control values, explaining some of the instances of low performance. We conclude
that (SCIAmax), (SCIA1), and (CIAmaxB) should be used with caution. For specific problem
classes, as shown in the previous subsections, they may suitable. We have not specifically se-
lected such problems, and for the general problem class used here, there is no guarantee that
these algorithms provide any real improvement. In the future, more sophisticated quadrature
rules than the rectangle rule should be tested for the approximation of f in (SCIA).

The solutions of (λCIA1) clearly underperform, but we stress their importance for recombi-
nation, as mentioned in Section 9.1.3. For comparison, we have also computed the solutions
based on SUR and see that it provides good solutions that are similar, albeit somewhat worse,
than those of (CIAmax) and (CIA1). Note that depending on the selected algorithm, some in-
stances resulted in an objective deviation of more than 100%, which can be attributed to highly
penalized infeasible solutions of path- or terminal-constrained problems.

The depicted recombination heuristics provide significantly better binary control solutions
in terms of the objective value than the MILP solutions. The median values are reduced by a
factor of about two (Singular Arc Recombination) to a factor of three (GreedyTime) in compar-
ison with (CIAmax) and (CIA1). The other characteristics, such as the mean values, quartiles,
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Figure 9.4: Box plot comparing the (BOCP) objective value deviation of several MILP- (blue)
and recombination heuristic- (red) based solutions from the relaxed solution in per-
cent and log-scale. The results are based on the instances listed in Subsection 9.1.7.
The box borders are the first and third quartiles, and the whiskers represent the 1/20
and 19/20-quantiles. We visualize the median values as black lines in the boxes and
also display them numerically above the boxes. We represent the average values for
the algorithms with red asterisks and outliers with black crosses. ArcRecombination
refers to the Singular Arc Recombination heuristic from Algorithm 4.4, while Greedy-
Time represents Algorithm 4.3 with GreedyTimeBackward and Greedy-cost-to-go be-
ing its modifications from Remark 4.7. The boxes for the recombination strategies
indicate lower objective values compared those for the (CIA) algorithms: recombi-
nation can thus substantially improve the CIA decomposition performance.

and outliers, also reflect improvements. Particularly noteworthy is the GreedyTime heuristic,
which is robust against outliers and on average constructs solutions with small objective val-
ues. The Singular Arc Recombination heuristic selects the solution of the MILP algorithms with
the smallest objective value when there is only one singular arc. Since many of the selected
problems involve only one singular arc, the box plot indicates that over all MILP-constructed
solutions, this minimum can provide a significant improvement.

9.1.6 Run time evaluation

Figure 9.5 exemplifies the relationship between the run time and objective function values for
the Lotka Volterra multimode problem with M = 12000 and varying N . We compare the relative
(BOCP) objective value of the binary control solution constructed from (CIAmax) with those
constructed from the minimum over all MILP solutions (denoted by Opt(SCIA)), the GreedyTime
solution, and the solution obtained by the MINLP solver Bonmin v1.8.6. For a fair comparison,
we ran Bonmin with its four main algorithms B-BB, B-OA, B-QG, and B-Hyb and depicted the
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shortest run time of these algorithms. The elapsed real time from AMPL represents the run time
in our computations since the CPU time appeared to be very similar for our Bonmin calcula-
tions, while Gurobi is known to be a multi-threaded solver. First, the illustration shows that the
spread from the objective value to the relaxed solution vanishes with increasing N regardless of
the selected approach. Second, for some instances (CIAmax) was already quite close to Bonmin

(N = 25,50) in terms of objective quality, so GreedyTime could not provide much improve-
ment. For other discretizations with a considerable gap between the (CIAmax) and Bonmin
objective value solutions, GreedyTime was able to close most of the gap while being two orders
of magnitude faster than Bonmin.
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Figure 9.5: Log-plot of the run time and (BOCP) objective value deviation from the relaxed so-
lution for the Lotka-Volterra multimode problem, with state discretization of M =
12000 intervals. The numbers indicate the corresponding number of control grid
intervals N , and by Opt(SCIA), we denote the minimal objective deviation over all
MILP solutions. Note the convergence of all approaches towards the lower bound
provided by the relaxed solution and closure of the gap between the (CIAmax) and
Bonmin solutions for a fixed discretization. GreedyTime is roughly two orders of
magnitude slower than (CIAmax) but faster than Bonmin.

The average run time over all instances for (CIAmax) was a few seconds and increased slightly
for (SCIAmax), see Section 9.1.8. On average, Gurobi needed more than one minute for the
MILPs with the 1-norm and thus took considerably more time. For instances involving a fine
discretization, the run time increased enormously, and we thus set a time limit of 30 minutes.

The greedy heuristics and Singular Arc Recombination are to be used with caution since in-
putting numerous MILPs solutions leads to a high number of recombinations that must be
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evaluated. Singular Arc Recombination is relatively inexpensive and computes a solution that
is at least as good as the best one from the MILPs. The algorithm is most beneficial in the case
of several singular arcs in contrast to most applied problem instances where there is only one
arc. The greedy algorithm variants are quite expensive (with run times of up to 15 minutes)
yet provide solutions with objective function values very close to those of the relaxed problem.
When it comes to MINLP solvers, run times of days or even weeks cast a positive light on the
proposed generalized CIA decomposition Algorithm 4.2, which includes recombination.

9.1.7 Problem discretization details

To generate the performance plots and box plots in Section 9.1, we applied Algorithm 4.2, which
is the generalized CIA decomposition, on the following discretized problems from https:

//mintOC.de:

"Lotka Volterra (absolute fishing variant)":
M = 12000, N ∈ {25,50,75,80,100,120,150,160,200}, σmax ∈ {10,20,∞}

"Quadrotor (binary variant)":
M = 12000, N ∈ {25,50,60,80,100,150,200,300}, σmax ∈ {4,10,20,∞}

"Lotka Volterra (terminal constraint violation)":
M = 12000, N ∈ {20,30,40,50,60,100,120,200,240,300,400,600},
σmax ∈ {4,10,20,∞}

"F-8 aircraft (AMPL variant)":
M = 6000, N ∈ {30,40,50,60,100,120,150,200,240,300,400,500}

"Egerstedt standard problem":
M = 6000, N ∈ {20,30,40,60,100,120,150,200,240,300}

"Double Tank":
M = 18000, N ∈ {25,50,100,180,250,300,360,720}

"Double Tank multimode":
M = 12000, N ∈ {20,25,50,100,200,250,300,400,600}, σmax ∈ {10,20,∞}

"Lotka Volterra fishing problem":
M = 12000, N ∈ {20,30,40,60,100,120,200,300,400,600}

"Lotka Volterra multi-arcs problem":
M = 18000, N ∈ {25,50,100,150,200,250,300,400,600}

"Lotka Volterra multimode problem":
M = 12000, N ∈ {25,50,100,150,200,250,300,400,800}
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"Van der Pol Oscillator (binary variant)":
M = 6000, N ∈ {20,30,40,50,60,100,120,150,200,300}

"D’Onofrio chemotherapy model":
Scenarios 1,2, and 3 with M = 6000, N ∈ {20,30,40,50,60,100,120,150,200,300},
Only N ∈ {20,30,60,120} for Scenario 1, N = 100 for Scenario 2, and N ∈ {40,100} for Scenario 3
resulted in feasible relaxed solutions and were included.

"Catalyst Mixing problem":
M = 3000, N ∈ {10,15,20,30,50,60,75,100,120,150}

9.1.8 Average performance indicators and individual problem results

Table 9.1: Comparison of the mean and standard deviation (σ) of the objective deviation, switch
values, and run time for different approaches. The objective deviation is the percent
deviation from the relaxed objective, and run time refers to the elapsed real time.

Approach obj. dev [%] switches [#] run time [s]σ(obj. dev)σ(switches)σ(run time)

CIAmax 27.32 40.08 8.84 95.91 40.16 29.60

CIA1 27.08 39.54 106.11 93.60 38.99 385.77

SCIAmax 17.13 31.12 12.38 38.06 31.54 42.35

SCIA1 23.71 30.94 78.17 96.18 29.91 317.55

λCIA1 47.51 28.08 54.91 139.97 45.10 290.47

CIAmaxB 32.37 40.41 19.15 110.28 40.10 166.22

GreedyTime 2.06 33.36 106.26 4.27 34.47 133.61

GreedyTimeB 2.68 33.61 103.05 5.11 33.64 131.84

Greedy-Cost-to-go 2.01 34.05 117.24 4.24 34.09 172.88

ArcRecombination 6.53 35.34 11.26 13.55 37.01 37.12
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Table 9.2: Results for the Lotka Volterra multimode problem with differential states discretiza-
tion M = 12000 and varying N . The tables list the objective values, difference from
the relaxed objective, number of switches (S), and run time (R) in seconds required
for the different approaches to construct the binary controls.

(CIAmax) (CIA1)
N Obj. Diff. to rel. S [#] R [s] Obj. Diff. to rel. S [#] R [s]
25 1.84519 0.00920032 6 0.419997 1.84519 0.00920032 6 0.323492
50 1.83353 0.00189968 9 0.498163 1.83353 0.00189968 9 0.526022

100 1.83458 0.00470921 15 0.564993 1.83458 0.00470921 15 0.849123
150 1.83049 0.00129738 20 0.979946 1.83058 0.00138375 20 3.37327
200 1.8294 0.000412465 23 0.983907 1.8294 0.000412465 23 9.61383
250 1.82887 8.52473e-05 30 2.01582 1.82887 8.52473e-05 30 6.84566
300 1.82884 2.1597e-05 33 1.87382 1.82884 2.1597e-05 33 27.4496
400 1.82879 3.40892e-05 47 3.42292 1.82879 3.40892e-05 47 45.0224
800 1.82875 2.58672e-05 87 66.8739 1.82875 2.58672e-05 87 484.285

(SCIAmax) (SCIA1)
25 1.84519 0.00920032 6 0.313487 1.84519 0.00920032 6 0.925208
50 1.83399 0.00235793 8 0.493533 1.83399 0.00235793 8 0.723298

100 1.91199 0.0821278 16 1.05474 1.91199 0.0821278 16 3.62938
150 1.8834 0.0542079 20 2.84568 1.8834 0.0542079 20 9.7413
200 1.86972 0.0407389 25 7.90383 1.86972 0.0407389 25 36.7948
250 1.82887 8.52473e-05 30 11.6632 1.82887 8.5189e-05 30 65.8286
300 1.82887 4.80446e-05 32 8.75161 1.82887 4.80449e-05 32 55.7173
400 1.82877 1.94567e-05 47 30.4913 1.82877 1.94577e-05 47 188.408
800 1.83859 0.00987316 88 233.701 1.8381 0.00937638 89 1479.19

(λCIA1) (CIAmaxB)
25 1.84543 0.0094458 5 0.443169 1.87559 0.0395975 7 0.511785
50 1.84372 0.0120927 5 0.581385 1.84076 0.00912746 9 0.574335

100 1.8533 0.0234329 16 0.839147 1.8347 0.00483784 15 0.735999
150 1.85038 0.0211798 23 2.50497 1.83041 0.00121583 19 0.840867
200 1.83509 0.00610253 30 2.52277 1.82932 0.000336555 25 1.53587
250 1.8289 0.000119317 25 13.3181 1.82894 0.000159443 31 2.02886
300 1.8553 0.0264818 29 6.28425 1.82887 5.56473e-05 35 2.94341
400 2.07161 0.242853 128 12.5695 1.82878 2.53493e-05 47 5.77022
800 3.44174 1.61302 420 18.8157 1.82875 3.20174e-05 89 34.2567
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Table 9.3: Second part of Table 9.3: Results for the recombination heuristics solving the Lotka
Volterra multimode problem.

GreedyTime GreedyTimeBackward
N Obj. Diff. to rel. S [#] R [s] Obj. Diff. to rel. S [#] R [s]
25 1.84519 0.00920032 6 3.81442 1.84519 0.00920032 6 4.55248
50 1.83353 0.00189968 9 14.398 1.83353 0.00189968 9 14.5728

100 1.83059 0.000723242 15 16.5069 1.83117 0.00130419 13 16.7239
150 1.82956 0.000364781 19 63.9035 1.83 0.000802598 20 60.1375
200 1.82931 0.000326273 24 52.5325 1.82932 0.000336555 25 53.6014
250 1.82887 8.52473e-05 30 25.9954 1.82887 8.52473e-05 30 25.6038
300 1.82884 2.1597e-05 33 81.1383 1.82884 2.1597e-05 33 82.31
400 1.82877 1.94567e-05 47 217.31 1.82877 1.94567e-05 47 179.64
800 1.82874 2.35655e-05 87 553.42 1.82874 2.3582e-05 87 605.012

ArcRecombination Greedy-cost-to-go
25 1.84519 0.00920032 6 0.6978 1.84519 0.00920032 6 3.89079
50 1.83353 0.00189968 9 0.5322 1.83353 0.00189968 9 14.4531

100 1.83458 0.00470907 15 0.3819 1.83318 0.00331505 17 27.2192
150 1.83041 0.00121583 19 0.8785 1.82965 0.00045483 17 67.8054
200 1.82932 0.000336555 25 0.6278 1.82931 0.000326273 24 60.569
250 1.82887 8.52473e-05 30 0.6946 1.82887 8.52473e-05 30 25.6708
300 1.82884 2.1597e-05 33 0.9826 1.82884 2.1597e-05 33 103.187
400 1.82877 1.94567e-05 47 0.5933 1.82877 1.94567e-05 47 302.851
800 1.82874 2.3582e-05 87 0.7660 1.82874 2.35652e-05 87 1166.96

9.2 Incorporation of the path constraint data into (CIA)

In this section, we return to MIOCPs with path constraint restrictions of type (4.1e). In Defi-
nition 4.14, we proposed constraints to be included in (CIA) based on a first-order TAYLOR ap-
proximation of path constraints and justified this approach in Section 5.5 with an error bound
result. Here, we present a case study of benchmarking the proposed basic CIA decomposition,
i.e., Algorithm 4.1, where Constraint (4.15) is included in (CIA). The MIOCP we are dealing
with is the Lotka Volterra fishing problem1, which has been used in other benchmark studies
[280, 28]. The problem formulation reads

1See https://mintoc.de/index.php/Lotka_Volterra_fishing_problem for further details on e.g., the problem
interpretation.
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min
x ,ω∈Ω

∫ t f

t0

(x1(t )−k1)2 + (x2(t )−k2)2 dt

s.t. ẋ1(t ) = x1(t )−x1(t )x2(t )−k3ω1(t )x1(t )−k4ω2(t )x1(t ), for a.a. t ∈ [t0, t f ],

ẋ2(t ) =−x2(t )+x1(t )x2(t )−k5ω1(t )x2(t )−k6ω2(t )x2(t ), for a.a. t ∈ [t0, t f ],

x(0) = x0,

0 ≤ (Cub −x1(t )), for a.a. t ∈ [t0, t f ].

(P1)

For our computations, the parameters are set to

(k1,k2,k3,k4,k5,k6) := (1,1,0.4,0,0.2,0), x0 := (0.5,0.7)>, [t0, t f ] := [0,12].

Furthermore, we add a path constraint in which x1 is bounded from above by Cub. The pa-
rameter Cub is varied in our computations and specified in the sequel. In order to apply the
first-order Taylor approximation constraint, we use the notation from Definition 4.14 and for
t ∈T obtain

c(x1(t )) :=Cub −x1(t ), cx1 (x1(t )) =−1, f1(x(t )) := (0.4x1(t ),0.2x2(t )>,

where we neglect the zero terms f2 and cx2 . The discretized and evaluated cx and f1 are needed
in Constraint (4.15). We solved the resulting (CIA) problem with Gurobi v9.0, which can be
addressed via pycombina with an add-on implementation for these constraints.

Figure 9.6 shows example numerical results for a discretization with multiple shooting and
N = 200 intervals. The parameter Cub is set to 1.5. We compare the control and state trajectories
based on relaxed controls with those based on (CIA) and (CIA) with Constraint (4.15).

We omit the presentation of ω2 since it is complementary to ω1. The relaxed state trajec-
tory x1 satisfies the path constraint by decreasing the fishing rate ω1 between t = 2 and t = 4.
Rounding the relaxed control values via (CIA) results in a state trajectory x1 that does not fulfill
the path constraint. The maximum violation of the upper bound Cub amounts to 0.0197. This
violation can be decreased to 0.0049 by using the path constraint approximation approach.
This improvement in feasibility comes with an increase in the (BOCP) objective value from
1.3576 for (CIA) to 1.3609 when including Constraint (4.15). We recognize an unexpectedly late
activation for the latter approach with ω1 around t = 10, which may unnecessarily worsen the
objective function value.

To investigate the constraint satisfaction of our approach quantitatively, we solved (P1) with
different discretizations N and Cub parameter values. The range for Cub was chosen to be
[1.42,1.63] because (NLPrel) becomes infeasible for smaller values, and the path constraint is
not restricting for larger values. With an increment of 0.01, all values in this range (22 values)
were tested for Cub. As an infeasibility criterion, we chose the weighted accumulated infeasi-
bility over all intervals, i.e.,

ν(x1, N ) := t f − t0

N

∑
j∈[N ]

max
{
0, x1, j −Cub

}
.

Figure 9.7 illustrates the numerical results of the constraint violation ν for (CIA) with and with-
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Figure 9.6: Differential state and control trajectories for the test problem (P1) solved with the
CIA decomposition. The two plots on the left show the results after solving (NLPrel).
The control and state trajectories obtained after solving (CIA) are depicted in the
middle two plots. The plots on the right illustrate the control and trajectories con-
structed by (CIA), including with the path constraint approach from Definition 4.14.
The problem was discretized with Multiple Shooting and N = 200 intervals. We ob-
serve a slight path constraint violation for the x1 trajectory constructed by (CIA); it
is significantly reduced by including the constraints proposed in Definition 4.14.

out Constraint (4.15).

We observe that the constraint violation decreases with refinement of the grid intervals N –
independent of the chosen approach. Fulfilling the path constraint is already challenging for
small upper bound values in the relaxed solution, leading to high constraint violation values for
the binary control solutions. The plot demonstrates that the infeasibility ν can be significantly
reduced by including Constraint (4.15). This is particularly true for the finer discretizations, i.e.,
N = 200,400, and large upper bound values. We remark, however, that the solution constructed
by (CIA) under Constraint (4.15) does not guarantee path constraint feasibility since in most
instances, a small violation remains. In some instances, the violation is even worse than that
of (CIA). Nevertheless, we conclude that the proposed approach can be useful for obtaining
an (almost) (BOCP)-feasible solution in terms of path constraints. This could prove especially
beneficial when grid refinement is not possible or desirable. Otherwise, path constraint satis-
faction can be achieved by applying finer discretizations, as pointed out earlier. Future work in
this area should treat more problem instances, including those with combinatorial constraints
and nonlinear and more general path constraint types.
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Figure 9.7: Evaluation of the path constraint violation metric ν(x1, N ) for (P1), different (CIA)
approaches, varying upper bound Cub, and varying discretizations N . The definition
ofν(x1, N ) is given in the text. We compare the state trajectory feasibility constructed
by (CIA) and that constructed by (CIA) including the path constraint approach from
Definition 4.14. The latter approach reduces the infeasibility of the obtained solu-
tion, although it does not guarantee feasibility.

9.3 Mixed-integer optimal control under minimum dwell time constraints

This section consists of a case study for solving an MIOCP under minimum dwell time (MDT)
constraints with the basic CIA decomposition, Algorithm 4.1; it is based on [282], Section 7.
We consider a three-tank flow system problem with three controlling modes to evaluate the
integral deviation gap in practice and to test the proposed rounding methods DSUR and DNFR.
The problem models the dynamics of upper-, middle-, and lower-level tanks, connected to
each other with pipes. The goal is to minimize the deviation of certain fluid levels k2, k4, in
the middle, respectively lower, level tank. This problem type has been discussed in a variety of
publications on the optimal control of constrained switched systems [60] and is taken from the
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benchmark https://mintOC.de library [221]. The problem reads

min
x ,ω∈Ω

∫ t f

t0

k1(x2(t )−k2)2 +k3(x3(t )−k4)2 dt

s.t. ẋ1(t ) =−
√

x1(t )+ c1ω1(t )+ c2ω2(t )−ω3(t )
√

c3x1(t ), for a.a. t ∈ [t0, t f ],

ẋ2(t ) =
√

x1(t )−
√

x2(t ), for a.a. t ∈ [t0, t f ],

ẋ3(t ) =
√

x2(t )−
√

x3(t )+ω3(t )
√

c3x1(t ), for a.a. t ∈ [t0, t f ],

x(0) = x0.

(P2)

The additional parameters are

k := (2,3,1,3)T , c := (1,2,0.8)T , x0 := (2,2,2)T , [t0, t f ] := [0,12].

Furthermore, we add MU and MD time constraints (4.11) and (4.12) to the three-tank prob-
lem with varying CU and CD parameters. We applied Direct Multiple Shooting for temporal
discretization with a varying number of control grid intervals N together with a fourth-order
Runge-Kutta scheme to obtain the evolution of the differential state and thus the objective
value.2 To find the optimal solution of the resulting (CIA) problem and its MDT variants we
used the BnB solver of pycombina [49]. We published the Python source code for solving (P2)
via the basic CIA decomposition online.3

We stress that the obtained feasible solutions for (P2) via the CIA decomposition are, in gen-
eral, not globally optimal solutions. In fact, Problem (P2) appears to be nonconvex such that
IPOPT may construct a local solution, like rounding via (CIA) may do. Nevertheless, finding a
globally optimal solution is computationally expensive, as argued before.

Figure 9.8 depicts the state and control trajectories constructed by the CIA decomposition
with relaxed (ROCP) and binary (BOCP) control values and a required MU time of CU = 0.3. We
remark that the objective value of the binary solution under the MU time constraint is about
1.3% larger than that of the relaxed solution and is about 1.2% larger than the objective value
of the binary solution without the MU time constraint.

In Figure 9.9, we illustrate the effect of an increasing MU time on the optimal objective val-
ues of (CIA-U) and (BOCP). As expected, the finer the discretization grid and the shorter the re-
quired MDT time, the better the objective values of both problems become. A short MU time re-
sults in a weak restriction for (BOCP), making its objective value close to that of (ROCP), which
is C = 8.776. However, for CU ≥ 0.7, refinement of the grid cannot compensate for the MU
time restriction, and the (BOCP) objective values are about 25% larger than those of (ROCP).
Interestingly, the objective value hardly increases for CU > 0.7; it even decreases slightly after
CU = 0.7 before increasing again and then remaining constant from CU ≈ 2.0 on. We observe
a few outlier instances for which the objective value appears to be unexpectedly large: e.g.,

2 When applying the fourth-order Runge-Kutta scheme, for the differential states, we need x ∈C 5(T ,Rnx ) to gener-
ate a fourth-order error term. It is common to only require x ∈W 1,∞(T ,Rnx ); however, we can assume stronger
regularity thanks to the piecewise continuously differentiable control functions from Definition 4.3. Neverthe-
less, the algorithms presented here are independent of the chosen numerical integration scheme, and one may
choose a more accurate scheme according to the dynamical system at hand.

3See https://mintoc.de/index.php/Three_Tank_multimode_problem_(python/casadi)
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Figure 9.8: Differential state and control trajectories for the test problem (P2): on the left,
with relaxed binary controls, i.e., problem (ROCP), and on the right, with approx-
imated binary controls, i.e., problem (BOCP), with MU time CU = 0.3 and a tempo-
ral discretization with N = 1280 intervals. The optimal objective value for (ROCP) is
C = 8.776, while that for (BOCP) is C = 8.888.

N = 20 with CU = 1.2 or N = 40 with CU ∈ {0.4,0.5}. This can be explained by the coarse grid
choices, thereby highlighting the importance of a fine time discretization for the stability of the
obtained solution for (BOCP).

Conversely, the objective value of (CIA-U) increases roughly linearly in CU on fine grids until
reaching θ∗ ≈ 0.87, which seems to be the maximum value for (P2) in this setting. Thus, while
small values of the objective of (CIA-U) correspond to promising objective values of (BOCP),
(CIA-U) and (BOCP) appear to be uncorrelated for CU ≥ 0.7. We computed similar results for
(P2) with MD time constraints (not shown). We also tested whether including the relaxed MDT
constraints into the (NLPrel) has a significant impact on the solution and found that this was
not the case.
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Figure 9.9: Objective values of (CIA-U) and (BOCP) based on the test problem (P2) and on dif-
ferent control discretizations N and MU time durations CU .
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We analyze the performance of DNFR and DSUR for both MU and MD time constraints and
with respect to θ∗ in Figure 9.10. The obtained solutions are compared with the global min-
ima for (CIA-UD) from the BnB of pycombina, Algorithm 6.2. We observe that DNFR seems
to perform better for MU time constraints, while DSUR performs better for the instances with
MD time requirements. We also plotted the theoretical upper bounds (UB) from Propositions
7.1 and 7.3: 3

4 (C1 + ∆̄), C1 = CU ,CD here. In agreement with Figure 9.9, the minima of (CIA-U)
and (CIA-D) hardly increase for large MDTs and therefore diverge from their theoretical upper
bounds. We explain this behavior by the problem-specific given relaxed values, which induce
an objective value of θ∗ ≈ 0.87 for (CIA-U) and (CIA-D) even if no switches are used in the bi-
nary solution.

We also show the upper bound derived for DSUR with MU time constraints from Corol-
lary 7.1, i.e. 5

6 (CU + ∆̄), and the lower bound for the upper bound for DSUR with MD time con-
straints by Theorem 7.2, i.e. 1

2 (CD + ∆̄). While the solutions constructed by DSUR may violate
the upper bounds for (CIA-U) and (CIA-D), as happening for the MU time case, the bounds for
DSUR are not violated. We observe that the (CIA-D) objective values are not only by far smaller
than their upper bound, but even smaller or equal to the DSUR bound by Theorem 7.2.
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Figure 9.10: (CIA) objective function values θ∗ for test problem (P2) with time discretization
N = 1280 and varying MU time CU (left), respectively varying MD time CD (right).
The optimal objective values for (CIA-U), respectively (CIA-D), are obtained via the
BnB algorithm of pycombina (Algorithm 6.2) and are compared with the objective
value solutions constructed by DNFR and DSUR. We also show the upper bound
(UB) for (CIA-U) respectively (CIA-D) from Propositions 7.1–7.3 and the bounds
derived for DSUR from Corollary 7.1 and Theorem 7.2. We note that although The-
orem 7.2 derives only a lower bound for the upper bound of DSUR with MD time
constraints, this bound is not violated by the computational results.

Since in all instances the execution of the heuristics took no more than 0.02 seconds, we
conclude that the heuristics can be used to quickly generate robust solutions with competitive
objective values. They might also be useful for initializing BnB algorithms of pycombina with
a good upper bound. However, a numerical study is needed to verify the added benefit, which
could be elaborated in future work.
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9.4 Mixed-integer optimal control with bounded discrete total variation

This section investigates the numerical behavior of the basic CIA decomposition, Algorithm 4.1,
when solving MIOCPs under TV constraints. We focus on a performance evaluation of the
AMDR algorithm compared to the BnB Algorithm 6.2 when solving (CIA-TV). Furthermore,
we review the proven upper bounds for (CIA-TV) from Section 7.5 to examine their behavior
in practice. The implemented AMDR scheme in pycombina was applied with the tolerance pa-
rameter set to T OL = 0.0001. We test the basic CIA decomposition with a benchmark example
from the https://mintOC.de library, a real-world adsorption cooling machine problem [49],
and generic data in Sections 9.4.1, 9.4.2, and 9.4.3, respectively. Finally, we discuss the results
in Section 9.4.4. The content of this section is based on [222], Section 8.

9.4.1 Multimode mixed-integer optimal control problem

We consider the following MIOCP, which is a modified version of the Egerstedt standard prob-
lem from https://mintOC.de:

min
x ,ω∈Ω

x1(t f )2 +x2(t f )2

s.t. for a.a. t ∈ [0,1] :

ẋ1(t ) =−x1(t )ω1(t )+ (x1(t )+x2(t ))ω2(t )+ (x1(t )−x2(t ))ω3(t ),

ẋ2(t ) = (x1(t )+2x2(t ))ω1(t )+ (x1(t )−2x2(t ))ω2(t )+ (x1(t )+x2(t ))ω3(t ),

x(0) = x0.

(P3)

Obviously, the problem includes 3 different modes, i.e., nω = 3. As initial values, we use
x0 := (0.5,0.5)T . Furthermore, we add the TV constraint (3.8) to (P3) with a varying maximum
number of switches σmax. Fig. 9.11 illustrates the differential state and control trajectories for
σmax = 20, with relaxed binary controls as well as binary controls based on SUR, BnB, and
AMDR. We remark that the control function constructed by SUR uses 70 switches and is there-
fore infeasible with respect to σmax = 20. The relaxed control values are greater than zero and
less than one around t ≈ 0.45 and for t ≥ 0.8 such that the corresponding approximated state
trajectories of BnB and AMDR are slightly different from the relaxed one for t ≈ 0.45 on. We
set the BnB iteration limit to 5 · 106; it stopped after 15.3 s with a (CIA-TV) objective value of
θ = 9.1 ·10−3 and C = 0.991855 as the (P3) objective value. The execution of AMDR took 0.2 s
and resulted in improved objective values of θ = 4.6·10−3, respectively C = 0.991509, which can
be explained by the more uniform distribution of switches compared with the BnB solution.

Table 9.4 shows that for small instances, e.g., N = 200, the BnB algorithm constructs better
(CIA-TV) objective values than AMDR if enough time is available. If the BnB scheme finds a
good solution, it usually does so after a few million iterations. While the θ values of AMDR
are close to those of BnB for N = 200, AMDR clearly outperforms BnB for larger instances. Its
run time only increases slightly with the refinement of the grid, from about 0.1 s to at most
0.6 s. A C++ implementation could further improve the run time since we used a prototype
implementation in Python. It appears that selecting the next-forced control rather than the
control with the maximum γ value is beneficial as part of the AMDR algorithm and tends to
yield the solution with the smallest (CIA-TV) objective value.
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Figure 9.11: Differential state and control trajectories for test problem (P3): The problem was
discretized with Direct Multiple Shooting and N = 400 intervals. The state trajecto-
ries based on SUR are very similar to the relaxed ones (i.e., those based on α), and
we therefore omit their presentation.

9.4.2 Adsorption cooling machine problem

In [48, 49], a complex renewable energy system in the form of a solar thermal climate system
with nonlinear system behavior is introduced as an MIOCP. The core of the system is an ad-
sorption cooling machine, which can be switched on to intensify cooling of the ambient tem-
perature. The goal is to control the room temperature within a comfort zone while minimizing
the energy costs. We restrict the problem to two modes of the adsorption cooling machine, i.e.,
nω = 2, and assume an entire day time horizon with control adjustment every four minutes,
i.e., N = 360. We omit a detailed description of the system but refer to [49] and consider the
relaxed binary control values as given therein and illustrated on the left of Fig. 9.12.

We use the AMDR scheme to calculate a candidate solution of the (CIA-TV) problem de-
pending on σmax, which is optimal by Theorem 6.3.2(a). The right plot in Fig. 9.12 compares
the optimal solutions with the (CIA-TV) objective values of BnB solutions with an increasing
limit on the number of iterations. For small and large numbers of allowed switches, the devi-
ation of the BnB solutions is small. One explanation for this is the limited degrees of freedom
for small σmax, greatly limiting the width of the BnB tree. On the other hand, for large σmax,
solutions can be found quickly with small θ values, with which many nodes can be pruned.
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AMDR AMDR-NF BnB, 5 million iter. BnB, 50 million iter. Bounds
σmax θ CPU [s] θ CPU [s] θ CPU [s] θ CPU [s] θ∗ θmax

N = 200

5 0.017899 0.11 0.017899 0.26 0.015212 14.35 0.015212 145.22 0.015212 0.09341
10 0.007622 0.12 0.007622 0.23 0.010297 14.29 0.007254 144.99 0.007254 0.05012
20 0.004368 0.16 0.004368 0.22 0.004368 14.73 0.004368 15.03 0.004368 0.02689
30 0.003828 0.1 0.003828 0.15 0.003828 0.58 0.003828 0.56 0.003828 0.01889
40 0.002991 0.13 0.002991 0.17 0.002991 0.0 0.002991 0.0 0.002991 0.01485

N = 400

5 0.016816 0.21 0.016816 0.27 0.015164 14.67 0.014283 148.12 0.014283 0.09216
10 0.007562 0.28 0.007562 0.35 0.011264 14.34 0.008186 144.9 0.007562 0.04887
20 0.004607 0.18 0.004226 0.26 0.006600 14.28 0.005554 143.56 0.004202 0.02564
30 0.004607 0.18 0.003248 0.29 0.005212 14.36 0.004039 145.64 0.003075 0.01764
40 0.002604 0.31 0.002578 0.24 0.003764 14.56 0.003208 152.65 0.002351 0.01360

N = 800

5 0.015952 0.58 0.015952 0.58 0.020405 15.21 0.013830 147.94 0.013830 0.09153
10 0.007535 0.47 0.007535 0.56 0.018007 14.87 0.010561 149.56 0.006933 0.04824
20 0.005405 0.47 0.005025 0.54 0.018007 14.96 0.010561 147.74 0.004116 0.02502
30 0.003315 0.4 0.002620 0.47 0.008500 14.69 0.006292 145.04 0.002620 0.01702
40 0.002018 0.57 0.002018 0.59 0.008390 14.39 0.005850 146.8 0.001914 0.01297

Table 9.4: Comparison of the (CIA-TV) objective values and run times of different solving meth-
ods for (P3) with varying σmax. AMDR refers to Algorithm 6.7, while AMDR-NF is a
modification in which the admissible and next-forced control is selected to be active
in Line 4 of Algorithm 6.6. By BnB, we refer to Algorithm 6.2 with the depth-first node
selection strategy, where we set an iteration limit of 5 and 50 million nodes. We high-
light the best obtained objective values in red. The last two columns show the optimal
objective values and the upper bounds from Conjecture 7.1.

The deviation from the optimal solution is particularly striking for medium-sized σmax. For
some instances, especially 10 ≤ σmax ≤ 20, an increase in the iteration limit leads to negligible
improvement because the BnB algorithm seems to remain in a suboptimal branch. We also
compare the optimal solution of (CIA-TV) with the upper bound from Corollary 7.3 and find
that the latter appears to be between 200 and 600 percent larger.

9.4.3 Upper bound evaluation for (CIA-TV) based on generic data

The two investigated MIOCPs exhibited a relatively large deviation of the optimal (CIA-TV) ob-
jective values from the derived upper bounds. We therefore generated uniformly distributed
random values a ∈ AN for N = 40 equidistant intervals and nω = 2,3 controls and examined
the resulting ratio of the objective values to the upper bounds. We illustrate this comparison in
Fig. 9.13, where we use the upper bound from Corollary 7.3 for nω = 2 and that from Conjec-
ture 7.1 for nω = 3. The objective values θ,θ∗ and bounds θmax decrease logarithmically with
the increase in σmax, as expected. In contrast to the above MIOCPs, the (CIA-TV) objective val-
ues come close to the upper bounds, in particular for smallσmax, but a relevant gap remains for
larger σmax. The gap may be further reduced by using a larger sample size: here we considered
only 1000 (CIA-TV) instances per σmax value. We also note that the values generated by the
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9.4.4 Discussion

As expected based on the polynomial run time complexity, our prototype implementation of
AMDR constructs (CIA-TV) feasible solutions quickly. The θ values mostly outperform those
obtained by the BnB algorithm or are at least close to those of the BnB algorithm for problems
with more than two binary controls. Consequently, the AMDR solution is itself a promising
(CIA-TV) feasible solution. Alternatively, it can be a fast way to initialize the BnB algorithm with
a competitive upper bound. As stated in Remark 6.12, the AMDR algorithm may also include
combinatorial constraints other than the TV constraints.

For comparison with the BnB method, one restriction was that we only used the depth-first
node selection strategy and could have tuned it more to achieve more competitive feasible so-
lutions of (CIA-TV). Moreover, the BnB algorithm can accommodate a variety of combinatorial
conditions of the (CIA-TV) problem, so it is generally advantageous.

We also note that our analysis mainly examines the (CIA-TV) objective value because it cor-
relates with the (BOCP) objective value. With similar (CIA-TV) objective values, however, the
smaller value may lead to a worse (BOCP) objective value – and vice versa. In particular, there
may be several binary control functions with the same (CIA-TV) objective value but different
(BOCP) objective values. In some instances, we observed that the AMDR algorithm generates
a control function with suboptimal (BOCP) objective value since its switches are structurally
delayed compared to the switches on bang-bang-arcs of the relaxed binary values. In this case,
we tested, as a heuristic, shifting the AMDR binary values backward in time by bθ/∆̄c intervals
so that the control function is more similar to the relaxed binary values, which worked well.
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Applications

We present two application-driven case studies to illustrate the real-world modeling capac-
ity of mixed-integer optimal control problems (MIOCPs). Section 10.1 deals with finding a
minimum-fuel energy management strategy (EMS) for a hybrid electric vehicle (HEV) and is
based on [212]. To the best of the author’s knowledge, there are very only a few studies to date
that investigate the application of mixed-integer optimal control (MIOC) in the field of cardi-
ology. Section 10.2 provides a contribution to fill this gap and is based on [281]. We will deviate
from the previous variable notation in some places to accommodate engineering conventions,
especially concerning the integer control v that will indicate the velocity in this chapter.

10.1 Multiphase mixed-integer optimal control of hybrid electric vehicles

Automotive manufacturers and research centers have been significantly investing resources
and efforts into the development of alternative propulsive technologies to lower fuel consump-
tion and pollutant emissions in passenger and commercial vehicles. HEVs represent a concrete
answer to address these problems. HEVs can reduce greenhouse gas emissions and fuel con-
sumption while guaranteeing driver pleasure. Notwithstanding this, the growing complexity
and degrees of freedom of current hybrid powertrain architectures impose a tailored supervi-
sory EMS to unleash the full potential of the HEV in terms of fuel economy and driveability.
Different gear choices and engine on/off modes give rise to a problem with discrete variables.
To this end, we introduce a mode control function mc(t ) that represents the current driving
mode at time t . Therefore, this study addresses the problem of finding the off-line EMS for the
following MIOCP:

Problem 10.1
Find the continuous torque split control factor u over a compact set and the integer mode
choice control mc that minimizes the fuel consumption ṁf

C :=
∫ t f

t0

ṁf(t )dt ,

over the given time horizon t ∈ [t0, t f ] ⊂R and subject to:

Multiphase ODE: ẋ(t ) = f (s(t ), x(t ),u(t ),mc(t )),

Boundary Conditions: x(0) = x0, x(t f ) = xf,

Path Constraints: 0nc ≤ c(s(t ), x(t )),

Vanishing Constraints: 0nd ≤ d (x(t ),u(t ),mc(t )),

Combinatorial Constraints: mc ∈ V .

where the differential states x include besides ṁf the battery state-of-charge and the internal
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combustion engine (ICE) cooling water temperature. x0, xf denote the initial and final state
conditions. We use the smooth function f to describe the right-hand side of the powertrain
model’s ordinary differential equation (ODE). The system dynamics change according to the
given phases s(t ) ∈ [np ], with np ∈ N phases; thus, we write multiphase. The functions c and
d represent here path and vanishing constraint mappings, respectively. The combinatorial re-
strictions on mc are implied by the corresponding feasible control space V .

The above problem will be specified with all of its variables and constraints in more detail in
the Subsections 10.1.1 and 10.1.2.

Related work. Similar problems to Problem 10.1 were investigated with a fixed time hori-
zon and an on-line EMS setting based on past research ([209, 111]) that serves as a compre-
hensive overview. Discrete dynamic programming has been extensively used for solving the
nonlinear EMS problem due to its straightforward implementation and global optimality guar-
antees, with prominent examples in [76, 265]. However, the curse of dimensionality restricts
this method to solving problems with a small number of states. Examples based on indirect
optimal control methods can be found in [144, 234, 230].

Convex optimization methods have been proven to be beneficial to solve the off-line EMS
problem ([211, 73]). However, their main drawback is the simplification of nonlinearities when
it is applied as a linear or quadratic model. To cope with the nonlinear effects, in [167, 267]
the authors propose the direct transcription of the optimal control problem (OCP) into an
nonlinear program (NLP) that can be solved by using standard NLP solvers. Both approaches
deal with mixed-integer problems, which arise when both continuous and discrete variables
are embedded into the OCP. This leads to NP-hard problems that are computationally in-
tractable for standard solvers when considering long time horizons.

There are several studies about control theory in the automotive field that builds upon the
combinatorial integral approximation (CIA) decomposition ([37, 148, 184]); however, most
neglect the combinatorial constraints by using rounding schemes such as sum-up rounding
(SUR). A rare example application of multiphase MIOCP can be found in [38].

Contributions. This study investigates Problem 10.1 under real-world requirements, specif-
ically:

• The powertrain operates in different modes depending on a given speed profile, which
imposes the multiphase setting of the ODE.

• The dual clutch gearbox allows only a specific switching structure that this study pro-
poses for mode transition constraints.

• Switching between the electric and hybrid driving mode during arbitrarily short periods
of time is impossible, which translates into minimum dwell time (MDT) constraints.

We apply and test the generalized CIA decomposition that uses several NLP and mixed-integer
linear program (MILP) steps from Section 4.5.3 with the idea to construct a feasible solution
with a promising objective value for the complex MIOCP that entail multiphase, vanishing,
state, and combinatorial constraints. Furthermore, we come back to the approach proposed in
Section 4.4.3 for the inclusion of multiphase dynamics into (CIA).
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Figure 10.1: Schematic representation of the hybrid electric vehicle (HEV) with energy man-
agement strategy (EMS). Abbreviations indicate internal combustion engine (ICE),
electric motor (EM), second electric motor (EM2) and final drive (FD).

Outline. Subsection 10.1.1 describes the powertrain model with its variables and constraints.
Subsection 10.1.2 introduces the combinatorial constraints. Finally, the numerical case studies
are discussed followed by the conclusions in Subsection 10.1.3 and 10.1.4, respectively. We
provide details on the ODE model in the Supplemental material 10.1.5.

10.1.1 Model description

This section presents the powertrain shown in Figure 10.1. It consists of an ICE, an EM that
provides boosting and regenerative braking, and an EM2 connected to the ICE through a belt.
This can be used to recharge the battery when the vehicle stands still. The engine is connected
to a 7-speed dual clutch gearbox, while the EM is coupled to the output shaft of the gearbox
with an additional gear set. The FD and the differential transmit the propulsive power to the
wheels. The fuel tank and the battery are used for on-board energy storage.
In order to correctly evaluate the fuel consumption and the battery’s state-of-charge while
retaining a simple and fast estimation, we use a backward quasi-static modeling approach
([111, 85]) to describe the non-causal relationships between the powertrain subsystems. By
making this choice, the number of states needed to describe the powertrain were reduced. We
consider the speed profile v(t ), t ∈ [t0, t f ], of a given driving cycle as an exogenous variable and
drop the driver model that would have otherwise been necessary to follow a reference speed
profile; thus, reducing the complexity of the HEV model. The efficiencies and parameters of
the main subsystems were introduced by means of look-up tables; hence, making it possible
to implement a model with nonlinear data. Furthermore, we cast the model into a multiphase
problem, in which a different set of model functions applies for each phase.

Dividing the time horizon into phases

Given a speed profile v(t ) ∈ R≥0 for t ∈ [t0, t f ], we assume a sampling time of one second and
discretize the driving cycle accordingly with N intervals and the grid set GN = {t0 < t1 . . . < tN =
t f }, where the generic interval length is ∆ j = 1s, j ∈ [N ]. In each period ∆ j , we consider the
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Figure 10.2: Velocity profile and phases in an exemplary driving cycle.

first-order differential equation describing the vehicle’s longitudinal dynamics ([111]):

meq · dv

dt
(t ) = Ft(v(t ))−Fa(v(t ))−Fr(v(t )), (10.1)

where meq is the equivalent mass of the vehicle, Ft(t ) is the traction force, Fa(t ) is the aerody-
namic drag force, and Fr(t ) is the rolling resistance force. We discretize Eq. (10.1) and approxi-
mate dv

dt (t ) with the explicit Euler scheme that is applied for v(t ). We note that this integration
scheme is a simple approximation; however, it appears to be appropriate when the grid length
is small. By rearranging (10.1) in terms of Ft(t ), we identify three possible operating modes for
each interval j ∈ [N ]:

1. Ft > 0, traction;

2. Ft < 0, braking;

3. Ft = 0, stand-still.

Thereafter, we collect all of the intervals that were subject to the same operating mode in the
np = 3 model phases (see Figure 10.2), assuming disjoint subintervals [t j−1, t j ), j ∈ [N ], of the
time horizon. Let the function

s : [t0, t f ] → [np ], s(t ) = p ∈ [np ], (10.2)

map each time point t to its associated phase p.

Control variables

We introduce for t ∈ [t0, t f ] the integer control variable mc(t ) ∈ [nω]0 with nω = 7 and the con-
tinuous control variable u(t ) ∈ [umin,1], where umin < 0, models the powertrain’s mixed-integer
nature. The variable mc(·) can help determine whether to operate the HEV in the electric mode
(EM is the only power source, the ICE is turned off, and the clutch is disengaged) or in hybrid
mode (EM and ICE are simultaneously used to power the vehicle). mc(·) receives a value of 0
whenever the vehicle is required to operate in the electric mode. It can also take on values in
the set [nω] when it operates in the hybrid mode with selected gears G ∈ [7] ranging from the
first to the seventh, respectively. The control variable u(·) allows to regulate the torque split be-
tween the ICE and the EM in each hybrid operating mode. Specifically, by varying the control
u, we identify three different hybrid configurations at t ∈ [t0, t f ]:
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1. if u(t ) ∈ [umin,0): load point shift (LPS). The operating point of the ICE is shifted toward
higher loads and the exceeding power recharges the battery;

2. if u(t ) = 0: ICE mode. ICE is the only power source and it propels the vehicle;

3. if u(t ) ∈ (0,1]: boost. ICE and EM can cooperate to fulfill the power requirements for the
wheels.

Figure 10.3 illustrates these scenarios during the traction/braking phase. The control u is

(mc = 0)Electric Electric

Hybrid, u ∈ [umin,1]Hybrid
umin 0 1

(mc = 1)

Hybrid
umin 0 1

(mc = 2)

Hybrid
umin 0 1

(mc = 3)

Hybrid
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Hybrid
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(mc = 5)

umin 0 1

LPS Boost

Hybrid (6th gear)

Hybrid
umin 0 1

(mc = 6)

Hybrid
umin 0 1

(mc = 7)

Figure 10.3: Mixed-integer control choices during traction/braking. During stand-still, u is
dropped.

dropped in the stand-still phase since only two different scenarios are applicable: Either the
ICE is turned off (mc(t ) = 0), or the ICE is turned on (mc(t ) ∈ [nω]) so that the battery can
be recharged by means of EM2 that is operated with a fixed value for the speed and torque
provided by the ICE.

Differential states

We model the powertrain’s dynamics with the fuel mass flow rate ṁf(t ), the battery state-of-
charge bs(t ), and the ICE cooling water temperature Tw(t ) as differential states. The latter is
needed to account for the higher fuel consumption during the ICE heating-up transient ([256,
163]). We express the dependencies of the ODE for t ∈ [t0, t f ] as:

ṁf(t ) = fmf (s(t ),mf(t ),Tw(t ),u(t ),mc(t )),

Ṫw(t ) = fTw (s(t ),Tw(t ),mf(t )),

ḃs(t ) = fbs (s(t ),bs(t ),u(t ),mc(t )).

For a detailed description of the smooth functions f(·) and the underlying ODE model we refer
to the Supplemental Material 10.1.5 and to [210]. We group the differential states into vectors
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x(·) and their right-hand side functions into f (·) as proposed in Problem 10.1.

ẋ(t ) = f (s(t ), x(t ),u(t ),mc(t )). (10.3)

Outer convexification

For applying the CIA decomposition, we introduce binary controlsωi (t ) ∈ {0,1}, for i ∈ [nω]0, t ∈
[t0, t f ] that indicate the integer realization of mc(t ):

ωi (t ) = 1, ⇔ mc(t ) = i .

Let fi denote the model function where mc(t ) = i , for i ∈ [nω]0, holds. In this way, we reformu-
late Eq. (10.3) and obtain the outer convexified dynamics for t ∈ [t0, t f ]:

ẋ(t ) =
nω∑
i=0

ωi (t ) · fi (s(t ), x(t ),u(t )), (10.4a)

1 =
nω∑
i=0

ωi (t ), (10.4b)

where (10.4b) is needed because the definition of the integer control mc implies mutually ex-
clusive operation modes. Thus, we apply the outer convexification approach from Section 4.1,
just with the difference of an altered number of binary control functions ωi .

Path and vanishing constraints

The state-of-charge has to fulfill path constraints in order to preserve durability and reliability
of the electric buffer. The choice of these limits bmin,bmax ∈ [0,1] is preference specific and is
generally expressed as:

bmin ≤ bs(t ) ≤ bmax.

The operating points for the ICE and EM torque and the internal current for the battery have
to be within a realistic range. This restricts the choices of the continuous and binary controls.
We model these restrictions by mode specific lower and upper bounds ulb,i ,uub,i ∈ [umin,1],
i ∈ [nω]0, for u(·) and obtain vanishing constraints:

0 ≤ωi (t ) · (u(t )−ulb,i ), (10.5a)

0 ≤ωi (t ) · (uub,i −u(t )). (10.5b)

To avoid numerical issues, we relax (10.5) by replacing zero with the parameter ε=−1e−4. We
chose the above indicator formulation due to its tight relaxation compared with other formu-
lations such as the Big M method, please see [138] for further details.

10.1.2 Combinatorial constraints

Technical requirements in realistic scenarios imply combinatorial constraints. We already in-
troduced the combinatorial constraint Eq. (10.4b), which ensures that exactly one mode is ac-
tive for all time points. This section discusses the further restrictions that includes prefixing,
MDT, and mode transition constraints. Because the combinatorial constraints appear more
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intuitive for the discrete setting, we define them with respect to the discretized binary control
variables w ∈ {0,1}(nω+1)×N×np . We neglect the interval length ∆ j in the constraint formulation
since we apply an equidistant grid. As described in Section 4.4.3, the multiphase dynamics set-
ting gives rise to binary variables that are also indexed regarding the phase p ∈ [nb] and that
needs to satisfy the phase fixing constraint (4.17) as part of the multiphase (CIA) problem from
Definition 4.16.

Prefixing constraints

We restrict the set of feasible gear choices to satisfy the minimum and maximum ICE speed.
Since the velocity profile is known a priori, it is possible to pre-calculate the allowed gears for
each interval j ∈ [N ]. Therefore, we exclude some options for all phases p ∈ [np ]:

wi , j ,p = 0, if gear i is invalid at interval j . (10.6)

Minimum dwell time constraints

Since we deal with a problem subject to multiphase dynamics, the arising MDT constraints are
a bit more general than defined before (e.g. in (4.11)-(4.12)). Problem 10.1 requires minimum
up (MU) times for the electric and hybrid mode that can overlap different phases. Therefore,
we introduce sets of the dwell time coupled controls

Se
c := {

(0, p) | p ∈ [np ]
}

, Sh
c := {

(i , p) | i ∈ [nω], p ∈ [np ]
}

,

with the electric and hybrid specific MU times USe
c
,USh

c
∈ N. The constraints are defined for

Sc ∈ {Se
c ,Sh

c }, j = 2, . . . , N −1, l = j +1, . . . ,min{N , j +USc } as:∑
(i ,p)∈Sc

wi ,l ,p ≥ ∑
(i ,p)∈Sc

(wi , j ,p −wi , j−1,p ). (10.7)

Figure 10.4 illustrates an example of the MU time and mode transition constraints.

Mode transition constraints

We translate the introduced constraint class from Section 3.2.6 into the discrete setting. By
mode transition restrictions we refer to the situation in which the activation of one control
wi1, j ,p excludes some control indices i2 from activation in the time step j + l , l ≥ 1:

wi1, j ,p = 1 ⇒ wi2, j+l ,p = 0.

These restrictions are motivated by the dual-clutch gearbox at hand. This can switch one gear
up or down per second, which is independent from the active phase. In practice, the driver
can use the time during the electric mode to change the gear setting; however, it is limited by
one gear shift per second. For all index tuples, (ia , pa), ia ∈ [nω], and pa ∈ [np ], representing the
active mode and phase, we introduce the allowed control indices “neighborhood” for l = 1, . . . ,5
as:

I A(ia , pa , l ) := {
(i , p) | p ∈ [np ], i = max{1, ia − l }, . . . ,min{nω, ia + l }

}
.
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Figure 10.4: Illustration of the MU time and mode transition constraints. If activated, the hy-
brid, respectively electric, mode has to stay active for a duration L greater or equal
to USh

c
, respectively USe

c
even though there is no MU time for activating the individ-

ual gears. The mode transition constraint ensures that the driver can switch at most
one gear up or down per second. The time during the electric phase can be used
to change gears; thus, increasing the range of the allowed gears when continuing
in hybrid mode (represented with the dotted lines). Both constraint classes have to
be satisfied independently of the phases, which are depicted in the background.

Then, we define the constraint for all ia ∈ [nω], pa ∈ [np ], l ∈ [5], j = 1+ l , . . . , N as:

1 ≥ wia , j−l ,pa +
∑

(i ,p)∉I A(ia ,pa ,l )

wi , j ,p . (10.8)

10.1.3 Numerical results

We perform a case study of Problem 10.1 applied on the world harmonized light-duty vehicles
test procedure (WLTP), which represents a real and challenging optimization problem due to a
long time horizon and the frequent activation of vanishing constraints. Due to the combination
of different constraints and the requirement not to refine the discretization, we apply the gen-
eralized CIA decomposition with multiple rounding steps from Section 4.5.3, i.e., Algorithm 4.5,
for constructing feasible solutions of Problem 10.1 with promising objective value. We employ
the multiphase problem (MCIA) as binary approximation problem, which has been theoreti-
cally justified in Section 4.4.3. The described combinatorial constraints from Section 10.1.2 are
added to (MCIA). Before presenting result for the WLTP, we show exemplarily how the relaxed
and binary controls behave as part of the rounding problem in connection with the combina-
torial constraints.

Used discretization, hardware, and software

All computations were conducted on a Dell XPS15 desktop PC with an Intel Core i7-6700HQ
CPU and 16 GB RAM running Ubuntu 16.04. We follow a first-discretize-then-optimize ap-
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proach in the sense that we discretize the ODE with the direct collocation method and Lagrange
interpolation polynomials; see [29] for more details. For the control discretization, we assume
piecewise constant controls on the equidistant time grid GN . To parse the NLPs we used CasADi

v3.4.5 ([9]) within the Python 2.7 environment, while the solution is provided by the sparse NLP
solver IPOPT v3.12.3 ([264]), running the linear solver MA97 from [11]. We applied pycombina’s
branch-and-bound (BnB) algorithm 6.2 to solve the (MCIA) problems.

Exemplary (CIA) rounding step

We illustrate the functionality of the (MCIA) problem with the driving cycle from Figure 10.2.
We note that S1 corresponds to the indices of all controls and phases, see Definition 4.23,
meaning we optimize over all these variables. After solving (NLP(S1)), we obtain the relaxed
binary control values a, which we depict in Figure 10.5 with the dashed lines. By observing
this figure, the solution is almost of bang-bang type. We require a MU time of USc = 5 s for
both the electric and the hybrid mode. Whereas the relaxed solution satisfies already the mode
transition constraint, this is not the case regarding the MU time constraints.

In the next step, we solve (MCIA(S1)) so that we obtain binary values w that fulfill all com-
binatorial constraints, as depicted with the gray lines in Figure 10.5. The binary values approx-
imate the relaxed ones quite well and the few differences are mainly due to the MU time. For
instance, this can occur during the second activation of the electric mode.

Case study with the WLTP driving cycle

The velocity profile of the WLTP driving cycle is given in Figure 10.6. We solve Problem 10.1
applied to this driving cycle with Algorithm 4.5 and ndec = 2,3 decomposition steps. Moreover,
we set umin =−1 as a lower bound for the torque split control. The case ndec = 2 refers to the
basic CIA decomposition, where we used a predefined gearshift profile obtained by applying a
heuristic algorithm1 and we therefore optimize only the binary choice between the electric and
hybrid mode. For the algorithmic case ndec = 3, we first optimize the gear and electric mode
choices, i.e.,

S1 =
{
(i , p) | i ∈ [nω]0, p ∈ [np ]

}
.

Afterwards, we fix all gear choice variables in the second NLP and CIA problem, i.e., we set

S2 =
{
(i , p) | p ∈ [np ], i = 0

}
to achieve optimization between the electric and hybrid mode and, complementary, we fix the
gearshift pattern found in the previous step and use it as an exogenous variable in (NLP(S2)).

To compare the proposed algorithm with a method constructing a global optimal solution,
we solved Problem 10.1 also with a backward dynamic programming approach ([265]); how-
ever, we skip detailed dwell-time scenarios since this is beyond the scope of this research.
We collect in Table 10.1 the values of the normalized total fuel consumption of the three ap-
proaches with varied MU times USe

c
,USh

c
from one to five seconds.

The objective value increases progressively from the first to the last NLP required to solve the
problem, as expected from the algorithmic approach to progressively increase the number of

1The heuristic gearshift strategy is speed-dependent, which reflects a normal driver’s behavior. When the ICE
speed is above or below a certain threshold there will be an upshift or downshift, respectively.
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Figure 10.5: Relaxed control values a from (NLP(S1)) and binary control values w obtained by
(MCIA(S1)) as an exemplary CIA rounding solution for the test driving circle from
Figure 10.2. The gray background indicates that the ICE is turned on, i.e., the vehi-
cle is operated in the hybrid mode.

fixed binary variables. In addition, the fuel consumption increases with increasing dwell times,
which involves a substantially decreased number of switches (from 54 to 41); thus, providing
a better driveability. When comparing the predefined and optimized gearshift scenarios, we
obtain for the latter savings of 13.45% and 12.05% for the fuel consumption when the MU time
is set to 5 s and 1 s, respectively. Note that this comes at the expense of an increased run time,
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MU time: 1 s MU time: 5 s
Problem C [-] Run time [s] C [-] Run time [s]

Algorithm 4.5, optimized gearshift, ndec = 3

(NLP(S1)) 0.8528 3190 0.8528 3190
(NLP(S2)) 0.8530 872 0.8592 1041
(NLP(S3)) 0.8534 263 0.8655 993

Algorithm 4.5, predefined gearshift, ndec = 2

(NLP(S1)) 0.9702 1102 0.9702 1102
(NLP(S2)) 0.9703 283 1.0000 769

Dynamic Programming, optimized gearshift

- 0.8662 76910 - -

Dynamic Programming, predefined gearshift

- 0.9852 10803 - -

Table 10.1: Comparison of the normalized objective function C and the run time (CPU) for the
solution of Problem 10.1 obtained by dynamic programming and the NLPs from the
generalized CIA decomposition Algorithm 4.5, with either optimized or predefined
gear choices and varying minimum up (MU) time constraints for the WLTP driving
cycle.

since a total of 4325 s instead of 1385 s is required to optimize the gearshift when the MU time
is set to 1 s. We left out the run times of the CIA problems, because the tailored BnB feature of
pycombina runs only for a few seconds.

Dynamic Programming is meant to provide globally optimal solutions. However, in a prac-
tical implementation, the solution x(t j+1) of a forward integration on time interval [t j , t j+1] is
usually different from the values in the state space tabulation. One way to reduce this impact
on the outcome is to use interpolation schemes or fine tabulation grids, albeit at high com-
putational cost due to the curse of dimensionality [25]. This effect, possibly increased by using
different integration schemes, is also the reason why in our implementation the objective func-
tion value of the Dynamic Programming solution has a higher objective function value than the
one found by our direct optimization approach. Nevertheless, we see the similarity of the found
solutions as an indication for the quality of our new approach.

Figure 10.6 presents the evolution of the state and control trajectories for both the predefined
and optimized gearshift scenarios for Algorithm 4.5. It is worth noting how the variation of the
state profiles between (NLP(S1)) and (NLP(S2)) (6th plot in Figure 10.6) is more pronounced
by considering the optimization of the gearshift. This is mainly due to the enforcement of com-
binatorial constraints after (CIA(S1)). The difference from (NLP(S2)) to (NLP(S3)) is marginal
since a negligible rearrangement of the switches is needed in (CIA(S2)).

We notice that the electric mode is always active during braking and standstill so that a large
part of the kinetic energy can be recovered and in standstill the ICE is switched off, i.e., there
is no recharging of the battery. On the contrary, the traction phase is characterized by both
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Figure 10.6: Top: velocity profile for the WLTP driving cycle. Plots 2-9: profiles of the state-
of-charge for the battery bs, the ICE cooling temperature Tw, the torque split u
and the gear choice G of the solutions obtained with the predefined and optimized
gearshift approaches of Algorithm 4.5 and with an MU time equal to five seconds.
We imposed the constraints bs(t f ) = 0.6 and 0.4 ≤ bs(t ) ≤ 0.7. The first set of plots
depicts the results considering predefined gearshifts, whilst the second set of plots
consider optimized gearshifts.
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singular arcs and bang-bang control profiles.

Finally, it can be observed in Figure 10.7 how the optimal control solutions translate into
different operating points of the electric drive (ED, electric motor plus inverter) and ICE. The
optimized gearshift entails a higher gear selection in comparison to the predefined gears; thus,
allowing the ICE to operate with a greater torque and a lower speed within a higher efficiency
region. On the other hand, the difference among the operating points of the ED is negligible
since the EM is directly coupled through a constant transmission ratio to the FD shaft.

Figure 10.7: Internal combustion engine (ICE) (above) and ED (electric motor plus inverter) op-
erating points (below) of the WLTP driving cycle for the predefined and optimized
gear selection scenarios. The speed, torque, and efficiency η (right color bar) have
been normalized for confidentiality reasons. The continuous black line depicts the
torque limits.
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10.1.4 Conclusions

This case study uses the generalized CIA decomposition with multiple NLP and rounding steps
to address the solution of multiphase MIOCPs applied to the EMS for an HEV. Our algorithm
is able to cope with a general problem class including multiphase, vanishing, state, and com-
binatorial constraints. This study showcased the effectiveness of our approach for the realistic
WLTP driving cycle. It also demonstrated accurate solutions with reasonable run times, making
it possible to benchmark causal controllers or objectively compare different powertrain archi-
tectures. The findings from this research can be beneficial to researchers and professionals that
work in the field of HEVs. Future work in this area may address the on-line application of the
proposed algorithm, more sophisticated approaches to include terminal or path constraints
and other gearbox settings.

10.1.5 Supplemental material

In this Supplemental material, we present the quasi-static model of the full parallel HEV dis-
cussed in this Chapter.

Longitudinal vehicle dynamics

We consider the front and rear tires’ radius as speed v(t ) dependent:

rf(t ) = cf,1 + cf,2 · v(t )+ cf,3 · v2(t ), (10.9a)

rr(t ) = cr,1 + cr,2 · v(t )+ cr,3 · v2(t ), (10.9b)

where the coefficients cf/r,1, cf/r,2 and cf/r,3 are to be determined experimentally.
Let mcar be the mass of the car and mrot be the equivalent mass of the moment of inertia of
rotating components in the powertrain. Then, the equivalent vehicle mass is

meq = mcar +mrot. (10.10)

The definition of the equations governing the longitudinal dynamics of the vehicle allows to
evaluate the required traction torque Tt at the rear wheels:

meq · dv

dt
(t ) = Ft(t )−Fa(t )−Fr(t ), (10.11a)

Tt(t ) = (Fr(t )+Fa(t )+meq · dv

dt
(t )) · rr(t ), (10.11b)

where Ft is the traction force at the wheels and Fa, Fr are the aerodynamic and rolling resistance
forces, respectively, defined as

Fa(t ) = cae · v(t )2, (10.12a)

Fr(t ) = (
crl,0 + crl,1 · v(t )crl,2

) ·mcar · g . (10.12b)

In the above equations, the coefficients cae, crl,0, crl,1 and crl,2 are identified experimentally and
g is the gravitational acceleration.
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Internal combustion engine model

The angular speed of the ICE follows from kinematic relationships and reads

ωe =


v(t ) ·τfd ·τgb,e(G)

rr(t )
·Λ if ωe >ωidle,

ωidle ·Λ if ωe ≤ωidle,

(10.13)

where ωidle is the ICE idle speed, τfd, τgb,e the final drive and gearbox transmission ratios, and
Λ ∈ {0,1} is a binary value related to the integer variable mc(t ): the clutch can either be engaged
(Λ= 1 ⇔ mc(t ) ∈ [nω]) or disengaged (Λ= 0 ⇔ mc(t ) = 0), turning off the engine whenever the
clutch is open.
Furthermore, the torque request at the ICE is phase-dependent and described by

Te =


Tt ·Λ · (1−u)

τfd ·ηfd ·τgb,e(G) ·ηgb,e(G)
if tr acti on,

Fe,brk ·Λ if br aki ng ,

Trech ·Λ if st and − st i l l ,

(10.14)

where Fe,brk =Fe,brk(ωe) is a look-up table implementing the ICE braking torque, ηfd, ηgb,e the
constant final drive and gearbox efficiencies, and Trech the torque provided by the ICE when-
ever stand-still recharge is allowed. Finally, once the ICE’s speed and torque request have been
evaluated, the derivation of the fuel mass flow rate follows directly:

ṁf =
{
χ(Tw) ·Fbsfc ·Te ·ωe ·Λ if ωe >ωidle,

χ(Tw) · idlecons ·Λ if ωe ≤ωidle,
(10.15)

where Fbsfc = Fbsfc(ωe,Te) is a look-up table implementing the brake-specific fuel consump-
tion map of the engine, idlecons is the fuel mass flow rate at idle speed, and χ(Tw) is the ICE
temperature-dependent coefficient accounting for the higher fuel consumption at low ICE
temperature.
To derive the ICE’s cooling water temperature, which is χ-dependent, we first evaluate the ther-
mal power drawn by the refrigerant via

Ploss =
(
1− (cl − cl,rpm ·ωe)

) ·ṁf ·H l, (10.16)

with cl and cl,rpm coefficients to be determined experimentally and H l the fuel’s lower heating
value.
The evaluation of the ICE’s cooling water temperature dynamics is now straightforward. How-
ever, the maximum temperature that can be reached by the refrigerant is constrained at 90°C
(Tm); to this end, we used a regularized Heaviside function to model the cooling process of the
refrigerant without introducing state events:

Ṫw =
[π−2

2π
·atan

(Tw −Tm

ε

)]
·
[Ploss −Gc(Tw −T0)

C

]
,

+
[2+π

2π
·atan

(Tw −Tm

ε

)]
·
[−Gc,cool(Tw −T0)

C

]
.

(10.17)
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In Eq. (10.17), T0 is the ambient temperature, ε is the coefficient used to regularize the Heavi-
side function (ε= 1e−3), C the thermal capacity of the ICE, and Gc, Gc,cool the convective heat
transfer coefficients times heat-exchange area for heating-up and cooling-down phases, re-
spectively.

Electric drive and battery model

The EM angular speed follows directly from the rear wheel’s speed and reads

ωm = v(t ) ·τfd ·τgb,m

rr(t )
. (10.18)

The torque request at EM is given by this set of equations depending on the active phase:

TEM =



Tt

τfd ·ηfd ·τgb,m ·ηsign(u)
gb,m

·u if tr acti on and (Λ= 1),

Tt

τfd ·ηfd ·τgb,m ·ηgb,m
if tr acti on and (Λ= 0),(

Tt −Te,brk,w ·Λ) · cbr

τgb,m
·ηgb,m if br aki ng ,

0 if st and − st i l l ,

(10.19)

where Te,brk,w is the ICE braking torque evaluated at the rear wheels, τgb,m, ηgb,m the trans-
mission ratio and efficiency of the EM gear set, and cbr is a constant coefficient required to
express the amount of kinetic energy recuperated by the EM (the balance is provided by hy-
draulic brakes). Besides, the torque provided to EM2 through the ICE reads

TEM2 =


0 if tr acti on,

0 if br aki ng ,

−Trech ·τpulley ·ηpulley ·Λ if st and − st i l l ,

(10.20)

with τpulley and ηpulley being the transmission ratio and efficiency of the pulley set coupling
EM2 to the ICE. Finally, we define Tm as

Tm =TEM +TEM2, (10.21)

due to mutually exclusive operation modes in each phase. Thus, the global electrical motor
power Pm,dc can be defined as

Pm,dc =


Tm ·ωe ·ηm(ωm,Tm)

τpulley
if st and − st i l l ,

Tm ·ωm

η
sign(Tm)
m (ωm,Tm)

otherwise,
(10.22)

where the speed- and torque- dependent efficiency ηm is provided by means of look-up tables
and accounts also for the inverter losses.
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The power at the terminals of the battery is given by

Pb = Pm,dc +Paux, (10.23)

where Paux models a phase-dependent auxiliary power flow. The current Iin can be evaluated by
solving an equivalent circuit model of the battery, where Rb is the battery’s internal resistance
and Voc(bs) is the state-of-charge dependent open circuit voltage.
Thus, we obtain:

Iin = Voc(bs)

2 ·Rb
−

√
Voc(bs)2 −4 ·Pb ·Rb

4 ·Rb
2 . (10.24)

Finally, the state-of-charge bs(t ) of the battery is defined as

ḃs =−ηb · Iin

Cn
, (10.25)

where Cn is the nominal capacity of the battery pack and ηb is its Coulombic efficiency:

ηb =
{

1 if Iin ≥ 0

cηb if Iin < 0,
(10.26)

and cηb is evaluated experimentally.
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10.2 Mixed-integer optimal pump speed control of ventricular assist devices

The main functionality of left ventricular assist devices (LVADs) is to provide mechanical circu-
latory blood support. They have become a well-established and successful therapy for end-
stage heart failure patients with an estimated more than 5000 implanted pumps annually
worldwide [63, 110]. Modern devices generate a life expectancy similar to the one of patients
with a transplanted donor heart so that they are used not only as bridge-to-transplantation
but also as destination therapy and in some cases even as bridge-to-recovery [152]. The heart
assist devices’ role is growing in recent years since there are major improvements in the long-
term treatment [152]. Contemporary LVADs implement rotary continuous blood flow and are
internally implanted in contrast to pulsatile and extracorporeal pumps, representing the orig-
inal LVAD design, but which are bigger, less durable, and more invasive than their continuous
flow counterpart [240].

These either axial- or centrifugal-flow pumps were originally designed to apply a fixed con-
stant rotary speed. However, there is evidence that this lack of pulsatile flow can cause nu-
merous adverse effects that include gastrointestinal bleeding [64], reduced end-organ function
[197], aortic valve thrombosis, and de novo aortic insufficiency [68]. To this end, the latest
generation of devices features a pulsatile mode in addition to the constant speed option that
oscillates the motor rotation speed periodically for a short time before returning to the con-
stant speed operation. Examples of these devices and modes are HeartMate 3 with the Pulse
mode, HeartWare HVAD with the Lavare Cycle, and EXCOR/INCOR [116]. For further details on
the devices, the medical background, therapy planning, and prognosis, we refer to the reviews
[108, 158, 43, 132].

Related work. A vast amount of preclinical models for evaluating and testing LVADs via
pump speed modulation have been proposed. Amacher et al. [8] reviewed a range of stud-
ies [201, 236, 254, 257] where a preselected constant, sine or square wave speed profile is as-
sumed. Chosen parameters were adjusted for amplitude and phase shift to analyzing the effect
on relevant physiological quantities. Specifically, high-speed pumping during ventricular con-
traction, also denoted as copulsative mode, was found to be beneficial in terms of pulsatility in
the systemic arterial circulation. Counterpulsative pumping, i.e., low-speed pumping during
the ventricular contraction, enhanced left ventricle (LV) unloading [190].

A preselected speed profile does not adjust to dynamic changes in the state of the cardio-
vascular system. For this reason, control strategies for the blood pumps were developed that
take into account different physiological objectives and which were classified in the review
of Bozkurt [44]. Physiological control following the Frank-Starling mechanism by pumping
preload dependent has been proposed in [12, 229, 83]. Control algorithms that aim for un-
loading the LV were elaborated in [45, 189]. Speed regulation algorithms for generating suffi-
cient perfusion and detecting ventricular suction [41, 77] or pulmonary oxygen gas exchange
tracking [130] are other goals, and, finally, multi-objective variants exist [199].

Due to the increased necessity of LVADs for clinical use, a wide range of different methods
from control engineering has been applied, such as adaptive [273, 187], robust [217], model
predictive [5], fuzzy logic [57], proportional integral derivative [94], sliding mode [17], and iter-
ative learning control [141]. We refer to [6] for a detailed review.
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Contributions. This case study follows an optimal control approach since it offers a flex-
ible framework to include and combine multiple objective and constraint functions. So far,
optimal control studies based on cardiovascular system modeling appear to be very limited in
the context of ventricular assist devices. [93] investigated the use of LVADs for preload ma-
nipulation maneuvers in animal trials. We build on [7], where the continuous pump speed
profile is found with an optimal control algorithm based on a lumped cardiovascular system
model and compared with both a constant and a sinusoidal-speed profile. In contrast, we do
only numerical simulation and no verification with a mock circulation system. Our idea is to
consider the cardiovascular dynamics as a system that switches between different phases in a
single cardiac cycle, e.g., valve opening or closing, in which different dynamics apply. We use
solving techniques tailored for switched systems to reduce the underlying system nonlinearities
and leverage the computations. Within this framework, we present a novel algorithm to calcu-
late optimal piecewise constant (pwc) pump speed modulation following the above-mentioned
pulsatility modes for modern devices and concerning ventricular unloading and opening of the
aortic valve. For comparison, we compute the optimal continuous and constant speed profiles.
Furthermore, we consider adapting model parameters to patient-specific data with a nonlinear
regression objective function to deal with a personalized model.

Another fundamental difference between our approach to [7] and all other model-based ap-
proaches lies in the used model. Instead of applying a time-varying elastance function to rep-
resent the pressure-volume relationship in heart chambers, we base our model on the contri-
bution of the longitudinal atrioventricular plane displacement (AVPD) to ventricular pumping,
which is novel in the LVAD context. It has been established that the atrioventricular plane (AVP)
behaves like a piston unit by moving back and forth in the base-apex direction, creating recip-
rocal volume changes between atria and ventricles [173]. Also, there is strong evidence that
the magnitude of AVPD is a reliable index for heart failure diagnosis [269]. Since elastance
functions cannot explain the behavior of ventricular walls and fail to simulate the interaction
between the LV and an assist device [62, 258], we reuse and extend an AVPD model introduced
in [175] and altered to the switched systems setting in [131]. Alternatives for replacing the elas-
tance model are myofiber, or sarcomere mechanics approaches [143] as in the CircAdapt model
[13, 172], though a great number of discontinuities and nonlinear equations limit their appli-
cability to (gradient-based) optimization and control techniques. The presented approach is
clinically applicable since the AVP motion is relatively easy to measure via noninvasive echocar-
diography.

Outline. The outline of this section is the following: We describe the cardiovascular and
LVAD system model in Section 10.2.1 before we define constraints in Section 10.2.2, as well
as the clinical data and model personalization in Section 10.2.3. Afterward, we formulate the
OCP with integer restrictions in Section 10.2.4, and we define an algorithmic approach to solve
it in Section 10.2.5. We present the simulation results in Section 10.2.6 and discuss the realis-
tic and algorithmic setting with limitations in Section 10.2.7. We wrap up the case study with
conclusions in Section 10.2.8. Supplemental material such as detailed model and optimization
parameter values are provided in Section 10.2.9.
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10.2.1 Cardiovascular system and LVAD modeling

This case study uses a lumped model of the cardiovascular system based on the left heart’s
representation. We combine the AVPD model as proposed and validated in [131] with an axial
pump LVAD model that has been validated in [238]. The proposed model consists of nine ODEs
for the pressure P (·) of left atrium (LA), LV, aorta (A), systemic artery (S), and venous system
(V), the flow Q(·) in the aorta and in the LVAD as well as the velocity v(·) of the AVPD and its
position s(·), where we are going to replace (·) with (t ) in order to denote the time dependency.
The cardiovascular system can be steered with the continuous control u(·) representing the
rotary pump speed. The ODE system reads for t ∈ [t0, t f ] ⊂R:

ṖLA(t ) = PV(t )−PLA(t )

CLARV
− QMV(t )− ALAv(t )

CLA
, (10.27a)

ṖLV(t ) = (1+kRAD)ALVv(t )

CLV
+ QMV(t )−QAoV(t )−QLVAD(t )

CLV
, (10.27b)

ṖA(t ) = QAoV(t )+QLVAD(t )−Q A(t )

C A
, (10.27c)

ṖS(t ) = PV (t )−PS(t )

CSRS
+ Q A(t )

CS
, (10.27d)

ṖV(t ) = PS(t )−PV (t )

CV RS
+ PLA(t )−PV(t )

CV RV
, (10.27e)

Q̇A(t ) = P A(t )−PS(t )−RC Q A(t )

LS
, (10.27f)

Q̇LVAD(t ) = PLV(t )−P A(t )−RLVADQLVAD(t )−βu(t )2

LLVAD
, (10.27g)

v̇(t ) = −RAVPv(t )− ALVPLV(t )+ ALAPLA(t )+FC (t )

LAVP
, (10.27h)

ṡ(t ) = v(t ), (10.27i)

where the default parameter values for the compliances C , resistances R, and inertances L are
given in the Supplemental Material 10.2.9. The model uses the valve flows2 defined by

QMV(t ) :=
{

PLA(t )−PLV(t )
RM

, if PLA(t ) > PLV(t ),

0, else.
(10.28)

QAoV(t ) :=
{

PLV(t )−PA(t )
RAoV

, if PLV(t ) > PA(t ),

0, else.
(10.29)

The AVP contraction force is assumed to be a pwc function in the following sense

FC (t ) :=


FAC , during atrial contraction,
FV C , during ventricular contraction,
0, else.

2We neglect valve regurgitation and set the back flow to zero. We discuss this assumption in Section 10.2.7.
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We specify in Section 10.2.5 how these contraction phases are mathematically defined and skip
their formal introduction here.

Systemic artery

Aortic flow 

AVP Model
displacement 

velocity 

LVAD
Pump speed 

Venous system

Figure 10.8: Illustration of the simplified model of the left heart, the circulatory system, and the
LVAD. Differential states and the pump speed control u(·) are depicted in red. The
cyclic flow is indicated by the arrows. The model consists of five compartments for
the left atrium (LA), left ventricle (LV), aorta (A), systemic artery (S), and venous
system (V), represented with the pressure functions P (·). These variables interact
with the flows Q(·) in the LVAD and the aorta, while the atrioventricular interaction
is modeled by the velocity v(·) and position s(·) of the atrioventricular plane dis-
placement (AVPD). Compliance, resistance, and inertance parameters C ,R,L are
depicted next to the corresponding compartment.

Figure 10.8 gives a schematic overview of the lumped model of the heart and the circulatory
system. In the following, we group the differential states into the vector

x = [PLA,PLV,PA,PS,PV,QA,QLVAD, v, s]>

and write the dynamical system (10.27a)-(10.27i) as

ẋ(t ) = f (x(t ),u(t )), for t ∈ [t0, t f ]. (10.30)

Figure 10.9 illustrates the AVPD model, where the AVP refers to the separating tissue between
LV and LA that surrounds the mitral valve. During atrial contraction, the force FC pulls the AVP
towards the base and redistributes blood from the LA to the LV via the mitral valve. When it
reaches the switching threshold −SD , the contraction force FC starts to work in the opposite
direction, representing ventricular contraction. In this way, the AVPD leverages longitudinal
pumping that results in the ejection of blood to the aorta. The ventricular contraction stops as
soon as the AVP reaches the threshold SD . A relaxation phase follows where FC equals zero, and
the AVP moves slowly to its original position. This longitudinal pumping is well described by a
piston unit concept, where the piston is placed between LA and LV with constant cross-sections
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ALA and ALV, respectively. We illustrate this piston representation at the bottom of Figure 10.9.
The AVP model assumes that the radial squeezing of LV walls supports longitudinal pumping.

AV 
Plane

LV

LAAorta

AV Plane 

Diastole

LV

LA
Mitral 
Valve

LV

AV 
Plane

Atrial Contraction

Aorta LA

LV

LA

Mitral 
Valve

LV

AV 
Plane

Ventricular Contraction

Aorta LA

LV

LA

Mitral 
Valve

Figure 10.9: Illustration of the atrioventricular plane displacement concept for the left heart.
The atrioventricular plane moves forth and back between −SD and SD , pulled by
the contraction force FC resulting in blood redistribution from LA to the LV to the
aorta. This behavior resembles a piston pump, as depicted at the bottom, where
−SD and SD mark the longitudinal displacement into basal and apical direction,
respectively.

10.2.2 Physiological assumptions and constraints

This case study makes a series of assumptions, which are explained here. We list the applied
constraint parameter values in Supplemental Material 10.2.9.

Dilated left heart failure

The proposed model is adapted in order to represent a typical LVAD patient candidate’s heart
situation [108]. This includes modeling left-sided heart failure with decreased cardiac out-
put and dilated cardiomyopathy3 with enlarged LA and LV. To this end, we modify certain
model parameters, including increased compliance and increased cross-sectional area of LV as
described in more detail in Supplemental Material 10.2.9. Besides, other parameters can be
adapted to a specific patient, as explained in Section 10.2.3.

3Alternatively, myocardial infarction is a common case related to LVAD patients; however, it is challenging to rep-
resent scars adequately with a zero-dimensional lumped model.
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Steady-state situation

We assume the cardiovascular and circulatory system is in steady-state, in the sense of

• there are no rapid or major changes of cardiac output and the heart cycle length,
• the system has already adapted to the LVAD implementation,
• the patient is at rest.

These assumptions justify neglecting the autoregulatory mechanisms of cardiovascular pump-
ing, such as the systemic baroreflex feedback process and beat to beat myocardium wall strain
adaptation based upon the Frank-Starling effect.

Feasible instantaneous pump speed changes

In practice, due to blood inertia, it is impossible to adjust the pump speed arbitrarily. Here we
neglect blood and rotor inertia effects and assume that the pump speed can be varied with-
out restrictions. Connected to this, blood is considered as a Newtonian fluid, and no blood
rheology changes are taken into account.

Blood inflow equals outflow

In conjunction with the steady-state assumption, we require that the amount of accumulated
incoming blood in the LV is equal to the accumulated amount of blood ejected out of the LV
over the time horizon [t0, t f ]. For this purpose, we introduce the tolerance parameter εflow > 0
and define (with QMV(t ),QAoV(t ) ≥ 0) the constraint:∣∣∣∣∣∣

t f∫
t0

[QMV(t )−QAoV(t )−QLVAD(t )] dt

∣∣∣∣∣∣≤ εflow. (10.31)

Periodicity of the heart cycle

The steady-state assumption implies that it is sufficient to consider only one heart cycle since
there are no significant differences between several heart cycles. Thus, in this study, we fix the
time horizon to the length of one heart cycle. In this way, the steady-state condition translates
into a periodicity constraint denoting that the differential state and control values at the be-
ginning of the heart cycle should be equal to the ones at the end of the cycle. In mathematical
terms, this results with εper > 0 in∣∣xi (t f )−xi (t0)

∣∣≤ εper, for i = 1, . . . ,9. (10.32)

Partial LVAD support

When using an LVAD in the clinical setting, a distinction is made between full and partial sup-
port. While the LV does not contribute to blood ejection with full support, the aortic valve still
opens with partial support because the LV contraction force is still strong enough to pump par-
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tially. We assume partial support, that is:

t f∫
t0

QAoV(t ) dt ≥ εpartial, (10.33)

with εpartial > 0.

Backflow of blood from the aorta in the LV

We want to restrict the backflow from the aorta in the LV via the LVAD. For this, we introduce
the tolerance εback > 0 and require

QLVAD(t ) ≥−εback, for t ∈ [t0, t f ]. (10.34)

Frank-Starling like control

One objective of using an LVAD is to provide sufficient perfusion to the patient’s body. The
Frank-Starling mechanism regulates the cardiac output physiologically, i.e., the amount of
blood ejected by the LV into the aorta per minute, according to the current need. We consider
this mechanism as a desirable mode of operation and seek a pump speed control policy that
results in an actual cardiac output that equals approximately a desired cardiac output VCO ∈R+:∣∣∣∣∣∣ 60

t f − t0

t f∫
t0

[QAoV(t )+QLVAD(t )] dt −VCO

∣∣∣∣∣∣≤ εCO, (10.35)

where εCO > 0. We note that the actual cardiac output should not exceed the desired cardiac
output up to the tolerance, since this could result in fatigue for the patient.

Variable bounds and suction prevention

We require the differential state variables and the pump speed control to be in realistic ranges.
Let xlb, xub ∈R9, respectively ulb,uub ∈R denote appropriate lower and upper bounds. The box
constraints read

xlb ≤ x(t ) ≤ xub, ulb ≤ u(t ) ≤ uub, for t ∈ [t0, t f ]. (10.36)

In this way, we are able to prevent the occurrence of suction, which describes the situation of
excessive pumping that may cause a collapse of the ventricle if PLV(t ) is very low.

10.2.3 Clinical data and model personalization

This case study uses data that were obtained retrospectively from the University Hospital
Magdeburg, Department of Cardiology [232]. An exemplary subject was selected who in-
volved a dilated LV and suffered from systolic left-sided heart failure. Data collection was per-
formed via conductance catheterization for pressure measurements and via echocardiography
for other data. The subject showed in rest a heart frequency of 67 beats per minute with a car-
diac output of about 3.5 liters per minute. Further hemodynamic characteristics of the selected
subject are shown in Table 10.2.
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Parameter End-systolic End-diastolic
LV volume 281 ml 228 ml
LV pressure 120 mmHg 5 mmHg
PCW pressure 28 mmHg 14 mmHg
Aortic pressure 121 mmHg 53 mmHg

Table 10.2: Measured hemodynamic data for the example subject. Pulmonary capillary wedge
(PCW) pressure represents a surrogate for LA pressure.

We selected a representative cardiac cycle with the duration hcycle = 0.89 seconds and 27
measured data points. We propose to personalize the model via a parameter estimation (PE)
method. For this, we formulate an optimization problem with the model equations as con-
straints and a nonlinear regression term as an objective that minimizes the difference of model
response values to the measured subject data. Here, we minimize the difference between mea-
sured LV pressure for selected time points and their corresponding model output values; how-
ever, this approach can also be applied to a general measured data set with more differential
state types involved. We denote with P̂LV(ti ) the measured LV pressure at time point ti ∈ [t0, t f ].
We choose the parameters to be estimated as proposed in [130] with high sensitivity with re-
spect to the LV pressure. These parameters are

p = [RAVP,CLV,LAVP,FVC,FAC, ALV, ALA,kRAD,SD ]>.

We bound the parameters to be in a realistic range, i.e., plb ≤ p ≤ pub, see Supplemental Ma-
terial 10.2.9 for further details. The selected subject had not (yet) implanted an LVAD, so we
set QLVAD(t ) to zero and neglect the control u(t ) and constraints on QLVAD(t ) for the PE. The
parameter (point) estimation problem is defined as the following optimization problem:

min
p

1
2

nm∑
i=1

(
P̂LV(ti )−PLV(ti )

)2 +ϕ(p)

s. t. ẋ(t ) = f (x(t ), p), for t ∈ [t0, t f ],

x(t0) = x0,

constraints (10.32), (10.33), (10.36),

where nm = 27 denotes the number of available measurements and x0 the initial values.The
term ϕ(p) allows incorporating a priori information of the parameters, which we here set to
zero4.

10.2.4 Optimal control problem formulation

Based on a personalized model, we are interested in an advantageous application of the LVAD
for a (possible) patient. An OCP offers the framework to include generic constraints and objec-
tive functions. While we have already defined the constraints in Section 10.2.2, for the objective
we reuse the multiobjective function from [8]. This objective constitutes a compromise func-
tion that aims for ventricular unloading and ensures the aortic valve’s opening. Permanent

4Future work should consider a priori information in the form of ϕ(p) = ε‖p − p̄‖2 instead of imposing lower and
upper bounds on p .
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closure of the aortic valve may lead to fusion of the aortic valvular cusps and a resulting throm-
bus formation [158]. By ventricular unloading, we refer to reducing the hydraulic work that
the LV has to perform in order to provide sufficient perfusion. Let %1 ∈ [0,1] denote a weight-
ing parameter that facilitates to put one objective more into focus, and let %2 and %3 denote
unit scaling factors, see Supplemental Material 10.2.9 for more details. Then, we introduce the
objective as

C (x(·)) :=
t f∫

t0

[%1%2PLV(t )(QAoV(t )+QLVAD(t )−QMV(t ))− (1−%1)%3QAoV(t )] dt .

The first term accounts for the ventricular unloading, while the second term causes aortic valve
opening via maximizing the flow through this valve. We consider the following optimization
problem, where we minimize the above objective over the differential states x and the contin-
uous control u:

min
x ,u

C (x(·))

s. t. model equations (10.30),

inflow equals outflow (10.31),

periodicity of heart cycle (10.32),

partial LVAD support (10.33),

restricted LVAD back flow (10.34),

sufficient perfusion (10.35),

variable bounds (10.36).

For this optimization problem, we investigate three different scenarios regarding the pump
speed control.

1. Constant speed: This represents the usual clinical setting and is expressed by u(t ) :=
ucon ∈ [ulb,uub] for t ∈ [t0, t f ].

2. Continuous speed: There are no restrictions on u(·) apart from lower and upper bounds.

3. Pwc speed: In order to create pulsatility, this scenario considers switching between dif-
ferent constant speed modes. For this, we use the indicator function notation χ[t1,t2](t )
from Definition A.1 and we assume u(·) to be a step function with three different levels
u1,u2,u3 ∈ [ulb,uub]:

u(t ) := u1χ[t0,t1)(t )+u2χ[t1,t2)(t )+u3χ[t2,t3)(t )+u1χ[t3,t f ](t ),

where t1, t2, t3 are switching times to be determined5. We require MU times for the
different speed levels because rapid changes are not feasible in a realistic setting. Let

5In fact, we can drop χ[t3,t f ](t ) since x(0) is free. However, the next section’s algorithmic idea exploits a fixed
sequence of active system phases so that we keep this term.
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CU1 ,CU2 ,CU3 > 0 denote these MU time parameters, and we introduce the constraints

t1 − t0 + t f − t3 ≥CU1 , t2 − t1 ≥CU2 , t3 − t2 ≥CU3 .

In fact, the pwc scenario can be interpreted as MIOCP since u shall take values in the discrete
set {u1,u2,u3}. As this section is application-driven, we skip for brevity the thorough mixed-
integer formulation with a discrete control v .

10.2.5 Algorithmic approach

We deal with both explicit and implicit switches, as introduced in Definition 3.4, that result in
discontinuous variables for the PE and the OCP. On the one hand, the pump speed control
in the pwc scenario involves explicit switches. On the other hand, the valve flows, and the
contraction force induce implicit switches. While the valve switches are defined in (10.28)-
(10.29), we specify the contraction force switches in the following.

Implicit switches through the contraction force

Because we consider only one heart cycle, the atrial and ventricular contraction takes place
once. We assume a physiological order, that is atrial before ventricular contraction followed by
a relaxation phase. Initially, let −SD < s(t0) < SD . We further assume the following switching
times exist:

tVC := argmin
t∈(t0,t f )

{s(t ) =−SD }, tR := argmin
t∈(tVC,t f )

{s(t ) = SD }.

Then, the contraction force is defined as

FC (t ) :=


FAC, for t0 ≤ t ≤ tVC,
FVC, for tVC < t ≤ tR,
0, for tR < t ≤ t f .

Dividing the cardiac cycle into subphases

The periodic switching nature of the cardiac cycle model makes the solving process challeng-
ing. We need to identify when switching happens and what the successive active subsystems of
f are. If we combine all possible valve positions and contraction force settings, we get 12 dif-
ferent subsystems. To reduce complexity, we assume a specific sequence of active subsystems
for the cardiac cycle taking advantage of physiological relationships in the human heart. Thus,
we divide the heart cycle into seven phases, similar to [130]. Table 10.3 and Figure 10.10 explain
the phases of the ordered sequence, where the switching times are denoted with τi , i = 1, . . . ,6.

The modes from Table 10.3 translate into the following constraints for the optimization prob-
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t0

Begin of AC

τ1

Begin of VC

τ2

MV opens

τ3

AoV opens

τ4

End of VC

τ5

AoV closes

τ6

MV opens

t f

End of cycle

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7

Figure 10.10: Time course of the assumed active phase sequence with switching events. The
switching times τi are variables in the optimization problem. Atrial contraction
(AC) starts before ventricular contraction (VC). Further switching events are asso-
ciated with aortic valve (AoV) and mitral valve (MV) opening/closing.

Phase FC mode Mitral valve Aortic valve
1 AC open closed
2 VC open closed
3 VC closed closed
4 VC closed open
5 0 closed open
6 0 closed closed
7 0 open closed

Table 10.3: Assumed sequence of active phases. For instance, in the first phase the LA contracts,
the mitral valve is open and the aortic valve is closed.

lem and for f :

’AC’: FC (t ) = FAC, and s(t ) > −SD ,

’VC’: FC (t ) = FVC, and s(t ) < SD ,

’0’: FC (t ) = 0,

’MV open’: QMV(t ) = PLA(t )−PLV(t )
RM

, and PLA(t ) > PLV(t ),

’MV closed’: QMV(t ) = 0, and PLA(t ) ≤ PLV(t ),

’AoV open’: QAoV(t ) = PLV(t )−PA(t )
RAoV

, and PLV(t ) > PA(t ),

’AoV closed’: QAoV(t ) = 0, and PLV(t ) ≤ PA(t ).

By fixing the sequence of active subsystems, the PE and OCP transform into multiphase prob-
lems [185], where only the switching times need to be determined. The difference to the mul-
tiphase setting of the HEV problem presented in Section 10.1 is that the time periods of the
phases in the latter problem are fixed. Here, one phase ends with a switching time that de-
pends on the above conditions, and that needs to be determined.

Switching time optimization

Considering that the OCP at hand involves both explicit and implicit switches, we note that the
proposed CIA decomposition algorithms can not be directly applied. Although there are modi-
fications of the CIA decomposition to include implicit switches [182], we suggest here applying
switching time optimization [89, 185] and exploiting the reduced complexity with the derived
order of phases. Thus, we come back to the methods described in Section 3.4.2 to determine the
switching times τ1, . . . ,τ6 so that we can transform the initially discrete optimization problems
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into continuous ones. Using the variable time transformation, we reformulate the multiphase
model equation:

ẋ(τ) =


(τ1 − t0) f1(τ, ·), if τ ∈ [0,1),

(τi −τi−1) fi (τ, ·), if τ ∈ [i −1, i ), for i = 2, . . . ,6,

(t f −τ6) f7(τ, ·), if τ ∈ [6,7],

where fi denotes the model equation for the i th phase. We notice that the phase durations en-
ter the equation via (τi −τi−1) as continuous variables. At the end of each phase, the switching
constraints for the contraction force and the valve flows as described in Section 10.2.5 need to
be fulfilled at the transformed switching time points up to a tolerance εsw > 0:

|s(1)+SD | ≤ εsw, |PLA(2)−PLV(2)| ≤ εsw, |PLV(3)−PA(3)| ≤ εsw,

|s(4)−SD | ≤ εsw, |PLV(5)−PA(5)| ≤ εsw, |PLA(6)−PLV(6)| ≤ εsw.

This switching time reformulation provides the framework to solve the PE problem and the
OCP with constant and continuous pump speed as an optimization problem with solely con-
tinuous variables. For the pwc pump speed modulation, we also need to find the switching
times t1, t2, t3 between the three different speed levels as introduced in Section 10.2.4. Here, we
assume

τ2 < t1 < τ3, τ5 < t2 < τ6, τ6 < t3 < t f ,

i.e., the first speed change occurs between mitral valve closing and aortic valve opening, the
second between aortic valve closing and mitral valve opening, and the third between mitral
valve opening and the end of the heart cycle. Thus, we divide the third, sixth, and seventh
phases from Section 10.2.5 into two phases each such that in total nine switching times for ten
phases need to be determined.

Numerical solution of optimization problems

We use direct collocation [253] to transform the continuous-time optimization problems via
temporal discretization into NLPs. We apply an equidistant discretization grid with a grid
length of 1 ms, and we let the control values change their values only on the grid points. The
differential state trajectories are approximated with Radau collocation polynomials [31] of de-
gree 3. We implemented the optimization problems in Python v3.7.5 and used CasADi v3.4.5
[9] to parse the resulting NLP to the solver IPOPT v3.12.3 [264]. For the PE problem, we applied
the Gauss-Newton method [31], so that the calculation of Hessians is not required.

The model phases’ lengths were extracted from pressure time series and other continuous
data and used for initialization of the switching times τi . These phase durations were fixed for
the PE problem and set variable for the OCP. We further initialized the PE problem with variable
values based on a simulation with default parameter values, see Supplemental Material 10.2.9.
The OCP was initialized with simulated variable values obtained with estimated parameters
and constant pump speed equal to 8000 rpm.
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10.2.6 Numerical results

All computational experiments were executed on a Ubuntu 18.04 workstation with 4 Intel i5-
4210U CPUs (1.7 GHz) and 7.7 GB RAM.

Patient specification

Solving the PE problem from Section 10.2.3 resulted in the values

p∗ = [324.2,0.6,20.4,4709,900,42,25,1.35,0.5]>.

The result of the switching distance parameter, i.e., SD = 0.5, is equivalent to an AVPD of only 10
mm and thus indicates a reduced ventricular function. The situation of heart failure is reflected
well by the estimated parameter values. Particularly, the LV compliance is increased, the am-
plitude of the contraction forces FAC and FVC is decreased, and the parameter kRAD accounting
for the relative contribution of radial pumping is increased. The left plot in Figure 10.11 shows
the measured data points P̂LV, together with the obtained PLV from the PE solution.
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Figure 10.11: Left: Measured P̂LV values and resulting PLV trajectory based on the parameters
obtained from solving the PE problem from Section 10.2.3. Right: Simulated pres-
sure trajectories based on the parameters obtained from solving the PE problem
from Section 10.2.3. The switching times τi are depicted with the vertical gray
lines.

The model response PLV reflects the measured data points, especially for the duration of
ventricular contraction, while its peak is slightly underestimated. The transcripted nonlin-
ear regression problem was solved by IPOPT after 230 seconds and with an objective value of
512 mmHg2, which is equivalent to a root-mean-square deviation of 6.16 mmHg. We observed
numerical instabilities when solving the PE problem. The convergence of the algorithm seems
to depend heavily on the initial solution, which stresses the importance of the proposed initial-
ization from Section 10.2.5. In addition, we have used mild termination criteria for IPOPT and
chose a big tolerance value for the periodicity constraint (10.32). The right plot in Figure 10.11
depicts all model pressure trajectories based on the PE and the six switching times between
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the different model phases. We observe that the aortic pressure P A resembles the LV pressure
PLV during ventricular systole and the systemic pressure PS else, apart from some small oscil-
lations. Likewise, PLA and PV represent similarly high pressures, although PLA adopts to PLV

depending on the mitral valve opening.
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Figure 10.12: Simulated pressure functions based on the parameters obtained from solving the
PE problem from Section 10.2.3. The switching times τi are depicted with the
vertical grey lines.

Pump control policies

We solved the OCP according to the proposed algorithm from Section 10.2.5. The applied pa-
rameters for the objective and constraints such as the tolerance parameters ε·, the dwell times
CU· , and lower and upper bounds on variables are listed in Section 10.2.9. Figure 10.13 shows
the pressure functions for the three pump speed scenarios. The outcomes of the continuous
and pwc scenario are very similar. They show an elevated peak of PLV compared to the param-
eter estimated solution from Figure 10.11. While the rise and fall of the pressure profiles before
and after the ventricular contraction is significantly steeper than with the parameter estimated
solution, its duration, i.e., τ4 −τ1, is in a similar range due to an enforced MDT of 0.2 seconds
for the ventricular contraction. Very low values occur for PLV directly before τ1, however, they
are still above the threshold for suction. We notice that the cycle duration for the pwc scenario
is 0.88 seconds and slightly longer than for the other two scenarios with a duration of about
0.84 seconds, as we allow a slight deviation of 50 ms from the standard cycle length. The con-
stant speed scenario also involves an increased aortic and ventricular pressure compared to
the parameter estimated solution, though their peaks are significantly lower compared with
the continuous and pwc speed scenarios.

Figure 10.14 illustrates the different optimal pump speed profiles and the according results
for the flows, AVPD speed, and AVPD position. We observe that the continuous speed profile
provides counterpulsative pump support and the pwc speed profile approximates this profile.
Due to this similar pump speed behavior, the optimal differential state trajectories resemble
each other. The main portion of the flows through the LVAD and the aorta appears for con-
stant pump speed during ventricular contraction. In contrast, with continuous or pwc speed,
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Figure 10.13: Calculated pressure differential states for the OCP solutions with different pump
speed scenarios. The switching times τi and pwc speed changing times ti are
depicted with the vertical grey lines.

large flow values occur already during atrial contraction followed by a peak during ventricular
contraction, which accounts for the remaining physiological contraction force. The flow for
the continuous pump speed appears to be slightly negative around t = 0.4 since we relaxed
the tolerance parameter in (10.34) for achieving numerical convergence. The upper right panel
shows that the larger amplitudes of the pumping speed for the continuous and pwc scenario
compared with constant speed translate into faster AVP movements.

Figure 10.15 summarizes the objective values and run times for the OCP solutions. Clearly,
the obtained objective value with the pwc speed profile is only slightly larger than the one
calculated with continuous pump speed, while the objective value with constant speed is not
competitive.
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Figure 10.14: Calculated optimal pump speed u, flows Q, atrioventricular plane displacement
(AVPD) speed v and position s for the OCP solutions. The superscripts cont, const,
and pwc abbreviate continuous, constant and piecewise constant rotor speed.

10.2.7 Discussion

The root-mean-square error between P̂LV and PLV is about twice as large as the one constructed
via a trial method in [130]. However, the latter study did not take into account the constraints
(10.32), (10.33), and (10.36) during the data fitting procedure. The performed PE should be dis-
cussed critically with respect to overfitting since we optimized nine parameters with available
measurements for only one differential state. To this end, we calculated the relative standard
deviation values based on the Fisher-Information matrix as defined in [134], which represents
a common criterion for evaluating the quality of the results of a PE. The standard deviation
values for the optimal parameter vector p∗ are

%standard deviation(p∗) = [42.3,24.5,40.4,35.5,354.2,34.6,267.7,49.1,26.2]>.

The calculated standard deviation values are mostly relatively low and thus indicate a robust
quality of the obtained estimation. In contrast, the values for FAC and ALA with about 354 %
and 268 % are quite large, and we postulate that they have a minor impact on PLV. Future work
should focus on sensitivity analysis for choosing the right parameters to be estimated.

The LV pressure function’s increased peak after using pumping assist is consistent with typ-
ical partial LVAD support [190]. The causality can be explained as follows: the LVAD continu-
ously delivers blood to the aorta, increasing the aortic pressure. Therefore the LV pressure must
be elevated for the aortic valve to open. This effect is more pronounced in the scenarios with
continuous and pwc pump speed, which can be categorized as counterpulsative policies and
thus facilitate the aortic pressure to oscillate less. Our finding that a counterpulsative pump-
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Figure 10.15: Comparison of constructed optimal objective values and run times for the OCP
from Section 10.2.4. The objective values for the default initialization are obtained
with u(·) = 8000rpm. Notice that the total objective value results from subtracting
the aortic valve flow value from the ventricular unloading, as defined in (10.2.4).
The objective value decreases from 0.53105 after initialization to 0.36758 with
constant speed. Continuous and pwc speed modulation construct even lower ob-
jective values, which amount to 0.19149 and 0.22182, respectively.

ing strategy minimizes the given objective function is in accordance with [7], where the same
objective function was applied.

In practice, the LV pressure increases during diastole, and there is an atrial kick at the end
of ventricular diastole. This seems to be not captured in the model since the end-diastolic
LV pressure seems to be reducing, see Figure 10.11. Also, the difference between PLV and PA

appears to be over 10 mmHg, while natural pressure gradients are in the 2-3 mmHg range,
suggesting that the valve resistance is too high.

After applying the LVAD support, we observed shortened atrial contraction phases, equiva-
lent to shortened ventricular filling phases. We interpret this behavior as a result of maximizing
the ventricular unloading. This implies the LA pumps against less resistance and reaches the
maximum contraction state more quickly, which is represented by the AVP reaching the switch-
ing distance −SD . In this way, the AVPD model can realistically capture interactions of an LVAD
and the cardiac system, as elaborated in [62, 258]. The continuous and pwc pump speed sce-
narios have more degrees of freedom compared with the constant speed scenario and thus im-
prove the diastolic function even more, as depicted by the shortened atrial contraction phases.

Connection to clinical application

LVADs work in an online environment where the system state can change rapidly, especially
the heart rate and blood volume shift. Currently, there are no sensors available that provide
long-term measure signals of the presented differential states [44]. Despite these aspects and
our restricting assumptions (see next subsection), we claim that optimized speed profiles from
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offline computations may provide superior performance (see Figure 10.15) and could be con-
sidered in the following way.

1. The optimal control framework can be used to benchmark a whole range of speed pro-
files, in particular modern pwc speed profiles, that result from different objective func-
tions, models, and constraints.

2. These evaluations can be carried out on a patient-specific basis. As proof of concept, we
demonstrated for one patient that the cardiovascular model can be efficiently altered to
represent the patient’s LV pressure function. This approach can be extended to include
time-series measurements of the aortic and LA pressure (via pulmonary capillary wedge
pressure and conductance catheterization), the flows at the mitral and aortic valve, and
the AVP speed and displacement (all via Doppler echocardiography). Overall, at least five
differential states could be used for model personalization. The data used so far were
measured invasively. In contrast, in routine clinical investigations, echocardiography
can be used to measure and use non-invasive data concerning approximated pressure-
volume loops and time series of valve flows.

3. Offline computations of an optimal speed profile for different situations, e.g., rest, ex-
ercise, or rhythm disturbances such as atrial fibrillation, could be done beforehand and
used in an online setting assuming information about the system status is available.

4. The presented algorithmic idea can be extended to model predictive control. In partic-
ular, the possibility to incorporate MDT constraints to avoid rapid speed changes paves
the way for a realistic extension to the online setting.

Limitations

Simplified Model
We applied a lumped model that simplifies the heart and the cardiovascular system by neglect-
ing the right heart, the pulmonary system, valve regurgitation, and spatial interactions between
compartments. Dilated heart failure is very commonly associated with valve regurgitation so
that our assumption to neglect it should be seen as critical. According to the Frank-Starling
law, the passive LV compliance CLV is set to be constant but may change instantaneously. The
way we model the LVAD and its interaction with the heart is also highly simplified. Moreover,
neurological feedback processes such as the baroreflex are not captured.

Assumptions
In reality, the heart rate and thus the duration of the cycle is very variable, especially through
exertion or sport. In most cases of patients requiring LVAD therapy, the stable heart rhythm
is a scarce phenomenon. The rhythm disturbances are rather the dominant pattern in the in-
dividuals suffering from heart failure. Therefore the steady-state assumption must be viewed
critically. Furthermore, we neglect rotor and blood inertia so that the rotor speed can be con-
trolled arbitrarily. Nevertheless, our framework may be suitable as a general starting point for
twofold development as part of future work. First, we may be able to base the optimization
process on critical parameters for clinical availability. Second, the early detection of atrial fib-
rillation as the most common rhythm disturbance in heart failure could be implemented to
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switch the working regime of the pump into different mode [227].

Measured data
We included in this study only one subject and measured data for only one differential state.
Future work shall address numerical tests with several patients and with additional measured
states.

Control approach
Other ventricular work measures, such as the pressure-volume area, could be applied as an
objective function. This study assumes a canonical order of the active phases for the valves
and the contraction force. This order might not always be correct in practice, so that future
work should consider optimization with implicit switches, but without fixing the order of ac-
tive phases. Besides, we optimize over one heart cycle, whereas the pulsatility speed mode
profiles of some LVADs such as HeartMate 3 last for more than one heart cycle.

Pump flow rates
The realistic range of LVAD pump flow rate is between 2 and 10 liters per minute, where the
lower bound is due to the risk of thrombosis. The computed pump flow rates fall below or
exceed this range on some time points but are on average over the whole heart cycle in the
realistic range. Moreover, the almost instantaneous flow rate changes from almost zero up to
18 liters per minute will not happen in practice.

Switched systems framework applicability

The developed multiphase algorithm is applicable to other models and settings. For example,
the OCP can also be interpreted on a cardiac model with time-varying elastance function as
a switched system, with the valves still representing the implicit switches and changes of the
constant pump speed representing controllable switches. Analogously, the framework can be
beneficial for PE of cardiac models without LVAD application, but with different scope, e.g.,
cardiac resynchronization therapy.

There are similar devices as an LVAD available or under development, for which an OCP
could be solved efficiently with the switched systems framework. For instance, total artificial
hearts such as RealHeart [250] and Carmat [241] or intra-aortic blood pumps [84] also involve
discrete system changes induced by piston pumps (RealHeart), controlled valves (Carmat), or
pulsatility rotor speed modes (intra-aortic blood pump). Finally, the next generation LVADs
may include more advanced control features that can lead to different control modes to switch
on/off. The TORVAD device [96] falls into this category and works with two magnetic pistons
within a torus generating pulsatile flow.

10.2.8 Conclusion

We have proposed a switched systems algorithm for the optimal control of LVADs that can cal-
culate optimal constant, pwc, or continuous pump speed profiles. As proof of concept, we
showed that this algorithm can be used to adapt a cardiovascular model to patient-specific data
and benchmark simulations of personalized LVAD control policies. The importance of achiev-
ing hemodynamic optimization in LVAD patients is highlighted by a significantly lower rate of
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hospital readmissions [132] and could benefit from in silico analysis, such as the presented
speed profile evaluations. Moreover, we have demonstrated realistic simulations of a model
based on AVPD instead of using the widespread time-varying elastance model and examined
thereby the heart to LVAD interactions. Future work may test the algorithm on more patient
data, more realistic conditions such as exercise or rhythm disturbance, and model extensions.
The proposed algorithm could also help to evaluate pulsatile speed modulation modes of mod-
ern devices such as HeartMate 3 or HeartWare HVAD. Moreover, the problem could be formu-
lated and solved with dropped assumptions on the order of phases and with more discrete
choices.

10.2.9 Supplemental material

Model parameter values

The resistance and inertance of the LVAD is captured by the parameters RLVAD and LLVAD. We
use the values from [238] as shown in Table 10.4 and given by

LLVAD = Li +Lo +0.02177, RLVAD = Ri +Ro +0.1707.

We altered the model from [130] to the situation of left heart failure by increasing the left atrial
and ventricular compliance, increasing the systemic resistance, decreasing the length of AVPD,
increasing the cross-section of LA and LV to account for a dilated heart, and decreasing the
contraction force FC . The specific parameter values are defined in Table 10.4.

Optimization parameter values

The following lower and upper bounds for the variables of the optimization problems were
applied.

p = [RAVP,CLV,LAVP,FVC,FAC, ALV, ALA,kRAD,SD ]>,

plb = [100,0.45,15,4500,900,30,15,0.5,0.2]>,

pub = [600,5,60,7000,1500,42,25,1.35,0.6]>,

x = [PLA,PLV,PA,PS,PV,QA,QLVAD, v, s]>,

xlb = [0,0,40,0,0,−100,−60,−15,−1.2]>,

xub = [60,150,160,160,150,1000,300,15,1.2]>,

ulb = 2000, uub = 16000.

We used as initial differential state value for the PE problem:

x0 = [8,8,90,90,8,10,0,0,−0.2]>.

Furthermore, the following parameters for constraints were applied:

εflow = 10 ml/s, εback = 40 ml/s, εCO = 80 ml, VCO = 5000 ml,

εsw = 0.001, εper = 0.09, εpartial = 0.01 ml.
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Parameter Description Value
CLA Left atrial compliance 0.6 ml/mmHg
CLV Left ventricular compliance 0.45 ml/mmHg
CA Aortic compliance 0.08 ml/mmHg
CS Systemic arterial compliance 1.2 ml/mmHg
CV Venous compliance 50 ml/mmHg
RM Mitral valve resistance 0.005 mmHg s/ml
RAoV Aortic valve resistance 0.005 mmHg s/ml
RS Systemic arterial resistance 1.1 mmHg s/ml
RC Characteristic resistance 0.05 mmHg s/ml
Ri LVAD inlet resistance 0.0677 mmHg s/ml
Ro LVAD outlet resistance 0.0677 mmHg s/ml
RAVP Damping of AVP 300 mmHg cm s
LS Arterial inertance 0.001 mmHg s2/ml
Li Inlet inertance of LVAD 0.0127 mmHg s2/ml
Lo Outlet inertance of LVAD 0.0127 mmHg s2/ml
LAVP Inertia of AVP 30 mmHg cm s2

β Pump-to-pressure coefficient -9.9025e-7
ALA Left atrial cross-section 25 cm2

ALV Left ventricular cross-section 50 cm2

FAC Left atrial contraction force 1000 mmHg cm2

FVC LV contraction force 5000 mmHg cm2

kRAD Radial function coefficient 1.2
SD Switching threshold for AVP 0.4 cm

Table 10.4: Default parameter values for the cardiovascular, circulatory system, and LVAD
model.

We permitted a deviation of 50 ms for the model heart cycle from the subject’s measured
cycle length. The MU times for the pwc pump speed levels were

CU1 = 0.1s, CU2 = 0.1s, CU3 = 0.1s.

We also enforced upper bounds τub on the seven phase durations

τub = [0.3,0.2,0.2,0.2,0.2,0.3,0.5]>seconds.

The objective parameters are

%1 = 0.5, %2 = 0.000133J / (mmHg ml), %3 = 0.01J s/ml.

We used the following IPOPT setting: ’tol’: 1e-6, ’constr_viol_tol’: 1e-6, ’compl_inf_tol’: 1e-6,
’dual_inf_tol’: 1e-6.
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Concluding remarks and outlook

We end this thesis by providing conclusions about the derived algorithmic framework and pro-
vide possible directions for future research.

11.1 Conclusions

This thesis extended and generalized the CIA decomposition algorithm for the error-controlled
solution of MIOCPs. The extension was achieved for different MILP formulations of the round-
ing problem with information from the NLP, whose solutions can be further improved by
recombination. Furthermore, we proposed decomposing the solution process into multiple
rounding and NLP steps to gradually increase the number of fixed binary variables. Another
extension addressed the inclusion of path constraints and multiphase dynamics into the (CIA)
rounding problem.

In Chapter 5, we recapitulated results that establish approximation bounds on the con-
structed binary control solution of the decomposition algorithm with respect to its relaxed
solution. The results imply that the optimal solution of (BOCP) can be arbitrarily well approxi-
mated by refining the discretization grid and applying the CIA decomposition until the desired
solution quality has been achieved. We proved associated results with respect to the algorith-
mic generalizations. Although arbitrarily good solution quality can also be achieved for the
proposed algorithmic CIA extensions by grid refinement, the extensions are specially designed
to construct the best possible solution of a fixed grid. Moreover, in practical implementations,
the grid is often fixed due to model assumptions, or grid refinement is undesirable due to the
practical setting, such as a vast problem size.

Another observation from the real-world modeling of MIOCPs is the common need for com-
binatorial constraints, such as minimum dwell time or limiting switching constraints. To this
end, Chapter 6 presented different algorithms for solving the (CIA)-problem with and without
combinatorial conditions. We introduced fast rounding algorithms such as STO-BnB, DNFR,
DSUR, and AMDR and examined their properties in terms of the worst-case integral deviation
gap of the constructed binary solution. The integral deviation gap was further investigated
in Chapter 7, where we proved the tight bound 2nω−3

2nω−2 ∆̄ for the (CIA) problem. From this, we
derived a tight bound for MU time constraints, and we discussed bounds for the minimum
down (MD) time-constrained case. If the discrete total variation (TV) of the binary control is
required to be bounded by σmax, we demonstrated the tight bound N+σmax+1

3+2σmax
∆̄ for nω = 2 and

equidistant discretization and also discussed more general cases.

The developed algorithms were implemented in the open-source package pycombina. Nu-
merical results from several test problems together with the real-world case studies involving
electric vehicles and cardiology highlighted the advantageous properties of the proposed algo-
rithmic framework in terms of solution quality and run time.

211



CHAPTER 11 CONCLUDING REMARKS AND OUTLOOK

The CIA decomposition framework is simple to use for the solution process of a generic
MIOC problem class since only the relaxed problem, a rounding problem, and the problem
with fixed binary variables have to be solved. Efficient NLP solvers are available for the first
and third problems, while the MILP rounding problem can be solved with pycombina, allow-
ing combinatorial constraints to be added intuitively. Numerical experiments show that the
CIA decomposition performs notably well in terms of the objective quality for problems with
small combinatorial requirements since its deviation from the relaxed solution is negligible.
Furthermore, the decomposition algorithm works much faster than mixed-integer nonlinear
program (MINLP) solvers such as Bonmin, while still offering qualitatively similar solutions.
Last but not least, the algorithmic framework is generic in the sense that it is also applicable for
problems with implicit switches [182] or partial differential equation (PDE) constraints [176],
which were not the focus of this thesis.

11.2 Future work

The research results from this thesis can be extended in several directions. The algorithms for
solving CIA problems under combinatorial constraints in Chapter 6 could be further numeri-
cally compared with each other. In particular, a benchmark study on BnB, STO-BnB, a recent
MILP solver, the shortest path algorithm [28], and the penalty alternating direction method
[102] would be appealing. Application of the fast rounding methods DNFR, DSUR, and AMDR
could leverage the mixed-integer solution process of the model predictive control (MPC) con-
text. Future research will most likely improve MINLP solvers, so their development is also at-
tractive for the solution of MIOCPs.

This thesis provided methods to incorporate information from the NLP into the (CIA) prob-
lem step. Additional work is necessary to derive further tailored MILP formulations for spe-
cific MIOCP classes and to develop efficient algorithms for these cases. Instead of applying
the (CIA) rounding problem, an interesting idea is to construct a second-order Taylor approx-
imation modification of the binary controls at the optimal solution of (NLPrel). This results in
an mixed-integer quadratic program (MIQP) problem based on a Gauss-Newton type linear-
quadratic expansion, whose numerical performance should be investigated.

In the case of PDE-restricted MIOCPs, some of the time-coupled combinatorial constraints
presented in this thesis make little sense. Since these problems are solved within the CIA de-
composition framework by employing space-filling curves, MDT constraints would, for exam-
ple, cause a series of mesh cells successively connected by the space-filling curve to all assume
the same binary value. Nevertheless, other combinatorial conditions, like the total maximum
up time constraints from Section 3.2.5, may be compatible, and their application in the PDE
context should therefore be further investigated.

Another potential research direction is the application of machine/deep learning to solve
MIOCPs and improve the CIA decomposition. For instance, machine learning could be used
to learn the "best" or most suitable (CIA) problem version, respectively rounding method, for
specific MIOC problem classes. For problems with time-critical solution requirements, such
as in the MPC context, an optimal solution could be learned in advance for various default
situations, and it could then be used as a starting value in the solution process.

The software package pycombina could be further developed to enhance the applicability of
the proposed algorithms. It would also be interesting to compare the CIA decomposition with
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algorithms from the switched systems community [260, 204]. In this context, it is relevant to
promote the algorithm and mitigate parallel developments, such as what happened with the
embedding transformation technique.

Finally, there are also open research questions regarding the application problems presented.
For example, the efficient use of energy will remain an important topic in the future, and there-
fore, an extension of the algorithm presented for the online control of HEVs will be useful. Due
to high patient variability, the control of LVADs in cardiology is associated with more uncer-
tainty than control approaches for automotives. This is one reason why optimal control tech-
niques have thus far found little impact in the field of cardiology. Overall, there is still much
pioneering work to be done in control for cardiology, which means that there is also great po-
tential for improvement. Specifically related to the LVAD study, the proposed algorithms could
be tested with more patient data and a mock circulatory loop system. The algorithms should
also be generalized to deal with several heart cycles and an arbitrary order of system phases.
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Appendix A

Definitions of function spaces

This appendix chapter reviews function spaces that are referred to in this thesis. We assume
that the reader is familiar with Lebesgue measure and integration theory. We refer to the text-
book [3] for more details.

Definition A.1 (Indicator functionχ)
LetΩ2 ⊆Ω1 ⊆Rn be subsets. The indicator function χΩ2 :Ω1 → {0,1} is defined as

χΩ2 (x) :=
{

1, if x ∈Ω2,

0, else.

Definition A.2 (k-times continuously differentiable functions, C k )
Consider an interval I ⊆ R and k ∈N. Let the function space of all k-times continuously differ-
entiable functions C k (I ,R) defined by its contained functions f : I →Rwhich are assumed to be
continuous on I and so are all their derivatives f (i )(·) of order i ≤ k assumed to be continuous.

We note that the above definition can be directly extended to multidimensional functions
that depend on more than one variable by using partial derivatives.

Definition A.3 (LEBESGUE spaces Lp )
Consider a non-empty set Ω⊆Rn and 1 ≤ p ≤∞. Let f :Ω→R a measurable function such that
| f |p is integrable. We identify in the Lebesgue space Lp (Ω,Rn) functions f that are equal almost
everywhere in Ω, i.e., Lp (Ω,Rn) is defined as the space of all equivalence classes of the functions
f . We equip this space with the norm

‖ f ‖Lp :=


p
√∫

Ω | f (x)|p dx, if 1 ≤ p <∞,

esssupx∈Ω | f (x)|, if p =∞.

In contrast to the quotient space Lp , we denote with L p (Ω,Rn) the space of measurable
functions f , where | f |p is integrable, without neglecting their values on sets of measure zero.

For defining SOBOLEV spaces, we introduce the multi-index notation for partial derivatives.
Let α ∈ Nn denote such a multi-index, with |α| := ∑n

i=1αi ≤ k ∈ N. If a function f is k-times
differentiable, we set for its partial derivatives

∂α f := ∂|α| f
∂xα1

1 ∂xα2
2 · · ·∂xαn

n
.

Definition A.4 (SOBOLEV spaces W k ,p )
Consider a non-empty set Ω ⊆ Rn and 1 ≤ p ≤∞. The Sobolev space W k,p (Ω,R) consists of all
functions of Lp (Ω,R) that admit all partial derivatives of order at most k ∈N:

W k,p (Ω,R) := { f ∈ Lp (Ω,R) | ∂α f ∈ Lp (Ω,R) for all 0 ≤ |α| ≤ k.}.
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We equip the space W k,p (Ω,R) with the following Sobolev-norm:

‖ f ‖W k,p :=
{

p
√∑

|α|≤k ‖∂α f ‖Lp , if 1 ≤ p <∞,

max|α|≤k ‖∂α f ‖L∞ , if p =∞.
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Notation and nomenclature

Here, we provide an overview of the notation and nomenclature used in this thesis.

We use the blackboard symbols N,Z,R to refer to the set of natural numbers excluding zero,
the set of all integer numbers, and the set of real numbers, respectively. In this thesis, vectors
are usually described with boldface letters, e.g., v ∈ Rn . We use mostly uppercase calligraphic
style for sets, e.g., A , and in most cases uppercase bold letters for matrices, e.g., A ∈Rm×n , but
write their entries with Latin letters, e.g., ai , j ∈R. The i th row and j th column of a matrix A are
denoted by ai ,· and a·, j , respectively. We write A> to indicate the transposed matrix A.

Let [n] := {1, . . . ,n}, [n]0 := {0}∪ [n], for n ∈ N. We use Gauss’ bracket notation, i.e., bxc :=
max{k ∈ Z | k ≤ x}, x ∈ R, and analogously for dxe. We indicate by dxe0.5 the rounding up of
x ∈R to the next multiple of 0.5:

dxe0.5 := min{y | y = n ·0.5, n ∈N, y ≥ x}.

We omit a thorough definition of computational complexity classes P and NP and refer to
standard literature for further details [86]. We use these concepts to guide expectations of the
difficulty of problems.

We write “for a.a. t ∈ T ” to abbreviate for all t ∈ T ⊂ R, except on a set of measure zero.
Moreover, we write control to abbreviate the control realization ωi (·), i ∈ [n], of a control func-
tion ω(·) = (ω1(·), . . . ,ωn(·))ᵀ.

We use the notation d f
dx to denote the FRÉCHET derivative, which is a generalization of deriva-

tives to Banach spaces, for a FRÉCHET differentiable function f : D ⊆ X → Y between normed
spaces X ,Y . By ∂ f

∂x , we denote the partial derivative of f with respect to x. We associate the
independent variable of a trajectory x : T ⊆ R→ Rnx with the time t and write the derivative
of x with respect to the time as ẋ := dx

dt . We denote the time derivative of a function ϕ with a
one-dimensional codomain by ϕ′.

In the following, we list the commonly used symbols, variables, and parameters of this thesis.
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Nomenclature

List of Symbols

� End of a proof
 Contradiction symbol
d·e Component-wise mapping of a real number to the next largest integer value
b·c Component-wise mapping of a real number to the next smallest integer value
d·e0.5 Component-wise mapping of a real number to the next largest multiple of 0.5
|·| Component-wise mapping of a real number to the absolute value
||·|| (Unspecified) norm of a vector
|||·||| (Unspecified) norm of a matrix
{ } Set delimiters
∪ Set–theoretic union (“unified with”)
∩ Set–theoretic intersection (“intersected with”)
⊆,⊂ Subset of a set (“is a (proper) subset of”)
∈,∉ Set membership (“is (not) an element of”)
; The empty set
∀ Universal quantifier (“for all”)
∃ Existential quantifier (“there exist(s)”)
∨ Logical inclusive disjunction (“OR”)
∧ Logical conjunction disjunction (“AND”)
0n,m ,0 n–by–m matrix of zeros, vector/matrix of zeros with unspecified size
1n,m ,1 n–by–m matrix of ones, vector/matrix of ones with unspecified size

Blackboard Symbols

N,N0 Set of natural numbers excluding (including) zero
Z Set of integer numbers
R Set of real numbers
Rn Space of n-vectors with elements from the set R
Rm×n Space of m ×n–matrices with elements from the set R

Calligraphic Symbols

A Feasible function space for relaxed binary control functions
AN Feasible discretized function space for relaxed binary controls
C Objective cost function of the OCP
F ,F1,F2 Feasibility sets for the extended formulated problem in Section 6.4
GN Discretization grid
G̃N Auxiliary grid for finding the initial active control ((CIA-TV) context)
H HAMILTONIAN function
I (P ) Set of all problem instances of problem class (P )
I A

i Set of allowed modes that can be activated directly after mode i has been active
I D

b Down time forbidden control index set
Ik Index set for blocking constraints
I SUR

j Index set of down time forbidden controls on interval j as part of DSUR.
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Nomenclature

Jk+1(C1) Index set of intervals affected by the MDT span C1

Jpath Index set of path-constrained intervals

J
sing
l The l th singular arc interval index set

J
f

s Set of feasible time point indices for switch s
Jb Index set of intervals for dwell time block b
J SUR

k Index set of MDT induced intervals from interval k on for DSUR.
J̃ Index set of down time-forbidden intervals in the proof of Theorem 7.2
J i1 Index set of intervals defining ai1,· in the proof of Theorem 7.6
Lb Length of dwell time block b

L ,L Maximum and minimum over all dwell time block lengths
N j (i ) Next interval j on which control mode i becomes forced
P Set of all partitions of the interval T

S v Set of all switching time points for integer control v
S j Index set of binary control variables to be optimized in the j th step

of the generalized CIA decomposition
T Time horizon of an ODE or OCP
Tarc Time interval of a singular arc
T A

i Auxiliary domain in the proof of Proposition 7.5
U Feasible function space of the control function u
V Feasible function space of the integer control function v

Greek Symbols

α Relaxed vector-valued binary control function
β Penalty factor of the penalty termΦpen for reducing switches
βi , j Auxiliary variables for formulation of the total variation constraints
γi , j Forward control deviation for control i and interval j
Γi ,b Forward control deviation for control i and block b
δ Tolerance or distance parameter
δ j Length of the j th activation block (AMDR context)
∆ j Length of the j th discretization interval
∆̄,∆ Maximum and minimum grid length parameters
ε Vector-valued tolerance parameter
ε,εb Tolerance or distance parameter
ζi , j Auxiliary variables for formulation of the 1-norm as part of MILPs
η Activation duration between two switches in (STO-CIA)
θ Objective term of the (CIA) problem
θi , j Accumulated control deviation for control mode i and interval j
θ(w ) Integer deviation error for binary control w
θmax Maximum optimal objective value of all (CIA) problem instances
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Nomenclature

θ∗CIA Optimal objective value of the (CIA) problem with unspecified norm
θ∗SCIA Optimal objective value of the (SCIA) problem with unspecified norm
θ∗
λCIA Optimal objective value of the (λCIA) problem
θ̄ Integer deviation rounding threshold parameter for MDR and AMDR
Θi ,b Accumulated control deviation for control i and block b
ι State-dependent condition function for implicit switches
κs, j Extended formulation: Indicator variable for the sth switch on j th grid point
λ Adjoint or costate variable function
λ̃ Evaluated dual variables of the ODE constraints
µi Auxiliary function in the proof of Theorem 5.1 for the i th control mode
ν(·, ·) Weighted accumulated infeasibility over all intervals of a given state trajectory
Ξ Switching signal vector of switching times and active modes
ξk Extended formulation: Indicator variable of the kth switch
π(i ,k) Mapping that indicates whether the i th mode is active in the kth position ofΠ
Π Sequence of active controls
σi ,max Number of allowed switches for the i th control mode
σmax Total number of allowed switches
σi , j Auxiliary variables for formulation of the total variation constraints
σ(w ) Number of switches of control function w
τ Time variable in the time transformation setting and integrals.
τ j Interval of j th switch (AMDR context)
Φ Mayer term function as part of the OCP objective
Φpen Objective penalty term for reducing switches
Φrec Objective value for the (BOCP) for singular arc block heuristic
χD Parameter indicating the presence of MD time constraints
Ψ Lagrange term function as part of the objective of the control problem
ω Vector-valued binary control function
Ω Feasible function space for binary control functions
Ωcomb Feasible binary control function space including combinatorial constraints
ΩN Feasible discretized function space for binary control functions with N intervals
Ωp Feasible function space for multiphase binary control functions
Ωb

a Set of admissible controls for block b
Ωb

f Set of future-forced controls for block b

Roman Symbols

a Discretized vector-valued relaxed binary control function represented as a matrix
A Unspecified matrix
b Index for dwell time blocks
Bi Activation block for control i (AMDR context)
B Unspecified matrix
c Path constraint function
ci Constant parameter as part of the numerical experiments
ci Mode-dependent child node in the BnB algorithm
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Nomenclature

C1 Minimum dwell time span
C2 Rounding threshold factor parameter for DNFR
CB ,ĈB Constants for bounding f
CD Mode-independent MD time span
Ci ,D MD time span for control mode i
Ci ,M Maximum dwell time span for control mode i
CU Mode-independent MU time span
Ci ,U MU time span for control mode i
Cub Upper bound in path constraint
Ci ,max Total maximum up time span for control mode i
C j Scheduling context: Completion time of job j
C (nω) Constant that depends on nω
C̃1 Constant that is used to establish bounds on (CIA-TV)
d Mode-dependent mixed control-state constraint function
d Scheduling context: Due time or deadline
d BnB context: Depth of the corresponding node in the tree
dbi ,k Deadline of a block that begins with the kth activation for control i
f Scheduling context: Job family
f Right-hand side (model) function of the ODE
f̃ Evaluated discretized model function
F rec Recombination mapping
FC ,Fc Switching cost functions
Fb1,b Index set of controls activated after dwell time block b1

that becomes forced until block b
g j Constraint function for the j th interval
g Objective function for an extended formulated problem in Section 6.4
i Index, usually referring to control mode i
i D

b Down time forbidden control index
j Index, usually referring to interval j . Scheduling context: Job
J Cost-to-go function from the HAMILTON-JACOBI-BELLMAN equation
k Index; Numerical results section: Parameter
kstart

l ,kend
l First and last interval index of the l th singular arc

k (init)
l Last activation for block B (init)

i ,l (AMDR context)

K Decision parameter value for decision problems
l Index, usually referring to the l th interval
lb Last interval index for dwell time block b
L Constant for the GRÖNWALL lemma
LB Lower bound variable
m Index, in Chapter 4 refers to specific MILPs
mi , j Entry in the i th row and j th column of a matrix
MD Rounded up number of minimum down time intervals (proof of Theorem 7.2)
n Node in BnB algorithms
n Scheduling context: Number of jobs
n f Scheduling context: Number of jobs of the f th job family
nI Auxiliary term in the proof of Theorem 7.6
no Variable representing the choice of norm
p Index, usually referring to phase p; Scheduling context: Processing time
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Nomenclature

pc
j Coefficient vector of the collocation polynomial for the j th interval

P Partition of T

Pi AMDR context: Partition of all activations for control i
P c

j Collocation polynomial for the j th discretization interval

Q Node queue for BnB
r Auxiliary index; Scheduling context: Release time
R(·, ·) Remainder term function of a first-order Taylor approximation
R Auxiliary term in the proofs in Chapter 7
s Switching function
s Extended formulation context: Index for the sth switch
s j Shooting variable for the j th discretization interval
S Set of realizations for the switching function s
Sb1,b2 Set of active controls between dwell time blocks b1 and b2

S̃CIA,SCIA Set of CIA problems
S̃CIA,SREC Set of recombination mappings
SV (v ,T̃ ) Switching variation of integer control v on interval T̃

t Time variable
t̃ Auxiliary term in the proof of Proposition 7.5
t0, t f Start and end times of the time horizon
T BnB context: Time point index of the last activation
Tmax Scheduling context: Maximum tardiness over all jobs
T OL Tolerance parameter
TSC,SC Scheduling context: (Total) setup costs
T V (v ) Total variation of integer control v
u Vector-valued continuous control function
U B Upper bound variable
v Vector-valued integer or binary control function
V Discrete image space of the integer control function v
w Discretized vector-valued binary control function represented as a matrix
x Differential state trajectory/function
x Optimization variable of the extended formulated problem in Section 6.4
y Alternative differential state trajectory representation
z, z1, z2 Integrable functions in Section 5.1; Extended formulation: Switching variable

Dimensions and cardinalities

M Number of discretization intervals for the differential states (in Section 9.1)
nb Number of dwell time blocks
nc Number of path constraint functions ci

nCIA Number of different CIA problem formulations
nd Number of mode-dependent mixed control-state constraint functions di

ndec Number of decompositions applied in the generalized CIA algorithm
ni Number of possible activations for control mode i
nivl Number of unfixed intervals in the complexity reduction Algorithm 6.1
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Nomenclature

np Number of control problem phases
ns Dimension of switching function realization si

nsing Number of singular arcs
nu Number of continuous control functions
nv Dimension of integer control realization vi

nx Number of differential states
nι Number of switching function realizations
nω Number of binary control functions or number of integer control realizations
nσ Number of switches or switching events

nb (init)
i ,min Cardinality of the partition P (init)

i ,min for control i

N Number of (control) discretization intervals
Ñ Number of intervals of G̃N

HEV application

bs Battery state-of-charge
Fa,Fr,Ft Aerodynamic, rolling, and traction force
G Gear choice
mc Mode control function
meq Equivalent mass of the vehicle
mf Fuel mass flow
Se

c ,Sh
c Set of the dwell time-coupled control indices

Tw ICE cooling water temperature
USe

c
,USh

c
MU times for electric and hybrid mode

v(t ) Velocity at time t
η Energy conversion efficiency

LVAD application

A· Cross-section parameter of specific compartment “·”
C· Compliance parameter of specific compartment “·”
F· Contraction force during phase “·”
kRAD Radial function coefficient of the contraction force
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Nomenclature

L· Inertance parameter of specific compartment “·”
nm Number of available measurement time points
p Vector of parameters to be estimated for patient specification
P· Pressure state function of specific compartment “·”
Q· Flow state function of specific compartment “·”
R· Resistance parameter of specific compartment “·”
s Position function of the AVP
SD Switching threshold parameter for the AVPD
t1, t2, t3 Controlled switching time points
v Velocity function of the AVP
β Pump-to-pressure coefficient
%i Scaling or weighting parameters
τi Switching time points of implicit switches
ϕ A priori information function for the PE

246



List of Figures

2.1 Example illustration of an optimal control problem . . . . . . . . . . . . . . . . . . . 12

3.1 Example illustration of mixed-integer optimal control problem . . . . . . . . . . . . 22

4.1 Illustration of the CIA decomposition in terms of subproblems and algorithmic opera-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Visualization of the GreedyTime algorithm . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Visualization of the singular arc recombination algorithm . . . . . . . . . . . . . . . 57
4.4 Illustration of the generalized CIA decomposition . . . . . . . . . . . . . . . . . . . . 58

6.1 Illustration of dwell time block associated quantities . . . . . . . . . . . . . . . . . . 85
6.2 Visualization of control activations on dwell time blocks . . . . . . . . . . . . . . . . 86

7.1 Visualization of a minimal C1-overlapping grid. . . . . . . . . . . . . . . . . . . . . . 108
7.2 Visualization of the relaxed control functionα from the proof to Proposition 7.5 . 137

8.1 Flowchart of the pycombina application . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.2 Sample use of the pycombina Python interface . . . . . . . . . . . . . . . . . . . . . 149
8.3 Illustration of pycombina code results . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.1 Performance plot comparing the (SCIA) and (CIA) problem results . . . . . . . . . . 153
9.2 Performance plot comparing (λCIA) and (CIA) problem results . . . . . . . . . . . . 154
9.3 Performance plot comparing (CIA) and its backwards variant problem results . . . 155
9.4 Box plot of the objective value performance for recombination and MILP solutions 156
9.5 Performance plot of the objective value vs. the run time for generalized CIA decompo-

sition and Bonmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.6 Example solution of the path-constrained Lotka-Volterra fishing problem (P1) . . . 163
9.7 Plot of the path constraint violation for different (CIA) approaches . . . . . . . . . . 164
9.8 Illustration of an example solution for the test problem (P2) . . . . . . . . . . . . . . 166
9.9 Objective values of (CIA-U) and (BOCP) based on the test problem (P2) . . . . . . . 166
9.10 (CIA) objective function values of different rounding schemes and for (P2) . . . . . 167
9.11 Illustration of example solutions for test problem (P3) . . . . . . . . . . . . . . . . . 169
9.12 Evaluation of the upper bound θmax for (CIA-TV) with cooling machine data . . . . 171
9.13 Evaluation of the upper bound θmax of (CIA-TV) with random data . . . . . . . . . 171

10.1 Schematic representation of the hybrid electric vehicle (HEV) . . . . . . . . . . . . . 175
10.2 Velocity profile and phases in an exemplary driving cycle. . . . . . . . . . . . . . . . 176
10.3 Control choices for the HEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.4 Illustration of the MU time and mode transition constraints . . . . . . . . . . . . . . 180
10.5 Exemplary MCIA rounding step for the test driving circle from Figure 10.2 . . . . . 182
10.6 Differential states and controls for the WLTP cycle . . . . . . . . . . . . . . . . . . . 184
10.7 ICE and ED operation points for WLTP driving cyle . . . . . . . . . . . . . . . . . . . 185
10.8 Illustration of the simplified model of the left heart, the circulatory system, and the

LVAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

247



List of Figures

10.9 Illustration of the atrioventricular plane displacement concept for the left heart . . 194
10.10 Time course of the assumed active phase sequence with switching events . . . . . 200
10.11 Results from the PE problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.12 Simulated pressure functions based on PE . . . . . . . . . . . . . . . . . . . . . . . . 203
10.13 Pressure results for the different pump speed scenarios . . . . . . . . . . . . . . . . 204
10.14 Optimal differential states and controls for differenct pump speed scenarios . . . . 205
10.15 Optimal objective values and run times for different scenarios . . . . . . . . . . . . 206

248



List of Tables

4.1 Timeline of contributions to the CIA decomposition . . . . . . . . . . . . . . . . . . . 43

6.1 List of (CIA) rounding problems and the corresponding applicable algorithms . . . 104

7.1 Integral deviation gap bounds from the literature for binary control approximation algo-
rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Established results for the integral deviation gap of (CIA) problems . . . . . . . . . . 140
7.3 Established results for the integral deviation gap of the rounding algorithms . . . . . 141

9.1 Key performance indicator values for benchmark study . . . . . . . . . . . . . . . . . 159
9.2 Results for the Lotka Volterra multimode problem, part one . . . . . . . . . . . . . . 160
9.3 Results for the Lotka Volterra multimode problem, part two . . . . . . . . . . . . . . . 161
9.4 (CIA-TV) objective values and run times of different solving methods for (P3) . . . . 170

10.1 Objective value and run time of different methods for the WLTP cycle . . . . . . . . . 183
10.2 Measured hemodynamic data for the example subject . . . . . . . . . . . . . . . . . . 197
10.3 Assumed sequence of active phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
10.4 Default parameter values for the cardiovascular system and LVAD model . . . . . . . 210

249



250



List of Acronyms

AMDR adaptive maximum dwell rounding
AVP atrioventricular plane
AVPD atrioventricular plane displacement
BnB branch-and-bound
CIA combinatorial integral approximation
DAE differential-algebraic equation
DNFR dwell time next-forced rounding
DSUR dwell time sum-up rounding
EM electric motor
EM2 second electric motor
EMS energy management strategy
FD final drive
HEV hybrid electric vehicle
ICE internal combustion engine
IVP initial value problem
LA left atrium
LV left ventricle
LVAD left ventricular assist device
MD minimum down
MDR maximum dwell rounding
MDT minimum dwell time
MILP mixed-integer linear program
MINLP mixed-integer nonlinear program
MIOC mixed-integer optimal control
MIOCP mixed-integer optimal control problem
MIQP mixed-integer quadratic program
MPC model predictive control
MU minimum up
NFR next-forced rounding
NLP nonlinear program
OCP optimal control problem
ODE ordinary differential equation
PDE partial differential equation
PE parameter estimation
pwc piecewise constant
SUR sum-up rounding
TV total variation
WLTP world harmonized light-duty vehicles test procedure

251



252


	Title Page - Publication
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Contributions to publications
	1.3 Thesis outline

	I Background and problem class
	2 Concepts and methods from optimal control theory
	2.1 Definition of the continuous optimal control problem
	2.2 Problem concepts and properties
	2.3 Solution methods

	3 Mixed-integer optimal control
	3.1 Problem statement
	3.2 Classification of combinatorial constraints
	3.3 Literature survey
	3.4 Algorithms for mixed-integer optimal control


	II Algorithms and theory
	4 Combinatorial integral approximation decompositions
	4.1 The partial outer convexification reformulation
	4.2 The basic combinatorial integral approximation decomposition
	4.3 A brief survey of the combinatorial integral approximation decomposition
	4.4 Incorporation of constraints
	4.5 Generalized combinatorial integral approximation decompositions

	5 Approximation properties of the CIA decomposition
	5.1 Approximation of differential states under integrality restrictions
	5.2 Implications for the basic CIA decomposition
	5.3 Implications for different MILP variants
	5.4 Implications for generalized CIA decompositions
	5.5 Implications for the inclusion of path constraints into the CIA decomposition

	6 Algorithms for solving [(CIA)](CIA) problems
	6.1 A problem size reduction heuristic based on bang-bang arcs
	6.2 On the complexity of [(CIA)](CIA) and the connection to scheduling theory
	6.3 Branch-and-bound with time dependent branching
	6.4 The extended formulated [(CIA)](CIA) problem
	6.5 Sum-up rounding variants
	6.6 Dwell time next-forced rounding
	6.7 Adaptive maximum dwell rounding
	6.8 Other approaches
	6.9 Summary

	7 Approximation results for the integral deviation gap
	7.1 Auxiliary lemmata
	7.2 Bounds for dwell time sum-up rounding
	7.3 Bounds for dwell time next-forced rounding
	7.4 [(CIA)](CIA) with and without minimum dwell time constraints
	7.5 [(CIA)](CIA) with bounded discrete total variation
	7.6 Summary


	III Implementation, numerical results, and applications
	8 Implemented software: pycombina
	8.1 Basic code design and usage structure
	8.2 Available combinatorial constraints
	8.3 Available solver classes
	8.4 Exemplary application of the tool

	9 Numerical results
	9.1 Benchmark computations of different MILPs and recombination heuristics
	9.2 Incorporation of the path constraint data into [(CIA)](CIA)
	9.3 Mixed-integer optimal control under minimum dwell time constraints
	9.4 Mixed-integer optimal control with bounded discrete total variation

	10 Applications
	10.1 Multiphase mixed-integer optimal control of hybrid electric vehicles
	10.2 Mixed-integer optimal pump speed control of ventricular assist devices

	11 Concluding remarks and outlook
	11.1 Conclusions
	11.2 Future work

	A Definitions of function spaces
	Bibliography
	Notation and Nomenclature
	List of Figures
	List of Tables
	List of Acronyms


