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DNAmethylation is involved in many different biological processes in the development and
well-being of crop plants such as transposon activation, heterosis, environment-
dependent transcriptome plasticity, aging, and many diseases. Whole-genome bisulfite
sequencing is an excellent technology for detecting and quantifying DNA methylation
patterns in a wide variety of species, but optimized data analysis pipelines exist only for a
small number of species and are missing for many important crop plants. This is especially
important as most existing benchmark studies have been performed on mammals with
hardly any repetitive elements and without CHG and CHH methylation. Pipelines for the
analysis of whole-genome bisulfite sequencing data usually consists of four steps: read
trimming, read mapping, quantification of methylation levels, and prediction of differentially
methylated regions (DMRs). Here we focus on read mapping, which is challenging
because un-methylated cytosines are transformed to uracil during bisulfite treatment
and to thymine during the subsequent polymerase chain reaction, and read mappers
must be capable of dealing with this cytosine/thymine polymorphism. Several read
mappers have been developed over the last years, with different strengths and
weaknesses, but their performances have not been critically evaluated. Here, we
compare eight read mappers: Bismark, BismarkBwt2, BSMAP, BS-Seeker2, Bwameth,
GEM3, Segemehl, and GSNAP to assess the impact of the read-mapping results on the
prediction of DMRs. We used simulated data generated from the genomes of Arabidopsis
thaliana, Brassica napus, Glycine max, Solanum tuberosum, and Zea mays, monitored
the effects of the bisulfite conversion rate, the sequencing error rate, the maximum number
of allowed mismatches, as well as the genome structure and size, and calculated
precision, number of uniquely mapped reads, distribution of the mapped reads, run
time, and memory consumption as features for benchmarking the eight read mappers
mentioned above. Furthermore, we validated our findings using real-world data of Glycine
max and showed the influence of the mapping step on DMR calling in WGBS pipelines.
We found that the conversion rate had only a minor impact on the mapping quality and the
number of uniquely mapped reads, whereas the error rate and the maximum number of
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allowed mismatches had a strong impact and leads to differences of the performance of
the eight read mappers. In conclusion, we recommend BSMAP which needs the shortest
run time and yields the highest precision, and Bismark which requires the smallest amount
of memory and yields precision and high numbers of uniquely mapped reads.
Keywords: epigenetics, DNA methylation patterns, read mapping, benchmarking, WGBS
INTRODUCTION

It has been shown that DNA methylation is involved in several
biological mechanisms and diseases such as cancer (Koch
et al., 2018). Plant methylation analysis is especially
interesting as 5-methyl-cytosine (5mC) is involved in the
heterosis effect (Chen et al., 2018), transposon silencing, and
environment-dependent transcriptome plasticity (Lauss et al.,
2018). However, in addition to the complementary CG
methylation being highly abundant in animals, in plants
CHG and uncompl imenta ry CHH (H=C,T or A)
methylation have evolved from the former recognition
system of foreign DNA.

Whole-genome bisulfite sequencing (WGBS) is often referred
to as the “gold standard” for 5mC detection because the whole
genome is covered at a single-base resolution. Other methods
cover only preselected genome regions enriched for cytosine-
phosphate-guanine-dinucleotide (CpG) content or methylation,
for example with the use of restriction enzymes in reduced
representation bisulfite sequencing (rrBS) (Sun et al., 2015), or
methylated DNA immune precipitation, followed by next
generation sequencing (MeDIP-seq) (Bock et al., 2010; Aberg
et al., 2017).

Bisulfite-mediated conversion of unmethylated cytosines to
uracil, and during PCR to thymine, leads to four different strands
in the data sets after sequencing: original top, complementary to
original top, original bottom, and complementary to original
bottom strand (Figure 1). Methylated cytosines remain
unaffected and could be spotted by alignment of the generated
sequencing reads to a reference genome or a non-bisulfite-
treated control.

Critical within the bioinformatics analysis of WGBS data sets
is the mapping step, as the reduced alphabet leads to specific
challenges for the mapping tools due to the bisulfite treatment
(Laird, 2010).
.org 2
In general, two different algorithmic approaches exist in
bisulfite-read alignment tools for deal ing with the
unmethylated C to T conversion: the ‘wild card’ and the ‘three
letter’ approach. In the wild card approach the Cs in the
reference genome are replaced with the wild card ‘Y’ for
pyrimidine bases and thus allows for the alignment of Cs
(methylated Cs) and Ts (possibly unmethylated Cs). The
alignment itself is based on matching seeds (k-mers) to the
reference and then extending them. In the three letter approach
the alphabet of the genome and the reads is reduced to {A, G, T},
by converting all Cs in the reference sequence and in the read
data to Ts. Afterwards, the reads are mapped by conventional
mappers such as Bowtie, Bowtie2, or bwa, so the alignment of
bisulfite data profits directly from the improvements of
traditional mappers.

One study already focused on the benchmarking of rrBS
alignment using simulated rrBS and real human lung tissue data
sets (Sun et al., 2018). Kunde-Ramamoorthy et al. (2014)
evaluated the mapping performance of five mapping tools in
WGBS datasets of human peripheral blood lymphocyte and a
hair follicle. Another study has been performed in plants,
showing that the tool BismarkBwt2 performed best in terms of
sensitivity and precision, not accounting for the coverage
distribution across the reference genome (Omony et al., 2019).
In contrast, our study is focused on simulated WGBS in plants,
covering different species with a different amount of repetitive
sequences. In addition, little is known about the mapping
behavior in crop plants. Furthermore, as all former studies did
not systematically account for different parameter settings such
as the number of mismatches, we evaluated this parameter in
more detail.

There is need for an extensive qualitative and quantitative
benchmarking of alignment tools, to avoid the false
interpretation of results in DNA methylation studies and to
enable the application of precise, efficient, and user-friendly
FIGURE 1 | Example of a DNA double strand with methylated (red) and unmethylated (blue) CpG-site (cytosine-phosphate-guanine-dinucleotide) before and after
bisulfite treatment and polymerase chain reaction (PCR). Methylated cytosine is not affected by bisulfite, whereas unmethylated cytosine is converted to uracil and
further on to thymine during PCR in the original top strand, and to adenine in the complementary top strand [adapted from (Grehl et al., 2018)].
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pipelines. The known “truth” is especially important, and this
could be generated by benchmarking datasets of simulated and,
thus, known read data, to calculate the quality of scores in
multiclass hypothesis testing. In terms of quantitative
comparison, time efficiency, amount of uniquely mapped
reads, and consumption of RAM has to be monitored, as well
as the overall distribution of mapped reads, to look for genomic
regions with systematically lower coverages.
MATERIAL AND METHODS

Arabidopsis thaliana, Brassica napus, Glycine max, Solanum
tuberosum, and Zea mays (Table 1) have been examined to
reveal potential inter-species variability in terms of mappability.
These species have been chosen to cover different agronomically
relevant plant families, different genome sizes, and different
assembly qualities. All reference genomes were downloaded
from http://plants.ensembl.org. We simulated WGBS datasets
for 2 x 150 base pair paired-end reads for the five different plant
genomes, using the open-source WGBS simulation tool:
Sherman (https://www.bioinformatics.babraham.ac.uk/projects/
sherman/), which has been developed at the Babraham Institute.
The reads have been simulated. We chose 150bp paired-end
sequencing for our benchmarking study as it is the mostly
applied and proposed sequencing option for WGBS
experiments. In doing so, small repeats below the total
fragment size of 500-700bp could be covered, which is
especially important for repeat-rich (crop) plants. Furthermore,
choosing a parameter set of 150bp paired end, facilitates the
necessary multiplexing with non-bisulfi te l ibrar ies
during sequencing.

For each species, benchmarking datasets in 5-fold sequencing
depth, three bisulfite conversion rates [90%, 98%, 100%], and
four different sequencing error rates [0%, 0.1%, 0.5%, 1%] were
simulated. The sequencing errors were modelled to account for
more likely errors at the end of a read, like in real world
sequencing data (Figure 2). Whereas the overall resulting
phred score of 30 is equivalent to an error rate of 0.1% or 1 in
1000 wrong base calls. Illumina HiSeq sequencing yields an error
rate of 0.0034-1% while PacBio shows 5–10% false base calls
(Escalona et al., 2016). We decided to include a 98% conversion
rate as this is usually guaranteed by sequencing facilities, and
90% to look for a value below this threshold.

For mapping the simulated WGBS reads to the genomes, we
tested several wild-card and three-letter mappers: Bismark
Frontiers in Plant Science | www.frontiersin.org 3
(Krueger and Andrews, 2011), BSMAP (Xi and Li, 2009), BS-
Seeker2 (Guo et al., 2013), Bwa-meth (Pedersen et al., 2014),
GEM3 (Marco-Sola et al., 2012), GSNAP (Wu and Nacu, 2010),
and Segemehl (Hoffmann et al., 2009; Otto et al., 2012). These
mappers differ in terms of their “age”, number of citations, and
indexing strategy (Table 2). For further insight into mapping and
indexing strategies, as well as for an insight into the underlying
algorithmic approaches we recommend (Tran et al., 2014).

Bismark (Krueger and Andrews, 2011), one of the most cited
three letter mapper for bisulfite-sequencing data, first converts
the reads and the genome into two versions: a C-to-T and a G-to-
A version. Afterwards, the two read versions are aligned to the
two versions of the reference genome with the goal of detecting
to which of the four strands (Figure 1) the read fits. This
alignment is performed by four parallel instances of either
Bowtie (Langmead et al., 2009), one of the fastest mappers for
NGS data, or Bowtie2 (Langmead and Salzberg, 2012), an
improved version of bowtie, that allows gapped alignment.

BSMAP (Xi and Li, 2009) is included in the list for being the
first mapper for the alignment of bisulfite data. It uses an efficient
HASH table the seeding algorithm for indexing the genome,
bitwise masking each nucleotide in the reads and the reference
and matching them to each other in an efficient way.

GSNAP (Wu and Nacu, 2010) is a general purpose mapper
that can also deal with bisulfite data. Like BSMAP, it is based on
special hash tables and uses a wild-card approach to match read
seeds to genome regions. Since its original publication several
improvements of the algorithms have been made by increasing
the length of the hashed k-mers, adding a compression
mechanism and using enhanced suffix arrays (Wu et al., 2016).

BS-Seeker2 (Guo et al., 2013) is the extension of BS Seeker
(Chen et al., 2010) for mapping bisulfite data and deploys a three
letter approach. In addition to performing a gapped alignment it
can filter out reads with incomplete bisulfite conversion, in this
way increasing the specificity.

Compared to the other tools in this benchmark Bwa-meth
(Pedersen et al., 2014) is a relatively new mapper for bisulfite
data. It is based on BWA-mem aligner (Li and Durbin, 2009; Li
and Durbin, 2010) and it is advertised as a fast and
accurate aligner.

Segemehl was originally designed as a general purpose
mapper (Hoffmann et al., 2009) but has been extended to
handle bisulfite data (Otto et al., 2012). Segemehl achieves a
high sensitivity by using a wild-card approach based on
enhanced suffix arrays for the seed search and the Myers bit-
vector algorithm for computing semi-global alignments.
TABLE 1 | Five species included in this benchmarking study with the size of the reference genome and the used reference genome version which has been taken for
the simulation of the read datasets.

Species Arabidopsis thaliana Brassica napus Glycine max Solanum tuberosum Zea mays

Genome Size (bp) 135,670,229 738,357,821 955,377,461 727,424,546 2,104,350,183
Genome version TAIR10 AST_PRJEB5043_v1 Glycine_max_v2.1 SolTub_3.0 B73 RefGen_v4
Repeats in % <23

(Flutre et al., 2011)
~48

(Liu et al., 2018)
~57

(Schmutz et al., 2010)
~49

(Mehra et al., 2015)
~75

(Wolf et al., 2015)
Citation Lamesch et al., 2012 Chalhoub et al., 2014 Schmutz et al., 2010 Xu et al., 2011 Schnable et al., 2009
February 2020 | Vo
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The eight mappers were used to map the simulated reads with 0,
1, 2, and 3 mismatches allowed in the read. As Bowtie2 and Bwa-
meth do not allow setting the total number of mismatches in a read
as a parameter, but in the seed instead, we performed our analysis
on the basis of 0 mismatches in the seed for these mapping tools.
Other parameter settings, such as the number of threads used, were
the default values of the mentioned tools if not stated otherwise and
are comparable across the different tools. All scripts are available at
git-hub (https://github.com/grehl/benchWGBSmap).

After mapping, the reads can be classified into three different
classes: i) discarded reads that could not be mapped, ii) multiple
mapped reads that could be aligned but to more than one
position on the reference genome because of sequence
similarities, and iii) uniquely mapped reads, which have been
mapped to one position only.

For further evaluation, we used only uniquely mapped reads.
Since we did not account for insertions and deletions, we have
Frontiers in Plant Science | www.frontiersin.org 4
considered only the first base of the read at its genome position.
When calculating the quality scores, we have compared the true
and the predicted position of a read. For each read the true
genome origin is known, since Sherman encodes it in the read
name, while the predicted position is derived from the
alignment files.

The quality scores computed are the amount of unique reads
considered, the precision, the memory consumption, and the
time consumption of the tools. Furthermore, we looked at the
read distribution over the reference genome to account for
systematic mapping deficiencies.

The precision of a mapping tool for a data set has been
computed using the formula for macro-averaged precision
(mac roAvgPr e c i s i on ) (TP = t rue po s i t i v e s , FP =
false positives):

macroAvgPrecision   =
oN

i=1
TPi

TPi+FPi

� �

N

We first calculated the precision for every position i, summed
over all positions and divided by the total number of positions N.
The macro-averaging was chosen as it weights FP higher than in
the micro-averaging calculation of the precision. We
furthermore used “precision” in this manuscript instead of
“macro-averaged precision”.

To evaluate the impact of the tested tools on DMR calling
and to show the reliability of our simulated benchmark study,
we included a real-world dataset of Glycine max root hair
samples grown under 25°C and 40°C (Hossain et al., 2017).
TABLE 2 | Bisulfite Read mapping tools evaluated in this survey, listed by their
mapping and indexing strategy.

Mapper name Strategy Indexing Version Citations

Bismark 3 letter BWT (bowtie 2/bowtie 1) 0.19.1 1.176
BSMAP wild-card Hash table (SOAP) 2.73 3
BS-Seeker2 3 letter BWT (bowtie 2) 2.1.5 135
Bwa-meth 3 letter BWA mem 0.2.2 3
GEM3 3 letter Custom FM index 3.6.1-2 236
GSNAP wild-card Hash table 2019-06-10 83
Segemehl wild-card Enhanced suffix array 0.2.0 283
The number of citations is based on theWeb of Science Core Collection (date: 19.1.2020).
FIGURE 2 | Workflow of the experiment setup for (A) simulation of bisulfite-treated reads based on a reference genome using the tool Sherman, including bisulfite
conversion and error induction. Afterwards (B) mapping of the simulated datasets and (C) calculation of quality scores. The color coding shows the different classes
of reads after mapping: red = uniquely mapped, green multiply mapped, orange= discarded/unmapped reads.
February 2020 | Volume 11 | Article 176
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ts using 7 mapping tools on a real-world dataset of Glycine max root hair grown under two different temperatures to
MR calling. The workflow includes two quality checks on the raw reads prior and after trimming with trim galore using
ools, a sambamba deduplication step, coordinate sorting, exclusion of scaffold mappings, methylation level calling using
ith Defiant. To evaluate the bam quality we used the qualimap bamqc function.
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For automatization we implemented a snakemake pipeline
(Köster and Rahmann, 2012), shown in Figure 3. Other tools
used in this pipeline are: trim galore (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/), fastqc
(Leggett et al., 2013), qualimap (García-Alcalde et al., 2012),
samtools (Li et al., 2009), sambamba (Tarasov et al., 2015),
methyldackel (https://github.com/dpryan79/MethylDackel)
Defiant (v.1 .1 .6) (Condon et al . , 2018) [parameter
settings: -c 10 -v ‘BY’ -CpN 5 -p 0.05 -P 10], and Circos
(Krzywinski et al., 2009). The mapping parameter sets were
comparable and allowed 0 mismatches. As Segemehl showed
an extensive memory consumption and runtime we had to
exclude this mapper for the qualitative benchmark study and
the mapping of the real dataset. For the DMR calling we had to
exclude BS-Seeker2, as the flag information did not follow
standard formats, so the files could not reliably be used for
methylation calling. The settings for DMR calling were:
minimum 10-fold coverage, minimum 5 CpN in one DMR,
and minimum +/-10% methylation difference between the two
treatments with a maximum p-value of 0.05. Analogous to the
source code of the simulated benchmark study, we mainly
relied on the default parameters if not stated otherwise in the
script. All scripts are available online at git-hub (https://
github.com/grehl/benchWGBSmap).

Simulation, mapping, and quality score calculation was
performed on the IANVS High-Performance-Cluster of
Martin-Luther University Halle-Wittenberg (Table 3). For
calculation of runtime and memory consumption only one
core of the login-nodes was allowed for mapping. For
simplicity, to give an overview about mapping, and as the
genome size is the most important factor with respect to
runtime and memory consumption, we decided to focus on
this factor only. A subsequent study could focus on the
influence of other factors of runtime and memory
consumption. The mapping of the quality benchmark was
performed on the “large” and “small” nodes.
RESULTS

The results of our quantitative benchmark studies for memory
consumption (Figure 4) and runtime (Figure 5) are shown for the
Frontiers in Plant Science | www.frontiersin.org 6
eight mappers in relation to the size of the reference genome. The
memory consumption ranged from 0.1 GB for the mapping of the
Arabidopsis thaliana dataset with Bismark, either using bowtie or
bowtie2, to 39 GB for the mapping of the Zea mays dataset with
Segemehl. All datasets had a 100% conversion rate, a 0% error rate
and, 0 mismatches were allowed during the mapping. Similar
patterns in the memory consumption and runtime have also been
observed for datasets with other parameter settings. In terms of
runtime, the user time is depicted, ranging from a few minutes for
all mappers using the Arabidopsis thaliana dataset, to 79 h for the
mapping of a Zeamays dataset with Segemehl. Overall BSMAP took
the least time, especially for large reference genomes. It is interesting
to note that although Solanum tuberosum and Brassica napus have a
similar genome size, and some mappers had a higher memory
consumption (Segemehl, GEM3, GSNAP) and runtime (Segemehl,
BismarkBwt2, GSNAP) for Brassica napus. This might be due to the
large amount of large repetitive regions and paralogue genes within
the Brassica napus genome, as the overall proportion of repeats is
comparable to Solanum tuberosum.

Because of the extensive memory consumption and runtime
of Segemehl, we excluded this mapper from the quality
benchmark study.

Overall, the conversion rate did not influence the number of
uniquely mapped reads or the mapping quality (Supplementary
Material). In terms of the mapping quality, in relation to the
error rate, and the reference genome, we basically see three
groups of mappers (Figure 6). The first group is independent of
the allowed number of mismatches during the mapping and
includes Bismark, BismarkBwt2, Bwa-meth, and GEM3. The
second group consists of BSMAP and BS-Seeker2, showing an
increase in the number of uniquely mapped reads with higher
numbers of allowed mismatches with barely any changes in
precision. The third group, including GSNAP, shows an increase
in the number of uniquely mapped reads but a decrease in the
precision, with a higher number of mismatches allowed. As
BismarkBwt2 and bwameth do not allow setting the number of
mismatches in the entire read, both are labelled with a triangle.
Between the analyzed genomes we see differences for all mappers
with the tendency to lower numbers of uniquely mapped reads in
Zea mays and lower precision in Zea mays and Brassica napus.

For Arabidopsis thaliana (Figure 7) and Glycine max (Figure 8)
the distribution of reads over the reference genome is exemplarily
TABLE 3 | IANVS Cluster Specifications.

Node
type

SLURM
partition*

Qty. CPU Cores
(total)

SMT threads
(total)

Clock speed
(GHz)

RAM
(GiB)

Storage InfiniBand block-
ing factor**

Remarks

login – 2 2x12-core Intel Xeon
E5-2680v3

24 48 2.50 256 GPFS
over IB

1:8 –

small standard 180 128 1:2 or 1:8 hostnames: small[001-
180]

large 76 256 hostnames: large[001-
076]

gpu gpu 12 hostnames: gpu[01-12]
special Special 2 4x 10-core E5-

4620v3
40 80 2.00 1024 1:8 hostnames: special001,

special 002
February 2020 |
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shown for the mapping of two datasets each. The first dataset was
simulated with a 100% conversion rate, a 0% error rate and was
mapped with 0 mismatches allowed for all seven mapping tools,
depicted in the lower window. The upper window shows a 100%
conversion rate, a 1% error rate and 0mismatches, again for all seven
mapping tools. All coverage plots have a resolution of 400 windows
across the whole reference genome. For higher error rates BSMAP,
BS-Seeker2, and GSNAP show a severe decrease in coverage.
Furthermore, we clearly see several regions with a decrease in
coverage within the reference genome, independent of the error
rate. In grey, we highlighted the regions which are known to contain
a high percentage of repetitive sequences. Bismark and BismarkBwt2
are depicted behind each other, showing nearly the same coverage
distribution. In total, Bwa-meth shows the least derivation in the
coverage distribution.

The benchmarking of the real Glycine max dataset resulted in
proper mapped paired end read counts (Table 4). The last
Frontiers in Plant Science | www.frontiersin.org 7
column shows the final number of DMRs. These are
additionally depicted in Figure 9.
DISCUSSION

We performed an extensive benchmarking experiment based on
simulated data to evaluate the qualitative and quantitative
performance of mappers for bisulfite sequencing data in five
plant species with a focus on crop plants.

In terms of user time and memory consumption, the different
tools showed big differences. Especially for larger genomes. For
example Segemehl used a tremendous amount of RAM and needed
the most time to map the given reads onto the reference genome.
For larger reference genomes (>4 GB) the genome has to be split if
Segemehl needs to be used. For these two reasons, we could not use
February 2020 | Volume 11 | Article 176
FIGURE 4 | Maximum resident set size in GB of 8 mappers for 5fold simulated bisulfite converted datasets out of five reference genomes (Arabidopsis thaliana,
Brassica napus, Glycine max, Solanum tuberosum, Zea mays). 0 % error rate, 100% conversion rate, 0 mismatch allowed.
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Segemehl for mapping of huge datasets such as Zea mays, even if it
performed well in terms of precision in a pilot study. BSMAP,
GEM3, and GSNAP showed only a low increase in time with the
increasing size of the genome but used more memory. Bismark in
particular showed a low increase for the memory consumption and
a relatively low increase in run time. The large difference between
Bismark and BismarkBwt2 is most likely due to the “soft clipping”
function of BismarkBwt2.

The mapping quality and number of uniquely mapped reads
change between the tools with Zea mays showing the lowest
precision scores and the least number of uniquely mapped reads.
This effect might be caused by the high number of repetitive
sequences, which has been shown to make up to 75% of the Zea
mays genome, containing mostly gypsy- and copia-like long,
terminal repeats (LTR) (Wolf et al., 2015). For Glycine max the
described number of repeats lays around ~57%. This also
includes telomeric as well as centromeric repeats and not
Frontiers in Plant Science | www.frontiersin.org 8
annotated repeats where the reference genome shows
scaffolded regions (Schmutz et al., 2010). A wild-type reference
genome sequencing consortium recently found 54% repeats (Xie
et al., 2019). As most repeats are <50 bp (Sherman-Broyles et al.,
2014), the 2 x 150 bp paired-end reads with an insert size of 200
bp – 400 bp could cover large parts of the genome uniquely. The
distribution of reads across the reference genome shows a good
overlap with known and long, repeat-rich regions. Some
mappers such as GEM3 and GSNAP tend to map high
amounts of FP in these regions. Other mappers leave these
regions out, leading to a lower coverage.

In terms of precision, runtime and power to detect CpG-sites,
Sun et al. (2018) found Bwa-meth and BS-Seeker2 to be the best
tools based on simulated and real rrBS reads from human lung
tumor tissue. However, this stands in contrast to our findings, which
show precision deficiencies for Bwa-meth, with error rates above
0.1%, especially in repeat-rich and large plant genomes. BS-Seeker2
FIGURE 5 | User timer in hours of 8 mappers for 5fold simulated bisulfite converted datasets out of five reference genomes (Arabidopsis thaliana, Brassica napus,
Glycine max, Solanum tuberosum, Zea mays). 0 % error rate, 100% conversion rate, 0 mismatch allowed.
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Glycine max, Solanum tuberosum, and Zea mays. We simulated the
different numbers of mismatches [0, 1, 2, 3]. These mappers are depicted by
ire read. They are depicted by triangles. The conversion rate had no effect
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FIGURE 6 | Quality benchmark of 7 mappers based on simulated bisulfite sequencing datasets in Arabidopsis thaliana, Brassica napus,
datasets with 4 different error rates [0, 0.1, 0.5 and 1 %] in a 5fold coverage. For 5 out of 7 mappers we had the opportunity to allow for
circles. Two mappers, bismark using bowtie2 and bwameth, did not allow the adjustment for different numbers of mismatches in the ent
and is therefore not shown in this figure. The depicted conversion rate is 100% for all data sets.
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FIGURE 7 | Coverage distribution over the reference genome of Arabidopsis thaliana (TAIR10). The lower window shows the performa
induced error rate, 100% conversion rate and 0 mismatches allowed. The upper window shows a simulated 5fold coverage dataset w
allowed during the mapping. The number of reads has been calculated based on the ensemblPlants “Base Pairs” information. This cou
indicate the borders of chromosomes. Grey regions highlight highly repetitive regions.
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FIGURE 8 | Coverage distribution over the reference genome of Glycine max (Williams82_v2.1.43). The lower window shows the perfor
induced error rate, 100% conversion rate, and 0 mismatches allowed. The upper window shows a simulated 5fold coverage dataset wit
allowed during the mapping. Black lines indicate the borders of chromosomes. Grey regions highlight highly repetitive regions.
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TABLE 4 | Mean coverage of the four real data samples and the result of the DMR calling (SRR5044695 & SRR5044696 are the control and SRR5044699 &
SRR5044700 are the heat stress replicates).

SRR5044695 SRR5044696 SRR5044699 SRR5044700 DMRs

BismarkBwt2 15,0 14,5 17,9 19,2 281
Bwa-meth 32,5 29,5 35,6 38,8 256
GEM3 28,3 25,8 31,4 34,3 136
BismarkBwt1 11,3 11,0 13,9 14,7 97
GSNAP 10,3 9,5 12,0 12,6 70
BSMAP 10,5 9,9 12,2 12,7 63
BS-Seeker2 8,6 8,4 11,0 11,3 X
Frontiers in Plant Science | www
.frontiersin.org
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FIGURE 9 | Circular plot showing the distribution of DMRs (red) as result of mapping the same dataset with 6 different mapping tools on the Glycine max_v2.1
reference genome. The outer circle shows the chromosomes of Glycine max in blue. Blue lines indicate hypomethylation, whereas red lines indicate hypermethylation
(see the full list of DMRs at https://github.com/grehl/benchWGBSmap). Numbers of overlapping DMRs could be found in the Supplementary Material.
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mapped reads precisely but error rates above 0.5% and with 0
mismatches allowed during mapping leads to unique mapping rates
below 25%. Other studies found Bismark to yield a reasonable
combination of low memory consumption, low runtime, and high
quality scores (Kunde-Ramamoorthy et al., 2014; Omony et al.,
2019). This could be confirmed by our study, where Bismark
showed the lowest memory consumption in all tested genomes.
For runtime, we see high differences between Bismark using Bowtie
and BismarkBwt2 under usage of Bowtie2. The precision showed
good scores for all genomes and settings, with a slight decrease for
the Zea mays genome.

For the second part of our study we mapped the same datasets
with the seven mentioned mapping tools but had to exclude BS-
Seeker2 for the DMR calling. Here, we see the most unique,
proper paired reads for mapping with Bwa-meth and GEM3.
Surprisingly, this could not be confirmed for the DMR calling
where we obtained the most DMRs using Bismark with Bowtie2
using the same parameter sets, the same tools, and the same
pipeline. We can only speculate what the reason for this behavior
might be. Most likely this shift in the performance difference
between the tools could be caused by false positive mappings
which did not heavily influence the DMR calling, as they might
have been mapped to “non-sense” positions either already
involved in a DMR region, not causing much harm in remote
regions due to the coverage threshold of 10-fold, or, they have
been evenly distributed over treatment and control datasets.
CONCLUSION

In conclusion, we have shown high differences between the available
mapping tools for bisulfite-treated reads based on simulated and
real datasets in terms of runtime, memory consumption, and
mapping quality. We see the stability of mapping quality against
changes in the conversion rate, high differences between the
mapping tools in terms of the number of uniquely mapped reads
as well as in the capability to map correctly under the impact of
higher error rates in five different genomes. Additionally, we see
high differences with regard to the analyzed genome, dependent on
the size and structure of repeats.

For Arabidopsis thaliana basically every one of the examined
mapping tools could be used with a sufficient mapping rate and
good quality, at least when assuming a low error rate. This holds
true for low error rates in Glycine max mappings. For higher
error rates we recommend Bwa-meth as well as Bismark, using
Bowtie1 or Bowtie2. For paralogue-rich species such as Brassica
napus, polyploid species such as Solanum tuberosum, or large
genomes with many repetitive sequences such as in Zea mays we
prefer correct mappings over a large number of unique mapped
reads. Therefore, going with Bismark using Bowtie1 or Bowtie2
or BSMAP and BS-Seeker2 with a higher number of mismatches
allowed might work well, looking at the perspective of mapping.
Frontiers in Plant Science | www.frontiersin.org 13
Altogether, we recommend BSMAP as this requires the
shortest run time and yields the highest precision and Bismark
which requires the smallest amount of memory and yields high
precision and high numbers of uniquely mapped reads.
Furthermore, Bwa-meth could be used with care in terms of
precise calling of DMRs.
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