
On the application of the polychromatic
statistical reconstruction technique to

C-arm CT data

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

von Dipl.-Phys. Richard Nikolaus Karl Bismark

geboren am 11. Dezember 1986 in Magdeburg

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik
der Otto-von-Guericke-Universität Magdeburg.

Gutachter:

Prof. Dr. rer. nat. Georg Rose
Prof. Dr.-Ing. habil. Andreas Maier

Tag der Einreichung am 22. Februar 2021
Promotionskolloquium verteidigt am 02. Juli 2021

1



Funding

This work is partly funded by the German Ministry of Education and Re-
search (BMBF) within the Forschungscampus STIMULATE (13GW0095A).

2



Zusammenfassung

Computer Tomographie (CT) ist im klinischen Alltag der Krankenhäuser ein
essentielles Mittel der Diagnostik und Nachbehandlung. Obwohl es bereits
seit Jahrzehnten erfolgreich angewendet und verbessert wird, ist das stan-
dard Verfahren, dass aus den Röntgenbildern die 3D Information gewinnt
störanfällig und vereinfachend. Auf der Hardware-Ebene wird das Potential
der Ingenieurskunst bis ins kleinste Detail ausgereizt, doch auf der Software-
Ebene findet die Innovation der Forschung nur langsam Anschluss.

Viele moderne Verfahren benötigen zusätzliche Technik oder alternative
Messmethoden, doch auch mit den bereits genutzten Geräten und Messun-
gen könnten bessere klinische CT Bilder erzeugt werden. Durch das stetig
wachsende Potential der modernen Computer und deren Rechenleistung ist
es heutzutage möglich, enorme Datenmengen zu verarbeiten und Ergebnisse
zu ermitteln, für die es vor 20 Jahren noch einige Monate an Rechenzeit
gebraucht hätte.

Diese zusätzlichen Rechenkapazitäten können genutzt werden, um die
vereinfachten Verfahren durch komplexere Algorithmen zu ersetzen. Ein
wesentliches Problem der aktuellen Standard-Methode ist die sogenannte
Strahlaufhärtung (engl. beam hardening). Die erzeugte Röntgenstrahlung
verfügt über ein Energiespektrum, das verschiedene quantemechanische
Wechselwirkungen abdeckt. Die unterschiedlichen Wechselwirkungen tragen
dabei alle zum gemessenen Signal bei. Es ist bekannt, dass der Absorption-
sprozess der Röntgenstrahlung nicht-linear von dem absorbierenden Objekt
abhängt. Eben diese Nicht-Linearität wird bei der standard Rekonstruk-
tionstechnik nicht vollständig berücksichtigt und führt zu systematischen
Bildfehlern (sog. Bildartefakten). Historisch war es schlicht nicht möglich,
die Nicht-Linearitäten innerhalb eines klinisch vertretbaren Zeitraumes zu
berücksichtigen. Nach 50 Jahren angewandter Computer Tomographie ist
es mittlerweile allerdings sehr wohl möglich klinische CT Bilder innerhalb
vertretbarer Rechenzeiten zu ermitteln. Hierfür bedarf es lediglich einer
angemessenen Implementation der modernen Rekonstruktionsalgorithmen.

Diese Arbeit beschäftigt sich mit einem physikalisch motivierten Rekon-
struktionsalgorithmus, der bereits 2002 entwickelt wurde aber seit dem nicht
auf klinische Daten angewendet wurde. Dieser Algorithmus nutzt sowohl ein
physikalisch motiviertes Modell der Röntgenabsorption - die polychromatis-
che Natur der Messung - als auch moderne Techniken der mathematischen
Modellierung - die statistische Natur der Messung. Dies wird in der Beze-
ichnung der Methode deutlich: polychromatisch statistische Rekonstruktion-
stechnik (PSR).

In der vorliegenden Arbeit wird die Machbarkeit der PSR demonstriert
und ihr diagnostischer Mehrwert aufgezeigt. Zum Zeitpunkt der Verfassung
dieser Schrift (2020) ist kein Fall bekannt, in dem diese Methode auf klin-
ische Daten angewendet wurde. Mit anderen Worten: zum ersten mal und
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weltweit, wurde die PSR auf klinische Daten angewendet und die Bildqual-
ität dadurch enorm verbessert. Es ist insbesondere hervorzuheben, dass der
spezielle Fall des C-arm CT eine besondere Herausforderung darstellt, da
die Datenqualität wesentlich niedriger ist als im konventionellen spiral CT.

Zusammenfassend kommt die Arbeit zu dem Schluss, dass die PSR sowohl
einen erheblichen Mehrwert für die aktuelle klinische Anwendung darstellt,
als auch für die weiterführende Forschung und alternativer röntgenbasierten
tomographischen Techniken wie Spektral CT oder der zerstörungsfreien Ma-
terialprüfung.
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Abstract

Computer tomography (CT) is an essential means of diagnosis and aftercare
in the clinical routine of hospitals. Although it has been successfully used
and improved for decades, the standard reconstruction procedure extracts
3D information from the X-ray images in a way that is both error-prone
and simplifying. On the hardware level, the potential of engineering are
exploited to the fullest, but on the software level, innovation is only slowly
catching up with research.

Many modern procedures require additional technology or alternative
measurement methods, but even with the equipment and measurements that
are already in use, better clinical CT images could be produced. Due to the
constantly growing potential of modern data processing architectures and
their computing power, it is now possible to handle enormous amounts of
data and to determine results for which it would have taken several months
of computing time 20 years ago.

These additional computing capacities can be used to replace the sim-
plified procedures with more complex algorithms. A major problem of the
current standard method is the so-called beam hardening. The generated
X-rays have an energy spectrum that covers various quantum mechanical in-
teractions. The different interactions contribute to the measured signal. It
is known that the absorption process of X-rays depends non-linearly on the
absorbing object. It is precisely this non-linearity that is not fully taken into
account in standard reconstruction techniques and leads to systematic im-
age errors (so-called artifacts). Historically, it has simply not been possible
to acruately consider the non-linearities within a clinically justifiable time
frame. However, after 50 years of applied computed tomography, it is now
possible to obtain clinical CT images within reasonable computing times.
This requires only an appropriate implementation of modern reconstruction
algorithms.

This thesis deals with a physically motivated reconstruction algorithm
that was developed in 2002 but has not been applied to clinical data since
then. This algorithm uses both a physically motivated model of X-ray ab-
sorption - the polychromatic nature of the measurement - and modern tech-
niques of mathematical modelling - the statistical nature of the measure-
ment. This is reflected in the name of the method: polychromatic statistical
reconstruction technique (PSR).

In the presented work the feasibility of PSR is demonstrated and its en-
hancement of diagnostic value is shown. At the time of writing this disser-
tation there is no known case where this method has been applied to clinical
data. In other words: for the first time and worldwide, PSR has been applied
to clinical data and the image quality has improved enormously. It should
be emphasized that the special case of the C-arm CT represents a special
challenge, as the data quality is much lower than in conventional CT.
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In summary, the work concludes that the PSR represents an added value
for current clinical applications as well as for further research and alternative
X-ray based tomographic techniques such as spectral CT or non-destructive
material testing.
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1 Introduction

Over the last hundred years of scientific progress, humanity’s knowlegde of
the underlying fundamental processes of nature has increased drastically.
The more accurate physical models became, the more potential for tech-
nical workarounds were imaginable. As civilization keeps developing more
advanced methods in science, while fine tuning the already achieved ones,
there can be also stagnation in various fields. A recent example is the so-
called Eroom’s law, which is the counterpart to the famous Moore’s law
[Moo65]. Scannell et al. [SBBW12] report their findings in the field of
commercial drug research and state,

“The past 60 years have seen huge advances in many of the scientific,
technological and managerial factors that should tend to raise the efficiency
of commercial drug research and development (R&D). Yet the number of
new drugs approved per billion US dollars spent on R&D has halved roughly
every 9 years since 1950, falling around 80-fold in inflation-adjusted terms.
There have been many proposed solutions to the problem of declining R&D
efficiency. However, their apparent lack of impact so far and the contrast
between improving inputs and declining output in terms of the number of
new drugs make it sensible to ask whether the underlying problems have
been correctly diagnosed.”

There are a variety of speculations on the causes of Eroom’s law in the
field of drug research. However, there is no such a thing in the field of pro-
gramming or medical imaging, even though one could consider that with
increasingly faster calculation power and memory capacity, programmers
tend to favor a more lazy computing style when it comes to performance
aspects. One could interpret such a tendency as a “programmers” Parkin-
son’s law [Par55], “[W]ork expands so as to fill the time available for its
completion”.

Additionally, one can see similarities to the field of medical imaging since
every aspect of research which is closely related to commercialized appli-
cations and industry might be under similar conditions. There have been
trends occuring in certain disciplines that range from the inflationary usage
of buzzwords such as “compressed sensing” up to conference sessions fill-
ing topics about deep learning-based approaches that not only increase the
accuracy of diagnosis given a medical image [LJC+17], but even produced
better medical images [ZD20]. While new technical developments want to
realize the dream of artificial intelligence, those trends may also overshadow
potential solutions that were never evaluated nor benchmarked against the
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1 Introduction

proposed method of this thesis due to a limitation in calculation power when
those potential solutions came to live.

One of the main techniques to acquire medical images is the computed
tomography (CT). It has become a commonly used imaging technique not
only in medical imaging, but also in nondestructive testing. It is based on
the fact that common substances, such as human tissue, bones, metals and
timbers look transparent to X-ray photons. In other words, X-rays offer
the interested viewer to look inside an object instead of just observing its
surface.

Figure 1.0.1: First impression of a
metal artifact in a reconstruction
of a pig head that includes a steel
needle. The left picture shows
the result that is provided by the
manufacturer of the C-arm sys-
tem. The image makes it hard to
even guess the shape of the object.
The right-hand side shows a very
first result of the algorithm pre-
sented in this thesis made in the
year 2016. The window level is
0.0 . . . 2.0 g/cm3 which roughly cor-
responds to 2000 Hounsfield units
centered around the grey values of
water.

This thesis focusses on a method
of medical image reconstruction orig-
inated in 2002 that might have been
too calculation-heavy at that time,
but certainly is not anymore. A
main drawback of X-ray based imag-
ing is the very nature of such X-rays.
They belong to the group of ioniz-
ing radiation. Such radiation trans-
ports enough energy to change the
quantum state of electrons in atoms
and molecules. Thus, it can change
fundamental properties of biologi-
cal tissue and cause serious damage
to living organisms. The contrast
information of an X-ray projection
causes damage and delivers a diag-
nostic value at the same time. The
X-ray dose is proportional to the tis-
sue damage caused by radiation ex-
posure. A main drive to enhance
the diagnostic value of X-ray imaging
techniques is to minimize the dose
while providing the best image qual-
ity possible to the radiologist.
State-of-the-art CT systems work

with X-ray sources that provide a continuum of photons with different en-
ergies. Those photons propagate through the object of interest (e.g. a head
of a patient) and are collected by specialized X-ray detectors which consist
of materials that absorb those photons and produce visible light photons in
the process. This light can be recorded by CCD-chips and transformed to
an electrical signal, which is a measure of the X-ray intensity that is not
attenuated by the object of interest. Note that this electrical signal is typi-
cally a sum of different light photons that are produced by X-ray photons of
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different energies. This means in particular that the measurement process
loses the information about the energy dependency while integrating over
this exact attribute.

Additionally, this attenuation process is typically assumed to be linear
with the object’s size and density. Namely, if the size of the patient doubles,
the attenuation of the patient doubles as well. This property only holds true
if the incoming X-ray photons have the same energy (which they have not) or
the size of the measured object is very small (which is not true either). The
attenuation process itself has a non-linear dependency of the photon energy
with respect to the object of interest. This means in particular that an X-
ray projection image of two identical objects that are scanned consecutively
in a row, is not the same as the sum of two separated X-ray projections of
the same objects. This non-linearity is called beam hardening and will be
explained later in this thesis.

X-ray source

detector rotation

y

x

z

Figure 1.0.2: The Artis Zeego C-
arm angiography system (Siemens
Healthcare), that was used for
the measurements and the recon-
struction depicted in Figure 1.0.1
is shown. The drawn axes only il-
lustrate the directions of the vol-
ume coordinates but do not cor-
respond to the used world coordi-
nate system nor the coordinate sys-
tem of the C-arm. Photography by
Robert Frysch

However, it turns out that certain
mathematical models are able to cor-
rectly incorporate such a non-linear
behavior while increasing the overall
computational effort to reconstruct
the medical image. Maximum likeli-
hood approaches combine statistical
knowledge about such processes with
the powerful framework of mathe-
matical analysis. The resulting re-
construction methods look similar to
established techniques, but usually
require prior knowledge and more
computational performance. The
latter represents a decreasing diffi-
culty due to Moore’s law [Moo65].
A very elegant approach is the so-

called polychromatic statistical re-
construction (PSR) by Elbakri and
Fessler [EF02]. It combines the
statistical character of the maxi-
mum likelihood framework with a
physically motivated X-ray projec-
tion model. Since the model is based
on the physics of X-ray attenuation,
it can estimate the projection pro-
cess with regard to the different ma-
terials that the object of interest con-
sists of. If the prior knowledge about
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1 Introduction

the materials and X-ray source are given, one can apply the PSR to CT
data and increase the image quality dramatically. Thus, instead of apply-
ing (dominantly) empirical image processing, it simply models the physics
of the CT measurement process in a proper manner and incorporates this
into a maximum-likelihood framework. However, Elbakri and Fessler never
applied their method to real patient data. An important motivation for
this work was that there was no publication found about the PSR and its
application on clinical C-arm CT data1. To make an algorithm like this
work on C-arm CT is particularly challenging, since C-arm data quality is
substantially worse in comparison to conventional CT. C-arm systems bring
more difficulties into play for a variety of reasons [KRK12]:

• the flat-panel cone-beam geometry cannot grant a sufficiently homoge-
nous illumination of the detector,

• the detector needs to be more flexible and robust due to the nature of
the moving C-arm,

• the dynamic bit-range is lower compared to typical detectors used in
conventional CT,

• the tube voltage of the X-ray source might vary from 70 kVp to 120 kVp
while recording the projection data,

• and the photon flux is changing due to tube current that is not held
constant.

In this work, we use clinical head scan data where the tube voltage was kept
constant. This is an advantage in comparison with abdomen scans, where
the X-ray spectrum is modified in between the different angles.

The “non-linearity problem” of the measurement process becomes more
drastic in the case of high-absorbing materials such as bones or metal com-
pounds (e.g. pacemakers or screws) and can potentially render the medical
image almost useless, as its diagnostic value decreases drastically due to
strong artifacts that are induced due to those high-absorbing materials.
Initially, it was observed that metal artifact reduction (MAR) methods

do not work sufficiently well when confronted with metal parts in phantoms
consisting mostly of water [GMV+17,LFN09]. Also, there is a lot of image
processing needed to make most of the artifact-tackling methods work. For
example, MAR methods typically try to estimate projection values caused
by metal objects and replace them with the actual measurements in order
to reduce metal artifacts in the reconstruction.
Astonishingly, there is only limited real data PSR found in literature.

In particular, the method has never been evaluated on clinical data. All
1Note that C-arm CT data is recorded with a flat panel detector, thus the C-arm setup
is usually categorized as flat-panel cone-beam CT.
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previous studies have used either simulated data or ‘small’ data sets of test
bench flat panel CT.

Another aspect of such a real data usage is the need for information
from ‘hidden measurements’ protected by the manufacturer, such as non-
water-corrected projections and projection matrices. Most companies are
highly protective of their processing pipeline (e.g. scatter kernels, over expo-
sure correction, normalization, cosine weighting, water correction and post-
processing steps such as image modification to reduce ring artifacts). The
rare opportunity to collaborate closely with the software development team
(specifically the C-arm CT group) of Siemens Healthcare enabled this
work. Real data is processed in a state-of-the-art manner with respect to cer-
tain corrections such as scattered radiation and beam hardening. Rewinding
the beam hardening correction is essential for the PSR and therefore allows
for conclusive methodological analysis of the effect under investigation.

These key issues reveal the reasons why Elbakri and Fessler — or someone
else — never started to evaluate this very elegant PSR approach on clinical
data. Being in close collaboration with radiologists of the university hospital
in Magdeburg, it can be assured that the PSR approach does not need any
new measurement hardware and should stay compatible with their current
C-arm system as well as with real CT scanners and upcoming generations of
C-arm systems. A classification within the context of other state-of-the-art
methods which tackle beam hardening will be given in the discussion.

Due to Moore’s law, it has become feasible to apply the computationally
expensive PSR to real data sets a decade after its original release. Recent de-
velopment in modern techniques (e.g. spectral CT or dual energy CT) aimes
to overcome the beam hardening problem by new measurement techniques.
Since those new methods still apply an X-ray dose, it is of major interest
to reduce this dose to a minimum. To not fall into the pothole of Eroom’s
law it could be very interesting to apply the accumulated knowledge of the
traditional CT community — especially the PSR — to this new approach.
This also includes training data sets for potential deep learning approaches
and a better understanding of the potential efficiency of information that is
measured.

Thus, in order to get the maximum out of anything that will come up in
the future of medical imaging, it could be beneficial to fully grasp what was
already achieved in the past.

This work describes the implementation of the PSR and its application
to a difficult type of data that led to an increase of diagnostic value. The
method was implemented in C++ and OpenCL to ensure a feasible time-
performance. This includes a ray caster projector that models the multi-
energetic absorption process of X-ray photons in matter, a back-projector
and buffer management of the multiGPU hardware.
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1 Introduction

Initially the medical images produced from the head scan data suffered
from the patient table that is partially truncated in the X-ray projections.
It was found out to play a dramatic role for the image quality of the PSR.
Comparable methods show almost no sensivity due to the truncation.
This development should be acknowledged in order to minimize the effects

of Eroom’s law with respect to the domain of medical imaging.
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2 Theoretical background
There is nothing more practical than a good theory.

- Jürgen Schmidhuber1

2.1 The CT problem
The computed tomography (CT) is an imaging technique with high clinical
relevance in daily practice. It is based on the X-ray projection modality.
The goal is to reconstruct 2D/3D information of a patient with 1D/2D
projection measurements. For the sake of explanation, imagine a candle
setup as in Figure 2.1.1.

(a) (b)

Figure 2.1.1: The goal of the “Candle Steel Shadow Tomographic Setup” is
to calculate the position of two balls of full optical opacity (e.g. balls
of steel) with projections of two different angles. Since the tomographic
problem is ill-posed, it is not possible to find a unique solution. Given
the two (projection) measurements one cannot tell if (a) or (b) or another
combination represents the reality.

In a 2D setup like this, it becomes very easy to calculate the position of
the two objects but if the number of balls is not given and the radius is

1Lex Fridman (MIT) interviews Jürgen Schmidhuber in 2018: “Juergen Schmidhuber:
Godel Machines, Meta-Learning, and LSTMs | Artificial Intelligence (AI) Podcast”
https://youtu.be/3FIo6evmweo
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2 Theoretical background

unknown, one can find more then one solution and the problem becomes
ill-posed. Just to mention: the solution (a) is called the minimal solution.

(d) (c)

Figure 2.1.2: If you replace the balls of steel with glasses of coffee, the opacity
will drop and the problem becomes more user-friendly. The darker the
projection, the more light propagation through coffee has been measured.
Thus, the projections of transparent objects contain more information.

The projections can be formulated as line integrals along the ray path
which sum up how much light got actually absorbed. If there is a given
infinite set of such 1D projections, 360° around the unknown 2D object with
known light absorption model, one can find an exact mathematical solution
for this inverse problem in case of a monochromatic light source (e.g. a
laser). It is called the filtered backward-projection (FBP) and is described
in Section 2.1.5.
In CT reality, we encounter several issues that corrupt the clean mathe-

matical beauty of that solution. Before we start to elaborate the FBP we
motivate the idea behind solution techniques used in such tomography set-
tings and introduce the mathematical models that are mandatory for the
FBP.

2.1.1 Towards CT reconstruction

Imagine the candle setup is being modified as depicted in Figure 2.1.3. Fur-
ther, let’s assume that the light intensity measured in candela [cd] is ab-
sorbed linearily by each glass of coffee depending on its “blackness”. Thus,
the stronger the coffee, the darker the measured shadow. The solution with
respect to the four glasses of blackness ~x needs to satisfy the equation

A~x = ~p

22



2.1 The CT problem

20 candela20 candela

17 candela

13 candela

14 candela

16 candela

x1

x2

x4

x3

Figure 2.1.3: A simple tomographic candle setup is displayed. The incident
light intensity of a candle is 20 candela. The shadow projection measures
an intensity of less then 20 candela if the light ray is propagating through
an object. The light attenuation depends on the physical size of the object
and its light attenuation properties. The darker the coffee, the higher its
attenuation. To compute the attenuation value, one needs to calculate
the difference of incident intensity and measured intensity.

with ~x = [x1, x2, x3, x4]T and the measured absorption2 ~p = [p1, p2, p3, p4]T =
[3, 7, 4, 6]T with respect to the initial intensity of 20 cd. By defining ~p in this
manner the matrix A follows as

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 .
It is obvious that this linear equation system cannot be solved analytically
since the system matrix A has a vanishing determinant3.
To avoid this disturbance one could try to somehow “back smear” the

measured numbers. Let’s establish a model that assumes the glasses are
empty at the first glance. If this were true, the shadows would have to
vanish. Since such transmission is not observed (as we measure a decline in
light intensity) we try to back propagate the measured blackness distributed
to the glasses which contribute to the very same measurement. Since the
glasses have the same diameter, one can distribute this blackness equally.
One back propagation that regards each measurement once, is called an
update step. Since we can repeat the very same procedure and keep the

2The blackness of one measured shadow results in the difference of the initial light in-
tensity and the residual after propagating through the coffee.

3Adding the first and second row delivers the same as adding the third and fourth row.
Hence, those rows are not linear independent.
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2 Theoretical background
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Figure 2.1.4: Schematic explanation of the iterative back smearing process
that solves the ill-posed example problem. Note that the measured num-
bers result from the example above. They result from the difference of
the incoming 20 candela and the measured light intensity.

back propagated information, we call this recursive technique an iteration.
In our example case, it turns out that we can find a solution after only two
iterations as depicted in Figure 2.1.4.

We will stay a little longer in the “candle-light-shadow-analogy-domain”
to express the practical problems of the computed tomography.
If we increase the number of glasses and the number of candles and mea-

surement screens, it will be more likely that the dimensions of ~x and ~p differ.
In such a case a unique analytical solution is not available by design. Real
measurements ~p in different angles might contradict each other due to er-
ronous effects on the measurement setup, such as wind, that temporarily
lowers the light intensity of the candles. In a CT scanner this could be a
patient who is moving while the scan is performed.

As real measurements are always corrupted by noise, a “clean mathemat-
ical” solution might become impossible as well. The noise of the shadow
might cause oscillatory behavior within an iteration or in between update
steps. For this purpose we will later introduce the concept of regularization.
Imagine the glasses of coffee are measured in arbitrary angles, the system

matrix A will contain numbers between 0 and 1 multiplied by its diameter.
This is because the cone that is measured may only slightly traverse a glass
instead of encompass the full glass. This information is important for the
back smearing approach, because different glasses are assigned to different
weightings. We call those weightings geometry factors later on.
Very strong coffee of high opacity might produce an almost black shadow

and becomes indistinguishable from another coffee glass of similar strength
or simply conceal brighter glasses (e.g. Espresso vs. Americano). In other
words, the shadow resolution (or “bandwidth”) needs to be sufficient with an
increasing number of glasses. This can be identified as the dynamic range of
the detector. To work around this problem, one could consider increasing the
light intensity (e.g. a flood light from a lighthouse). In industrial CT, where
no patient is scanned, this might be a viable option, but living organisms
are severely damaged by ionizing radiation such as X-rays.
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2.1 The CT problem

The candle produces a polychromatic spectrum of visible light that even
contains infrared radiation. The light reflexion and absorption (dispersion)
is different for every photon energy and is particular non-linear. This makes
the interpretation of the “shadow signal” ambiguous and renders the model
of linear absorption invalid. This non-linearity is later identified as beam
hardening and is the main motivation of this work.
Furthermore the measurements are usually not infinite in terms of angular

resolution. We will see that finite angular resolution corrupts the filtered
backward-projection in the “first order” due to missing angular information
for the back smearing process and in the “second order”, as it cannot be
re-sorted to transforming a data set from fan beam geometry to a parallel
beam geometry.
Despite those practical flaws, the idea of back smearing is the core of every

classical reconstruction technique4. Iterative methods revolve around a for-
ward model that predicts the measurements given a current iterate. Depend-
ing on the mathematical formulation and the solution of such framework,
each resulting reconstruction technique attains weaknesses and advantages
compared to others.
The practical CT problem belongs to the class of ill-posed inverse problems

which implies a broad range of concepts that solve such problems for a given
configuration of measurements. Additional a priori knowledge might be
incorporated as well.
Tomography is realized as an ensemble of different point of views of an

X-ray source that has a detector system attached in a way that the object
gets traversed by the radiation. Instead of visible light, higher frequencies
of the so-called X-radiation is of interest.
Early X-ray based applications where focussed on single projections, as

they already deliver information about the inner structure of objects. Nowa-
days, X-ray projections are still a viable tool, but if depth information is
mandatory, reconstruction techniques become of importance. CT systems
consist of at least one X-ray source and an X-ray detector. The projection
images are recorded while those components are moving around the object
of interest. The common source-detector trajectories describe a circle whose
center point lies within the object. Since the beginning in 1973 [Hou73],
there are two different medical applications: interventional and diagnostic
CT.
The latter are limited to traditional trajectories since they provide a heavy

gantry and a curved detector. Such gantries are able to rotate with 4 GHz
[MSCH18] and can support high quality detectors with fast read out times
(high spatial and temporal resolution). They are used to generate medical

4This might not apply in this very same sense to deep learning approaches. Even though
the learning process is always the difference of ground truth back propagated and
weighted by the gradient of the network architecture.
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2 Theoretical background

images of high quality for the radiologist. At the same time, this makes it
infeasible for a physician to perform an intervention.

Interventional CT supports the physician during a surgery. It needs to
acquire reconstructions in a very short time. C-arm devices are commonly
used for such intraoperative settings. They offer a more flexible source-to-
detector geometry, but rely on less heavy components due to stability issues.
C-arm devices record projections with a flat panel detector.
Depending on the actual reconstruction technique, one might adjust the

amount and the position of such “emitter-receiver” configurations properly.
Before we get to an analytical approach that solves the “standard 180° scan”
problem and furthermore the CT problem, we need to specify the X-ray
measurements and the implications of the underlying physics and algebra.

2.1.2 Monochromatic absorption law

The easiest model for X-rays propagating in materials along straight lines
can be found with the Lambert-Beer absorption Law. It is a heuristically
motivated model that describes the decreasing of the number of photons
n0 in homogenous matter. In this work we will always talk of an incident
spectrum n(E) which gives the actual number of photons with the energy
E or of an incident photon intensity

I(E) := n(E)�
R+ n(E)dE ,

which is the normalized version of n(E). Imagine a monochromatic beam
of photons n0 (E) = N0δ (E − E0) (i.e. all N0 photons have the exact same
energy E0, details follow in Subsection 2.1.3) that is partially scattered and
absorbed in a thin slice of matter characterized by the linear attenuation
coefficient µ. This coefficient is an indicator of how much interaction of
matter and photons is happening for a certain photon energy. The attenua-
tion coefficients µ are catalogued for different energies and materials [HS96].

According to Lambert-Beer, the difference ∆n := n − n0 of the photon
count is stated to be proportional to the incident number n0 and the small
thickness of material ∆x. Transition onto the infinitesimal thickness dx
yields

dn ∝ −n · dx

⇒ dn = −µ (x,E0) · n · dx

⇒
� n

n0

dn′
n′

= −
� x

x0

µ
(
x′, E0

)
dx′.

Note that we state that µ (x,E) is a function of the spatial coordinate x,
but not of the photon count n. Furthermore, µ is a function of the photon
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Figure 2.1.5: Schematic description of the absorption process of X-rays prop-
agating through matter is shown.

energy E0, but we can neglect that dependence, since all photons have the
same energy (monochromatic) in this example. From the above we can now
formulate the transmitted photon intensity/count and define the extinction
ε as

� x

x0

µ
(
x′, E0

)
dx′ = lnn0 (E0)− lnn (x,E0) = ln n0 (E0)

n (x,E0) =: ε (x,E0) .

(2.1.1)
An alternative derivation of the absorption law, compared to the one we
have above, can be found in the book of Buzug [Buz08] (chapter: “Prob-
lems with Lambert-Beer’s Law”). The exponential decay of the intensity
that corresponds to the line integral over the volume ~µ can also be seen
as a cascade of multiplications of infinitesimal absorption steps through the
medium. Combining binomial and Poisson distribution leads to the same
linearity of the measurements with respect to the volume.
In computed tomography the extinction values εi are the measurements.

The index i continues over all detector pixels and all measurement angles.
Thus we can formulate a 2D line Li =

{
~xi (t) = ~ξi + t~ri |t ∈ R

}
respectively

that goes through the X-ray source ~ξi and the i-th detector pixel. The
integral in the above Equation 2.1.1 reformulates as

ε̄i =
�
Li
µdsi =

� ∞
0

µ (~xi (t)) dt. (2.1.2)

We identify the measurements εi as line integrals along ray paths Li.
The 2D CT problem is to find the scalar function µ (x, y) : R2 → R

that minimizes the error of the measurements εi to its forward-projections
ε̄i =

�
Li µdsi. We use the bar ε̄ to emphasize that Equation 2.1.2 models

what kind of measurement is expected, given an object that is characterized
by the scalar function µ(~x).
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Imagine that we discretize µ (x, y) −→ µj , j = 1, ..., Nj into Nj pixels,
which are partially constant over a short range5. Note that the index j at
Nj denotes that it refers to the reconstructed object and not that there is a
sequence of Nj=1,2,3,... in any viable interpretation. Typically Nj ranges from
256×256 = 65, 536 to 2048×2048 = 4, 194, 304 [HYH+18]. The information
of voxels that get in touch, and how much, with the pencil beam, that we
approximate as the line Li, can be stored in the so-called system matrix
A = {aij}. Details about the geometry factors aij follow in chapter 3.1.
The algebraic CT problem formulation can be stated as

A~µ = ~ε (2.1.3)

or, more specifically, the Ni equations

Nj∑
j=1

aijµj = εi, i = 1, ..., Ni. (2.1.4)

As we will see later, the size of the matrix A is in fact too large to store for
this forseeable future, even taking Moore’s law into account. And even if it
were possible to store the amount of data, the access to the data would cause
serious problems as well. Hence, to solve such a practical CT system of linear
equations by pseudoinverse multiplication is not an option any time soon,
one needs to find iterative methods that somehow follow the idea presented
with the candle setting in Figure 2.1.3. The goal is to find the minimizer ~µ∗
with non-negative coefficients

~µ∗ = arg min
µj≥0, ∀j

Ni∑
i=1

 Nj∑
j=1

aijµj − εi

2

. (2.1.5)

Since the algebraic CT problem is overdetermined, the classical iterative
Kaczmarz [Kac37] algorithm gives a practical solution. If there exist a
unique solution (if the system is not overdetermined), it is proven that this
iterative algorithm converges to this solution [Tan71].
By denoting ~ai as the i-th row of A

εi = ~ai · ~µ

it is proven that
~µ∗ = lim

k→∞
~µk

with
~µk+1 = ~µk + ~aTik ·

εi − ~aik · ~µk
~aik · ~aTik

(2.1.6)

5Technically speaking, we project the continuous function µ(~x) on to the basis function
of a pixel or a voxel.
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2.1 The CT problem

and the index ik that is found [SV08] to be sampled at random for each itera-
tion k. This algorithm computes the forward-projection ~aik ·~µk of the current
volume ~µk, compares this with the measured pixel εi and back projects this
difference into the current volume. The back projection is realized by the
column vector ~aT

ik/
(
~aik ·~a

T
ik

)
that points only to volume elements that interfers

with line Li. The structure of this approach is similar to the structure of the
reconstruction technique used in this thesis and the reason for introducing
the back smearing metaphor first.
In fact, new research [HWF17] suggests that reconstructions can be im-

proved if the forward-projection is modelled more accurately than the linear
model in Equation 2.1.2, while leaving the rest of the algorithm almost un-
changed.
An additional adaptation of the Kaczmarz method is called SART (si-

multaneous algebraic reconstruction technique). Here, several update steps
(of different subsets) are performed simultaneously and weighted accordingly
within one iteration. This leads to a substantial speed up with respect to
computing time.
Iterative methods are almost6 independent of the scanning geometry. The

following section derives an analytical solution for a certain scanning geom-
etry that is the most commonly used reconstruction method in hospitals to
this day. Their main advantage compared to the problem statement 2.1.5
lies in their low computational effort. It is helpful to read through that topic
to see the “bigger picture” of the CT reconstruction problem.

2.1.3 Dirac delta distribution and Fourier-transform

This subsection supports the reader with a recap of the mathematical back-
ground information for the sake of completeness7. To have an understanding
of the underlying algebra that describes the phenomena which lead to the
measurements, we need to specify a few concepts of complex analysis. A
mathematical in-depth guide for this topic is the book of Helgason [Hel99].
With the definition of the Heaviside-function H : R→ {0, 1}

H (x) :=
{

1 , x ≥ 0
0 , x < 0

and a test function φ ∈ C∞0 (R) (that has a compact support and infinite
continuous derivatives) we can define the Dirac delta distribution as a weak

6In this work, the system matrix A is of full rank and the system may not be under-
determined, but there are iterative approaches that tackle underdetermined problem
settings as well.

7However, it is not mandatory to read through, but it can come in handy when reading
further into derivation of the reconstruction technique used in this thesis (see Section
2.4.2).
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derivative of H. Weak differentiation means, it follows the same rules as a
classical derivative except for a finite number of points which do not impact
the integral over the function. Thus it satisfies in particular the partial
integration (Equation 2.1.7). With the notation8 〈·, ·〉 we define the scalar
product of two functions f, g : R→ R or distributions as 〈f, g〉 :=

�
R f (x) ·

g (x) dx and similarily the edges can be expressed as [F ]∞−∞ := F (∞) −
F (−∞). Due to the product rule d

dx (f · g) = g · d
dxf + f · d

dxg follows the
partial integration9

[f · g]∞−∞ = d
dx 〈f, g〉 =

〈 d
dxf, g

〉
+
〈
f,

d
dxg

〉
. (2.1.7)

We define the δ-distribution as follows〈 d
dxH, φ

〉
2.1.7= [H · φ]∞−∞ −

〈
H,

d
dxφ

〉
φ∈C∞0 (R)

= −
〈
H,

d
dxφ

〉

⇒
〈 d
dxH, φ

〉
= −

� ∞
0

dx
( d
dxφ

)
= − [φ]∞0 = φ (0) =: 〈δ0, φ〉 . (2.1.8)

With this, one can write weak derivatives of this δ-distribution as〈( d
dx

)n
δ0, φ

〉
= (−1)n

( d
dx

)n
φ (0) .

Since φ is a test function,

φ ∈ S (Rn) :=
{
φ ∈ C∞ (Rn) |∀a, b ∈ Nn0 : sup

x∈Rn

∣∣∣∣∣xa
( d
dx

)b
φ (x)

∣∣∣∣∣ <∞
}

is a Schwartz-function10 as well. φ has infinite derivatives and is rapidly
decreasing at infinity (the derivatives are rapidly decreasing at infinity as
well, a, b ∈ Nn0 are multi-indices). Since it is commonly known that a deriva-
tive of a Fourier-transform is equal to multiplication with its argument and
a constant in the dual space11, we can identify the Schwartz-functions with

8This notation is commonly used in quantum mechanics and statistical physics. It em-
phasizes the scalar product character as a full analogy from the vector space (linear
algebra) that can be formulated for the space of functions with certain properties such
as the famous Hilbert space.

9In some literature, it is referred as divergence theorem or Gauss’s theorem or Ostro-
gradsky’s theorem. This is due to the fact that n-dimensional volume integrals of
a divergence always can be written as surface integrals which have the dimension of
n − 1:

	
Ωn dVΩ

(
∇T · ~f

)
=
�
· · ·
�
∂Ωn−1 dSΩ

(
~fT · ~n∂Ω

)
. This reduces to Green’s

theorem (n = 2) and to the fundamental theorem of calculus (n = 1), hence the
partial integration.

10Such a function does not need to have a compact support, e.g. it could be a Fourier
basis function or a Gaussian function.

11There exists an isomorphism between this specific space and its dual space. Here we
will talk about the frequency domain ~u and its spatial dual space and its elements ~x.
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2.1 The CT problem

such an attribute. If φ ∈ S (Rn), we call the following the Fourier-transform
F : S (Rn)→ S (Rn) with

F [φ] (~u) = φ̃ (~u) :=
�
Rn

dVx
(
φ (~x) exp

{
−2πi~xT~u

})
and its inverse

F−1
[
φ̃
]

(~x) = φ̃ (~x) :=
�
Rn

dVu
(
φ̃ (~u) exp

{
2πi~uT~x

})
.

The Fourier-transform is an automorphism in the space of tempered distri-
butions S′ (Rn). Thus, a Fourier-transform of an element of S′ (Rn) will still
be an element of S′ (Rn). With this formulation of F and S′ (Rn), we can
write down that the Fourier-transform of a distribution ∂ ∈ S′ (Rn) is〈

∂̃, φ
〉

:=
〈
∂, φ̃

〉
which is an isomorphism on S′ (Rn). This is used to calculate〈

δ̃0, φ
〉

=
〈
δ0, φ̃

〉
= φ̃ (0) =

�
R
φ (x) dx = 〈1, φ〉

which implies that the Fourier-transform of the Dirac delta distribution is
a constant

⇒ δ̃0 ≡ 1.

Keep in mind that this identity is a weak identity, since we only showed
that it holds true in the brackets

〈
δ̃0, φ

〉
. This is sufficient, since the δ-

distribution is an integral operation by design (see Equation 2.1.8).

2.1.4 Fourier slice theorem
Before we arrive at an analytical solution to the problem statement Equa-
tion 2.1.3, we need to draw a connection between the line integrals of an
object and its 2D-Fourier-transform. We consider our measurements εi
(i = 1, ..., Ni) of an unknown object µ (x, y) : R2 → R to be line integrals
of the form of Equation 2.1.2. In contrast to Figure 2.1.2, we assume our
source to be very far away. Hence it produces beams in a parallel manner.
In doing so, we can use the parameters D, θ as in Figure 2.1.6 to characterize
the 2D line

Lθ,D = {x cos θ + y sin θ = D |∀x, y ∈ R} (2.1.9)

and rewrite the measurements from 2.1.2 as

εθ,D =
�
Lθ,D

µ (sθ,D) dsθ,D =
�
R2
µ (x, y) δ (x cos θ + y sin θ −D) dxdy =: Pθ (D)

(2.1.10)
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using the Dirac delta distribution12 δ that is characterized by the property
�

dX δ(X −X0)f (X) = f (X0) . (2.1.11)

We call Pθ (D) the Radon transform of µ (x, y). For constant θ, the mea-
surements represent the parallel projection of the object µ for that specific
angle θ. An interesting property of Pθ (D) is that its 1D Fourier-transform
(1DFT) is equal to the slice of the 2DFT of µ at the angle θ.

x

y

µ(x,y)
θ

D

D
Pθ(

D)

LD,θ(t)

u

Fµ(u,v) θ

w

v

1DFT
W

FP(
w)

Figure 2.1.6: The geometry of parallel beam setup shows an important rela-
tion. The 1DFT of the projection with the corresponding angle θ is equal
to the line of the same angle in the 2D Fourier space.

To show this property, we write down the definition of the 2DFT of µ
first.

Fµ (u, v) :=
�
R2

dxdy {µ (x, y) exp [−i2π (ux+ vy)]}

The 1DFT of Pθ (D) is defined as

FP (w, θ) :=
�
R

dD {Pθ (D) exp [−i2πwD]} . (2.1.12)

To see that the union set of FP (w) of each pair (D, θ) represents the full set
of Fµ (u, v) for each (u, v), we need to identify w as the radius in the Fourier
space

u = w cos θ
v = w sin θ . (2.1.13)

12see Subsection 2.1.3

32



2.1 The CT problem

Plugging that into the definition of FP (w) and using Fubini’s theorem results
in:

FP (w, θ) =
�
R

dD
{[�

R2
µ (x, y) δ (x cos θ + y sin θ −D) dxdy

]
exp [−i2πwD]

}

=
�
R2

dxdy
�
R

dD [µ (x, y) δ (x cos θ + y sin θ −D)] exp [−i2πwD]

eq. 2.1.11=
�
R2

dxdyµ (x, y) exp [−i2πw (x cos θ + y sin θ)]

=
�
R2

dxdyµ (x, y) exp [−i2π (xw cos θ + yw sin θ)]

eq. 2.1.13=
�
R2

dxdyµ (x, y) exp [−i2π {xu+ yu}] = Fµ (u, v) . (2.1.14)

Equation 2.1.14 is called the Fourier slice theorem. An important result of
2.1.14 is that one could solve the reconstruction problem 2.1.2 by the inverse
2DFT of the 1DFT of the Radon transform 2.1.12, which is given by the
measurements εi. Thus, given infinite angles would make that analytically
possible, but still not feasible (due to infinite amount of data).
To make use of the practical implications of the well known fast Fourier

transforms, typically one needs equidistant points in the 2D Fourier plane.With
our measurement setup, we obtain finite and angular equidistant mea-
surements as drawn in Figure 2.1.7. Those practical implications result
in totally different solution approaches. Note the following property of
Fµ (u, v) = Fµ (w cos θ, w sin θ) in polar coordinates holds true due to the
definitions of sin x and cosx:

Fµ (w cos (θ + π) , w sin (θ + π)) = Fµ (−w cos θ,−w sin θ) . (2.1.15)

2.1.5 Filtered back projection (FBP)
The most common reconstruction method for CT is the filtered back projec-
tion algorithm (FBP). It is derived analytically and is inherently efficient,
thus can be executed in a very short timeon simple CPU hardware. The
derivation of the FBP from Equation 2.1.14 is a good example. It shows
how to attain a drastically different algorithm by reformulating the funda-
mental expressions for the underlying theory.
If we take a look at Figure 2.1.7 again, we will recognize that the different

lines we measure in the space domain represent nearly independent regions in
the Fourier plane. The higher the frequency

√
u2 + v2, the more independent

the sample points of the measurements become. Keep in mind that the one
dimensional Fourier-transform of the projection data represents one line
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u

Fµ(u,v)

v

u

Fµ(u,v)
v

Figure 2.1.7: The left image shows the sampling of the Fourier space needed
for a reconstruction without sampling artifacts. The right image shows
the radial sampling that is achieved in typical CT setups.

in the Fourier space. If we “fill” this space with our measurements of all
available angles (not an infinite amount any more) and assume that the
“untouched” area has the value zero, we will be able to reconstruct the
image by simply performing the inverse 2D Fourier tansformation of that
data.
This dropping to zeroes will distort the reconstruction even more than

the lack of equidistant data points, but the forward-projection of that kind
of reconstruction will still be in good agreement with the measurements
[FBKR19]. Thus, the simple “back transformation” has practical limita-
tions.
To arrive at the FBP algorithm, we rewrite the problem to calculate µ

as the inverse Fourier-transform and use polar coordinates as well as the
Equation 2.1.15

µ (x, y) =
� ∞
−∞

� ∞
−∞

Fµ (u, v) exp [i2π (ux+ vy)] dudv

=
� 2π

0

� ∞
0

Fµ (w cos θ, w sin θ) exp [i2πw (x cos θ + y sin θ)]wdwdθ

=
� π

0

� ∞
0

Fµ (w cos θ, w sin θ) exp [i2πw (x cos θ + y sin θ)]wdwdθ

+
� 2π

π

� ∞
0

Fµ (w cos θ, w sin θ) exp [i2πw (x cos θ + y sin θ)]wdwdθ

=
� π

0

� ∞
0

Fµ (w cos θ, w sin θ) exp [i2πw (x cos θ + y sin θ)]wdwdθ

34



2.1 The CT problem

+
� π

0

� ∞
0

Fµ (w cos (θ + π) , w sin (θ + π)) exp [i2πw (x cos (θ + π) + y sin (θ + π))]wdwdθ

eq. 2.1.15=
� π

0

� ∞
0

Fµ (w cos θ, w sin θ) exp [i2πw (x cos θ + y sin θ)]wdwdθ

+
� π

0

� ∞
0

Fµ (−w cos θ,−w sin θ) exp [i2π (−w) (x cos θ + y sin θ)]wdwdθ

=
� π

0

� ∞
0

Fµ (w cos θ, w sin θ) exp [i2πw (x cos θ + y sin θ)]wdwdθ

+
� π

0

� 0

−∞
Fµ (w cos θ, w sin θ) exp [i2πw (x cos θ + y sin θ)] (−w) dwdθ

=
� π

0

� ∞
−∞

Fµ (w cos θ, w sin θ) exp [i2πwD (θ;x, y)] |w| dwdθ

eq. 2.1.14=
� π

0

{� ∞
−∞

FP (w, θ) |w| exp [i2πwD (θ;x, y)] dw
}

dθ. (2.1.16)

Here we expressed D of Equation 2.1.9 as a function of θ and dependent on
the parameters x, y. The above integral 2.1.16 can be expressed as

µ (x, y) =
� π

0
F̃θ (x cos θ + y sin θ) dθ (2.1.17)

where
F̃θ (D) :=

� ∞
−∞

FP (w, θ) |w| exp [i2πwD] dw. (2.1.18)

The approximation of µ (x, y) becomes feasible when the transformed pro-
jection data FP (w, θ) is given according to Equation 2.1.18. This integral
can be interpreted as the Fourier-transform of FP (w, θ) multiplied by the
ramp filter |w|, which is basically a filtering operation that is back projected
into the space domain. This coins the name “filtered back projection”. The
operation described by 2.1.17 can be verbally expressed as:
The filtered projection F̃θ (D) gives a constant contribution to the recon-

structed image µ along the line D = x cos θ + y sin θ. Thus, to approximate
the value of µ at the point (x, y), one needs to back project the filtered mea-
surements F̃θ over the range of 180◦.

Note that we derived a solution where the quality of the reconstruction
still depends on the angular resolution, but does not need the dropping of
unkown points in the Fourier space to zero or an interpolation step of those
unknown points of Fµ (u, v).

For the sake of completeness, there are some crucial practical implications
worth mentioning, considering the feasibility of the FBP algorithm stated
in Equation 2.1.17.
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The Fourier transform of a product of two functions is equivalent to the
convolution of the two Fourier transformed functions in the dual space. This
is named the “convolution theorem”. It becomes even more relevant, because
one of the two functions is already a Fourier transform, namely FP (w, θ).
Hence, if we had the Fourier transform of |w| we could work in the projection
domain. In fact, the 1DFT of |w| diverges at w = 0.

Nevertheless, we could find a “dirty version” of that transformation if we
clamp the integration boundaries from infinity to a real number. In practice,
the filter |w| along the boundaries of the integral 2.1.18 is limited due to the
sampling theorem anyway13. This gives us the opportunity to simplify the
problem 2.1.17 further, at least from an algorithmic point of view. Just to
mention, the limitation of the spatial frequency w is given by the maximum
frequency of the measured projections, and hence depends on the sampling
of D. Finally, this is limited by the size of the detector pixels. Wu et
al. convincingly suppressed sampling artifacts caused in an FBP setting
[WMYF15,MMMF15].
Additionally, we assumed to have a measurement setup that gives the line

integrals of parallel lines Li in such a way that we can go through the whole
projection by varying the parameter D at a fixed angle θ. If we consider our
point sized X-ray source that creates an isotropic distribution of radiation
at a finite distance from the object, we have to deal with the so-called fan
beam geometry14. Theoretically, we could re-sort our data set to produce
parallel data. In practice, that is not viable due to the limited sampling of
D.
The 3D cone-beam generalization of the FBP algorithm is called the FDK

algorithm (named after Feldkamp LA, Davis LC, and Kress JW) [FDK84a].
The beauty of the analytical solution of Equation 2.1.5 is that one gets a
better understanding of the reconstruction artifacts that are caused by the
violation of the ideal circumstances. Such analytical methods are limited by
the constraints of the measurement setup (e.g. the physics of the absorption
process or Nyquist limit of the data sampling) and specific requirements
such as the source trajectory. The following sections adress the details which
lead to the more sophisticated PSR algorithm described in Section 2.4.2.

Optional side note on the connection to Kaczmarz

The following derivation is not mathematically accurate for the sake of
brevity. The actual derivation needs to discuss more details about the at-
tributes of the system matrix and convergence properties [Nat86].
13The sampling theorem gives an upper boundary for the frequency component of a signal.

If the detector has the pixel size Υ , the maximum frequency of that signal that can be
reconstructed is fΥ = (2Υ )−1.

14Sir Godfrey Newbold Hounsfields first scanner was working with parallel beams back in
1975.
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2.1 The CT problem

This side note supports the reader with more background and supports
the intuition about fundamental properties of the mathematics behind the
iterative reconstruction approaches.
In CT, the inversion of the problem A~µ = ~ε with the pseudo inverse A†

~µ = A†~ε = AT
(
AAT

)−1
~ε

cannot be performed due to the size15 of A. Nevertheless, in the case of 2D
parallel beam geometry,

(
AAT

)−1
can be identified as the convolution with

the ramp filter and AT is the back projection. Thus, a discretized FBP is
the analytical solution to the problem statement above.
Rewriting Equation 2.1.5

~µ∗ = arg min
µj≥0, ∀j

Ni∑
i=1

 Nj∑
j=1

aijµj − εi

2

which is equivalent of finding the

min
µj≥0, ∀j

1
2 |~ε−A~µ|

2 .

Differentiating gives
0 = AT (~ε−A~µ) .

Interestingly we can interpret this expression as a fix-point d
dt~µ = 0 of the

system of ordinary differential equations16 with the inhomogeneity AT~ε:

d
dt~µ = AT (~ε−A~µ) .

On the other hand, Kaczmarz yields (see Equation 2.1.6):

~µk+1 = ~µk + ~aTik ·
εi − ~aik · ~µk
~aik · ~aTik

=⇒ ~µk+1 − ~µk
1 = (κik)−1 · ~aTik · {εi − (~aik · ~µk)} .

The left-hand side of this equation can be interpreted as a discretized
differential quotient with time step length of 1. The right-hand side is similar
to the right-hand side d

dt~µ = AT (~ε−A~µ) divided by a weighting that is
dependent on the geometry factors of the i-th ray κik = ~aik · ~aTik . Note

15Due to dim (~ε) > dim (~µ),
(
AAT)−1 does not exist in a typical CT setting either, but

it still helps to see the connection established in this subsection.
16Technically speaking, the problem statement includes the non-negativity constraint on

~µ which renders the problem non-linear. A general discussion about the non-negativity
constraint can be found in Haase et al. [HHS+19].
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that ~aik is the i-th row of A, thus κik is a scalar. This constant could
be factored in at 0 = AT (~ε−A~µ) and can be interpreted as a so-called
relaxation parameter.
Alternatively, the above can be derived as a special case of the Landwe-

ber iteration [Lan51] with ordered subsets, specifically when each ray is a
single update and the relaxation parameter is equal to κik .

2.2 X-ray generation
This section will give a brief introduction about the commonly used X-ray
sources. X-rays are a side product of the so-called bremsstrahlung. Figure
2.2.1 is a schematic drawing of an X-ray tube. The procedure to generate
X-rays is the following:

• A cathode and an anode are placed within a vacuum tube.

• Tube voltage up to U = 125kV is applied between them17.

• A cathode creates free electrons (electric charge of q = −e) by either
ionizing the air around (cold cathode tube, pressure: 10−1 ∼ 10−3Pa)
or ionizing itself (hot cathode tube, pressure: 10−4Pa).

• These electrons are accelerated towards the anode reaching it with a
kinetic energy of eU .

• Colliding electrons interact with the anode material (typically made
of tungsten), i.e. with other electrons, nuclei and ions.

• 1% of their initial kinetic energy is lost due to the deceleration of the
Coulomb field of the particles of the anode.

• The deceleration emits the X-ray photons to a maximum energy of eU .

• The rest is heating the anode18.

• The tube is covered in a box made of lead. A window that is typically
made of glass or beryllium foil helps to aim the radiation.

• Depending on the purpose, certain filters and collimators are used to
design the X-rays in a desired manner.

Low energy photons are very likely to be absorbed by tissue. To avoid
unnecessary dose, filters made of Al and Cu are commonly applied to re-
duce low energy photons that are not delivering contrast information in the
17This is the maximum tube voltage for long term use of the SIEMENS Artis Zeego

system depicted in Figure 1.0.2.
18This requires a serious amount of cooling and clever technical applications.
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Figure 2.2.1: Schematic drawing of an X-ray tube is shown.
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Figure 2.2.2: Depiction of two X-ray spectra (calculated by spekCalc and
normalized by its maximum value) and the detector response function by
Roberts et al. [RHN+08] used in this work can be seen.

later projection. Figure 2.2.2 shows the spectra used within our algorithmic
framework. Characteristic peaks in X-ray spectra result of the so-called Kα-
and Kβ-radiation. These are caused by electrons that are dropping from
orbits of higher energy to lower energy levels. As these energy differences
are material-specific the emitted photons are called characteristic radiation.

2.3 Polychromatic photon absorption law
This subsection is based on the book of Buzug [Buz08] and the book of
Barrett and Swindell [BS]. It provides all interactions of photon-matter-
interaction, which lead to the X-ray measurements.

The linear absorption coefficient µ in Equation 2.1.1 consists of different
photon-matter interaction terms. In general, those interactions change the
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energy of the photon and its direction. In this chapter, we list a brief descrip-
tion of the interactions that are dominant at the energy domain relevant for
X-ray imaging and describe the main characteristics of how and why those
alter the X-ray photon in direction and energy. We recall that the energy
Eγ = hf of the photon is a function of its frequency, hence if the photon
undergoes a change in f , its corresponding energy is changing. We can write
the linear attenuation coefficient as

µ = ρNA

M
· σtotal = n · σtotal.

Here, ρ is the density and M is the atomic weight of the corresponding
material. NA is the Avogadro constant. It states that the attenuation of
the incident photons depends on the number of target atoms per volume
n := ρNA

M and the total photon atomic cross-section σtotal. The different
interactions can be separated into absorption and/or scattering. The latter
typically changes the direction of single photons, resulting in blurred X-ray
projections. Note that this chapter contains equations which are mentioned
only for the sake of qualitative understanding of the different effects that
take place and defy the simple idea of mono-energetic photon absorption
to be the correct model for the description of X-ray imaging. The relevant
photon energy lies in the interval of 10−2 ∼ 10−1 MeV(see Figure 2.2.2). The
impact of the different attenuation mechanisms is depicted in Figure 2.3.1
for the case of bone and in Figure 2.3.2 for different reference materials.

2.3.1 Rayleigh scattering
If the order of the wavelength of the incident photon is above the diameter
of the nucleus, the most dominant scatter effect is the elastic (no energy
loss) Rayleigh scattering. Here, the photon gets absorbed by an outer
electron which then jumps back into its bounded state and emits the exactly
the same amount of energy as electromagnetic radiation (a photon) into a
new direction. This effect can be described by the classical field theory of
electromagnetism [Fli08] or [LDL75] and does not take into account any
quantum properties of the participating particles. For completeness we note
that the cross-section of this scatter event is

σRayleigh = 8
3πr

2
e

f4(
f2 − f2

0
)2 + Γ2f2

with the classical electron radius re = e2

4πε0mec2 , ε0 the permittivity of
the vacuum, me the electron rest mass and Γ a dissipation coefficient of the
oscillation of the electron and Γ/f0 < 0.3 for common cases. Here, f0 is the
natural frequency of the participating electron. Rayleigh scattering has
one special case which is called the Thompson scattering. If the electron
is only weakly bound to the atom or completely unbounded, the respective
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Figure 2.3.1: This is a schematic drawing of the total attenuation of cortical
bone as an example material as a sum of the different interactions of the
respective energy interval.

f0 approaches zero and σRayleigh becomes a constant. For higher photon
energies (f � f0), σRayleigh becomes a constant as well. This scattering
effect is most dominant in the domain of the visible photon spectrum.

σblueRayleigh
σredRayleigh

=
(
fblueRayleigh
f redRayleigh

)4

≈ 10

Rayleigh scattering is the reason why we can perceive clouds, but not
the water vapor in the air and why the sky is blue at day time and red in
the evening19. The X-ray interactions of the following subsections take the
quantum properties of photons and matter into account and consider higher
photon energies.

2.3.2 Photoelectric absorption
If the photon energy is above the binding energies of atomic electrons, the
photon can be absorbed entirely by such an atom. This process ionizes the
19The evening also shows a blue sky, but the respective effect that is dominant at this

domain is called Chappuis absorption.
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Figure 2.3.2: An overview of three example materials and its energy depen-
dent attenuation properties taken from the NIST data base [HS96].

atom, leaves a free electron with kinetic energy equal to the difference of
binding energy and photon energy. This lost energy can be observed as heat
on the local lattice of the material. Electrons of outer shells or the free elec-
tron energy band are then fill the vacant electron spot. The recombination
emit is characteristic radiation of specific energy levels depending on the
absorbing material. If the emitted photon has enough energy to break an
outer electron from outlying orbitals, this creates a free and mono-energetic
Auger electron. The absorption coefficient µEinstein of the photoelectric
absorption has the important dependence

µEinstein ∝ Znf−3,

where n lies between 4 and 5 [Dav65]. The dependence of Zn has practical
consequences for applications that utilize contrast agent, e.g. iodine and
barium (ZI = 53,ZBa = 56) or X-ray shielding with lead (ZPb = 82). The
dependence of f−3 shows the rapid decay for higher energies. At high X-ray
energies the following processes become more relevant.
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2.3 Polychromatic photon absorption law

2.3.3 Compton scattering

The most dominant scatter event in the current X-ray imaging domain is the
Compton scattering process. Weaker bound electrons (i.e. the orbit that
correspond to the smallest binding energy) can interact with X-ray photons
by colliding and transfering only a proportion of the incident energy to
their kinetic energy. Thus, the process is almost independent on the actual
material, but dependend on the density ρ of the material the photon is
propagating through. The lost photon energy is in direct correlation to the
scattering angle. The important relation comes down to

∆λ = h

mec
(1− cos ∆θ) ,

where ∆θ is the angle of the scattered photon that increases ∆λ of its wave-
length during that process, hence decreases the photon energy Eγ = hf ∝
λ−1. In literature one can find that the constant h

mec
is referred to as the

Compton wavelength.
The ratio of scattered X-ray photons can be derived by the Klein-

Nishina formula20, so we can state that the cross-section of this process
is

σCompton = 2πr2
e

{
1 + ξf

(ξf)2

(
2 1 + ξf

1 + 2 (ξf)2 −
ln (1 + 2ξf)

ξf

)
+ ln (1 + 2ξf)

2ξf − 1− 3ξf
(1 + 2ξf) 2

}
where ξ = h

mec2
that could be called the inverse Compton frequency. With

this, we can write down the attenuation coefficient as

µCompton = n · σCompton.

2.3.4 Pair production

If the photon energy Eγ is above EPair = 1.022MeV = 2mec
2 the X-ray

photon can interact with the electromagnetic field of an electron or a nu-
cleus to create an electron-positron pair with the combined kinetic energy
of Ekin = Eγ − EPair. The probability increases proportionally to Eγ and
field-strength. This effect is called pair production. Since the diagnostic
energies of X-ray imaging lie in the order of 10−2 ∼ 10−1 MeV(see 2.2.2),
this process is not of importance for the typical µ of our problem statements
but it is worth mentioning that the side effect, called pair annihilation, be-
comes important in positron emission tomography (PET) imaging. Since
the positron will meet another electron after a very short time, they will
disintegrate and produce a pair of photons, traveling 180° away from each
other.
20Equation 2.188, page 155 in [LR09]
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2.3.5 Detector technology

As Cunningham and Judy [CJ00] state, the X-ray detector used in a CT
setup needs

• to have a high overall efficiency to reduce the dose (offer a large dy-
namic energy range),

• to be stable over time,

• and to have a constant sensivity with respect to temperature variations
(e.g. in the gantry).

The so-called geometric efficiency, quantum efficiency, and conversion effi-
ciency are the important factors that ensure the high overall efficiency of
the X-ray detector. The higher the ratio of sensitive to unsensitive area of
the detector element becomes, the more its geometric efficiency increases.
Having already introduced all photon-matter interactions in the subsections
above, we can easily recognize that the fraction of incident X-rays on the
detector element contributing to the measured signal is a statistical property
of the material and the photon energy.

The quantum efficiency is the number of such photons that contribute to
the measured signal.
Finally, the conversion efficiency quantifies the response that accurately

converts the absorbed X-ray signal into an electrical signal. The overall
efficiency is basically the product of these three numbers and it usually lies
between 0.45 and 0.85. Of course, a number that is smaller than 1.0 refers
to an imperfect measurement system, which increases the dose needed to
maintain a certain CT image quality. For this reason, this number is called
dose efficiency as well.
Gas ionization detectors are stacked chambers that contain compressed

gas. Xenon is commonly used with a pressure up to 30 bar. The X-ray
photons ionize the gas, which is then collected by a high voltage tungsten
septum. These kind of detectors have a lower quantum efficiency than solid-
state detectors.
Solid-state detectors consist of an array of scintillator crystals. They

produce visible light photons when absorbing an X-ray photon, which is
then collected by a CCD chip. The X-ray photon is producing an electron
with high kinetic energy, which excites other electrons and recombines with
another ion. Eventually the recombination emits light photons that are
measured to create the signal. Commonly used materials are either cadmium
tungstate or Gd2O2S ceramic made of rare earth oxides. The reason for the
much higher quantum efficiency is reflected by the pure density that the
solid materials have, which are three magnitudes higher than that of the
compressed gas.
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The average obese person that is scanned can absorb X-ray intensities I/I0
to ranges below 10−4. Thus, an accurate data-acquisition needs to encode
floating point precision of at least 10−5. Due to the necessary log conversion,
this number is dramatically insufficient in the presence of highly absorbent
materials as metal, as there will be almost no X-ray quanta measured. Man-
ufacturers use precision preamplifiers, current-to-voltage converters, analog
integrators, multiplexers and analog-to-digital converters to transmit the
values to the reconstruction system. Depending on the manufacturer the
logarithmic operation (Equation 2.1.1) is performed by either an analog log
amplifier or a carefully sampled lookup table.

It is worth mentioning that all detectors suffer from two effects, namely
vignetting and distortion.

Vignetting (or veiling glare) is a systematic decrease in brightness towards
the outer boundaries of the detector. It is caused by scattering of the light
photons emitted by the scintillator crystals. Scattered light photons are dis-
tributed isotropically, but as they are more likely to get measured within
the center of the detector, the probability of these corrupted measurements
decreases with the distance to that central point. As this problem occurs in
optical images as well and it is dependent on the measurement itself, it is an
ongoing topic of interest in contemporary research [KPB16,YLS06,KW00].
Within the domain of CT, this problem is tackled with calibration [NBC+15].
Distortion due to external electromagnetic field strengths21 needs to be mea-
sured and corrected by image processing as well.

21In addition, geometric distortion [WLDK12] and pincushion distortion need to be tack-
led as well [LMX10].
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2.3.6 Beam hardening

n(E)

 E [keV]Eeff Eeff
afterbefore

Figure 2.3.3: Schematic depiction of
an incident X-ray spectrum (green)
n(E) in arbitrary units. After
propagation through matter the
effective energy of the spectrum
(red) is shifted to a higher energy
Eafter
eff . Thus, the propagation pro-

cess made the beam harder.

As photons of lower energy are more
likely to be attenuated (see Figure
2.3.2), propagation of a beam of pho-
tons that contains an X-ray spec-
trum of different energies through
matter will always lead to a shift
of the effective energy. The mean
energy of the spectrum increases.
Hence, the X-ray beam loses energy
but gets harder during the process.
Equation 2.1.2 models the mea-

surements ε along a line L to be de-
pendent of the photon energy E0.
Thus, the ratio of the measured X-
ray intensity I (E0) to the incident
X-ray intensity I0 (E0) of photon en-
ergy E0 follows the Lambert-Beer

absorption law
I (E0)
I0 (E0) = exp

{
−
�
L
µ (~x,E0) dl

}
. (2.3.1)

If the X-ray source only emits photons of one energy E0, the forward model
ε̄ = − ln I(E0)/I0(E0) would be a linear operator over the unknown object
properties µ (~x,E0). Since X-ray sources produce a broad spectrum of pho-
tons with different energies, this model becomes non-linear. This is because
the measurements are in fact a sum over all energies. More precisely, the de-
tector measures different energies by different gain values which result in an
even more complicated signal. The monoenergetic absorption law holds true
for a single energy. So the actual measured intensity Ȳ sums over different
energies E and can be written as

Ȳ =
�
R+
D (E) ·X (E) exp

{
−
�
L
µ (~x,E) dl

}
dE (2.3.2)

where D (E) is the detector response22 depending on the photon energy and
X (E) is the X-ray spectrum produced by the source. Thus, both parts
contribute to what we can interpret as the incident intensity I0 = D · X.
The extinction value ε̄poly would be calculated as

ε̄poly = − ln Ȳ

Ȳ0
= − ln

[�
R+ D (E) ·X (E) exp

{
−
�
L µ (~x,E) dl

}
dE�

R+ D (E) ·X (E) dE

]
.

(2.3.3)
22The C-arm systems that provided measurements in this thesis feature a CsI scintillator-

based detectors. Responses of NaI(Tl), CsI(Tl) and CsI(Na) detectors above 20keV
behave qualitatively similarly [ABYZ67].
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2.3 Polychromatic photon absorption law

Even though the actual incident intensity is X alone, one can read the above
equation like this: The incident X-ray intensity X gets attenuated while
propagating through the object µ and measured by an integrating detector D.
To emphasize the consequence of such a non-linearity (in µ) of the projec-

tion operation, we write down the following “informal” equations and neglect
the red parts at first:

P̃ (µ) :=I =
�
I0(E)e−

� α
0 µ(x,E)dxdE

⇒ P (µ;E) := ln I0(E)
I(E) =

� α

0
µ (x,E)dx

⇒ P̃ (µ1 + µ2)��=P̃ (µ1) + P̃ (µ2) . (2.3.4)

Here, α is the thickness of the volume that is projected (in Figure 2.1.5
this means α = 4x). Interpreting the projection operation P as a func-
tion of µ shows that the introduction of the red colored parts (Equa-
tion 2.3.2) destroy the linearity with respect to the projected volume. It
is important to recognize that if D (E) = D0δ (E − E0), the integrat-
ing detector would be the perfect bandpass filter for the photon energy
E0. Thus, one would reduce the projection problem to the linear struc-
ture of Equation 2.3.1. The very same would happen if we consider a
monochromatic X-ray source X(E) = X0δ (E − E0) and keep D(E) arbi-
trary.

path length A
through the volume

ln(I0/I)

Figure 2.3.4: Schematic explanation
for the non-linear behavior (beam
hardening) of the measured val-
ues with respect to the propagation
length.

To tackle the problem that is in-
troduced by the non-linearity (beam
hardening) of the projection that
is depicted in Figure 2.3.4, one
could try to find a method that
maps the measured red signal to
the theoretical signal one would ex-
pect from a monochromatic mea-
surement. Such a mapping is called
water-correction. Because the hu-
man body consists of water for the
most part, it is the most commonly
used idea to compensate for beam
hardening. This method only needs
a calibration with a appropriate wa-
ter phantom.
In terms of non destructive test-

ing of objects which are made out of
a single material, this method leads
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2 Theoretical background

to sufficient reduction of beam hard-
ening. However, the human body consists at least of water-like tissue and
bones. This distinction destroys the easy mapping approach, as a very thin
slice of metal can have the same extinction value as a bottle of water, but
would still need to be mapped to a different linear function in Figure 2.3.4
extinction values. A modern approach to separate these different types of
extinction values is explained in Abdurahman et al. [AFB+18] or in Cao et
al. [CHF+19].
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2.4 Statistical reconstruction

2.4 Statistical reconstruction
This section introduces the theory about the reconstruction technique used
in this work and gives an advanced version of the method described with
Equation 2.1.5. It is based on the book of Buzug [Buz08]. The fundamental
assumption of this kind of methods is that the measured number of X-ray
photons ni is a Poisson distributed random variable. This assumption is
usually justified by all the covered physical effects in Subsection 2.3. Equa-
tion 2.3.1 motivates the expected value of the measurements to be as the
following:

n̄i = n0e
−
∑

j
aij µ̄j . (2.4.1)

The Poisson distribution P is defined as

P (n) = n̄n

n! e
−n̄.

To calculate the probability to measure n̄i, under the circumstance that
the volume has the values µ̄j , one needs the product probability over all
projections

P (~n|~̄µ) =
∏
i

P (ni|µ̄j) =
∏
i

(
n0e
−
∑

j
aij µ̄j

)ni
ni!

exp
{
−n0e

−
∑

j
aij µ̄j

}
=: L

(
~̄µ
)
.

The function L is called the likelihood function of ~̄µ. If we find a way of
maximizing L over ~̄µ, we find the most consistent ~̄µ in agreement with the
measurements. To find the maximum value of L, we first take its logarithm.
Due to the monotonic behavior of the logarithm, a maximum of lnL will
still be a maximum of L. We write down

lnL
(
~̄µ
)

=
∑
i

{
ni ln

(
n0e
−
∑

j
aij µ̄j

)
− ln(ni!)− n0e

−
∑

j
aij µ̄j

}

and neglect the constant number ln(ni!), because it has no impact on the
demanded maximum, which together with Equation 2.4.1 leads to

lnL
(
~̄µ
)

=
∑
i

{ni ln (n̄i)− n̄i} . (2.4.2)

Note that this is only a function of the measurements ni and the unknown
volume µ̄j . With [A~µ]i denoting the i-th component of the vector [A~µ],
we now assume that the measured monochromatic X-ray intensity YM

i is
Poisson distributed as well. We can use Equation 2.4.2 and Equation 2.3.1
to find a desired L as follows:

YM
i ∼ Poisson

{
Iie
−[A~µ]i + ri

}
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⇒ L(~µ) =
∑
i

{
Yi ln

(
Iie
−[A~µ]i + ri

)
−
(
Iie
−[A~µ]i + ri

)}
. (2.4.3)

Here, A ∈ Rnumber of voxels×number of (pixels × views) =: RNj×Ni is the system
matrix which represents the geometry factors aij ≥ 0 in matrix form. In re-
ality, we have to deal with noisy data (indicated by the noise term ri), which
usually leads to noisy reconstruction images. To mitigate those problems,
we add a regularization term R(µ) characterized by — a yet to be defined
— potential function ψ(·) to the likelihood function. We define

R(~µ) :=
Nj∑
j=1

∑
k∈Nj

ψ(µj − µk) (2.4.4)

which takes into account only a certain (usually the 26 surrounding voxels)
neighborhood Nj around the voxel µj and arrive at the penalized likelihood
function

Φ(~µ) := L(~µ)− βR(~µ). (2.4.5)

The goal of the reconstruction technique becomes to maximize the func-
tion Φ under the condition that the reconstruction volume has only positive
numbers of the linear attenuation coefficient µ

~̂µ = arg max
µj≥0 ∀j

Φ(~µ). (2.4.6)

2.4.1 Iterative monochromatic statistical reconstruction
This and the next subsection are derived from Elbarki and Fessler and show
an in-depth view on their theoretical work published in [EF02]. In order to
solve the problem Equation 2.4.6, we wish to have an easy re-formulation
which is quadratic (easy to maximize) in the argument and separable (easy
to parallelize) in the volume domain j. In order to make the reformulation
separable, we will introduce the so-called surrogate functions. First, we will
achieve the quadratic approximation as we start to rewrite Equation 2.4.3
and use the substitution l̂i = ln( Ii

Yi−ri ), wi = (Yi−ri)2
Yi

to

− L (µ) =
Ni∑
i=1

gi ([A~µ]i) (2.4.7)

gi (l) = −Yi ln
(
Iie
−l + ri

)
+
(
Iie
−l + ri

)
gi (l) ≈ gi

(
l̂i
)

+ ġi(l̂i)(l − l̂i) + g̈i(l̂i)
2 (l − l̂i)2

gi (l) ≈ (Yi − Yi lnYi)︸ ︷︷ ︸
=const

+ g̈i(l̂i)
2 (l − l̂i)2
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2.4 Statistical reconstruction

⇒ Φ(~µ) ≈
Ni∑
i=1

wi
2 ([A~µ]i − l̂i)2 + βR(~µ). (2.4.8)

Note that we just seek a minimum now, since we added an artificial minus
sign in Equation 2.4.7, which is called the negative log likelihood. Depending
on R, this cost function is already quadratic, but still not separable in j.
For this we need to use the convexity trick of De Pierro [Pie93,Pie95] that
is also referred to in the literature as the optimization transfer principle
[JF07,LHY00]. We are going to rewrite the approximated line integral 2.1.4,
which is contained in Equation 2.4.7,

[A~µ]i =
Nj∑
j=1

aijµj =
Nj∑

j = 1
aij 6= 0

αij

{
aij
αij

(µj − µnj ) + [A~µn]i

}

with
Nj∑
j=1

αij = 1∀i, αij ≥ 0. (2.4.9)

Now we use the convexity of{
[A~µ]i − l̂i

}
2 ≤

Nj∑
j = 1
aij 6= 0

αij
wi
2

{
aij
αij

(µj − µnj ) + [A~µn]i − l̂i
}

2 (2.4.10)

which leads to a separable quadratic surrogate function

Q(~µ; ~µn) :=
Ni∑
i=1

Nj∑
j = 1
aij 6= 0

αij

{
aij
αij

(µj − µnj ) + [A~µn]i − l̂i
}

2.

Here µnj refers to the voxel j of the iteration n. We can derive a sur-
rogate function for the penality R ≤ S(~µ; ~µn) with ease. In this work we
use the Huber loss function ψa(·). This loss function is defined to behave
quadratically in a small regime a around zero and linear outside

ψa (x) =
{
x2/2 , |x| < a

a (|x| − a/2) , else
(2.4.11)

S (~µ; ~µn) =
Nj∑
j=1

∑
ξj∈Nj

wξψa
(
µj − µnξj

)
. (2.4.12)

Again, ξj ∈ Nj is the multi index that encodes the coordinates that belong
to the specific neighborhood23 of the voxel µnj , wξ is the weighting of the
23In this work we have chosen the 26 surrounding voxels and weighted them accordingly

to their distance. These voxels are called the nearest neighbors (N.N.).
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Φ(µ)

µµnµ1
n+1µ2

n+1

Figure 2.4.1: The defining properties of a surrogate function in the context
of this work is that it always has values above the original function and
that its derivative at the value ~µn is the equal to the original.

different neighbors distances with respect to the central voxel. The overall
surrogate function that we want to minimize is

φ (~µ; ~µn) := Q (~µ; ~µn) + βS (~µ; ~µn) (2.4.13)

and has the attributes depicted in Figure 2.4.1:

φ (~µn; ~µn) = Φ(~µn)

∂φ

∂µj
(~µ; ~µn)

∣∣∣∣∣
µ=µn

= ∂Φ
∂µj

(~µ)
∣∣∣∣∣
~µ=~µn

φ (~µ; ~µn) ≥ Φ (~µ) , forµj ≥ 0 ∀j.

According to Newtons method, we can find the minimum of Equation
2.4.13 with the iterative update step of the form

µn+1
j =

µnj −
∂φ
∂µj

(~µ; ~µn)
∣∣∣
~µ=~µn

∂2φ
∂µ2

j
(~µ; ~µn)

∣∣∣∣
~µ=~µn


+

, j = 1, . . . , N (2.4.14)

∂φ

∂µj
(~µ; ~µn)

∣∣∣∣∣
~µ=~µn

=
Ni∑
i=1

aijwi
(
[A~µn]i − l̂i

)
+ β

∂S

∂µj

∣∣∣∣∣
~µ=~µn

(2.4.15)

∂2φ
∂µ2

j

(~µ; ~µn)
∣∣∣∣∣
~µ=~µn

=
Ni∑
i=1

a2
ijwi

αij
+ β

∂2S
∂µ2

j

∣∣∣∣∣
~µ=~µn

. (2.4.16)
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2.4 Statistical reconstruction

As we can see, the larger the nominator in Equation 2.4.15 and the smaller
the denominator in 2.4.16, the larger the step size of 2.4.14. A suitable
interpretation of Figure 2.4.1 shows the same behavior for smaller second
derivatives 2.4.16. Since we still have the choice of the explicit form of the
αij , we can adapt that idea into the denominator. Since a2

ijwi is independent
of the iteration, we also would like to have iteration independent αij . A
typical choice subject to Equation 2.4.9 is

αij := aij∑
j aij

. (2.4.17)

To accelerate the algorithm 2.4.14, we use the ordered subsets concept. With
the number M of used subsets per update step [KB98], we define the pe-
nalized weighted least squares ordered subsets (PWLS-OS) algorithm for
monochromatic X-ray tomography

µj =

µj −
M
∑
i∈η aijwi

(
[A~µ]i − l̂i

)
+ β ∂S

∂µj

∣∣∣
~µ=~µold∑

i=1
a2
ijwi
αij

+ β ∂2S
∂µ2

j

∣∣∣∣
~µ=~µold


+

. (2.4.18)

Here, the ∑i

a2
ijwi
αij

is iteration independent and can be pre-computed once
and stored for the whole reconstruction. The term ∑

i∈η aijwi
(
[A~µ]i − l̂i

)
basically compares the measurements l̂i with the forward-projection of the
current iterate [A~µ]i and back projects a multiple of that information. The
β-terms represent the penalization. For completeness, this method could
be refered as penalized weighted least squares method with ordered subsets
(PWLS-OS). The next section delivers a polychromatic generalization of
Equation 2.4.18 which is the main subject of this thesis.

2.4.2 Iterative polychromatic statistical reconstruction
The update step 2.4.18 is based on the forward-projection model Equation
2.3.1. Thus, it does not incorporate the physics of the X-ray absorption
process mentioned in Section 2.3.
Given the more accurate model Equation 2.3.2, the minimizing of a similar

cost function of 2.4.5 becomes a more delicate task.
The forward-projection model states that the measurement along the line

i can be written as

Ȳi (~s) =
�
R+
Ii (E) exp {−~m (E) · ~si} dE. (2.4.19)

Note that ~m (E) ·~s is the scalar product ~mT~s = ∑
kmks

k. Further note that
Yi represents the intensity measurements and Ȳi can be interpreted as the
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forward-projection of the volume ~ρ. The k-th component of ~si represents
the line integral along the line Li of the k-th material. In other words: ~si
is the classic line integral of the k-th material with K the total number of
different materials. Furthermore, we need to define the following variables:

µj (E) =
K∑
k=1

mk (E) ρjfkj (2.4.20)

akij := aijf
k
j (2.4.21)

ski (~ρ) :=
�
Li
ρ (x, y, z) fk (x, y, z) dl =

Nj∑
j=1

ρja
k
ij (2.4.22)

~si (~ρ) :=
[
s1
i (~ρ) , s2

i (~ρ) , . . . , sKi (~ρ)
]T

E [Yi] =
�
R+
Ii (E) exp {−~m (E) · ~si (~ρ)} dE + ri = Ȳi + ri. (2.4.23)

One main idea is the product approach 2.4.20, which splits the energy de-
pendence mk(E) from the spatial information, stating which voxel consists
of how much material fkj . This is the bone attenuation property that is plot-
ted in Figure 2.3.1. The segmentation fkj has to be known for each voxel
j or it has to be subject to certain physical model assumptions. Note that∑
k f

k
j = 1∀j.

The polychromatic equivalent of 2.4.6 is

~̂ρ = arg min
ρj≥0 ∀j

Φ(~ρ) (2.4.24)

Φ (~ρ) = −L (~ρ) + βR (~ρ) .

The negative log likelihood can be expressed as

−L (~ρ) =
Ni∑
i=1

hi
(
Ȳi (~si (~ρ)) + ri

)
hi(t) = −Yi ln (t) + t

⇒ ∂

∂t
hi(t) = 1− Yi

t
(2.4.25)

ti := exp {−~m (E) · ~si}+ r̄i (2.4.26)

r̄i := ri
I0

I0 :=
�
R+
I (E) dE.
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2.4 Statistical reconstruction

Note that the argument of h is non-linear, hence it is not as easy to move
the argument out of the integral as in Equation 2.4.10. With the definition

bni (E) := Ȳi (~si (~ρn)) + ri
ti (E,~si (~ρn)) (2.4.27)

⇒
�
R+

Ii (E)
bni (E)dE =

�
R+

Ii (E) ti (E,~si (~ρn))
Ȳi (~si (~ρn)) + ri

dE

=
�
R+

Ii (E) ti (E,~si (~ρn))�
R+ Ii

(
Ẽ
)

exp
{
−~m

(
Ẽ
)
· ~si (~ρn)

}
dẼ + ri

dE

=
�
R+ Ii (E) [exp {−~m (E) · ~si (~ρn)}+ r̄i] dE�
R+ Ii

(
Ẽ
)

exp
{
−~m

(
Ẽ
)
· ~si (~ρn)

}
dẼ + ri

=

�
R+ Ii (E) exp {−~m (E) · ~si (~ρn)} dE +

�
R+ Ii (E) ri�

R+ I(Ě)dĚdE
�
R+ Ii

(
Ẽ
)

exp
{
−~m

(
Ẽ
)
· ~si (~ρn)

}
dẼ + ri

=

�
R+ Ii (E) exp {−~m (E) · ~si (~ρn)} dE + ri

��
�
��
�* 1�

R+ Ii(E)dE
�
R+ I(Ě)dĚ�

R+ Ii
(
Ẽ
)

exp
{
−~m

(
Ẽ
)
· ~si (~ρn)

}
dẼ + ri

= 1

and as we are in the intensity domain, the scatter signal cannot change the
positivity of Ii(E) so that we can conclude

Ii (E)
bni (E) ≥ 0.

We can now write

Ȳi (~si (~ρn))+ri =
�
R+
Ii (E) ti (E,~si (~ρn)) dE =

�
R+

Ii (E)
bni (E) ti (E,~si (~ρn)) bni (E) dE

⇒ hi
(
Ȳi (~si (~ρn)) + ri

)
= hi(

�
R+

Ii (E)
bni (E) ti (E,~si (~ρn)) bni (E) dE)

≤
�
R+

Ii (E)
bni (E)hi (ti (E,~si (~ρn)) bni (E)) dE =: Q1 (~ρ, ~ρn) .

We want to arrive at a surrogate like Equation 2.4.13 and need a quadratic
version of Q1 as a function of lni (~ρ) := ~m (E) · ~si (~ρn), which is easier to
minimize. Hence, we go for the standard Taylor expansion as follows

hi (ti (E,~si (~ρn)) bni (E)) = hi (bni (E) exp {−~m (E) · ~si (~ρn)}+ bni (E) r̄i)

=: gni (~m (E) · ~si (~ρn) , E) ≤ qni (~m (E) · ~si (~ρn) , E)

qni (l, E) = gni (lni , E) + ġni (lni , E) [l − lni ] + 1
2C

n
i (E) [l − lni ]2 . (2.4.28)
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Here, we call Cni the curvature of gni , as it is basically its second derivative
g̈ni = ∂2/∂l2gni with respect to the line integral lni (~ρ). It is meant to be a
helpful function of convergence as depicted in Figure 2.4.1.
We define Q2, λij (E) and its matrix Λ (E) = {λij (E)} ∈ RNj×Ni and use

the convexity trick in its first argument of Q2 as follows:

Q2 (~ρ; ~ρn) :=
Ni∑
i=1

�
R+

Ii (E)
bni (E)q

n
i (~m (E) · ~si (~ρn) , E) dE

~m (E) · ~si (~ρ) =
Nj∑
j=1

K∑
k=1

mk (E) akijρj =
∑
j

λij (E) ρj

λij (E) :=
K∑
k=1

mk (E) akij

⇒ ~m (E) · ~si (~ρ) 2.4.17=
Nj∑

j = 1
λij 6= 0

αij

(
λij (E)
αij

(
ρj − ρnj

)
+ [Λ (E) ~ρn]i

)

⇒ qni (~m (E) · ~si, E) = qni

((
λij (E)
αij

(
ρj − ρnj

)
+ [Λ (E) ~ρn]i

)
, E

)

≤
Nj∑

j = 1
λij 6= 0

αijq
n
i

(
λij (E)
αij

(
ρj − ρnj

)
+ [Λ (E) ~ρn]i , E

)
.

Now we are closer to the formulation of an update step similar to Equation
2.4.14, since we can define a surrogate Q and its derivatives ( ∂

∂ski
denotes

the k-th component of the gradient)

Q (~ρ; ~ρn) :=
Ni∑
i = 1
λij 6= 0

Nj∑
j = 1
λij 6= 0

�
R+

Ii (E)
bni (E)αijq

n
i

(
λij (E)
αij

(
ρj − ρnj

)
+ [Λ (E) ~ρn]i , E

)
dE

∂Q

∂ρj
(~ρ; ~ρn)

∣∣∣∣∣
~ρ=~ρn

=
Ni∑
i = 1
λij 6= 0

∂

∂ρj


�
R+

Ii (E)
bni (E)αijq

n
i

(
λij (E)
αij

(
ρj − ρnj

)
+ [Λ (E) ~ρn]i , E

)
dE
∣∣∣∣∣
~ρ=~ρn

 .

At this point, it helps to remember that λij(E)
αij

(
ρj − ρnj

)
is the only relevant

term (in the first argument of q) for that derivative. This basically results in
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a factor of ġni and its inner derivative, because of the taylor expansion 2.4.28.
The definition 2.4.26 as well as Equation 2.4.25 helps to write down24

∂Q

∂ρj
(~ρ; ~ρn)

∣∣∣∣∣
~ρ=~ρn

=
Ni∑
i=1

�
R+

Ii (E)
bni (E)λij ġ

n
i (~m (E) · ~si (~ρn) , E) dE

=
Ni∑
i=1

�
R+

Ii (E)
bni (E)λij

{
bni (E)

(
1− Yi

Ȳi (~si (~ρn)) + ri

)}
exp (−~m (E) · ~si (~ρn)) dE

=
Ni∑
i=1

(
1− Yi

Ȳi (~si (~ρn)) + ri

)�
R+
λij (E) Ii (E) exp (−~m (E) · ~si (~ρn)) dE

⇒ ∂Q

∂ρj
(~ρ; ~ρn)

∣∣∣∣∣
~ρ=~ρn

=
Ni∑
i=1

K∑
k=1

aijf
k
j

(
1− Yi

Ȳi (~si (~ρn)) + ri

)
∂

∂ski
Ȳi (~si (~ρn)) .

(2.4.29)
The second derivative delivers another factor λij(E)

αij
and the curvature

Cni (E), finally resulting in

⇒ ∂2Q
∂ρj2

(~ρ; ~ρn)
∣∣∣∣∣
~ρ=~ρn

=
Ni∑
i = 1
λij 6= 0

�
R+

Ii (E)
bni (E)

λ2
ij (E)
αij

Cni (E) dE. (2.4.30)

A solid choice is to approximate the most relevant parts of the integral over
the energy live around the effective energy Eeff„ such that

∂2Q
∂ρj2

(~ρ; ~ρn)
∣∣∣∣∣
~ρ=~ρn

=
Ni∑
i = 1
λij 6= 0

�
R+

Ii (E) (exp {−~m (E) · ~si (~ρn)}+ r̄i)
Ȳi (~si (~ρn)) + ri

λ2
ij (E)
αij

Cni (E) dE

=
Ni∑
i = 1
λij 6= 0

�
R+

λ2
ij (E)
αij

Cni (E)

��������
���

���
���:

eq.2.4.19
Ii (E) exp {−~m (E) · ~si (~ρn)}+ ri

Ȳi (~si (~ρn)) + ri

 dE

≈
Ni∑
i = 1
λij 6= 0

λ2
ij (Eeff)
αij

Cni (Eeff)

24The original paper [EF02] includes a minus sign error, which propagates through the
final formula 2.4.34 of N̂j . Also, the original paper has “+ri” missing in bni of Equation
2.4.27.
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∂2Q
∂ρj2

(~ρ; ~ρn)
∣∣∣∣∣
~ρ=~ρn

≈
Ni∑
i = 1
λij 6= 0

λ2
ij (Eeff)
αij

Yi =
Ni∑
i = 1
aij 6= 0

[∑K
k=1mk (Eeff) akij

]2
αij

Yi

⇒ ∂2Q
∂ρj2

(~ρ; ~ρn)
∣∣∣∣∣
~ρ=~ρn

≈
K∑
k=1

m2
k (Eeff)

Ni∑
i=1

aijYi

 Nj∑
j=1

aij

 =: dj . (2.4.31)

Here, we assumed that the main contribution of that integral lies around
the centroid

Eeff :=
�
R+ E · Ii (E) dE�

R+ Ii (E) dE . (2.4.32)

A more mathematically sophisticated explanation of Equation 2.4.31 can be
found in [EF02] and [KPTF13]. Note that ∑Nj

j=1 aij =: γi can be interpreted
as the path length of the i-th ray through the volume. The above definition
of dj has the form of a rayweighted back projection of the measurements Yi
with a constant factor defined as

MK :=
K∑
k=1

m2
k (Eeff)

that is only dependent on the considered materials in the reconstruction
volume. Since that number increases even if there is only a single voxel in
the volume of a certain material, it can be useful for the convergence to
ignore that material. Imagine a given set of materials. We could sort those
materials increasingly by their value mk (Eeff) over the index k in most of
the cases 25

m1 (Eeff) < m2 (Eeff) < . . . < mK (Eeff)

such that we use only a decreased amount of materials for a dKj , defined in
the same manner as

dKj := MK
Ni∑
i=1

γiaijYi. (2.4.33)

In fact, for the reconstructions done in this work, d1
j was preferred over

dK>1
j due to convergence speed. This holds true, because smaller dj result

in larger step-length (see Equation 2.4.35), and thus in faster convergence.
The relevant objects we want to reconstruct consist mostly of water. Hence,
the first material is meant to be water.
25The case of different materials with equal densities is excluded, but becomes an in-

creasing problem considering contrast agent in perfusion imaging. Such material can
overlap in the range from water to bone and contradicts the easy distinguishing by one
value.
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2.5 Pinhole camera model

With Equation 2.4.29 the analog update step to 2.4.18 can be written
with the definition of

N̂j :=
∑
i∈η

K∑
k=1

aijf
k
j

(
1− Yi

Ȳi (~si (~ρn)) + r̄i

)
∂

∂ski
Ȳi (~si (~ρn)) (2.4.34)

to the final update step of this PWLS-OS algorithm as

ρn+1
j =

ρnj − MN̂j + β ∂S
∂ρj

d1
j + β ∂2S

∂ρj2


+

. (2.4.35)

The subset η 3 i needs to be defined by the user and typically lies in the
interval of one angle per subset to all angles in one big subset (see Section
3.4). In this work, it is not considered to consist of only parts of a projection
of a single angle.
As a firm reminder to the beginning of this subsection, technically speak-

ing, every single event that leads to the measurement of a single signal is a
statistical event of higher order. It is worth noting that this likelihood ap-
proach is only a first order of statistical accuracy. Thus, a more precise sta-
tistical model to account for every statistical aspect of this problem would be
more complicated (e.g. a bigger product in the likelihood function). A more
complicated likelihood function, and thus a very difficult update step can
be found in [EF03a]: “Unlike the Poisson distribution, compound Poisson
statistics have a complicated likelihood that impedes direct use of statistical
reconstruction”.

2.5 Pinhole camera model
This section provides the reader with the concept of the encoding and de-
coding of the acquisition setup. As the X-ray source is approximated as a
point source that projects a three dimensional volume onto a two dimen-
sional plane (flat panel detector), the projective geometry of the pinhole
camera model can accurately describe the setup. This section gives an idea
of how the position of the X-ray source, detector and reconstrcution volume
are positioned in relation to each other.
C-arm CT scanners use the so-called projection matrices to encode the

geometry information of the scanning protocol into the 12 entries of a matrix
P . The pinhole camera model is used to project world coordinates ~x =
[x, y, z, 1]T onto detector pixel “u, v”-coordinates26.

P


x
y
z
1

 =

 u
v
1

 (2.5.1)

26Often called “s,t”-coordinates in common literature.
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2 Theoretical background

The projection matrix P ∈ R3×4 incorporates the scanning geometry
of the C-arm device. It consists of a scaling factor s ∈ R+, [s] = 1

mm ,
a calibration matrix Ω ∈ R3×3, a rotation R ∈ R3×3 and a translation
~t = [tx, ty, tz]T ∈ R3 of world coordinates

P = s · Ω ·
[
R|~t

]
. (2.5.2)

The calibration Ω contains the information of the source-to-detector dis-
tances in units of the detector pixels.

Ω =

 fu a cu
0 fv cv
0 0 1


fu,v gives the distance of the source to the center point of the detector. cu,v
are the coordinates of the center point of the detector. Note that the pixel
lengths in u and v direction depend on the actual detector and may specify
a non-quadratic pixel size, which would result in fu 6= fv. If the detector is
rectangular (which is the case in this work), the scalar a is equal to zero.
The pinhole camera model has very practical use, i.e. for the voxel based

footprint projector (Section 3.2). Furthermore, to calculate the lines Li in
world coordinates of the X-ray source ~ξ = [ξx, ξy, ξz, 1]T to the detector
pixels, we need to solve the equation

P~ξ = ~0 (2.5.3)

and plug that into the equation of a straight line in 3D respectively (sec 3.1
Equation 3.1.2).
To extract the direction ~ri of specific ray i, we need to find one more point

~xi of the world coordinate system that lies on this straight line. From linear
algebra follows, we can write the projection matrix as a product of Q and
R, where Q is an orthogonal matrix that can be diagonal and R is an upper
triangle matrix. From Equation 2.5.1 follows then

QR


x
y
z
1

 =

 u
v
1



⇒ R


x
y
z
1

 = Q−1

 u
v
1

 Qorth.= QT

 u
v
1

 . (2.5.4)

Since R is an upper triangular matrix, one can calculate ~ri = [xi, yi, zi, 1]T
for a given u, v-pair und thus build the needed equation of the line that
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2.5 Pinhole camera model

represents the X-ray propagation from the source to the detector pixel. In
this work we derive R and Q via Householder method that is proven to
be numerically stable [Hou58,Wat82].

Depending on the projection angle, the world coordinates of the X-ray
source R and Q are stored and utilized by the ray caster (Subsection 3.1).
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3 The implementation

This chapter gives the reader an in-depth view of the implemented version of
the PSR technique. It starts by introducting the main ideas that contribute
to the program building blocks that are needed by the algorithm Equation
2.4.35. Section 3.4 draws the connection of those main ideas into the software
driven aspects that end up representing the whole algorithm that represents
the core of this thesis and that produced the reconstruction results presented
in chapter 4.

For the sake of clarity, whenever the opportunity for a reference of the
source code provided with this thesis appears, the reader is referred via
footnotes and the brackets
[“name of the function/class” @ “name of the cpp/cl source file”].

3.1 The forward-projection / the ray caster
The main goal of this ray caster is to project a voxelbased volume

~ρ = {ρj} =
[
ρ1, ρ2, . . . , ρNj

]T
onto a flat panel detector from a point sized source (flat panel cone beam
geometry). The forward-projection si can be written as

si := ci
∑
j

ρjaij (3.1.1)

with a scaling factor ci which is a constant for every direction i = 1, . . . , (Nu ·Nv ·Np)
with Nu,v the number of detector pixels in u, v direction and Np the number
of sampling angles (views). In order to calculate the geometry factors aij ,
one needs to check the intersection points of the ray with the voxel edges of
the volume in arbitrary directions. For every line ~xi : R→ R3, we calculate
the direction on the surface of the 3D ball ~ri ∈ ς2 and the source coordi-
nate ~ξi ∈ R3 from the projection matrices (pinhole camera model Section
2.5 Equation 2.5.3). The parameter representation of the line ~xi (t) has the
form

~xi (t) = ~ξi + ~rit with t ∈ R+. (3.1.2)

In general, the three voxel dimensions ~v = {v1, v2, v3} ∈ R3+ only scale
up the line integral si with the factor ci = |~ri · ~v|. Since ~ri is given for
each i-th line and vm = const, we can transform the grid to the unit cube.
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3 The implementation

This enables us to break down the intersection problem to simple
integer calculations and case analysis depending on the signs of
the three components of ~ri = {ri1, ri2, ri3}.

0

0

1

1

2

2

3

3

tin t1 t2
t3

tout

Source

j=0 j=1 j=2

j=3 j=4 j=5

j=6 j=7 j=8

Figure 3.1.1: The visualization of the ray casting concept in two arbitrary
spatial dimensions illustrates the procedure.

The aij can be calculated as differences of the parameter t at the voxel
edges. First, we start to calculate the two parameters tin < tout (where
the ray hits the outer voxels of the volume) and use them as starting and
ending criteria for the ray casting loop. This can be done by plugging zeroes
~0 = {0, 0, 0} and the number of volume voxels ~N = {N1, N2, N3} ∈ N3 into
the three Equations 3.1.2 and analyzing the resulting parameters t by cross-
checking the other two equations about the resulting ~xi (t) and weither if
they lie in the interval between ~0 and ~V . Case analysis delivers the smaller
of the two resulting parameters which represent tin and tout respectively.
Now we need to check the dimension in which we are intersecting with the

next voxel edge. This means which component of ~xi (tn+1) is an integer that
has exactly ±1 value difference. Thus, we look in the direction ~ri in which
dimension the next integer value of ~xi (tn+1) lies. The geometry factors can
be calculated as the differences 4t = tn+1 − tn and assigned to the voxel
in between ~xi (tn+1) and ~xi (tn). Practically we calculate the mean value
of those two points and use it to refer to the specific location in the array,
which represents the volume point µj . That needs the coordinates of the
volume to be positive numbers. This is always possible - as we can shift the
volume coordinate system to the first octant of the world coordinate system.
For example, the aij in Figure 3.1.1 are associated to ai0 = t1 − tin, ai1 =

t2 − t1, ai2 = ai3 = 0, ai4 = t3 − t2, ai5 = tout − t3. During this loop, one can
easily build the sum of Equation 3.1.1 and multiply it with ci until the loop
ends.
Certain special cases have to be considered and checked everytime a new

ray is calculated. For example, the null set, if the ray lies exactly (with

64



3.2 The backward-projection / the footprint

respect to the used floating point precision) in a 2D or 3D corner. A small
number ε > 0 was defined, depending on ~v, ~N and the number of voxels
~N = {N1, N2, N3}. Note that vmNm = Vm. To check if the coordinates
~xi(t) are nearly integer values, we use the very same tolerance level ε. That
small number was determined by trial and error and is correlated with the
number of voxels. If ε becomes too small, the kernels will not terminate
due to an infinite loop in the respective corner, resulting in a crash of the
program. Such an infinite loop can be avoided, if the next tn+1 is increased
by a number having the same magnitude.

If ε is too large, the accuracy of aij suffers and the quality of the forward-
projection becomes poor. The accuracy of the ray caster has low impact in
comparison with real cone beam CT data, because of the inaccuracy of this
kind of real world measurements (e.g. the voxelization assumption is a much
harder restriction then the accuracy of the intersection calculus). This is the
reason why typical ray casters use the GPU-specific voxel interpolation and
constant step length for very fast ray casting on GPU devices for gaming or
rendering software [KW03,Sch05].

A high accuracy (small ε) was used, because we need to match the high
accuracy of the footprint back projector, which will be explained in detail
in the next section.

3.2 The backward-projection / the footprint

All reconstruction methods have in common that they need to reverse the
projection step of the volume. This reversal step is usually called the
backward-projection (BP). Here, we call the terms ∑Ni

i=1 γiaijYi in Equa-
tion 2.4.33 and ∑i∈η aijf

k
j in Equation 2.4.34 a backward-projection. If we

compare this to ∑j µjaij in Equation 3.1.1, we can easily recognize that
the important difference is the sum over i instead of j. Hence, we need to
calculate the sum over all detector pixels that receive contributions of voxel
j with respect to all views. This is a very delicate task, since we would need
to check every single ray i with a method like a ray caster (Section 3.1), for
the case of propagation through the voxel j.

Because it is a very high computational effort to backward-project with
a ray caster, we use a different approach. A ray caster sits on a line and
follows its way through the volume. It is an efficient method, if we want to
know which voxels contribute to a ray, because we do not need to check ev-
ery voxel, but instead only those which are contributing. With an increasing
number of voxels Nj , the ratio of such actively contributing voxels compared
to Nj decreases dramatically. The geometric interpretation of this relation
can be formulated as the decreasing probability for a randomly chosen voxel
to touch a randomly chosen line through the volume. This probability con-
verges to zero with increasing N . For the reverse problem we need a method
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Detector plane

Voxel

Source

Detector line

Pixel

Source

Gray value

Figure 3.2.1: The implemented footprint scheme to calculate geometry fac-
tors in a back projecting setting

to evaluate all pixels that are influenced by a voxel when forward-projected.
If we know the pixels and their corresponding geometry factors aij > 0, we
can calculate the backward-projecting step.
The idea is to calculate the “shadow-approximation” of a voxel on the

detector plane, which tells us which pixels are influenced by a certain voxel.
This section gives a brief description of that footprint idea.
We approximate the footprint with a trapezoid. This method was devel-

oped by Long and Fessler [LFB10] and is used by several research groups
[FPB+14]. The error that is indicated by the red lines in Figure 3.2.1 is
corrected in a later calculation step that is called “the angle correction”. If
we combine the 1D approximation and state that the product of two trape-
zoid functions builds the 2D approximation of a “voxel shadow”, we achieve
a backward-projecting step with a high computing performance. The accu-
racy of this method is discussed in the origin [LFB10] and the performance
in [FPR13]. Thus, the current implementation of the PSR is using non-
adjugated operators that represent the forward-projection (FP, see Section
3.1) and the backward-projection (BP, see Section 3.2). Using the corre-
sponding projection operators ABP and AFP, this property can be written
as

~µT (ABP~p) 6= ~pT
(
AFP~µ

)
or

ABPA
FP 6= diag {1} .

It is also worth mentioning that the early stages of the PSR framework
a ray caster based approach was used for the backward-projection. Even
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3.3 The displacement model - distinguishing fk by the density

though this back projector is actually the perfect adjugate to the FP, the
BP operator leads to undersampling artifacts1 that become visible if one
backward-projects a constant.

3.3 The displacement model - distinguishing fk by the
density

The algorithm Equation 2.4.35 requires calculation of the term

MN̂j + β ∂S
∂ρj

d1
j + β ∂2S

∂ρj2
,

which includes the approximation of the X-ray image that would be the most
likely outcome, if the current volume ρnj were scanned within the measure-
ment setup. The important numbers N̂j

N̂j =
∑
i∈η

K∑
k=1

aijf
k
j

(
1− Yi

Ȳi (~si (~ρn)) + r̄i

)
∂

∂ski
Ȳi (~si (~ρn))

tell the algorithm if voxel values are too high or too low with respect to the
measurements Yi. We can identify the structure of N̂j = ∑

i∈η aij · . . . as the
backward-projection operation (see Section 3.2) with i ∈ η that encodes the
subset of used projections.
The information fkj which voxel j consists of what kind of material k,

is needed in the backward-projecting operation as well as in the forward-
projection. Elbakri and Fessler expanded the PSR with a “displacement
model” [EF03c], which allows material mixtures in voxels via sigmoids (e.g.
cubic splines or trigonometric functions).
Similar to the idea proposed to mk(EEff) in Equation 2.4.33, we assume

that the given set of K materials can be identified by their density ρk as
ρ1 < ρ2 < . . . < ρK . To specify the overlap of at most two of theK materials
in a single voxel, we define K− 1 cubic splines. With 0 < τ ′ ≤ 0.5 we define
a smoothness parameter

τk := τ ′
(
ρk+1 − ρk

)
(3.3.1)

and additionally the central point

Rk := 1
2
(
ρk + ρk+1

)
.

1Those artifacts are similar to Moiré patterns.

67



3 The implementation
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Figure 3.3.1: As an example parameter set, (ρw = 1.0 g/cm3, ρb =
1.92 g/cm3, τ ′ = 0.25 ) is used in this work for the clinical head scan
data in Section 4.2.3. The plot shows the resulting material fractions of
water fw (red line) and bone f b (blue line) as a cubic polynomial of the
density ρ.

Then we can define the threshold values ρkmin := Rk−τk and ρkmax := Rk+τk
which finally enables us to write down the overlap of two materials as

fk (ρ) =


1 ρkmin < ρ < ρkmax

f
(
ρ;Rk, τk

)
ρkmax < ρ < ρk+1

min

0 ρ > ρk+1
min

. (3.3.2)

Of course, the fraction of the complementary material follows as fk+1 (ρ) =
1− fk (ρ) within the respective interval.

The function f
(
ρ;Rk, τk

)
is used to smoothly connect the edges of the

fraction of the interval between ρkmax and ρk+1
min as shown in Figure 3.3.1

f
(
ρ;Rk, τk

)
:=

(
ρ−Rk

)3

4 (τk)3 −
3
(
ρ−Rk

)
4τk + 1

2 . (3.3.3)

In this work we limited our implementation to a maximum of K = 3
(water, bone and a metal compound). This is due to specific aspects of the
RGBA standard representation of the OpenCL buffers. More details are
described in the Subsection 3.4.2.

68



3.4 The PSR algorithm

3.4 The PSR algorithm
This subsection gives a brief overview of the building blocks comprising the
PSR. As every iterative reconstruction technique, it basically compares the
measurements with the forward-projection of the volume. In the following,
we call the volume of the current iteration just the iterate2 and we use the
abbrevation US to refer to the update step and FP/BP to the forward-
/backward projection.

start

initialization

terminate
PSR?

write buffer of the
current volume to storage

end

yes

no

forward project

back project

copy buffer to BP

copy buffer to FP

end

perform US

gone through
full subset?

yes

no

set subsets

Figure 3.4.1: PAP of the PSR,
pseudo code of the PSR is given
in Algorithm 1 at the end of
Subsection 3.4.4.

The comparison of the measure-
ments with the FP of the iterate
determines the contribution that is
backward-projected in order to intro-
duce a change (represented by the
US) of the current volume that is
more consistent with the measure-
ments. The program begins by al-
locating all the needed memory. Of
course, this includes memory for the
measurements Yi (introduced in Sec-
tion 2.4.2), the current iterate ρj and
the US of Equation 2.4.35, the FP
of ρj namely Ȳi (Equation 2.4.23),
and its K derivatives3 ∂

∂ski
Ȳi (~sni ).

Thus, the amount of memory can
be expressed by the numbers Nj

and Ni introduced in Section 2.1.2.
To give the reader a better under-
standing for such numbers, a typi-
cal head scan measured at a hospi-
tal (Section 4.2.3) results in Ni =
1280 × 960 × 496 ≈ 6 · 108 and
Nj = 512× 512× 400 ≈ 108, a short
scan protocol of the Siemens Artis
Zeego4 used in Section 4.2.1 yields
Ni = 640 × 480 × 133 ≈ 4 · 107

and Nj = 256 × 256 × 199 ≈ 106.
The very first CPU-implementation5
of the PSR took around one week
to execute 100 iterations for a short
scan data set. Note that the system

2The current iteration (n+ 1) refers to the current volume ρnj of Equation 2.4.35.
3In this work K is either 1,2 or 3.
4Artis Zeego C-arm system Siemens Healthcare, Germany
5This version suffered from a very inefficient backward-projector.
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matrix A of the above setting corre-
sponds to 6 ·108 ·108 = 6 ·1016 32-bit
floating point numbers. A has a lot of vanishing elements, but storing of
210PB is practically impossible. Thus, it is a necessity to calculate its ele-
ments aij on-the-fly.
The green line in Figure 3.4.1 indicates that the important memory is

represented by OpenCL buffers due to the multi-GPU implementation of
the algorithm 2.4.35. Those OpenCL buffers need to be written and read
accordingly. 20 iterations of PSR need around one hour on GPU hardware
that was bought in 2013. In the following subsections of this chapter the
most important aspects of the reconstruction routine are presented.
To decide what is mandatory after the iterations and when to stop the

iterative reconstruction (“terminate PSR?”) is described in the Subsection
3.4.4.

3.4.1 The initialization of the reconstruction program

The implementation used in this work is based on a simple “parameter text
file”. The user configurates the program by adjusting an ASCII based file.
One can categorize the user defined specifications (see Section 2.5) as:

• file paths to the C-arm CT data,

• geometry information,

• prior knowledge and

• hardware and software specific parameters.

File paths to the C-arm CT data which is stored as extinctions ε (32
bit precision) and projection matrices Ω (64 bit precision). Typically such
raw data is just a set of floating point numbers. In order to extract the
single detector pixel values, one needs to know how many pixels the detector
consists of and copy them into the memory as a series accordingly.
Geometry information such as the geometric size of the volume ~v, ~V , ~N
and detector settings are needed by the FP and the BP. The number of views
Ni, voxels Nj , and number of detector pixels in u, v-direction are needed as
well and will be read and copied to their memory counterparts.
Prior knowledge is mandatory in order to make the PSR work. File paths
to the known energy dependent material absorptionm(E), detector response
function D(E), and X-ray spectrum X(E) tables have to be set by the user.

Iterative reconstruction methods always include the feature of a proper
initialization. Usually this initialization can be the empty volume that is
basically ~ρ = 0 or an FBP reconstruction which is almost free in terms
of computational overload. To transform the volume from Hounsfield
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3.4 The PSR algorithm

units6 to density, we take the easy way out and assume that the object
consists of the first and most important material (e.g. water). Reminding
the reader of d1

j in Equation 2.4.33, we assume that the initialization volume
~µFBP ≈ m1 (EEff) ~ρ consists of this very material for the most part and that
the reconstruction leads to linear attenuation values that are contributed
from the effective energy given by X(E), D(E) and Equation 2.4.32.

For simulation studies (supported with a given ground truth) it might
come in handy to calculate the root mean square error (RMSE) of the iterate
during the reconstruction. The user can enable a feature that will export
the RMSE to the ground truth and the current iteration number to a text
file.
If the user has reconstructed this data set before, the object d1

j was stored
for later use. The user can refer to the file path as well and just load these
numbers instead of calculating them by the backward-projecting operator
one more time.
Hardware specific parameters evolve as a consequence of the GPU de-
vices that are used in order to increase the computational performance. If
the system consists of multiple GPU devices and the user wishes to use only
a certain number of those devices he or she can specify the hardware specific
name of the chip. The device offset can be utilized in case the user wishes
to keep the first devices open for the OS or other applications, e.g. another
instance of the PSR that is reconstructing a different data set. The default
list of OpenCL devices is used in case the user did not type a correct device
name7.
Software specific parameters contribute the largest amount of features
that the implementation offers to the user.

• If the user wants to ignore outer pixel areas of the detector - e.g.
because of collimator blur - he or she can define 4 numbers, which de-
termine the new rectangle that is cut out of the measured projections8.
When enabled, the feature also will change the projection matrices Ω
accordingly.

• The algorithm relies on spectral information encoded by the minimum
energy that is accounted for, and the sampling interval width of the
data tables. Those two numbers have to be defined9, i.e. if the tube

6Hounsfield units define the CT number by the attenuation of water µw. If µ is equal
to µw the corresponding CT number is equal to zero. This number is a measure of
how much promille the attenuation differs from water. Air has the CT number of
-1000. This defines the linear transformation of the original attenuation µ 7−→ µ[HU] =
µ−µw
µw−µair

· 1000.
7[createDevList(); setContributions(); @polyreco.cpp]
8[truncateProjectionsUniform(QRect sector, std::vector<float> *); @systemgeome-
try.cpp]

9[loadSpec(QString); @systemspectrum.cpp]
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voltage was set to 108keV, the used setting for such a scan was Emin =
28keV. Since the default value of sampling points is 40 energy bins
(should not be changed, but can be changed in the parameter file),
thus 4E = 2keV.

• The displacement model has the degree of freedom represented by
the smoothness parameter τ ′ and the density threshold values ρtissue
defined in 3.3.2 and 3.3.310.

• The parameter β of the regularization and the feature of averaging at
the end of one iteration step is enabled with a Boolean parameter.

• The number of iterations that the single angle subset is to be applied
can be chosen as well. Once these iterations are finished, the subset
size will successively be doubled and repeat the iterations by a different
amount given by another parameter. The subset size increases in this
manner until it contains a user defined number. Its default value is
1, but can be changed due to storage issues that are discussed in
Subsection 3.4.4.

• To terminate the iterative process the user can choose the maximum
amount of iterations or give a threshold εterminate value of the total
induced change

εterminate >
∣∣∣4ρn+1

∣∣∣ =
Nj∑
j=1

√(
ρn+1
j − ρnj

)2
(3.4.1)

to the volume defined by the update step 2.4.35.

• Since the C-arm system varies the electrical current that feeds the
X-ray source depending on the projection angle, the implementation
can use this information by basically weighting the induced change
to the volume depending on the specific number of the “current-time-
product”11.

• To account for scatter or “detector handicaps“ such as over-saturation
within the forward-projection model, certain features can be enabled
by a Boolean parameter that represents a switch to apply different
OpenCL kernels12, which are explained in Subsection 3.4.2.

• It can be recommended to use the so-called “outer volume feature”
in certain scenarios. It feeds the forward-projector a second volume

10[loadM_E(QString,QString,QString); defineFracMat(); @systemspectrum.cpp]
11[loadTubeVoltageModulation(QString, QVector<float> *); @polyreco.cpp]
12[initKernelsAndPrograms(); @polyreco.cpp]
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3.4 The PSR algorithm

memory that represents a surrounding voxel volume that is not visi-
ble in every single projection angle. The utilization of this feature is
justified and described in Section 4.2.3.

• To export intermediate reconstruction data in-between iterations, the
user can define the number of iterations after which such an export
shall happen. To avoid overflow of memory, the user can also choose
to just append one or more z-slices of the iterate to a file. This feature
is useful to get an understanding how exactly the volume ρj |z=const is
changing over the course of the iterations.

3.4.2 The forward-projection step
For every single detector pixel u, v-pair the ray caster needs to calculate13
the geometry information discussed in Equation 3.1.2 and derived from the
Householder method as paraphrased in Subsection 2.5. The routine of the
ray caster is applied14 to calculate the forward-projection (FP) as Equation
2.4.19 models the expected intensity depending on the volume (and prior
knowledge) to be

Ȳi (~si (~ρn)) =
�
R+
Ii (E) exp {−~m (E) · ~si (~ρn)} dE.

The integral over the photon energy E becomes a sum over discrete and
equidistant energy levels eM . In this work we used 40 equidistant sampling
points in the interval of interest. For a typical head scan this means we
sample the functions X(E) and D(E) plotted in Figure 2.2.2 by simply
averaging the corresponding tabulated numbers of the specific interval. The
same applies to mk(E) for each material. The data points are given by the
NIST data base for the energy-dependent attenuation coefficients [HS96].
At first, the ray caster has to calculate

~m (E) · ~si (~ρn) = [m1(E),m2(E),m3(E)]T ·
[
s1
i (~ρn) , s2

i (~ρn) , s3
i (~ρn)

]
for each energy interval eω. This is represented by 40 different 32 bit floating
point values which in the end get summed to calculate Ȳi (~si (~ρn)) and its
k = {1, 2, 3} derivatives ∂

∂ski
Ȳi (~si (~ρn)). In order to make the update step

less computationally intensive, one could consider lowering the amount of
energy intervals eω to 10 or even 3 as Wu et al. [WYMF14] indicated in
their work. Here the 40 intervals were chosen - basically to maximize the
accuracy - depending on the actual capacities of the GPU hardware that
was utilized15. As a short reminder, the three components mk represent the
13[void writeATandQRinto(double* , double* ); @spaghettipseudoinverse.cpp]
14[PSR_set_Y(...); @PSR_set_Y.cl]
158 GPU devices were used and made of 1 to 4 AMD FirePro S10000 graphics cards each

with two ’Tahiti’ chips.
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different material-depending attenuation tables. From this vantage point,
the three numbers stored in

[
s1
i (~ρn) , s2

i (~ρn) , s3
i (~ρn)

]
can be interpreted as

the forward-projections of those three specific materials that are mapped
only by the density values with respect to the model fk (ρ) (see Equation
3.3.2), which is realized by one function within the OpenCL kernel and two
if cases16.

After the ray caster has estimated the ω = 1, 2, . . . 40 numbers ~m (eω) ·
~si (~ρn), we can approximate the four numbers that represent the integrals of
Ȳi (~si (~ρn)) and ∂

∂ski
Ȳi (~si (~ρn)) as follows

Ȳi (~si (~ρn)) =
�
R+
Ii (E) exp {−~m (E) · ~si (~ρn)} dE

Ȳi (~si (~ρn)) ≈ 4E ·
40∑
ω=1

exp {−~m (eω) · ~si (~ρn)}D(eω)X(eω) (3.4.2)

∂

∂ski
Ȳi (~si (~ρn)) ≈ 4E ·

40∑
ω=1
{−mk (eω)} exp {−~m (eω) · ~si (~ρn)}D(eω)X(eω).

Of course, the interval width is determined by the overall energy range

4E = (Emax − Emin) /40.

Because the forward-projection consists of four numbers per detector pixel,
one can use the RGBA standard that GPU hardware is optimized for. Thus,
one forward-projection memory contains not only the intensity values of the
forward-projection Ȳi (~si (~ρn)) for each detector pixel, but also the three ma-
terial specific derivatives ∂

∂ski
Ȳi (~si (~ρn)) which represent a specific weighting

in the backward-projection 2.4.34

N̂j (~ρn) =
∑
i∈η

K∑
k=1

aijf
k
j

(
1− Yi

Ȳi (~si (~ρn)) + r̄i

)
∂

∂ski
Ȳi (~si (~ρn)) .

This “factor 4 memory” can limit the used subset size in the current imple-
mentation. With a higher count of angles used per subiteration, one would
need to increase the memory linearly to that number. The current imple-
mentation of the forward step is working “angle wise”, but uses one big
read-write memory. This problem can be addressed by possible implemen-
tation changes, but was not considered. No memory overflow was observed
when working on all the data sets that got processed in order to get results
with the PSR.
16[float frac_W(const float ,const float , const float ); @PSR_set_Y.cl]
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3.4 The PSR algorithm

Due to the need to calculate ∂
∂ski

Ȳi (~si (~ρn)) within the OpenCL kernel
and the factor 4 of memory read/write access it could be a very interest-
ing research topic to find a viable approximation yY (·) of ∂

∂ski
Ȳi (~si (~ρn)) ≈

yY
(
Ȳi (~si (~ρn))

)
. A motivation for such an idea could be a fast converging

series expansion of the integral around the centroid EEff as in dj Equation
2.4.31.

Additional features We note the possibility of adding a scatter estima-
tion ri in Equation 2.4.23 and eventually in Equation 2.4.34, a feature of the
PSR that works in simulations to reduce scatter artifacts. If one had an ap-
proximation provided by scatter kernel convolution of the projection space
or another viable method, one could possibly support the reconstruction
with such information to further increase the image quality.
In a similar fashion, the PSR routine can approximate detector satura-

tion. In the presence of objects consisting of high absorbing materials (a 5
Euro-cent coin or a metallic screw), it was observed that extinction values
are not consistent with the geometric size of such high absorbing objects (see
Subsection 4.2.2). The saturation model approximates such a behavior by a
hyperbolic tangent function ε̄ −→ a′ tanh (ε̄/a′) that becomes over-saturated
when the extinction value ε̄ reaches the value a′. The user can define a′ or
choose the “auto correcture” mode. Here the largest measured extinction
value is identified to be a′. The transformation of the extinction values is
performed within the OpenCL kernel17. Such an adaptation of the forward-
projection can be interpreted as a first order approximation of the detector
saturation, as this aspect is not covered within the mathematical derivation
of the update step.
The used OpenCL kernels that execute the ray caster are able to increase

their accuracy by casting more rays per detector pixel. The default value
of n = 1 one ray that targets at the center of the pixel can be increased
by the user. It is possible to cast any number n2 of rays per pixel element.
This is implemented by an outer loop in the OpenCL kernels that can adjust
the beam direction onto 4, 9, 16,... equidistant points on the detector pixel.
When terminating the loop, one needs just to take the sum of all calculated
forward-projections and multiply it by a factor of n−2. With large numbers
(n > 10) the used AMD FirePro S10000 that were used started to crash due
to the long execution times by single kernels, which is a well known behavior
in GPU parallelization18.

The algorithm also supports the option to forward-project a second volume
that surrounds the main volume. The outer volume feature reduces the
parts of the ray casting that account for this region to constant step length
17[PSR_set_Y_tanh(...); @PSR_set_Y_tanh.cl]
18NVIDIA’s cuda has the same problems with shutting down when a kernel exceeds the

threshold of the valid execution time.
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sampling. The information gain is used when calculating the final intensity.
This enables the proper consideration of objects that are visible in only a
limited number of X-ray projections (e.g. a patient table). The necessity of
such a feature is introduced in the Section 4.1.5.

Spectral forward-projection The framework of the forward-projection al-
gorithm was utilized by another program designed to calculate forward-
projections of arbitrary objects and geometries. An interesting purpose is a
proper simulation of a bowtie filter or the recently developed granting based
spectral CT of Stayman et al. [STG+20]. To add the effects of such a filter
to the forward-projections, one needs to save the spectral absorption caused
by the filter in front of the X-ray source. In this case, the 40 energy bins
worth of information need to be stored. To project an object within this set-
ting, this data needs to be loaded as an initial state to each casted ray (with
respect to the geometry) to be considered by the final step of calculating the
exctinction values or the intensity.
Also this feature would add the possibility to forward-project more then

3 materials, as different materials could be projected in a series and added
linearly in those 40 energy bins.
This forward-projector could be of interest for acquiring simulated data

for studies or even to enlarge a data base for certain machine learning tasks.

3.4.3 The backward-projection step

The backward-projecting19 (BP) operation N̂j = ∑
i∈η aij . . . is performed

when the FP operation has terminated. In general, it is not known which
voxels j are connected to which detector pixel i in the current subset of
angles. This is the reason why the “shadow projection” concept of the voxel-
driven BP in Section 3.2 is used.
The RGBA memory that represents Ȳi (~si (~ρn)) and ∂

∂ski
Ȳi (~si (~ρn)) is

handed over as a constant reference. This is possible because the kernels
share the same GPU memory. Since η is a set of indices which encode full
projection angles, one needs to hand over the full FP. The computational
effort could be reduced if prior knowledge about the specific geometry is
used. The circle trajectory is the most common trajectory in C-arm CT
protocols. The rotation around the z-axis of the source-detector setup could
be used to find a fast solution that computes which parts of the memory that
represent the FP are never used. Since the geometry is known beforehand
(see Section 2.5), the corresponding memory could be identified and ignored.
Just to ignore these parts of the memory could increase the performance by
reducing the read/write operations.

19[PSR_set_N(...); @PSR_set_N.cl]
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3.4 The PSR algorithm

3.4.4 The iteration of the update step
In order to calculate the next iterate ~ρn+1, we still need to apply the reg-
ularization that results in the term βR defined in 2.4.4, hence the need of
calculating the two terms β ∂S

∂ρj
and β ∂2S

∂ρ2
j
in Equation 2.4.35. The Huber

loss function ψ4ρtissue (4ρj) of the difference of density 4ρj with respect to
the neighbor voxels around j was chosen, which is quadratic for small and
linear for large differences. In terms of image processing this property com-
bines high quality of the low contrast of the tissue range and the sharpness
of edges.

ψ4ρtissue (4ρj) =
{
4ρ2

j/2 , |4ρj | < 4ρtissue
4ρtissue (|4ρj | − 4ρtissue/2) , else

Note that we adapted the parameter (a −→ 4ρtissue) compared to Equa-
tion 2.4.11 and 2.4.12 as well. In the early version of this regularization
approach we approximated this loss function by a simple and analytical sur-
rogate cosh (x) := {ex + e−x} /2 approach, but we found that the direct
if-else case and the arithmetic operations of ψ4ρtissue (4ρj) were speeding
up the execution of the respective OpenCL kernel20. Since we only need
derivatives of

S (~ρ; ~ρn) =
Nj∑
j=1

∑
ξj∈N.N. of j

wξψ4ρtissue

(
ρj − ρnξj

)
,

the first derivative

∂S

∂ρj

∣∣∣∣∣
~ρ=~ρn

=
Nj∑
j=1

∑
ξj∈N.N. of j

wξ

(
∂

∂ρj
ψ4ρtissue

(
ρj − ρnξj

))∣∣∣∣∣
~ρ=~ρn

can be implemented as a clamp operation21 on the interval of [−4ρtissue/2,4ρtissue/2]
and

∂2S

∂ρ2
j

∣∣∣∣∣
~ρ=~ρn

=
Nj∑
j=1

∑
ξj∈N.N. of j

wξ

(
∂2

∂ρ2
j

ψ4ρtissue

(
ρj − ρnξj

))∣∣∣∣∣
~ρ=~ρn

becomes only a sign operation and a multiplication with the clamp oper-
ation that was already done in the previous step. For the sake of clarity
20[PSR_set_reg(...); @PSR_set_reg.cl]
21The clamp operation usually assigns a constant cb to each input x below a threshold

value Tb and another constant ca to each x above a threshold value T a. Between those
thresholds, x is not changed. Hence, such an operation can be interpreted as a sigmoid
function that consists of three linear piecewise functions of which two are the trivial
constants and the “connection” is the identity operator.
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we can state that the variable ρj in the argument becomes ρnj after the dif-
ferentiation which implies that the differences of the nearest neighbors are
calculated on the very same volume memory of the current iterate ρnj .

Once the mandatory memory has been updated according to the previous
subsections, the term ρn+1

j (~ρn) can be approximated with the representa-

tions of N̂j (~ρn), ∂S
∂ρj

∣∣∣
~ρ=~ρn

, and ∂2S
∂ρ2
j

∣∣∣∣
~ρ=~ρn

to

ρn+1
j (~ρn) =

ρnj −
MN̂j + β ∂S

∂ρj

∣∣∣
~ρ=~ρn

d1
j + β ∂2S

∂ρ2
j

∣∣∣∣
~ρ=~ρn


+

.

Again, d1
j and β are iteration-independent constants and M is the number

of subsets η.

Algorithm 1 PSR
1: Compute or load existing dj utilizing Equation 2.4.33
2: Initialize volume ρ0

j with zero or load a reconstruction
3: Initialize subsets η
4: repeat . if all subsets were used once one iteration is finished
5: for all subsets η = 1, . . . ,M do
6: Compute Ȳi and ∂

∂ski
Ȳi using Equation 2.4.22 and 3.4.2

ski (~ρn) = ∑Nj
j=1 ρ

n
j a

k
ij

Ȳi (~si (~ρn)) ≈ 4E ·∑40
ω=1 exp {−~m (eω) · ~si (~ρn)}D(eω)X(eω)

∇kȲi (~si (~ρn)) ≈ 4E·∑40
ω=1 {−mk (eω)} exp {−~m (eω) · ~si (~ρn)}D(eω)X(eω)

7: Compute N̂j using Equation 2.4.34
N̂j = ∑

i∈η
∑K
k=1 aijf

k
j

(
1− Yi

Ȳi(~si(~ρn))+r̄i

)
∂
∂ski

Ȳi (~si (~ρn))
8: Compute 4ρn+1

j for all j using Equation 2.4.35

ρn+1
j =

ρnj − MN̂j+β ∂S
∂ρj

d1
j+β

∂2S
∂ρ2
j


+

9: end for
10: until n+ 1 > Maximum Iterations Or εterminate >

∣∣4ρn+1∣∣
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3.4.5 The multi-GPU aspects of parallelization and buffer access
minimization

This subsection provides inside knowledge about the OpenCL parallelization
and the buffer management approach respectively. It will guide the inter-
ested reader with explanations of the source code that executes the subiter-
ations framed in green in Figure 3.4.1 and explain some specific aspects one
needs to consider when using multi-GPU approaches.

Three important OpenCL buffers represent the iterate ρnj :

• the BP N̂j which allocates the same amount of memory as the iterate,

• the FP that includes Ȳi (~si (~ρn)) and its k = {1, 2, 3} derivatives
∂
∂ski

Ȳi (~si (~ρn)) which require the amount of detector pixels multiplied
by the factor of 4 and of the maximum amount of angles that the
biggest subset can contain.

If the subset η contains more then one projection angle, the FP kernels are
looped over this exact amount of times and write at the position of the buffer
with respect to the blockwise memory assignment. The maximum buffer size
needed is determined by the user’s choice of the biggest subset size were the
default corresponds to one single subset.
The FP is divided in v-direction of the detector and split between all

GPU devices that are actively picked by the user. For a circular scan tra-
jectory this kind of separation gives best performance results, because the
v-direction is usually approximately perpendicular to the axis of rotation
of this specific trajectory. The FP workgroup consists of single pixel coor-
dinates u, v. Thus, for each detector pixel one instance of the FP kernel
is running. After the FP calculation is finished, scatter estimations can be
added if available and chosen by the user.
The “volume” buffers that represent ρnj and N̂j are divided into y-blocks

and split between all GPU devices as well. Then, the BP workgroups consist
of single x, y-pairs and the kernels “crawl up” in z-direction. Proceeding in
this way, the execution times of those kernels will have low variance, so this
scheme is chosen for performance reasons as well. Since it is not known which
v-blocks of the FP contribute to the BP, one needs to copy each FP buffer
to each BP y-block. So there is an inherent trade off between number of
GPU devices and the detector size. This is a bottleneck to the performance
of the PSR implementation on multiple GPU’s with “small” detector sizes
and number of projections, where one device will be enough. In fact, on two
state-of-the-art NVIDIA GeForce RTX 2080 Ti graphics cards there is not
even an observable benefit by parallelizing over these devices.
Technically it is possible to perform the regularization β∂S/∂ρj and β∂2S/∂ρ2

j

step after finishing the calculation of N̂j . This would require copying the
iterate ρnj to the same kernels that calculate the BP. A GPU-coder “rule of
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thumb” is that it is almost never a problem to start more kernels with smaller
tasks then to perform all tasks in one kernel, when there is no overhead
produced by copying of buffers. This holds true, because the regularization
kernels and the BP kernels share the same volume buffer. Thus, it will lower
the variance of kernel execution times as well.
Motivated by this fact, the update step is done in one kernel (see Subsec-

tion 3.4.4) that is given the buffer of the iterate and the BP. The workgroup
is selected in the same way as the BP is parallelized. At the very moment
those calculations are finished, the BP buffer contains the next iterate which
needs to be copied to the FP buffer and the “old volume” buffer ρnj of the
regularization kernels.
If the user has enabled the averaging feature, this new iterate gets added

in a separately allocated memory in the RAM and will be used after the full
subset has undergone this procedure. The averaging feature will trigger at
the end of the subset cycle (which is one iteration) and basically averages
over every single volume that was produced in each subiteration of this
subset.
It is worth mentioning that before a new iteration starts, the current set

of projection angles is permuted randomly22 to increase induced change of
the update step. The theory of compressed sensing suggests that shuffling
the projection angles creates the most beneficial update step on average.
For the sake of clarity this means that the actual sequence that decides
which angle is inducing a change in N̂j is chosen randomly from the subset
that is determined by subset size of the current position in the ordered
subset scheme. Candes, Romberg and Tao provided groundbreaking results
in 2006, showing that the reconstruction of an undersampled object has
the best outcome if the system matrix A is a Gaussian random matrix
[CRT06]. Hence, the more random your sampling points are, the better the
reconstruction can become.
At the end of the iteration, certain procedures are executed, e.g. saving

the iterate on the hard disk. Features like averaging, calculating check sums
(like an RMSE to a ground truth) or writing the overall change of the volume
into a text file can be applied as well.

22[permuteSubsets(); @polyreco.cpp]
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Confronting the PSR with projection data recorded by CT devices can be
a delicate task. Note that the current implementation is based around the
geometry described in Section 2.5. Hence, to work with CT data, one would
need to adapt the geometry of the curved detector first.

This chapter describes the different experiments that were carried out as
well as the application of the PSR on real data received from the university
hospital Magdeburg. Real C-arm CT data was used to show the viability
of the PSR as a potential enhancement of diagnostics in hospitals. Specific
simulations were performed to study detailed aspects of the implementation
and its bottlenecks.The used projection matrices are given by the C-arm
systems. They cover a 200° angle of a circular scan trajectory sampled
with 496 or 248 views. The detector resolution is 1240 × 960 with 0.308 ×
0.308 mm2 or 616× 480 with 0.616× 0.616 mm2. In this section we call the
first setting “geometry A” and the latter setting “geometry B”.

0°

200°

Figure 4.0.1: Scheme of the 200° Scan

The first subsets consisted of a sin-
gle angle. Thus, the FP of a single
angle is performed, the BP within
that view is performed. Repeating
this for each angle once terminates
one iteration. Such an iteration is
depicted with the green closed line
in Figure 3.4.1. At the beginning
of each iteration the subsets are ran-
domized with respect to the specific
subset level. After a certain amount
of iterations, the subset level was in-
creased to contain more angles. The
procedures were repeated until the amount of iterations reaches a user-
defined maximum number.

4.1 Simulations

As already described in Subsection 3.2, the current implementation of the
PSR uses non-adjugated operators that represent the ray based forward-
projection (FP, see Section 3.1) and the voxel based backward-projection
(BP, see se. 3.2). Hence, the RMSE of reconstructions of perfect projection

81



4 Results

data cannot converge to zero. Thus, “perfect projection data” refers to the
fact, that such data was produced by reading out the forward-projection
storage filled by the FP of the ground truth volume. Software phantoms
were used which consisted of water and bone [AMN+13]. In some cases a
metal object was manually added to the phantom. The forward-projector
described in Section 3.4.2 and ε̄poly in Equation 2.3.3 was used to create
artificial extinction projection data. It is assumed to deliver appropriate
projection values that are similar to the real C-arm data that is received
from the devices, as the very same projection geometry was used. Note that
the projection matrices used for those kind of simulations originated from
the C-arm systems.
Simulation experiments were carried out to obtain an intuition about the

underlying model of physics. If the PSR prior knowledge is given false
information about the materials and X-ray spectrum X (E) it is expected to
observe certain artifacts in the reconstruction. The commonly used subset
scheme runs 200 iterations.
We focus only on one slide of the reconstruction to emphasize the char-

acteristics of the PSR and discuss certain aspects such as RMSE or cross
section plots that show cupping or blurring.
The number of iterations is set to be very high in simulations. This is to

ensure convergence but also to develop a better intuition for the metrics and
the compared appearence of the images. When reconstructing real data, the
number of iterations is lower compared to the simulations. As real data is
corrupted by noise, detector inhomogeneities, image corrections (e.g. scatter
correction and over exposure correction) and not “perfect” compared to the
forward-projection model, it is impossible to reach the accuracy of simulation
results.

Software phantoms

The software phantoms used represent the central slice of a reconstruction
analog to a real setting. A slice of a head phantom [AMN+13] was used
and copied into 5 z-slices of 256× 256× 5 voxels with a spatial resolution of
1.0×1.0×1.0 mm3. The tissue region inside the skull can contain low contrast
information as in Figure 4.1.1. Additionally the tissue can be represented
by a constant but contain a high absorbing metal object as in Figure 4.1.8.
To investigate the special case of the measurements done with real data,

an additional software phantom was used that mimics the setting with the
parameters 256 × 256 × 200 voxels with a spatial resolution of 1.0 × 1.0 ×
1.0 mm3 and a disc that contains iron (Fe).
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Figure 4.1.1: GT vs. MSR vs. PSR window 0.95 − 1.05 g/cm3. The MSR
shows the characteristic cupping artifact whereas the PSR is converging
accordingly.

4.1.1 Monochromatic approximation

An extreme case of such false prior knowledge is the usual assumption of
monochromatic X-ray sources. The so-called MSR is defined by giving the
PSR only a monochromatic spectrum and a single material as prior knowl-
edge. Thus, the PSR reduces to a monochromatic but statistical maximum
likelihood reconstruction.

Imported data The algorithm recieves polychromatic projection data that
was produced with the full information about the software phantom includ-
ing the materials and the X-ray spectrum. Geometry A was used.

PSR configuration The material- and energy dependent attenuation tables
are initialized as m1(E) = m2(E) = m3(E) = mwater(E) and the X-ray
spectrum is initialized as a single peak X(E) = X0δ (E − Eeff). Note that
the effective energy lies around 66keV. The first subsets were iterated 40
times, after that each higher subset level was iterated 20 times. The overall
number of iterations was capped at 200.

Results The software phantom (the ground truth) consists of an outer
tissue area, a skull area (cortical bone) and inner tissue area with 4 different
constant value types. The MSR shows clear cupping and spill-over of the
bones. The small dots of higher density values are less visible due to the
lower contrast of the MSR.

Remarks The MSR shows the characteristic beam hardening induced ar-
tifacts such as cupping and spill over. The magnitude of the cupping is
comparable to cupping that is visible in real head scan data (e.g. in the
first row of Figure 4.2.10). As the PSR covers the physics of the absorption
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process it is not surprising that beam hardening artifacts occur when falsely
initialized with a monochromatic spectrum.

The next interesting question is concerned with the accuracy of the prior
knowledge about the X-ray spectrum.
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4.1 Simulations

4.1.2 Potential spectral mismatches of I(E)

Prior knowledge about the X-ray spectrum is a necessity to the PSR.
Since it is impossible to perfectly measure the spetrum that was used in
a CT scan , it is of interest how the convergence of the PSR is changing
with increasing uncertainty of the spectrum. Instead of the exact spec-
trum that was used to create the projections of the above experiment,
the PSR got initialized with lower sampled piecewise constant spectra.

Figure 4.1.2: Sampled X-ray
spectra with a correspond-
ing energy range of 28 to 108
keV. The sampling levels are
40,30,20,15,10,9,8,7,6,5,4,3,2 and
1.

Here, we approximate the spectrum
with only one constant, to 10 con-
stants and then 15,20,30. As the
PSR uses 40 equidistant sampling
points of the spectrum, it is expected
that the resulting polychromatic re-
constructions will suffer from those
mismatches. Additionally to the ex-
periment above, it was also initial-
ized with a monochromatic spectrum
that has a peak at a different posi-
tion and is zero elsewhere. Here it
was 30 keV and 90 keV and at Eeff =
66 keV.
As the detector response impacts

I (E) = D (E) · X (E) in the same
way as the spectrum, different ap-
proximations were tested as well. A
constant, a linear and a “ramp” func-
tion were used. The ramp is defined as two piecewise linear functions that
are zero on the first and the last energy bin of the ramp, growing until
Eeff = 66 keV and decaying linearly again.

Imported data The algorithm recieves polychromatic projection data that
was produced with the full information about the software phantom includ-
ing the materials and the X-ray spectrum. Geometry A was used.

PSR configuration 200 iterations except for one dataset were used. The
density is set to ρ1 = 1.0 g/cm3 and ρ2 = 1.9 g/cm3 accordingly. The spectra
initialization or the detector response differ for each experiment. As Fig-
ure 4.1.2 suggests, several different spectra were used. Additionally three
monochromatic spectra and three different detector response functions were
used. The “perfect” spectrum was used in these three cases.
Finally the perfect case was iterated over 5,000 iterations to compare con-

vergence properties. A similar reconstruction has been done with 10,000
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0.96 1.02 0.97 1.03 1.00 1.04 1.00 1.04

0.52 0.55 1.10 1.16 0.98 1.03 1.00 1.04

1 const spec 2 const spec 3 const spec 4 const spec

mono 30keV spec mono 90keV spec mono  Ee�  spec  40 const spec (perfect)

1.01 1.05

constant det resp

1.03 1.07

linear det resp

1.04 1.08

ramp Ee� det resp

1.00 1.04

40 const spec 5k itr

Figure 4.1.3: Head phantom reconstructions with different I(E) that are de-
picted in Figure 4.1.2. The first row shows the PSR with differently sam-
pled spectra. The second row depicts differences of the MSR that was fed
with different monochromatic spectra and compares them with the per-
fectly sampled spectrum PSR. The third row shows the performance of
the PSR when initialized with different detector response functions D(E)
and shows the perfectly initialized PSR that was iterated over 5000 times.

iterations on the skull phantom that contains a disc of nitinol. This recon-
struction also was given the perfect projection data.

Results Using only one or two constants as an approximation of the X-ray
spectrum results in an inverse cupping effect. With three or more intervals,
a proper reconstruction with the PSR is feasible. These results are observed
in Figure 4.1.3.
Using the monochromatic spectrum with E0 = 30 keV, we can observe

a huge loss in low-contrast image quality and an overall decrease of voxel
values. Since every material is increasing in terms of attenuation when low-
ering the photon energy1, the density of the resulting reconstruction needs
to drop compared to the values of the reconstruction that is initialized with
E0 = 90 keV.

1see Figure 2.3.1 and Figure 2.3.2
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Figure 4.1.4: The cross section plots of the head phantom, which was recon-
structed by the PSR, that were initialized with different spectra I(E).
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Figure 4.1.5: Convergency plots of the PSR of the head-disc phantom con-
sisting of the RMSE over the course of iterations and the absolute value
of the update step |4~ρ|. Note that the RMSE was only calculated for a
single slice while the US considers the whole volume.
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Peaking the spectrum at Eeff leads to average tissue values comparable to
the true values of the ground truth (averaging over the cupping). Those ob-
servations are the result of the separation approach established with Equa-
tion 2.4.20: µ = m · ρ and support the ansatz that sampling around the
effective energy is a good first order approximation.

Remarks Sampling the X-ray spectrum with at least 3 points drastically
improves the reconstruction quality. This observation can be explained by
the fact that a typical X-ray spectrum “looks like a quadratic function”,
which has 3 degrees of freedom. This idea is already in use as Wu et al.
have shown massive performance boosts in their beam hardening correction
approach [WYMF14].
The skull phantom that is used in the following subsections was recon-

structed with the perfect setting. The convergence plots in Figure 4.1.5 show
a stagnation after a few hundred iterations. The RMSE remains constant
after the reconstruction “has finished”.

4.1.3 Scattered radiation

Since typical X-ray spectra deliver photon energies between 10 and 100 keV,
Compton scattering is the most dominant process that attenuates photons
while propagating along the original direction. These photons lose energy
and change direction (see Section 2.3.3). Detector pixels that are hit by such
photons falsely interpret the corresponding signal as non attenuated photons
of the original pencil beam that is targeting this detector element. Small
scattering angles are more likely to be observed because the energy loss of
the scattered photon increases with the angle. Thus, scattered radiation
blurs the measurement input.
There were two software phantoms scanned with an artificial scatter signal

to see how the PSR performs under such circumstances.

Imported data A skull phantom that is filled with perfect homogenous
voxels that consist of water, was modified by an additional metal (NiTi)
object represented by density values of 6.45 g/cm3. The used shape mimics
a disc.
A second phantom mimics the 5 Euro-cent coin setup in Subsection 4.2.2.

It is a cuboid of water and a coin of iron (Fe) placed within. The density is
set to 1.0 g/cm3 or 7.874 g/cm3 accordingly.
Polychromatic projections of these phantoms were produced. The used

approximation to add “scatter signal” was a convolution with an appropriate
kernel in the projection domain (represented by extinction values). This is
a viable approach that is used in state-of-the-art methods to estimate for
scatter radiation in X-ray simulation techniques [BTK99,SSL10]. We applied
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ground truth                   PSR w/o scatter                 PSR w/scatter                PSR w/scatter corr 

0.95                               1.05 0.95                              1.05 0.75                              1.05 0.95 1.05

Figure 4.1.6: Disc: GT vs. perfect data PSR and uncorr PSR vs corr PSR
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ground truth                    

0.5                               1.5 

                            PSR                                          PSR w/scatter proj                

0.0                               2.5 

               PSR w/scatter corr

0.5                               1.5 

Figure 4.1.7: Coin: GT vs perfect data PSR and uncorr PSR vs corr PSR

a convolution with a Gaussian function of σ = 50pixel to the forward-
projection of the software phantom. The magnitude of scattered extinction
values 50% of the original signal. Glover reports magnitudes of around 10%
[Glo82]. These numbers were stored separately to feed them into the PSR
to enable the scatter correction feature and were subtracted of the original
projections to build the projections containing the scatter signal.

PSR configuration It is observable that on simulated data, the single angle
subset iterations lead to the biggest change in the volume domain, hence
|4~ρ| =

∣∣∣ ~ρn+1 − ~ρn
∣∣∣ is largest when using only one angle. This is the reason

why the PSR was iterated over the single angle subset for 900 times before
reducing the subset level according to the scheme presented in Section 3.4.
Setting B and threshold values according to TiNi or Fe were chosen. The
regularization parameter was set to β = 0.1.

Results The p-values for testing the null hypothesis that there is no rela-
tionship between the different reconstructions and the ground truth is iden-
tified as a measure of correlation between those images. Scatter typically
reduced the overall voxel values. This is due to the scatter approximation
that is basically lowering the extinction values.
The error introduced due to scatter can be reduced but not eliminated.

The coin seems to be a more difficult task for the PSR as the perfect data
reconstruction still has an RMSE that is more then 3 times higher than the
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Figure 4.1.8: Disc: cross section along the line plotted in Figure 4.1.6
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Figure 4.1.9: Coin: cross section along the red line indicator in Figure 4.1.7.
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Figure 4.1.10: Coin: cross section along the blue line indicator in Figure
4.1.7.
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Figure 4.1.11: RMSE and US are plotted for the scatter case of the disc
phantom.
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disc phantom RMSE of slice
[
g/cm3] min value

[
g/cm3] correlation

PSR perfect data 0.83 0.99 0.9999982
uncorrected PSR - 0.22 0.9976777
corrected PSR 1.25 0.987 0.9999971
coin phantom RMSE of slice

[
g/cm3] min value

[
g/cm3] correlation

PSR perfect data 4.13 0.93 0.999956
uncorrected PSR - 0.0 0.9473
corrected PSR 4.34 0.78 0.9996

Table 4.1: Computed metrics of reconstructed phantoms with differently ini-
tialized projections with regard to the scatter model. The RMSE of the
uncorrected reconstructions is left out because of the overall offset ob-
served in grey values depicted in Figure 4.1.6 and Figure 4.1.7. The min
value refers to the smallest voxel value around the metal object. The
correlation was calculated by the MATLAB command corrcoef(A,B).

RMSE of the disc reconstruction. This is the RMSE of the depicted slices
with respect to the known ground truth. The smallest voxel value around
the metal object is an indicator of the quality of the reconstruction as this
value should lie around the value of the water phantom of 1.0g/cm3.

Remarks The feature of scatter artifact reduction is viable when supported
with a proper scatter estimation. Here, the perfect scatter estimation was
given, resulting in an almost identical reconstruction compared to the scat-
ter free PSR. The uncorrected PSR suffers from heavy shadow artifacts
surrounding the metal object. The PSR can compensate for scatter induced
artifacts when supported with a proper estimation. This is indicated by the
similarity between the scatter free reconstruction and the scatter compen-
sated version in Figure 4.1.11.

The sudden stagnation of the absolute value of the US is caused by the
changing subset level. One can explain this by the fact that the number of
update steps performed in one iteration of a certain subset level is decreasing
the more angles a subset consists of. This means that the factor M is not
sufficiently chosen in terms of convergence. A design change in M (|ξ|) or
a manual relaxation (see Equation 2.4.35) with respect to the subset level
could enhance the convergence speed while conserving the image quality.
Alternatively one could change the design of dj . A discussion by Fessler can
be found in [KPTF13].

4.1.4 Detector saturation effects

As metallic objects cause even stronger beam hardening artifacts then bone
and tissue, it is of importance to observe the behavior of the PSR in presence
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PSR                            PSR w/tanh                  PSR w/tanh 90°rot          PSR w/tanh auto corr

0.95                               1.05 0.75                              1.05 0.75                               1.05 0.90                               1.20

Figure 4.1.12: The perfect data PSR vs. uncorr PSR (rotated and non ro-
tated) vs. corr PSR show distinct artifacts.

of very high absorption rates and even in cases of photon starvation. In pres-
ence of such objects (a coin or a metallic screw) it is observed that extinction
values are not consistent with the geometric size of such high absorbing ob-
jects (see Subsection 4.2.2). A simple saturation model approximates such a
behavior by a hyperbolic tangent function ε̄ 7−→ a′ tanh (ε̄/a′) that becomes
over-saturated when the extinction value ε̄ reaches the value a′.

Around this extinction value a′ the forward-projection becomes non-linear
in its argument due to the nature of the used a′ tanh (ε̄/a′) that reaches the
value a′ when ε̄ −→∞.

Imported data This model was applied as post processing on the perfect
data produced with the forward-projection of the skull phantom that in-
cludes a disc and the water cuboid that mimics the coin setup. a′ was set
to 5.0. Geometry B was used with respect to the real data case in Section
4.2.2.

The skull phantom is the same that is used in Section 4.1.3. Since the
artifact that is caused by the non-linearity is found to be non-isotropic, the
PSR was also initialized with projections that have the same geometry but
the phantom was transposed slice per slice. Note that this is not a real
rotation, but more a reflection of the image on its diagonal (e.g. with a
Householder transformation).

PSR configuration Iterations, thresholds and regularization were chosen
to be identical to the scatter experiments in Section 4.1.3.

Results The modelled saturation leads to characteristic artifacts within the
PSR. It is observed that there are areas of higher and lower voxel values.
These areas depend on the shape of the phantom.
Rotating the disc phantom results in a rotation of the artifact as well (see

Figure 4.1.12). The orientation of the brighter and darker areas changes
when rotating the coin out of the plane of rotation of the circular scanning
trajectory.
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0.5                              1.5 

ground truth                           

0.5                               1.5 
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0.5                               1.5 
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Figure 4.1.13: The GT vs. perfect data PSR vs. uncorrected PSR vs. cor-
rected PSR of the coin phantom which were initialized with tanh-saturated
projections show only small artifacts.
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Figure 4.1.14: The cross section plot of the disc phantom PSR that was
initialized with tanh-saturated projections.
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Figure 4.1.15: The cross section plot along the thickness of the coin phantom
phantom PSR that was initialized with tanh-saturated projections.
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Figure 4.1.16: The cross section plot along the diameter of the coin phantom
PSR that was initialized with tanh-saturated projections.
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disc phantom RMSE of slice
[
g/cm3] min value

[
g/cm3] correlation

PSR perfect data 0.83 0.99 0.9999982
uncorrected PSR 156.36 0.0 0.9618974
corrected PSR 126.59 0.0 0.9717095
coin phantom RMSE of slice

[
g/cm3] min value

[
g/cm3] correlation

PSR perfect data 4.13 0.93 0.999956
uncorrected PSR 6.86 4 · 10−5 0.9980199
corrected PSR 4.12 0.88 0.999925

Table 4.2: Computed metrics of reconstructed phantoms with differently ini-
tialized projections with regard to the detector saturation model. The min
value refers to the smallest voxel value around the metal object. The cor-
relation was calculated by the MATLAB command corrcoef(A,B).

Remarks Since the saturation effect is modelled as a non-linearity, the
induced artifacts are similar to beam hardening artifacts. Shadow artifacts
and brighter areas perpendicular to these shadows are observable in Figure
4.1.12. As such artifacts are not isotropic, a 90° rotation of this phantom
was scanned and the artifact does not change its relative direction. Hence,
the artifacts are independent on the scanning geometry depicted in Figure
4.0.1. The artifact changes when the coin is placed perpendicular to the
plane of rotation of the scanning protocol.
Comparing the tendency of increasing and decreasing voxel values around

the metal object with the scatter experiments, one can see that these arti-
facts appear to cancel each other out (compare with Figure 4.1.7).
During the iterations it was observed that early iterates showed a dark

shadow artifact similar to artifacts that are caused by scatter right where
the higher iterations cause brighter regions. This leads to the conclusion
that the statistical weightings of the PSR have a larger impact on the early
iterations.

4.1.5 Truncation of the outer volume in the projection space

As clinical data always contains the patient table in some projections but
never in each view, we can speak of truncation of such a table in the projec-
tion space. Typically the tables are designed to add very little attenuation
to the measurements and common reconstruction techniques do not suffer
alot from this truncation [BBR19]. However, the PSR is sensitive to such a
setting. As these objects are typically outside of the reconstruction volume,
the PSR tends to “smear” increased voxel values to the borders of the vol-
ume. Since the object contributes only to a limited number of views, but
the forward-projection step accounts for those voxels in each view, such a
truncation setting leads to inconsistencies of the forward projection model.
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Ultimately, this results in reconstruction artifacts. It is not needed to accu-
rately reconstruct the truncated objects but only to somehow approximate
its impact on the measurements compared to the forward-projection.

This is mainly caused by the structure of the denominator d1
j within the

US (Equation 2.4.34). Comparing this US to the standard ART approach
of the Kaczmarz method (Equation 2.1.6) one can state that the weighting
with the reciprocal of ~aTik · ~aik can be roughly interpreted as the square of
the path length of the i-th ray:

~aTi · ~ai =
∑
j

(aij)2 ≤

∑
j

|aij |

2

= γ2
i .

The backward-projection

d1
j ∝

Ni∑
i=1

γiaijYi

on the other hand is only weighted with the path length which makes a
difference in the outer volume (OV) parts that are not fully covered by each
projection [FBMR17].

To remove the inconsistency of the forward projection, the algorithm needs
to support the accurate position of the attenuating voxels that are “out
of scope” in the default settings. The first idea is to simply enlarge the
reconstruction volume. However, the latter would reduce the resolution and
the first would increase the needed memory and computational effort. Thus,
Moore’s law would solve the problem at some point but this thesis cannot
wait any longer. The idea proposed in this work amalgamates both of the
two ideas.

A second volume is defined to represent the OV. The forward-projector
is handed the OV that is designed to fully cover the reconstruction volume
(RV). The ray caster is modified to incorporate the OV. To reduce the
induced computational overhead, the OV is designed to be a constant. Thus,
not to be object of the update step at the end of each iteration. To decrease
memory, the OV can have a very coarse voxel resolution. Remember, the
accurate reconstruction of the OV is not of interest. Additionally, the ray
caster does not need to be as accurate as presented in Section 3.4.2. The
current implementation uses the built-in feature of interpolating between
nearest neighbor voxels as such an operation comes basically for free on
OpenCL devices.

Directly measuring the OV (e.g. by a CAD model of the table, pho-
tographing or other possible complicated techniques) and trying to calibrate
this kind of prior knowledge would probably lead to a bottleneck of align-
ment problems and might be over the top in terms of needed quality.

In order to obtain a sufficient approximation of the OV that is consistent
within the geometry of the PSR, one can simply enlarge the voxel size until
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the object fits in the RV and perform a few iterations of ordinary PSR to get
a good approximation of the shape and position. This reconstruction is then
consistent with the forward model. To shorten the reconstruction time of the
larger volume, it is considered to use only a fraction of views. Additionally,
a high regularization can be applied to smoothen potential artifacts caused
by this angular undersampling. Hence, enlarging the physical size of the
reconstruction volume gives a hint about the truncated structures which
might already represent a sufficient approximation and eventually remove
the truncation artifacts. This approach is an extension of Ziegler et al.
[ZNG08].

Imported data The software phantom is modified by adding a box of low
attenuating voxels at the bottom of the doubled volume. These voxels mimic
the truncated table in the OV. Polychromatic forward-projections were cal-
culated. Note that this means in particular, the geometry matrices were
unchanged, hence the table was truncated similar to a realistic setup.

PSR configuration We performed 200 iterations of PSR with different set-
tings such as standard size and one with enabled outer volume feature (with
the perfect outer volume and an estimated outer volume). The forward-
projection step of the PSR is handed an additional volume that is “out of
scope” (see Section 3.4.2).
Only every 4th projection angle is considered for the rough estimation of

the OV reconstruction. It was calculated with only 20 iterations of PSR of
doubled physical voxel size and an increased regularization parameter 100·β.
In this way, the table is represented by a smooth object within the OV.

Results The lower sampled PSR of the doubled volume size gives a rough
estimate of the table phantom depicted in Figure 4.1.17. The usage of this
estimation delivers appropriate PSR results in the setting of table truncation
compared with the PSR that uses the information provided by the ground
truth (see Figure 4.1.18).

Remarks Truncation of an object in a realistic setting leads to a charac-
teristic artifact within the PSR. Such a characteristic behavior is observed
in the real data case (see Section 4.2.3). The proposed idea of sampling the
outer volume with a less computationally heavy PSR as a prior step delivers
sufficient image quality.
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Figure 4.1.17: GT vs. PSR with the same size as the GT and the full pro-
jection data vs. PSR of lower voxel number, lower resolution and less
projection data (window level: 0.00− 1.92 g/cm3).

Figure 4.1.18: PSR in the standard setting vs. PSR given the perfect OV
vs. PSRov (window level: 0.90− 1.10 g/cm3).

4.2 Real C-arm CT data

Working with real data can be a challenging task in many fields of applied
sciences. Disturbances within real data such as noise, systematic errors,
misalignment and insufficient calibrations might occur. Finding the root of
certain obstacles might take a long time or render the problem unsolvable.
Additionally, medical devices manufactured for clinical routines are typi-
cally very protective of their processing pipeline and internal procedures.
Exporting CT projection data requires additional information about the ex-
act measurement geometry. Such information is represented as projection
matrices in the case of cone beam flat panel CT (see Section 2.5).
With regards to beam hardening, the bottleneck of the exported data

is the built-in water correction (water correction mapping discussed in the
end of Subsection 2.3.6). Since the raw measurement data is processed
by a multi-step pipeline of modifications (e.g. over exposure correction,
scatter correction, cosine weighting and more), only the manufacturer can
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provide projection data that is not corrupted by the water correction, which
is mandatory for the PSR.

The experiments presented in this work were made possible by the sup-
portive group of Siemens Healthcare AX (Erlangen, Germany), in par-
ticular by Dr. Manhart.
A common CT head scan suffers from the well known cupping artifact

and at the edge of the dense skull of the bone which “spills over” into brain
tissue. This artifact in particular makes clinical diagnosis in this area al-
most impossible in some cases, as critical information is not visible to the
radiologist. A similar problem occurs at the edges of metal implants or
screws. If the physicians need to make sure that tissue around such im-
plants is not infected, they need to take other methods into consideration
which eventually leads to the necessity of an invasive surgery. This is not
just a matter of involuntary costs, but an ancillary increase of the risk of
additional infections.
Of course, infections are only visible in a high tissue contrast CT image,

which is typically disturbed by beam hardening induced artifacts. In other
words, an important goal of beam hardening corrections is the sufficient
reconstruction of voxels that are on the edges of materials with different ab-
sorption properties such as bone and tissue. An easier goal for beam harden-
ing correction could be the approximation of the shapes of high attenuating
objects, as the sufficient approximation of the shape can open up other beam
hardening reduction methods to become viable [KKF08,CHF+19]. In some
cases it might be important to make a proper segmentation of different ma-
terials possible. Suppose the target is to specify the shape of an object
because the position is important for a 2D-3D registration. In this case, the
possible overestimation of the physical size of the object due to the spill over
artifact might cause serious trouble.
Since high absorbing materials can lead to photon starvation, the corre-

sponding measurement is zero. Reconstruction algorithms tend to over-
estimate the resulting attenuation to be infinite. Such a behavior cor-
rupts common reconstruction techniques and is a separate problem that
needs to be adressed whenever photon starvation happens in CT imaging
[Hsi98,XM12,WKC+14].

Time critical tasks such as stroke diagnosis are typically performed with
CT systems. Here it is desired to have the information of the position of the
stroke and if it is caused by a cerebral bleeding or by an obstruction that
might prevent the blood supply to the brain. As both types cause the same
symptoms but need to be treated in mutually exclusive ways, it is crucial
to chose the correct treatment. A cerebral bleeding becomes fatal if the
patient is diagnosed with an obstruction, hence will probably get injected
anticoagulant which would increase the bleeding even more. In some cases,
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it is very subtle changes in the low contrast image that change the diagnostic
value of an image. Thus the image quality needs to be as good as possible.

The fundamental problem in the image reconstruction domain is, the miss-
ing ground truth information. New methods are evaluated on hardware
phantoms containing reliable information. As this has been done with the
PSR already, the next step is to work on real data and evaluate the resulting
diagnostic value. The gold standard in medical imaging are model observer
studies [BYRM93,HP13,WNGH14]. Radiologists compare different meth-
ods on a set of different images and assign a rating or an assessment. This
is typically a measure of the diagnostic value of the image.

Unfortunately it was not possible to perform such an experimental vali-
dation within this thesis. The proposal in this work is either checking for
a hardware phantom attribute, such as the physical size or a quantitative
analysis of the cupping artifact by polynomial fitting.

4.2.1 Pig head experiments
The very first proposal for an experimental testing of the PSR was designed
to be a metal containing object was an object consisting of metal, tissue and
bone. The natural choice was a head of a pig cadaver. A needle of steel
was placed within the head and scanned with a Siemens Zeego C-arm
device. Compared to bone and tissue, the steel needle has a very high X-ray
attenuation. Hence, it was expected to cause clearly visible artifacts caused
by beam hardening.

Imported data A short scan protocol with 4-binning of detector pixels was
used. This corresponds to the measurement setup of geometry B.

PSR configuration The volume was initialized with zero, iterated 20 times
with only one angle per subset. The subset level changed every 10 iter-
ations after the 20 iterations procedure. The reconstruction was termi-
nated after 100 over-all iterations. The density thresholds had to be set
at ρw = 1.0 g/cm3, ρb = 1.45 g/cm3and ρm = 1.9 g/cm3. The smoothness
parameter was set to τ ′ = 0.25.

Results The FDK reconstruction that is a built-in feature of the C-arm
system suffers from strong shadow artifacts and a heavy spill over of the
needle. The shape of the needle representation is hard to distinguish from the
induced beam hardening artifacts. The MSR compensates for the shadow
artifacts but suffers from heavy spill over of the needle voxels into the tissue.
The PSR of the needle is more accurate compared to the FBP and the MSR.
The estimated diameter of the needle is in very good agreement with the
true value. The PSR tissue-to-bone-contrast is lower compared to the other
two reconstructions.
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0.5 2.4

Figure 4.2.1: Steel needle pig head reconstructions: FBP vs. MSR vs. PSR,
window level: 0.50− 2.40 g/cm3

Remarks The missing shadow artifacts in the MSR are probably caused by
the statistical weightings. So it seems that such artifacts occur due to the
high absorption and the wrong weighting of such extinction values within
the FDK framework. The enabling of the beam hardening compensation
leads to a sharper representation of the metal object. The tendency to
reconstruct the shape of high absorbing objects in a proper manner could
lead to a potential application of the PSR as a prior step for other methods
that rely on high quality segmentable volumes (e.g. a scatter estimation).
The MSR and PSR show a bright ring structure around the volume. This

is caused by the collimator. Its edges become visible in the outer detector
pixels. In other words, this collimator ring artifact indicates the region of
interest of this scanning geometry. Because the outer volume is not suffi-
ciently sampled, the FDK algorithm does not provide reliable voxel values.
They are probably set to zero by the built-in reconstruction of the C-arm
device.
This promising first result of the PSR to basically “get more out of the

poor data” can only be an advantage. Even if the PSR is only utilized for
other reconstruction methods as a segmentation or serves for other estima-
tion purposes.

4.2.2 5 Euro-cent coin

To get a feeling about quality of measured projections, a 5 Euro-cent coin
was placed in a water basin and scanned with a Siemens Artis Zeego C-arm
system. This experiment is designed to evaluate the convergence behavior
when the detector is under-saturated. The coin is placed in a way that the
projections are done from both extreme view points.

Imported data The coin was scanned with the geometry B. The projection
values show an inconsistency produced. As the extinction is defined to be
linearly proportional to the physical size of the homogenous object (except
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Figure 4.2.2: A quasi perpendicular projection views on the 5 Euro-cent coin
and the cross section of the extinction values. The measured frontal and
side view projections of the coin show an inconsistency in the extinction
values from those two directions. The ratio of the extinction value is ex-
pected to be proportional to its geometric size (except for beam hardening
effects), which is above a factor of the order 10. However, the measured
ratio lies around 4.8/4.2 ≈ 1.14.

for beam hardening effects), the ratio of the measured grey values should
correspond to the ratio of the diameter and its thickness. Since this behavior
is not observed, one can argue that in this setting a detector saturation is
established or scattered radiation lowers the extinction values.

PSR configuration The volume was initialized with zero, iterated 20 times
with only one angle per subset. The subset level changed every 10 iterations
after the 20 iterations procedure. The reconstruction was terminated after
100 over-all iterations. The density thresholds were set to ρw = 1.0 g/cm3,
ρm = 3.0 g/cm3 and the smoothness parameter was set to τ ′ = 0.25.

Results The MSR (not to confuse with the FDK) shows beam hardening
induced artifacts such as a blurred shape of the coin. The dark streak
artifacts that are perpendicular to these artifacts are caused by scattered
radiation, detector saturation and beam hardening. The PSR can reduce
some of these artifacts as it is clearly visible in Figure 4.2.3. The PSR
estimation of coin diameter and coin thickness are in good agreement to the
real values. Shadow artifacts remain but are heavily reduced compared to
the MSR.

Remarks The MSR shows typical beam hardening induced artifacts. The
cross section (Figure 4.2.4) visualizes the proper representation of the coin
as a result of the PSR. The remaining artifacts of the PSR might be caused
by scattering or detector saturation. As Figure 4.2.2 shows, the measured
extinctions are corrupted by inconsistencies. The observed artifact is similar
to the simulation results of the scatter experiment, as the utilized saturation
model leads to brighter artifacts.
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4 Results

Figure 4.2.3: MSR vs. PSR, window level: 0.0− 7.0 g/cm3

�

�
�
�
�
��
�
�	


�
�

�
�

�

�

�

�

�

��

������	�

� �� �� �� ��

��	


��	


�����������

Figure 4.2.4: MSR vs. PSR vs. cross section window 0.0 - 7.0

The projection data from the C-arm system is scatter corrected by the
firmware. Such scatter correction is calibrated for an object consisting of
water. Hence, it will probably not work well on metal objects and their high
extinction values. Scatter can explain the low extinction values of the coin
in the side view, but it should reduce the values around the edges as well.
Because the geometry of the coin is known it is concluded that the mea-

surements taken in the corresponding angles should be somehow neglected
as they contain no useful information.
Nevertheless, the shape of the coin can be reconstructed in good agreement

to the real values.

4.2.3 Clinical data

On a first trial in 2016, a single data set was converted as the PSR re-
quires the absence of water correction and cosine weighting. The PSRrsi
was showing promising improvements to the radiologist. Later, 35 more
data sets where provided and converted accordingly.
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4.2 Real C-arm CT data

c+bx+ax2

c = 1,1 +/- 0,002
b  = -0,0008 +/- 3,5e-05
a  = 3,06e-06 +/- 1,3e-07
--------------------------------------
χ2= 0,0287
R2 = 0,6787
--------------------------------------

Figure 4.2.5: Schematic depiction of the procedure to evaluate cupping re-
duction of the PSR on the 36 data sets.

Methods To characterize the ability of reducing beam hardening induced
cupping within the brain tissue, a quadratic function was fitted into a cross
section of the reconstruction. This procedure is outlined in Figure 4.2.5.
Here, the coefficient a measures the cupping. The higher the number, the
bigger the cupping artifact within the brain area. Since the estimation
depends on the line that was chosen manually for each reconstruction, it
is assured that the same voxels were acquired to compare the curvature
of the grey values. The PSR is expected to deliver smaller coefficients a
then the ML reconstruction of the same data set, as it is not corrected for
beam hardening. Thus, the quotient of those two coefficients should yield a
number aPSRov/aML < 1.

For comparison, clinical data was given to a maximum likelihood (ML)
reconstruction method that does not account for beam hardening [FPB+14]
and the PSR

ρn+1
j (~ρn) =

ρnj − Λ

MN̂j + β ∂S

∂ρj

∣∣∣
~ρ=~ρn

d1
j + β ∂2S

∂ρ2
j
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~ρ=~ρn




+

. (4.2.1)

Here we add a relaxation parameter Λ to enable a workaround that deliv-
ers sufficient image quality. The first experiments only delivered appropriate
image quality when regularized by early stopping after the very first iter-
ation of the update step. At this time the PSR was initialized with the
corresponding ML reconstruction. Earlier studies [BBR19] suggested that
the patient table that is present in the head scan projections corrupts the
PSR results while comparable iterative ML [FPB+14] reconstructions of the
same data sets are not affected in such a manner. The reason for such a
weakness of the PSR lies in the specific choice of the weighting d1

j . The
iterative ML reconstruction does not reducing beam hardening artifacts by
design, but were given state-of-the-art bi-material beam hardening corrected
projections [AFB+18]. To enable a proper comparison of the PSR with a
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statistical but monochromatic iterative approach, the projection data sets
the ML were given are the uncorrected2 projections and the bi-material cor-
rected projections.
The behavior of the PSR was studied in simulations and two solutions to

reduce the table truncation artifact are proposed.
At first a specific early stopping routine was found to be working suffi-

ciently. Here the relaxation parameter was set to Λ = 0.05. Since this PSR
was initialized with the ML, it reduced the beam hardening artifacts when
considering every projection angle once and performing the update step right
after each angle. Hence, this method is relies on a proper initialization.
The second approach uses the feature of the outer volume (OV) dis-

cussed in Subsection 4.1.5. Thus, this approach is a two step algorithm. It
reconstructs a native PSR with very few iterations on a low resolution and
a high regularization parameter to smooth streak artifacts that are caused
by the low angular sampling. This native PSR also used only the half of the
measured projections as well.

Such a native PSR is used to initialize the OV buffer of the respective
feature (PSRov) of the forward-projection step described in Section 3.4.2.
Simulations of the measurement setup were done to support the outer volume
strategy (see Subsection 4.1.5).

Imported data The collimator of such real data was causing bright detector
pixels at the edges. This forced the cutting out of the outer 30 pixels. Going
down from 1240 × 960 detector pixels to 1180 × 900 detector pixels and
changing the projection matrices accordingly to this new geometry.
The projection matrices of all data sets were corrected by a state-of-the-

art motion compensation technique [FR15]. The data was acquired between
2013 and 2015.

PSR configuration The PSR was initialized with ρ0
j = 0 ∀j, the US of

the above equation was performed 40 times with Λ = 1. This is called the
"native PSR". In Figure 4.2.10 the truncation artifact can be observed as the
native PSR is showing the characteristic shadows explained in Subsection
4.1.5.
To eliminate these artifacts within the framework of the PSR, it was ac-

counted for the truncation as mentioned. The OV, that was twice of the
size of the original reconstruction volume, included the representation of the
table. Figure 4.1.17 visualizes the representation of the table. Such ap-
proximation was utilized to reduce the inconsistencies between the forward-
projection of the current iterate and the measured projections.
Firstly, the proposed method undersamples the OV (that is initialized with

zeroes) by performing the US 8 times that is using larger but less voxels.
2This means that these projections are not water corrected.

104



4.2 Real C-arm CT data

1.00                               1.09 1.05                              1.13 1.07                               1.16

ML                                   PSRrsi                                PSRov

Figure 4.2.6: Data set 12: The PSRov does not improve the image quality
but in fact introduced even more cupping. The PSRrsi shows a clear
improvement in image quality.

The parameters used were 128×128×176 voxels with a spatial resolution of
4.0×4.0×1.0 mm3 instead of 464×464×176 voxels with a spatial resolution
of 0.5 × 0.5 × 1.0 mm3 and 248 views of 1240 × 960 detector pixels instead
of 496 views while keeping the detector size the same. We increase the
regularization parameter β by a factor of 100 to smoothen the image.
Secondly, the forward-projector was given this undersampled (but physi-

cally larger OV) in addition to the current iterate ρnj . Note that the OV is
not affected by the US. This methodology and its resulting reconstruction
is called PSRov.
The downsampleing of the OV leads to a smoother approximation but also

scales down the reconstruction time of the OV as well as the PSRov. Due to
the interpolation feature of GPU devices and the constant step length within
the downsampled OV, the forward-projection of the additional OV within
the PSRov-US increases the computational load of the forward-projection
just moderately. Here the voxel edge length of the OV is enlarged by a factor
of 8 compared to the standard setting.
Additionally, the workaround of regularization by early stopping was per-

formed. Initializing the PSR with the native ML and performing only one
iteration of equation 4.2.1 the US with Λ = 0.05 including all measured
projection once. This approach is called “relaxed single iteration” (PSRrsi).

Results On one data set (number 12 in table 4.3), the PSRov did not reduce
the cupping artifact, yielding aPSRov/aML ≈ 2. This data set is depicted in
Figure 4.2.6. The PSRrsi on the other hand yields a clear reduction of beam
hardening in the very same slice.
Figure 4.2.7 shows certain artifacts in the PSRov as well. Such an ob-

servation is made in other data sets as well. Figure 4.2.8 and 4.2.9 yield
distinct artifacts in the PSRov and the native PSR.
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4 Results

# aML aPSRov aPSRov/aML

1 3,59E-06 2,11E-06 0,59
2 4,60E-06 2,67E-06 0,58
3 2,66E-06 1,03E-06 0,39
4 3,22E-06 1,78E-06 0,55
5 2,97E-06 1,46E-06 0,49
6 3,29E-06 1,52E-06 0,46
7 2,92E-06 5,87E-07 0,20
8 1,70E-06 7,33E-07 0,43
9 2,54E-06 1,69E-06 0,66
10 4,36E-06 2,47E-06 0,57
11 3,85E-06 2,40E-06 0,62
12 1,52E-06 3,00E-06 1,97
13 3,90E-06 2,46E-06 0,63
14 2,40E-06 1,22E-06 0,51
15 2,10E-06 1,01E-06 0,48
16 3,84E-06 2,71E-06 0,71
17 3,86E-06 2,52E-06 0,65
18 2,19E-06 9,84E-07 0,45

# aML aPSRov aPSRov/aML

19 1,99E-06 8,63E-07 0,43
20 2,80E-06 1,43E-06 0,51
21 4,37E-06 3,31E-06 0,76
22 3,13E-06 1,55E-06 0,50
23 1,64E-06 3,94E-07 0,24
24 4,32E-06 2,76E-06 0,64
25 2,18E-06 7,10E-07 0,33
26 3,77E-06 1,93E-06 0,51
27 3,67E-06 2,27E-06 0,62
28 4,03E-06 2,49E-06 0,62
29 2,90E-06 2,04E-06 0,70
30 4,29E-06 2,52E-06 0,59
31 4,36E-06 3,32E-06 0,76
32 2,64E-06 1,56E-06 0,59
33 2,84E-06 2,10E-06 0,74
34 3,06E-06 1,77E-06 0,58
35 3,12E-06 1,98E-06 0,63
36 3,10E-06 1,57E-06 0,51

Table 4.3: The resulting fit parameters of the quadratic fits of the 36 data
sets. The average quotient is estimated as aPSRov/aML = 0.589 with a
standard deviation of 0.27.

1.02                               1.15 1.02                              1.12 1.09                               1.17

ML                                   PSRrsi                                PSRov

Figure 4.2.7: Data set 36: The PSRov introduces artifacts over the course
of 40 iterations.
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1.02                               1.13 1.01                              1.10 1.07                               1.17

ML                                   PSRrsi                                PSRov

Figure 4.2.8: Data set 7: The PSRov introduces artifacts over the course of
40 iterations.

1.02                               1.17 1.07                              1.21 1.02                               1.16 1.07                               1.18

ML                              native PSR                           PSRrsi                                PSRov                      PSRov w/o MoCo

1.07                               1.18

Figure 4.2.9: Data set 2: The PSR suffers from strong motion artifacts in-
troduced by the applied motion compensation. Using the uncorrected
projection matrices results in less motion artifacts. The ML is less sen-
sitive to such motion. The PSRrsi is only slightly improves the image
quality.

The native ML is distorted by beam hardening induced cupping as well
as the spill over effect which blurs the dense bone of the skull into tissue.
The bi-material corrected ML cannot fully reduce cupping but clarifies the
shape of the bone and reduces its spilling over. The table truncation can be
observed in the native PSR. The two proposed workarounds to that problem
(PSRrsi and PSRov) overcome these erroneous characteristics, yielding a
similar beam hardening reduction as the bi-material corrected ML.

Remarks Ring artifacts caused by defect detector pixels or insufficient ho-
mogeneity of detector dynamics are typical for C-arm imaging. These arti-
facts are reduced in a post processing step [ZSRB05]. One approach is to
transform the x-y-slice into cylindrical coordinates and median filter over the
radius component. Back transforming results in an almost ring artifact free
image. However, the point r = 0 is a singularity of cylindrical coordinates.
Thus, a small area with r < ε is not sufficiently sampled by this approach.
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[1.03...1.18]                                [1.04...1.15]                                 [1.07...1.18]                                  [1.02...1.13]                                    [1.09...1.18] 

[1.03...1.17]                                  [1.04...1.15]                                 [1.09...1.20]                                  [1.02...1.11]                                    [1.08...1.16] 

[1.02...1.15]                                  [1.01...1.12]                                 [1.08...1.19]                                [1.08...1.19]                                    [1.08...1.17] 

native ML                  bi-mat corr ML               native PSR                       PSRrsi                           PSRov

Figure 4.2.10: The native ML vs. bi-material corrected ML vs. native PSR
vs. PSRrsi vs. PSRov are depicted. The used window size is relatable to
100HU.

Figure 4.2.11: The bi-material corrected ML (left-hand side) and PSR (right-
hand side), circumscribed mild brain edema is depicted, but barely visible.
The blue arrows point out at the absence of sulci. Typically they should
be visible as the white arrow suggests. The window level corresponds to
100HU. Here a ring artifact correction has been performed.
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Figure 4.2.12: Data set 28: A typical convergence pattern of the update step
when different numbers of iterations are applied.

1.08                               1.16 1.08                              1.16 0.00                               0.01

PSRov 40 iterations          PSRov 300 iterations               "40 - 300" 

Figure 4.2.13: Dataset 28: Difference between 40 iterations of the default
setting and the 300 iterations depicted in Figure 4.2.12.

This correction was only applied to the reconstruction depicted in Figure
4.2.11.

Clinical CT scans include additional objects as a patient table. Such ob-
jects are designed to cause the lowest possible extinction values to projections
and typical reconstruction techniques tend to increase voxel values around
the reconstruction object in order to minimize the inconsistency between the
forward-projection while iterating but leaving the important region of inter-
est almost unaffected. This behavior can be observed in the first column of
Figure 4.2.10. The native PSR creates increased pixel values at the bottom
of the images, a thin "ring" structure that is indicating the region of interest.
Those thin "ring" artifacts around the head and the increased pixel values
at the bottom vanish in the PSRov as intended.
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Despite that for every data set (except number 12) the cupping ratio
aPSRov/aMLwas below 1.0, the image quality did not necessaarily improve with
respect to the overall appearance. Three examples are shown in Figure 4.2.7,
4.2.8 and 4.2.9. In the latter, strong artifacts are introduced by the PSR.
Those artifacts “look like” motion artifacts. The ML is working with the
very same data and motion-compensated projection matrices. Using the
original projection matrices clarifies that the applied motion compensation
can sabotage the PSR whereas the ML is not affected in the same way. Fig-
ure 4.2.12 and 4.2.13 depict the development of the US in three different
ordered subset settings of another data set. In the default setting, 8 itera-
tions were performed with the single angle subset followed by 4 iterations
that double the number of angles with each recursion. The difference image
shows that subtle changes are introduced with higher numbers of iterations.
Those changes are manifestations of the small inconsistencies within the pro-
jections, as the absolute value of the US is not changing over the course of
the additional iterations.

The reason for such inconsistent convergence is not fully understood. C-
arm systems typically vary the time-current product, hence the photon flux
changes depending on the projection angle. Even the tube voltage is not
guaranteed to stay constant during the scan. Thus, the X-ray spectrum
X (E) −→ Xi (E) might be object to change as well. Enabling the feature to
differently weight projection angles with respect of the applied time-current
product did not affect the reconstruction significantly.
Furthermore, calibration related issues of the C-arm system cannot be

excluded as the time periods between new calibrations were irregular.
Nevertheless, there are cases where the PSRov and PSRrsi improve image

quality and converge accordingly to the results of the simulations in Sub-
section 4.1.18. An example case of enhanced diagnostic value can be found
in Figure 4.2.11. This example emphasizes the problems caused by the spill
over as well as the cupping artifact. As the missing sulci cannot be identified
without the beam hardening correction.
The reconstruction time does not increase dramatically by the additional

forward-projecting in each iteration step. The results are calculated on 1 to
4 AMD FirePro S10000 graphics cards with two ’Tahiti’ chips each (bought
2013). A single nVidia GeForce RTX 2080 Ti outperforms these by a factor
of 4.
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The underlying theory to reconstruct an image slice with a given set of
projections was established by Johann Radon in 1917 [Rad17]. Almost 50
years ago, CT devices started to enhance clinical diagnostics [Kal06]. Since
then, the research community has been working to increase the diagnostic
value of the CT images by making them more accurate while reducing patient
dose. As long as the fundamental measuring process is not altered and a
new generation of CT devices, that do not integrate over the different energy
bins are established, the non-linearity of the projection process will corrupt
the CT images.

To reduce dose while keeping image quality, one needs to apply statistical
models.
To reduce beam hardening or photon scattering related artifacts, one needs

to apply physical models.

This is the core of the PSR, which was introduced in 2002 by Elbakri
and Fessler [EF02, EF03c]. However, this method has not been developed
further, nor has it been tested on clinical data. For the first time the PSR
was used on real cone-beam CT data yielding promising results.

Back in the early 2000s statistical and iterative reconstruction methods
where not feasible due to the enormous amount of memory and calculation
requirements. Since 1965, calculation poer grew exponentially according to
Moore’s law [Moo65]. The viability of the PSR has been shown in this
thesis.

• Without new measurement techniques or measurement equipment the
PSR can enhance image quality on C-arm devices. Figure 4.2.10 com-
pares the PSR with an alternative statistical reconstruction technique.

• The general tendency of the PSR to reduce the beam hardening in-
duced cupping artifact on 35 data sets is shown in Table 4.3.

• Figure 4.2.4 emphasizes the opportunity to enable better segmenta-
tion of high absorbing objects. As the beam hardening induced spill
over artifact is eliminated. A technical example about the increased
diagnostic value is represented in Figure 4.2.11.

The results presented in Section 4.2 are good examples for the superiority of
iterative reconstruction techniques that become technically feasible due to
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Moore’s law. The increased requirements of the PSR can be satisfied with
better hardware that is available even for private use such as modern graph-
ics cards, random access memory and CPU power. The prior knowledge is
typically available in a practical setting as in a hospital environment.
One bottleneck that appears in daily practice is the need for projection

data that is not manipulated by a water correction. This correction is
mandatory for the standard reconstruction methods that do not accurately
factor in the polychromatic nature of the X-rays.
The outer volume (OV) feature shows consistent results with the simu-

lations. It is essential to account for the outer volume on the clinical head
scan data as Figure 4.2.10 suggests. This observation raises the question
about volume-of-interest (VOI) imaging to reduce dose by reducing the field
of view only to the region that is of interest for the physician. The sensitivity
of the PSR with regard to even the smallest truncation points out that VOI
imaging is probably not applicable to the PSR in its current implementation.
The varying image quality of the 36 datasets suggests that patient motion

is a bottleneck of the PSR, as it seems to be more sensitive then the ML
reconstruction. Figure 4.2.9 (data set 12) emphasizes this sensitivity.
Most FP-CBCT systems adapt the X-ray intensity during the scan to

reduce radiation exposure and utilize the limited dynamic range of the de-
tector. Thus, the approximation about I (E) to be independent of the pro-
jection angle is violated. This might corrupt the statistical assumptions as
well as the polyenergetic specifications. The observed stability of the PSR
under uncertainties about the X-ray spectrum holds only when the induced
change is constant for each view (see Figure 4.1.3). These observations sup-
port similar findings of Wu et al. [WYMF14].
The displacement model (see Section 3.3) requires a density value in order

to calculate the thresholds that determine the material of a voxel. These
thresholds need to be sufficiently distinguishable from each other. The PSR
would not perform well when materials overlap in density, e.g. contrast
agent (CA). Here, a proper segmentation is needed. In perfusion imaging a
mask scan is performed to subtract the voxels that do not change in time.
After such a subtraction a distinction could be feasible.

The PSR in relation to other reconstruction techniques

Common beam hardening reduction approaches are based either on pre-
processing of the X-ray projections, such as a water correction [NL79,JS78a],
or they try to manipulate the reconstruction as a post-processing step [BC76,
HMDJ00,MMS90]. The former are working best when the scanned object
consists only of one material. The latter are heuristic image processing
applications by design and might be too unreliable for clinical applications.
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Huang et al. recently provided an insightful article about the limitations of
deep learning based approaches [HWB+18].

Another approach is based on the idea of splitting the main contributing
physical effects by acquiring two separate measured sets of X-ray projections.
The most prominent case is the dual energy CT [AM76,FESC02]. Proper
filtering and doubling the recording could have the same effect. Two energy-
dependent measurements of the same object with respect to the identical
scanning geometry. The main drawback of those kind of approaches is that
they are reliant on new hardware and will also most likely increase the
patient’s X-ray dose.
Recent developments in the field of energy resolved photon-counting de-

tectors want to overcome the problem of beam hardening [GL11]. As we can
see in Figure 4.1.3, the PSR can deliver viable reconstructions with three
energy bins. However, to fully neglect the beam hardening by this detector
technology one needs a higher energy resolution. This would certainly be
the case when reaching a high resolution because the non-linearity is only
introduced to the CT problem by the integrating detector in Equation 2.3.2.
Additionally, the counting rate seems to be a bottleneck to real applications
as well.
With respect to the beam hardening induced cupping effect, Kachelrieß

et al. propose an empirical post-processing correction. Their approach does
not need any prior knowledge such as X-ray spectrum, size or position of
the object [KSK06].
Compared to the PSR, different iterative techniques have been proposed

to tackle beam hardening. They can reduce beam hardening but rely on a
proper segmentation [YWB+00, LFN09]. Xu et al. [XUK+17] propose to
overcome the segmenting problem by a 2D-3D registration of the metallic
objects when scanned in air or given a CAD model. They also do not need
the prior knowledge about the absorption properties but include unknown
polynomial absorption into their framework. These assumptions might lead
to limitations regarding the workflow or feasibility in a clinical setting. Sim-
ilar to the OV feature of the PSR, their approach is supposed to work on
Volume-of-Interest imaging.
Humphries et al. [HWF17] introduced the same polychromatic forward-

projection model1 to a classic weighted least squares framework which also
features TV-superiorization. It is used on 2D simulations within a limited
angle setting. Due to the strong similarity of needed implementation work
it would be very interesting to test the available clinical data sets on this
algorithm.
Lately, several beam hardening correction methods evolved around con-

sistency conditions in the projection domain [AFB+18,THC+18].

1The main difference is that they use three piecewise linear functions as sigmoid functions
instead of the polynoms of the displacement model.
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The connecting factor of the PSR

Scattered radiation

As argued in Subsection 4.1.3, scattered radiation causes artifacts which
can be reduced drastically when given a proper scatter estimation as prior
knowledge. If the region of interest lies directly at the edge of a high absorb-
ing object the PSR cannot sufficiently enhance the information gain of the
image. This can be observed in Figure 4.2.3. It shows the remaining shadow
artifacts caused by the 5 Euro-cent coin. The bottleneck of state-of-the-art
scatter estimation methods is a proper segmentation. We can conclude by
observation, that such a segmentation is made feasible by the PSR itself.

This opens up the opportunity for a two step approach to the solution
of the scatter problem. A first PSR of the scan is expected to deliver an
accurate estimation of the physical size of the object2. A third party program
could give a proper scatter estimation [MPND18] and feed this information
into a second PSR which is initialized with this estimation and the first PSR.
To speed up the second PSR, one can use the outer volume feature to ensure
that only the area around the object is changed by the update step.
Alternatively it would be of interest to test the assumptions about the

impact of scattered radiation. Bier et al. [BBM+17] developed a hardware-
driven approach to eliminate scatter by modulating primary radiation. They
evaluated their method on the same kind of C-arm system. Performing a
similar experiment as the 5 cent coin measurements should be easy. Their
results could be incorporated very easily due to the same geometry.

Dual energy CT

Dual energy CT captures two separate X-ray projections of different angles
at the same time3. They are intended to enable the segmentation of two dif-
ferent materials within the reconstruction. This is possible because different
materials will be reconstructed with different attenuation values depending
on the effective energy of the respective spectrum. These measurements can
split the attenuation into its two main contributors µ = µCompton +µEinstein,
which enables their modelling feasible.
For example, dual energy CT can be used to reliably measure either bone

density or plaque. Within this domain, the PSR could be used to effectively
half the dose while keeping the image quality constant. The idea would be
to leave both source-detector systems only a 90° trajectory and combine the

2The accuracy is limited by the voxel size.
3This also enables a better time resolution when both sources work with the same tube
voltage. A good application is perfusion imaging with CT. There, the dynamic flow
of contrast agent is reconstructed and the CT problem becomes a 4D reconstruction
problem.
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measurements. As the PSR will reconstruct the energy independent density
of the object, it is sufficient to combine both scans to a 180° half circle.

This idea is similar to the recent paper of Mechlem, Ehn et al. where they
use the information of all measured energy levels of a spectral CT in one
update step of the reconstruction [MES+18].

Non-destructive testing

X-ray based methods are of interest for manufacturers of a variety of objects
such as chassis, tools, screws, airplanes and so on. These measurements need
to be as accurate as possible. Usually the manufacturers need to know the
exact number of blisters to ensure a certain stability, reliable quantitive
estimations of density and the cleanliness of weldseams.

As these measurements are corrupted by beam hardening and scattering
as well, the PSR could lead to an increase of the testing accuracy. Note
that in this type of applications, calculation time is not the most important
factor, which the PSR certainly needs more then alternative methods.

This topic is of special interest because of the slightly shifted settings
with regards to materials and required accuracy. The projection based beam
hardening approaches might be a perfect fit as the number of different high
absorbing materials is known and prior knowledge such as CAD models of
the objects are a given. Those conditions will also make scatter estimations
more accurate. Since the “diagnostic value” of such images is not potentially
lethal to patients, it might also be a good training ground for new machine
learning based approaches [CHF+19].

The PSR can help to reduce dose. Even though the X-ray dose is not
harmful to the objects that are scanned, it is still of interest to reduce the
dose. To reduce dose certainly helps to reduce costs for the manufacturer,
as the X-ray sources have a larger lifespan.

Future work

A performance evaluation study of the PSR in the clinical setting is of inter-
est. Model observers [BYRM93] would need to evaluate the image quality
compared to other modern methods that deal with beam hardening.

As the detector performance of CT devices is higher compared to C-arm
devices, it is of interest to evaluate the full potential of the PSR within
the CT environment. Here, a major change of the implementation will be
necessary due to the changing detector geometry from the flat panel to the
curved panel.

As high absorbing materials can lead to photon starvation (described in
Section 4.1.4), statistical assumptions become violated. This problem is of
major concern for all reconstruction techniques. As the PSR is a flexible
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framework, it is of interest to adapt certain ideas such as MAR techniques
[GMV+17] to reduce resulting artifacts.

To tackle detector saturation effects in the presence of metal objects as
observed in Figure 4.2.2, it could be required to model this aspect inside the
forward-projection model. Repeating the mathematical derivation of the
update step as a result of the maximization problem statement of Equation
2.4.24 is a non-trivial task. Certain approximations will be needed and
an accurate saturation model needs to be evaluated first. Alternatively, a
similar approach to the classic of Joseph and Spital look-up table [JS78b]
or the modern adaptation of Cao et al. [CHF+19] could solve the problem.
As the path lengths through the objects are known, it could be a viable
approach to replace the measured projections with corrected expectation
values, as the exact pixels that are affected by the metal object are known
after an initial PSR.
As stated multiple times in this work, segmentation is a problem of inter-

est in many fields within the CT community. The mentioned topics such as
scatter estimation/reduction or other beam hardening corrections are des-
perately in need of a proper segmentation. The PSR might work as an
additional tool of the toolkits that are available to improve solutions that
are already evaluated.
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Conclusion
Polychromatic statistical reconstruction can enhance clinical diagnosis by
providing higher quality images while using the very same CT devices. In
other words, CT scanners could enhance their image quality by investing in
more GPU devices which are cheap compared to new detector technology.

To tackle an emerging result of of Eroom’s law [SBBW12] in CT imaging,
it should be of serious consideration to leave the FDK based imaging and
head towards modern approaches that became viable due to Moore’s law
[Moo65]. This work gives a detailed insight into the method and depicts its
value with respect to CT image enhancement.

For the first time and more then a decade after its original publication,
the PSR was tested on real cone-beam CT data . The PSR needs neither a
prior segmentation nor new CT devices. It can work in a real hospital set-
ting and reduce beam hardening related artifacts. The PSR has substantial
potential for adaptation and offers applications in diverse domains of CT
reconstuction.
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