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Abstract: Novel drivetrain concepts such as electric direct drives can improve vehicle dynamic
control due to faster, more accurate, and more flexible generation of wheel individual propulsion and
braking torques. Exact and robust estimation of vehicle state of motion in the presence of unknown
disturbances, such as changes in road conditions, is crucial for realization of such control systems.
This article shows the design, tuning, implementation, and test of a state estimator with individual
tire model adaption for direct drive electric vehicles. The vehicle dynamics are modeled using a
double-track model with an adaptive tire model. State-of-the-art sensors, an inertial measurement
unit, steering angle, wheel speed, and motor current sensors are used as measurements. Due to the
nonlinearity of the vehicle model, an Unscented KALMAN Filter (UKF) is used for simultaneous
state and parameter estimation. To simplify the difficult task of UKF tuning, an optimization-based
method using real-vehicle data is utilized. The UKF is implemented on an electronic control unit
and tested with real-vehicle data in a hardware-in-the-loop simulation. High precision even in
severe driving maneuvers under various road conditions is achieved. Nonlinear state and parameter
estimation for all wheel drive electric vehicles using UKF and optimization-based tuning is shown to
provide high precision with minimal manual tuning effort.

Keywords: nonlinear state and parameter estimation; electric vehicle; vehicle dynamics

1. Introduction

For realization of vehicle dynamic control and driver assistance systems, knowledge
of the dynamic state variables of the vehicle motion is necessary. As the tires are the only
connection to the road, transmitted tire forces and the tire slip, which is a variable for each
tire derived from vehicle motion, are also important quantities to be determined. Next,
to direct measurement by sensors, state estimators are used to determine the vehicle’s
dynamic states and tire forces. This is done, on the one hand, because not all the required
variables can be measured directly and, on the other hand, in order to save costs by
eliminating the need for certain sensors. Recent literature reviews have shown that there
are two main methods for state estimation: observer-based and neural-network-based or
data-driven methods [1,2]. Observer-based approaches, which utilize different kinds of
vehicle models, are the most common. While these methods can offer highly accurate
results, the computational complexity can be a problem in practical real-time applications.
Neural network-based approaches are used to overcome the need of a vehicle model and
to be suitable for a real-time environment, since computational effort is reduced. The low
robustness of these approaches regarding environmental or vehicle physical changes,
for example in road conditions, are a major drawback [1]. Therefore, in the following,
neural-network-based approaches are not considered further. For vehicle state estimation,
two important questions are identified in [2], extending the range of estimation towards
connected and automated driving vehicles and overcoming challenges due to nonlinear
system behavior. The latter will be addressed in this article.
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In the observer-based state estimator, a mathematical-physical model of the driving
behavior, which can be kinematic, dynamic, or a combination of both, is used. If the model
parameters are time-varying or uncertain, a combined state and parameter estimation
can be performed by using a suitable approach [3]. In the context of vehicle models, tire
parameters often are uncertain due to changing road conditions or tire wear. As combined
state and parameter estimation leads to a nonlinear problem, concepts such as the Extended
KALMAN Filter [3] (EKF) or the Unscented KALMAN Filter [4] (UKF) are frequently used.
With the same sampling time, the UKF is able to approximate nonlinearities better than the
EKF while being easier to implement [4] and requiring comparable computational effort [5].
An approach for simultaneous vehicle state and tire model parameter estimation using the
EKF is shown in [6]. The authors use a spatial double track model with unknown road
inclination and slope as well as MAGIC FORMULA tire models with uncertain parameters
and wheel-individual adaption. Measured variables are the vehicle accelerations and yaw
rate, which are captured by an Inertial Measurement Unit (IMU) as well as speed and posi-
tion from a Differential Global Positioning System (DGPS) receiver. Furthermore, steering
angle, wheel speeds, and wheel load forces are measured as they are used as system inputs.
As shown in [1], GPS-aided methods are frequently used together with observers to over-
come estimation gaps or inaccuracies. However, low GPS sampling frequencies, impaired
signal availability in densely built areas, and additional cost are reasons why GPS usually
does not come into use in state estimation for vehicle dynamic control. Instead, IMUs,
steering angle, and wheel speed sensors are the state-of-the-art in nearly every modern
vehicle. In [7,8], UKFs with double-track vehicle and MAGIC FORMULA tire models as
well as the mentioned standard sensors are used for state estimation. Both authors assume
the maximum tire road friction coefficient µmax to be time-varying while this parameter is
furthermore assumed to be common to all four tire models. This has the advantage that
information about this parameter can be obtained and used on all wheels. In contrast,
situations where the maximum tire road friction coefficient at each wheel is different may
result in worse estimation than with wheel-individual parameter estimation. In [9,10], it is
shown that UKF-based vehicle state and wheel-individual tire parameter estimation can be
performed using only standard sensors and torque measurements from electric wheel hub
motors. Furthermore, it is shown that the use of vehicle speed measurement by the Global
Positioning System (GPS) offers advantages in only a few situations. Other approaches
for UKF-based vehicle state estimation are shown in [11,12], where the filters are adaptive
with respect to the process or measurement noise. The performance of the approaches is
proven during simulations of severe driving maneuvers.

The task of unscented KALMAN Filter tuning can be conducted in an efficient way by
using optimization-based methods for estimation error minimization. Using the example of
vehicle dynamic state estimation, this is shown in [13]. In [14], the approach is successfully
applied to the problem of battery state of charge estimation using an EKF, where the process
model parameters are optimized in the first and the KALMAN filter’s covariance matrices
in the second step. This paper shows the design and validation of a UKF-based vehicle
state estimator with wheel-individual tire model adaption. Estimator tuning is carried out
by an offline minimization of estimation error for real-vehicle driving maneuvers with an
all-wheel drive electric vehicle. Then, real-time capability of the approach is investigated.

2. Materials and Methods

In the following, the vehicle model, the used sensors, as well as a short overview of
the UKF algorithm are presented. Then, the filter tuning method is explained in detail.

2.1. Vehicle Model

For online vehicle state estimation, a model is needed that is capable of correctly repre-
senting dynamic motion, even in severe driving maneuvers, and at the same time requires
low computational effort. Such a model is the planar double-track model, which will be
used in the following. For simplicity, the vertical motion of the wheels is neglected, which
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means that the wheel contact points are all located in a common road plane. Furthermore,
it is assumed that the steering angle on both front wheels is the same and that the wheels
are rigidly coupled to the vehicle chassis. The road slope and inclination are assumed to be
zero, and the masses of all vehicle components are combined in a common vehicle mass.
The transformation from wheel coordinates, denoted by index w, to vehicle coordinates is
performed with steering angle δ and

Tδ =

[
cos(δ) − sin(δ)
sin(δ) cos(δ)

]
. (1)

Thus, tire forces in vehicle coordinates are[
Fx, f l
Fy, f l

]
= Tδ

[
Fw,x, f l
Fw,y, f l

] [
Fx, f r
Fy, f r

]
= Tδ

[
Fw,x, f r
Fw,y, f r

]
[

Fx,rl
Fy,rl

]
=

[
Fw,x,rl
Fw,y,rl

] [
Fx,rr
Fy,rr

]
=

[
Fw,x,rr
Fw,y,rr

]
.

(2)

The indices f l, f r, rl, and rr denote the front left, front right, rear left, and rear right
wheels. Longitudinal velocity vx, lateral velocity vy, and yaw rate ωz dynamics are modeled
according to the force and torque equilibrium:

v̇x =
1
m

 ∑
i∈{ f l, f r,rl,rr}

Fx,i −
1
2

ρcw Avx|vx|

+ vyωz

v̇y =
1
m

 ∑
i∈{ f l, f r,rl,rr}

Fy,i

− vxωz

ω̇z =
1
Jz

[(
Fx, f r − Fx, f l

)
w f + (Fx,rr − Fx,rl)wr +

(
Fy, f l + Fy, f r

)
l f −

(
Fy,rl + Fy,rr

)
lr
]

(3)

with vehicle mass m, yaw inertia Jz, air density ρ, drag coefficient cw, vehicle frontal area
A, and distances l f and lr from center of gravity (CG) to front and rear axle as well as front
and rear track width w f and wr. Wheel load Fw,z forces are important for longitudinal and
lateral tire force calculation. To keep the system model order small, the stationary wheel
load forces are used in the following according to

Fw,z, f l
Fw,z, f r
Fw,z,rl
Fw,z,rr

 =


−cx, f −cy, f
cx, f −cy, f
−cx,r cy,r
cx,r cy,r

[(hCG + rw)∑ Fy,i
(hCG + rw)∑ Fx,i

]
+


lr
lr
l f
l f

 mg

2
(

l f + lr
) . (4)

The height of CG above the center of the wheels is denoted as hCG, while cx, f , cx,r, cy, f ,
and cy,r denote the front and rear suspension roll and pitch stiffness. As an electric vehicle
with four individually driven wheels is considered in this paper, the torque balance at each
wheel includes the motor torque and the braking torque MM,i and MB,i, the longitudinal
tire force Fw,x,i, and the rolling resistance force FR,i according to

ω̇w,i =
MM,i −MB,i − rw(Fw,x,i + FR,i)

Jw
i ∈ { f l, f r, rl, rr}

FR,i = sign(ωw,i)µRFw,z,i.
(5)
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The dynamic tire rolling radius is rw = 2
3 rw,nominal +

1
3 rw,static [15]. For tire slip calcu-

lation, first, the wheels translational velocities are determined:[
vw,x, f l
vw,y, f l

]
= TT

δ

([
vx
vy

]
+

[
−w f

l f

]
ωz

) [
vw,x, f r
vw,y, f r

]
= TT

δ

([
vx
vy

]
+

[
w f
l f

]
ωz

)
[

vw,x,rl
vw,y,rl

]
=

[
vx
vy

]
+

[
−wr
−lr

]
ωz

[
vw,x,rr
vw,y,rr

]
=

[
vx
vy

]
+

[
wr
−lr

]
ωz.

(6)

Then, longitudinal and lateral tire slip sw,x,i and sw,y,i for each wheel as well as the
resulting tire slip sw,i are calculated according to

[
sw,x,i
sw,y,i

]
=

 rwωw,i−vw,x,i
max(|rwωw,i|,|vw,x,i|,vnum)
− vw,y,i

max(|vw,x,i|,vnum)


sw,i =

√
s2

w,x,i + s2
w,y,i

(7)

with numerical speed vnum, which is required to avoid division by zero during vehicle
standstill [16]. Furthermore, the transient behavior of the vehicle model for low velocities
can be adjusted with this parameter. In this paper, tire forces are represented with a
BURCKHARDT model, which uses only three parameters to define the slip dependent tire
friction curve µw,i(sw,i) [17]. Thus, the effort for model identification is reduced compared
to more sophisticated models such as MAGIC FORMULA [18]. However, the accuracy is
reduced, which must be taken into account when developing the estimator. The division
into longitudinal and lateral tire forces at each wheel is performed by means of the KAMM’s
circle [17], which gives

µw,i(sw,i) = C1

(
1− e−C2sw,i

)
− C3sw,i i ∈ { f l, f r, rl, rr}

Fw,i = µroad,iµw,iFw,z,i =
√

F2
w,x,i + F2

w,y,i

(8)

Fw,x,i =
sw,x,i

sw,i
Fw,z,i

Fw,y,i =
sw,y,i

sw,i
Fw,z,i.

(9)

To allow for changes in the tire model, the nominal resulting tire force Fw,i is scaled
by an unknown friction coefficient µroad,i, which has to be estimated. Examples of typical
curves of tire road friction coefficient µw,i over tire slip for different road surfaces and
conditions are shown in Figure 1. For small tire slip, the curve increases linearly, followed
by a maximum and a decrease in tire friction coefficient for large slip values, which leads to
a reduction in transmitted tire forces. The gradient of the linear region is mainly determined
by parameters C1 and C2.
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Figure 1. Sample tire curves and corresponding model parameters for different road surfaces and
conditions [19].

2.2. Sensors

In the context of vehicle stability control, several sensors have become state-of-the-
art, so they can be found in nearly every vehicle. In this paper, these types of sensors
are used. First, a low-cost MEMS-IMU (Microelectromechanical System) measures the
vehicle’s longitudinal and lateral acceleration ax and ay as well as the yaw rate ωz. Second,
steering angle δ is calculated from the measured steering wheel angle and the steering
ratio. Third, wheel speeds ωw,i are measured by wheel speed encoders, and last, as the
vehicle has an electric motor at each wheel, motor torques MM can be calculated from the
measured motor currents. The relation between vehicle states and measured accelerations
is approximately [

ax
ay

]
≈
[

v̇x − vyωz
v̇y + vxωz

]
=

[
1
m

(
∑ Fx,i − 1

2 ρcw Avx|vx|
)

1
m ∑ Fy,i

]
. (10)

The remaining measured variables are identical to the respective state or input vari-
ables. For the later design of the estimator, an optical reference speed sensor is used, which
is mounted in the rear of the vehicle. Therefore, the measured speed is a superposition of
translational speed and yaw rate according to[

vx,re f
vy,re f

]
=

[
vx + wre f ωz
vy − lre f ωz

]
(11)

with wre f and lre f denoting the optical velocity sensors’ position relative to the center of gravity.

2.3. Unscented Kalman Filter

In the following, a short summary of the used UKF algorithm is given. A more
detailed description can be found in [3–5]. It is assumed that there is a nonlinear time
discrete system at time step k with additive system disturbance wk and output disturbance
vk vectors according to

xk = f k(xk−1, uk−1) + wk

yk = hk(xk−1, uk) + vk
(12)

where xk denotes the state and yk the output vector. The disturbances are assumed to be
GAUSSIAN white noise with

wk ∼ N (0, Qk) vk ∼ N (0, Rk) (13)
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where Qk and Rk are the corresponding covariance matrices. Furthermore, for simplifica-
tion, it is assumed that wk and vk are uncorrelated. For the unscented transformation, a set
of 2nx Sigma points x̂(j)

k−1 with

x̂(j)
k−1 = x̂k−1 + x̃(j)

k−1 j ∈ {1, . . . , 2nx}

x̃(j)
k−1 =


(√

nxPk−1
)T

j 1 ≤ j ≤ nx

−
(√

nxPk−1
)T

j nx < j ≤ 2nx

(14)

is formed, where x̂k−1 is the estimate of the state vector; nx is the state vector dimension;
Pk−1 is the estimate of the state covariance; and

(√
·
)

j is the jth row of the matrix square
root, for example, calculated with the CHOLESKY decomposition [4]. In the a priori step, the
Sigma points are transformed from time step k− 1 to time step k with the state equation:

x̂(j)
k = f k

(
x̂(j)

k−1, uk−1

)
, (15)

and the a priori estimate of the state vector x̂−k and its covariance P−k are computed
according to

x̂−k =
1

2nx

2nx

∑
j=1

x̂(j)
k

P−k =
1

2nx

2nx

∑
j=1

(
x̂(j)

k − x̂−k
)(

x̂(j)
k − x̂−k

)T
+ Qk−1.

(16)

Then, a new set of Sigma points is calculated based on the a priori estimate and
transformed with the output equation:

ŷ(j)
k = hk

(
x̂(j)

k , uk

)
. (17)

To reduce computational effort, the recalculation of the Sigma points can be omitted
and the transformed Sigma points from the a priori step can be reused with the disad-
vantage of a possible loss of accuracy. After that, estimates of the output vector and its
covariance are calculated together with the cross-covariance between state and output
vector:

ŷk =
1

2nx

2nx

∑
j=1

ŷ(j)
k

Py,k =
1

2nx

2nx

∑
j=1

(
ŷ(j)

k − ŷ−k
)(

ŷ(j)
k − ŷ−k

)T
+ Rk

Pxy,k =
1

2nx

2nx

∑
j=1

(
x̂(j)

k − x̂−k
)(

ŷ(j)
k − ŷ−k

)T
.

(18)

Finally, the a posteriori estimates of the state vector and its covariance can be calculated with

Kk = Pxy,kP−1
y,k

x̂+k = x̂−k + Kk

(
ym,k − ŷk

)
P̂+

k = P̂−k + KkPy,kKT
k .

(19)

Tuning of the UKF is performed by choosing suitable values for the elements of Qk
and Rk as well as the initial conditions x̂+0 and P+

0 . In principle, there is a high number of
degrees of freedom for the choice of the covariance matrices, why UKF tuning can be a
challenging task. Several methods have been developed of which the optimization based
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method will be used in the next section for estimator design. Furthermore, the design of
the tire model adaption is described and the used experimental vehicle is shown.

2.4. Estimator Design and Tuning

For tire model adaption to modeling errors as well as changing road conditions, µroad,i
is considered as a time-varying stochastic process. As this variable is assumed to be auto
correlated, it is modeled with first-order dynamics according to

ṗµ,i = −
1
τc

pµ,i +

√
2
τc

wp,µ,i i ∈ { f l, f r, rl, rr}

µroad,i = tanh pµ,i + 1 0 < µroad,i
(

pµ,i
)
< 2

(20)

with the correlation time τc and an unknown disturbance wp,µ,i ∼ N
(

0, σ2
p,µ,k

)
, which is

assumed to be GAUSSIAN white noise [6]. To ensure that µroad,i has physically plausible
values, it is constrained by the Tangens hyperbolicus function. The state vector with
unknown tire model adaption parameters pµ,i is

x =
[
vx, vy, ωz, ωw, f l , ωw, f r, ωw,rl , ωw,rr, pµ, f l , pµ, f r, pµ,rl , pµ,rr

]T
. (21)

The input and output vectors are

u =
[
δ, MM, f l , MM, f r, MM,rl , MM,rr

]T
(22)

y =
[

ax, ay, ωz, ωw, f l , ωw, f r, ωw,rl , ωw,rr

]T
(23)

and the state space model according to Equation (12) is derived from Equations (3)–(10).
Model parameters can be found in Table 1. For time discretization, the explicit EULER

method [20] is used with a discrete sample time ∆Td = 1 ms. As the tire forces in (9)
depend on the wheel load forces (4), an algebraic loop results. To eliminate this algebraic
loop, wheel load forces from the previous time step are used for tire force calculation,
which results in

Fw,x,i,k =
sw,x,i,k

sw,i,k
Fw,z,i,k−1

Fw,y,i,k =
sw,y,i,k

sw,i,k
Fw,z,i,k−1.

(24)

Table 1. Model parameters.

m 760 (kg) A 1.6
(
m2) cx, f 0.36 (1/m)

Jz 532
(
kg m2) ρ 1.2

(
kg/m3) cx,r 0.44 (1/m)

l f 1.25 (m) cw 0.61 (−) cy, f 0.22 (1/m)
lr 1.0 (m) C1 1.0 (−) cy,r 0.22 (1/m)

w f 0.76 (m) C2 12 (−) vnum 2.5 (m/s)
wr 0.73 (m) C3 0.0 (−) lre f 1.0 (m)

Jw 0.86
(
kg m2) µR 0.02 (−) wre f 0.4 (m)

rw 0.28 (m) hCG 0.16 (m) τc 0.5 (s)

For state estimation, observability of the system with the considered measurements is
a fundamental requirement, which is examined here by linearizing the nonlinear system
along a trajectory generated in numerical simulations. Then, the observability matrix of the
linearized system is checked numerically [9]. The system is observable with the exception
of vehicle standstill, where tire forces are close to zero and therefore µroad,i is not observable.
The sample times of the real sensors is ∆Tm = 10 ms. As can be seen, measurement
sample times are significantly larger than for model discretization, why the estimator is
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implemented as a hybrid UKF [3]. This means, if no measurement is available, only a priori
estimation is done. In accordance with Section 2.3, state and output disturbances wk and vk
are assumed to be non-correlated additive vectors. For simplification, covariance matrices
are chosen as time-invariant diagonal matrices with

Qk = Qk−1 Qk ∈ Rnx

Rk = Rk−1 Rk ∈ Rny
(25)

and output vector dimension ny. As the output disturbances are mainly due to measure-
ment noise, the elements of the measurement disturbance covariance matrix Rk are chosen
according to the noise properties given in the sensor data sheets (Table 2). If these are
not available, the noise properties are approximately determined by evaluation of the
sensor values when the system is in standstill. For a reduction in the degrees of freedom,
it is assumed that the noise properties of the longitudinal and lateral accelerometers are
identical. The same holds for the four wheel speed sensors. As the measured accelerations
are not directly related to the states but are calculated with a model equation, an additional
disturbance term is introduced, which results in

Rk = diag
(

σ2
a,noise + σ2

a,x, σ2
a,noise + σ2

a,y, σ2
ωz ,noise, σ2

ωw ,noise, σ2
ωw ,noise, σ2

ωw ,noise, σ2
ωw ,noise

)
. (26)

The structure of the state disturbance covariance matrix is chosen similarly:

Qk = diag
(
σv,x, σv,y, σωz , σωw , σωw , σωw , σωw , pµ, pµ, pµ, pµ

)2. (27)

Table 2. Sensor noise properties.

Sensor Variable Value Unit

Accelerometer σa,noise 4.9× 10−2 (
m/s2)

Gyroscope σωz ,noise 1.7× 10−3 (rad/s)
Wheel speed sensor σωw ,noise 5.2× 10−2 (rad/s)

For simplification, it is a valid assumption that the vehicle is in standstill at time
step k = 0 with high certainty and the initial estimation error covariance matrix P̂+

0 can
be chosen manually. Only the initial road friction coefficient adaption parameters are
uncertain, while the corresponding values in P̂+

0 are chosen bigger. Thus, the initial state
estimate is

x̂+0 = 0n×1

P̂+
0 = diag

(
10−12, 10−12, 10−12, 10−12, 10−12, 10−12, 10−12, 1, 1, 1, 1,

)
.

(28)

Determination of the elements of Qk and Rk is done in the following by optimization,
where the problem

σ =
[
σv,x, σv,y, σωz , σωw , pµ, σa,x, σa,y

]T (29)

σopt = arg min
σ

fc(σ) (30)

with the cost function fc in (31) solved first with the heuristic simulated annealing method [21]
to reduce the probability of getting stuck in a local minimum. Afterwards, the accuracy of
the result was increased with a constrained local optimization based on the Quasi-NEWTON

method [21]. In both cases, MATLAB’s implementation was used and the constraints were
chosen as 0 < ‖σ‖∞ < 5. For optimization, measurements from several driving maneuvers,
which are carried out with an experimental electric vehicle with four wheel hub motors
on different road surfaces (Figure 2), were used as training data. The cost function is the
sum of squared errors between measured and estimated velocity ev,re f ,k,j, accelerations
ea,k,j, and wheel speeds eω,k,j for all driving maneuvers j and time steps k. The errors were
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weighted by the matrix L, and the cost for each driving maneuver j was normalized by the
number of time samples Nj. As the accelerations and wheel speeds were measurements of
the UKF, there was a risk that Qk was chosen to be very large as a result of the optimization
in order to minimize estimation errors for these quantities. This could lead to large noise
on the state and parameter estimates, which must be prevented by a suitable choice of the
weighting matrix L.

Figure 2. Experimental electric vehicle BugEE with four wheel hub motors on (a) a wet road surface
and (b) a dry road surface. Maximum torque for each front motor is 115 Nm; maximum torque for
each rear motor is 261 Nm).

ev,re f ,k,j =

[
vx,re f ,k
vy,re f ,k

]
j
−
[

v̂x + wre f ω̂z
v̂y − lre f ω̂z

]
j

ea,k,j =

[
ax,m,k
ay,m,k

]
j
−
[

âx,k
ây,k

]
j

eω,k,j = ωw,k,j − ω̂w,k,j

L = diag(3, 3, 1, 1, rw, rw, rw, rw)
2

fc =
3

∑
j=1

 1
Nj

Nj

∑
k=1

[
eT

v,re f ,k,j eT
a,k,j eT

ω,k,j

]
L
[
eT

v,re f ,k,j eT
a,k,j eT

ω,k,j

]T
 (31)

The intial solution for the optimization is chosen as

σ0 =
[
10−9 10−9 10−9 10−9 10−7 10−6 10−6

]T
. (32)

For optimization, the data from various driving tests were used, where excitation
of longitudinal and lateral dynamics up to the limits of driving stability was carried out.
Precise state and parameter estimation during these driving situations was required for the
realization of vehicle dynamics control systems. The training data for optimization was
taken from measurements captured during

1. a transient slalom maneuver on wet road surface with µmax ≈ 0.3 . . . 0.4, an initial
velocity of vx = 40 km

h , and a distance of ∆x = 15 m between the obstacles, where
high lateral tire slip occurs;

2. a transient all-wheel-drive acceleration maneuver from standstill on wet road surface
with µmax ≈ 0.1 . . . 0.2 with excessive longitudinal tire slip; and

3. steady-state circular driving on dry road surface with µmax ≈ 1.2 and a constant
radius r = 20 m from standstill to a velocity of vx = 50 km

h , where the vehicle starts
to oversteer.

To reduce the probability of overfitting during optimization, a wide range of different
maneuvers has to be achieved. Since there are limitations in the available space on the test
site, this requirement can only be met partially. The maneuvers are performed individually
and the cost for all training data is added up. Details on the training data can be found in
Appendix A. The result of the optimization is

σopt =
[
1.44× 10−7 2.75× 10−6 2.02× 10−6 5.00× 10−6 2.05× 10−6 9.74× 10−4 1.24× 10−1

]T
. (33)
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Validation and discussion is carried out in the following section.

3. Results and Discussion

In this section, the state and parameter estimation for a set of test data containing four
different driving maneuvers is examined. Details on the the complete data can be found
in Appendix B, including estimated state variables, input and output variables, tire slip,
and estimated tire curves. The reference values mean the measured values of the vehicle
sensors and the optical speed sensor, while the reference tire slip values are computed from
these. The maximum tire road friction coefficient µmax is not measured but assessed from
literature [19]. For generation of the validation results, the state and parameter estimator
were implemented on a RCP-ECU (Rapid Control Prototyping-Electronic Control Unit)
dSPACE MicroAutoBox II, which was connected to the vehicle sensors via CAN-Bus and
operated with a sample time of ∆TECU = 1 ms. Sensor data were captured and saved
during real world driving tests. For validation, this data can be replayed by a residual bus
simulation. Thus, the real-time capability of online estimation with the shown approach
for all four driving maneuvers can be examined by measuring the mean computing time
Tc. According to Table 3, the state estimator can be executed in real-time on the used ECU.

Table 3. Mean computing time on RCP-ECU (Rapid Control Prototyping-Electronic Control Unit) for
test data.

Acceleration Evasion Circular
Driving Slalom

Tc (ms) 0.39 0.40 0.39 0.39

3.1. Wet Road Surface

In the following, the results from real world driving on wet road surfaces with low
friction are presented. Artificial driving manuevers, more specifically, an all-wheel-drive
acceleration from standstill and an emergency evasion was carried out.

3.1.1. Acceleration Maneuver

First, the results for an all-wheel-drive acceleration maneuver from standstill on a wet
road surface (µmax ≈ 0.15), similar to the maneuver used for training, are shown. Such
a scenario could occur, for example, when starting on a slope in icy conditions, which is
difficult to handle for average drivers. A traction control system might be necessary to
support the driver in this situation, and therefore, precise estimates are needed. Maximum
motor torque is applied to the wheels at t = 1 s and the vehicle starts to accelerate, which
can be seen in Figure 3. After 0.5 s, wheel speeds using the left front and rear wheels as
an example increase rapidly. The front wheel speed increase is smaller than at the rear
wheels due to the larger maximum rear motor torque. Simultaneously, vehicle lateral
velocity increases slowly due to a slight road bank angle. At t = 2.7 s, motor torque is
quickly reduced to zero, which leads to a short period of vehicle yaw motion. After that,
the vehicle rolls and lateral velocity as well as yaw rate converge to zero. High precision
for longitudinal velocity estimation during the whole driving maneuver can be observed.
The lateral velocity estimation shows some deviations, but these are bounded around the
value measured with optical sensor. A reason for this might be the used tire model, which
does not take different tire properties for longitudinal and lateral forces into account. Errors
resulting from this simplification seem not to be compensated completely by the tire model
adaption. As can be expected, yaw rate estimation is very accurate because this quantity is
measured by a sensor.
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Figure 3. Test data—acceleration on a wet road surface: measured and estimated velocities, yaw rate, wheel speeds, and
motor torques for front left and rear left wheels.

The excessive longitudinal tire slip during the maneuver can be seen in Figure 4 using the
left front and rear wheels as an example again. After a rapid increase at t = 1.7s, the values
stay at a high level for several seconds, which is estimated accurate. From t = 1.4 . . . 1.7 s,
a small delay compared to the reference values is noticeable while the tire model adaption
converges to a value of µroad,i ≈ 0.1 s at the front and rear wheels. This value should corre-
spond to the real maximum friction coefficient µmax of the wet road surface. From t = 1 s
to t = 1.4 s, the tire model adaption parameter µroad,i is at a value of ≈1.7. As the tire
slip stays in the linear region of tire curve at that time, this value does not represent the
maximum friction coefficient. Instead, it indicates that the shape of µw,i(sw,i) with the
used BURCKHARDT nominal tire model does not match the real road conditions exactly.
An adjustment of parameters C1 and C2 might reduce the error or a more precise tire model
could be used. Before t = 1 s and after t = 4 s, the adaption parameter is approximately 1,
which means that the nominal tire model is used. In accordance with the errors that can be
seen for lateral velocity estimation, some bounded lateral tire slip estimation errors occur.
The shown scenario is very challenging for state and parameter estimation as high tire slip
at all wheels occurs combined with lateral and yaw motion. Tire model uncertainties are
maximal at this operating point, which is why therefore tire slip and adapted tire road
friction coefficient must be estimated simultaneously. Under normal circumstances, low
tire slip for at least one wheel aids velocity and thus tire slip estimation at the other wheels,
but this is not the case here. Therefore, the results are considered very satisfactory.
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Figure 4. Test data—acceleration on a wet road surface: measured and estimated tire slip for front left and rear left wheels
as well as estimated tire model adaption parameter.

3.1.2. Emergency Evasion Maneuver

To validate the state and parameter estimation during a maneuver with large lateral
tire slip, an emergency evasion maneuver on a wet road surface (µmax ≈ 0.35) is used as
the test data. At the beginning of the maneuver, the longitudinal velocity is vx ≈ 42 km/h,
as shown in Figure 5. A transient change in lateral acceleration and yaw rate is generated
with a maximum lateral acceleration of ay ≈ 0.35g. As the vehicle oversteers, it has to be
stabilized by the driver. Due to the low friction surface, a considerable amplitude of lateral
velocity occurs, which is estimated precisely. The errors in longitudinal velocity and yaw
rate estimation are small.

Figure 5. Test data—evasion maneuver on a wet road surface: measured and estimated velocities, yaw rate, lateral
acceleration, and steering angle.
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Tire slip during the maneuver is shown for the front left and rear left wheels in Figure
6. Maximal lateral tire slip values are reached for both front and rear wheels at t = 10.6 s.
With an amplitude of sy,i ≈ 0.55, the tire is clearly above the maximum of the tire curve.
Nevertheless, estimation is very precise. In the moment of maximum lateral tire slip, the
longitudinal tire slip at the front wheels also reaches a value of sx,i ≈ 0.1 due to steering
motion, which are also estimated accurately. This is again due to an adaption of the nominal
tire model. The adaption parameter is estimated with µroad,i ≈ 0.4 from t = 8.2 . . . 12.2 s.
As the tire mostly operates in the nonlinear region during this period of time, the value
should represent the true maximum friction coefficient µmax for the wet road surface.
Deviations and fluctuations in the value result from different other disturbances, such
as modeling errors, e.g., neglected tire force dynamics and suspension motion. In summary,
the results for the evasion maneuver can also be considered satisfactory. This is important
for yaw stabilization during emergency evasion of obstacles, which is a common use case
for vehicle stability control.

Figure 6. Test data—evasion maneuver on a wet road surface: measured and estimated tire slip for front left and rear left
wheels as well as estimated tire model adaption parameter.

3.2. Dry Road Surface

The maximum tire forces that can be transmitted on dry road surfaces are considerably
higher than on wet road surfaces; therefore, the handling becomes unstable at significantly
higher accelerations. Nevertheless, situations can occur where the driver loses control
of the vehicle and stability control and, thus, precise state estimation is needed. In the
following, a steady-state circle and a slalom driving maneuver are used for examination of the
UKF performance.

3.2.1. Steady-State Circular Driving

The third driving maneuver is steady-state circular driving from standstill with low
acceleration and a constant steering angle on a dry road surface (µmax ≈ 1.2). By slowly
increasing the velocity, the vehicle becomes unstable at the end of the maneuver and starts
oversteering, why the driver has to stabilize the vehicle. As can be seen in Figure 7, a
maximum lateral acceleration of ≈ 1g is reached, which is in the typical range for road
vehicles. The longitudinal and lateral velocity are estimated precisely during the phase of
stable driving behavior from t = 0 . . . 70 s as well as during the phase of oversteering and
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stabilizing from t = 70 . . . 75 s. As before, yaw rate estimation is very precise due to the
availability of measurement.

Figure 7. Test data—circular steady-state driving maneuver on dry road surface: measured and estimated velocities, yaw
rate, lateral acceleration, and steering angle.

Longitudinal and lateral tire slip are shown in Figure 8. The lateral tire slip at the
front wheels is bigger than at the rear wheels until t = 70 s because of the steering angle.
Both front and rear tire slip values decrease slightly during this period of time, while
a rapid increase during oversteering can be observed. The lateral tire slip estimation is
precise during the whole maneuver, but some bounded estimation errors occur during
t = 65 . . . 70 s. In this time frame, the tire operates at the end of the linear region near the
maximum of the tire curve, where the used BURCKHARDT nominal tire model is not very
precise, as stated before. Longitudinal tire slip estimation shows some larger errors from
t = 0 . . . 70 s, while the rapid increase in front wheel longitudinal tire slip is estimated
precisely. The error might result from larger deviations in wheel radius, which occur
because a different tire was mounted on the test vehicle than in the previously shown
maneuvers. Nevertheless, the state and parameter estimator is robust against such model
errors. The estimated tire model adaption parameter µroad,i increases from a value of 1 up
to 1.5 until t = 70 s. As the tire is still in the linear region of the tire curve, this value does
not represent the maximum tire road friction coefficient µmax but the errors in the used tire
curve. During oversteering at t = 70 . . . 75 s, when the tire operates near the maximum of
the tire curve, µroad,i can be seen as an estimate of µmax with a plausible value of ≈ 1 . . . 1.5.
Again, the states and parameters of the vehicle are estimated precisely during the critical
driving situation with instable vehicle behavior.
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Figure 8. Test data—circular steady-state driving maneuver on dry road surface: measured and estimated tire slip for the
front left and rear left wheels as well as estimated tire model adaption parameter.

3.2.2. Slalom Maneuver

Lastly, the estimator was validated using data from a slalom maneuver on dry road
surface (µmax ≈ 1.2) at a constant velocity of vx = 36 km/h and with a maximum lateral
acceleration of ay = 0.65 g. The maximum tire force was not reached during this maneuver,
so the tire operates completely in the linear region but the tire slip change is very dynamic.
As can be seen in Figures 9 and 10, precise estimation of the velocities and lateral tire slip is
achieved. As during the circle driving maneuver, some bounded errors in longitudinal tire
slip estimation can be noticed, which are likely to occur due to deviations in real wheel
radius from the value used by the model.

Figure 9. Test data—Slalom maneuver on a dry road surface: measured and estimated velocities, yaw rate, lateral
acceleration, and steering angle.
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Figure 10. Test data—Slalom maneuver on a dry road surface: measured and estimated tire slip for front left and rear left
wheels as well as estimated tire model adaption parameter.

A wrong tire radius parameter directly influences the estimated tire forces and the
resulting torques at the wheels. This error can be compensated up to a certain point by
reduction of the longitudinal tire forces by the adaption parameter µroad,i, as can be seen
during the acceleration phase from t = 2 . . . 8 s. After this, lateral tire forces dominate
and the adaption parameter mainly compensates errors in the nominal tire curve. As the
longitudinal tire slip during this maneuver is below the level where a vehicle dynamics
control system would operate, the shown errors are considered noncritical.

3.3. Estimated Tire Curves

The normalized tire forces over the resulting tire slip are shown in Figure 11 for each
wheel and for all driving maneuvers. With respect to Equation (8), the displayed curves
correspond to the adapted tire road friction coefficients µroad,iµw,i. Even if the curves
are corrupted by disturbances due to tire model errors, omitted tire force dynamics, and
measurement noise, a branch for each road surface can be clearly identified. For dry roads,
the curves for the steady-state circle and slalom maneuvers overlap. While the tire slip
values stay in the linear region during the slalom maneuver, tire force saturation can be
seen during the circle driving.

The estimated maximum friction coefficient on a dry road during circle driving surface
is µmax ≈ 1.4 for the right and µmax ≈ 1.0 for the left wheels, which slightly differs from the
expected values. A reason for this could be modeling errors in vertical tire force calculation,
which become relevant during load change from inner curve to outer curve wheels. In
addition, the errors in tire radius might contribute to discrepancies between the estimated
and expected maximum friction coefficients. The estimated maximum friction coefficient
for the evasion maneuver on a wet surface is µmax ≈ 0.35 . . . 0.45, as expected. For each
front wheel, a second branch with higher values for µroad,iµw,i is visible, which is because
the front wheels leave the wet surface area at the end of the maneuver and reach a dry
road surface. During the acceleration maneuver, µmax ≈ 0.1 . . . 0.2 is estimated, which is
in accordance with the values in the literature. The gradient ∂(µroad,iµw,i)/∂sw,i is roughly
identical for all considered ground surfaces.
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Figure 11. Test data: estimated friction coefficient over tire slip for all driving maneuvers.

4. Conclusions

The shown method estimates important dynamic states of the vehicle and adapts
the tire model wheel-individually by means of a suitable modeling of the unknown dis-
turbances with the help of the parameter µroad,i. Even in severe driving situations, the
suitability of the shown approach can be compared to reference measurements. By using
a UKF, a nonlinear vehicle model can be used, while at the same time, a simple imple-
mentation is possible using a universal algorithm. The effort for the design of the UKF
is low due to the use of optimization methods. Therefore, a high accuracy as well as a
high robustness of the estimation against unknown disturbances, which exist in reality,
are achieved by using training data from real driving tests, as has been shown during
the validation. Furthermore, it has been shown that the state and parameter estimator
can be executed on an ECU in real-time. The used BURCKHARDT tire model has few
parameters and can be identified with small effort. By using a more precise tire model,
it is assumed that a further increase in estimation accuracy can be achieved. For future
developments, it should be examined how a model adaption regarding disturbances other
than tire model variations, e.g., road slope and inclination, external wind, or deviations in
tire radius, can be realized. A detailed analysis of the UKF estimation algorithm robustness
to changes in the initial values of the states and parameters as well as the level of noise
from the measurement data should be carried out in the future. Furthermore, it could
be investigated how the accuracy and robustness of the estimation can be increased by
using time-varying covariance matrices. Another issue is optimization of the UKF with
respect to a correct estimation of Pk, i.e., the estimation error covariance, which has not
been considered. Closed-loop operation of the state estimator with a driving dynamic
control system should also be investigated.
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Appendix A

Figure A1. Training data: system inputs steering angle and motor torques.
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Figure A2. Training data: measured and estimated accelerations, velocities, yaw rate, and wheel speeds.
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Appendix B

Figure A3. Test data: measured and estimated accelerations, velocities, yaw rate, and wheel speeds.
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Figure A4. Test data: system inputs steering angle and motor torques.

Figure A5. Test data: measured and estimated longitudinal tire slip.
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Figure A6. Test data: measured and estimated lateral tire slip.

Figure A7. Test data: estimated unknown friction coefficients.
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