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Abstract

In this thesis, we combine concepts and methods from machine learning and statis-
tics and apply them to analyze diverse biological data in phylotranscriptomics,
transcriptomics, and metabolomics.

Starting with phylotranscriptomics, we study the transcriptomic hourglass pat-
tern in animals and plants. It is based on the theory of the developmental hour-
glass that describes the morphological convergence of animal embryos during mid
embryogenesis. Although there is no evidence for a morphological hourglass pat-
tern during embryogenesis in plants, we show a transcriptomic hourglass pattern
during the embryogenesis of the model plant Arabidopsis thaliana. To study devel-
opmental processes in the light of evolution, we introduce the phylotranscriptomic
approach to combine gene expression data with evolutionary gene ages. We show
that the transcriptomic hourglass pattern is actively maintained in extant species.
Furthermore, our results suggest that the transcriptomic hourglass pattern is de-
coupled from organogenesis and may function as a switch to enable developmental
transitions. We further develop a novel phylotranscriptomic measure based on the
Shannon entropy showing highly significant transcriptomic hourglass patterns that
might be primary to the traditional transcriptomic hourglass patterns.

In order to analyze transcriptomic changes of developmental processes in more
detail, we investigate spatio- temporal gene expression data to understand the
transcriptome dynamics during grafting. Grafting is a unique feature of plants that
allows them to form chimeric organisms through joining previously cut tissues. We
detect differentially expressed protein-coding genes showing spatio- and temporal
specific expression patterns.

Understanding developmental processes like grafting more precisely, it is essen-
tial to study the interaction of protein-coding genes and non-coding transcripts. In
plant research, the knowledge of non-coding transcripts is limited. We attempt to
overcome these limitations by annotating novel protein-coding splice variants, long
non-coding RNAs, and circular RNAs in seven different flowering plants based on
organ-specific RNA-Seq data. We develop a reproducible automated pipeline to
process the data and annotate novel coding and non-coding transcripts.

Besides this diverse transcriptome landscape, we develop machine learning ap-
proaches and apply statistical methods to investigate the metabolomic diversity.
Therefore, we quantify and characterize the effects of aging and diabetes on the
concentrations of free fatty acids in the outer barrier of the human skin. We also
take a closer look at the amino acid concentrations of serum metabolite profiles to
unravel the contributions of different dietary protein sources on the metabolism.
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In summary, modern life sciences have evolved to an unprecedented level of
diversity coupled with immense amounts of data from various sources. Robust
methods are required for quantifying diverse observations and for stating their
statistical significance. We establish various methods and workflows to analyze
and interpret these diverse data.
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1
Introduction

Bioinformatics has become an essential and indispensable discipline in modern
data-driven branches of the life sciences such as biology, biochemistry, pharmacy,
agricultural science, nutritional science, and medicine. It marks the turning point
from intuitive and qualitative thinking to quantitative reasoning. Its origin can be
dated back to the early 1960s when Margaret O. Dayhoff implemented the first de
novo sequence assembler to decipher large protein sequences. Her efforts, and those
of her co-author Robert S. Ledley, to integrate computational science into biology
gave rise to a discipline that should 25 years later be known as Bioinformatics.

Starting at sequence analysis of proteins, the deciphering of the genetic code led
to the computational analysis of DNA and RNA as sources of biological informa-
tion. With an increase in cost-efficient DNA sequencing, the need for bioinformatic
analyses first peaked during the mid-1990s due to the demand for specialized
software to handle the unprecedented amount of data generated by the Human
Genome Project [1, 2].

Ever since, Bioinformatics has been established as an interdisciplinary science
bridging experimental, computational, and statistical research in the natural sci-
ences. Besides pure sequence analyses of DNA, RNA, and proteins, the applica-
tions of bioinformatics research today are intertwined with all modern branches of
biology including genomics, transcriptomics, and metabolomics.

The goal of my PhD research work was to contribute to the development of this
broad spectrum of bioinformatics applications in natural sciences by combining
concepts and methods from machine learning and statistics and by applying them
to analyze diverse biological data in phylotranscriptomics, transcriptomics, and
metabolomics.

This thesis represents the different research areas in which my coworkers and
I developed software to analyze the biological data and interpreted the obtained
findings. Because each chapter deals with a different topic, each of them starts with
an introduction providing elementary information to understand the biological
problem.

In chapter 2, we will start with the developmental hourglass phenomenon; a
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still-controversially discussed concept in evolutionary developmental biology. We
will learn about the morphological hourglass patterns and transcriptomic hourglass
patterns only observed in animal embryogenesis. Additionally, we will introduce
the phylotranscriptomics approach, which is the combination of gene expression
data and evolutionary gene ages to study developmental processes in the light of
evolution. Based on this approach, we will be able to detect the transcriptomic
hourglass pattern in plant embryogenesis. Our findings suggest, that transcrip-
tomic hourglass patterns of embryogenesis have emerged independently in animals
and plants. We will conclude with the question if the observed patterns are non-
functional remnants or still functional.

In chapter 3, we will turn to this question by investigating the active main-
tenance of the transcriptomic hourglass pattern. We will describe the developed
statistical approaches to systematically quantify the observed transcriptomic hour-
glass patterns. Based on our findings, we will conclude that the observed patterns
are actively maintained and thus might be of functional relevance.

In chapter 4, based on the active maintenance of the transcriptomic hourglass
pattern, we will attempt to find out a functional explanation for the pattern. As
proposed in the literature, the hourglass phenomenon in animal embryogenesis is
coupled with the establishment of the body plan, and thus coupled with the process
of organogenesis [3]. In contrast to animals, organ formation in plants occurs
largely postembryonically. In order to determine if the transcriptomic hourglass
in plants is connected to developmental transitions or to organogenesis, we will
perform phylotranscriptomic analyses of transcriptome data from germination,
floral transition, and flower development. We will conclude that the transcriptomic
hourglass pattern may function as a switch to enable the transition from one
functional program to the next.

In chapter 5, we will redefine the transcriptomic measures of the previous chap-
ters from a probabilistic perspective and develop a novel phylotranscriptomic ap-
proach based on the Shannon entropy, which measures the homogeneity of the age
distributions as a function of time. We will also learn about the PhyloWeb server
enabling the automated calculation of gene ages and allowing researchers to access
our calculated gene age assignments. With the updated gene age calculations and
the Shannon entropy based phylotranscriptomic approach, we will find highly sig-
nificant transcriptomic hourglass patterns. We will conclude this chapter with the
hypothesis that these novel transcriptomic hourglass patterns could be primary to
the traditional transcriptomic hourglass patterns.

In chapter 6, we will continue our attempt to decipher the origin and thus even-
tually the function of the transcriptomic hourglass pattern. We will start by the
investigation of the dependencies between the two proposed phylotranscriptomic
measures. Afterwards, we will develop a gradient-based approach to reproduce
the entropic hourglass patterns based on the traditional measure or to reproduce
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the traditional transcriptomic hourglass pattern based on the entropic measure.
Based on our findings, we will partially answer the question of the origin, and
thus we will get closer to understand the functional relevance of the developmen-
tal hourglass pattern. The phylotranscriptomic analyses of the chapters 2 - 6 will
be based on temporal gene expression data of a developing organism. In contrast,
a more detailed analyses of transcriptomic changes of developmental processes can
be performed by adding a spatial dimension.

In chapter 7, we will study the transcriptome dynamics during grafting based on
spatio-temporal gene expression data. Grafting is an agriculturally relevant and
unique feature of plants enabling increased productivity and yield. The grafting
process allows the formation of chimeric organisms through joining previously cut
tissue. We will develop and perform statistical analyses to yield information about
differential expressed genes that play an essential role in grafting. We will detect
sets of genes showing spatio- and temporal specific expression patterns. These
genes and their functional relevance will help us to deepen our understanding of
the intertissue recognition and wound healing mechanisms. In order to get a more
precise picture of the grafting processes, the analysis of non-coding transcripts,
such as long non-coding RNAs and circular RNAs, and their interaction with
protein-coding genes will be essential.

In chapter 8, we will investigate the transcriptome landscape of flowering plants
and present a workflow for the annotation of non-coding transcripts and splice
variants of protein-coding genes in seven flowering plants. We will describe the
sequencing experiments and the developed annotation workflow to create com-
prehensive transcriptome annotations of long non-coding RNAs, circular RNAs,
and novel splice variants of protein-coding genes based on organ-specific RNA-Seq
data. Additionally, we will compare genomic features of non-coding and protein-
coding transcripts within and between the different species. Besides the diversity
within the transcriptome, a living cell depends on additional groups of compounds
such as amino acids, proteins, carbohydrates and lipids. The analyses of these
compounds are summarized under the umbrella of metabolomics.

In chapter 9, we will turn our attention to the field of lipidomics, a subdomain
of metabolomics. We will analyse the concentrations of free fatty acids of the
Stratum corneum, the outer barrier of the human skin. We will learn about the
effects of aging and diabetes on the barrier function of this outer layer of the human
skin. To quantify and characterize these effects, we will perform univariate and
multivariate statistical analyses. By the identification of changes in the free fatty
acid composition, we will identify free fatty acids that may have the potential to
improve skin recovery and protection.

In chapter 10, we will continue in the field of metabolomics and we will take a
closer look at the amino acid concentrations of serum metabolite profiles among
others. We will describe statistical analyses to unravel the contributions and ef-
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fects of three different dietary protein sources on the metabolism. Based on a
linear discriminant analysis coupled with leave-one-out cross-validations, we will
investigate the multivariate distribution of amino acids in the serum metabolite
profiles and attempt to uncover sets of biomarkers helping to discriminate between
the intake of the different dietary protein sources.

Chapters 2 - 10 represent a subset of research projects my colleagues and I
have worked on during the past years. In addition, I was very fortunate to be
allowed to work on additional research projects during my PhD and to contribute to
publications in the fields of transcriptomics and metabolomics. In transcriptomics
I had the opportunity to work on the gene expression of flower development [4],
the transcriptome of polyspermy-derived triparental plants [5], and RNA-Seq data
from several space-omics projects [6], topics related to chapters 7 and 8. In the
field of lipidomics, I was able to contribute to the work of our colleagues from
medicine and pharmacy on the analysis of ceramide lipids in the Stratum corneum
to support the repairing of the skin barrier [7], a topic related to chapter 9 of this
thesis.

In chapter 11, we will draw conclusions beyond those that could be drawn at
the ends of each of the nine chapters and present an outlook for future studies.
We will connect the different topics and demonstrate the immense diversity of
bioinformatics in various applications. This diversity is reflected by our work with
different organisms from the plant and the animal kingdom. We investigated dif-
ferent developmental processes such as embryogenesis, grafting, aging, and others.
We analyzed diverse data sets from different sources, such as sequencing data from
RNA-Seq or metabolomics data from gas chromatography. Finally, this diversity is
reflected in our participation in research projects covering diverse branches of the
life sciences such as evolutionary developmental biology, developmental biology,
pharmacy, medicine, nutritional science, and space science.
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2
Transcriptomic hourglass patterns in

plant embryogenesis

The developmental hourglass pattern was first observed based on morphological
similarities during vertebrates’ embryogenesis. Embryos from different taxa ap-
peared dissimilar in early stages, appear highly similar during mid-embryogenesis,
and again appear dissimilar in later stages. Analyses in Danio rerio and several
subspecies of Drosophila embryos could show a similar pattern on the molecular
level. Besides, an embryonic hourglass has not been reported in plants. In this
chapter, we will investigate the transcriptome of Arabidopsis thaliana during em-
bryogenesis and we will provide evidence for a transcriptomic hourglass based on
two complementary approaches.

In section 2.1, we will introduce the developmental hourglass model and we will
give insights into the embryogenesis of plants. In section 2.2, we will learn about
analyses to quantify transcriptomic hourglass patterns that my colleagues and I
developed based on evolutionary approaches introduced by [8, 9]. In section 2.3,
we will present the transcriptomic hourglass pattern of plant embryogenesis in the
model plant A. thaliana, and we will discuss possibilities of its origination. In
section 2.4, we will speculate about a possible explanation of the transcriptomic
hourglass in animals and plants.

The following sections are extracted from Quint et al. 2012 “A transcriptomic
hourglass in plant embryogenesis” [10].

2.1 Introduction

Animal and plant development starts with a constituting phase called embryoge-
nesis, which evolved independently in both lineages [11]. Comparative anatomy
of vertebrate development - based on the Meckel-Serrès law [12] and von Baer’s
laws of embryology [13] from the early nineteenth century - shows that embryos
from various taxa appear different in early stages, converge to a similar form dur-
ing mid - embryogenesis, and again diverge in later stages. This morphogenetic
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2 Transcriptomic hourglass patterns in plant embryogenesis

series is known as the embryonic “hourglass” [14, 15], and its bottleneck of high
conservation in mid-embryogenesis is referred to as the phylotypic stage [3].

Recent analyses in Danio rerio and Drosophila embryos provided convincing
molecular support for the hourglass model, because during the phylotypic stage
the transcriptome was dominated by ancient genes [9] and global gene expression
profiles were reported to be most conserved [16].

In flowering plants, embryogenesis can be separated into three major phases
(Fig. 2.1. The early phase is characterized by asymmetric cell divisions to establish
apical–basal polarity. In the intermediate phase, major organs and primordia are
initiated, which expand in the late phase to the mature embryo [17, 18].

Zygote Quadrant Globular Heart Torpeda Bent Mature

Early Mid Late

Figure 2.1 | Phases of A. thaliana embryogenesis. The early phase of embryo-
genesis is represented by the developmental stages of zygote and quadrant. During this
phase the embryo establishes the apical-basal axis. The zygote divides asymmetrically to
form the apical and basal cells of the quadrant. In the mid or intermediate phase repre-
sented by the globular, heart, and torpedo stage, the radial axis gets established, major
organs and primordia are initiated. In the late phase the mature embryo is formed.

One notable difference between embryogenesis in animals and plants concerns
the establishment of morphological variation between taxa. For example, verte-
brates develop morphological variation in late embryogenesis, whereas differences
between flowering plant taxa are only established during post-embryonic devel-
opment. Inspired by the historical relevance of the embryonic hourglass model
in animals, by recent transcriptional support from studies in Da. rerio [9] and
Drosophila [9, 16], and by the absence of any reported anatomical evidence for
such a pattern during plant embryogenesis, we assess the possible existence of a
transcriptional hourglass during embryogenesis of the plant reference species A.
thaliana.

6



2.2 Materials and Methods

2.2 Materials and Methods

The main findings in this chapter are based on two different transcriptome indices.
Both combine gene expression data with evolutionary information. In this section,
we will explain the calculation of these two measures and statistical approaches
to quantify their time course pattern. In subsection 2.2.1, we will introduce phy-
lostratigraphy to determine the evolutionary gene age, phylostratum. In subsection
2.2.2, we will define the transcriptome age index as a combination of phylostrata
and gene expression data. In subsection 2.2.3, we will describe the calculation of
sequence divergence levels as Ka/Ks ratios. In subsection 2.2.4, we will combine
the Ka/Ks ratios with gene expression data to define the transcriptome divergence
index. In subsection 2.2.5, we will explain the test statistics to quantify the ex-
istence of a transcriptomic hourglass pattern. In subsection 2.2.6, we will learn
about the calculation of relative expression levels of each phylostratum. Finally,
in subsection 2.2.7, we will get to know the calculation of relative expression levels
of each Ka/Ks quantile.

2.2.1 Phylostratigraphic analysis

Macroevolutionary trends have been generally studied by fossil analysis or mor-
phological comparisons. Due to the increasing number of sequenced genomes and
established algorithms for efficient and precise sequence comparisons, phylostratig-
raphy defines an alternative method, which tries to reveal the origins of each
protein-coding gene in a species of interest by identifying homologous sequences in
a sequence database representing the tree of life. The phylostratigraphic approach
was introduced by Domazet-Lošo et al. in 2007 [8] and can be explained with three
essential steps.

In the first step, the target species’ phylogeny gets reconstructed based on se-
quence information of extant species. This reconstruction involves retrieving all
available protein sequences from sequenced organisms and building a comprehen-
sive sequence database. The sequences in this database are hierarchically ordered
based on the target species’ phylogeny, whereas each node in the phylogeny rep-
resents an evolutionary age category, called phylostratum (PS).

Following this procedure, we downloaded the amino acid sequences of 1,459
species with completely sequenced genomes (see Supplementary Table 1 of [10]).
The species, resp. their amino acid sequences, were then sorted into 13 phylostrata
(Fig. 2.2) representing the phylogeny of A. thaliana.

In the second step, each protein-coding gene of the target species is blasted
against the comprehensive sequence database to identify homologous sequences.
Due to their robustness against mutation events, which occur during evolution,
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2 Transcriptomic hourglass patterns in plant embryogenesis

we compare only the translated amino acid sequences against the comprehensive
sequence database, also containing only amino acid sequences.
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Figure 2.2 | Phylogeny of A. thaliana reconstructed from extant species
with completely sequenced genomes. Phyla have been assigned according to the
NCBI taxonomy database and sorted into the phylostrata (PS) shown at the respective
nodes. The phylogenetic tree was created with iTOL [19] (http://itol.embl.de). All
divergence times were obtained from http://www.timetree.org [20]. Cell. org., cellular
organisms described by PS1. Adapted Supplementary Figure 1 from [10].

In the third step, according to the phylogenetically most distant species in
which BLAST identified homologous sequences, each gene is assigned into a PS. A
BLAST hit is homologous if its E-value is below 10−5. If no homologous sequence
of a gene from the target species shows similarities to sequences in the sequence
database, the gene gets assigned to the youngest PS. The assignment of all genes
from a target species into their corresponding PS is called a phylostratigraphic
map.

Due to the nature of the BLASTP approach, genes are assigned to PS according
to any detectable homology between query and target protein sequences. Thus
multi-domain proteins, for example, are mapped to the PS of the oldest domain
irrespective if another functional domain has evolved more recently.

For illustration consider the example of a protein of 1,000 amino acids length
that consists of a short domain of 50 amino acids conserved among all eukaryotes,
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whereas the remaining sequence of 950 amino acids is A. thaliana specific without
any detectable homology to other species. Although in this example the vast
majority of the sequence has evolved only recently after divergence of the two
sister species A. thaliana and Arabidopsis lyrata, this protein would be sorted
into the ancient PS2. Since roughly 30% of plant proteins have been designated
as multi-domain proteins (Supplementary Fig. 4 in [21]), this phenomenon may
affect a significant portion of the plant proteins.

Hence, the phylostratigraphic approach identifies founder genes or domains that
have emerged at a certain time (or PS) in evolution. Based on this founder gene or
domain, additional family members have arisen subsequently by mechanisms like
gene duplication or structural rearrangements, resulting in the incorporation of
this founder gene or domain in genes of multi-domain proteins. Importantly, phy-
lostratigraphy does not distinguish between orthologs and paralogs. Furthermore,
phylostratigraphy considers evolutionary time since the emergence of cellular life
roughly four billion years ago until today.

2.2.2 The transcriptome age index

The transcriptome age index (TAI) was initially introduced by Domazet-Los̆o in
2010 [9]. It is based on the previously described gene age inference approach of phy-
lostratigraphy [8]. The resulting phylostratigraphic map is an assignment of each
protein-coding gene to a discrete age category (PS). To construct the TAI mea-
sure, phylostratigraphy based gene age inference is performed for all protein-coding
genes of a reference organism of interest (here A.thaliana). The phylostratigraphic
map is combined with expression levels covering the biological process of interest.

The TAI of developmental stage s ∈ {zygote, quadrant, globular, heart, torpedo,
bent cotyledon, mature} is defined as the weighted mean of the phylostratum psi
of gene i weighted by the expression level eis of gene i at developmental stage s

TAIs =

∑I
i=1 psi eis∑I

i=1 eis
(2.1)

where I is the total number of genes analysed. Low PS values correspond to
evolutionarily old genes, so low TAI values correspond to evolutionarily old tran-
scriptomes. Likewise, high PS values correspond to evolutionarily young genes, so
high TAI values correspond to evolutionarily young transcriptomes.
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2 Transcriptomic hourglass patterns in plant embryogenesis

2.2.3 Calculation of sequence divergence levels

The levels of sequence divergence, represented by the Ka/Ks ratio, is an indicator
of selective pressure within protein-coding regions. It reflects natural selection,
one of the major forces driving evolution.

The basis of the calculation of sequence divergence levels is a global alignment
of protein sequences that are orthologous between species. Here, orthologous gene
pairs of A. thaliana and A. lyrata, A. thaliana and Eutrema salsugineum (formerly
known as Thellungiella halophila), A. thaliana and Capsella rubella, or A. thaliana
and Brassica rapa were determined by taking the best hit of the corresponding
BLASTP searches.

Then, each orthologous gene pair’s amino acid sequences get globally aligned
with MAFFT [22] (L-INS-i option) because the Ka/Ks ratio represents the full-
length of the sequence and not only a subsequence. The resulting alignment is
converted into a codon alignment with PAL2NAL [23] to subsequently compute
the Ka/Ks ratio with GESTIMATOR [24].

The Ka/Ks ratio of a gene is the number of nonsynonymous substitutions per
nonsynonymous site (Ka) divided by the number of synonymous substitutions per
synonymous site (Ks). Gene pairs with Ka < 0.5, Ks < 5, and ratios Ka/Ks < 2
were retained.

2.2.4 The transcriptome divergence index

Analogous to the TAI, we introduce the transcriptome divergence index TDIs of
developmental stage s ∈ {zygote, quadrant, globular, heart, torpedo, bent cotyle-
don, mature} by replacing psi in Eq. 2.1 by the Ka/Ks ratio of gene i,

TDIs =

∑I
i=1

Kai

Ksi
eis∑I

i=1 eis
(2.2)

Hence, low Ka/Ks ratios correspond to conserved genes, so low TDI values cor-
respond to conserved transcriptomes. In contrast, high Ka/Ks ratios correspond
to divergent genes, so high TDI values correspond to divergent transcriptomes.
The same procedure was repeated for the second independent dataset covering the
embryo propers of A. thaliana embryo stages pre-globular, globular, heart, linear
cotyledon/torpedo, and mature [25, 26] (GEO accession number GSE12404). We
normalized this dataset using the GCRMA package (version 2.0) from the Bio-
conductor project with default parameter settings [27]. For each probe set we
computed the stage-wise arithmetic mean of the replicates to get representative
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expression values for each stage. Here, 20,031 genes represented on the microarrays
were included in the analyses

2.2.5 Statistical significance of TAI and TDI profiles

To determine the statistical significance of the TAI and TDI profiles, the following
permutation test was performed. The variance VTAI of the seven values of TAIs
was computed as test statistic. For determining the null distribution of VTAI , all PS
values within each developmental stage s were randomly permuted, seven surrogate
values of TAIs were computed from this permuted dataset, and a surrogate value
of VTAI was computed from these seven surrogate values of TAIs.

This procedure was repeated 1,000 times, yielding a histogram of 1,000 values of
VTAI , which can be approximated by a gamma distribution. The two parameters
of the gamma distribution were estimated by the method of moments, the fitted
gamma distribution was considered the null distribution of VTAI , and the P value
of the observed value of VTAI was computed from this null distribution. The same
procedure was repeated for the seven values of TDIs, yielding a P value of the
TDI profile. Likewise, the second dataset [25, 26] was analysed accordingly.

In the following chapters, we will refer to this test statistic as the flat line test,
because it statistically quantifies the difference of the observed profile from a flat
horizontal line.

2.2.6 Relative expression levels for phylostrata

Relative expression levels were computed as described in [9]. The mean expres-
sion level fs(ps) of phylostratum ps and developmental stage s was computed
for each ps and s as the arithmetic mean of expression levels eis of all genes i
belonging to phylostratum ps. The mean expression levels f s(ps) were linearly
transformed to the interval [0, 1] according to Eq. 2.3 where fmin(ps)/fmax(ps) is
the minimum/maximum mean expression level of phylostratum ps over the seven
developmental stages s.

fs(ps) =
f s(ps)− fmin(ps)

fmax(ps)− fmin(ps)
(2.3)

This linear transformation corresponds to a shift by fmin(ps) and a subsequent
shrinkage by fmax(ps)− fmin(ps). As a result, the relative expression level fs(ps)
of developmental stage s with minimum f s(ps) is 0, the relative expression level
fs(ps) of the developmental stage s with maximum fs(ps) is 1, and the relative
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expression levels fs(ps) of all other stages s range between 0 and 1, accordingly.

Next, relative expression levels were grouped into two PS classes, where the first
PS class consists of relative expression levels of genes belonging to the three oldest
phylostrata PS1–PS3, and where the second PS class consists of relative expression
levels of genes belonging to the younger phylostrata PS4–PS13. This grouping was
chosen to distinguish phylostrata of plants that pass through embryogenesis (PS4–
PS13) from the remaining phylostrata (PS1–PS3), in which the vast majority of
species did not evolve embryogenesis. For each developmental stage s and each
PS class, the mean value and standard error of the relative expression levels were
computed. In addition, the ratio (fold-change) of the two relative expression levels
was computed for each developmental stage s, and Welch’s two-sample t-test was
performed.

2.2.7 Relative expression levels for Ka/Ks quantiles

In contrast to PS values, which are discrete, Ka/Ks ratios are continuous. For
computing relative expression levels of genes belonging to different Ka/Ks groups,
continuous Ka/Ks ratios were grouped into deciles (10% quantiles). Relative ex-
pression levels of these ten Ka/Ks groups were computed in analogy to the compu-
tation of relative expression levels of the 13 phylostrata. Likewise, relative expres-
sion levels were grouped into two Ka/Ks classes, where the first Ka/Ks class con-
sists of relative expression levels of genes belonging to the first five Ka/Ks groups
(Ka/Ks ratios below median, conserved genes), and where the second Ka/Ks class
consists of relative expression levels of genes belonging to the remaining five Ka/Ks

groups (Ka/Ks ratios above median, divergent genes).

This grouping was chosen because the median is a natural choice, making both
Ka/Ks classes equally large, and because the grouping of genes into different PS
classes also resulted in two PS classes of roughly similar sizes (first dataset: 10,695
genes in PS1–PS3 and 14,463 genes in PS4–PS13; second dataset: 9,028 and
11,003 genes, respectively). The computation of mean values, standard errors,
fold-changes and P values of Welch’s two-sample t-test were performed as de-
scribed in the previous subsection. To investigate the dependence of the results
on the grouping into two Ka/Ks classes, the entire analysis was repeated for the
following six pairs of Ka/Ks classes: two deciles/eight deciles, three deciles/seven
deciles, ..., seven deciles/three deciles. The six resulting plots of means, standard
errors, fold-changes and P values are presented in Supplementary Figs 6–9, 11–14
[10].
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2.3 Results and Discussion

We obtained genome-wide expression profiles of a complete developmental series
from the zygote to the mature embryo in A. thaliana from [28]. To investigate the
presence of an embryonic transcriptomic hourglass pattern in plants, we combine
this transcriptome information with two different measures of evolutionary dis-
tance: evolutionary age and sequence divergence. In subsection 2.3.1, we will intro-
duce this procedure, followed by a comparison of the two transcriptome measures
TAI and TDI in subsection 2.3.2. Finally, in subsection 2.3.3, we will present the
resulting TAI and TDI profiles calculated across the embryogenesis of A. thaliana.

2.3.1 Measuring the transcriptome evolution

We compute two different transcriptome indices for each gene, the transcriptome
age index (TAI) [9] based on evolutionary age, and the transcriptome divergence
index (TDI) based on sequence divergence. We investigate the profiles of these
two transcriptome indices across the seven sampled embryo stages, and ask if and
to what degree they show an hourglass pattern similar to that found for Da. rerio
[9] or Drosophila melanogaster [9].

Figure 2.3 | Evolutionary age and sequence divergence of A. thaliana genes.
(A), Phylostratigraphic map of A. thaliana. Numbers in parenthesis denote the number
of genes per phylostratum (PS1–PS13). Cell. org., cellular organisms described by
PS1.(B)–(E), Scatter plots of phylostratum versus Ka/Ks ratios over all genes. Ka/Ks

ratios are derived from orthologous genes between A. thaliana and (B), A. lyrata, (C), E.
salsugineum, (D), C. rubella and (E), B. rapa. Kendall τ values denote the Kendall rank
correlation coefficients measuring the association between both parameters. Adapted
Figure 1 from [10].

For calculating the TAI, we assign an evolutionary age to each gene in the A.
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thaliana genome by sorting each gene into its phylostratum, defined as the most
distant phylogenetic node containing at least one species with a detectable homo-
logue (Fig. 2.2, Supplementary Tables 1 and 2 in [10]). The resulting phylostrati-
graphic map [8] contains 13 phylostrata, PS1–PS13 (Fig. 2.3A). PS1 includes the
evolutionarily oldest genes with homologous sequences in prokaryotes, and PS13
includes the evolutionarily youngest genes with no homologue in any other species.

For calculating the TDI, we determine the sequence divergence between A.
thaliana and its sister species Arabidopsis lyrata or any one of the closely re-
lated Brassicaceaes, Brassica rapa, Capsella rubella and Thellungiella halophila,
by computing the Ka/Ks ratio (Supplementary Table 3 of [10]). Here Ka is the
number of non-synonymous substitutions per non-synonymous site and Ks is the
number of synonymous substitutions per synonymous site for each orthologous
gene pair. The Ka/Ks ratio is an indicator of selective pressure within protein
coding regions and, thus, reflects natural selection, one of the major forces driving
molecular evolution.

Interestingly, evolutionary age and sequence divergence as quantified above show
only weak correlations (Kendall’s rank correlation coefficient ranging from 0.02 to
0.26; Fig. 2.3B-E), indicating that both measures of evolutionary distance can be
regarded as complementary. In combination with transcript information, the TAI
quantifies the mean evolutionary age of a transcriptome, where the evolutionary
age (phylostratum) of each gene is weighted by its expression level [9]. Analogously,
we define the TDI as the mean sequence divergence of a transcriptome, where the
sequence divergence (Ka/Ks) of each gene is weighted by its expression level.

2.3.2 Comparison of TAI and TDI

As shown in Fig. 2.3B, the two parameters, gene age and sequence divergence,
can be described as largely independent or complementary evolutionary measures.
Consequently, the major differences between the TAI and the TDI can be summa-
rized as follows:

1. While the TAI reflects long-term evolutionary changes covering 4 billion years
since the origin of life, the TDI reflects short-term evolutionary changes
covering only 5-16 million years since the divergence of A. thaliana and the
other four Brassicaceaes.

2. While the TAI sorts genes into ranked age categories based on founder gene
emergence, the TDI addresses selective constraints as detected by ratios of
non-synonymous to synonymous substitutions.

3. While the TAI does not distinguish between orthologs and paralogs, the TDI
only considers orthologous sequences.
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4. While the TAI defines proteins as homologous based on sometimes very short
partial sequences, the TDI defines homology based on full-length protein
sequences.

Together, TAI and TDI can be seen as complementary transcriptome indices.
While the TAI covers deep and long-term evolutionary changes, the TDI detects
rather short-term evolutionary changes. With regard to the phylotypic stage both
indices are valuable because in many groups of species embryo development occurs
rather typical for a closely related group of species than for distantly related species
within a phylum [29]. In such cases the phylotypic stage may preferentially reflect
recent evolutionary history that may be better detected with the TDI in contrast
to the deep evolutionary changes that are primarily addressed with the TAI.

2.3.3 Transcriptome indices uncover transcriptomic hourglass
patterns

Figure 2.4 (and Supplementary Fig. 2 of [10]) shows the TAI and TDI profiles
across the seven sampled embryo stages of A. thaliana. We find that transcriptomes
of early plant embryonic stages such as zygote and quadrant are evolutionarily
young (high TAI), transcriptomes of the mid-embryogenic phase ranging from the
globular to the torpedo stage are older (low TAI), and transcriptomes of later
stages of embryogenesis are younger again (Fig. 2.4A). Qualitatively, this TAI
profile strikingly resembles the molecular hourglass pattern discovered for Da.
rerio and Drosophila [9].

Likewise, we find that transcriptomes of early stages are divergent (high TDI),
transcriptomes of the mid-embryogenic phase are more conserved (low TDI), and
transcriptomes of later stages of embryogenesis are more divergent again (Fig.
2.4B). Remarkably, the TDI profile qualitatively resembles the molecular hourglass
pattern of the gene expression divergence profile discovered for Drosophila [16] and
recently also Caenorhabditis [30].

Comparing both profiles, we make two observations. First, each of the profiles
shows an hourglass pattern, where the TAI reflects long-term evolutionary changes
covering 4 billion years since the origin of life, and the TDI reflects short-term evo-
lutionary changes covering roughly 5–16 million years since the divergence of A.
thaliana and the other four Brassicaceaes [31–34] (Supplementary Note [10]). Sec-
ond, both profiles point to the torpedo stage as the predicted phylotypic stage,
representing simultaneously the stage with the oldest as well as the most con-
served/least divergent transcriptome.

An independent, but comparable transcriptome dataset [25, 26] from A. thaliana
(Supplementary Fig. 3 [10]), which likewise covers embryogenesis from early phases
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2 Transcriptomic hourglass patterns in plant embryogenesis

Figure 2.4 | Transcriptome indices across A. thaliana embryogenesis. (A), The
transcriptome age index (TAI) profile. (B), The transcriptome divergence index (TDI)
profile. Embryo stages: Z, zygote; Q, quadrant; G, globular; H, heart; T, torpedo; B,
bent cotyledon; M, mature. Representative drawings (not on the same scale) are given
for each sampled embryo stage. The blue shaded area marks the predicted phylotypic
stage. The grey lines represent the standard error estimated by bootstrap analysis.
The overall patterns of the TAI and TDI profiles are highly significant, as measured by
permutation tests (PTAI = 6× 10−13; PTDI = 2× 10−05). Reprinted Figure 2 from [10].

to the mature embryo, confirms the hourglass pattern for both indices (Supplemen-
tary Fig. 4 [10]). Together, these observations suggest the possibility of convergent
evolution of a molecular embryonic hourglass in animals and A. thaliana, and make
it tempting to conjecture its universal presence across animal and plant kingdoms.

Given that developmental processes during plant and animal embryogenesis can
be very different from the zygote stage on [35], and that the embryonic hourglass
must have evolved independently in plants and animals, we wish to understand
how the torpedo stage as the bona fide phylotypic stage in A. thaliana relates to
animal phylotypic stages.

Across different animal taxa, the phylotypic stage was defined as the stage at
which all major body parts are represented at their final positions as undifferenti-
ated cell condensations [36]. In relation to this ontogenic progression in animals,
the mid-embryogenic transition from the globular to the heart stage may concep-
tually serve as the corresponding stage in flowering plants. Here, polar axes are
established and shoot and root apical meristems are initiated [37]. Hence, the
ensuing torpedo stage at the transition from mid- to late-embryogenesis marks an
ontogenic progression that seems more advanced than the phylotypic stage known
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from animals. Considering that morphological diversity and many important or-
gans in flowering plants develop post-embryogenically, it is possible that the phylo-
typic stage maybe shifted towards the transition from mid- to late-embryogenesis
compared to animals.

Furthermore, the torpedo stage roughly marks the transition from morphogene-
sis to the maturation phase. Morphogenesis involves the establishment of the em-
bryo’s body plan, whereas maturation involves cell expansion and accumulation of
storage macromolecules to prepare for desiccation, germination and early seedling
growth [38]. All land plants/embryophytes (all species from PS4 on) including
lower land plants pass through a morphogenesis phase, but only the embryogene-
sis of higher land plants concludes with a maturation phase. Completely different
signalling cascades are involved in both phases. One set is switched off and the
other one is initiated. Because torpedo stage embryos are in the transition between
these different developmental programs, it is conceivable that transcriptional pro-
grams are likewise reduced to conserved and evolutionary ancient processes that
are reflected by the neck of the hourglass (Fig. 2.4).

Figure 2.5 | Relative expression levels over embryo stages. (A), Left axis, mean
relative expression levels of genes in PS1–PS3 (open bars) and PS4–PS13 (shaded bars);
relative expression levels range from 0 to 1. Right axis, ratio of mean relative expression
levels between PS1–PS3 and PS4–PS13, data points connected by dashed line. (B),
Analogously to A, genes were divided along the median of the Ka/Ks ratios over all
genes. Open and shaded bars show Ka/Ks values respectively below and above the
median; data points connected by dashed line show the ratio of low to high Ka/Ks

values. Error bars, standard error. Asterisks denote significant differences between
PS1–PS3 and PS4–PS13 values (A) and conserved (below median) versus divergent
(above median) genes at the torpedo stage (B); ∗P = 0.05; ∗∗∗P = 0.0005. Reprinted
Figure 3 from [10].

Encouraged by these findings, we seek to understand how the molecular hour-
glass pattern of the TAI profile is determined. Two simple scenarios that would
result in a decrease of TAI values include up-regulation of old genes, or down-
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2 Transcriptomic hourglass patterns in plant embryogenesis

regulation of young genes during mid-embryogenesis. To distinguish between both
scenarios, we compute the relative expression levels of genes from phylostrata
containing pre-embryogenesis species (PS1–PS3) versus post-embryogenesis phy-
lostrata (land plants/embryophytes from PS4–PS13, representing plant species
that pass through embryogenesis). Whereas expression levels of old genes vary
only marginally across embryo stages, young genes are down-regulated towards
the torpedo stage, and the ratio of the relative expression levels of old and young
genes is maximized in the torpedo stage (Fig. 2.5A, Supplementary Fig. 5 of [10]).

Next, we divide the genes along the median of the Ka/Ks ratios over all genes
and perform an analogous analysis for conserved (below median) versus divergent
(above median) genes. Interestingly, we find a similar pattern, with divergent
genes being more down-regulated towards the torpedo stage than conserved genes
(Fig. 2.5B; Supplementary Figs 6–9 [10]). These results are confirmed by the
independent dataset [25, 26] (Supplementary Fig. 10–14 of [10]).

Hence, the embryonic hourglass in A. thaliana seems to be coordinated by the
quantitative down-regulation of young and divergent genes or, qualitatively, by the
expression of fewer young and divergent genes towards the torpedo stage. This is
in notable agreement with observations from the animal kingdom [9, 16, 39, 40].
As only a fraction of these down-regulated young genes in A. thaliana display an
hourglass shaped expression profile across the sampled embryo stages themselves,
the hourglass pattern is most probably caused by different sets of young genes.
One set is involved in morphogenesis (up-regulated before the torpedo stage and
down-regulated thereafter) and one set is involved in maturation (down-regulated
before the torpedo stage and up-regulated thereafter; Supplementary Figs 15 and
16 of [10]).

In addition, we find that significantly enriched gene ontology terms among young
plant genes down-regulated in the torpedo stage compared to early- or late em-
bryogenesis describe signalling processes, such as responses to endogenous stimuli
and hormones (Supplementary Tables 5 and 6 of [10]). This indicates that sig-
nalling processes controlling transcription of relatively recently evolved genes are
down-regulated during the predicted phylotypic stage of A. thaliana embryogene-
sis.

2.4 Conclusions and Outlook

Using a phylotranscriptomic approach based on two complementary measures of
evolutionary distance and two independent datasets, we have observed a molecular
embryonic hourglass in plants, which seems to be predominantly caused by down-
regulation of young and divergent genes towards the torpedo stage (Fig. 2.6). This
observation is surprising for two reasons.
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Figure 2.6 | Convergent evolution of a molecular hourglass in animal and
plant embryogenesis. Originating from a single-celled common ancestor, animal
and plant lineages evolved both multicellularity and embryogenesis independently. For
the coordinated progression of the organisms through embryogenesis, the transcriptomes
have to follow an hourglass pattern with maximally ancient and conserved transcriptomes
during the phylotypic stage. Reprinted Figure 4 from [10].

First, morphological diversity during embryogenesis of flowering plants is negligi-
ble, so the increase of both transcriptome indices in late embryogenesis precedes
the morphological differences established only during post-embryonic development.

Second, convergent evolution of a molecular hourglass pattern in animals and
plants suggests operation of a fundamental developmental profile controlling the
expression of evolutionarily young or rapidly evolving genes across kingdoms. We
speculate that such a mechanism may be required for enabling spatio-temporal
organization and differentiation of complex multicellular life.

If the developmental hourglass pattern is of such importance to multicellularity
and thus evolutionary ancient, one question that emerges is whether the tran-
scriptomic hourglass pattern in animals and plants is still functional and actively
maintained or whether it is a nonfunctional remnant of a process that was once
functional. This question cannot be answered directly. In chapter 3, we will turn
to this question.
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3
Evidence for active maintenance of

the phylotranscriptomic hourglass

In chapter 2, we have introduced the developmental hourglass pattern of embryo-
genesis. We have found evidence for a transcriptomic hourglass pattern in animals
and plants by combining transcriptomic and evolutionary information. However,
its biological function could not be identified. Hence, it remains an open ques-
tion whether the observed pattern is still functional or represents a non-functional
evolutionary remnant.

In this chapter, we will address this question by calculating TAI and TDI profiles
across the embryogenesis of Da. rerio, D. melanogaster, and A. thaliana. In
section 3.1, we will explain the reasons for studying the active maintenance of
the transcriptomic hourglass pattern. In section 3.2, we will present an updated
phylostratigraphic and divergence stratigraphic approach, and we will get to know
advanced statistical tests to assess transcriptomic patterns. In section 3.3, we will
show the different transcriptomic patterns and we will determine the dependence
between phylostrata and divergence strata. In section 3.4, we will attempt to
determine if the hourglass pattern is actively maintained and if its existence may
be associated with embryogenesis in extant species. In section 3.5, we will conclude
that there is evidence for an actively maintained transcriptomic hourglass pattern
and thus there is the potential to uncover this pattern’s functionality in the long
term.

The following sections are extracted from Drost et al. 2015 “Evidence for Ac-
tive Maintenance of Phylotranscriptomic Hourglass Patterns in Animal and Plant
Embryogenesis” [41].

3.1 Introduction

Irrespective of the phylotranscriptomic evidence recently obtained, the develop-
mental hourglass model is controversially discussed to this day. Its biological
function is rather poorly understood and hardly goes beyond hypotheses [15, 42].
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3 Evidence for active maintenance of the phylotranscriptomic hourglass

Although convergent evolution within the animal lineage cannot be excluded, the
existence of phylotranscriptomic and morphological hourglass patterns in numer-
ous animal phyla suggests that it might have evolved early in the animal lineage.
The developmental hourglass pattern could, therefore, be regarded as evolutionar-
ily ancient. However, it is unclear whether this pattern is being actively maintained
and still functional in extant species, or whether it represents a nonfunctional rudi-
ment of a process that was once functional but has since then degenerated.

To be able to one day decipher the function of developmental hourglass patterns,
we need to investigate this phenomenon in an experimental manner. Naturally, ex-
periments are restricted to extant species. If actively maintained, such experiments
could potentially reveal the molecular function of the developmental hourglass pat-
tern. If, however, the developmental hourglass pattern were an evolutionary relic
not functional in extant species, experimental approaches would be largely obso-
lete. The objective of this study is to investigate whether or not the developmental
hourglass pattern is actively maintained in extant species and thus potentially al-
lows to investigate its molecular function by experimental approaches.

To address this question, we study gene ages and TAI profiles as well as se-
quence divergences and TDI profiles of the vertebrate D. rerio, the invertebrate
D. melanogaster, and the flowering plant A. thaliana. TAI profiles are based on
both evolutionarily ancient and recent signals all along the tree of life. Hence,
the TAI does not convey information about a possible active maintenance of the
hourglass pattern. TDI profiles, however, with their distinctive feature of captur-
ing only recent evolutionary signals are potentially able to address this question.
To avoid subjective evaluation of the resulting profiles, we introduce three per-
mutation tests, the flat line test, the reductive hourglass test, and the reductive
early conservation test, to quantify the statistical significance of the correspond-
ing phylotranscriptomic patterns. In addition, our study will provide support for
either the hourglass model or possibly also other models that are currently being
discussed.

3.2 Materials and Methods

In the following subsections, we will present the novel phylotranscriptomic ap-
proaches and the updated data resources for studying the active maintenance of
phylotranscriptomic hourglass patterns. In subsection 3.2.1, we will learn about
the sequence database for phylostratigraphy and in subsection 3.2.2, we will get to
know the novel method to assign protein-coding genes into divergence strata (DS)
for later calculations of the transcriptome divergence index. In subsection 3.2.3,
we will find out about the gene expression data sets. In subsection 3.2.4, we will
introduce the reductive hourglass test to quantify phylotranscriptomic hourglass
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patterns, and in subsection3.2.5, we will introduce the reductive early conservation
test to quantify phylotranscriptomic early conservation patterns.

3.2.1 Phylostratigraphy - Construction of phylostratigraphic
maps

The procedure for constructing phylostratigraphic maps follows the method section
2.2.1 of the previous chapter. Instead of only creating a phylostratigraphic map
for A. thaliana, we computed maps of Da. rerio and D. melanogaster.

Bacteria [2,511]
Archae [259]

Ophistokonta

Eukaryota

Prokaryota

Rhizaria [3]
Parabasalia [2]
Stramenopiles [39]
Rhodophyta [13]
Heterolobosea [2]
Alveolata [64]
Amoebozoa [21]
Cryptophyta [6]
Viridiplantae [364]
Haptophyceae [6]
Fornicata [4]
Euglenozoa [32]
Glaucocystophyceae [1]
Opisthokonta incertae sedis [1]
Choanoflagellida [2]
Fungi [334]
Metazoa [879]

Figure 3.1 | NCBI taxonomy tree representing the major groups of
species/genomes used for BLAST database. The clade of Prokaryoto (light blue)
represents the biggest group and represents in all three species the oldest PS. The clade
of Eukaryota (orange) represents the common taxonomic node of plants (Viridiplantae)
and animals (Metazoa). The red clade of Ophistokonta is third major group and contains
the clade of Metazoa which is specific for the species Da. rerio and D. melanogaster in
this study. Reprinted Supplementary Figure S1 from [41].
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3 Evidence for active maintenance of the phylotranscriptomic hourglass

To cover all three species’ phylogenies, we generated a sequence database con-
taining 17,582,624 amino acid sequences of 4,557 species from the NCBI, EN-
SEMBL [43], Flybase [44], and Phytozome [45] databases. We combine the se-
quences and create one BLASTable target database which is publicly accessible
for reproducibility and subsequent phylostratigraphic studies (http://msbi.ipb-
halle.de/download/phyloBlastDB Drost Gabel Grosse Quint.fa.tbz, last accessed
August 2, 2015). This database is several times larger than the databases used in
previous studies (e.g., [10]) and contains genome information from 2,770 prokary-
otes (2,511 bacteria and 259 archea) and 1,787 eukaryotes (883 animals, 364 plants,
344 fungi, and 193 other eukaryotes) (Fig. 3.1)

We performed for each amino acid sequence of A. thaliana (TAIR10; 35,386),
Da. rerio (ENSEMBL release 54; 24,147) and D. melanogaster (Flybase release
5.53; 29,357) with a minimum length of 30 amino acids a similarity seatch against
this target database using BLASTP (BLAST version 2.2.21). If BLASTP does
not identify a hit with an E-value below 10−5, we assign the gene to the youngest
PS. Otherwise, we assign it to the oldest PS containing at least one species with
at least one BLAST hit with an E-value below 10−5. The reproducible pipeline
to perform the phylostratigraphic analysis is available at https://github.com/

AlexGa/Phylostratigraphy [46].

3.2.2 Divergence stratigraphy - Constructing sequence
divergence maps

In chapter 2, we have introduced the TDI based on sequence divergence levels
calculated on the global alignment of orthologous genes as a Ka/Ks ratio. In this
section, we will introduce an updated version of the sequence divergence calculation
previously presented, which shows more robust results due to an improved ortholog
detection, and is more comparable to PS values. In section 2.2.3, the divergence
levels are continuous values compared to the discrete age categories of PS. We
adjust this difference by transforming the continuous ratios into discrete values,
called divergence strata (DS). The subsequent divergence map is the assignment of
each gene from a particular species to a DS category. We construct the divergence
maps of Da. rerio, D. melanogaster, and A. thaliana by the following procedure.

First, we identify orthologous gene pairs of Da. rerio and As. mexicanus (NCBI
annotation release 77; 23.698), D. melanogaster and D. simulans (Flybase Release
1.4; 15,415), and A. thaliana and A. lyrata (Phytozome v.9.0; 32,670) by choos-
ing the best reciprocal hit using BLASTP (BLAST version 2.2.29). If the best
reciprocal hit has an E-value below 10−5, the gene pair is considered orthologous;
otherwise, it is discarded. Second, we construct codon alignments of the orthol-
ogous gene pairs using PAL2NAL [23]. Third, we compute Ka/Ks values of the
codon alignments using GESTIMATOR [24] and Comeron’s substitution model,
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which combines Li’s, Pamillo’s, and Bianchi’s method with Kimura’s method for
obtaining robust Ka/Ks estimates [47]. Fourth, we discard all genes with a Ka/Ks

value greater than 2 and sort the remaining Ka/Ks values into discrete deciles,
which we call DS. DS values for the genomes of all three species are provided in
supplementary table S4 in [41].

The same procedure is applied to generate sequence divergence maps for all
other pairwise species comparisons (supplementary table S4 [41]). The construc-
tion of sequence divergence maps is explained in detail in the advanced vignette of
the myTAI R package [48]. It can be applied to any chosen species pair with avail-
able coding sequence genomes and can be computed using the orthologr package
(https://github.com/HajkD/orthologr).

3.2.3 Processing of expression data

For Da. rerio we use the microarray expression data set by Domazet-Los̆o and
Tautz (2010) [9] covering 40 stages corresponding to embryo development. The
16,188 probes of this data set correspond to 12,892 genes according to ENSEMBL
predictions [9], and we compute the expression level of each gene as arithmetic
mean of the expression levels of the corresponding probes [49]. Intersecting these
12,892 genes with genes in the phylostratigraphic map and the sequence diver-
gence map of Da. rerio and As. mexicanus yields 12,892 genes and 7,740 genes,
respectively. Intersecting sequence divergence maps of Da. rerio and T. rubripes,
Da. rerio and X. maculatus, and Da. rerio and G. morhua yields 6,807, 6,997,
and 4,734 genes, respectively.

For D. melanogaster we use the RNA-seq expression data set by Graveley et al.
(2011) [50] covering 12 stages corresponding to embryo development. Intersecting
the 15,139 genes of this data set with genes in the phylostratigraphic and the se-
quence divergence maps of D. melanogaster and D. simulans yields 12,043 genes
and 6,230 genes, respectively. Intersecting sequence divergence maps of D. mela-
nogaster and D. yakuba, D. melanogaster and D. persimilis, and D. melanogaster
and D. virilis yielded 6,961, 5,872, and 5,732 genes, respectively.

For A. thaliana we use the microarray expression data set by Xiang et al. (2011)
[28], which we introduced in the previous chapter (Sec. 2.3). It covers seven stages
of embryo development. Intersecting the 26,173 genes of this data set with genes
in the phylostratigraphic and sequence divergence maps of A. thaliana and A.
lyrata yields 25,260 genes and 18,240 genes, respectively. Intersecting sequence
divergence maps of A. thaliana and C. rubella, A. thaliana and B. rapa, and A.
thaliana and Car. papaya yields 17,765, 16,122, and 9,427 genes, respectively.
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3 Evidence for active maintenance of the phylotranscriptomic hourglass

3.2.4 Reductive hourglass test

The reductive hourglass test statistic quantifies if the observed TAI profile follows
an hourglass pattern like shape. First, we partition the set of developmental stages
{1, . . . , N} into the three modules - early (Searly), mid (Smid), and late (Slate) -
based on prior biological knowledge. We define the modules as

Searly = {1, . . . , e} (3.1)

Smid = {e+ 1, . . . ,m} (3.2)

Slate = {m+ 1, . . . , N} (3.3)

, with e denoting the last stage of the early module, m denoting the last stage of
the mid module, and N denoting the last stage of the process of interest. Second,
we compute the mean TAI value for each of the three modules (Fig. 3.7A left)

Tt =
1

|St|
∑
s∈St

TAIs ,∀t ∈ {early,mid, late}. (3.4)

Third, we compute the differences between Tearly and Tmid and the difference
between Tlate and Tmid as

D1 = Tearly − Tmid (3.5)

D2 = Tlate − Tmid. (3.6)

Fourth, we compute the minimum Dmin of D1 and D2 (Fig. 3.7A right), which
defines the final test statistic of the reductive hourglass test

Dmin = min(D1, D2). (3.7)

Under the assumption of an hourglass shaped profile Tearly and Tlate show higher
TAI (or TDI) values than Tmid. Hence, the two differences should be positive and
thus should the minimum difference Dmin, too.

To determine the statistical significance of Dmin we perform the same permuta-
tion of the dataset as described in the flat line test (subsection 2.2.5). Instead of
calculating the variance for each randomly generated profile, we calculate Dmin.
Following this procedure we generate 10,000 values of Dmin which we use to ap-
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proximate a Gaussian distribution by estimating the mean and variance of the
10,000 Dmin values. The significance, the P value, of the observed hourglass test
statistic Dmin is calculated as the probability of exceeding Dmin (Fig. 3.2). The
reductive hourglass test can be applied to TDI profiles in exactly the same manner.
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Figure 3.2 | Reductive hourglass test statistic. (A) The histogramm of 10,000
Dmin values based on permuted PS assignment and recalculating the TAI profile of A.
thaliana embryogenesis. The estimated Gaussian distribution fits the bell shape of the
underlying histogram. (B) Based on the estimated Gaussian distribution, we determined
the probability function to calculate the P value of the test statistic. The red arrow
shows Dmin of the original TAI profile within the estimated Gaussian distribution resp.
probability function.

3.2.5 Reductive early conservation test

The reductive early conservation test is a permutation test conceptually identical
to the reductive hourglass test. Specifically, steps one, two, and four are identical,
and in step three we compute the two differences D1 = Tmid − Tearly and D2 =
Tlate − Tearly. For a typical early conservation pattern, Tearly should be low, and
Tmid and Tlate should be high, so both differences D1 and D2 should be positive, so
the minimum difference Dmin should be positive, too. In order to determine the
statistical significance of an observed minimum difference Dmin, we perform the
same permutation test as in the reductive hourglass test, yielding the probability of
exceeding the observed minimum difference Dmin as P value of the reductive early
conservation test. Instructions on the application of the flat line test, the reductive
hourglass test, and the early conservation test are described in the introductory
vignette of the myTAI R package [48].
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3.3 Results

In this section, we will describe learn about the dependence of PS and DS and
the existence of TAI and TDI hourglass patterns in the embryogenesis of animals
and plants. In subsection 3.3.1, we will present the TAI profiles of Da. rerio
, D. melanogaster, and A. thaliana. In subsection 3.3.2, we will compare the
underlying evolutionary information of TAI and TDI by performing correlation
analysis between PS and DS. In subsection 3.3.3, we will present the TDI profiles
of Da. rerio, D. melanogaster, and A. thaliana. In subsection 3.3.4, we will learn
about novel statistical methods to quantify if the TAI and TDI profiles show
potential hourglass patterns.

3.3.1 TAI Profiles of Da. rerio, D. melanogaster, and A.
thaliana

As described in subsection 3.2.1, we first set up a common database of 4,557
completely and partially sequenced genomes for the generation of updated phy-
lostratigraphic maps of the three species of interest. This database is several times
larger than the databases used in previous studies (e.g., [10]) and contains genome
information from 2,770 prokaryotes (2,511 bacteria and 259 archea) and 1,787 eu-
karyotes (883 animals, 364 plants, 344 fungi, and 193 other eukaryotes) (Fig. 3.1
and Table S1 of [41]. Based on this database, we construct phylostratigraphic
maps of Da. rerio, D. melanogaster, and A. thaliana using a customized pipeline.
The three resulting phylostratigraphic maps are displayed in Figure 3.3A–C.

We next compute the TAI for each of the three species and each of the develop-
mental stages. The resulting TAI profiles across embryogenesis for all three species
are shown in Figure 3.4 (expression values provided in Supplementary Table S3
of [41]). If the mean evolutionary ages of the transcriptomes were the same at
different developmental stages, the TAI profile would be a horizontal line.

To objectively test the statistical significance of the observed variations of the
TAI at different developmental stages, we apply a permutation test that we refer
to as the flat line test (see section 2.2.5 and [10]). When applying this flat line
test to the three TAI profiles, we find that the TAI patterns of all three species
deviate significantly from a horizontal line (P < 0.05).

Visually, the TAI profiles of Da. rerio and A. thaliana show an hourglass pat-
tern. Although still within the standard deviation of the phylotypic period, the
absolute minimum of the D. melanogaster TAI profile can be found at the 0–2 h
time point in early embryogenesis (Fig. 3.4). This is unexpected and in contrast
to comparative transcriptomic approaches, which consistently identified highly di-
vergent transcriptomes in early Drosophila embryogenesis [16, 51]. However, we

28



3.3 Results

hesitate to over interpret this observation because the overall profile still resembles
an hourglass pattern.
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Figure 3.3 | Phylostratigraphic maps for Danio rerio, Drosophila melanogas-
ter, and Arabidopsis thaliana. (A) Danio rerio.(B) Drosophila melanogaster. (C)
Arabidopsis thaliana. Numbers in parenthesis denote the number of genes per phylostra-
tum (PS1–PS12/13). Cell. org., cellular organisms described by PS1. Reprinted Figure
1 from [41].
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3 Evidence for active maintenance of the phylotranscriptomic hourglass

Given that the TAI does not focus on recent evolution and that the majority of
genes in all three species map to “old” PS (Fig. 3.3), these results indicate that the
phylotranscriptomic hourglass pattern is not a recent innovation. Although TAI
patterns alone do not allow this conclusion, the existence of phylotranscriptomic
hourglass patterns across kingdoms and the existence of morphological hourglass
patterns across animals suggest that these patterns emerged alongside with em-
bryogenesis in early evolution. This suggestion is in accordance with previous
findings showing that genes, transcriptomes, and molecular processes are most
conserved during the phylotypic period [9, 10, 16, 30, 40, 49, 52–59].
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Figure 3.4 | TAI profiles across animal and plant embryogenesis. (A) Danio
rerio.(B) Drosophila melanogaster. (C) Arabidopsis thaliana. The blue shaded area
marks the predicted phylotypic period. The gray lines represent the standard deviation
estimated by permutation analysis. Reprinted Figure 2 from [41].
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3.3.2 Dependence of PS and DS

Before turning to the central question of whether or not the observed hourglass
patterns might be actively maintained, we test in this section whether PS and DS
are sufficiently independent of each other. This independence - or an only weak
dependence - of PS and DS is important to assure that TAI and TDI profiles are
not dependent on each other. Only in this case, the TDI can provide additional
information and conclusions that cannot be drawn based on TAI profiles alone.
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Figure 3.5 | Correlation between phylostratum (PS) and divergence stratum
(DS). Scatter plots of phylostratum versus divergence stratum over all genes. (A)
Danio rerio. (B) Drosophila melanogaster. (C) Arabidopsis thaliana. Ka/Ks ratios for
divergence stratum assignment are derived from orthologous genes between Da. rerio
and Astyanax mexicanus (A), D. melanogaster and D. simulans (B) and A. thaliana
and A. lyrata (C). Kendall τ values denote the Kendall rank correlation coefficients
quantifying the degree of linear dependence between PS and DS in a nonparametric
manner. All Kendall τ values are significant (P < 2.2e-16) using Kendall’s τ test of no
correlation. Reprinted Figure 3 from [41].
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For computing DS in analogy to PS, we generate orthologous gene sets for the
computation of sequence divergences (Ka/Ks) by pairwise comparisons of the cod-
ing sequences of a target species to a related species with a completely sequenced
and annotated genome. To lend more support to the TDI profiles to be generated,
we compute the sequence divergence for three additional related species for each
of the three target species (supplementary Figs. S2–S4 of [41]).

For Da. rerio closely related fish genomes are not yet available. Here, we use
Astyanax mexicanus (divergence time∼153 Ma [60]), Takifugu rubripes, Xiphopho-
rus maculatus, and Gadus morhua (divergence time for all three species ∼265 Ma
[60]). For the assignment of Ka/Ks values of D. melanogaster genes, we compare
its coding genome to D. simulans (divergence time ∼3 Ma [60]), D. yakuba (di-
vergence time ∼7 Ma [60]) D. persimillis (divergence time ∼34 Ma [60]), and D.
virilis (divergence time ∼47 Ma [60]). For A. thaliana we use the Brassicas A.
lyrata (divergence time ∼5–10 Ma [61]), Capsella rubella (divergence time ∼10–14
Ma [33]), Brassica rapa (divergence time ∼16 Ma [60]), and Carica papaya (diver-
gence time ∼72 Ma [60]). For each pairwise comparison we sort the continuous
Ka/Ks values into deciles and obtain a discrete DS for each gene and each of the
four reference species with a detectable ortholog (provided in Supplementary Table
S4 and Figs. S5–S7 of [41]).

To study to which degree gene age and sequence divergence are correlated for Da.
rerio, D. melanogaster, and A. thaliana, we compute Kendall’s rank correlation
coefficient of PS and DS, which quantifies the degree of linear dependence between
PS and DS per species in a nonparametric manner. In Figure 3.5 we display
correlation plots of the three target species to their closest related species. We
consistently find that correlations of PS and DS are significant but only weak
(Kendall’s rank correlation coefficient < 0.25; Fig. 3.5A–C; Supplementary Tables
S2 and S4 and Figs. S5–S7 of [41]), stating that TAI and TDI have the potential
of capturing independent evolutionary signals for all three species.

3.3.3 TDI Profiles of Da. rerio, D. melanogaster, and A.
thaliana

Next, we investigate whether or not the evolutionary selection pressure that has
shaped the hourglass pattern might still be active. To address this question, we
compute the TDI profiles for all three species, which might potentially identify
evidence for or against active maintenance, and thus functionality, of the hourglass
pattern in extant species.

If the developmental hourglass pattern were not maintained and therefore under
no selective pressure, the TDI profile would resemble a horizontal line. In contrast,
if the developmental hourglass pattern were actively maintained in extant species,
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possibly because it still served an important biological function, the TDI profile
should deviate from a horizontal line and take an hourglass-like shape.
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Figure 3.6 | TDI profiles across animal and plant embryogenesis. (A) Danio
rerio. (B) Drosophila melanogaster. (C) Arabidopsis thaliana. The blue shaded area
marks the predicted phylotypic period. The gray lines represent the standard deviation
estimated by permutation analysis. Reprinted Figure 4 from [41].

Figure 3.6 shows the TDI profiles across embryogenesis for all three species based
on DS values obtained from ortholog assignment to the closest related species.
Applying the flat line test, we find that the TDI patterns of all three species
deviate significantly from a horizontal line (P < 0.05), demonstrating that selective
pressure is acting on embryonic transcriptomes across kingdoms. Visually, the TDI
profiles of D. melanogaster and A. thaliana show an hourglass pattern, whereas the
TDI profile of Da. rerio shows only the first two-thirds of an hourglass pattern
with an increase of TDI values in late embryogenesis being barely noticeable.
The TDI profiles for all other pairwise comparisons largely yield similar results
(Supplementary Figs. S2–S4 and Table S5 of[41]).
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3 Evidence for active maintenance of the phylotranscriptomic hourglass

These findings indicate that the phylotranscriptomic hourglass pattern is not a
rudiment of a process that was once active but has progressively degraded since
then. On the contrary, its evolutionary signal can still be detected even when
evolutionary measures are consulted that account only for the last few million
years.

3.3.4 Statistical testing for potential hourglass patterns

The studies presented above and all other studies published to date based on
distance-based transcriptome comparisons or transcriptome indices have either
relied on subjective visual profile interpretation [49, 57], have tested whether the
observed profile deviated from a horizontal line [9, 10, 40, 59] (figs. 3.4 and 3.6),
or have tested whether the observed profile could be fitted by a parabolic function
[16, 30, 53].
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Figure 3.7 | Evaluation of transcriptome index profiles by the reductive hour-
glass test. (A) Schematic representation of module assignment and derivation of the
test statistic. (B) P values derived by application of the reductive hourglass test to
the TAI and TDI profiles in all three species. (C) P values derived by application of
the reductive early conservation test to the TAI and TDI profiles in all three species.
Reprinted Figure 5 from [41].
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Naturally, subjective pattern evaluation should be avoided. In addition, the
above described statistical approaches have severe limitations: 1) Testing whether
the observed profile deviates from a horizontal line does not indicate the existence
of an hourglass pattern, because the observed pattern could be anything different
from a horizontal line that might even be in agreement with “competing” models
such as the early conservation model and 2) testing whether the observed profile
could be fitted by a parabolic function indicates the existence of an hourglass
pattern, but the strict mathematical form of the pattern (parabola) makes this
test highly specific and insensitive to other (nonparabolic) high–low–high patterns.
Furthermore, none of these tests provides information about the significance of
the localization of the most conserved stages, which is central to the evaluation of
potential hourglass patterns.

Here, we propose a statistical test for a general high–low–high hourglass pattern
not restricted to a parabolic function where the lowest phase must coincide with
the presumptive phylotypic period. We divide embryogenesis in an early mod-
ule, the phylotypic module, and a late module based on a priori morphological
information about the known phylotypic period in animals (Fig. 3.7A). As, in
contrast to animals, morphological evidence for a phylotypic period is still lacking
in plants, it is impossible to define the phylotypic module for plant embryogenesis
in analogy to animal systems. Hence, other biological processes that are likely
associated with the phylotypic period had to be taken into account to legitimate
a meaningful designation of the A. thaliana phylotypic module. Here, the mid-
embryonic globular–heart–torpedo stages comprise embryonic morphogenesis and
body plan establishment including the initiation and activation of the two apical
stem cell niches, that give rise to the vast majority of organs throughout plant
life. In addition, essential genes that cause embryo-defective phenotypes are like-
wise highly expressed during this period, indicating associated selective constraints
(Supplementary Fig. S8 of [41]).

Based on these observations, we regard the developmental period encompassing
globular, heart, and torpedo embryos as the most reasonable choice for designating
the phylotypic period in A. thaliana. Next, we compute the differences between the
mean values of the transcriptome indices of the early and the phylotypic module
and of the late and the phylotypic module. The minimum of these two differ-
ences (early vs. phylotypic and late vs. phylotypic) serves as test statistic for a
high–low–high pattern. Hence, this test recognizes patterns as hourglass patterns
when the most ancient or most conserved transcriptomes occur in the phylotypic
module (Fig. 3.7A). As this test reduces the ontogenetic stages to three develop-
mental modules, we refer to this test as the reductive hourglass test.

Applying the reductive hourglass test to the TAI and TDI profiles of the three
species reveals significant P values for both patterns of D. melanogaster and A.
thaliana (Fig. 3.7B). For Da. rerio, only the TAI hourglass pattern is signif-
icant. For the TDI, the evolutionary signal in late embryogenesis seems to be
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3 Evidence for active maintenance of the phylotranscriptomic hourglass

diluted by the comparatively large evolutionary distance between Da. rerio and
the other fish species (>150 Ma), and the increase of transcriptome divergence in
Da. rerio development seems to be shifted from late embryogenesis to hatching
and postembryonic development (Supplementary Fig. S9 of [41]).

Together, with exception of the Da. rerio TDI profile we find that both TAI
and TDI values in early and late periods of embryogenesis are significantly higher
than in the phylotypic periods in both animals and plants, demonstrating that
phylotypic transcriptomes are evolutionarily ancient and highly conserved across
kingdoms.

We finally adapt the reductive hourglass test to the early conservation model,
call it reductive early conservation test, and apply it to the TAI and TDI profiles
of all three species. We find that a low-high-high pattern is rejected in all six cases
(Fig. 3.7C), stating that the described TAI and TDI profiles from three model
species from two different kingdoms are inconsistent with the early conservation
model, but largely consistent with the hourglass model.

3.4 Discussion

The controversy about the developmental hourglass model and especially about
the hourglass versus early conservation models is as vibrant as it ever was. These
and other models have traditionally relied on subjective anatomical comparisons,
and a lack of measurable quantitative approaches has fed controversial discussions
over decades [62–67]. However, technological progress recently facilitated quanti-
tative measurements of expression profiles. Although some of these recent studies
favored the early conservation model [66, 67], the majority of them supported
the developmental hourglass model. Initially, a number of studies demonstrated
hourglass-like patterns for limited sets of genes and a variety of genetic parameters
[39, 53, 68–70]. Later, several studies demonstrated that whole transcriptomes of
fly, worm, several vertebrates, and cress followed an hourglass pattern [9, 10, 16,
30, 40, 59]. For Drosophila ssp. it was recently shown that even the conservation
of miRNA expression displays an hourglass pattern similar to that observed for
protein-coding genes [71].

The later phylotranscriptomic studies have been performed by distance-based
transcriptome comparisons [16, 30, 40, 59] or by studies of transcriptome indices [9,
10]; the latter combining evolutionary and transcriptomic information. As of now,
there are two flavors of transcriptome indices. The TAI applies the phylogenetic
age of a gene as an evolutionary measure [9] and thereby practically covers the
complete evolutionary depth of the tree of life. The TDI, on the other hand,
is based on sequence divergence of orthologous genes [10] and thereby captures
exclusively recent evolutionary signals.
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In our study, we systematically analyzed embryonic transcriptomes of two ani-
mal and one plant species. The resulting phylotranscriptomic patterns could have
followed no profile at all or a variety of different profiles. Because the evaluation
of phylotranscriptomic patterns in past studies (including our own) were subjec-
tive or relied on statistical tests with different limitations, we developed two more
adequate statistical tests, the reductive hourglass test and the reductive early
conservation test. These tests allow to objectively assess phylotranscriptomic pro-
files for the significance of a high–low–high pattern or a low-high-high pattern,
respectively. In both cases, a prerequisite is a meaningful division of the set of
developmental stages into three modules based on a priori biological knowledge.

Across the three species investigated, TAI analyses showed that early and late
embryonic transcriptomes were consistently young (high TAI) and that the oldest
transcriptomes were always observed during the presumptive mid-embryonic phy-
lotypic period of each species (low TAI), which represents one of the hallmarks
of the developmental hourglass model. For all three species we found that the
reductive hourglass test and the reductive early conservation test supported the
hourglass model and rejected the early conservation model, providing objective
support for the developmental hourglass model.

Confidence in the validity of the developmental hourglass model allowed us pos-
ing the central question of this work of whether or not the phylotranscriptomic
hourglass pattern might still be associated with a biological function in extant
species. If so, the phylotranscriptomic hourglass pattern might either be causal for
a downstream biological function or be the result of such a function. Alternatively,
the phylotranscriptomic hourglass pattern might simply represent an evolutionary
relic of a once important process that continues to exist in a rudimental status.

Only if this pattern were actively maintained, it would be possible to transform
the currently predominantly descriptive approaches to a functional, that is, exper-
imental, level. Hence, answering this question is important for understanding the
still enigmatic function of the hourglass pattern in the long term and for deciding
if it is in principle possible to uncover the molecular function of the phylotran-
scriptomic hourglass pattern by performing experiments on extant species.

Neither distance-based approaches nor studies of transcriptome indices can ad-
dress the evolutionary time of emergence of the hourglass pattern in a satisfactory
manner. Likewise, its active maintenance in extant species cannot be addressed
by distance-based transcriptome comparisons or studies of TAI profiles. However,
studies of TDI profiles that consult evolutionary signals from only recent evolution
are arguably best suited for investigating the “active maintenance issue”.

To date, TDI profiles of animal species had not yet been reported. As the closest
related fish species with a completely sequenced genome diverged from Da. rerio
greater than 150 Ma, this relatively long time span does certainly not qualify to
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make assumptions on very recent evolutionary trends. Hence, interpretation of
these results is less meaningful than those of D. melanogaster and A. thaliana,
whose closest relatives diverged only approximately 3 and 5–10 Ma, respectively.
Here, statistical evaluations show a significant hourglass-like pattern with the mini-
mum during the presumptive phylotypic period, consistent with the developmental
hourglass model.

This result is supportive of Kalinka et al. (2010) [16], who suggested that the
conservation of genes between closely related species that are active during mid-
development is the result of natural selection acting to maintain expression levels
and their temporal relationships to enable the correct establishment of the body
plan. The results provided by [16] and the results from TDI computations reported
here propose a scenario in which, across kingdoms, the phylotranscriptomic hour-
glass pattern is actively maintained through stabilizing selection.

Interestingly, while vertebrate and invertebrate embryogenesis also follows an
hourglass pattern on the morphological level, morphological hourglass patterns
are apparently absent from plant embryogenesis; at least they have never been
reported. In contrast, comparative embryology in flowering plants, for example,
suggests that the complete process of embryogenesis is morphologically highly
conserved [72]. Mature plant embryos are anatomically much less complex than
mature animal embryos. In a simplified manner, animals (such as mammals and
many other vertebrates) initiate genesis of the vast majority of organs largely
simultaneously in the phylotypic period during embryogenesis.

In contrast, during embryogenesis many plant species including A. thaliana es-
tablish only a limited set of major organs, consisting of hypocotyl, petioles, cotyle-
dons, the embryonic root, and two stem cell niches (meristems). All other organs
are initiated in these two apical meristems or in secondary meristems and are
formed only during postembryonic development, where also morphological differ-
ences between species are being established. Possibly, plant embryogenesis is not
complex enough to generate morphological differences between species, without
which a morphological hourglass pattern is obsolete. Alternatively, any trace of
a previously existing morphological pattern might have been wiped out and is
undetectable by comparing extant species.

Although the TAI profile of A. thaliana suggests that the phylotranscriptomic
hourglass did not emerge recently, its TDI profile suggests that some functional
property of the phylotranscriptomic hourglass is actively maintained in extant
plant species. In view of the lack of a morphological hourglass pattern in plants, one
could conjecture that although the phylotranscriptomic hourglass pattern might
be actively maintained in extant species across kingdoms, phylotranscriptomic and
morphological hourglass patterns do not necessitate each other. They might even
be uncoupled, which in turn would cast doubt on a possible causal relationship
between them.
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3.5 Conclusions and Outlook

The existence of hourglass patterns in TAI profiles of animal and plant embryoge-
nesis demonstrates that this pattern is not a recent innovation. Darwin (1859) [73]
said “it would be impossible to name one of the higher animals in which some part
or other is not in a rudimentary condition.” Although we admit that it might not
be entirely accurate to directly compare a molecular pattern such as the phylo-
transcriptomic hourglass with morphological structures, the phylotranscriptomic
hourglass pattern might in fact become a molecular addition to the long list of
vestigial characters such as the leg bones of whales or the wings of ostriches and
other flightless birds, for example.

However, the existence of hourglass patterns in TDI profiles of animal and plant
embryogenesis suggests that this pattern is actively maintained in extant species.
As evident for most evolutionary questions, experimental studies of processes that
were functional in extinct species but have become nonfunctional in the course of
evolution are incomparably more difficult to study than processes still functional
in extant organisms. Provided that active maintenance of the phylotranscriptomic
hourglass pattern would make little sense without it being functional, we hypoth-
esize that this pattern is still functional in extant species and does not represent
a nonfunctional relic. Despite this weak evidence for functionality of the phylo-
transcriptomic hourglass pattern, these data suggest that it might be possible to
identify the molecular function(s) of this pattern in the long term. In any case,
much remains to be learned, and we believe that a systematic comparative ap-
proach between plants and animals has the potential to significantly advance our
understanding of the developmental hourglass phenomenon.

In order to accomplish this goal, we have to overcome the limitations of the
presented bioinformatics approach. The TAI and TDI profiles provide information
about a summarized transcriptomic profile by calculating the weighted arithmetic
mean of the evolutionary age (TAI) or sequence divergence (TDI) at each stage
in embryogenesis. To systematically uncover the molecular function of the tran-
scriptomic hourglass patterns, we need independent measures to summarize the
evolutionary age or sequence divergence distributions which are capable of reflect-
ing the whole underlying distribution.

Alternatively, we can attempt to uncover the function of the phylotranscriptomic
hourglass pattern by investigating other developmental or transitional processes
that are similar to embryogenesis. In contrast to animals, plants development is
not finished after embryogenesis. In plants post-embryonic development is char-
acterized by organ development such as flower development, and by further devel-
opmental transitions such as germination and floral transition. Analyzing these
processes could help to understand the functional relevance of the transcriptomic
hourglass patterns, and we will turn to this investigation in chapter 4.
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4
Post-embryonic hourglass patterns

mark ontogenic transitions in plant
development

In chapter 3, we have discovered that the phylotranscriptomic hourglass pattern
may be still actively maintained and of functional relevance during embryogenesis
of animals and plants. We have also learned that in animals the phylotypic stage
is strongly connected to a window of maximum morphological conservation at the
beginning of organogenesis. This morphological connection is not known for plants.
In contrast to animals, organogenesis in plants occurs primarily postembryonically.
Hence, in the following sections we will attempt to answer the question if in plants
the phylotranscriptomic hourglass pattern is connected to organogenesis. To this
end, we will investigate the processes of germination, floral transition, and flower
development of A. thaliana.

In section 4.1, we will compare the embryogenesis of animals and plants and
the importance of ontogenetic transitions in postembryonically development of
plants. In section 4.2, we will introduce the gene expression data sets of A. thaliana
covering germination, floral transition, and flower development. In section 4.3,
we will present the phylotranscriptomic hourglass patterns during germination
and floral transition, implicating a connection of the observed phylotranscriptomic
patterns to developmental transitions. In section 4.4, we will conclude our findings
and hypothesize that the transcriptomic hourglass pattern may be a feature of
developmental processes allowing to switch between two subsequent functional
programs.

The following sections are extracted from Drost et al. 2016 “Post-embryonic
Hourglass Patterns Mark Ontogenetic Transitions in Plant Development” [74].
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4.1 Introduction

The window of maximum morphological conservation in mid embryogenesis, i.e.,
the phylotypic stage [3] or phylotypic period [16, 75], coincides with the onset of
organogenesis during body plan establishment. It has been suggested that a likely
cause for this conservation is a web of complex interactions among developmental
modules (e.g., organ primordia) during body plan establishment, which results
in selective constraints that minimize morphological divergence [15](Fig. 4.1A).
Although controversially debated for decades, in recent years the concept of the
developmental hourglass has been largely confirmed at the transcriptomic level.
Several studies showed that the degree of sequence conservation, the phylogenetic
age of transcriptomes, or the similarity of gene expression profiles maximize during
the phylotypic period [9, 16, 30, 39, 40, 53, 59, 70, 76–78], which is in agreement
with a potentially causative association with body plan establishment.

Figure 4.1 | The developmental hourglass model in the context of differ-
ences in plant and animal development. (A) According to Raff (1996) [15], a web
of complex interactions among developmental modules results in selective constraints
during midembryogenesis. In the phylotypic period modular interactions maximize and
morphological divergence minimizes resulting in the bottleneck of the developmental
hourglass model (illustration adapted from Irie and Kuratani 2011 [40]). (B) The part
of the ontogenetic life cycle that is covered by embryogenesis varies dramatically be-
tween plants and animals. Mature plant embryos have a limited number of organs and
little complexity. Most organs develop postembryonically. In contrast to animals, the
plant body plan is not fixed. It constantly changes in response to the environment.
Animal development is largely embryonic. Mature animal embryos often reach a level of
complexity that is comparable with adult individuals. Reprinted Figure 1 from [74].

In contrast to animals with their almost exclusively embryogenic development,
organ formation in plants occurs largely postembryonically (Fig. 4.1B). Hence, a
web of comparably complex modular interactions between developing organ pri-
mordia, which might underly the selective constraints during the phylotypic pe-
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riod in animals, is possibly never achieved during plant embryogenesis. However, a
transcriptomic hourglass pattern has nonetheless been observed for plant embryo-
genesis [10, 41] (as well as for fungal development; [79]), indicating that it may
not be causally connected to organogenesis, as suggested by the animal model.

We therefore wondered whether in plants these patterns might instead be as-
sociated with developmental transitions. Embryogenesis can be viewed as such
a transition, namely from a single-celled zygote to a complex, multicellular em-
bryo. To test this hypothesis, we generated transcriptomic data sets that cover
the two most important ontogenetic transitions in postembryonic development in
Arabidopsis thaliana: The transition from the embryonic to the vegetative phase,
and the transition from the vegetative to the reproductive phase. As a control, we
also analyzed a transcriptomic time series for flower development, a process that
is dominated by organogenesis. We then performed phylotranscriptomic analyses
[9, 10, 41], which assess the phylogenetic age of transcriptomes expressed over
sequential developmental stages (Supplementary Fig. S1 of [74]), and tested the
resulting profiles for the characteristic hourglass shape. If indeed, postembryonic
developmental processes would be governed by hourglass patterns, this would sug-
gest that hourglass patterns are not restricted to embryogenesis and possibly a
wide-spread phenomenon that governs multiple processes. Furthermore, the po-
tentially causative relationship among organogenesis, body plan establishment,
and hourglass patterns would need to be re-evaluated.

4.2 Materials and Methods

This section builds on the methods of phylostratigraphy, divergence stratigraphy,
TAI calculation, and the statistical testing presented in chapters 2 and 3. In
subsection 4.2.1, we will describe the germination experiment. In subsection 4.2.2,
we will explain the synchronization experiment and subsequent RNA-Seq library
preparation to gain the floral transition expression data. In subsection 4.2.3, we
will briefly introduce the flower development data set. In the subsection 4.2.4, we
will explain the phylotranscriptomic analyses.

4.2.1 Germination experiment

Seeds of A. thaliana, accession Columbia (Col-0), were cold-stratified at 4◦C in
the dark for 72 h in Petri dishes on two layers of moistened blue filter paper
(Anchor paper Co., U.S.A.). After stratification the seeds were incubated in a
growth chamber at 22◦C under constant white light. Seeds were collected at dif-
ferent developmental stages: mature dry seeds, six-hours imbibed seeds, seeds at
testa rupture, radicle protrusion, appearance of the first root hairs, the onset of
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photosynthesis defined by appearance of greening cotyledons, and fully opened
cotyledons.

Total RNA was extracted according to a modified hot borate method modified
[80], as described previously [81]. RNA quality and concentration were assessed
by agarose gel electrophoresis (0.1g mL−1) and NanoDrop® measurements.

4.2.2 Floral transition experiment

To achieve synchronization of flowering times, we adapted a previously published
cultivation regime [82]. In brief,A. thaliana Col-0 seeds were surface sterilized and
stratified for 4 days at 4◦C in water in the dark. They were then germinated for 7
days on vertical agar plates at 21◦C under short day photoperiods (8 h light/16 h
dark), before they were vernalized for 6 weeks at 4◦C. Although floral transition in
Col-0 does not require vernalization, this step significantly increased flowering time
synchrony. Subsequently, seedlings were transferred to soil and grown for another
7 days at 21◦C under short day photoperiods, before flowering was induced by
shifting the plants to long day conditions (16 h light/8 h dark). For RNA-seq
analysis we dissected shoot apices beginning 1 day after the shift to long day
conditions. Subsequently, shoot apex material was sampled every day for another
8 days resulting in nine time points total. Sampling was performed every day at
the same time 8 h after light on.

RNA extraction was performed with the RNeasy Plant Mini Kit (QIAGEN)
including the on-column DNase digestion step according to the manufacturer’s
protocols. Integrity of the RNA was verified by agarose gel electrophoresis.

Library preparation and Illumina RNA-seq was performed by LGC Genomics.
Reads were mapped onto the Arabidopsis genome (TAIR10) using TopHat 2
(v2.0.14) [83]. Uniquely mapped reads were counted using the featureCounts
(v1.4.6) [84] with the annotation file from TAIR10. The normalized RPKM values
were calculated by the function rpkm() from the Bioconductor package edgeR [85]
using the effective gene length. Finally, the resulting expression set was matched
with the phylostratigraphic map of A. thaliana and genes having RPKM val-
ues < 1 in at least one stage were removed from the dataset. This procedure
yielded 16,899 expressed genes. Raw expression data can be downloaded from
http://www.ncbi.nlm.nih.gov/bioproject/311774 (PRJNA311774). Normal-
ized expression data are included in Supplementary Dataset 1 of [74].
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4.2.3 Expression data of flower development

Plant material, growth conditions, generation of expression data and data analysis
are described in detail in [4]. Expression data can be downloaded from the NCBI
GEO database (accession number GSE64581). Normalized expression data are
included in Supplementary Dataset 1 of [74].

4.2.4 Phylotranscriptomic analyses

Phylotranscriptomic analyses are performed in the same manner as described in
chapters 2 and 3. The phylostratigraphic map of A. thaliana is constructed as pre-
sented in subsection 3.2.1. The calculation of TAI profiles and relative expression
values were performed as presented in subsections 2.2.2 and 2.2.6. The statistical
significances of the resulting patterns from the developmental processes of germina-
tion, floral transition, and flower development were performed with the flat line test
presented in subsection 2.2.5 and reductive hourglass test presented in subsection
3.2.4. All TAI, relative expression level, and statistical test computations are per-
formed using the R package myTAI [48]. The scripts for reproducing the phylotran-
scriptomic analyses are available at https://github.com/HajkD/post-embryo.

4.3 Results and Discussion

In this section, we will investigate the phylotranscriptomic patterns of A. thaliana
postembryonic developmental processes. We will find out which one of these pro-
cesses shows an hourglass-shaped TAI profile, and we will discuss the findings in
the light of functional relevance of the transcriptomic hourglass patterns. In sub-
section 4.3.1, we will investigate germination as the transition from embryogenesis
to the vegetative phase. In subsection 4.3.2, we will analyse the transcriptomic
pattern during floral transition. In subsection 4.3.3, we will find out about the
transcriptomic pattern during flower development.

4.3.1 Germination - Transition to vegetative phase

To study the transition from embryogenesis to the vegetative phase, we generated
transcriptomic information for seven sequential ontogenetic stages during seed ger-
mination [86]. The stages sampled included mature dry seeds, 6-h imbibed seeds,
seeds at testa rupture, radicle protrusion, root hair (collet hair) appearance, the
appearance of greening cotyledons, and established seedlings with fully opened
cotyledons (Fig. 4.2A and Supplementary Fig. S2 of [74]). We then combined the
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transcriptomic information with previously generated gene age information [41].
Based on an age-assignment approach called phylostratigraphy [8] (Supplementary
Fig. S1 of [74]), genes can be sorted into discrete age categories named phylostrata
(PS) [8]). For A. thaliana, we defined 12 age classes ranging from old (PS1) to
young (PS12). Next, we computed the transcriptome age index (TAI) [9] for each
developmental stage, which is defined as the weighted mean of gene ages using
the stage-specific expression levels as weights. The TAI therefore describes the
phylogenetic age of a transcriptome.

As shown in Figure 4.2B, the TAI profile for the embryonic-to-vegetative phase
transition displays an hourglass pattern with high TAI values at early and late
stages and low TAI values at intermediate stages. We confirmed this observation
through statistical tests (flat line test [41]: P = 8.92× 10−20; reductive hourglass
test [41]: P = 3.08 × 10−16; Supplementary Fig. S3a of [74]). The waist of the
hourglass corresponded to the phylogenetically oldest transcriptomes stemming
from the “testa rupture” to “radicle protrusion” stages. These stages mark the
emergence of the seedling from the seed, likely the transition period of this process,
at which germination becomes irreversible (Fig. 4.2B). We finally also studied the
relative expression levels of genes of different PS and found that the hourglass
pattern is caused by a largely antagonistic behavior of old and young genes (Fig.
4.2C), similar to what has been previously reported for embryogenesis [10, 41].

4.3.2 Floral transition - Vegetative-to-reproductive phase

We next tested whether a transcriptomic hourglass pattern also underlies the
vegetative-to-reproductive phase transition. During this so-called floral transition,
the leaf-producing shoot apical meristem is converted into an inflorescence meris-
tem, which forms flowers [87]. Morphologically, completion of the floral transition
can be observed by the bolting inflorescence. However, as the actual transition oc-
curs several days before bolting, we also assessed the expression of floral homeotic
genes and other marker genes to better map the time of transition to the repro-
ductive state (Supplementary Fig. S4 of [74]). Based on this information, we
synchronized flowering time in the sampling population (Supplementary Fig. S5
of [74]) and generated transcriptome data from the shoot apex before, during, and
after floral transition.

Figure 4.3A shows the results from the TAI analysis for nine samples covering
the floral transition. We identified a robust hourglass pattern (reductive hour-
glass test [41]: P = 2.99 × 10−5; Fig. 4.3A and Supplementary Fig. S3b [74])
that significantly deviated from a flat line (flat line test [41]: P = 3.03 × 10−14).
Similar to embryogenesis [10, 41] and seed germination (Fig. 4.2C), analysis of rel-
ative expression levels of genes assigned to different age classes revealed a largely
antagonistic behavior of old and young genes (Fig. 4.3B).
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Figure 4.2 | TAI analysis for germination in A. thaliana. (A) Illustration of
the developmental stages for which transcriptome data were generated. (B) The TAI
profile across germination follows an hourglass-like pattern. The gray lines represent
the standard deviation estimated by permutation analysis. P values were derived by
application of the flat line test [41] (Pflt) and the reductive hourglass test [41] (Prht).
(C) Relative expression levels for each phylostratum (PS) separately. The stage with the
highest mean expression levels of the genes within a PS was set to relative expression level
= 1, the stage with the lowest mean expression levels of the genes within a PS was set
to relative expression level = 0, the remaining stages were adjusted accordingly. PS was
classified into two groups: Group “old” contains PS that categorize genes that originated
before complex/multicellular plants evolved (PS1–3) and group “young” contains PS
that categorize genes that originated after complex plants evolved (PS4–12). DS, mature
dry seeds; 6h, 6-h imbibed seeds; TR, seeds at testa rupture; RP, radicle protrusion; RH,
appearance of the first root hairs; GC, appearance of greening cotyledons; OC, fully
opened cotyledons. Reprinted Figure 2 from [74].

Taken together, these observations demonstrate that in plants not only embryo-
genesis but also the embryo-to-vegetative and vegetative-to-reproductive phase
transitions progress through a stage of evolutionary conservation with older tran-
scriptomes being active in mid development. Thus the hourglass pattern, which
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Figure 4.3 | TAI analysis for the transition from vegetative to reproductive
growth in Arabidopsis thaliana. (A) The TAI profile across the transition to flow-
ering follows an hourglass-like pattern. The gray lines represent the standard deviation
estimated by permutation analysis. P values were derived by application of the flat line
test [41] (Pflt) and reductive hourglass test [41] (Prht). (B) Relative expression levels
for each PS separately. The stage with the highest mean expression levels of the genes
within a PS was set to relative expression level = 1, the stage with the lowest mean
expression levels of the genes within a PS was set to relative expression level = 0, the
remaining stages were adjusted accordingly. PS was classified into two groups: Group
“old” contains PS that categorize genes that originated before complex/multicellular
plants evolved (PS1–3) and group “young” contains PS that categorize genes that orig-
inated after complex plants evolved (PS4–12). TP, time point; TP1, 1 day after shift to
long day photoperiods (LD); TP2, 2 days after shift to LD; TP3, 3 days after shift to
LD; TP4, 4 days after shift to LD; TP5, 5 days after shift to LD; TP6, 6 days after shift
to LD; TP7, 7 days after shift to LD; TP8, 8 days after shift to LD; TP9, 9 days after
shift to LD. Reprinted Figure 3 from [74].

was previously discussed only with regard to embryogenesis, appears to be more
widespread, at least in plants. In fact, the embryonic hourglass is possibly only
one of many developmental processes governed by hourglass patterns.

Because no new organs are established during the two postembryonic phase tran-
sitions assessed here, our results also support the aforementioned conjecture that
transcriptomic hourglass patterns are not specifically associated with organogenic
processes.
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4.3.3 Flower development - Formation of floral organs

To directly test this, we performed phylotranscriptomic analyses of a flower de-
velopment data set we previously generated [4]. Flower development follows floral
transition and is dominated by the formation of different types of floral organs. In
agreement with the idea that hourglass patterns in plants are not tightly associ-
ated with organogenesis, the transcriptomic profile across 14 time points from the
earliest stages of flower development to mature flowers did not show an hourglass
pattern or, in fact, any other pattern at all (flat line test [41]: P = 0.202; Fig.
4.4A and B). Likewise, old and young genes did not show a clear antagonistic be-
havior in their expression (Fig. 4.4C). Together, these data suggest that in plants
organogenesis is not the driving factor of hourglass-shaped transcriptome profiles.
Hence, the currently favored explanation of animal hourglass patterns, which is
based on selective constraints correlated to body plan establishment and organo-
genesis [15], cannot serve as a plausible explanation for the two postembryonic
hourglass patterns reported here.

A simple scenario that might resolve this controversy would be that the tran-
scriptomic hourglass patterns in plants are functionally unrelated to those of ani-
mal embryogenesis. They might in fact have evolved to serve a completely differ-
ent, yet unknown, purpose. This scenario is supported by the lack of reports on
morphological hourglass patterns for plant embryogenesis (in contrast to various
animal phyla). It seems that morphological similarity among flowering plants is not
restricted to a midembryonic period but rather exists throughout embryogenesis
[72].

If the biological processes underlying embryonic hourglass patterns in animals
and plants are indeed functionally unrelated, we would also have to revoke our
earlier hypothesis that the developmental hourglass pattern evolved convergently
in both kingdoms [10]. Interestingly, in the three processes we analyzed, it seems
that the waist in the hourglass reflects a general transition to a growth or matura-
tion phase. If, however, animal and plant hourglass patterns should serve a similar
function, this study would suggest that the underlying cause is not organogenesis
or body plan establishment but an even more fundamental process. As also in
animal systems a causal relationship between body plan establishment and the
phylotypic period remains to be proven [88], it might be worthwhile to directly
address this relationship by designing experiments that separate developmental
transitions from organogenesis in animals.
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Figure 4.4 | TAI analysis of flower development in Arabidopsis thaliana. (A)
Illustration of the developmental stages for which transcriptome data were generated;
stages according to Ryan et al. 2015 [4].(B) The TAI profile across flower development
fails to detect evolutionary signal. The gray lines represent the standard deviation
estimated by permutation analysis. The P value was derived by application of the flat
line test [41] (Pflt). (C) Relative expression levels for each PS separately. The stage
with the highest mean expression levels of the genes within a PS was set to relative
expression level = 1, the stage with the lowest mean expression levels of the genes
within a PS was set to relative expression level = 0, the remaining stages were adjusted
accordingly. PS was classified into two groups: Group “old” contains PS that categorize
genes that originated before complex/multicellular plants evolved (PS1–3) and group
“young” contains PS that categorize genes that originated after complex plants evolved
(PS4–12). Reprinted Figure 4 from [74].

4.4 Conclusions and Outlook

The hourglass pattern was historically associated with animal embryogenesis and
only recently recognized to govern plant embryogenesis, too. Here, we present evi-
dence that in plants the hourglass pattern is probably even more fundamental and
not only characteristic for embryo development. Specifically, it is present in all
three major developmental transitions of plant life such as embryogenesis, germi-
nation, and floral transition. We could show that due to a missing transcriptomic
hourglass pattern in flower development that plant hourglass patterns may not
be related to organogenesis and thus body plan establishment, which is a widely
assumed cause for animal hourglass patterns.
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It will be interesting to test postembryogenic transitions like metamorphoses in
animals to see whether this can also be observed for nonplant organisms. We hy-
pothesize that a transcriptomic hourglass pattern is a feature of multiple develop-
mental processes that simply require passing through an organizational checkpoint
serving as a switch that separates two functional programs.

In chapter 6, we will turn to this question by developing novel transcriptomic
measures based on the Shannon entropy to investigate the origin of the transcrip-
tomic hourglass pattern and thus to attempt to deepen our understanding of its
functional relevance.
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Entropic hourglass patterns of
animal and plant development

In chapter 4, we have suggested an explanation about the function of the observed
transcriptomic hourglass patterns as a checkpoint for the transition from one de-
velopmental program to the next. In this chapter, we will present novel phylo-
transcriptomic approaches which are based on the Shannon entropy to investigate
the whole age distribution of expressed genes during developmental processes like
embryogenesis. The application of the developed entropic transcriptome age in-
dex could serve as an independent measure to investigate the function and also
origin of the transcriptomic hourglass pattern. Additionally, we will present an
updated version of the phylostratigraphic pipeline to determine the evolutionary
age of genes combined with a web server which will provide publicly available
phylostratigraphic maps.

In section 5.1, we will introduce our attempt to a novel entropic transcriptome
measure and an updated phylostratigraphic pipeline. In section 5.2, we will rede-
fine the TAI in a probabilistic manner and present the phylostratigraphic pipeline
and the PhyloWeb server. In section 5.3, we will present novel hourglass patterns
based on the Shannon entropy. Finally, in section 5.4, we will conclude by sug-
gesting an explanation for the detected entropic hourglass patterns and provide an
outlook to future methods based on our probabilistic definition of the TAI and its
relevance for answering the question of the origin of the transcriptomic hourglass
pattern.

5.1 Introduction

The quantification of the transcriptomic hourglass patterns showed that on av-
erage evolutionary young genes are expressed at the beginning of embryogenesis,
evolutionarily old genes during mid-embryogenesis, and again evolutionarily young
genes at the end of embryogenesis.

Focusing on plants, which represent the second major kingdom in the tree of life
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that evolved embryogenesis, it has been found that phylotranscriptomic hourglass
patterns also exist in the two main transitions of post-embryonic plant develop-
ment, germination and floral transition, suggesting the convergent evolution of
phylotranscriptomic hourglass patterns in embryonic and post-embryonic plant
development[74].

The origin of the phylotranscriptomic hourglass patterns has remained con-
cealed, but here we find that not only the mean age of expressed genes changes
in an hourglass-like manner, but the whole age distribution of expressed genes
changes. To improve the calculation of gene ages, we update our phylostrati-
graphic analyses pipeline and developed a web server which will provide publicly
available phylostratigraphic maps and an interface to perform user specific phy-
lostratigraphic analyses.

To study the changes of age distributions, we redefine the traditional transcrip-
tome index in a probabilistic manner and develop the entropic transcriptome age
index (eTAI) based on the Shannon entropy [89]. When studying the Shannon
entropy of these age distributions as functions of time, we find hourglass patterns
that surprisingly show highly significant transcriptomic hourglass patterns. Mea-
suring the whole age distribution and still providing highly significant hourglass
patterns might indicate that the phylotranscriptomic hourglass patterns of the en-
tropy [89] could be more fundamental than, and possibly even the mathematical
origin of, the traditional transcriptomic hourglass patterns of animal and plant
development.

5.2 Materials and Methods

In this section, we will introduce the entropic transcriptome age index and we will
learn about the automated web tool for phylostratigraphic analyses, called Phy-
loWeb, which provides the phylostratigraphic maps in this chapter. In subsection
5.2.1, we will redefine the transcriptome age index in a probabilistic manner and
introduce the entropic transcriptome age index in subsection 5.2.2. The calcu-
lation of transcriptome indices is based on the evolutionary gene age, provided
by phylostratigraphic maps. In subsections 5.2.3 and 5.2.4, we will learn about
the updated pipeline for phylostratigraphic analyses and the development of the
PhyloWeb server.
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5.2.1 A probabilistic perspective on the transcriptome age
index

Alternatively to the previous chapters, the TAI can be defined in a probabilistic
manner. To introduce this approach, we define a random variable X which is
realized over all possible phylostrata ps ∈ {1, . . . , PSmax}, whereas PSmax defines
the youngest phylostratum and 1 the oldest. The probability of observing a PS
in a specific developmental stage s can be calculated as

Ps(X = ps) =

∑I
i=1 eisδps,psi∑I

i=1 eis
. (5.1)

Here, the Kronecker delta function δps,psi is equal to one, if the phylostratum of
gene i is equal to its actual ps, otherwise it is zero. Following Eq. 5.1 we get a
discrete probability distribution of PS for each stage s of the biological process of
interest. Now we are also able to define the TAI, the so far weighted mean of gene
ages, as the expectation value of PS in stage s

Es(X) =
PSmax∑
ps=1

ps · Ps(X = ps) (5.2)

which is equal to the traditional transcriptome age index TAIs (Eq. 2.1). Hence,
the TAI captures the mean changes of the age, resp. PS, distribution during a
specific stage of the biological process.

In order to avoid naming conflicts, will now denote the traditional TAI asmTAI.

5.2.2 Entropic TAI

To study the changes of the age distribution as a function of time, we use the
concept of Shannon Entropy [89] and introduce the entropic TAI (eTAI) for each
stage s.

eTAIs(X) = −
PSmax∑
ps=1

Ps(X = ps) log2 Ps(X = ps). (5.3)

This new metric now allows us to better quantify distribution changes across
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stages in the biological process of interest. We are able to quantify homogeneities
in the age distribution by measuring low eTAI values and heterogeneities in the
age distribution by measuring high eTAI values.

5.2.3 Phylostratigraphic analysis pipeline

To automate the calculation of phylostratigraphic maps for each species of interest
and to provide this information to a broader audience, we developed the PhyloWeb
server application. The calculation of phylostratigraphic maps is computationally
demanding. Currently, we are using as the comprehensive sequence database the
NCBI non-redundant protein (nr) database [90], containing ∼ 140, 000, 000 se-
quences. A typical eukaryote genome can contain up to ∼ 50, 000 genes and over ∼
100, 000 proteins. Following these numbers, we would need ∼ 14, 000, 000, 000, 000
comparisons if we had to calculate each sequence comparison.

Due to the heuristic nature of the BLAST algorithm [91], this number can
be dramatically decreased but the remaining computations to receive a list of all
homologous sequences for all genes in a query species is still too high for computing
on a personal computer. Hence, we efficiently distributed the similarity searches on
the high-performance cluster of the Martin Luther University Halle-Wittenberg.
Thus, each node of the cluster computes for a chunk of sequences the similarity
searches against the nr database, dramatically reducing the time for similarity
searches.

Afterward, the homologous sequences with an E-value < 1 are assigned to their
phylogenetic node based on the target species’ phylogeny and the taxonomic in-
formation from the NCBI taxonomy database [90].

Following this procedure, we store for each homologous sequence its accession id,
the species name, the phylogenetic node, the percentage of sequence identity, and
the percentage of alignment coverage in a NoSQL MongoDB® database. With the
database, we can post hoc filter the BLAST results to study the robustness of the
phylostratigraphic map without rerunning the BLAST computations.

5.2.4 PhyloWeb - Retrieving phylostratigraphic maps

To enable researchers the access to our computed phylostratigraphic maps (PS
maps) and to adjust the PS assignments based on different filter criteria, we de-
veloped a web server front-end. called Phyloweb. The web application uses the
Flask micro web framework written in Python and is connected to the MongoDB®

database containing the BLAST results. It allows users to interactively manipulate
the threshold parameters to modify the phylostratigraphic maps.
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Figure 5.1 | Screenshot of the PhyloWeb server. The upper tabs show three
different perspectives on the data. The PS map view presents the user with an interactive
phylostratigraphic map of its target species. By applying different thresholds for the E-
value, the sequence identity, or the alignment coverage, the user can modify the PS
assignments. The tree on the left shows the target species’ phylogeny with the number
of assigned target genes in brackets. The phylogeny nodes are interactively collapsable
or expandable, immediately changing the assignments in the phylostratigraphic map on
the right.

It also allows to interactively adjust the phylogeny by expanding or collapsing
nodes of the underlying phylogenetic tree. There are three different views available
to investigate the phylostratigraphic results (Fig. 5.1). In the ’PS map’ view, users
can choose between different precalculated PS maps from various species and can
modify the similarity thresholds to define homologous sequences in the analysis.

The PS map is summarized in the target species’ phylogenetic tree, showing the
number of genes assigned to a particular PS. The tree branches can be collapsed
or expanded, followed by an immediate change of the PS map. The visualization
can be modified by applying different fonts, line widths, or colors and can be
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downloaded in a publication-ready quality as SVG or pdf.

The table on the right (Fig. 5.1) displays the detailed PS map. The user
can search for a particular gene to retrieve more information from the similarity
searches in the ’Gene detail’ view. Similar to the ’PS map’ view, the phylogeny is
displayed containing the number of all homologous sequences of the chosen gene
assigned to the closest phylogenetic node shared with the query species. Detailed
inspections of the alignments between a homologous and its query sequence are
possible in the ’Alignment detail’ view.

5.3 Results and Discussion

In this section, we will review the entropic transcriptome patterns of Da. rerio,
D. melanogaster, and A. thaliana during embryogenesis and also for A. thaliana
for germination, floral transition, and flower development. In subsection 5.3.1, we
will present the entropic TAI profiles and find out if they also show an hourglass
pattern. In subsection 5.3.2, we will quantify the significance of the hourglass
shaped eTAI patterns and compare them to the traditional mTAI patterns.

5.3.1 Hourglass patterns of the entropic TAI

The traditional mTAI was initially introduced by Domazet-Los̆o in 2010 [9]. It
is based on a gene age inference approach termed phylostratigraphy [8], which
harnesses BLAST searches [91] to assign protein-coding genes a phylogenetic age
by identifying homologous sequences in other species on a tree of life scale. Using
this approach, genes can be sorted into discrete age categories, referred to as phy-
lostrata (PS), which correspond to taxonomic nodes in the tree of life. To construct
the TAI measure, phylostratigraphy based gene age inference is performed for all
protein-coding genes of a reference organism of interest. The information about
gene ages is then combined with expression levels covering the biological process of
interest. Together, the weighted mean of all gene ages and their expression levels
is referred to as the TAI.

In previous studies this mean transcriptomic age was capable to uncover the
transcriptomic hourglass pattern during embryogenesis and in post-embryonic de-
velopmental processes in plants like germination and floral transition. Alterna-
tively to the mean age of expressed genes, the detection of changes in the whole
age distribution during the process of interest could provide more insights into
the observed phenomena if the phenomena is still detectable. Using the concept
entropy [89] we are able to study changes in the age distribution as a function of
time.

58



5.3 Results and Discussion

2.00

2.05

2.10

2.15

2.20

2.25

0h

1h
15

m
in

2h
45

m
in

4h
40

m
in 7h 10
h

11
h

4
0

m
in

14
h

17
h

20
h

23
h

1d
6h

1d
18

h 3d

Development [stages]

e
TA

I

A

2.1

2.2

2.3

2.4

2.5

2.6

0-
2h

2-
4h

4-
6h

6-
8h

8-
10

h

10
-1

2
h

12
-1

4
h

14
-1

6
h

16
-1

8
h

18
-2

0
h

20
-2

2
h

22
-2

4
h

Development [stages]

e
TA

I

B

2.45

2.50

2.55

2.60

2.65

Z
yg

o
te

Q
u

ad
ra

n
t

G
lo

b
u

la
r

H
ea

rt

To
rp

e
d

o

B
en

t

M
at

u
re

Development [stages]

e
TA

I

C

2.20

2.25

2.30

2.35

2.40

2.45

2.50

DS 6h TR RP RH GC OC
Development [stages]

e
TA

I

D

1.95

2.00

2.05

2.10

TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9
Development [stages]

e
TA

I

E

2.14

2.16

2.18

2.20

2.22

0d 1d

1.
5d 2d

2.
5d 3d

3.
5d 4d

4.
5d 5d 7d 9d 11
d

13
d

Development [stages]

e
TA

I

F

Figure 5.2 | Entropic TAI profiles across animal and plant development.
Developmental stages of embryogenesis in (A) D. melanogaster, (B) Da. rerio, (C) A.
thaliana. Post-embryonic transitions of A. thaliana during (D) germination, (E) floral
transition. (F) Flower development of A. thaliana. The blue shaded area highlights the
predicted phylotypic stage respectively for germination and floral transition the stages
with the highest degree of conservation. The gray lines represent the standard deviation
estimated by permutation analysis.

In Figure 5.2 we use the entropy on previously published datasets and find
the same hourglass shaped patterns during the embryogenesis of Da. rerio [9],
D. melanogaster [92], and A. thaliana [28]. Additional to embryogenesis we also
detect an hourglass pattern during germination [86] and floral transition [4] in A.
thaliana indicating a decrease in the age heterogeneity for the predicted conserved
stages of the different processes.
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The decrease of the age heterogeneity is in accordance to the checkpoint model
[93] stating that the highly conserved stages during embryogenesis and post-
embryonic processes are a consequence of prohibiting different developmental pro-
grams to ensure an ordered transition between developmental programs. This
constrain leads to an expression shift of old genes, and thus increasing the homo-
geneity of the transcriptome age respectively decreasing the heterogeneity.

To confirm the findings of chapter 4, we calculate the eTAI profile of A. thaliana
flower development (Fig. 5.2 F). Also the eTAI approach is not able to detect a
possible hourglass pattern for this process of organogenesis.

5.3.2 Entropic hourglass patterns are highly significant

While Figure 5.2 shows that the concept of entropy is able detect hourglass patterns
by plotting the changes of the whole transcriptome age distribution as a function
of time, we were interested if the observed pattern are reliable on a quantitative
scale.

We perform reductive hourglass tests [41] to verify if the presented profiles are
not random observations. As mentioned in section 3.3.4, the test is designed to
detect hourglass shaped profiles and determines their significance. As presented
in table 5.1 the entropic hourglass patterns of embryogenesis in Da. rerio, D. me-
lanogaster, and A. thaliana, as well as entropic hourglass patterns of germination
and floral transition from A. thaliana are highly significant. Only the eTAI pro-
file of A. thaliana flower development does not show a significant hourglass shaped
pattern.

Process Species mTAI eTAI
Embryogenesis Da. rerio 8.22e-03 1.63e-05

D. melanogaster 4.52e-02 4.50e-06
A. thaliana 1.75e-07 1.36e-33

Germination A. thaliana 1.87e-16 6.81e-98
Floral transition A. thaliana 5.28e-05 2.85e-14
Flower development A. thaliana 1.19e-01 4.41e-1

Table 5.1 | P values of the reductive hourglass test. We calculate the P values
based on the reductive hourglass test for the mTAI and eTAI profiles for embryogenesis
in D. melanogaster, Da. rerio, A. thaliana, and Post-embryonic developmental processes
of A. thaliana such as germination, floral transition, and flower development.

Comparing the calculated P values against the P values of the traditional phy-
lotranscriptomic hourglass patterns of the mean age, the P values of the entropic
hourglass patterns are orders of magnitudes lower. Such a strong signal is surpris-
ing, and it seems that the observed entropic hourglass is more fundamental than
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the original mean hourglass patterns. Hence, the question arises if the observed
mean hourglass pattern is a consequence based on the changes of the whole age
distribution measured by the entropic hourglass. Hence, the entropic hourglass
could be considered as the origin of the mean hourglass pattern. The changes in
the age distributions observed in the entropic hourglass may provide evidence for
our hypothesis that the transcriptomic hourglass pattern may serve as a transition
from one transcriptional program to the next.

5.4 Conclusions and Outlook

The quantification of transcriptome conservation based on the traditional tran-
scriptome age index of the mean was and still is a widely used and accepted
concept. This method uses the mean of the age distribution to measure the evo-
lutionary conservation during developmental processes. Since it just reflects one
parameter of the underlying distribution it is obvious to measure the degree of
conservation with a different concept which is able to account the complete age
distribution. Such a measure is the entropy which tries to captures the shape of the
distribution. Based on this concept we introduced the entropic transcriptome age
index to study developmental processes in the light of evolutionary conservation.

In this study we could show that the entropy of age distributions as functions of
time is able to detect hourglass patterns during embryogenesis and post-embryonic
development in plants and animals based on previously published data sets. Alter-
native, to the mean transcriptomic hourglass patterns we could detect an decrease
in the heterogeneity of the underlying age distribution and thus a shift of the ex-
pression towards the set of old and conserved genes. This finding is in concordance
with the organisational checkpoint model [93] in which the conserved stages are a
consequence of prohibiting different developmental programs to ensure an ordered
transition between developmental programs.

The result of this restriction can be detected with the entropy due to the in-
crease of homogeneity in the age distribution. By measuring the significance of
the entropic TAI patterns we could show that the P values of the reductive hour-
glass tests are many orders of magnitudes lower than the P values of the P values
of the traditional mean transcriptomic hourglass patterns. Thus, we hypothesize
that the entropic hourglass pattern might be the primary pattern, or origin, of the
previously observed mean transcriptomic hourglass patterns representing the tran-
sition from one transcriptional program to the next by increasing the homogeneity
of expressed genes towards the conserved stages.

In chapter 6, we will test this hypothesis by investigating if either the entropic
TAI can reproduce the mean TAI hourglass patterns or the mean TAI can repro-
duce the entropic TAI hourglass patterns.
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hourglass pattern

In this chapter, we will continue to attempt to find the origin of the transcriptomic
hourglass pattern and to attempt to decipher its function. In chapter 5, we have
defined the entropic transcriptome age index, and we have presented transcrip-
tomic hourglass patterns with P values that are orders of magnitudes lower than
the traditional transcriptomic hourglass patterns. We hypothesized that the ob-
served eTAI patterns could possibly be primary patterns for the mTAI patterns.

In this chapter, we will attempt to test this hypothesis. After introducing the hy-
pothesis in section 6.1, we will present in section 6.2 the computational approaches
to predict the traditional mTAI hourglass patterns based on the observed eTAI
hourglass patterns and vice versa. In section 6.3, we will present the reproduced
transcriptomic hourglass patterns to find out which transcriptomic measure is more
fundamental and might possibly be the primary pattern. In section 6.4, we will
conclude that based on our experiments our hypothesis can neither be confirmed
nor denied.

6.1 Introduction

Several studies showed that a hourglass pattern is also present at the molecular
level during animal and plant embryogenesis [9, 10, 16, 30, 40, 41, 51, 59, 74,
77–79, 94, 95]. This observation was surprising as multicellularity and embryogen-
esis evolved independently in animals and plants [11] and suggests the convergent
evolution of phylotranscriptomic hourglass patterns in animal and plant embryo-
genesis.

In chapter 4, we found that phylotranscriptomic hourglass patterns also exist in
the two main transitions of post-embryonic plant development, germination and
floral transition, suggesting the convergent evolution of phylotranscriptomic hour-
glass patterns in embryonic and post-embryonic plant development [74]. Based
on the observed transcriptomic hourglass patterns in embryogenesis and post-
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6 Deciphering the origin of the hourglass pattern

embryonic developmental transitions, we postulated the “organisational check-
point“ hypothesis [74, 93] as an attempt to explain the functional relevance of
the transcriptomic hourglass patterns.

The hypothesis states that the waist of the hourglass pattern may serve as
a transition by turning down one developmental process and setting up a new
developmental process. To investigate this statement, we developed the entropic
transcriptome age index, which is able to measure the whole age distribution of
expressed genes.

In chapter 5, we thus detected five novel hourglass patterns based on the en-
tropic transcriptome age index (eTAI). By determining the significance of these
hourglass pattern with the reductive hourglass test, we found that the eTAI hour-
glass patterns show P values that are orders of magnitudes lower than the P values
of the corresponding mTAI hourglass patterns. Representing the whole age distri-
bution and showing such significant hourglass patterns, we wonder if the entropic
TAI patterns are the origins of the traditional mTAI hourglass patterns.

In this chapter, we attempt to answer this question by developing computational
approaches which connect the traditional and entropic TAI measures. These ap-
proaches are designed to reproduce the mTAI profiles based on the eTAI mea-
sure and vice versa. Thus, we attempt to find the origin of the transcriptomic
hourglass pattern and add evidence or contradict to the “organizational check-
point“hypothesis.

6.2 Materials and Methods

In this section, we will investigate the dependence of the entropic TAI with the
mean TAI. In subsection 6.2.1, we will present a method for sampling PS distribu-
tions and calculate the corresponding mTAI and eTAI values. To investigate the
dependence of the two transcriptome measures we will present a loess regression
analysis. In subsection 6.2.2, we will introduce a gradient-based search algorithm
to either reproduce mTAI profiles based on a gradient derived from the eTAI or
reproduce eTAI profiles based on a gradient derived from the traditional mTAI.
In subsection 6.2.3, we will introduce a zscore derived normalization method for
the eTAI and mTAI profiles. This normalization will be necessary to qualitatively
compare the results of reproducing the mTAI and eTAI profiles.
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6.2.1 Sampling of PS distributions and regression analysis

To study the mathematical relationships betweenmTAI and eTAI we test whether
the eTAI pattern might be the underlying origin of the observed mTAI pattern.
We therefore simulated mean PS distributions denoted as θ, by calculating the
arithmetic mean for each PS over all stages as

θps =
1

S

S∑
s=1

Ps(X = ps), ∀ps ∈ {1, . . . , PSmax}. (6.1)

Based on θ we defined hyperparameters α as

αps = c · θps, ∀ps ∈ {1, . . . , PSmax} (6.2)

and sampled 1,000 data points from this Dirichlet distribution Dir(θ|α), where
the parameter c defines the width of the distribution depending on θ.

By sampling PS distributions, we are able to calculate the corresponding mTAI
and eTAI values and use the sampled data points to estimate a loess regression to
study the mathematical relationship between themTAI and eTAI. The calculated
the mTAI and eTAI values based on the sampled PS distributions are shown in
Fig. 6.1.

When performing the regression analysis, we assumed that the data points are
normally distributed, as it is indicated by the histograms of Figure 6.1.

It has to be mentioned that we assume a truncated normal distribution because
the mTAI and eTAI values are defined within the closed intervals

1 ≤ mTAI ≤ PSmax (6.3)

0 ≤ eTAI ≤ log2(PSmax) (6.4)

Thus, by using locally estimated scatterplot smoothing regression (loess) we
can estimate functions within the sampled data points which allow us to predict
artificial mTAI or eTAI values based on the original eTAI and mTAI values.
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6 Deciphering the origin of the hourglass pattern

6.2.2 Prediction of transcriptomic age index profiles based on
a mean PS distribution

We perform a gradient search to investigate the dependence between mTAI and
eTAI. In Figure 6.2 and 6.2 we present the results of predicting the original mTAI
values based on an entropic TAI gradient and the prediction of the original eTAI
values based on a mean TAI gradient.

Algorithm 1: Gradient Search. This pseudocode outlines the al-
gorithm to reproduce the original mTAI or eTAI value (defined by
xtaiorg). It starts at a particular PS distribution θ0 and performs a
gradient ascent or descent depending on xtaiorg and the transcriptome
index value of θ0.

input : θ0 := θ,
xtai ∈ {“mTAI”, “eTAI”},
gradXtai ∈ {“mTAI”, “eTAI”},
xtaiorg - original eTAI or mTAI value,
steps ∈ R - step size for gradient search,
Imax ∈ N - max. number of iterations

output: xtaifinal - predicted eTAI or mTAI value

1 // Define direction of the gradient

2 d← 1

3 xtaifinal ← calculateXTAI (θ0, xtai)

4 if xtaiorg < xtaifinal then

5 d← −1

6 for i← 0 to Imax do

7 β ← log(θi)

8 γ ← exp(β)/exp(β•)

9 ∇θ ← gradient(γ, gradXtai)

10 ν ← β + d× step×∇θ

11 θ(i+1) ← exp(ν)/exp(ν•)

12 xtaifinal ← calculateXTAI(θ(i+1), xtai)

13 // Loop ends when xtaiorg is reached or slightly exceeded

14 if (d× (xtaiorg − xtaifinal)) >= 0 then

15 break

16 return (xtaifinal)
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As described by the pseudocode (Alg. 1), we start at the mean PS distribution
(θ0 := θ). The variable xtai defines the objective function, i.e., the index we want
to predict (mTAI or eTAI).

As shown in Fig. 6.1 the gradient has to point into different directions when we
start at θ (red point in Fig. 6.1) and want to predict all values of the transcriptome
age index profile (green points in Fig. 6.1). Thus, depending on the direction we
perform either a gradient ascent (d := 1 in Alg. 1) or a gradient descent (d := −1
in Alg. 1).

Based on the value of the variable xtai and the provided PS distribution θ the
function calculateXTAI (Line 3 and 12 in Alg. 1) calculates the corresponding
transcriptome age index. Additionally, the function gradient (Line 9 in Alg. 1)
returns the gradient of a requested transcriptome index, defined by gradXtai, for a
particular PS distribution θ. If gradXtai is set to mTAI the gradient is computed
as

(∇θ)ps := ps, ∀ps ∈ {1, ..., PSmax} (6.5)

and if gradXtai is set to eTAI the gradient is computed as:

(∇θ)ps :=
−1− log(Ps(X = ps))

log(2)
, ∀ps ∈ {1, ..., PSmax} (6.6)

Since we investigate the dependence between mTAI and eTAI, we try to find
the transcriptome index that outperforms the other by finding the PS distribution
that fits the original transcriptome index profile the best. Consequently, we either
set the variables xtai := mTAI and gradXtai := eTAI or xtai := eTAI and
gradXtai := mTAI.

The variable xtaiorg defines the specific time point in the transcriptomic age
profile, we want to predict. The search stops if the predicted xtaifinal value reachs
or slightly exceeds xtaiorg. For the experiments shown in section 6.3.2 and Figures
6.2 and 6.2, we use a step size of 10−7 and a maximal number of iterations of 107.

6.2.3 Normalized transcriptomic age index profiles

In the previous section, we described the procedure to predict the mTAI based
on the eTAI function (gradient) and vice versa. To study if the eTAI can predict
the traditional mTAI qualitatively better than the mTAI predicts the eTAI,
we need to compare the differences between the predicted and the corresponding
original profiles. As shown in Figure 6.1, the ranges of mTAI (Eq. 6.3) and
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6 Deciphering the origin of the hourglass pattern

eTAI (Eq. 6.4) values are very different. Accordingly, we cannot directly compare
the difference between the original and predicted mTAI profiles to the difference
between the original and predicted eTAI profiles. We first have to normalize the
profiles to compare the differences mentioned above in an objective manner, e.g.,
by comparing the Manhattan or Euclidean distance between the predicted and
original profiles.

To transform the profiles we use the zscore approach, in which the values of
each profile are normalized to its mean (Eq. 6.7) and its standard deviation (Eq.
6.8).

µxTAI :=
1

S

S∑
s=1

xTAIs (6.7)

σxTAI :=

√√√√ 1

S

S∑
s=1

(xTAIs − µxTAI)2 (6.8)

We therefore define the function z(xTAIs) as

z(xTAIs) :=
xTAIs − µxTAI

σxTAI

(6.9)

,with xTAIs denoting the eTAI or mTAI at a particular stage s.

6.3 Results and Discussion

In this section, we will investigate the dependence between the eTAI and the
mTAI. We will also try to decipher if on of the two transcriptome indices is the
primary pattern. In subsection 6.3.1, we will attempt to find out to which degree
the eTAI and mTAI are related to each other. In subsection 6.3.2, we will find
out to which degree is the eTAI able to reproduce the transcriptomic patterns of
the mTAI and vice versa.
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6.3.1 Dependencies between transcriptome indices

To investigate the relationship between mTAI and eTAI, we sample 1,000 PS
distributions from a Dirichlet distribution with hyperparameters α as defined in
Eq. 6.2. For each sampled data point, resp. PS distribution, we calculate the
corresponding mTAI and eTAI value. As shown in Fig. 6.1, the mTAI and
eTAI values from sampled PS distributions form an ellipse in the scatter plot.
The histograms of mTAI and eTAI values seem to follow a Gaussian distribution.
Hence, based on the elliptic scatter plot, the presented mTAI and eTAI values
could be modeled by a bivariate Gaussian distribution with a symmetric covariance
matrix and non-zero off-diagonal elements, resp. non-zero covariances between
mTAI and eTAI. Thus, based on Fig. 6.1, we assume a particular degree of
dependence between the two transcriptome indices.
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Figure 6.1 | Scatterplot of sampled PS distributions. This plot shows 1,000
sampled PS distributions (gray points) for c = 10−3 (Eq. 6.2). We calculate for each PS
distribution the entropic TAI (eTAI) and traditional TAI (mTAI). The x-axis denotes
eTAI and the y-axis denotes the mTAI of each PS distribution. The green points
represent the PS distributions of the seven stages in A. thaliana embryogenesis, the red
point corresponds to the mean of the seven stages of A. thaliana, and the blue point
corresponds to the mean of the Dirichlet distribution, from which we have sampled the
PS distributions.

69



6 Deciphering the origin of the hourglass pattern

Additionally, we calculate a loess regression within the 1,000 sampled data points
to underline the dependency of mTAI and eTAI. We see in Fig. 6.1 that the data
points which are based on the original data set (green points) are close to the
predicted regression line but only the original data points close to the mean PS
distribution are also close to the regression line. If a data point is further away
from the mean PS distribution the prediction misses the original observed data
points.

Taken together, we see a dependence between the mTAI and eTAI value which
could mean that one transcriptome measure may be able to predict the other one.
As we see by the regression line in Fig. 6.1, that the loess regression may not be
capable of precisely predict mTAI values from eTAI values or vice versa because
of the deviation we see for PS distributions showing very high mTAI-eTAI pairs
or very low mTAI-eTAI pairs. We need another approach to test if we are able
to predict one transcriptome measure with the other.

6.3.2 Reproducing the hourglass pattern

To determine the relationship between eTAI and mTAI, we attempt to reproduce
the traditional transcriptomic hourglass pattern based on the eTAI and vice versa
we attempt to reproduce the entropic transcriptomic hourglass pattern based on
the mTAI. The results of the study may support our goal to decipher the origin
of the transcriptome hourglass patterns and also help us to decipher its function.

In Figure 6.2 we present the reproduced transcriptomic patterns and the original
transcriptomic patterns, based on the gradient search approach of Sec. 6.2.2. We
find from Figs. 6.2A, E, G, I that the eTAI gradient is capable of producing
hourglass shaped patterns which are very similar to the original mTAI patterns.
We also find from Figs. 6.2B, D, F, H, J that the mTAI gradient is capable of
producing hourglass shaped patterns which are very similar to the original eTAI
patterns. To quantify the degree of similarity between the reproduced profiles and
the original profiles, we calculate the Euclidean and Manhattan distances between
the normalized profiles.

In Fig. 6.2, we find that it is possible to some degree to reproduce mTAI
patterns from a eTAI gradient and that it is also possible to a much weaker
degree to reproduce eTAI patterns from a mTAI gradient. Only the entropic
transcriptomic pattern of D. melanogaster embryogenesis (Fig. 6.2C-D) can be
reproduced slightly more accurate by the mTAI gradient compared to the entropic
gradient.
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Figure 6.2 | Normalized mean and entropic transcriptome age indices. (A-B)
Da. rerio.(C-D) D. melanogaster. (E-F) A. thaliana embryogenesis. (G-H) A. thaliana
floral transition. (I-J) A. thaliana germination. (A, C, E, G, I) Partially reproducing
the mTAI hourglass patterns, starting from a mean age distribution and following the
gradient of the eTAI function. (B, D, F, H, J) Partially reproducing the traditional eTAI
hourglass patterns, starting from a mean age distribution and following the gradient of
the mTAI function. The green lines represent the normalized original transcriptomic
patterns while the red lines represent the normalized reproduced patterns. The Euclidean
and Manhattan distances on the top of each subplot quantify the differences between
the original and reproduced normalized patterns.
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6 Deciphering the origin of the hourglass pattern

The differences between the two approaches are very little, hence we cannot
confirm nor discard our hypothesis that the entropic hourglass might be the origin
of the hourglass pattern of mean. Regarding, the P values of the eTAI patterns,
we see a quantitative shift based on the P values which are orders of magnitudes
lower than the P values of the corresponding traditional mTAI patterns.

By representing the degree of homogeneity of the whole age distribution as a
function of time, the eTAI provides a new perspective to the traditional tran-
scriptomic hourglass patterns. Currently, we cannot confirm if the entropic tran-
scriptomic hourglass pattern is primary to the transcriptomic hourglass pattern of
mean, but based on the two transcriptomic approaches we are able to support the
“organizational checkpoint” hypothesis as we see not only a decrease of the mean
age in the mTAI hourglass patterns but also an increase in the homogeneity of
the age distribution in the eTAI hourglass patterns.

We could confirm these patterns for all embryonic and post-embryonic develop-
mental transitions in chapter 5. Thus, we could speculate that at the beginning
of the transcriptomic hourglass pattern, we see a heterogeneous and evolutionary
young transcriptome. At the waist of the transcriptomic hourglass pattern, we
suspect a shut down of the previous developmental process which leads to a homo-
geneous age distribution and the expression of conserved, evolutionary old, genes.
After the shut down of one functional program, the transcriptome can now tran-
sition into the next process, resp. start a new functional program. Hence, we see
after the waist in the transcriptomic hourglass pattern an increase in heterogeneity
and the expression of evolutionary young genes.

6.4 Conclusions and Outlook

The transcriptomic hourglass pattern is a pattern that seems to exist on multi-
ple scales measured by different phylotranscriptomic approaches representing the
weighted mean age (mTAI) or the degree of age homogeneity as a function of
time (eTAI). All these hourglass patterns have been confirmed in embryonic de-
velopment of animals and plants and post-embryonic developmental transitions in
plants. In chapter 5, we could show that the eTAI hourglass patterns are highly
significant which led us to the speculation that the entropic transcriptomic hour-
glass patterns could be the primary pattern, rep. origin, of the observed mTAI
hourglass patterns and thus could provide evidence to uncover the function of the
transcriptomic hourglass patterns.

To test this hypothesis, we have studied the dependency of the mTAI and
eTAI approach by developing a method to randomly sample age distributions
and compare their corresponding mTAI and eTAI values. By applying a loess
regression analysis, we could show that the two measures show to certain degrees
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a linear dependency. We further investigated this dependency by the attempt to
decipher if the mTAI is the primary pattern of the eTAI patterns or vice versa.
With a developed gradient search algorithm we attempt to partially reproduce
the mTAI patterns based on eTAI gradients and partially reproduce the eTAI
patterns based on mTAI gradients.

Based on this experiment we could neither confirm nor discard that one the
transcriptomic measures is the origin of the other. But based on the dependency
between the two transcriptomic measures we find further evidence that the tran-
scriptomic hourglass pattern may serve as a transcriptional switch. The decrease
on the mean age and the increase of age homogeneity could be interpreted as
a consequence of shutting down one transcriptional program. Based on the de-
crease of transcriptional activity only the remnants of previously highly expressed
conserved, resp. evolutionary old, transcripts are measured in the waist of the
transcriptomic hourglass pattern. After the waist the next transcriptional pro-
gram gets initialised leading to an increase in transcriptional activity, which leads
to an increase of age heterogeneity (high eTAI) and thus an increase of the mean
evolutionary age (high mTAI).

In chapters 2 - 6, we have investigated transcriptomic hourglass patterns, and
we have attempted to contribute to the field of evolutionary developmental biol-
ogy by developing novel phylotranscriptomic approaches. The phylotranscriptomic
analysis was based on temporal gene expression data combined with evolutionary
information such as the evolutionary gene age. In the next chapter, we will leave
the field of evolutionary developmental biology and enter the field of developmental
biology by studying the process of grafting, a unique and agriculturally relevant
developmental process of plants enabling them to form chimeric organisms and
increase yield and productivity. In contrast to the previous chapters, gene ex-
pression will be measured on a spatial- and temporal resolution. To analyze this
data, we will develop and apply customized bioinformatics analyses and statistical
approaches.
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7
Transcriptome dynamics at
Arabidopsis graft junctions

In this chapter, we will investigate the transcriptome dynamics of grafting, a re-
markable property of many plants allowing the formation of a chimeric organism
by joining cut tissues. To better understand this process at the molecular level,
we will learn about a genome-wide analysis of temporal and spatial gene expres-
sion changes in grafted A. thaliana hypocotyls. My colleagues and I developed
a bioinformatics pipeline to verify and quantify the obtained RNA-Seq data to
subsequently analyze the gene expression profiles. The analysis uncovered an in-
tertissue recognition mechanism characterized by an asymmetric gene expression of
sugar-associated genes and a symmetric gene expression of auxin-response genes
above and below the graft junction. The findings indicate that wound healing
is proceeded via different mechanisms depending on the presence or absence of
adjoining tissues.

In section 7.1, we will introduce the topic of transcriptome dynamics during
grafting and its underlying molecular processes. In section 7.2, we will present
the quantification of gene expression data, the detection of differentially expressed
genes, followed by the analysis of gene sets connected to grafting their functional
analysis. In section 7.3, we will examine the transcriptome dynamics in a spatial-
temporal resolution after grafting and we will compare the differentially expressed
genes with published datasets. In section 7.4, we will discuss our results with
respect to the symmetric and asymmetric gene expression above and below the
graft junction. In section 7.5, we will conclude our findings, discuss limitations of
the bioinformatics analysis and give an outlook to future work.

The following sections are extracted from Melnyk et al. 2018 “Transcriptome dy-
namics at Arabidopsis graft junctions reveal an intertissue recognition mechanism
that activates vascular regeneration” [96].
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7 Transcriptome dynamics at Arabidopsis graft junctions

7.1 Introduction

For millennia people have cut and rejoined plants through grafting. Generating
such chimeric organisms combines desirable characteristics from two plants, such
as disease resistance, dwarfing and high yields, or can propagate plants and avoid
the delays entailed by a juvenile state [97]. Agriculturally, grafting is becoming
more relevant as a greater number of plants and species are grafted to increase
productivity and yield [98]. However, our mechanistic understanding of grafting
and the biological processes involved, including wound healing, tissue fusion and
vascular formation, remain limited.

Plants have efficient mechanisms to heal wounds and cuts, in part through the
production of wound-induced pluripotent cells termed “callus”. The callus fills the
gap or seals the wound, and later, differentiates to form epidermal, mesophyll and
vascular tissues [99]. In grafted Arabidopsis hypocotyls, tissues adhere 1-2 days
after grafting and the phloem, the tissue that transports sugars and nutrients,
connects after three days [100, 101]. The xylem, tissue that transports water and
minerals, connects after 7 days [100]. Plant hormones are important regulators of
vascular formation, and at the graft junction, both auxin and cytokinin responses
increase in the vascular tissue [100–102]. Auxin is important for differentiation
of vascular tissues whereas cytokinin promotes vascular stem cells, termed “cam-
bium”, to divide and proliferate in a process known as secondary growth [103,
104].

Auxin is produced in the upper parts of a plant and moves towards the roots
via cell-to-cell movement. Auxin exporters, including the PIN proteins, transport
auxin into the apoplast, whereas auxin importers, such as the AUX and LAX pro-
teins, assist with auxin uptake into adjacent cells [104]. Disrupting this transport,
such as by mutating PIN1, inhibits healing of a wounded stem [105]. Blocking
auxin transport with the auxin transport inhibitor TIBA (2,3,5-triiodobenzoic
acid) in the shoot inhibits vascular formation and cell proliferation at the Ara-
bidopsis graft junction [102]. In addition to auxin, other compounds, including
sugars, contribute to vascular formation. The localised addition of auxin to cal-
lus induces phloem and xylem but requires the presence of sugar [106, 107]. In
plants, sugars are produced in the leaves and transported through the phloem to
the roots [108]. The role of sugars in vascular formation and wound healing is not
well established; however, sugars promote cell division and cell expansion [109],
processes important for development including vascular formation.

The molecular and cellular mechanisms for wound healing, tissue reunion and
graft formation remain largely unknown. One emerging theme is that the top
and bottom of the cut do not behave similarly. Such tissue asymmetry occurs in
other plant tissues, most notably leaves. Developing leaf primordia have an in-
herent asymmetry that is established early to specify differences between the top
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and the bottom of the leaf. External signals promote early leaf polarity changes
but how asymmetry is established remains unknown [110]. Auxin depletion in
the upper side of the emerging leaf might be important [111] or, alternatively, a
meristem-derived lipophilic molecule could activate HD-ZIPIII proteins important
for asymmetry [112]. Asymmetry also appears in cut Arabidopsis inflorescence
stems where the transcription factor RAP2.6L expresses exclusively below the cut
whereas the transcription factor ANAC071 expresses exclusively above the cut
[105]. Both were important for stem healing and ANAC071 and a close homologue,
ANAC096, were important for graft formation [102]. Asymmetry also exists in ge-
netic requirements, since ALF4 and AXR1, two genes involved in auxin perception,
are important below but not above the graft junction for phloem connection [100].
However, ANAC071 is expressed symmetrically around the hypocotyl graft junc-
tion 3 days after grafting [102] so the extent of asymmetry and the mechanistic
basis for it during wound healing remains largely uncharacterized.

Previous efforts have characterised wound healing and tissue reunion using tran-
scriptomic analyses. Mechanical wounding altered ∼ 8% of the Arabidopsis tran-
scriptome and showed a high degree of overlap with transcriptomic changes elicited
by pathogen attack and abiotic stress [113]. Stem wounding and wound-induced
callus formation altered the expression of hundreds or thousands of genes [105,
114, 115], whereas grafting grape vines, lychee trees and hickory trees induced
hundreds or thousands of differentially expressed genes involved in hormone re-
sponse, wound response, metabolism, cell wall synthesis and signal transduction
[101, 116–119]. These grafting studies provide limited information, as tissues from
above and below the graft junction were not isolated to test whether these tissues
behaved differently, and controls were not performed to distinguish how grafting
and tissue fusion might differ from a response associated with cut tissues that
remained separated.

Here, we perform an in-depth analysis to describe the spatial and temporal
transcriptional dynamics that occur during healing of cut Arabidopsis tissues that
are joined (grafted) or left unjoined (separated). We find that the majority of genes
differentially expressed are initially asymmetrically expressed at the graft junction
and that many of these genes are sugar responsive, which correlates with severing
of the phloem tissue and the accumulation of starch above the junction. However,
genes associated with cell division and vascular formation activate on both sides of
the graft and, similarly, auxin responsiveness activates equally on both sides. We
propose that the continuous transport of substances, including auxin, independent
of functional vascular connections, promoted division and differentiation, while
the enhanced auxin response and blockage of sugar transport provided a unique
physiological condition to activate genes specific to graft formation that promote
wound healing.
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7.2 Materials and Methods

In this section, we will describe the data preparation and analysis of the RNA-
Seq data. In subsection 7.2.1, we will describe the sampling of the data and the
preparation of the RNA-Seq libraries. In subsection 7.2.2, we will explain the
quantification of gene expression values. In Subsection 7.2.3, we will learn about
the BaySeq analyses performed by Thomas Hardcastle to detect differentially ex-
pressed genes. In subsection 7.2.4, we will explain the comparison of differentially
expressed genes against published datasets. In subsection 7.2.5, we will describe
the statistics to quantify significance of up- and down-regulated gene sets. In sub-
section 7.2.6, we will present the matching of probe ids to their corresponding gene
ids to compare out findings with published microarray data. In subsection 7.2.7,
we will describe the one-sided Fisher’s exact test to statistically quantify enriched
gene sets that are involved in graft formation. Finally in subsection 7.2.8, we will
present the GO enrichment analysis for the functional annotation of gene sets.

7.2.1 RNA-Seq sample and library preparation

The grafted wild-type A. thaliana accession Col-0 was harvested at the respective
time points and care was taken to separate grafts by gently pulling plants apart.
Approximately 0.5 mm of tissue was taken above or below each cut site and kept
separate. Intact plants had 1 mm of tissue taken from a similar location on the
hypocotyl as separated or grafted plants. Grafted, separated, or intact tissues were
pooled into groups of ∼24 tissues. Tissues were ground using a microcentrifuge
pestle frozen in liquid nitrogen. RNA was extracted using an RNeasy Kit (Qiagen)
following the manufacturer’s instructions. RNA (90-100 ng) was used to prepare
RNAseq libraries using the TruSeq Stranded mRNA LT kit (Illumina) according
to the manufacturer’s instructions. The final PCR was for 15 cycles, and 11-12
barcoded samples were randomly mixed to make a total of seven mixes for seven
flow lanes, one mix per lane. Biological replicates of each sample were sequenced
on the HiSeq 4000 platform with paired-end 75-bp transcriptome sequencing (BGI
Tech Solutions). RNA-seq data are available from the Gene Expression Omnibus
database (GSE107203).

7.2.2 Quantification of gene expression

The reads acquired through high-throughput sequencing were quality trimmed
with sickle [120] to increase the read quality before mapping. Reads were aligned
to protein-coding gene sequences acquired from TAIR10 using Bowtie2 [121]. Read
assignment was performed using the eXpress tool [122], which also provided effec-
tive gene lengths for use in normalisation. Library scaling factors were inferred
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from the sum of the number of reads assigned to the genes in the lowest seventy-five
percentiles of expressed genes for each library [123].

7.2.3 Detection of differentially expressed genes

Analyses of the data were carried out using the R package baySeq [124] and clus-
tering based on the posterior probabilities acquired from this package. For each
time point, all possible patterns of differential expression between the graft types
were considered, where a ‘pattern’ defines similarity and difference between dif-
ferent experimental conditions. For example, ‘{Col cut bottomGenes = Col :
Col bottomGenes = ungraftedGenes}, {Col cut topGenes = Col : Col topGenes}’
defines a pattern in which gene expression is equivalent in the separated bottoms,
the grafted bottoms and the intact plant, but different to the equivalently ex-
pressed separated top and grafted top. The total number of possible patterns for
five experimental conditions (as in this analysis) is fifty-two.

For a given time point, posterior likelihoods on the likelihood of each pattern
of expression are calculated for every gene with greater than ten reads across all
experimental conditions. The patterns were then modified to include orderings
(denoted by < or >), for example, the pattern described would lead to the ordered
pattern ‘{Col cut bottomGenes = Col : Col bottomGenes = ungraftedGenes} >
{Col cut top−Genes = Col : Col topGenes}’ in which gene expression is equiva-
lent in the separated bottoms, the grafted bottoms and the intact plant and greater
than the equivalently expressed separated top and grafted top. In total, 541 or-
dered patterns exist in this dataset. Posterior likelihoods for an ordered pattern
were assigned to that of the unordered pattern for genes in which the (normalised)
mean expressions within the equivalently expressed groups conformed to the or-
dering, and to zero otherwise.

Based on the posterior likelihoods for the ordered patterns, a similarity score
sij was established between two genes i and j as the sum over the products of
their likelihoods of each ordered pattern. A single-link agglomerative clustering of
genes, in which a gene will join a cluster if it has a greater than 50% similarity to
any gene within that cluster was then performed based on these similarity scores.
We label each cluster according to the predominant ordered pattern with high
likelihood amongst the genes that comprise it. The change in size of these clusters
over time is shown for the major clusterings in Fig. 7.6.

We can also find likelihoods on comparisons between pairs of experimental con-
ditions by summing the likelihoods over combinations of patterns. Fig. 7.3A shows
the number of genes identified at each time point in a pairwise analysis between
the grafted top and grafted bottom samples. The likelihood of symmetric expres-
sion (i.e., expression which is equivalent across the graft junction) is calculated
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as the sum of the likelihoods of all patterns in which the grafted top and grafted
bottom samples are equivalent. Conversely, asymmetric expression is calculated
as the sum of the likelihoods of all patterns in which the grafted top and grafted
bottom samples are not equivalent. Additional sets can be formed by considering
the ordering of the grafted top and grafted bottoms samples. Sets of genes are
identified at each time point with an FDR of less than 0.05 and a likelihood of
symmetric/asymmetric expression greater than 50%. Genes in this analysis were
only included if they were differentially expressed relative to intact samples.

7.2.4 Comparison of up- and down- regulated genes with
published datasets

To measure if the ratio of up-and down-regulated genes from a previously published
dataset is significantly different from the ratio of up-and down-regulated genes in
our grafting dataset, we only took into account genes that are differentially ex-
pressed at a particular time point. A gene is differentially expressed at a particular
time point if the marginal likelihood, calculated by baySeq, is greater than 0.9 and
if the absolute log2-foldchange was greater than 1. Hence, we only consider genes
that are significantly two-fold up-or down-regulated. We also used this definition
of differentially expressed genes to filter the published datasets according to our
expression dataset. Hence, some genes were filtered out from the published gene
sets because they did not show a significant up-or down-regulation at a particular
time point in our expression dataset. The histograms (Figs. 7.2, 7.3, 7.4) show the
relative number of up-and down-regulated genes from the published gene sets at
a particular time point and a specific condition (separated top, separated bottom,
grafted top, grafted bottom) based on the number of genes in the published gene
set after filtering. To calculate the significance of the difference of the ratios be-
tween the DEGs in the published gene sets and all up-and down-regulated genes,
we performed a two-sided Fisher’s exact test. To correct for multiple testing, we
used the Benjamini-Yekutieli (BY) correction method. Hence, the asterisks in the
barplots highlight corrected P values below 0.05. Additionally, to the published
Methods section, we describe the test procedure in more detail in the following
section.

7.2.5 Fisher’s exact test of ratios

We separately performed the test at each time point, assuming temporal inde-
pendence of the ratios of up- and down-regulated genes. For each time point, we
performed the following procedure. First, we extracted all gene ids from our ex-
pression dataset that showed a up- or down-regulation in grafted or cut samples
compared to the corresponding intact samples, based on the baySeq calculations.
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Second, we separately divided the groups of up- and down-regulated genes into
foreground and background. As foreground (fg), we defined genes that were taken
from a published gene set while the remaining genes were defined as background
(bg). Based on this categorisation, we defined the following contingency table
(Table 7.1).

``````````````̀published
regulation

up down
∑

regulation

yes nfg,up nfg,down nfg

no nbg,up nbg,down nbg∑
published

nup ndown n = nfg + nbg

Table 7.1 | Contingency table for Fisher’s exact test. The cells in this table
represent the number of genes in a study that are up or down regulated and are already
published as differentially expressed (yes) or are determined in out study as differentially
expressed (no). The last column summarizes for each row the number of published or
unpublished differentially expressed genes as nfg or nbg. The last row summarizes the
number of genes that are up (nup) or down regulated (ndown) in our study.

We calculated the corresponding P value of a two-sided Fisher exact test as

p = 2×

(
nfg

nfg,up

)(
nbg

nbg,up

)(
n

nup

) (7.1)

= 2×

(
nfg

nfg,down

)(
nbg

nbg,down

)(
n

ndown

) . (7.2)

7.2.6 Dealing with probe ids from microarray datasets

Since some published datasets only used probe ids instead of gene ids to represent
their differentially expressed genes, we first had to match these probe ids to their
corresponding gene ids. This step was done with the R package biomartr [93].
If one probe id matched more than one gene id, we used all the corresponding
gene ids and tested afterward if these genes were actually differentially expressed
in our dataset. In some cases, one probe id was represented by more than one
gene id. Hence, some gene sets contained slightly more gene ids than published
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probe ids. In contrast, some probe ids did not match to currently existing gene
ids. Subsequently, some gene sets contained slightly fewer gene ids than published
probe ids.

7.2.7 Gene sets involved in graft formation

Grafting-specific genes (Fig. 7.7, S10, Table S4 of [96]) were identified by taking
clusters from the baySeq analysis that were specific to grafting (Table S3) and
combining these clusters to generate a list of grafting-specific genes for which
further analysis were performed. For calculating the significance of overlapping
genes between the baySeq clusters and the published datasets a one-sided Fisher’s
exact test was applied, to prove if the overlap is greater than expected. The
resulting P values were corrected for multiple testing by using the Benjamini-
Yekutieli method. This procedure was also applied to generate Table 1 to study
the overlaps of symmetrically and asymmetrically expressed genes in the grafting
dataset with previously published sugar-responsive genes.

7.2.8 GO enrichment analysis

We performed a GO enrichment analysis on grafting-specific genes. We defined
these gene sets based on the baySeq’s cluster algorithm for each time point into
grafted top, grafted bottom, and grafted top and bottom genes. We extracted the
gene ontology annotations from the Bioconductor package org.At.tair.db [125] for
each A. thaliana gene. To test if a particular GO term is significantly enriched in
one of these gene sets, we performed a hypergeometric test using the R package
GOstats [126]. We performed the Bonferroni method to correct the resulting P
values against multiple testing. A GO term is enriched if the corrected P value is
below 0.05.

To reproduce the results of the statistical analysis, the overlap studies, and the
gene ontology (GO) enrichment analysis, the required R scripts and expression
data are available via GitHub at https://github.com/AlexGa/GraftingScripts.
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7.3 Results

In this section, we will examine the transcriptome dynamics in a temporal and
spatial resolution, i.e., the asymmetrically and symmetrically activated gene ex-
pression above and below the graft junction. In subsection 7.3.1, we will introduce
the experimental setup to study the grafting process based on RNA-Seq data and
we will investigate the transcriptome dynamics at the graft junction based on
marker genes and published gene sets. In subsection 7.3.2, we will investigate the
asymmetrically expressed genes around the graft junction. In subsection 7.3.3,
we will learn about the asymmetrically gene expression of glucose-related genes
around the graft junction. In subsection 7.3.4, we will present the symmetri-
cal gene expression of Auxin-induced genes. Finally in subsection 7.3.5, we will
present the gene sets of the baySeq clustering approach and their association to
published datasets.

7.3.1 Grafting activates vascular formation and cell division
genes

To better understand the developmental processes that occur at the graft junction,
we generated RNA deep sequencing libraries from A. thaliana hypocotyl tissues
immediately above and immediately below the graft junction 0, 6, 12, 24, 48, 72,
120, 168 and 240 hours after grafting (HAG) in biological replicates for each tissue
at each time point (Fig. 7.1A). Prior to RNA extraction, we separated top and
bottom tissues at the graft junction. We found that the strength required to break
apart the graft junction increased linearly (Fig. S1 of [96]) similarly to previously
reported breaking strength dynamics of grafted Solanum pennellii and Solanum
lycopersicum [127, 128]. When pulling apart grafts to separate top and bottom for
sample preparation, grafts broke cleanly with minimal tissue from one half present
in the other half (Fig. S1, Movie S1, S2 of [96]). We measured the amount of
tissue from tops adherent to bottoms and vice versa (Fig. S1 of [96]) and found
less than 4% cross-contamination.

In addition to grafting, we also prepared libraries from ungrafted hypocotyls
(“intact” treatment) and cut plants that had not been reattached (“separated”
treatment)(Fig. 7.1A). We herein refer to tissues harvested above the graft junc-
tion or from the shoot side of separated tissue as “top” and that from below the
graft or from the root side of separated tissue as “bottom” (Fig. 7.1A).

To understand which developmental processes occurred at the graft junction, we
looked at the expression of markers associated with vascular formation and cell di-
vision. Many markers of cambium, phloem and provascular were activated within
6 hours of grafting. Provascular markers typically showed an early peak of expres-
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Figure 7.1 | Transcriptional dynamics of genes associated with provascula-
ture, phloem, and xylem development and cell division. (A) Separated and
grafted Arabidopsis tissues were harvested ∼0.5 mm above (top) and ∼0.5 mm below
(bottom) the cut site. For intact plants, ∼1 mm segments were harvested that spanned
the region where cuts were made in grafted and separated plants. (B) Expression levels
were plotted over time for intact, separated, and grafted samples. Reprinted Figure 1
from [96].

sion followed by a peak of cambial marker expression (Fig. 7.1, S2, S3 of [96]).
Expression of phloem markers peaked at 72 hours (Fig. 7.1 and Fig. S2 of [96]),
the time when phloem reconnections form in grafted Arabidopsis [100, 101]. No-
tably, the early phloem marker NAC020 activated before the mid phloem marker
NAC086 which activated before the late-delevopment phloem marker NEN4, con-
sistent with the dynamics of phloem transcriptional activation during primary root
development and leaf vascular induction (Fig. S2 [96]) [129, 130].

Certain markers associated with xylem formation, such as VND7 and BFN1,
activated early in the grafted top. Other xylem markers, such as IRX3 and CESA4,
activated late in grafted samples. By 120 hours after grafting, genes activated in
xylem development were expressed in top and bottom, consistent with when the
first xylem strands differentiate at the graft junction [100]. Genes associated with
cell division were activated by 12 hours in the grafted top and by 24 hours in the
grafted bottom (Fig. 7.1 and Fig. S2 [96]). On the other hand, control genes, the
expression of which does not typically vary between tissues and treatments [131],
were not differentially expressed in grafted tops or bottoms (Fig. S2 [96]). The
RNAseq expression data appeared to correlate well with transcriptional fluorescent
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reporters for both activation dynamics and the localization of expression (Fig. S3
[96]).

Figure 7.2 | Transcriptional overlap between previously published vascular
datasets and the grafting datasets. Genes, the transcripts of which are associated
with various cell types or biological processes, were taken from previously published
datasets (Dataset S1) and compared with the transcriptomic datasets generated here.
The number in parentheses represents the number of cell-type–specific or process-specific
genes identified in previous datasets. Overlap is presented as a ratio of 1.0 for differ-
entially expressed genes (DEG) up- or down-regulated in our dataset relative to intact
samples compared with up- and down-regulated genes in the previously published tran-
scriptome dataset. An asterisk represents a significant overlap (P < 0.05) for a given
time point. Reprinted Figure 2 from [96].

The similar activation dynamics of vascular differentiation genes between graft-
ing and leaf vascular formation prompted us to test whether this phenomenon
occurred with other known developmental processes. We obtained lists of genes,
the expression of which is associated with various biological processes from previ-
ous publications (Dataset S1 [96]), and tested how many of the genes differentially
expressed in our transcriptomes overlapped with the previously published lists.
Differentially expressed genes in grafted samples and separated tops partially over-
lapped with those the expression of which is associated with phloem, xylem, and
procambium formation (Fig. 7.2 and Fig. S4 [96]). There was a high overlap
between Arabidopsis inflorescence stem healing and grafting, as well as between
vascular induction in leaf disk cultures and grafting (Fig. 7.2).

Various genes expressed in a cell-type–specific manner also showed a high tran-
scriptional overlap with graft formation, including phloem, endodermis, and pro-
toxylem (Fig. 7.2 and Fig. S4 [96]). In nearly all cases, the separated top, grafted
top, and grafted bottom samples showed similar activation dynamics. The sepa-
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rated bottom samples were exceptional, however, since gene expression associated
with vascular development and cell-specific processes was typically down-regulated
(Fig. 7.2 and Fig. S4 [96]). We also compared our datasets with RNAs expressed
in longitudinal cross-sections of the Arabidopsis root [132]. There was little overlap
between grafted bottoms and sections from the root meristematic zone, whereas
overlap existed between grafted tops and the root meristematic zone at early time
points and between grafting and the root maturation zone (Fig. S5 [96]). Our
analysis also revealed that two genes expressed in the cambium, WOX4 and PXY,
were induced by grafting, but the primary root markerWOX5 and the lateral root
marker LBD18 were not substantially induced (Fig. 7.1 and Fig. S2 [96]).

7.3.2 Genes are asymmetrically expressed around the graft

Many of the vascular development and cell-division–related genes initially acti-
vated in the grafted top whereas, in some instances, activation was delayed in the
grafted bottom by up to 24 hours (Fig. 7.1 and Figs. S2 and S3 [96]). Several
genes important for tissue reunion or graft formation show an asymmetric pattern
of expression above and below the cut [100, 105], suggesting that asymmetry might
be a common feature of grafting and tissue reunion.

To investigate the extent of asymmetry at the graft junction, we identified RNAs
that were differentially expressed equally in tops and bottoms of grafts (symmet-
rically expressed) or were more highly expressed in one tissue than in the other
(asymmetrically expressed). We identified these genes by performing a pairwise
comparison of the protein-coding transcriptome datasets that were differentially
expressed as a consequence of grafting relative to intact hypocotyls. Several thou-
sand RNAs were identified that fit either pattern of expression, including the tran-
script of the cambial markers TMO6 that was induced symmetrically and WOX4
that was induced asymmetrically (Figs. 7.1 and 7.3A).

Six to 48 hours after grafting, the number of graft-differentially expressed genes
that were asymmetrically expressed was roughly threefold greater than those sym-
metrically expressed, indicating that tissues above the cut changed their expres-
sion dynamics relative to those below the cut. However, at 72 hours the num-
bers were nearly equal, and by 120 hours, the number of symmetrically differen-
tially expressed genes was threefold greater than those asymmetrically expressed
(Fig.7.3A). Some of the observed asymmetry at the graft junction might have been
due to a gradient of differential expression along the length of the intact hypocotyl.
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Figure 7.3 | Asymmetric changes in accumulation of sugar-responsive RNAs
and of starch occur at the graft junction. A pairwise analysis between the grafted
top and grafted bottom identified sets of protein-coding genes symmetrically or asym-
metrically expressed at the graft junction [false discovery rate (FDR) < 0.05; likelihood
of symmetric/asymmetric expression > 50%]. Asymmetrically expressed genes were fur-
ther divided into those the RNAs of which were higher in the top (orange dotted line) or
higher in the bottom (green dotted line) (FDR < 0.05; likelihood of asymmetric expres-
sion > 50%). (B) Expression profiles for transcripts of a sugar-repressed gene (GDH1)
and a sugar-induced gene (ApL3) were plotted for intact, separated, and grafted samples.
(C) Transcriptional overlap between previously published glucose-induced or glucose-
repressed genes and our dataset. The number in parentheses represents the number of
glucose-responsive genes identified in the previous dataset (Dataset S1). Overlap is pre-
sented as a ratio of 1.0 for differentially expressed genes (DEG) up- or down-regulated
in our dataset relative to intact samples compared with up- and down-regulated genes
in the previously published transcriptome dataset. An asterisk represents a significant
overlap (P < 0.05). (D) Lugol staining of grafted plants at various time points revealed
dark brown staining associated with starch accumulation. HAG, hours after grafting.
(Scale bars: 100 µm.) (E) pSUC2 :: GFP -expressing Arabidopsis shoots were grafted
to Col-0 wild-type roots and GFP movement to the roots was monitored over 7 days
for phloem connection in the presence or absence of various concentrations of sucrose.
Reprinted Figure 3 from [96].
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We reasoned that, if asymmetry was due to inherent asymmetry in intact hypo-
cotyls, then the average expression of a gene above and below the graft junction
would be similar to its expression value in intact hypocotyls. We found that,
for each time point, between 141 and 1,465 genes had expression values in intact
hypocotyls that were similar to the average expression between the grafted top
and grafted bottom (Fig. S2C [96]), suggesting that some of these genes may be
asymmetrically expressed due to inherent asymmetry in the hypocotyl.

However, these numbers were a small proportion of the 13,000 genes asym-
metrically expressed at early time points (Fig. 7.3A). As a second approach, we
performed a hierarchical clustering analysis that indicated that the grafted top and
grafted bottom were initially dissimilar but by 120 hours had clustered together
and had become highly similar (Fig. S1 [96]), consistent with the symmetry analy-
sis (Fig. 7.3A). Thus, graft healing promoted a shift from asymmetry to symmetry.

7.3.3 Sugar response correlates with asymmetric gene
expression

The shift from asymmetry to symmetry could be due to phloem reconnection at
72 hours [100] and the resumption of hormone, protein, and sugar transport. We
tested a role for sugar by grafting in the presence of exogenous sucrose, which has
previously been reported to affect grafting success [133]. Low levels of exogenous
sucrose lowered grafting efficiency (Fig. 7.3E), suggesting that differential sugar
responses at the graft junction might be important for vascular reconnection. Ex-
pression of ApL3, a gene the expression of which is induced by sugar [134], was
rapidly up-regulated in separated tops and grafted tops, whereas expression of
DIN6, GDH1, and STP1, genes the expression of which is repressed by sugar
[134–136], was rapidly up-regulated in separated bottoms and grafted bottoms
(Fig. 7.3B and Fig. S6 [96]). These observations were consistent with sugar ac-
cumulation in the grafted top and sugar depletion in the grafted bottom. The
expression of these genes returned to levels similar to intact samples by 120 hours
and, with the exception of ApL3, the grafted samples normalized expression more
rapidly than did the separated tissues.

Genes associated with photosynthesis increase expression in separated bottoms
24 hours after cutting, a common response to starvation [109], but likely too late
to affect sugar levels before 24 hours (Fig. S6 [96]). A transcriptional overlap anal-
ysis with RNAs from known glucose-responsive genes (Dataset S1 [96]) revealed
a substantial overlap with genes differentially expressed by grafting. RNAs from
known glucose-induced genes were up-regulated in separated tops and grafted tops,
whereas RNAs from known glucose-repressed genes were up-regulated in separated
bottoms and grafted bottoms (Fig. 7.3C and Fig. S6 [96]).
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This trend was not observed with genes differentially expressed by mannitol
treatment (Fig. S6 [96]), suggesting that the effect was specific to metabolically
active sugars. To further investigate this effect, we stained grafted, separated,
and intact plants with Lugol solution to assay for the presence of starch. Staining
above the graft junction increased 48–72 hours after grafting (Fig. 7.3D). By 120
hours, staining was equal on both sides of the graft whereas in separated tops
staining became stronger after 72 hours (Fig. 7.3D and Fig.S6 [96]).

We concluded that starch accumulated above the cut, but after 72 hours, this
asymmetry disappeared only in grafted plants. To test whether the accumulation
of starch and increased sugar responsiveness could explain the observed transition
from asymmetry to symmetry, we compared our datasets to previously published
genes that are induced by starvation or are induced by sucrose readdition (Dataset
S1 [96]). At early time points, 20–31% of asymmetrically expressed genes were
known to respond to sugars, whereas only 2–5% of symmetrically expressed genes
were known to respond to sugars (Table S1 [96]). However, at 72 hours, the over-
lap between asymmetrically expressed genes and sugar-responsive genes reduced
substantially (Table S1 [96])

7.3.4 Auxin response is symmetric at the graft

The rapid activation of many vascular markers in the grafted bottoms despite
the starvation response promoted us to investigate whether other mobile sub-
stances such as phytohormones could play a role in gene activation. We compared
lists of genes known to respond to cytokinin, ethylene, or methyl jasmonate [137]
and found no substantial overlap between these lists and genes differentially ex-
pressed by grafting (Fig. S7 and Dataset S1 [96]). Abscisic acid-responsive and
brassinosteroid-responsive genes showed overlap with genes differentially expressed
in our datasets, but this overlap was of a similar magnitude in both separated and
grafted datasets, suggesting that the effect was not specific to grafting (Fig. S7
[96]). Auxin-responsive transcripts were exceptional, however, as they showed a
substantial overlap with RNAs differentially expressed by grafting (Fig. 7.4A, B,
and Fig. S7 [96]).

Auxin-induced genes were up-regulated in separated tops, grafted bottoms, and
grafted tops whereas they were repressed in separated bottoms (Fig. 7.4A and B).
Auxin-responsive genes such as IAA1 and IAA2 [138] were induced to similar levels
in grafted tops and grafted bottoms by 24 hours. To further investigate whether the
auxin response was uniform between grafted tops and grafted bottoms, we grafted
the auxin-responsive fluorescent reporter p35S : DII − V enus, the fluorescent
protein of which is degraded in the presence of auxin [139]. DII-Venus fluoresced
in the separated bottoms but did not fluoresce in grafted bottoms 14 hours after
cutting (Fig. 7.4C), indicating that separated bottoms had a low level of auxin
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response but grafted tops, grafted bottoms, and separated tops had a high level
of auxin response.

Figure 7.4 | Auxin response is symmetric at the graft junction. (A and D) Ex-
pression profiles for various auxin-responsive genes (IAA1, IAA2) or auxin transporter
genes (PIN1, ABCB1) were plotted for intact, separated, and grafted samples. (B)
Overlap between previously published auxin-induced or auxin-repressed RNAs and our
dataset. The number in parentheses represents the number of auxin-responsive genes
identified in the previous dataset (Dataset S1). Overlap is presented as a ratio of 1.0
for differentially expressed genes (DEG) up- or down-regulated in our dataset relative
to intact samples compared with up- and down-regulated genes in the previously pub-
lished transcriptome dataset. An asterisk represents a significant overlap (P < 0.05).
(C) Grafted and separated plants expressing the auxin-responsive p35S :: DII − V enus
transgene that is degraded in the presence of auxin reveal a reduction of auxin response
in cut bottoms, but not in grafted bottoms. HAG, hours after grafting; HAS, hours after
separation (Scale bars: 100 µm.). Reprinted Figure 4 from [96].
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To test whether auxin contributed to activation of gene expression below the
graft junction, we monitored the expression of the symmetrically expressed gene
HIGH CAMBIAL ACTIVITY2 (HCA2) (Fig. 7.5A). We generated a transcrip-
tional fluorescent reporter, pHCA2 :: RFP , that rapidly activated in grafted bot-
toms, grafted tops, and separated tops (Fig. 7.5B and C). Separated bottoms did
not activate pHCA2 :: RFP expression under grafting conditions or when placed
on media containing sucrose or DMSO (Fig. 7.5B and D).

Figure 7.5 | HCA2 contributes to graft junction formation. (A) The RNAseq
expression profile for HCA2 plotted for intact, separated, and grafted samples. (B and
C) HCA2 transcription is up-regulated above and below the graft junction. pHCA2 ::
RFP was grafted to Col-0 roots or Col-0 shoots to avoid ambiguity of signal origin at
the junction. HCA2 was also up-regulated in separated tops but not in intact samples
or in separated bottoms. HAG, hours after grafting; HAS, hours after separation. White
arrowhead denotes initial fluorescent signal; dashed lines denote the cut site. (Scale bars:
100 µm.) (D) Separated hypocotyl bottoms activated pHCA2 :: RFP expression upon
treatment of the synthetic auxin, NAA, after 48 hours but did not activate pHCA2 ::
RFP expression with DMSO or sucrose treatment. (Scale bars: 100 µm.) Dashed lines
denote the cut site. (E) pSUC2 :: GFP -expressing Arabidopsis shoots were grafted
to roots of Col-0 wild-type, hca2-overexpressing mutants, or plants expressing p35S ::
HCA2 − SRDX. GFP movement to the roots was monitored 3–7 days after grafting
for phloem connection. Reprinted Figure 5 from [96].
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However, 26 hours of synthetic auxin [naphthaleneacetic acid (NAA)] treatment
was sufficient to activate pHCA2 :: RFP at the cut hypocotyl bottom but was
insufficient to activate pHCA2 :: RFP at the primary root tip of intact plants
(Fig. 7.5D and Fig. S8 [96]). We also tested whether activation of HCA2 below
the graft junction was important for grafting. Enhancing HCA2 activity (hca2
mutant) in grafted roots improved phloem reconnection rates, whereas suppressing
HCA2 targets (p35S :: HCA2−SRDX) delayed phloem reconnection (Fig. 7.5E)
[140].

7.3.5 Tissue fusion imparts a unique physiological response
that differs from tissue separation

We hypothesized that the symmetric auxin response and asymmetric sugar re-
sponse at the graft junction could allow a unique transcriptional response since
neither separated plants nor intact plants had similar response dynamics to sug-
ars and auxin (Figs. 7.3 and 7.4). To uncover protein-coding genes differentially
expressed only by grafting, we segmented the transcriptome into groups of genes
that behaved similarly and identified groups that corresponded to genes differen-
tially expressed most highly by grafting (Dataset S2 [96]). We used an empirical
Bayesian analysis [124] to define all possible patterns of differential expression be-
tween the five tissue types (intact, grafted top, grafted bottom, separated top, and
separated bottom) with orderings allowed (< or >) (Fig. 7.6A).

This analysis produced 541 ordered patterns (“clusters”) and, for each time
point, posterior likelihoods on the likelihood of each pattern of expression were
calculated for every gene in every tissue. A gene joined the cluster if it fits best,
and a gene could join only one cluster at each time point. Although there were
541 possible clusters, we found that only 113 clusters contained 10 or more genes
for at least one time point whereas 28 clusters contained 200 or more genes for
at least one time point (Dataset S2 [96]). In the top 113 clusters, ∼6,000 genes
were differentially expressed in at least one tissue whereas between 1,000 and 4,000
genes were not differentially expressed (Fig. 7.6B).

To simplify the analysis, we considered clusters in which gene expression was
grouped into patterns consisting of one comparison between two groups. At early
time points, the cluster containing genes with similar differential expression in both
grafted tops, grafted bottoms, separated tops, and separated bottoms had high
numbers that decreased with time and could represent a general wound response
(Fig. 7.6C).

A gene ontology (GO) analysis of the genes in this cluster revealed that they were
highly enriched in defense, immune, and wound-responsive genes at 6 hours and
that this enrichment decreased as the graft healed (Dataset S3 [96]). Clusters con-
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taining genes with similar differential expression in both separated tops and grafted
tops had high numbers that decreased with time, similar to the trend observed with
clusters containing genes with similar differential expression in both separated bot-
toms and grafted bottoms. This observation indicated that the grafted top was
initially transcriptionally similar to the separated top, whereas the grafted bottom
was initially transcriptionally similar to the separated bottom.

After the 48-hours time point, clusters containing genes differentially expressed
only in separated tops or differentially expressed only in separated bottoms in-
creased in numbers, suggesting that these tissues gained a unique pattern of
gene expression. The clusters containing genes with similar differential expression
in both grafted tops, separated tops, and grafted bottoms increase in numbers
throughout the healing process (Fig. 7.6C).

We searched for grafting-specific cluster categories with one or more orderings in
which genes were most highly differentially expressed by grafting (Dataset S2 [96]).
There were very few genes down-regulated by grafting or up-regulated only in the
grafted top (Fig. 7.7A). Instead, clusters contained several hundred differentially
expressed genes up-regulated either in the grafted bottom only or up-regulated in
both grafted bottom and grafted top (Fig. 7.7A). Genes, the expression of which
changed only in the grafted bottom sample, were prevalent early during grafting
and were most common at 48 hours, whereas genes activated in both top and
bottom became prevalent at 48 hours and were most common at 120 hours (Fig.
7.7A and B).

We performed a GO analysis and found that genes differentially expressed most
highly in the grafted bottom sample were enriched in the immune response and
chitin response biological process categories (Dataset S3 [96]). Previously pub-
lished chitin-induced RNAs had a high proportion of overlap with differentially
expressed graft bottom-specific genes (Fig. 7.7C). A GO analysis also revealed
that grafting-specific RNAs expressed in both the grafted top and grafted bottom
were enriched in vascular-related biological processes (Dataset S3 [96]).

Previously published phloem-enriched, endodermal-enriched, vascular-induction,
and stem-wounding associated RNAs had a high proportion of overlap with these
differentially expressed graft-specific genes (Fig. 7.7C and Fig. S9 [96]). Since
few genes were grafting-specific and grafted tissues were initially transcriptionally
quite similar to separated tissues (Figs. 7.6C and 7.7A), we tested whether tissues
separated for short periods could be grafted with similar reconnection dynamics
as tissues that had been grafted immediately. Plants were cut and grafted after
0–5 days of separation. Separation did not speed up vascular reconnection, and
instead, it always took 3 days from the point of tissue attachment for phloem con-
nections to form (Fig. S9 [96]). Furthermore, the shoot lost competence to graft
2–3 days after separation whereas the root remained competent to graft up to 5
days after separation (Fig. S9 [96]).
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Figure 7.6 | Clustering the transcriptome at each time point, based on like-
lihoods of all possible patterns of differential expression (DE) in grafted,
separated, and intact tissues. (A) Overview depicting the Bayesian segmentation.
(B) Analysis of differential behavior produced 113 categories containing at least 10 genes,
the expression of which was in a specific differential pattern for at least one time point
(Dataset S2). One group is composed of genes the transcript levels of which are not sub-
stantially changed in the five tissues (unchanged), whereas the other group is composed
of the sum of the other 112 groups (genes the transcript levels of which changed after
treatment in at least one tissue) over the time points tested. (C) Major categories in the
segmentation revealed RNAs the levels of which changed in all of the treatments listed
relative to intact samples. Note that a gene can be represented in only one category for
a given time point, that is, the category in which the transcript level changes best fit
the category. Reprinted Figure 6 from [96].
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Together, it appears that the grafted shoot and root have a unique physiological
response that differs from the separated shoot and root and that tissue attachment
is required to activate graft formation.

Figure 7.7 | A subset of genes is differentially expressed only during graft
formation compared with intact or separated tissues. (A) Certain genes were
only differentially expressed in grafted tops, grafted bottoms, or both in grafted tops
and grafted bottoms. (B) Expression profiles for a graft bottom-specific (ERF6) or
a graft top and bottom differentially expressed gene (RTM2) were plotted for intact,
separated, and grafted samples. (C) Grafting-specific genes are also expressed in other
processes such as stem healing, phloem reconnection, and treatment with chitin. Genes,
the transcripts of which are associated with these biological processes, were taken from
previously published datasets (Dataset S1) and compared with our dataset to assess
transcriptional overlap with genes expressed in the grafted top, in the grafted bottom,
or in both grafted top and grafted bottom. The number in parentheses represents the
number of process-specific genes identified in previous datasets. An asterisk represents
a significant overlap (P < 0.05). Reprinted Figure 7 from [96].

7.4 Discussion

To better understand how plants graft, we analyzed in depth an RNA deep-
sequencing dataset that spatially and temporally distinguished genes activated by
cutting followed by tissue attachment or continuous tissue separation. Cutting pro-
moted a similar wound response in both grafted and separated tissues; however, by
72 hours after cutting, the grafted and separated tissues became transcriptionally
dissimilar (Fig. 7.6C), indicating that tissue fusion was mechanistically different
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from healing an unattached cut surface.

During graft formation, tissues had a very high transcriptional overlap with
genes differentially expressed by inflorescence stem healing and by vascular in-
duction in leaves (Fig. 7.2 and Fig. S4 [96]) [105, 130], suggesting that grafting
is closely related to these processes. Graft formation had little transcriptional
overlap with lateral root formation (Fig. S2 [96]) [132] and appeared to follow
a pathway similar to secondary root growth since the secondary growth-specific
cambium markers WOX4 and PXY [141] were activated by grafting (Fig. 7.1
and Fig. S2 [96]).

Grafted tops initially showed a short-lasting and small transcriptional overlap
with genes expressed during primary root formation, which may be related to
the accumulation of substances activating adventitious root formation, a common
response in failed grafts or in cut shoots (Fig. S6C [96]). Thus, we conclude
that grafting likely proceeds via a pathway involving secondary growth with radial
meristems activating in the mature cambium to heal the wound. Vascular forma-
tion genes including those specifying cambium and phloem were activated early,
followed by an activation of cell division genes, suggesting that the start of cellular
differentiation preceded activation of cell division. Xylem identity genes showed
an early and a late activation peak (Fig. 7.1 and Fig. S2 [96]).

There is no visible xylem differentiation at the graft junction during the first
peak of expression [100], and this expression could represent programmed cell
death that does not lead to xylem differentiation. Alternatively, these genes might
be suppressed by phloem differentiation genes that suppress protoxylem forma-
tion [142, 143]. The second expression peak of xylem-related genes at 120 hours
occurred after the differentiation of functional phloem and coincided with the dif-
ferentiation of xylem strands at the graft junction [100].

Previous studies highlighted the importance of callus and pericycle cells dur-
ing regeneration [114, 144], but we see little evidence that genes expressed in
the pericycle or during callus formation have high transcriptional overlap with
genes differentially expressed by grafting (Fig. S4 [96]). Expression profiles for all
protein-coding genes can be found in Datasets S4 and S5 of [96].

A high proportion of genes were initially asymmetrically expressed (Fig. 7.3A),
and many had a delay in phloem, cambium, and cell division activation below
the graft junction compared with above it (Fig. 7.1 and Fig. S2 [96]). Several
genes associated with vascular formation, such as HCA2 [140] and TMO6 [145],
activated equally in both grafted top and grafted bottom at 6 hours after grafting
(Figs. 7.1 and 7.5 A–C). These data indicate that, at least transcriptionally, the
grafted root rapidly responded to the presence of the grafted shoot and that this
response was independent of functional vascular connections. This response was
not present in separated roots, indicating that attachment was key for recognition
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and activation of graft formation (Fig. 7.5 and Fig. S9 [96]).

Sugars are known activators of cell division and cell elongation [109], and, in
our datasets, a large proportion of genes asymmetrically expressed are also sugar-
responsive (Table S1 [96]). However, sugars are transported in the phloem [108]
that is severed upon grafting, and the grafted root exhibited a sugar-starvation re-
sponse and showed similar sugar-response dynamics as the separated root. Instead,
we infer that some other molecular that is transported in the absence of vascular
connections activated HCA2 and TMO6 as well as cell division, phloem-, and
cambium-related genes in the grafted bottom.

Given auxin’s fundamental role in vascular formation [141], it is a strong candi-
date for an activating signal. Auxin response was largely symmetric from 12 hours
after grafting (Fig. 7.4 and Fig. S7 [96]), consistent with previous findings that
the auxin-inducible DR5, IAA5,and ANAC071 genes activate above and below
the graft junction within 1–3 days of grafting [100–102, 146]. Furthermore, ex-
ogenous auxin application combined with cutting was sufficient to activate HCA2
expression in separated root hypocotyls (Fig. 7.5D).

One idea is that grafting caused an interruption in auxin transport, and, where
opposing tissues adhered, auxin transport resumed regardless of vascular connec-
tions since auxin is transported from cell to cell through the apoplast [104]. The
genes encoding the auxin efflux proteins PIN1 and ABCB1 were transcription-
ally activated above the graft junction (Fig. 7.4D), similar to the putative Pisum
sativum PIN1 protein accumulating above a cut stem before vascular reconnec-
tion [147], and could reflect a role for these proteins in exporting auxin across
the cut. Consistent with these observations, adding an auxin transport inhibitor
to grafted Arabidopsis shoots prevented the expression of grafting-induced genes
below the graft junction [102].

Although auxin response was largely symmetric, our previous work demon-
strated that the auxin signaling genes ALF4 and AXR1 are important for grafting
only below the graft junction [100]. Mutating ALF4 below the graft junction more
strongly reduced auxin response than mutating ALF4 above the junction [100].
Thus, proteins such as ALF4 or AXR1 might act by promoting auxin response
and vascular regeneration below the graft junction, which could be particularly
important when there is incomplete attachment, cellular damage, or inefficient
transport. All higher plants transport auxin from shoot to root, yet not all plant
species can be successfully grafted [99] so the response to auxin rather than the
transport itself may be a determining factor in the ability to graft.

A role for sugars is not completely ruled out, however, since the magnitude
of differential expression of vascular-related genes was often lower in the grafted
bottom (Fig. S2 [96]). In addition, very low levels of exogenous sugars can improve
graft formation under certain conditions [133]. Altogether, endogenous sugars
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likely enhance cell division and differentiation, perhaps similar to their role in
enhancing the rate of pericycle cell divisions in the hypocotyl [148].

7.5 Conclusions and Outlook

The analyses identified two groups of genes, the expression changes of which
were unique to graft formation in our experiments (Fig. 7.7). One group acti-
vated shortly after grafting below the graft junction and was enriched in immune-
responsive and chitin-responsive genes (Fig. 7.7 and Fig. S9 and Dataset S3 of
[96]). The breakdown products of cell walls are potent elicitors of defense responses
[149], so it is possible that the grafted bottom up-regulates pathways specific to
wound damage response. This group was not up-regulated in separated bottoms,
however, so the unique physiological state of the grafted root, indicated by the
presence of the auxin response but the absence of the sugar response, could have
promoted their up-regulation.

The second group activated both above and below the graft junction and be-
came highly expressed later during graft formation (Fig. 7.7). This group was
enriched in RNAs associated with vascular development (Fig. 7.7 and Dataset S3
of [96]), and we suggest that the products of these genes are involved in the vascu-
lar reconnection processes between the two tissues. Despite many transcriptional
similarities between separated tops and grafted tissues, tissues had to be attached
for at least 3 days for phloem connections to form, regardless of when cutting
occurred (Fig. S9 of [96]). Thus, it appears that RNAs expressed in the separated
top or separated bottom are insufficient to drive graft formation. Instead, genes
activated uniquely by grafting or genes involved in the recognition response are
those that contribute to distinguishing attached from separated plant tissues.

Future work could focus on these genes to identify the pathways required for
grafting that could be modified to improve graft formation, wound healing, and
vascular regeneration. Likewise, the rapid transcriptional changes below the graft
indicate a recognition system that promotes tissue regeneration. Identifying the
cues that trigger recognition and understanding how they are perceived could be
priorities, as could understanding whether this phenomenon applies more broadly
to intertissue communication, tissue regeneration, or tissue fusion events, such as
parasitic plant infections [150], epidermal fusions [151, 152], or petal fusions [153].

From a bioinformatics perspective, the detection of graft specific gene sets and
their functional association could be improved by also modeling the temporal de-
pendencies between the expressed genes. Additionally, the development of a bio-
logical network analysis to uncover the dependencies between the genes within such
a gene set could help to deepen our understanding of graft specific gene expression
patterns.
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In this study, we have investigated only the expression patterns of protein-
coding genes and their role in the expression dynamics during grafting. Besides
protein-coding transcripts, the transcriptome landscape contains also non-coding
transcripts and the interplay between these types of transcripts can provide us with
information to better understand the biological process of interest. In chapter 8,
we will learn about the variety of coding and non-coding transcripts in flowering
plants and bioinformatics approaches to process RNA-Seq data with the attempt
to improve the knowledge about protein-coding splice-variants, long non-coding
RNAs, and circular RNAs in flowering plants.
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8
Annotation of splice-variants,

lncRNAs, and circRNAs in flowering
plants

In chapters 2 - 7, we have investigated the evolutionary and developmental dy-
namics of plant transcriptomes based on protein-coding genes. In addition to
protein-coding transcripts, there is a big fraction of non-coding transcripts not
showing any evidence of a protein-coding potential. These non-coding RNAs have
crucial regulatory roles ,e.g., in splicing or post-transcriptional regulation. In this
chapter, we will present our workflow to predict and annotate novel protein-coding
splice-variants, long non-coding RNAs and circular RNAs from RNA-Seq data of
seven related flowering plants represented by samples from eight different organs.

In section 8.1, we will introduce the biological role of long non-coding RNAs and
circular RNAs in flowering plants and we will introduce the goals of this chapter.
In section 8.2, we will present the experimental setup, the amount of data, and the
workflow to process RNA-Seq data and to annotate the different RNA species. In
section 8.3, we will get to know the novel annotated RNA species and we will get
an insight of their sequence features. In section 8.4, we will discuss the developed
workflow and the annotated RNA species. In section 8.5, we will conclude and
give an outlook to future work based on the novel annotations.

8.1 Introduction

Extensive deep sequencing studies extended our knowledge of long non-coding
and circular RNAs. Long non-coding RNAs (lncRNAs) are a class of RNAs with a
sequence length of at least 200 nucleotides and showing, in general, no evidence of
protein-coding function. However, some lncRNAs may encode for small proteins
[154], and it is speculated that lncRNAs may serve as a source of new proteins
[155].

The first lncRNA, called H19, was discovered in the early 1990s [156] as an
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’́unusual gené’ with high expression levels during mouse embryo development. In
1993 Enod40 the first lncRNA in a plant species (soybean) was discovered [157], a
highly conserved RNA participating in root symbiotic nodule organogenesis [158].
Since then, the range of regulatory functions mediated by lncRNAs has been stud-
ied and expanded, such as mediating gene silencing, mimicking miRNA targets,
acting as a guide or scaffold RNA to relocate RNA binding proteins, to name a
few [159].

With the rise of deep sequencing, trying to capture the present state of tran-
scripts, extensive data sets have been analyzed trying to annotate and to identify
the regulatory role of lncRNAs in different species, on tissue or organ level, es-
pecially in the animal kingdom [160, 161]. Besides, advancements in RNA-Seq
and the improved analysis of sequencing data led in 2012 to the discovery of the
class of circular RNAs [162]. This class of RNA molecules is characterized by a
covalent and canonical linkage between the downstream 3’ splice site and the 5’
upstream splice site of a linear host RNA, i.e., pre-mRNA. Subsequent studies
revealed the complex tissue- and stage-specific expression of circRNAs [163] and
identified regulatory roles. One of the most prominent examples is the circRNA
ciRS-7 (CDR1as) which contains around 70 conserved miRNA target sites. This
circRNA acts as a kind of miRNA sponge through binding and suppressing the
microRNA miR-7 [164, 165].

Based on the efforts of the last years, several RNA-Seq projects led to a steadily
increasing amount of newly discovered circRNAs and lncRNAs in the animal king-
dom. In contrast, the discovery and functional identification of long non-coding
and circular RNAs in plants are very limited to a few model plants like A. thaliana.
Initiatives like TAIR [166] and Araport [167] provide comprehensive annotations of
the A. thaliana genome and provide us with a wealth of valuable information, but
for a wide range of other plants, the genome-wide identification of long non-coding
and circular RNAs are still at the beginning.

These plant annotations typically rely on one or a few organ types, while several
studies in animals [160, 161] and plants [167] show that the expression of especially
long non-coding and circular RNAs is strongly organ dependent, so we sequenced
eight different organs from seven related plant species based on strand-specific
total RNA-Seq experiments. We implement an annotation workflow enabling the
prediction of plant-species and organ-specific, protein-coding transcripts, long non-
coding, and circular RNAs. Based on the novel annotations, we update and refine
the current protein-coding transcriptomes of the seven sequenced flowering plants.
The resulting annotations can serve as a resource for protein-coding splice-variants
(isoforms), lncRNAs, and circRNAs, providing insights into their genomic struc-
ture, their conservation, and potential function in flowering plants.
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8.2 Materials and Methods

In this section, we will present the data for the RNA-Seq experiments and the
workflow to annotate different RNA species in seven different flowering plants.

In subsection 8.2.1, we will introduce the different plant species and organ sam-
ples that were sequenced. In subsections 8.2.2 and 8.2.3, we will present the
annotation workflow to create comprehensive assemblies. In subsection 8.2.4 and
8.2.5, we will learn about the calculation of protein-coding potentials and the de-
termination of novel putative protein-coding loci and protein-coding isoforms. In
subsections 8.2.6, we will turn our attention to the assembled transcripts with-
out a sufficient protein-coding potential and their classification as long non-coding
RNAs. In subsection 8.2.7, we will present the annotation of circRNAs based on
backspliced-junctions. Finally, in subsection 8.2.8, we will present details about
the implementation of the annotation workflow.

8.2.1 Data

In this study, we chose seven different plants with an evolutionary divergence
ranging from 7.1 million years ago (MYA) up to 160 MYA as representatives of
the flowering plants phylogeny 8.1 which are A. thaliana, A. lyrata, C. rubella,
E. salsugineum, Tarenaya hassleriana, Medicago truncatula, and Brachypodium
distachyon. All those flowering plants provided complete or partially complete
genome sequences and annotations containing at least information about protein-
coding genes.

Capsella rubella

Eutrema salsugineum

Medicago truncatula

Brachypodium distachyon

Arabidopsis thaliana

Tarenaya hassleriana

Arabidopsis lyrata
7.1 MYA

9.4 MYA

25.6 MYA

46.0 MYA

106.0 MYA

160.0 MYA

Figure 8.1 | Phylogeny of flowering plant species. The sampled plant species serve
as representatives for flowering plants. The group of monocotyledons is represented by
B. distachyon, while the other sampled plants represent the group of dicotyledons.

From each plant, we sampled and sequenced the organs root, hypocotyl, respec-
tively mesocotyl, leaves, vegetative and inflorescence apex, flower, stamen, carpel,
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and, consisting of two cell types, the mature pollen. For each organism a similar
developmental stage of each organ was sampled, allowing future studies a compa-
rable data set for studying the conservation and evolution of flowering plants in
an organ specific manner. Additionally to these organ and pollen samples, for A.
thaliana several developmental stages of the above mentioned organs have been
sequenced, as well as samples from sepals, petals, silliques, and seeds resulting in
43 organ and one pollen sample (Tab. 12.2). Each sample of each organism is
represented by three biological replicates, resulting in 294 samples in total.

The sequencing libraries were prepared according to the Illumina Stranded Total
RNA Preparation protocol. The resulting sequencing libraries were sequenced with
75bp paired-end reads on an Illumina HiSeq4000, except one lane of re-sequencing
on Illumina NextSeq500. Sequencing of total RNA allowed capturing transcripts
with poly(A) tails (poly(A+)) and without poly(A) tails (poly(A−)). This was
essential for annotating novel lncRNAs transcribed by RNA polymerase IV and
V [168–171] and for circular RNAs [164, 165, 172] lacking polyadenylated 3’ ends.
All samples were sequenced with additional ERCC RNA Spike-In control Mix 1
[173] allowing the definition of an objective expression cutoff to differentiate lowly
expressed transcripts from transcriptional noise by relating the concentration of
ERCC Spike-Ins to their subsequently estimated expression values. Hence, the ex-
pression values of ERCC Spike-ins with low concentrations served as a lower bound
to define a particular transcript as expressed. The annotation of the seven plant
species relied on the current genome sequence releases and the current protein-
coding gene annotations providing essential information for the assembly and the
prediction of novel coding and non-coding transcripts (Tab. 12).

8.2.2 Annotation workflow

The annotation workflow (Fig. 8.2) starts with the preprocessing of the raw se-
quenciong data. First, quality controls were performed by fastqc [174] to evaluate
possible sequencing errors, contaminations during library preparation and/or the
subsequent sequencing. Afterwards, remnants of bar coding adapter sequences
were removed by cutadapt[175]. Read subsequences showing a poor sequencing
quality were removed by a quality trimming performed by the sickle software [120].
The resulting high quality trimmed paired-end reads are now ready to be mapped
against the reference genome sequence.

The basis for the subsequent genome-guided transcriptome assembly is the ge-
nomic mapping, which was performed by the RNA-Seq aligner STAR [176]. Be-
cause the study focuses on the prediction of novel protein-coding isoforms, also
known as splice variants, and circRNAs the mapping algorithm aligned split reads.
Those reads span an intronic region encapsulated by adjacent exons in a transcript.
Hence, the read gets split, and the resulting segments are aligned to the neighbor-
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ing 5’ and 3’ exons.

Figure 8.2 | Overview of the annotation workflow. The pipeline starts with
the preprocessing, e.g., adapter clipping and quality trimming, of the raw data. Af-
terward, the mapper STAR[176] aligned the processed reads to the genome, followed by
read-deduplication and merging of technical replicates. Based on the genomic map-
pings organ-specific transcriptome assemblies were performed with Cufflinks [177].
The organ-specific transcriptomes were merged to achieve a comprehensive assembly,
and transcripts were removed due to specific filter criteria. This assembly served as
the basis for predicting novel protein-coding loci and isoforms, circular RNAs, and long
non-coding RNAs.

Additionally, chimeric reads were aligned for the subsequent prediction of cir-
cRNAs. Chimeric reads are a particular class of split reads. These reads align
to at least two different locations of the genome, but these locations could be on
different chromosomes or could have different strand orientations.

The detection of circRNAs is based on a subclass of chimeric reads that align
at different portions in one locus, on the same strand but in reverse order (Fig.
8.6). In the following sections, we refer to these subclass of chimeric reads as
back-spliced reads.

8.2.3 Read mapping and Transcript Assembly

Due to the sequencing of total RNA, we performed a duplication analysis after
the mapping to detect overrepresented fragments, probably PCR artefacts. Es-
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pecially, the leaf samples showed a very high rate of duplicated paired-end reads
predominantly located in the chloroplast chromosome (Chr. Pt), which is shown
in Fig. 8.3A for A. thaliana. To eliminate biases rising from the high duplication
rates, we performed a deduplication step with samtools on each genomic mapping.

0.00

0.25

0.50

0.75

1.00

D
u

p
li
c

a
ti

o
n

 r
a

te

●

●●
●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

30M

0

50M

100M

150M

200M

A
.thaliana

A
.lyrata

C
.rubella

E.salsugineum

T.hassleriana

M
.truncatula

B
.distachyon

P
E

 r
e

a
d

s

trimmed mapped deduplicated

root stem leaf apex flower floral organ fruit
Organ

Chr.1 Chr.2 Chr.3 Chr.4 Chr.5 Chr.Mt Chr.PtA

B

Figure 8.3 | Mapping statistics. (A) The distribution of the duplication rate along
the organ samples of A. thaliana. The duplication rate was calculated as the fraction
of duplicated reads in one chromosome divided by the sum of duplicated reads in all
chromosomes. (B) The number of paired-end reads for each plant species after trimming
(gray), mapping (yellow), and deduplication (blue). Almost all samples have a sequenc-
ing depth of 30 mio. mapped deduplicated paired-end reads, except three pollen samples
in B. distachyon.

After removing duplicated reads, the majority of samples contained at least 30
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million paired end uniquely mapped deduplicated reads. Only three biological
replicates from B. distachyon pollen (Fig. 8.3B) contained less uniquely mapped
deduplicated reads. Subsequently, we curated the mappings in order to fix mating
read pairs and to remove soft-clipped subsequences of the reads produced by STAR.

In order to build comprehensive transcriptome annotations of the different plant
species, we performed the same annotation workflow for each species and each or-
gan. Cufflinks [177] performed the initial species- and organ-specific transcriptome
assembly based on the deduplicated mapped reads for each biological replicates of
each sample. Based on Cuffmerge, we summarized the species- and organ-specific
assemblies from the three replicates into a species-and organ-specific transcriptome
assembly. After this Cufflinks assembly and merge procedure, we produced for each
plant species eight organ-specific transcriptome assemblies. We then filtered these
species- and organ-specific assemblies by removing transcripts spanning multiple
loci and transcripts showing an expression below a defined expression threshold.
Transcripts having an expression below thus threshold were called transcriptional
noise. We defined the expression threshold based on sampled-specific ERCC Spike-
In threshold. We quantified the transcript abundance of each assembled transcript
in each biological replicate with salmon [178]. We removed all transcripts which
showed a TPM expression below the 5% quantile of expressed ERCC Spike-Ins in
more than two out of three biological replicates in at least one sample.

After filtering the species- and organ-specific transcriptome annotations, the
current reference annotation was combined with gffcompare [179] into a compre-
hensive species-specific transcriptome assembly. We filtered these species-specific
transcriptome assemblies a second time to remove transcripts showing an insuf-
ficient transcript junction coverage. Based on GeMoMa [180], we calculated the
splice junction coverages of each assembled transcript. Transcripts having a junc-
tion coverage below two split reads in more than two out of three biological repli-
cates in all organ samples of a particular species, we removed this transcripts from
the assembly.

Afterwards, we clustered the transcripts with CD-Hit [181] to remove almost
identical transcripts. We set the parameter to create a cluster at above 95% iden-
tity and we defined that the longest transcript in each cluster is reported as its
representative while the other transcripts were removed. Based on BLAST sim-
ilarity searches [91] against the SILVA ribosomal RNA database [182], we also
removed transcripts showing high similarity to known rRNAs. The result of this
last filtering step is the comprehensive assembly (Fig. 8.2) which serves as the
starting point for the annotation of novel protein-coding genes and isoforms, lncR-
NAs, and circRNAs. In the next sections, we will explain the classification of the
assembled transcripts into these three RNA species in detail.
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8 Annotation of splice-variants, lncRNAs, and circRNAs in flowering plants

Figure 8.4 | Annotation of protein-coding and non-coding transcripts. Starting
from the comprehensive assembly, each transcript is first assigned to known protein-
coding transcripts or unknown transcripts. The known transcripts were filtered and used
to update the known protein-coding transcriptome with novel isoforms or replace known
isoforms. Unknown transcripts were assigned into potentially coding, i.e., probably
putative protein-coding loci, and non-coding. The non-coding transcripts were filtered
and categorized as intergenic or antisense lncRNAs (NATs).

8.2.4 Calculation of Coding Potentials

The distinction of assembled transcripts into protein-coding and non-coding is a
crucial step in the annotation pipeline. First, we assigned the assembled tran-
scripts into three groups. The first group contained all transcripts which overlap
with known protein-coding loci. The second group contained all transcripts which
showed no overlap to current protein-coding gene models. For these unknown
transcripts, we calculated the coding potential to differentiate between candidate
transcripts for novel putative protein-coding loci or lncRNAs. We used Trans-
Decoder [183] in combination with BLASTP searches [91] against plant proteins
from the Uniref90 database [184] and HMMER searches [185] against the Pfam-A
database[186] to calculate the coding potential of each transcript.
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TransDecoder algorithm As described by Haas et al. [183], the algorithm
started by identifying all open reading frames (ORFs) with a minimum length
of 100 amino acids for all provided transcripts. Relying on the strand information
of assembled transcripts, TransDecoder searches for ORFs in three instead of six
possible reading frames. Each predicted ORF must begin with the start codon
(ATG) and must terminate with a stop codon (TAA|TAG|TGA). If TransDecoder
predicted more than one ORF, it selected the longest ORF for the subsequent
analysis. For all transcripts with ORF lengths above 100 amino acids, TransDe-
coder calculated a score SF

n as the sum of log likelihood ratios over all positions
in the putative coding sequence. The algorithm calculated a single log likelihood
ratio SF

n` for the reading frame F ∈ {1, 2, 3} in the transcript sequence n at each
position ` as

SF
n` = log

p(xn`|xn`−1 . . . xn`−5, θF )

p(xn`|θbg)
(8.1)

,with ` ∈ {1, . . . , Ln} and Ln denoting the length of the sequence. The numerator
p(xn`|xn`−1 . . . xn`−5, θF ) (8.1) defines the probability of nucleotide xn` in a reading
frame specific 5th-order Markov model. θF defines the parameter set in the reading
frame F that was trained on coding sequences from the reference annotation.
The denominator p(xn`|θbg) denotes the relative frequency of nucleotide xn` which
was trained on the set of coding sequences and the set of assembled transcripts.
Following equation 8.1, TransDecoder calculated a score for each reading frame.
TransDecoder also scored each ORF based on its putative reading frame and with
respect to alternative reading frames. If the calculated ORF score based on the
putative reading frame of a transcript was positive and greater than the ORF
scores on the alternative reading frames than TransDecoder classifies the transcript
containing this ORF as coding.

Similarity searches In addition to the calculation of coding potentials based on
an Markov model approach, the TransDecoder pipeline defined also transcripts
as potentially coding if they showed significant similarities to protein sequences.
TransDecoder translated the longest ORF of each assembled transcript into a
amino acid sequence and performed a protein BLAST search against a plant spe-
cific UniRef90 database and a HMMER search against the Pfam-A. The pipeline
classified transcripts as coding, if their amino acid sequence showed significant
similarities to known protein sequences or protein domains in the UniRef90 or
Pfam-A database.

We considered transcripts having a coding potential and no overlap to known
protein-coding loci as transcripts from potentially novel putative coding loci which
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we furhter analyzed as shown in Fig. 8.4. On the other side, we considered tran-
scripts showing neither in the Markov model approach nor in the similarity searches
any potential of being coding as non-coding transcripts and we used additional fil-
ters to classify them as long non-coding RNA Fig. 8.4.

8.2.5 Filtering novel putative protein-coding loci and isoforms

To ensure that we did not classify transposable elements as protein-coding locis, we
removed novel putative protein-coding transcripts overlapping with de novo anno-
tated transposable elements. Afterwards, we performed for each of the remaining
putative coding transcripts an InterProScan [187] against a variety of protein and
domain sequence databases, e.g. CDD, Pfam, TIGRFAM, ProDom, to detect func-
tional associations based on sequence comparisons. The InterProScan 5 algorithm
used different search algorithms, e.g. BLAST and HMMER. We only considered
transcripts showing a significant similarities to sequences in the provided databases
to be defined as putative coding loci.

Besides the classification of novel protein-coding loci, we also wanted to identify
novel splice-variants (isoforms) of known protein-coding genes. It has been shown
that assembling RNA-Seq short reads into full transcripts is a complex task [177,
183, 188]. Since transcripts show a variable read coverage in the genomic mappings
and transcript isoforms share exon regions, it is challenging to assign the reads to
their origin transcript and provide an unambiguous transcript assembly. As a
result of these computational challenges, today there is no algorithm which does
not predict falsely assembled transcripts. The generated assemblies have to be
filtered by other criteria, e.g. customized with respect to the experimental design
such as the library preparation. Because we are interested in the prediction of
novel splice variants, i.e., transcript isoforms, of known protein-coding genes, we
benefited from the current reference annotations.

For each potential new isoform, we calculated a pairwise global alignment [189]
between the assembled transcript and each isoform of the reference annotation at
the overlapping gene locus. Subsequently, we predicted ORFs within the assem-
bled transcripts to ensure that the transcripts are not truncated. We considered an
assembled transcript as a new protein-coding transcript isoform only if it showed
a minimum of 50% sequence identity with at least one reference isoform and if
it also shared the same start codon position with its aligned reference isoform.
Otherwise, we considered the assembled transcript as incorrectly assembled and
removed it from the assembly. The threshold of 50% sequence similarity is arbi-
trary and a compromise between predicting too many falsely assembled transcripts
and removing too many probably functional splice-variants.

Subsequently, we filtered transcript isoforms from novel putative protein-coding
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loci and novel transcript isoforms based on intron retention events. Since the RNA
extraction protocol is intended to capture RNA species regardless of polyadeny-
lation, we probably sequenced unprocessed fragments of immature pre-mRNAs.
It has been shown that total RNA sequencing could result in a higher propor-
tion of RNAs originated from intronic sequences [190, 191]. We assumed that the
assembled isoforms originated from intron retentions might represent immature
pre-mRNAs rather than functional mRNAs. To classify intron retention events,
we use SUPPA [192] and removed all assembled transcripts showing retended in-
trons.

8.2.6 Prediction of long non-coding RNAs

LncRNAs are defined as transcripts with a length greater than 200nt, having no ca-
pability for coding functional proteins [154, 193–201]. The annotation of lncRNAs
mainly based on a length selection, the prediction of a coding potential, and its
genomic location with respect to protein-coding genes. With the ongoing effort to
study the non-coding transcriptome based on RNA-Seq, several algorithms trying
to distinguish between protein-coding and non-coding transcripts were published
[183, 202–208].

Their main goal can be summarized in calculating the coding potential of a tran-
script based on sequence features, such as nucleotide compositions and the length
of their ORFs, or evolutionary features, such as codon substitution frequencies.
Additionally, most of these algorithms need a set of known non-coding and cod-
ing RNAs to train their models for a reliable prediction. Especially in non-model
organisms as well as in many plant species, the information about lncRNAs is
insufficient or restricted to a few prominent species like A. thaliana. In our study,
for the majority of species, we had no or insufficient information about lncRNAs.

Hence, the prediction tool that we wanted to use, had to be capable to be
trained on species-specific coding transcripts or is already trained based on a gen-
eralized approach and thus capable to predict lncRNAs in species with missing
information about lncRNAs. As described in the previous section, we could use
the non-coding transcript classified by TransDecoder as potential lncRNAs. The
advantage of this procedure was that we were capable to train the algorithm just
on the known protein-coding transcripts in the reference annotations. To validate
our procedure, we compared the TransDecoder algorithm with currently popular
lncRNA prediction tools such as FEELnc [206] and CPC2 [205]. FEELnc can
be trained only on known species-specific coding transcripts. In contrast, CPC2
[205] is already trained on set of non-coding and protein-coding transcripts. We
compared the accuracy of the non-coding prediction between FEELnc, CPC2, and
TransDecoder based on a training dataset [205]. In Fig. 8.5B we show, that CPC2
and TranscDecoder had a prediction accuracy of ∼ 97% for A. thaliana while

111



8 Annotation of splice-variants, lncRNAs, and circRNAs in flowering plants

FEELnc showed an accuracy of ∼ 94%, confirming our choice of using TransDe-
coder as a lncRNA prediction tool.
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Figure 8.5 | Classification of lncRNAs. (A) Terminology of lncRNAs (blue) based
on their genomic location to a protein-coding gene (green and red). Based on the under-
lying sequencing data we are able to predict intergenic, bidirectional, exonic antisense,
and intronic antisense lncRNAs. We were not able to reliable predict intronic sense
lncRNAs due to the RNA-Seq library preparation of total RNA leading to a bias of im-
mature spliced transcripts resulting in an increase of probably falsely discovered intronic
sense lncRNAs. (B) Comparison of coding potential calculation tools and their accuracy
in predicting lncRNAs. Especially for plant lncRNAs TransDecoder and CPC2 showed
the highest accuracy of ∼97% outperforming FEELnc.

After we have classified the assembled non-coding RNAs as lncRNAs if they
showed a sequence length greater than 200 bp, we categorised the lncRNAs into
subgroups based on their genomic location. Relative to their location to protein-
coding genes, lncRNAs can be classified into subgroups of bidirectional, intergenic
(lincRNA), exonic antisense (NAT), and intronic antisense (intronic NAT) lncR-
NAs (Fig. 8.5A). The definition of lncRNA subgroups in Fig. 8.5A is mostly based
on observations in humans and other vertebrates [209], in which bidirectional pro-
moters activate the transcription of two neighboring loci, facing each other’s 5’
ends. Distinguishing between intergenic and bidirectional lncRNAs we initially
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chose an intergenic distance of 250bp. Usually, this distance ranges between 500
bp and up to 5 kbp [160, 201, 210], but the plant species in our study had much
smaller and more compressed genomes compared to humans and other vertebrates.

Studies in A. thaliana seedlings showed that plants seem to lack significant
bidirectional transcription [211]. Despite the possibility of classifying lncRNAs as
bidirectional, we assigned lncRNAs in the proximity of protein-coding genes to the
group of lincRNAs if they do not overlap with any exon of a protein-coding gene,
otherwise we assigned them into the group of NATs. As described in the previous
sections, the RNA extraction protocol of total RNA over represents reads in in-
tronic regions. We could not ensure that transcripts assembled and encapsulated
in intronic regions are of biological meaning or related to the sequencing experi-
ment. Consequently, we removed transcripts entirely overlapping intronic regions
of a protein-coding loci on the same DNA strand. We, therefore, were not capa-
ble of annotating intronic sense lncRNAs. Additionally, we removed non-coding
transcripts overlapping with annotated transposable elements.

8.2.7 Prediction of circular RNAs

CircRNAs are a class of RNA molecules originated from a circularization event,
called backsplicing, showing a covalent and canonical linkage between an upstream
5’ splice site and a downstream 3’ splice site in a linear immature RNA, like pre-
mRNAs [162, 165, 212]. Additionally, circRNAs are distinguished from mRNAs by
missing a polyadenylated 3’ end. Most circRNAs were found within annotated exon
boundaries or at locations having canonical splice signals, the necessary binding
motif for the spliceosome [212].

Additionally, circRNAs also appear in lncRNAs or in intergenic regions [209, 213,
214], which we might also detect in the final species-specific annotations. Before
we have attempted to detect circRNAs, we updated the reference annotation with
the predicted putative coding loci, the novel transcript isoforms, and the newly
predicted lncRNAs.

In recent years several circRNA detection algorithms has been published. A
detailed list of detection tools and algorithms can be found in the reviews of
Szabo et al. [212] and Gao et al. [215]. All these algorithms use the information
of back-spliced reads to detect circRNAs (Fig. 8.6A). Their algorithms depend
in the first instance on the performance of the mapping tool and its capability of
mapping back-spliced reads to the underlying genome [216].

Before integrating a specific circRNA prediction tool into our workflow, we per-
formed an evaluation of the most common circRNA prediction tools such as CIRI2
[217], circExplorer2 [218], and DCC [216]. They could be easily integrated in our
workflow and were capable of using the advantage of paired-end read information.
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These tools had already been evaluated in various studies, but mainly on human
or other animal data sets [216, 219].

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

CIRI2

PlantcircBase

0

500

1000

In
te

rs
e

c
ti

o
n

s
iz

e

0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

Set size

435 416
272

43

4
1

1
4

2
5

8
9

7
4

4 2
9

3
4

8

circExplorer2

DCC

A

AG GTAGGT

1500

1554

GT AG
5' 3'

B unspliced reads

back-spliced reads

linear spliced reads

Figure 8.6 | Annotation of circular RNAs in A. thaliana. (A) Prediction of circu-
lar RNAs within protein-coding genes of A. thaliana. Based on back-splice reads (violet)
prediction tools are able to annotate circRNAs. In our analysis at least two biological
replicates should provide evidence of a circRNA based on back-spliced reads. (B) Com-
parison of cirCRNA prediction tools. DCC predicts in total not only the most circRNAs
but also the most circRNAs which overlap with known circRNAs in the PlantcircBase.

Our benchmark analysis focused on the detection of circRNAs based on our
132 deep sequencing libraries of A. thaliana covering ten organs within different
developmental stages. We compared our prediction results with already published
and annotated circRNAs from the PlantcircBase database [220]. This database
currently provides one of the biggest database for predicted circRNAs from dif-
ferent plant species. For A. thaliana the database contained 38,938 circRNAs
(Version 4, 2019). We filtered these circRNAs with respect of available strand
information and used for our benchmark analysis 29,348 published circRNAs. The
upset plot in Fig. 8.6B shows that DCC predicted the most circRNAs (4,114) of
which 1,554 could also be found in the PlantcircBase. The amount of predicted
circRNAs by CIRI2 and circExplorer was much lower and also their overlap with
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published circRNAs was significant small. Despite the low absolute number of
predicted circRNAs by CIRI2, the relative overlap to published circRNAs is the
highest (∼ 59%) compared to DCC (∼ 38%) and circExplorer2 (∼ 2%).

Based on the total amount of detected circRNAs and the amount of circRNAs
concordant with PlantcircBase, we integrated DCC into the annotation workflow.
According to Cheng et al. [216], we performed the circRNA prediction with DCC
whereas a circRNA was considered as a candidate only if DCC found evidence in
at least two biological replicates supported by at least one back-spliced read.

8.2.8 Implementation

Analyzing the massive amount of sequencing data in a reproducible manner was
one of our main goals for implementing the annotation workflow. The results
should also be reproducible independent of the underlying computing platform,
and it should be possible to perform the analyses on the same software releases.
We structured the analyses by using the Snakemake workflow engine [221] in com-
bination with Anaconda [222]. Snakemake allowed us to upscale the calculation
to integrate the workflow into our computing cluster environment easily. Addi-
tionally, it allows other users with no access to computing clusters or a different
computing platform to use our workflow without further changes in the code.

We performed most of our analyses with customized software solutions. We
chose the most appropriate programming language for each analysis steps and used
Java, C++, R, Python, or Perl for different tasks. The Snakemake workflow and
the customized software will be publicly available via GitHub. Based on GitHub,
we will be able to forward improvements of the workflow. We did not explicitly
tailor the workflow to the plant species in our studies, and it can be easily adapted
to annotate other non-model plant species based on RNA-Seq data.

8.3 Results

In this section, we learn about the updated annotations of the seven flowering
plants and we will compare several genomic features between protein-coding tran-
scripts, lncRNAs, and circRNAs.

In subsection 8.3.1, we will revisit the annotation workflow and present an
overview of the annotated RNA species. In subsections 8.3.2, we will investi-
gate the genomic features of protein-coding transcripts on a loci and isoform level.
In subsection 8.3.3, we will present the detected lncRNAs and compare several ge-
nomic features with protein-coding transcripts and circRNAs. In subsection 8.3.4,
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we will investigate the splicing patterns of detected circRNAs. Subsection 8.3.5,
will serve as an example for future comparative studies. We will compare the GC
contents of the different RNA species between the seven flowering plants.

8.3.1 Annotation workflow

The annotation workflow (Sec. 8.2) enables a species-specific comparison of protein-
coding transcripts, long non-coding RNAs, and circular RNAs based on the se-
quencing experiments from nine different organs of A. thaliana, A. lyrata, C.
rubella, E. salsugineum, T. hassleriana, M. truncatula, and B. distachyon. Since
the workflow utilizes developmental, here organ-specific RNA-Seq data to create
comprehensive species-specific annotations, we refer to this workflow as the De-
vSeq workflow and the corresponding annotations as DevSeq annotations. The
workflow reconstructed full-length transcript models of the three RNA species in-
dependently for each species. The annotation of each RNA species provides various
challenges like the correct reconstruction of complete RNA transcripts based on
short-read RNA-Seq data. The main goals were differentiating between coding and
non-coding transcripts, predict novel protein-coding loci, predicting circRNAs, and
finally create a comprehensive annotation for each plant species.
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A.lyrata

C.rubella

E.salsugineum

T.hassleriana

M.truncatula

B.distachyon
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Figure 8.7 | Amount of coding and non-coding genes and transcripts in flow-
ering plants. Absolute amount of annotated coding and non-coding (A) loci (genes)
(B) transcript isoforms for circRNAs (purple), lincRNAs (blue), NATs (red), intronic
NATs (orange), and protein-coding mRNAs (green). The species on the y-axis are ar-
ranged according to the phylogenetic tree. Starting from bottom to top from Brassicacae
(dicots) to B. distachyon representing grass plants (monocots).

To increase the range of predicting novel non-coding transcripts such as non-
coding transcripts without polyA-tails, we sequenced total RNA libraries with
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depleted rRNAs. After quality checks and the removal of sequencing data showing
poor quality, we performed a genomic mapping of the sequenced reads.

Due to the rRNA depletion in the total RNA libraries the amount of reads from
chloroplast RNA was up to 87% in green organ samples like leafs or floral organs
(Fig. 8.3A). These highly similar reads might originate from PCR artefacts. Those
artefacts can skew the mate-pair statistics which several transcriptome assembler
use [223] and the assembly algorithm could potentially reconstruct false transcript
structures [224]. Sequencing mostly these enriched duplicated fragments of tran-
scripts led to extremely low coverages in less expressed regions. To increase the
coverage in these regions, we increased the sequencing depth in samples with high
duplication rates and performed a deduplication step after the initial read mapping
(Sec. 8.2.2).

Transcript isoforms and lncRNAs are expressed in a organ-specific manner, thus
we independently reconstructed the transcripts for each organ. We merged the
organ-specific transcriptome assemblies to a comprehensive assembly representing
the expressed transcripts found in the sequenced organs of one plant species. Based
on that assembly and the genomic mapping we classified the assembled transcripts
into protein-coding, long non-coding, and circular RNAs. Figs. 8.7A and B show
the final amount of annotated genes and transcripts of the seven species.

To measure the annotation completeness and to quantify possible improvements
of the annotations, we performed homologous searches against the Benchmarking
Universal Single-Copy Orthologs (BUSCO) [225]. We compared the transcrip-
tomes of each reference annotation and the updated DevSeq annotation against
the curated set of embryophyta specific single-copy orthologs, which ideally should
be present in all analyzed plant species. The analyses showed that we identified
between 96.4% and 99.5% of the curated BUSCO sequences (Tab. 8.1). For the
majority of species, except E. salsugineum and M. truncatula, the DevSeq anno-
tation showed an increase in the percentage of the annotation completeness.

Species Ref (%) DevSeq (%)
A. thaliana 1605 (99.4) 1606 (99.5)
A. lyrata 1583 (98.1) 1596 (98.9)
C. rubella 1559 (96.6) 1580 (97.9)
E. salsugineum 1588 (98.4) 1593 (98.7)
T. hassleriana 1600 (99.1) 1600 (99.1)
M. truncatula 1557 (96.5) 1556 (96.4)
B. distachyon 1595 (98.8) 1596 (98.9)

Table 8.1 | BUSCO evaluation of annotation completeness. Absolute number
of identified embryophyta specific single copy orthologs in BUSCO. In brackets is shown
the percentage of identified orthologs.
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8.3.2 Protein-coding genes and isoforms

Based on their overlap with known protein-coding loci and their coding potential
(Sec. 8.2.4), we identified novel protein-coding isoforms and novel putative protein-
coding loci. The amount of novel putative protein-coding loci ranges between 126
(A. thaliana) and 1,256 (B. distachyon) genes (Tab. 8.2). These low numbers
reflect the high quality of reference annotations used in our study and the efforts
of previous studies trying to decipher a complete annotation of protein-coding
genes.

Besides these novel loci, we predicted and we updated thousands of known
protein-coding transcripts (Tab. 8.3). The deep sequencing libraries of ∼30 mio.
paired-end reads and the variety of different sequenced organs, allowed us to detect
lowly and organ-specific expressed transcripts. We could verify already annotated
isoforms but we also elongated 5’ and/or 3’ ends of known transcript isoforms (Tab.
8.3). Additionally, the workflow discovered between ∼2,800 (T. hassleriana) and
over 6,000 (B. distachyon) novel transcript isoforms.

Species known loci new loci transcripts
A. thaliana 34,806 126 148
A. lyrata 31,073 915 1,153
C. rubella 26,521 557 711
E. salsugineum 26,351 1,025 1,344
T. hassleriana 27,396 771 846
M. truncatula 50,444 162 172
B. distachyon 34,310 1,256 1,499

Table 8.2 | Novel putative protein-coding loci. Comparison of known protein-
coding loci in the reference annotation and novel putative protein-coding loci and their
transcript isoforms identified by the DevSeq workflow.

Updating the known set of transcripts led to a shift in the amount of splicing
events in protein-coding isoforms. As shown in Fig. 8.8 the fraction of alter-
native 3’ ends slightly increased in most organisms, except for A. lyrata and E.
salsugineum. It is the main splicing event in the reference and also in the De-
vSeq annotations. The second largest fractions of splicing events are alternative 5’
ends and intron retention events. The amount of alternative 5’ ends increased in
all species, which could be an effect of the random priming during the RNA-Seq
library preparation.

It has been shown that random priming leads to more uniformly distributed
reads in the genomic mapping but also introducing coverage biases at the 5’ ends
[226]. Despite, we saw in all annotations a decrease in the fraction of retended
introns.
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organism known alt 3’ alt 5’ alt 3’&5’ new
A. thaliana 34,806 4,852 2,799 5,875 3,818

A. lyrata 18,972 1,635 4,071 8,454 4,680
C. rubella 16,824 908 1,852 8,863 4,080

E. salsugineum 15,580 418 3,035 10,251 4,099
T. hassleriana 27,423 2,280 3,577 9,667 2,805
M. truncatula 46,842 1,364 2,077 7,302 5,112
B. distachyon 42,146 2,856 1,877 6,093 6,405

Table 8.3 | Statistics of protein-coding isoforms. The column “known” and “new”
show the numbers of protein-coding isoforms in the reference annotation and predicted
by our workflow. Besides the prediction of novel isoforms, we update known isoforms by
elongating their 3’ and/or 5’ ends.
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Figure 8.8 | Comparison of splicing events. The outer circles represent the fraction
of splicing events in the generated DevSeq annotation whereas the striped inner circles
represent the proportions of splicing events observed in the reference annotation. The
fractions of alternative 3’ and 5’ ends are the splicing events in the DevSeq annotation
while in the reference annotations the alternative 3’ end and the intron retention are the
events covering together over 50% of the observed splicing events. The shift between the
fractions is mainly a result of the library preparation and also the filtering steps during
the prediction of assembled transcripts.

Due to the experimental design of total RNA sequencing, we could not distin-
guish between retended intron splicing events and read-through artefacts. We,
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8 Annotation of splice-variants, lncRNAs, and circRNAs in flowering plants

therefore, removed all novel protein-coding isoforms which showed evidence of be-
ing originated from retended introns. In contrast, isoforms from the reference
annotation showing intron retentions but were already published in the reference
annotations are integrated into the DevSeq annotation. As shown in Fig. 8.8, the
alternative 3’ and 5’ end represent largest fractions of novel splice variants. To
verify that our annotation has not introduced a bias to the transcriptome anno-
tations, we compared the lengths of the observed 5’ and 3’ untranslated regions
(UTRs). The comparison of UTRs (Fig. 12.1) showed that in all species the 5’
UTRs were shorter than the 3’ UTRs, which is well known for eucaryotic mRNAs
[227]. Comparing the UTR lengths between the species, we saw in the majority
of plant species a similar distribution of UTR lengths. Only M. truncatula and B.
distachyon showed an increased length in 3’ UTR sequences.

8.3.3 Long non-coding RNAs

The second major group of assembled transcripts are the lncRNAs. As described
in the Methods section 8.2.6, we classified the assembled transcripts without any
overlap to known protein-coding genes on the same strand as potential candidates
for these lncRNAs. After performing several filter steps, we identify thousands of
lncRNAs (Fig. 8.7).

LncRNAs as well as protein-coding genes are transcribed as different transcript
isoforms. In Fig. 8.9A, we investigated the mean number of isoforms from the
three lncRNA classes compared to protein-coding genes (mRNA). Except for T.
hassleriana, lncRNA loci transcribe on average for 1.00 - 1.25 transcript isoforms.
This low amount of transcripts per lncRNA gene was also reported by other stud-
ies [228–232]. In contrast to these studies we observed in A. lyrata, C. rubella,
E. salsugineum, and M. truncatula almost the same low amount of transcript iso-
forms for protein-coding genes. Only in A. thaliana and B. distachyon, we saw an
increase of transcript isoforms in protein-coding genes compared to lncRNA loci.

The median transcript length was ∼600 bp which is significantly shorter than
for protein-coding genes with ∼2 kbp (Fig. 8.10A). Only NATs showed the
largest transcript lengths followed by lincRNAs, intronic NATs and circRNAs (Fig.
8.10A).

The pattern of transcript length distributions of the presented RNA species was
consistent in all plant species with a small exceptions regarding the transcript
length of protein-coding transcripts from M. truncatula. The median transcript
length of protein-coding transcripts was similar compared to the other plant species
but the IQR was much longer and ranged over 10 kbp (Fig. 8.10A).
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(blue), NAT (red), intronicNAT (orange), and protein-coding mRNA (green). (B) shows
the corresponding ORFs for each RNA species in each organism with the same color code
as (A).

However, also the exon length distributions were similar for the majority of
species except for T. hassleriana showing a very broad length distribution for
lincRNA and NAT exon sequences (Fig. 8.10B). Regarding the distribution of
exon lengths (Fig. 8.10B) and the mean number of exons per transcript (Fig.
8.10C) over the different RNA species, lncRNAs seemed to have long exons with a
median of ∼500 bp, but contained on average only 1.5 exons per transcript. In C.
rubella and T. hassleriana the number of exons per transcript was ∼3 and also the
exon length distributions of lncRNAs were similar to protein-coding genes. This
similarity might reflect errors in the prediction pipeline, which is in contrast to
the ORF lengths shown in Fig. 8.7B. On the other side, this observation could
reflect the potential of lncRNAs to serve as sources for novel peptides as proposed
by [155].
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of exons of RNA species. (A) Transcript length of transcript isoforms, (B) exon
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The classification of lncRNAs depended on their genomic location with respect
to e.g. protein-coding loci. We saw in all species lincRNAs with distances below
500 bp which could implicate possible clusters of lincRNAs (Fig. 8.11A). Instead,
over 75% of lincRNAs were very distant from other lincRNAs by distances >5
kbp. Compared to Fig. 8.11B the median distance of lincRNAs to the closest
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protein-coding genes was just 1 kbp. The maximal distance to protein-coding
genes increased to over 50 kbp, these lincRNA are described as isolated lincRNAs
[232].
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Figure 8.11 | Distance of lincRNA to nearest protein-coding locus. (A) Em-
pirical cumulative density of distances measured from each lincRNA loci to their near-
est non-overlapping lincRNA loci located on the same strand. (B) Empirical cumula-
tive density of distances measured from lincRNA loci to their nearest non-overlapping
protein-coding loci located on the same strand.

On the other side of the distance spectrum, we saw lincRNAs in close prox-
imity between 0 and <1 kbp. We classified lncRNAs as intergenic if their start
or end did not overlap with protein-coding genes [154, 198] or if they were not
within a distance between 500 bp and 1 kbp to a protein-coding gene [199, 209,
233, 234]. The later definition of lincRNAs is often combined with the definition
bidirectional lncRNAs, which suppose to share the same promotor region with its
neighboring protein-coding gene. To our knowledge, there is no comprehensive
definition of bidirectional lncRNAs, which could be applied to plants and animals.
It depends on the location of the promotor to the closest protein-coding gene to
define bidirectional lncRNAs.

8.3.4 Circular RNAs

Besides the prediction of lncRNAs, the DevSeq annotation workflow also detected
thousands of novel circRNAs. Predominantly, we found circRNAs in protein-
coding loci, i.e., 87-95% of all observed circRNAs were located within protein-
coding genes. Besides, we detected ∼4-8% circRNAs within intergenic regions and
1-5% within lncRNAs (Fig. 8.12A).

The observed transcript length of circRNAs ranged between 10 bp and 3 kbp
(Fig. 8.10A). The median length was ∼200 bp and thus much shorter than the
median transcript length of lncRNAs or protein-coding transcripts. In contrast,
circRNAs seem to contain more exons than lncRNAs (Fig. 8.10C).
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The majority of back-splice sites forming a circRNA were GT/AG donor-acceptor
pairs, which was also the largest fraction in transcript splice sites within the anal-
ysed plant species over all RNA species (Fig. 12.2). About 10-25% of all back-
splice sites were CT/AC donor-acceptor sites. This pair was almost not present
(0.0008% species mean) within linear transcript isoforms (Fig. 12.2). We also
found that the back-splice sites which were not intergenic shared no splice site
with their host transcript (Fig. 8.12C none) or shared both splice sites with its
linear host transcript. Only a minority of back-splice sites shared only a donor or
only a acceptor splice site with their linear host transcript.
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8.3.5 GC content of coding and non-coding RNAs

In this subsection, we wanted to investigate the GC contents of the different RNA
species. The GC content is an characteristic genomic feature to differentiate be-
tween coding and non-coding regions. It was shown that in plants that the genomes
of grasses contain higher GC contents than other angiosperms [235–238]. These
studies focused on the GC abundance and GC variation on the genome level by
comparing intergenic and protein-coding regions [236, 238–241].
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Figure 8.13 | GC content of exons and introns within different RNA species.
For each plant species, we calculated the relative GC content for exons and introns
within circRNAs, lincRNAs, NATs, and protein-coding mRNAs. The exonic sequences
show a higher GC content and a broader IQR compared to the intronic sequences. The
range of GC content of the different RNA species is very similar for the majority of plant
species, except B. distachyon. Only B. distachyon shows the largest GC content of all
plant species and the widest IQR in all RNA species.
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Starting with the comparison of intronic and exonic sequences (Fig. 8.13), we
found in all RNA species that the GC content was lower in intronic regions than
in exonic regions. This low GC content is in accordance to observations from
protein-coding regions in plants and animals [242–244].
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Figure 8.14 | GC content vs. transcript lengths. (A) CircRNAs, (B) lincRNAs,
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We also saw that B. distachyon, as a representative of grass plants and mono-
cotyledons, showed the highest GC contents followed by T. hassleriana (Fig. 8.13
and Tab. 12.4). B. distachyon also showed the widest range of GC contents in
all four RNA species over all plants. The GC content of introns was very similar
among the RNA species within each plant species.

Next, we grouped the transcripts of each RNA species within each plant species
based on their transcript length into five groups (Fig. 8.14 and Tab. 12.4). In
general, we saw in the majority of RNA species a decrease in the IQR and in the
standard deviation of GC content with increasing transcript lengths whereas the
median GC content was in most plant species constant.

In circRNAs, we found a slight decrease in GC content with increasing transcript
lengths, especially in B. distachyon. We also detected this decrease in NATs and
protein-coding mRNAs of B. distachyon. In contrast, the GC contents of lincRNAs
over increased transcript lengths were almost constant. Regarding lincRNAs, the
GC contents of T. hassleriana and B. distachyon were the highest compared to
the other plant species. M.truncatula showed the lowest GC content for lincRNAs,
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as well as for NATs and for mRNAs.

In contrast to M. truncatula, B. distachyon showed similar to Fig. 8.13, the
highest GC content in all four RNA species. It is the only plant species which
showed an decrease in GC content with an increasing transcript length for mRNAs
(Fig. 8.14 and Tab. 12.4). A detailed investigation of GC contents of coding and
non-coding transcripts in flowering plants was not the focus of this study and will
be part of future work.

8.4 Discussion

In chapter 8, we introduced our workflow to predict and annotate protein-coding
splice-variants, lncRNAs, and circRNAs in flowering plants based on RNA-Seq
experiments performed in an organ-specific manner. The workflow depended on
reference genome annotations and the corresponding genome sequences. Many
genome annotation workflows have been published with the attempt to be easy to
adapt for individual sequencing projects [245–247] but only concentrated on the
prediction of protein-coding genes and transcripts.

The DevSeq workflow presented in this study was developed to process RNA-Seq
data from total RNA libraries of different plant species represented by different
organ samples. Building the workflow, we had to achieve several challenges in
the raw data and processed data such as high amounts of duplicated reads, read-
through transcripts, and the differentiation between lncRNAs and protein-coding
transcripts, and the prediction of circRNAs. After the elimination of read se-
quences with poor quality, we mapped the reads with the RNA-Seq aligner STAR
[248], which is capable of aligning linear split reads in order to predict splice-
variants and also aligning chimeric reads in order to detect circularization events,
i.e., back-splice junctions, to predict circRNAs.

The subsequent organ- and species-specific transcript assembly determined the
results of all subsequent analyses. To achieve a comprehensive transcriptome as-
sembly, we combined the predicted transcripts with their abundances in each or-
gan. Since lncRNA transcripts and certain protein-coding splice-variants show
organ-specific gene expression, we removed transcripts with low expression values.
We used artificially introduced ERCC Spike-Ins to determine a minimal expres-
sion threshold for each species and each organ to remove transcripts that show
low expression values and thus might not be of biological relevance. This filtering
was a huge advantage compared to other approaches that use arbitrary expres-
sion thresholds and thus may remove expressed transcripts with actual biological
meaning or keep transcripts which may spoil the transcript assembly.

After we merged the organ-specific transcriptome assemblies to species-specific
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8 Annotation of splice-variants, lncRNAs, and circRNAs in flowering plants

transcriptome assemblies, we divided the transcriptome into transcripts overlap-
ping protein-coding loci of the reference annotation and novel transcripts without
any overlap. By this separation, we could focus on the prediction of novel loci,
which we later classified as putative coding or non-coding. To calculate the coding
potential to distinguish protein-coding from non-coding transcripts, we performed
a benchmark determining an appropriate tool for our classification task. As shown
in Fig. 8.5, the accuracy of each tool depended on the species and thus on the
training data of the classifier. For our workflow, we chose TransDecoder [183] as it
achieved together with CPC2 [205] the highest accuracy, especially for A. thaliana.
In contrast to CPC2, TransDecoder only relied on annotated protein-coding genes
of the species that is investigated. For the majority of our plant species existed no
annotation of lncRNAs. We relied on the reference annotation of each plant and
tailored the prediction of lncRNAs for each plant species based on their annotated
protein sequences.

Current prediction algorithms try to separate as good as possible protein-coding
transcripts from non-coding transcripts. LncRNAs, as a subset of non-coding
RNAs, are solely defined based on their length (>200 bp) and their genomic lo-
cation with respect to protein-coding loci. In plants, the number of predicted
lncRNAs continually increases, but the biological function of a majority of these
transcripts is still unknown. To improve the prediction of lncRNAs, especially
in plants, we need curated datasets of lncRNAs analogously to PfamA [186] for
protein-coding genes, providing lncRNAs from various plant species with proven
biological functions. Current curated datasets mostly rely on A. thaliana, but
as we have seen in section 8.3.3 the characteristics of lncRNAs are also species-
dependent. With plant-specific datasets, we could define lncRNAs more accurately
and might increase the prediction rate of biologically relevant lncRNAs.

Based on the classification results of novel transcripts into coding and non-
coding, we could increase the number of protein-coding genes and postulate novel
splice-variants (Tab. 8.3). Additionally, we classified the non-coding RNAs into
different lncRNAs subgroups, such as lincRNAs, NATs, and intronic NATs based
on their genomic locations. LncRNAs and protein-coding genes, resp. mRNAs,
showed characteristic genomic features.

With the presented findings in flowering plants, we could show that lncRNAs
compared to mRNAs seemed to have very short or even no open reading frame
(Figs. 8.9), shorter transcripts, less exons per transcript, and longer exons (8.10).
These findings are in agreement with lncRNA features found in animals based on
short-read sequencing [154]. More recently, it could also be shown by targeted
RNA capture and long-read sequencing that in animals the transcript length and
the number of exons are similar between lncRNAs and protein-coding transcripts
[231]. Taking this into account, our observations could be biased by the sequenc-
ing technology. Regarding the uniform pattern of these features throughout the
analyzed flowering plants, we might found evidence at least in flowering plants
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that the transcript length and the number of exons are different between lncRNAs
and protein-coding trasncripts.

In contrast, we found differences between the species in the number of tran-
scripts per gene comparing lncRNAs to protein-coding genes. A. thaliana and B.
distachyon showed significant differences between the number of transcripts per
gene in protein-coding genes compared to lncRNAs, which could also be observed
in animals [154]. In T. hassleriana the number of lncRNA transcripts per gene
was ∼1.5, which is similar to the protein-coding genes of T. hassleriana and in
A. lyrata, C. rubella, E. salsugineum, and M. truncatula we observed on average
between 1-1.2 transcripts per gene for protein-coding genes and lncRNAs. This
variation in the ratio of transcripts per gene between the flowering plants could be
species-specific or due to a bias in the quality of the provided reference annota-
tions which have an immense impact on the number of protein-coding transcripts
because the presented workflow does not discard annotated protein-coding tran-
scripts which we could not detect.

Before the predicting circRNAs, we performed a benchmark of common circRNA
prediction tools by comparing detected circRNAs within our A. thaliana samples
against the PlantcircBase [220]. With DCC [216], we achieved the highest amount
of overlap to the PlantcircBase and also to the other circRNA prediction tools.
Similar to determining lncRNAs, the choice of the correct tool or cirteria for pre-
dicting circRNAs is not straightforward. Besides the lack of validated circRNAs
from various plant species, most detected circRNAs in plants were computation-
ally predicted for A. thaliana. The decision to use DCC was not solely based on
the overlap results presented in the benchmark but also due to its capability of
using the information from biological replicates to ensure that the detected back-
splice junction were not aligned by chance but were present in at least two out of
three biological replicates. The advantage in this study was that we used the same
method for all species and all organ samples which further allowed us to compare
the prediction results across the different plant species. We found that over ∼90%
of all detected circRNAs are hosted by protein-coding genes and the characteristic
backsplicing-junctions were only canonical splice-sites GT/AG and CT/AC. This
is in accordance with previous studies in Oryza sativa and A. thaliana [213].

We finally calculated the GC contents of each RNA species for each flowering
plant. With this characteristic genomic feature, we could highlight the similari-
ties of circRNAs, lincRNAs, NATs, and mRNAs within the group of Brassicacae,
which showed similar GC contents. Additionally, we found high GC contents in
grass plants, represented by B. distachyon. This monocot showed in all GC com-
parisons the highest GC content and the highest variation of GC content, which
was previously demonstrated only on protein-coding transcripts [235–238].
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8.5 Conclusions and Outlook

For predicting and annotating protein-coding splice-variants, lincRNAs, NATs, in-
tronic NATs, and circRNAs, we developed a fully reproducible Snakemake work-
flow [221]. The workflow produces curated genomic mappings providing infor-
mation for linear and circular transcript assemblies in an organ-specific manner.
Based on the sequencing of ERCC Spike-Ins in each sample, we were capable to
introduce expression thresholds for each sequenced organ allowing the elimination
of transcriptional noise and reducing the amount of falsely assembled transcripts.
Additionally, the expression thresholds enabled the detection of lowly expressed
transcripts like lncRNAs. The resulting comprehensive assemblies build the foun-
dation of the three final subworkflows to predict and annotate novel protein-coding
transcripts, lncRNAs, and circRNAs.

Due to limited information of non-coding transcripts in non-model plant species,
the prediction of lncRNAs and circRNAs is crucial. Hence, we validated the algo-
rithms currently available and suitable for predicting plant non-coding RNAs to
choose the best approach for the presented and future sequenced plant species. On
average, we found ∼5000 novel lncRNAs and ∼2000 novel circular RNAs for each
plant species, identified thousands of novel protein-coding transcript isoforms and
updated currently annotated transcripts by elongating their 3’ and 5’ ends. Our
publicly available workflow and the seven annotations could serve as a possible
starting point of a resource for organ-specific annotations of non-coding RNAs in
plants and might potentially become useful for deepening our understanding of
the developmental transcriptomes in more complex plants.

In chapters 2 - 8, we have presented bioinformatics software solutions to analyse
transcriptomic data in evolutionary developmental biology related to the investi-
gation of the developmental hourglass (chapters 2 - 6), to address scientific prob-
lems in developmental biology for the analysis of transcriptome dynamics during
grafting (chapter 7), or at the border to genomics to discover and annotate novel
protein-coding and non-coding transcripts in flowering plants (chapter 8).

However, the analysis of nucleic acid chains as in transcriptomics, or genomics,
is only one way to gain an insight into the biology of a living cell. In addition,
metabolomics is able to broaden our view and thus deepen our understanding of
biological processes. In an attempt to contribute, we will develop bioinformatics
approaches to investigate metabolomic data in order to analyze the free fatty acids
composition of the human skin barrier in chapter 9 and to study serum metabolite
profiles of pigs in chapter 10.
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9
Age- and Diabetes-related Changes

in the FFA Composition

In chapters 2 - 8, we have learned about several bioinformatics approaches in
different transcriptome analyses. However, the analysis of metabolome data such
as the concentration of amino acids, proteins, carbohydrates, or lipids can provide
us an additional layer of information to investigate biological processes. In this
chapter, we will turn our attention to the analysis of lipidomics data. Lipids are
essential for the living cell as they are the building blocks of plasma membranes,
serve as energy resources, are involved in cell signaling, and provide a protective
layer, to name a few functions. Due to their importance, they play a crucial role
in aging and are associated with diseases such as diabetes mellitus.

In the following sections, we will investigate age-related and diabetes-induced
changes of the lipid spectrum in the outermost epidermal barrier, the Stratum
corneum (SC). For this purpose, we will analyse the free fatty acid (FFA) com-
positions of the SC, which were qualitatively and quantitatively assessed by gas
chromatography-flame ionisation detection. From a bioinformatics perspective, we
will present a straightforward statistical analysis to detect and quantify differences
in the FFA compositions of even- and odd-numbered FFAs.

In section 9.1, we will describe the influence of aging and diabetes mellitus to
the physical barrier function of the SC and we will provide an overview of the
FFA synthesis. In section 9.2, we will learn about the experimental design, the
quantification of FFA concentrations, and the statistical analysis. In sections 9.3
and 9.4, we will present and discuss the comparisons FFA concentrations in young
and old subjects as well as in healthy and diabetic subjects. In section 9.5, we will
conclude that the identification of characteristic FFAs could help to understand
age- and disease-dependant changes of the epidermal barrier.

The following sections are extracted from Wohlrab et al. 2018 “Age- and
Diabetes-related Changes in the Free Fatty Acid Composition of the Human Stra-
tum Corneum” [7].

131



9 Age- and Diabetes-related Changes in the FFA Composition

9.1 Introduction

Aging is a complex and multifactorial physiological process, which is not yet fully
understood. Nevertheless, various hypotheses have tried to describe the complex
interactions involved and to understand the causal correlations. Depending on the
perspective, these hypotheses take an evolutionary biological, molecular, cellular
or systemic approach [249]. The influence of intrinsic and extrinsic factors on aging
is universally acknowledged although the respective interactions and the relation
within the historical and scientific context are subjects of controversial debate
[250]. The overlapping cascades of different aging processes, which influence each
other, have a high relevance for the skin organ and in particular the epidermis
which serves as the body’s physical barrier [251, 252]. Atrophy in the various
layers of the epidermis is mainly caused by a decreasing number of keratinocyte
layers, which is thought to be due to a diminished cell division rate. Additionally,
reduced proliferative activity and differentiation rate cause corneocytes to increase
in size into the stratum corneum (SC). Changes in the physical barrier function
are characterised by decreased water-binding capacity of the SC due to a reduction
in natural moisturising factors while the lipid spectrum is quantitatively reduced
[252, 253].

Hyperglycaemia, which is common to all subtypes of diabetes mellitus, induces a
series of biochemical changes in skin. These result in increased oxidative stress and
expression of redox-regulated genes and transcription factors, in changes regarding
the composition of the extracellular matrix and in functional deficits of proteins
[254, 255]. These complex biochemical changes of epidermal micro milieu cause
reduction in both keratinocytic proliferation and SC water content [256, 257]. The
overall decrease in water content within the epidermis reduces the transcorneal
passage of water. These are the main causes for a reduction in the compensation
capacity of the barrier, although under normal conditions, none or very minimal
change in transepidermal water loss is observed in both aged skin and diabetic
xerosis. Functional impairment of the SC often only becomes clinically evident
after irritation or occlusion and appears as dry skin or eczema, and the associated
pruritus [258].

The physical barrier function of SC is characterised by complex interactions
between various physicochemical molecular groups and cellular components [259,
260]. Not only are the quantity and quality of the individual components thought
to be vitally important for barrier function but so is their molecular organization,
that is, the position of the molecules in relation to each other [261]. Keratinocytic
lipid synthesis is mostly an autonomous process and produces not only choles-
terol and cholesterol derivates but also free fatty acids (FFAs) with different chain
lengths as well as triglycerides [262].
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Figure 9.1 | FFA synthesis in the cytosol of a keratinocyte done by multi-
enzyme complex and subsequent storage in the lamellar bodies. Finally, the
release of the FFA is accomplished as precursors. FFA, free fatty acid. Reprinted Figure
1 from [7].

Additionally, ceramides (CERs) are synthesised in the endoplasmic reticulum
of the keratinocytes, and their anisometric molecular structure differs markedly
from other lipid classes [263, 264]. Due to load differences within their long-
chain molecules, CERs are able to spontaneously form lyotropic mesophases (also
known as liquid-crystalline membrane structures) [265, 266]. Unlike phospholipids,
functionally important CERs in the SC contain 2 alkyl chains of different lengths.
Depending on the hydration level, they show different configurations; various mem-
brane models describe a complex network of membrane sections with polymorphic
phase characteristics [259, 267, 268]. In this context, the metabolic and physico-
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chemical interactions of FFAs are of vital importance for the organisation of the
SC barrier [269, 270]. Fatty acids, such as intrakeratinocytic substrates, are the
basis for the synthesis of CERs as well as phospholipids. After secretion of the
lipid matrix from the lamellar bodies, FFAs are formed in the Stratum granulosum
by the breakdown of phospholipids [271].

Together with other lipophilic molecules, FFAs are very important for the char-
acteristics of CER membranes, especially for their dense orthorhombic packaging.
Previous insufficient attention was placed on the importance of odd-numbered
FFAs, which are formed via the phytosphingosine metabolic pathway [272]. CER
subspecies have an odd number of carbon atoms in the amide bound fatty acid
chain of the molecule [273, 274]. The existence of oddnumbered FFAs in the SC is
considered possible, since instead of an acetyl group, a propionyl group may be at-
tached to the fatty acid chain [275]. However, the presence of oddnumbered FFAs
and the influence of age on the composition of FFAs have not been extensively
studied. Insights into pathogenetic relationships are important for performing a
targeted substitution of the epidermal barrier function. For skin lipids, the prob-
lem in this case is that qualitative changes, in addition to quantitative changes,
could be crucial, in particular for FFAs [276].

It should be mentioned that, aside from the SC, the epidermis is particularly
good at synthesising large quantities of both even- and odd-numbered FFAs [277].
Depending on the starting molecule (acetyl-CoA or propionyl-CoA), FFAs are syn-
thesised by fatty acid synthase through the condensation of 2 or 3 carbon units, up
to a chain length of C16:0 and C17:0 (Fig. 1) [278]. Chains longer than C16:0 and
C17:0 are subsequently synthesised by elongase enzymes [279]. Finally FFAs are
released as phospholipids together with lipid hydrolases from the lamellar bodies
and accumulate in the intercellular lipid-rich matrix [280]. Aging processes and
chronic metabolic changes, such as diabetes mellitus, have an important influence
on the lipid metabolism of keratinocytes and cause quantitative as well as quali-
tative changes of the lipophilic molecules within the membranes of the SC [281].
It is clear that as the skin becomes thinner and drier with age as well as dur-
ing longconsisting diabetes and this likely influences lipid patterns observed in the
SC. Moreover, variances in FFA chain length distribution have already been estab-
lished as a factor in the pathogenesis of atopic eczema and are currently discussed
in psoriasis and ichthyoses [253, 282–285].

In this study, we developed a valid analytical method and evaluated age-related
and diabetes-induced changes in the FFA composition of the SC, with the pos-
sibility of targeted substitution of the lipid barrier being an antiaging skin or
anti-diabetic xerosis treatment approach in the future.
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9.2 Materials and Methods

In this section, we will present the quantification and analysis of FFA concentra-
tions. In subsection 9.2.1, we will introduce the participants in this study who
provided the skin samples. In subsection 9.2.2, we will describe the extraction of
lipids from the SC. In subsection 9.2.3, we will turn to the quantification of FFA
concentrations based on gas chromatography. In subsection 9.2.4, we will present
the statistical analysis of the FFA concentrations.

9.2.1 Subjects

The study design was approved by the ethics committee of the medical faculty
at the Martin Luther University Halle-Wittenberg (Germany) and the study was
performed by an experienced dermatologist. Written informed consent was pro-
vided by all participants. Inclusion criteria were as follows: non-smoker, Cau-
casian males or females, exclusion criteria included erosive, ulcerative, or inflamed
skin lesions in measurement areas, participation in another clinical trial 4 weeks
before study start and the topical application of drugs or skin care products 1
week before study start. Three groups were investigated: healthy subjects aged
over 60 years (elderly/healthy), healthy subjects aged 18-40 (young/healthy) and
subjects with insulin-dependent diabetes mellitus for at least 5 years aged 18–40
(young/diabetic). Because of the good reachability, clinical involvement and com-
parability of the specific skin regions lipids were extracted from the following areas:
subgroup elderly/healthy = inner forearm, subgroup young/healthy = inner fore-
arm + inner site of foot, subgroup young/diabetic = inner site of foot.

9.2.2 Extraction of SC lipids

For the in vivo extraction of surface lipids, a cylindrical glass ring with an extrac-
tion area of 6.15 cm2 was filled with 5 mL nhexane/ethanol 2:1 (v/v). The open
side was pressed tightly to a skin area on the inner forearm. The extraction time
was always exactly 5 minutes. The extracts were evaporated at a temperature of
50 ◦C under a stream of nitrogen. This resulted in a dried residue, which was then
stored at –30 ◦C and subsequently dissolved in 250 µL n-hexane/ethanol 2:1 (v/v)
before use [286].
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9.2.3 Gas chromatography – Flame ionization detection
analysis

GC analyses of FFAs were carried out using the Agilent 7890A GC System (Agi-
lent, Waldbronn, Germany) equipped with an autosampler and a flame ionization
detector. The GC column used was Optima FFAPPlus 0.25 µm, 30 × 0.25 mm ID
(Macherey-Nagel GmbH & Co. KG, Düren, Germany). Nitrogen was used as the
carrier gas. The gradient temperature program was 80 ◦C for 1 min, 160 ◦C for 3
min, 250 ◦C for 6 min and 260 ◦C for 12.5 min. The injection volume was 1 µL
and the injection temperature was 250 ◦C. TMSH 0.2 M was used as the reagent
due to having high volatility. Detection of all FFAs was carried out at 300 ◦C.
A fourfold deuterated FFA (lignocerin-9,9,20,20-d4-acid) was used as an internal
standard. Thus, inaccuracies were avoided by calculating the peak area ratio. All
runs included 2 recordings.

The calibration curve was constructed using 6 concentrations (0.2; 0.5; 1.0;
1.5; 2.0 and 2.5 µg/mL) of each FFA. The linearity of each plot (concentration
versus peak area) was tested using linear regression analysis. Estimation of limit
of quantification (LoQ) and limit of detection were calculated from the signal-to-
noise ratio. The peak height needed to be 10 times higher than the baseline noise
for quantification and 3 times higher for detection. The between-run precision and
accuracy of this method were determined by analysing 4 replicates containing 0.2;
0.4; 1.5 and 2.5 µg/mL in hexane/ethanol 2:1 (v/v).

Figure 9.2 | Description of a chromatogram example of GC with fatty acid
standards. The x-axis displays the retention time in minutes and the y-axis the peak
height in pA. Reprinted Figure 2 from [7].

Five determinants of the same concentrations were conducted over 3 runs on 3
different days. Deviations at the LoQ are allowed in a range of ± 20% and for
higher concentrations ±15%. The selectivity of the method was examined through
analysis of all FFAs in 1 standard solution and a good peak separation was achieved
(Fig. 2). Carryover effects were analysed by observing the occurrence of FFAs in a
blank sample of hexane/ethanol 2:1 (v/v) with 2 µL of the derivatisation reagent
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TMSH 0.2 M added to 50 µL of sample solution. FFAs that remained as residues
in the GC or as contamination could thus be detected. However, in the blank
samples, no detectable levels of FFAs were found. Butylhydroxytoluol 0.05% was
added to ensure the storage stability of unsaturated FFAs through the prevention
of oxidation [287].

9.2.4 Statistical analysis

For each subject, all FFA concentrations were measured twice, and corresponding
pairs of FFA concentrations were summarised by using their arithmetic means.
These data were used for all the following statistical tests, and the programming
language R [288] was used. The obtained FFA data were not normally-distributed,
as indicated by the Shapiro-Wilk test [289]. Thus, the non-parametric Mann-
Whitney U test was used for assessing statistical significance for each FFA between
the two groups. As there were multiple comparisons of each FFA, the resulting P
values were adjusted by using the Bonferroni correction method. Differences were
considered statistically significant if the adjusted P value was < 0.05. For compar-
ing the complete FFA concentration profiles among the two groups, a multivariate
Wilcoxon test was performed [290].

9.3 Results

Overall, 258 subjects were included in this study: 110 subjects in group el-
derly/healthy, 110 subjects in group young/healthy and 38 subjects in group
young/diabetic. In subsection 9.3.1, we will present the FFA concentrations mea-
sured in the different groups of subjects. In subsections 9.3.2 and 9.3.3, we
will compare the FFA concentrations based on age-related and diabetes-induced
changes in the lipid composition of the SC.

9.3.1 Quantification and identification of FFA concentrations

For quantification of FFAs in the SC, a selective gas chromatography – flame ion-
ization detection method was developed and validated. This method demonstrated
excellent peak separation and the values of precision and accuracy, according to
the criteria of the European Medicines Agency were met [291]. To minimise er-
rors, an internal standard was added to the measurements. The analysis showed
no carry-over effect and was shown to be very well suited for measuring even- and
odd-numbered FFAs as well as unsaturated FFAs.
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Figure 9.3 | Box plot comparing FFA concentrations in µg/mL of el-
derly/healthy and young/healthy subgroups. The blue box plots represent sub-
group elderly/healthy, while the white box plots represents subgroup young/healthy.
Each box plot contains 110 FFA concentrations. * Statistically significant differences
between subgroups; P < 0.05. FFA, free fatty acid. Reprinted Figure 3 from [7].

All of the FFA standards were recovered in skin extracts from the SC. The most
abundant FFAs with a shorter chain length (chain length smaller than 20 carbon
atoms) were C18:0, C18:1 and C18:2 and with a longer chain length were C24:0
as well as C26:0. The FFA with the lowest concentration of all investigated FFAs
was C17:0 with 0.7% of the total FFA amount. Large interindividual variability
in individual FFAs concentrations was observed. In particular, levels of the FFAs
C18:1 and C18:2 differed markedly between subjects (Fig. 9.3, 9.4).

9.3.2 Comparison of elderly/healthy vs. young/healthy

Individual FFA levels in the total FFA content of the skin were compared between
the 2 groups and the comparisons were analysed for statistical significance (Fig.
9.3). Odd-numbered FFAs comprised 20.7 and 22.6% of the total FFA concen-
tration in the SC on volar forearm in subgroup elderly/healthy and in subgroup
young/healthy respectively (Table 9.1). After applying the Mann-Whitney U test,
levels of the FFAs C15:0 and C17:0 were found to be significantly lower in sub-
group elderly/healthy, compared with subgroup young/healthy (Table 9.2). No
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statistically significant differences in the complete FFA concentration profiles were
observed between these 2 groups.
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Figure 9.4 | Box plot comparing FFA concentrations in µg/mL of
young/healthy and young/diabetic subgroups. The blue box plots represent sub-
group young/healthy, while the white box plots represents subgroup young/diabetic.
The box plot contains 110 FFA concentrations in subgroup young/healthy and 38 in
subgroup young/diabetic. * Statistically significant differences between subgroups; P <
0.05. FFA, free fatty acid. Reprinted Figure 4 from [7].

9.3.3 Comparison of young/healthy vs. young/diabetic

Compared with subgroup young/healthy, levels of C18:2 and C19 were significantly
decreased in subgroup young/diabetic, (P < 0.004, P < 0.0005 respectively) and
levels of C15, C17, C18:1 and C23 were significantly increased (P < 0.001, P <
0.005, P < 0.01 and P < 0.01 respectively; Fig. 9.4). The total contents of odd-
numbered FFAs in SC of inner site of foot were 22.8 and 23.60% in subgroup
young/healthy and in subgroup young/diabetic respectively (Tables 9.1, 9.2).
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Volar forearm Inner site of foot
elderly/healthy young/healthy young/healthy young/diabetic

C15:0 2.7 ± 2.3 4.5 ± 2.3 2.8 ± 1.7 4.1 ± 1.7
C16:0 19.6 ± 9.9 22 ± 8.1 17.8 ± 7.5 16.6 ± 6.8
C17:0 1.1 ± 2.2 1.3 ± 1.1 0.9 ± 0.8 1.4 ± 0.7
C18:0 13 ±12.8 11.6 ±10.9 13.3 ± 8.6 11 ± 7.1
C18:1 11.6 ± 8.0 12.8 ± 7.0 14.1 ± 6.3 20.4 ± 7.5
C18:2 11.2 ± 4.9 10.7 ± 5.4 10.2 ± 4.3 6.3 ± 3.6
C19:0 5.4 ± 4.1 4.3 ± 2.9 5.1 ± 2.7 2.6 ± 1.8
C21:0 2.7 ± 2.7 2.6 ± 2.1 3.4 ± 3.1 4.3 ± 3.7
C23:0 2.9 ± 2.6 4.2 ± 5.7 4.9 ± 5.4 7.4 ± 5.0
C24:0 12.9 ± 8.2 11 ± 6.0 13 ± 6.1 15.5 ±12.6
C25:0 5.9 ± 4.5 5.7 ± 5.8 5.7 ± 5.0 3.8 ± 1.4
C26:0 11.2 ± 5.8 9.5 ± 4.2 8.7 ± 4.1 6.6 ± 2.2

Table 9.1 | Relative concentrations of FFAs in the different subgroups (%) ±
SD. Relative concentrations of each FFA was calculated for each subject in each sub-
group. The table displays the mean ± standard deviation of relative FFA concentrations
in %. Adapted Table 1 from [7].

9.4 Discussion

In accordance with the aim of this study, we developed as a first step a well-
suited and sensitive GC method for analysing FFA from human SC. Excellent
peak separation was achieved and we found that the LoQ and Limit of Detection
are sufficient to quantify small amounts of FFAs from the SC extracts as a second
step. To our knowledge, no such extended SC study with this high number of
subjects has been conducted thus far.

The literature regarding FFAs in the human SC is sparse, especially for odd-
numbered FFAs, but it has been postulated that FFAs can be processed by stepwise
coupling, not only of acetyl groups but also of propionyl groups and therefore it
is possible to obtain odd-numbered FFAs [292]. The group of Norlén et al. [292]
quantified low concentrations of odd-numbered FFAs in the SC of the inner human
forearm. In another study, Norlén et al. [293] determined that these odd-numbered
FFAs represent an endogenous component of the SC. However, it is thought that
odd-numbered FFAs can also be generated from exogenous triglycerides via enzy-
matic reactions [294]. Additionally, Nicollier et al. [295] evaluated 14 volunteers
with healthy skin and found odd-numbered FFAs with chain lengths ranging from
15 to 27 carbon atoms.

We investigated 12 even- and odd-numbered FFAs and found that odd-numbered
FFAs comprised on average 20.7% of the total FFA content in group elderly/healthy,
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A B

H1 H2 H3 H1 H2 H3

C15:0 12.000 0.000* 0.000* 11.999 0.001* 0.001*
C16:0 11.262 0.741 1.482 7.618 4.403 8.805
C17:0 11.987 0.013* 0.026* 11.994 0.006 0.012
C18:0 4.226 7.783 8.453 3.846 8.173 7.692
C18:1 10.406 1.600 3.200 11.999 0.001* 0.002*
C18:2 5.105 6.905 10.210 0.004* 11.996 0.008*
C19:0 2.566 9.441 5.132 0.000* 12.000 0.000*
C21:0 10.685 1.319 2.639 11.440 0.565 1.131
C23:0 11.947 0.053 0.107 11.992 0.008* 0.016*
C24:0 1.716 10.290 3.432 8.696 3.322 6.643
C25:0 3.604 8.405 7.207 0.126 11.876 0.252
C26:0 0.402 11.600 0.804 0.379 11.625 0.758

Table 9.2 | Bonferroni corrected P values derived from the Mann-Whitney U
test. Columns represent different alternative null hypothesis (H1–H3) of Mann-Whitney
U test statistic. H1 and H2 represent the one-sided test statistic, verifying whether FFA
concentrations are greater (H1) A: in subgroup elderly/healthy compared to subgroup
young/ healthy and vice versa (H2) respectively B: in subgroup young/healthy compared
to subgroup young/diabetic and vice versa. H3 denotes the two-sided Mann-Whitney
U test, verifying whether FFA concentrations are different between corresponding sub-
groups. Asterisks denote statistically significant differences between corresponding sub-
groups; *P < 0.05. Adapted Table 2 from [7].

about 23% in group young/healthy and 23.6% in group young/diabetic. The even-
numbered FFAs C16:0, C18:0, C18:1 and C24:0 were the predominant types in our
data pool. All of the FFAs reported here were previously shown to be abundant by
Nicollier et al. [295] and the importance of C18:0 as well as C24:0 have been addi-
tional shown by Lampe et al. [296]. Large inter-individual variations in individual
FFA concentrations were observed in the study.

In particular, the FFAs C18:1 and C18:2 differed markedly between subjects.
This is in accordance with other studies using in vivo SC extraction methods
[297]. In one of the aforementioned studies by Norlén et al. [292], inter-individual
variations in almost all of the studied FFA concentrations in the SC were observed
in the study population of 22 female students. This high variability may be caused
by different amounts of surface sebum lipids, which vary significantly between
individual subjects. These results were supported by a further study by Norlén
et al. [293] that compared the FFAs from extracted skin surface samples with
FFAs from SC tape stripping samples. Significantly more shorter-chain FFAs were
found in the skin surface samples; this was probably due to the different number
of sebaceous glands and their activity. Therefore, the authors postulated that only
the longer FFAs with chain length of over 20 carbon atoms were of endogenous
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nature [293].

The obtained data showed large inter-individual differences in the short-chain
FFAs too and thus supports this pre-mentioned hypothesis. In the current study,
significantly lower levels of C15:0 and C17:0 were observed in elderly healthy sub-
jects compared with younger healthy subjects. However, no significant differences
of other FFAs investigated were found between these subgroups. The significant
differences between these study groups in C15:0 and C17:0 may be explained by
their origin. Recent studies have shown that next to fatty acid synthase, phytosph-
ingosine (PHS) is a major source of odd-numbered FFAs. The authors converted
PHS in mammalian tissues via several steps to 2-hydroxypalmitic acid and then
to pentadecanoic acid (C15:0) via alpha-oxidation. Finally, elongation of C15:0 to
C17:0 occurred via fatty acid synthase [267].

Nevertheless, further studies are necessary to show any correlations between
PHS and aged skin. In addition, decreasing levels of C15:0 and C17:0 FFAs could
be due to a pH alteration in enzymatic activity (e.g., propionyl-CoA decarboxy-
lase) although potential mechanisms have not yet been identified [298]. However,
according to our data the differences between young and aged healthy skin regard-
ing C15:0 and C17:0 FFAs levels may be due to changes in the activity of PHS
or fatty acid synthase, and not - like in other skin diseases, such as ichthyoses -
due to defects in different elongases or transferases [299]. Whether induction or
substitution by topical preparations containing these particular FFAs would be
beneficial for aging or dry skin needs to be investigated further. These investi-
gations will show if these FFAs alone or which other substances are essential for
maintaining the complex system of young healthy skin [277]. Nonetheless, the
results obtained correlate partially with those reported by Rogers et al. [300] who
found that individual FFAs did not significantly decrease with age.

Several significant changes in FFAs were observed in the subgroup of the young
diabetic subjects, compared with healthy subjects of the same age. These findings
were not surprising because FFAs are known regulators of skin surface pH and
other studies have found the skin pH to be significantly lower in diabetics [301, 302].
The lower levels of different FFAs in diabetics demonstrate a complex imbalance
on SC composition and determine a functional impairment of barrier. Obviously
a change in the regulation of keratinocytic proliferation and differentiation is the
main reason for an increase of epidermal retention.

With this in mind, the use of oils with an appropriate range of fatty acids as
an ingredient of the lipophilic phase in topical cosmetic products is recommended,
both for conditioning aged skin but also for care therapy in diabetic patients [303].
However, clinical data to prove practical relevance over a long period of time are
still rare [304, 305].
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9.5 Conclusions and Outlook

Lipid composition studies of the SC are of great importance for understanding age-
and disease-dependent changes in content and in molecular organization of epider-
mal barrier to develop appropriate cosmetic and medicinal products for recovery
and protection.

In this study, we have aimed to identify even- and odd-numbered FFAs within
the SC’s intercorneocytic lamellar lipid structures and explore age- and diabetes-
related changes in FFAs. We investigated the FFA compositions of 258 subjects
in total, containing 110 subjects aged over 60 years (elderly/healthy), 110 subjects
aged 18–40 (young/healthy), and 38 subjects with diabetes mellitus aged 18–40
(young/diabetic). From a bioinformatics perspective, we performed straightfor-
ward statistical analyses to detect and quantify differences in the FFA composi-
tions.

In the future, it might be worthwhile to study if lipid pattern can be influenced
by the supplementation of adapted mixtures of FFAs or by induction/normalization
of FFAs synthesis, with the aim of strengthening the skin barrier function of the el-
derly or in subjects with diabetes mellitus [306]. In order to improve the developed
bioinformatics approaches, it might be worthwhile to include further information of
the participants like gender, medication, or life style aspects such as smoking and
non-smoking. Based on these information, association studies could be performed
to gain a more detailed insight into the underlying cause of the FFA differences.

In this chapter, we have shown that participants with diabetes mellitus have
lower concentrations of different FFAs in the SC, resulting in functional impair-
ments of their skin barrier. The risk of being affected by such chronic diseases like
type 2 diabetes, cancer or cardiovascular diseases can depend on various dietary
factors, among others.

In chapter 10, we will investigate the effect of different dietary protein sources
and their influence on metabolic and functional parameters. In this second meta-
bolomic study, we will analyse the serum metabolites of pigs, which serve as surro-
gates for humans. To perform structured analyses of the diverse metabolome data,
we will present bioinformatics approaches based on machine learning to quantify
statistical differences that allow us to interpret the effects of the different dietary
protein sources.
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10
Metabolic footprint in response to

dietry proteins in a pig model

In this chapter, we will investigate the contributions and effects of different dietary
proteins on the serum metabolite profile. We will compare the intake of lupin
protein, lean beef, and casein, whereas only lupin is a plant based protein whereas
lean beef and casein are animal based. Several studies associate the intake of plant
proteins with a decreased risk in chronic diseases such as cardiovascular disease
or stroke which is in contrast to the animal based proteins. My colleagues and I
statistically analyzed the differences in the amino acid composition of the dietary
proteins in the pigs’ serum metabolites. Additionally, we developed a pipeline
based on linear discriminant analysis combined with feature selection to detect sets
of biomarkers from the serum metabolites and discriminate between the intake of
the three different dietary protein sources.

In section 10.1, we will provide an overview of the impact of dietary protein
intake to the risk of being affected by chronic diseases and we will present the
goals of this study. In section 10.2, we will introduce the study design and we will
present the analysis pipeline and give a detailed overview of the linear discriminant
analysis to extract differences in the serum metabolites based on the three differ-
ent protein intakes. In section 10.3, we will investigate the compositions of the
serum metabolites and we will present significant differences in the three dietary
groups. In sections 10.4, we will discuss the results from the metabolome analyses
and the sets of biomarkers the bioinformatics analyses could detect to distinguish
between the intake of the different dietary proteins. Finally, in section 10.5, we
will conclude with the findings of the study and we will give an outlook for possible
bioinformatics studies and future work.

The following sections are extracted from the publication of Schutkowski et al.
2019 “Metabolic footprint and intestinal microbial changes in response to dietary
proteins in a pig model” [307].
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10.1 Introduction

Dietary factors influence the risk of chronic diseases such as type 2 diabetes (T2D),
cancer and cardiovascular diseases (CVDs). Many studies of the contribution of
nutrients to the prevention or increased risk of these chronic diseases have focused
on the role of fats and carbohydrates, including fibers. However, in the last few
years, epidemiological studies have also identified associations between dietary
protein sources and disease risks [308, 309].

Data from recently published meta-analyses of cohort studies showed that the
intake of protein from red meat and processed red meat is associated with an in-
creased risk of T2D [310, 311]; colorectal, pancreatic, laryngeal and breast cancers
[312, 313]; as well as stroke, coronary heart disease, heart failure and hyperten-
sion [314, 315]. In contrast, the consumption of plant proteins is often associated
with beneficial health effects. Meta-analyses of prospective studies reported an
association between a high intake of plant proteins and a decreased risk of obesity,
cardiovascular risk factors, CVD and stroke [314–316].

Although data from epidemiological studies suggest that plant proteins are gen-
erally healthier than proteins derived from animal sources, protein-rich foods usu-
ally consist of several components that might be relevant to health and disease.
These factors must be considered when assessing the health benefits or potential
risks of proteins. Plant and animal sources of proteins also exhibit substantial dif-
ferences in the amounts and types of fats and carbohydrates. In addition, plant-
based foods contain several phytochemicals, such as polyphenols, to which the
beneficial effects of these foods may be attributed. In contrast, processed meat
is a source of N-nitroso compounds, mutagenic heterocyclic amines and carcino-
genic polycyclic aromatic hydrocarbons that are formed during food processing
steps such as frying and grilling [317]. Other issues that limit assumptions on
the causal relationships between dietary proteins and health are lifestyle factors
associated with the consumption of certain foods. For, example, in contrast to
their meat-eating counterparts, vegetarians generally consume healthier diets, are
usually nonsmokers, show higher physical activity levels, are less obese, and are
more health conscious [318, 319].

Interventional studies that use isolated proteins and control for interfering health-
affecting factors are required to obtain data on the actual contributions of dietary
proteins to human health. However, the number of interventional studies exam-
ining the roles of certain dietary proteins in health is limited. Most human and
animal studies have investigated the health potential of soybean protein and ob-
served hypolipidemic effects [320, 321]. Comparable beneficial effects on serum
triglyceride and cholesterol levels in humans and animals have also been observed
in interventional studies using lupin proteins [322–324]. Strikingly, the majority
of the human intervention studies that have investigated the roles of dietary pro-
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teins in health are primarily limited to the measurements of classical risk factors,
such as blood pressure and blood lipid levels, in patients suffering from various
disease conditions, including obesity, T2D, hypertension and hyperlipidemia [324–
326]. Intervention studies providing data from comprehensive analyses that have
evaluated the changes in metabolites in response to dietary proteins are rare.

The aim of the current study was to compare the effects of three dietary protein
sources (lupin protein, lean beef and the milk protein casein) relevant to human
nutrition and to describe their abilities to change metabolic and functional param-
eters. The study focused on changes in amino acids and amino acid derivatives in
response to the different dietary proteins, an assessment of the metabolic effects of
the dietary proteins and the identification of biomarkers indicative of the type of
protein ingested. We further aimed to study the effects of these dietary proteins
on modulating cardiovascular risk factors and the composition of the gut micro-
biome. Pigs were used as an animal model because the morphology and physiology
of the gastrointestinal system, the ingesta transit times and the digestive efficien-
cies are comparable to humans [327], and a closer similarity between the pig and
human gut microbiomes than between the mouse and human gut microbiomes has
been observed [328]. Pigs and humans are both omnivorous and share greater
similarities regarding the eating behavior, the metabolism, and the anatomy and
physiology of the gastrointestinal tract compared to rodents [329]. In addition, in-
tervention trials using pigs can be conducted under strictly controlled conditions,
such as standardized food intake and physical activity.

10.2 Materials and Methods

In this section, we will describe the experimental design, the quantification of
metabolomics data, and the bioinformatics approaches to analyse the diverse data.
Further information about additional experimental analysis such as the isolation of
RNA, or the profiling of microbial DNA from fecal samples can be obtained from
the publication [307]. In subsection 10.2.1, we will introduce the study design and
the treatment of the pigs. In subsection 10.2.2, we will present the composition
of the protein sources that were fed to the pigs. In subsection 10.2.3, we will
learn about the sample collection, especially the collection of blood samples to
measure the concentration of serum metabolites. In subsection 10.2.4, we will
investigate the bioinformatics approaches for the analysis of variance (ANOVA)
to compare concentrations of serum metabolites between the three dietary groups.
Additionally to the published study, in subsection 10.2.5, we will present a pipeline
based on the linear discriminant analysis combined with feature selection to detect
characteristic amino acid combinations distinguishing the pigs’ diets.
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10.2.1 Animals and study design

The experimental procedure was performed according to the established guidelines
for the care and handling of laboratory animals [330]. The study was approved
by the local council of Saxony-Anhalt (Landesverwaltungsamt, Halle (Saale), Ger-
many; approval number: H1-4/44G). The pigs were individually housed in pens
in an environmentally controlled facility with a temperature of 20◦C, relative hu-
midity of 55%–60%, and light from 6:00 a.m. to 6:00 p.m. Water was available ad
libitum from a nipple drinking system during the entire study.

Forty-five 13-week-old female crossbred pigs [(German Landrace × Large White)
× Pietrain] with an initial body weight of 33.7±2.9 kg (mean ± S.D.) were ran-
domly assigned to 3 groups of 15 pigs each. Group 1 received a lupin protein
isolate (Prolupin, Grimmen, Germany) as source of a plant protein, group 2 was
fed cooked lean beef (Schirmer & Partner, Seelitz, Germany), and group 3 re-
ceived casein (Max Walter Handelsvertretungen, Leonberg, Germany) as animal
sources of proteins. The experimental diets were calculated to attain compara-
ble contents of crude protein and crude fat. Thus the dietary protein sources
were added to a standardized basal diet in amounts of 130-150 g per kg diet. A
detailed description of the composition of the basal diet is provided in Supple-
mentary Table 1. The basal diet was supplemented with 4.7 g/kg L-lysine HCl,
2 g/kg DL-methionine, 1.5 g/kg L-threonine and 0.3 g/kg Ltryptophan to meet
the amino acid requirements of growing pigs according to the recommendations
of the Society of Nutrition Physiology [331]. Minerals and vitamins were added
as a commercial premix (Mineral feed, Basu, Bad Sulza, Germany) in amounts
of 5 g/kg to meet the recommendations of the National Research Council [332].
The diets were administered for 4 weeks in strictly controlled amounts to prevent
differences in feed intake. Pigs were weighed weekly.

10.2.2 Characterization of the experimental proteins

Defatted protein isolated from Lupinus angustifolius and casein were not pro-
cessed. Lean beef was minced and cooked at 100◦C for 90 min. Crude protein, fat
and ash contents of the dietary proteins were determined using standard methods
[333]. Fatty acid analysis was performed using gas chromatography (GC-17V3;
Shimadzu Corporation, Kyoto, Japan) equipped with a flame ionization detec-
tor and an autosampler (AOC-5000), as described [334]. One GC procedure was
required to analyze the fatty acid methyl ester (FAME) distribution of the sam-
ples. This method determined the identity and general fatty acid distribution of
4–22 carbon length fatty acids (including straight and branched structures) using
a fused-silica capillary column DB-225 ms (30 m, 0.25 mm, i.d. with 0.2 µm film
thickness; Jand W, Scientific, USA) and H2 as carrier gas. Fatty acid concen-
trations were expressed as percentage of the total area of all FAMEs (% of total

148



10.2 Materials and Methods

FAME) using GC solution software version 2.3 (Shimadzu). A detailed description
of the composition of the experimental proteins is given in Supplementary Table
2 [307].

10.2.3 Sample collection

Blood samples were collected from each pig at the beginning and end of the exper-
iment by puncturing the external jugular vein. Blood was collected in Vacuette
Z clot activator tubes (Greiner Bio-One, Kremsmünster, Austria) and centrifuged
at 1100×g for 10 min at 4◦C to obtain serum for the metabolite analysis. For the
determination of plasma glucose levels, blood was collected in NaF-coated tubes.
Baseline serum concentrations of all metabolites are summarized in Supplemen-
tary Table 4[307]. No significant differences were observed in the baseline levels of
any of the metabolites. After 4 weeks, the pigs were anesthetized and euthanized
by exsanguination 5 h after their last meal. The liver was harvested, and aliquots
were snap-frozen in liquid nitrogen and stored at -80◦C until further analysis. A
10-cm section of the duodenum (starting 15 cm behind the pyloric part) was ex-
cised, washed several times with a cold NaCl solution (0.9%) and cut lengthwise to
collect the duodenal mucosa. The intestinal mucosa was harvested by scraping the
surface of the small intestine. Feces were collected from the rectum. Spot urine
samples were also collected. The pH of the urine samples was measured using a
pH electrode. Feces and urine samples from each pig were frozen at -20◦C until
further analysis.

10.2.4 Statistical analysis

Statistical analyses were performed using the programming language R [288]. Be-
fore performing the statistical tests, data were logarithmically transformed, thus
exhibiting a normal distribution. Hence, values are presented as the means±S.D.
of log10 data. First, Levene’s test was used to evaluate the equality of variances,
called homoscedasticity, for all parameters measured. The results of the Levene
tests and subsequent correction for multiple testing with the Benjamini–Yekutieli
method showed that all P values were greater than 0.5, thus suggesting homoscedas-
ticity.

Afterwards, log data were analyzed using one-way analysis of variance (ANOVA).
The resulting P values from each ANOVA were also corrected for multiple testing
using the Benjamini–Yekutieli method. If the adjusted P values revealed signifi-
cant effects (P < 0.05), means of the three groups were compared using Tukey’s
multiple-comparison test. Logarithmically transformed means were considered sig-
nificantly different at P < 0.05.
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10.2.5 Linear discriminant analysis

An LDA was performed to investigate the differences in amino acid concentra-
tions between the three groups and combined with feature selection to decipher
either single amino acids or pairs of amino acids that differentiated between the
three groups. The procedures used to select the amino acids and to validate the
classification approach are described below.

For the purpose of classification the pig samples were defined as the set {(x1, y1),
(x2, y2), ..., (xN , yN)}, with xn ∈ RD representing the logarithm of concentrations
of D selected amino acids, where n ∈ {1, . . . , N}, while N denoting the total
number of pigs in the study, and y representing the dietary protein source of each
pig, respectively its group. Thus, we defined the set of groups as C = {lupin, beef,
casein} with yn ∈ C. The number of pigs in each group was defined as Nc with
c ∈ C and

∑
c∈C Nc = N . Furthermore, it was assumed that the vectors xn follow

a multivariate normal distribution. Hence, we were able to define the probability
of the class posterior p(yn = c|xn, θc) for all c ∈ C and xn n ∈ {1, . . . , N} with θc
representing the model parameters for group c.

p(yn = c|xn, θc) =
p(xn|yn = c, θc) · p(yn = c|θc)∑
c∈C p(xn|yn = c, θc) · p(yn = c|θc)

(10.1)

∝ N (xn|µc
,Σc) · πc (10.2)

, with p(yn = c|θc) = πc denoting the class probability. Based on Leven’s test
we assumed equal variance and thus a shared covariance matrix Σ = Σc, ∀c ∈ C.
Hence, the posterior probability can be written as

p(yn = c|xn, θc) ∝ N (xn|µc
,Σ) · πc (10.3)

∝ πc · exp
(
µT

c
Σ−1xn −

1

2
xTnΣ−1xn −

1

2
µT

c
Σ−1µ

c

)
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1

2
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(
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As shown in Eq. 10.6, the term xconstn is independent of group c and thus can
be removed.

p(yn = c|xn, θc) ∝ exp

(
µT

c
Σ−1xn −

1

2
µT

c
Σ−1µ

c
+ logπc

)
(10.7)

The parameters of the LDA model like the mean vectors µ
c

and the covariance
matrix Σ were estimated in an unbiased manner as

µ̂
c

=
1

Nc

N∑
n=1

xnδ(yn = c) (10.8)

Σ̂c =
1

Nc − 1

N∑
n=1

(xn − µ̂c
)(xn − µ̂c

)T δ(yn = c), (10.9)

Σ̂ =

∑
c∈C(Nc − 1)Σ̂c

N − |C|
(10.10)

πc =
Nc

N
(10.11)

Using the trained model each data point was able to be classified based on its
maximal posterior probability. Thus, the model predicted a new group label ŷn
for each data point xn as

ŷn = argmax
c∈C

p(yn = c|xn, θc) (10.12)

= argmax
c∈C

βT

c
xn + γc. (10.13)

The classifier was validated using a leave one out cross-validation (LOOCV)
approach, which is referred to as the outer LOOCV. In each run of this outer
LOOCV, 44 data points were used for feature selection, namely, the selection of
amino acids, and the left out data point was used to validate the selected trained
model. As a model, we refer the results of an LDA based on the selected amino
acids. Feature selection, the process used to choose the best combination of amino
acids for the LDA, was performed in an internal LOOCV based on the remaining
44 data points. This internal LOOCV used 43 data points in each run to train an
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LDA model for each single amino acid and for all pairs of amino acids. The data
point that was left out was used to measure the performance of each model. The
classification error Eq. 10.14, which is the mean of misclassified data points, was
used to compare the models after the internal LOOCV. It is defined as

err =
1

N

N∑
n=1

δ(yn = ŷn). (10.14)

Thus, in each run of the outer LOOCV, models with a minimum classification
error based on the internal LOOCV were selected. At the end of each run of
the outer LOOCV, each left-out data point was classified by each selected model,
followed by calculating each model’s classification rate. Models showing the highest
classification rate were selected. Based on this procedure, six pairs of amino acids
were obtained that could distinguish the three groups of pigs the best.

10.3 Results

In this section, we will present the results of the statistical analysis of the amino
acid composition of the dietary proteins and the metabolites measured in the
serum. We will also investigate the LDA results to identify pairs of amino acids
in the serum which enable a differentiation of the pigs based on their diet.

In subsection 10.3.1, we will describe the differences in the concentrations of
amino acids and other metabolites quantified from the pigs’ serum and we will
describe the biomarkers provided by the LDA analysis. In subsections 10.3.2, we
will present the results of the methylation analysis based on SAM and SAH con-
centrations. In subsection 10.3.3, we will describe the relative mRNA expressions
of genes involved in DNA methylation. In subsection 10.3.4, we will investigate
the impacts of dietary proteins on health-relevant factors such as serum mineral
concentrations or the relative mRNA expression of genes involved in apoptosis and
stress responses.
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10.3.1 Amino acid composition of the dietary protein and
serum levels of amino acids and metabolites

(A)

(B)

Figure 10.1 | Composition and concentrations of amino acids in dietary pro-
teins and serum of pigs. (A) Amino acid composition of the dietary proteins and (B)
serum amino acid concentrations in pigs fed lupin, beef or casein for 4 weeks. The results
are presented as means ± S.D., n = 15. Levene’s test for homoscedasticity showed no
significant heterogeneity of variances. Metabolite concentrations were analyzed using
one-way ANOVA followed by Tukey’s test. a, b and c: Means without a common letter
differed significantly (P < 0.05). EAA, indispensable amino acids. Reprinted Figure 1
from [307].

First, we analyzed the amino acid composition of the dietary proteins. Fig. 10.1A
shows marked differences in the alanine, arginine, glutamate, lysine, methion-
ine, tyrosine and valine concentrations between the dietary proteins. The highest
arginine content was detected in the lupin protein isolate, the highest methio-
nine content was observed in the cooked beef, and casein was characterized by
the highest valine content. Both proteins from animal origin, beef protein and
casein, were characterized by higher lysine contents than lupin protein. We quan-
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tified the free amino acid concentrations in the 5-h fasting serum samples collected
from the pigs to assess whether dietary proteins alter the serum concentrations of
nonprotein-bound amino acids.

Figure 10.2 | Concentrations of characteristic serum metabolites of pigs af-
ter ingestion of different dietary proteins. Serum concentrations of 1- and 3-
methylhistidine, betaine, total carnitine (sum of free and acetyl- and acyl carnitines)
and free carnitine, homoarginine, methionine and trimethyllysine in pigs fed lupin, beef
or casein for 4 weeks. The results are presented as means ± S.D., n = 15. Levene’s test
for homoscedasticity showed no significant heterogeneity of variances. Logarithmically
transformed data were analyzed using one-way ANOVA followed by Tukey’s test. a,
b and c: Means without a common letter differed significantly (P < 0.05). Reprinted
Figure 2 from [307].

The serum concentrations of indispensable amino acids partially reflected the
contents of indispensable amino acids in the dietary proteins (Fig. 10.1A and
B). Significant differences in serum amino acid concentrations between the three
groups of pigs were observed for arginine, histidine, lysine, methionine, tyrosine
and valine, where the lupin protein group exhibited the lowest concentrations of
lysine and methionine (Fig. 10.1B). The serum concentrations of the other amino
acids were similar (Fig. 10.1B).

A set of additional amino acid derivatives was quantified using HPLC and
GC–MS/MS to identify serum metabolites that were characteristic of the type
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of protein ingested. Significantly higher serum betaine concentrations were ob-
served in the lupin protein group than in the beef protein and casein groups (Fig.
10.2).

Serum concentrations of six amino acid metabolites were higher in the group fed
beef protein than in the other two groups: 1-methylhistidine and 3-methylhistidine,
total and free carnitines, creatinine and trimethyllysine (Fig. 10.2). The serum
homoarginine concentrations were comparable between the groups fed beef protein
and casein but higher than those in the lupin protein group. Serum levels of choline,
citrulline, creatine, asymmetric and symmetric dimethylarginine, dimethylglycine,
methionine sulfoxide, ornithine, taurine and TMAO did not differ between the
treatment groups (Table 10.1).

Lupin Beef Casein P-value
Amino acid derivatives (µM)
Choline 16.85±1.67 15.37±1.76 15±2.78 ns
Citrulline 93.34±18.03 79.33±26.75 92.76±22.39 ns
Creatine 237.53±112.49 243.07±98.11 269.81±110.52 ns
Dimethylarginine asym. 1.49±0.18 1.64±0.26 1.50±0.23 ns
Dimethylarginine sym. 0.89±0.16 0.91±0.12 0.93±0.14 ns
Dimethylglycine sym. 7.76±2.99 7.77±2.71 6.37±1.42 ns
Methionine sulfoxide 2.13±0.45 2.32±0.60 2.58±1.01 ns
Ornithine 124.02±68.41 96.04±61.30 86.21±54.60 ns
Taurine 161.68±53.48 186.12±82.22 171.69±66.37 ns
TMAO 2.85±2.17 4.02±2.98 2.62±1.94 ns
Glucose metabolism
Glucose (mM) 4.80±0.47 4.85±0.42 4.86±0.32 ns
Insulin (mg/L) 0.04±0.02 0.05±0.03 0.04±0.03 ns
HOMA index 0.01±0.01 0.01±0.01 0.01±0.01 ns
Lipid metabolism
Cholesterol (mM) 2.94±0.30 2.78±0.26 2.87±0.24 ns
Triglycerides (mM) 0.46a±0.09 0.34b±0.09 0.32b±0.09 < 0.05
LDL (mM) 1.32±0.16 1.31±0.16 1.37±0.19 ns
HDL (mM) 1.82±0.23 1.58±0.16 1.61±0.17 ns
HDL/LDL Ratio 0.73±0.07 0.83±0.07 0.86±0.15 ns
Inflammation markers
CRP (mg/L) 23.02±6.23 21.52±7.01 22.26±6.53 ns
Rel. mRNA expr. of DNA methyltransferase and histone demethylase genes
Dnmt1 1.00±0.31 1.01±0.28 1.02±0.38 ns
Dnmt3a 1.00±0.43 0.87±0.22 1.10±0.33 ns
Kdm3a 1.00±0.15 0.99±0.34 1.34±0.41 ns
Rel. mRNA expr. of genes related to intestinal health in the intestinal mucosa
Birc5 1.08±0.37 1.08±0.57 1.10±0.47 ns
Eif4ebp1 1.04±0.20 1.12±0.31 1.16±0.17 ns
Hmox1 1.18±0.98 1.26±1.21 0.87±0.66 ns
Sod1 1.04±0.28 1.13±0.36 1.22±0.26 ns
Tp53 1.07±0.47 0.83±0.32 1.24±0.57 ns
Growth factors
IGF-1 (mg/L) 217.71±45.52 245.40±46.39 236.31±82.08 ns
Continued on next page
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Lupin Beef Casein P-value
Serum mineral concentrations
P (mM) 2.82±0.13 2.74±0.23 2.88±0.14 ns
Ca (mg/L) 108.70±6.09 107.89±8.04 111.18±9.76 ns
Mg (mg/L) 18.84±2.06 19.97±2.74 20.71±2.07 ns
Fe (mg/L) 3.50±0.88 3.70±0.91 4.07±0.99 ns
Zn (mg/L) 0.63±0.18 0.70±0.18 0.82±0.50 ns
Se (µg/L) 144.47±15.63 143.48±14.95 159.50±19.74 ns

Table 10.1 | Serum concentrations of amino acid metabolites, health risk pa-
rameters, relative mRNA concentrations, mineral concentrations and plasma
glucose concentrations. Serum concentrations of several metabolites and minerals in
pigs fed lupin, beef or casein for 4 weeks. C-reactive protein (CRP), IGF-1 and TMAO
levels were quantified. The results are presented as means ± S.D., n = 15. Levene’s
test for homoscedasticity showed no significant heterogeneity of variances. Metabolite
concentrations were analyzed using one-way ANOVA followed by Tukey’s test. a, b and
c: Means not sharing a common letter differed significantly (P < 0.05). Adapted Table
1 from [307].

An LDA was conducted to identify a subset of biomarkers that was useful for
discriminating between the intake of the three dietary protein sources. The LDA
analyzes relative differences between the three groups and is a widely used method
for pattern classification.

As depicted in Fig. 10.3, the three groups showed well-defined clusters for
six combinations of two biomarkers each. Combination 1 comprises betaine and
3-methylhistidine; combination 2, homoarginine and 3-methylhistidine; combi-
nation 3, methionine and 1-methylhistidine; combination 4, methionine and 3-
methylhistidine; combination 5, methionine and free carnitine; and combination 6,
homoarginine and free carnitine. Thus, these combinations are potential biomark-
ers to classify samples from animals fed the corresponding dietary protein source.
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Figure 10.3 | Results of the LDA based on logarithmically transformed serum
concentrations [log10(serum concentration in µM+1)]. Straight lines show the
classification borders defined by LDA to distinguish between the three groups of pigs
that were fed lupin protein (black points), beef (white rectangles) and casein (gray
diamonds). (A–F) Classification results based on log concentrations of pairs of amino
acids. The x- and y-axes are labeled with the selected pairs of amino acids defined by
the feature selection within the LOOCV analysis. All three groups are nearly perfectly
distinguishable based on six different pairs of amino acid derivatives. Reprinted Figure
3 from [307].

10.3.2 SAM and SAH concentrations in liver and serum
homocysteine levels

Fig. 10.4C illustrates the relationship between the methyl donators methionine
and betaine and the synthesis of dimethylglycine, SAM, SAH and homocysteine.
Because the dietary proteins specifically differed in their impact on serum levels
of methionine and betaine, molecules that are involved in one-carbon metabolism,
we analyzed the SAM:SAH ratio in the liver and serum homocysteine concentra-
tions as marker of the methylation capacity. The SAM:SAH ratio in liver was
higher in the group fed the lupin protein than in groups fed beef or casein (Fig.
10.4A), although this difference did not reach statistical significance. The lowest
serum homocysteine concentration was observed in the group fed the lupin protein,
followed by the groups fed the beef and casein (Fig. 10.4B).
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10.3.3 Hepatic methylation

Methylation processes depend on the availability of methyl groups. As the di-
ets of the three groups of pigs differed in their concentrations of methyl group
donators methionine and betaine, we analyzed mRNA levels of genes involved in
DNA methylation. Here, the expression of mRNAs encoding the hepatic DNA
methyltransferases Dnmt1 and Dnmt3a did not differ between the three treatment
groups (Table 10.1). We additionally analyzed the relative mRNA expression of
the histone demethylase Kdm3a and did not detect significant differences between
the three groups of pigs (Table 10.1).

We analyzed the global liver methylation status of histone H4 using MALDI-
TOF mass spectrometry to assess whether differences in the methyl group donators
methionine and betaine induce changes in the histone methylation pattern. How-
ever, these analyses did not reveal significant differences in the global histone H4
methylation pattern between the three groups (Fig. 10.4D). The findings were
confirmed by a site-specific Western blot analysis, which did not show differences
in the monomethylation of lysine 4 in histone H3 (H3K4me1), the dimethylation
of lysine 4 in histone H3 (H3K4me2) and the trimethylation of lysine 4 in histone
H3 (H3K4me3) between the treatment groups (Fig. 10.4E).

10.3.4 Impacts of dietary proteins on health-relevant factors

We analyzed fasting glucose and insulin levels and calculated the homeostatic
model assessment (HOMA) index in response to the consumption of lupin pro-
tein, beef protein and casein to elucidate the effects of dietary proteins on glucose
metabolism but did not observe differences between the three diets (Table 10.1).
Furthermore, serum concentrations of total, LDL and HDL cholesterol were com-
parable between the three groups, whereas the concentration of triglycerides was
significantly higher in pigs fed lupin protein compared to those fed beef and casein
(Table 10.1). Other factors associated with diseases, such as the inflammatory
marker C-reactive protein (CRP) and the proliferative factor IGF-1, also did not
differ between the groups (Table 10.1). However, the urine of pigs that were fed
beef had a significantly lower pH value than the urine of pigs fed lupin protein or
casein (pH values of urine: lupin protein: 6.12±0.18a; beef: 5.82±0.27b; casein:
6.20±0.25a; P < 0.05).

The serum concentrations of calcium, iron, magnesium, phosphorus, selenium
and zinc were quantified to elucidate whether the consumption of the different
dietary proteins was associated with changes in mineral concentrations. The anal-
yses failed to show any differences in serum mineral concentrations between the
groups (Table 10.1). Because the intake of red meat is associated with an increased
colon cancer risk, we analyzed the mRNA expression of intestinal genes involved
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10.3 Results

in apoptosis and stress responses. However, neither the expression of genes in-
volved in regulating apoptosis, such as survivin (Birc5) and the tumor suppressor
Tp53, nor that of stress responsive genes, including heme oxygenase 1 (Hmox1),
Eif4eb1 (4ebp1) and superoxide dismutase 1 (Sod1), was differently regulated by
the intake of lupin protein, beef and casein (Table 10.1). As shown in Table 10.1,
the expression of these genes was not influenced by the dietary treatment.
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Figure 10.4 |Methylation analysis and one carbon cycle . (A) SAM/SAH ratio in
the liver; (B) serum concentrations of homocysteine; (C) schematic representation of the
one-carbon cycle; (D) percentage of global methylation of histone H4 and (E) Western
blot analysis of histone H3K4me1, H3K4me2 and H3K4me3 levels in the liver tissues of
pigs fed lupin protein, beefor casein for 4 weeks. The results are presented as changes
in methylation relative to lupin-fed pigs. (F) Representative Western blot images. All
results are presented as means ± S.D., n = 15. Levene’s test for homoscedasticity showed
no significant heterogeneity of variances. Data were analyzed using one-way ANOVA
followed by Tukey’s test. a, b and c: Means without a common letter differ significantly
(P < 0.05). Reprinted Figure 4 from [307].
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10 Metabolic footprint in response to dietry proteins in a pig model

10.4 Discussion

Dietary proteins play a crucial role in providing indispensable amino acids and
nitrogen to synthesize structural and functional proteins in the organism. In ad-
dition to providing amino acids for protein synthesis, dietary proteins and their
degradation products may modulate the risk of chronic diseases. As chronic dis-
eases usually develop because of metabolic changes or possibly alterations in the
gut microbiome, we investigated the profiles of amino acid metabolites in serum
and the fecal microbiota in response to three different dietary protein sources that
may exert beneficial or detrimental effects on health.

Here, the dietary protein sources changed the serum concentrations of free amino
acids and their derivatives. Metabolites that differed significantly between the
groups were the nonprotein-bound amino acids arginine, histidine, lysine, me-
thionine, tyrosine and valine and the amino acid derivatives betaine, creatinine,
homoarginine, trimethyllysine, carnitines and methylhistidines. A classification
analysis was conducted to elucidate whether the dietary proteins induce a distin-
guishable metabolic footprint. Data obtained from the LDA analysis identified six
sets of two serum biomarkers each that discriminated between the intake of lupin
protein, beef or casein. The sets of metabolites whose combination was useful
for distinguishing between the dietary proteins included 1- and 3-methylhistidine,
betaine, methionine, free carnitine and homoarginine.

1-Methylhistidine is part of the histidine dipeptide anserine, which is a nat-
ural antioxidant and is mainly present in skeletal muscle [335]. As the diet is
the main source of histidine dipeptides in humans [335], 1-methylhistidine can be
used as a marker for the intake of meat. 3-Methylhistidine is produced by the
posttranslational methylation of histidine in muscle-derived actin and myosin. In
contrast to 1-methylhistidine, 3-methylhistidine is either derived from the diet and
or produced endogenously during muscle protein turnover and degradation [336].

Under our experimental conditions, we did not expect differences in the en-
dogenous muscle protein turnover; thus, we propose that the differences in serum
3-methylhistidine concentrations were attributed to differences in the dietary pro-
tein intake. This hypothesis is supported by our findings that the intake of beef,
which mainly consists of skeletal muscle proteins, results in a significant increase
in the serum 1- and 3-methylhistidine concentrations.

As the diet is the only source of 1-methylhistidine for humans, we propose that
the quantification of 1-methylhistidine or the combination of both methylhistidines
will provide a more precise indication of the true meat intake compared to 3-
methylhistidine. Researchers previously proposed that 24-h urinary measurements
of 1- and 3-methyhistidine are necessary for the verification of meat intake in
humans [337, 338]. Here, these metabolites were also present in high concentrations
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10.4 Discussion

in serum after beef intake. Thus, we propose that 24-h urine sampling may not be
required to quantify methylhistidine concentrations as marker of meat intake.

In the current study, we detected increased levels of carnitine and its precur-
sor trimethyllysine in the serum of pigs fed the beef. Although carnitine can be
synthesized endogenously, meat intake significantly increases circulating carnitine
levels [339]. This finding has also been confirmed in a human cohort study that
reported lower serum carnitine levels in vegans than in individuals consuming food
of animal origin [340]. The carnitine content of meat normally ranges from 300 to
500 µmol/100 g, depending on the cut and cooking method [341, 342].

Data from that association study confirmed that carnitine can be used to dis-
tinguish between protein sources, although carnitine is produced endogenously.
Another biomarker is trimethyllysine, which is closely linked to carnitine and is
important in animals as the metabolic precursor of carnitine [343]. To our knowl-
edge, trimethyllysine has not currently been used as a marker of meat intake.

Homoarginine is a nonproteinogenic amino acid, and several studies have shown
that, due to its structural similarity to arginine, it can serve as an alternative sub-
strate for NO synthase and might thus be involved in the mechanism regulating
blood pressure [344]. Recent studies have suggested a role for homoarginine in
vascular function and identified a possible association between low homoarginine
concentrations and an increased CVD risk [345, 346]. In the present study, signifi-
cantly lower serum homoarginine concentrations were observed in lupin-protein-fed
pigs compared to the other two groups, which, together with the higher serum ho-
mocysteine content in beef and casein fed animals, suggest a higher CVD risk.

As the lupin-protein-fed pigs had lower concentrations of homoarginine and ho-
mocysteine, we postulate that lupin protein may positively impact CVD risk, in
contrast to beef and casein. Currently, lupin protein is used in only small quan-
tities in human nutrition. Results from our study can contribute to force the use
of lupin proteins as an alternative for soy bean protein or proteins from animal
sources.

In addition to the amino acid metabolites, parameters such as urine pH have
been used to corroborate the finding that high meat intake leads to renal acid load
and an increase in renal protein excretion [347, 348].

Although 1- and 3-methylhistidine, homoarginine, carnitine and trimethyllysine
are markers of meat intake, the serum betaine level is a biomarker of the intake of
plant proteins, in particular lupin protein. Betaine is an essential osmolyte that ac-
cumulates in most plant tissues to regulate cell volume, and it also supplies methyl
groups to convert homocysteine to methionine [349]. Betaine is present at high
concentrations in wheat products, pulses, potatoes, spinach, broccoli, beet and
cabbage, but it is not a marker for vegetable intake in general, as most vegetables,
particularly fruits, contain very low amounts of betaine [350, 351].
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10 Metabolic footprint in response to dietry proteins in a pig model

In addition, lupin protein intake was associated with low serum methionine con-
centrations and a high arginine concentration. Here, we were not able to identify
biomarkers of dairy protein intake. For dairy intake, the two odd-chain fatty acids
pentadecanoic acid (15:0) and heptadecanoic acid (17:0) are widely used as intake
markers [352]. Nevertheless, markers of dairy protein intake are lacking.

Interestingly, among the metabolites that are potential biomarkers of dietary
meat and plant protein intake, methionine and betaine are physiological methyl
donors that play important roles in the one-carbon cycle. Differences in the con-
centrations of metabolites from the one-carbon cycle might alter the methylation
capacity and subsequently result in DNA or histone hypo- or hypermethylation
[353]. Based on accumulating evidence, dietary components that influence the
supply of methyl groups modulate DNA or histone methylation patterns and in
turn gene transcription [354].

SAM, which is generated in the one-carbon cycle, serves as an essential cofactor
for almost all DNA and posttranslational protein methylation reactions. Diets
rich in methyl group donors, including methionine, choline, betaine, folic acid or
vitamin B12, alter global and gene-specific promotor DNA or histone methylation
by affecting the methylation capacity of the cell and thus the activity of DNA
or histone methyltransferases [355]. Epigenetic changes have increasingly been
correlated with metabolic disorders, including obesity, T2D and CVD [356]. In
addition, differences in DNA methylation in patients with cancer are related to
methyl donor availability.

Betaine serves as a methyl donor in the one-carbon cycle that converts homocys-
teine to methionine and has been used to lower serum homocysteine concentrations
[357]. Betaine (also named trimethylglycine) is mainly eliminated by transmethy-
lation to dimethylglycine [358]. This observation is consistent with the finding
that pigs fed lupin protein display the highest serum betaine concentrations and
the lowest serum homocysteine concentrations. We speculated that all crops rich
in proteins contain considerable amounts of betaine.

The finding that the SAM:SAH ratio was not significantly different between the
groups did not support the hypothesis that differences in the serum concentrations
of metabolites from the one-carbon cycle may impact epigenetic regulation. Fur-
thermore, no differences in the global or site-specific histone methylation or in the
mRNA expression of the DNA methyltransferases or histone demethylase Kdm3a
were detected. Thus, dietary proteins are unlikely to affect the disease risk by
influencing epigenetic processes following a short-term intervention.

However, it has to be considered that the experiment lasted only 4 weeks and
all diets contained methyl donors in amounts to meet the requirements of growing
pigs. The effect of dietary protein sources on epigenetics might have been different
in cases of long-term intervention studies or low basal levels of methyl donors.
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Still, data from a recent meta-analysis of human studies revealed that even dietary
interventions lasting only 5 days can impact DNA methylation [358].

Quantification of classical risk factors such as glucose, lipids and CRP shows
that the intake of proteins from animal or plant origin does not exert substantial
health effects within 4 weeks of treatment. Here, the most important findings were
that lupin protein intake, in contrast to beef and casein intake, was capable of
lowering homocysteine concentrations. High serum homocysteine concentrations
are associated with an increased CVD risk. Here, no significant differences in
serum cholesterol levels were observed. This finding is consistent with animal and
human intervention studies that only observed beneficial effects on serum total
cholesterol or HDL cholesterol under hypercholesterolemic conditions [324, 359].
Furthermore, recent clinical trials questioned the association between an increase
in HDL cholesterol levels and the improvement of cardiovascular outcomes [360].

Surprisingly, serum triglycerides were even higher in pigs fed lupin protein than
in those fed beef or casein. No further significant differences were observed in the
serum concentrations of TMAO, CRP or IGF-1; in parameters of glucose meta-
bolism; or in the serum mineral concentrations. Interestingly, recent cohort and
prospective studies reported positive correlations between the concentrations of
trimethylamine-containing dietary nutrients, including choline, betaine, carnitine
and trimethyllysine, and CVD risks [361, 362]. According to these studies, these
metabolites are converted to the TMAO precursor trimethylamine by gut microor-
ganisms. The causality of this association and the mechanisms responsible for this
association are not clear [361]. In our study, the diets failed to affect serum TMAO
levels.

Next, serum concentrations of asymmetric and symmetric dimethylarginine,
which are independent risk factors for all-cause mortality and CVD [363], were
comparable between the three groups of pigs. Furthermore, no differences were
detected in the serum mineral concentrations, although plant proteins, such as
lupin proteins, are characterized by higher concentrations of the mineral binding
phytic acid. Meat intake has repeatedly been shown to exert adverse effects on
colon health by increasing the risk of colon cancer [364, 365]. Factors associated
with cellular stress and proliferation control were suggested to be responsible for
the adverse effects of meat on the gut [366, 367].

In the current study, we did not detect any difference in the relative mRNA
expression of genes associated with cellular stress and proliferation between the
three groups of pigs. Based on our findings, we did not find adverse effects of beef
intake on classical cardiovascular risk factors.
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10.5 Conclusions and Outlook

Although combinations of two metabolites each enable 100% discrimination be-
tween the intake of lupin protein, beef or casein in our study, further controlled
human intervention studies are necessary to determine whether our biomarkers are
able to categorize individuals according to their regular protein intake, regardless
of other components of the diet.

In addition, studies comparing the metabolic profile after the consumption of
different plant protein sources are needed, as we do not know whether our potential
biomarkers are suitable to identify lupin intake or if they reflect plant protein intake
in general. As beef contained higher amounts of lipids than lupin protein or casein,
we cannot exclude that some differences observed between the three groups were
caused by the lipids associated with the beef intake. However, we propose that the
impact of fat derived from the dietary protein source on the parameters measured
was small because 90% of the dietary fat came from the basal dietary compounds.

Despite its limitations, this study had several strengths. The data were obtained
from a randomized, highly controlled feeding study. The study was conducted with
an animal model that shares great similarities with humans regarding the eating
behavior, metabolism, and the anatomy and physiology. The administration of
isolated proteins provided a good indication of the metabolic changes in response
to a certain protein source.

In conclusion, dietary proteins induce distinct metabolic fingerprints in serum,
which served as biomarkers for the type of dietary protein consumed. Based on the
obtained data, the dietary proteins differed in their impact on serum homocysteine
and homoarginine concentrations, which are risk factors of cardiovascular diseases.
As the lupin protein group was characterized by lower levels of these risk factors, we
postulate that lupin protein may positively impact cardiovascular risk compared
to beef or casein. The data also did not indicate any epigenetic effect induced by
the dietary protein source.

From a bioinformatics perspective, the analysis of serum concentrations based
on LDA to detect amino acid biomarkers had its limitations due to the small
sample size of 15 data points for each of the three dietary protein sources. In
order to avoid overparameterization, resp. overfitting, we could not increase the
parameter space. Hence, we were not able to model dependencies between the
amino acid concentrations. If we had sufficient data, we could model dependencies
by performing a quadratic discriminant analysis (QDA) which might lead to an
increased classification rate or different sets of biomarkers.
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During my PhD studies, it was my goal to work on a broad spectrum of bioinfor-
matic applications, and I am grateful that I had the opportunity to work with my
colleagues on various topics of biology in various branches of the life sciences.

In this thesis, I attempted to show this diversity. In chapters 2 - 6, we studied the
transcriptomic hourglass pattern in evolutionary developmental biology based on
phylotranscriptomic analyses. In chapter 7, we entered the field of transcriptomics
and learned about the transcriptome dynamics during grafting in developmental
biology. In chapter 8, we developed a workflow for the annotation of protein-
coding, long non-coding, and circular transcripts of flowering plants based on RNA-
Seq data, covering the fields of transcriptomics and genomics.

To broaden the spectrum further, in chapters 9 and 10, we analyzed metabolo-
mics data. In chapter 9, we entered the field of metabolomics and specifically the
field of lipidomics by comparing the lipid composition of the human skin related
to age-and disease-induced changes. This topic is directly related to applications
in the fields of medicine and pharmacy. In chapter 10, we analyzed metabolic and
transcript data from the metabolite serum of pigs in the field of agricultural and
nutritional sciences.

The common objective of all of these applications was to uncover patterns hidden
in the given data, such as the transcriptomic hourglass pattern, the gene expres-
sion patterns during grafting, differences of coding and non-coding transcripts,
differences in lipid compositions, or differences in metabolite concentrations. To
detect and to quantify these patterns, we combined concepts and methods from
machine learning and statistics with subject-specific biological knowledge.

In chapter 2, we introduced the developmental hourglass pattern during em-
bryogenesis in animals, which was also supported on the transcriptomic level for
Da. rerio and Drosophila [9, 16]. Despite the absence of morphological evidence
in plant species, my colleagues and I could discover a transcriptional hourglass
pattern during embryogenesis for A. thaliana. Based on the previously published
transcriptome age index (TAI) [9], which captures deep and long-term evolutionary
changes, we developed the transcriptome diversity index (TDI), detecting rather
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short-term evolutionary changes. Demonstrating the existence of a transcriptomic
hourglass pattern in animals and plants that probably evolved independently in
both kingdoms by convergent evolution might suggest a necessary mechanism
which allows a living organism to progress through embryogenesis coordinately.

In chapter 3, we continued investigating the transcriptomic hourglass by study-
ing its functional relevance. As we had seen in chapter 2, the transcriptomic
hourglass pattern could be regarded as evolutionary ancient due to its indepen-
dent evolution in animals and plants. By calculating the TAI and TDI profiles for
Da. rerio, D. melanogaster, and A. thaliana embryogenesis and by systematically
evaluating the resulting patterns, we could quantify the statistical significance of
transcriptomic hourglass patterns in all species with both measures. Especially
the TDI profiles provided evidence for an actively maintained developmental tran-
scriptomic hourglass pattern during embryogenesis which may imply functional
relevance, suggesting that it might be possible to identify the molecular function
of this pattern in the long term.

In chapter 4, we hypothesized that the transcriptomic hourglass pattern might
be associated with other developmental transitions such as embryogenesis. In con-
trast to animals, the development of plants is not completed after embryogenesis,
and organ formation occurs largely postembryonically. To test this hypothesis, we
performed phylotranscriptomic analyses on postembryonic developmental transi-
tions of A. thaliana such as germination and floral transition, and we detected
in both transitions significant transcriptomic hourglass patterns. This implies
that hourglass patterns are not restricted to embryogenesis, but that they may be
present in several developmental processes.

In chapter 5, we tried to shed light on a possible functional explanation of
the transcriptomic hourglass patterns presented in the previous chapters. We
redefined the known phylotranscriptomic measures in a probabilistic manner, and
we developed an entropic transcriptome age index. Applying the entropic TAI,
we detected transcriptomic hourglass patterns with P values that were orders of
magnitudes smaller than those of the transcriptomic hourglass patterns of the
traditional TAI. This led us to the question if the transcriptomic hourglass patterns
of the entropic TAI could possibly be the origins of the transcriptomic hourglass
patterns of the traditional TAI.

In chapter 5, we tested the hypothesis that the entropic TAI might be the origin
of the traditional TAI. We developed an approach to reproduce either the entropic
TAI based on the traditional TAI or to reproduce the traditional TAI based on
the entropic TAI. We found that the entropic TAI is capable of reproducing the
traditional TAI patterns more accurately than the traditional TAI is capable of
reproducing the entropic TAI patterns.

The phylotranscriptomic analyses of the chapters 2 - 6 were based on temporal
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gene expression data in combination with evolutionary information such as gene
age. All of these studies had in common that the spatial resolution of gene ex-
pression was neglected. In contrast, our next goal was to analyze transcriptome
dynamics of developmental processes at spatial and temporal resolution.

In chapter 7, we developed approaches to study transcriptomic dynamics in the
developmental process of grafting. We analyzed the spatio-temporal gene expres-
sion above and below the graft junction. We found that different mechanisms are
responsible for wound healing depending on the presence or absence of adjoining
tissues. We found that an intertissue recognition mechanism is characterized by
an asymmetric gene expression of sugar-associated genes and a symmetric gene
expression of auxin-response genes above and below the graft junction.

Chapters 2 - 7 only considered the expression of protein-coding genes. Addition-
ally, the investigation of expressed non-coding transcripts such as long non-coding
RNAs, and their interaction with protein-coding genes could uncover an even more
detailed view into developmental processes.

In chapter 8, we developed a workflow for annotating protein-coding splice vari-
ants, lncRNAs and circRNAs in seven flowering plants. From each plant, we
sequenced eight organs and the mature pollen based on total RNA-Seq. We de-
veloped an annotation workflow to generate a comprehensive annotation for each
plant species. We updated the current genomic annotations of the seven plants by
thousands of novel protein-coding splice variants, lncRNAs, and circRNAs. The
resulting annotations provided novel insights into the genomic structure of theses
RNA species.

Understanding the complexity of the transcriptome in an organ-specific or a
cell-specific manner on an evolutionary or developmental scale is the basis for un-
derstanding the complex biology of a living cell or a living organism. To approach
the complex system of a cell, we need to investigate not only its expressed tran-
scripts, but also compounds such as amino acids, proteins, carbohydrates, and
lipids, which are analyzed in metabolomics.

In chapter 9, we entered lipidomics, a subdomain of metabolomics, by investi-
gating age-related and diabetes-related changes in the free fatty acid composition
of the Stratum corneum. Our straightforward statistical analysis uncovered a sig-
nificant decrease of free fatty acid concentrations predominantly in young diabetic
subjects compared to healthy subjects and in elderly subjects compared to young
healthy subjects.

Interestingly, the risk of being affected by such chronic diseases like diabetes
or cardiovascular diseases can depend on dietary factors such as different protein
sources.

In chapter 10, we investigated in a second metabolomics study the contributions
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and effects of dietary proteins on the serum metabolite profile and thus their as-
sociation to the risk of being affected by chronic diseases. Pigs, which serve as an
animal model in the nutritional sciences, were fed with lupin protein, lean beef,
and casein, and we analyzed their metabolite serums. We developed a linear dis-
criminant analysis coupled with feature selection, and we uncovered combinations
of metabolites from the serum that discriminate between the intake of the three
different dietary protein sources.

At the end of our attempts to answer the scientific questions of chapters 2 - 10,
several new questions have raised that open the way to future work. In the phylo-
transcriptomics studies of chapters 2 - 6, the development of novel approaches to
study the origins of the transcriptomic hourglass patterns could help to extend our
perspective to the developmental processes that seem to maintain the conserved
transcriptomic patterns. It might be worthwhile to incorporate spatial data as we
saw in the analysis of transcriptome dynamics during grafting or expression data
from non-coding transcripts.

As we saw in the analyses of grafting in chapter 7, it might also be appropri-
ate to consider a more detailed perspective into the process. Future work could
focus on genes activated uniquely by grafting or genes involved in the recognition
response to distinguish attached from separated plant tissues. These genes might
help to identify the pathways required for grafting, wound healing, and vascular
regeneration. Additionally, the inclusion of non-coding transcripts such as long
non-coding RNAs or circular RNAs might help to identify and to extend pathways
that are involved in grafting.

The annotation of novel protein-coding splice variants, long non-coding tran-
scripts, and circular transcripts, as we saw in chapter 8, has the potential to
open new ways of understanding the transcriptome. Based on comparative anal-
yses, we might be capable of studying the conservation and potential functions
of the different protein-coding and non-coding RNA species. Additionally, com-
parative transcriptome analyses of the different organs from the various flowering
plants could help to deepen the understanding of the transcriptome evolution in
an organ-specific manner.

The increased complexity in the transcriptome raised new questions for future
work in transcriptomics and evolutionary biology. This rise of novel questions
was also shown in the metabolomics studies. Based on the detected differences
in free fatty acids in chapter 9, future work might be capable of finding evidence
that the lipid pattern can be influenced, which might lead to the development of
cosmetic and medical products to strengthen the skin barrier function of elderly
patients or patients suffering from diabetes mellitus. In chapter 10, we developed
a bioinformatics approach to obtained biomarkers to discriminate between the in-
take of different protein sources. Based on the findings, further controlled human
intervention studies could determine whether the obtained biomarkers might cate-
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gorize individuals according to their regular protein intake regardless of other diet
components. Since the sample size in this study was small, it would be interest-
ing, if advanced machine learning techniques would be more appropriate than the
proposed linear discriminant analysis.

The presented thesis did not cover all bioinformatics studies my colleagues and
I performed in the past years, but it is rather a subset of published and yet unpub-
lished work. The following four transcriptomics and lipidomics studies were not
presented in this thesis: In transcriptomics, we additionally worked on patterns
of gene expression during A. thaliana flower development [4], analyzed the tran-
scriptome of polyspermy-derived triparental plants to investigate the bypassing
of the postzygotic polyploidization barrier, known as the triploid block [5], and
supported RNA-Seq studies to analyze space-omics data [6]. In metabolomics, we
worked on the targeted delivery of ceramide lipids into the Stratum corneum to
support the repairing of the skin barrier [7].

My goal when composing and writing this thesis was to show that modern
bioinformatics research is intertwined with various fields of the life sciences. The
massive generation of huge biological data sets and the diverse topics reported in
this thesis require efficient data processing coupled with subject-orientated anal-
ysis. In chapters 2 - 6, we generated large amino acid sequence databases for
performing phylostratigraphy, and in chapters 3 – 8, we analyzed RNA-Seq data
from various tissues and species. However, in all studies presented, we developed
or applied computational and statistical approaches with the common goal of ex-
tracting hidden patterns from the data.

Analyzing the given data, we need to understand the biological subject to model
the question mathematically and statistically. As we saw in all chapters, the goal
of our colleagues was to extract and to interpret hidden patterns from their data
that are of biological relevance and not observed by chance. To this end, robust
methods are needed for quantifying these diverse observations and for stating their
statistical significance, or establishing methods and workflows that enable other
researchers to comprehend and to reproduce the published results.

The landscape of research in the natural sciences has evolved to an unprece-
dented level of diversity coupled with immense amounts of data from all sources.
Data management, statistical analysis, and the development and application of
machine learning techniques have become essential parts of modern data-driven
research. With this thesis I wanted to demonstrate that these techniques coupled
with biological knowledge are the core of bioinformatics research, enabling insight-
ful collaborations with specialists of various natural sciences to answer fundamental
questions and to expand our understanding of nature.
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13. Von Baer, K. Über Entwicklungsgeschichte der Thiere : Beobachtungen und
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229. Melé, M. et al. Chromatin environment, transcriptional regulation, and
splicing distinguish lincRNAs and mRNAs. Genome Research 27, 27–37
(2017).

230. Mukherjee, N. et al. Integrative classification of human coding and noncod-
ing genes through RNA metabolism profiles. Nature Structural and Molec-
ular Biology 24, 86–96 (2017).

231. Lagarde, J. et al. High-throughput annotation of full-length long noncoding
RNAs with capture long-read sequencing. Nature Genetics 49, 1731–1740
(2017).

232. Ransohoff, J. D. et al. The functions and unique features of long inter-
genic non-coding RNA. Nature Reviews Molecular Cell Biology 19, 143–157
(2018).

233. Hezroni, H. et al. Principles of Long Noncoding RNA Evolution Derived
from Direct Comparison of Transcriptomes in 17 Resource Principles of
Long Noncoding RNA Evolution Derived from Direct Comparison of Tran-
scriptomes in 17 Species. CellReports 11, 1110–1122 (2015).

234. Ariel, F. et al. Battles and hijacks: Noncoding transcription in plants. Trends
in Plant Science 20, 362–371 (2015).

235. King, G. J. Through a genome, darkly: Comparative analysis of plant chro-
mosomal DNA. Plant Molecular Biology 48, 5–20 (2002).

236. Barow, M. & Meister, A. Lack of correlation between AT frequency and
genome size in higher plants and the effect of nonrandomness of base se-
quences on dye binding. Cytometry 47, 1–7 (2002).

185



References
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12
Appendix

This chapter contains additional figures and tables. Further supplementary figures
and tables of published articles can be found on the publishers’ websites.

5’ UTR 3’ UTR

Species Mean ± SD Mean ± SD

A. thaliana 277.40 ± 292.17 415.31 ± 421.95
A. lyrata 221.62 ± 263.67 313.39 ± 348.94
C. rubella 253.22 ± 290.19 484.07 ± 552.56
E. salsugineum 273.81 ± 390.82 416.27 ± 480.33
T. hassleriana 264.68 ± 319.48 348.05 ± 470.19
M. truncatula 271.11 ± 320.60 570.94 ± 613.95
B. distachyon 382.98 ± 546.25 651.26 ± 748.50

Table 12.1 | Statistics UTR lengths. Arithmetic mean ± standard deviation of 5’
and 3’ UTR sequences from all protein-coding transcripts having annotated UTRs.

A
.thaliana

A
.lyrata

C
.rubella

E.salsugineum

T.hassleriana

M
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B
.distachyon

U
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 L

e
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g
th
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n

 b
p

0
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100

1k

5' UTR

3' UTR

10k

Figure 12.1 | 5’ and 3’ UTR lengths of protein-coding transcripts.. In dark
gray the 5’ UTR lengths are between 220 and 380 bp long with a variation between
300 and 500 bp. In orange the 3’ UTR lengths are between 300 and 650 bp long with
a standard variation between 340 and 740 bp. Table 12.1 presents a detailed list of
observed UTR lengths in all 7 species.
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circRNA NAT lincRNA mRNAintronic 
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Figure 12.2 | Overview of linear splice sites among RNA species. Percentage
of splice sites detected within each transcript isoform of circRNAs, NATs, lincRNAs,
intronic NATs, and protein-coding mRNAs of each plant species. Displayed are the
canonical donor/acceptor splice sites. Non-canonical splice sites are summarized as
“other”.
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Species RNA species Percentile Transcript length in bp GC

A. thaliana circRNA 0-20% (0, 90] 0.44 ± 0.07
circRNA 20-40% (90, 138] 0.44 ± 0.06
circRNA 40-60% (138, 249] 0.44 ± 0.05
circRNA 60-80% (249, 421] 0.44 ± 0.04
circRNA 80-100% (421, 5.6e+03] 0.43 ± 0.04
lincRNA 0-20% (0, 399] 0.37 ± 0.06
lincRNA 20-40% (399, 533] 0.36 ± 0.05
lincRNA 40-60% (533, 682] 0.36 ± 0.05
lincRNA 60-80% (682, 957] 0.36 ± 0.05
lincRNA 80-100% (957, 6.28e+03] 0.37 ± 0.05
NAT 0-20% (0, 480] 0.40 ± 0.05
NAT 20-40% (480, 687] 0.40 ± 0.05
NAT 40-60% (687, 974] 0.40 ± 0.04
NAT 60-80% (974, 1.48e+03] 0.41 ± 0.04
NAT 80-100% (1.48e+03, 7.28e+03] 0.41 ± 0.03
mRNA 0-20% (0, 1.07e+03] 0.40 ± 0.04
mRNA 20-40% (1.07e+03, 1.49e+03] 0.41 ± 0.03
mRNA 40-60% (1.49e+03, 1.92e+03] 0.41 ± 0.02
mRNA 60-80% (1.92e+03, 2.57e+03] 0.41 ± 0.02
mRNA 80-100% (2.57e+03, 3.09e+04] 0.42 ± 0.02

A. lyrata circRNA 0-20% (0, 82] 0.44 ± 0.07
circRNA 20-40% (82, 132] 0.45 ± 0.07
circRNA 40-60% (132, 261] 0.45 ± 0.06
circRNA 60-80% (261, 460] 0.44 ± 0.04
circRNA 80-100% (460, 2.54e+04] 0.42 ± 0.04
lincRNA 0-20% (0, 357] 0.38 ± 0.06
lincRNA 20-40% (357, 459] 0.38 ± 0.05
lincRNA 40-60% (459, 610] 0.38 ± 0.05
lincRNA 60-80% (610, 872] 0.37 ± 0.05
lincRNA 80-100% (872, 6.93e+03] 0.38 ± 0.05
NAT 0-20% (0, 485] 0.41 ± 0.05
NAT 20-40% (485, 659] 0.41 ± 0.04
NAT 40-60% (659, 915] 0.41 ± 0.04
NAT 60-80% (915, 1.39e+03] 0.41 ± 0.04
NAT 80-100% (1.39e+03, 5.81e+03] 0.41 ± 0.03
mRNA 0-20% (0, 875] 0.41 ± 0.04
mRNA 20-40% (875, 1.27e+03] 0.41 ± 0.03
mRNA 40-60% (1.27e+03, 1.68e+03] 0.42 ± 0.03
mRNA 60-80% (1.68e+03, 2.26e+03] 0.42 ± 0.02
mRNA 80-100% (2.26e+03, 1.66e+04] 0.42 ± 0.02

C. rubella circRNA 0-20% (0, 72] 0.45 ± 0.08
circRNA 20-40% (72, 104] 0.44 ± 0.07
circRNA 40-60% (104, 198] 0.45 ± 0.06
circRNA 60-80% (198, 457] 0.44 ± 0.04
circRNA 80-100% (457, 5.48e+03] 0.41 ± 0.05
lincRNA 0-20% (0, 386] 0.37 ± 0.06
lincRNA 20-40% (386, 528] 0.36 ± 0.05
lincRNA 40-60% (528, 713] 0.35 ± 0.05
lincRNA 60-80% (713, 1.14e+03] 0.37 ± 0.05
lincRNA 80-100% (1.14e+03, 8.18e+03] 0.37 ± 0.04

Continued on next page
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Species RNA species Percentile Transcript length in bp GC
NAT 0-20% (0, 495] 0.40 ± 0.05
NAT 20-40% (495, 693] 0.41 ± 0.05
NAT 40-60% (693, 998] 0.41 ± 0.04
NAT 60-80% (998, 1.5e+03] 0.41 ± 0.04
NAT 80-100% (1.5e+03, 7.22e+03] 0.40 ± 0.04
mRNA 0-20% (0, 937] 0.42 ± 0.040
mRNA 20-40% (937, 1.36e+03] 0.42 ± 0.03
mRNA 40-60% (1.36e+03, 1.81e+03] 0.42 ± 0.03
mRNA 60-80% (1.81e+03, 2.5e+03] 0.42 ± 0.02
mRNA 80-100% (2.5e+03, 1.68e+04] 0.42 ± 0.02

E. salsugineum circRNA 0-20% (0, 72] 0.46 ± 0.08
circRNA 20-40% (72, 98] 0.45 ± 0.07
circRNA 40-60% (98, 152] 0.45 ± 0.08
circRNA 60-80% (152, 375] 0.45 ± 0.05
circRNA 80-100% (375, 3.84e+03] 0.43 ± 0.04
lincRNA 0-20% (0, 437] 0.36 ± 0.06
lincRNA 20-40% (437, 595] 0.36 ± 0.06
lincRNA 40-60% (595, 801] 0.37 ± 0.05
lincRNA 60-80% (801, 1.25e+03] 0.37 ± 0.05
lincRNA 80-100% (1.25e+03, 1.01e+04] 0.38 ± 0.05
NAT 0-20% (0, 533] 0.41 ± 0.05
NAT 20-40% (533, 753] 0.42 ± 0.05
NAT 40-60% (753, 1.05e+03] 0.41 ± 0.05
NAT 60-80% (1.05e+03, 1.57e+03] 0.42 ± 0.05
NAT 80-100% (1.57e+03, 6.69e+03] 0.41 ± 0.04
mRNA 0-20% (0, 909] 0.42 ± 0.04
mRNA 20-40% (909, 1.32e+03] 0.42 ± 0.03
mRNA 40-60% (1.32e+03, 1.75e+03] 0.43 ± 0.03
mRNA 60-80% (1.75e+03, 2.37e+03] 0.43 ± 0.03
mRNA 80-100% (2.37e+03, 1.87e+04] 0.43 ± 0.02

T. hassleriana circRNA 0-20% (0, 95] 0.48 ± 0.07
circRNA 20-40% (95, 157] 0.50 ± 0.08
circRNA 40-60% (157, 295] 0.48 ± 0.05
circRNA 60-80% (295, 602] 0.46 ± 0.04
circRNA 80-100% (602, 1.97e+04] 0.46 ± 0.04
lincRNA 0-20% (0, 323] 0.43 ± 0.07
lincRNA 20-40% (323, 474] 0.41 ± 0.07
lincRNA 40-60% (474, 723] 0.41 ± 0.06
lincRNA 60-80% (723, 1.34e+03] 0.41 ± 0.05
lincRNA 80-100% (1.34e+03, 1.15e+04] 0.41 ± 0.03
NAT 0-20% (0, 515] 0.45 ± 0.06
NAT 20-40% (515, 764] 0.45 ± 0.05
NAT 40-60% (764, 1.17e+03] 0.45 ± 0.05
NAT 60-80% (1.17e+03, 1.85e+03] 0.44 ± 0.04
NAT 80-100% (1.85e+03, 8.93e+03] 0.43 ± 0.03
mRNA 0-20% (0, 1.07e+03] 0.46 ± 0.04
mRNA 20-40% (1.07e+03, 1.49e+03] 0.46 ± 0.03
mRNA 40-60% (1.49e+03, 1.92e+03] 0.46 ± 0.03
mRNA 60-80% (1.92e+03, 2.60e+03] 0.46 ± 0.03
mRNA 80-100% (2.60e+03, 1.66e+04] 0.45 ± 0.03

Continued on next page
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Species RNA species Percentile Transcript length in bp GC
M. truncatula circRNA 0-20% (0, 87] 0.44 ± 0.08

circRNA 20-40% (87, 135] 0.45 ± 0.07
circRNA 40-60% (135, 264] 0.44 ± 0.06
circRNA 60-80% (264, 474] 0.42 ± 0.03
circRNA 80-100% (474, 1.41e+04] 0.40 ± 0.04
lincRNA 0-20% (0, 368] 0.36 ± 0.05
lincRNA 20-40% (368, 481] 0.35 ± 0.04
lincRNA 40-60% (481, 618] 0.35 ± 0.04
lincRNA 60-80% (618, 881] 0.35 ± 0.04
lincRNA 80-100% (881, 1.01e+04] 0.34 ± 0.03
NAT 0-20% (0, 415] 0.38 ± 0.05
NAT 20-40% (415, 576] 0.37 ± 0.04
NAT 40-60% (576, 804] 0.37 ± 0.04
NAT 60-80% (804, 1.25e+03] 0.37 ± 0.04
NAT 80-100% (1.25e+03, 1.46e+04] 0.36 ± 0.03
mRNA 0-20% (0, 413] 0.40 ± 0.05
mRNA 20-40% (413, 962] 0.39 ± 0.05
mRNA 40-60% (962, 1.54e+03] 0.39 ± 0.04
mRNA 60-80% (1.54e+03, 2.32e+03] 0.39 ± 0.03
mRNA 80-100% (2.32e+03, 1.71e+04] 0.39 ± 0.03

B. distachyon circRNA 0-20% (0, 105] 0.52 ± 0.11
circRNA 20-40% (105, 185] 0.54 ± 0.11
circRNA 40-60% (185, 367] 0.51 ± 0.10
circRNA 60-80% (367, 676] 0.47 ± 0.08
circRNA 80-100% (676, 1.22e+04] 0.45 ± 0.06
lincRNA 0-20% (0, 425] 0.46 ± 0.09
lincRNA 20-40% (425, 554] 0.46 ± 0.08
lincRNA 40-60% (554, 709] 0.46 ± 0.08
lincRNA 60-80% (709, 1.02e+03] 0.46 ± 0.08
lincRNA 80-100% (1.02e+03, 5.89e+03] 0.44 ± 0.06
NAT 0-20% (0, 416] 0.51 ± 0.11
NAT 20-40% (416, 558] 0.51 ± 0.10
NAT 40-60% (558, 729] 0.52 ± 0.09
NAT 60-80% (729, 1.11e+03] 0.50 ± 0.08
NAT 80-100% (1.11e+03, 1.04e+04] 0.46 ± 0.07
mRNA 0-20% (0, 1.08e+03] 0.53 ± 0.09
mRNA 20-40% (1.08e+03, 1.62e+03] 0.53 ± 0.06
mRNA 40-60% (1.62e+03, 2.15e+03] 0.51 ± 0.06
mRNA 60-80% (2.15e+03, 2.96e+03] 0.50 ± 0.06
mRNA 80-100% (2.96e+03, 2.12e+04] 0.47 ± 0.05

Table 12.4 | GC content and quintiles of transcript lengths in coding and
non-coding RNA species. For each species and each RNA species (except intronic
NATs), we group the corresponding transcripts into quintiles based on their transcript
length in bp and calculate the relative mean GC content ± standard deviation. The
transcript length for each quanitle is given as an interval representing the minimal and
maximal transcript length.
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