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Zusammenfassung

In der vorliegenden Arbeit untersuchen wir verschiedene Klassen kryptografisch
bedeutsamer Funktionen wie beispielsweise bent, plateaued und differentially uni-
form Funktionen sowie aus diesen Funktionen konstruierte Inzidenzstrukturen.

Zunächst untersuchen wir vektorielle bent Funktionen in wenigen Variablen.
Wir klassifizieren und enumerieren alle vektoriellen bent Funktionen in sechs
Variablen. Damit vervollständigen wir die Klassifizierung perfekter nichtlinea-
rer Funktionen in sechs Variablen vom algebraischen Grad höchstens drei und
die Liste der bent Funktionen in sechs Variablen. Darüber hinaus zeigen wir,
dass im Gegensatz zu Booleschen bent Funktionen nicht alle vektoriellen bent
Funktionen in sechs Variablen bis auf EA-Äquivalenz durch Maiorana-McFarland
und Desarguesian partial spread Konstruktionen beschrieben werden können.

Wir untersuchen ferner, ob sich bestimmte Eigenschaften von Booleschen und
vektoriellen bent Funktionen sowie deren Verallgemeinerungen in den zugehö-
rigen Inzidenzstrukturen widerspiegeln, die in einigen Fällen zur gut erforsch-
ten Klasse der kombinatorischen Designs gehören. In diesem Zusammenhang
stellen wir eine neue Konstruktion von Inzidenzstrukturen aus Booleschen und
vektoriellen Funktionen vor und präsentieren zwei Anwendungen dieser Objek-
te zur Untersuchung von bent Funktionen. Die erste Anwendung ist eine de-
signtheoretische Charakterisierung von bent Funktionen innerhalb der plateau-
ed Funktionen, die zweite ist eine kombinatorische Interpretation des Erweiter-
barkeitsproblems für bent Funktionen. Wir stellen ferner eine große Klasse fast
perfekt-nichtlinearer Funktionen (APN-Funktionen) vor, deren lineare Codes 2-
Designs tragen. Aus diesem Ergebnis entwickeln wir eine neue hinreichende
Bedingung für die CCZ-Nichtäquivalenz von APN-Funktionen mit dem klassi-
schen Walsh-Spektrum zu quadratischen Funktionen.

Zum Abschluss untersuchen wir kubische Boolesche bent Funktionen. Wir
beweisen, dass im Gegensatz zu den Fällen mit n = 6 und n = 8 Variablen die
Maiorana-McFarland Konstruktion für alle n ≥ 10 nicht die gesamte Klasse der
kubischen bent Funktionen in n Variablen beschreiben kann. Außerdem zeigen
wir für unendlich viele n ≥ 10 die Existenz kubischer bent Funktionen in n
Variablen, die homogen sind, keine affinen Ableitungen haben und nicht in der
abgeschlossenen Maiorana-McFarland Klasse sind.





Abstract

In this thesis, we investigate various classes of cryptographically significant func-
tions, including bent, plateaued and differentially uniform functions, as well as
the incidence structures constructed from these mappings.

First, we investigate vectorial bent functions in a small number of variables.
We classify and enumerate all vectorial bent functions in six variables. Thereby,
we complete the classification of perfect nonlinear functions in six variables of
algebraic degree at most three and the enumeration of bent functions in six vari-
ables. Moreover, we show that all vectorial bent functions in six variables, in con-
trast to the Boolean bent functions, cannot be described, up to EA-equivalence,
by Maiorana-McFarland and Desarguesian partial spread constructions.

Furthermore, we investigate whether certain properties of Boolean and vecto-
rial bent functions, as well as their generalizations, may be reflected by the asso-
ciated incidence structures, which in some cases, fall into the well-studied class
of combinatorial designs. In particular, we introduce a new construction of inci-
dence structures from Boolean and vectorial functions called nonvanishing flats
and provide two applications of this object to study bent functions. The first is a
design-theoretic characterization of bent functions among plateaued functions,
and the second is a combinatorial interpretation of the extendability problem for
bent functions. We also provide a large class of APN functions, whose linear
codes support 2-designs. Using this result, we give a new sufficient condition
for APN functions with the classical Walsh spectrum to be CCZ-inequivalent to
quadratic functions.

Finally, we investigate cubic Boolean bent functions. We prove that, in con-
trast to the cases of n = 6 and n = 8 variables, the Maiorana-McFarland con-
struction does not describe the whole class of cubic bent functions in n variables
for all n ≥ 10. Moreover, we show that cubic bent functions in n variables
that are homogeneous, have no affine derivatives and are not in the completed
Maiorana-McFarland class exist for infinitely many n ≥ 10.
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Overview

In this dissertation, we study mappings F : Fn
2 → Fm

2 on finite dimensional vec-
tor spaces over the binary finite field, which are called (n, m)-functions. In par-
ticular, we focus on the classes of (n, m)-functions having perfect nonlinearity
and exceptional differential properties, which play an important role in cryp-
tographic applications. Among them are the classes of Boolean and vectorial
bent functions, plateaued and differentially uniform functions. Besides the com-
puter search and the tools from linear algebra, we consider a “design-theoretic
approach” to (n, m)-functions, which can be explained as follows. From the
(n, m)-functions having nice cryptographic properties we construct various in-
cidence structures, which in certain cases belong to the well studied class of
combinatorial structures, namely designs. Consequently, we investigate which
combinatorial properties of these designs may reflect cryptographic properties
of (n, m)-functions. The advantage of the design-theoretic approach is that prop-
erly constructed incidence structures may not only characterize the nonlinearity
and differential properties of a given function, but also be an invariant under
equivalence. This property can be used for distinguishing different functions or
even classes of functions.

In Chapter 1, we give a comprehensive survey on Boolean and vectorial bent
functions, which includes a summary of the fundamental constructions as well
as the known classification and enumeration results. Consequently, we summa-
rize the known constructions of incidence structures from bent functions with
the use of difference sets and linear codes. The investigation of Boolean and
vectorial bent functions, as well as their generalizations is arranged into three
chapters in the following way.

In Chapter 2, we investigate vectorial bent functions in six variables with a
computer search. Vectorial bent functions together with Boolean bent functions
and almost perfect nonlinear (APN) functions form the set of perfect nonlin-
ear functions, which are referred to as functions with maximum nonlinearity
or minimum differential uniformity. While bent functions have simultaneously
maximum nonlinearity and minimum differential uniformity, APN functions are
characterized by the minimum differential uniformity; this is the reason why
they are called almost perfect nonlinear. The complete classification of perfect
nonlinear functions seems to be elusive, however, thanks to computer search, this
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problem can still be solved provided the number of variables is not too large or
functions of a special shape are considered. Perfect nonlinear functions up to
five variables are completely classified [11], while in the case of six variables the
complete classification seems to be possible only for the functions of algebraic
degree at most three. Considering the case of six variables in more detail, the
classification of perfect nonlinear functions is known only for the Boolean bent
functions [103] and APN functions [42, 68]. In Section 2.3, we resolve the open
case of vectorial bent functions. Moreover, we enumerate all vectorial bent func-
tions in six variables, thus completing the enumeration of bent functions on F6

2.
We also address the question of the extendability of (n, m)-bent functions, which
is closely related to the bent sum decomposition problem [109] in the Boolean
case m = 1.

Theorem 2.15. For vectorial bent functions in 6 variables the following hold.

1. There are 23,392,233,361,244,160 ≈ 254.37 vectorial (6, 2)-bent functions, which
are divided into 9 extended-affine equivalence classes.

2. There are 121,282,113,886,947,901,440 ≈ 266.71 vectorial (6, 3)-bent functions,
which are divided into 13 extended-affine equivalence classes.

Moreover, if a (6, m)-bent function F is non-extendable, then F is absolutely non-
extendable, i.e., it has m = 3.

Based on the analysis of the obtained equivalence classes of vectorial bent
functions, we show that any (6, m)-bent function with m < 3 is extendable to a
(6, m + 1)-bent function. Besides that, we show that in contrast to Boolean bent
functions, vectorial bent functions in six variables can not be described, up to
extended-affine equivalence, by Maiorana-McFarland and Desarguesian partial
spread constructions.

In Chapter 3, we investigate which design-theoretic properties of Boolean
bent functions can be shared by their generalizations: vectorial bent functions,
plateaued functions and differentially uniform functions. First, we concentrate
on the study of the incidence structures constructed from Boolean and vecto-
rial bent functions. In Theorem 3.10, we observe that the Smith normal form of
Boolean and vectorial functions have the same general shape. Consequently, in
Theorem 3.25, we prove that from the isomorphism of the addition designs of
vectorial bent functions, similarly to the Boolean case, one can deduce extended-
affine equivalence of vectorial bent functions. Despite the mentioned similarities,
we also observe that certain phenomena, which are “regular” for the incidence
structures constructed from Boolean bent functions, can not be observed for the
vectorial bent functions. In Theorem 3.19, we show that extended-affine inequiv-
alent bent functions on Fn

2 may give rise to isomorphic translation designs for
all n ≥ 6. In contrast to the Boolean case, there exists no single pair of vectorial
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bent functions in six variables, which are extended-affine equivalent, but their
translation designs are isomorphic, as we show in Theorem 3.22.

Then we focus on vanishing flats of Boolean and vectorial bent functions.
For an (n, m)-function F, the incidence structure VF (F), called vanishing flats,
was introduced recently in [73] to study inequivalence of (n, n)-functions. In the
following theorem, we give a characterization of (n, m)-bent functions F in terms
of the associated vanishing flats VF (F).

Theorem 3.26. Let F be an (n, m)-function. The following statements are equivalent.

1. The function F is an (n, m)-bent function.

2. The incidence structure VF (F) is a 2-(2n, 4, 2n−m−1 − 1) design.

Motivated by the fact that the proof of this statement works for a larger class
of incidence structures, we introduce a combinatorial generalization of the van-
ishing flats, namely nonvanishing flats NFv(F) of an (n, m)-function F with
respect to a vector v ∈ Fm

2 \ {0}. While the block set of the vanishing flats
VF (F) is formed by affine two-dimensional subspaces {x, x⊕ a, x⊕b, x⊕ a⊕b}
on which the second-derivative Da,bF(x) vanishes, the block set of the nonvan-
ishing flats NFv(F) is formed by those affine two-dimensional subspaces, on
which the second-derivative takes the value v ∈ Fm

2 \ {0}, namely Da,bF(x) = v.
Carlet [28] used the values NF(v, x) = | {(a, b) ∈ Fn

2 ×Fn
2 : Da,bF(x) = v} | to

characterize plateaued (n, m)-functions F as those (n, m)-functions, for which
NF(v, x) is independent on x ∈ Fn

2 for any v ∈ Fm
2 . In the following statement,

we interpret this characterization by means of the regularity of nonvanishing
flats.

Theorem 3.36. Let F be an (n, m)-function and let for v ∈ Fm
2 the values λv ∈ N be

defined in the following way:

λ0 =
NF(0, x)− 3 · 2n + 2

6
and λv =

NF(v, x)
6

for v ∈ Fm
2 \ {0}.

Then the following statements are equivalent.

1. The function F is plateaued.

2. For all v ∈ Fm
2 \ {0} the incidence structure NFv(F) is a 1-(2n, 4, λv) design.

Moreover, if an (n, m)-function F is plateaued, then the incidence structure VF (F) is a
1-(2n, 4, λ0) design.

An advantage of the design-theoretic approach to plateaued functions is that
the collection of all nonvanishing flats contains not only information about non-
linearity but also is an invariant under extended-affine equivalence, as we show
in Theorem 3.32. Remarkably, the aforementioned characterization of plateaued
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functions can be even more strengthened for bent functions. In particular, the
nonvanishing flats of (n, m)-bent functions are not only 1-designs but also 2-
designs as the following result shows.

Theorem 3.42. Let F be an (n, m)-function. The following statements are equivalent.

1. The function F is (n, m)-bent.

2. For any v ∈ Fm
2 \ {0} the incidence structure NFv(F) is a 2-(2n, 4, 2n−m−1)

design.

Moreover, the number of the nonvanishing flats of an (n, m)-bent function F with respect
to a nonzero vector v ∈ Fm

2 is given by

|NFv,F| =
(2n+m − 2m) · 22(n−m)

24
.

Besides characterizations of plateaued and bent functions in terms of non-
vanishing and vanishing flats, we give a design-theoretic interpretation of the
extendability problem for (n, m)-bent functions, which was studied for p-ary
(n, m)-bent functions in [91]. In Theorem 3.46, we show that vanishing flats
of extendable bent functions are highly structured combinatorial objects. Con-
sequently, we show that nonexistence of certain subdesigns in the design of
vanishing flats implies non-extendability of a given bent function.

Theorem 3.47. Let F be an (n, s)-bent function.

1. If VF (F) contains no 2-(2n, 4, 2n−s−2 − 1) subdesign, then F is non-extendable.

2. If VF (F) contains no 2-(2n, 4, 2n−s−2) subdesign, then F is non-extendable.

3. If VF (F) contains no 2-(2n, 4, 2n−s−r−1 − 1) subdesign for some integer r, sat-
isfying 1 ≤ r ≤ n/2− s − 1, then F is not the projection of an (n, n/2)-bent
function.

We consider a coding-theoretic generalization of the vanishing flats VF (F)
of (n, m)-bent functions F, which can be constructed using the supports of the
codewords of weight w = 4 in the linear code C⊥F . An essential step is to con-
sider the incidence structures supported by the codewords of other weights
in the linear codes C and C⊥F . Tang, Ding and Xiong [108] proved that linear
codes CF and C⊥F constructed from several classes of (n, m)-functions, including
(n, m)-bent functions and differentially two-valued s-plateaued (n, n)-functions,
support 2-designs. We finish this chapter by providing another large class of
(n, n)-functions, whose linear codes CF and C⊥F support 2-designs.

Theorem 3.56. Let F be an APN function on Fn
2 with n = 2k, which has the classical

Walsh spectrum. If the function F is CCZ-equivalent to a function F′ on Fn
2 having

2(2n − 1)/3 bent components and (2n − 1)/3 semi-bent components, then the linear
codes CF and C⊥F support 2-designs.
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To show that an APN function F on Fn
2 is CCZ-inequivalent to a quadratic one

is, in general, difficult. With Theorem 3.56, we derive new sufficient conditions
for an APN function with the classical Walsh spectrum to be CCZ-inequivalent
to a quadratic function.

Theorem 3.61. Let F be an APN function on Fn
2 with n = 2k, which has the classical

Walsh spectrum.

1. If there exists an integer `, satisfying 1 < ` < 2n such that the incidence structure
(P(CF),B`(CF)) is not a 2-design, then the APN function F is CCZ-inequivalent
to a quadratic function.

2. If there exists an integer `⊥, satisfying 6 < `⊥ < 2n such that the incidence
structure

(
P(C⊥F ),B`⊥(C⊥F )

)
is not a 2-design, then the APN function F is CCZ-

inequivalent to a quadratic function.

In Chapter 4, we investigate the class of cubic Boolean bent functions, re-
maining the only class of bent functions (with respect to the algebraic degree),
for which it is not known whether it can be described, up to extended-affine
equivalence, by the Maiorana-McFarland construction.

So far, the question whether the class of cubic Boolean bent functions is con-
tained in the completed Maiorana-McFarland class, was studied in a small num-
ber of variables with the use of computer: Dillon [40] and Bracken [10] showed
that all cubic bent functions in n = 6 and n = 8 variables, respectively, are the
members of the completed Maiorana-McFarland class M#. However, the same
question, addressed for an arbitrary number of variables n ≥ 10, still remains
an open problem. In order to solve this open problem, we study cubic Boolean
bent functions, which are homogeneous, i.e., the algebraic normal form of these
functions contains only monomials of algebraic degree three.

We begin the study of the known homogeneous cubic bent functions with
the analysis of the functions obtained with a computer search [34, 35, 83]. We
show that all these functions, which belong to theM# class, are extended-affine
inequivalent to the only one known algebraic construction hn

pr. on Fn
2 proposed

by Seberry, Xia and Pieprzyk [104]. Using design-theoretic invariants of Boolean
functions we show that concatenations of these functions are also extended-
affine inequivalent to the primary construction, thus, proving the following re-
sult.

Theorem 4.11. There exist homogeneous cubic bent functions on Fn
2 , extended-affine

inequivalent to the primary construction hn
pr., whenever n ≥ 8.

We also provide an algorithmic approach to the construction of new homoge-
neous bent functions from old ones. Using Algorithm 4.1, we construct almost
twice as the number of previously known homogeneous cubic bent functions
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in 6 ≤ n ≤ 12 variables, and show that some of the constructed functions are
extended-affine inequivalent to all of the previously known examples.

Besides that, we show that among the known homogeneous cubic bent func-
tions in ten variables there are a few examples, which do not belong to the
completed Maiorana-McFarland classM#. In order to show that concatenations
of these functions do not belong to theM# class as well, we provide a sufficient
condition for bent functions f on Fn

2 and g on Fm
2 , which guaranties that the

direct sum f ⊕ g is outsideM# on Fn
2 ×Fm

2 . The main idea of the approach is to
estimate the maximum dimensions (denoted by r-ind) of the vector subspaces,
on which second-order derivatives of the functions f on Fn

2 and g on Fm
2 are con-

stant functions. In the case when the dimensions are small enough, the direct
sum f ⊕ g is provably outsideM#, as the following statement shows.

Theorem 4.24. Let f : Fn
2 → F2 and g : Fm

2 → F2 be two Boolean bent functions. If f
and g satisfy r-ind( f ) < n/2 and r-ind(g) ≤ m/2, then f ⊕ k · g /∈ M# on Fn+km

2
for all k ∈N.

With the help of computer search, we show that certain cubic bent functions
in 6 ≤ n ≤ 12 variables satisfy the aforementioned sufficient condition and thus
lead to infinitely many cubic bent functions outside the M# class. In this way,
we derive the following series of existence results of cubic bent functions outside
the completed Maiorana-McFarland classM# possessing various cryptographic
properties.

Theorem 4.27. On Fn
2 there exist:

1. Cubic bent functions outsideM# for all n ≥ 10.

2. Cubic bent functions without affine derivatives outsideM# for all n ≥ 26.

3. Homogeneous cubic bent functions outsideM# for all n ≥ 26.

4. Homogeneous cubic bent functions without affine derivatives outside M# for all
n ≥ 50.

With this statement, we conclude that the only class of Boolean bent functions
(with respect to the algebraic degree) completely contained inM# is the class of
quadratic bent functions.

Each chapter concerning the investigation of bent functions is concluded with
a list of open problems. In Appendices A and B, we summarize the algebraic
normal forms and invariants under extended-affine equivalence for the Boolean
and vectorial bent functions used in the thesis.

Finally, we remark that this dissertation is based on three papers by Pott
and the present author [92–94] and the work by Meidl, Pott and the present
author [80].



Chapter 1

Preliminaries

In this chapter, we present the mathematical background needed in this thesis.
The chapter is organized in the following way.

In Section 1.1, we give necessary definitions related to the main object of
the dissertation: perfect nonlinear functions. In Subsection 1.1.1, we describe
basic notation for Boolean and vectorial functions. In Subsection 1.1.2, we de-
fine several important classes of cryptographically significant functions: Boolean
and vectorial bent functions as well as their generalizations, namely plateaued
and differentially uniform functions. In Subsection 1.1.3, we focus on the fun-
damental classes of Boolean bent functions as well as their vectorial analogues:
quadratic functions, Maiorana-McFarland and partial spread bent functions. We
also discuss, how one can check computationally whether a given Boolean bent
function can be described by Maiorana-McFarland or partial spread construc-
tions. In Subsection 1.1.4, we summarize some known results about a special
class of Boolean bent functions, i.e., cubic bent functions, which will be consid-
ered in more detail in the last chapter of this thesis.

In the following, we summarize the known combinatorial and coding the-
oretic characterizations of perfect nonlinear functions, which we later use for
theoretical and computational analysis of these functions. In Section 1.2, we
define two important combinatorial objects, namely difference sets and relative
difference sets. Consequently, we explain how to construct difference and rel-
ative difference sets from bent functions, and give the known characterizations
of Boolean and vectorial bent functions in terms of these constructions. In Sec-
tion 1.3, we introduce linear codes and show how one can use them to charac-
terize perfect nonlinear functions and check their equivalence.

In Section 1.4, we introduce incidence structures, which we further use as
one of the main tools for the analysis of Boolean and vectorial functions. Con-
sequently, in Subsections 1.4.1 and 1.4.2, we introduce various constructions of
incidence structures using difference sets and linear codes, respectively. With the
help of the introduced incidence structures we provide further characterizations
of bent functions and define several invariants under equivalence.
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1.1 Boolean and vectorial functions

Many conventional cryptographic systems use as a main ingredient Boolean and
vectorial functions, which are mappings on finite dimensional vector spaces over
the binary finite field. There are several criteria which a given function has to
satisfy in order to be considered as a good cryptographic primitive. Two basic
properties, which a secure cryptographic system must have, namely confusion
and diffusion, were formulated by Claude Shannon [105] in his pioneering work
“Communication theory of secrecy systems” and could be formulated as follows:

• Confusion refers to making the relationship between the input and the out-
put of a cryptographic system as complex as possible, i.e., changing the
input has unpredictable effect on the output.

• Diffusion refers to changing few entries in the input in such a way that
many entries in the output are changed.

In the following subsection, we consider in detail basic definitions related to
Boolean and vectorial functions, describe their various representations and dis-
cuss cryptographic concepts, reflecting confusion and diffusion of Boolean and
vectorial functions.

1.1.1 Basic definitions

Let F2 = ({0, 1},⊕, ·) be the finite field with two elements and let Fn
2 be the

vector space of dimension n over F2. A mapping F : Fn
2 → Fm

2 is called an (n, m)-
function. The single-output case m = 1 is called a Boolean function, while in the
multi-output case m ≥ 2 one deals with a vectorial Boolean function. Since the
output of any vectorial (n, m)-function can be described by m Boolean functions
(as we will show later), we omit the term “Boolean” and simply say vectorial
(n, m)-functions.

Vectors, matrices and vector spaces. In this dissertation, we will often identify
the vector space (Fn

2 ,⊕) with the finite field (F2n ,+, ·). In order to distinguish
elements in Fn

2 and F2n , we will use plain font for the elements of the finite field
x ∈ F2n and bold font for the elements of the vector space x ∈ Fn

2 . Following
this notation, we will also use bold font for vectors and matrices. The following
vectors and matrices are frequently used throughout this thesis:

• jn is the all-one-vector of length n;

• In and Jn are the identity matrix and the all-one-matrix of order n, respec-
tively;

• Or,s is the all-zero-matrix of size r× s. If r = s, we use the notation Or.
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We denote by A⊗ B the Kronecker product of matrices A =
(
ai,j
)

and B = (bk,l)

with 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ n′, 1 ≤ l ≤ m′:

A⊗ B :=

 a1,1B . . . a1,mB
...

...
an,1B . . . an,mB

 , (1.1)

which is a matrix of size nn′ ×mm′.
We will represent vector spaces with the help of the canonical Gauss-Jordan

basis, which we define according to the work [22, Subsection 4] using the fol-
lowing notation. For a vector u = (u1, . . . , un) ∈ Fn

2 , we denote the index of the
leftmost 1 in u by ν(u) = max{i ∈ {1, . . . , n + 1} | uj = 0 for 1 ≤ j < i}. For
a vector space U ⊆ Fn

2 , we define Υ(U) := {ν(u) | u ∈ U \ {0}}. On Fn
2 we

introduce the standard lexicographic ordering < for elements u = (u1, . . . , un)

and v = (v1, . . . , vn) ∈ Fn
2 as follows:

u > v ⇐⇒ ν(u) < ν(v) or
ν(u) = ν(v) and (uν(u)+1, . . . , un) > (vν(v)+1, . . . , vn)

.

Definition 1.1. An ordered basis u1, . . . , uk ∈ Fn
2 of a vector space U ⊆ Fn

2 is
called a Gauss–Jordan basis of U and denoted by GJB(U) if

u1 > · · · > uk and (uj)ν(ui)
= 0 for all i 6= j.

Since the Gauss-Jordan basis of a vector space U is unique, we will represent
U by its Gauss-Jordan basis GJB(U). A vector space Ū ⊆ Fn

2 is the complement
of U ⊆ Fn

2 , if dim(U) + dim(Ū) = n and U ∩ Ū = {0}. With the help of the
introduced notation, the complement Ū of U ⊆ Fn

2 can be computed as follows
Ū = {a ∈ Fn

2 : ai = 0 for all i ∈ Υ(U)}. We will call a t-dimensional affine
subspace of Fn

2 a flat. For a vector space U ⊆ Fn
2 , any flat u⊕U can be uniquely

represented as ū⊕U for some ū ∈ Ū.

Representations of Boolean and vectorial functions. First, we consider poly-
nomial representations of (n, m)-functions: the algebraic normal form and trace
representations. We will frequently use these polynomial descriptions of (n, m)-
functions throughout this dissertation and do not distinguish between polyno-
mials and polynomial mappings.

Any Boolean function f : Fn
2 → F2 can be uniquely expressed as a multivari-

ate polynomial in the ring F2[x1, . . . , xn]/(x1⊕ x2
1, . . . , xn ⊕ x2

n). This representa-
tion is unique and called the algebraic normal form (denoted as ANF), namely

f (x) =
⊕

a∈Fn
2

caxa =
⊕

a∈Fn
2

ca

(
n

∏
i=1

xai
i

)
, (1.2)
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where x = (x1, . . . , xn) ∈ Fn
2 , ca ∈ F2 and a = (a1, . . . , an) ∈ Fn

2 . The complement
of a Boolean function f is defined by f̄ := f ⊕ 1. If an (n, m)-function F and a
(k, m)-function G do not have common variables, then the (n + k, m)-function H
defined by H(x, y) := F(x)⊕ G(y) is called the direct sum of functions F and G.
Similarly, we define the k-fold direct sum k · F : Fk·n

2 → Fm
2 in the following way

k · F(x1, . . . , xk) := F(x1)⊕ · · · ⊕ F(xk), where xi ∈ Fn
2 .

The algebraic degree of a Boolean function f : Fn
2 → F2, denoted by deg( f ), is

the algebraic degree of its ANF as a multivariate polynomial, which is formally
defined as follows deg( f ) := maxa∈Fn

2 ,ca 6=0 wt(a), where wt(a) = ∑n
i=1 ai ∈ Z

is the Hamming weight of a ∈ Fn
2 . This definition can be essentially extended

to the vectorial case using the notion of coordinate functions. Any vectorial
function F : Fn

2 → Fm
2 can be uniquely described by m coordinate Boolean functions

fi : Fn
2 → F2 for 1 ≤ i ≤ m as a column vector F(x) := ( f1(x), . . . , fm(x))T.

In this way, the algebraic normal form of a vectorial (n, m)-function F is defined
coordinate-wise and its algebraic degree is defined as deg(F) := max1≤i≤m deg( fi).
An (n, m)-function F is called d-homogeneous, if all the monomials in its ANF
have the same degree d, and simply homogeneous, if the degree is clear from the
context. In the following, we will deal with three important classes of (n, m)-
functions:

• Affine functions, i.e., (n, m)-functions F with deg(F) ≤ 1;

• Quadratic functions, i.e., (n, m)-functions F with deg(F) = 2;

• Cubic functions, i.e., (n, m)-functions F with deg(F) = 3.

Let F be an (n, m)-function and assume that m divides n. For the univariate
trace representation, we endow Fn

2 with the structure of the finite field (F2n ,+, ·)
and define the relative trace Trn

m : F2n → F2m as follows Trn
m(x) = ∑

n
m−1
i=0 x2i·m

. For
m = 1, we deal with the absolute trace and use the notation Tr(x) := Trn

1(x) for
x ∈ F2n . Due to Lagrange interpolation, any (n, n)-function F can be uniquely
represented as a polynomial F : F2n → F2n given by F(x) = ∑2n−1

i=0 aixi with co-
efficients ai ∈ F2n . When m|n, any (n, m)-function can be written in the form
G(x) = Trn

m

(
∑2n−1

i=0 aixi
)

. This representation is called the univariate (trace) repre-
sentation, however, it is not unique in general. Similarly, one can obtain a bivari-
ate (trace) representation of a (2k, m)-function F. It is enough to identify F2n with
F2k × F2k and consider the functions of the form F(x, y) = Trk

m

(
∑2k−1

i,j=0 ai,jxiyj
)

.
In order to compute the algebraic degree for trace representations, we identify
an exponent d ∈ N with its binary representation d = (d1, . . . , dn) ∈ Fn

2 as
d = ∑n

i=1 di2n−i. Then the algebraic degree of an (n, m)-function F, given by a
trace representation, is computed in the following way:

• deg(F) = max
i : ai 6=0

wt(i) for the univariate representation and
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• deg(F) = max
(i,j) : ai,j 6=0

(wt(i) + wt(j)) for the bivariate representation.

Besides the algebraic normal form and trace representations, we will also use
“polynomial-free” representations of Boolean and vectorial functions. We iden-
tify a vector x = (x1, . . . , xn) ∈ Fn

2 with its integer representation x = ∑n
i=1 xi2n−i.

In this way, any Boolean function f on Fn
2 is uniquely determined by the vec-

tor f := ( f (0), f (1), . . . , f (2n − 1)) ∈ F2n

2 , which is called the truth table of the
Boolean function f . The (Hamming) weight wt( f ) of a Boolean function f on Fn

2
is defined as the Hamming weight of its truth table f. The truth table of a vecto-
rial (n, m)-function is defined coordinate-wise. The support D f ⊆ Fn

2 of a Boolean
function f on Fn

2 is the set D f := f−1(1). The graph GF of an (n, m)-function F is
the set GF := {(x, F(x)) : x ∈ Fn

2} ⊆ Fn
2 ×Fm

2 .

Nonlinearity and differential uniformity. Now we introduce two concepts,
which reflect confusion and diffusion of (n, m)-functions, namely nonlinearity
and differential uniformity.

In order to provide a good confusion, a given (n, m)-function F has to be
as far away as possible from the set of most predictable functions, i.e., the set
of affine (n, m)-functions, which is denoted by An,m in the vectorial case and by
An in the case of Boolean functions on Fn

2 . The nonlinearity of a Boolean function
f : Fn

2 → F2 is a measure of the distance between the function f and the set of
all affine functions An. Formally, it is defined as nl( f ) := min

l∈An
dH( f , l), where

dH( f , g) is the Hamming distance between functions f and g on Fn
2 , which is com-

puted as follows dH( f , g) := |{x ∈ Fn
2 : f (x) 6= g(x)}|. This definition can be

extended for the vectorial case using the notion of component functions. For an
(n, m)-function F, we define the component function Fb as the Boolean function
Fb : Fn

2 → F2, given by Fb(x) := 〈b, F(x)〉m, where 〈·, ·〉m is a nondegenerate bi-
linear form on Fm

2 . Note that for an (n, 1)-function F (i.e., a Boolean function) we
have only one nonzero component function F1 := F. In this way, the nonlinearity
of a vectorial (n, m)-function F is the minimum nonlinearity among its component
functions, that is, nl(F) := min

l∈An,b∈Fm
2 \{0}

dH(Fb, l). The main tool to compute the

nonlinearity of an (n, m)-function F is the Walsh transform χ̂F : Fn
2 × Fm

2 → Z

defined by

χ̂F(a, b) := χ̂Fb(a) and χ̂Fb(a) := ∑
x∈Fn

2

(−1)Fb(x)⊕〈a,x〉n (1.3)

for a ∈ Fn
2 and b ∈ Fm

2 . Note that the Walsh transform is a special version of the
more general discrete Fourier transform. The multiset

ΛF := {∗ χ̂F(a, b) : a ∈ Fn
2 , b ∈ Fm

2 \ {0} ∗}

is called the Walsh spectrum of an (n, m)-function F. The extended Walsh spec-
trum is the multiset |ΛF| := {∗ |χ̂F(a, b)| : a ∈ Fn

2 , b ∈ Fm
2 \ {0} ∗}. Using the
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Walsh transform, the nonlinearity of an (n, m)-function F can be computed in
the following way

nl(F) := 2n−1 − 1
2
· max

a∈Fn
2 ,b∈Fm

2 \{0}
|χ̂F(a, b)| .

In the following result, we give a well-known upper bound on the nonlinearity
of an arbitrary (n, m)-function F.

Result 1.2 (Covering radius bound). Let F be an (n, m)-function. The nonlinearity
of F is at most

nl(F) ≤ 2n−1 − 2
n
2−1. (1.4)

For n even and m ≤ n/2, this bound is achieved by (n, m)-bent functions
(see [75, 89]), which we introduce in the following subsection. When n is even
and m > n/2, this bound is not tight. Note that it is a challenging problem
to find (n, m)-functions with the best nonlinearity. For some values of n and
m, the covering radius bound can be improved, although the expressions of the
improved bounds become more complicated; for this reason they are omitted
here. The reader can find the exact expressions of these bounds in [29, 30].

In order to provide a good diffusion, an (n, m)-function F must have the
following property: any change in the input x 7→ x⊕ a has to lead to a big change
between the values F(x) and F(x⊕ a); the latter can be formalized with the help
of the notions of derivative and differential uniformity. With an (n, m)-function F
one can associate the (n, m)-function DaF defined by DaF(x) := F(x⊕ a)⊕ F(x),
which is called the first-order derivative of the function F in the direction a ∈ Fn

2 .
Derivatives of higher orders are defined recursively, i.e., the k-th order derivative of
an (n, m)-function F is given by Dak Dak−1 . . . Da1 F(x) := Dak(Dak−1 . . . Da1 F)(x).

Using the notion of the first-order derivative, we define differential unifor-
mity as follows. An (n, m)-function F has differential uniformity δ, if the value
δ(F) defined as follows

δ(F) := max
a∈Fn

2\{0},b∈Fm
2

δF(a, b), where δF(a, b) := |{x ∈ Fn
2 : DaF(x) = b}|,

is equal to δ (see [90]). The multiset ∆F := {∗ δF(a, b) : a ∈ Fn
2 \ {0}, b ∈ Fm

2 ∗}
is called the differential spectrum of the function F. The differential uniformity of
an (n, m)-function F is at least

δ(F) ≥ 2n−m (1.5)

with equality if and only if all derivatives DaF for nonzero a ∈ Fn
2 are bal-

anced. We say that an (n, m)-function F is balanced if for any b ∈ Fm
2 holds

|F−1(b)| = 2n−m, i.e., the function F takes each value b ∈ Fm
2 equally often.
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Equivalence relations for cryptographic functions. Now we define the follow-
ing three equivalence relations for (n, m)-functions, which preserve nonlinearity
and differential properties.

Definition 1.3. Let F and F′ be two (n, m)-functions. The functions F and F′ are
said to be:

• Affine equivalent, if there exist two affine permutations A1 : Fm
2 → Fm

2 and
A2 : Fn

2 → Fn
2 such that A1 ◦ F ◦ A2 = F′.

• Extended-affine equivalent (EA-equivalent), if there exist two affine permuta-
tions A1 : Fm

2 → Fm
2 , A2 : Fn

2 → Fn
2 and an affine function A3 : Fn

2 → Fm
2

such that A1 ◦ F ◦ A2 ⊕ A3 = F′.

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent), if there exists an affine
permutation L on Fn

2 ×Fm
2 such that L (GF) = GF′ .

It is not difficult to show that affine equivalence implies EA-equivalence, and
EA-equivalence implies CCZ-equivalence. The question whether the converse
is also true for a given class of (n, m)-functions is in general difficult. In the
following subsection, we will give several classes of functions, for which CCZ-
equivalence and EA-equivalence coincide.

Definition 1.4. Let F be an (n, m)-function. An affine permutation L on Fn
2 ×Fm

2
is called an automorphism of F if it fixes the graph GF, i.e., L(GF) = GF. The set
of all automorphisms of an (n, m)-function F forms a group, which is called the
automorphism group of F and is denoted by Aut(F).

Remark 1.5. The differential spectrum and the extended Walsh spectrum are in-
variants under all the aforementioned types of equivalence, and hence the non-
linearity and differential uniformity are invariants as well. The automorphism
group Aut(F) of an (n, m)-function F is invariant under CCZ-equivalence. The
algebraic degree deg(F) of an (n, m)-function F is invariant under affine equiv-
alence and EA-equivalence, but not invariant under CCZ-equivalence [14].

1.1.2 Bent functions

In general, (n, m)-functions with the maximum nonlinearity and (n, m)-functions
with the minimum differential uniformity are two different sets of functions.
However, as the following result shows in some cases these sets are the same.

Result 1.6. [81, 89] Let F be an (n, m)-function with n even and m ≤ n/2. The
following statements are equivalent.

1. The function F has the maximum nonlinearity nl(F) = 2n−1 − 2
n
2−1.

2. The function F has the minimum differential uniformity δ(F) = 2n−m.
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3. For all a ∈ Fn
2 and b ∈ Fm

2 \ {0} the Walsh transform satisfies |χ̂F(a, b)| = 2n/2.

Boolean functions satisfying the condition of the last claim in Result 1.6 are
called Boolean bent functions and were introduced by Rothaus [103] as follows.

Definition 1.7. Let n be even. A Boolean function f : Fn
2 → F2 is called bent if

the Walsh transform of f satisfies χ̂ f (a) = ±2n/2 for all a ∈ Fn
2 .

In view of Result 1.6, (n, m)-functions with n even and m ≤ n/2 having the
maximum nonlinearity are called (n, m)-bent functions.

Definition 1.8. Let n be even and m ≤ n/2. An (n, m)-function F is called
(n, m)-bent, if it achieves the covering radius bound (1.4) with equality, i.e.,
nl(F) = 2n−1 − 2

n
2−1.

Throughout this thesis, we denote the set of (n, m)-bent functions by Bn,m and
the set of Boolean bent functions on Fn

2 by Bn.

Remark 1.9. Boolean bent functions on Fn
2 exist if and only if n is even, as it

was shown by Rothaus [103]. The algebraic degree of a bent function on Fn
2 is at

most n/2, see [103]. Due to the Nyberg bound [89], (n, m)-bent functions do not
exist for m > n/2.

Result 1.10 (Nyberg bound). Let F be an (n, m)-bent function. Then m ≤ n/2.

In this thesis, we will be interested in the most general type of equivalence
for Boolean and vectorial bent functions, what in view of the following result,
reduces the investigation to EA-equivalence.

Result 1.11. [15, 54, 65] Let f , f ′ be two Boolean functions on Fn
2 and F, F′ be two

(n, m)-bent functions. The following hold.

1. Boolean functions f and f ′ are CCZ-equivalent if and only if f and f ′ are EA-
equivalent.

2. Bent functions F and F′ are CCZ-equivalent if and only if F and F′ are EA-
equivalent.

In this way, for a given class C ⊆ Bn,m of (n, m)-bent functions (and (n, m)-
functions in general) it is essential to define the smallest possible class, which
contains all functions EA-equivalent to the members of C.

Definition 1.12. A class of (n, m)-functions C is called complete if it is invari-
ant under EA-equivalence. The completed class C# is the smallest possible class
invariant under EA-equivalence, which contains C.
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Generalizations of bent functions. Bentness of (n, m)-functions for n even and
m ≤ n/2 is characterized by the minimal cardinality of either the extended Walsh
spectrum or of the differential spectrum (both are considered as sets). Further
generalizations of bent functions are obtained by relaxing slightly the minimality
conditions.

The first important generalization of the class of bent functions is the class of
plateaued functions defined in the following way.

Definition 1.13. A Boolean function f : Fn
2 → F2 is said to be s-plateaued, if for

all a ∈ Fn
2 the absolute value of its Walsh transform takes only two values, i.e.,

|χ̂ f (a)| ∈ {0, 2
n+s

2 }. The value 2
n+s

2 is called the amplitude of an s-plateaued
Boolean function f . An (n, m)-function F is said to be s-plateaued if all its com-
ponent functions Fb with b 6= 0 are s-plateaued. If all the component functions
Fb of an (n, m)-function F are sb-plateaued (not necessarily with the same am-
plitude), then F is called an (n, m)-plateaued function. Boolean 1-plateaued func-
tions on Fn

2 with n odd and 2-plateaued functions on Fn
2 with n even are called

semi-bent. For n odd, an (n, n)-function F is called almost bent, or simply AB, if
for all nonzero b ∈ Fn

2 its component functions Fb are semi-bent.

Now we give the following characterization of plateaued Boolean functions
by means of second-order derivatives.

Result 1.14. [31, Theorem 1] A Boolean function f on Fn
2 is s-plateaued if and only if

∑
a,b∈Fn

2

(−1)Da,b f (x) = 2n+s (1.6)

holds for all x ∈ Fn
2 .

Proof. The function f satisfies (1.6) if and only if for all x ∈ Fn
2 holds

∑
a,b∈Fn

2

(−1) f (x⊕a)⊕ f (x⊕b)⊕ f (x⊕a⊕b) = 2n+s · (−1) f (x).

Going to the Walsh transform, we have that the identity χ̂3
f (u) = 2n+sχ̂ f (u)

holds for all u ∈ Fn
2 , which is possible if and only if χ̂ f (u) = ±2

n+s
2 . The latter is

equivalent to the fact that the function f is s-plateaued.

The characterization of vectorial (n, m)-plateaued functions is similar and can
be obtained by applying Result 1.14 coordinate-wise.

Result 1.15. [28, Theorem 1]. Let F be an (n, m)-function. For v ∈ Fm
2 and x ∈ Fm

2
we define

NF(v, x) = | {(a, b) ∈ Fn
2 ×Fn

2 : Da,bF(x) = v} |. (1.7)

Then the following holds.
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1. The function F is plateaued if and only if, for every v ∈ Fm
2 the number NF(v, x)

does not depend on x ∈ Fn
2 .

2. The function F is plateaued with single amplitude if and only if the number
NF(v, x) does not depend on x ∈ Fn

2 , nor on v ∈ Fm
2 when v 6= 0.

Proof. For any v ∈ Fm
2 , consider the following sum

∑
u∈Fm

2

∑
a,b∈Fn

2

(−1)〈u,Da,bF(x)〉m⊕〈u,v〉m = ∑
a,b∈Fn

2

∑
u∈Fm

2

(−1)〈u,Da,bF(x)⊕v〉m , (1.8)

which is equal to 2m · | {(a, b) ∈ Fn
2 ×Fn

2 : Da,bF(x) = v} |. In this way, for any
x ∈ Fn

2 and v ∈ Fm
2 the number NF(v, x) can be computed as follows

NF(v, x) =2−m · ∑
u∈Fm

2

∑
a,b∈Fn

2

(−1)〈u,Da,bF(x)〉m⊕〈u,v〉m (1.9)

=2−m · ∑
u∈Fm

2

(−1)〈u,v〉m ·

 ∑
a,b∈Fn

2

(−1)Da,bFu(x)

 . (1.10)

The first claim now follows from the fact that the sum ∑a,b∈Fn
2
(−1)Da,bFu(x)

in (1.10) is independent on x ∈ Fn
2 for any u ∈ Fm

2 if and only if any component
function Fu of F is plateaued, or equivalently, if and only if F is (n, m)-plateaued.
The second claim follows from the fact that the sum ∑a,b∈Fn

2
(−1)Da,bFu(x) in (1.10)

is independent on x ∈ Fn
2 and u ∈ Fm

2 \ {0} if and only if any component func-
tion Fu of F is s-plateaued for some s ∈ Z, or equivalently, if and only if the
(n, m)-function F is s-plateaued.

The following generalizations of bent functions are obtained by allowing the
differential spectrum, considered as a set, to take only one different from zero
value.

Definition 1.16. An (n, m)-function F is called differentially two-valued, if there
are only two different values in the differential spectrum, that is, ∆F = {0, 2s}
(multiplicities are omitted). In particular, (n, n)-functions F with ∆F = {0, 2} are
called almost perfect nonlinear or simply APN.

Example 1.17. [52] Consider Gold APN functions, i.e., power functions on Fn
2 ,

given by F : x ∈ F2n 7→ x2i+1 with gcd(i, n) = 1. If n is odd, then the Walsh
spectrum of F is given by

ΛF =
{
∗ 0

[
2n−1 · (2n − 1)

]
, ±2

n+1
2

[
(2n − 1) ·

(
2n−2 ± 2

n−3
2

)]
∗
}

. (1.11)

In this case, F is AB, since all the nonzero component functions are semi-bent.
For n even, the Walsh spectrum of f is given by

ΛF =
{
∗ 0

[
2n−2 · (2n − 1)

]
, ±2

n+2
2

[
1
3 (2

n − 1) ·
(

2n−3 ± 2
n−4

2

)]
,

±2
n
2

[
2
3 (2

n − 1) ·
(

2n−1 ± 2
n
2−1
)]
∗
}

,
(1.12)
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that is, 2(2n − 1)/3 nonzero component functions of F are bent, and (2n − 1)/3
are semi-bent.

The following definition is motivated by the fact that most of the known
constructions of APN functions have the Walsh spectrum of Gold APN functions.

Definition 1.18. Let F be an APN function on Fn
2 . Without loss of generality we

assume that F(0) = 0. We say that APN function F on Fn
2 has the classical Walsh

spectrum, if it has the Walsh spectrum of Gold APN functions, i.e., ΛF is given
by (1.11) for n odd, and by (1.12) for n even.

Remark 1.19. Any AB function is APN [32]. The converse of this statement is not
true in general, as the example of the Dobbertin power APN function f (x) = xd

on F2n with n = 5m and d = 24m + 23m + 22m + 2m − 1 shows [19].

Remark 1.20. For (n, n)-functions F with n odd, the covering radius bound (1.4)
can be improved, see [29, p. 370]. The upper bound on the nonlinearity of (n, n)-
functions F with n odd is given by nl(F) ≤ 2n−1− 2

n−1
2 , and it is achieved by AB

functions. In this way, AB functions, similarly to bent functions, have optimal
nonlinearity and differential uniformity. This is the reason, why they are called
almost bent. To determine the nonlinearity of an arbitrary APN function is, in
general, difficult.

Finally, we refer to the paper of Budaghyan and Pott [16] for the study of
differentially two-valued and s-plateaued functions.

Perfect nonlinear functions. We will use the term perfect nonlinear function to
describe those functions, which have either the best nonlinearity or best differ-
ential uniformity, i.e., (n, m)-bent functions and APN (almost perfect nonlinear)
functions. Although APN functions do not achieve the lower bound on the dif-
ferential uniformity (1.5), since in the even characteristic with a solution x ∈ Fn

2
of the equation F(x)⊕ F(x⊕ a) = b one always has a solution x⊕ a, they achieve
the minimum possible value of differential uniformity for (n, n)-functions F, i.e.,
δ(F) = 2. From this point of view, we consider throughout this thesis the class
of perfect nonlinear functions as the union of Boolean bent functions, vectorial
bent functions and APN functions.

1.1.3 Fundamental classes of bent functions

In this subsection, we summarize several general classes of Boolean and vec-
torial bent functions: quadratic, Maiorana-McFarland and partial spread bent
functions.
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Quadratic Boolean bent functions

The class of quadratic Boolean bent functions is, probably, the only one com-
pletely understood class of Boolean bent functions. In order to characterize
quadratic Boolean bent functions, we first give the general definition of the
quadratic form.

Definition 1.21. A quadratic form on a vector space V over a field F is a mapping
f : V → F satisfying the following two conditions:

1. f (cx) = c2 f (x) for all c ∈ F, x ∈ V;

2. The function (form) Q f : V ×V → F given by

Q f (x, y) = f (x + y)− f (x)− f (y)

is bilinear.

The bilinear form Q f : V × V → F is said to be obtained by polarization of the
function f . The radical of a quadratic form f : V → F is defined as

W f := {y ∈ V : Q f (x, y) = 0 for all x ∈ V},

which is a linear subspace of V. If dim(W f ) = 0, i.e.,W f = {0}, then f is called
nondegenerate, and degenerate, otherwise.

In the following statement, we illustrate that one can read off all the dif-
ferential properties of a quadratic Boolean function from its algebraic normal
form and thus characterize perfect nonlinearity of quadratic functions. This is,
in general, not the case for an arbitrary class of Boolean functions.

Proposition 1.22. Let f : Fn
2 → F2 be a quadratic function, which is given by

f (x) = xAxT ⊕ l(x), (1.13)

where A is an upper triangular matrix with a zero diagonal and l : Fn
2 → F2 is an

arbitrary affine function. Then the bilinear form Q f : Fn
2 × Fn

2 → F2 obtained by po-
larization of f is given by

Q f (x, y) = xByT, (1.14)

where B = A⊕AT. Consequently, f on Fn
2 is bent if and only if rankF2(B) = n.

Proof. First, we compute the bilinear form Q f in the following way:

Q f (x, y) = (x⊕ y)A(x⊕ y)T ⊕ xAxT ⊕ yAyT ⊕ l(x⊕ y)⊕ l(x)⊕ l(y)

= xAxT ⊕ xAyT ⊕ yAxT ⊕ xAxT = x(A⊕AT)yT = xByT = yBxT.

Since Da f (x) = Q f (x, a)⊕ f (a), we have that Da f is balanced for all a ∈ Fn
2 , a 6= 0

if and only if the symplectic matrix B is invertible.



1.1. Boolean and vectorial functions 13

Corollary 1.23. Let f : Fn
2 → F2 be a quadratic Boolean function. Then f is bent if and

only if f is nondegenerate.

Consequently, the fact that homogeneous quadratic Boolean bent functions
are in 1-to-1 correspondence with invertible symplectic n× n-matrices over F2

immediately implies enumeration and classification of quadratic Boolean bent
functions.

Result 1.24. [75, Chapter 15] 1. The number of quadratic Boolean bent functions on
Fn

2 is given by

|Bn| = 2(k+1)2−k
k−1

∏
i=0

(
22i+1 − 1

)
. (1.15)

2. Every quadratic Boolean bent function f : Fn
2 → F2 is equivalent to the function Qn

on Fn
2 , given by

Qn : (x1, . . . , xn) 7→ x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn. (1.16)

Remark 1.25. More general, symplectic n× n matrices of even rank r ≤ n are in
1-to-1 correspondence with homogeneous quadratic Boolean s-plateaued func-
tions on Fn

2 with s = n − r. Let f be a quadratic Boolean function on Fn
2 .

By “Dickson’s theorem” [75, p. 438], we have that the function f on Fn
2 is EA-

equivalent to the canonical quadratic function

Qr : (x1, . . . , xn) 7→ x1x2 ⊕ x3x4 ⊕ · · · ⊕ xr−1xr,

whose Hamming weight is equal to wt(Qr) = 2n−1− 2n−r/2−1. The second-order
derivative Da,bQr is a constant function, given by

Da,bQr(x) = a1b2 ⊕ a2b1 ⊕ a3b4 ⊕ a4b3 ⊕ · · · ⊕ ar−1br ⊕ arbr−1,

which depends on a, b ∈ Fn
2 . Considering Da,bQr(x) as a quadratic function

on Fn
2 × Fn

2 , we get wt(Da,bQr) = 22n−1 − 22n−r−1 = 22n−1 − 2n+s−1, where
s = n− r. In this way, for ε ∈ Fn

2 we have

|{(a, b) ∈ Fn
2 ×Fn

2 : Da,bQr = ε}| = 22n−1 + (−1)ε · 2n+s−1,

and hence for the function f on Fn
2 holds

∑
a,b∈Fn

2

(−1)Da,b f (x) = 2 · 2n+s−1 = 2n+s.

By Result 1.14, the quadratic function f on Fn
2 is s-plateaued.

The enumeration of quadratic s-plateaued functions follows from the enu-
meration of symplectic n× n matrices of a fixed even rank r = n− s, which can
be found in [75, p. 436].
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Quadratic vectorial bent functions

In view of Proposition 1.22, homogeneous quadratic vectorial (n, m)-bent func-
tions are in 1-to-1 correspondence with the set of all possible representations
of m-dimensional vector subspaces of invertible symplectic n× n matrices over
F2. In general it is an open problem to establish the number of homogeneous
quadratic vectorial (n, m)-bent functions for an arbitrary m ≤ n/2. However, the
case m = 2 was resolved by Pott, Schmidt and Zhou [99, Theorem 1]. They used
tools from character theory to compute the number of pairs (A, B) of invertible
alternating matrices over Fq such that A + B is also invertible. Consequently,
according to their result the number of quadratic (n, 2)-bent functions is given
as follows.

Result 1.26. [99, Theorem 1] Let n = 2k. The number of quadratic (n, 2)-bent functions
is given by

|Bn,2| = 2(k+1)2+1
k

∏
j=1

(
22j−1 − 1

)
×
(

k

∑
i=0

(−1)i2i(i−1)
[

k
i

] k−i

∏
j=1

(
22j−1 − 1

)2
)

,

(1.17)
where [

x
l

]
=

l

∏
i=1

(
q2x−2i+2 − 1

)
/
(

q2i − 1
)

is the q2-binomial coefficient defined for real x and nonnegative integer l, which is com-
puted here for q = 2.

Remark 1.27. Similarly to the Boolean case, the number of quadratic (n, 2)-bent
functions is established for all n ≥ 4, however, the number of equivalence classes
of quadratic (n, m)-bent functions with 2 ≤ m ≤ n/2 is not known in general.
The classification of quadratic vectorial (n, m)-bent functions is known only for
small values of n and m thanks to computer search:

• Up to EA-equivalence, there is only one (4, 2)-bent function. Its algebraic
normal form will be given later in Example 1.31.

• Up to EA-equivalence, there is one (6, 2)-bent function and three (6, 3)-bent
functions, as it was shown in [1, Theorem 3.1].

In the following proposition, we show that, similarly to the Boolean case,
all information about the differential properties of a quadratic vectorial function
can be also recovered from its algebraic normal form.

Proposition 1.28. Let F be a quadratic vectorial (n, m)-function with 2 ≤ m ≤ n,
which is given in the following way:

F(x) :=

 f1(x)
...

fm(x)

 =

 xA1xT ⊕ l1(x)
...

xAmxT ⊕ lm(x)

 . (1.18)
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We define Bi := Ai ⊕AT
i for all 1 ≤ i ≤ m and let B = [B1, . . . , Bm] be a tensor with

elements B = (bijk) 1≤i≤m
1≤j,k≤n

, i.e., the entry bijk in B is the entry bjk in the matrix Bi.

We also define a mapping QF : Fn
2 ×Fn

2 → Fm
2 , whose coordinate functions are bilinear

forms Q fi : Fn
2 ×Fn

2 → F2, namely

QF(x, y) := [Q f1(x, y), . . . , Q fm(x, y)]T.

Then QF(x, y) = MyF · xT, where MyF is the m× n matrix defined as follows

MyF :=
n⊕

j=1

yjB′j,

where y ∈ Fn
2 is the vector with coordinates y = (y1, . . . , yn) and for j = 1, . . . , n the

m× n matrix B′j is defined by B′j := (bijk)1≤i≤m
1≤k≤n

.

Proof. By Proposition 1.22, the bilinear form Q fi is given by the following ex-
pression

Q fi(x, y) = yBixT =

( n⊕
j=1

yjbij1, . . . ,
n⊕

j=1
yjbijn

)
xT

=
n⊕

k=1

xk

 n⊕
j=1

yjbijk

 .

Now gathering the coefficient of the term xk for the bilinear form Q fi of each
coordinate function fi, we get the following matrix MaF:

MyF =

x1 . . . xk . . . xn



n⊕
j=1

yjb1j1 . . .
n⊕

j=1
yjb1jk . . .

n⊕
j=1

yjb1jn f1

... . . . ... . . . ...
...

n⊕
j=1

yjbij1 . . .
n⊕

j=1
yjbijk . . .

n⊕
j=1

yjbijn fi

... . . . ... . . . ...
...

n⊕
j=1

yjbmj1 . . .
n⊕

j=1
yjbmjk . . .

n⊕
j=1

yjbmjn fm

=
n⊕

j=1

yjB′j, (1.19)

where the matrix B′j is defined as follows

B′j :=

x1 . . . xj . . . xn


b1j1 . . . b1jk . . . b1jn f1

... . . . ... . . . ...
...

bij1 . . . bijk . . . bijn fi
... . . . ... . . . ...

...
bmj1 . . . bmjk . . . bmjn fm

. (1.20)
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In this way, the function QF is given by QF(x, y) = MyF · xT.

Now we characterize quadratic vectorial bent functions, similarly to Proposi-
tion 1.22 for the Boolean case.

Theorem 1.29. Let F be a quadratic vectorial (n, m)-function, which has the form (1.18).
Let for any a ∈ Fn

2 with a 6= 0 the matrix MaF be defined as in (1.19). Then
the vectorial (n, m)-function F is bent if and only if for any a ∈ Fn

2 \ {0} we have
rankF2(MaF) = m.

Proof. By Proposition 1.22, the function QF is given by QF(x, y) = MyF · xT and,
consequently, the first-order derivative of F in direction a ∈ Fn

2 is given by

DaF(x) = QF(x, a)⊕ F(a).

Then for any nonzero a ∈ Fn
2 and for any b ∈ Fm

2 the equation DaF(x) = b has
exactly 2n−m solutions if and only if the equation

MaF · xT = b′ (1.21)

has 2n−m solutions for any b′ := b⊕ F(a). The latter is equivalent to the fact that
for any nonzero a ∈ Fn

2 the matrix MaF has full rank, i.e., rankF2(MaF) = m.

Remark 1.30. Following the proof of Theorem 1.29, one can characterize dif-
ferentially 2-valued quadratic (n, n)-functions in the following way. Let F be a
differentially 2-valued quadratic (n, n)-function, i.e., for some s ∈ Z we have
ΛF = {0, 2s} (multiplicities are omitted). In this way, equation (1.21) has 0 or
2s solutions for any b′ := b ⊕ F(a) if and only if for all a ∈ Fn

2 \ {0} holds
rankF2(MaF) = n− s.

Example 1.31. Let F be a quadratic (4, 2)-bent function, given by

F(x) :=
(

f1(x)
f2(x)

)
=

(
x1x2 ⊕ x3x4

x1x2 ⊕ x1x4 ⊕ x2x3

)
.

There are two ways to see that this function is vectorial bent. First, we consider
the symplectic matrices Bi, corresponding to the coordinate functions fi:

B1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 and B2 =


0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

.

It is easy to see that the matrices B1, B2, B1 ⊕ B2 are invertible, what means that
all the component functions of F are Boolean bent, and hence F is vectorial bent.
On the other hand, one can construct the matrices B′i as in (1.20) in the following
way:

B′1 =
(

0 1 0 0
0 1 0 1

)
, B′2 =

(
1 0 0 0
1 0 1 0

)
, B′3 =

(
0 0 0 1
0 1 0 0

)
, B′4 =

(
0 0 1 0
1 0 0 0

)
.
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Clearly, all matrices B′i have full rank. One may check that any nonzero matrix
from the linear span 〈B′1, B′2, B′3, B′4〉 has full rank as well, and hence all nontrivial
first-order derivatives of F are balanced, and hence, F is vectorial bent.

Remark 1.32. Although the structure of quadratic vectorial bent functions is
understood, similarly to the Boolean case, it is in general a difficult problem to
construct these functions.

The Maiorana-McFarland class

The following generalization of quadratic Boolean bent functions was indepen-
dently suggested by James A. Maiorana and Robert L. McFarland [78]. We iden-
tify Fn

2 with Fk
2×Fk

2 and consider Boolean functions fπ,φ : F2k ×F2k → F2 of the
form

fπ,φ(x, y) = 〈x, π(y)〉k ⊕ φ(y). (1.22)

A Boolean function fπ,φ of the form (1.22) is bent if and only if the mapping π

is a permutation of Fk
2 (one can see it from the proof of Result 1.35 below). Any

bent function fπ,φ on Fk
2 × Fk

2 is called a Maiorana-McFarland bent function and
the set of all Maiorana-McFarland bent functions is called the (original) Maiorana-
McFarland class and denoted byM.

One of the central problems of research on Boolean bent functions is the con-
struction of bent functions, which are provably outside the completed Maiorana-
McFarland classM#. The motivation behind this problem is the following:

• The truth table of a Maiorana-McFarland bent function on Fk
2 × Fk

2 is a
concatenation of 2k truth tables of affine functions on Fk

2, since for any
fixed y∗ ∈ Fk

2 the mapping x 7→ fπ,φ(x, y∗) is affine on Fk
2. This property

is usually considered as undesirable from the cryptographic point of view,
since it may be used for attacks on block ciphers [23].

• Besides the original Maiorana-McFarland classM, there are a few general
classes of Boolean bent functions: the Dillon’s partial spread class PS and
the H class [41], Carlet’s C and D classes [26] as well as the Dobbertin’s
class N [48]; for extensive references on the subject we refer to the book
of Mesnager [86]. In order to show that a Boolean bent function f on Fn

2
is new in the broadest sense, one needs to show that f is EA-inequivalent
to a member of the union of the aforementioned classes, which is a very
difficult problem due to the different descriptions of these classes. The
standard approach towards the understanding whether a given bent func-
tion f on Fn

2 is new, is to consider a weaker statement, namely to prove
that f is not a member of the completed version of one of the classes,
particularly, the completed Maiorana-McFarland classM#.
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For the recent advances in construction and analysis of Boolean bent functions,
which are provably outside the completed Maiorana-McFarland class, we refer
to [116–118].

A further generalization of the Maiorana-McFarland construction may be ob-
tained by considering the functions fπ,φ on Fn

2 , which is now identified with
Fr

2 × Fs
2. The generalized Maiorana-McFarland class of Boolean functions Mr,s is

defined in [27, p. 354] as the set of Boolean functions in n = r + s variables,
which have the following form

fπ,φ(x, y) = 〈x, π(y)〉r ⊕ φ(y), (1.23)

where x ∈ Fr
2, y ∈ Fs

2, φ is an arbitrary Boolean function on Fs
2 and π : Fs

2 → Fr
2

is some mapping. However, in this case it becomes more difficult to characterize
the bentness of functions of the form (1.23), for the details we refer to [74, p. 173,
Theorem 6.40] or [27, p. 326, Proposition 8.33]. For a given Boolean function f
on Fn

2 , we define its Maiorana-McFarland representation to be a mapping fπ,φ on
Fr

2×Fs
2, given as in (1.23). Note that this representation is not unique in general.

Remark 1.33. Since any affine function on Fr
2 can be decomposed as a concatena-

tion of two affine functions on Fr−1
2 , we have that if f is a member of the completed

generalized Maiorana-McFarland class M#
r,s, then f ∈ M#

r′,s′ for all integers r′ < r
as well. The converse, however, is not true in general.

This observation leads to the following EA-invariant under extended-affine
equivalence, which measures the maximal possible number of variables of affine
functions in a Maiorana-McFarland representation (1.23) of a Boolean function.

Definition 1.34. [115, p. 82] The linearity index ind( f ) of a Boolean function
f : Fn

2 → F2 is the maximal possible r such that f ∈ M#
r,s.

In general, it seems to be a difficult problem to give an upper bound on
the linearity index of a given class of Boolean functions or even to construct an
efficient algorithm for calculating or estimating this value [115, p. 70]. For the
class of bent functions, an upper bound on the linearity index is known.

Result 1.35. [24, Proposition 8.33] Let f be a Boolean bent function f on Fn
2 . Then

ind( f ) ≤ n/2 with equality if and only if f ∈ M#.

Proof. Let f ∈ M#
r,s be bent. Then the function f is EA-equivalent to a function

fπ,φ of the form (1.23). Consider the Walsh transform of the function fπ,φ, which
for a ∈ Fr

2 and b ∈ Fs
2 is given by

χ̂ fπ,φ(a, b) = ∑
x∈Fr

2

∑
y∈Fs

2

(−1)〈x,π(y)〉r⊕φ(y)⊕〈x,a〉r⊕〈y,b〉s

= ∑
y∈π−1(a)

∑
x∈Fr

2

(−1)〈x,π(y)〉r⊕φ(y)⊕〈x,a〉r⊕〈y,b〉s

+ ∑
y/∈π−1(a)

∑
x∈Fr

2

(−1)〈x,π(y)〉r⊕φ(y)⊕〈x,a〉r⊕〈y,b〉s .

(1.24)
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Since for a fixed y /∈ π−1(a) the function x 7→ 〈x, π(y)〉r⊕ φ(y)⊕ 〈x, a〉r⊕ 〈y, b〉s
is affine, and hence balanced, the latter term in (1.24) is equal to zero. In this
way, the Walsh transform of fπ,φ at a ∈ Fr

2 and b ∈ Fs
2 is equal to

χ̂ fπ,φ(a, b) = 2r ∑
y∈π−1(a)

(−1)φ(y)⊕〈y,b〉s = ±2n/2, (1.25)

since fπ,φ is bent on Fn
2 . In this way, r ≤ n/2 and the equality is achieved if and

only if f ∈ M#.

The linearity index of a Boolean function is yet another way to measure the
distance between a given function f on Fn

2 and the set of all affine functions. For
any affine function l on Fn

2 , we have ind(l) = n, and hence Boolean functions
with a small linearity index are in some sense far away from being affine. So far,
we are not aware of any construction methods of bent functions on Fn

2 with a
prescribed linearity index r < n/2. However, one can use the following propo-
sition to show that a function f on Fn

2 is (not) the member of the M#
r,s class for

a fixed r.

Proposition 1.36. Let f be a Boolean function on Fn
2 with n = r + s. The following

statements are equivalent.

1. The function f belongs to theM#
r,s class.

2. There exists a vector subspace U ⊆ Fn
2 of dimension r such that the second-order

derivatives Da,b f vanish for all a, b ∈ U, that is, Da,b f = 0.

3. There exists a vector subspace U ⊆ Fn
2 of dimension r such that the function f is

affine on every coset of U.

Proof. 1.⇒2. The proof of this claim follows the original proof of Dillon [41, p.
102] for the completed Maiorana-McFarland classM#. Since f ∈ M#

r,s, we have
fπ,φ(x, y) := 〈x, π(y)〉r ⊕ φ(y) = f (zA⊕ b)⊕ l(z) for all z ∈ Fn

2 , x ∈ Fr
2, y ∈ Fs

2,
where A is an invertible n× n-matrix, b ∈ Fn

2 and l is an affine function on Fn
2 .

We observe that for any a′, b′ ∈ U′ = {(u, 0) : u ∈ Fr
2} we have Da′,b′ fπ,φ = 0. In

this way, for any a, b ∈ U = U′A−1 we have Da,b f = 0.
2.⇒3. Let U ⊆ Fn

2 be an r-dimensional vector subspace such that for all a, b ∈ U
we have Da,b f (z) = 0 for all z ∈ Fn

2 . Let Ū be a complement of U. Then any
vector z ∈ Fn

2 can be uniquely represented as z = u⊕ ū for u ∈ U and ū ∈ Ū.
For a fixed ū ∈ Ū, consider the mapping f |U⊕ū : u ∈ U 7→ f (u⊕ ū). In this way,
Da,b f |U⊕ū(u) = 0 for all u ∈ U, and thus f is affine on every coset U ⊕ ū.
3.⇒1. Assume that f is affine on each coset of U ∈ Fn

2 . For the r-dimensional
vector space U we construct an invertible matrix AU, which brings f to its
Maiorana-McFarland representation (1.23), i.e., f (zAU) = 〈x, π(y)〉r⊕φ(y), with
z ∈ Fn

2 , x ∈ Fr
2 and y ∈ Fs

2, satisfying zAU = (x, y) in the following way. Since
the values of the function fπ,φ(x, y) = 〈x, π(y)〉r ⊕ φ(y) on the coset Fr

2 ⊕ y for
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y ∈ Fs
2 coincide with the values of f on the coset U ⊕ ū for ū ∈ Ū, we can

construct AU using the change of basis formula

AU =

(
Or,s Ir

Is Os,r

)
·
(

GJB(Ū)

GJB(U)

)
. (1.26)

In this way, f ∈ M#
r,s by definition of the completed generalized Maiorana-

McFarland classM#
r,s.

In the following chapters, we will frequently use the n/2-dimensional vector
subspaces U, which satisfy the condition of the second claim in Proposition 1.36,
in order to show that certain cubic bent functions do not belong to the completed
Maiorana-McFarland class M#. For the sake of convenience, we will call them
M-subspaces and formally define them as follows.

Definition 1.37. We call a vector subspace U of Fn
2 an M-subspace of a Boolean

function f : Fn
2 → F2, if for all a, b ∈ U the second-order derivatives Da,b f are

constant zero functions, i.e., Da,b f = 0. We denote by MS r( f ) the collection of
all r-dimensionalM-subspaces of f and byMS( f ) the collection

MS( f ) :=
n⋃

r=1

MS r( f ).

In terms ofM-subspaces, the linearity index of f is given by

ind( f ) = max
U∈MS( f )

dim(U).

In general, a Boolean function may have many different r-dimensional M-
subspaces. Using the result of Kolomeec [64, Theorem 2], one can compute the
upper bound on the number of n/2-dimensionalM-subspaces of a bent function
f on Fn

2 and also characterize those functions, which achieve this bound with
equality.

Proposition 1.38. Let f be a bent function on Fn
2 and let n = 2k. The number of

k-dimensionalM-subspaces of f is at most

|MSk( f )| ≤
k

∏
i=1

(
2i + 1

)
, (1.27)

with equality if and only if the function f is quadratic.

Proof. By [64, Theorem 2], the number of affine k-dimensional vector subspaces
L of Fn

2 such that a bent function f is affine on L is at most 2k ∏k
i=1
(
2i + 1

)
with

equality if and only if f is quadratic. Moreover, by [64, Lemma 6] the function
f is affine on any coset of L. The statement now follows from Proposition 1.36
and the fact that any k-dimensional M-subspace of f on Fn

2 has 2k different
cosets.
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Now we describe a naive algorithm, which one can use to construct the col-
lection MS r( f ) for a given function f on Fn

2 and a fixed r. For a more efficient
algorithm, we refer to [22, Algorithm 2].

Algorithm 1.1. Construct the collectionMS r( f ) for a Boolean function f on Fn
2

Require: A Boolean function Da,b f : Fn
2 → F2 and 2 ≤ r ≤ n.

Ensure: The collectionMS r( f ).
1: ConstructMS2( f ) := {〈a, b〉 : dim(U) = 2 and Da,b f = 0}.
2: for all subspaces U ∈ MS2( f ) do
3: repeat
4: Determine subspaces Ũ = 〈U, ũ〉 for all ũ /∈ U such that for any

two-dimensional vector subspace 〈a, b〉 ⊆ U second-order derivatives
vanish, i.e., Da,b f = 0.

5: Put U ← Ũ for the obtained subspaces Ũ.
6: until dim(U) = r.
7: Output subspaces U of dimension r.
8: end for

Remark 1.39. Algorithm 1.1 can be used to compute the linearity index of a given
function f in the following way: ind( f ) is the biggest r, for whichMS r( f ) 6= ∅.

Example 1.40. Consider the following cubic bent function on F6
2, given by

f (z) =z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z1z2 ⊕ z1z3 ⊕ z1z4 ⊕ z2z4 ⊕ z2z5 ⊕ z2z6 ⊕ z3z4

⊕z3z6 ⊕ z5z6 ⊕ z1z2z3 ⊕ z1z3z5 ⊕ z1z4z5 ⊕ z1z4z6 ⊕ z2z3z4 ⊕ z3z4z6.

With Algorithm 1.1, it is possible to check that MS3( f ) contains exactly five
M-subspaces. One of them is the M-subspace U, which is generated by the
following three row vectors, forming its Gauss-Jordan basis

U =

〈 1 0 1 0 1 0
0 1 0 0 1 0
0 0 0 0 0 1

〉
.

To verify that the vector subspace U is indeed an M-subspace of the function
f on F6

2, one can compute second-order derivatives Da,b f corresponding to the
different two-dimensional vector subspaces 〈a, b〉 of U and check that all of them
are constant zero functions. We list them in the following form 〈a, b〉 7→ Da,b f
below:〈

0 1 0 0 1 0
0 0 0 0 0 1

〉
7→ 0,

〈
1 0 1 0 1 0
0 0 0 0 0 1

〉
7→ 0,

〈
1 1 1 0 0 0
0 0 0 0 0 1

〉
7→ 0,

〈
1 0 1 0 1 0
0 1 0 0 1 0

〉
7→ 0,〈

1 0 1 0 1 1
0 1 0 0 1 0

〉
7→ 0,

〈
1 0 1 0 1 0
0 1 0 0 1 1

〉
7→ 0,

〈
1 0 1 0 1 1
0 1 0 0 1 1

〉
7→ 0.

In order to construct for a function f its Maiorana-McFarland representation
fπ,φ(x, y) = 〈x, π(y)〉r ⊕ φ(y), we need to compute the linear transformation
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AU, whose computation given in (1.26) involves U and its complement Ū. First,
we compute the complement Ū of the vector space U, as described in the first
paragraph of Subsection 1.1.1. Similarly to U, the vector space Ū is generated by
the following three row vectors, forming its Gauss-Jordan basis

Ū =

〈 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

〉
.

Now we construct the linear transformation AU, which brings f to its Maiorana-
McFarland representation f (zAU) = fπ,φ(x, y), where z ∈ F6

2 and x, y ∈ F3
2,

using expression (1.26) as follows

AU =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


·



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 1 0 1 0
0 1 0 0 1 0
0 0 0 0 0 1


=



1 0 1 0 1 0
0 1 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


.

After the linear transformation of coordinates zAU = (x, y), we get the following
Maiorana-McFarland representation of the function f :

f (zAU) = fπ,φ(x, y) =x1(1⊕ y2 ⊕ y3 ⊕ y1y3 ⊕ y2y3)⊕ x2(1⊕ y2 ⊕ y1y2 ⊕ y3)

⊕x3(1⊕ y1 ⊕ y1y2 ⊕ y3)⊕ y2 ⊕ y3 ⊕ y1y2.

In order to generalize the classical Maiorana-McFarland construction to the
vectorial case, we endow Fn/2

2 with the structure of the finite field (F2n/2 ,+, ·)
and identify Fn

2 with F2n/2 × F2n/2 . The strict Maiorana-McFarland class M of
vectorial bent functions is the set of (n, m)-bent functions F of the form

F(x, y) = L(x · π(y)) + G(y),

where L : F2n/2 → F2m is a linear or an affine function, π : F2n/2 → F2n/2 is a
permutation, and G : F2n/2 → F2m is an arbitrary (n/2, m)-function.

Remark 1.41. Similarly to the Boolean case, one can check with Algorithm 1.1
that a given (n, m)-bent function F = ( f1(x), . . . , fm(x))T is a member of the
strict Maiorana-McFarland class or its completed version. The (n, m)-function F
belongs to the completed Maiorana-McFarland class if and only if all coordinate
functions f1, . . . , fm have a commonM-subspace U ⊂ Fn

2 of dimension n/2.

The partial spread class

In order to introduce the partial spread construction of bent functions suggested
by Dillon in his thesis [41], we first give the definition of a partial spread.

Definition 1.42. A partial spread of order k in Fn
2 is a set of k vector subspaces

U1, . . . , Uk of Fn
2 of dimension d each, such that Ui ∩Uj = {0} for all i 6= j.
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The PS+ class of bent functions is the set of Boolean bent functions on Fn
2 of

the form

f (x) = 1D(x), with D =
k⋃

i=1

Ui, (1.28)

where {U1, . . . , Uk} is a partial spread of order k = 2n/2−1 + 1 in Fn
2 and the

mapping 1D : Fn
2 → F2 is the indicator function of D ⊆ Fn

2 , i.e., 1D(x) = 1 for
x ∈ D and 1D(x) = 0 for x /∈ D. The PS− class of bent functions is the set of
Boolean bent functions on Fn

2 of the form

f (x) = 1D(x), with D =
k⋃

i=1

(Ui \ {0}) , (1.29)

where {U1, . . . , Uk} is a partial spread of order k = 2n/2−1 in Fn
2 . The union

of these two classes is denoted by PS = PS+ ∪ PS− and called the par-
tial spread class of Boolean bent functions. The Desarguesian partial spread class
PS ap ⊂ PS− is the set of Boolean bent functions f on F2n/2 × F2n/2 of the form
f : (x, y) ∈ F2n/2 × F2n/2 7→ h (x/y), where x/y = 0 if y = 0 for x, y ∈ F2n/2 and
h : F2n/2 → F2 is a balanced Boolean function. Note that a bent function from
the PS+ class is not necessarily equivalent to the complement of a bent function
from PS−, as it was observed by Dillon, see [41, pp. 96-97]. The complement of
a bent function from the PS ap ⊂ PS− class is a member of the PS+ class.

Remark 1.43. In general, it is difficult to check whether a given bent function
f on Fn

2 belongs to the PS class due to the combinatorial nature of the partial
spread construction. Up to our best knowledge, there are a few constructions of
Boolean bent functions provably inside or outside the (completed) partial spread
class PS , which we give below.
1. Quadratic bent function Qn : (x1, . . . , xn) 7→ x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn is a
member of the PS+ class if n = 4k, as it was shown by Dillon [41, Theorems
4.1.1 and 6.3.12]. If n 6= 4k, then the quadratic bent function Qn does not belong
to the completed partial spread class PS#.
2. Let the function f on Fm

2 ×Fm
2 with m ≥ 5 be defined as follows

f : (x, y) ∈ Fm
2 ×Fm

2 7→
m

∏
i=1

xi ⊕ 〈x⊕ jm, y〉m.

Carlet [26] proved by contradiction that the function f does not belong to the
completed partial spread class PS#.

Remark 1.44. The property of a bent function to be a member of the partial
spread class is not invariant under EA-equivalence. If f is a partial spread bent
function on Fn

2 , then for an invertible n× n-matrix A, the function g on Fn
2 given

by g : x 7→ f (xA) is also a partial spread bent function. However, translations
of the input x 7→ x⊕ b for b ∈ Fn

2 and additions of affine functions l on Fn
2 to
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the output of a partial spread bent function f on Fn
2 may lead to bent functions

g : x 7→ f (x⊕b) and h : x 7→ f (x)⊕ l(x) on Fn
2 , respectively, which do not belong

to the partial spread class PS , as we will show in Example 1.45.

In Algorithm 1.2, we describe how to check computationally the membership
of a given bent function f on Fn

2 in the PS class. Note that it is also possible
to establish with Algorithm 1.2 whether a bent function f on Fn

2 belongs to the
completed partial spread class PS#. If for a vector b ∈ Fn

2 and an affine function
l on Fn

2 the function g : x 7→ f (x⊕ b)⊕ l(x) on Fn
2 is a member of the PS class,

we have f ∈ PS#, otherwise f /∈ PS#.

Algorithm 1.2. Membership in the partial spread class PS
Require: Bent function f : Fn

2 → F2.
Ensure: True, if f ∈ PS and false, otherwise.

1: if f (0) = 1 then . The case PS+
2: Assign k := 2n/2−1 + 1 and s( f ) := D f (the support of f ).
3: else . The case PS−
4: Assign k := 2n/2−1 and s( f ) := D f

⋃{0}.
5: end if
6: Construct the graph G = (V, E), with V = s( f ) and the set of edges E is

determined by the incidence matrix [ f (x⊕ y)]x,y∈V .
7: Find the set S of cliques of the size 2n/2 in G.
8: if S = ∅ then
9: Return false.

10: end if
11: Construct the set V′ of cliques in S, whose elements form a vector space of

dimension n/2.
12: if V′ = ∅ then
13: Return false.
14: end if
15: Construct the graph G′ = (V′, E′), where the set of edges E′ is deter-

mined by the incidence matrix (ai,j), where ai,j = 1, if for Ui, Uj ∈ S holds
Ui ∩Uj = {0}, and 0 otherwise.

16: Return true, f ∈ PS , if the graph G′ contains a clique of size k, and false
otherwise.

Example 1.45. Consider the cubic bent function f on Fn
2 with n = 6 from Ex-

ample 1.40. With Algorithm 1.2, it is possible to show that f /∈ PS . Since
f (0) = 0, the function f can potentially belong only to PS−. However, this
is not the case, since the graph G′ defined in step 15 of Algorithm 1.2 does
not contain a clique of size 4 = 2n/2−1. On the other hand, f belongs to the
completed PS− class, since for the vector b = (0, 0, 0, 1, 0, 1) ∈ F6

2 the function
g : x 7→ f (x⊕ b) belongs to PS−. The function g can be written in the form
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g(x) = 1D(x), with D =
⋃4

i=1 (Ui \ {0}), where the elements Ui of the partial
spread {U1, U2, U3, U4} are given by

U1 =

〈 1 0 0 1 1 1
0 1 0 0 0 1
0 0 1 0 1 0

〉
, U2 =

〈 1 0 0 1 0 0
0 1 0 1 0 1
0 0 1 0 0 0

〉
,

U3 =

〈 1 0 1 0 1 1
0 1 0 0 0 0
0 0 0 1 0 0

〉
, U4 =

〈 0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1

〉
,

and can be can be obtained with Algorithm 1.2. Similarly, one can show that
the function f belongs to the completed ∈ PS+ class, since the function h on
F6

2 defined by h : x 7→ f (x) ⊕ x5 ⊕ 1 belongs to PS+. The function h can be
written in the form h(x) = 1D(x), with D =

⋃5
i=1 Ui, where the elements Ui of

the partial spread {U1, U2, U3, U4, U5} are obtained with Algorithm 1.2 and are
given by

U1 =

〈
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 0 0

〉
, U2 =

〈
1 0 0 0 1 1
0 1 0 1 1 0
0 0 1 1 1 1

〉
, U3 =

〈
1 0 0 0 0 0
0 1 1 0 1 1
0 0 0 1 0 1

〉
,

U4 =

〈
1 0 0 1 0 0
0 0 1 0 0 1
0 0 0 0 1 1

〉
, U5 =

〈
1 1 0 0 0 1
0 0 1 1 0 0
0 0 0 0 1 0

〉
.

Remark 1.46. Similarly to the maximum number of M-subspaces of a Boolean
bent function f ∈ M# on Fn

2 (see Proposition 1.38), it is an interesting problem
to establish an upper bound on the number of different representations (1.28)
and (1.29) of a bent function f on Fn

2 from the PS class and characterize the
functions with the maximum number of such representations. Using a modifi-
cation of Algorithm 1.2, it is possible to compute the maximum possible number
of representations (1.28) for partial spread bent functions in 8 variables, which
are known and were obtained by Langevin and Hou [69]. For instance, at the
last step of Algorithm 1.2 it is enough to return all cliques (provided they exist)
of size k. According to our computations for n = 8, the maximum number of
different representations (1.28), which a partial spread bent function on F8

2 may
have, equals to 1920 = 27 · 31 · 51 and is attained by quadratic bent functions
from the PS+ class.

Finally, we note that the PS ap class of Boolean bent functions can be gen-
eralized to the vectorial case as follows. The Desarguesian PS ap class of vec-
torial (n, m)-bent functions is the set of (n, m)-bent functions F of the form
F(x, y) := H

(
x · y2n/2−2

)
= H (x/y), where x/y = 0 if y = 0 for x, y ∈ F2n/2 and

H is a balanced (n/2, m)-function (or, equivalently, permutation if m = n/2).
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1.1.4 Cubic bent functions

Cubic Boolean bent functions, i.e., bent functions of algebraic degree three, at-
tracted a lot of attention from researchers, partly because the small algebraic
degree of these functions allows investigating them exhaustively, provided the
number of variables is not too large.

All cubic bent functions in six and eight variables are well-understood:

• The classification of cubic bent functions in six variables was obtained by
Rothaus [103], and the case of eight variables was resolved by Braeken [10,
p. 102]. We list the representatives of the EA-equivalence classes in Ta-
ble 1.1, since in the following chapters we will analyze their cryptographic
properties, which are invariant under EA-equivalence.

Table 1.1. EA-inequivalent cubic bent functions up to 8 variables

1.1(a) EA-inequivalent cubic bent functions on F6
2

c6
i Algebraic normal form of c6

i
c6

1 x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x1x2x3

c6
2 x1x2 ⊕ x1x4 ⊕ x2x6 ⊕ x3x5 ⊕ x4x5 ⊕ x1x2x3 ⊕ x2x4x5

c6
3 x1x4 ⊕ x2x6 ⊕ x3x4 ⊕ x3x5 ⊕ x3x6 ⊕ x4x5 ⊕ x4x6 ⊕ x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6

1.1(b) EA-inequivalent cubic bent functions on F8
2

c8
i Algebraic normal form of c8

i Bj

c8
1 x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x7x8 ⊕ x1x2x3 B1

c8
2 x1x4 ⊕ x2x6 ⊕ x3x7 ⊕ x5x8 ⊕ x1x2x3 ⊕ x2x4x5 B2

c8
3 x1x4 ⊕ x2x6 ⊕ x3x7 ⊕ (x1 ⊕ x5 ⊕ x7)x8 ⊕ x1x2x3 ⊕ x2x4x5 B3

c8
4 x1x2 ⊕ x1x4 ⊕ x2x6 ⊕ x5x7 ⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x7)x8 ⊕ x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 B6

c8
5 x1x4 ⊕ x2x7 ⊕ x5x6 ⊕ x3x8 ⊕ x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 B7

c8
6 x1x4 ⊕ x2x7 ⊕ x5x6 ⊕ (x3 ⊕ x4 ⊕ x6)x8 ⊕ x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 B4, B5

c8
7 x1x2 ⊕ x1x3 ⊕ x2x5 ⊕ x4x6 ⊕ x7x8 ⊕ x1x2x7 ⊕ x3x4x7 ⊕ x5x6x7 B8

c8
8 x1x5 ⊕ x1x6 ⊕ x2x6 ⊕ x3x7 ⊕ x4x8 ⊕ x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x4x7 B9

In general, it is a difficult problem to find a set of invariants, which can
distinguish all EA-inequivalent functions with a given property. From Ta-
ble 1.2, one can see that all EA-equivalence classes of cubic bent functions
in n ≤ 8 variables can be distinguished by the order of the automorphism
group.
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Table 1.2. Orders of automorphism groups of EA-inequivalent cubic bent func-
tions up to 8 variables

1.2(a) n = 6 variables

c6
i |Aut(c6

i )|
c6

1 215 · 31 · 71

c6
2 213 · 31 · 51

c6
3 211 · 31 · 71

1.2(b) n = 8 variables

c8
i |Aut(c8

i )| c8
i |Aut(c8

i )|
c8

1 224 · 32 · 71 c8
5 220 · 31

c8
2 222 · 31 c8

6 218 · 31

c8
3 218 · 32 · 51 c8

7 217 · 32 · 71

c8
4 214 · 32 · 71 c8

8 217 · 71

• The enumeration of cubic bent functions up to 8 variables is also known.
There are exactly 42,372,288 · 27 ≈ 225.33 cubic bent functions in 6 variables,
as it was shown by Preneel in his thesis [100, p. 258], and there are exactly
5,386,705,781,653,504 · 29 ≈ 261.25 cubic bent functions in 8 variables. The
latter result was obtained by Langevin and Leander [70].

• All cubic bent functions up to n ≤ 8 variables belong to the completed
Maiorana-McFarland classM#. The case n = 6 was resolved by Dillon [40],
while the case n = 8 was shown by Braeken [10, p. 103].

Remark 1.47. Leopardi [72, Theorem 6] observed that the Braeken’s list of affine
inequivalent cubic bent functions in 8 variables given in [10, p. 102] contains
a computational mistake. He showed that the representatives B4 and B5 on F8

2
given by

B4(x) =x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x3x5 ⊕ x2x6 ⊕ x2x5 ⊕ x1x7 ⊕ x4x8,

B5(x) =x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x3x5 ⊕ x1x3 ⊕ x1x4 ⊕ x2x7 ⊕ x6x8,

are in fact affine equivalent, since B5(L(x)) = B4(x), where the invertible linear
transformation L on F8

2 is given by L(x) = (x5, x4, x2, x3, x6, x1, x8, x7). In view
of this fact, we revised the classification of cubic bent functions in 8 variables
as described in [10, p. 102] using the implementation of Result 1.60 (which
we explain later) in Magma [9]. In Table 1.1(b), we list our representatives of
equivalence classes c8

i and point out to which representatives Bj of Braeken [10,
p. 120] they are equivalent to. In this way, we get the following result.

Theorem 1.48. There are 8 extended-affine equivalence classes of cubic Boolean bent
functions on F8

2.

Although cubic bent function are not far away from quadratic from the al-
gebraic degree point of view, it seems elusive to classify or enumerate them
completely as well as to provide a unifying construction approach. So far, the
current research on cubic bent functions is mostly focused on the construction
of these functions and investigation of their cryptographic properties, among
which are the following:
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• being outside the competed Maiorana-McFarland classM#;

• having no affine derivatives.

The class of cubic Boolean bent functions remains the only class of bent func-
tions (w.r.t. the algebraic degree) for which it is not known whether it can (not)
be completely described by the Maiorana-McFarland construction. As we men-
tioned previously, all cubic bent functions in six and eight variables are the
members of the completed Maiorana-McFarland class M#. On the other hand,
a couple of infinite families of cubic bent functions constructed with the use of
finite fields [21, 49, 71, 85] are either proved to be members of M# or have not
been studied so far. For instance, Canteaut-Charpin-Kyureghyan and Leander
power functions [21, 71] are proved to be members of the M# class, while the
Niho cubic bent function [49] as well as Mesnager’s infinite family with multi-
ple trace terms [85] have not been analyzed yet. At the same time, all quadratic
Boolean bent functions on Fn

2 belong to the M# class (see Result 1.24) and bent
functions of algebraic degrees d ≥ 4, which are outside M#, exist on Fn

2 for all
n ≥ 8, as it was shown by Dillon in [41]. His proof will be considered in more
detail in Result 4.16. In this way, the question whether a cubic bent function on
Fn

2 can be outside theM# class whenever n ≥ 10 still remains an open problem.
The property of having no affine derivatives is closely related to the notion

of fast points, which were introduced in [51] motivated by applications in crypt-
analysis. The point a ∈ Fn

2 is called a fast point of a function f : Fn
2 → F2 if

it satisfies deg(Da f ) < deg( f )− 1 and a slow point, if deg(Da f ) = deg( f )− 1.
The set of fast points of a Boolean function f on Fn

2 , denoted by FP f , is a vector
space and its dimension is bounded by dim(FP f ) ≤ n−deg( f ), as it was shown
in [51]. A cubic function f on Fn

2 has no affine derivatives, if dim(FP f ) = 0, i.e.,
all its nontrivial first-order derivatives are quadratic functions.

Cryptographic systems having component functions without fast points are
more resistant to certain differential attacks, as it was shown in [50, 66]. The
question about the existence of cubic bent functions without affine derivatives on
Fn

2 was firstly addressed by Hou [58]. Consequently, Canteaut and Charpin [20,
Lemma 1] provided a positive answer by showing that such cubic bent functions
exist for all even n ≥ 6 with n 6= 8. Mandal, Gangopadhyay and Stănică [77]
constructed two classes of cubic bent functions without affine derivatives inside
M# and proved their mutual inequivalence. They also suggested to find such
functions outside theM# class and evaluate their significance for cryptographic
applications [77, Section 1.6].

In comparison to the Boolean case, the class of cubic vectorial bent functions
seems to be a less understood object. There are no computational results about
classification and enumeration of these functions in a small number of variables.
The known theoretical constructions are mostly generalizations of the Boolean
analogues. For extensive references on the subject, we refer to [86, Chapter 12].
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1.2 Difference and relative difference sets

Here we provide two remarkable characterizations of Boolean and vectorial bent
functions by means of difference sets and relative difference sets.

Definition 1.49. Let (G,+) be a finite group of order v. A subset D ⊆ G is called
a (v, k, λ)-difference set, if |D| = k and the list of differences d− d′ with d, d′ ∈ D
contains every non-identity element of G exactly λ times.

The following fundamental connection between Boolean bent functions and
difference sets was established by Dillon in his thesis.

Result 1.50. [41, p. 74, Theorem 6.2.2] Let f be a Boolean function on Fn
2 . The following

statements are equivalent.

1. The function f is bent.

2. The support D f is a
(
2n, 2n−1 ± 2n/2−1, 2n−2 ± 2n/2−1)-difference set in Fn

2 .

There are various generalizations of classical difference sets. One of them is
the notion of relative difference sets.

Definition 1.51. Let (G,+) be a finite group of order µ · ν and N be a normal
subgroup of order ν of G. A subset R ⊆ G is called a relative (µ, ν, k, λ)-difference
set relative to the forbidden subgroup N if |R| = k and the list of differences r− r′

with r, r′ ∈ R contains all elements of G \ N exactly λ times. Moreover, no
nonzero element in N occurs in this list of differences.

Remark 1.52. Any relative (µ, 1, k, λ)-difference set is a (v, k, λ)-difference set
with v = µ.

The following connection between perfect nonlinear functions and relative
difference sets was observed by Pott [97, Theorem 1] within a more general
framework of perfect nonlinearity of functions on arbitrary finite groups.

Result 1.53. [97, Theorem 1] Let n be even. The following statements are equivalent.

1. An (n, m)-function F is bent.

2. The graph GF ⊆ Fn
2 ×Fm

2 is a relative (2n, 2m, 2n, 2n−m)-difference set in
Fn

2 ×Fm
2 relative to the subgroup N = {(0, y) : y ∈ Fm

2 }.

1.2.1 Group rings

Now we introduce group rings, which serve as a powerful tool used to formally
translate combinatorial properties of subsets of finite groups into the language
of equations.
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Definition 1.54. Let G be a finite multiplicatively written group with the identity
element 1G. The integral group ring Z[G] consists of formal sums ∑g∈G agg,
where ag ∈ Z. Addition of group ring elements is defined componentwise

∑
g∈G

agg + ∑
g∈G

bgg = ∑
g∈G

(ag + bg)g

and the multiplication is a convolution

∑
g∈G

agg ∑
g∈G

bgg = ∑
g∈G

( ∑
h∈G

ahbh−1g)g.

Here we identify a subset S ⊆ G with the group ring element ∑g∈S g. In
order to proceed with the application of group rings to the characterizations of
Boolean and vectorial functions in terms of group ring equations, one needs to
associate a certain set with a given function. First, we identify a Boolean function
f on Fn

2 with its support D f ⊆ Fn
2 . Since the support D f ⊆ Fn

2 of a Boolean bent
function f on Fn

2 is a
(
2n, 2n−1 ± 2n/2−1, 2n−2 ± 2n/2−1) difference set, the set D f

satisfies the following group ring equation

D2
f =

(
2n−1 ± 2n/2−1

)
· 1G +

(
2n−2 ± 2n/2−1

)
· (G− 1G)

with G = Fn
2 . In a similar manner, one can identify an (n, m)-function F with its

graph GF ⊂ G = Fn
2 × Fm

2 . Thus, (n, m)-bent functions, being (2n, 2m, 2n, 2n−m)

relative difference sets in G = Fn
2 × Fm

2 relative to the forbidden subgroup
N = {(0, y) : y ∈ Fm

2 }, can be described by the following group ring equation,

G2
F = 2n · 1G + 2n−m · (G− N).

Similarly, Budaghyan and Pott [16, Theorem 5], characterized s-plateaued (n, n)-
functions F using the group ring equations in the following way,

G3
F = 2n+s · GF + (2n − 2s) · G. (1.30)

Graphs of APN functions F on Fn
2 satisfy the following group ring equation [54]

G2
F = 2n · 1G + 2 · SF, (1.31)

where SF corresponds to a subset of Fn
2 × Fn

2 , which is disjoint from the set
{(0, y) : y ∈ Fn

2}. Note that if F is an AB function on Fn
2 , then SF = D f for some

bent function f on F2n
2 , see [25].

For background on group rings, we refer to [95, 96] and for further applica-
tions of the group ring equations to the study of perfect nonlinear functions we
refer to [97, 98].
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1.3 Linear codes

In the following chapters, we will investigate equivalence of Boolean and vec-
torial functions with the help of linear codes, therefore we give some necessary
definitions from coding theory.

Definition 1.55. A linear code C of length n over F2 is a vector subspace C ⊆ Fn
2 .

The elements of a linear code C ⊆ Fn
2 are called codewords and said to have length

n.

The number of nonzero coordinates of a codeword c ∈ C is called the weight
of c and is denoted by wt(c). We also denote by Ai the number of codewords
of weight i in the code C. For a linear code C ⊆ Fn

2 we call the polynomial
WC(z) := ∑n

i=0 Aizi the weight enumerator of C. The minimum distance of a linear
code is the minimum weight of its nonzero codewords. We also say that a linear
code C ⊆ Fn

2 is an

• [n, k]-linear code, if C has dimension k;

• [n, k, d]-linear code, if C is an [n, k]-linear code, which has the minimum
distance d.

The dual of an [n, k]-linear C code is the [n, n− k]-linear code C⊥ defined by

C⊥ := {u ∈ Fn
2 : u ·w = u1w1 ⊕ · · · ⊕ unwn = 0 for all w ∈ C}.

There are two ways to define an [n, k]-linear code: with the help of a gen-
erator matrix and a parity-check matrix. We say that a k × n-matrix G is a
generator matrix of an [n, k]-linear code C, if the rows of G form a basis for C.
An (n− k)× n-matrix H is called a parity-check matrix of an [n, k]-linear code C,
if every vector in C is orthogonal to the rows of the matrix H. It is easy to see
that an [n, k]-linear code C is specified by a generator matrix G and a parity-
check matrix H, if and only if the dual [n, n− k]-linear code C⊥ is specified by a
generator matrix H and a parity-check matrix G.

Definition 1.56. Two linear codes C and C ′ are permutation equivalent provided
there exists a permutation of coordinates which maps the code C to C ′.

In the following, we will omit the word “permutation” and simply say that
two codes are equivalent. Clearly, two linear codes C and C ′ are equivalent if
and only if the dual codes C⊥ and C ′⊥ are equivalent. The automorphism group
Aut(C) of a linear code C is the set of all permutations of coordinates, which fix
the code C.

Definition 1.57. Let G be a group, S be a set and let · : G × S → S be a group
action. The group action is called:
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• free if for given g1, g2 ∈ G the existence of an element s ∈ S satisfying
g1 · s = g2 · s implies g1 = g2;

• t-transitive if for any two ordered t-tuples (x1, . . . , xt) and (y1, . . . , yt) of
pairwise distinct elements of S, there exists an element g ∈ G such that for
all i ∈ {1, . . . , t} holds g · xi = yi;

• regular if it is both free and 1-transitive.

We also say that a group is free/ t-transitive/ regular if it acts on the set S freely/
t-transitively/ regularly.

Definition 1.58. The r-th order binary Reed-Muller code RM(r, n) of length 2n, for
0 ≤ r ≤ n, is the set of truth tables of Boolean functions on Fn

2 with algebraic
degree at most r, i.e., RM(r, n) = {f | f : Fn

2 → F2, deg( f ) ≤ r}.

Since the elements of the first-order Reed-Muller codeRM(1, n) are the truth
tables of all affine functions on Fn

2 , we have that RM(1, n) is a [2n, n + 1, 2n−1]-
linear code with the weight enumerator WRM(1,n)(z) = 1+ (2n+1− 2)z2n−1

+ z2n
.

Moreover, its generator matrix G can be given by

G =

(
1
x

)
x∈Fn

2

,

where x = (x1, . . . , xn)T is a column vector.

Equivalence of functions and equivalence of linear codes

In the following, we interpret the equivalence of Boolean functions in terms of
code equivalence, which can be easily verified with the help of computer algebra
systems, e.g., Magma [9] or GAP [106], provided that the number of variables is
not too large. For a given (n, m)-function F, we define the following generator
matrices:

C1(F) :=

 1
x

F(x)


x∈Fn

2

, C2(F) :=

 1 0
x 0

F(x) y


x∈Fn

2
y∈Fm

2 \{0}

, (1.32)

where x, y and F(x) are column vectors.

Definition 1.59. We define a linear code Ci(F) of an (n, m)-function F as a linear
code, whose generator matrix is the matrix Ci(F) from (1.32). In this way, a linear
code C⊥i (F) of an (n, m)-function F is a linear code, whose parity-check matrix
is the matrix Ci(F) from (1.32).
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With the help of linear codes Ci(F) given in Definition 1.59, one can check
various types of equivalence relations for (n, m)-functions F and F′ due to the
following result.

Result 1.60. Let F and F′ be two (n, m)-functions. The following hold.

1. Functions F and F′ are CCZ-equivalent if and only if the linear codes C1(F) and
C1(F′) are equivalent.

2. Functions F and F′ are EA-equivalent if and only if the linear codes C2(F) and
C2(F′) are equivalent.

For the proof of the first claim, we refer to the work of Browning, Dillon,
Kibler and McQuistan [12, Theorem 6.2] and for the proof of the second claim,
we refer to the work of Edel and Pott [54, Theorems 10]. For the methods of
checking affine equivalence with linear codes, we refer to [17, 54].

Remark 1.61. Since EA-equivalence and CCZ-equivalence coincide for (n, m)-
bent functions (see Result 1.11), it is more convenient from the computational
point of view to check equivalence of the codes C1(F) and C1(F′) instead of C2(F)
and C2(F′) for (n, m)-bent functions F and F′. For this reason and due to the
fact that further we will be concentrated only on EA-equivalence of (n, m)-bent
functions, we denote throughout the thesis CF := C1(F) for an (n, m)-function F.

Remark 1.62. The automorphism group Aut(F) of an (n, m)-bent function F (see
Definition 1.4) and the automorphism group of the corresponding linear code
Aut(CF) are isomorphic. Any automorphism of CF corresponds to a permutation
matrix Q ∈ F

(2n,2n)
2 such that M · C1(F) = C1(F) ·Q for an invertible matrix

M ∈ F
(n+m+1,n+m+1)
2 , which is uniquely determined by Q, since all columns of

C1(F) are distinct. Without loss of generality, the matrix M has the form

M =

 1 0 0
a A11 A12

b A21 A22

 ,

where a ∈ Fn
2 , b ∈ Fm

2 , A11 ∈ F
(n,n)
2 , A12 ∈ F

(n,m)
2 , A21 ∈ F

(m,n)
2 and A22 ∈ F

(m,m)
2 .

Then the affine function L(x, y) := (A11x⊕A12F(x)⊕ a, A21x⊕A22F(x)⊕ b)T is
a permutation on Fn

2 ×Fm
2 , which fixes the graph of F, i.e., L(GF) = GF.

Characterization of perfect nonlinearity in terms of linear codes

In this subsection, we provide a characterization of (n, m)-bent functions and
APN functions in terms of linear codes CF and C⊥F , which contain information
about nonlinearity and differential properties of a given (n, m)-function F. First,
we give a connection between the number of codewords of weight 4 in the linear
code C⊥F of an (n, m)-function F and the fourth power moment of the Walsh
transform.
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Result 1.63. [1, Theorem 2.5.] Let F be an (n, m)-function. Then the number of code-
words of weight 4 in C⊥F is given by

A4 =
1
24

 1
2n+m

 ∑
a∈Fn

2 ,b∈Fm
2

(χ̂F(a, b))4

− 3 · 22n + 2n+1

 . (1.33)

Using this statement and definitions of linear codes CF and C⊥F , we derive the
following characterizations of bent and APN functions.

Corollary 1.64. Let n = 2k. The following statements are equivalent.

1. An (n, m)-function F is bent.

2. The linear code CF is a [2n, n + m + 1, 2n−1 − 2k−1]-linear code with the weight
enumerator

WCF(z) =1 + (2m − 1) 2nz2n−1−2k−1
+ (2n+1 − 2)z2n−1

+ (2m − 1) 2nz2n−1+2k−1
+ z2n

.
(1.34)

3. The linear code C⊥F is a [2n, 2n − n − m − 1, 4]-linear code with the number of
weight 4 codewords given by

A4 =
1
3

(
23n−m−3 − 22n−m−3 − 22n−2 + 2n−2

)
, (1.35)

which is the minimum possible value for an (n, m)-function F with n even and
m ≤ n/2.

Proof. The claim 1. ⇔ 2. follows from the definition of nonlinearity and the fact
that bent functions achieve the covering radius bound (1.4) with equality. The
claim 1. ⇔ 3. follows from Result 1.63 and the fact a Boolean function f on Fn

2
is bent if and only if the fourth power moment of the Walsh transform achieves
the bound ∑a∈Fn

2
(χ̂F(a))4 ≥ 23n with equality, see [87, Theorem 3].

Corollary 1.65. An (n, n)-function F is APN if and only if C⊥F is a [2n, 2n− 2n− 1, 6]-
linear code or, equivalently, if the number of weight 4 codewords in C⊥F is A4 = 0.

Proof. Follows from Result 1.63 and the fact an (n, n)-function F is APN if and
only if the fourth power moment of the Walsh transform achieves the bound
∑a∈Fn

2 ,b∈Fm
2 \{0}(χ̂F(a, b))4 ≥ (2n − 1)23n+1 with equality, see [6, Corollary 1].

1.4 Incidence structures

In the following chapters, we will analyze equivalence of bent functions with
the help of incidence structures arising from (relative) difference sets and linear
codes.
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Definition 1.66. An incidence structure is a triple S = (P ,B,R), where:

• P is the point set of S and its elements are called points;

• B is the block set of S and its elements are called blocks;

• R ⊆ P ×B is a binary relation, called an incidence relation.

If (p, B) ∈ R , we say that point p and block B are incident.

Remark 1.67. In this thesis, we consider only incidence structures S = (P ,B,R)
with the incidence relation R being set inclusion. For this reason, we omit R
and simply write S = (P ,B).

An isomorphism from incidence structure S onto S′ is a bijection between point
sets of S and S′, which induces a bijection between their block sets. If such an
isomorphism from S to S′ exist, we call these incidence structures isomorphic.
Any isomorphism of an incidence structure onto itself is called an automorphism.
Clearly, the set of all automorphisms of an incidence structure S is a group,
which is called the automorphism group of S and denoted by Aut(S).

All information about an incidence structure S is contained in its incidence
matrix M(S) = (mi,j), which is a binary b × v matrix with mij = 1 if pj ∈ Bi
and mij = 0 otherwise. In terms of incidence matrices, two incidence structures
S and S′ are isomorphic if there exist permutation matrices P and Q such that
P ·M(S) ·Q = M(S′).

Example 1.68. Let S = (P ,B) be the Fano plane, where P = {1, 2, 3, 4, 5, 6, 7}
and B = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}. In Fig-
ure 1.1, we give a graphical representation of the Fano plane together with its
incidence matrix.

Figure 1.1. Fano plane

(a) Blocks and points

1 2

3

6

4

57

(b) Incidence matrix



1 2 3 4 5 6 7
B1 1 1 0 1 0 0 0
B2 0 1 1 0 1 0 0
B3 0 0 1 1 0 1 0
B4 0 0 0 1 1 0 1
B5 1 0 0 0 1 1 0
B6 0 1 0 0 0 1 1
B7 1 0 1 0 0 0 1


We will use invariants of incidence matrices in order to distinguish non-

isomorphic incidence structures; among them are the Smith normal form and
p-rank.
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Definition 1.69. A diagonal matrix D with nonnegative entries d1, d2, . . . , dn such
that d1|d2| · · · |dn is called the Smith normal form of an integral matrix A of or-
der n, if there exist integral matrices U and V with det(U), det(V) = ±1 such
that UAV = D. The diagonal entries di are called elementary divisors of A. The
p-rank of A is the rank of A over the field Fp. The Smith normal form SNF(S)
and the p-rank(S) of an incidence structure S are defined as the Smith normal
form and the p-rank of its incidence matrix M(S), respectively.

Remark 1.70. 1. The Smith normal form of a matrix is unique [38, Section 7.5].
It can be computed using elementary row and column operations. The p-rank
of a matrix A is the number of elementary divisors coprime with p. The Smith
normal form and the p-rank of an incidence structure S are unique as well. Let
M1 and M2 be two different incidence matrices of S, i.e., there exist permutation
matrices P and Q such that M1 = P ·M2 ·Q. Assume that the Smith normal
form D of M1 is given by UM1V = D, where U, V are integral matrices with
det(U), det(V) = ±1. Then the SNF of M2 is given by U′M2V′ = D, where
U′ = UP and V′ = QV are integral matrices, satisfying det(U′), det(V′) = ±1.
2. In the following chapters, we will be interested only in elementary divisors
of the Smith normal form of incidence structures. For this reason, we define
SNF(S) as the multiset SNF(S) = {∗dm1

1 , . . . , dmk
k ∗}, where consecutive elemen-

tary divisors di and di+1 satisfy di|di+1, and mi is the multiplicity of the ele-
mentary divisor di. For extensive references about the Smith normal form and
p-ranks, we refer to [56, p. 494] and [38, Section 7.5].

Example 1.71. With the help of a computer algebra system, one can check that
the Smith normal form of the Fano plane S considered in Example 1.68 is given
by SNF(S) = {∗14, 22, 61∗}. Since the number of elementary divisors coprime
with 2 equals to 4, we have 2-rank(S) = 4.

In the following, we define two important classes of incidence structures,
namely t-designs and divisible designs, and give explicit constructions of these
incidence structures with the help of (n, m)-bent functions.

Definition 1.72. An incidence structure D = (P ,B) is called a t-(v, k, λ) design, if
the cardinality of the point set P is v, the set of blocks B of cardinality |B| = b is
a collection of k-subsets of P and every t-subset of points is contained in exactly
λ blocks of B. A t-(v, k, λ) design D is called symmetric, if the number of points
and blocks coincide.

Any t-(v, k, λ) design D = (P ,B) with |B| = b is a regular incidence structure,
i.e., any point of D is contained in the same number of blocks r, which is called
the replication number of D. The replication number r can be computed from the
following relation between parameters of D, namely bk = vr. The parameter
λ is called the covalency. For a t-(v, k, λ) design D = (P ,B) with |B| = b, the
following relations between parameters t, v, k, λ, b holds
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(
v
t

)
λ =

(
k
t

)
b. (1.36)

We call a t-(v, k, λ) design D = (P ,B) trivial, if B = ∅ or k < t. In the case of
1-(v, k, λ) designs, the parameters r and λ coincide, for this reason we will call
1-designs regular incidence structures. If two 1-designs have the same replica-
tion number r, we will call them equiregular. We say that a t′-(v′, k, λ′) design
D′ = (P ′,B′) is a subdesign of a t-(v, k, λ) design D = (P ,B), if P ′ ⊆ P and
B′ ⊆ B. Finally, if for a design D = (P ,B) there exist n subdesigns Di = (P ,Bi)

such that B =
⊔n

i=1 Bi, we say that that D is partitioned into subdesigns D1, . . . , Dn

and write D =
⊔n

i=1 Di.
A divisible design is a generalization of a 2-(v, k, λ) design, which is based

on the partitioning of the point set into point classes (i.e., equivalence classes of
points) and requiring, that points in distinct classes are incident with the same
number of blocks.

Definition 1.73. An incidence structure D = (P ,B) is called a (µ, ν, k, λ)-divisible
design, if the point set P with |P| = v = µ · ν elements is divided into µ point
classes of size ν each, the block set B is a collection of k-subsets of P and the
number of blocks containing any subset {p, q} ⊂ P depends on the relation
between points p and q in the following way:

• If p and q are in the same point class, the subset {p, q} is not contained in
a block.

• Otherwise it is contained in exactly λ blocks.

For extensive references on incidence structures, we refer to [7, 8, 59] and
for the results on p-ranks and Smith normal forms of 2-(v, k, λ) designs we refer
to [114]. In the following subsections, we will survey some well-known con-
structions of incidence structures from Boolean and vectorial functions with the
use of graphs, supports and linear codes. We also explain, how one may use
these incidence structures to characterize perfect nonlinearity and distinguish
inequivalent classes of functions.

1.4.1 Developments

We begin with a general construction approach of incidence structures from
subsets of finite groups.

Definition 1.74. For a subset A ⊆ G of a finite group (G,+), the development
dev(A) of A is an incidence structure, whose points are the elements in G, and
whose blocks are the translates A + g := {a + g : a ∈ A}, where g ∈ G.
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In order to distinguish Boolean and vectorial functions with the help of their
supports and graphs, we introduce the equivalence relation for the subsets of
finite groups in the following way.

Definition 1.75. We say that two subsets A, A′ ⊆ G of a finite group (G,+) are
equivalent, if there is a group automorphism φ : G → G such that φ(A) = A + h
for some h ∈ G, where A + h = {a + h : a ∈ A}.

Remark 1.76. If two subsets A, A′ ⊆ G are equivalent in the sense of Defini-
tion 1.75, then the developments dev(A) and dev(A′) are isomorphic. In this
way, since affine equivalence of Boolean functions f and f ′ of Fn

2 is equivalence
of their supports D f and D f ′ , we have that for a Boolean function f on Fn

2 the in-
cidence structure dev(D f ) is invariant under affine equivalence. Similarly, since
CCZ-equivalence of (n, m)-functions F and F′ is equivalence of their graphs GF
and GF′ , we have that for an (n, m)-function F the incidence structure dev(GF) is
invariant under CCZ-equivalence.

With the following fundamental result, one can always construct symmetric
2-designs and divisible designs as developments of difference sets and relative
difference sets, respectively.

Result 1.77. 1. A subset D ⊆ G of a group G is a (v, k, λ)-difference set in G if and
only if the incidence structure dev(D) is a symmetric 2-(v, k, λ) design with a regular
automorphism group.
2. A subset R ⊆ G of a group G is a relative (µ, ν, k, λ)-difference set in G relative
to some normal subgroup N of G with |N| = ν if and only if the incidence structure
dev(R) is a (µ, ν, k, λ)-divisible design with the automorphism group G, acting regu-
larly on both the point and block sets of dev(R).

For the proofs of the first and the second claims, we refer to the Lander’s
book [67, Chapter 4] and the article of Jungnickel [60, Theorem 2.7], respectively.

Example 1.78. The Fano plane S = (P ,B), considered in Example 1.68, is a
symmetric 2-(7, 3, 1) design. First, we observe that the set A = {1, 2, 4} is a
(7, 3, 1)-difference set in group (Z7,+), since any nonzero element of Z7 can be
uniquely represented as a difference of two residues modulo 7. We also note
that any block Bi has the form Bi = A + i mod 7, thus S = dev(A). In this way,
by Result 1.77, the Fano plane is a symmetric 2-(7, 3, 1)-design.

Applying Result 1.77 to supports of Boolean bent functions f on Fn
2 , which

are (2n, 2n−1± 2n/2−1, 2n−2± 2n/2−1)-difference sets according to Result 1.50, we
get the following design-theoretic characterization of Boolean bent functions.

Result 1.79. Let f be a Boolean function on Fn
2 . The following statements are equivalent.

1. The function f is bent.
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2. The incidence structure dev(D f ) is a symmetric

2-(2n, 2n−1 ± 2n/2−1, 2n−2 ± 2n/2−1) (1.37)

design.

In the same way, applying Result 1.77 to graphs of (n, m)-bent functions,
which are (2n, 2m, 2n, 2n−m)-relative difference sets according to Result 1.53, we
obtain the following characterization of (n, m)-bent functions.

Result 1.80. Let F be an (n, m)-function. The following statements are equivalent.

1. The function F is (n, m)-bent.

2. The incidence structure dev(GF) is a (2n, 2m, 2n, 2n−m) divisible design.

Definition 1.81. Let f be a Boolean bent function on Fn
2 and F be an (n, m)-bent

function. We will call the designs dev(D f ), dev(G f ) and dev(GF) translation de-
signs of bent functions f and F, since the blocks of these designs are the translates
of difference and relative difference sets.

For extensive references on the incidence structures constructed from differ-
ence sets and relative difference sets, we refer to [7, 8, 60, 95, 96].

Geometric invariants of Boolean and vectorial functions. We will frequently
use the following invariants of Boolean and vectorial functions, which arise from
incidence structures dev(D f ) and dev(GF) of Boolean functions f on Fn

2 and
(n, m)-functions F, respectively; throughout the thesis they will be referred to as
geometric invariants.

Definition 1.82. Let f be a Boolean function on Fn
2 and F be an (n, m)-function.

We define the rank( f ) as the 2-rank of M(dev(D f )). For an (n, m)-function F,
we define the Γ-rank(F) as the 2-rank of M(dev(GF)) and SNF(F) as the Smith
normal form of the incidence matrix M(dev(GF)), which is given by a multiset
SNF(F) = {∗dm1

1 , . . . , dmk
k ∗}, where di|di+1 and mi is the multiplicity of di.

Remark 1.83. In view of Remark 1.76, we have that Γ-rank(F) and SNF(F)
are invariant under CCZ-equivalence for all (n, m)-functions F, while rank( f )
is invariant under EA-equivalence only for Boolean functions f on Fn

2 with
deg( f ) ≥ 2, as it was shown in [110]. For the study of inequivalence of bent
functions with the help of ranks, we refer to [110, 111], and for the applications
of Γ-ranks to inequivalence of (n, m)-functions, we refer to [53, 54].
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1.4.2 Supports of codewords of the fixed weight

Let C be a linear code of length v. The support of a codeword c = (c1, . . . , cv) ∈ C
is the set of nonzero coordinate positions in c, which is denoted by suppt(c) and
formally defined as suppt(c) = {i : 1 ≤ i ≤ v and ci 6= 0}. For an integer w sat-
isfying Aw 6= 0 in WC(z), we define the collection of the supports of codewords
of the fixed weight w as Bw(C) := {suppt(c) : c ∈ C and wt(c) = w}. Finally,
we denote by P(C) := {1, . . . , v} the set of all possible coordinate positions of
the linear code C of length v.

Definition 1.84. An incidence structure S = (P(C),Bw(C)) is said to be supported
by codewords of weight w in C. If S is a t-(v, k, λ) design, we say that the
codewords of weight w in C hold a t-(v, k, λ) design. If the codewords of the
weight w hold t-designs for any 0 ≤ w ≤ v, we say that the code C supports
t-designs.

The constructed in such a way incidence structures may be used to distin-
guish inequivalent linear codes. If C and C ′ are two equivalent binary linear
codes of length v, then there exists a permutation π on the set P(C) such that
for any c ∈ C we have π(c) ∈ C ′. In this way, for any fixed weight w satisfying
1 ≤ w ≤ v, the permutation π induces a permutation from Bw(C) to Bw(C ′).
This observation proves the following statement.

Proposition 1.85. Let C and C ′ be two equivalent binary linear codes of length v. Then
for any integer w satisfying 1 ≤ w ≤ v the incidence structures S = (P(C),Bw(C))
and S′ = (P(C ′),Bw(C ′)) are isomorphic.

In general, it is a nontrivial problem to construct t-designs. One of the stan-
dard ways to construct t-designs from linear codes is to consider the supports
of the codewords of a fixed weight, and check whether either the automorphism
group of the given code is t-transitive (see Definition 1.57), or the conditions of
the original Assmus-Mattson theorem are fulfilled. Below we formulate these
results for binary linear codes, since these are the only codes considered in this
thesis, however, the original statements are valid for linear codes over Fq with q
being a prime power.

Result 1.86 (Transitivity theorem). [2]. Let C be a linear code of length v over F2

with a t-transitive automorphism group Aut(C). Then for any w ≥ t the incidence
structures (P(C),Bw(C)) and

(
P
(
C⊥
)

,Bw
(
C⊥
))

are t-designs.

Result 1.87 (Original Assmus-Mattson Theorem). [3] Let C be a linear code over F2

of length v and minimum distance d. Let C⊥ be the dual code of C and have minimum
distance d⊥. Let t with 1 ≤ t < min

{
d, d⊥

}
be an integer such that there are at most

d⊥− t weights of C in {1, 2, . . . , v− t}. Then (P(C),Bw(C)) and
(
P
(
C⊥
)

,Bw
(
C⊥
))

are t-designs for all w ∈ {0, 1, . . . , v}.
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Remark 1.88. 1. If a linear code C satisfies the conditions of Result 1.86 or
Result 1.87, then by relation (1.36), the parameters of t-designs (P(C),Bw(C))
and

(
P
(
C⊥
)

,Bw
(
C⊥
))

are t-
(
v, w, Aw · (w

t )/(
v
t)
)

and t-
(
v, w, Bw · (w

t )/(
v
t)
)
, re-

spectively, where Aw is the number of codewords of weight w of C and Bw is the
number of codewords of weight w of C⊥.
2. If w < t or there are no codewords of weight w in C or C⊥, then t-designs
(P(C),Bw(C)) or

(
P
(
C⊥
)

,Bw
(
C⊥
))

, respectively, are trivial.

Example 1.89. 1. Let H be the binary [7, 4, 3]-Hamming code, whose weight enu-
merator is given by WH(z) = 1 + 7z3 + 7z4 + z7. The dual of H is the [7, 3, 4]-
linear code H⊥, whose weight enumerator is given by WH⊥(z) = 1 + 7z4. With
Magma [9], it is possible to check that automorphism groups of H and H⊥
are 2-transitive. In this way, by Result 1.86, for any weight w ≥ 2 the code-
words of weight w in linear codes H and H⊥ hold 2-designs with parameters
2-(7, w, λw), where λw can be determined with relation (1.36). From the code
H, we have three nontrivial designs with parameters 2-(7, 3, 1), 2-(7, 4, 2) and
2-(7, 7, 1), while from the code H⊥ we have only one nontrivial design with
parameters 2-(7, 4, 2).
2. Let G be the extended binary [24, 12, 8]-Golay code, whose weight enumerator
is given by WG(z) = 1 + 759z8 + 2576z12 + 759z16 + z24. This code is self-dual,
i.e., G⊥ = G. We show that codewords of weight w in G hold 5-designs using
Result 1.87. Let C = G, then v = 24, d = d⊥ = 8. Set t = 5, which satisfies
1 ≤ t < min

{
d, d⊥

}
= 8. Then there are 3 < 8 − 2 weights of G in the set

{1, 2, . . . , 22} and thus incidence structures (P(C),Bw(C)) are 2-designs for all
w ∈ {0, 1, . . . , v}. The nontrivial 2-(24, w, λw) designs (P(C),Bw(C)) have the
following parameters: 5-(24, 8, 1), 5-(24, 12, 48), 5-(24, 16, 78) and 5-(24, 24, 1).

On the other hand, considering incidence matrices as generator matrices, one
can construct linear codes from incidence structures in the following way.

Definition 1.90. The linear code C(S) of an incidence structure S = (P ,B) with
|P| = v is the vector subspace of Fv

2, which is spanned by the row vectors of the
incidence matrix M(S).

Example 1.91. The Fano plane S = (P ,B) considered in Example 1.78 is a 2-
(7, 3, 1) design. The incidence matrix M(S) from Example 1.78 is a generator
matrix of the binary Hamming code H from Example 1.89. In this way, we have
H = C(S). Alternatively, since all 7 row vectors of the incidence matrix M(S)
have weight 3, which is the minimum weight of H, we have that codewords of
the minimum weight of H hold the 2-(7, 3, 1) design S.

Now we consider incidence structures supported by codewords of the min-
imum weight in the linear codes CF and C⊥F of (n, m)-functions F, which reflect
nonlinearity and differential properties of F, respectively.
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Addition designs

First, we consider the incidence structures supported by codewords of the mini-
mum weight in linear codes CF of (n, m)-functions F.

Definition 1.92. For an (n, m)-function F, we define D(F) = (P ,B) as the inci-
dence structure, supported by codewords of the minimum weight in CF.

The incidence structures D( f ) for Boolean bent functions f on Fn
2 were con-

sidered by Dillon and Schatz [43] and by Bending in his thesis [5]. Remarkably,
they showed that incidence structures D( f ) of Boolean bent functions f on Fn

2
are symmetric 2-designs with the symmetric difference property, i.e., the symmet-
ric difference of any two blocks is either a block or the complement of a block.
Moreover, they showed that EA-equivalence of Boolean bent functions f and f ′

on Fn
2 and isomorphism of incidence structures D( f ) and D( f ′), respectively,

are the same concepts.

Result 1.93. Let f and f ′ be Boolean functions on Fn
2 . The following statements are

equivalent.

1. The function f is bent.

2. The incidence structure D( f ) is a symmetric

2-(2n, 2n−1 − 2n/2−1, 2n−2 − 2n/2−1) (1.38)

design with the symmetric difference property.

Moreover, Boolean bent functions f and f ′ on Fn
2 are EA-equivalent if and only if the

designs D( f ) and D( f ′) are isomorphic.

Proof. For the proofs of the claim 1.⇒2. and the statement about equivalence of
bent functions and isomorphism of designs, we refer to the paper of Dillon and
Schatz [43] and Bending’s thesis [5, Chapters 9, 10].
2.⇒1. Let D( f ) be a symmetric 2-design with parameters (1.38). Since D( f )
is supported by codewords of the minimum weight 2n−1 − 2n/2−1 in C f , we
have that 2n blocks of D( f ) have the form f ⊕ l, where l ∈ An, and thus
dH( f , l) = 2n−1 − 2n/2−1. Consequently, for the affine functions of the form
l ⊕ 1 we have dH( f , l ⊕ 1) = 2n−1 + 2n/2−1. In this way, the function f on Fn

2 is
at the distance 2n−1 − 2n/2−1 from the set of all affine functions An and, hence,
bent.

The incidence structures D(F) arising from vectorial (n, m)-bent functions F
were considered recently by Ding, Munemasa and Tonchev [44]. They general-
ized Result 1.93 by showing that incidence structures D(F) of vectorial (n, m)-
bent functions F are 2-designs and, moreover, invariants under EA-equivalence.
They also asked whether for (n, m)-bent functions F and F′, similarly to the
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Boolean case, isomorphism of 2-designs D(F) and D(F′) defines EA-equivalence
of functions F and F′. The positive answer on this question will be given in
Chapter 3, Section 3.4.

Result 1.94. Let F be an (n, m)-function. The following statements are equivalent.

1. The function F is (n, m)-bent.

2. The incidence structure D(F) is a

2-(2n, 2n−1 − 2n/2−1, (2m − 1) · (2n−2 − 2n/2−1)) (1.39)

design.

Moreover, if (n, m)-bent functions F and F′ are EA-equivalent, then the designs D(F)
and D(F′) are isomorphic.

Proof. 1.⇒2. Follows from the fact that the incidence structure D(F) is obtained
by a disjoint union of incidence structures D(Fb) for b ∈ Fm

2 \ {0}, which are
2-(2n, 2n−1− 2n/2−1, 2n−2− 2n/2−1) designs by Result 1.93, and do not have com-
mon blocks since F is (n, m)-bent.
2.⇒1. Let D(F) be a 2-design with parameters (1.39). We will show that CF
is a [2n, n + m + 1, 2n−1 − 2n/2−1]-linear code with the weight enumerator given
by (1.34). From (1.36), we have that the number of blocks of D(F) is equal
to (2m − 1) · 2n. Since any row of the incidence matrix M(D(F)) is described
by the truth table of a function Fb ⊕ l for b ∈ Fm

2 \ {0} and l ∈ RM(1, n),
we have that the linear code CF contains exactly (2m − 1) · 2n codewords of
weight 2n−1 − 2n/2−1. Clearly, the truth tables of the complements Fb ⊕ l ⊕ 1
for b ∈ Fm

2 \ {0} and l ∈ RM(1, n) also belong to the code CF, and hence there
are (2m− 1) · 2n codewords of weight 2n−1 + 2n/2−1 in CF. Since RM(1, n) ⊆ CF,
the code CF contains 2n − 2 codewords of weight 2n−1 as well as all-one-vector
and all-zero-vector. In total, CF contains (2m − 1)2n+1 + 2n+1 = 2n+m+1 code-
words, which is the maximum number for a linear code CF of an (n, m)-function
F. In this way, CF is a [2n, n + m + 1, 2n−1 − 2n/2−1]-linear code with the weight
enumerator given by (1.34). By Corollary 1.64, the function F is (n, m)-bent.

Now we show that if (n, m)-bent functions F and F′ are EA-equivalent, then
the designs D(F) and D(F′) are isomorphic. By definition of the addition de-
sign, we have that D(F) = (P(CF),Bw(CF)) and D(F′) = (P(CF′),Bw(CF′)) for
w = 2n−1− 2n/2−1. By Result 1.11 and Result 1.60, we have that functions F and
F′ are EA-equivalent if and only if linear codes CF and CF′ are equivalent. The
statement now follows from Proposition 1.85, since for linear codes CF and CF′

the incidence structures (P(CF),Bw(CF)) and (P(CF′),Bw(CF′)) are isomorphic
for all 1 ≤ w ≤ 2n.

Remark 1.95. We will call 2-designs D(F) of (n, m)-bent functions F addition
designs, motivated by the terminology introduced by Bending in his thesis [5]
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for the designs D( f ) of Boolean bent functions f on Fn
2 . The term “addition”

has the following meaning. For an (n, m)-bent function F, any block of D(F)
is formed by supports of Boolean bent functions, obtained via addition of the
component functions Fb : Fn

2 → F2 to those affine functions l : Fn
2 → F2, which

satisfy wt(Fb ⊕ l) = 2n−1 − 2n/2−1.

Vanishing flats

In this subsection, we proceed with incidence structures supported by code-
words of the minimum weight in the linear code C⊥F for (n, m)-functions F.

Recall that four distinct elements x1, x2, x3, x4 ∈ Fn
2 , which satisfy the con-

dition x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0, form an affine two-dimensional subspace of Fn
2 ,

also called a flat. By definition of the linear code C⊥F of an (n, m)-function F
(see Definition 1.59), a codeword c ∈ C⊥F has weight 4 if and only if there ex-
ist 4 different elements x1, x2, x3, x4 ∈ Fn

2 with x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 such that
F(x1) ⊕ F(x2) ⊕ F(x3) ⊕ F(x4) = 0. In this way, for an (n, m)-function F, sup-
ports of the codewords of the weight 4 in C⊥F , are in 1-to-1 correspondence with
the elements of the set

VF F =

{
{x1, x2, x3, x4} :

4⊕
i=1

(
xi

F(xi)

)
=

(
0
0

)
for xi ∈ Fn

2

}
, (1.40)

which is called the set of vanishing flats in Fn
2 with respect to a function F. Moti-

vated by the fact that many inequivalent (n, m)-functions F may have the same
number of vanishing flats, or equivalently the number of weight 4 vectors in
the code C⊥F (see Result 1.35), Li et al. [73] introduced an incidence structure,
called vanishing flats, aimed to provide a more detailed combinatorial informa-
tion about the function, than just the number of vanishing flats.

Definition 1.96. For an (n, m)-function F, the incidence structure VF (F) defined
as VF (F) = (Fn

2 ,VF F) is called vanishing flats of F.

Remark 1.97. In the original paper [73], the incidence structure VF (F) was in-
troduced for (n, n)-functions F, however, we define it for a more general class of
(n, m)-functions.

By Result 1.60 and Proposition 1.85, the incidence structure VF (F) of an
(n, m)-function F is invariant under CCZ-equivalence. For a combinatorial proof
of this fact, we refer to [73, Theorem II.1].

Corollary 1.98. Let F and F′ be two CCZ-equivalent (n, m)-functions. Then VF (F)
and VF (F′) are isomorphic. Consequently, the cardinalities of the block sets of VF (F)
and VF (F′) are the same, i.e., |VF F| = |VF F′ |.

In this way, the vanishing flats may be used to distinguish inequivalent
(n, m)-functions and even classes of (n, m)-functions. On the other hand, the
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combinatorial structure of the vanishing flats may be used to characterize cer-
tain classes of (n, m)-functions.

Result 1.99. Let F be an (n, n)-function and VF (F) = (Fn
2 ,VF F) be the vanishing

flats of F. The following hold.

1. The function F is APN if and only if VF F = ∅.

2. The function F is differentially 2-valued, that is, ∆F = {0, 2s} for some s ∈ N if
and only if VF (F) is a 2-(2n, 4, 2s−1 − 1) design.

Proof. The first claim is a reformulation of the well-known characterization of
APN functions, given in [57]: an (n, n)-function F : Fn

2 → Fn
2 is APN if and only

if F is not affine on any 2-dimensional affine subspace of Fn
2 . For the proof of

the second claim, we refer to [108, Theorem 6.1].

A similar characterization of (n, m)-bent functions F in terms of the vanishing
flats VF (F) will be considered in Chapter 3. For extensive references on the
connections between designs and linear codes, we refer to [2, 18, 45, 46, 75].





Chapter 2

Vectorial bent functions in six
variables

In this chapter, we classify and enumerate vectorial bent functions in six vari-
ables. In this way, we complete the classification of perfect nonlinear functions in
six variables of algebraic degree at most three and the enumeration of bent func-
tions in six variables. We also show that in contrast to Boolean bent functions,
vectorial bent functions in six variables can not be described, up to equivalence,
by Maiorana-McFarland and Desarguesian partial spread constructions.

This chapter is based on the paper by Polujan and Pott [94].

2.1 Introduction

In general, it seems elusive to classify and enumerate all perfect nonlinear func-
tions completely. Nevertheless, these problems could be solved with the help
of computer search provided the number of variables is small enough. For in-
stance, up to five variables classification and enumeration of perfect nonlinear
functions are known: for the discussion on Boolean and vectorial bent functions
we refer to Subsection 1.1.3, and for the case of APN functions, we refer to the
work of Brinkmann and Leander [11]. However, these problems become very
challenging in dimension six due to significantly larger search space. Therefore,
one may expect to obtain only partial results within certain subclasses of per-
fect nonlinear functions, e.g., bent functions or perfect nonlinear functions of
algebraic degree at most three.

2.1.1 Known classification results on perfect nonlinear functions
in six variables

In this subsection, we summarize the known computational results on the clas-
sification and enumeration of perfect nonlinear functions in six variables.
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The classification and enumeration of all Boolean bent functions in six vari-
ables are well known and have been summarized in Subsection 1.1.3 in the con-
text of classification and enumeration of cubic bent functions. So far, the enumer-
ation of APN functions of algebraic degree at most three did not attract much
attention to the best of our knowledge, while the classification problem (up to
CCZ-equivalence) was solved as follows. First, Dillon, Browning and McQuis-
tan showed that there are 13 equivalence classes of quadratic APN functions, as
it was reported in [42]. Later on, Brinkmann and Leander [11] confirmed their
results and also provided a new equivalence class of APN functions, which was
later proven to be nonquadratic (cubic, to be more precise) by Edel and Pott [52].
In this way, the number of known CCZ-equivalence classes of APN functions of
algebraic degree at most three in six variables is at least 14. Finally, Langevin [68]
showed that the obtained list of 14 equivalence classes is complete up to CCZ-
equivalence and, consequently, any new, up to CCZ-equivalence, APN function
must have the algebraic degree at least four.

We summarize the representatives of the obtained CCZ-equivalence classes
in Table 2.1. We endow F6

2 with the structure of the finite field (F26 ,+, ·) in
such a way that the multiplicative group F∗26 is given by F∗26 = 〈a〉 and the
minimal polynomial of α over F2 is p(x) = x6 + x4 + x3 + x + 1. We denote by
Di quadratic APN functions from the Banff list [42], and by EP the Edel-Pott’s
cubic APN function from [52].

Table 2.1. Representatives of CCZ-equivalence classes of APN functions in six
variables of algebraic degree at most three

f Univariate representation of f
D1 x3

D2 x3 + α11x6 + αx9

D3 αx5 + x9 + α4x17 + αx18 + α4x20 + αx24 + α4x34 + αx40

D4 α7x3 + x5 + α3x9 + α4x10 + x17 + α6x18

D5 x3 + αx24 + x10

D6 x3 + α17(x17 + x18 + x20 + x24)

D7 x3 + α11x5 + α13x9 + x17 + α11x33 + x48

D8 α25x5 + x9 + α38x12 + α25x18 + α25x36

D9 α40x5 + α10x6 + α62x20 + α35x33 + α15x34 + α29x48

D10 α34x6 + α52x9 + α48x12 + α6x20 + α9x33 + α23x34 + α25x40

D11 x9 + α4(x10 + x18) + α9(x12 + x20 + x40)

D12 α52x3 + α47x5 + αx6 + α9x9 + α44x12 + α47x33 + α10x34 + α33x40

D13 α(x6 + x10 + x24 + x33) + x9 + α4x17

EP
x3 + a17(x17 + x18 + x20 + x24) + a14(a18x9 + a36x18 + a9x36 + x21 + x42

+ Tr(a27x + a52x3 + a6x5 + a19x7 + a28x11 + a2x13))
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2.1.2 Objectives

Summarizing the discussion above, perfect nonlinear (6, m)-functions with al-
gebraic degree at most three are completely classified for m ∈ {1, 6}. At the
same time, to the best of our knowledge, the classification problem for vectorial
bent functions still remains unsolved. Moreover, among the class of (6, m)-bent
functions, vectorial bent functions are the only bent functions, for which the enu-
meration is not known. In this way, the main aim of this chapter is to classify
and enumerate vectorial bent functions in six variables.

The rest of the chapter is organized in the following way. In Section 2.2, we
introduce a series of invariants under equivalence for bent functions and ex-
plain how one can use them in order to enumerate vectorial bent functions. In
Section 2.3, we describe a recursive algorithm, which we consequently use to
obtain the main result of the chapter, namely the classification and enumeration
of vectorial bent functions in six variables. In Section 2.4, we analyze, which of
the obtained equivalence classes can be described by Maiorana-McFarland and
Desarguesian partial spread constructions. In Section 2.5, we conclude the chap-
ter and raise some open problems on the extendability of Boolean and vectorial
bent functions.

2.2 Extension invariants of bent functions

In this chapter, we call EA-equivalent (n, m)-bent functions simply equivalent,
since EA-equivalence is the most general equivalence relation for (n, m)-bent
functions in view of Result 1.11. Recall that Bn,m denotes the set of all (n, m)-
bent functions and An,m denotes the set of (n, m)-affine functions. In the following,
we denote by ABn,m the set of affine-free (n, m)-bent functions , i.e., any function
F ∈ ABn,m contains no affine terms in its ANF. For the sake of convenience, we
denote by Cm

i an i-th EA-equivalence class of (n, m)-bent functions. On the set⋃n/2
m=1 Bn,m we introduce the order relation “≺” in the following way. Let m < l

and Cm
i and Cl

j be two equivalence classes of (n, m)- and (n, l)-bent functions,

respectively. We say that a function F ∈ Cm
i is contained in G ∈ Cl

j and write
F ≺ G, if the first m coordinate functions of G(x) = (g1(x), . . . , gl(x))T form the
function F, that is, F(x) = (g1(x), . . . , gm(x))T. Similarly, we say that F ∈ Cm

i is
contained in the equivalence class Cl

j and write F ≺ Cl
j , if there exist a represen-

tative G ∈ Cl
j such that F ≺ G. Finally, we say that the equivalence class Cm

i is
contained in Cl

j and denote it by Cm
i ≺ Cl

j , if there exist F ∈ Cm
i such that F ≺ Cl

j .

Definition 2.1. An (n, m)-bent function F is called extendable, if the there exists
a Boolean bent function f : Fn

2 → F2 such that the (n, m + 1)-function G defined
by G : x ∈ Fn

2 7→ (F(x), f (x))T is (n, m + 1)-bent. If no such a bent function f
exists, the function F is called non-extendable.
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Remark 2.2. The problem of the existence of non-extendable bent functions
F : Fn

p → Fm
p has mostly been studied for the case p odd, see [91, Section 4].

The particular case of this problem, namely p = 2 and m = 1, is closely related
to the Tokareva’s conjecture, also known as the bent sum decomposition problem,
which is formulated in the following way. Any Boolean function on Fn

2 of de-
gree at most n/2 can be represented as the sum of two Boolean bent functions
on Fn

2 , see [109, Hypothesis 1]. Note that a single example of a non-extendable
Boolean bent function would disprove the Tokareva’s conjecture. If a bent func-
tion f on Fn

2 is non-extendable, then there exists no bent function f ′ on Fn
2 such

that ( f , f ′)T is a vectorial bent function. Equivalently, the function f can not be
written as a sum of two bent functions f ′ and f ⊕ f ′ on Fn

2 .

Definition 2.3. Let F be an (n, m)-bent function. We define the following two
sets

F (F) :={ f ∈ ABn,1 : (F, f )T is (n, m + 1)-bent} and

Ext(F) :={(F, f )T : f ∈ F (F)},
(2.1)

namely F (F) is the set of affine-free Boolean bent functions, which can extend
an (n, m)-bent function F to an (n, m + 1)-bent function, and Ext(F) is the set
of extensions of a function F. Clearly, different extensions may lead to different
equivalence classes. In this way, we define

F (F, Cm+1
j ) := { f ∈ ABn,1 : (F, f )T ∈ Cm+1

j is (n, m + 1)-bent} (2.2)

as the set of affine-free Boolean bent functions, which can extend an (n, m)-
bent function F to the equivalence class Cm+1

j . Similarly, we define the set of

extensions of the function F, which belong to the equivalence class Cm+1
j , that is,

Ext(F, Cm+1
j ) := {(F, f )T : f ∈ F (F, Cm+1

j )}. (2.3)

Clearly, the collection of sets Ext(F, Cm+1
j ) forms a partition of Ext(F), namely

Ext(F) =
⊔

j:F≺Cm+1
j

Ext(F, Cm+1
j ). (2.4)

Remark 2.4. Non-extendable (n, m)-bent functions F are also called lonely [79].
In this way, it is essential to call the following sets:

• F (F) — the set of bent friends of a bent function F;

• F (F, Cm+1
j ) — the set of bent friends of F, leading to the equivalence class Cm+1

j .

Indeed, according to Definition 2.3, a bent function F is lonely, if it has no bent
friends, that is, |F (F)| = 0. We also call (n, n/2)-bent functions absolutely non-
extendable (lonely), since (n, m)-bent functions do not exist for m > n/2 due to
the Nyberg bound (see Result 1.10).
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Definition 2.5. Let G(x) = (g1(x), . . . , gm+1(x))T be an (n, m + 1)-bent function.
From any (n, m + 1)-function G(x) = (g1(x), . . . , gm+1(x))T we construct a vec-
tor space UG = 〈g1, . . . , gm+1〉 of dimension m + 1, spanned by the truth tables
gi ∈ F2n

2 of coordinate functions gi on Fn
2 . For the vector space UG, we de-

note by S(UG) the collection of m-dimensional vector subspaces of UG, which
contains exactly |S(UG)| = [m+1

m ]2 = 2m+1 − 1 elements. Assuming that ev-
ery m-dimensional vector subspace UF of UG is given by its Gauss-Jordan basis
GJB(UF), we identify UF with an (n, m)-bent function F(x) = ( f1(x), . . . , fm(x))T

in such a way that truth tables of coordinate functions of F are row vectors in
the Gauss-Jordan basis GJB(UF). With this identification, we define the set of
different (n, m)-bent spaces S(G) of a function G in the following way

S(G) = {(n, m)-bent functions H : UH ∈ S(UG)}.

For an (n, m)-bent function F, with UF ∈ S(UG), we define

S(F, G) := {H ∈ S(G) : H is EA-equivalent to F}

as the set of different (n, m)-bent spaces of G, which are EA-equivalent to F.

Example 2.6. Consider the following cubic vectorial (6,3)-bent function

G(x) =

g1(x)
g2(x)
g3(x)

 =

 x1x4 ⊕ x2x5 ⊕ x3x6

x1x5 ⊕ x1x6 ⊕ x2x4 ⊕ x2x5 ⊕ x3x4

x1x4 ⊕ x1x5 ⊕ x2x4 ⊕ x2x5 ⊕ x2x6 ⊕ x3x5 ⊕ x1x2x3

 .

The set of different (6, 2)-bent spaces S(G) of the function G consists of the
following (6, 2)-bent functions Fi:

F1(x) =
(

g1(x)
g2(x)

)
, F2(x) =

(
g1(x)
g3(x)

)
, F3(x) =

(
g1(x)

g2(x)⊕ g3(x)

)
, F4(x) =

(
g2(x)
g3(x)

)
,

F5(x) =
(

g1(x)⊕ g2(x)
g3(x)

)
, F6(x) =

(
g1(x)⊕ g2(x)
g2(x)⊕ g3(x)

)
, F7(x) =

(
g1(x)⊕ g3(x)

g2(x)

)
.

First, we observe that the function F1 is EA-inequivalent to the functions Fi
for i = 2, . . . , 7, since deg(F1) = 2 and deg(Fi) = 3 for all i = 2, . . . , 7. In
this way, we have S(F1, G) = {F1}. It is possible to check with Magma [9]
that all functions F2, . . . , F8 are pairwise EA-equivalent. In this way, we have
S(F2, G) = {F2, F3, F4, F5, F6, F7}.

Now we show that cardinalities of the sets F (F, Cm+1
j ) and S(F, G) do not

depend on representatives of equivalence classes and thus are invariants under
extended-affine equivalence.

Proposition 2.7. Let F, F′ ∈ Cm
i be two (n, m)-bent functions and G, G′ ∈ Cm+1

j be

two (n, m + 1)-bent functions. If Cm
i ≺ Cm+1

j , then the following hold.
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1. |F (F, Cm+1
j )| = |F (F′, Cm+1

j )|.

2. If F ∈ S(G) and F′ ∈ S(G′), then |S(F, G)| = |S(F′, G′)|.

Proof. 1. Let F and F′ be EA-equivalent, i.e., F = A1 ◦ F′ ◦ A2 ⊕ A3. Clearly, if
f is a bent friend of F, then f ′ := f ◦ A2 is a bent friend of F′. Moreover, the
nondegenerate affine transformation A2 maps different bent friends to different
ones.
2. Let H ∈ S(F, G), i.e., there exist a surjective linear mapping AH : Fm+1

2 → Fm
2

such that H = AH ◦ G. From the function H we construct a unique function
H′ ∈ S(F′, G′) as follows. Since G, G′ ∈ Cm+1

j we have G′ = A1 ◦ G ◦ A2 ⊕ A3

for affine permutations A1, A2 and an affine function A3. Multiplying the lat-
ter equality by AH ◦ A−1

1 from left and substituting it in H = AH ◦ G, we get
AH ◦ A−1

1 ◦ G′ = H ◦ A2⊕ AH ◦ A−1
1 ◦ A3. Denoting by AH′ := AH ◦ A−1

1 , we get
H′ := AH′ ◦ G′ for a surjective linear mapping AH′ : Fm+1

2 → Fm
2 . In this way,

H′ ∈ S(G′). Since H′ and H ∈ S(F, G) are EA-equivalent, and F, F′ ∈ Cm
i , we

have that the functions H and H′ are EA-equivalent, and thus H′ ∈ S(F′, G′).

In this way, for two equivalence classes Cm
i ≺ Cm+1

j , we denote by |F (Cm
i , Cm+1

j )|
the number of Boolean bent functions, which can extend any representative of
Cm

i to the class Cm+1
j , and by |S(Cm

i , Cm+1
j )| the number of different bent spaces

contained in Cm+1
j , which represent the equivalence class Cm

i , that is,

|F (Cm
i , Cm+1

j )| :=|F (F, Cm+1
j )| and

|S(Cm
i , Cm+1

j )| :=|S(F, Cm+1
j )| for F ∈ Cm

i .
(2.5)

In the following section, we will use the number of bent friends |F (Cm
i , Cm+1

j )|
in order to enumerate all vectorial bent functions in six variables and the number
of bent spaces |S(Cm

i , Cm+1
j )| in order to verify these computations. Now we de-

scribe how to determine the cardinality of the equivalence class Cm+1
j , provided

its structure is known.

Proposition 2.8. Let Cm
1 , . . . , Cm

k ≺ Cm+1
j be all equivalence classes of (n, m)-bent

functions, contained in Cm+1
j . Then the cardinality of the class Cm+1

j is equal to

|Cm+1
j | = 2n+1 ·

k

∑
i=1
|Cm

i | · |F (Cm
i , Cm+1

j )|. (2.6)

Proof. Any function G ∈ Cm+1
j can be considered as an extension of a function

F ∈ Cm
i ≺ Cm+1

j , that is, G = (F, f )T ∈ Cm+1
j for f ∈ F (F, Cm+1

j ). There are k

ways to select an equivalence class Cm
i ≺ Cm+1

j such that F ∈ Cm
i , and there are

|Cm
i | ways to choose a representative F. Finally, for any representative F ∈ Cm

i
there exist exactly 2n+1 · |F (Cm

i , Cm+1
j )| ways to extend it to a function G ∈ Cm+1

j ,
since bentness is invariant with respect to addition of affine terms.
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Now we show a connection between the extendability of an (n, m)-bent func-
tion F and the metric complement of the linear code CF. The covering radius
ρ = ρ(C) of the linear code C of length v is defined in the following way
ρ := max

x∈Fv
2

min
c∈C

dH(x, c). The set Ĉ = {x ∈ Fv
2 : dH(x, C) = ρ(C)} is called the

metric complement of C. In the following, for a fixed a ∈ Fn
2 we define a linear

function la : Fn
2 → F2 given by l(x) = 〈a, x〉n for x ∈ Fn

2 . First, we need the
following technical lemmas1.

Lemma 2.9. Let f , g be two Boolean functions on Fn
2 , which are not necessarily bent.

Then their sum f ⊕ g is bent on Fn
2 if and only if dH( f ⊕ la, g) = 2n−1 ± 2n/2−1 holds

for all a ∈ Fn
2 .

Proof. Let f , g be two Boolean functions on Fn
2 , then f ⊕ g is bent if and only if for

all a ∈ Fn
2 holds dH( f ⊕ g, la) = 2n−1 − 2n/2−1 or dH( f ⊕ g, la) = 2n−1 + 2n/2−1,

since then dH( f ⊕ g, la⊕ 1) = 2n−1 + 2n/2−1 or dH( f ⊕ g, la⊕ 1) = 2n−1− 2n/2−1,
respectively. In this way, since dH( f ⊕ g, la) = wt( f ⊕ g⊕ la) = dH( f ⊕ la, g), we
have that f ⊕ g is bent on Fn

2 if and only if dH( f ⊕ la, g) = 2n−1 ± 2n/2−1 holds
for all a ∈ Fn

2 .

The following lemma shows that we can relax the condition in Lemma 2.9.
We will use this fact to show a connection between extendability of bent func-
tions and the covering radii of their codes.

Lemma 2.10. Let f , g be two Boolean functions on Fn
2 , which satisfy the following

inequality
2n−1 − 2n/2−1 ≤ dH( f ⊕ la, g) ≤ 2n−1 + 2n/2−1 (2.7)

for all a ∈ Fn
2 . Then we have dH( f ⊕ la, g) = 2n−1 ± 2n/2−1 for all a ∈ Fn

2 .

Proof. We prove the lemma by contradiction. Recall that by Parseval’s identity,
for every Boolean function h on Fn

2 we have ∑a∈Fn
2

χ̂h(a)2 = 22n. Suppose that
for all a ∈ Fn

2 we have dH( f ⊕ la, g) = 2n−1− 2n/2−1 + εa with 0 ≤ εa ≤ 2n/2, and
suppose that for at least one ã we have 0 < εã < 2n/2. Then the Walsh transform
of f ⊕ g at a ∈ Fn

2 is given by

χ̂ f⊕g(a) = ∑
x∈Fn

2

(−1)g(x)⊕ f (x)⊕a·x = 2n − 2dH( f ⊕ la, g)

= 2n − 2(2n−1 − 2n/2−1 + εa) = 2n/2 − 2εa.

With 0 ≤ εa ≤ 2n/2, we have χ̂ f⊕g(a)2 = (2n/2 − 2εa)2 ≤ 2n with equality if
and only if εa = 0 or εa = 2n/2. However, by assumption for ã, we then have
χ̂ f⊕g(ã)2 < 2n. This contradicts Parseval’s identity for the Boolean function f ⊕ g
on Fn

2 .

1The proofs of Lemmas 2.9, 2.10 and Theorem 2.13 are due to Wilfried Meidl.
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Lemma 2.9 and Lemma 2.10 can be extended to the vectorial bent case, by
considering the necessary and sufficient conditions component-wise.

Lemma 2.11. Let n be even and F, G be two (n, m)-functions, which are not necessarily
bent. The following statements are equivalent.

1. The sum F⊕ G is an (n, m)-bent function.

2. For all nonzero v ∈ Fm
2 the equality dH(Fv ⊕ la, Gv) = 2n−1 ± 2n/2−1 holds for

all a ∈ Fn
2 .

3. For all nonzero v ∈ Fm
2 the inequality

2n−1 − 2n/2−1 ≤ dH(Fv ⊕ la, Gv) ≤ 2n−1 + 2n/2−1

holds for all a ∈ Fn
2 .

Remark 2.12. In the following, we identify the first-order Reed-Muller code
RM(n, 1) with the set of affine functions An, since any codeword of RM(n, 1)
is a truth table of a function from An. Consequently, since for an (n, m)-function
F the linear code CF contains the first-order Reed-Muller code RM(n, 1) as a
subcode, we identify the code CF with the set {Fb ⊕ l : l ∈ RM(n, 1), b ∈ Fm

2 }.

In the following statement, we provide a coding-theoretic characterization of
extendable and lonely bent functions.

Theorem 2.13. Let F be an (n, m)-bent function with m ≤ n/2− 1. Then F is extend-
able if and only if the linear code CF has the covering radius

ρ(CF) = 2n−1 − 2n/2−1.

The metric complement ĈF of CF for an extendable (n, m)-bent function F is

ĈF = { f ∈ Bn,1 : f ⊕ Fv is bent for all v ∈ Fm
2 }. (2.8)

Proof. Let f be a Boolean function on Fn
2 and F̃ be an (n, m + 1)-function defined

as follows F̃ : x 7→ (F(x), f (x)). Clearly, for any such a function F̃, the following
inequality holds,

ρ(CF̃) ≤ ρ(CF) = 2n−1 − 2n/2−1

with equality if only if f 6∈ CF is bent (so that the distance from RM(n, 1)
is kept) and satisfies dH( f , Fv ⊕ l) ≥ 2n−1 − 2n/2−1 for all l ∈ RM(n, 1) and
v ∈ Fm

2 . Note that then f also satisfies dH( f , Fv ⊕ l) ≤ 2n−1 + 2n/2−1 for all
l ∈ RM(n, 1) and v ∈ Fm

2 . With Lemma 2.11, we then conclude that F is not
extendable if and only if ρ(CF) < 2n−1 − 2n/2−1. Finally, the metric complement
ĈF is given by (2.8).
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Remark 2.14. Let F be an (n, m)-bent function, which is extendable by a Boolean
bent function f on Fn

2 . Then F is extendable by any bent function f ′ on Fn
2

from the set f ⊕ 〈 f1, . . . fm〉. In general, the metric complement of the linear
code CF for an extendable (n, m)-bent function F(x) = ( f1(x), . . . , fm(x))T has
the following structure

ĈF = Ext(F)⊕RM(n, 1), where Ext(F) =

⊔
f ′

f ′ ⊕ 〈 f1, . . . fm〉

 (2.9)

and f ′ runs through all different coset leaders, which extend F.

2.3 Classification and enumeration of vectorial bent
functions in six variables

Now we give a recursive algorithm, which one can use to classify and enumerate
vectorial bent functions.

Algorithm 2.1. Classification and enumeration of all (n, m)-bent functions

Require: All pairs (F1
i ∈ C1

i , |C1
i |), where Bn,1 =

⊔
i{ f : f ∈ C1

i }.
Ensure: All pairs (Fm

i ∈ Cm
i , |Cm

i |), where Bn,m =
⊔

i{ f : f ∈ Cm
i } for all

2 ≤ m ≤ n/2.
1: for m = 1 to n/2− 1 do
2: for all equivalence classes Cm

i do
3: Construct the set of extensions Ext(Fm

i ).
4: Classify all (n, m + 1)-bent functions from the set Ext(Fm

i ) by
constructing the partition Ext(Fm

i ) =
⊔

ji :Fm
i ≺Cm+1

ji
Ext(Fm

i , Cm+1
ji

).

5: Compute the number of bent friends

|F (Cm
i , Cm+1

ji
)| := |F (Fm

i , Cm+1
ji

)|.

6: end for
7: Identify all equivalence classes Cm+1

ji
with the class Cm+1

j and set
Fm+1

j to be a random representative of the equivalence class Cm+1
j .

8: Compute the number of bent spaces |S(Cm
i , Cm+1

j )| := |S(Cm
i , Cm+1

ji
)|

and cardinalities of equivalence classes

|Cm+1
j | = 2n+1 ·

k

∑
i=1
|Cm

i | · |F (Cm
i , Cm+1

ji
)|.

9: end for
10: Return pairs (Fm

i ∈ Cm
i , |Cm

i |) for all 2 ≤ m ≤ n/2.



56 CHAPTER 2. VECTORIAL BENT FUNCTIONS IN SIX VARIABLES

Applying Algorithm 2.1 for Boolean bent functions in six variables, we obtain
the following result.

Theorem 2.15. For vectorial bent functions in 6 variables the following hold.

1. There are 23,392,233,361,244,160 ≈ 254.37 vectorial (6, 2)-bent functions, which
are divided into 9 extended-affine equivalence classes.

2. There are 121,282,113,886,947,901,440 ≈ 266.71 vectorial (6, 3)-bent functions,
which are divided into 13 extended-affine equivalence classes.

Moreover, if a (6, m)-bent function F is non-extendable, then F is absolutely non-
extendable, that is, m = 3.

Proof. Now we consider the main steps of Algorithm 2.1 in more detail and
explain how one can verify our computational results.
Input. For the input of Algorithm 2.1, one has to provide the pairs (F1

i , |C1
i |)

with F1
i ∈ C1

i for all equivalence classes C1
i , which form a partition of the set

of Boolean bent functions B6,1. The representatives of 4 equivalence classes are
given in Table 1.1(a). For the cardinalities of the equivalence classes, we refer to
Table A.4(a).
Output. In order to compute the collections F (Fm

i ), one first has to construct
all affine-free Boolean bent functions AB6,1, which can be efficiently listed as
described in [70, 83]. Consequently, for a given representative Fm

i ∈ Cm
i we

construct the set F (Fm
i ), by checking directly the characteristic property in (2.1).

The classification of functions G ∈ Ext(Fm
i ) is carried out with Magma [9], by

checking the equivalence of linear codes CG with the help of Result 1.60.
In this way, Algorithm 2.1 constructs n/2− 1 layers of the weighted Hasse

diagram given in Figure 2.1 as follows. For all 2 ≤ m ≤ n/2 − 1, we draw
an edge between equivalence classes Cm

i and Cm+1
j if Cm

i ≺ Cm+1
j and assign

two weights with it. The first number, closer to the equivalence class Cm
i , is the

number of bent spaces |S(Cm
i , Cm+1

j )|, and the second number, closer to Cm+1
j , is

the number of bent friends |F (Cm
i , Cm+1

j )|. Note that, if Cm
1 , . . . , Cm

k ≺ Cm+1
j are

all equivalence classes contained in Cm+1
j , then the following relation holds

k

∑
i=1
|S(Cm

i , Cm+1
j )| =

[
m + 1

m

]
2
= 2m+1 − 1.

In Figure 2.1, we list exact cardinalities |C1
i | for all equivalence classes C1

i ,
while for equivalence classes Cm≥2

i , due to the lack of a space, we give only
approximate values. The exact values |Cm≥2

i | are given in Table A.4 and can
be verified with Proposition 2.8. Finally, we give the total number of bent
functions in six variables in Table 2.2 and provide algebraic normal forms of
representatives of the equivalence classes together with their invariants (orders
of automorphism groups and Smith normal forms) in Appendix A.
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Table 2.2. Classification and count of bent functions in six variables

(n, m) |ABn,m| |Bn,m| = |ABn,m| · 2m(n+1) # Eq. cl.
(6, 1) 48,386,176 ≈ 225.33 5,425,430,528 ≈ 232.33 4
(6, 2) 1,427,748,618,240 ≈ 240.37 23,392,233,361,244,160 ≈ 254.37 9
(6, 3) 57,831,818,526,720 ≈ 245.71 121,282,113,886,947,901,440 ≈ 266.71 13

Verification. First, one may observe that cardinalities of all equivalence classes
and hence of the sets B6,m are divisible by the order of the general linear group
GL(m, F2), which is given by |GL(m, F2)| = ∏m−1

k=0

(
2m − 2k). We also observe

that the number of quadratic (6, 2)-bent functions established with Algorithm 2.1
coincides with the theoretically computed value |ABn,2| given in Result 1.26.
Moreover, we note that for equivalence classes Cm

i , Cm
i′ ≺ Cm+1

j the following
relation holds ∣∣Cm

i

∣∣ · |F (Cm
i , Cm+1

j )|
|S(Cm

i , Cm+1
j )|

=

∣∣Cm
i′
∣∣ · |F (Cm

i′ , Cm+1
j )|

|S(Cm
i′ , Cm+1

j )|
,

since the portion of (n, m)-bent functions from the class Cm
i , contained in the

equivalence class Cm+1
j equals to

|S(Cm
i , Cm+1

j )|
(2m+1 − 1) · 2n+1 · |F (Cm

i , Cm+1
j )|

.

Finally, from Figure 2.1 one can see that the only non-extendable bent functions
in 6 variables are those, which achieve the Nyberg bound, i.e., (6, 3)-bent func-
tions.

2.4 Explanation by the known constructions

It is well-known that all Boolean bent functions in six variables, up to extended-
affine equivalence, can be described by the classical Maiorana-McFarland M
construction, while some of the functions may also be represented by the Desar-
guesian partial spread PS ap construction. Since both constructions have a direct
generalization to the vectorial case, as we have mentioned in Subsection 1.1.3, it
is essentially to check whether all vectorial bent functions in six variables can be
covered, up to equivalence, by the vectorial versions of M and PS ap construc-
tions.

In Table 2.3, we list equivalence classes Cm
i of (6, 3)-bent functions, which can

be described by vectorial M and PS ap classes. Note that (6, 2)-bent functions
from M and PS ap can be constructed as proper bent subspaces of (6, 3)-bent
fromM and PS ap classes.
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Table 2.3. EA-equivalence classes of (6, 3)-bent functions, described by classical
constructions

2.3(a) Permutations of F3
2

πi z 7→ πi(z)
π1 z
π2 z3

π3 z + z3 + z5

π4 z2 + z3 + z4 + z5 + z6

2.3(b)M class

C3
i x · πi(y) + G(y)

C3
1 x · π1(y)

C3
2 x · π1(y) + (y + y2 + y3 + y6)

C3
4 x · π1(y) + (y3 + y5 + y6 + y7)

C3
5 x · π4(y)

C3
8 x · π3(y)

C3
10 x · π2(y) + (y + y2 + y3 + y6)

C3
11 x · π2(y)

2.3(c) PS ap class

C3
i H(x/y)

C3
11 π1(x/y)

C3
12 π3(x/y)

C3
13 π4(x/y)

In this way, from Figure 2.1 and Table 2.3 one can see that the only “missing”
equivalence classes of (6, 3)-bent functions are C3

3 , C3
6 , C3

7 , C3
9 and of (6, 2)-bent

functions are C2
4 , C2

6 . In view of this observation, we conclude that in contrast
to the Boolean case, vectorial versions of the classical Maiorana-McFarland and
Desarguesian partial spread constructions do not cover the whole set of vectorial
bent functions in six variables.

2.5 Conclusion and open problems

In this chapter, we classified and enumerated vectorial bent functions in six vari-
ables. Besides that, we provided the structure of the obtained equivalence classes
(see Figure 2.1) and explained, which of the equivalence classes can be covered
by Maiorana-McFarlandM and Desarguesian partial spread PS ap constructions
(see Table 2.3). Considering the structure of equivalence classes of bent functions
in a small number of variables, we would like to point the reader’s attention on
the following two observations based on Remark 1.27 and Figure 2.1.

First, we observe that in n = 4 and n = 6 variables the only non-extendable
bent functions are those, which achieve the Nyberg bound, i.e., (n, n/2)-bent
functions. In this way, it is reasonable to ask the following question.

Open Problem 2.16. Do non-extendable (n, m)-bent functions (with m < n/2)
exist?

Since in general it is most likely very difficult to solve this problem theo-
retically as well as computationally, one may try to attack the relaxed version
of this problem, by considering the non-extendability problem for a certain
subclass of bent functions (e.g., quadratic, Maiorana-McFarland, Desarguesian
partial spread). As a starting point, one can address the question of the non-
extendability of quadratic (n, m)-bent functions, following the work of Özbudak
and Pott [91].
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Open Problem 2.17. Do non-extendable quadratic (n, m)-bent functions (with
m < n/2) exist?

Second, as one can see from Figure 2.1, for a representative F of an equiv-
alence class Cm

i , there exist many bent functions f , which can extend F to a
representative of a class Cm+1

j . A theoretical reason behind that, as it was ex-
plained recently in Remark 2.14, is the following: if an (n, m)-bent function
F = ( f1(x), . . . , fm(x))T is extendable by a Boolean bent function f on Fn

2 , then F
is also extendable by any bent function f ′ on Fn

2 from the set f ⊕ 〈 f1, . . . fm〉. Tak-
ing into account this observation, one can see that the only equivalence classes
Cm

i ≺ Cm+1
j of bent functions in six variables with the property “any represen-

tative F ∈ Cm
i is uniquely extendable, up to the choice of the coset leader, to a

representative (F, f )T ∈ Cm+1
j ” are the classes C2

1 and C3
1 . In this way, bent func-

tions with this property are exceptionally rare in a small number of variables.
Based on this observation, we think it is reasonable to address the following
problem.

Open Problem 2.18. Which (n, n/2)-bent functions can be characterized by the
property to be “unique” extensions of (n, n/2− 1)-bent functions.

As a starting point, one can consider the following (2m, m)-bent function F
defined by

F : (x, y) ∈ F2m ×F2m 7→ x · y ∈ F2m ,

since for m = 3 this function represents the equivalence class C3
1 .



Chapter 3

Design-theoretic aspects of bent
functions

Vectorial bent functions, plateaued and differentially uniform functions, being
generalizations of Boolean bent functions, inherit many of their cryptographic
and combinatorial properties. In this chapter, we investigate, which design-
theoretic properties of Boolean bent functions can be shared with their general-
izations.

This chapter summarizes various design-theoretic aspects of Boolean and
vectorial bent functions appeared in papers by Polujan and Pott [92–94]. The
parts of this chapter concerning various generalizations of the concept of van-
ishing flats, introduced by Li, Meidl, Pott, Riera, Stănică and the author of this
dissertation in [73], are based on the work by Meidl, Polujan and Pott [80].

3.1 Introduction

The interaction between design theory and the theory of perfect nonlinear func-
tions is of special interest. For instance, any new construction of bent functions
may lead to a new construction of certain incidence structures. On the other
hand, combinatorial invariants of incidence structures constructed from func-
tions over finite fields serve as good distinguishers between inequivalent func-
tions and even classes of functions [54, 73, 110]. Recently there has been a lot of
work related with (n, m)-functions and incidence structures [44, 47, 73, 94, 108].
In this chapter, we continue the study of the interaction between Boolean as well
as vectorial functions and combinatorial designs.

3.1.1 Perfect nonlinear functions and combinatorial designs

In this subsection, we consider in more detail the following constructions of
incidence structures from Boolean and vectorial functions, which constitute the
following two groups:
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• Developments of supports dev(D f ) for Boolean functions f on Fn
2 and

developments of graphs dev(GF) for (n, m)-functions F.

• Supports of codewords of the minimum weight of linear codes CF and
C⊥F for (n, m)-functions F, also known as addition designs D(F) and the
vanishing flats VF (F), respectively.

In general, for an arbitrary (n, m)-function F the aforementioned incidence struc-
tures do not necessarily have nice combinatorial properties, i.e., are regular or
even form a t-design. However, for Boolean and vectorial bent functions, the
incidence structures summarized in Figure 3.1 are either 2-designs or divisible
designs, as we mentioned in Section 1.4. Moreover, they can be used to char-
acterize bentness of (n, m)-functions F. For the characterizations of (n, m)-bent
functions F in terms of incidence structures dev(DF) (for DF the function F is
must be a Boolean function), dev(GF) and D(F) we refer to Section 1.4 of the
first chapter. A characterization of (n, m)-bent functions F by means of vanishing
flats VF (F) will be given in Section 3.5.

Figure 3.1. Designs from bent functions

Besides that, we investigate a coding-theoretic generalization of vanishing
flats, i.e., incidence structures supported by codewords of an arbitrary weight of
linear codes CF and C⊥F for (n, m)-functions F. We also introduce a combinatorial
generalization of the vanishing flats, namely the incidence structure called non-
vanishing flats, and provide characterizations of plateaued and bent functions
by means of combinatorial properties of this object.

3.1.2 Objectives

The main aim of this chapter is to figure out, which design-theoretic properties
of Boolean bent functions (within the framework of developments and supports
of the codewords of the minimum weight, see Figure 3.1), can be shared with
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their generalizations: the classes of vectorial bent functions, (n, m)-plateaued
functions and differentially uniform functions.

The rest of the chapter is organized in the following way. In Section 3.2,
we study geometric invariants of Boolean and vectorial functions, which were
introduced in Subsection 1.4.1. In Subsection 3.2.1, we provide a connection
between the rank and linearity index of a Boolean function. Consequently, we
give an upper bound on the linearity index of a Boolean function using its rank.
In Subsection 3.2.2, we study relations between different notions of ranks for
Boolean functions. We show that ranks and Γ-ranks coincide for all non-constant
Boolean functions. Finally, in Subsection 3.2.3, we explain how one can compute
the Smith normal form of Boolean functions more efficiently and specify the
shape of the Smith normal form for Boolean and vectorial bent functions.

In Section 3.3, we provide examples of extended-affine inequivalent Boolean
bent functions f , f ′ on Fn

2 , whose translation designs dev(G f ) and dev(G f ′) are
isomorphic. Consequently, we prove that for any n ≥ 6 isomorphism of transla-
tion designs dev(G f ) and dev(G f ′) of Boolean bent functions f and f ′ on Fn

2 is a
coarser equivalence relation than extended-affine equivalence. However, based
on the analysis of vectorial bent functions in a small number of variables, we
indicate that this phenomenon may not occur in general for vectorial bent func-
tions. We observe that, in contrast to the Boolean case, vectorial bent functions
F and F′ on F6

2 are extended-affine equivalent if and only if their translation
designs dev(GF) and dev(GF′) are isomorphic.

In Section 3.4, we study the same question, but in the context of addition
designs. We show that extended-affine equivalence of vectorial bent functions,
similarly to the Boolean case, coincides with the isomorphism of addition de-
signs, in this way, answering a recent question, addressed by Ding, Munemasa
and Tonchev [44, Note 24].

In Section 3.5, we consider in detail the vanishing flats of Boolean and vec-
torial bent functions. As it was shown in [108, Example 4], linear codes CF and
C⊥F of all (n, m)-bent functions F support 2-designs and hence vanishing flats are
2-designs as well. Using a connection between bent functions and relative dif-
ference sets we show that this condition (being a 2-design) is actually sufficient
for the perfect nonlinearity.

In Section 3.6, we generalize the original concept of vanishing flats. In
Subsection 3.6.1, we introduce the notion of nonvanishing flats NFv(F) for
(n, m)-functions F and consequently show that the collection of all nonvanishing
flats for an (n, m)-function F is an invariant under EA-equivalence. In Subsec-
tion 3.6.2, we give a design-theoretic interpretation of the well-known charac-
terization of plateaued functions, given by Carlet [28]. In particular, we show
that nonvanishing flats NFv(F) of (n, m)-plateaued functions F are regular in-
cidence structures, i.e., 1-(2n, 4, λv) designs (with not necessarily the same λv).
Moreover, we show that the regularity condition is also sufficient for plateaued-



64 CHAPTER 3. DESIGN-THEORETIC ASPECTS OF BENT FUNCTIONS

ness, and explain how one can compute the value λv. Furthermore, we show that
the equiregularity condition, i.e., nonvanishing flats NFv(F) are 1-(2n, 4, λv)

designs with λv = λ for all v ∈ Fm
2 \ {0}, is necessary and sufficient for s-

plateauedness of (n, m)-functions F. Finally, in Subsection 3.6.3, we consider
nonvanishing flats of bent functions, in particular, we characterize (n, m)-bent
functions F among the class of plateaued functions as those, for which the non-
vanishing flats NFv(F) are 2-(2n, 4, 2n−m−1) designs for all v ∈ Fm

2 \ {0}.
In Section 3.7, we consider extendable and lonely bent functions. Particularly,

we provide a design-theoretic framework for studying the extendability of bent
functions by means of vanishing and nonvanishing flats.

In Section 3.8, we provide new applications of extended Assmus-Mattson
theorem. First, in Subsection 3.8.1, we show that extended Assmus-Mattson the-
orem, applied to the linear codes of Boolean bent functions may also outperform
the transitivity theorem. We show that the automorphism groups of linear codes
C f and C⊥f of Boolean bent functions f on Fn

2 are 2-transitive if and only if f is
quadratic. However, by extended Assmus-Mattson theorem, the linear codes
C f and C⊥f of all Boolean bent functions f on Fn

2 support 2-designs. In Sub-
section 3.8.2, we show that the linear codes of certain APN functions with the
classical Walsh spectrum support 2-designs similarly to AB functions; the latter
was shown in [108]. We also provide new sufficient conditions for an APN func-
tion with the classical Walsh spectrum to be CCZ-inequivalent to a quadratic
one.

Finally, in Section 3.9, we give concluding remarks and raise some further
questions and open problems on (n, m)-functions and their incidence structures.

3.2 On geometric invariants of Boolean and vectorial
functions

Throughout the chapter, we will use the following notation for incidence matri-
ces of translation designs of Boolean functions f on Fn

2 , which were introduced
in Subsection 1.4.1:

M f := M(dev(D f )) = ( f (x⊕ y))x,y∈Fn
2

and N f := M(dev(G f )).

Note that (x⊕ y, 1) ∈ G f ⇔ f (x⊕ y) = 1 and (x⊕ y, 0) ∈ G f ⇔ f̄ (x⊕ y) = 1,
consequently, the matrix N f can be written without loss of generality as the
following block matrix

N f =

V1 V0( )
M f M f̄ V0

M f̄ M f V1
, (3.1)
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where Vi := {(x, i) : x ∈ Fn
2} for a fixed i ∈ F2. Similarly to the Boolean case,

we also denote by NF an incidence matrix of the translation design dev(GF) for
a vectorial (n, m)-function F.

3.2.1 Linearity index and rank of Boolean functions

In general, one has to use Algorithm 1.1 in order to compute the linearity index
ind( f ) of a Boolean function f on Fn

2 . In the following statement, we show
that one can estimate the linearity index ind( f ) by means of rank( f ) without
enumeration ofM-subspaces of f .

Theorem 3.1. The linearity index ind( f ) of a nonzero Boolean function on Fn
2 is at

most n + 1− log2(rank( f )).

Proof. Let fπ,φ : Fr
2 ×Fs

2 → F2 be a Maiorana-McFarland representation (1.23) of
the function f : Fn

2 → F2 satisfying r = ind( f ) and s = n− r. Let a, x ∈ Fr
2 and

b, y ∈ Fs
2. Then M f is given by M f ((a, b), (x, y)) = f (a⊕ x, b⊕ y). Following

Weng et al. [110], we add the row (0, b) to the row (a, b), for all a ∈ Fr
2, b ∈ Fs

2
with a 6= 0, and add the column (0, y) to the column (x, y), for all x ∈ Fr

2, y ∈ Fs
2

with x 6= 0. In this way, we get a matrix A which has the same rank as M f , and
whose ((a, b), (x, y))-th entry is given by

⊕
z∈〈a,x〉

fπ,φ(z, b⊕ y), if a 6= 0, x 6= 0,

fπ,φ(a, b⊕ y)⊕ fπ,φ(0, b⊕ y), if a 6= 0, x = 0,

fπ,φ(x, b⊕ y)⊕ fπ,φ(0, b⊕ y), if a = 0, x 6= 0,

fπ,φ(0, b⊕ y), if a = x.

With the definition of the function fπ,φ, we get the following values
0, if a 6= 0, x 6= 0,

〈a, π(b⊕ y)〉r, if a 6= 0, x = 0,

〈x, π(b⊕ y)〉r, if a = 0, x 6= 0,

φ(b⊕ y), if a = x = 0.

In this way, the matrix A can be expressed in the following block form

A =

Fs
2 Fn

2 \Fs
2( )

Mφ LT
π Fs

2
Lπ O2n−2s,2n−2s Fn

2 \Fs
2

, (3.2)

where Lπ is a (2n− 2s)× 2s-matrix over F2, whose ((a, b), y)-th entry with a 6= 0
is given by Lπ((a, b), y) = 〈a, π(b⊕ y)〉r, and Mφ is a 2s × 2s-matrix over F2
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given by Mφ(b, y) = φ(b⊕ y) for all b, y ∈ Fs
2. From decomposition (3.2), we

get the following upper bound for the rank of the function fπ,φ

rank( fπ,φ) ≤ 2s + rank(Mφ Lπ) ≤ 2 · 2s = 2s+1 = 2n−r+1, (3.3)

since rank(Mφ Lπ) ≤ 2s and r = n− s. Taking the logarithm of both sides, we
get log2(rank( fπ,φ)) ≤ n− r + 1, or equivalently, r ≤ n + 1− log2(rank( fπ,φ)).
Since functions fπ,φ and f are EA-equivalent, we get r = ind( fπ,φ) = ind( f ) and
rank( fπ,φ) = rank( f ). In this way, we have ind( f ) ≤ n + 1− log2(rank( f )).

Remark 3.2. 1. In Theorem 3.1, we consider only nonzero Boolean functions in
order to omit the trivial case: if f = 0, then log2(rank( f )) is not defined, since
rank( f ) = 0. Note that ind( f ) = n since f is affine.
2. It seems that many Boolean functions f on Fn

2 achieve the bound from The-
orem 3.1 with equality. An example of such functions are monomials md on Fn

2
given by md : (x1, . . . , xn) 7→ x1 · · · xd. Since monomials md belong to the gen-
eralized Maiorana-McFarland class Mn+1−d,d−1, as the following computation
shows

md(x1, . . . , xn) = 〈(x1, xd+1, . . . , xn), (x2 · · · xd, 0, . . . , 0)〉n+1−d,

we have ind(md) = n + 1− d. On the other hand, Weng et al. [111] showed that
rank(md) = 2d on Fn

2 . Substituting ind(md) = n + 1− d and rank(md) = 2d into
ind(md) ≤ n + 1− log2(rank(md)), we get an equality.
3. Boolean bent functions f ∈ M# on Fn

2 do not achieve the bound of Theo-
rem 3.1 with equality, since ind( f ) = n/2 and rank( f ) ≤ 2n/2+1 − 2 < 2n/2+1,
see [110]. The question whether a bent function f /∈ M# on Fn

2 can achieve this
bound with equality, seems to be difficult in general.

3.2.2 On the ranks of Boolean functions

In this subsection, we show that Γ-rank( f ) and rank( f ) coincide for all non-
constant Boolean functions f on Fn

2 . First, we summarize some well-known
statements about higher-order derivatives, which we will use to show the con-
nection between the ranks of Boolean functions.

Result 3.3. [66] Let f be a Boolean function on Fn
2 and a1, . . . , ak ∈ Fn

2 .

1. If a1, . . . , ak are linearly dependent, then Dak Dak−1 . . . Da1 f = 0.

2. Let now a1, . . . , ak be linearly independent. The derivatives of f are independent
of the order in which the derivation is taken, i.e., the equality

Dak Dak−1 . . . Da1 f (x) = Daπ(k)Daπ(k−1) . . . Daπ(1) f (x) =
⊕

a∈〈a1,...,ak〉
f (x⊕ a)

holds for any permutation π on {1, . . . , k}.
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In the following theorem, we prove that for Boolean functions of degree at
least one, the Γ-rank and rank coincide and show that all information about the
SNF( f ) can be recovered from a matrix obtained through a small modification
of the matrix M f .

Theorem 3.4. Let f be a Boolean function on Fn
2 . Then the following hold.

1. If deg( f ) ≥ 1, then the all-one-vector j2n can be expressed as a sum of an even
number of vectors from the linear code C(dev(D f )).

2. If deg( f ) < 1, then Γ-rank( f ) = 2, otherwise Γ-rank( f ) = rank( f ).

Proof. 1. It was shown in [110, Lemma 3.1] that j2n ∈ C(dev(D f )). We will prove
this statement, by expressing j2n as a sum of an even number of vectors from
the linear code C(dev(D f )). First, we observe that the number of slow points
of a function f is bounded from below by 2n − 2n−d, where d is the degree of
the function f . Thus, there exist a sequence of slow points a1, . . . , ad such that
the d-th order derivative Dad Dad−1 . . . Da1 f is the constant one function. Finally,
since the following equality holds for all x ∈ Fn

2 due to Result 3.3

Dad Dad−1 . . . Da1 f (x) =
⊕

a∈〈a1,...,ad〉
f (x⊕ a) = 1,

one can see, the all-one-vector j2n is the sum of 2d elements of C(dev(D f )).
2. Assume that the matrix N f is of the form (3.1). Performing elementary row
and column operations, one can bring the matrix N f to the form

N f
(I)
 

(
M f M f̄
J2n J2n

)
(II)
 

(
M f J2n

J2n O2n

)
.

Note that elementary column operations change the linear code C(dev(D f )),
however, its dimension, which is equal to Γ-rank( f ), remains the same. If f is a
constant function, i.e., deg( f ) < 1, then clearly Γ-rank( f ) = 2. By the previous
claim, j2n can be expressed as a sum of an even number of rows of M f . Since
the matrix M f is symmetric, the vector jT

2n can be expressed as a sum of an even
number of columns of the matrix M f . In this way, the matrix N f can be brought
to the form

N f
(I)-(II)
 

(
M f J2n

J2n O2n

)
(III)
 

(
M f O2n

O2n O2n

)
and hence Γ-rank( f ) = rank( f ).

From the previous statement, one can see that Γ-rank of a non-constant
Boolean function is an even number. Now we show that Γ-rank of any (n, m)-
function is always even as well.

Proposition 3.5. Let F be an (n, m)-function. Then Γ-rank(F) is even.
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Proof. The (x, y)-th entry in the matrix NF is 1 if and only if x ⊕ y ∈ GF. In
this way, NF is symmetric. Without loss of generality we assume that F(0) = 0
(otherwise we consider F := F⊕ F(0) and this transformation leaves Γ-rank in-
variant), then we conclude that NF is symplectic. Finally, any symplectic matrix
has even rank, see [75, p. 436].

3.2.3 The Smith normal form of bent functions

As a corollary of Theorem 3.4, the Smith normal form of a Boolean function can
be computed in a more efficient way due to the following modification of the
incidence matrix M f .

Corollary 3.6. Let f be a Boolean function on Fn
2 . The Smith normal form of f is given

by
SNF( f ) = {∗dm1

1 , . . . , dmk
k , 02n−1∗},

where all di’s are elementary divisors of the matrix

(
M f jT

2n

j2n 2

)
.

Proof. Performing elementary row and column operations, as in the proof of
Theorem 3.4, but over the ring Z, one can bring the matrix N f to the form

N f  

 M f jT
2n

j2n 2
O2n+1,2n−1

O2n−1,2n+1 O2n−1,2n−1

 .

In this way, SNF( f ) = {∗dm1
1 , . . . , dmk

k , 02n−1∗}, where the di’s are the elementary

divisors of the matrix

(
M f jT

2n

j2n 2

)
.

In general, the Smith normal form of an (n, m)-function does not necessarily
have a certain pattern. In order to specify the general shape of the Smith normal
form of Boolean and vectorial bent functions, we give the following auxiliary
statements.

Result 3.7. [95, Lemma 1.1.4] The matrix

(r− λ1)Iµν + (λ1 − λ2)Jν ⊗ Iµ + λ2Jµν (3.4)

has eigenvalues

• r + λ1(ν− 1) + λ2(µν− ν) (multiplicity 1);

• r− λ1 (multiplicity µ(ν− 1));

• r + λ1(ν− 1)− λ2ν (multiplicity µ− 1).
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Remark 3.8. 1. In Definition 1.73, we considered (µ, ν, k, λ) divisible designs,
which belong to a more general class of incidence structures called (µ, ν, k, λ1, λ2)

divisible designs. An incidence structure D = (P ,B) is called a (µ, ν, k, λ1, λ2)

divisible design, if the point set P with |P| = v = µ · ν elements is divided into
µ point classes of size ν each, the block set B is a collection of k-subsets of P and
the number of blocks containing any subset {p, q} ⊂ P depends on the relation
between points p and q in the following way:

• If p and q are in the same point class, the subset {p, q} is contained in λ1

blocks.

• Otherwise it is contained in exactly λ2 blocks.

In this way, a (µ, ν, k, λ) design in the sense of Definition 1.73 is a (µ, ν, k, 0, λ)

design.
2. For a (µ, ν, k, λ1, λ2) divisible design D, there exists an incidence matrix N,
satisfying

NTN = (r− λ1)Iµν + (λ1 − λ2)Jν ⊗ Iµ + λ2Jµν, (3.5)

where k is the block size and r is the replication number. The value r can be
determined from the equation r(k − 1) = λ1(ν − 1) + λ2(µν − ν). In this way,
for a (µ, ν, k, λ) divisible design D, there exists an incidence matrix N, which
satisfies

NTN = rIµν − λJν ⊗ Iµ + λJµν, (3.6)

where r satisfies r(k− 1) = λ2(µν− ν).

The following result gives a relation between elementary divisors and eigen-
values of a square matrix over a ring of algebraic integers.

Result 3.9. [88, Theorem 6] Let the n× n matrix A have eigenvalues α1, · · · , αn and el-
ementary divisors d1| · · · |dn. Then d1 · · · dk | αi1 · · · αik whenever 1 6 i1 < · · · < ik 6
n, k = 1, · · · , n− 1, and d1 · · · dn is an associate of α1 · · · αn.

With these results, the Smith normal form of an (n, m)-bent function F can
be described in the following way.

Theorem 3.10. Let F be an (n, m)-bent function and its Smith normal form be given
by SNF(F) = {∗dl1

1 , . . . , dlk
k ∗}. Then the following hold.

1. All nonzero elementary divisors di in the SNF(F) are powers of two.

2. Γ-rank(F) = l1, where l1 is the multiplicity of one in the SNF(F).

Proof. 1. Let SNF(F) = {∗dl1
1 , . . . , dlk

k ∗} be the Smith normal form of the func-
tion F, i.e., d1|d2| . . . |d2n+m are the elementary divisors of an incidence matrix
NF satisfying (3.6), since dev(GF) is a (2n, 2m, 2n, 2n−m)-divisible design. Let
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α1, α2, . . . , α2n+m be the eigenvalues of the matrix NF and β1, β2, . . . , β2n+m be the
eigenvalues an incidence matrix N2

F, which is equal to NT
FNF, since the matrix

NF is symmetric. By Result 3.7 and Remark 3.8, we have that the matrix NT
FNF

has eigenvalue 22n (multiplicity 1), 2n (multiplicity 2n(2m − 1)) and 0 (multiplic-
ity 2n− 1). By Result 3.9, for all 1 ≤ i1 < · · · < ik ≤ 2n+m and k = 1, . . . , 2n+m− 1
the following relation between products of elementary divisors and eigenvalues
of NF holds d1 · · · dk | αi1 · · · αik . Moreover, we have d1 · · · dk | α2

i1
· · · α2

ik
, since

αi1 · · · αik | α2
i1
· · · α2

ik
. From the following equation

det(N2
F − α2

i I2n+m) = det(NF − αiI2n+m) · det(NF + αiI2n+m),

we have that if ±αi is an eigenvalue of NF, then α2
i is an eigenvalue of N2

F.
Suppose that the eigenvalue βi of N2

F = NT
FNF is βi = α2

i . In this way, for
nonzero elementary divisors d1, . . . , dk we have d1 · · · dk | β2

i1
· · · β2

ik
| 2s for some

s, and hence all nonzero di are powers of two.
2. By definition of Γ-rank(F), we have Γ-rank(F) = rankF2(NF). By Remark 1.70,
we have that rankF2(NF) is the number of elementary divisors coprime with 2,
which is given by l1. In this way, we conclude that Γ-rank(F) = l1.

Remark 3.11. We computed SNF( f ) for many Boolean bent functions of different
degrees on Fn

2 with 6 ≤ n ≤ 12. Based on our numerical experiments, we
observe the following kind of symmetry in the Smith normal form SNF( f ) of a
Boolean bent function f on Fn

2 :

1. SNF( f ) = {∗dm1
1 , . . . , dmn

n , 02n−1∗}, where all elementary divisors di are of
the form di = 2i−1 for i = 1, . . . , n.

2. Multiplicities of elementary divisors mi satisfy mn = 1, mn−1 = m1− 2 and
mn/2−i = mn/2+i for i = 1, . . . , n/2− 2.

Conjecture 3.12. The SNF( f ) of a Boolean bent function f on Fn
2 has the form, de-

scribed in Remark 3.11.

For examples of Smith normal forms of vectorial bent functions, we refer to
Appendix A.3.

3.3 Translation designs of inequivalent Boolean and
vectorial bent functions

In this section, we prove that isomorphism of translation designs dev(G f ) and
dev(G f ′) of Boolean bent functions f , f ′ : Fn

2 → F2 is a coarser equivalence re-
lation for Boolean bent functions than extended-affine equivalence. In the fol-
lowing proposition, we observe that from isomorphism of incidence structures
dev(D f ) and dev(D f ′) of Boolean (not necessarily bent) functions f , f ′ on Fn

2
follows the isomorphism of incidence structures dev(G f ) and dev(G f ′).
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Proposition 3.13. Let f , f ′ : Fn
2 → F2 be two Boolean functions. If dev(D f ) and

dev(D f ′) are isomorphic, then dev(G f ) and dev(G f ′) are isomorphic too.

Proof. Since dev(D f ) and dev(D f ′) are isomorphic, there exist permutation ma-
trices P and Q such that M f = P ·M f ′ ·Q. Clearly, dev(D f̄ ) and dev(D f̄ ′) are
isomorphic with the same permutation matrices P and Q, as one can see from
the following calculations

M f̄ = M f ⊕ J2n = P ·M f ′ ·Q⊕ J2n = P · (M f ′ ⊕ J2n) ·Q = P ·M f̄ ′ ·Q.

Let the incidence matrices N f and N f ′ of the incidence structures dev(G f ) and
dev(G f ′) be defined as in (3.1). Since N f = (I2 ⊗ P) ·N f ′ · (I2 ⊗Q), we conclude
that dev(G f ) and dev(G f ′) are isomorphic.

Remark 3.14. The converse of the previous statement is not true in general.
A simple argument supporting this observation, is that the incidence struc-
ture dev(D f ) of a Boolean function f on Fn

2 is invariant under affine equiva-
lence [110], i.e., f (x) = f ′(xA ⊕ b) for a non-degenerate n × n matrix A, but
not extended-affine equivalence, see [63, Example 9.3.28]. In general, there are
many examples of non-isomorphic translation designs dev(D f ) and dev(D f⊕l),
obtained by addition of an affine (and even linear) function l to a bent function
f on Fn

2 .

Motivated by the fact that the incidence structure dev(GF) of an (n, m)-
function F is invariant under CCZ-equivalence and, hence EA-equivalence, see
Remark 1.76, we define isomorphic (n, m)-functions in the following way.

Definition 3.15. Two (n, m)-functions F, F′ are called isomorphic, if the incidence
structures dev(GF) and dev(GF′) are isomorphic.

Example 3.16. Let f be a quadratic and f ′ be a cubic Maiorana-McFarland bent
functions on F6

2, given by their ANFs

f (x) = x1x2 ⊕ x3x4 ⊕ x5x6 and f ′(x) = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x1x3x5.

Edel and Pott [53, Example 1] observed that the designs dev(D f ) and dev(D f ′)

are isomorphic. By Proposition 3.13, the divisible designs dev(G f ) and dev(G f ′)

are isomorphic too, and hence the functions f and f ′ are isomorphic in the sense
of Definition 3.15.

Remark 3.17. With Magma [9], we checked that if two Boolean bent functions g
and g′ on F6

2 are EA-inequivalent but isomorphic, then g is EA-equivalent to f
and g′ is EA-equivalent to f ′, where f and f ′ are Boolean bent functions from
Example 3.16.

In the following proposition, we show that using the direct sum construction
one can always extend a pair of isomorphic incidence structures derived from
Boolean and vectorial functions to an infinite family.
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Proposition 3.18. Let f , f ′ : Fn
2 → F2 be two Boolean functions and let F, F′ be two

(n, m)-functions. Let also h be a Boolean function on Fk
2 and H be a (k, m)-function.

1. If the incidence structures dev(D f ) and dev(D f ′) are isomorphic, then the inci-
dence structures dev(D f⊕h) and dev(D f ′⊕h) of the direct sums f ⊕ h and f ′⊕ h
on Fn

2 ×Fk
2 are isomorphic too.

2. If the incidence structures dev(GF) and dev(GF′) are isomorphic, then the in-
cidence structures dev(GF⊕H) and dev(GF′⊕H) of the direct sums F ⊕ H and
F′ ⊕ H, which are (n + k, m)-functions, are isomorphic too.

Proof. We recall that ⊕ denotes the addition modulo 2 and ⊗ denotes the Kro-
necker product of two matrices.
1. Let x, y ∈ Fn

2 and w, z ∈ Fk
2. For any fixed w, z ∈ Fk

2, the entry of the incidence
matrix M f⊕h of dev(D f⊕h) labeled by ((x, w), (y, z)) is f (x⊕ y)⊕ h(w⊕ z). In
this way, the incidence matrix M f⊕h has the following form

M f⊕h = (J2k ⊗M f )⊕ (Mh ⊗ J2n).

Since dev(D f ) and dev(D f ′) are isomorphic, there exist permutation matrices P
and Q such that M f = P ·M f ′ ·Q. Finally, from the following equation

M f⊕h = (I2k ⊗ P) ·M f ′⊕h · (I2k ⊗Q)

one can see that that incidence structures dev(D f⊕h) and dev(D f ′⊕h) are iso-
morphic.
2. Let a, b ∈ Fn

2 , c, d ∈ Fk
2 and e, f ∈ Fm

2 . The point (a, c, e) is incident with the
block (b, d, f)⊕GF⊕H of dev(GF⊕H) if and only if the point (a, e) is incident with
the block (b, f⊕H(c⊕d))⊕GF of dev(GF). The statement now follows from the
fact that for a block B the mapping ρ : B 7→ B⊕ (0, H(c⊕d)) is an automorphism
of the incidence structures dev(GF) and dev(GF′), which are isomorphic.

Now we show that isomorphism of divisible designs for Boolean bent func-
tions is a coarser equivalence relation than extended-affine equivalence.

Theorem 3.19. Boolean bent functions, which are extended-affine inequivalent but iso-
morphic exist on Fn

2 for all n ≥ 6.

Proof. Let g be a quadratic bent function on Fk
2 and let f and f ′ be bent functions

from the Example 3.16. By Proposition 3.18 Boolean functions f ⊕ g and f ′ ⊕ g
on Fn

2 with n = k + 6 are isomorphic. Clearly, direct sums f ⊕ g and f ′ ⊕ g are
bent, since all the functions f , f ′ and g are bent. Finally, since deg( f ⊕ g) = 2
and deg( f ′ ⊕ g) = 3, we get that functions f ⊕ g and f ′ ⊕ g are extended-affine
inequivalent on Fn

2 .
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Remark 3.20. Extended-affine inequivalent Boolean bent functions f and f ′ on
F6

2 from Example 3.16 define isomorphic designs dev(D f ) and dev(D f ′) with a
2-transitive automorphism group. According to Kantor [62, Theorem 1], any 2-
(2n, 2n−1− 2n/2−1, 2n−2− 2n/2−1) design with a 2-transitive automorphism group
is unique, up to isomorphism. In general, if a design has a large automorphism
group, it is more likely that it can be represented by several inequivalent dif-
ference sets (bent functions) due to the large symmetry. In this way, one may
think that the reason why functions from Example 3.16 have isomorphic trans-
lation designs is the 2-transitivity of the automorphism group. In the following
example, we show that isomorphic translation designs dev(D f ) and dev(D f ′)

of EA-inequivalent bent functions f and f ′ do not necessarily need to have a
2-transitive automorphism group.

Example 3.21. Let f , f ′ be two Maiorana-McFarland bent functions on F10
2 given

by their algebraic normal forms as follows:

f (x) =x1x6 ⊕ x2x7 ⊕ x3x8 ⊕ x4x9 ⊕ x5x10 ⊕ x1x2x3x4x5,

f ′(x) = f (x)⊕ x4 ⊕ x6 ⊕ x8 ⊕ x10 ⊕ x1x2 ⊕ x2x3 ⊕ x1x2x3⊕
x2x4x5 ⊕ x1x2x4x5 ⊕ x2x3x4x5.

With Magma [9], one can check that orders of the automorphism groups of bent
functions f and f ′ are equal to

|Aut(C f )| = 230 · 32 · 5 · 7 · 31 and |Aut(C f ′)| = 230 · 32 · 7,

what implies that functions f and f ′ are extended-affine inequivalent. However,
the designs dev(D f ) and dev(D f ′) are isomorphic. First, we observe that in
general designs dev(D f ) and dev(D f ′) are isomorphic if and only if there exist
a pair of permutations ρ, σ : Fn

2 → Fn
2 such that f (ρ(x)⊕ σ(y)) = f ′(x⊕ y) holds

for all x, y ∈ Fn
2 , since an incidence matrix M f of the translation design dev(D f )

can be computed as M f := ( f (x⊕ y))x,y∈Fn
2
. It is easy to check that the following

nonlinear functions ρ, σ : F10
2 → F10

2 , given by algebraic normal forms

ρ(x) =(x1, x2, x3, x4, x1 ⊕ x5, x1 ⊕ x10 ⊕ x2x3 ⊕ x5 ⊕ x6,

x1x3 ⊕ x7, x1x2 ⊕ x8, x9, x1 ⊕ x10),

σ(y) =y⊕ (1, 0, 1, 0, y1, y1 ⊕ y10 ⊕ y2 ⊕ y2y3 ⊕ y5,

y1 ⊕ y3 ⊕ y1y3, y2 ⊕ y1y2, 1, 1⊕ y1),

are permutations and satisfy f (ρ(x)⊕ σ(y)) = f ′(x⊕ y) for all x, y ∈ F10
2 . In this

way, designs dev(D f ) and dev(D f ′) are isomorphic. We also observe that the
2-rank of any 2-(2n, 2n−1 − 2n/2−1, 2n−2 − 2n/2−1) design D with a 2-transitive
automorphism group equals n + 2: any such a design is unique, up to iso-
morphism [62], it can be constructed as dev(Dg) of a quadratic bent function
g on Fn

2 , and rank(g) = n + 2 as it was shown in [111, Corollary 3.8]. Since
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f is a Maiorana-McFarland bent function of the form 〈x′, x′′〉n/2 ⊕ h(y), where
x′, x′′ ∈ Fn/2

2 and h is a monomial function with deg(h) > 3 on Fn/2
2 , we have

rank( f ) = n− 2 deg(h) + 2deg(h) by [111, Corollary 3.8]. In this way, we have

rank(D) = 12 and rank(dev(D f )) = rank(dev(D f ′)) = 32,

consequently, the automorphism groups of designs dev(D f ) and dev(D f ′) are
not 2-transitive.

From Example 3.16 and Remark 3.17, we know that on F6
2 there exist EA-

inequivalent bent functions f and f ′, whose translation designs dev(G f ) and
dev(G f ) are isomorphic. Surprisingly, in contrast to the Boolean case, one cannot
observe the same phenomenon for EA-inequivalent vectorial bent functions in
six variables.

Theorem 3.22. Let F and F′ be two (6, m)-bent functions with m ≥ 2. The following
statements are equivalent.

1. Bent functions F and F′ are extended-affine equivalent.

2. Divisible designs dev(GF) and dev(GF′) are isomorphic.

Proof. All computations about equivalence and isomorphism are carried out
with Magma [9]. Invariants of equivalence classes and their translation designs
are listed in Table A.5.

3.4 Equivalence of bent functions via isomorphism
of addition designs

Dillon and Schatz [43] and Bending [5, Corollary 10.6] proved that Boolean bent
functions f and f ′ on Fn

2 are extended-affine equivalent if and only if their addi-
tion designs D( f ) and D( f ′) are isomorphic. In this section, we show that, sim-
ilarly to the Boolean case, vectorial (n, m)-bent functions F and F′ are extended-
affine equivalent if and only if their addition designs D(F) and D(F′) are iso-
morphic. We also use the result of Bending [5, Theorem 9.6] to show, how one
can construct an incidence matrix of the addition design of a vectorial (n, m)-
bent function F with the help of its component functions and their duals.

Remark 3.23. The entries of an incidence matrix of the addition design D(F)
of a vectorial (n, m)-bent function F, introduced in Definition 1.92, similarly to
the Boolean case, can be constructed directly from the values of the component
functions Fb and their duals F̃b. The dual of a Boolean bent function f : Fn

2 → F2

is a bent function f̃ : Fn
2 → F2, which is defined by the Walsh transform of the

function f in the following way: χ̂ f (a) = 2n/2(−1) f̃ (a) holds for all a ∈ Fn
2 .
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Bending [5, Theorem 9.6] proved that an incidence matrix of the design D( f )
can be constructed with the help of the dual function f̃ as follows (without loss
of generality we assume that f (0) = 0):

M(D( f )) = (ax,y)x,y∈Fn
2
, where ax,y = f̃ (x)⊕ f (y)⊕ 〈x, y〉n ⊕ f̃ (0). (3.7)

With this result, and the observation that an incidence matrix of the addition
design D(F) of an (n, m)-bent function F (without loss of generality we assume
F(0) = 0) can be constructed as the concatenation of incidence matrices of ad-
dition designs D(Fb) of nonzero component functions Fb of F, we prove the
following statement.

Proposition 3.24. Let F be an (n, m)-bent function. Then an incidence matrix of the
addition design D(F) can be constructed as follows

M(D(F)) =


M(D(Fb1))

M(D(Fb2))
...

M(D(Fb2m−1
))

 , (3.8)

where the value ax,y of the submatrix M(D(Fbi)) = (ax,y)x,y∈Fn
2

for i = 1, . . . , 2m − 1
is given by ax,y = F̃bi(x)⊕ Fbi(y)⊕ 〈x, y〉n ⊕ F̃bi(0).

Recently, Ding, Munemasa and Tonchev conjectured [44, Note 24] that extended-
affine equivalence of vectorial bent functions, similarly to the Boolean case [5,
43], coincides with the isomorphism of their addition designs. In the following
theorem, we show that this conjecture is true.

Theorem 3.25. Let F and F′ be two (n, m)-bent functions. Bent functions F and
F′ are extended-affine equivalent if and only if addition designs D(F) and D(F′) are
isomorphic.

Proof. By Result 1.11, two (n, m)-bent functions F, F′ are EA-equivalent if and
only they are CCZ-equivalent. By Result 1.60, functions F and F′ are CCZ-
equivalent if and only if the linear codes CF and CF′ are permutation equivalent.
We observe that the [2n, 1 + n + m, 2n−1 − 2n/2−1]-linear code CF is spanned by
the set of codewords of minimum weight. First, for an element a ∈ Fn

2 we de-
note by la the affine function given by la,ε(x) = 〈a, y〉n ⊕ ε. Since the (n, m)-bent
function F(x) = ( f1(x), . . . , fm(x))T is bent, we have that for any choice of ai and
εi for i = 1, . . . , m, the subcode S ⊆ CF given by S = {f1 ⊕ la1,ε1 , . . . , fm ⊕ lam,εm}
satisfies dim〈S〉 = m. Choosing affine functions la,ε(x) as in Proposition 3.24,
we get that S is spanned by codewords of the minimum weight. The first-order
Reed-Muller code RM(1, n) is also spanned by codewords of minimum weight
of CF, since for a nonzero component function Fb of F, its addition design D(Fb)

is formed by the minimum weight codewords in CFb , see [43]. In this way, the
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incidence matrix M(D(F)) of the addition design D(F) given in (3.8) is a gen-
erator matrix of the code CF, and hence, the linear codes C(F) and C(F′) are
equivalent if and only if the addition designs D(F) and D(F′) are isomorphic.
This completes the proof.

3.5 Vanishing flats of bent functions

Vanishing flats VF (F) of (n, m)-bent functions F, being supports of codewords
of weight 4 in the linear code C⊥F , are 2-designs, as it was observed in [108, Ex-
ample 4]. In this section, we explain the combinatorial structure of vanishing
flats of bent functions and, consequently, compute the parameters of these de-
signs, i.e., we show that vanishing flats VF (F) of (n, m)-bent functions F are
2-(2n, 4, 2n−m−1 − 1) designs. Moreover, we show that this design-theoretic con-
dition is also sufficient for the perfect nonlinearity. The key ingredient of the
proof is the characterization of (n, m)-bent functions in terms of relative differ-
ence sets (see Result 1.53).

Theorem 3.26. Let F be an (n, m)-function. The following statements are equivalent.

1. The function F is an (n, m)-bent function.

2. The incidence structure VF (F) is a 2-(2n, 4, 2n−m−1 − 1) design.

Proof. 1.⇒2. Let F be an (n, m)-bent function and let VF (F) = (P ,B) be the
vanishing flats of F. We will show that any two different points x1, x2 of P are
contained in exactly 2n−m−1 − 1 blocks of B. We define a := x1 ⊕ x2 and let
v := F(x1)⊕ F(x2). Since the graph GF is a (2n, 2m, 2n, 2n−m)-difference set in the
group G = Fn

2 × Fm
2 relative to the forbidden subgroup N = {(0, y) : y ∈ Fm

2 },

the element g :=
(

a
v

)
∈ G \ N has 2n−m − 2 further representations

(
x1

F(x1)

)
⊕
(

x2

F(x2)

)
= g =

(
x3

F(x3)

)
⊕
(

x4

F(x4)

)
(3.9)

with {x3, x4} 6= {x1, x2}. In this way, any 2-subset {x1, x2} is contained in exactly
2n−m−1 − 1 blocks {x1, x2, x3, x4}, satisfying(

x1

F(x1)

)
⊕
(

x2

F(x2)

)
⊕
(

x3

F(x3)

)
⊕
(

x4

F(x4)

)
=

(
0
0

)
, (3.10)

consequently, the incidence structure VF (F) is a 2-(2n, 4, 2n−m−1 − 1) design.
2.⇒1. Let the incidence structure VF (F) be a 2-(2n, 4, 2n−m−1 − 1) design. By
relation (1.36), the number of blocks b of a t-(v, k, λ) design is given by

b = λ

(
v
t

)
/
(

k
t

)
.
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Since VF (F) is a 2-(2n, 4, 2n−m−1 − 1) design, the number of blocks of VF (F) is
given by

|VF F| =
(2n−m−1 − 1) · 2n · (2n − 1)

12
.

Since blocks of VF (F) are in 1-to-1 correspondence with codewords of weight 4
in the linear code C⊥F , we get that A4 = |VF F|. Expanding the obtained value,
we get

A4 = |VF F| =
1
3

(
23n−m−3 − 22n−m−3 − 22n−2 + 2n−2

)
. (3.11)

By Corollary 1.64, the value A4 given in (3.11) is the minimum possible value for
an (n, m)-function F with n even and m ≤ n/2, which is attained if and only if
F is an (n, m)-bent function.

Remark 3.27. The proof of the previous statement gives a constructive combina-
torial way to determine the number of vanishing flats |VF F| of F as follows:

• there are 2n+m − 2m ways to pick an element g ∈ G \ N;

• for a selected element g there exist 2n−m ways to choose the left-hand side
in (3.9), what gives 2n−m − 2 remaining choices of the right-hand side;

• in this way, we have (2n+m − 2m) · 2n−m · (2n−m − 2) “ordered” vanishing
flats of F, i.e., quadruples (x1, x2, x3, x4) with the property (3.10) .

Dividing this number by 4! = 24, we get that the number of blocks of VF (F) is
equal to

|VF F| =
(2n+m − 2m) · 2n−m · (2n−m − 2)

24
, (3.12)

which after expanding and simplifying coincides with the value in (3.11).

As it was mentioned in Proposition 1.85, the incidence structure VF (F) is
invariant under CCZ-equivalence for (n, m)-functions F. Conversely, two (n, m)-
functions F, F′ for which the vanishing flats VF (F) and VF (F′) are isomorphic,
are not necessarily CCZ-equivalent, as the case of APN functions shows, since
the obtained incidence structures are trivial. However, according to our compu-
tational results, the converse is also true for (6, m)-bent functions.

Theorem 3.28. Let F and F′ be two (6, m)-bent functions. The following statements
are equivalent.

1. Bent functions F and F′ are extended-affine equivalent.

2. Vanishing flats VF (F) and VF (F′) are isomorphic.

Moreover, for any (6, m)-bent function F the linear code C⊥F is spanned by the codewords
of minimum weight.

Proof. All computations about equivalence and isomorphism are carried out
with Magma [9] using the representatives of the equivalence classes of (6, m)-
bent functions, given in Appendix A.5.



78 CHAPTER 3. DESIGN-THEORETIC ASPECTS OF BENT FUNCTIONS

3.6 Nonvanishing flats of plateaued functions

In this section, we introduce a combinatorial generalization of vanishing flats by
modifying the definition of the block set in (1.40). Consequently, we use this
generalization in order to derive new characterizations of plateaued and bent
functions.

3.6.1 Definition and invariance under EA-equivalence

First, we give a formal definition of nonvanishing flats and show that the col-
lection of all nonvanishing flats of an (n, m)-function is invariant under EA-
equivalence.

Definition 3.29. Let F be an (n, m)-function. We define a partial quadruple
system, called the nonvanishing flats of the (n, m)-function F with respect to the
nonzero vector v ∈ Fm

2 , as the incidence structure NFv(F) := (P ,NFv,F) where
the point set is given by P = {x : x ∈ Fn

2} and the block set NFv,F is defined as
follows

NFv,F =

{
{x1, x2, x3, x4} :

4⊕
i=1

(
xi

F(xi)

)
=

(
0
v

)
for xi ∈ Fn

2

}
. (3.13)

Remark 3.30. For an arbitrary (n, m)-function F, the collection of incidence struc-
tures {VF (F)} ∪ {NFv(F) : v ∈ Fm

2 \ {0}} forms a partition of the affine Steiner
quadruple system SQS(2n) := (P ,B) with point and block sets being defined as
follows

P = {x : x ∈ Fn
2} and B = {{x1, x2, x3, x4} : x1⊕ x2⊕ x3⊕ x4 = 0 for xi ∈ Fn

2},

which is a 3-(2n, 4, 1) design.

As we mentioned in Proposition 1.85, the incidence structure VF (F) is in-
variant under CCZ-equivalence for (n, m)-functions. Now we show that the
collection of all nonvanishing flats {NFv(F) : v ∈ Fm

2 \ {0}} is invariant under
EA-equivalence for (n, m)-functions. First, we recall the following characteriza-
tion of EA-equivalence for perfect nonlinear functions.

Result 3.31. [54] Let F and F′ be two (n, m)-functions. Then F and F′ are extended-
affine equivalent if and only if there exists an affine permutation L of Fn

2 × Fm
2 of the

form

L :
(

x
y

)
7→
(

A11 O
A21 A22

)(
x
y

)
⊕
(

a
b

)
(3.14)

such that L(GF) = GF′ .
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Following the original proof of the invariance of vanishing flats under CCZ-
equivalence [73, Theorem II.1.] and using the mentioned characterization of EA-
equivalence, we proof the following result.

Theorem 3.32. Let F and F′ be two EA-equivalent (n, m)-functions and let L be an
affine permutation of Fn

2 × Fm
2 of the form (3.14) such that L(GF) = GF′ . Then for

any nonzero v ∈ Fm
2 the block {x1, x2, x3, x4} ∈ NFv(F) if and only if the block

{x′1, x′2, x′3, x′4} ∈ NFv′(F′), where x′i = A11xi ⊕ c and v′ = A22v.

Proof. Let {x1, x2, x3, x4} be a block of NFv(F). Then the following holds(
x1

F(x1)

)
⊕
(

x2

F(x2)

)
⊕
(

x3

F(x3)

)
⊕
(

x4

F(x4)

)
=

(
0
v

)
.

Let π be a mapping from Fn
2 to Fn

2 such that π(x) = A11x⊕ c. By definition
of EA-equivalence, π induces a permutation on Fn

2 . Let also x′i := π(xi) and
F′(x′i) = A21xi ⊕A22F(xi)⊕ b. We then have

(
x′1

F′(x′1)

)
⊕
(

x′2
F′(x′2)

)
⊕
(

x′3
F′(x′3)

)
⊕
(

x′4
F′(x′4)

)
=

 0

A22
4⊕

i=1
F(xi)

 =

(
0
v′

)
,

where v′ := A22v. In this way, {x′1, x′2, x′3, x′4} is a block of NFv′(F′) and π

induces an injective mapping, which maps blocks of NFv(F) to the blocks of
NFv′(F′). Let now {x′1, x′2, x′3, x′4} be a block of NFv′(F′). Clearly, the inverse of
L has the form

L−1 :
(

x
y

)
7→
(

A′11 O
A′21 A′22

)(
x
y

)
⊕
(

a
b

)
,

with A′11 = A−1
11 , A′21 = A−1

22 A21A11 and A′22 = A−1
22 . Let xi ∈ Fn

2 be defined
as follows xi := π−1(x′i) = A−1

11 x′i ⊕ a, and thus its image F(xi) is given by
F(xi) = A′21x′i ⊕A′22F′(x′i)⊕ b. In this way, the following equation holds

4⊕
i=1

(
xi

F(xi)

)
=

 0

A′22

4⊕
i=1

F′(x′i)

 =

(
0

A′22v′

)
=

(
0
v

)
,

consequently, {x1, x2, x3, x4} is a block of NFv(F). Hence, π induces a bijection
between the block sets of NFv(F) and NFv′(F′). Thus the incidence structures
NFv(F) and NFv′(F′) are isomorphic.

Remark 3.33. In general, the collection of all nonvanishing flats is not a CCZ-
invariant for (n, m)-functions, as the following example shows. We endow F6

2
with the structure of the finite field (F26 ,+, ·) in such a way that the multiplica-
tive group F∗26 is given by F∗26 = 〈a〉, where a is a root of the primitive polynomial
p(x) = x6 + x4 + x3 + x + 1. Consider the following CCZ-equivalent but not EA-
equivalent functions on F26 : Kim’s APN function D5 on F26 from Table 2.1 and
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the Dillon’s APN permutation F on F26 from [13], which is defined as follows.
Let w ∈ F26 be defined as w := a−2. Then the univariate representation of the
APN permutation F(x) is given by:

F(x) = w45x60 + w41x58 + w43x57 + w4x56 + w50x54 + w20x53 + w45x52 + w20x51

+ w23x50 + w36x49 + w56x48 + w21x46 + w5x45 + w21x44 + w28x43 + w3x42

+ w59x41 + w58x40 + w57x39 + w53x38 + w37x37 + w40x36 + w18x35 + w41x34

+ w54x33 + w3x32 + w49x30 + w41x29 + w42x28 + w50x27 + w53x26 + w58x25

+ w9x24 + x23 + w28x22 + w3x21 + w21x20 + w52x19 + w60x17 + w59x16

+ w10x15 + w42x13 + w8x12 + w35x11 + w44x10 + w45x8 + w8x7 + w61x6

+ w59x5 + w20x4 + w12x3 + w37x2 + w2x.

It is possible to check with a computer that for the Kim’s APN function D5 there
exist:

• 42 elements v ∈ F26 such that NF v(D5) is a 1-(64, 4, 9) design;

• 21 elements v ∈ F26 such that NF v(D5) is a 1-(64, 4, 13) design.

On the other hand, among the nonvanishing flats of Dillon’s APN permutation
only 7 of them, namely NF v(F) for v ∈ V = {1, a7, a8, a29, a44, a50, a53}, are
1-(64, 4, 13) designs.

3.6.2 Characterization of plateaued functions

As it was mentioned in Theorem 3.26, (n, m)-bent functions are exactly those
(n, m)-functions which have the minimum possible number of vanishing flats
|VF F|. In this way, the property of the vanishing flats to be a 2-design is in
some sense redundant with respect to the characterization of bentness. In the
following, we will show that in contrast to the bent case, one indeed needs
information about all nonvanishing flats in order to characterize the class of
plateaued functions. First, we give a formula for the number of vanishing flats
for an arbitrary plateaued (n, m)-function.

Remark 3.34. Let F be an (n, m)-plateaued function. For each nonzero b ∈ Fm
2

let sb be an integer with 0 ≤ sb ≤ n such that the component function Fb is
sb-plateaued. Then according to (1.33), the number of vanishing flats |VF F| is
given by

|VF F| =
1
3

23n−m−3 + 22n−m−3 ∑
b∈Fm

2 \{0}
2sb − 3 · 22n−3 + 2n−2

 . (3.15)

In particular, if F is an s-plateaued (n, m)-function, then

|VF F| =
1
3

(
23n−m−3 + 22n+s−3 − 22n+s−m−3 − 3 · 22n−3 + 2n−2

)
. (3.16)
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However, this information, namely the number of vanishing flats |VF F| is not
enough to characterize the class of all plateaued functions, as it follows from [87,
Section 5.2]. There exist infinite families of nonplateaued Boolean functions hav-
ing the fourth power moments of the Walsh transform of plateaued functions
and, hence, the same number of vanishing flats |VF F|, as one can see from
Result 1.33. In this way, the same characterization in terms of the number of
vanishing flats is no longer possible for (n, m)-plateaued functions.

In the following statements, we show that one has to analyze the combina-
torial structure of nonvanishing flats of (n, m)-functions in order to characterize
the plateauedness. First, we proceed with the Boolean case.

Theorem 3.35. Let f be a Boolean function on Fn
2 . The following statements are equiv-

alent.

1. The function f is s-plateaued.

2. The incidence structure VF ( f ) is a 1-
(

2n, 4,
2n+s−1(2n−s + 1)− 3 · 2n + 2

6

)
design.

3. The incidence structure NF 1( f ) is a 1-
(

2n, 4,
2n+s−1(2n−s − 1)

6

)
design.

Proof. 1.⇒2. Let f be an s-plateaued Boolean function on Fn
2 . For v ∈ F2 and

x ∈ Fn
2 we define the set

N f (v, x) = {(a, b) ∈ Fn
2 ×Fn

2 : Da,b f (x) = v}

and denote its cardinality by N f (v, x) = |N f (v, x)|. A given point x ∈ Fn
2 is

incident with the block B = {x, x ⊕ a, x ⊕ b, x ⊕ a ⊕ b} ∈ VF F if and only if
there exists a 2-dimensional vector subspace 〈a, b〉 with a, b ∈ Fn

2 such that
Da,b f (x) = 0. In order to determine the number of such 2-dimensional vector
subspaces, it is enough to exclude from the set N f (0, x) the pairs (a, 0), (0, b) and
(a, a), which do not correspond to the affine two-dimensional vector spaces, and
divide the cardinality of the obtained set by 6, since any 2-dimensional vector
subspace 〈a, b〉 can be represented by 6 different pairs (a, b) with a, b ∈ Fn

2 . In
this way, any point x ∈ Fn

2 is incident with exactly

λ0 =
N f (0, x)− (2 · (2n − 1) + 2n)

6
(3.17)

blocks of VF ( f ). By Result 1.15, we have that for an arbitrary Boolean function
f on Fn

2 the value N f (0, x) for x ∈ Fn
2 can be computed in the following way

N f (0, x) =
1
2

 ∑
u∈F2

∑
a,b∈Fn

2

(−1)u·Da,b f (x)

 =
1
2

22n + ∑
a,b∈Fn

2

(−1)Da,b f (x)

 .

(3.18)



82 CHAPTER 3. DESIGN-THEORETIC ASPECTS OF BENT FUNCTIONS

By Result 1.14, the function f on Fn
2 is s-plateaued if and only if for all x ∈ Fn

2
holds

∑
a,b∈Fn

2

(−1)Da,b f (x) = 2n+s. (3.19)

In this way, from (3.18) and (3.19) we deduce that for an s-plateaued Boolean
function f on Fn

2 the value N f (0, x) for all x ∈ Fn
2 is given by

N f (0, x) = 2n−1(2n + 2s), (3.20)

and hence any point x ∈ Fn
2 is incident with exactly

λ0 =
2n−1(2n + 2s)− 3 · 2n + 2

6
(3.21)

blocks of B ∈ VF F, or equivalently the incidence structure VF ( f ) is a 1-(2n, 4, λ0)

design, with λ0 being defined in (3.21).
2.⇒3. Let the incidence structure VF ( f ) be a 1-(2n, 4, λ0) design with the cova-
lency λ0 = (2n+s−1(2n−s + 1)− 3 · 2n + 2)/6. Then any point x ∈ Fn

2 is incident
with exactly λ0 blocks of the form B = x⊕ 〈a, b〉 ∈ VF F, where 〈a, b〉 is a 2-
dimensional vector subspace of Fn

2 such that Da,b f (x) = 0. In this way, for the
remaining

λ1 :=
(2n − 1) · (2n − 2)

6
− λ0 =

2n−1(2n − 2s)

6
(3.22)

2-dimensional vector subspaces 〈a′, b′〉 of Fn
2 , the second-order derivative satis-

fies Da′,b′ f (x) = 1. Equivalently, the incidence structure NF 1( f ) is a 1-(2n, 4, λ1)

design, with λ1 being defined in (3.22).
3.⇒1. Now we reverse the arguments used in the proofs of the previous two
claims. Since the incidence structure NF 1( f ) is a 1-(2n, 4, λ1) design, with λ1

being defined in (3.22), then the incidence structure VF ( f ) is a 1-(2n, 4, λ0) de-
sign, with λ0 being defined in (3.21). Substituting λ0 into the equation (3.17), we
get N f (0, x) = 2n−1(2n + 2s). From equation (3.18), we get

∑
a,b∈Fn

2

(−1)Da,b f (x) = 2N f (0, x)− 22n = 2n+s.

By Result 1.14, we have that the function f on Fn
2 is s-plateaued.

In the following statement, we characterize plateaued (n, m)-functions F as
those (n, m)-functions, for which the collection of nonvanishing and vanishing
flats {NFv(F) : v ∈ Fn

2 \ {0}}} t {VF (F)} is a partition of the affine Steiner
quadruple system into 1-designs. First, similarly to the Boolean case, for an
(n, m)-function F and fixed elements v ∈ Fm

2 and x ∈ Fn
2 we define the set

NF(v, x) = {(a, b) ∈ Fn
2 ×Fn

2 : Da,bF(x) = v}

and denote its cardinality by NF(v, x) = |NF(v, x)|.
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Theorem 3.36. Let F be an (n, m)-function and let for v ∈ Fm
2 the values λv ∈ N be

defined in the following way:

λ0 =
NF(0, x)− 3 · 2n + 2

6
and λv =

NF(v, x)
6

for v ∈ Fm
2 \ {0}. (3.23)

Then the following statements are equivalent.

1. The function F is plateaued.

2. For all v ∈ Fm
2 \ {0} the incidence structure NFv(F) is a 1-(2n, 4, λv) design.

Moreover, if an (n, m)-function F is plateaued, then the incidence structure VF (F) is a
1-(2n, 4, λ0) design.

Proof. 1.⇒2. Let F be (n, m)-plateaued. For a nonzero v ∈ Fm
2 , a given point

x ∈ Fn
2 is incident with the block B = {x, x⊕ a, x⊕ b, x⊕ a⊕ b} ∈ NFv,F if and

only if there exists a 2-dimensional vector subspace 〈a, b〉 with a, b ∈ Fn
2 such

that Da,bF(x) = v. In order to determine the number of such 2-dimensional
vector subspaces, we divide the cardinality of the set NF(v, x) by 6, since any 2-
dimensional vector subspace 〈a, b〉 can be represented by 6 different pairs (a, b)
with a, b ∈ Fn

2 . In this way, any point x ∈ Fn
2 is incident with exactly

λv =
NF(v, x)

6
(3.24)

blocks of NFv(F). Since the function F is plateaued, we have by Result 1.15 that
for every v ∈ Fm

2 the number NF(v, x) does not depend on x ∈ Fn
2 . In this way,

for all v ∈ Fm
2 \ {0} the incidence structure NFv(F) is a 1-(2n, 4, λv) design,

where λv is defined in (3.24).
2.⇒1. We show that regularity of all nonvanishing flats implies the regularity
of vanishing flats and, consequently, the plateauedness of the (n, m)-function F.
Assume that for all v ∈ Fm

2 \ {0} the incidence structureNFv(F) is a 1-(2n, 4, λv)

design, where λv is defined in (3.23). Then by (3.24) for all v ∈ Fm
2 \ {0} we

have NF(v, x) = 6λv, and hence NF(v, x) is independent on x ∈ Fn
2 . Now we

show that NF(0, x) is independent on x ∈ Fn
2 as well. Since the collection of

nonvanishing and vanishing flats {NFv(F) : v ∈ Fn
2 \ {0}}}t {VF (F)} is a

partition of the affine Steiner quadruple system SQS(2n), any point x ∈ Fn
2 is

incident with exactly

λ0 =
(2n − 1) · (2n − 2)

6
− ∑

v∈Fm
2 \{0}

λv (3.25)

blocks of NFv(F). In this way, the incidence structure VF (F) is a 1-(2n, 4, λ0)

design. Counting the value λ0 as in the proof of Theorem 3.35, we get

λ0 =
NF(0, x)− 3 · 2n + 2

6
. (3.26)
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From equations (3.25) and (3.25), we conclude that NF(0, x) is independent on
x ∈ Fn

2 . Since for every v ∈ Fm
2 the number NF(v, x) does not depend on x ∈ Fn

2 ,
the function F is (n, m)-plateaued by Result 1.7.

Remark 3.37. For an (n, m)-function F, with the following expression of NF(v, x)
for any x ∈ Fn

2 , v ∈ Fm
2 by means of the second-order derivatives of the compo-

nent functions from Result 1.15

NF(v, x) = 2−m · ∑
u∈Fm

2

(−1)〈u,v〉m ·

 ∑
a,b∈Fn

2

(−1)Da,bFu(x)

 , (3.27)

we make the following observations on the vanishing and nonvanishing flats of
plateaued (n, m)-functions F.
1. For the incidence structure VF (F), which is a 1-(2n, 4, λ0) design, the value λ0

is determined by the distribution of the component functions Fu of F. Denoting
by ps(F) = |{Fu : Fu is s-plateaued}| the number of s-plateaued components of
the function F, we compute from (3.23) and (3.27) the covalency of the vanishing
flats as follows

λ0 =
∑n

s=0 ps(F)2n+s−m − 3 · 2n + 2
6

. (3.28)

2. In general, for the incidence structures VFv(F), which are 1-(2n, 4, λv) designs
for v ∈ Fm

2 \ {0}, the value λv is not determined by the distribution of the
component functions Fu of F, as the following example shows.

Example 3.38. Consider the quadratic (and hence plateaued) APN functions
Di on F26 from Table 2.1. The functions Di with i ∈ C = {1, . . . , 13} \ {7}
have the classical Walsh spectrum, since 2/3 of their nonzero components are
bent, and 1/3 are semi-bent. In this way, for any Di with i ∈ C, we have
p0(Di) = 42, p2(Di) = 21 and p6(Di) = 1. The Walsh spectrum of the func-
tion D7 is nonclassical: the distribution of component functions of D7 is given
by p0(D7) = 46, p2(D7) = 16, p4(D7) = 1 and p6(D7) = 1. Below we give
the multisets C(Di) := {∗ λv : λv is a covalency of NFv(Di) ∗} containing the
covalencies of all nonvanishing flats for quadratic APN functions Di on F26 .

Functions Di Multisets C(Di)

D1, D2, D4, D5 {∗ 942, 1321 ∗}
D3, D6, D8, {∗ 51, 75, 920, 1126, 1310, 151 ∗}

D9, D10, D13

D11, D12 {∗ 76, 922, 1124, 139, 152 ∗}
D7 {∗ 56, 710, 910, 1116, 1315, 156 ∗}

For example, for the function D1 there exists 42 elements v ∈ F∗26 such that
NF v(D1) is a 1-(64, 4, 9) design and 21 elements v ∈ F∗26 such that NF v(D1) is
a 1-(64, 4, 13) design. In this way, we conclude that (n, m)-plateaued functions
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with the same distribution of component functions may have different collec-
tions of nonvanishing flats.

In general, it seems to be a difficult problem to compute the covalencies λv of
the nonvanishing flats NFv(F) of a given plateaued (n, m)-function F explicitly.
From Theorem 3.36, for v ∈ Fm

2 \ {0} we have λv = NF(v, x)/6, where NF(v, x) is
the number of solutions (a, b) ∈ Fn

2 ×Fn
2 of the equation Da,bF(x) = v. With this

expression of the covalency, it may be possible to compute the numbers NF(v, x),
provided that the algebraic representation of F is not too complicated.

Example 3.39. Consider Gold APN functions F(x) = x2i+1 on F2n with n even
and gcd(i, n) = 1, which are quadratic and hence plateaued. Carlet [28] deter-
mined the values NF(v, x) for Gold APN functions for all x, v ∈ F2n . For all
x ∈ F2n , their values are equal to: 3 · 2n − 2 for v = 0, 2n + 2n/2+1 − 2 for v
being a nonzero cube (there are (2n − 1)/3 such elements) and 2n − 2n/2 − 2 for
v being a non-cube (there are 2 · (2n − 1)/3 such elements). With these values,
the nonvanishing flats NF v(F) of Gold APN functions are 1-(2n, 4,NF v(F)/6)
designs.

In the following result, we show that for (n, m)-plateaued functions with a
single amplitude it is also possible to establish the covalency for nonvanishing
flats.

Theorem 3.40. Let F be an (n, m)-function. The following statements are equivalent.

1. The function F is s-plateaued.

2. For all v ∈ Fm
2 \ {0} the incidence structure NFv(F) is a

1-
(

2n, 4,
2n+s−m(2n−s − 1)

6

)
design.

Moreover, the vanishing flats VF (F) of an s-plateaued (n, m)-function F is a

1-
(

2n, 4,
2n+s−m(2n−s + 2m − 1)− 3 · 2n + 2

6

)
design.

Proof. The proof of this statement follows from Theorem 3.36. First, using the
expression of NF(x, v) by means of the second-order derivatives of component
functions of F given in (3.27), we compute NF(0, v) = 2n+s−m(2n−s + 2m − 1),
which after the substitution into (3.23) gives the following value of covalency
λ0 = (2n+s−m(2n−s + 2m − 1)− 3 · 2n + 2) /6. Since vanishing and nonvanishing
flats form a partition of the affine Steiner quadruple system SQS(2n), we have
that any λv for v ∈ Fm

2 \ {0} satisfies (2m − 1) · λv = (2n − 1) · (2n − 2) /6− λ0.
With the obtained value λ0, we then have λv = 2n+s−m · (2n−s − 1)/6 for all
v ∈ Fm

2 \ {0}.
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Group ring interpretation. As we mentioned in Subsection 1.2.1, (n, m)-bent
functions, s-plateaued (n, n)-functions and APN functions F can be character-
ized in terms of group ring equations, which their graph GF has to satisfy. Now
we prove a similar characterization for the class of (n, m)-plateaued functions
and in particular for s-plateaued (n, m)-functions.

Theorem 3.41. An (n, m)-function F is plateaued if and only if its graph GF satisfies
the following group ring equation

G3
F = ∑

v∈Fm
2

NF(v, x) ·
[
GF ⊕

(
0
v

)]
.

In particular, an (n, m)-function F is s-plateaued if and only if its graph GF satisfies the
following group ring equation,

G3
F = 2n+s · GF + (22n−m − 2n+s−m) · G,

where G = Fn
2 ×Fm

2 .

Proof. Let x ∈ Fn
2 and y ∈ Fm

2 be two fixed elements. Consider the following
system of equations {

x1 ⊕ x2 ⊕ x3 = x
F(x1)⊕ F(x2)⊕ F(x3) = y

,

which is equivalent to the system of equations{
x1 ⊕ x2 ⊕ x3 ⊕ x = 0
F(x1)⊕ F(x2)⊕ F(x3)⊕ F(x) = v

,

where v := F(x)⊕ y. In this way, for an arbitrary (n, m)-function F, we have

G3
F = ∑

v∈Fm
2

∑
x∈Fn

2

[
NF(v, x) ·

(
x

F(x)⊕ v

)]
.

By Result 1.15, for an (n, m)-function F the values NF(v, x) are independent of
x ∈ Fn

2 for all v ∈ Fm
2 if and only if the function F is plateaued. In this way, the

graph GF satisfies the group ring equation

G3
F = ∑

v∈Fm
2

NF(v, x) ·

 ∑
x∈Fn

2

(
x

F(x)

)
⊕
(

0
v

) (3.29)

= ∑
v∈Fm

2

NF(v, x) ·
[
GF ⊕

(
0
v

)]
. (3.30)

if and only if the function F is (n, m)-plateaued. Now we proceed with the
case when F is s-plateaued. By Theorem 3.40, we have that the (n, m)-function
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F is s-plateaued if and only if NF(0, v) = 2n+s−m(2n−s + 2m − 1) and for all
v ∈ Fm

2 \ {0} holds NF(x, v) = 2n+s−m · (2n−s− 1). Substituting these values into
equation (3.30), we get that the (n, m)-function F is s-plateaued if and only if its
graph GF satisfies the following group ring equation

G3
F =NF(0, x) · GF + NF(v, x) · (G− GF)

=2n+s−m(2n−s + 2m − 1) · GF + 2n+s−m · (2n−s − 1) · (G− GF)

=2n+s · GF + (22n−m − 2n+s−m) · G,

where G = Fn
2 ×Fm

2 .

3.6.3 Characterization of bent functions among plateaued func-
tions

By Theorem 3.40, we conclude that the nonvanishing flats NFv(F) of an (n, m)-
function F are 1-(2n, 4, 2n−m(2n− 1)/6) designs for all v ∈ Fm

2 \ {0} if and only if
the (n, m)-function F is bent, since (n, m)-bent functions are s-plateaued (n, m)-
functions with s = 0. Now we show that for bent functions this characterization
can be even more strengthened. We prove that all nonvanishing flats of (n, m)-
bent functions are not only 1-designs, but also 2-designs. The proof is based on
the connection between bent functions and relative difference sets and follows
the proof of Theorem 3.26.

Theorem 3.42. Let F be an (n, m)-function. The following statements are equivalent.

1. The function F is (n, m)-bent.

2. For any v ∈ Fm
2 \ {0} the incidence structure NFv(F) is a 2-(2n, 4, 2n−m−1)

design.

Moreover, the number of the nonvanishing flats of an (n, m)-bent function F with respect
to a nonzero vector v ∈ Fm

2 is given by

|NFv,F| =
(2n+m − 2m) · 22(n−m)

24
. (3.31)

Proof. 1.⇒2. Let F be an (n, m)-bent function, v be a nonzero element of Fm
2 and

NFv(F) = (P ,B) be the nonvanishing flats of F with respect to v. We will show
that any two different points x1, x2 of P are contained in exactly 2n−m−1 blocks
of B. We define a := x1 ⊕ x2 and let v′ := F(x1)⊕ F(x2) and v′′ := v′ ⊕ v. Then
the following holds(

x1

F(x1)

)
⊕
(

x2

F(x2)

)
=

(
a
v′

)
=

(
0
v

)
⊕
(

a
v′′

)
. (3.32)
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Since the graph GF is a (2n, 2m, 2n, 2n−m)-difference set in the group G = Fn
2 ×Fm

2
relative to the forbidden subgroup N = {(0, y) : y ∈ Fm

2 }, then every element

g :=
(

a
v′′

)
∈ G \ N has 2n−m representations of the form

g =

(
x3

F(x3)

)
⊕
(

x4

F(x4)

)
(3.33)

with {x3, x4} 6= {x1, x2}. In this way, any 2-subset {x1, x2} is contained in ex-
actly 2n−m−1 blocks {x1, x2, x3, x4} of the form (3.13), consequently, the incidence
structure NFv(F) is a 2-(2n, 4, 2n−m−1) design.
2.⇒1. Let the incidence structures NFv(F) be 2-(2n, 4, 2n−m−1) designs for all
v ∈ Fm

2 \ {0}. By equation (1.36), the number of blocks b of a t-(v, k, λ) design is
given by

b = λ

(
v
t

)
/
(

k
t

)
.

In this way, for all v ∈ Fm
2 \ {0} the number of blocks of the nonvanishing flats

NFv(F) is given by

|NFv,F| =
(2n+m − 2m) · 22(n−m)

24
.

Since for an (n, m)-function F the nonvanishing flats NFv(F) together with
vanishing flats VF (F) form a partition of the affine Steiner quadruple system
SQS(2n), we have (2m − 1) · |NFv,F| + |VF (F)| = 2n−2 · (2n − 1) · (2n − 2) /6,
and hence the number of vanishing flats of F is given by

|VF F| =
(2n+m − 2m) · 2n−m · (2n−m − 2)

24
. (3.34)

By Theorem 3.26 and Remark 3.27, the value |VF F| given in (3.34) is the mini-
mum possible value for an (n, m)-function F with n even and m ≤ n/2, which is
attained if and only if F is an (n, m)-bent function.

Corollary 3.43. For an (n, m)-bent function F, the collection of incidence structures
{VF (F)}∪{NFv(F) : v ∈ Fm

2 \ {0}} forms a partition of the affine Steiner quadruple
system SQS(2n) into 2-designs.

3.7 Combinatorial interpretation of the extendability
problem

In general, it is difficult to decide whether a given (n, m)-bent function F with
m < n/2 is extendable (for details see Section 2.2). In this section, we provide a
purely combinatorial description of the extendability problem of bent functions
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by means of the subdesign problem using the theory of vanishing and nonvan-
ishing flats, developed in previous sections. Using nonvanishing flats, we show
that vanishing flats of extendable bent functions must be highly structured com-
binatorial objects. This implies that the existence of certain subdesigns in VF (F)
is a measure of extendability of an (n, m)-bent function F.

For a vectorial (n, m)-bent function F(x) = ( f1(x), . . . , fm(x))T, we define
the projections Fs(x) := ( f1(x), . . . , fs(x))T and Fm−s(x) := ( fs+1(x), . . . , fm(x))T,
which are (n, s)- and (n, m− s)-bent functions, respectively. Let VF F, VF Fs and
VF Fm−s be the block sets of the vanishing flats of F, Fs and Fm−s, respectively,
and let

NF F :=
⊔

v∈Fm
2 \{0}

NFv,F

be the (disjoint) union of the block sets of the nonvanishing flats of the vectorial
bent function F. Define the collection of the vanishing flats of the projection Fs,
disjoint from the vanishing flats of Fm−s in the following way

DF F/Fm−s := VF Fs ∩NF Fm−s .

We can associate the incidence structures with the defined collections of 4-
subsets as follows

DF (F/Fm−s) := (Fn
2 ,DF F/Fm−s) and NF (F) := (Fn

2 ,NF F).

In order to analyze the combinatorial structure of the introduced incidence struc-
tures, we need the following obvious lemma, which summarizes the relations
between parameters of designs having no common blocks.

Lemma 3.44. Let D1 = (P ,B1) and D2 = (P ,B2) be t-(v, k, λ1) and t-(v, k, λ2)

designs, respectively, and suppose that B1 ∩ B2 = ∅.

1. Then D = (P ,B1 ∪ B2) is a t-(v, k, λ1 + λ2) design.

2. Conversely, if D1 = (P ,B1) is a t-(v, k, λ1) design and D = (P ,B1 ∪ B2) is a
t-(v, k, λ1 + λ2) design, then D2 is a t-(v, k, λ2) subdesign of D.

Using the Lemma 3.44, we show that the incidence structures DF (F/Fm−s)

and NF (F) of vectorial bent functions are 2-designs and determine their pa-
rameters.

Proposition 3.45. For a vectorial (n, m)-bent function F(x) = ( f1(x), . . . , fm(x))T

consider the projections

Fs(x) = ( f1(x), . . . , fs(x))T and Fm−s(x) = ( fs+1(x), . . . , fm(x))T. (3.35)

With the notation above, the following hold.
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1. VF F = VF Fs ∩ VF Fm−s and VF Fs = VF F t DF F/Fm−s , where t denotes a
disjoint union.

2. DF (F/Fm−s) is a 2-(2n, 4, (2m−s − 1) · 2n−m−1) design.

3. NF (F) is a 2-(2n, 4, (2m − 1) · 2n−m−1) design.

Proof. The set {x1, x2, x3, x4} is a vanishing flat of F if and only if it is a vanishing
flat of both, Fs and Fm−s, hence VF F = VF Fs ∩ VF Fm−s . On the other hand,
for Fs seen as a projection of F we can distinguish two kinds of vanishing flats,
those which are also in VF F (note that VF F ⊂ VF Fs), and those which are in
VF Fs , but not in VF Fm−s . The latter is exactly the set DF F/Fm−s , and we obtain
that VF Fs = VF F t DF F/Fm−s . With Lemma 3.44, DF (F/Fm−s) is then a 2-
(2n, 4, (2m−s− 1) · 2n−m−1) design. Finally, NF (F) is a 2-(2n, 4, (2m− 1) · 2n−m−1)

design by Lemma 3.44.

By Proposition 3.45, the 2-(2n, 4, 2n−s−1 − 1) design VF (F) of a (vectorial)
(n, s)-bent function F, which is a projection of a vectorial (n, m)-bent function F̃
for some m > s, has certain structural properties. With these observations, we
can give a connection between extendability of a (vectorial) bent function and
vanishing flats. In this way, instead of extending a given (n, s)-bent function F to
an (n, s + r)-bent function F̃ by consequently searching for suitable coordinate
bent functions fs+1, . . . , fs+r from Bn,1 (as in Chapter 2), one can analyze the
internal combinatorial information containing in vanishing flats VF (F) in order
to find proper extensions.

Theorem 3.46. Let F be an (n, s)-bent function.

1. If F is extendable, then there exist subdesigns D = (Fn
2 ,B) and D1 = (Fn

2 ,B1) of
VF (F) with parameters 2-(2n, 4, 2n−s−2− 1) and 2-(2n, 4, 2n−s−2), respectively,
such that VF (F) = D t D1.

2. If F is a projection of a vectorial (n, s + r)-bent function F̃ for some s + r ≤ n/2,
then there exists a partition

VF (F) = D t
(

r⊔
i=1

Di

)
,

where D = VF (F̃) is a 2-(2n, 4, 2n−s−r−1 − 1) design, and for all 1 ≤ i ≤ r
the incidence structures Di = (Fn

2 ,Bi) are 2-(2n, 4, 2n−s−1−i) designs with the
number of blocks |Bi| = (23n−s−3−i − 22n−s−3−i)/3.

Proof. Note that the first statement follows as the special case r = 1 from the
second. Let F and F̃ be given as in (3.35). By Proposition 3.45, the block
set VF F of the vanishing flats VF (F) of F, seen as a projection of the func-
tion F1(x) = ( f1(x), . . . , fs(x), fs+1(x))T, is a (disjoint) union of the vanishing
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flats VF F1 of F1 and the set B1 = DF F1/ fs+1 , which has the cardinality |B1| =
|VF F| − |VF F1 | = (23n−s−4 − 22n−s−4). By Proposition 3.45 and by Lemma 3.44,
we have that D1 = (Fn

2 ,B1) is a 2-(2n, 4, 2n−s−2) design. As F1 is a projection
of F2(x) = ( f1(x), . . . , fs+1(x), fs+2(x))T, VF F1 is a (disjoint) union of VF F2 and
B2 = DF F2/ fs+2 . The cardinality of B2 is given by |B2| = |VF F1 | − |VF F2 | =
(23n−s−5 − 22n−s−5), and hence, D2 = (Fn

2 ,B2) is a 2-(2n, 4, 2n−s−3) design. With
a recursive argument, the second statement is shown.

In Chapter 2, we observed that in n = 4 and n = 6 variables the only
non-extendable bent functions are those, which achieve the Nyberg bound with
equality, i.e., (n, n/2)-bent functions. To the best of the author’s knowledge,
the question of the non-extendability of (n, m)-bent functions with n ≥ 8 and
m < n/2 has not been studied so far. In order to search for non-extendable bent
functions computationally, one may try to use the following sufficient condition
for the non-extendability of bent functions, which follows from Theorem 3.46.

Theorem 3.47. Let F be an (n, s)-bent function.

1. If VF (F) contains no 2-(2n, 4, 2n−s−2 − 1) subdesign, then F is non-extendable.

2. If VF (F) contains no 2-(2n, 4, 2n−s−2) subdesign, then F is non-extendable.

3. If VF (F) contains no 2-(2n, 4, 2n−s−r−1 − 1) subdesign for some integer r, sat-
isfying 1 ≤ r ≤ n/2− s − 1, then F is not the projection of an (n, n/2)-bent
function.

Finally, we refer to the DESIGN package [106] of the system for computa-
tional discrete algebra GAP [55], which can be used to solve subdesign problems.
For an example of the use of this package, we refer to [107].

3.8 Extended Assmus-Mattson theorem and its appli-
cations

One of the standard ways to prove that codewords of a fixed weight in a linear
code C hold t-designs is to check whether C satisfies the conditions of the transi-
tivity theorem (see Result 1.86) or of the original Assmus-Mattson theorem (see
Result 1.87). Tang, Ding and Xiong [108] introduced a new powerful tool, which
was shown to outperform the original Assmus-Mattson theorem on the linear
codes constructed from certain (n, m)-functions.

Result 3.48 (Extended Assmus-Mattson Theorem). [108, Theorem 5.3] Let C be a
linear code over F2 with length v and minimum weight d. Let C⊥ denote the dual
code of C with minimum weight d⊥. Let s and t be two positive integers and let
t satisfy t < min

{
d, d⊥

}
. Let S be an s-subset of {d, d + 1, . . . , v − t}. Suppose
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that the incidence structures (P(C),B`(C)) and
(
P
(
C⊥
)

,B`⊥
(
C⊥
))

are t-designs
for ` ∈ {d, d + 1, . . . , v − t} \ S and `⊥ satisfying 0 ≤ `⊥ ≤ s + t − 1. Then
(P(C),Bw(C)) and

(
P
(
C⊥
)

,Bw
(
C⊥
))

are t-designs for any t ≤ w ≤ v.

Example 3.49. Let F be an (n, m)-bent function with n = 2k. By Corollary 1.64,
the linear code CF is a [2n, n + m + 1, d]-linear code with the minimum distance
d = 2n−1 − 2k−1 and the weight enumerator

WCF(z) =1 + (2m − 1) 2nz2n−1−2k−1
+ (2n+1 − 2)z2n−1

+ (2m − 1) 2nz2n−1+2k−1
+ z2n

.

The dual code C⊥F has the minimum distance d⊥ = 4.
1. For t = 2, the linear codes CF and C⊥F of (n, m)-bent functions F do not satisfy
the conditions of the original Assmus-Mattson theorem, given in Result 1.86.
2. Tang, Ding and Xiong [108] used extended Assmus-Mattson Theorem to show
that the linear codes CF and C⊥F of (n, m)-bent functions F support 2-designs.
Set t = 2, which satisfies t < min

{
d, d⊥

}
and let s = 2. Consider the set

S = {2n−1 ± 2k−1}. We show that for any ` ∈ {2n−1 − 2k−1, . . . , 2n − 2} \ S
the incidence structures (P(CF),B`(CF)) are 2-designs. If ` = 2n−1, then the
blocks of (P(CF),B2n−1(CF)) are truth tables of all non-constant affine functions,
which generate the first-order Reed-Muller codeRM(1, n). By original Assmus-
Mattson Theorem (see Result 1.87), the first-order Reed-Muller code RM(1, n)
supports 2-designs, and hence the incidence structure (P(CF),B2n−1(CF)) is a
2-design. If ` 6= 2n−1, then the incidence structures (P(CF),B`(CF)) are trivial
2-designs, due to the weight enumerator of CF. Moreover, for any `⊥ satisfying
0 ≤ `⊥ ≤ s + t− 1 = 3, we have that incidence structures

(
P
(
C⊥F
)

,B`⊥
(
C⊥F
))

are trivial 2-designs, since d⊥ = 4. In this way, the conditions of the ex-
tended Assmus-Mattson theorem are fulfilled, and hence the for (n, m)-bent
functions the incidence structures (P(CF),Bw(CF)) and

(
P
(
C⊥F
)

,Bw
(
C⊥F
))

for
are 2-designs for any 2 ≤ w ≤ 2n.

Remark 3.50. Since the weight enumerator WCF(z) := ∑n
i=0 Aizi of the [v, k]-

linear code CF for (n, m)-bent functions F is known, the weight enumerator
WC⊥F (z) := ∑n

i=0 Bizi of the dual code C⊥F is uniquely determined by the fol-
lowing linear equations, called MacWilliams identities [76]:

for all 0 ≤ i ≤ v holds
v−i

∑
j=0

(
v− j

i

)
Aj = 2k−i

i

∑
j=0

(
v− j
v− i

)
Bj. (3.36)

With these weight distributions {Aj} and {Bj}, we have that by Remark 1.88,
the parameters of t-designs (P(CF),Bw(CF)) and

(
P
(
C⊥F
)

,Bw
(
C⊥F
))

are equal
to t-

(
v, w, Aw · (w

t )/(
v
t)
)

and t-
(
v, w, Bw · (w

t )/(
v
t)
)
, respectively.

Example 3.51. Following Remark 3.50, we compute the parameters of nontrivial
2-designs supported by codewords of weight 1 ≤ w ≤ 64 in the linear codes
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CF and C⊥F of (6,3)-bent functions F. We list the parameters 2-(64, w, λ) for all
nontrivial 2-designs (P (CF) ,Bw (CF)) constructed from the code CF, while for
the linear code C⊥F , we list the parameters 2-(64, w, λ) only for some of the 2-
designs

(
P
(
C⊥F
)

,Bw
(
C⊥F
))

.

(P(CF),Bw(CF))
(
P
(
C⊥F
)

,Bw
(
C⊥F
))

2-(64,4,3)
2-(64,6,1120)
2-(64,8,119575)
2-(64,10,6608160)
...

2-(64, 28, 84) 2-(64,30,682843048315520)
2-(64, 32, 31) 2-(64,32,880632444631427)
2-(64, 36, 140) 2-(64,34,880632069206912)
2-(64, 64, 1) 2-(64,36,682843360300745)

...
2-(64,56,6576625)
2-(64,58,123424)
2-(64,60,885)
2-(64,64,1)

Note that since all weights w in C⊥F are even and the minimum distance of C⊥F is
d⊥ = 4, we have that for any 4 ≤ w ≤ 64 the 2-designs

(
P
(
C⊥F
)

,Bw
(
C⊥F
))

are
nontrivial if and only if w is even.

In the following subsections, we investigate further applications of the ex-
tended Assmus-Mattson theorem to the linear codes constructed from Boolean
and vectorial functions.

3.8.1 Extended Assmus-Mattson theorem can outperform tran-
sitivity theorem

Now we use Result 1.86 and connections between translation and addition de-
signs, in order to characterize quadratic Boolean bent functions in terms of the
2-transitivity of the automorphism group.

Theorem 3.52. Let f be a Boolean bent function on Fn
2 . The automorphism groups of

linear codes C f and C⊥f are 2-transitive if and only if f is quadratic.

Proof. Let f be a quadratic Boolean bent function on Fn
2 . Without loss of gener-

ality we assume that wt( f ) = 2n−1 − 2n/2−1, in this way, by Result 1.79 we have
that dev(D f ) is a 2-(2n, 2n−1− 2n/2−1, 2n−2− 2n/2−1) design. By [39, Lemma 2.3]
any two quadratic Boolean functions g and g′ on Fn

2 are affine equivalent if and
only if wt(g) = wt(g′). Consequently, for a quadratic Boolean bent function f on



94 CHAPTER 3. DESIGN-THEORETIC ASPECTS OF BENT FUNCTIONS

Fn
2 with wt( f ) = 2n−1 − 2n/2−1 its translation design dev(D f ) is isomorphic to

the symplectic 2-(2n, 2n−1− 2n/2−1, 2n−2− 2n/2−1) design S, which is realized as
the translation design of the quadratic bent function Qn(x) = x1x2⊕ · · ·⊕ xn−1xn

on Fn
2 , see [67, Chapter 3]. Up to isomorphism, for any even n there is only

one 2-(2n, 2n−1− 2n/2−1, 2n−2− 2n/2−1) design with a 2-transitive automorphism
group, and that is the symplectic design S, as it was shown by Kantor [61, 62].
The automorphism group of S is a semidirect product of the translation group
Σ of the affine space AG(n, 2) with the symplectic group Sp(n, 2). Furthermore,
for a quadratic bent function f on Fn

2 its translation dev(D f ) and addition D( f )
designs are isomorphic, as it was shown by Bending [5, Theorem 11.9]. The
characterization of quadratic Boolean bent functions now follows from the fact
that the automorphism groups Aut(D( f )) and Aut(C f ) are isomorphic, since
the incidence matrix M(D( f )) of the addition design D( f ) is a generator matrix
of the linear code C f .

Corollary 3.53. Let f be a quadratic bent function on Fn
2 with n = 2k. Then the order

of the automorphism group of the function f is given by

|Aut( f )| = 2n · 2k2
k

∏
i=1

(22i − 1). (3.37)

Remark 3.54. In general, an (n, m)-bent function does not necessarily have a
2-transitive automorphism group. Using a Magma program [9] and the list of
representatives Fm

i of the equivalence classes Cm
i of (6, m)-bent functions from

Appendix A.1, it is possible to check that, up to EA-equivalence, the only (6, m)-
bent functions, which have a 2-transitive automorphism group, are the following
quadratic functions: F1

1 , F2
1 , F3

1 and F3
3 . Since the automorphism group of the

quadratic function F3
2 is not 2-transitive, we conclude that the property of an

(n, m)-bent function to be quadratic does not in general imply the 2-transitivity
of its automorphism group.

With Theorem 3.52 and Remark 3.54, we conclude that extended Assmus-
Mattson theorem can also outperform the transitivity theorem (Result 1.86). By
extended Assmus-Mattson theorem, the linear codes CF and C⊥F for all (n, m)-
bent functions F support 2-designs. On the other hand, the only Boolean bent
function on Fn

2 with a 2-transitive automorphism group is quadratic, and only
few examples of vectorial bent functions in six variables have a 2-transitive au-
tomorphism group.

3.8.2 Designs from APN functions with the classical Walsh spec-
trum

Tang, Ding and Xiong [108] proved that not only the vanishing flats VF (F) of
differentially two-valued s-plateaued (n, n)-functions F are 2-designs, but that
the linear codes CF and C⊥F support 2-designs.
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Result 3.55. [108, Theorem 6.4] Let F be a differentially two-valued s-plateaued (n, n)-
function. Then the code CF and its dual C⊥F support 2-designs.

As a corollary, this result implies that the linear codes CF and C⊥F of all AB
functions F on Fn

2 , which belong to the class of APN functions with the classical
Walsh spectrum, support 2-designs. In the following statement, we provide
another subclass of APN functions F on Fn

2 with the classical spectrum, whose
linear codes CF and C⊥F support 2-designs.

Theorem 3.56. Let F be an APN function on Fn
2 with n = 2k, which has the classical

Walsh spectrum. If the function F is CCZ-equivalent to a function F′ on Fn
2 having

2(2n − 1)/3 bent components and (2n − 1)/3 semi-bent components, then the linear
codes CF and C⊥F support 2-designs.

Proof. First, we recall that by Result 1.60, functions F and F′ are CCZ-equivalent
if and only if linear codes CF and CF′ (or C⊥F and C⊥F′ , respectively) are equiva-
lent. By Proposition 1.85, for linear codes CF and CF′ of CCZ-equivalent func-
tions F and F′, the incidence structures (P(CF),B`(CF)) and (P(CF′),B`(CF′))

are isomorphic for all 1 ≤ ` ≤ 2n. Similarly, for linear codes C⊥F and C⊥F′ the in-
cidence structures

(
P(C⊥F ),B`⊥(C⊥F )

)
and

(
P(C⊥F′),B`⊥(C

⊥
F′)
)

are isomorphic for
all 1 ≤ `⊥ ≤ 2n as well. Consequently, it is enough to prove that linear codes CF′

and C⊥F′ support 2-designs.
We show that the conditions of the extended Assmus-Mattson theorem (Re-

sult 3.48) are fulfilled for linear codes CF and C⊥F′ with integers t = 2 and
s := |S| = 3, where the set S is defined as follows S := {2n−1, 2n−1 ± 2n/2}.
Since the function F′ has 2(2n− 1)/3 bent components and (2n− 1)/3 semi-bent
components, we have that for any codeword c ∈ CF′ \ {0, j2n} holds

wt(c) ∈W := {2n−1 ± 2n/2−1, 2n−1, 2n−1 ± 2n/2},

since possible Hamming weights of bent functions are 2n−1 ± 2n/2−1 and possi-
ble Hamming weights of semi-bent functions are 2n−1 and 2n−1 ± 2n/2, respec-
tively. By Remark 3.23, from any component function F′b of F′, which is bent,
one can construct 2-designs (P(CF′b

),B`(CF′b
)) with ` ∈W \ S = {2n−1± 2n/2−1}

using the dual function F̃′b as described in Remark 3.23. Clearly, any two com-
ponent bent functions F′b and F′b′ with b 6= b′ do not differ by an affine func-
tion. In this way, we have that for ` ∈ {2n−1 ± 2n/2−1} the incidence structures
(P(CF′),B`(CF′)) are 2-(2n, 2n−1± 2n/2−1, 2

3(2
n − 1) · (2n−2± 2n/2−1)) designs by

Lemma 3.44, since they are obtained by a disjoint union of 2-(2n, 2n−1 ± 2n/2−1,
2n−2± 2n/2−1) designs (P(CF′b

),Bw(CF′b
)) having no repeated blocks. Since the

function F′ is APN, the minimum distance d⊥ of C⊥F′ is equal to d⊥ = 6. In
this way, for any 0 ≤ `⊥ ≤ s + t − 1 = 4 we have B`⊥(C⊥F′) = ∅ and thus
(P(C⊥F′),B`⊥(C

⊥
F′)) are trivial 2-designs. Since for all ` ∈ W \ S and `⊥ with

0 ≤ `⊥ ≤ 4, the incidence structures (P(CF′),B`(CF′)) and
(
P
(
C⊥F′
)

,B`⊥
(
C⊥F′
))

are 2-designs, we have that the linear codes CF′ and C⊥F′ support 2-designs.
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Remark 3.57. The question whether linear codes CF and C⊥F of APN functions
F on Fn

2 with a nonclassical Walsh spectrum support 2-designs is, in general,
difficult. There are no known algebraic constructions of these functions, and the
known examples are sporadic.

Example 3.58. Consider the quadratic APN function D7 from Table 2.1. As we
mentioned in Example 3.38, one component function of D7 is 4-plateaued, and
hence the Walsh spectrum of D7 is nonclassical. It is possible to check with
a computer that the incidence structures supported by the codewords of the
minimum weight in the codes CD7 and C⊥D7

are 1-designs, but not 2-designs. For
instance, we have that:

• (P(CD7),B16(CD7)) is a 1-(64, 16, 1) design with 4 blocks;

• (P(C⊥D7
),B6(C⊥D7

)) is a 1-(64, 6, 1986) design with 21184 blocks.

Now we describe a big class of APN functions with the classical Walsh spec-
trum, satisfying the conditions of Theorem 3.56. Note that this class contains
most of the known examples and constructions of APN functions.

Theorem 3.59. Let F be an APN function on Fn
2 with n = 2k, which has the classical

Walsh spectrum. If the function F is CCZ-equivalent to a quadratic APN function, then
the linear codes CF and C⊥F support 2-designs.

Proof. Let F′ be a quadratic APN function on Fn
2 such that F and F′ are CCZ-

equivalent. From the fact that the extended Walsh spectrum is invariant un-
der CCZ-equivalence, we have that |χ̂F′(a, b)| ∈

{
0, 2

n
2 , 2

n+2
2

}
for all a ∈ Fn

2 ,
b ∈ Fm

2 \ {0}. Since the function F′ is quadratic, it is plateaued, and thus for

any component function F′b with b ∈ Fm
2 \ {0}, we have |χ̂F′b

(a)| ∈
{

2
n
2

}
for

all a ∈ Fn
2 if and only if F′b is bent, and |χ̂F′b

(a)| ∈
{

0, 2
n+2

2

}
for all a ∈ Fn

2 if
and only if F′b is semi-bent. From the extended Walsh spectrum of F′, which
is classical, we get that the number of bent components is 2(2n − 1)/3 and the
number of semi-bent components is (2n − 1)/3. By Proposition 1.85 and Theo-
rem 3.56, the linear codes CF and C⊥F support 2-designs, since functions F and F′

are CCZ-equivalent.

Example 3.60. Consider the APN permutation F on F26 , whose univariate repre-
sentation is given in Remark 3.33 and which is CCZ-equivalent to the quadratic
APN function D5 on F26 from Table 2.1 having the classical Walsh spectrum. By
Theorem 3.59, the incidence structures (P(CF),Bw(CF)) and

(
P
(
C⊥F
)

,Bw
(
C⊥F
))

are 2-designs for all 1 ≤ w ≤ 64. We give the parameters 2-(64, w, λ) for
all nontrivial 2-designs (P (CF) ,Bw (CF)) constructed from the code CF, while
for the linear code C⊥F , we list the parameters only for some of the 2-designs
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(
P
(
C⊥F
)

,Bw
(
C⊥F
))

. With a computer program, it is possible to check that the
weight enumerator WCF(z) := ∑n

i=0 Aizi of CF is given by

WCF(z) = 1 + 336z24 + 2688z28 + 2142z32 + 2688z36 + 336z40 + z64.

Using MacWilliams identities (3.36), it is possible to determine the weight enu-
merator WC⊥F (z) := ∑n

i=0 Bizi of the linear code C⊥F . In this way, by Remark 3.50

the parameters of 2-designs (P(CF),Bw(CF)) and
(
P
(
C⊥F
)

,Bw
(
C⊥F
))

are equal
2-
(
64, w, Aw · (w

2)/2016
)

and 2-
(
64, w, Bw · (w

2)/2016
)
, respectively, and given in

the following table.

(P(CF),Bw(CF))
(
P
(
C⊥F
)

,Bw
(
C⊥F
))

2-(64,6,150)
2-(64,8,14827)
2-(64,10,827050)
2-(64,12,26239400)
...

2-(64,24,46) 2-(64,28,51213339251088)
2-(64,28,504) 2-(64,30,85355243664120)
2-(64,32,527) 2-(64,32,110079229195587)
2-(64,36,840) 2-(64,34,110078831484072)
2-(64,40,130) 2-(64,36,85355565418480)
2-(64,64,1) 2-(64,38,51213131016218)

...
2-(64,54,26300190)
2-(64,56,815485)
2-(64,58,16530)
2-(64,64,1)

Note that since all weights w in C⊥F are even and the minimum distance of C⊥F is
d⊥ = 6, we have that for any 6 ≤ w ≤ 64 the 2-designs

(
P
(
C⊥F
)

,Bw
(
C⊥F
))

are
nontrivial if and only if w is even.

With Theorem 3.59, we derive the following sufficient conditions for an APN
function with the classical Walsh spectrum to be CCZ-inequivalent to a quadratic
function.

Theorem 3.61. Let F be an APN function on Fn
2 with n = 2k, which has the classical

Walsh spectrum.

1. If there exists an integer `, satisfying 1 < ` < 2n such that the incidence structure
(P(CF),B`(CF)) is not a 2-design, then the APN function F is CCZ-inequivalent
to a quadratic function.

2. If there exists an integer `⊥, satisfying 6 < `⊥ < 2n such that the incidence
structure

(
P(C⊥F ),B`⊥(C⊥F )

)
is not a 2-design, then the APN function F is CCZ-

inequivalent to a quadratic function.
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Remark 3.62. To prove that an APN function F on Fn
2 is CCZ-inequivalent to

a quadratic one is, in general, difficult. Edel and Pott [52] provided several
sufficient conditions for an APN function F on Fn

2 (not necessarily having the
classical Walsh spectrum) to be CCZ-inequivalent to a quadratic one by means
of the automorphism groups of incidence structures constructed from F. For
instance, they showed that if for an APN function F on Fn

2 the automorphism
group Aut(dev(GF)) does not contain an elementary abelian group of order 23n,
then F is CCZ-inequivalent to a quadratic function. Practically, the computa-
tion of the automorphism group of dev(GF) is computationally difficult and can
be performed, provided the number of variables is not too large. Moreover,
the computation of an automorphism group requires a special software, e.g.,
Magma [9] or GAP [55].

On the other hand, for a given APN function with the classical Walsh spec-
trum, the sufficient conditions given in Theorem 3.61 are easy to check without
the use of a special software, due to the following algebraic interpretation of the
2-design property. It is well-known that if N is an incidence matrix of a 2-(v, k, λ)

design with the replication number r, then the following holds

NTN = (r− λ)Iv + λJv. (3.38)

One can check first whether equation (3.38) holds for incidence matrices N of the
incidence structures (P (CF) ,Bw (CF)), since rows of N are formed by the truth
tables of the functions Fb ⊕ l, where b ∈ Fm

2 , l ∈ RM(1, n) and wt(Fb ⊕ l) = w.

Example 3.63. Consider the Edel-Pott APN function F on F26 , which has the
classical Walsh spectrum and whose univariate representation is given in Ta-
ble 2.1.
1. Edel and Pott [52] showed that the function F is CCZ-inequivalent to a
quadratic one, since |Aut(dev(GF))| = 215, and hence the automorphism group
Aut(dev(GF)) can not contain an elementary abelian group of order 218.
2. Now we show that the function F is CCZ-inequivalent to a quadratic one
using Theorem 3.59. First, we observe that the function F has the classical Walsh
spectrum. The weight distribution of the linear code CF is given by

WCF(z) = 1 + 336z24 + 2688z28 + 2142z32 + 2688z36 + 336z40 + z64.

We observe that the incidence structure (P (CF) ,B24 (CF)) supported by the
codewords of the minimum weight of CF is a 1-(64, 24, 126) design with 336
blocks, but not a 2-design, since the equation (3.38) does not hold. Computing
NTN for an incidence matrix N of the incidence structure (P (CF) ,B24 (CF)), we
get that the elements of NTN are in the set S = {38, 42, 46, 50, 54, 126}. However,
by equation (3.38) for a 2-design 2-(v, k, λ) design with the replication num-
ber r and an incidence matrix N, we have that the elements of NTN are in the
set S = {r − λ, λ}. By Theorem 3.59, the function F is CCZ-inequivalent to a
quadratic one.
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3.9 Conclusion and open problems

In this chapter, we studied whether certain design-theoretic properties of Boolean
bent functions can be shared by their generalizations. Particularly, we compared
different concepts of equivalence relations for Boolean and vectorial bent func-
tions: extended-affine equivalence of functions, isomorphism of translation de-
signs, isomorphism of addition designs and isomorphism of vanishing flats. We
summarize our results in the following table.

Table 3.1. EA-equivalence vs. isomorphism of designs for bent functions

Does isomorphism of
designs coincide with

EA-equivalence for
(n, m)-bent functions?

Translation designs
dev(GF)

Addition
designs D(F)

Vanishing flats
VF (F)

m = 1
No, isomorphism is
coarser for all n ≥ 6 Yes, for all n Yes, for n = 4, 6

m ≥ 2 Yes, for n = 4, 6

As one can see from Examples 3.16 and 3.21, it is possible to construct EA-
inequivalent but isomorphic Boolean bent functions, by taking proper Maiorana-
McFarland bent functions and extending them to infinite families using the
Proposition 3.18. So far, this approach does not seem to work for vectorial bent
functions:

• There is only one, up to EA-equivalence, vectorial bent function in 4 vari-
ables. Consequently, all derived translation designs are isomorphic.

• By Theorem 3.22, all isomorphic vectorial bent functions in 6 variables are
also EA-equivalent.

Moreover, from Proposition 3.18, a single example of EA-inequivalent but iso-
morphic vectorial bent functions will lead to an infinite family and, conse-
quently, will prove that for vectorial bent functions the isomorphism of trans-
lation designs is a coarser equivalence relation than EA-equivalence. However,
since one still does not have an example of such functions, it is essential to ask
the following question.

Open Problem 3.64. Do extended-affine inequivalent but isomorphic vectorial
bent functions in general exist?

As we mentioned in Corollary 1.98, from the CCZ-equivalence of (n, m)-
functions F and F′ follows isomorphism of vanishing flats VF (F) and VF (F′).
In general, the converse is not true, since all APN functions lead to the incidence
structure with the empty block set. However, our computational results in small
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dimensions show that for vectorial bent functions isomorphic vanishing flats
VF (F) and VF (F′) define CCZ-equivalent (and hence EA-equivalent) (n, m)-
bent functions F and F′. In this way, we suggest to attack the following problem.

Open Problem 3.65. Show that Theorem 3.28 is valid for all even n.

The following problem is related to a potential characterization of bent func-
tions, which are either quadratic or “very close” to quadratic. Kantor [62]
showed that, there are 4 types of symmetric designs with a 2-transitive auto-
morphism group. One of them is a 2-(2n, 2n−1 − 2k−1, 2n−2 − 2k−1) design S
with a 2-transitive automorphism group, which is unique for any n = 2k, up
to isomorphism, and can be constructed using bent functions f on Fn

2 in the
following two ways. First, one can construct S as the addition design D( f ) of
a bent function f on Fn

2 , which must be quadratic by Theorem 3.52. Second,
one can construct S as the translation design dev(D f ) of a bent function f on
Fn

2 , which is not necessarily quadratic, as one can see from Example 3.16. In the
following problem, we suggest to describe all bent functions f on Fn

2 such that
Aut(dev(D f )) is 2-transitive.

Open Problem 3.66. Prove that the translation design dev(D f ) of a Boolean bent
function f on Fn

2 with n = 2k has a 2-transitive automorphism group if and only
if function f is EA-equivalent to a Maiorana-McFarland bent function of the
form 〈x, y〉k ⊕ g(y) with deg(g) ≤ 3.

Li et al. [73] and Tang, Ding and Xiong [108] showed that the covalency of
vanishing flats reflects differential uniformity. In this way, differentially two-
valued (n, n)-functions F can be characterized in terms of vanishing flats VF (F)
having the property to be 2-designs. In this chapter, we showed that regu-
larity of nonvanishing flats reflects another important cryptographic property,
namely plateauedness, and consequently we derived a new characterization of
(n, m)-bent functions in terms of nonvanishing flats having the property to be
2-designs.

In Table 3.2, we summarize various design-theoretic characterizations of cryp-
tographically significant classes of (n, m)-functions and mention, what kind of
incidence structures one gets from the supports of codewords of a fixed weight.
We denote by “ ⇐⇒ ” a condition or combination of conditions, which char-
acterizes a certain class of (n, m)-functions, and by “=⇒” the properties of
the supported incidence structures of a certain class of (n, m)-functions. One
may observe a remarkable property of bent functions: all three constructions
of incidence structures (vanishing flats, nonvanishing flats and supports of the
codewords of a fixed weight) always lead to 2-designs. This is, in general, not
the case for differentially two-valued (n, n)-functions and (n, m)-plateaued func-
tions: one can see from Table 3.2 which combinatorial properties of a bent func-
tion one may lose, if one considers various generalizations.
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Table 3.2. Bent functions and their generalizations from a design-theoretic point
of view

Classes of
(n, m)-functions F

Vanishing flats VF (F)
Nonvanishing
flats NFv(F)

Supports
(P (CF) ,B` (CF)) and(
P
(
C⊥F
)

,Bk
(
C⊥F
))

(n, m)-Bent functions
2-design 2-designs 2-designs
⇐⇒ ⇐⇒ =⇒

By Theorem 3.26 By Theorem 3.42 By [108, Example 4]
Differentially
two-valued

2-design
Equiregular

1-designs
2-designs

s-plateaued ⇐⇒ =⇒
(n, n)-functions By [108, Theorem 6.1] and Corollary 3.40 By [108, Theorem 6.4]
Differentially 2-design Not necessarily

TBD∗two-valued ⇐⇒ 1-designs
(n, n)-functions By [108, Theorem 6.1] By Remark 3.33

s-Plateaued
Nonvanishing flats are equiregular 1-designs

TBD∗∗⇐⇒
(n, m)-functions By Corollary 3.40

Plateaued
Nonvanishing flats are 1-designs

TBD∗∗⇐⇒
(n, m)-functions By Theorem 3.36

Finally, we would like to give a list of open problems, which, we think, de-
serve further investigations.

Open Problem 3.67. What are the incidence structures, supported by the code-
words of a fixed weight arising from differentially two-valued (n, n)-functions
and (n, m)-plateaued functions, marked by TBD∗ and TBD∗∗ (to be determined)
in Table 3.2? We give some further insights.

1. Consider the TBD∗ entry. In general, it is difficult to say under which
conditions the linear codes CF and C⊥F of differentially two-valued (n, n)-
functions F support 2-designs. In Theorem 3.56, we specified such a con-
dition for APN functions having the classical Walsh spectrum in terms of
the distribution of the component functions. It would be interesting to find
out whether it is an if and only if condition. Another interesting problem
is to investigate whether linear codes CF and C⊥F of APN functions F on
Fn

2 with a nonclassical Walsh spectrum support 2-designs. A good starting
point can be to look at the new instances of quadratic APN functions on F8

2
with a nonclassical spectrum constructed by Beierle and Leander, see [4].

2. Now we consider TBD∗∗ entries. Deleting a coordinate function from
quadratic APN functions from Table 2.1, it is possible to get 1-designs from
the obtained projections. However, it is not clear theoretically, why it hap-
pens, since the extended Assmus-Mattson Theorem is not applicable any
more. In this way, a more careful analysis of this case is needed, although
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we do not expect that one can get interesting incidence structures out of
this construction (we expect at most 1-designs).

The following series of open problems is related to the design-theoretic in-
terpretation of the extendability of bent functions.

Open Problem 3.68. Based on Theorem 3.47, develop an algorithm for the search
of non-extendable bent functions and compute theoretically the complexity of
the extendability problem. As a starting point, we refer to [37], where complex-
ity of the subdesign problem is established for several classes of designs and
subdesigns.

Let F be an (n, s)-bent function. Taking into account that non-existence of
a 2-(2n, 4, 2n−s−r−1 − 1) subdesign of a 2-(2n, 4, 2n−s−1 − 1) design VF (F) gives
information about non-extendability of F (by Theorem 3.47), it is essential to ask
the following questions.

Open Problem 3.69. In general, can a 2-(2n, 4, 2n−s−1 − 1) design without a 2-
(2n, 4, 2n−s−r−1 − 1) subdesign exist? On the other hand, assume one can find
(computationally) a 2-(2n, 4, 2n−s−r−1 − 1) subdesign D of VF (F) for an (n, s)-
bent function F. Can this subdesign D be realized as VF (F̃) of an (n, s + r)
function F̃, which contains F as a projection?



Chapter 4

Homogeneous cubic bent functions

In this chapter, we prove the existence of cubic bent functions which have simul-
taneously the following three properties: homogeneous, have no affine deriva-
tives and do not belong to the completed Maiorana-McFarland class. Conse-
quently, we show that in opposite to the cases of 6 and 8 variables, the Maiorana-
McFarland construction does not describe, up to equivalence, the whole class of
cubic bent functions in n variables for all n ≥ 10.

This chapter is based on the papers by Polujan and Pott [92, 93].

4.1 Introduction

Recall that a Boolean function is called d-homogeneous, if all the monomials in
its algebraic normal form have the same algebraic degree d. The question about
existence of homogeneous cubic, i.e., 3-homogeneous, bent functions may be
traced back to the Dillon’s survey article [40, p. 36, Question 7], where in the
context of the analysis of inequivalent cubic bent functions in six variables he
asked whether every bent function must contain a quadratic term.

Considering this question regarding cubic bent functions and taking into ac-
count that affine terms do not affect the bentness, this question becomes es-
sentially equivalent to the question of the existence of homogeneous cubic bent
functions. From this point of view, homogeneous cubic bent functions may be
considered as generalizations of nondegenerate quadratic forms.

Further investigations of homogeneous functions were mostly motivated by
cryptographic applications. Qu, Seberry, and Pieprzyk [101] observed that ho-
mogeneous Boolean functions may have a “nice symmetry group”, what may
lead to faster evaluation in certain cryptographic systems. In [101], they found
the first examples of homogeneous cubic bent functions on F6

2 and extended
them to infinite families on F6n

2 using the following result, see [102].

Result 4.1. The direct sum h(x, y) = f (x)⊕ g(y) is d-homogeneous bent on Fn
2 ×Fm

2
if and only if the functions f and g are d-homogeneous bent on Fn

2 and Fm
2 respectively.
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4.1.1 The known examples and constructions

Existence of homogeneous cubic bent functions on Fn
2 for all n ≥ 6 was shown

in two independent ways. The first approach is based on the algebraic construc-
tion of homogeneous cubic bent functions, which was proposed by Seberry, Xia
and Pieprzyk [104, Theorem 8]. The second approach is based on the concate-
nation of homogeneous cubic bent functions in a small number of variables via
direct sum using Result 4.1. The known computational construction methods of
homogeneous cubic bent functions in a small number of variables include:

• Tools from the polynomial invariant theory, as it was shown by Charnes,
Rötteler and Beth [34, 35].

• Exhaustive computer search, which is based on the significant reduction of
the search space, suggested by Meng, Zhang, Yang and Cui [82].

In the following paragraphs, we briefly survey the mentioned above approaches.

The algebraic construction of homogeneous cubic bent functions

Seberry, Xia and Pieprzyk [104, Theorem 8] proved that one can construct homo-
geneous cubic bent functions on Fn

2 for all even n ≥ 6 with n 6= 8, from special
Maiorana-McFarland functions by a proper linear transformation of coordinates.
So far, this is the only one known algebraic construction of homogeneous cubic
bent functions. For this reason, we will call this construction primary and denote
any n-variable homogeneous cubic bent function of this type by hn

pr..

Result 4.2. [104, Theorem 6] Let Fn
2 be identified with Fm

2 × Fm
2 and let fid,φ be a

Maiorana-McFarland bent function on Fn
2 where φ is a homogeneous cubic function

without affine derivatives on Fm
2 . Then there exists a nonsingular n× n-matrix T such

that hn
pr.(x, y) := fid,φ((x, y)T) is a homogeneous cubic bent function.

Below we give an example of a homogeneous cubic bent function in six variables
constructed according to Result 4.2.

Example 4.3. Let fid,φ : F6
2 → F2 be a cubic Maiorana-McFarland bent function,

given by fid,φ(x, y) = x1y1⊕ x2y2⊕ x3y3⊕ y1y2y3 and let T ∈ GL(6, F2) be given
as follows

T =

(
I3 I3 ⊕ J3

O3 I3

)
.

Then the function h6
pr.(x, y) := fid,φ((x, y)T) is a cubic bent function, since T

is a nondegenerate linear transformation of the input preserving bentness and
degree, and it is homogeneous, since its algebraic normal form is given by

h6
pr.(x, y) =x1x2y1 ⊕ x1x3y1 ⊕ x2x3y1 ⊕ x1x2y2 ⊕ x1x3y2 ⊕ x2x3y2

⊕x1y1y2 ⊕ x2y1y2 ⊕ x1x2y3 ⊕ x1x3y3 ⊕ x2x3y3 ⊕ x1y1y3

⊕x3y1y3 ⊕ x2y2y3 ⊕ x3y2y3 ⊕ y1y2y3.
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Computer search: Polynomial invariant theory

The first computer search technique of homogeneous bent functions, which is
based on the tools from polynomial invariant theory, was suggested by Charnes,
Rötteler and Beth [34, 35]. The main idea of this approach is to find the set
of Boolean functions, which are invariant with respect to the action of a given
subgroup G ≤ GL(n, F2), namely

F2 [x1, . . . , xn]
G := { f : f g = f for all g ∈ G}, (4.1)

where the operation f g is defined as follows

f g (x1, . . . , xn) := f ((x1, . . . , xn) · g) .

Notably, the set F2 [x1, . . . , xn]
G forms a ring and its elements are called invariant

polynomials. Finally, one has to consider the subring of F2 [x1, . . . , xn]
G, formed

by d-homogeneous polynomials and search for bent functions in it. The main ad-
vantage of this approach is that the obtained subring has a significantly smaller
size compared to the whole search space F2 [x1, . . . , xn], and the computation of
the invariant polynomials can be performed very efficiently, e.g., with the help
of Magma [9]. The only drawback of this approach is the following: it is not
known theoretically whether a given subgroup G ≤ GL(n, F2) necessarily leads
to the ring F2 [x1, . . . , xn]

G, containing homogeneous bent functions.
Using this approach, Charnes, Rötteler and Beth [34, 35] constructed a lot of

homogeneous cubic bent functions in 6 ≤ n ≤ 12 variables, however, crypto-
graphic properties of the constructed functions in 10 and 12 variables have not
been studied so far.

Computer search: Exhaustive search for the small number of variables

The second computer search technique of bent functions, which are not neces-
sarily homogeneous, was suggested by Meng, Zhang, Yang and Cui [83]. The
main idea of this approach consists of two steps. First, they introduced the fol-
lowing decomposition of a given bent function f on Fn

2 into 2k subfunctions fi
on Fn−k

2 .

Result 4.4. [83] Let k, n be two positive integers such that k ≤ n. Consider the following
decomposition of a Boolean bent function f : Fn

2 → F2 into the 2k subfunctions fi, where
i ∈N is identified with its binary representation from Fk

2 as follows

f (x1, x2, . . . , xn) =
2k−1

∑
i=0

δi
(
x′
)

fi
(
x′′
)

, (4.2)

where x′ = (x1, x2, . . . , xk) , x′′ = (xk+1, xk+2, . . . , xn), and functions δi : Fk
2 → F2,

fi : Fn−k
2 → F2 are defined in the following way

fi
(
x′′
)

:= f
(
i, x′′

)
and δi

(
x′
)

:=

{
1, x′ = i

0, x′ 6= i
.
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Then the Walsh transform of any subfunction fi can take the following 2k + 1 values

χ̂ fi(a
′′) ∈ {(2k − 2j)2n/2−k : j = 0, 1, . . . , 2k}. (4.3)

Secondly, they used the decomposition (4.2) to construct bent functions from
those Boolean functions, which satisfy the condition (4.3). In this way, many
Boolean functions, which do not behave like subfunctions of bent functions are
eliminated, what significantly reduces the search space. Using this approach,
they enumerated all homogeneous cubic bent functions in eight variables and
constructed many examples in ten variables, with 2 of them being listed in [82].
Later, Charnes, Dempwolff and Pieprzyk [33] classified all homogeneous cubic
bent functions in eight variables using the invariants of difference sets, however,
the cryptographic properties of these 2 examples in 10 variables have not been
analyzed.

Quadratic and cubic bent functions vs. their homogeneous analogues

In the following table, we summarize the known computational results about
the number of cubic and homogeneous cubic bent functions in six and eight
variables, as well as the number of extended-affine equivalence classes.

Table 4.1. Cubic bent vs. homogeneous cubic bent functions in 6 and 8 variables

n
Cubic bent functions on Fn

2 Hom. cubic bent functions on Fn
2

# of functions # of eq. cl. # of functions # of eq. cl.
6 42,372,288 · 27 ≈ 225.33, [100, p. 258] 3, [103] 30 ≈ 24.90, [102] 1, [102]
8 5,386,705,781,653,504 · 29 ≈ 261.25, [70] 8, Theorem 1.48 293,760 ≈ 218.16, [83] 2, [33]

Remark 4.5. Comparing the known facts about quadratic and homogeneous
quadratic bent functions with the results from Table 4.1 about cubic and ho-
mogeneous cubic bent functions, we observe the following principal differences
between quadratic and cubic bent functions from the homogeneity point of view:

1. By Result 1.24, every quadratic Boolean bent function f : Fn
2 → F2 is EA-

equivalent to the canonical quadratic homogeneous bent function Qn on
Fn

2 , given by Qn : (x1, . . . , xn) 7→ x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn. However, not
every cubic bent function is EA-equivalent to a homogeneous one.

2. Homogeneous quadratic bent functions form the core of all quadratic bent
functions, since addition of affine terms does not affect bentness. However,
in a small number of variables homogeneous cubic bent functions consti-
tute only a tiny portion of all cubic bent functions, moreover, its asymptotic
behavior is also not known.
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The known non-existence results on d-homogeneous bent functions

Despite the fact that computer search techniques described in the previous para-
graphs were successfully used to generate a lot of 3-homogeneous bent func-
tions, they do not seem to work for the search of d-homogeneous bent functions
with d ≥ 4. Moreover, it is not known whether these functions can in general
exist.

Open Problem 4.6. Find examples of d-homogeneous bent functions with d ≥ 4
or prove that they do not exist.

Now we give the known non-existence results of d-homogeneous bent func-
tions. The following result gives an upper bound on the degree of a homoge-
neous bent function.

Result 4.7. [113] Homogeneous bent functions f : F2m
2 → F2 of degree m do not exist

for m ≥ 4. Consequently, the degree of a homogeneous bent function f on F2m
2 is at

most deg( f ) ≤ m− 1.

Meng, Zhang, Yang and Cui [83, Theorem 3] observed that this upper bound
is not tight by showing that 4-homogeneous bent functions do not exist on F10

2 .
Based on this observation, they suggested the following improvement of the
upper bound from Result 4.7, which remains the best known so far.

Result 4.8. [84, Theorem 1] For any non-negative integer k, there exists a positive
integer N such that for m > N, there exist no 2m-variable homogeneous bent functions
having degree m − k or more, where N is the least integer satisfying the following
inequality 2N−1 > ∑k+1

i=0 (N+1
i ).

With these non-existence results, it is possible that only non-quadratic homo-
geneous bent functions are cubic. Moreover, among the known homogeneous
cubic bent functions the only bent functions, whose cryptographic properties
are note analyzed, are homogeneous cubic bent functions in ten and twelve vari-
ables constructed with computer search techniques and their concatenations. In
the following subsections, we proceed with the analysis of these functions.

4.1.2 Objectives

The aim of this chapter is two-fold. First, we analyze the known homogeneous
cubic bent functions in ten and twelve variables from [35, 82] and show that some
of these functions do not belong to the M# class and all of them are different
from the primary construction of Seberry, Xia and Pieprzyk [104]. Moreover,
some of them have no affine derivatives. We also provide a construction method
aimed to generate a lot of homogeneous bent functions from a single given
example. Using this approach we construct 221 new homogeneous cubic bent
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functions in 12 variables (which is almost twice as the number of previously
known homogeneous cubic bent functions in 6 ≤ n ≤ 12 variables), and show
that some of them are new, i.e., not equivalent to all the previously known ones.

Secondly, we extend these results for infinite families by showing that proper
direct sums of these functions inherit the properties of its summands. Conse-
quently, we prove that for any n ≥ 8 there exist cubic bent functions inside
M#, but different from the primary construction [104]. Further, we consider cu-
bic bent functions with respect to the following three properties: outside M#,
without affine derivatives, and homogeneous. We show that n-variable cubic
bent functions with at least two of the three mentioned properties exist for all
n ≥ n0, where n0 depends on the selected combination of properties. Moreover,
we prove that in general the whole class of cubic bent functions in n variables
is not described by the M# class, whenever n ≥ 10. This result implies that the
smallest possible degree of a bent function outside theM# class equals to three.
From this point of view, we conclude that cubic bent functions behave like bent
functions of higher degrees rather than quadratic. Finally, we show existence
of cubic bent functions without affine derivatives outside M#, thus solving an
open problem addressed by Mandal, Gangopadhyay and Stănică in [77, Section
1.6].

The rest of the chapter is organized in the following way. In Section 4.2, we
use design-theoretic invariants from Section 3.2 of the previous chapter to prove
that proper concatenations of the homogeneous cubic functions constructed via
computer search can never be equivalent to the primary construction. In Sec-
tion 4.3, we introduce an algorithm aimed to produce many homogeneous func-
tions from a single given one without increasing the number of variables and
illustrate its application for homogeneous cubic bent functions in 12 variables.
In Section 4.4, we consider the problem of the construction of bent functions
outside the M# class using the direct sum. In Subsection 4.4.1, we provide a
sufficient condition, explaining how one should select bent functions f and g
such that the direct sum f ⊕ g is outsideM#. In Subsection 4.4.2, we show that
certain cubic bent functions in 6 ≤ n ≤ 12 variables satisfy our new sufficient
condition and thus lead to infinitely many cubic bent functions outside theM#

class, which are homogeneous or do not have affine derivatives. In Section 4.5,
we conclude the chapter and raise some open problems. Finally, we list used in
the chapter cubic bent functions together with their invariants in Appendix B.

4.2 Analysis of the known examples

In this section, we classify the known examples of homogeneous cubic bent
functions in 10 and 12 variables constructed in [35, 82] and show that:

• Some of them are not covered, up to EA-equivalence, by the Maiorana-
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McFarland construction.

• All of them are EA-inequivalent to the only one known analytic construc-
tion of Seberry, Xia and Pieprzyk, given in Result 4.4.

First, we proceed with the analysis of the homogeneous cubic bent functions in
a small number of variables.

Theorem 4.9. For homogeneous cubic bent functions in n = 10 and n = 12 variables
from [35, p. 149] and [82, p. 15], respectively, the following hold.

1. If n = 10, there are 4 equivalence classes, with 2 of them being outside the com-
pleted Maiorana-McFarland classM#.

2. If n = 12, there are 5 equivalence classes, which are subclasses ofM#.

Proof. For the mentioned homogeneous cubic bent functions, we compute the
Smith normal form and check whether the functions having the same ones are
EA-equivalent. We check equivalence of bent functions via equivalence of linear
codes and isomorphism of addition designs according to Result 1.60 and Re-
sult 1.94, respectively, with a Magma [9] program. Consequently, we found 4
and 5 equivalence classes in 10 and 12 variables, respectively. We denote rep-
resentatives of the obtained classes by hn

i and list them in Appendix B.1. We
provide only the first n/2 elementary divisors for the Smith normal forms of
bent functions due to Remark 3.11.

Table 4.2. First n/2 elementary divisors of the known homogeneous cubic bent
functions in n = 10, 12 variables

4.2(a) n = 10 variables

h10
i SNF(h10

i )

h10
1 {∗120, 286, 4130, 8143, 16268, · · · ∗}

h10
2 {∗120, 278, 4138, 8147, 16260, · · · ∗}

h10
3 {∗120, 2108, 4110, 8129, 16292, · · · ∗}

h10
4 {∗122, 2154, 490, 881, 16332, · · · ∗}

4.2(b) n = 12 variables

h12
i SNF(h12

i )

h12
1 {∗122, 2142, 4276, 8493, 16630, 32972, · · · ∗}

h12
2 {∗122, 2126, 4276, 8517, 16646, 32924, · · · ∗}

h12
3 {∗124, 2127, 4260, 8525, 16674, 32878, · · · ∗}

h12
4 {∗122, 2104, 4256, 8525, 16698, 32888, · · · ∗}

h12
5 {∗126, 2196, 4392, 8419, 16490, 321052, · · · ∗}

We used a parallel implementation of Algorithm 1.1 in Mathematica [112] in or-
der to check whether the functions hn

i belong toM#. As a result, only functions
h10

3 and h10
4 in ten variables do not belong to the M# class, while all functions

h12
i in twelve variable are in M#. Finally, we list all M-subspaces of functions

hn
i fromM# in Appendix B.2.

Using the facts about ranks of bent functions and the relation between Γ-rank
and rank, obtained in the previous chapter, we derive the following corollary.

Corollary 4.10. Let f and g be Boolean functions on Fn
2 and Fm

2 , respectively, with
deg( f ) ≥ 1 and deg(g) ≥ 1.
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1. Let h be a Boolean function on Fn
2 × Fm

2 defined as the direct sum of functions f
on Fn

2 and g on Fm
2 , then

Γ-rank(h) = Γ-rank( f ) + Γ-rank(g)− 2. (4.4)

2. Let fid,φ be a Maiorana-McFarland bent function on Fn
2 , then

Γ-rank( fid,φ) = n + 2 if and only if deg(φ) ≤ 3. (4.5)

3. For the primary construction of homogeneous cubic bent functions hn
pr. on Fn

2 we
have Γ-rank(hn

pr.) = n + 2.

Proof. The first and the second claims hold, since the statements (4.4) and (4.5)
were proven in [110, 111] for ranks, and by Theorem 3.4 we know that ranks and
Γ-ranks coincide for all non-constant Boolean functions. Finally, the third claim
follows from (4.5) and the definition of the primary construction.

Now we prove the existence of homogeneous cubic bent functions on Fn
2 , which

are EA-inequivalent to the primary construction for any n ≥ 8.

Theorem 4.11. There exist homogeneous cubic bent functions on Fn
2 , extended-affine

inequivalent to the primary construction hn
pr., whenever n ≥ 8.

Proof. We construct a homogeneous cubic bent function hn in n variables with
n = 6i + 8j + 10k + 12l and j + k + l 6= 0 as the following concatenation:

hn := i · h6
∗ ⊕ j · h8

∗ ⊕ k · h10
∗ ⊕ l · h12

∗ , (4.6)

where h6
∗ and h8

∗ are arbitrary homogeneous cubic bent functions in 6 and 8
variables respectively, and h10

∗ , h12
∗ are arbitrary homogeneous cubic bent func-

tions in 10 and 12 variables from Table 4.2. Since any homogeneous cubic bent
function in 6 variables is equivalent to the primary construction h6

pr., we have
Γ-rank(h6

∗) = 8. One can check that for any cubic bent function h8
∗ in 8 vari-

ables we have Γ-rank(h8
∗) ∈ {14, 16}. By Theorem 3.10, we have that Γ-ranks

of functions h10
∗ and h12

∗ are multiplicities of the entry one in Table 4.2. Finally,
comparing the lower bound of the Γ-rank(hn) with Γ-rank(hn

pr.), one can see that

Γ-rank(hn) ≥ 8i + 14j + 20k + 22l − 2(i + j + k + l − 1)

= n + 2 + 4(j + 2(k + l)) > n + 2 = Γ-rank(hn
pr.)

,

and hence the function hn is EA-inequivalent to hn
pr. for all n ≥ 8.
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4.3 Constructing new homogeneous bent functions
from old

In this section, we show that in some cases it is possible to use the power of the
Maiorana-McFarland construction in order to construct a lot of homogeneous
bent functions from a single one, which is a member of the M# class. Our
approach is based on a generalization of the following observation.

Observation 4.12. Let f := h12
3 and g := h12

4 . Using Algorithm 1.1, it is possible
to show that homogeneous cubic bent functions f and g have a common M-
subspace U of dimension 6. The vector space U and its complement Ū are
generated by the row vectors, forming their Gauss-Jordan bases as follows

U =

〈
1 1 O1,10

O5,2 I5 I5

〉
and Ū =

〈
0 1 O1,10

O5,2 O5 I5

〉
. (4.7)

It is possible to bring functions f and g to their Maiorana-McFarland representa-
tions (1.23) using the same linear invertible transformation AU, given by (1.26):

f (zAU) = fπ,φ(x, y) and g(zAU) = gπ,ψ(x, y),

where π : F6
2 → F6

2 is a permutation and φ, ψ : F6
2 → F2 are Boolean functions.

In this way, one can construct homogeneous function g from the function f in
the following way

g(z) := fπ,φ⊕ω((x, y)T), where ω := φ⊕ ψ and T := A−1
U . (4.8)

Let hπ,φ : Fn
2 → F2 be a bent function from theM#

r,s class, which is EA-equivalent
to a d-homogeneous one, i.e., there exist an invertible matrix T of order n such
that hπ,φ((x, y)T) is d-homogeneous. The following set

ΩT(hπ,φ) := {ω : Fs
2 → F2 | hπ,φ⊕ω((x, y)T) is d-homogeneous bent}

contains all Boolean functions ω on Fs
2, which preserve d-homogeneity and bent-

ness of the function hπ,φ⊕ω with respect to the linear transformation T.

Proposition 4.13. Let hπ,φ be a Maiorana-McFarland bent function on F2m
2 , which is

EA-equivalent to a d-homogeneous bent function, i.e., there exist an invertible matrix T
such that hπ,φ((x, y)T) is d-homogeneous bent. Then the set ΩT(hπ,φ) is a vector space
over F2.

Proof. Let ω1, ω2 ∈ ΩT(hπ,φ) with ω1 6= ω2 and ω := ω1 ⊕ ω2. We will show

that ω ∈ ΩT(hπ,φ). Let the invertible matrix T be of the form T =

(
A B
C D

)
,
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where all submatrices have order m. First, we observe that 0 ∈ ΩT(hπ,φ) and for
any ωi ∈ ΩT(hπ,φ) we have

hπ,φ⊕ωi((x, y)T) = hπ,φ((x, y)T)⊕ωi(xB⊕ yD),

consequently, ωi(xB⊕ yD) is either d-homogeneous or constant zero function,
since hπ,φ((x, y)T) is d-homogeneous. Thus ω ∈ ΩT(hπ,φ), since bentness of
hπ,φ⊕ω is independent of the choice of a function ω on Fm

2 and, hence, the func-
tion (x, y) 7→ ω(xB⊕ yD) is d-homogeneous.

Note that for a homogeneous bent function hπ,φ ∈ M#
r,s, the set ΩT(hπ,φ)

is not a vector space in general. Nevertheless, for a given homogeneous bent
function h ∈ M#

r,s one can still construct the set ΩT(hπ,φ), in order to get more
(possibly inequivalent) homogeneous functions. We summarize these ideas in
the form of an algorithm below.

Algorithm 4.1. New d-homogeneous bent functions from a single one inM#
r,s

Require: Homogeneous bent function h : Fn
2 → F2, h ∈ M#

r,s of degree d.
Ensure: The set H of new d-homogeneous bent functions fromM#

r,s.
1: Put H ← {}.
2: for allM-subspaces U ∈ MS r(h) do
3: Construct the linear mapping AU (1.26), in order to get the

Maiorana-McFarland representation (1.23), i.e., hπ,φ(x, y) := h(zAU).

4: Put H ← H ∪ {hπ,φ⊕ω((x, y)T) : ω ∈ ΩT(hπ,φ)}, where T := A−1
U .

5: end for

Remark 4.14. Using Algorithm 4.1 and the mapping T defined in (4.8), one
can construct 2(

6
3), i.e., the maximum number of new homogeneous cubic bent

functions from each of the functions h12
3 and h12

5 , members of theM# class, thus
221 in total. The maximality of the number of new functions can be explained in
the following way. Let h ∈ {h12

3 , h12
5 }. First, we observe that the image of y after

the linear transformation y 7→ y′ = xB⊕ yD is given by:

y 7→ y′ = (x1 ⊕ x2, x3 ⊕ y2, x4 ⊕ y3, x5 ⊕ y4, x6 ⊕ y5, y1 ⊕ y6). (4.9)

Since any two coordinates of the vector y′ do not contain common variables
xi and yj, the linear transformation defined in (4.9) is homogeneity-preserving.
Thus, ΩT(hπ,φ) is generated by monomials ω : F6

2 → F2 of degree 3, and hence

|ΩT(hπ,φ)| = 2(
6
3). Taking into the account that the total number of the known

homogeneous cubic bent functions in 6 ≤ n ≤ 12 equals to

30 + 293,760︸ ︷︷ ︸
total # in 6,8 variables

+ 200 + 480 + 2︸ ︷︷ ︸
constructed in [35, 82]

+ 868 + 992,496︸ ︷︷ ︸
primary construction for n = 10, 12

≈ 220.3,
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we conclude that with our approach we constructed almost twice the total num-
ber of the known homogeneous cubic bent functions. Finally, we note that some
of the constructed homogeneous cubic bent functions are EA-inequivalent to all
the known ones, since their Smith normal forms listed in Table 4.3 are different
from those given in Table 4.2.

Table 4.3. First n/2 elementary divisors of the new homogeneous cubic bent
functions in n = 12 variables

h12
i SNF(h12

i )

h12
6 {∗124, 2123, 4292, 8497, 16674, 32878, · · · ∗}

h12
7 {∗124, 2123, 4272, 8516, 16674, 32880, · · · ∗}

Theorem 4.15. There are at least 7 pairwise EA-inequivalent homogeneous cubic bent
functions on F12

2 , which are EA-inequivalent to h12
pr..

4.4 Bent functions outside the M# class via direct
sum construction

The existence of Boolean bent functions of all degrees d ≥ 4 outside the com-
pleted Maiorana-McFarland class M# was firstly shown by Dillon in his thesis.
For the sake of reader’s convenience, we give a sketch of his proof below.

Result 4.16. [41, p. 104] For all m > 3 there exist bent functions of degree d ≥ 4 on
F2m

2 which are not equivalent to any bent function inM#.

Proof. Consider the following PS ap bent function f on F28 in cyclotomic form,
which has the algebraic degree 4:

f : x ∈ F28 7→ Tr(x15).

Since the second-order derivative of f has the form

Da,b f (x) = Tr((a6 + b6 + (a + b)6)x9) + qa,b(x),

where qa,b is a quadratic function on F28 depending on a, b ∈ F28 , one concludes
that deg(Da,b f ) = 2 for all a, b ∈ F28 with a, b 6= 0 simultaneously. In this way,
for any nonzero a, b ∈ F28 the second-order derivative Da,b f is never a constant
function and by Proposition 1.36 the direct sum f + g /∈ M#, where g is a bent
function of degree d on F22m−8 .

In this way, a single bent function without constant second-order derivatives
gives a rise to infinitely many bent functions outside the completed Maiorana-
McFarland class having all possible degrees d ≥ 4. In the following proposition
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we show that the same argument can not be used to prove the existence of cubic
bent functions outsideM#, since any cubic bent function has nontrivial constant
second-order derivatives.

Proposition 4.17. Let f be a cubic bent function on Fn
2 . Then there exist linearly

independent a, b ∈ Fn
2 such that Da,b f = const.

Proof. We prove this statement by contradiction. Recall that by Result 1.14, a
Boolean function f on Fn

2 is bent if and only if the following condition holds

∑
a,b,x∈Fn

2

(−1)Da,b f (x) = 22n. (4.10)

Now we assume that for all linearly independent a, b ∈ F2n holds Da,b f 6= const.
In this way, all second-order derivatives are non-constant affine functions, and
hence balanced. Consequently, we have that

∑
a,b,x∈Fn

2

(−1)Da,b f (x) = (2 · (2n − 1) + 2n) · 2n. (4.11)

This leads to a contradiction to (4.10).

From this point of view, cubic bent functions behave similarly to quadratic
bent functions, since they always have constant second-order derivatives. Conse-
quently, this property can potentially lead to the situation that constant second-
order derivatives of bent functions f on Fn

2 and g on Fm
2 may “balance each

other” and thus the direct sum f ⊕ g may be insideM# class by Proposition 1.36.
Let us illustrate the problem in more detail on the following example.

Example 4.18. Consider bent functions f on F4
2 and g on F2

2, which are given by
f (x) := x1x2 ⊕ x3x4 and g(y) := y1y2. Let V ⊂ F4

2 and W = F2
2 be two vector

subspaces of dimension 3 and 2, respectively, which are given by

V =

〈 1 0 0 1
0 1 0 1
0 0 1 1

〉
and W =

〈
1 0
0 1

〉
.

Consider also the following 3-dimensional vector subspace U ⊂ V ×W, given
by its generators as follows.

U =

〈 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 1 1 1

〉
⊂ V ×W

One can observe that the vector subspace U is an M-subspace of the function
h := f ⊕ g on F4

2 × F2
2, since the second-order derivatives Da,bh corresponding
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to two-dimensional vector subspaces 〈a, b〉 of U are constant zero functions. We
list them in the following form 〈a, b〉 7→ Da,bh below
〈

0 1 0 1 1 0
0 0 1 1 1 1

〉
7→ 0,

〈
1 0 0 1 0 1
0 0 1 1 1 1

〉
7→ 0,

〈
1 1 0 0 1 1
0 0 1 1 1 1

〉
7→ 0,

〈
1 0 0 1 0 1
0 1 0 1 1 0

〉
7→ 0,〈

1 0 1 0 1 0
0 1 0 1 1 0

〉
7→ 0,

〈
1 0 0 1 0 1
0 1 1 0 0 1

〉
7→ 0,

〈
1 0 1 0 1 0
0 1 1 0 0 1

〉
7→ 0.

Identifying vectors a, b ∈ F6
2 with pairs a = (ax, ay) and b = (bx, by), where

ax, bx ∈ F4
2 and ay, by ∈ F2

2, we compute the second-order derivatives of func-
tions f and g, namely 〈ax, bx〉 7→ Dax,bx f and 〈ay, by〉 7→ Day,by g as follows.

〈ax, bx〉 7→ Dax,bx f 〈ay, by〉 7→ Day,by g〈
0 1 0 1
0 0 1 1

〉
7→ 1

〈
1 0
1 1

〉
7→ 1〈

1 0 0 1
0 0 1 1

〉
7→ 1

〈
0 1
1 1

〉
7→ 1〈

1 1 0 0
0 0 1 1

〉
7→ 0

〈
1 1
1 1

〉
7→ 0〈

1 0 0 1
0 1 0 1

〉
7→ 1

〈
0 1
1 0

〉
7→ 1〈

1 0 1 0
0 1 0 1

〉
7→ 0

〈
1 0
1 0

〉
7→ 0〈

1 0 0 1
0 1 1 0

〉
7→ 0

〈
0 1
0 1

〉
7→ 0〈

1 0 1 0
0 1 1 0

〉
7→ 1

〈
1 0
0 1

〉
7→ 1

From this example, one can see that although the vector subspace V is not
anM-subspace of the function f , one can still find a suitable vector subspace W
for a function g such that the product V ×W contains anM-subspace U of the
direct sum h := f ⊕ g and, hence the function h is a member of the completed
Maiorana-McFarland class.

In the following subsection, we show how one can avoid the situation in
Example 4.18 and choose bent functions f and g such that the direct sum f ⊕ g
is not a member of the completed Maiorana-McFarland class M#. Using this
recursive approach, we prove the series of results about the existence of cubic
bent functions outside theM# class, which can simultaneously be homogeneous
and have no affine derivatives.

4.4.1 The sufficient condition in terms of relaxedM-subspaces

Now we identify Fn+m
2 with Fn

2 × Fm
2 . In this way, any vector v ∈ Fn+m

2 is
uniquely represented by a pair (vx, vy), where vx ∈ Fn

2 and vy ∈ Fm
2 . Let f be

a bent function on Fn
2 , g be a bent function on Fm

2 and h := f ⊕ g be defined
as the direct sum of f and g on Fn+m

2 . Assume that h is a Maiorana-McFarland
bent function, i.e., there exists U ∈ MS(h) such that for all a, b ∈ U we have
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that second-order derivatives satisfy Da,bh = 0. This takes place if and only if
Dax,bx f = Day,by g = ca,b, where ca,b ∈ F2 is a constant, depending on a and
b, since f and g do not have common variables. This observation leads to the
following generalization ofM-subspaces, introduced in Definition 1.37.

Definition 4.19. We call a vector subspace U of Fn
2 a relaxed M-subspace of a

Boolean function f : Fn
2 → F2, if for all a, b ∈ U second-order derivatives Da,b f

are either constant zero or constant one functions, i.e., Da,b f = 0 or Da,b f = 1.
We denote byRMS r( f ) the collection of all r-dimensional relaxedM-subspaces
of the function f and by RMS( f ) the collection of relaxedM-subspaces

RMS( f ) :=
n⋃

r=1

RMS r( f ).

Since the linearity index of a Boolean function (see Definition 1.34) is defined
as the maximal possible dimension of itsM-subspace, it is reasonable to define
its analogue for relaxedM-subspaces.

Definition 4.20. For a Boolean function f : Fn
2 → F2 its relaxed linearity index

r-ind( f ) is defined by r-ind( f ) := max
U∈RMS( f )

dim(U).

Example 4.21. Consider the following cubic Maiorana-McFarland bent func-
tion on F6

2, given by f (x) := x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x1x2x3. One can check that
the subspace U = 〈(0, 1, 0, 0, 0, 1), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 1)〉 is a relaxed M-
subspace of f , since its second-order derivatives Da,b f , corresponding to all two-
dimensional vector subspaces 〈a, b〉 of U, are constant zero or constant one func-
tions. We list them in the following form 〈a, b〉 7→ Da,b f below
〈

0 0 0 1 0 0
0 0 0 0 1 1

〉
7→ 0,

〈
0 1 0 0 0 1
0 0 0 0 1 1

〉
7→ 1,

〈
0 1 0 1 0 1
0 0 0 0 1 1

〉
7→ 1,

〈
0 1 0 0 0 1
0 0 0 1 0 0

〉
7→ 0,〈

0 1 0 0 1 0
0 0 0 1 0 0

〉
7→ 0,

〈
0 1 0 0 0 1
0 0 0 1 1 1

〉
7→ 1,

〈
0 1 0 0 1 0
0 0 0 1 1 1

〉
7→ 1.

Now we present some properties of collections ofM-subspaces as well as of
the relaxed ones.

Proposition 4.22. Let f : Fn
2 → F2 be a Boolean function and let n = r + s. Then the

following hold.

1. MS( f ) ⊆ RMS( f ).

2. |MS r( f )| and |RMS r( f )| as well as ind( f ) and r-ind( f ) are invariants under
equivalence.

3. ind( f ) ≤ r-ind( f ) and f /∈ M#
r,s for all r > r-ind( f ).
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Proof. 1. This follows from the definitions of collectionsMS( f ) and RMS( f ).
2. Let f and f ′ be equivalent, i.e., f ′(x) = f (xA)⊕ l(x). Assume U ∈ RMS r( f )
and let U′ = UA−1 with a′, b′ ∈ U′. Denoting y = xA, one can see from the
following computations

Da′,b′ f ′(x) = f ′(x⊕ a′ ⊕ b′)⊕ f ′(x⊕ a′)⊕ f ′(x⊕ b′)⊕ f ′(x′)
= f (y⊕ a⊕ b)⊕ f (y⊕ a)⊕ f (y⊕ b)⊕ f (y) = Da,b f (y)

that U′ ∈ RMS r( f ′). Since A−1 maps different subspaces to different ones,
we have that |RMS r( f )| = |RMS r( f ′)| and |MS r( f )| = |MS r( f ′)|. Since
dim(U) = dim(U′), we have ind( f ) = ind( f ′) and r-ind( f ) = r-ind( f ′).
3. First, since MS( f ) ⊆ RMS( f ) the inequality ind( f ) ≤ r-ind( f ) holds. The
statement f /∈ M#

r,s for all r > r-ind( f ) now follows from the maximality of the
linearity index.

In the next theorem, we show that each relaxedM-subspace of f ⊕ g is con-
tained in another relaxedM-subspace from RMS( f ⊕ g), which is constructed
as the direct product of relaxedM-subspaces of f and g.

Theorem 4.23. Let h(x, y) := f (x)⊕ g(y), for x ∈ Fn
2 and y ∈ Fm

2 .

1. If V ∈ RMS( f ) and W ∈ RMS(g), then V ×W ∈ RMS(h).

2. For any U ∈ RMS(h) there exist V ∈ RMS( f ) and W ∈ RMS(g) such
that U ⊆ V ×W.

3. r-ind(h) ≤ r-ind( f ) + r-ind(g).

Proof. 1. Let U = V ×W. Since V ∈ RMS( f ) and W ∈ RMS(g), then for all
v1, v2 ∈ V holds Dv1,v2 f = cv1,v2 and for all w1, w2 ∈ W holds Dw1,w2 g = cw1,w2 ,
where cv1,v2 and cw1,w2 are some constants. In this way, for all pairs u1 = (v1, w1)

and u2 = (v2, w2) holds Du1,u2 h = Dv1,v2 f ⊕Dw1,w2 g = cv1,v2 ⊕ cw1,w2 and, hence,
U ∈ RMS(h).
2. Recall that any vector v ∈ Fn+m

2 is identified with a pair (vx, vy), where
vx ∈ Fn

2 and vy ∈ Fm
2 . We define two vector subspaces V ⊆ Fn

2 and W ⊆ Fm
2 as

follows:
V = span({ux : u ∈ U}) and W = span({uy : u ∈ U}).

We will show that V ∈ RMS( f ) and W ∈ RMS(g). We define two functions
f ′, g′ : Fn+m

2 → Fn+m
2 as f ′(x, y) := f (x) for all y ∈ Fm

2 and g′(x, y) := g(y) for
all x ∈ Fn

2 . Since U ∈ RMS(h), then for all u1, u2 ∈ U the equation

Du1,u2 h(x, y) = Du1,u2 f ′(x, y)⊕ Du1,u2 g′(x, y) = cu1,u2 (4.12)

holds for all (x, y) ∈ Fn+m
2 . Let x1, x2 ∈ Fn

2 and consider the following equations

Du1,u2 f ′(x1, y)⊕ Du1,u2 g′(x1, y) =cu1,u2 (4.13)

Du1,u2 f ′(x2, y)⊕ Du1,u2 g′(x2, y) =cu1,u2 , (4.14)
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which hold for any y ∈ Fm
2 due to (4.12). Adding equation (4.13) to (4.14),

one gets Du1,u2 f ′(x1, y) = Du1,u2 f ′(x2, y) since g′ depends on the variable x “fic-
tively”. Now, since f ′ depends on the variable y “fictively”, we get that for
all v1, v2 ∈ V the equation Dv1,v2 f (x1) = Dv1,v2 f (x2) holds for all x1, x2 ∈ Fn

2
and hence Dv1,v2 f = cv1,v2 (one can think about v1 and v2 as (u1)x and (u2)x,
respectively). Thus, we have shown that V ∈ RMS( f ). Since f and g are in-
terchangeable, we get W ∈ RMS(g). Clearly, U ⊆ V ×W and by the previous
claim we have V ×W ∈ RMS(h).
3. Let U ∈ RMS(h) and dim(U) = r-ind(h). By the previous claim, there
exist V ∈ RMS( f ) and W ∈ RMS(g) such that U ⊆ V ×W. Now, using the
following series of inequalities

r-ind(h) = dim(U) ≤ dim(V ×W) = dim(V) + dim(W)

≤ max
V∈RMS( f )

dim (V) + max
W∈RMS(g)

dim (W)

= r-ind( f ) + r-ind(g),

we complete the proof.

In the following theorem, we give a sufficient condition on bent functions f
and g by means of relaxedM-subspaces such that the direct sum f ⊕ g is outside
theM# class.

Theorem 4.24. Let f : Fn
2 → F2 and g : Fm

2 → F2 be two Boolean bent functions. If f
and g satisfy r-ind( f ) < n/2 and r-ind(g) ≤ m/2, then f ⊕ k · g /∈ M# on Fn+km

2
for all k ∈N.

Definition 4.25. We will call a Boolean function f on Fn
2 strongly extendable, if

r-ind( f ) < n/2 and weakly extendable, if r-ind( f ) = n/2. In this way, if one
wants to extend a strongly extendable function f with Theorem 4.24, it is enough
to take a weakly extendable function g, while for the extension of a weakly
extendable function f one has to take a strongly extendable function g.

Remark 4.26. For a given function f on Fn
2 , one can compute the relaxed linearity

index r-ind( f ) in the same way as the linearity index ind( f ), but with only one
change. Instead of the second-order derivative Da,b f given by its ANF

Da,b f (x) =
⊕

v∈Fn
2

cv(a, b)

(
n

∏
i=1

xvi
i

)
,

where coefficients cv depend on a and b, one considers the “relaxed” second-order
derivative RDa,b f defined by RDa,b f (x) := Da,b f (x)⊕ c0(a, b) and use it as the
input of Algorithm 1.1 in the way already described in Remark 1.39.
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4.4.2 Application to homogeneous cubic bent functions without
affine derivatives

In order to use Theorem 4.24 for the construction of cubic bent functions outside
M#, which can be homogeneous or have no affine derivatives, we need to find
such functions in a small number of variables and check whether they are weakly
or strongly extendable.

First, we check whether the equivalence classes of cubic bent functions in
six and eight variables given in Table 1.1, contain functions with the mentioned
properties. Since all cubic bent functions in 6 and 8 variables are members of
theM# class (see Subsection 1.1.4), the best what one expects to find is a weakly
extendable cubic bent function. In this way:

• The only, up to equivalence, weakly extendable cubic bent function in 6
variables is the third Rothaus’ function, denoted in Table 1.1 by c6

3. It has
no affine derivatives and is not equivalent to any homogeneous cubic bent
function.

• An example of a weakly extendable homogeneous cubic bent function in 8
variables is given by the function h8

1. Like any other cubic bent function in
eight variables, it has affine derivatives [58].

Now we analyze homogeneous cubic bent functions in 10 and 12 variables.

• An example of a strongly extendable cubic bent function in 10 variables
is represented by the function h10

4 , which is simultaneously homogeneous
and has no affine derivatives.

• Since all the mentioned functions in 12 variables belong to the M# class,
they can not be strongly extendable. Nevertheless, among them we found
a weakly extendable homogeneous function h12

5 without affine derivatives.

We summarize these results in Table 4.4 and list all the used homogeneous cubic
bent functions hn

i in Appendix B.

Table 4.4. Weakly and strongly extendable cubic Boolean bent functions in a
small number of variables

# of variables, n 6 8 10 12

r-ind 3 4 4 6
Is homogeneous? × X X X

Has no aff. derivatives? X × X X

Example c6
3 h8

1 h10
4 h12

5

Now we proceed to the proof of our main theorem: the series of existence
results about cubic bent functions with nice cryptographic properties.
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Theorem 4.27. On Fn
2 there exist:

1. Cubic bent functions outsideM# for all n ≥ 10.

2. Cubic bent functions without affine derivatives outsideM# for all n ≥ 26.

3. Homogeneous cubic bent functions outsideM# for all n ≥ 26.

4. Homogeneous cubic bent functions without affine derivatives outside M# for all
n ≥ 50.

Proof. In all the four cases the idea of the proof is the same: construct a strongly
extendable Boolean function hn in n = 6i + 8j + 10k + 12l variables of the form

hn := i · c6
3 ⊕ j · h8

1 ⊕ k · h10
4 ⊕ l · h12

5 (4.15)

and find the minimal value n0 such that for all n ≥ n0 the function hn inherits the
properties of its components from Table 4.4. Since the only strongly extendable
function is h10

4 in 10 variables, we require that in all the four cases below k 6= 0.
Case 1. Since the first case has nothing to do with homogeneity and having
no affine derivatives, one can use all the components from Table 4.4. Clearly,
the smallest value of n is n0 = 16 and in order to cover the missing values of
n ∈ {12, 14}, we construct a function h′n of the form

h′n(x1, . . . , xn) := h10
4 (x1, . . . , x10)⊕Qk(x11, . . . , xn) with k = n− 10.

Here Qk is the quadratic bent function on Fk
2, given by Qk : (x1, . . . , xk) 7→ x1x2⊕

x3x4⊕ · · · ⊕ xk−1xk. Since for the quadratic bent function Qk its relaxed linearity
index r-ind(Qk) = k, we can not use Theorem 4.24. However, with the second
part of Theorem 4.23, it is possible to check with a computer that h′n /∈ M# by
showing that none of the vector subspaces U of the form

{U ⊆ V ×W : V ∈ RMS(h10
4 ), W ∈ RMS(Qk)}

is anM-subspace of the function h′n.
Case 2. Since there are no weakly extendable homogeneous cubic bent functions
in six variables, we can use only components h8

1, h10
4 , h12

5 in (4.15). One can see
that the smallest value of n is n0 = 26 and the missing values are in the set
{14, 16, 24}.
Case 3. First, we observe that the direct sum of two functions has no affine
derivatives, if and only if both of them have no affine derivatives. Hence, the
only functions we can use are c6

3, h10
4 , h12

5 . In this way, the smallest value of n is
n0 = 26 and the missing values are in the set {12, 14, 18, 24}.
Case 4. Finally, since the only extendable functions, which are simultaneously
homogeneous and have no affine derivatives are h10

4 and h12
5 , we observe that

the smallest value of n is n0 = 50 and the missing values of n are in the set
{12, 14, 16, 18, 24, 26, 28, 36, 38, 48}, what completes the proof.



4.5. Conclusion and open problems 121

4.5 Conclusion and open problems

In this chapter, we proved the existence of cubic bent functions outside the com-
pleted Maiorana-McFarland class M# on Fn

2 for all n ≥ 10 and showed that for
almost all values of n these functions can simultaneously be homogeneous and
have no affine derivatives. The reason, why some values of n are not covered by
our proof is explained by the non-existence of examples with desired properties
in 6 and 8 variables, which are necessary for the used recursive framework. We
summarize these results in the following Venn diagram.

Figure 4.1. Existence of cubic bent functions which are: homogeneous, without
affine derivatives, outside the completed Maiorana-McFarland class

Homogeneous[35]

∃ for all n ≥ 6

Outside M#

∃ for all n ≥ 10

Without

affine derivatives[20]

∃ for all n ≥ 6, n 6= 8

∃ for all

n ≥ 26

∃ for all

n ≥ 50

∃ for all

n ≥ 26∃ for all

n ≥ 50

In general, we expect that homogeneous cubic bent functions without affine
derivatives outside M# exist for all even n ≥ 10 and we leave this conjecture
as an open problem. Since our proof technique is based on the direct sum
construction of functions, some of them being members of M#, the functions
constructed in such a way will presumably have bad cryptographic primitives,
see [27, p. 330] for details. Thus, we suggest the following problem.

Open Problem 4.28. Construct homogeneous cubic bent functions without affine
derivatives outside theM# class without the use of the direct sum.

The next problem, which we would like to address, is related to the normal-
ity of cubic bent functions. Recall that a Boolean function f on Fn

2 is said to be
normal (weakly normal), when it is constant (affine, but not constant) respec-
tively, on some affine subspace U of Fn

2 of dimension dn/2e. In this case f is
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said to be normal (weakly normal) with respect to the flat U. It is well-known
that all quadratic bent functions are normal. Moreover, one can also construct
non-normal as well as non-weakly normal bent functions of all degrees d ≥ 4, as
it follows from [22, Fact 22]. At the same time, all cubic bent functions in n = 6
variables are normal or weakly-normal, while for n = 8 they are proved to be
normal [36].

Since the functions h10
3 and h10

4 do not belong to the completed Maiorana-
McFarland class, they are good candidates to be checked for the normality.
Based on our parallel implementation of [22, Algorithm 1] in Mathematica [112]
we observe that the function h10

3 is normal on the flat 48⊕ 〈g3, 8p, 4q, 2m, 1j〉 and
the function h10

4 is normal on the flat 5⊕ 〈i5, 8h, 6n, 1g, f〉. Here we describe each
binary vector of a flat by 32-base representation using the following alphabet

0 7→ 0, . . . , f 7→ 15, g 7→ 16, . . . , v 7→ 31. (4.16)

In this way, since one still has no examples of non-weakly normal cubic bent
functions, it is reasonable to ask the following question.

Open Problem 4.29. Do non-weakly normal cubic bent functions exist?

In Remark 4.14, we found homogeneous cubic bent functions in twelve vari-
ables of the form h : (x, y) 7→ fπ,φ((x, y)T). Most notably, for a fixed permuta-
tion π and a nondegenerate linear transformation T these functions are homo-
geneous independently of the choice of a homogeneous cubic function φ. The
principal difference between the primary construction hn

pr. and functions con-
structed in Remark 4.14 is the following. For the primary construction of homo-
geneous cubic bent function hn

pr., one needs to find a special Boolean function φ

of degree 3 such that the nonhomogeneous cubic Maiorana-McFarland function
fid,φ is homogeneous after the change of coordinates. In some sense, the identity
permutation id has a “defect”, which makes fid,0 never equivalent to a homoge-
neous cubic function. But the specific choice of a cubic function φ helps to repair
it. Since the functions constructed in Remark 4.14 are in that sense “defect free”,
it is essential to search for such functions systematically.

Open Problem 4.30. Construct infinite families of permutations π : Fm
2 → Fm

2
such that for some nondegenerate linear transformation T the bent function
h : Fm

2 ×Fm
2 → F2 defined by

h : (x, y) 7→ fπ,φ((x, y)T)

is homogeneous cubic bent for all homogeneous cubic functions φ : Fm
2 → F2.

The final problem is related to the non-existence of d-homogeneous vectorial
bent functions (note that vectorial (n, m)-function F(x) = ( f1(x), . . . , fm(x))T is
said to be d-homogeneous, if all the coordinate functions fi are d-homogeneous).
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Using computer search, we observe that the only existing homogeneous vectorial
bent functions in 6 and 8 variables are quadratic ones. This observation leads to
the following question, which we leave as an open problem.

Open Problem 4.31. Do non-quadratic homogeneous vectorial bent functions
exist?

Finally, we list in Appendix B all homogeneous cubic bent functions used in this
chapter.





Appendix A

Vectorial bent functions in six
variables

Here we list algebraic normal forms of representatives of EA-equivalence classes
of bent functions in 6 variables. The representatives Fm

i ∈ Cm
i and Fm+1

j ∈ Cm+1
j

are selected in such a way that Fm
i ≺ Fm+1

j as in Figure 2.1. Note that we
abbreviate 1 ≤ i ≤ 6 for the variable xi.

A.1 Algebraic normal forms

Table A.1. Algebraic normal forms of EA-inequivalent (6, 1)-bent functions

F1
i Algebraic normal form of F1

i ∈ C1
i

F1
1 14⊕ 25⊕ 36

F1
2 14⊕ 25⊕ 36⊕ 123

F1
3 12⊕ 14⊕ 26⊕ 35⊕ 45⊕ 123⊕ 245

F1
4 14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46⊕ 123⊕ 245⊕ 346

Table A.2. Algebraic normal forms of EA-inequivalent (6, 2)-bent functions

F2
i Algebraic normal form of F2

i ∈ C2
i

F2
1

(
14⊕ 25⊕ 36

15⊕ 16⊕ 24⊕ 25⊕ 34

)
F2

2

(
14⊕ 25⊕ 36⊕ 123

15⊕ 16⊕ 24⊕ 25⊕ 34

)
F2

3

(
14⊕ 25⊕ 36⊕ 123

13⊕ 15⊕ 23⊕ 46⊕ 124

)
F2

4

(
14⊕ 25⊕ 36⊕ 123

12⊕ 13⊕ 16⊕ 26⊕ 45⊕ 56⊕ 156⊕ 235

)
F2

5

(
12⊕ 14⊕ 26⊕ 35⊕ 45⊕ 123⊕ 245
13⊕ 23⊕ 24⊕ 35⊕ 56⊕ 126⊕ 235

)
Continued on the next page
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Table A.2. Continued from the previous page
F2

i Algebraic normal form of F2
i ∈ C2

i

F2
6

(
14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46⊕ 123⊕ 245⊕ 346

13⊕ 23⊕ 24⊕ 35⊕ 56⊕ 126⊕ 235

)
F2

7

(
14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46⊕ 123⊕ 245⊕ 346

12⊕ 35⊕ 46⊕ 124⊕ 134⊕ 235⊕ 236⊕ 245

)
F2

8

(
14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46⊕ 123⊕ 245⊕ 346

12⊕ 16⊕ 23⊕ 35⊕ 46⊕ 56⊕ 124⊕ 134⊕ 156⊕ 235⊕ 236⊕ 245

)
F2

9

(
14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46⊕ 123⊕ 245⊕ 346

12⊕ 15⊕ 16⊕ 25⊕ 36⊕ 45⊕ 46⊕ 125⊕ 126⊕ 135⊕ 136⊕ 145⊕ 256

)

Table A.3. Algebraic normal forms of EA-inequivalent (6, 3)-bent functions

F3
i Algebraic normal form of F3

i ∈ C3
i

F3
1

 14⊕ 25⊕ 36
15⊕ 16⊕ 24⊕ 25⊕ 34

14⊕ 15⊕ 24⊕ 25⊕ 26⊕ 35


F3

2

 14⊕ 25⊕ 36
15⊕ 16⊕ 24⊕ 25⊕ 34

12⊕ 14⊕ 15⊕ 24⊕ 25⊕ 26⊕ 35


F3

3

 14⊕ 25⊕ 36
15⊕ 16⊕ 24⊕ 25⊕ 34

13⊕ 14⊕ 26⊕ 45


F3

4

 14⊕ 25⊕ 36
15⊕ 16⊕ 24⊕ 25⊕ 34

14⊕ 15⊕ 24⊕ 25⊕ 26⊕ 35⊕ 123


F3

5

 14⊕ 25⊕ 36⊕ 123
13⊕ 15⊕ 23⊕ 46⊕ 124
13⊕ 24⊕ 25⊕ 56⊕ 125


F3

6

 14⊕ 25⊕ 36⊕ 123
13⊕ 15⊕ 23⊕ 46⊕ 124

12⊕ 14⊕ 16⊕ 34⊕ 46⊕ 56⊕ 126⊕ 136⊕ 246


F3

7

 14⊕ 25⊕ 36⊕ 123
13⊕ 15⊕ 23⊕ 46⊕ 124

12⊕ 13⊕ 24⊕ 25⊕ 35⊕ 45⊕ 56⊕ 125⊕ 345


F3

8

 12⊕ 14⊕ 26⊕ 35⊕ 45⊕ 123⊕ 245
13⊕ 23⊕ 24⊕ 35⊕ 56⊕ 126⊕ 235

16⊕ 23⊕ 26⊕ 35⊕ 45⊕ 56⊕ 123⊕ 124⊕ 256


F3

9

 12⊕ 14⊕ 26⊕ 35⊕ 45⊕ 123⊕ 245
13⊕ 23⊕ 24⊕ 35⊕ 56⊕ 126⊕ 235

16⊕ 25⊕ 26⊕ 35⊕ 36⊕ 45⊕ 56⊕ 123⊕ 124⊕ 234⊕ 256⊕ 346


F3

10

 14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46⊕ 123⊕ 245⊕ 346
12⊕ 35⊕ 46⊕ 124⊕ 134⊕ 235⊕ 236⊕ 245

12⊕ 13⊕ 25⊕ 35⊕ 36⊕ 45⊕ 123⊕ 134⊕ 236⊕ 246⊕ 345


F3

11

 14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46⊕ 123⊕ 245⊕ 346
12⊕ 35⊕ 46⊕ 124⊕ 134⊕ 235⊕ 236⊕ 245

12⊕ 13⊕ 24⊕ 25⊕ 34⊕ 35⊕ 36⊕ 45⊕ 123⊕ 134⊕ 236⊕ 246⊕ 345


F3

12

 14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46⊕ 123⊕ 245⊕ 346
12⊕ 35⊕ 46⊕ 124⊕ 134⊕ 235⊕ 236⊕ 245

14⊕ 15⊕ 16⊕ 23⊕ 26⊕ 35⊕ 56⊕ 124⊕ 125⊕ 126⊕ 136⊕ 145⊕ 156⊕ 236⊕ 246⊕ 345


F3

13

 14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46⊕ 123⊕ 245⊕ 346
12⊕ 35⊕ 46⊕ 124⊕ 134⊕ 235⊕ 236⊕ 245

13⊕ 14⊕ 24⊕ 34⊕ 35⊕ 36⊕ 46⊕ 56⊕ 123⊕ 125⊕ 145⊕ 146⊕ 235⊕ 256⊕ 356⊕ 456
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A.2 Cardinalities of equivalence classes

In the following table, we list the cardinalities of EA-equivalence classes of
Boolean and vectorial bent functions in 6 variables.

Table A.4. Cardinalities of EA-equivalence classes of (6, m)-bent functions

A.4(a) Boolean (6, 1)-bent functions

C1
i |C1

i | |C1
i | Approx.

C1
1 1,777,664 220.76

C1
2 239,984,640 227.83

C1
3 1,343,913,984 230.32

C1
4 3,839,754,240 231.83

Total 5,425,430,528 232.33

A.4(b) Vectorial (6, 2)-bent functions

C2
i |C2

i | |C2
i | Approx.

C2
1 1,310,636,113,920 240.25

C2
2 35,387,175,075,840 245.00

C2
3 330,280,300,707,840 248.23

C2
4 1,981,681,804,247,040 250.81

C2
5 660,560,601,415,680 249.23

C2
6 7,926,727,216,988,160 252.81

C2
7 377,463,200,808,960 248.42

C2
8 9,059,116,819,415,040 253.00

C2
9 3,019,705,606,471,680 251.42

Total 23,392,233,361,244,160 254.37

A.4(c) Vectorial (6, 3)-bent functions

C3
i |C3

i | |C3
i | Approx.

C3
1 671,045,690,327,040 249.25

C3
2 42,275,878,490,603,520 255.23

C3
3 112,735,675,974,942,720 256.64

C3
4 338,207,027,924,828,160 258.23

C3
5 2,705,656,223,398,625,280 261.23

C3
6 9,469,796,781,895,188,480 263.03

C3
7 18,939,593,563,790,376,960 264.03

C3
8 5,411,312,446,797,250,560 262.23

C3
9 37,879,187,127,580,753,920 265.03

C3
10 2,705,656,223,398,625,280 261.23

C3
11 386,522,317,628,375,040 258.42

C3
12 21,645,249,787,189,002,240 264.23

C3
13 21,645,249,787,189,002,240 264.23

Total 121,282,113,886,947,901,440 266.71
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A.3 Invariants under extended-affine equivalence

For an equivalence class Cm
i of (6, m)-bent functions with the representative

Fm
i ∈ Cm

i listed in Appendix A.1, we compute the following invariants un-
der extended-affine equivalence: |Aut(Cm

i )| := |Aut(CFm
i
)|, |Aut(dev(GCm

i
))| :=

|Aut(dev(GFm
i
))| and SNF(Cm

i ) := SNF(Fm
i ).

Table A.5. Invariants of EA-inequivalent (6, m)-bent functions

A.5(a) Boolean (6, 1)-bent functions

C1
i |Aut(C1

i )|
|Aut(dev(C1

i ))|
|Aut(C1

i )|
SNF(C1

i )

C1
1 215 · 34 · 51 · 71 213 · 71 · 311 {

∗18, 215, 420, 815, 166, 321∗
}

C1
2 215 · 31 · 71 213 · 33 · 51 · 71 · 311 {

∗18, 215, 420, 815, 166, 321∗
}

C1
3 213 · 31 · 51 211 · 31 {

∗112, 29, 424, 89, 1610, 321∗
}

C1
4 211 · 31 · 71 27 {

∗114, 27, 424, 87, 1612, 321∗
}

A.5(b) Vectorial (6, 2)-bent functions

C2
i |Aut(C2

i )| SNF(C2
i )

C2
1 29 · 33 · 71 {

∗128, 226, 442, 864, 1619, 3212, 642∗
}

C2
2 29 · 71 {

∗130, 228, 440, 854, 1627, 3212, 642∗
}

C2
3 27 · 31 {

∗136, 222, 439, 850, 1632, 3212, 642∗
}

C2
4 26 {

∗138, 224, 433, 856, 1620, 3220, 642∗
}

C2
5 26 · 31 {

∗138, 224, 437, 848, 1624, 3220, 642∗
}

C2
6 24 {

∗142, 220, 437, 848, 1620, 3224, 642∗
}

C2
7 24 · 31 · 71 {

∗136, 234, 423, 858, 1616, 3224, 642∗
}

C2
8 21 · 71 {

∗142, 222, 441, 834, 1628, 3224, 642∗
}

C2
9 21 · 31 · 71 {

∗142, 222, 441, 834, 1628, 3224, 642∗
}

A.5(c) Vectorial (6, 3)-bent functions

C3
i |Aut(C3

i )| SNF(C3
i )

C3
1 29 · 33 · 72 {

∗164 , 248, 472, 8163, 1654, 3230, 6418∗
}

C3
2 29 · 31 · 71 {

∗178 , 244, 468, 8139, 1662, 3238, 6420∗
}

C3
3 26 · 32 · 71 {

∗188 , 232, 468, 8137, 1668, 3232, 6424∗
}

C3
4 26 · 31 · 71 {

∗180 , 240, 470, 8145, 1654, 3236, 6424∗
}

C3
5 23 · 31 · 71 {

∗188 , 248, 448, 8145, 1648, 3248, 6424∗
}

C3
6 24 · 31 {

∗198 , 244, 438, 8153, 1638, 3244, 6434∗
}

C3
7 23 · 31 {

∗198 , 240, 446, 8145, 1646, 3240, 6434∗
}

C3
8 22 · 31 · 71 {

∗1100, 236, 436, 8169, 1636, 3236, 6436∗
}

C3
9 22 · 31 {

∗1106, 236, 430, 8169, 1630, 3236, 6442∗
}

C3
10 23 · 31 · 71 {

∗1100, 236, 436, 8169, 1636, 3236, 6436∗
}

C3
11 23 · 31 · 72 {

∗1100, 236, 436, 8169, 1636, 3236, 6436∗
}

C3
12 31 · 71 {

∗1106, 242, 418, 8181, 1618, 3242, 6442∗
}

C3
13 31 · 71 {

∗1106, 236, 430, 8169, 1630, 3236, 6442∗
}
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Note that any two different equivalence classes Cm
i and Cm

j of bent functions
in six variables have different pairs of invariants

(|Aut(Cm
i )|, SNF(Cm

i )) 6= (|Aut(Cm
j )|, SNF(Cm

j )).

In this way, the reader can be sure that all the representatives of equivalence
classes listed in Appendix A are EA-inequivalent.
Finally, for quadratic vectorial bent functions from equivalence classes Cm

1 with
m = 2, 3, we have |Aut(dev(Cm

1 ))| = 2n+m · |Aut(Cm
1 )| · 71, where n = 6. For the

rest of vectorial (n, m)-bent functions in six variables, we have

|Aut(dev(Cm
i ))| = 2n+m · |Aut(Cm

i )|.

In this way, translation designs of vectorial bent functions from equivalence
classes C3

10 and C3
11 can be distinguished by the orders of their automorphism

groups, despite the Smith normal forms coincide.





Appendix B

The known homogeneous cubic bent
functions

Here we list algebraic normal forms of the known EA-inequivalent n-variable
homogeneous cubic bent functions used in Chapter 4. We abbreviate 1 ≤ i ≤ 9
for the variable xi, the variables x10, x11 and x12 are replaced by a, b and c,
respectively.

B.1 Algebraic normal forms

Table B.1. Algebraic normal forms of the known EA-inequivalent homogeneous
cubic bent functions

hn
i ANFs of EA-inequivalent homogeneous cubic bent functions hn

i on Fn
2

h6
1

123⊕ 124⊕ 125⊕ 134⊕ 136⊕ 145⊕ 146⊕ 156⊕ 235⊕ 236⊕ 245⊕ 246⊕
256⊕ 345⊕ 346⊕ 356

h8
1

125⊕ 127⊕ 134⊕ 136⊕ 137⊕ 138⊕ 148⊕ 156⊕ 157⊕ 158⊕ 178⊕ 234⊕
237⊕ 246⊕ 258⊕ 268⊕ 346⊕ 347⊕ 356⊕ 357⊕ 368⊕ 457⊕ 458⊕ 467⊕
468⊕ 478⊕ 567⊕ 568

h8
2

123⊕ 124⊕ 126⊕ 127⊕ 134⊕ 146⊕ 148⊕ 157⊕ 158⊕ 236⊕ 247⊕ 256⊕
257⊕ 267⊕ 348⊕ 356⊕ 358⊕ 367⊕ 368⊕ 378⊕ 457⊕ 458⊕ 468⊕ 578

h10
1

126⊕ 128⊕ 129⊕ 12a⊕ 134⊕ 137⊕ 138⊕ 139⊕ 145⊕ 149⊕ 14a⊕ 157⊕
159⊕ 15a⊕ 178⊕ 179⊕ 236⊕ 237⊕ 239⊕ 23a⊕ 26a⊕ 279⊕ 289⊕ 28a⊕
29a⊕ 347⊕ 34a⊕ 356⊕ 357⊕ 358⊕ 359⊕ 367⊕ 369⊕ 36a⊕ 37a⊕ 38a⊕
456⊕ 457⊕ 467⊕ 468⊕ 46a⊕ 478⊕ 489⊕ 48a⊕ 49a⊕ 568⊕ 56a⊕ 578⊕
579⊕ 58a⊕ 69a⊕ 789⊕ 78a

h10
2

123⊕ 124⊕ 125⊕ 126⊕ 127⊕ 128⊕ 129⊕ 12a⊕ 134⊕ 135⊕ 136⊕ 13a⊕
147⊕ 148⊕ 149⊕ 156⊕ 159⊕ 15a⊕ 167⊕ 16a⊕ 178⊕ 179⊕ 189⊕ 18a⊕
234⊕ 237⊕ 238⊕ 239⊕ 245⊕ 246⊕ 24a⊕ 256⊕ 259⊕ 25a⊕ 267⊕ 26a⊕
278⊕ 279⊕ 289⊕ 28a⊕ 345⊕ 346⊕ 347⊕ 348⊕ 349⊕ 34a⊕ 356⊕ 359⊕
35a⊕ 367⊕ 36a⊕ 378⊕ 379⊕ 389⊕ 38a⊕ 456⊕ 459⊕ 45a⊕ 467⊕ 46a⊕
478⊕ 479⊕ 489⊕ 48a⊕ 567⊕ 589⊕ 59a⊕ 679⊕ 68a⊕ 78a

Continued on the next page
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Table B.1. Continued from the previous page
hn

i ANFs of EA-inequivalent homogeneous cubic bent functions hn
i on Fn

2

h10
3

123⊕ 126⊕ 128⊕ 12a⊕ 135⊕ 136⊕ 139⊕ 13a⊕ 145⊕ 14a⊕ 157⊕ 15a⊕
169⊕ 178⊕ 189⊕ 19a⊕ 236⊕ 237⊕ 239⊕ 23a⊕ 26a⊕ 279⊕ 289⊕ 28a⊕
29a⊕ 347⊕ 34a⊕ 356⊕ 357⊕ 358⊕ 359⊕ 367⊕ 369⊕ 36a⊕ 37a⊕ 38a⊕
456⊕ 457⊕ 467⊕ 468⊕ 46a⊕ 478⊕ 489⊕ 48a⊕ 49a⊕ 568⊕ 56a⊕ 578⊕
579⊕ 58a⊕ 69a⊕ 789⊕ 78a

h10
4

126⊕ 127⊕ 128⊕ 12a⊕ 134⊕ 135⊕ 137⊕ 139⊕ 13a⊕ 145⊕ 146⊕ 148⊕
149⊕ 14a⊕ 157⊕ 167⊕ 168⊕ 16a⊕ 179⊕ 17a⊕ 19a⊕ 235⊕ 238⊕ 239⊕
23a⊕ 246⊕ 247⊕ 248⊕ 256⊕ 259⊕ 267⊕ 269⊕ 26a⊕ 278⊕ 27a⊕ 289⊕
28a⊕ 29a⊕ 347⊕ 349⊕ 356⊕ 357⊕ 358⊕ 35a⊕ 368⊕ 369⊕ 37a⊕ 389⊕
38a⊕ 39a⊕ 457⊕ 459⊕ 45a⊕ 468⊕ 46a⊕ 478⊕ 479⊕ 47a⊕ 48a⊕ 49a⊕
568⊕ 569⊕ 56a⊕ 579⊕ 57a⊕ 589⊕ 58a⊕ 59a⊕ 678⊕ 68a⊕ 69a⊕ 78a

h12
1

135⊕ 138⊕ 13b⊕ 13c⊕ 145⊕ 149⊕ 157⊕ 15a⊕ 167⊕ 16b⊕ 179⊕ 17c⊕
189⊕ 19b⊕ 1ab⊕ 234⊕ 238⊕ 246⊕ 249⊕ 24c⊕ 256⊕ 25a⊕ 268⊕ 26b⊕
278⊕ 27c⊕ 28a⊕ 29a⊕ 2ac⊕ 2bc⊕ 346⊕ 347⊕ 348⊕ 35c⊕ 36c⊕ 37c⊕
389⊕ 39a⊕ 3ab⊕ 457⊕ 458⊕ 459⊕ 49a⊕ 4ab⊕ 4bc⊕ 568⊕ 569⊕ 56a⊕
5ab⊕ 5bc⊕ 679⊕ 67a⊕ 67b⊕ 6bc⊕ 78a⊕ 78b⊕ 78c⊕ 89b⊕ 89c⊕ 9ac

h12
2

135⊕ 136⊕ 138⊕ 13a⊕ 13b⊕ 13c⊕ 145⊕ 147⊕ 149⊕ 14b⊕ 157⊕ 158⊕
15a⊕ 15c⊕ 167⊕ 169⊕ 16b⊕ 179⊕ 17a⊕ 17c⊕ 189⊕ 18b⊕ 19b⊕ 19c⊕
1ab⊕ 234⊕ 236⊕ 238⊕ 23a⊕ 246⊕ 247⊕ 249⊕ 24b⊕ 24c⊕ 256⊕ 258⊕
25a⊕ 25c⊕ 268⊕ 269⊕ 26b⊕ 278⊕ 27a⊕ 27c⊕ 28a⊕ 28b⊕ 29a⊕ 29c⊕
2ac⊕ 2bc⊕ 348⊕ 34a⊕ 34b⊕ 356⊕ 358⊕ 35a⊕ 367⊕ 368⊕ 36b⊕ 37c⊕
389⊕ 38a⊕ 38b⊕ 39c⊕ 3ac⊕ 459⊕ 45b⊕ 45c⊕ 467⊕ 469⊕ 46b⊕ 478⊕
479⊕ 47c⊕ 49a⊕ 49b⊕ 49c⊕ 56a⊕ 56c⊕ 578⊕ 57a⊕ 57c⊕ 589⊕ 58a⊕
5ab⊕ 5ac⊕ 67b⊕ 689⊕ 68b⊕ 69a⊕ 69b⊕ 6bc⊕ 78c⊕ 79a⊕ 79c⊕ 7ab⊕
7ac⊕ 8ab⊕ 8bc⊕ 9bc

h12
3

134⊕ 135⊕ 137⊕ 138⊕ 139⊕ 13b⊕ 146⊕ 149⊕ 14c⊕ 156⊕ 157⊕ 159⊕
15a⊕ 15b⊕ 168⊕ 16b⊕ 178⊕ 179⊕ 17b⊕ 17c⊕ 18a⊕ 19a⊕ 19b⊕ 1ac⊕
1bc⊕ 235⊕ 238⊕ 23b⊕ 23c⊕ 245⊕ 246⊕ 248⊕ 249⊕ 24a⊕ 24c⊕ 257⊕
25a⊕ 267⊕ 268⊕ 26a⊕ 26b⊕ 26c⊕ 279⊕ 27c⊕ 289⊕ 28a⊕ 28c⊕ 29b⊕
2ab⊕ 2ac⊕ 345⊕ 346⊕ 348⊕ 34a⊕ 34c⊕ 357⊕ 35b⊕ 35c⊕ 367⊕ 37c⊕
389⊕ 39b⊕ 39c⊕ 3ab⊕ 3bc⊕ 456⊕ 457⊕ 459⊕ 45b⊕ 468⊕ 46c⊕ 478⊕
49a⊕ 4ac⊕ 4bc⊕ 567⊕ 568⊕ 56a⊕ 56c⊕ 579⊕ 589⊕ 5ab⊕ 678⊕ 679⊕
67b⊕ 68a⊕ 69a⊕ 6bc⊕ 789⊕ 78a⊕ 78c⊕ 79b⊕ 7ab⊕ 89a⊕ 89b⊕ 8ac⊕
8bc⊕ 9ab⊕ 9ac⊕ abc

h12
4

134⊕ 136⊕ 137⊕ 138⊕ 139⊕ 13a⊕ 147⊕ 149⊕ 14b⊕ 156⊕ 158⊕ 159⊕
15a⊕ 15b⊕ 15c⊕ 169⊕ 16b⊕ 178⊕ 17a⊕ 17b⊕ 17c⊕ 18b⊕ 19a⊕ 19c⊕
1bc⊕ 236⊕ 238⊕ 23a⊕ 23c⊕ 245⊕ 247⊕ 248⊕ 249⊕ 24a⊕ 24b⊕ 258⊕
25a⊕ 25c⊕ 267⊕ 269⊕ 26a⊕ 26b⊕ 26c⊕ 27a⊕ 27c⊕ 289⊕ 28b⊕ 28c⊕
29c⊕ 2ab⊕ 345⊕ 346⊕ 348⊕ 34a⊕ 34c⊕ 357⊕ 35b⊕ 35c⊕ 367⊕ 37c⊕
389⊕ 39b⊕ 39c⊕ 3ab⊕ 3bc⊕ 456⊕ 457⊕ 459⊕ 45b⊕ 468⊕ 46c⊕ 478⊕
49a⊕ 4ac⊕ 4bc⊕ 567⊕ 568⊕ 56a⊕ 56c⊕ 579⊕ 589⊕ 5ab⊕ 678⊕ 679⊕
67b⊕ 68a⊕ 69a⊕ 6bc⊕ 789⊕ 78a⊕ 78c⊕ 79b⊕ 7ab⊕ 89a⊕ 89b⊕ 8ac⊕
8bc⊕ 9ab⊕ 9ac⊕ abc

h12
5

135⊕ 136⊕ 138⊕ 13b⊕ 149⊕ 14b⊕ 157⊕ 158⊕ 15a⊕ 16b⊕ 179⊕ 17a⊕
17c⊕ 19b⊕ 19c⊕ 238⊕ 23a⊕ 246⊕ 247⊕ 249⊕ 24c⊕ 25a⊕ 25c⊕ 268⊕
269⊕ 26b⊕ 27c⊕ 28a⊕ 28b⊕ 2ac⊕ 345⊕ 346⊕ 34a⊕ 34b⊕ 34c⊕ 356⊕
358⊕ 35a⊕ 35c⊕ 367⊕ 368⊕ 36b⊕ 38a⊕ 38b⊕ 39c⊕ 3ab⊕ 3ac⊕ 3bc⊕
456⊕ 457⊕ 45b⊕ 45c⊕ 467⊕ 469⊕ 46b⊕ 478⊕ 479⊕ 47c⊕ 49b⊕ 49c⊕
4bc⊕ 567⊕ 568⊕ 56c⊕ 578⊕ 57a⊕ 57c⊕ 589⊕ 58a⊕ 5ac⊕ 678⊕ 679⊕
689⊕ 68b⊕ 69a⊕ 69b⊕ 789⊕ 78a⊕ 79a⊕ 79c⊕ 7ab⊕ 7ac⊕ 89a⊕ 89b⊕
8ab⊕ 8bc⊕ 9ab⊕ 9ac⊕ 9bc⊕ abc

Continued on the next page
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Table B.1. Continued from the previous page
hn

i ANFs of EA-inequivalent homogeneous cubic bent functions hn
i on Fn

2

h12
6

138⊕ 13a⊕ 13b⊕ 13c⊕ 148⊕ 149⊕ 14b⊕ 14c⊕ 158⊕ 159⊕ 15a⊕ 15c⊕
168⊕ 169⊕ 16a⊕ 16b⊕ 179⊕ 17a⊕ 17b⊕ 17c⊕ 189⊕ 18c⊕ 19a⊕ 1ab⊕
1bc⊕ 234⊕ 237⊕ 238⊕ 239⊕ 23a⊕ 23b⊕ 245⊕ 249⊕ 24a⊕ 24b⊕ 24c⊕
256⊕ 258⊕ 25a⊕ 25b⊕ 25c⊕ 267⊕ 268⊕ 269⊕ 26b⊕ 26c⊕ 278⊕ 279⊕
27a⊕ 27c⊕ 348⊕ 34b⊕ 34c⊕ 359⊕ 35b⊕ 369⊕ 36c⊕ 37a⊕ 37b⊕ 37c⊕
389⊕ 39a⊕ 39c⊕ 3ab⊕ 3ac⊕ 458⊕ 459⊕ 45c⊕ 46a⊕ 46c⊕ 478⊕ 47a⊕
48a⊕ 48b⊕ 49a⊕ 4ab⊕ 4bc⊕ 567⊕ 568⊕ 569⊕ 56a⊕ 56c⊕ 578⊕ 58c⊕
59b⊕ 59c⊕ 5ab⊕ 679⊕ 67b⊕ 689⊕ 68a⊕ 68c⊕ 6bc⊕ 789⊕ 78b⊕ 78c⊕
79a⊕ 79b⊕ 7ab⊕ abc

h12
7

138⊕ 13a⊕ 13b⊕ 13c⊕ 148⊕ 149⊕ 14b⊕ 14c⊕ 158⊕ 159⊕ 15a⊕ 15c⊕
168⊕ 169⊕ 16a⊕ 16b⊕ 179⊕ 17a⊕ 17b⊕ 17c⊕ 189⊕ 18c⊕ 19a⊕ 1ab⊕
1bc⊕ 234⊕ 237⊕ 238⊕ 239⊕ 23a⊕ 23b⊕ 245⊕ 249⊕ 24a⊕ 24b⊕ 24c⊕
256⊕ 258⊕ 25a⊕ 25b⊕ 25c⊕ 267⊕ 268⊕ 269⊕ 26b⊕ 26c⊕ 278⊕ 279⊕
27a⊕ 27c⊕ 348⊕ 34b⊕ 34c⊕ 359⊕ 35b⊕ 369⊕ 36c⊕ 37a⊕ 37b⊕ 37c⊕
389⊕ 39a⊕ 39c⊕ 3ab⊕ 3ac⊕ 458⊕ 459⊕ 45c⊕ 467⊕ 46a⊕ 478⊕ 47a⊕
47b⊕ 48a⊕ 48b⊕ 49a⊕ 4ab⊕ 568⊕ 569⊕ 56a⊕ 578⊕ 57b⊕ 58c⊕ 59b⊕
59c⊕ 5ab⊕ 5bc⊕ 67a⊕ 67b⊕ 689⊕ 68a⊕ 68c⊕ 69c⊕ 6ac⊕ 6bc⊕ 789⊕
78b⊕ 78c⊕ 79a⊕ 9bc

B.2 Invariants under extended-affine equivalence

The functions h6
1 and h8

1, h8
2 describe, up to EA-equivalence, all homogeneous

functions in 6 and 8 variables, respectively. Functions h10
3 and h10

1 are the first
and the second 10-variable functions from [82, p. 15], respectively. Functions h10

2
and h10

4 are representatives of equivalence classes of functions constructed in [35,
p. 149]. Functions h12

i for 1 ≤ i ≤ 5 are representatives of EA-equivalence classes
of functions constructed in [35, p. 149]. Functions h12

6 and h12
7 were constructed

in Section 4.3.

Table B.2. Invariants of the known EA-inequivalent homogeneous cubic bent
functions hn

i on Fn
2 in a small number of variables

B.2(a) 6 ≤ n ≤ 10 variables

hn
i ind(hn

i ) r-ind(hn
i ) dim(FPhn

i
)

h6
1 3 4 3

h8
1 4 4 1

h8
2 4 5 2

h10
1 5 5 1

h10
2 5 5 1

h10
3 4 4 1

h10
4 2 4 0

B.2(b) n = 12 variables

hn
i ind(hn

i ) r-ind(hn
i ) dim(FPhn

i
)

h12
1 6 6 2

h12
2 6 6 2

h12
3 6 7 1

h12
4 6 7 2

h12
5 6 6 0

h12
6 6 ≥7 1

h12
7 6 ≥7 1
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In Table B.2, we use bold font to indicate that a function hn
i on Fn

2 :

• Is outside the completed Maiorana-McFarland class, i.e., ind(hn
i ) < n/2

(the second column).

• Is strongly extendable, i.e., r-ind(hn
i ) < n/2, or weakly extendable, i.e.,

r-ind(hn
i ) = n/2 (the third column).

• Has no affine derivatives, i.e., dim(FPhn
i
) = 0 (the fourth column).

For each homogeneous cubic bent function hn
i ∈ M# on Fn

2 , we list the col-
lectionMn/2(hn

i ) as a |Mn/2(hn
i )| × n/2 matrix in the following way. Each row

of Mn/2(hn
i ) describes the Gauss-Jordan basis of an M-subspace of hn

i . Each
element of a basis is given by 32-base number, which can be converted to the
binary vector of length n using the following alphabet

0 7→ 0, . . . , f 7→ 15, g 7→ 16, . . . , v 7→ 31, (4.16)

which has already been used in Chapter 4 to describe normal flats of homoge-
neous cubic bent functions in 10 variables. Using this conversion, it is possible
to check that the first row of the matrix MS6(h12

3 ) describes the GJB(U) of the
M-subspace U, given in (4.7).

Table B.3. Collections of n/2-dimensional M-subspaces of homogeneous cubic
bent functions hn

i on Fn
2 from the completed Maiorana-McFarland class

hn
i The collectionMSn/2(hn

i )

h10
1

(
o2 4l 2m 1j f

)
h10

2
(

o0 60 12 o 5
)


22r 10m it 8e 66 17
20q 12o in af 4s 1p
21c 10d gs 9n 5r 2e
20b 11u gj 9t 47 33
20v 11k hh 9o 5f 3i


h12

1
h12

2

h12
3  300 gg 88 44 22 11

21u 10v hh 99 55 33
20v 11u hh 99 55 33

h12
4

h12
6

h12
7

h12
5

(
300 gg 88 44 22 11

)
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CCZ-equivalence, 7
EA-equivalence, 7
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(n, m)-Functions

Aut(F) automorphism group of F, 7

D(F) addition design of an (n, m)-bent function F, 43

deg(F) algebraic degree of F, 4

δ(F) differential uniformity of F, 6

∆F differential spectrum of F, 6

GF graph of F, 5

χ̂F Walsh transform of F, 5

ΛF Walsh spectrum of F, 5

|ΛF| extended Walsh spectrum of F, 5

ABn,m set of affine free (n, m)-bent functions, 49

An,m set of (n, m)-affine functions, 49

Bn,m set of (n, m)-bent functions, 8

CF linear code spanned by codewords of RM(1, n) and
the truth table of F, 33

M strict Maiorana-McFarland class of vectorial bent functions, 22

NFv,F set of nonvanishing flats in Fn
2 w.r.t. F and nonzero v ∈ Fm

2 , 78

NFv(F) nonvanishing flats of F w.r.t. nonzero v ∈ Fm
2

(incidence structure), 78

PS ap Desarguesian partial spread class of vectorial bent functions, 25

VF F set of vanishing flats in Fn
2 w.r.t. F, 44

nl(F) nonlinearity of F, 5
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SNF(F) Smith normal form of F, 39

VF (F) vanishing flats of F (incidence structure), 44

Cm
i ≺ Cl

j equivalence class Cm
i of (n, m)-bent functions is contained in

the equivalence class Cl
j of (n, l)-bent functions, 49

DaF first-order derivative of F in direction a ∈ Fn
2 , 6

F, G, H, . . . (n, m)-functions, 2

Fb component function of F w.r.t. b ∈ Fm
2 , 5

ps(F) the number of s-plateaued components of F, 84

Boolean Functions

ind( f ) linearity index of f , 18

FP f set of fast points of f , 28

M f incidence matrix of the incidence structure dev(D f ) of f , 64

N f incidence matrix of the incidence structure dev(G f ) of f , 64

Bn set of Boolean bent functions on Fn
2 , 8

MS( f ) collection ofM-subspaces of f , 20

MS r( f ) collection of r-dimensionalM-subspaces of f , 20

M Maiorana-McFarland class of Boolean bent functions, 17

Mr,s generalized Maiorana-McFarland class of Boolean functions, 18

PS partial spread class of Boolean bent functions, 23

PS+ partial spread class of Boolean bent functions, 23

PS− partial spread class of Boolean bent functions, 23

PS ap Desarguesian partial spread class of Boolean bent functions, 23

RMS( f ) collection of relaxedM-subspaces of f , 116

RMS r( f ) collection of relaxed r-dimensionalM-subspaces of f , 116

M# completed Maiorana-McFarland class of Boolean bent functions, 17

M#
r,s completed generalized Maiorana-McFarland class of Boolean

functions, 18
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r-ind( f ) relaxed linearity index of f , 116

D f support of f , 5

f̃ dual of a Boolean bent function f , 74

f , g, h, . . . Boolean functions, 2

f |U Restriction of f on U ⊆ Fn
2 , 19

fπ,φ Maiorana-McFarland representation of f , 18

General

1G identity element of the finite group G, 30

a, b, c, . . . elements of Fn
2 , 2

Ū complement of the vector space U of Fn
2 , 3

F2n finite field with 2n elements, 4

Fn
2 vector space of dimension n over F2, 2

GJB(U) Gauss-Jordan basis of the vector space U of Fn
2 , 3

GL(m, F2) general linear group of degree m over F2, 58

〈S〉 linear span of the subset S ⊆ Fn
2 , 17

〈·, ·〉m nondegenerate bilinear form on Fm
2 , 5

1S indicator function of a subset S of Fn
2 , 23

A⊗ B Kronecker product of matrices A and B, 3

In identity matrix of order n, 2

Jn all-one-matrix matrix of order n, 2

jn all-one-vector of length n, 2

Or,s all-zero-matrix of size r× s, 2

Or all-zero-matrix of order r, 2

Tr absolute trace function, 4

Trn
m relative trace function, 4

wt Hamming weight (of a vector, codeword, function), 4



152 INDEX

Z[G] integral group ring of the finite group G, 30

dH Hamming distance (between vectors, codewords, functions), 5

Incidence Structures

Aut(S) automorphism group of S, 35

dev(A) development of the subset A ⊆ G of a finite group G, 37

M(S) incidence matrix of S, 35

C(S) linear code of S, 41

SNF(S) Smith normal form of S, 36

S = (P ,B) incidence structure S with the point set P and the block set B, 35

Linear Codes

Aut(C) automorphism group of C, 31

Bw(C) set of supports of codewords of weight w in C, 40

C⊥ dual code of C, 31

P(C) set of coordinate positions of C, 40

RM(r, n) Reed-Muller code of order r and length 2n, 32

ρ(C) covering radius of C, 53

suppt(c) support of the codeword c ∈ C, 40

Ĉ metric complement of C, 53

WC(z) weight enumerator of C, 31
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