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Abstract. We consider the motion of an incompressible viscous fluid that completely covers a smooth,
compact and embedded hypersurface� without boundary and flows along�. Local-in-timewell-posedness
is established in the framework of L p-Lq -maximal regularity. We characterize the set of equilibria as the
set of all Killing vector fields on�, and we show that each equilibrium on� is stable. Moreover, it is shown
that any solution starting close to an equilibrium exists globally and converges at an exponential rate to a
(possibly different) equilibrium as time tends to infinity.

1. Introduction

Suppose � is a smooth, compact, connected, embedded (oriented) hypersurface in
R

d+1 without boundary. Then, we consider the motion of an incompressible viscous
fluid that completely covers � and flows along �.

Fluid equations on manifolds appear in the literature as mathematical models for
various physical and biological processes, for instance in the modeling of emulsions
and biological membranes. The reader may also think of an aquaplanet whose surface
is completely covered by a fluid. The case of a planet with oceans and landmass will
be considered in future work.
Fluid equations on manifolds have also been studied as mathematical problems in

their own right, see for instance [1,4,5,7,8,11,23,24] and the references cited therein.
In this paper, we model the fluid by the ‘surface Navier–Stokes equations’ on �,

using as constitutive law the Boussinesq–Scriven surface stress tensor

T� = T�(u, π) = 2μsD�(u) + (λs − μs)(div�u)P� − πP�, (1.1)

where μs is the surface shear viscosity, λs the surface dilatational viscosity, u the
velocity field, π the pressure, and

D�(u) := 1

2
P�

(
∇�u + [∇�u]T

)
P� (1.2)
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the surface rate-of-strain tensor. Here, P� denotes the orthogonal projection onto the
tangent bundle T� of �, div� the surface divergence, and ∇� the surface gradient.
We refer to Prüss and Simonett [13] and Appendix for more background information
on these objects.
Boussinesq [3] first suggested to consider surface viscosity to account for intrinsic

frictional forces within an interface. Several decades later, Scriven [22] generalized
Boussinesq’s approach to material surfaces having arbitrary curvature. The resulting
tensor is nowadays called the Boussinesq–Scriven stress tensor.
For an incompressible fluid, i.e., div�u = 0, the Boussinesq–Scriven surface tensor

simplifies to
T� = 2μsD�(u) − πP�. (1.3)

We then consider the following surface Navier–Stokes equations for an incompress-
ible viscous fluid

�
(
∂t u + P�(u · ∇�u)

) − P� div� T� = 0 on �

div�u = 0 on �

u(0) = u0 on �,

(1.4)

where � is a positive constant. In the sequel, we will always assume that u0 ∈ T�,
i.e., u0 is a tangential field.

Remark 1.1. Suppose u0 ∈ T�. If (u(t), π(t)) is a (sufficiently) smooth solution to
(1.4) on some time interval [0, T ), then we also have u(t) ∈ T� for all t ∈ [0, T ]. This
can readily be seen by taking the inner product of the first equation in (1.4) with ν�(p),
yielding (∂t u(t, p)|ν�(p)) = 0 for (t, p) ∈ [0, T ) × �, where ν� is the unit normal
field of �. Hence, (u(t, p)|ν�(p)) = (u0(p)|ν�(p)) = 0 for (t, p) ∈ [0, T ) × �.

It will be shown in Appendix that (1.4) can we written in the form

�
(
∂t u + P�(u · ∇�u)

) − μs��u − μs(κ� L� − L2
�)u + ∇�π = 0 on �

div�u = 0 on �

u(0) = u0 on �,

(1.5)
where �� is the (negative) Bochner-Laplacian, κ� the d-fold mean curvature of �

(the sum of the principal curvatures), and L� the Weingarten map. Here, we use the
convention that a sphere has negative mean curvature.
We would like to emphasize that the tensor (κ� L� − L2

�) is an intrinsic quantity.
In fact, we shall show in Proposition A.2 that

κ� L� − L2
� = Ric�

κ� L� − L2
� = K� in case d = 2,

(1.6)

where Ric� is the Ricci tensor and K� the Gaussian curvature of � (the product of
the principal curvatures).



On the Navier–Stokes equations on surfaces

The formulation (1.4) coincides with [7, formula (3.2)]. In that paper, the equations
for the motion of a viscous incompressible fluid on a surface were derived from
fundamental continuummechanical principles. The same equations were also derived
in [8, formula (4.4)], based on global energy principles. We mention that the authors
of [7,8] also consider material surfaces that may evolve in time.

Here, we would like to point out that several formulations for the ‘surface Navier–
Stokes equations’ have been used in the literature, see [4] for a comprehensive discus-
sion, and also [7, Section 3.2]. It turns out that the model based on the Boussinesq–
Scriven surface stress tensor leads to the same equations as, for instance, in [5, Note
added to Proof] and [23]. Indeed, this follows from (1.5)-(1.6) and the relation

��u = �H u + Ric�u, (1.7)

where �H denotes the Hodge Laplacian (acting on 1-forms).
The plan of this paper is as follows. In Sect. 2, we show that kinetic energy is

dissipated by the fluid system (1.4), and we characterize all the equilibrium solutions
of (1.4). It is shown that at equilibrium, the gradient of the pressure is completely
determined by the velocity field. Moreover, it is shown that the equilibrium (that is,
the stationary) velocity fields correspond exactly to the Killing fields of �. We finish
Sect. 2 with some observations concerning the motion of fluid particles in the case of
a stationary velocity field.
In Sect. 3, we prove that the linearization of (1.5) enjoys the property of L p-Lq -

maximal regularity. We rely on results contained in [13, Sections 6 and 7]. Moreover,
we introduce the Helmholtz projection on � and we prove interpolation results for
divergence-free vector fields on �. We then establish local well-posedness of (1.5) in
the (weighted) class of L p-Lq -maximal regularity, see Theorem 3.5.

In Sect. 4, we prove that all equilibria of (1.5) are stable. Moreover, we show
that any solution starting close to an equilibrium exists globally and converges at an
exponential rate to a (possibly different) equilibrium as time tends to infinity. In order
to prove this result, we show that each equilibrium is normally stable. Let us recall that
the set of equilibria E coincides with the vector space of all Killing fields on �. It then
becomes an interesting question to know how many Killing fields a given manifold
can support. In Sect. 4.1, we include some remarks about the dimension of E and we
discuss some examples.
In forthcoming work, we plan to use the techniques introduced in this manuscript

to study the Navier–Stokes equations on manifolds with boundary.
We would like to briefly compare the results of this paper with previous results by

other authors. Existence of solutions for the Navier–Stokes equations (1.5) has already
been established in [23], see also [11] and the comprehensive list of references in [4].
The authors in [11,23] employ techniques of pseudo-differential operators, and they
make use of the property that the Hodge Laplacian commutes with the Helmholtz
projection. Under the assumption that the spectrum of the linearization is contained in
the negative real axis, stability of the zero solution is shown in [23]. The author remarks
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that this assumption implies that the isometry group of � is discrete. In contrast, our
stability result in Theorem 4.3 applies to any manifold.

The Boussinesq–Scriven surface stress tensor has also been employed in the situa-
tion of two incompressible fluids which are separated by a free surface, where surface
viscosity (accounting for internal frictionwithin the interface) is included in themodel,
see [2].
Finally,wemention [7,12,18,19] and the references contained therein for interesting

numerical investigations. These authors also observed that the equilibria velocities
correspond to Killing fields.

2. Energy dissipation and equilibria

In the following, we set � = 1. Let

E(t) :=
∫

�

1

2
|u(t)|2 d� (2.1)

be the (kinetic) energy of the fluid system. We show that the energy is dissipated by
the fluid system (1.4).

Proposition 2.1. Suppose (u, π) is a sufficiently smooth solution of (1.4) with initial
value u0 ∈ T�, defined on some interval (0, T ). Then,

d

dt
E(t) = −2μs

∫

�

|D�(u(t))|2 d�, t ∈ (0, T ). (2.2)

Proof. By Remark 1.1, we know that u(t) ∈ T� for each t ∈ (0, T ). In order not to
overburden the notation, we suppress the variables (t, p) ∈ (0, T )×� in the following
computation. It follows from (A.17) and Lemma A.1 that

(
P�(u · ∇�u)

∣∣u) = 1

2

(∇� |u|2∣∣u)
,

(
P�div�(πP�)

∣∣u) = (∇�π |u),

(
div�D�(u)

∣∣u) = div�(D�(u)u) − |D�(u)|2,
where (·|·) denotes the Euclidean inner product. Hence, the surface divergence theo-
rem (A.14) and the relation div�u = 0 yield

d

dt
E(t) =

∫

�

(∂t u|u) d�

=
∫

�

(−(
P�(u · ∇�u)

∣∣u) + 2μs
(
P�div�D�(u)

∣∣u)

− (
P�div�(πP�)

∣∣u))
d�

= −2μs

∫

�

|D�(u)|2.

�
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We now characterize the equilibria of (1.4). It will turn out that at equilibrium,
the gradient of the pressure is completely determined by the velocity. Moreover, the
equilibrium velocity fields correspond exactly to the Killing fields of �.

Proposition 2.2.

(a) Let E := {(u, π) ∈ C2(�,T�) × C1(�) : (u, π) is an equilibrium for (1.4)}.
Then,

E =
{
(u, π) : div�u = 0, D�(u) = 0, π = 1

2
|u|2 + c

}
,

where c is an arbitrary constant.
(b) Suppose D�(u) = 0 for u ∈ C1(�,T�). Then, div�u = 0.
(c) The C1-tangential fields satisfying the relation D�(u) = 0 correspond exactly

to the Killing fields of �.

Proof. (a) Suppose (u, π) is an equilibrium of (1.4). By the second line in (1.4),
div�u = 0. It follows from Proposition 2.1 that D�(u) = 0 and the first line
in (1.4) then implies

P�(u · ∇�u) + ∇�π = 0.

This, together with D�(u) = 0 and Lemma A.1(b),(c), yields

∇�π = −P�(u · ∇�u) = −P�((∇�u)Tu) = P�((∇�u)u) = 1

2
∇� |u|2.

Analogous arguments show that the inverse implication also holds true.
(b) This is a direct consequence of (A.17)3.
(c) This follows from Remark A.3(e).

�
Suppose that (u, π) is an equilibrium solution of (1.4). Then, we point out the

following interesting observation.
Let γ (s) be the trajectory of a fluid particle on �. Then, γ satisfies the differential

equation
γ̇ (s) = u(γ (s)), s ∈ R, γ (0) = γ0 ∈ �.

Using the assertion in Proposition 2.2(a), we obtain

d

ds
(π ◦ γ )(s) = (∇�π

∣∣u)
(γ (s)) = 1

2

(∇� |u|2∣∣u)
(γ (s))

= (
(∇�u)Tu

∣∣u)
(γ (s)) = (

D�(u)u
∣∣u)

(γ (s)) = 0,

as D�(u) = 0. Hence, π is constant along stream lines of the flow.
Furthermore,

γ̈ (s) = u(γ (s)) · ∇�u(γ (s)) = ui (γ (s))(∂i u)(γ (s))

= ui (γ (s))(∂i u j − �k
i j uk)(γ (s))τ j (γ (s)) + (l j

i ui u j )(γ (s))ν�(γ (s))

= [P�(u · ∇�u)](γ (s)) + [(L�u|u)ν�](γ (s)).
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A short computation shows that

(∇� P�)u = l j
i (τ j ⊗ ν�)ui ,

for tangential vector fields u, hence (u|∇� P�u) = (L�u|u)ν� . Therefore, we obtain
the relation

γ̈ (s) = [P�(u · ∇�u)](γ (s)) + [(u|∇� P�u)](γ (s))

= −[∇�π ](γ (s)) + [(u|∇� P�u)](γ (s)),
(2.3)

since ∇�π = −P�(u · ∇�u) in an equilibrium. Let us compare this ODE with the
following second-order system with constraints:

ẍ = f (x, ẋ), g(x) = 0.

Here, f : Rd → R
d and g : Rd → R

d−m are smooth with rank g′(x) = d − m
for each x ∈ g−1(0). In general, the ODE ẍ = f (x, ẋ) does not leave � := g−1(0)
invariant. However, it can be shown that themovement of a particle under the constraint
g(x) = 0 in the force field f is governed by the ODE

ẍ = P�(x) f (x, ẋ) + (ẋ |∇� P�(x)ẋ). (2.4)

In other words, the effective force field is the sum of the tangential part of f on � and
the constraint force (ẋ |∇� P�(x)ẋ), which results from the geodesic flow, see also
[17, Section 13.5].
Observe that the structure of (2.3) and (2.4) is the same. Of course, in our situation,

it follows from the ODE γ̇ = u(γ ) that γ (s) ∈ �, γ̇ (s) ∈ Tγ (s)�, provided γ (0) =
γ0 ∈ �, since u is a tangential vector field on �.
Finally, note that the energy E(s) := 1

2 |γ̇ (s)|2 +π(γ (s)) is conserved, i.e., Ė(s) =
0, since (u|∇� P�u) is perpendicular to T� and γ̇ ∈ T�. This known as Bernoulli’s
principle.

3. Existence of solutions

In this section, we show that there exists a unique solution

u ∈ H1
p,μ((0, a); Lq(�,T�)) ∩ L p,μ((0, a); H2

q (�,T�)),

π ∈ L p,μ((0, a); Ḣ1
q (�))

of (1.4) resp. (1.5) for some suitable number a > 0. To this end, we first consider the
principal linearization of (1.5) and show that the corresponding linear operator has
L p-Lq -maximal regularity in suitable function spaces. This will enable us to apply
the contraction mapping principle to prove the existence and uniqueness of a strong
solution to (1.5).



On the Navier–Stokes equations on surfaces

3.1. The principal linearization

We consider the following linear problem

∂t u + ωu − μs��u + ∇�π = f on �

div�u = g on �

u(0) = u0 on �,

(3.1)

where ω > 0. Here and in the sequel, we assume without loss of generality that � = 1.
The main result of this section reads as follows.

Theorem 3.1. Suppose � is a smooth, compact, connected, embedded (oriented) hy-
persurface in R

d+1 without boundary and let 1 < p, q < ∞, μ ∈ (1/p, 1]. Then,
there exists ω0 > 0 such that for each ω > ω0, problem (3.1) admits a unique solution

u ∈ H1
p,μ(R+; Lq(�,T�)) ∩ L p,μ(R+; H2

q (�,T�)) =: E1,μ(�),

π ∈ L p,μ(R+; Ḣ1
q (�)),

if and only if the data ( f, g, u0) are subject to the following conditions

(1) f ∈ L p,μ(R+; Lq(�,T�)) =: E0,μ(�)

(2) g ∈ L p,μ(R+; H1
q (�)), g ∈ H1

p,μ(R+; Ḣ−1
q (�))

(3) u0 ∈ B2μ−2/p
qp (�,T�)

(4) g(0) = div�u0.

Moreover, the solution (u, π) depends continuously on the given data ( f, g, u0) in the
corresponding spaces.

Remark 3.2.

(a) In Theorem 3.1, we use the notations

Ḣ1
q (�) := {w ∈ L1,loc(�) : ∇�w ∈ Lq(�,T�)}, Ḣ−1

q (�) := (Ḣ1
q ′(�))∗

and we identify g with the functional [φ �→ ∫
�

gφ d�] on Ḣ1
q ′(�).

(b) Note that the assumption g ∈ Ḣ−1
q (�) includes the condition

∫
�

g d� = 0.

(c) The assertion π ∈ L p,μ(R+; Ḣ1
q (�)) means that π is unique up to a constant.

(d) Necessity of the conditions (1)–(4) in Theorem 3.1 is well known, we refer the
reader, e.g., to the monograph [13, Chapter 7].

3.2. Pressure Regularity

It is a remarkable fact that the pressure π has additional time-regularity in some
special cases.

Proposition 3.3. In the situation of Theorem 3.1, assume further

u0 = 0, g = 0, div� f = 0 on �.
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Then, P0π ∈ 0Hα
p,μ(R+; Lq(�)), for α ∈ (0, 1/2], where

P0v := v − 1

|�|
∫

�

v d�

for v ∈ L1(�). Furthermore, there exists a constant C > 0 such that the estimate

|P0π |L p,μ(Lq (�)) ≤ C |u|L p,μ(H1
q (�))

is valid.

Proof. Let φ ∈ Lq ′(�), 1/q + 1/q ′ = 1 and solve the equation

�L
�ψ = P0φ on �.

Here, �L
� denotes the (scalar) Laplace-Beltrami operator on �. This yields a unique

solution ψ ∈ H2
q ′(�) with

|∇�ψ |Lq′ (�) + |∇2
�ψ |Lq′ (�) ≤ C |φ|Lq′ (�).

This follows, for instance, from [13, Theorem 6.4.3 (i)], and the fact 0 is in the re-
solvent set of �L

� , acting on functions with zero average. We then obtain from the
surface divergence theorem (A.14), (A.17), Proposition A.2 (a), and the fact that
(div� f, g) = 0

(π |P0φ)� = (π |�L
�ψ)� = (π |div�(∇�ψ))� = −(∇�π |∇�ψ)�

= (∂t u + ωu − f |∇�ψ)� − μs(��u|∇�ψ)�

= μs((κ� L� − L2
�)u|∇�ψ)� − 2μs(P�div�D�(u)|∇�ψ)�

= μs((κ� L� − L2
�)u|∇�ψ)� + 2μs

∫

�

D�(u) : ∇2
�ψ d�,

where (·|·)� denotes the inner product in L2(�) or L2(�,T�).

Noting that D�(u) ∈ 0H1/2
p,μ(R+; Lq(�)), we may apply the fractional time-

derivative ∂α
t to the result

(∂α
t π |P0φ)� = μs((κ� L� − L2

�)∂α
t u|∇�ψ)� + 2μs

∫

�

∂α
t D�(u) : ∇2

�ψ d�,

since ∂α
t and L� commute. This yields the claim. �

Without loss of generality, we may always assume that (div� f, g, u0) = 0. To see
this, let (u, π) be a solution of (3.1) and solve the parabolic problem

∂tv + ωv − μs��v = f on �

v(0) = u0 on �,
(3.2)
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by [13, Theorem 6.4.3 (ii)] to obtain a unique solution v ∈ E1,μ(�). Next, we solve
�L

�� = div�v − g in Ḣ−1
q (�) by [13, Theorem 6.4.3 (i)] to obtain a solution � such

that ∇�� is unique with regularity

∇�� ∈ 0H1
p,μ(R+; Lq(�,T�)) ∩ L p,μ(R+; H2

q (�,T�)).

Note that ∇��(0) = 0 by the compatibility condition div�u0 = g(0). Define

ũ = u − v + ∇�� and π̃ = π − (∂t + ω)� + ψ,

where ∇�ψ ∈ Lq(�,T�) is the unique solution of

(∇�ψ |∇�φ)� = μs(��∇��|∇�φ)�, φ ∈ Ḣ1
q ′(�).

Then, (ũ, π̃) solves (3.1) with (div� f, g, u0) = 0.
Of course, the converse is also true. If (ũ, π̃) solves (3.1) with (div� f, g, u0) = 0,

then one may construct a solution (u, π) of (3.1) with prescribed data ( f, g, u0) being
subject to the conditions in Theorem 3.1, by reversing the above procedure.

3.3. Localization

In this subsection, we prove the existence and uniqueness of a solution to (3.1). We
start with the proof of uniqueness. To this end, let (u, π) be a solution of (3.1) with
(div� f, g, u0) = 0.
By compactness of �, there exists a family of charts {(Uk, ϕk) : k ∈ {1, . . . , N }}

such that {Uk}N
k=1 is an open covering of �. Let {ψk}N

k=1 ⊂ C∞(�) be a partition of
unity subordinate to the open covering {Uk}N

k=1. Note that without loss of generality,
we may assume that ϕk(Uk) = BRd (0, r). We call {(Uk, ϕk, ψk) : k ∈ {1, . . . , N }} a
localization system for �.
Let {τ(k) j (p)}d

j=1 denote a local basis of the tangent space Tp� of � at p ∈ Uk

and denote by {τ j
(k)(p)}d

j=1 the corresponding dual basis of the cotangent space T
∗
p�

at p ∈ Uk . Accordingly, we define gi j
(k) = (τ i

(k)|τ j
(k)) and g(k)i j is defined in a very

similar way, see also Appendix. Then, with ū = u ◦ ϕ−1
k , π̄ = π ◦ ϕ−1

k and so on,
the system (3.1) with respect to the local charts (Uk, ϕk), k ∈ {1, . . . , N }, reads as
follows.

∂t ū
�
(k) + ωū�

(k) − μs ḡi j
(k)∂i∂ j ū

�
(k) + ḡi�

(k)∂i π̄(k) = f̄ �
(k) + F�

(k)(ū, π̄) in R
d

∂i ū
i
(k) = H(k)(ū) in R

d

ū�
(k)(0) = 0 in R

d ,

(3.3)

where

ū�
(k) = (ūψ̄k |τ̄ �

(k)), π̄(k) = π̄ ψ̄k,

f̄ �
(k) = ( f̄ ψ̄k |τ̄ �

(k)), F�
(k)(ū, π̄) = π̄ ḡi�

(k)∂i ψ̄k + (B(k)ū|τ̄ �
(k)), (3.4)
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� ∈ {1, . . . , d}, B(k) is a linear differential operator of order one and

H(k)(ū) = ūi∂i ψ̄k − ū j
(k)(τ̄

i
(k)|∂i τ̄(k) j ).

Here, upon translation and rotation, ḡi j
(k)(0) = δi

j and the coefficients have been

extended in such a way that |ḡi j
(k) − δi

j |L∞(Rd ) ≤ η, where η > 0 can be made as small
as we wish, by decreasing the radius r > 0 of the ball BRd (0, r).
In order to handle system (3.3), we define vectors in Rd as follows:

ū(k) := (ū1
(k), . . . , ūd

(k)), f̄(k) := ( f̄ 1(k), . . . , f̄ d
(k))

and

F(k)(ū, π̄) := (F1
(k)(ū, π̄), . . . , Fd

(k)(ū, π̄)).

Moreover, we define the matrix G(k) = (ḡi j
(k))

d
i, j=1 ∈ R

d×d . With these notations,
system (3.3) reads as

∂t ū(k) + ωū(k) − μs(G(k)∇|∇)ū(k) + G(k)∇π̄(k) = f̄(k) + F(k)(ū, π̄) in R
d

div ū(k) = H(k)(ū) in R
d

ū(k)(0) = 0 in R
d .

(3.5)
For each k ∈ {1, . . . , N }, we define operators Lk,ω by the first two lines on the left
side of (3.5). Then, each operator is invertible and bounded. This can be seen by
first freezing the coefficients at x = 0, leading to full-space Stokes problems, which
enjoy the property of L p-Lq -maximal regularity by [13, Theorem 7.1.1]. Secondly, a
Neumann series argument yields the claim, since G(k) is a perturbation of the identity
in Rd×d . With the operator Lk,ω at hand, we may rewrite (3.5) in the more condensed
form

Lk,ω(ū(k), π̄(k)) = (F(k), H(k)) + ( f̄(k), 0),

Next, we remove the term H(k), since it is not of lower order. For that purpose, solve the
equation div(G(k)∇φk) = H(k)(ū). Since

∫
Rd H(k)(ū)dx = 0 (H(k)(ū) is compactly

supported), there exists a solution φk such that ∇φk is unique, with regularity

∇φk ∈ 0H1
p,μ(R+; H1

q (Rd)d) ∩ L p,μ(R+; H3
q (Rd)d).

Moreover, we have the estimates

|∇φk |L p,μ(H1
q (Rd )) ≤ C |ū|E0,μ(Rd )

|∇φk |E1,μ(Rd ) + |∇2φk |E1,μ(Rd ) ≤ C |ū|E1,μ(Rd )

|∇φk |L p,μ(H2
q (Rd )) ≤ Cω−1/2(ω|ū|E0,μ(Rd ) + |ū|E1,μ(Rd )),

(3.6)
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see also [13, (7.41)]. Define

ũ(k) = ū(k) − G(k)∇φk − u0
(k) and π̃(k) = π̄(k) + (∂t + ω)φk − �k − π0

(k),

where (u0
(k), π

0
(k)) = L−1

k,ω( f̄(k), 0) and �k satisfies div(G(k)∇�k) = divF̃(k)(ū, π̄) in

Ḣ−1
q (Rd), with

F̃(k)(ū, π̄) := F(k)(ū, π̄) + μs(G(k)∇|∇)(G(k)∇φk).

The couple (ũ(k), π̃(k)) then solves the equation

Lk,ω(ũ(k), π̃(k)) = (F̃(k)(ū, π̄) − G(k)∇�k, 0).

We note on the go that div(F̃(k)(ū, π̄) − G(k)∇�k) = 0 and that the pressure π̃(k)

enjoys additional time regularity. This can be seen exactly as in the proof of [13,
Proposition 7.3.5 (ii)] with an obvious modification concerning the matrix G(k). In
particular, there exists a constant C > 0, such that

|P0π̃(k)|L p,μ(Lq (B
Rd (0,r))) ≤ C |ũ(k)|L p,μ(H1

q (Rd )). (3.7)

Let us now introduce a norm for the solution, taking the parameter ω into account.
Set

‖(ū(k), π̄(k))‖ω = ω|ū(k)|E0,μ(Rd ) + |ū(k)|E1,μ(Rd ) + |∇π̄(k)|E0,μ(Rd ),

and similarly for ‖(u, π)‖ω on �.
For each k ∈ {1, . . . , N }, there exists ω0 > 0 such that the operator Lk,ω has the

property of L p-Lq -maximal regularity, provided ω > ω0. In particular, there exists a
constant C > 0 such that

‖(u0
(k), π

0
(k))‖ω ≤ C | f̄(k)|E0,μ(Rd ) ≤ C | f |E0,μ(�)

and

‖(ũ(k), π̃(k))‖ω ≤ Cω−γ ‖(u, π)‖ω,

where for the last inequality, we made use of Proposition 3.3, implying the estimate

‖π̄G(k)∇ψ̄k‖E0,μ(Rd ) ≤ Cω−γ (ω|u|E0,μ(�) + |u|E1,μ(�)),

for some constant γ > 0, by interpolation between

L p,μ(R+; Lq(�)) and L p,μ(R+; H2
q (�)).

In the same way, making also use of (3.6) and the definition of �k , we obtain

|∇�k |E0,μ(Rd ) ≤ Cω−γ ‖(u, π)‖ω.
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Furthermore, we have

|(∂t + ω)φk |E0,μ(B
Rd (0,r)) ≤ |π̃(k)|E0,μ(B

Rd (0,r)) + |π̄(k)|E0,μ(B
Rd (0,r))

+ |π0
(k) + �k |E0,μ(B

Rd (0,r))

≤ |π̃(k)|E0,μ(B
Rd (0,r)) + |π̄(k)|E0,μ(B

Rd (0,r))

+ C(|∇π0
(k)|E0,μ(B

Rd (0,r)) + |∇�k |E0,μ(B
Rd (0,r)))

≤ C(| f |E0,μ(�) + ω−γ ‖(u, π)‖ω),

by (3.7), Proposition 3.3 for π̄ and the Poincaré inequality for π0
(k) and �k , since we

may assume without loss of generality, that π0
(k) as well as �k have mean value zero

on BRd (0, r). By interpolation with (3.6), this yields

|(∂t + ω)∇φk |E0,μ(B
Rd (0,r)) ≤ C(| f |E0,μ(�) + ω−γ /2‖(u, π)‖ω).

In conclusion, we obtain the estimate

‖χ̄k(ū(k), π̄(k))‖ω ≤ C(| f |E0,μ(�) + ω−γ ‖(u, π)‖ω)

valid for each k ∈ {1, . . . , N } and C > 0 does not depend on ω > 0. Here, {χk}N
k=1 ⊂

C∞(�) such that χk = 1 on supp(ψk) and supp(χk) ⊂ Uk . As usual, we have set
χ̄k = χk ◦ ϕ−1

k .
For the components ū�

(k) ◦ ϕk of the vector ū(k) ◦ ϕk ∈ R
d , we derive from (3.4)

ū�
(k) ◦ ϕk = (uψk |τ �

(k)) = (u jτ(k) jψk |τ �
(k)) = u�ψk,

hence

u =
N∑

k=1

ψku =
N∑

k=1

ψku�τ(k)� =
N∑

k=1

(ū�
(k)τ̄(k)�) ◦ ϕk .

Since χk = 1 on supp(ψk), this finally yields the estimate

‖(u, π)‖ω ≤ C(| f |E0,μ(�) + ω−γ ‖(u, π)‖ω)

valid for all ω > ω0. Choosing ω0 > 0 sufficiently large, we conclude

‖(u, π)‖ω ≤ C | f |E0,μ(�).

This in turn implies uniqueness of a solution to (3.1).
It remains to prove the existence of a solution to (3.1). To this end, we may assume

that (div� f, g, u0) = 0. Solve the parabolic problem

∂tv + ωv − μs��v = f on �

v(0) = 0 on �,
(3.8)
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by [13, Theorem 6.4.3 (ii)] to obtain a unique solution v ∈ 0E1,μ(�). Next, we solve
�L

�φ = div�v by [13, Theorem 6.4.3 (i)] to obtain a solution φ such that ∇�φ is
unique with regularity

∇�φ ∈ 0H1
p,μ(R+; Lq(�,T�)) ∩ L p,μ(R+; H2

q (�,T�)).

Define ũ = v − ∇�φ and π̃ = (∂t + ω)φ. It follows that

Lω(ũ, π̃) = f + μs��∇�φ,

where

Lω : {u ∈ 0E1,μ(�) : div�u = 0} × L p,μ(R+; Ḣ1
q (�)) → E0,μ(�)

is defined by

Lω(u, π) = ∂t u + ωu − μs��u + ∇�π.

Making use of local coordinates, one can show that

��∇�φ = ∇��L
�φ + A�φ,

where A� is a second-order operator. Setting û = ũ, π̂ = π̃ − μs�
L
�φ and S f :=

(û, π̂), we obtain

LωS f = Lω(û, π̂) = f + R f,

with R f := μsA�φ. Since A� is of second order, this yields

|R f |E0,μ(�) = |μsA�φ|E0,μ(�) ≤ C |φ|L p,μ(R+;H2
q (�))

= |(�L
�)−1�L

�φ|L p,μ(R+;H2
q (�)) ≤ C |div�v|E0,μ(�)

≤ ω−1/2C | f |E0,μ(�),

where the constant C > 0 does not depend on ω. We note that (�L
�)−1, acting on

functions with average zero, is well defined. A Neumann series argument implies
that (I + R) is invertible provided ω > 0 is sufficiently large. Hence, the operator
S(I + R)−1 is a right inverse for Lω, whichmeans that Lω is surjective. This completes
the proof of Theorem 3.1.

3.4. The surface Stokes operator

By Proposition A.2, P�div�D�(u) is a lower perturbation of ��u if div�u is
prescribed. This implies the following result for the system

∂t u + ωu − 2μsP�div�D�(u) + ∇�π = f on �

div�u = g on �

u(0) = u0 on �.

(3.9)
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Corollary 3.4. Under the assumptions in Theorem 3.1, there exists ω0 > 0 such that
for each ω > ω0, problem (3.9) admits a unique solution

u ∈ H1
p,μ(R+; Lq(�,T�)) ∩ L p,μ(R+; H2

q (�,T�)), π ∈ L p,μ(R+; Ḣ1
q (�)),

if and only if the data ( f, g, u0) are subject to the conditions (1)–(4) in Theorem 3.1.
Moreover, the solution (u, π) depends continuously on the given data ( f, g, u0) in the
corresponding spaces.

Proof. Without loss of generality, we may assume (div� f, g, u0) = 0. With the
operator Lω defined above, we rewrite (3.9) as

(u, π) = L−1
ω f + μs L−1

ω (κ� L� − L2
�)u.

For the term of order zero on the right hand side, we have the estimate

|(κ� L� − L2
�)u|E0,μ(�) ≤ ω−1C‖(u, π)‖ω,

where C > 0 does not depend on ω > 0. By Theorem 3.1, the solution depends
continuously on the data; hence, there exists a constant M = M(ω0) > 0 such that

‖L−1
ω (κ� L� − L2

�)u‖ω ≤ M |(κ� L� − L2
�)u|E0,μ(�) ≤ ω−1MC‖(u, π)‖ω.

Therefore, a Neumann series argument yields the claim, ifω > 0 is chosen sufficiently
large. �
We will now define the Stokes operator on surfaces. Let PH,� denote the surface

Helmholtz projection, defined by

PH,�v := v − ∇�ψ, v ∈ Lq(�,T�),

where ∇�ψ ∈ Lq(�,T�) is the unique solution of

(∇�ψ |∇�φ)� = (v|∇�φ)�, φ ∈ Ḣ1
q ′(�).

We note that (PH,�u|v)� = (u|PH,�v)� for all u ∈ Lq(�,T�), v ∈ Lq ′(�,T�),
which follows directly from the definition of PH,� (and for smooth functions from
the surface divergence theorem (A.14)). Define

X0 := Lq,σ (�,T�) := PH,� Lq(�,T�)

and X1 := H2
q (�,T�) ∩ Lq,σ (�,T�). The surface Stokes operator is defined by

AS,�u := −2μs PH,�P�div�D�(u), u ∈ D(AS,�) := X1. (3.10)

We would also like to refer to the survey article [6] for the Stokes operator in various
other geometric settings.
Making use of the projection PH,� , (3.9) with (div� f, g) = 0 is equivalent to the

equation
∂t u + ωu + AS,�u = f, t > 0, u(0) = u0. (3.11)

By Corollary 3.4, the operator AS,� has L p-maximal regularity, hence −AS,� gener-
ates an analytic C0-semigroup in X0, see for instance [13, Proposition 3.5.2].
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3.5. Interpolation spaces

In this subsection, we will determine the real and complex interpolation spaces
(X0, X1)α,p and (X0, X1)α , respectively.To this end, let A�u := −2μsP�div�D�(u)

with domain D(A�) := H2
q (�,T�) and define a linear mapping Q on D(A�) by

Q = (ω + AS,�)−1PH,�(ω + A�),

for some fixed and sufficiently large ω > 0.
Then, Q : D(A�) → X1 is a bounded projection, as Qu ∈ X1 and

Q2u = (ω + AS,�)−1PH,�(ω + A�)Qu = (ω + AS,�)−1(ω + AS,�)Qu = Qu,

for all u ∈ D(A�). Furthermore, Q|X1 = IX1 and therefore Q : D(A�) → X1 is
surjective. By a duality argument, there exists some constant C > 0 such that

‖Qu‖Lq (�) ≤ C‖u‖Lq (�) (3.12)

for all u ∈ D(A�). In fact,

(Qu|φ)� = ((ω + AS,�)−1PH,�(ω + A�)u|φ)�

= (PH,�(ω + AS,�)−1PH,�(ω + A�)u|φ)�

= (PH,�(ω + A�)u|(ω + AS,�)−1PH,�φ)�

= (u|(ω + A�)(ω + AS,�)−1PH,�φ)�

implies

|(Qu|φ)� | ≤ C‖u‖Lq (�)‖φ‖Lq′ (�)

for all u ∈ D(A�) and φ ∈ Lq ′(�,T�), with

C := ‖(ω + A�)(ω + AS,�)−1PH,�‖B(Lq′ (�);Lq′ (�)) > 0.

Since D(A�) is dense in Lq(�,T�), there exists a unique bounded extension Q̃ :
Lq(�,T�) → X0 of Q. Clearly, Q̃ is a projection and as X1 is dense in X0, Q̃|X0 =
IX0 .
It follows that

Lq(�,T�) = X0 ⊕ N (Q̃) and D(A�) = X1 ⊕ [D(A�) ∩ N (Q̃)]
since Q̃ D(A�) = D(A�) ∩ R(Q̃) = D(AS,�) = X1. Moreover, with the help of the
projection Q̃ and the relation R(Q̃) = Lq,σ (�,T�), we may now compute

(X0, X1)α = (Q̃Lq(�,T�), Q̃ D(A�))α

= Q̃(Lq(�,T�), D(A�))α = H2α
q (�,T�) ∩ Lq,σ (�,T�)

as well as

(X0, X1)α,p = (Q̃Lq(�,T�), Q̃ D(A�))α,p

= Q̃(Lq(�,T�), D(A�))α,p = B2α
qp (�,T�) ∩ Lq,σ (�,T�)

for α ∈ (0, 1) and p ∈ (1,∞), see [25, Theorem 1.17.1.1].
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3.6. Nonlinear well-posedness

We will show that there exists a unique local-in-time solution to (1.5). Observe that
the semilinear problem (1.5) is equivalent to the abstract semilinear evolution equation

∂t u + AS,�u = F�(u), t > 0, u(0) = u0, (3.13)

where F�(u) := −PH,�P�(u · ∇�u). In order to solve this equation in the maximal
regularity class E1,μ(�), we will apply Theorem 2.1 in [9]. To this end, let q ∈ (1, d)

and

μc := 1

2

(
d

q
− 1

)
+ 1

p
, (3.14)

with 2/p + d/q < 3, so that μc ∈ (1/p, 1). We will show that for each μ ∈ (μc, 1]
there exists β ∈ (μ − 1/p, 1) with 2β − 1 < μ − 1/p such that F� satisfies the
estimate

|F�(u) − F�(v)|X0 ≤ C(|u|Xβ + |v|Xβ )||u − v|Xβ (3.15)

for all u, v ∈ Xβ := (X0, X1)β,p.
By Hölders inequality, the estimate

|F�(u)|Lq (�,T�) ≤ C |u|Lqr ′ (�,T�)|u|H1
qr (�,T�)

holds. We choose r, r ′ ∈ (1,∞) in such a way that

1 − d

qr
= − d

qr ′ or equivalently
d

qr
= 1

2

(
1 + d

q

)
,

which is feasible if q ∈ (1, d). Next, by Sobolev embedding, we have

(X0, X1)β,p ⊂ B2β
qp (�,T�) ↪→ H1

qr (�,T�) ∩ Lqr ′(�,T�),

provided

2β − d

q
> 1 − d

qr
or equivalently β >

1

4

(
d

q
+ 1

)
.

The condition β < 1 requires q > d/3, hence q ∈ (d/3, d). Note that

1

2

(
d

q
+ 1

)
− 1 < μ − 1/p,

since μ > μc. This implies that 1 > β > (d/q + 1)/4 can be chosen in such a way
that the inequalities 2β − 1 < μ − 1/p and μ − 1/p < β are satisfied.

In case q ≥ d, we may choose any μ ∈ (1/p, 1], since
B2β

qp (�,T�) ↪→ H1
q (�,T�) ∩ L∞(�,T�),

provided 2β > 1.
Since F� is bilinear, it follows that the estimate (3.15) holds and, moreover, that

F� ∈ C∞(Xβ, X0). Therefore, Theorem 2.1 in [9] yields the following result.
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Theorem 3.5. Let p, q ∈ (1,∞). Suppose that one of the following conditions holds:

(a) q ∈ (d/3, d), 2/p + d/q < 3 and μ ∈ (μc, 1], where μc is defined in (3.14).
(b) q ≥ d and μ ∈ (1/p, 1].

Then, for any initial value u0 ∈ B2μ−2/p
qp (�,T�) ∩ Lq,σ (�,T�), there exists a

number a = a(u0) > 0 such that (1.5) admits a unique solution

u ∈ H1
p,μ((0, a); Lq(�,T�)) ∩ L p,μ((0, a); H2

q (�,T�)),

π ∈ L p,μ((0, a); Ḣ1
q (�)).

Moreover,

u ∈ C([0, a]; B2μ−2/p
qp (�,T�)) ∩ C((0, a]; B2−2/p

qp (�,T�)).

Remark 3.6.

(a) The number μc ∈ (1/p, 1] defined in (3.14) is called the critical weight and
was introduced in [14–16]. It has been shown in [14] that the ‘critical spaces’
(X0, X1)μc−1/p,p correspond to scaling invariant spaces in case the underlying
equations enjoy scaling invariance.

(b) In future work, we plan to show that AS,� has a bounded H∞-calculus. Then,
onemay setμ = μc in Theorem 3.5, thereby obtainingwell-posedness in critical
spaces.

(c) In case d = 2, global existence has been obtained byTaylor [23, Proposition 6.5].
An alternative proof can be based on the approach via critical spaces mentioned
above.

4. Stability of equilibria, examples

Consider the semilinear evolution equation

∂t u + AS,�u = F�(u), t > 0, u(0) = u0, (4.1)

in X0 = Lq,σ (�,T�). Define the set

E := {u∗ ∈ H2
q (�;T�) : div�u∗ = 0, D�(u∗) = 0}. (4.2)

We show that the set E corresponds exactly to the set of equilibria for (4.1). To this
end, let u∗ be an equilibrium of (4.1), i.e., u∗ ∈ X1 satisfies AS,�u∗ = F�(u∗).
Multiplying this equation by u∗ and integrating over � yields

0 = 2μs(div�D�(u∗)|u∗)� + (u∗ · ∇�u∗|u∗)�.

By Lemma A.1 and the surface divergence theorem (A.14), the last term vanishes,
since div�u∗ = 0. Furthermore, (A.17) and again (A.14) show that

(div�D�(u∗)|u∗)� = −
∫

�

|D�(u∗)|2 d�,
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which implies D�(u∗) = 0, hence u∗ ∈ E .
Conversely, let u∗ ∈ E be given. Then, AS,�u∗ = 0 and from Lemma A.1, we

obtain that

F�(u∗) = −PH,�P�(u∗ · ∇�u∗) = 1

2
PH,�(∇� |u∗|2) = 0.

Summarizing, we have shown that

E = {u∗ ∈ H2
q (�;T�) : div�u∗ = 0, AS,�u∗ = F�(u∗)}.

Observe that the set E is a linear manifold, consisting exactly of the Killing fields on
�, see Remark A.3.
Define an operator A0 : X1 → X0 by

A0v = AS,�v − F ′
�(u∗)v, (4.3)

where F ′
�(u∗)v := −PH,�P� (v · ∇�u∗ + u∗ · ∇�v). This operator is the full lin-

earization of (4.1) at the equilibrium u∗ ∈ E . We collect some properties of A0 in the
following

Proposition 4.1. Suppose u∗ ∈ E and let A0 be given by (4.3). Then −A0 generates a
compact analytic C0-semigroup in X0 which has L p-maximal regularity. The spectrum
of A0 consists only of eigenvalues of finite algebraic multiplicity and the kernel N (A0)

is given by

N (A0) = {u ∈ H2
q (�,T�) : div�u = 0, D�(u) = 0}.

If E �= {0}, then u∗ ∈ E is normally stable, i.e.,

(i) Re σ(−A0) ≤ 0 and σ(A0) ∩ iR = {0}.
(ii) λ = 0 is a semi-simple eigenvalue of A0.
(iii) The kernel N (A0) is isomorphic to Tu∗E .

In case E = {0}, it holds that Re σ(−A0) < 0.

Proof. By Sect. 3.4, the surface Stokes operator AS,� has the property of L p-maximal
regularity in X0, hence −AS,� isR-sectorial in X0. Furthermore, the linear mapping
[v �→ F ′

�(u∗)v] is relatively bounded with respect to AS,� . An application of [13,
Proposition 4.4.3] yields that −A0 generates an analytic C0-semigroup in X0 having
L p-maximal regularity. Since the domain X1 of A0 is compactly embedded into X0,
the spectrum σ(A0) is discrete and consists solely of eigenvalues of A0 having finite
algebraic multiplicity.
We first consider the case E �= {0}. Let λ ∈ σ(−A0) and denote by v ∈ X1 a

corresponding eigenfunction. Multiplying the equation λv + A0v = 0 by the complex
conjugate v̄ and integrating over � yields

Reλ|v|2L2(�) = 2μsRe(P�div�D�(v)|v̄)�−Re(P�(v · ∇�u∗)+P�(u∗ · ∇�v)|v̄)�

= −2μs

∫

�

|D�(v)|2 d�. (4.4)
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Here, we used the identities

(v · ∇�u∗|v̄)� = −(v · ∇�u∗|v̄)�

and

(u∗ · ∇�v|v̄)� = (u∗|∇� |v|2)� − (u∗|(∇�v̄)v)�

= −(u∗ · ∇�v|v̄)�

sinceD�(u∗) = 0 and div�u∗ = 0, employing the surface divergence theorem (A.14).
It follows that Reλ ≤ 0 and if Reλ = 0, then D�(v) = 0. Observe that the equations
D�(v) = 0 = D�(u∗) then lead to the identity

P�(v · ∇�u∗ + u∗ · ∇�v) = −∇�(u∗|v),

hence F ′
�(u∗)v = PH,�(∇�(u∗|v)) = 0 and therefore A0v = 0.

The above calculations show that σ(A0) ∩ iR = {0} and

N (A0) = {v ∈ X1 : D�(v) = 0},

wherefore N (A0) ∼= E ∼= Tu∗E .
We will now prove that λ = 0 is semi-simple. To this end, it suffices to prove that

N (A2
0) ⊂ N (A0). Let w ∈ N (A2

0) and v := A0w. Then, v ∈ N (A0) and we obtain

|v|2L2(�) = (A0w|v)� = 2μs

∫

�

D�(w) : D�(v) d� = 0,

by Lemma A.1, (A.17) and the property D�(v) = 0, which implies w ∈ N (A0).
Finally, we consider the case E = {0}. If λ ∈ σ(−A0) with eigenfunction v �= 0,

it follows from (4.4) that Re λ ≤ 0 and if Re λ = 0, then D�(v) = 0 by (4.4), hence
v ∈ E = {0}, a contradiction. Therefore, in this case, Re σ(−A0) < 0. �

Remark 4.2. The above computations show that the operator A0 from (4.3) is not
necessarily symmetric in case u∗ �= 0. In fact, we have

(A0v|v̄)� = 2μs

∫

�

|D�(v)|2 d� + i Im[(v · ∇�u∗|v̄)� + (u∗ · ∇�v|v̄)�], v ∈ X1.

Since F� is bilinear,weobtain from [13,Theorem5.3.1] and the proof of Proposition
5.1 as well as Theorem 5.2 in [10] the following result.

Theorem 4.3. Suppose p, q and μ satisfy the assumptions of Theorem 3.5.
Then, each equilibrium u∗ ∈ E is stable in Xγ,μ := B2μ−2/p

qp (�,T�)∩Lq,σ (�,T�)

and there exists δ > 0 such that the unique solution u(t) of (4.1) with initial value
u0 ∈ Xγ,μ satisfying |u0 − u∗|Xγ,μ < δ exists on R+ and converges at an exponential
rate in Xγ,1 to a (possibly different) equilibrium u∞ ∈ E as t → ∞.
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4.1. Existence of equilibria

According to (4.2), see also Proposition 2.2, the equilibria E of the evolution equa-
tion (4.1) correspond to the Killing fields of �.
It is then an interesting question to know how many Killing fields a given manifold

can support, or to bemore precise, what the dimension of the vector space of all Killing
fields of � is. (In fact, it turns out that the Killing fields on a Riemannian manifold
form a sub Lie-algebra of the Lie-algebra of all tangential fields).
It might also beworthwhile to recall that theKilling fields of a Riemannianmanifold

(M, g) are the infinitesimal generators of the isometries I (M, g) on (M, g), that is,
the generators of flows that are isometries on (M, g). Moreover, in case (M, g) is
complete, the Lie-algebra of Killings fields is isometric to the Lie-algebra of I (M, g),
see for instance Corollary III.6.3 in [20].
It then follows from [20, Proposition III.6.5] that dim E ≤ d(d + 1)/2, where d is

the dimension of�. For compactmanifolds, equality holds if and only if� is isometric
to Sd , the standard d-dimensional Euclidean sphere in R

d+1.
On the other hand, if (M, g) is compact and the Ricci tensor is negative definite

everywhere, then any Killing field on M is equal to zero and I (M, g) is a finite group,
see [20, Proposition III.6.6]. In particular, if (M, g) is a two-dimensional Riemannian
manifold with negative Gaussian curvature then any Killing field is 0.

Example 4.4.

(a) Let � = S
2. Then, dim E = 3 and each equilibrium u∗ ∈ E corresponds to a

rotation about an axis spanned by a vector ω = (ω1,ω2,ω3) ∈ R
3. Therefore,

u∗ ∈ E is given by

u∗(x) = ω × x, x ∈ S
2,

for some ω ∈ R
3. According to Theorem 4.3, each equilibrium u∗ = ω × x

is stable and each solution u of (4.1) that starts out close to u∗ converges at an
exponential rate toward a (possibly different) equilibrium u∞ = ω∞ × x for
some ω∞ ∈ R

3.
(b) Suppose � = T

2, say with parameterization

x1 = (R + r cosφ) cos θ

x2 = (R + r cosφ) sin θ

x3 = r sin φ,

(4.5)

where φ, θ ∈ [0, 2π) and 0 < r < R. Then, one readily verifies that the velocity
field u∗ = ωe3 × x , with ω ∈ R, is an equilibrium. Hence, the fluid on the torus
rotates about the x3-axis with angular velocity ω. According to Theorem 4.3, all
of these equilibria are stable.
With the above parameterization, one shows that

K = cosφ

r(R + r cosφ)
,
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where K is the Gauss curvature. By Gauss’ Theorema Egregium, K is invariant
under (local) isometries, and this implies that rotations around the x3-axis are
the only isometries on T

2.
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Appendix A

In this appendix, we collect some results from differential geometry that are em-
ployed throughout the manuscript. We also refer to [13, Chapter 2] for complementary
information.
We will assume throughout that � is a smooth, compact, closed (that is, without

boundary) hypersurface embedded inRd+1. We mention on the go that these assump-
tions imply that � is orientable, see for instance [21].

Let ν� be the unit normal field of � (which is compatible with the chosen orienta-
tion). Then, the orthogonal projection P� onto the tangent bundle of � is defined by
P� = I − ν� ⊗ ν� .
We use the notation {τ1(p), · · · , τd(p)} to denote a local basis of the tangent space

Tp� of � at p, and {τ 1(p), · · · , τ d(p)} to denote the corresponding dual basis of the
cotangent space T∗

p� at p. Hence, we have (τ i (p)|τ j (p)) = δi
j , the Kronecker delta

function. Note that

{τ1, . . . , τd} =
{

∂

∂x1
, . . . ,

∂

∂xd

}
, {τ 1, . . . , τ d} =

{
dx1, . . . , dxd

}
.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In this manuscript, we will occasionally not distinguish between vector fields and
covector fields, that is, we identify

u = uiτi = uiτ
i , (A.1)

where, as usual, the Einstein summation convention is employed throughout. The
metric tensor is given by gi j = (τi |τ j ), where (·|·) is the Euclidean inner product of
R

d+1, and the dual metric g∗ on the cotangent bundle T∗� is given by gi j = (τ i |τ j ).
It holds that

gik gk j = δi
j , τ i = gi jτ j , τ j = g jkτ

k . (A.2)

Hence, g is induced by the inner product (·|·), that is, we have

g(u, v) = gi j u
iv j = (uiτi |v jτ j ) = (u|v), u = uiτi , v = v jτ j , (A.3)

whereas

g∗(u, v) = gi j uiv j = (uiτ
i |v jτ

j ) = (u|v), u = uiτ
i , v = v jτ

j . (A.4)

It holds that
∂iτ j = �k

i jτk + li jν�, ∂iτ
j = −�

j
ikτ

k + l j
i ν�, (A.5)

where �k
i j are the Christoffel symbols, li j are the components of the second funda-

mental form, and li
j are the components of the Weingarten tensor L� ; that is, we

have
li j = (∂ jτi |ν�) = −(τi |∂ jν�), l j

i = g jklki , (A.6)

and
L�τ j = −∂ jν�, L� = l j

i τ i ⊗ τ j . (A.7)

If ϕ ∈ C1(�,R), the surface gradient of ϕ is defined by ∇�ϕ = ∂iϕτ i . If u is a
C1-vector field on � (not necessarily tangential), we define the surface gradient of u
by

∇�u = τ i ⊗ ∂i u. (A.8)

It follows from (A.5) that

∂i u = ∂i (u
jτ j ) = (∂i u

j + �
j
ikuk)τ j + li j u

jν� (A.9)

for a tangential vector field u. The covariant derivative ∇i u of a tangential vector field
is defined by ∇i u = P�∂i u. Hence, we have

∇i u = (∂i u
j + �

j
ikuk)τ j for u = u jτ j . (A.10)

The surface divergence div�u for a (not necessarily tangential) vector field u is
defined by

div�u = (τ i |∂i u). (A.11)
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Then, the d-fold mean curvature κ� of � is given by

κ� = −div�ν� = −(τ i |∂iν�) = (τ i |L�τi ) = trL� = li
i . (A.12)

Hence, κ� is the trace of L� (which equals the sum of the principal curvatures). For
a vector field u = v jτ j + wν� , it follows from (A.9), (A.12) and the fact that ν� and
τ i are orthogonal

div�u = (τ i |∂i u) = (∂iv
i + �i

ikv
k) − wκ�. (A.13)

For a tangent vector field u and a scalar function ϕ, the surface divergence theorem
states that ∫

�

(∇�ϕ|u) d� = −
∫

�

ϕ div� u d�. (A.14)

For a tensor K = k j
i τ i ⊗ τ j , the surface divergence is defined by

div� K = (∂i K )Tτ i . (A.15)

Hence,
div�P� = ∂i (τ j ⊗ τ j )τ i = κ�ν�. (A.16)

Lemma A.1. Suppose ϕ is a C1-scalar function and u, v, w are C1-tangential vector
fields on �. Then,

(a) div�(ϕP�) = ∇�ϕ + ϕκ�ν� .
(b) (u · ∇�v) = (∇�v)Tu.
(c) ∇�(u|v) = (∇�u)v + (∇�v)u.
(d)

(
u
∣∣∇�(v|w)

) = (
u · ∇�v

∣∣w) + (
u · ∇�w

∣∣v)
.

Proof. (a) It follows from (A.15) that

div�(ϕP�) = ∂i (ϕP�)τ i = (∂iϕ)P�τ i + ϕ∂i (P�)τ i = ∂iϕτ i + ϕdiv�P�.

The assertion is now a consequence of (A.16).
(b) Using local coordinates, we obtain

u · ∇�v = ui∂iv = (∂iv ⊗ τ i )u = (∇�v)Tu.

(c) In local coordinates, ∂i (u|v) = (∂i u|v)+ (u|∂iv). It is now easy to conclude that

∇�(u|v) = ∂i (u|v)τ i = (τ i ⊗ ∂i u)v + (τ i ⊗ ∂iv)u = (∇�u)v + (∇�v)u.

(d) This follows from the assertions in (b) and (c).
�

Let

D�(u) := 1

2
P�

(∇�u + [∇�u]T)
P�.
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Suppose u ∈ C2(�,T�), v ∈ C1(�,T�). Then, one shows that

(div�D�(u)|v) = div�(D�(u)v) − D�(u) : ∇�v

(div�D�(u)|u) = div�(D�(u)u) − |D�(u)|2
trD�(u) = div�u,

(A.17)

where D�(u) : ∇�v = (D�(u)τ j |(∇�v)Tτ j ), |D�(u)|2 = D�(u) : D�(u), and
trD�(u) = (D�(u)τ j |τ j ).

Proposition A.2. Suppose u ∈ C2(�,T�).

(a) Then, we have the following representation:

2P� div� D�(u) = ��u + ∇� div�u + (κ� L� − L2
�)u,

where �� is the Bochner-Laplacian (also called the conformal Laplacian),
defined in local coordinates by

�� = gi j (∇i∇ j − �k
i j∇k).

(b) It holds that
(κ� L� − L2

�)u = Ric�u

(κ� L� − L2
�)u = K�u in case d = 2,

whereRic� is the Ricci tensor and K� the Gaussian curvature of �, respectively.

Proof. (a) We note that in local coordinates, D�(u) is given by

2D�(u) = τ i ⊗ P�∂i u + P�∂i u ⊗ τ i = τ i ⊗ ∇i u + ∇i u ⊗ τ i . (A.18)

From (A.15) and the relation, P� = I − ν� ⊗ ν� follows

P�div�(∇i u ⊗ τ i ) = P�∂ j (τ
i ⊗ P�∂i u)τ j

= (P�∂ jτ
i ⊗ P�∂i u)τ j + (τ i ⊗ ∂ jP�∂i u)τ j

= (∂i u|τ j )P�∂ jτ
i + τ i (∂ j (∂i u − [ν� ⊗ ν�]∂i u)|τ j )

= (∂i u|τ j )P�∂ jτ
i + τ i (∂ j∂i u|τ j ) − τ i (∂ jν� |τ j )(ν� |∂i u),

where, in the last line, we employed the relation (ν� |τ j ) = 0. Next, we observe
that

(∂ j∂i u|τ j )τ i = ∂i (∂ j u|τ j )τ i − (∂ j u|∂iτ
j )τ i

= ∇�div�u − (∂ j u| − �
j
ikτ

k + l j
i ν�)τ i

= ∇�div�u − (∂ j u|τ k)P�∂kτ
j − l j

i (∂ j u|ν�)τ i

= ∇�div�u − (∂ j u|τ k)P�∂kτ
j − L2

�u,
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where we used (A.9) and the relations L�τm = lm
r τ r as well as L�τm = lmrτ

r

to deduce

l j
i (∂ j u|ν�)τ i = l j

i l jkukτ i = L�(ukl jkτ
j ) = L2

�ukτ
k = L2

�u. (A.19)

From (A.9) and (A.12) follows

− (∂ jν� |τ j )(ν� |∂i u)τ i = l j
j likukτ i = κ� L�ukτk = κ� L�u. (A.20)

Summarizing we have shown that

P�div�(∇i u ⊗ τ i ) = ∇�div�u + κ� L�u − L2
�u.

Moreover, we have

P�div�(τ i ⊗ ∇i u) = P�∂ j (∇i u ⊗ τ i )τ j

= gi jP�∂ j∇i u + (∂ jτ
i |τ j )∇i u

= gi j (∇i∇ j u − �k
i j∇ku) = ��u.

(b) The computations in (A.19), (A.20) show that in local coordinates

(κ� L� − L2
�)u = g jm(l jmlik − liml jk)u

kτ i .

By the Gauss equation, see for instance [20, Proposition II.3.8], this yields

(κ� L� − L2
�)u = g jm R jikmukτ i = Rikukτ i = Ric�u,

where R jikm are the components of the curvature tensor and Rik the components
of the Ricci (0, 2)-tensor. In case that� is a surface embedded inR3, one obtains

(κ� L� − L2
�)u = K�u,

where K� is the Gauss curvature of�. This can, for instance, be seen as follows:

(κ� L� − L2
�)u = g jm(l jmlik − liml jk)u

kτ i

= (l j
j lk

i − l j
i lk

j )ukτ
i = det(L�) δk

i ukτ
i = K�u.

The proof of Proposition A.2 is now complete.
�

Remark A.3. (a) We note that in local coordinates,

2D�(u) = (∂i u j − �k
i j uk)τ

i ⊗ τ j + (∂i u j − �k
i j uk)τ

j ⊗ τ i

for u = u jτ
j ∈ C1(�,T∗�) and

2D�(u) = (∂i u
j + �

j
ikuk)τ i ⊗ τ j + (∂i u

j + �
j
ikuk)τ j ⊗ τ i

for u = u jτ j ∈ C1(�,T�).
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(b) Suppose u, v are tangential fields on �. Then,

∇vu := (∇i u ⊗ τ i )v (A.21)

coincides with the Levi–Civita connection ∇ of �.
We note that ∇i = ∇τi = ∇ ∂

∂xi
and ∇u = ∇i u ⊗ τ i in local coordinates.

(c) A straightforward computation shows that in local coordinates

gi j (∇i∇ j u − �k
i j∇ku) = gi j (∇2u)(τi , τ j ), u ∈ C2(�,T�).

Hence, �� = trg (∇2u).
(d) Let ∇ be the Levi–Civita connection of �. Then, it follows from (b) and (A.18)

D�(u) = 1

2

(
∇u + [∇u]T

)
.

(e) Suppose u, v, w are C1-tangential fields. Employing (A.18) and (A.21), one
readily verifies that

(D�(u)v|w) + (D�(u)w|v) = (∇vu|w) + (∇wu|v).

We remind that a tangential field u on � is called a Killing field if

(∇vu|w) + (∇wu|v) = 0 for all tangential fields v,w on �,

see for instance [20, Lemma III.6.1]. This implies for a C1-tangent field u

D�(u) = 0 ⇐⇒ u is a Killing field.
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