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problems with an application to surface
plasmon polaritons
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Abstract. We consider a class of generally non-self-adjoint eigenvalue
problems which are nonlinear in the solution as well as in the eigenvalue
parameter (“doubly” nonlinear). We prove a bifurcation result from sim-
ple isolated eigenvalues of the linear problem using a Lyapunov–Schmidt
reduction and provide an expansion of both the nonlinear eigenvalue and
the solution. We further prove that if the linear eigenvalue is real and the
nonlinear problem PT -symmetric, then the bifurcating nonlinear eigen-
value remains real. These general results are then applied in the context of
surface plasmon polaritons (SPPs), i.e. localized solutions for the nonlin-
ear Maxwell’s equations in the presence of one or more interfaces between
dielectric and metal layers. We obtain the existence of transverse electric
SPPs in certain PT -symmetric configurations.
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1. Introduction

We study the nonlinear problem

L(x, ω)ϕ := Aϕ − W (x, ω)ϕ = f(x, ω, ϕ), x ∈ R
d, (1)

where A : L2(Rd,C) ⊃ D(A) → L2(Rd,C) is a densely defined, closed (possi-
bly non-self-adjoint) operator with a non-empty resolvent set. Throughout the
paper the space L2(Rd,C) and all other function spaces are complex vector
spaces, i.e. defined over the complex field C. The potential W is generally non-
linear in the spectral parameter ω and typically complex valued. The function
f is nonlinear in both ω and ϕ and is asymptotically equivalent to a monomial
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near ϕ = 0. Moreover, we suppose that f is Lipschitz continuous in a neigh-
bourhood of an eigen-pair (ω0, ϕ0), where ω0 ∈ C is a simple isolated eigenvalue
of L(x, ·). We prove the bifurcation from ω0 using a fixed point argument and
a Lyapunov–Schmidt decomposition. Bifurcation from simple eigenvalues is
a well studied problem even in the non-selfadjoint case [6,7,15,18]. In par-
ticular, bifurcation in complex Banach spaces (as relevant in our problem) is
investigated in [7,15] by means of a Lyapunov–Schmidt reduction coupled with
topological degree techniques. However, our result includes also an asymptotic
expansion of (ω, ϕ) depending on the behaviour of f for small ϕ and for ω near
ω0. More precisely, we find a solution (ω, ϕ) ∈ C × D(A) of the form

ω = ω0 + εν + ε1+τσ, ϕ = εαϕ0 + εα+1φ + εα+1+τψ,

where ε > 0 is small, ω is the spectral parameter, α is related to the degree
of homogeneity of f(x, ω, ·) near 0, τ is a positive parameter, and ν, σ ∈ C as
well as φ, ψ ∈ D(A) ∩ 〈ϕ∗

0〉⊥ are uniquely determined. Moreover, ν is explicit,
see (16), and φ satisfies the linear equation (20).

In [11] the bifurcation was proved (and an asymptotic expansion of (ω, ϕ)
was provided) for

(A − ω)ϕ = εf(ϕ) (2)

with A as above. This problem clearly has a linear dependence on the spectral
parameter ω. The coefficient ε in (2) is the bifurcation parameter and one
studies the bifurcation from an eigenvalue ω0 at ε = 0. As the bifurcation
parameter appears explicitly in the equation, the form of the asymptotic ex-
pansion of (ω, ϕ) is unique. Note that (2) can be rescaled to (A − ω)ψ = f(ψ)
only for the case of homogeneous nonlinearities f . Therefore, our result ex-
tends that of [11] to the case of more general nonlinearities f and a nonlinear
dependence of both f and W on the spectral parameter.

An important application of non-selfadjoint problems which are nonlin-
ear in ω is the propagation of electromagnetic waves in dispersive media, in
particular in structures that include a metal. Interfaces of two different media
can support localized waves. A typical example is a surface plasmon polariton
(SPP) at the interface of a dielectric and a metal, see e.g. [19,20] or, when more
layers of dielectrics and/or metals are considered, [14,24,26]. The general case
is, of course, described by Maxwell’s equations. Assuming the absence of free
charges, we have

μ0∂tH = −∇ × E , ε0∂tD = ∇ × H, ∇ · D = ∇ · H = 0, (3)

where E and H is the electric and magnetic field respectively, D = D(E) is
the electric displacement field and ε0 and μ0 are respectively the permittivity
and the permeability of the free space. The displacement field D is generally
nonlinear in E and non-local in time. For odd (e.g. Kerr) nonlinearities and a
monochromatic field (E ,H,D)(x, y, z, t) = (E,H,D)(x, y, z)eiωt + c.c. (with a
real frequency ω) a nonlinear eigenvalue problem in (ω, (E,H)) is obtained if
higher harmonics are neglected, for details see Sect. 4. Equation (3) as well as
the eigenvalue problem have to be accompanied by interface conditions if an
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interface of two media is present. Assuming that the interface is planar and
parallel to the yz-plane, the interface conditions are

�E2� = �E3� = �D1� = 0, �H� = 0, (4)

where we define (for the interface located at x = x0), �E2� := E2(x → x+
0 ) −

E2(x → x−
0 ), etc., see Sect. 4.

A simple example in the cubically nonlinear case is obtained in struc-
tures independent of the y, z-variables by choosing the transverse electric (TE)
ansatz

E(x, y, z) = (0, 0, ϕ(x))T eiky (5)

with k ∈ R. It leads to the scalar nonlinear problem

ϕ′′ + W (x, ω)ϕ + Γ(x, ω)|ϕ|2ϕ = 0, x ∈ R (6)

with functions W,Γ : R2 → C. The interface conditions here boil down to the
continuity condition on ϕ and ϕ′, see Sect. 4.

The bifurcation result provides a curve ε 	→
(
ω(ε), ϕ(ε)

)
with ω(0) = ω0

and ϕ(0) = 0. Even if ω0 is real, the curve can lie in C\R for all ε 
= 0.
In order for ω to correspond to the (real) frequency of an electromagnetic
field, one needs to ensure that the curve lies in R. As we show in Sect. 3,
this is possible by restricting the fixed point argument to a symmetric sub-
space, namely the PT -symmetric subspace. PT -symmetry has been studied
extensively in quantum mechanics, see e.g. [4,5]. Recently, a number of physics
papers have studied nonlinear PT -symmetric problems from a phenomenolog-
ical point of view mainly with emphasis on localized solutions, e.g. [5,21,27].
In the context of SPPs, where metals normally lead to a lossy propagation,
PT -symmetry has been applied to obtain lossless propagation, see [2,3]. Math-
ematically, the restriction of a fixed point argument to a PT -symmetric (or
more generally antilinearly symmetric) subspace has been used to obtain real
nonlinear eigenvalues, see, e.g., [9,11,22].

This article is organized as follows. In Sect. 2 we state and prove our main
bifurcation result (Theorem 2.1). The realness of the nonlinear eigenvalue is
ensured in the case of PT -symmetry in Sect. 3. Applications to SPPs are then
given in Sect. 4, where 2- and 3-layer-configurations are investigated.

2. Bifurcation of nonlinear eigenvalues

In this section we study problem (1), where A, W and f satisfy assumptions
(A1)–(f4) below. We prove the existence of a branch of solutions starting from
an eigenpair (ω0, ϕ0) ∈ C × D(A), i.e. L(x, ω0)ϕ0 = 0, such that

i) ω0 is algebraically simple: ker(L(·, ω0)2) = ker(L(·, ω0)) = 〈ϕ0〉,
ii) ω0 is isolated : there exists ρ > 0 such that 0 ∈ σ(L(·, ω)) for ω ∈ Bρ(ω0) ⊂

C if and only if ω = ω0.
Notation: Henceforth, the norm and the inner product in the underlying

Hilbert space L2(Rd,C) will be denoted by ‖·‖ and 〈·, ·〉 respectively. Moreover,
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‖ · ‖∞ stands for the L∞(Rd) norm and ‖ · ‖A for the graph norm, i.e. ‖u‖A :=
‖u‖ + ‖Au‖. Note that D(A) = D(L) due to assumptions (A2) and (W1).

We define ϕ∗
0 as the1 eigenfunction of

(
L(·, ω0)

)∗ and we suppose that
the normalizations of the eigenfunctions ϕ0 and ϕ∗

0 are chosen such that

‖ϕ0‖ = 1, 〈ϕ0, ϕ
∗
0〉 = 1.

The latter normalization is allowed since the simplicity of ω0 ensures that
〈ϕ0, ϕ

∗
0〉 
= 0. Indeed, if 〈ϕ0, ϕ

∗
0〉 = 0, then ϕ0 ∈ Ker(L(·, ω0)) ∩ Ran(L(·, ω0))

since Ker(L(·, ω0)∗)⊥ = Ran(L(·, ω0)). From L(·, ω0)ψ = ϕ0 for some ψ ∈
D(A) we get L(·, ω0)2ψ = 0 and the algebraic simplicity in i) implies ψ = cϕ0

and hence ϕ0 = 0, which is a contradiction.
We consider the following assumptions on the operator A and the potential
W : there exists δ > 0 such that
A1) A : D(A) → L2(Rd,C) is a densely defined, closed operator with a non-

empty resolvent set;
A2) D(A) ↪→ L∞(Rd,C), where the embedding is continuous;
W1) W : Rd ×C → C satisfies that W (x, ·) is holomorphic on Bδ(ω0) ⊂ C for

a.e. x ∈ R
d and there exists c > 0 such that

‖W (·, ω)‖∞ ≤ c ∀ω ∈ Bδ(ω0);

and the technical assumption
Wt) 〈∂ωW (·, ω0)ϕ0, ϕ

∗
0〉 
= 0.

Regarding the nonlinearity f = f(x, ω, ϕ), we assume that there are δ, α, λ0 >
0 such that
f1) f(·, ω, ϕ(·)) ∈ L2(Rd,C) for all ω ∈ Bδ(ω0) and ϕ ∈ Bδ(0) ⊂ D(A),
f2) there exists a constant Kω

f (ϕ0) > 0 such that for any λ ∈ (0, λ0) there
holds

‖f(·, ω1, λϕ) − f(·, ω2, λϕ)‖
≤ Kω

f (ϕ0)λ
1
α+1|ω1 − ω2|, ∀ω1, ω2 ∈ Bδ(ω0) ,∀ϕ ∈ Bδ(ϕ0);

f3) there exists a constant Kϕ
f (ω0) > 0 such that for any λ ∈ (0, λ0) there

holds

‖f(·, ω, λϕ1) − f(·, ω, λϕ2)‖
≤ Kϕ

f (ω0)λ
1
α+1‖ϕ1 − ϕ2‖, ∀ϕ1, ϕ2 ∈ Bδ(ϕ0) ,∀ω ∈ Bδ(ω0);

f4) for any ω ∈ Bδ(ω0) there exists gω ∈ L∞(Rd,C)\{0} such that

f(·, ω, ϕ) − gω(·)|ϕ| 1
α ϕ = O(|ϕ| 1

α+1+β) as C � ϕ → 0 (7)

for some β > 0, uniformly wrt ω ∈ Bδ(ω0). Moreover, we assume that gω

is Lipschitz in ω for ω ∈ Bδ(ω0) uniformly wrt x ∈ R
d, i.e. there exists a

constant Kg > 0 such that

‖gω1 − gω2‖∞ ≤ Kg|ω1 − ω2| ∀ω1, ω2 ∈ Bδ(ω0).

1Recall that if 0 is a simple isolated eigenvalue of L(·, ω0), then it is also a simple isolated

eigenvalue of L(·, ω0)∗, cf. [16, Chap.III.6.5-6]
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Theorem 2.1. Suppose that ω0 is an algebraically simple and isolated eigen-
value of L with eigenfunction ϕ0 and that A, W and f satisfy assumptions
(A1)–(f4). Let also τ ∈ (0,min{1, αβ}]. Then there exists ε0 > 0 such that for
any ε ∈ (0, ε0) there is a unique solution (ω, ϕ) of the nonlinear eigenvalue
problem (1) with the constraint 〈ϕ,ϕ∗

0〉 = εα. It can be written as

ω = ω0 + εν + ε1+τσ, ϕ = εαϕ0 + εα+1φ + εα+1+τψ, (8)

with ν, σ ∈ C and φ, ψ ∈ D(A) ∩ 〈ϕ∗
0〉⊥.

Before going into the details of the proof, let us give some remarks and
examples of applications.

Remark 1. The proof of Theorem (2.1) is constructive. Therefore, we also
know which problems the constants ν, σ and the functions φ, ψ satisfy. In
particular, ν and φ are uniquely determined by (16), (20) and (σ, ψ) uniquely
solves the nonlinear system (17), (21) in Br1(0) × Br2(0) ⊂ C × D(A), for
suitable r1, r2 = O(1) as ε → 0.

Remark 2. When D(A) is the Sobolev space Hs(Rd,C), assumption (A2) is
equivalent to the requirement s > d/2.

Remark 3. Note that assumption (W1) ensures that

‖∂k
ωW (·, ω0)‖∞ ≤ c < ∞ ∀k ∈ N. (9)

Indeed, by Taylor’s theorem for holomorphic functions (see Chapt. 4, Sect. 3.1
in [1]) we have

W (·, ω) =
n−1∑

j=0

∂j
ωW (·, ω0)(ω − ω0)j + Tn(·, ω)(ω − ω0)n, (10)

where

Tn(·, ω) =
1

2πi

∫

∂Br(ω0)

W (·, z)
(z − ω0)n(z − ω)

dz

for all ω ∈ Br(ω0) and any 0 < r < δ. One can easily estimate

‖Tn(·, ω)‖∞ ≤
ess sup

x∈Rd

max
z∈∂Br(ω0)

|W (x, z)|

rn−1(r − |ω − ω0|)
for all ω ∈ Br′(ω0) if 0 < r′ < r

≤ 2M

rn
for all ω ∈ Br/2(ω0), (11)

where

M := sup
ω∈Bδ(ω0)

‖W (·, ω)‖∞.

Note that ω ∈ Br/2(ω0) is satisfied if ε > 0 is small enough. To estimate
‖∂k

ωW (·, ω0)‖∞, k ∈ N, one proceeds by induction using (10), assumption
(W1), and (11).
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Remark 4. Assumption (Wt) is the classical transversality condition for the
bifurcation from a simple eigenvalue [6, Theorem 1], [8, Theorem 28.6] in the
case

f(x, ·, ·) ∈ C1(C × Ω), ∂ω∂ϕf(x, ·, ·) ∈ C(C × Ω)
for some neighborhood Ω ⊂ D(A) of zero. (12)

However, note that in our setting the nonlinearity f(·, ω, ϕ) ∼ gω(·)|ϕ| 1
α ϕ for

ϕ → 0 (and with ϕ ∈ D(A) with a suitable D(A), e.g. D(A) = H2(R,C) for
d = 1) is differentiable only at zero. This is due to the fact that our function
spaces are defined over the complex field.

Nevertheless, given the differentiability property, if (12) holds, (Wt) is
equivalent to Fωϕ(ω0, 0)[ϕ0] /∈ Ran(Fϕ(ω0, 0)), where F (ω, ϕ) := L(·, ω)ϕ −
f(·, ω, ϕ). To see this, first note that

Fϕ(ω0, 0) = A − W (·, ω0)

since ∂ϕf(·, ω, 0) = 0 for all ω ∈ Bδ(ω0) by (f4), and

Fωϕ(ω0, 0)[ϕ0] = −∂ωW (·, ω0)ϕ0 − ∂ω∂ϕf(·, ω0, 0)ϕ0 = −∂ωW (·, ω0)ϕ0.

By the closed range theorem is (A − W (·, ω0))u = −∂ωW (·, ω0)ϕ0 solvable if
and only if (Wt) is violated. Here we have used the fact that A−W (·, ω0) is a
Fredholm operator (in particular, Ran(A) is closed), see [16, Theorem IV.5.28].

Remark 5. (Example of the potential and the nonlinearity.) Assumptions (A1)–
(f4) are satisfied for instance by equation (6) with D(A) = H2(R,C) provided
(W1) and (Wt) hold and Γ satisfies

‖Γ(·, ω1) − Γ(·, ω2)‖ ≤ L|ω1 − ω2|
for some L > 0 and all ω1,2 ∈ Bδ(ω0). An example corresponding to the Drude
model for metals (see Sect. 4) is

W (x, ω) =
ω2

c2

(

1 −
ω2

p

ω2 + iγω

)

− k2, Γ(x, ω) = 3
ω2

c2
χ̂(3)(x, ω)

with parameters γ, ωp, k ∈ R and χ̂(3) a bounded function, Lipschitz continu-
ous in ω. This choice will be important for modelling SPPs. Note that, with
such potential W , the operator L(·, ω) := ∂2

x + W (·, ω) is non-selfadjoint and
also nonlinear in ω.

Remark 6. Let us discuss the role of the parameter τ in the expansion (8).
Clearly, τ determines the accuracy of the expansion given by the first two
terms. According to Theorem 2.1, if αβ ≤ 1, then the optimal value is τ = αβ,
which is proportional to the difference of the degree of the lowest degree term
in f and the next term. Notice also that higher order terms in the nonlinearity
do not play any role in the choice of τ . To give an example, consider the
nonlinearities in the table below.

As explained in Sect. 4, in the applications of Theorem 2.1 to time har-
monic electromagnetic waves, the relevant nonlinearities are odd. In the case
of a cubic nonlinearity (α = 1/2) the first correction term in f is of the kind
|ϕ|4ϕ and therefore we have β = 2 such that we are in the optimal case τ = 1.
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f(x) α β τmax ω

|ϕ|2ϕ 1
2 +∞ 1 ω0 + εν + ε2σ

|ϕ|2ϕ + |ϕ|4ϕ 1
2 2 1 ω0 + εν + ε2σ

|ϕ|2ϕ + |ϕ|3ϕ 1
2 1 1

2 ω0 + εν + ε
3
2 σ

|ϕ|2ϕ + |ϕ|3ϕ + |ϕ|4ϕ 1
2 1 1

2 ω0 + εν + ε
3
2 σ

The strategy of the proof of Theorem 2.1 may be summarized as follows.
We employ a Lyapunov–Schmidt reduction making use of spectral projections
(here the simplicity of the eigenvalue ω0 is used) to decompose the problem
into a system in which one rather easily determines ν and φ. Then, the rest
becomes a system for the unknowns σ and ψ, which will be solved by means
of a nested fixed-point argument. In particular, the assumption that ω0 be
isolated is exploited to invert the operator L(·, ω0) restricted to 〈ϕ∗

0〉⊥.

Proof of Theorem 2.1. Lyapunov–Schmidt decomposition.
In this initial step we reformulate problem (1) with the ansatz in (8) as

a system of two equations using the Lyapunov–Schmidt decomposition.
Let us first introduce the projections P0 : u 	→ 〈u, ϕ∗

0〉ϕ0 and Q0 :=
Id − P0. Clearly, P0 : L2(Rd,C) → 〈ϕ0〉 and Q0 : L2(Rd,C) → 〈ϕ∗

0〉⊥. Using
our constraint 〈ϕ,ϕ∗

0〉 = εα, it is easy to see that P0(φ + ετψ) = 0. Applying
then P0 to our Eq. (1), we get

〈L(·, ω)ϕ,ϕ∗
0〉 = 〈f(·, ω, ϕ), ϕ∗

0〉
= 〈f(·, ω, ϕ) − εα+1gω0(·)|ϕ0|

1
α ϕ0, ϕ

∗
0〉

+ εα+1〈gω0(·)|ϕ0|
1
α ϕ0, ϕ

∗
0〉.

(13)

Notice that the first term is of higher-order in ε, mainly because of our as-
sumption (f4), see the forthcoming computations (27)–(31).

On the other hand, Taylor expanding W (·, ω) in ω0 up to order two and
using assumption (W1), we have

〈L(·, ω)ϕ,ϕ∗
0〉

= 〈L(·, ω0)ϕ,ϕ∗
0〉 + 〈(L(·, ω) − L(·, ω0)) ϕ,ϕ∗

0〉
= 〈ϕ,L(·, ω0)∗ϕ∗

0〉 − 〈(W (·, ω) − W (·, ω0)) ϕ,ϕ∗
0〉

= −
〈(

∂ωW (·, ω0)(ω − ω0) +
1
2
∂2

ωW (·, ω0)(ω − ω0)2 + I(·, ω)
)

ϕ,ϕ∗
0

〉
,

where

I(x, ω) :=
(ω − ω0)3

2πi

∫

∂Br(ω0)

W (x, z)
(z − ω0)3(z − ω)

dz

for any r < δ, see (10). Inserting now the expansions of ω and ϕ from (8), i.e.

ω = ω0 + εν + ε1+τσ and ϕ = εαϕ0 + εα+1φ + εα+1+τψ,
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we obtain

−〈L(·, ω)ϕ,ϕ∗
0〉 = εα+1ν〈∂ωW (·, ω0)ϕ0, ϕ

∗
0〉 + εα+1+τσ〈∂ωW (·, ω0)ϕ0), ϕ∗

0〉

+ εα+2

〈(
ν∂ωW (·, ω0)φ +

ν2

2
∂2

ωW (·, ω0)ϕ0

)
, ϕ∗

0

〉

+ 〈v(·, ω, ϕ), ϕ∗
0〉,

(14)

where v collects all other terms of higher-order in ε, namely

v(·, ω, ϕ) : = εα+2+τσ∂ωW (·, ω0)φ + εα+2+τ (ν + ετσ)∂ωW (·, ω0)ψ

+ εα+3 ν2

2
∂2

ωW (·, ω0)(φ + ετψ)

+ εα+2+τ 1
2
∂2

ωW (·, ω0)(2νσ + ετσ2)(ϕ0 + εφ + ε1+τψ)

+ εαI(·, ω)(ϕ0 + εφ + ε1+τψ).

(15)

Comparing now (13) and (14), the terms of order α + 1 in ε match if and only
if we take

ν := −〈gω0(·)|ϕ0|
1
α ϕ0, ϕ

∗
0〉

〈∂ωW (·, ω0)ϕ0, ϕ∗
0〉

, (16)

which is well-defined thanks to assumption (Wt). From the rest of (13)–(14)
we obtain

εα+1+τσ〈∂ωW (·, ω0)ϕ0, ϕ
∗
0〉

= −εα+2
〈 (

ν∂ωW (·, ω0)φ +
ν2

2
∂2

ωW (·, ω0)ϕ0

)
, ϕ∗

0

〉

− 〈v(·, ω, ϕ), ϕ∗
0〉 − 〈f(·, ω, ϕ) − εα+1gω0(·)|ϕ0|

1
α ϕ0, ϕ

∗
0〉.

(17)

Let us now apply Q0 to (1). On the one hand we have

Q0L(·, ω)Q0ϕ = −Q0

(
W (·, ω) − W (·, ω0)

)
(εα+1φ + εα+1+τψ)

+Q0L(·, ω0)(εα+1φ + εα+1+τψ)

and on the other hand

Q0L(·, ω)Q0ϕ = Q0L(·, ω)ϕ − εαQ0

(
L(·, ω) − L(·, ω0)

)
ϕ0 − εαQ0L(·, ω0)ϕ0

= Q0f(·, ω, ϕ) + Q0

(
W (·, ω) − W (·, ω0)

)
(εαϕ0).

Therefore, we obtain

Q0L(·, ω0)Q0(εα+1φ + εα+1+τψ)
= Q0f(·, ω, ϕ) + εαQ0

(
W (·, ω) − W (·, ω0)

)
(ϕ0 + εφ + ε1+τψ).
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An expansion of the last term as in (14)–(15) yields

εα+1Q0L(·, ω0)Q0φ + εα+1+τQ0L(·, ω0)Q0ψ

= εα+1Q0

(
gω0(·)|ϕ0|

1
α ϕ0

)
+ Q0

(
f(·, ω, ϕ) − εα+1gω0(·)|ϕ0|

1
α ϕ0

)

+ Q0

(
εα+1ν∂ωW (·, ω0)ϕ0 + εα+2

(
ν2

2
∂2

ωW (·, ω0)ϕ0 + ν∂ωW (·, ω0)φ
)

+ εα+1+τσ∂ωW (·, ω0)ϕ0 + v(·, ω, ϕ)
)

.

(18)

Rewriting (16) as

gω0(·)|ϕ0|
1
α ϕ0 − 〈gω0(·)|ϕ0|

1
α ϕ0, ϕ

∗
0〉ϕ0

= gω0(·)|ϕ0|
1
α ϕ0 + ν〈∂ωW (·, ω0)ϕ0, ϕ

∗
0〉ϕ0

and using (18), we obtain

εα+1Q0L(·, ω0)Q0φ + εα+1+τQ0L(·, ω0)Q0ψ

= εα+1
(
gω0(·)|ϕ0|

1
α ϕ0 + ν∂ωW (·, ω0)ϕ0

)

+ Q0

(
f(·, ω, ϕ) − εα+1gω0 |ϕ0|

1
α ϕ0

)
+ εα+1+τσQ0

(
∂ωW (·, ω0)ϕ0

)

+ εα+2Q0

(
ν2

2
∂2

ωW (·, ω0)ϕ0 + ν∂ωW (·, ω0)φ
)

+ Q0

(
v(·, ω, ϕ)

)
.

(19)

Again, imposing that the terms of the lowest-order in ε match, we get a linear
equation for φ:

Q0L(·, ω0)Q0φ = gω0(·)|ϕ0|
1
α ϕ0 + ν∂ωW (·, ω0)ϕ0. (20)

Notice that, with our choice of ν, Eq. (20) is uniquely solvable in Q0D(A) =
D(A) ∩ 〈ϕ∗

0〉⊥ by the closed range theorem. Indeed, the operator on the left
hand side is Fredholm (see [16, Theorem IV.5.28], where the fact that ω0 is a
simple isolated eigenvalue in the above sense is used) and the right hand side
is orthogonal to the kernel of the adjoint operator, i.e. to ϕ∗

0, due to (16).

The rest of (19) produces the following equation for (σ, ψ):

εα+1+τQ0L(·, ω0)Q0ψ = Q0

(
f(·, ω, ϕ) − εα+1gω0(·)|ϕ0|

1
α ϕ0

)

+ εα+1+τσQ0(∂ωW (·, ω0)ϕ0)

+ εα+2Q0

(
ν2

2
∂2

ωW (·, ω0)ϕ0 + ν∂ωW (·, ω0)φ
)

+ Q0(v(·, ω, ϕ))

=: R1 + εα+1+τR2 + εα+2R3 + R4 =: R(σ, ψ).

(21)
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Fixed Point Argument
In order to solve our initial problem (1), we now need to solve system

(17), (21) for (σ, ψ) ∈ C × D(A). Inserting then σ and ψ into (8) produces a
solution (ω, ϕ) of (1).

We proceed by a fixed point argument. Note that although a direct fixed
point argument for (σ, ψ) is possible, we opt for a nested version, where we
first solve for ψ as a function of σ and subsequently solve for σ. This approach
is arguably more transparent.

Let us first address Eq. (21) and write it as a fixed point equation for
ψ, exploiting our assumptions on the eigenvalue ω0, which is assumed simple
and isolated. This actually means that Q0L(ω0)Q0 : Q0D(A) → Q0L

2(Rd) is
boundedly invertible in Q0D(A) and its norm is bounded by a constant C(ω0):

ψ = ε−(α+1+τ)
[
Q0L(ω0)Q0

]−1
R(σ, ψ) := G(σ, ψ),

with ‖G(σ, ψ)‖A ≤ C(ω0)ε−(α+1+τ)‖R(σ, ψ)‖.
(22)

In our nested fixed point argument for (17), (22) we first solve (22) for ψ ∈
Br2(0) ⊂ D(A) for all σ ∈ Br1(0) ⊂ C fixed with r1 > 0 arbitrary. To this aim
we need to show that for each σ ∈ Br1(0) there exists r2 > 0 so that2

(i) ψ ∈ Br2(0) ⇒ G(ψ) ∈ Br2(0),
(ii) ∃ρ ∈ (0, 1) : ‖G(ψ1) − G(ψ2)‖A ≤ ρ‖ψ1 − ψ2‖A for all ψ1, ψ2 ∈ Br2(0)

if ε > 0 is small enough.
Then, having obtained ψ = ψ(σ) ∈ Br2(0), we shall solve Eq. (17) for σ

and finally find a suitable r1. Note that the fixed point argument for equation
(17) requires the Lipschitz continuity of σ 	→ ψ(σ), which we verify below.

To ensure (i), we need to estimate ‖R(ψ)‖. The second and the third
term in (21) are easy to handle. Henceforth, we track the dependence of all
constants on σ and ψ via r1, r2.

‖R2‖ ≤ |σ|‖∂ωW (·, ω0)‖∞ ≤ Cr1, (23)

‖R3‖ ≤ max{ |ν|2
2 , ν‖φ‖}

(
‖∂ωW (·, ω0)‖∞ + ‖∂2

ωW (·, ω0)‖∞
)

= C (24)

using (9). Let us now deal with R4. Inspecting (15), we obtain

‖R4‖ ≤ ‖v(·, ω, ϕ)‖ ≤ C
[
εα+2+τ (r1 + (1 + ετr1)‖ψ‖) + εα+3(1 + ετ‖ψ‖)

+ εα+2+τr1(1 + ετr1)(1 + ε1+τ‖ψ‖)

+εα+3(1 + ετr1)(1 + ε1+τ‖ψ‖)
]

≤ C
[
εα+2+τ (r1 + ‖ψ‖) + εα+3

]
+ εα+2+2τh1(r1, ‖ψ‖),

(25)

where h1 is polynomial in r1, linear in ‖ψ‖ and satisfies h1(0, ‖ψ‖) = 0. Actu-
ally, all terms appearing in (15) are easy to estimate, so here we just briefly
justify the one for the integral rest I(x, ω), for later use too. Indeed, using (11)

2With a little abuse of notation, henceforth we write G(ψ) := G(σ, ψ) and similarly for R
when σ is assumed to be fixed.
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for n = 3, we have

‖I(·, ω)‖∞ ≤ 2M

r3
|ω − ω0|3 =

2M

r3
ε3|ν + ετσ|3 ≤ 2M

r3
ε3(1 + ετr1) (26)

for any 0 < r < δ and all ω ∈ Br/2(ω0), i.e. for all ε > 0 small enough.
Recall that M = sup

ω∈Bδ(ω0)

‖W (·, ω)‖∞. Finally, we need to estimate R1, which

involves the nonlinearity. We split it as

f(·, ω, ϕ) − εα+1gω0(·)|ϕ0|
1
α ϕ0 =

(
f(·, ω, ϕ) − gω|ϕ| 1

α ϕ
)

+ gω

(
|ϕ| 1

α ϕ − εα+1|ϕ0|
1
α ϕ0

)

+ εα+1 (gω − gω0(·)) |ϕ0|
1
α ϕ0

(27)

and estimate term by term. First,

‖f(·, ω, ϕ) − gω|ϕ| 1
α ϕ‖ ≤ C(ω0)‖|ϕ| 1

α+1+β‖ ≤ C‖ϕ‖
1
α+β
∞ ‖ϕ‖ ≤ C‖ϕ‖

1
α+1+β

A

≤ Cεα+1+αβ‖ϕ0 + εφ + ε1+τψ‖
1
α+1+β

A

≤ Cεα+1+αβ(1 + ε1+τr2)
1
α+β(1 + ε1+τ‖ψ‖A)

≤ C1(r2)εα+1+αβ(1 + ε1+τ‖ψ‖A)

(28)

for ε > 0 small enough. In Eq. (28) we used the embedding D(A) ↪→ L∞(Rd).
The dependence r2 	→ C1(r2) is of power type; in detail,

C1(r2) = C0(1 + ε1+τr2)1/α+β = C0

(
1 + ( 1

α + β)ε1+τr2(1 + ε1+τr∗)1/α+β−1
)

for some r∗ ∈ [0, r2]. For each r2 > 0 there exists ε0 = ε0(r2) such that
(
1
α + β

)
ε1+τr2(1 + ε1+τr∗)1/α+β−1 ≤ 1

for all ε ∈ (0, ε0). In conclusion

C1(r2) ≤ 2C0 = 2C1(0) (29)

for all ε ∈ (0, ε0).
Next,
∥
∥
∥gω

(
|ϕ| 1

α ϕ − εα+1|ϕ0|
1
α ϕ0

)∥
∥
∥

≤ ‖gω‖∞εα+1‖|ϕ0 + εφ + ε1+τψ| 1
α (ϕ0 + εφ + ε1+τψ) − |ϕ0|

1
α ϕ0‖

≤ Cεα+1‖εφ + ε1+τψ‖ ≤ Cεα+2(1 + ετ‖ψ‖),

(30)

where we used the fact that the map z 	→ |z| 1
α z is locally Lipschitz as well

as estimates of the type ‖|ϕ|1/αφ‖ ≤ ‖ϕ‖1/α
∞ ‖φ‖ ≤ c‖ϕ‖1/α

D(A)‖φ‖ = C. Finally,
since gω is Lipschitz in ω by (f4),

εα+1‖ (gω − gω0) |ϕ0|
1
α ϕ0‖ ≤ εα+1C‖gω − gω0‖∞ ≤ εα+1CKg|ω − ω0|

≤ Cεα+2|ν + ετσ| ≤ Cεα+2(1 + ετr1).
(31)

Hence from (27)–(31) we infer

‖R1‖ ≤ C1(r2)εα+1+αβ(1 + ε1+τ‖ψ‖A) + Cεα+2(1 + ετ (r1 + ‖ψ‖)) (32)
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and therefore, from (23)–(25) and (32), that

‖G(ψ)‖A ≤ Cε−(α+1+τ)‖R(ψ)‖
≤ C1(r2)εαβ−τ (1 + ε1+τ‖ψ‖A) + C(ε1−τ + ε‖ψ‖ + r1

)

+ ε1+τh1(r1, ‖ψ‖).

(33)

Using (29) and τ ≤ αβ, we may further estimate

‖G(ψ)‖A ≤ 2C0(1 + ε1+τr2) + C(ε1−τ + εr2 + r1) + ε1+τh1(r1, r2)

≤ 4C0 + C̃r1

for ε > 0 small enough. This follows because for ε small enough we have
ε1+τh1(r1, r2) < C0. Setting now r2 = r2(r1) := 4C0+C̃r1, we get (i) provided
ε ∈ (0, ε0) with some ε0 = ε0(r1) > 0.

Let us now address the contraction property (ii). We take ψ1, ψ2 ∈ Br2(0)
and define ϕ1,2 := εα(ϕ0 + εφ + ε1+τψ1,2). By (22), we need to estimate
‖R(ψ1) − R(ψ2)‖, with R defined in (21). First notice that R2 and R3 do not
depend on ψ, so they will vanish in the difference and we have to handle just
the nonlinear term and v.

‖v(·, ω, ϕ1) − v(·, ω, ϕ2)‖
≤ εα+2+τC(1 + ετr1)‖ψ1 − ψ2‖ + εα+3+τ‖ψ1 − ψ2‖

+ Cεα+3+2τ (r1 + ετr21)‖ψ1 − ψ2‖ + Cεα+4+τ (1 + ετr1)‖ψ1 − ψ2‖
≤ εα+2+τC2(r1)‖ψ1 − ψ2‖,

(34)

where C2 is polynomial in r1. Here, estimate (26) was used. Next, by (f3),

‖f(·, ω, ϕ1) − f(·, ω, ϕ2)‖
= Kϕ

f (ω0)εα+1‖ϕ0 + εφ + ε1+τψ1 − (ϕ0 + εφ + ε1+τψ2)‖
≤ Kϕ

f (ω0)εα+2+τ‖ψ1 − ψ2‖.

(35)

Hence, by (22), (34) and (35), we get

‖G(ψ1) − G(ψ2)‖A ≤ ε−(α+1+τ)C‖R(ψ1) − R(ψ2)‖
≤ ε max{Kϕ

f (ω0), C2(r1)}‖ψ1 − ψ2‖,

which yields (ii) if ε is small enough. Therefore, applying Banach’s fixed point
theorem, we infer the existence of a solution ψ of Eq. (21). More precisely, for
any r1 > 0 and for any σ ∈ Br1(0) ⊂ C there exists r2 = r2(r1) and ε0 > 0
such that for each ε ∈ (0, ε0) there is a unique ψ = ψ(σ) ∈ Br2(0) ⊂ D(A)
such that (σ, ψ) solves (21).

Let us now address Eq. (17). Inserting ψ = ψ(σ) and dividing by the
factor εα+1+τ 〈∂ωW (·, ω0)ϕ0, ϕ

∗
0〉, which is nonzero by (Wt), this becomes a



NoDEA Eigenvalue bifurcation in doubly nonlinear problems Page 13 of 30 9

fixed point equation for σ:

σ =
(
εα+1+τ 〈∂ωW (·, ω0)ϕ0, ϕ

∗
0〉

)−1

·
(

− εα+2
〈 (

ν∂ωW (·, ω0)φ +
ν2

2
∂2

ωW (·, ω0)ϕ0

)
, ϕ∗

0

〉

− 〈v(·, ω, ϕ(σ)), ϕ∗
0〉 − 〈f(·, ω, ϕ(σ)) − εα+1gω0(·)|ϕ0|

1
α ϕ0, ϕ

∗
0〉

)

=: S(σ),

(17’)

where ϕ(σ) is given by (8) with ψ = ψ(σ). We need to show that for some
r1 > 0

(i’ ) S : Br1(0) → Br1(0),
(ii’ ) there exists ρ ∈ (0, 1) so that

|S(σ1) − S(σ2)| ≤ ρ|σ1 − σ2| for all σ1, σ2 ∈ Br1(0)

if ε > 0 is small enough.
Notice that the first term on the right-hand side of (17’) is independent

of σ and ψ, therefore its norm can be simply estimated by a constant. De-
composing the nonlinear term as in (27), according to estimates (28)–(31), we
get

‖f(·, ω, ϕ) − εα+1gω0(·)|ϕ0|
1
α ϕ0‖ ≤ C1(r2)εα+1+αβ(1 + ε1+τr2)

+Cεα+2(1 + ετ (|σ| + r2)). (36)

Moreover, similarly to (25) we have

‖v(·, ω, ϕ)‖ ≤ εα+2+τC|σ| + εα+2+τ (1 + ετ |σ|)r2 + Cεα+3+τr2

+ εα+2+τC(|σ| + ετ |σ|2)(1 + ε1+τr2)

+ εα+3C(1 + ετ |σ|)(1 + ε1+τr2)

≤ C
(
εα+2+τ (|σ| + r2) + εα+3

)
+ εα+2+2τh1(|σ|, r2).

(37)

Therefore, combining (17’), (36) and (37), we obtain

|S(σ)| ≤ C1(r2)εαβ−τ (1 + ε1+τr2) + Cε1−τ (1 + ετ (|σ| + r2))

+ C(ε(|σ| + r2) + ε2−τ ) + ε1+τh1(|σ|, r2).

For each r1 > 0 there is ε̃0 = ε̃0(r1) > 0 such that

|S(σ)| ≤ εmin{αβ−τ,1−τ} (2C1(r2) + 2C) + 1

for all |σ| < r1 and all ε ∈ (0, ε̃0). Recalling that r2 = r2(r1) = 4C0 + C̃r1 and
that τ ≤ min{1, αβ}, this implies that

|S(σ)| ≤ 4C0 + 2C + 1 for all |σ| < r1 and ε > 0 small enough,

i.e. ε ∈ (0, ε0) with ε0 = ε0(r1). Setting r1 := 4C0 + 2C + 1, we have property
(i ’).
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Finally, let us address the contraction property (ii ’). For σ1,2 ∈ Br1(0)
we define ψ1,2 = ψ(σ1,2) and analogously ω1,2 and ϕ1,2. We need to estimate
|S(σ1) − S(σ2)|. Recalling the form of v in (15), we get

‖v(·, ω1, ϕ1) − v(·, ω2, ϕ2)‖

≤ C

[
εα+2+τ

(
|σ1 − σ2| + ‖ψ1 − ψ2‖ + ετ‖σ1ψ1 − σ2ψ2‖

)

+ εα+3+τ‖ψ1 − ψ2‖ + εα+2+τ
(
|σ2

1 − σ2
2 | + ε1+τ‖σ2

1ψ1 − σ2
2ψ2‖

)

+ εα‖I(·, ω1) − I(·, ω2)‖∞ + εα+1+τ‖I(·, ω2)‖∞‖ψ1 − ψ2‖
]

≤ C3(r1)(1 + r2)εα+2+τ
[
|σ1 − σ2| + ‖ψ1 − ψ2‖

]

(38)

with C3(r1) cubic in r1. Here the estimates are rather standard and quite
similar to the ones used in (37), so we just point out how to deal with the rest
term I. We have, as in Remark 3,

I(·, ω1) − I(·, ω2) =
1

2πi

(
(ω1 − ω0)3

∫

∂Br(ω0)

W (·, z)
(z − ω0)3(z − ω1)

dz

− (ω2 − ω0)3
∫

∂Br(ω0)

W (·, z)
(z − ω0)3(z − ω2)

dz

)
.

(39)

First, we estimate

1
2π

∥
∥
∥
∥

∫

∂Br(ω0)

W (·, z)
(z − ω0)3(z − ω1)

dz
(
(ω1 − ω0)3 − (ω2 − ω0)3

)
∥
∥
∥
∥

∞

≤ ε3
2M

r3
|(ν + ετσ1)3 − (ν + ετσ2)3|

≤ ε3
2M

r3
|ετν2(σ1 − σ2) + 3ε2τν(σ2

1 − σ2
2) + ε3τ (σ3

1 − σ3
2)|

≤ C4(r1)ε3+τ |σ1 − σ2|,

(40)

which holds for all ε > 0 small enough with C4(r1) quadratic in r1 using an
estimate analogous to (26). Second, we have

1
2π

∥
∥
∥
∥
∥
(ω2 − ω0)3

(∫

∂Br(ω0)

W (·, z)
(z − ω0)3(z − ω1)

− W (·, z)
(z − ω0)3(z − ω2)

dz

)∥
∥
∥
∥
∥

∞

≤ cε3|ν + ετσ2|3
∥
∥
∥
∥
∥

∫

∂Br(ω0)

W (·, z)(ω1 − ω2)
(z − ω0)3(z − ω1)(z − ω2)

dz

∥
∥
∥
∥
∥

∞

≤ C̃5(r1)ε4+τ |σ1 − σ2|
∥
∥
∥
∥

∫

∂Br(ω0)

W (·, z)
(z − ω0)4(z − ω2)

dz

∥
∥
∥
∥

∞
≤ C5(r1)ε4+τ |σ1 − σ2| (41)

for ε > 0 small enough, where in the second step we have used ω1 − ω2 =
ε1+τ (σ1 − σ2) and estimated |z − ω1| ≥ 1

2 |z − ω0| for all z ∈ ∂Br(ω0), which
holds for ε > 0 small enough. In the last step estimate (11) was used again.
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The constants C5(r1), C̃5(r1) are cubic in r1. Consequently, by (39)–(41) we
get

‖I(·, ω1) − I(·, ω2)‖∞ ≤ ε3+τC6(r1)|σ1 − σ2|

with C6(r1) cubic in r1.
Now we have to deal with the third term in (17’) involving the nonlin-

earity. However, this is easily estimated using its Lipschitz behaviour in ω and
ϕ as in (f2)–(f3). Indeed,

‖f(·, ω1, ϕ1) − f(·, ω2, ϕ2)‖ ≤ ‖f(·, ω1, ϕ1) − f(·, ω1, ϕ2)‖
+ ‖f(·, ω1, ϕ2) − f(·, ω2, ϕ2)‖,

(42)

where the first term is estimated as in (35), whereas

‖f(·, ω1, ϕ2) − f(·, ω2, ϕ2)‖
≤ εα+1Kω

f (ϕ0)|ω1 − ω2| = εα+2+τKω
f (ϕ0)|σ1 − σ2|. (43)

Therefore, combining (38) and (42)–(43), we infer

|S(σ1) − S(σ2)| ≤ C3(r1)(1 + r2)ε(‖ψ1 − ψ2‖ + |σ1 − σ2|) (44)

with C3(r1) cubic in r1. Hence, it remains to show now that the map σ 	→ ψ(σ)
is Lipschitz continuous. Taking |σ1,2| ≤ r1, we shall estimate the difference
‖ψ1 − ψ2‖ starting from the fixed-point equation (22) for ψ, where as before
we define ψ1,2 := ψ(σ1,2) and similarly for ω1,2 and ϕ1,2. Indeed, exploiting
the above estimates (38) and (42)–(43), we have

‖G(σ1, ψ1) − G(σ2, ψ2)‖
≤ Cε−(α+1+τ)

[
‖f(·, ω1, ϕ1) − f(·, ω2, ϕ2)‖ + Cεα+1+τ |σ1 − σ2|

+ ‖v(·, σ1, ϕ1) − v(·, σ2, ϕ2)‖
]

≤ C
[
(1 + εKω

f (ϕ0))|σ1 − σ2| + C2(r1)(1 + r2)ε(|σ1 − σ2| + ‖ψ1 − ψ2‖)
]

≤ C [2|σ1 − σ2| + C2(r1)(1 + r2)ε‖ψ1 − ψ2‖]

(45)

if ε > 0 is small enough.
This, together with (22), yields ‖ψ(σ1) − ψ(σ2)‖A ≤ 3C|σ1 − σ2| for

σ1,2 ∈ Br1(0) and ε > 0 small enough. As a consequence we may conclude the
fixed point argument for σ because from (44) and (45) and from the fact that
r2 = r2(r1) we obtain

|S(σ1) − S(σ2)| ≤ C̃(r1)ε|σ1 − σ2|

with C̃(r1) > 0, which is the desired contraction property for suitably small
values of ε. Hence, for small ε > 0 the fixed point argument yields the
sought solution for the system (17)–(21) and the proof of Theorem 2.1 is
complete. �
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3. Bifurcation of real nonlinear eigenvalues: the PT -symmetric
case

In applications one often starts from a real eigenvalue of the linear problem
and seeks a bifurcation branch (ω, ϕ) where the realness of the nonlinear eigen-
value is preserved, i.e. ω ∈ R. This is required also for the applications to SPPs
in Sect. 4. However, the solution ω obtained by Theorem 2.1 is a-priori just
complex. In this section we provide a symmetric situation in which the real-
ness of ω is preserved in the bifurcation. This is based on [11, Section III],
whereby we adapt the analysis for our more general context. For the sake of
completeness and since Sect. 4 is based on these results, we present most of
the details here again.

Definition 3.1. A function ψ : R
d → C (d ≥ 1) is called PT -symmetric if

Bψ(x) := ψ(−x) = ψ(x) for all x ∈ R
d. Moreover, an operator L acting on a

Hilbert space with domain D(L) is PT -symmetric when it commutes with B,
namely LB = BL in D(L).

The above operator B is in fact the composition of the operator P, the
space reflection (parity), and T , the complex conjugation, which corresponds
the time-reversal in quantum mechanics.

Notice that the Schrödinger operator −Δ + W with a complex potential
W is PT -symmetric if and only if the real and the imaginary parts of W
satisfy respectively Re W (−x) = Re W (x) and ImW (−x) = − Im W (x) for all
x. Moreover, general polynomial nonlinearities

f(x, ϕ) =
N∑

p,q=0

apq(x)ϕpϕq

are PT -symmetric if and only if the coefficients are so: apq(−x) = apq(x), see
[11, Sections III-IV]. An example is f(ϕ) = |ϕ|2m+1ϕ,m ∈ N.

Proposition 3.1. Let A, W , f and gω be as in Theorem 2.1 and suppose that
they are PT -symmetric. If ω0 ∈ R is an algebraically simple eigenvalue, then
for all ε ∈ (0, ε0) the nonlinear eigenpair (ω, ϕ) from Theorem 2.1 satisfies
ω ∈ R and Bϕ = ϕ.

Remark 7. Under the assumptions on A,W, f , and gω as in Prop. 3.1 and
under the simplicity assumption on ω0, the eigenfunction ϕ0 may always be
chosen PT -symmetric. Indeed, L(·, ω0) = A + W (·, ω0) is PT -symmetric and,
applying B to L(·, ω0)ϕ0 = 0, we get L(·, ω0)

(
Bϕ0) = 0 and we conclude by

the simplicity of ω0.
Similarly, we obtain Bϕ∗

0 = ϕ∗
0 because BL∗(·, ω0) = L∗(·, ω0)B. Indeed,

〈v, L∗φ〉 = 〈Lv, φ〉 = 〈(Lv)(−·), φ(−·)〉 = 〈BLv,Bφ〉 = 〈LBv,Bφ〉
= 〈Bv, L∗Bφ〉 = 〈v, L∗(−·)φ〉 = 〈v,BL∗φ〉

for all v, φ ∈ D(A).
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Proof. According to our expansions (8), we need to prove that ν, σ are real
and that φ, ψ are PT -symmetric. First, ν in (16) satisfies P0(ν∂ωW (·, ω0)ϕ0) =
P0(gω0(·)|ϕ0|

1
α ϕ0), where we recall that P0 is the spectral projection onto the

eigenspace 〈ϕ0〉 and that with our assumptions P0 commutes with B. Indeed,

BP0u = B(〈u, ϕ∗
0〉ϕ0) = 〈u, ϕ∗

0〉Bϕ0 = 〈ū, ϕ∗
0〉ϕ0 = 〈ū, ϕ∗

0(−·)〉ϕ0

= 〈u(−·), ϕ∗
0〉ϕ0 = 〈Bu, ϕ∗

0〉ϕ0 = P0Bu.

Therefore, on the one hand,

BP0(ν∂ωW (·, ω0)ϕ0) = ν̄P0B(∂ωW (·, ω0)ϕ0) = ν̄P0

(
∂ωBW (·, ω0)Bϕ0

)

= ν̄P0(∂ωW (·, ω0)ϕ0).

On the other hand,

BP0(ν∂ωW (·, ω0)ϕ0) = BP0(gω0(·)|ϕ0|
1
α ϕ0) = P0

(
B(gω0(·))B(|ϕ0|

1
α ϕ0)

)

= P0(gω0(·)|ϕ0|
1
α ϕ0).

This yields ν ∈ R. Next, let us analyze φ, i.e. the solution of (20) in Q0D(A).
Notice that if P0 commutes with B, then the same holds for Q0 = Id − P0,
too. Therefore, applying a similar argument, we get that B(φ) satisfies (20)
too. Moreover, since B(φ) ∈ D(A) ∩ 〈ϕ∗

0〉⊥, we get B(φ) = φ because (20) has
a unique solution in P0D(A). Let us now address σ and ψ. We will show that
the coupled fixed point problem (17),(21) preserves the realness of σ and the
PT -symmetry of ψ. First, given σ ∈ R with σ ∈ (−r1, r1), we prove that

Bψ = ψ ⇒ BG(σ, ψ) = G(σ, ψ), (46)

where G is defined in (22). If (46) holds, then the fixed point ψ = ψ(σ) of
ψ = G(σ, ψ) lies in Br2(0)∩{η ∈ L2(Rd) | Bη = η}. To this aim, first we notice
that for u ∈ Q0L

2(Rd) it holds

B
(
Q0L(·, ω0)Q0

)−1
u =

(
Q0L(·, ω0)Q0

)−1(
Q0L(·, ω0)Q0

)
B

(
Q0L(·, ω0)Q0

)−1
u

=
(
Q0L(·, ω0)Q0

)−1B
(
Q0L(·, ω0)Q0

)(
Q0L(·, ω0)Q0

)−1
u

=
(
Q0L(·, ω0)Q0

)−1Bu.

Next, recalling that ϕ0, φ, and ψ are now PT -symmetric, we get for R (defined
in (21))

BR(ψ) = Q0

(
Bf(·, ω, ϕ) − εα+1B(gω0(·)|ϕ0|

1
α ϕ0)

)

+ εα+1+τσQ0(∂ωB(W (·, ω0))B(ϕ0))

+ εα+2Q0

(
ν2

2
∂2

ωB(W (·, ω0))B(ϕ0) + ν∂ωB(W (·, ω0))B(φ)
)

+ Q0(Bv(·, ω, ϕ))

= R(ψ) + Q0(Bv(·, ω, ϕ) − v(·, ω, ϕ)).

Inspecting all terms in v appearing in (15) and exploiting σ ∈ R (and therefore
ω ∈ R), we obtain that Bv(·, ω, ϕ) = v(·, ω, ϕ), so (46) is proved. Finally, with
similar manipulations one proves that B(ψ) = ψ implies BS(σ) = S(σ), where



9 Page 18 of 30 T. Dohnal and G. Romani NoDEA

S is defined in (17’), obtaining thus S(σ) ∈ R since BS(σ) = S(σ). Therefore,
for a given PT −symmetric ψ(σ) the fixed point σ of S(σ) must be real. This
completes the proof. �

4. Applications to nonlinear surface plasmons

As mentioned in the introduction, we are interested in surface plasmon po-
laritons (SPPs) localized at one or more interfaces between different dielectric
and metal layers. We consider the time harmonic and z-independent ansatz
(5) for the Maxwell system (3). A simple nonlinear, non-local relation for the
displacement field is

D(x, y, z, t) = E +
∫

R

χ(1)(x, y, z, t − s)E(s) ds

+
∫

R

χ(3)(x, y, z, t − s) ((E · E)E) (s) ds, (47)

where χ(1,3) : R3 × R → R and χ(1,3)(·, τ) = 0 for τ < 0. The functions χ(1)

and χ(3) are the linear and the cubic electric susceptibilities of the material,
respectively. In general, χ(1) and χ(3) are tensors but in the isotropic case,
which we assume, the relation in (47) with scalar χ(1) and χ(3) holds, see [17,
Section 2d].

Substituting a monochromatic ansatz E(x, y, z, t) = E(x, y, z)eiωt+c.c. in
(3) and neglecting higher harmonics (terms proportional to e3iωt and e−3iωt),
we get D(x, y, z, t) = D(x, y, z)eiωt + c.c. with

D(x, y, z) = (1 + χ̂(1)(x, y, z, ω))E + χ̂(3)(x, y, z, ω)(2|E|2E + (E · E)Ē).

Here |E|2 = E · E and f̂(ω) is the Fourier-transform of f . Neglecting higher
harmonics is a common approach in theoretical studies of weakly nonlinear
optical waves [23]. Using (3), we get that both H and D are curl-fields such
that the divergence conditions ∇·D = 0,∇·H = 0 hold automatically. Defining
c := (ε0μ0)−1/2, in the second order formulation we have ω2

c2 D = ∇ × ∇ × E,
i.e.

∇ × ∇ × E − ω2

c2
(1 + χ̂(1)(x, y, z, ω))E

−ω2

c2
χ̂(3)(x, y, z, ω)(2|E|2E + (E · E)Ē) = 0. (48)

Recall again only odd nonlinearities are allowed in D when studying time
harmonic waves. Even nonlinearities do not produce terms proportional to eiωt.

We consider structures independent of y and z, i.e. χ(1,3) = χ(1,3)(x, ω).
Interfaces between layers are thus parallel to the yz-plane.

For the TE-ansatz in (5), with only one nontrivial component, Eq. (48)
reduces to the scalar problem

ϕ′′ + W (x, ω)ϕ + Γ(x, ω)|ϕ|2ϕ = 0, x ∈ R (49)
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with

W (x, ω) :=
ω2

c2
(1 + χ̂(1)(x, ω)) − k2, Γ(x, ω) :=

3ω2

c2
χ̂(3)(x, ω).

We study layers of x-periodic (including homogeneous) media. When a
metal layer is homogeneous, we choose the simplest Drude model of the linear
susceptibility in that layer [19]

χ̂(1)(x, ω) = −
ω2

p

ω2 + iγω
, (50)

where ωp ∈ R
+ and γ ∈ R. For dielectric layers we choose a periodic (possi-

bly constant) and generally complex χ̂(1)(·, ω). The imaginary part of χ̂(1) is
related to the loss or gain of energy of an electromagnetic wave propagating
inside the medium. For most of the materials, and in particular for metals, it
is negative, corresponding to a lossy material. However, in active (doped) ma-
terials the energy of an electromagnetic wave is amplified (energy gain), and
therefore the imaginary part of χ̂(1) is positive. Materials with a real χ̂(1)(·, ω)
are called conservative.

To make Eq. (49) dimensionless, as well as in order to use the physical
values of the parameters involved in the numerical study in Sect. 4.1.2, we
introduce the new rescaled spatial variable, frequency, and wave number

x̃ :=
ωp

c
x, ω̃ :=

ω

ωp
, k̃ :=

c

ωp
k, (51)

where ωp is the bulk plasma frequency of a prescribed metal layer. Defining
then ϕ̃(x̃) := ϕ(x), we obtain the same equation as (49) but in the tilde
variables and with W and Γ respectively replaced by

W̃ (x̃, ω̃) :=
c2

ω2
p

W

(
c

ωp
x̃, ωpω̃

)
= ω̃2

(
1 + χ̂(1)

(
c

ωp
x̃, ωpω̃

))
− k̃2, (52)

Γ̃(x̃, ω̃) :=
c2

ω2
p

Γ
(

c

ωp
x̃, ωpω̃

)
= 3ω̃2χ̂(3)

(
c

ωp
x̃, ωpω̃

)
. (53)

Note that for the Drude model the susceptibility is

χ̂(1)

(
c

ωp
x̃, ωpω̃

)
= − 1

ω̃2 + iγ̃ω̃
,

where γ̃ := γ/ωp.
For the sake of a simpler notation henceforth we will simply write x, ω, γ,

k,W , and Γ instead of x̃, ω̃, γ̃, k̃, W̃ , and Γ̃.
Due to the presence of material interface(s), solutions of the Maxwell’s

equations (3) are not smooth. However, they satisfy the interface conditions
that the tangential component of E , the normal component of D and the whole
vector H be continuous across each interface, see Sect. 33-3 in [13]. For our
interfaces parallel to the yz-plane we get (4). For the ansatz (5) the interface
conditions reduce to a C1-continuity condition on ϕ

�ϕ� = �∂xϕ� = 0. (IFCs)
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Our nonlinear problem (1) is thus Eq. (49) with W and Γ respectively replaced
by (52)–(53) and coupled with the (IFCs).

To apply our bifurcation result to (49) with (IFCs), a real, linear eigen-
value is needed. We show that such an eigenvalue exists in some PT -symmetric
choices of the layers. SPPs in PT -symmetric structures have been studied in
the physics literature before by employing active materials, see e.g. [2,3,14,25].
Nevertheless, we are not aware of a rigorous mathematical existence proof of
the asymptotic expansion of nonlinear SPPs in the frequency dependent case.

Theorem 2.1 can be applied to (49) with finitely many interfaces (at
x = x1, . . . , xN ) using the following natural choice of A, D(A), and f :

A := − d2

dx2
, f(x, ω, ϕ) := Γ(x, ω)|ϕ|2ϕ,

and
D(A) :=

{
ϕ ∈ L2(R) : ϕ|(xj ,xj+1) ∈ H2((xj , xj+1),C) for j = 0, . . . N

and �ϕ�j = �∂xϕ�j = 0, j = 1, . . . , N
}
,

where �ϕ�j := limx→xj+ ϕ(x) − limx→xj− ϕ(x) and x0 := −∞, xN+1 := ∞. It
is easy to see that D(A) = H2(R,C) using the definition of the second weak
derivative and the fact that at the interfaces any ϕ ∈ D(A) is of class C1. Note
that assumptions (A1)–(A2), (f1)–(f4) are satisfied for any ω ∈ C\{0,−iγ}.

4.1. The linear eigenvalue problem

In order to apply Theorem 2.1, we need to find an eigen-pair (ω0, ϕ0) of the
linear problem

ϕ′′ + W (x, ω)ϕ = 0, x ∈ R (54)

coupled with IFCs, with a simple and isolated ω0 ∈ C\{0}. To ensure the
realness of the frequency we need, in fact, ω0 ∈ R\{0} as well as the PT -
symmetry of W (·, ω), such that Proposition 3.1 can be applied. We shall see
that the existence of a simple and isolated eigenvalue ω0 ∈ R\{0} strongly
depends on the choice of the layers. As we show in Sect. 4.1.1, the choice
of two layers (N = 1) of periodic materials with one being conservative and
the other a non-conservative homogeneous material (i.e. with a complex χ̂(1))
leads to no real eigenvalues ω0. On the other hand, in Sect. 4.1.2 we find two
PT -symmetric settings with three homogeneous layers (N = 2) leading to
the existence of an isolated simple eigenvalue ω0 ∈ R in (54). These settings
are: (active dielectric—conservative Drude metal—lossy dielectric) and a hy-
pothetical setting of (Drude metal with gain—lossless dielectric—lossy Drude
metal).

4.1.1. Two periodic layers. We consider first the case of two layers, each being
either a periodic metal or a periodic dielectric, where we set the interface at
x = 0. Hence

W (x, ω) = W±(x, ω) for ± x > 0,

where the functions W±(x, ω) = ω2(1 + χ̂
(1)
± (x, ω)) − k2 are periodic in x

with periods ν± > 0. The governing linear problem (54) has two linearly
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independent Bloch wave solutions ψ±
1,2 on the half line ±x > 0 respectively.

The Bloch wave theory for the Hill’s equation (54) can be found in [12]. A
necessary condition for the existence of an L2(R,C)-solution of (54) is

0 /∈ S := σ

(
− d2

dx2
− W+(·, ω)

)
∪ σ

(
− d2

dx2
− W−(·, ω)

)
.

Otherwise (if 0 ∈ S), on at least one of the half lines there is no decaying
solution. If 0 /∈ S, the solutions ψ±

1,2 have the form

ψ+
j (x) = p+j (x)e(−1)jλ+x, ψ−

j (x) = p−
j (x)e(−1)jλ−x, j = 1, 2,

where Re(λ±) > 0, p±
j (x+ ν±) = p±

j (x) for all x ∈ R and both j = 1, 2. If, say,
W+ is real, then p+j and λ+ can be chosen real but p+j is generally 2ν+-periodic,
see [12].

An L2(R)-solution is given by

ϕ(x) =

{
ϕ+(x) := p+1 (x)e−λ+x, x > 0,

ϕ−(x) := p−
2 (x)eλ−x, x < 0.

Due to the linearity of (54) the C1-matching condition (IFCs) is equivalent to
the condition

R+ :=
ϕ′
+(0)

ϕ+(0)
=

ϕ′
−(0)

ϕ−(0)
=: R−. (55)

Note that by varying the parameters ω, k ∈ R we get R± = R±(ω, k).
In [10] the case of real, periodic W±, i.e. the one of two periodic conser-

vative materials, was considered and eigenvalues were found by varying k and
searching for zeros of R+(k) − R−(k).

In the presence of non-conservative materials the respective potential W
is complex. It is easy to see that the single interface of a conservative ma-
terial (e.g. a classical dielectric) with a real W and non-conservative homo-
geneous material (e.g. a Drude metal) with a complex W does not support
any eigenvalues of (54). Note that this does not contradict the existence of
SPPs at such single metal/dielectric interfaces in general because this exis-
tence holds for TM-polarisations, see [19]. Without loss of generality we as-
sume that the conservative material is on the half line x > 0, i.e. W+(x, ω) is
real. The non-conservative material in x < 0 is homogeneous (described, e.g.
by (50)) such that W−(x, ω) = W−(ω) is complex and independent of x. Hence
ϕ−(x) = ceλ−x with3 λ− =

√
W−(ω) ∈ C\R, such that

R− = λ−,

and ϕ+(x) = p+1 (x)e−λ+x with λ+ ∈ R and p+1 (x) real and 2ν+−periodic, such
that

R+ =
p+

′
1 (0)

p+1 (0)
− λ+ ∈ R.

3Henceforth, for any z ∈ C we choose the square root
√

z as the one solution a of a2 = z
with arg(a) ∈ (−π/2, π/2].



9 Page 22 of 30 T. Dohnal and G. Romani NoDEA

Note that p+1 (0) = 0 implies c = 0 due to (IFCs) such that only the trivial
solution ϕ ≡ 0 is produced in that case.

Because R− ∈ C\R and R+ ∈ R, condition (55) is not satisfied and no
eigenvalue exists.

4.1.2. Three homogeneous layers. Next we consider three homogeneous ma-
terial layers with interfaces at x = 0 and x = d > 0, i.e. a sandwich geometry
with two unbounded layers,

χ̂(1)(x, ω) :=

⎧
⎪⎨

⎪⎩

η− for x < 0,

η∗ for x ∈ (0, d),
η+ for x > d,

i.e. W (x, ω) =

⎧
⎪⎨

⎪⎩

ω2(1 + η−) − k2 =: W− for x < 0,

ω2(1 + η∗) − k2 =: W∗ for x ∈ (0, d),
ω2(1 + η+) − k2 =: W+ for x > d,

(56)

where η±, η∗ ∈ C. A localized solution of (54) is possible only if

0 /∈ S :=
⋃

±
σ

(
− d2

dx2
− W±(ω)

)
. (57)

Note that if the semi-infinite layers are conservative, then η+, η− ∈ R and (57)
is equivalent to

k2 > ω2(1 + max{η+, η−}).

Under assumption (57) we have

ϕ(x) =

⎧
⎪⎨

⎪⎩

Aeλ−x for x < 0,

Beμx + Ce−μx for x ∈ (0, d),
De−λ+x for x > d,

(58)

where μ :=
√

−W∗, λ± :=
√

−W±, Re(λ±) > 0, and where A,B,C,D ∈ C

are constants to be determined. We can normalize such that D = 1. Then the
C1-matching at x = 0 and x = d is equivalent to

{
A = B + C

Aλ− = μB − μC

{
e−λ+d = Beμd + Ce−μd

−λ+e−λ+d = μBeμd − μCe−μd.
(59)

This system has the unique solution

A =
e−λ+d

2

[(
1 − λ+

μ

)
e−μd +

(
1 +

λ+

μ

)
eμd

]
,

B =
1
2

(
1 − λ+

μ

)
e−(μ+λ+)d, C =

1
2

(
1 +

λ+

μ

)
e−(−μ+λ+)d,

together with a condition on the parameter d:

∃m ∈ Z : d = d̃m :=
1
2μ

[
log

(
(μ − λ−)(μ − λ+)
(μ + λ−)(μ + λ+)

)
+ 2πim

]
∈ (0,∞).

(60)
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The term 2πim appears due the fact that z = log(b)+2πim solves ez = b for any
m ∈ Z. Condition (60) means that under assumption (57) there is a width d >

0 supporting a real eigenvalue if and only if d̃m = d̃m(ω) is positive for some
value of ω ∈ R and some m ∈ Z. If all the layers are homogeneous conservative
materials, (60) cannot be satisfied because μ > 0 and the argument of the
logarithm on the right hand side of (60) lies in (0, 1) such that Re(d̃m) < 0 for
all m ∈ Z.

Next, we consider three sandwich settings, out of which the last two are
PT -symmetric. As the numerical evaluation of d̃m suggests, both of these
apparently lead to the existence of linear eigenvalues ω0 ∈ R and hence to
real bifurcating nonlinear eigenvalues ω. The first one of these PT -symmetric
cases has been taken from the physics literature [2,3] while the second one
corresponds to a hypothetical material.
Case 1: conservative dielectric—Drude metal—conservative dielectric

Note that a Drude metal layer being sandwiched between two conserva-
tive dielectrics does not produce a PT -symmetric potential W . Hence, we do
not expect a real eigenvalue ω.

We have η± > 0 and η∗ = − 1
ω2+iγω ∈ C. Our numerical study of d̃m

shows that for any choice of the constants η+, η−, γ ∈ R and m ∈ Z we cannot
find a frequency ω for which d̃m(ω) ∈ (0,∞). Figure 1a, b shows as an example
the behaviour of the maps ω 	→ Re(d̃0(ω)) and ω 	→ Im(d̃0(ω)) for different
choices of γ, η+, η−.
Case 2: PT -symmetric (dielectric—metal—dielectric) setting

For the case of a homogeneous Drude metal sandwiched between two
homogeneous non-conservative dielectric layers, we have

η± = η±
R + iη±

I and η∗ = − 1
ω2 + iγω

. (61)

This setting leads to a PT -symmetric W (with respect to x = d/2, i.e. W (d
2 −

x, ω) = W (d
2 + x, ω) for all x ∈ R and ω ∈ R\{0}) if we choose

η+
R = η−

R , η+
I = −η−

I , γ = 0.

Hence, one of the dielectric layers is lossy while the other is active and generates
energy gain.

Note that in this example the simple transformation ω′ := ω2 leads to a
linear dependence on the spectral parameter ω′.

This configuration of a conservative metal sandwiched between a couple
of well-prepared active and lossy dielectrics was considered, e.g., in [2,3]. As
the active material we consider titanium dioxide (TiO2), with refractive index
n = 3.2+0.2i, and as the metal we choose silver with the bulk plasma frequency
ωp(Ag) = 8, 85 · 1015s−1. We use ωp(Ag) as the rescaling parameter in (51).
Recalling the relation W (x) = ω2n(x)2 − k2 between the refractive index and
the potential W , we choose k = 2 and obtain η± = 9.2 ± 1.28i.

Our numerical tests show that this PT -symmetric setting leads to d̃(ω) >
0 for all ω > ωDMD ≈ 2.23, see Fig. 1c. For the computation of the bifurcation
we choose the point ω0 ≈ 3.8275, for which d = d̃−1(3.8275) ≈ 1.



9 Page 24 of 30 T. Dohnal and G. Romani NoDEA

(a)

(c) (d)

(b)

Figure 1. The graph of ω 	→ Re(d̃m(ω)) (full blue line) and
ω 	→ Im(d̃m(ω)) (dashed red line). a, b Case 1 with k = 1,
γ = ∓0.5, η+ = 5, η− = 0.05, and m = 0. c Case 2 with
k = 2, η± = 9.2 ± 1.28i, γ = 0 and m = 1. d Case 3 with
k = 2, γ+ = −γ− = 0.5, η∗ = 0.2 and m = −1. In c (resp. d)
the chosen value d = 1, attained at ω ≈ 3.8275 (resp. d = 0.5,
attained at ω ≈ 2.8096), is highlighted in the graph (colour
figure online)

As the graph in Fig. 1c suggests, d
dω Re(d̃−1(ω)) 
= 0 for all ω > ωDMD.

Hence, for any width d ∈ d̃−1((ωDMD,∞)) there is only one ω0 for which
d = d̃−1(ω0), i.e. for which (60) holds, i.e. there is only one eigenvalue ω0.
Because

σess

(
− d2

dx2
− W

)
=

⋃

±

{
λ − ω2(1 + η±) + k2 : λ ∈ (0,∞)

}

and η± ∈ C\R, we have ω0 /∈ σess

(
− d2

dx2 − W
)
. Moreover, the constants

A,B,C,D are unique (up to normalization of ϕ0). Hence, ω0 is an isolated
simple eigenvalue.
Case 3: PT -symmetric (metal—dielectric—metal) setting.
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For the case of a homogeneous conservative dielectric sandwiched between
two homogeneous Drude metal layers we have

η± = − 1
ω2 + iγ±ω

∈ C and η∗ > 0. (62)

This setting leads to a PT -symmetric W with respect to x = d/2 if we choose
ω ∈ R\{0} and γ+ = −γ−. Note that this setting (with γ+ 
= 0) is hypothetical
as materials with χ(1)(ω) = −1/(ω2 + iγω) and a negative γ may not exist.

Also notice that here, unlike the previous example, the dependence of W
on ω is truly nonlinear. We retrieve numerically again a similar plot for the
function ω 	→ d̃(ω), as shown in Fig. 1d: d̃(ω) > 0 for all ω > ωMDM with
some ωMDM > 0. For k = 2, γ+ = 0.5 and η∗ = 0.2 we get ωMDM ≈ 1.83.
For the computation of the bifurcation we choose the point ω0 ≈ 2.8096 for
which d = d̃−1(ω0) ≈ 0.5. Analogously to Case 2, such ω0 is an isolated simple
eigenvalue.

4.2. Bifurcation of a nonlinear eigenvalue

We are now in a position to apply the bifurcation result of Theorem 2.1 in its
symmetric version provided by Proposition 3.1 in both settings given by Case 2
and Case 3 and find a bifurcating branch of solutions to the reduced Maxwell’s
equation (49). In both cases we choose the cubic susceptibility χ(3) ≡ 1.

The numerical computations below were obtained using a centered finite
difference discretization of fourth order on an equispaced grid and with the
condition that ϕ(x) = 0 for x outside the computational interval. The lin-
ear eigenfunction ϕ0 was computed using Matlab’s built in eigenvalue solver
eigs. The computation of the nonlinear solution ϕ was done via the standard
Newton’s iteration.

Case 2. In this case the linear susceptibility χ(1) is chosen as in (56), (61) with
parameters as in Sect. 4.1.2 (k = 2, γ = 0 and η± = 9.2 ± 1.28i). The linear
eigenvalue is selected as ω0 = 3.8275. The last condition to check is (Wt). A
numerical approximation produces 〈∂ωW (·, ω0)ϕ0, ϕ

∗
0〉 ≈ 7.602.

Figure 2a shows the resulting potential W (·, ω0). In Fig. 2d the bifur-
cation diagram is shown, where the actual (numerically computed) branch is
plotted with the dashed blue line for ω ∈ (3.2, ω0), while the first order ap-
proximation (ω0 + εν, ‖ε1/2ϕ0‖L2) for ε ∈ (0, (ω0 − 3.2)/|ν|) is plotted in full
red. The numerical value of ν is ν ≈ −7.4226. A good agreement is observed
between the asymptotic and the numerical curves in the vicinity of ω0. The
eigenfunction ϕ0 related to the eigenvalue ω0 is plotted in Fig. 2b. Finally,
Fig. 2c shows the solution ϕ at ω = 3.2, i.e. at the last ω in the continuation
procedure.

Case 3. Here we choose χ(1) as in (56), (62) with parameters as in Sect. 4.1.2
(k = 2, γ+ = −γ− = 0.5, and η∗ = 0.2). The linear eigenvalue is selected as
ω0 = 2.8096. Again we have to check condition (Wt): a numerical approxima-
tion produces 〈∂ωW (·, ω0)ϕ0, ϕ

∗
0〉 ≈ 6.202.
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(a) (b)

(c) (d)

Figure 2. Equations (49), (56), (61) with the parameters:
d = 1, η± = 9.2 ± 1.28i, and k = 2. a The potential W (·, ω0)
at ω0 ≈ 3.8275. b The eigenfunction ϕ0 of (54) at ω0. c The so-
lution of (49) at ω = 3.2. d The bifurcation diagram (ω, ‖ϕ‖)
(dashed blue) and the approximation (ω0 +εν, ‖ε1/2ϕ0‖) (full
red) starting at ω0 (colour figure online)

The resulting bifurcation diagram is shown in Fig. 3d, where again the
actual branch is plotted with the dashed blue line, while the first order ap-
proximation (ω0 +εν, ‖ε1/2ϕ0‖) for ε ∈ (0, (ω0 −1.5)/|ν|) is plotted in full red.
We get numerically ν ≈ −2.7233. Once again, a good agreement is observed
between the asymptotic and the numerical curves. The eigenfunction ϕ0 re-
lated to the eigenvalue ω0 is plotted in Fig. 3b. Figure 3c shows the solution
ϕ at ω = 1.5, i.e. at the last ω in the continuation procedure.
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(b)(a)

(c) (d)

Figure 3. Equations (49), (56), (62) with the parameters:
d = 0.5, γ+ = −γ− = 0.5, and η∗ = 0.2. a The potential
W (·, ω0) at ω0 ≈ 2.8096. b The eigenfunction ϕ0 of (54) at
ω0. c The solution of (49) for ω = 1.5. d The bifurcation
diagram (ω, ‖ϕ‖) (dashed blue) and the approximation (ω0 +
εν, ‖ε1/2ϕ0‖) (full red) starting at ω0 (colour figure online)
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