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Abstract
In this paper we present an analytical framework for the following system of multi-
valued parabolic variational inequalities in a cylindrical domain Q = Ω × (0, τ ): For
k = 1, . . . ,m, find uk ∈ Kk and ηk ∈ L p′

k (Q) such that

uk(·, 0) = 0 in Ω, ηk(x, t) ∈ fk(x, t, u1(x, t), . . . , um(x, t)),

〈ukt + Akuk, vk − uk〉 +
∫
Q

ηk (vk − uk) dxdt ≥ 0, ∀ vk ∈ Kk,

where Kk is a closed and convex subset of L pk (0, τ ;W 1,pk
0 (Ω)), Ak is a time-

dependent quasilinear elliptic operator, and fk : Q × R
m → 2R is an upper

semicontinuous multivalued function with respect to s ∈ R
m . We provide an existence

theory for the above system under certain coercivity assumptions. In the noncoercive
case, we establish an appropriate sub-supersolution method that allows us to get exis-
tence and enclosure results. As an application, amultivalued parabolic obstacle system
is treated. Moreover, under a lattice condition on the constraints Kk , systems of evo-
lutionary variational-hemivariational inequalities are shown to be a subclass of the
above system of multivalued parabolic variational inequalities.
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1 Introduction

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω , Q = Ω × (0, τ ) a

space-time cylindrical domain with baseΩ , and Γ = ∂Ω × (0, τ ) its lateral boundary
with τ > 0. For p ∈ (1,∞), we denote by W 1,p(Ω) and W 1,p

0 (Ω) the usual Sobolev
spaces with dual spaces (W 1,p(Ω))∗ and W−1,p′

(Ω), respectively, where p′ is the
Hölder conjugate of p satisfying 1/p + 1/p′ = 1. Note that if 2 ≤ p < ∞, then
W 1,p(Ω) ⊂ L2(Ω) ⊂ (W 1,p(Ω))∗ form an evolution triple with all the imbeddings
being dense and compact (see e.g. [18]) .

Let m ∈ N and p1, . . . , pm ∈ [2,∞). We are concerned in this paper with the
following system of m multivalued parabolic variational inequalities: For each k =
1, . . . ,m, find uk ∈ W0k ∩ Kk and ηk ∈ L p′

k (Q) such that

uk(·, 0) = 0 in Ω, ηk(x, t) ∈ fk(x, t, u1(x, t), . . . , um(x, t)), (1.1)

〈ukt + Akuk, vk − uk〉 +
∫
Q

ηk (vk − uk) dxdt ≥ 0, ∀ vk ∈ Kk, (1.2)

where Kk is a closed, convex subset of X0k := L pk (0, τ ;W 1,pk
0 (Ω)), W0k = {uk ∈

X0k : ukt ∈ X∗
0k}, and 〈·, ·〉 denotes the duality pairing between X∗

0k and X0k . The
operator Ak : X0k → X∗

0k is a second order quasilinear differential operator of Leray-
Lions type, given by

Ak(uk)(x, t) = −
N∑
i=1

∂

∂xi
a(k)
i (x, t,∇uk(x, t)),

and fk : Q × R
m → 2R, (x, t, s1, . . . , sm) �→ fk(x, t, s1, . . . , sm) ∈ 2R, is an upper

semicontinuous multivalued function with respect to s := (s1, . . . , sm) ∈ R
m , that

will be specified later.
The main goal of this article is to present a mathematical theory for systems of

parabolic variational inequalities with upper semicontinuous multivalued functions of
the form (1.1)–(1.2) in both coercive and noncoercive cases, and to provide existence
and enclosure principles when subsolutions and supersolutions of (1.1)–(1.2), defined
in certain appropriate sense, exist. To the best of our knowledge, systems of parabolic
multivalued variational inequalities have not been studied before in a systematic way
by sub-supersolution (lattice) approaches. Moreover, we point out here that the closed
and convex sets Kk’s that represent constraints in system (1.1)–(1.2) are not sup-
posed to have nonempty interior parts or to satisfy some conditions of similar type.
Such assumptions typically allow the application of Rockafellar’s theorem about sums
of maximal monotone operators, which facilitates the study of parabolic variational
inequalities considerably by the implementation of arguments and results for ellip-
tic variational inequalities to parabolic variational inequalities. However, assumptions
of these types would exclude the investigation of certain most important classes of
evolutionary variational inequalities such as parabolic obstacles problems, in which
the associated closed and convex sets representing the obstacles have empty interior
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parts. As will be seen later, our approach here applies also to obstacle problems. We
also remark that (1.1)–(1.2) covers a wide range of parabolic systems when spec-
ifying K and/or f such as the special cases mentioned above including parabolic
initial-boundary value problem in the case when K = X0, and f : Q × R → R

is a Carathéodory function. Moreover, under a lattice condition on the constraints
Kk , systems of evolutionary variational-hemivariational inequalities will be shown to
be a subclass of the above system of multivalued parabolic variational inequalities
(1.1)–(1.2).

The paper is organized as follows. After introducing necessary assumptions and
notations and providing auxiliary results, including one on the pseudomonotonicity of
multivalued Nemytskij operators with respect to the graph norm of the time derivative
operator, in Sects. 2 and 3, we present our main results in Section 4. In the first part
(Sect. 4.1) we treat the coercive case, where some relative growth condition of Ak and
fk for u with large norm is imposed. In this case the existence of solutions of (1.1)–
(1.2) follows from penalty arguments and the solvability of systems of equations with
multivalued pseudomonotone operators. In the second part (Sect. 4.2), we deal with
the noncoercive case where such growth condition is not assumed.We establish in that
section a sub-supersolution method that will allow us to prove existence and enclosure
results. The concepts of sub- and supersolutions and the arguments in our case here
are combinations of those for parabolic multivalued variational inequalities in [5] and
those for systems of multivalued elliptic variational inequalities in [10]. In Sect. 5, as
an application of the theory developed in the preceding sections, we treat an obstacle
problem by explicitly constructing an ordered pair of sub- and supersolutions. Finally,
we show in Section 6 that under a lattice condition on the constraints, systems of
evolutionary variational-hemivariational inequalities turn out to be only a subclass of
system (1.1)–(1.2).

2 Assumptions: setting of the problem

Let us begin with some needed notation and assumptions. Let Ω , Q, X0k , andW0k be
defined as in Sect. 1, and L0(Ω) (resp. L0(Q)) be the set of all (equivalent classes of)
measurable functions from Ω (resp. from Q) to R.

For k = 1, . . . ,m, let Wk be defined by

Wk = {u ∈ Xk : ut ∈ X∗
k } ,

where Xk = L pk (0, τ ;W 1,pk (Ω)) with its dual X∗
k = L p′

k (0, τ ; (W 1,pk (Ω))∗), and
the derivative ut := ∂u/∂t is understood in the sense of vector-valued distributions.

The space Wk endowed with the graph norm of the operator ∂/∂t

‖u‖Wk = ‖u‖Xk + ‖ut‖X∗
k

is aBanach spacewhich is separable and reflexive due to the separability and reflexivity
of Xk and X∗

k , where ‖ · ‖Xk and ‖ · ‖X0k are the usual norms defined on Xk and X0k
(and similarly on X∗

k and X∗
0k) :
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230 S. Carl, Vy. K. Le

‖u‖Xk =
(∫ τ

0
‖u(t)‖pk

W 1,pk (Ω)
dt

)1/pk
, ‖u‖X0k =

(∫ τ

0
‖u(t)‖pk

W
1,pk
0 (Ω)

dt

)1/pk
.

For any k ∈ {1, . . . ,m}, Wk is continuously embedded into C([0, τ ], L2(Ω)). Thus,
by Aubin’s lemma, the embedding Wk ↪→↪→ L pk (Q) is compact due to the compact
embeddingW 1,pk (Ω) ↪→↪→ L pk (Ω). Similar properties hold true for the spaceW0k ,

W0k = {u ∈ X0k : ut ∈ X∗
0k},

introduced in Sect. 1.
For k = 1, . . . ,m, we denote by Lk := ∂/∂t , where its domain of definition,

D(Lk), is given by

D(Lk) = {
u ∈ X0k : ut ∈ X∗

0k and u(·, 0) = 0
}
. (2.1)

It is known that the linear operator Lk : D(Lk) ⊂ X0k → X∗
0k is closed, densely

defined and maximal monotone, e.g., cf. [18, Chap. 32].
For u, v ∈ R

m , we denote u ≤ v if uk ≤ vk,∀k ∈ {1, . . . ,m}. This ordering is
extended to functions u, v ∈ [L0(Ω)]m (resp. u, v ∈ [L0(Q)]m) in a natural way:
u ≤ v if and only if u(x) ≤ v(x) for a.e. x ∈ Ω (resp. u(x, t) ≤ v(x, t) for a.e.
(x, t) ∈ Q). If u j ∈ R with j ∈ {1, . . . ,m}\{k}, and t ∈ R, then we denote

[u]k = (u1, . . . , uk−1, uk+1, . . . , um) ∈ R
m−1,

(t, [u]k) = (u1, . . . , uk−1, t, uk+1, . . . , um) ∈ R
m,

For u ∈ R
m , we also use the same notation [u]k for (u1, . . . , uk−1, uk+1, . . . , um) ∈

R
m−1. Let u, v ∈ R

m such that u ≤ v, we put

[u, v] = {w ∈ R
m : u ≤ w ≤ v}.

Similarly, for k ∈ {1, . . . ,m} and [u]k, [v]k ∈ R
m−1 with [u]k ≤ [v]k , we denote

[u, v]k = [[u]k, [v]k] = {[w]k ∈ R
m−1 : [u]k ≤ [w]k ≤ [v]k}.

We use the same notation for vector functions, that is, for u, v ∈ [L0(Q)]m or u, v ∈∏m
j=1 X j and for [u]k, [v]k ∈ [L0(Q)]m−1 or [u]k, [v]k ∈ ∏

j∈{1,...,m}\{k} X j . For
example, if u, v ∈ ∏m

j=1 X j = X and u ≤ v, then

[u, v] = {w ∈ X : u ≤ w ≤ v},

and if [u]k, [v]k ∈ ∏
j∈{1,...,m}\{k} X j and u ≤ v, then

[u, v]k = [[u]k, [v]k] =
⎧⎨
⎩[w]k ∈

∏
j∈{1,...,m}\{k}

X j : [u]k ≤ [w]k ≤ [v]k
⎫⎬
⎭ . (2.2)

123



On systems of parabolic variational inequalities with… 231

For a normed vector space Z , we denote by K(Z) the collection of all nonempty,
closed, and convex subsets of Z . Let Z1, . . . , Zm be Banach spaces with the corre-
sponding norms ‖ · ‖Z1 , . . . , ‖ · ‖Zm . The product Z = ∏m

k=1 Zk is a Banach space
with the product norm: ‖u‖Z = ∑m

k=1 ‖uk‖Zk for u = (u1, . . . , um) ∈ Z .
We use here the standard identification of u∗ ∈ Z∗ with (u∗

1, . . . , u
∗
m) ∈ ∏m

k=1 Z
∗
k

by
〈u∗

k , uk〉Z∗
k ,Zk = 〈u∗, (uk, [0]k)〉Z∗,Z , ∀uk ∈ Zk, ∀k ∈ {1, . . . ,m}, (2.3)

and

〈u∗, u〉Z∗,Z = 〈(u∗
1, . . . , u

∗
m), (u1, . . . , um)〉Z∗,Z =

m∑
k=1

〈u∗
k , uk〉Z∗

k ,Zk , ∀u ∈ Z .

(2.4)
In this pattern, we consider the following product spaces:

X =
m∏

k=1

Xk, X0 =
m∏

k=1

X0k, W =
m∏

k=1

Wk, W0 =
m∏

k=1

W0k,

and their dual spaces,

X∗ ≡
m∏

k=1

X∗
k , X∗

0 ≡
m∏

k=1

X∗
0k, W ∗ ≡

m∏
k=1

W ∗
k , W ∗

0 ≡
m∏

k=1

W ∗
0k .

For simplicity of notation and when there is no confusion, we use ‖ · ‖ for the norms
in X , X0, Xk , and X0k . By the same token, 〈·, ·〉 stands for any of the dual pairings
between any of the spaces Xk , X0k , W 1,pk (Ω), W 1,pk

0 (Ω), X , X0,
∏m

k=1 W
1,pk (Ω),∏m

k=1 W
1,pk
0 (Ω), and its corresponding dual space. For example, if u∗ ∈ X∗ and

u ∈ X , then

〈u∗, u〉 =
∫ τ

0
〈u∗(t), u(t)〉 dt =

m∑
k=1

∫ τ

0
〈u∗

k(t), uk(t)〉 dt .

However, indices will be used in the above norms and dual pairings wherever clarifi-
cation is needed.

We consider next some assumptions imposed on the principal and lower order terms
in (1.1)–(1.2). For k = 1, . . . ,m, let us assume the following Leray–Lions conditions
on the coefficient a(k)

i , i = 1, . . . , N , of the operator Ak .

(A1) a(k)
i : Q × R

N → R are Carathéodory functions, i.e., a(k)
i (·, ·, ξ) : Q → R is

measurable for all ξ ∈ R
N and a(k)

i (x, t, ·) : RN → R is continuous for a.e.
(x, t) ∈ Q. In addition, the following growth condition holds:

|a(k)
i (x, t, ξ)| ≤ c(k)

1 |ξ |pk−1 + c(k)
2 (x, t)
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232 S. Carl, Vy. K. Le

for a.e. (x, t) ∈ Q and for all ξ ∈ R
N , for some constant c(k)

1 > 0 and some

function c(k)
2 ∈ L

p′
k+ (Q).

(A2) (Strict monotonicity) For a.e. (x, t) ∈ Q , and for all ξ, ξ ′ ∈ R
N with ξ �= ξ ′

the following monotonicity in ξ holds:

N∑
i=1

(a(k)
i (x, t, ξ) − a(k)

i (x, t, ξ ′))(ξi − ξ ′
i ) > 0.

(A3) There is some constant c(k)
3 > 0 such that for a.e. (x, t) ∈ Q and for all ξ ∈ R

N

the inequality

N∑
i=1

a(k)
i (x, t, ξ)ξi ≥ c(k)

3 |ξ |pk − c(k)
4 (x, t)

is satisfied for some function c(k)
4 ∈ L1(Q).

In view of (A1), the operator Ak defined by

〈Aku, ϕ〉 :=
∫
Q

N∑
i=1

a(k)
i (x, t,∇u)

∂ϕ

∂xi
dx dt, ∀ϕ ∈ X0k, (2.5)

is continuous and bounded from X0k into X∗
0k .

For functions w, z and sets W and Z of functions we use the notations: w ∧ z =
min{w, z}, w ∨ z = max{w, z}, W ∧ Z = {w ∧ z : w ∈ W , z ∈ Z}, W ∨ Z =
{w ∨ z : w ∈ W , z ∈ Z}, and w ∧ Z = {w} ∧ Z , w ∨ Z = {w} ∨ Z . In particular,
we denote w+ = w ∨ 0.

For k = 1, . . . ,m, let us introduce the multivalued Nemytskij operator Fk associ-
ated with the multivalued function fk : Q × R → K(R) by

Fk(u) = {η : Q → R : η is measurable on Q and
η(x, t) ∈ fk(x, t, u(x, t)) for a.e. (x, t) ∈ Q}. (2.6)

For each k ∈ {1, . . . ,m}, we impose the following conditions on fk :

(F1) fk : Q × R
m → K(R) is graph measurable on Q × R

m , that is,

Gr( fk) := {(x, t, u, η) ∈ Q × R
m × R : η ∈ f (x, t, u)}

belongs to [L(Q) × B(Rm)] × B(R), where L(Q) is the family of Lebesgue
measurable subsets of Q and B(Rm) (resp. B(R)) is the σ -algebra of Borel sets
in Rm (resp. in R).

(F2) For a.e. (x, t) ∈ Q, the function fk(x, t, ·) : Rm → K(R) is upper semicontin-
uous.
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(F3) fk satisfies the growth condition

sup{|η| : η ∈ fk(x, t, s)} ≤ αk(x, t) + βk

m∑
j=1

|s j |
p j
p′k , (2.7)

for a.e. (x, t) ∈ Q, ∀ s ∈ R
m , where αk ∈ L p′

k (Q), and βk ≥ 0.

For any u ∈ [L0(Q)]m , it follows from (F1) that the function (x, t) �→
fk(x, t, u(x, t)) is also a measurable function from Q to K(R), which implies that
Fk(u) �= ∅. Moreover, as a consequence of (F3), we see that Fk(u) ⊂ L p′

k (Q) when-
ever u ∈ ∏m

j=1 L
p j (Q). Hence, the Nemytskij operator Fk is a well defined mapping

from
∏m

j=1 L
p j (Q) to 2L

p′k (Q)\{∅}.
Let ik : X0k ↪→ L pk (Q) be the (continuous) embedding of X0k into L pk (Q), and

let i∗k : L p′
k (Q) ↪→ X∗

0k be its adjoint. The mapping i∗k is the natural restriction on
X0k in the following sense:

i∗k (w∗
k ) = w∗

k |X0k , ∀w∗
k ∈ L p′

k (Q)(≡ [L pk (Q)]∗).

Let i = i1 × · · · × im : X0 → ∏m
k=1 L

pk (Q), u �→ u, ∀u ∈ X0 be the embedding
of X0 into

∏m
k=1 L

pk (Q). Hence, its adjoint i∗ : ∏m
k=1 L

p′
k (Q) → X∗

0 is the natural
restriction on X0, i.e.,

i∗(w∗) = i∗(w∗
1, . . . , w

∗
m) = (i∗1 (w∗

1), . . . , i
∗
m(w∗

m)) = (w∗
1 |X01 , . . . , w

∗
m |X0m )

= w∗|X0 .

Let us define F = (F1, . . . , Fm) : ∏m
k=1 L

pk (Q) → 2
∏m

k=1 L
p′k (Q), F(u) =∏m

k=1 Fk(u), and its corresponding composed operator

F = i∗ ◦ F ◦ i : X0 → 2X
∗
0 . (2.8)

In the next step, we shall formulate the system (1.1)–(1.2) as a single variational
inequality. Let us define A : X0 → X∗

0 by

Au = (A1u1, . . . , Amum), ∀u = (u1, . . . , um) ∈ X0, (2.9)

with A1, . . . , Am given by (2.5). It follows from the corresponding property of
A1, . . . , Am that A is a continuous and bounded operator from X0 to X∗

0 . Next, we
define

D(L) =
m∏

k=1

D(Lk),

which can be easily seen as

D(L) = {
u ∈ X0 : ut ∈ X∗

0 and u(·, 0) = 0
}
. (2.10)
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234 S. Carl, Vy. K. Le

The time derivative for vector-valued functions is defined by L : D(L) → X∗
0 ,

L = L1 × · · · × Lk , that is,

Lu = (L1u1, . . . , Lmum) = (u1t , . . . , umt ) = ut ∈
m∏

k=1

X∗
0k ≡ X∗

0, (2.11)

for all u = (u1, . . . , um) ∈ D(L).
Lastly, let

K =
m∏

k=1

Kk, (2.12)

which is a closed and convex subset of X0. With these definitions and settings, we see
that the system (1.1)–(1.2) can be formulated as the followingmultivalued evolutionary
variational inequality: Find u ∈ D(L) ∩ K and η ∈ F(u) such that

〈Lu + Au + η, v − u〉 ≥ 0, ∀v ∈ K .

We study in the sequel the existence of solutions of this variational inequality in
both coercive and noncoercive cases.

3 Auxiliary results

We first have the following simple, yet essential, property of the time derivative oper-
ator in the vector case.

Proposition 3.1 The operator L given in (2.11) is a linear, closed, densely defined and
maximal monotone operator from D(L) ⊂ X0 to X∗

0 .

Proof Bymathematical induction, the above properties of L immediately follow from
the corresponding properties of the component operators Lk (k = 1, . . . ,m), which
are well known for the time derivative operator. ��

We are now ready to state and prove a crucial property of F , which is its pseudo-
monotonicity with respect to the graph norm topology of the domain D(L) of L . Let us
recall the following definition of a multivalued pseudomonotone operator with respect
to the graph norm topology of the domain D(L) (w.r.t. D(L) for short) of a linear,
closed, densely defined and maximal monotone operator L : D(L) ⊂ Y → Y ∗ (cf.
[3], [16], [8]).

Definition 3.1 Let Y be a reflexive Banach space, and let L : D(L) ⊂ Y → Y ∗
be a linear, closed, densely defined and maximal monotone operator. The operator
T : Y → 2Y

∗
is called pseudomonotone w.r.t. D(L) if the following conditions are

satisfied:

(i) The set T (u) is nonempty, bounded, closed and convex for all u ∈ Y .

(ii) T is upper semicontinuous from each finite dimensional subspace of Y to Y ∗
equipped with the weak topology.
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(iii) If {un} ⊂ D(L) with un⇀u in Y , Lun⇀Lu in Y ∗, u∗
n ∈ T (un) with u∗

n⇀u∗ in
Y ∗ and lim sup〈u∗

n, un − u〉 ≤ 0, then u∗ ∈ T (u) and 〈u∗
n, un〉 → 〈u∗, u〉.

Similarly, we have the following definition of operators of class (S+) with respect to
the graph norm topology of the domain D(L) (w.r.t. D(L) for short).

Definition 3.2 Let Y be a reflexive Banach space, and let L : D(L) ⊂ Y → Y ∗
be a linear, closed, densely defined and maximal monotone operator. The operator
T : Y → Y ∗ is said to be of class (S+)w.r.t. D(L) if for any sequences {un} ⊂ D(L),
the conditions un⇀u in X0, Lun⇀Lu in X∗

0 and lim sup〈Tun, un − u〉 ≤ 0 imply
that un → u in X0.

Proposition 3.2 Under conditions (A1)–(A3), the operator A : X0 → X∗
0 defined by

(2.5) and (2.9) is of class (S+) w.r.t. D(L), where L and D(L) are given by (2.10)-
(2.11).

Proof It is known (cf. e.g. [1,2,4]) that under conditions (A1)–(A3), each operator Ak

given by (2.5) is of class (S+) on X0k w.r.t. D(Lk). By mathematical induction, we
see directly from the definition of A in (2.9) that A is also of class (S+) w.r.t. D(L). ��

We have the following result about the pseudomonotonicity ofF , which is a vector
version of Proposition 2.2, [5].

Proposition 3.3 Under conditions (F1)–(F3), the mappingF = i∗◦F ◦i : X0 → 2X
∗
0

is pseudomonotone with respect to D(L), where L and D(L) are given by (2.10)–
(2.11).

Proof The proof of this proposition is divided into three steps.

Step 1: Property (i) of Definition 3.1
We prove in this step that F is a bounded mapping from X0 to K(X∗

0).
First, we prove that for any u ∈ ∏m

k=1 L
pk (Q), F(u) is a nonempty, bounded, closed,

and convex subset of
∏m

k=1 L
p′
k (Q) and in particular,

F(u) ∈ K
( m∏
k=1

L p′
k (Q)

)
.

Moreover, we will prove next that the mapping

F :
m∏

k=1

L pk (Q) → K
( m∏
k=1

L p′
k (Q)

)

is bounded. The convexity of F(u) follows from the fact that fk(x, t, u) is a closed
interval inR for any k ∈ {1, . . . ,m}. Let η = (η1, . . . , ηm) ∈ F(u). As a consequence
of (2.7), for each k ∈ {1, . . . ,m},

|ηk(x, t)| ≤ αk(x, t) + βk

m∑
j=1

|u j (x, t)|
p j
p′k , a.e. (x, t) ∈ Q. (3.1)
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236 S. Carl, Vy. K. Le

Since |u j |
p j
p′k ∈ L p′

k (Q), we immediately obtain the boundedness of F(u) in∏m
k=1 L

p′
k (Q). To prove that F(u) is closed in

∏m
k=1 L

p′
k (Q), let {ηn} be a sequence

in F(u) such that ηn → η in
∏m

k=1 L
p′
k (Q). By passing to a subsequence, we can

assume without loss of generality that ηn(x, t) → η(x, t) for a.e. (x, t) ∈ Q. Since
ηnk(x, t) ∈ fk(x, t, u(x, t)) for a.e. (x, t) ∈ Q, all n ∈ N, all k ∈ {1, . . . ,m},
and fk(x, t, u(x, t)) is a closed interval in R, we have ηk(x, t) ∈ fk(x, t, u(x, t)),
∀k ∈ {1, . . . ,m}. As this holds for a.e. (x, t) ∈ Q, it follows that ηk ∈ Fk(u),
∀k ∈ {1, . . . ,m}, i.e., η ∈ F(u), which proves the closedness of Fk(u) in L p′

k (Q)

and thus of F(u) in
∏m

k=1 L
p′
k (Q). Due to the reflexivity of L p′

k (Q) (resp. of∏m
k=1 L

p′
k (Q)), we see from these properties that Fk(u) (resp. F(u)) is a weakly

closed, and thus a weakly compact subset of L p′
k (Q) (resp. of

∏m
k=1 L

p′
k (Q)).

Inequality (3.1) also implies that if S is a bounded set in
∏m

k=1 L
pk (Q) then F(S) is

a bounded set in
∏m

k=1 L
p′
k (Q), that is, F is a bounded mapping from

∏m
k=1 L

pk (Q)

to 2
∏m

k=1 L
p′k (Q) and thus to K(

∏m
k=1 L

p′
k (Q)).

For u ∈ X0, from the boundedness of i∗ and the above arguments we see thatF(u)

is a nonempty, convex and bounded subset of X∗
0 . Moreover, since

‖i∗η‖X∗
0

≤ C‖η‖∏m
k=1 L

p′k (Q)
,∀ η ∈

m∏
k=1

L p′
k (Q)

for some constant C > 0, it follows from the boundedness of F that F is also a
bounded mapping.

Next, let us prove that F(u) is closed in X∗
0 . For this purpose, suppose that {ηn} ⊂

F(u), ηn = i∗η̃n with η̃n ∈ F(iu) = F(u), ∀n ∈ N, and that

ηn → η in X∗
0 . (3.2)

Because {η̃n : n ∈ N} ⊂ F(u), {η̃n} is a bounded sequence in
∏m

k=1 L
p′
k (Q). By

passing to a subsequence if necessary, we can assume without loss of generality that

η̃n⇀η̃0 in
m∏

k=1

L p′
k (Q). (3.3)

Since F(u) is weakly closed in
∏m

k=1 L
p′
k (Q), η̃0 ∈ F(u) and thus i∗η̃0 ∈ i∗F(u) =

F(u). On the other hand, since i∗ is continuous from
∏m

k=1 L
p′
k (Q) to X∗

0 both with
weak topologies, we have from (3.3) that

ηn = i∗η̃n⇀i∗η̃0 in X∗
0,

which, combined with (3.2), yields η = i∗η̃0 ∈ F(u). Hence, F(u) is closed in X∗
0 .

Step 2: Property (ii) of Definition 3.1
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Let V be a finite dimensional subspace of X0. We prove in this step that the restriction
F |V of F on V is upper semicontinuous from V into 2X

∗
0 with respect to the weak

topology of X∗
0 .

In fact, assume u0 ∈ V . To prove the upper semicontinuity ofF |V at u0, we assume
by contradiction that there are a weakly open neighborhood U of F(u0) in X∗

0 and
sequences {un} ⊂ V , {ηn} ⊂ X∗

0 such thatun → u0 inV andηn ∈ F(un)\U , ∀n ∈ N.

We see that Ũ = (i∗)−1(U ) is aweakly open neighborhood of F(u0) in
∏m

k=1 L
p′
k (Q).

Moreover, since ηn ∈ i∗F(un), there exists η̃n ∈ F(un) such that

ηn = i∗η̃n . (3.4)

We have η̃n /∈ Ũ for all n ∈ N. As {un} is a bounded sequence in
∏m

k=1 L
pk (Q), it

follows from Step 1 that {η̃n} is a bounded sequence in ∏m
k=1 L

p′
k (Q). Also, as above

by passing to a subsequence we can assume that

η̃n⇀η̃0 in
m∏

k=1

L p′
k (Q). (3.5)

Since un → u0 in
∏m

k=1 L
pk (Q), we have from conditions (F1)–(F3) that all assump-

tions of Lemma 3.3, [10], are satisfied. According to this result, we have for all
k ∈ {1, . . . ,m}, h∗

L p′k (Q)
(Fk(un), Fk(u0)) → 0 where

h∗
L p′k (Q)

(A, B) = sup
u∈A

(
inf
v∈B ‖u − v‖

L p′k (Q)

)

is the Hausdorff distance between subsets A, B of L p′
k (Q). As

h∗
L p′k (Q)

(Fk(un), Fk(u0)) ≥ dist
L p′k (Q)

(η̃nk, Fk(u0))

= inf{‖η̃nk − v‖
L p′k (Q)

: v ∈ Fk(u0)},

there is a sequence {η(k)
n } ⊂ Fk(u0) such that ‖η̃nk −η

(k)
n ‖

L p′k (Q)
→ 0. As Fk(u0) is a

convex, closed, andbounded subset of L p′
k (Q), it isweakly compact in L p′

k (Q).Hence,
by passing to a subsequence if necessary, we can assume that η

(k)
n ⇀η

(k)
0 in L p′

k (Q)

for some η
(k)
0 ∈ Fk(u0). It follows that η̃nk⇀η

(k)
0 in L p′

k (Q) for all k = 1, . . . ,m, that

is, η̃n⇀(η
(1)
0 , . . . , η

(m)
0 ) in

∏m
k=1 L

p′
k (Q) with (η

(1)
0 , . . . , η

(m)
0 ) ∈ F(u0).

From (3.5), we have η̃0 = (η
(1)
0 , . . . , η

(m)
0 ) ∈ F(u0) and thus η̃0 ∈ Ũ . Again from

(3.5)we have η̃n ∈ Ũ for all n sufficiently large, contradicting (3.4) and the assumption
on ηn , and therefore proving the upper semicontinuity of F |V .
Step 3: Property (iii) of Definition 3.1
First, let us prove thatF is sequentially weakly closed from D(L)(⊂ X0)with respect
to the D(L)-graph norm topology into 2X

∗
0\{∅}with X∗

0 equipped with its weak topol-
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ogy, that is, if {un} and {ηn} are sequences in D(L) and X∗
0 respectively such that

un⇀u in X0, unt⇀ut in X∗
0, (3.6)

ηn⇀η in X∗
0, (3.7)

and
ηn ∈ F(un), ∀n ∈ N, (3.8)

then,
η ∈ F(u). (3.9)

In fact, assume (3.6)–(3.8). From (3.8), for each n ∈ N, there exists η̃n ∈ F(i(un)) =
F(un) such that ηn = i∗(η̃n) = η̃n|X∗

0
. From (3.6) and Aubin’s lemma (cf. [13]), we

have

un = i(un) → i(u) = u in
m∏

k=1

L pk (Q). (3.10)

As in Step 2, for each k = 1, . . . ,m, it follows from (F1)–(F3) and Lemma 3.3 in [10]
that

h∗
L p′k (Q)

(Fk(un), Fk(u)) → 0. (3.11)

Since η̃nk ∈ Fk(un),

inf
v∈Fk(u)

‖η̃nk − v‖
L p′k (Q)

≤ h∗
L p′k (Q)

(Fk(un), Fk(u)).

Hence, infv∈Fk (u) ‖η̃nk − v‖
L p′k (Q)

→ 0 as n → ∞, and there exists a sequence

{η(k)
n } ⊂ Fk(u) such that

lim
n→∞ ‖η̃nk − η(k)

n ‖
L p′k (Q)

= 0. (3.12)

Since {η(k)
n } ⊂ Fk(u) and, as noted in Steps 1, Fk(u) is a weakly compact subset of

L p′
k (Q), by passing to a subsequence if necessary, we can assume that

η(k)
n ⇀η

(k)
0 in L p′

k (Q) (3.13)

for some η
(k)
0 ∈ Fk(u). Hence, (3.12) implies that η̃nk⇀η

(k)
0 in L p′

k (Q) for k =
1, . . . ,m. Putting η0 = (η

(1)
0 , . . . , η

(m)
0 ), we see that η0 ∈ F(u) and

η̃n⇀η0 in
m∏

k=1

L p′
k (Q). (3.14)

Since i∗ is continuous in the weak topologies of both
∏m

k=1 L
p′
k (Q) and X∗

0 , it
follows from (3.14) that

ηn = i∗(η̃n) = η̃n|X∗
0
⇀i∗(η0) = η0|X∗

0
(3.15)
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weakly in X∗
0 . From (3.7) and (3.15), we have η = i∗(η0) ∈ i∗F(u), since ηn⇀η

and ηn⇀i∗(η0) both in the sense of distribution. The inclusion (3.9) is thus verified,
which completes our proof of the weakly closed property of F .

Next, we prove that if {un} ⊂ D(L), {ηn} ⊂ X∗
0 are sequences satisfying (3.6)-(3.8)

then
〈ηn, un〉X∗

0 ,X0 → 〈η, u〉X∗
0 ,X0 . (3.16)

In fact, let {η̃n} and η0 be as above. We have

〈ηn, un〉X∗
0 ,X0 = 〈η̃n|X∗

0
, un〉X∗

0 ,X0

= 〈i∗(η̃n), un〉X∗
0 ,X0

= 〈η̃n, i(un)〉∏m
k=1 L

p′k (Q),
∏m

k=1 L
pk (Q)

= 〈η̃n, un〉∏m
k=1 L

p′k (Q),
∏m

k=1 L
pk (Q)

.

(3.17)

From (3.10) and (3.14), we have

〈η̃n, un〉∏m
k=1 L

p′k (Q),
∏m

k=1 L
pk (Q)

→ 〈η0, u〉∏m
k=1 L

p′k (Q),
∏m

k=1 L
pk (Q)

= 〈η0, i(u)〉∏m
k=1 L

p′k (Q),
∏m

k=1 L
pk (Q)

= 〈i∗(η0), u〉X∗
0 ,X0

= 〈η, u〉X∗
0 ,X0 .

This limit, together with (3.17), proves (3.16).
The weakly closed property of F and (3.16) show that F satisfies condition (iii) in

Definition 3.1, which together with the results proved in Steps 1 and 2, shows that F
is pseudomonotone from X0 to K(X∗

0) with respect to D(L). ��

4 Main results

In this section we prove our main results about problem (1.1)–(1.2), which is equiv-
alently rewritten in Sect. 2 as the following evolutionary multivalued variational
inequality: Find u ∈ D(L) ∩ K and η ∈ F(u) such that

〈Lu + Au + η, v − u〉 ≥ 0, ∀v ∈ K , (4.1)

where L, D(L), A,F , and K are defined in (2.10), (2.11), (2.5), (2.9), (2.8), and
(2.12).

By identifying η = (η1, . . . , ηm) ∈ ∏m
k=1 L

p′
k (Q) with i∗η = η|X0 ∈ X∗

0 , we see
that (4.1) is also written in the form: Find u ∈ D(L) ∩ K and an η ∈ F(u) such that

η ∈ F(u), 〈Lu + Au, v − u〉 +
∫
Q

η (v − u) dxdt ≥ 0, ∀ v ∈ K . (4.2)

In Sect. 4.1 we deal with the coercive case for (4.1) and in Sect. 4.2 a version of
the method of sub-supersolution for (4.1) is established to treat the noncoercive case.
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Wefirst recall the following definition of a penalty operator associatedwith a convex
set.

Definition 4.1 LetC �= ∅ be a closed and convex subset of a reflexive Banach space Y .

A bounded, hemicontinuous and monotone operator P : Y → Y ∗ is called a penalty
operator associated with C ⊂ Y if

P(u) = 0 ⇐⇒ u ∈ C .

Inwhat follows,we assume that for each k ∈ {1, . . . ,m}, there exists a penalty operator
Pk : X0k → X∗

0k associated with Kk ⊂ X0k with the following properties:

(P) For each uk ∈ D(Lk), there exists wk = wk(uk) ∈ X0k such that

(i) 〈ukt + Akuk, wk〉 ≥ 0, and
(ii) 〈Pkuk, wk〉 ≥ Dk‖Pkuk‖X∗

0k
‖wk‖L pk (Q),

(4.3)

for some constant Dk > 0 independent of uk and wk .

For u ∈ X0, let
Pu = (P1u1, . . . , Pmum) ∈ X∗

0 . (4.4)

It is clear that P is a penalty operator associated with K .

4.1 Coercive case

In this subsection, we prove the existence of solutions of (4.1) under certain coercivity
condition. More precisely, we have the following result.

Theorem 4.1 Assume (A1)–(A3) and that f satisfies hypotheses (F1)–(F3). Suppose
D(L) ∩ K �= ∅ and u0 ∈ D(L) ∩ K, and assume the existence of a penalty operator
associated with K satisfying (P). Then, under the coercivity condition

lim‖u‖X0→∞

[
inf

η∈F(u)

〈Au + η, u − u0〉
‖u‖X0

]
= ∞, (4.5)

the multivalued parabolic variational inequality (4.1) has solutions.

Proof For ε > 0, let us consider the following penalized equation:

u ∈ D(L), η ∈ F(u) : 〈ut , v〉 + 〈A(u) + η, v〉 + 1

ε
〈Pu, v〉 = 0, ∀v ∈ X0, (4.6)

where P is a penalty operator (associated to K ) defined in (4.4).
From Proposition 3.3, F is pseudomonotone with respect to D(L). Since A and

ε−1P are monotone and hemicontinuous, they are pseudomonotone and thus pseu-
domonotone with respect to D(L) (cf. e.g. Proposition 27.6, [18]). As a consequence,
A + F + ε−1P is pseudomonotone with respect to D(L). Moreover, it is bounded
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since A, P and F are bounded mappings. From the coercivity condition (4.5) and the
monotonicity of ε−1P , it is easy to see that A + F + ε−1P is coercive on X0 in the
following sense:

lim‖u‖X0→∞

[
inf

η∈F(u)

〈(A + ε−1P)(u) + η, u − u0〉
‖u‖X0

]
= ∞. (4.7)

According to the surjectivity result of [8, Theorem 1.3.73, p. 62], (4.6) has solutions
for each ε > 0. Let uε ∈ D(L) and ηε ∈ F(uε) satisfy (4.6). Let us show that the
family {uε : ε > 0, small} is bounded with respect to the graph norm of D(L). In
fact, let u0 be a (fixed) element of D(L) ∩ K . Putting v = uε − u0 into (4.6) (with
uε) and noting the monotonicity of L and that Pu0 = 0, one gets

〈−u0t , uε − u0〉 = 〈uεt − u0t , uε − u0〉 + 〈Auε + ηε, uε − u0〉
+1

ε
〈Puε − Pu0, uε − u0〉

≥ 〈Auε + ηε, uε − u0〉.

Thus,

〈Auε + ηε, uε − u0〉
‖uε − u0‖X0

≤ ‖u0t‖X∗
0
,

for all ε > 0. From (4.5), we have that the set {‖uε‖X0 : ε > 0} is bounded. As
a consequence, we see that Auε stays bounded in X∗

0 . Moreover, from the growth

condition (2.7), we see that the set {ηε : ε > 0} is bounded in
∏m

k=1 L
p′
k (Q).

Next, let us check that the set {(ε−1Puε) : ε > 0} is also bounded in X∗
0 . To see this,

for each k = 1, . . . ,m and ε > 0, we choose wk = wεk to be an element satisfying
(4.3) with uk = uεk . From (4.6) with v = (wεk, [0]k), we obtain

〈uεkt , wεk〉 + 〈Akuεk + ηεk, wεk〉 + 1

ε
〈Pkuεk, wεk〉 = 0.

From (4.3)(i), we see that 〈uεkt , wεk〉 + 〈Akuεk, wεk〉 ≥ 0. Therefore,

1

ε
〈Pkuεk, wεk〉 ≤ 〈−ηεk, wεk〉. (4.8)

Since the set {‖ηε‖∏m
k=1 L

p′k (Q)
: ε > 0} is bounded, there exists a constant c > 0 such

that

|〈ηεk, wεk〉| ≤ c‖wεk‖L pk (Q), ∀ε.

This and (4.3)(ii) imply that for all k ∈ {1, . . . ,m},
1

ε
‖Pkuεk‖X∗

0k
≤ c

Dk
, ∀ε > 0,

123



242 S. Carl, Vy. K. Le

which proves the boundedness of the set {(ε−1Puε) : ε > 0} in X∗
0 . On the other

hand, since

uεt = −(A + ε−1P)(uε) − ηε

in X∗
0 , the above estimate implies that (uεt ) is also bounded in X∗

0 . Thus, we have
shown that {uε : ε > 0} is bounded with respect to the graph norm of D(L). Hence,
there exist u ∈ X0, with ut ∈ X∗

0 , and a sequence {uεn }, which is still denoted by {uε},
for simplicity of notation, such that

uε⇀u in X0, uεt⇀ut in X∗
0 (ε → 0+). (4.9)

Since D(L) is closed inW0 and convex, it is weakly closed inW0, and thus u ∈ D(L).
Now, let us prove that u is a solution of the variational inequality (4.1). First, note that
Pu = 0. In fact, we have Puε → 0 in X∗

0 . It follows from the monotonicity of P that

〈Pv, v − u〉 ≥ 0, ∀v ∈ X0.

As in the proof of Minty’s lemma (cf. [9]), one obtains from this inequality that

〈Pu, v〉 ≥ 0, ∀v ∈ X0.

Hence, Pu = 0 in X∗
0 , that is, u ∈ K . On the other hand, (4.9) and Aubin’s lemma

imply that

uε → u in
m∏

k=1

L pk (Q). (4.10)

As a consequence, we have

〈ηε, uε − u〉 → 0 as ε → 0+. (4.11)

For w ∈ K , letting v = w − uε in (4.6) (with u = uε), one gets

〈uεt , w − uε〉 + 〈Auε + ηε,w − uε〉 = 1

ε
〈−Puε, w − uε〉 ≥ 0. (4.12)

By choosing w = u in (4.12), we have

〈Auε, u − uε〉 ≥ −〈ηε, u − uε〉 − 〈ut , u − uε〉 + 〈ut − uεt , u − uε〉
≥ −〈ηε, u − uε〉 − 〈ut , u − uε〉.

As a consequence, one gets

lim inf
ε→0+ 〈Auε, u − uε〉 ≥ 0.
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Note that A is of class (S+) with respect to D(L), according to Proposition 3.2, we
deduce from (4.9) and the above limit that

uε → u in X0. (4.13)

On the other hand, since {ηε : ε > 0} is bounded in X∗
0 , by passing to a subsequence

still denoted by {ηε} for simplicity of notation, we have

ηε⇀η in X∗
0 . (4.14)

From (4.9) and the weak closedness of the mapping F with respect to D(L) proved
in Step 3 of Proposition 3.3, we have

η ∈ F(u). (4.15)

Letting ε → 0 in (4.12) and taking (4.9), (4.13), (4.14) and the continuity of the
operator A into account, we obtain

〈ut , w − u〉 + 〈Au + η,w − u〉 ≥ 0.

This holds for all w ∈ K which together with (4.15) proves that u is in fact a solution
of (4.1). ��
Penalty operators associated with obstacle problems
For k = 1, . . . ,m, let Ak = −Δpk (pk ≥ 2) be the pk-Laplacian. For an upward
obstacle constraint, the convex set Kk is given by

Kk = {uk ∈ X0k : uk ≤ ψk a.e. on Q}, (4.16)

with ψk a given function in Wk such that ψk(·, 0) ≥ 0 on Ω , ψk ≥ 0 on Γ , and
ψkt + Akψk ≥ 0 in X∗

0k , in the sense that

〈ψkt + Akψk, vk〉 ≥ 0, ∀vk ∈ X0k ∩ L pk+ (Q).

In other words, the obstacle function ψk is assumed to be a (weak) supersolution of
the following parabolic initial boundary value problem:

wkt − Δpkwk = 0, wk(·, 0) = 0 on Ω, wk = 0 on Γ .

Then the operator Pk given by

〈Pkuk, vk〉 =
∫
Q
[(uk − ψk)

+]pk−1 vk dxdt, ∀ uk, vk ∈ X0k,

is easily seen to be a penalty operator, and, moreover, property (P) can be verified with
wk(uk) = (uk − ψk)

+.
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Analogously, for a downward obstacle constraint, the convex set Kk is given by

Kk = {uk ∈ X0k : uk ≥ ϑk a.e. on Q}, (4.17)

with ϑk ∈ Wk , ϑk(·, 0) ≤ 0 on Ω , ϑk ≤ 0 on Γ , and ϑkt + Akϑk ≤ 0 in X∗
0k , i.e.,

〈ϑkt + Akϑk, vk〉 ≤ 0, ∀vk ∈ X0k ∩ L pk+ (Q).

In the case of a lower obstacle constraint, the operator Pk given by

〈Pkuk, vk〉 = −
∫
Q
[(uk − ϑk)

−]pk−1 vk dxdt, ∀ uk, vk ∈ X0k,

is a penalty operator for Kk that satisfies property (P), where wk = wk(uk) corre-
sponding to uk ∈ D(Lk) is chosen as wk(uk) = −(uk − ϑk)

−.
We note that in an upward (resp. downward) obstacle system, all constraint sets

Kk in (1.2) are of the form (4.16) (resp. (4.17)), while in mixed system of upward-
downward obstacle problems, some of constraint sets Kk in (1.2) are given by (4.16),
while the others are given by (4.17).

4.2 Noncoercive case

Note that when the growth condition (2.7) or the coercivity condition (4.5) is not
fulfilled then the inequality (4.1) may not have solutions. However, without these
conditions, we can still have the existence and other properties of solutions of (4.1) if
sub- and supersolutions of (4.1), defined in a certain appropriate sense, exist. In this
subsection we establish a sub-supersolution method for (4.1), which will allow us to
derive existence and enclosure results for (4.1).

Let us first introduce our basic notion of sub-supersolution for the system of
parabolic MVI (1.1)–(1.2). Let u, u ∈ X0 be a pair of functions such that u ≤ u.
For k = 1, . . . ,m, we use the notation Qk = Qk,u,u for the cylinder based on Q and
lying between [u]k and [u]k :

Qk = {(x, t, [s]k) ∈ Q × R
m−1 : [u(x, t)]k ≤ [s]k ≤ [u(x, t)]k for a.e. (x, t) ∈ Q}.

Definition 4.2 A pair of functions u, u ∈ W is said to form an ordered pair of
subsolution–supersolution of (4.1) if u ≤ u and the following conditions are satisfied.

(i) u ∨ K ⊂ K , u ∧ K ⊂ K ,
(ii) uk(·, 0) ≤ 0 in Ω , uk(·, 0) ≥ 0 in Ω (k = 1, . . . ,m), and
(iii) for each k ∈ {1, . . . ,m}, there exist functions η

k
, ηk : Qk → R such that for

any [w]k ∈ [u, u]k , the functions (x, t) �→ η
k
(x, t, [w(x, t)]k) and (x, t) �→

ηk(x, t, [w(x, t)]k) belongs to L p′
k (Q),

η
k
(x, t, [w(x, t)]k) ∈ fk(x, t, uk(x, t), [w(x, t)]k), (4.18)
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ηk(x, t, [w(x, t)]k) ∈ fk(x, t, uk(x, t), [w(x, t)]k), (4.19)

for a.e. (x, t) ∈ Q, and

〈ukt + Akuk, vk − uk〉 +
∫
Q

η
k
(·, ·, [w]k) (vk − uk) dxdt ≥ 0, ∀vk ∈ uk ∧ Kk,

(4.20)
and

〈ukt + Akuk, vk − uk〉 +
∫
Q

ηk(·, ·, [w]k) (vk − uk) dxdt ≥ 0, ∀vk ∈ uk ∨ Kk .

(4.21)

Throughout this subsection instead of the growth condition (F3) of the preceding
section we assume the following local growth assumption with respect to the ordered
interval of sub-supersolutions.

(F4) Assume that there exists a pair of sub-supersolutions u and u of (4.1) such that
for all k ∈ {1, . . . ,m}, fk has the following growth between u and u:

|η| ≤ c(k)
5 (x, t), ∀ η ∈ fk(x, t, s), (4.22)

for a.e. (x, t) ∈ Q, and all s ∈ [u(x, t), u(x, t)], for some c(k)
5 ∈ L p′

k (Q).

We note that (F3) implies (F4), that is, the local growth condition (F4) is a weaker
condition.
We are now ready to state and prove our main existence and enclosure result.

Theorem 4.2 Assume (A1)–(A3) and that (4.1) has an ordered pair of sub- and super-
solutions u and u, and that (F1)–(F2), (F4) are satisfied. Suppose furthermore that
D(L) ∩ K �= ∅, and that there exists a penalty operator associated with K satisfying
(P). Then, (4.1) has a solution u such that u ≤ u ≤ u.

Proof For k = 1, . . . ,m, we define the following cut-off function bk : Q × R → R:

bk(x, t, s) =
⎧⎨
⎩

[s − uk(x, t)]pk−1 if s > uk(x, t)
0 if uk(x, t) ≤ s ≤ uk(x, t)
−[uk(x, t) − s]pk−1 if s < uk(x, t),

for (x, t, s) ∈ Q × R. It is easy to check that bk is a Carathéodory function with the
growth condition

|bk(x, t, s)| ≤ c(k)
6 (x, t) + c(k)

7 |s|pk−1, for a.e. (x, t) ∈ Q, all s ∈ R, (4.23)

with c(k)
6 ∈ L p′

k (Q), c(k)
7 > 0. Hence, the Nemytskij operator Bk : u �→ bk(·, ·, u) is

a continuous and bounded mapping from L pk (Q) to L p′
k (Q) and Bk = i∗k ◦ Bk ◦ ik :
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X0k → X∗
0k is given by

〈Bku, v〉 =
∫
Q
bk(·, ·, u) v dxdt, ∀u, v ∈ X0k . (4.24)

Moreover, there are c(k)
8 , c(k)

9 > 0 such that

∫
Q
bk(·, ·, u)u dxdt ≥ c(k)

8 ‖u‖pk
L pk (Q)

− c(k)
9 , ∀u ∈ L pk (Q). (4.25)

Let B : X0 → X∗
0 be defined by Bu = (B1u1, . . . ,Bmum) for u ∈ X0. We have from

(4.25) that

〈Bu, u〉 ≥ c8

m∑
k=1

‖u‖pk
L pk (Q)

− c9, ∀u ∈ X0, (4.26)

for some constants c8, c9 > 0. For k ∈ {1, . . . ,m}, (x, t) ∈ Q, uk ∈ R, let us define
the truncation function Tk as follows:

(Tkuk)(x, t) =
⎧⎨
⎩
uk(x, t) if uk > uk(x, t),
uk if uk(x, t) ≤ uk ≤ uk(x, t),
uk(x, t) if uk < uk(x, t).

(4.27)

In other words,

(Tkuk)(x, t) = [uk ∧ uk(x, t)] ∨ uk(x, t) = [uk ∨ uk(x, t)] ∧ uk(x, t).

Straightforward calculations show that Tk is continuous and bounded from L pk (Q)

(resp. X0k) into itself. The corresponding truncated vector function for u =
(u1, . . . , um) ∈ R

m , Tu is given by

(Tu)(x, t) = ((T1u1)(x, t), . . . , (Tmum)(x, t)), (4.28)

and as above,
[Tu]k(x, t) = ((Tju j )(x, t) : j ∈ {1, . . .m}\{k}). (4.29)

For k = 1, . . . ,m, we define next the truncated function f0k : Q × R
m → 2R of

fk as follows:

f0k(x, t, u) =
⎧⎨
⎩

{η
k
(x, t, [Tu(x, t)]k)} if uk < uk(x, t)

fk(x, t, uk, [Tu(x, t)]k) if uk(x, t) ≤ uk ≤ uk(x, t)
{ηk(x, t, [Tu(x, t)]k)} if uk > uk(x, t),

(4.30)

for (x, t, u) ∈ Q × R
m , where η and η correspond to u and u as in Definition 4.2.

Let f0 = ( f01, . . . , f0m). Since f satisfies (F1) and (F2), in view of (4.18) and
(4.19), we can check that f0 satisfies (F1) and (F2) aswell.Moreover, as a consequence
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of (4.27), (4.18), (4.19), and the growth condition (4.22) in (F4), f0 also satisfies (2.7)
of (F3) with βk = 0 and αk = c(k)

5 ∈ L p′
k (Q). For u : Q → R measurable, let

F0k(u) = {η : Q → R : η is measurable on Q and η(x, t) ∈ f0k(x, t, u(x, t))},

for k = 1, . . . ,m, and

F0(u) =
m∏

k=1

F0k(u)

= {η : Q → R
m : η ∈ [L0(Q)]m and η(x, t) ∈ f0(x, t, u(x, t))}.

From (F4) it follows that F0(u) ⊂ ∏m
k=1 L

p′
k (Q) for any measurable function u

defined on Q, which allows us to define the Nemytskij operator of f0,

F0 :
m∏

k=1

L pk (Q) → 2
∏m

k=1 L
p′k (Q), u �→ F0(u),

and its related mapping

F0 : X0 → 2X
∗
0 , F0 = i∗ ◦ F0 ◦ i .

For any u ∈ X0, we have F0(u) = ∏m
k=1 F0k(u), where F0k = i∗k ◦ F0k ◦ ik . We see

that F0 is pseudomonotone with respect to D(L), according to Proposition 3.3. Let
us consider the following auxiliary variational inequality:

u ∈ D(L) ∩ K , η ∈ F0(u) : 〈Lu + Au + Bu + η, v − u〉 ≥ 0, ∀v ∈ K . (4.31)

It is clear from its definition that B is a (single-valued) pseudomonotone mapping
w.r.t. D(L) from X0 to X∗

0 . Moreover, f1 = b + f0 satisfies (F1)–(F3), and thus
F1 = B +F0 is pseudomonotone with respect to D(L) according to Proposition 3.3.

Now, let us verify that A + B + F0 is coercive on X0 in the following sense:

lim‖u‖X0→∞

[
inf

η∈F0(u)

〈Au + Bu + η, u − ϕ〉
‖u‖X0

]
= ∞, (4.32)

for any (fixed) ϕ ∈ X0. In fact, from (A3), we have

〈Au, u〉 ≥ c3

m∑
k=1

‖ |∇uk | ‖pk
L pk (Q)

− c10, ∀u ∈ X0, (4.33)
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with some constants c3, c10 > 0. For η ∈ F0(u), η = i∗η̃ with η̃ ∈ F0(u), we have

|〈η, u〉| ≤
m∑

k=1

∣∣∣∣
∫
Q

η̃kuk dxdt

∣∣∣∣
≤

m∑
k=1

‖c(k)
5 ‖

L p′k (Q)
‖uk‖L pk (Q).

(4.34)

Combining (4.26) with (4.33) and (4.34), one gets for all u ∈ X0

〈(Au + Bu + η, u〉 ≥ c3

m∑
k=1

‖ |∇uk | ‖pk
L pk (Q)

+ c8

m∑
k=1

‖u‖pk
L pk (Q)

−
m∑

k=1

‖c(k)
5 ‖

L p′k (Q)
‖uk‖L pk (Q) − c9 − c10.

(4.35)

For ϕ ∈ X0 fixed, it is inferred from (A1), (4.23), and (4.22) that

|〈Au + Bu + η, ϕ〉| ≤ c11

(
m∑

k=1

‖u‖pk−1
X0k

+ 1

)
, ∀u ∈ X0, (4.36)

for some constant c11 > 0. From (4.35) and (4.36), we obtain (4.32). Let u0 ∈
D(L) ∩ K be fixed. With the particular choice of ϕ = u0, we see that all conditions
of Theorem 4.1 are fulfilled with F1 = B +F0 in place of F . According to Theorem
4.1, (4.31) has solutions.

Next, we show that any solution u of (4.31) satisfies: u ≤ u ≤ u a.e. in Q. We
verify that u ≤ u, the second inequality is proved in the same way. Let u be a solution
of (4.31), which is equivalent to the system

uk ∈ D(Lk)∩Kk, ηk ∈ F0k(u) : 〈ukt + Akuk +Bkuk +ηk, vk −uk〉 ≥ 0, ∀vk ∈ Kk,

(4.37)
with k = 1, . . . ,m. Because uk ∈ Kk , it follows that

uk + (uk − uk)
+ = uk ∨ uk ∈ Kk .

Letting vk = uk + (uk − uk)+ into (4.37), one gets

〈ukt , (uk − uk)
+〉 + 〈Akuk + Bkuk + ηk, (uk − uk)

+〉 ≥ 0. (4.38)

On the other hand, let η be associated with the subsolution u as in Definition 4.2. For
[w]k = [Tu]k ∈ [u, u]k , and

vk = uk − (uk − uk)
+ = uk ∧ uk ∈ uk ∧ Kk,
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we have from (4.20) that

−〈ukt , (uk−uk)
+〉−〈Akuk, (uk−uk)

+〉−〈i∗k ηk(·, ·, [Tu]k), (uk−uk)
+〉 ≥ 0. (4.39)

Adding (4.38) and (4.39) yields

〈(uk − uk)t , (uk − uk)+〉 + 〈Akuk − Akuk + Bkuk, (uk − uk)+〉
+〈ηk − i∗k ηk(·, ·, [Tu]k), (uk − uk)+〉 ≥ 0. (4.40)

We have uk − uk ∈ Wk and (uk − uk)+(·, 0) = 0, and thus

〈(uk − uk)t , (uk − uk)
+〉 = 1

2
‖(uk − uk)

+(·, τ )‖2L2(Ω)
≥ 0. (4.41)

On the other hand, it is easy to check from (A2) that

〈Akuk − Akuk, (uk − uk)
+〉 ≥ 0. (4.42)

Moreover, with ηk = i∗k η̃k , η̃k ∈ F0k(u), we have

〈ηk − i∗k ηk(·, ·, [Tu]k), (uk − uk)
+〉

=
∫
Q
(η̃k(x, t) − η

k
(x, t, [Tu(x, t)]k))(uk(x, t) − uk(x, t))

+ dxdt

=
∫

{uk>uk }
(η̃k(x, t) − η

k
(x, t, [Tu(x, t)]k))(uk(x, t) − uk(x, t)) dxdt,

where {uk > uk} = {(x, t) ∈ Q : uk(x, t) > uk(x, t)}. But because of (4.30), we
have

η̃k(x, t) = η
k
(x, t, [Tu(x, t)]k)) for a.e. (x, t) ∈ {uk > uk}.

Therefore
〈ηk − i∗k ηk(·, ·, [Tu]k), (uk − uk)

+〉 = 0. (4.43)

Combining (4.41)–(4.43) with (4.40), we obtain

0 ≤ 〈Bkuk, (uk − uk)
+〉 = −

∫
{uk>uk }

(uk − uk)
pk dxdt ≤ 0.

This proves that uk − uk = 0 a.e. on {uk > uk}, i.e., {uk > uk} has measure zero,
and thus uk ≤ uk a.e. on Q. Since this holds true for all k = 1, . . . ,m, we have
u ≤ u. A similar proof shows that u ≤ u. From u ≤ u ≤ u, we have Bu = 0 and
F0(u) ⊂ F(u). Consequently, a solution u of (4.31) is also a solution of (4.1). ��
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5 Application: obstacle problem

In this sectionwe deal with the system ofmultivalued parabolic variational inequalities
(1.1)–(1.2) with Ak = −Δpk (pk ≥ 2) being the pk-Laplacian, and under upward
obstacle constraints Kk given by (4.16), that is,

Kk = {uk ∈ X0k : uk ≤ ψk a.e. on Q}, (5.1)

with ψk a given function in Wk such that ψk(·, 0) ≥ 0 on Ω , ψk ≥ 0 on Γ , and
ψkt + Akψk ≥ 0 in X∗

0k , in the sense that

〈ψkt + Akψk, vk〉 ≥ 0, ∀vk ∈ X0k ∩ L pk+ (Q).

In other words, the obstacle function ψk is assumed to be a (weak) supersolution of
the parabolic initial boundary value problem:

vt − Δpkv = 0, v(·, 0) = 0 on Ω, v = 0 on Γ .

Thus, by comparison we have ψk(x, t) ≥ 0 for a.a. (x, t) ∈ Q. Moreover, it has been
shown in Sect. 4 that there exists a penalty operator Pk associated with Kk satisfying
property (P).

Assuming hypotheses (F1)–(F3) for the multivalued lower order terms fk : Q ×
R
m → 2R\{∅}, our main goal is to construct an ordered pair of sub-supersolutions for

the obstacle problem. Only for simplifying the presentation in this section, we assume
Ω = B(0, 1) with B(0, 1) being the unit ball in R

N . Further, let ΩR = B(0, R) be
the ball with radius R > 1. For k = 1, . . . ,m, let hk ∈ W 1,pk

0 (ΩR) be the unique
weak solution of

− Δpk hk = 1 in ΩR, hk = 0 on ∂ΩR, (5.2)

which means

hk ∈ W 1,pk
0 (ΩR) : −Δpk hk = 1 in (W 1,pk

0 (ΩR))∗. (5.3)

Let s− = max{−s, 0} for s ∈ R, and using −h−
k ∈ W 1,pk

0 (ΩR) as a test function in
(5.3), we see that

〈−Δpk hk,−h−
k 〉 = ‖∇h−

k ‖p
L p(ΩR) = −

∫
ΩR

h−
k (x) dx ≤ 0,

which implies that h−
k = 0, and thus hk ≥ 0. From the nonlinear regularity theory (cf.,

e.g. [12]) we have hk ∈ C1
0(ΩR), and from the nonlinear strong maximum principle

due to Vazquez (see [17]) we infer that hk ∈ int (C1
0(ΩR)+). Here int (C1

0(ΩR)+)

denotes the interior of the positive coneC1
0(ΩR)+ = {u ∈ C1

0(ΩR) : u(x) ≥ 0, ∀x ∈
ΩR} in the Banach space C1

0(ΩR) = {u ∈ C1(ΩR) : u(x) = 0, ∀x ∈ ∂ΩR}, given
by
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int (C1
0 (ΩR)+) =

{
u ∈ C1

0 (ΩR) : u(x) > 0, ∀x ∈ ΩR, and
∂u

∂n
(x) < 0, ∀x ∈ ∂ΩR

}
,

where n = n(x) is the outer unit normal at x ∈ ∂ΩR . We are going to construct
a pair of sub-supersolutions by means of the solutions hk of the Dirichlet problem
(5.3) on ΩR = B(0, R) with R > 0. Since the lower order multivalued nonlinearities
fk : Q × R

m → K(R) satisfy (F1)–(F3), we have the following representation of fk
for a.a. (x, t) ∈ Q = B(0, 1) × (0, τ ) and for all s ∈ R

m

fk(x, t, s) = [ fk(x, t, s), fk(x, t, s)]. (5.4)

By means of [11, Proposition 4.2] we see that the (single-valued) functions fk, fk :
Q × R

m → R have the following properties for a.a. (x, t) ∈ Q and for all s ∈ R
m :

(x, t) �→ fk(x, t, s), (x, t) �→ fk(x, t, s) are measurable on Q,

s �→ fk(x, t, s) is lower semicontinuous on R
m,

s �→ fk(x, t, s) is upper semicontinuous on Rm .

Thus fk, fk : Q × R
m → R belong to a Baire–Carathéodory class, and are

therefore superpositionally measurable, that is, the associated Nemytskij operators
Fk(u)(x, t) = fk(x, t, u(x, t)), and Fk(u)(x, t) = fk(x, t, u(x, t)) map measurable
functions into measurable functions. We now make the following assumption on the
(single-valued) functions fk, fk : Q × R

m → R:

(H) There exist functions ck ∈ L∞(Q) and ck ∈ L∞(Q) such that for a.a. (x, t) ∈ Q
and for all s ∈ R

m we have

fk(x, t, s) ≤ ck(x, t), fk(x, t, s) ≥ ck(x, t), k = 1, . . . ,m. (5.5)

Assume 0 /∈ fi (x, t, 0) for at least one i ∈ {1, . . . ,m}.
We note that hypothesis (H) excludes the trivial solution, and the one-sided bounds in
(5.5) still allow the multi-valued functions fk to be unbounded.

We are now in the position to explicitly construct an ordered pair of sub-
supersolution for the (upward) obstacle problem (1.1)–(1.2) with Ak = −Δpk
(pk ≥ 2), and Kk given by (5.1).

Theorem 5.1 Assume (F1)–(F3) for the multivalued lower order terms fk and let
hypothesis (H) on the single-valued functions fk, fk generating fk through (5.4) be
satisfied. Then

u(x, t) = (−M1φ1(t)h1(x), . . . ,−Mmφm(t)hm(x)) and

u(x, t) = (M1φ1(t)h1(x), . . . , Mmφm(t)hm(x)), (x, t) ∈ Q,

form an ordered pair of sub- and supersolution for Mk > 0 sufficiently large, where hk
are the positive solutions of problem (5.2) on ΩR, and φk ∈ C1([0, τ ]) are supposed
to satisfy φk(0) = 0, and φk(t) ≥ 0, φ′

k(t) ≥ dk > 0, ∀ t ∈ [0, τ ], k = 1, . . . ,m.
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Proof Let us verify that u and u satisfy Definition 4.2. Clearly, we have u ≤ u and
properties (i) and (ii) of Definition 4.2 with Kk given by (5.1) are satisfied. So it
remains to check property (iii) in Definition 4.2, that is, we need to show the existence
of functions η

k
, ηk : Qk → R such that for any [w]k ∈ [u, u]k , the functions (x, t) �→

η
k
(x, t, [w(x, t)]k) and (x, t) �→ ηk(x, t, [w(x, t)]k) belong to L p′

k (Q), and

η
k
(x, t, [w(x, t)]k) ∈ fk(x, t, uk(x, t), [w(x, t)]k), (5.6)

ηk(x, t, [w(x, t)]k) ∈ fk(x, t, uk(x, t), [w(x, t)]k), (5.7)

for a.e. (x, t) ∈ Q, and

〈ukt −Δpk uk, vk−uk〉+
∫
Q

η
k
(·, ·, [w]k) (vk−uk) dxdt ≥ 0, ∀ vk ∈ uk∧Kk, (5.8)

and

〈ukt −Δpk uk, vk −uk〉+
∫
Q

η(·, ·, [w]k) (vk −uk) dxdt ≥ 0, ∀ vk ∈ uk ∨Kk, (5.9)

where uk(x, t) = −Mkφk(t)hk(x) and uk(x, t) = Mkφk(t)hk(x). Let ϕk ∈ Kk , then
vk ∈ uk ∧ Kk has the representation vk = uk − (uk − ϕk)

+, and thus (5.8) becomes

〈ukt − Δpk uk, (uk − ϕk)
+〉 +

∫
Q

η
k
(·, ·, [w]k) (uk − ϕk)

+ dxdt ≤ 0, ∀ ϕk ∈ Kk .

(5.10)
Similarly, vk ∈ uk ∨ Kk can be written as vk = uk + (ϕk − uk)+ with ϕk ∈ Kk , and
thus (5.9) becomes

〈ukt−Δpk uk, (ϕk−uk)
+〉+

∫
Q

η(·, ·, [w]k) (ϕk−uk)
+ dxdt ≥ 0, ∀ϕk ∈ Kk . (5.11)

We are going to verify (5.10) with η
k
given by

η
k
(x, t, [w(x, t)]k) = fk(x, t,−Mkφk(t)hk(x), [w(x, t)]k) for (x, t) ∈ Q. (5.12)

Since fk is superpositionally measurable, the growth condition (F3) on fk implies

that η
k
given by (5.12) belongs to L p′

k (Q). Applying hypothesis (H) we have for all
[w(x, t)]k

fk(x, t,−Mkφk(t)hk(x), [w(x, t)]k) ≤ ck(x, t),

and thus we get the following inequalities (in the weak sense)

ukt − Δpk uk + η
k
(·, ·, [w]k)

= −Mkφ
′
khk − (Mkφk)

pk−1 + fk(x, t,−Mkφk(t)hk(x), [w(x, t)]k)
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≤ −Mkdkhk + ck(x, t)

Wenote that hk is the positive solution on the bigger ballΩR with R > 1, and therefore
the restriction of hk on Ω = B(0, 1) has a positive minimum, that is,

min
x∈B(0,1)

hk(x) = δk > 0,

which yields the estimate

ukt − Δpk uk + η
k
(·, ·, [w]k)

= −Mkφ
′
khk − (Mkφk)

pk−1 + fk(x, t,−Mkφk(t)hk(x), [w(x, t)]k)
≤ −Mkdkhk + ck(x, t)

≤ −Mkdkδk + ‖ck‖L∞(Q) ≤ 0, for Mk large

and thus (5.10) is verified. Let us next check (5.11). To this end we take

ηk(x, t, [w(x, t)]k) = fk(x, t, Mkφk(t)hk(x), [w(x, t)]k) for (x, t) ∈ Q. (5.13)

By the same arguments as for η
k
we have that ηk ∈ L p′

k (Q), and from hypothesis (H)
we get, for all [w(x, t)]k ,

fk(x, t, Mkφkhk, [w(x, t)]k) ≥ ck(x, t).

Using the definition of hk we obtain the following inequalities (in the weak sense)
with uk(x, t) = Mkφk(t)hk(x)

ukt − Δpk uk + η(·, ·, [w]k)
= Mkφ

′
khk + (Mkφk)

pk−1 + fk(x, t, Mkφkhk, [w(x, t)]k)
≥ Mkdkhk − ‖ck‖L∞(Q) ≥ 0, for Mk large,

which proves (5.11). This completes the proof of Theorem 5.1. ��
An immediate consequence is the following corollary.

Corollary 5.1 Under the hypotheses of Theorem 5.1 there exists a solution u of the
(upward) obstacle problem (1.1)–(1.2) with Ak = −Δpk (pk ≥ 2), and Kk given by
(5.1) satisfying

u ≤ u ≤ u ∧ ψ,

for Mk > 0 sufficiently large, where u and u are as in Theorem 5.1, and ψ is the
obstacle function.

Proof Since (u, u) is an ordered pair of sub-supersolution, by Theorem 4.2 there
exists a solution u ∈ [u, u] of the obstacle problem with Kk given by (5.1), and thus
u ≤ u ≤ u ∧ ψ . ��
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6 Systems of evolutionary variational-hemivariational inequalitiesl

Variational-hemivariational inequalities have been proved a powerful tool to describe
relevant models in mechanical engineering, and have been first introduced by Pana-
giotopoulos see e.g. [14],[15]. With the notations of the preceding sections, in this
section we consider the following system of evolutionary variational-hemivariational
inequalities: Find u ∈ D(L) ∩ K such that

〈Lu + Au, v − u〉 +
∫
Q

m∑
k=1

jok (x, t, uk, [u]k; vk − uk) dxdt ≥ 0, ∀ v ∈ K , (6.1)

which is equivalent to (k = 1, . . . ,m)

〈ukt + Akuk, vk − uk〉+
∫
Q
jok (x, t, uk, [u]k; vk − uk) dxdt ≥ 0, ∀ vk ∈ Kk . (6.2)

The functions jk : Q × R
m → R, k = 1, . . . ,m, are supposed to be Carathéodory

functions with sk �→ jk(x, t, sk, [s]k) being locally Lipschitz for a.a. (x, t) ∈ Q
and for all [s]k ∈ R

m−1, and sk �→ jok (x, t, sk, [s]k; �k) denotes Clarke’s partial
generalized directional derivative with respect to the sk component of s ∈ R

m in the
direction �k ∈ R, which is defined by

jok (x, t, sk, [s]k; �k) = lim sup
h→sk , ε↓0

jk(x, t, h + ε �k, [s]k) − jk(x, t, h, [s]k)
ε

, (6.3)

(cf., e.g., [7, Chap. 2]). Further, let us introduce Clarke’s partial generalized gradient
∂k jk of the locally Lipschitz function sk �→ jk(x, t, sk, [s]k) given by

∂k jk(x, t, s) = {η ∈ R : jok (x, t, sk, [s]k; �k) ≥ η �k, ∀ �k ∈ R}. (6.4)

We assume the following hypotheses on jk .

(J1) The functions jk : Q × R
m → R, k = 1, . . . ,m, are supposed to be

Carathéodory functions, that is, (x, t) �→ jk(x, t, s) is measurable in Q for
all s ∈ R

m , and s �→ jk(x, t, s) is continuous in R
m for a.a. (x, t) ∈ Q,

and sk �→ jk(x, t, sk, [s]k) is locally Lipschitz for a.a. (x, t) ∈ Q and for all
[s]k ∈ R

m−1.
(J2) The functions s �→ jok (x, t, sk, [s]k; �k), k = 1, . . . ,m, are upper semicontin-

uous for �k = ±1.
(J3) Clarke’s partial generalized gradient ∂k jk satisfies the growth condition

sup{|η| : η ∈ ∂k jk(x, t, s)} ≤ αk(x, t) + βk

m∑
j=1

|s j |
p j
p′k ,

for a.e. (x, t) ∈ Q, ∀ s ∈ R
m , where αk ∈ L p′

k (Q), and βk ≥ 0.
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Remark 6.1 Regarding assumption (J2) on Clarke’s partial generalized directional
derivative s �→ jok (x, t, sk, [s]k; �k) a few comments are in order. One may ask
for sufficient conditions on the function jk = jk(x, t, s) itself such that the general
condition (J2) is satisfied. Here, we provide such sufficient conditions for functions
jk : Q × R

m → R of the following class:

jk(x, t, s) = gk (x, t, sk) hk (x, t, [s]k) , (6.5)

for (x, t) ∈ Q, s = (sk, [s]k) ∈ R
m .

Corollary 6.1 Assume that gk : Q × R → R and hk : Q × R
m−1 → R are

Carathéodory functions such that for a.e. (x, t) ∈ Q, sk → gk(x, t, sk) is locally
Lipschitz, and hk(x, t, [s]k) ≥ 0 for a.e. (x, t) ∈ Q, all [s]k ∈ R

m−1. Then jk given
by (6.5) fulfills (J2), that is, s �→ jok (x, t, sk, [s]k; �k) is upper semicontinuous for
�k = ±1.

Proof Let (s( j)) ⊂ R
m such that s( j) → s as j → ∞. To prove that s �→

jok (x, t, sk, [s]k; �k) is upper semicontinuous, we need to show that

lim sup
j→∞

jok (x, t, s( j)
k , [s( j)]k; �k) ≤ jok (x, t, sk, [s]k; �k). (6.6)

In fact, we have, for any �k ∈ R,

jok (x, t, sk, [s]k; �k) = lim sup
h→sk , ε↓0

jk(x, t, h + ε �k, [s]k) − jk(x, t, h, [s]k)
ε

= lim sup
h→sk , ε↓0

[
gk(x, t, h + ε �k) − gk(x, t, h)

ε
hk (x, t, [s]k)

]

= lim sup
h→sk , ε↓0

[
gk(x, t, h + ε �k) − gk(x, t, h)

ε

]
hk (x, t, [s]k)

= gok (x, t, sk; �k)hk (x, t, [s]k) .

As s( j) → s in R
m , it follows that s( j)

k → sk in R and [s( j)]k → [s]k in R
m−1. Thus

for a.e. (x, t) ∈ Q, all �k ∈ R, we have from a basic property of Clarke’s generalized
directional derivative (see [7, Chap. 2]) that

lim sup
j→∞

gok (x, t, s
( j)
k ; �k) ≤ gok (x, t, sk; �k).

By the Carathéodory property we have

lim
j→∞ hk(x, t, [s( j)]k) = hk(x, t, [s]k),
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and along with hk(x, t, [s]k) ≥ 0 we obtain

lim sup
j→∞

jok (x, t, s( j)
k , [s( j)]k; �k) = lim sup

j→∞
[gok (x, t, s( j)

k ; �k)hk(x, t, [s( j)]k)]
= lim sup

j→∞
gok (x, t, s

( j)
k ; �k) lim

j→∞ hk(x, t, [s( j)]k)]
≤ gok (x, t, sk; �k)hk(x, t, [s]k)
= jok (x, t, sk, [s]k; �k)

which proves (6.6). ��
We note that these arguments also hold when jk is a finite sum of functions of the
above form.
Let us introduce the multivalued functions fk : Q × R

m → 2R\{∅} defined by

fk(x, t, s) = ∂k jk(x, t, s). (6.7)

Our main goal in this section is to show that under some lattice condition on
the constraint K and assuming (J1)–(J3), the system of evolutionary variational-
hemivariational inequalities (6.1) is equivalent to the system of multi-valued parabolic
variational inequalities (1.1)–(1.2) with fk specified by (6.7). Thus, system (6.1) is
only a particular case of system (1.1)–(1.2).

To this end, first we are going to show the following lemma.

Lemma 6.1 Under the assumptions (J1)–(J3), the multivalued functions fk : Q ×
R
m → 2R\{∅} defined by (6.7) satisfy hypotheses (F1)–(F3).

Proof Clearly, (F3) follows directly from (J3). As for the proof of the graph measur-
ability of fk and the upper semicontinuity of s �→ fk(x, t, s) we follow an idea from
[6, Sect.5].

By definition of Clarke’s gradient ∂k jk(x, t, s) and the positive homogeneity of
the mapping �k �→ jok (x, t, sk, [s]k; �k) = jok (x, t, s; �k), we see that for almost all
(x, t) ∈ Q, and all s ∈ R

m ,

∂k jk(x, t, s) = [− jok (x, t, s;−1), jok (x, t, s; 1)].

Hence,

Gr( fk) = {(x, t, s, η) ∈ Q × R
m × R : η ∈ ∂k jk(x, t, s)}

= {(x, t, s, η) ∈ Q × R
m × R : − jok (x, t, s;−1) ≤ η ≤ jok (x, t, s; 1)}

= {(x, t, s, η) ∈ Q × R
m × R : η ≥ − jok (x, t, s;−1)}⋂{(x, t, s, η) ∈ Q × R

m × R : η ≤ jok (x, t, s; 1)}.

For each �k ∈ R, it follows from (J1) that the function (x, t, s) �→ jok (x, t, s; �k)

is measurable on Q × R
m with respect to the measure L(Q) × B(Rm) × B(R),

as “countable limit superior” of measurable functions there. Hence the functions
(x, t, s) �→ jok (x, t, s; 1) and (x, t, s) �→ jok (x, t, s;−1) are measurable on Q × R

m
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with respect to the measure L(Q) × B(Rm). This implies that Gr( fk) belongs to
[L(Q) × B(Rm)] × B(R), i.e., fk satisfies (F1).

As for the proof of (F2), let (x, t) ∈ Q be a point such that the functions s �→
jok (x, t, s;±1) are upper semicontinuous on R

m . Let s0 ∈ R
m and U be an open

neighborhood of ∂k jk(x, t, s0). Then there exists ε > 0 such that

(− jok (x, t, s0;−1) − ε, jok (x, t, s0; 1) + ε) ⊂ U .

From the upper semicontinuity of the (single-valued) functions s �→ jok (x, t, s;±1)
at s0, there exists an open neighborhood O of s0 such that

{
jok (x, t, s; 1) < jok (x, t, s0; 1) + ε, and
jok (x, t, s;−1) < jok (x, t, s0;−1) + ε, ∀s ∈ O.

Hence, for all s ∈ O ,

∂k jk(x, t, s) = [− jok (x, t, s;−1), jok (x, t, s; 1)]
⊂ (− jok (x, t, s0;−1) − ε, jok (x, t, s0; 1) + ε)

⊂ U .

which shows the upper semicontinuity of fk at s0. ��
With the multivalued functions fk specified by (6.7), let us consider the system (1.1)–
(1.2), that is, we consider the following system of multivalued parabolic variational
inequalities: For each k = 1, . . . ,m, find uk ∈ W0k ∩ Kk and ηk ∈ L p′

k (Q) such that

uk(·, 0) = 0 in Ω, ηk(x, t) ∈ fk(x, t, u1(x, t), . . . , um(x, t)), (6.8)

〈ukt + Akuk, vk − uk〉 +
∫
Q

ηk (vk − uk) dxdt ≥ 0, ∀ vk ∈ Kk, (6.9)

The following equivalence result of system (6.1) and (6.8)–(6.9) holds true.

Theorem 6.1 Let (A1)–(A3) and (J1)–(J3) be satisfied and assume the following lattice
condition for the constraint K :

K ∨ K ⊂ K and K ∧ K ⊂ K . (6.10)

Then u is a solution of the systemof evolutionary variational-hemivariational inequali-
ties (6.1) if and only if u is a solution of the systemofmulti-valued parabolic variational
inequalities (6.8)–(6.9) with the multi-functions fk given by (6.7).

Proof Let u be a solution of (6.8)–(6.9) , which means u ∈ D(L) ∩ K and there are
ηk ∈ L p′

k (Q) with

ηk(x, t) ∈ fk(x, t, u1(x, t), . . . , um(x, t)) = ∂k jk(x, t, u1(x, t), . . . , um(x, t))
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such that

〈ukt + Akuk, vk − uk〉 +
∫
Q

ηk (vk − uk) dxdt ≥ 0, ∀ vk ∈ Kk, (6.11)

By definition of ∂k jk(x, t, u) we get for any v ∈ Kk

jok (x, t, uk, [u]k; vk − uk) ≥ ηk(x, t)(vk − uk). (6.12)

From (J1) and (J3) it follows that the left-hand side of inequality (6.12) is integrable,
which by combining with (6.11) yields (6.2) or equivalently (6.1). We have seen by
this way that any solution of (6.8)–(6.9) is a solution of the system of evolutionary
variational-hemivariational inequalities (6.1).

Now let us show the reverse, and assume u is a solution of (6.1). In order to show
that u is a solution of (6.8)–(6.9), we are going to show that u is both a subsolution
and a supersolution for (6.8)–(6.9) which, via Theorem 4.2, completes the proof. In
fact, according to Theorem 4.2, there exists a solution û within the interval of sub-
and supersolutions, that is, u ≤ û ≤ u, and therefore u = û must be a solution of
(6.8)–(6.9), completing the proof. We note that Theorem 4.2 can be applied in this
situation, since by Lemma 6.1 the hypotheses (F1)–(F3) for fk (defined by (6.7)) are
fulfilled and (F3) implies (F4).

Let u be a solution of (6.1), that is, of (6.2). By assumption, K has the lattice
property (6.10), so Kk has the same property. In particular, we can use in (6.2) vk ∈
uk ∧ Kk ⊂ Kk , i.e., vk = uk ∧ ϕk = uk − (uk − ϕk)

+ with ϕk ∈ Kk , which yields for
all ϕk ∈ Kk ,

〈ukt + Akuk,−(uk − ϕk)
+〉 +

∫
Q
jok (x, t, uk, [u]k;−(uk − ϕk)

+) dxdt ≥ 0.

Because � �→ jok (x, t, uk, [u]k; �k) is positively homogeneous, the last inequality is
equivalent to

〈ukt + Akuk,−(uk − ϕk)
+〉 +

∫
Q
jok (x, t, uk, [u]k;−1)(uk − ϕk)

+ dxdt ≥ 0,

for all ϕk ∈ Kk . Using again vk = uk ∧ ϕk = uk − (uk − ϕk)
+, the last inequality is

equivalent to

⎧⎨
⎩

〈ukt + Akuk, vk − uk〉 +
∫
Q

− jok (x, t, uk, [u]k;−1)(vk − uk) dxdt ≥ 0,

∀ vk ∈ uk ∧ Kk .

(6.13)
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In view of [7, Proposition 2.1.2] we have

jok (x, t, uk(x, t), [u(x, t)]k;−1)

=max{−θk(x, t) : θk(x, t) ∈ ∂k jk(x, t, uk(x, t), [u(x, t)]k)}
= − min{θk(x, t) : θk(x, t) ∈ ∂k jk(x, t, uk(x, t), [u(x, t)]k)}
= : −η

k
(x, t),

(6.14)

where

η
k
(x, t) ∈ ∂k jk(x, t, uk(x, t), [u(x, t)]k) = fk(x, t, u1(x, t), . . . , um(x, t)). (6.15)

Since (x, t) �→ jok (x, t, uk(x, t), [u(x, t)]k;−1) is measurable, it follows that
(x, t) �→ η

k
(x, t) is measurable in Q as well. Thus, in view of the growth condi-

tions (J3) on the Clarke’s gradients, we infer that η
k

∈ L p′
k (Q). Taking (6.14)–(6.15)

into account, from (6.13) we get (k = 1, . . . ,m)

⎧⎨
⎩

〈ukt + Akuk, vk − uk〉 +
∫
Q

η
k
(x, t)(vk − uk) dxdt ≥ 0,

∀ vk ∈ uk ∧ Kk .

(6.16)

which shows that u is a subsolution for (6.8)–(6.9)(with respect to the interval [u, u]).
By similar arguments one shows that u is also a supersolution, which completes the
proof. ��
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