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Abstract

In this paper we present an analytical framework for the following system of multi-
valued parabolic variational inequalities in a cylindrical domain Q = §2 x (0, t): For
k=1,...,m,findu; € Kr and n; € LPi(Q) such that

ur(-,0) =0 in 2, nr(x,t) € fi(x,t,ur(x, 1), ..., upn(x,t)),
(Ugr + Agug, v — ug) +/ i (v — ug)dxdt >0, Vo € K,
0

where K is a closed and convex subset of LP%(0, T; Wé’p" (£2)), A is a time-
dependent quasilinear elliptic operator, and f; : Q x R” — 2% is an upper
semicontinuous multivalued function with respect to s € R™. We provide an existence
theory for the above system under certain coercivity assumptions. In the noncoercive
case, we establish an appropriate sub-supersolution method that allows us to get exis-
tence and enclosure results. As an application, a multivalued parabolic obstacle system
is treated. Moreover, under a lattice condition on the constraints Ky, systems of evo-
lutionary variational-hemivariational inequalities are shown to be a subclass of the
above system of multivalued parabolic variational inequalities.
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1 Introduction

Let 2 ¢ RV be a bounded domain with Lipschitz boundary 82, Q = £ x (0, 7) a
space-time cylindrical domain with base £2, and I" = 92 x (0, 7) its lateral boundary
with 7 > 0. For p € (1, o0), we denote by W7 (£2) and Wé’p(ﬂ) the usual Sobolev
spaces with dual spaces (WP (£2))* and W_l'p/(SZ), respectively, where p’ is the
Holder conjugate of p satisfying 1/p + 1/p’ = 1. Note that if 2 < p < oo, then
Whr(2) c L?(£2) ¢ (WhP(£2))* form an evolution triple with all the imbeddings
being dense and compact (see e.g. [18]) .

Letm € Nand py,..., pm € [2,00). We are concerned in this paper with the
following system of m multivalued parabolic variational inequalities: For each k =
1,...,m, find uy € Wor N Ky and n; € Lpl,c(Q) such that

ur(-,0) =0 in 2, n(x,1) € fi(x, t,u1(x, 1), ..., un(x,1)), (1.1
(Ukr + Agug, v — ug) +/ e (vg —ug)dxdt >0, Yo € K, (1.2)
o

where K}, is a closed, convex subset of Xo; := LP¥(0, t; Wé’pk(ﬂ)), Wor = {uy €
Xok : uxr € X3}, and (-, -) denotes the duality pairing between X{j, and Xox. The
operator Ay : Xox — Xy, is a second order quasilinear differential operator of Leray-
Lions type, given by

N

)
Ar(up)(x,t) = — —a. ' (x,t,Vur(x, 1)),
k() (x, 1) 23)@-1( (x. 1))
1=
and fr : O x R" — 2R (X, 1,81,y Sm) > fr(x,t,81,...,8n) € 2R is an upper
semicontinuous multivalued function with respect to s := (sq, ..., s,) € R™, that

will be specified later.

The main goal of this article is to present a mathematical theory for systems of
parabolic variational inequalities with upper semicontinuous multivalued functions of
the form (1.1)—(1.2) in both coercive and noncoercive cases, and to provide existence
and enclosure principles when subsolutions and supersolutions of (1.1)—(1.2), defined
in certain appropriate sense, exist. To the best of our knowledge, systems of parabolic
multivalued variational inequalities have not been studied before in a systematic way
by sub-supersolution (lattice) approaches. Moreover, we point out here that the closed
and convex sets Kj’s that represent constraints in system (1.1)—(1.2) are not sup-
posed to have nonempty interior parts or to satisfy some conditions of similar type.
Such assumptions typically allow the application of Rockafellar’s theorem about sums
of maximal monotone operators, which facilitates the study of parabolic variational
inequalities considerably by the implementation of arguments and results for ellip-
tic variational inequalities to parabolic variational inequalities. However, assumptions
of these types would exclude the investigation of certain most important classes of
evolutionary variational inequalities such as parabolic obstacles problems, in which
the associated closed and convex sets representing the obstacles have empty interior
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parts. As will be seen later, our approach here applies also to obstacle problems. We
also remark that (1.1)—(1.2) covers a wide range of parabolic systems when spec-
ifying K and/or f such as the special cases mentioned above including parabolic
initial-boundary value problem in the case when K = Xg,and f : Q xR - R
is a Carathéodory function. Moreover, under a lattice condition on the constraints
K, systems of evolutionary variational-hemivariational inequalities will be shown to
be a subclass of the above system of multivalued parabolic variational inequalities
(1.1)—(1.2).

The paper is organized as follows. After introducing necessary assumptions and
notations and providing auxiliary results, including one on the pseudomonotonicity of
multivalued Nemytskij operators with respect to the graph norm of the time derivative
operator, in Sects.2 and 3, we present our main results in Section 4. In the first part
(Sect.4.1) we treat the coercive case, where some relative growth condition of A and
fi for u with large norm is imposed. In this case the existence of solutions of (1.1)—
(1.2) follows from penalty arguments and the solvability of systems of equations with
multivalued pseudomonotone operators. In the second part (Sect.4.2), we deal with
the noncoercive case where such growth condition is not assumed. We establish in that
section a sub-supersolution method that will allow us to prove existence and enclosure
results. The concepts of sub- and supersolutions and the arguments in our case here
are combinations of those for parabolic multivalued variational inequalities in [5] and
those for systems of multivalued elliptic variational inequalities in [10]. In Sect. 5, as
an application of the theory developed in the preceding sections, we treat an obstacle
problem by explicitly constructing an ordered pair of sub- and supersolutions. Finally,
we show in Section 6 that under a lattice condition on the constraints, systems of
evolutionary variational-hemivariational inequalities turn out to be only a subclass of
system (1.1)—(1.2).

2 Assumptions: setting of the problem
Let us begin with some needed notation and assumptions. Let £2, Q, Xok, and Wy, be
defined as in Sect. 1, and L°(£2) (resp. LO(Q)) be the set of all (equivalent classes of)
measurable functions from §2 (resp. from Q) to R.
Fork =1, ..., m, let Wy be defined by
sz{ueXk:u,eX,’f},
where Xj = LP¥(0, v; WPk (£2)) with its dual X} = LPk(0, T; (WLPE(£2))%), and

the derivative u; := du/dt is understood in the sense of vector-valued distributions.
The space W) endowed with the graph norm of the operator d/9¢

leellw, = lluellx, + lloellx;
is a Banach space which is separable and reflexive due to the separability and reflexivity
of Xx and X}, where || - | x, and | - || x,, are the usual norms defined on Xy and Xox

(and similarly on X}’ and X(,) :
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T , 1/ pr T , 1/ pk
k k
lullx, = (/0 ||M(t)||W1,pk(_Q) df) s Mullxg = (./o ||M(t)||w(;,pk(9) dt) .

For any k € {1, ..., m}, Wy is continuously embedded into C ([0, ], L2(.Q)). Thus,
by Aubin’s lemma, the embedding Wy < < LP¥(Q) is compact due to the compact
embedding WLPk(2) <> LPk(£2). Similar properties hold true for the space Wy,

WOk = {M € Xok LUy € XSk}’

introduced in Sect. 1.
For k = 1,...,m, we denote by L; := 9/9¢t, where its domain of definition,
D(Ly), is given by

D(Ly) = {u € Xo : us € X{y and u(-,0) = 0}. 2.1

It is known that the linear operator Ly : D(Ly) C Xox — X(}“k is closed, densely
defined and maximal monotone, e.g., cf. [18, Chap. 32].

For u,v € R™, we denote u < v if up < wv,Vk € {1, ..., m}. This ordering is
extended to functions u, v € [L°(£2)]" (resp. u, v € [L°(Q)1™) in a natural way:
u < v if and only if u(x) < v(x) for a.e. x € £2 (resp. u(x,t) < v(x,t) for a.e.
(x,1) € Q). Ifu; e Rwith j € {I,...,m}\{k}, and t € R, then we denote

—1
[u]k:(l/l],...,Mkfl,l/lkﬁ,],...,um)eRm )
(t, [ule) = (up, oo ug—1, 8, Uy 1,5 - ooy Uy) € R™,

For u € R™, we also use the same notation [u] for (u1, ..., ug—1, g1, ..., Um) €

R™=! Letu, v € R™ such that u < v, we put
[u,v]={w eR":u <w < v}
Similarly, for k € {1, ..., m} and [ulg, [v]x € R™=1 with [u]; < [v]k, we denote
[, vl = [k, [wl] = {fwl € R"™" 2 [uli < [wl < [vk}.

We use the same notation for vector functions, that is, for u, v € [LO(Q)]’” oru,v €

.....

example, if u, v € ]_[’J":1 X;=Xandu < v, then
[u,v]={weX:u<w<v},

and if [u]y, [v]k € Hje{l mpky Xj and u < v, then

.....

[u, vk = [[ulk, [vl] = § [wlk € ]_[ Xj:lulg =whk <vlep. 22)
JE{lmp\{k}
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For a normed vector space Z, we denote by K(Z) the collection of all nonempty,

closed, and convex subsets of Z. Let Z1, ..., Z,, be Banach spaces with the corre-
sponding norms || - [|z,, ..., || - llz,. The product Z = [];_, Zx is a Banach space
with the product norm: ||u|lz = Y ;- llukllz, foru = (ui, ..., uy) € Z.
We use here the standard identification of u* € Z* with (u}, ..., u}) € [[j—, zZ;
by
(uy, Uk)z¥,z, = u*, (ur, [010)) z+,z, Yux € Zi, Vk € {1,...,m}, (2.3)
and
m
(W w)zez = (@, wh), s u))zez = Y (U w) 25z, Vi € Z.
k=1
(2.4)

In this pattern, we consider the following product spaces:

m m m m
X =[] xe. Xo=[]Xoe. W=T]]We. Wo =] Wox.
k=1 k=1 k=1 k=1

and their dual spaces,

m m m m
x*=[]xi. xg=]]x6 wr=[]w. wo =[] wex-
k=1 k=1 k=1 k=1

For simplicity of notation and when there is no confusion, we use || - || for the norms
in X, X9, Xk, and Xot. By the same token, (-, -) stands for any of the dual pairings

between any of the spaces Xi, Xox, W7 (£2), W(}”’k(sz), X, Xo, [T, Whre(2),

[Tie, WOl "Pk(£2), and its corresponding dual space. For example, if u* € X* and
u € X, then

<u*,u>=/0 (u*(t),u(t»dt:Z/o (ug (1), ux (1)) dt.
k=1

However, indices will be used in the above norms and dual pairings wherever clarifi-
cation is needed.
We consider next some assumptions imposed on the principal and lower order terms

in (1.1)—(1.2). Fork = 1, ..., m, let us assume the following Leray—Lions conditions
(k)

on the coefficienta;”",i =1, ..., N, of the operator Ay.

(A1) al.(k) 10 X RY — R are Carathéodory functions, i.e., al.(k)(-, &): 0 — Ris
measurable for all £ € RN and ai(k) (x,t,°) : RY — R is continuous for a.e.
(x,t) € Q. In addition, the following growth condition holds:

k k — k
a® (e, 1, 6)] < g 4 P (x, 1)
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232 S.Carl, Vy.K. Le

for a.e. (x,7) € Q and for all £ € R", for some constant cik) > 0 and some

function ¢ € L7 (Q).
(A2) (Strict monotonicity) For a.e. (x,t) € Q, and for all £,&' € RN with & # &’
the following monotonicity in & holds:

N
Y @P 1,6 —a® 1 ENE - E) > 0.

i=1

(A3) There is some constant cék) > 0 such that for a.e. (x, ) € Q and for all ¢ € RV
the inequality

N

k k k
> aP 98 = Pler - P

i=1

is satisfied for some function cik) el! (0).

In view of (A1), the operator Ay defined by

N
9
(Axu, @) ::/ Zai(k)(x,t,Vu)—(pdxdt, Yo € Xok, 2.5)
[ dx;

is continuous and bounded from Xy into X 6‘,{.

For functions w, z and sets W and Z of functions we use the notations: w A z =
minf{w, z}, w vV z = max{w,z}, WAZ ={wAz:weW, z€Z}, WvZ=
fwvz:weW,zeZl,andwAZ ={w}AZ, wV Z = {w}V Z. In particular,
we denote w = w Vv 0.

Fork =1, ..., m, let us introduce the multivalued Nemytskij operator Fj associ-
ated with the multivalued function f; : O x R — KC(R) by

Fr(u) ={n: Q — R :nis measurable on Q and

n(x,t) € fi(x,t,u(x,t)) forae. (x,t) € Q}. (2.6)

For each k € {1, ..., m}, we impose the following conditions on f:

(F1) fi: QO x R™ — KC(R) is graph measurable on Q x R™, that is,
Gr(fi) == {(x,t,u,n) € O xR" xR:ne fx,t,u)}

belongs to [£(Q) x B(R™)] x B(R), where L£(Q) is the family of Lebesgue
measurable subsets of Q and B(R™) (resp. B(R)) is the o -algebra of Borel sets
in R™ (resp. in R).

(F2) Forae. (x,t) € Q, the function fi(x,1t,-) : R" — IC(R) is upper semicontin-
uous.
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(F3) fi satisfies the growth condition

m Pj

sup{lnl 1 1 € fi(x.1.9)} < alx. 1) + i Y Isj|% @7
j=1

forae. (x,7) € O, Vs € R™, where ay € LP(Q), and Br > 0.

For any u € [LO(Q)]’”, it follows from (F1) that the function (x,?)
Jfr(x, t,u(x,t)) is also a measurable function from Q to K(R), which implies that
Fi(u) # (. Moreover, as a consequence of (F3), we see that Fi (1) C LI’I/((Q) when-
everu € ]_['7:1 LPi(Q). Hence, the Nemytskij operator Fy is a well defined mapping

from [T7; LP7 (Q) to 21" (Q)\ (g3},

Let iy : Xor < LP*(Q) be the (continuous) embedding of Xq into LP*(Q), and
let i : LPk(Q) — X¢ be its adjoint. The mapping i/’ is the natural restriction on
Xox in the following sense:

i (W) = wilxy. Ywi € LPH(Q)(= [LP(Q)]).

Leti =ip X+ X in: Xo— [ljo; LP(Q), u — u, Vu € X, be the embedding
of Xy into [}, LP*(Q). Hence, its adjoint i* : [ ]}, LPk(Q) — X is the natural
restriction on X, i.e.,

F(w*) =i, .. wh) = G, i) = (Wl xgs - Wil Xow)
= w*|X0.

Let us define F = (Fy,..., Fy) : [[f, LP(Q) — 2ll= L") Fu) =
[TiZ; Fi(u), and its corresponding composed operator

F=i*oFoi:Xy— 2%. (2.8)

In the next step, we shall formulate the system (1.1)—(1.2) as a single variational
inequality. Let us define A : Xg — X{ by

Au = (Auy, ..., Apiy), Yu = (uy, ..., uy) € Xo, 2.9)
with Aq, ..., A, given by (2.5). It follows from the corresponding property of
A1, ..., A that A is a continuous and bounded operator from Xg to X{;. Next, we

define
D(L) =[] D),
k=1

which can be easily seen as

D(L) = {u € Xo : u; € X§ and u(-, 0) = 0}. (2.10)
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234 S.Carl, Vy.K. Le

The time derivative for vector-valued functions is defined by L : D(L) — X’Ok,
L=L;x---x Lg,that is,

m
Lu= (Liui, ..., Lyttm) = @i, .. um) = u; € [ [ X5, = X5, (2.11)
k=1

forallu = (uy,...,uy) € D(L).
Lastly, let

m
K:HKk, (2.12)
k=1

which is a closed and convex subset of X(. With these definitions and settings, we see
that the system (1.1)—(1.2) can be formulated as the following multivalued evolutionary
variational inequality: Find u € D(L) N K and n € F(u) such that

(Lu+ Au+n,v—u) >0, Yv € K.

We study in the sequel the existence of solutions of this variational inequality in
both coercive and noncoercive cases.

3 Auxiliary results

We first have the following simple, yet essential, property of the time derivative oper-
ator in the vector case.

Proposition 3.1 The operator L given in (2.11) is a linear, closed, densely defined and
maximal monotone operator from D(L) C Xo to X§.

Proof By mathematical induction, the above properties of L immediately follow from
the corresponding properties of the component operators Ly (k = 1, ..., m), which
are well known for the time derivative operator. O

We are now ready to state and prove a crucial property of F, which is its pseudo-
monotonicity with respect to the graph norm topology of the domain D (L) of L. Letus
recall the following definition of a multivalued pseudomonotone operator with respect
to the graph norm topology of the domain D(L) (w.r.t. D(L) for short) of a linear,
closed, densely defined and maximal monotone operator L : D(L) C Y — Y™ (cf.

(31, (161, [8D).

Definition 3.1 Let Y be a reflexive Banach space, and let L : D(L) C Y — Y*
be a linear, closed, densely defined and maximal monotone operator. The operator
T:Y — 27 is called pseudomonotone w.r.t. D (L) if the following conditions are
satisfied:

(i) The set 7 (u) is nonempty, bounded, closed and convex forall u € Y.
(i) 7 is upper semicontinuous from each finite dimensional subspace of ¥ to Y*
equipped with the weak topology.
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(iii) If {up,} C D(L) withu,—uinY, Luy—Lu in Y*, u}; € T (u,) with u;—u* in

n
Y* and lim sup(u;, u, —u) <0, then u™ € T (u) and (u);, u,) — (u*, u).

Similarly, we have the following definition of operators of class (S) with respect to
the graph norm topology of the domain D(L) (w.r.t. D(L) for short).

Definition 3.2 Let Y be a reflexive Banach space, and let L : D(L) C Y — Y*
be a linear, closed, densely defined and maximal monotone operator. The operator
T : Y — Y*issaid to be of class (S) w.r.t. D(L) if for any sequences {u,} C D(L),
the conditions u,,—u in Xg, Lu,— Lu in Xg and lim sup(Tuy, u, — u) < 0 imply
that u,, — u in Xj.

Proposition 3.2 Under conditions (Al)—(A3), the operator A : Xo — X[ defined by
(2.5) and (2.9) is of class (S+) w.r.t. D(L), where L and D(L) are given by (2.10)-
(2.11).

Proof 1t is known (cf. e.g. [1,2,4]) that under conditions (A1)—(A3), each operator A
given by (2.5) is of class (S4) on Xox w.r.t. D(Lg). By mathematical induction, we
see directly from the definition of A in (2.9) that A is also of class (S4+) w.r.t. D(L). O

We have the following result about the pseudomonotonicity of F, which is a vector
version of Proposition 2.2, [5].

Proposition 3.3 Under conditions (F1)—(F3), the mapping F = i*o Foi : Xo — 2%
is pseudomonotone with respect to D(L), where L and D(L) are given by (2.10)-
(2.11).

Proof The proof of this proposition is divided into three steps.

Step 1: Property (i) of Definition 3.1
We prove in this step that  is a bounded mapping from X¢ to K(X().
First, we prove that for any u € [[{_; L*(Q), F(u) is a nonempty, bounded, closed,

and convex subset of [ [}, LV (Q) and in particular,

m

Flu) € IC( I1 L”l/c(Q)>.

k=1

Moreover, we will prove next that the mapping

Fi[[em@ - k(] L)
k=1 k=1

is bounded. The convexity of F'(u) follows from the fact that fi(x, ¢, u) is a closed
intervalin R forany k € {1, ..., m}.Letn = (41, ..., nm) € F(u). Asaconsequence
of (2.7), foreach k € {1, ..., m},

Pj

(e, D] < o (e, 1) + B Y luj(x, 0%, ae. (x,1) € Q. 3.1
j=1
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Pj

Since |u j|p,; € L”l/<(Q), we immediately obtain the boundedness of F(u) in
[Tie, LPi»(Q), To prove that F(u) is closed in [}, LPk (Q), let {n,} be a sequence
in F(u) such that n, — nin [[j—, Ll’i(Q). By passing to a subsequence, we can
assume without loss of generality that n,(x, ) — n(x,t) for a.e. (x,¢) € Q. Since
Nak(x, 1) € fr(x,t,u(x,t)) for ae. (x,t) € Q,alln € N, all k € {1,...,m},
and fr(x,t,u(x,t)) is a closed interval in R, we have nx(x,t) € fi(x,t, u(x,1)),
Vk € {1,...,m}. As this holds for a.e. (x,7) € Q, it follows that ny € Fi(u),
Vk € {1,...,m}, i.e., n € F(u), which proves the closedness of Fi(u) in LPIL(Q)
and thus of F(u) in [[;_, LPZ(Q). Due to the reflexivity of L”i(Q) (resp. of

lel Lpl/c(Q)), we see from these properties that Fj(u) (resp. F(u)) is a weakly

closed, and thus a weakly compact subset of LPk (Q) (resp. of [T}, LPk (0)).
Inequality (3.1) also implies that if S is a bounded set in ]_[km=1 LPk(Q) then F(S) is

a bounded set in [[;_, LPk(Q), that is, F is a bounded mapping from [Tiz, LP(0)
to 2ITi=1 L™ (Q) and thus to KTz, LP(Q)).

For u € Xy, from the boundedness of i * and the above arguments we see that F ()
is a nonempty, convex and bounded subset of X 6“ Moreover, since

li*nllx; < Clinll

m
. YnellLr
[T L7k (Q) 1 E (@

for some constant C > 0, it follows from the boundedness of F that F is also a
bounded mapping.

Next, let us prove that 7 (u) is closed in X(. For this purpose, suppose that {n,} C
F),n, =i*n, with 7, € F(iu) = F(u), Vn € N, and that

N, — nin X;. (3.2)

Because {7, : n € N} C F(u), {f],} is a bounded sequence in []}_, Lpllc(Q). By
passing to a subsequence if necessary, we can assume without loss of generality that

m
fin—io in [ LP(Q). (3.3)
k=1
Since F(u) is weakly closed in [ [}, LPk(Q), fip € F(u) and thus i*fo € i*F(u) =
F(u). On the other hand, since i* is continuous from [];_, LPk (Q) to X5 both with
weak topologies, we have from (3.3) that
Np = i*Np—i*1o in XE)ka

which, combined with (3.2), yields n = i*7jo € F(u). Hence, F (u) is closed in X§.
Step 2: Property (ii) of Definition 3.1
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Let V be a finite dimensional subspace of Xo. We prove in this step that the restriction
Fly of F on V is upper semicontinuous from V into 2X0 with respect to the weak
topology of X.

In fact, assume u( € V. To prove the upper semicontinuity of 7|y at u(, we assume
by contradiction that there are a weakly open neighborhood U of F(uo) in X; and
sequences {u,} C V,{n,} C Xsuchthatu, — upinV andn, € F(u,)\U, Vn € N.
WeseethatU = (i*)"!(U)isa weakly open neighborhood of F (1) in [}, LPk (0).
Moreover, since 1,, € i*F (u,), there exists 17,, € F (u,) such that

Mo =% 7. (3.4)

We have 7, ¢ U for all n € N. As {u,} is a bounded sequence in [ [}, LPc(Q), it

follows from Step 1 that {77, } is a bounded sequence in [}, LPk (Q). Also, as above
by passing to a subsequence we can assume that

fin—dio in [ ] L74(Q). (3.5)

k=1

Since u, — ug in [[{_; LP*(Q), we have from conditions (F1)—(F3) that all assump-
tions of Lemma 3.3, [10], are satisfied. According to this result, we have for all
kefl,....m},h* , (Fi(un), Fx(up)) — 0 where

L7k(Q)

h*, (A, B)=sup|inf |u—v| ,
vk B = s (veB e ”L’k@)
is the Hausdorff distance between subsets A, B of LPk (Q). As

h* Q)(Fk(un), Fi(up)) > dist

Lk L7 (g Unk» Fie(0))

= inf{|| 7 — v||Lp;((Q) tv € Fr(uo)},

there is a sequence {ﬁf,k)} C Fi(up) such that ||7,,x —ﬁ;k) | — 0. As Fr(ugp)isa

L7(Q)
convex, closed, and bounded subset of LPk (Q), itis weakly compactin LPk (Q).Hence,
by passing to a subsequence if necessary, we can assume that ﬁflk)Aﬁ(()k) in L7 Q)
for some ﬁg‘) € Fi(up). It follows that ﬁnk—\ﬁ(()k) in LPk (Q)forallk =1, ..., m,that
is, = @5, ..., 7"y in [TI, LPe(Q) with 73”70 € F(uo).

From (3.5), we have 79 = (ﬁ(()l), R ﬁ(()m)) € F(ug) and thus 779 € U. Again from
(3.5) wehave 7}, € U for all n sufficiently large, contradicting (3.4) and the assumption
on 1, and therefore proving the upper semicontinuity of F|y.

Step 3: Property (iii) of Definition 3.1
First, let us prove that F is sequentially weakly closed from D(L)(C Xo) with respect
to the D(L)-graph norm topology into 2%5 \{#} with X§ equipped with its weak topol-
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ogy, that is, if {u,} and {,} are sequences in D(L) and X respectively such that

up—u in Xo, up;—u; in Xg, (3.6)
na—n in Xg, (3.7)

and
M € Fup), Vn € N, 3.8)

then,
neFu). (3.9)

In fact, assume (3.6)—(3.8). From (3.8), for each n € N, there exists 17, € F(i(u,)) =
F(uy) such that n,, = i*(n,) = ﬁnlx;;- From (3.6) and Aubin’s lemma (cf. [13]), we
have

m
up =i(uy) —> i) =u in [[LP(Q). (3.10)
k=1
Asin Step 2, foreachk = 1, ..., m, it follows from (F1)—(F3) and Lemma 3.3 in [10]
that

h* o (Fx(un), Fr(u)) — 0. (3.11)
LPk(Q)
Since fux € Fr(uy),
inf n — ’ < h* , F N F .
Uel;lk(u) 170k ””ka(Q) < L,,k(Q)( k(un), Fi(u))

Hence, infyer, () 1726 — vl — 0 as n — o0, and there exists a sequence

LPk(0)
{m(zk)} C Fy(u) such that

im |7 — 0P, =
Jim Witk =10l ) (3.12)

Since {n,(lk)} C Fy(u) and, as noted in Steps 1, Fy(u) is a weakly compact subset of
LV (Q), by passing to a subsequence if necessary, we can assume that

O —ng? in LPH(Q) (3.13)

for some n(()k) € Fy(u). Hence, (3.12) implies that ﬁnk—\n(()k) in LPi(Q) for k =
1,...,m.Putting no = (n(()l), e n(()m)), we see that 79 € F(u) and

fin—noin [] L7(Q). (3.14)

k=1

Since i* is continuous in the weak topologies of both [}, LPi(Q) and X, it
follows from (3.14) that

e = i (in) = Tinlxz—i* (00) = nolxs (3.15)

@ Springer



On systems of parabolic variational inequalities with ... 239

weakly in X§. From (3.7) and (3.15), we have n = i*(no) € i*F(u), since n,—n
and n,—i*(no) both in the sense of distribution. The inclusion (3.9) is thus verified,
which completes our proof of the weakly closed property of F.
Next, we prove thatif {u,} C D(L), {n,} C Xé are sequences satisfying (3.6)-(3.8)
then
(s un) xz,xo = (10 U) x5 Xo- (3.16)

In fact, let {7, } and no be as above. We have

(s ) xx x0 = (Tl xxs wn) xx x,
0 0 0

=

= <l*(ﬁn)v Mn)X(’g,X()
= (7}’[7 l(un))l_[zl:l LPL(Q)’HZ;I ka(Q)
= (Mn, ”n>l—[km=1 LPIL(Q)»HZL:I LPk(Q)"

(3.17)

From (3.10) and (3.14), we have

— /
(o, '_”nz;l L7 ()T}, L7 (Q)

(70, z(u))m:1 L) [T, L7 (0)

(i* (o), u)xz x,

(n, u)xz xo-

(s ) 1ok, T, L)

This limit, together with (3.17), proves (3.16).

The weakly closed property of F and (3.16) show that F satisfies condition (iii) in
Definition 3.1, which together with the results proved in Steps 1 and 2, shows that F
is pseudomonotone from X to C(X(;) with respect to D(L). O

4 Main results
In this section we prove our main results about problem (1.1)—(1.2), which is equiv-
alently rewritten in Sect.2 as the following evolutionary multivalued variational
inequality: Find u € D(L) N K and n € F(«) such that

(Lu+ Au+n,v—u) >0, Vv e K, “4.1)
where L, D(L), A, F, and K are defined in (2.10), (2.11), (2.5), (2.9), (2.8), and
(2.12).

By identifying n = (1, ..., nm) € [ 112, L”I/c(Q) with i*n = nlx, € X, we see
that (4.1) is also written in the form: Find u € D(L) N K and an n € F(u) such that

n € F(u), (Lu+Au,v—u)+/ n(w—u)dxdt >0, YveK. “4.2)
0

In Sect. 4.1 we deal with the coercive case for (4.1) and in Sect. 4.2 a version of
the method of sub-supersolution for (4.1) is established to treat the noncoercive case.
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We first recall the following definition of a penalty operator associated with a convex
set.

Definition 4.1 Let C # () be a closed and convex subset of a reflexive Banach space Y.
A bounded, hemicontinuous and monotone operator P : ¥ — Y* is called a penalty
operator associated with C C Y if

Pu)=0«<uecC.

In what follows, we assume thatforeachk € {1, ..., m}, there exists a penalty operator
P Xor — X;;k associated with Ky C X with the following properties:

(P) For each u; € D(Ly), there exists wr = wy(ur) € Xor such that

(1) (uks + Agur, wr) >0, and

N 4.3
(i) (Peatx, we) = Dell Peaug s, ok, @
for some constant Dy > 0 independent of u; and wy.
For u € Xy, let
Pu = (Piui, ..., Phuy) € X;. 4.4)

It is clear that P is a penalty operator associated with K.

4.1 Coercive case

In this subsection, we prove the existence of solutions of (4.1) under certain coercivity
condition. More precisely, we have the following result.

Theorem 4.1 Assume (Al)—(A3) and that f satisfies hypotheses (F1)—~(F3). Suppose
D(L)YN K # @andug € D(L) N K, and assume the existence of a penalty operator
associated with K satisfying (P). Then, under the coercivity condition

M} = o0, (4.5)

lim |: inf
lullxxg—00 [neF () Il o
the multivalued parabolic variational inequality (4.1) has solutions.

Proof For ¢ > 0, let us consider the following penalized equation:

ueDL),ne Fw): {(u,v)+ (A(m) +n,v) + é(Pu, v) =0, Yv e Xg, (4.6)
where P is a penalty operator (associated to K) defined in (4.4).

From Proposition 3.3, F is pseudomonotone with respect to D(L). Since A and
¢~ P are monotone and hemicontinuous, they are pseudomonotone and thus pseu-
domonotone with respect to D(L) (cf. e.g. Proposition 27.6, [18]). As a consequence,
A+F+e'Pis pseudomonotone with respect to D(L). Moreover, it is bounded
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since A, P and F are bounded mappings. From the coercivity condition (4.5) and the
monotonicity of e lpitis easy to see that A + F + e~ 1P is coercive on Xy in the
following sense:

((A+81P)(u)+n,u—uo)i| o @7

im [1
llullxy—00 | neF (1) lluell x,

According to the surjectivity result of [8, Theorem 1.3.73, p. 62], (4.6) has solutions
for each ¢ > 0. Let u, € D(L) and n. € F(u.) satisfy (4.6). Let us show that the
family {u, : ¢ > 0, small} is bounded with respect to the graph norm of D(L). In
fact, let ug be a (fixed) element of D(L) N K. Putting v = u; — ug into (4.6) (with
u¢) and noting the monotonicity of L and that Puy = 0, one gets

(—uor, ue — 1o) = (Uer — Uor, Ue — U0) + (At + e, e — up)

1
+E<Pus — Pug, ug — up)

> (Aug + ne, ue — up).
Thus,

(Aug + ne, ue — uo)

lee — uoll x,

< luorllxs.

for all ¢ > 0. From (4.5), we have that the set {|lus|lx, : € > 0} is bounded. As
a consequence, we see that Au, stays bounded in X{. Moreover, from the growth

condition (2.7), we see that the set {1, : ¢ > 0} is bounded in [];__, LPk (0).

Next, let us check that the set {(¢~! Pu,) : ¢ > 0} is also bounded in X§- To see this,
foreachk = 1,...,m and ¢ > 0, we choose wy = wg to be an element satisfying
(4.3) with uy = ugi. From (4.6) with v = (wgg, [0]x), we obtain

1
(Uekrs Wek) + (Akler + Nek, Wek) + E(Pkusk, wei) = 0.

From (4.3)(i), we see that (ugx, wer) + (Aglter, Weg) > 0. Therefore,
1
E(Pkusk, Wek) < (—Nek> Wek)- (4.8)

Since the set {|| 7, ||1_[ : & > 0} is bounded, there exists a constant ¢ > 0 such

that

" L% (Q)

|(Mek» wek)| < cllwerllLre o). Ve.

This and (4.3)(ii) imply that forall k € {1, ..., m},
1 _ ¢ v 0
gllPkuskllxgk = o >0,
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which proves the boundedness of the set {(e7"Pu,y) : ¢ > 0} in X5 On the other
hand, since

uer = —(A 4" P)(ue) — 1

in XE‘)‘, the above estimate implies that (u.;) is also bounded in Xg‘. Thus, we have
shown that {u, : ¢ > 0} is bounded with respect to the graph norm of D(L). Hence,
there exist u € Xo, withu; € X, and a sequence {u,, }, which is still denoted by {u.},
for simplicity of notation, such that

ue—uin Xo, ug—u; in Xg (¢ — 07). 4.9
Since D(L) is closed in Wy and convex, it is weakly closed in Wy, and thus u € D(L).
Now, let us prove that u is a solution of the variational inequality (4.1). First, note that
Pu = 0. In fact, we have Pu, — 0in X (*; . It follows from the monotonicity of P that

(Pv,v—u) >0, Yv € Xp.

As in the proof of Minty’s lemma (cf. [9]), one obtains from this inequality that

(Pu,v) >0, Yv € Xop.

Hence, Pu = 0 in X{')‘, that is, u € K. On the other hand, (4.9) and Aubin’s lemma
imply that

m
ue —> u in [JL7*(Q). (4.10)
k=1
As a consequence, we have
(e ug —u) — 0as e — 0. 4.11)

For w € K, letting v = w — u, in (4.6) (with u = u,), one gets

1
(er, w — ug) + (Atg +ng, W — Ug) = g<_Pus, w—ug) > 0. (4.12)

By choosing w = u in (4.12), we have

(Aug, u —ug) > —(Me,u —ug) — (U, u — Ug) + (Uy — Ugr, U — Ug)
>

—(Me,u —ug) — (U, u — ug).
As a consequence, one gets

liminf{Au,, u —uz) > 0.
e—071
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Note that A is of class (S4) with respect to D(L), according to Proposition 3.2, we
deduce from (4.9) and the above limit that

ue — uin Xg. (4.13)

On the other hand, since {n, : ¢ > 0} is bounded in X, by passing to a subsequence
still denoted by {n.} for simplicity of notation, we have

ne—n in X;. (4.14)

From (4.9) and the weak closedness of the mapping F with respect to D(L) proved
in Step 3 of Proposition 3.3, we have

ne Fu). (4.15)

Letting ¢ — 0 in (4.12) and taking (4.9), (4.13), (4.14) and the continuity of the
operator A into account, we obtain

(ug, w —u) + (Au+n,w —u) > 0.

This holds for all w € K which together with (4.15) proves that u is in fact a solution
of (4.1). O

Penalty operators associated with obstacle problems

Fork =1,...,m,let Ay = —Ap, (pr = 2) be the py-Laplacian. For an upward
obstacle constraint, the convex set Ky is given by

Ki = {up € Xok : ur < ¥ ae.on Q}, (4.16)

with ¥ a given function in Wy such that 1 (-,0) > O on £2, ¥ > O on I, and
Vit + Ax¥r > 0in X(,, in the sense that

(Ve + Ak, vi) = 0, Yur € Xor N LY (Q).

In other words, the obstacle function V¥ is assumed to be a (weak) supersolution of
the following parabolic initial boundary value problem:

wir — Apwi =0, wi(-,0)=00n$2, wy=0o0nI".

Then the operator Py given by
(Prug, vi) = / [(ur — Y 1 opdxde, ¥ g, v € Xor,
0

is easily seen to be a penalty operator, and, moreover, property (P) can be verified with
wi(ug) = (ux — Y™
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Analogously, for a downward obstacle constraint, the convex set Ky is given by
Ky = {uyp € Xor : up > v ae.on Q}, 4.17)
with 9 € Wi, % (-,0) <0on 2,9 <0on I',and %, + Ardx < 0in X, i.e.,
(O + AxPr, i) <0, Yug € Xor N LE(Q).

In the case of a lower obstacle constraint, the operator Py given by
(Prug, vg) = —f [(ur — 90717 opdxdr, Y ug, v € Xo,
0

is a penalty operator for K that satisfies property (P), where wy = wy(uy) corre-
sponding to ux € D(Ly) is chosen as wy (uy) = —(ur — %)~

We note that in an upward (resp. downward) obstacle system, all constraint sets
Ky in (1.2) are of the form (4.16) (resp. (4.17)), while in mixed system of upward-
downward obstacle problems, some of constraint sets Kj in (1.2) are given by (4.16),
while the others are given by (4.17).

4.2 Noncoercive case

Note that when the growth condition (2.7) or the coercivity condition (4.5) is not
fulfilled then the inequality (4.1) may not have solutions. However, without these
conditions, we can still have the existence and other properties of solutions of (4.1) if
sub- and supersolutions of (4.1), defined in a certain appropriate sense, exist. In this
subsection we establish a sub-supersolution method for (4.1), which will allow us to
derive existence and enclosure results for (4.1).

Let us first introduce our basic notion of sub-supersolution for the system of
parabolic MVI (1.1)—(1.2). Let u,u € X be a pair of functions such that u < u.
Fork =1, ..., m, we use the notation Oy = Q. 7 for the cylinder based on Q and
lying between [u]; and [u]x:

O ={(x, 1, [s]) € @ x R" ' [u(x, Ol < [sh < [u(x, )] forae. (x,1) € Q}.

Definition 4.2 A pair of functions u,

u W is said to form an ordered pair of
subsolution—supersolution of (4.1) if u <

€
u and the following conditions are satisfied.

G uvkKcCcK,unK CK,
(ii) u;(-,0) <0in £2,u(-,0) >0in 2 (k=1,...,m), and
(>iii) for each k € {1, ..., m}, there exist functions M Nx © Qr — R such that for
any [w]r € [u, ulk, the functions (x, 1) +— Qk(x, t,[w(x,)]x) and (x,t) —

T (x, 1, [w(x, 1)]e) belongs to LPk(Q),

Nt [wx, D) € file, 1wy, (x, 1), [w(x, Dlk), (4.18)
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(e, 1, [wx, D) € file, 1 ur(x, 1), [wx, D), (4.19)

for a.e. (x,t) € Q, and

(g, + Artty, v — uy) +/ 0, Gy [wle) (e —uy) dxdt = 0, Vog € uy A K,
0

(4.20)
and

(Urr + Aty v — ug) +f MGy oy [wle) (v —ug) dxdt > 0, Yo € uy vV Ki.
0
4.21)

Throughout this subsection instead of the growth condition (F3) of the preceding
section we assume the following local growth assumption with respect to the ordered
interval of sub-supersolutions.

(F4) Assume that there exists a pair of sub-supersolutions # and u of (4.1) such that
forall k € {1, ..., m}, f has the following growth between u and u:

Il < e, 1), Ve filx,t,9), (4.22)

fora.e. (x,1) € Q,and all s € [u(x, t), u(x, t)], for some cgk) € LPi(Q).

We note that (F3) implies (F4), that is, the local growth condition (F4) is a weaker
condition.
We are now ready to state and prove our main existence and enclosure result.

Theorem 4.2 Assume (Al)—(A3) and that (4.1) has an ordered pair of sub- and super-
solutions u and u, and that (F1)—~(F2), (F4) are satisfied. Suppose furthermore that
D(L) N K # O, and that there exists a penalty operator associated with K satisfying
(P). Then, (4.1) has a solution u such that u < u <u.

Proof For k = 1, ..., m, we define the following cut-off function by : Q x R — R:
[s — uk(x, DY if s > ue(x, 1)
br(x,t,5) =10 ifup(x, 1) <s <ug(x,t)

—[uy(x, 1) — sIPelif s < u(x, 1),

for (x,¢,s) € Q x R. Itis easy to check that by is a Carathéodory function with the
growth condition

bi(x, 1, )] < e, 1) + P Is|P!, forae. (x,1) € Q, alls € R, (4.23)

with cék) € LPJL(Q), cgk) > 0. Hence, the Nemytskij operator By : u + by (-, -, u) is
a continuous and bounded mapping from L”*(Q) to Lpl,c(Q) and By = i,’; oByoig:
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Xok — X 1s given by
(Bru, v) = / b (-, -, u)vdxdt, Yu,v € Xog. (4.24)
Q

Moreover, there are cék), cgk) > 0 such that

/ bi(-, - wu dxdt > cg’”uun{’;k(@ — e, Yu e L7 (Q). (4.25)
0

LetB: Xg — Xg be defined by Bu = (Buy, ..., Byuy) foru € Xo. We have from
(4.25) that

m
(Bu,u) = s Y Nullfhy o) — co. Yu € Xo, (4.26)
k=1
for some constants cg, cg > 0. Fork € {1,...,m}, (x,t) € O, uy € R, let us define

the truncation function 7} as follows:
up(x,t) if up > ug(x,t),
(Theur)(x, 1) = § uk if w(x, 1) <up <up(x, 1), (4.27)
w(x, 1) if up < uy(x, ).
In other words,
(Trup) (x, 1) = [ug Aug(x, )]V u (x, 1) = [ug Voug (x, )] A ug(x, 1).
Straightforward calculations show that T is continuous and bounded from L7*(Q)

(resp. Xox) into itself. The corresponding truncated vector function for u =
(ui,...,uy) € R™, Tuis given by

(Tl/l)(.x, l) = ((Tlul)(x’ t)? ML) (Tmum)(xs t))7 (428)

and as above,
[Tuli(x,t) = (Tju;)(x,t) : j e{l,...m\{k}). (4.29)
For k = 1, ..., m, we define next the truncated function fox : O x R" — 2R of

fr as follows:

{Qk(-x?ta [Tl/l(x,t)]k)} lf Ug <£k(x7t)
JoeGe,t,u) = filx,t,ug, [Tu(x, )]e) if g (x, ) < up < up(x,t) (4.30)
{ﬁk(x$ z, [Tu(xvt)]k)} lfl/lk >ﬁk(xvl)s

for (x,t,u) € Q x R™, where n and 77 correspond to u and u as in Definition 4.2.

Let fo = (for,---, fom)- Since f satisfies (F1) and (F2), in view of (4.18) and
(4.19), we can check that fj satisfies (F1) and (F2) as well. Moreover, as a consequence
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of (4.27), (4.18), (4.19), and the growth condition (4.22) in (F4), fy also satisfies (2.7)
of (F3) with B = 0 and o = ¢ € LP(Q). Foru : 0 — R measurable, let

For(u) ={n: QO — R : nismeasurable on Q and n(x,t) € for(x,t,u(x,t))},

fork=1,...,m,and

Fo(u) = [ | For(w)
k=1

={n:Q—R":ne[L%Q)1" and n(x,1) € folx. 1. ulx, 1)},

From (F4) it follows that Fo(u) C [[i, Lpl/c(Q) for any measurable function u
defined on Q, which allows us to define the Nemytskij operator of fj,

m /
Fo: [TL7(Q) — 2= 2@y s Ry,
k=1
and its related mapping

.7:():X0—>2X3, Fo=i*oFyoi.

For any u € Xg, we have Fy(u) = ]_[2”=1 For(u), where For = i;: o For o ir. We see
that F¢ is pseudomonotone with respect to D (L), according to Proposition 3.3. Let
us consider the following auxiliary variational inequality:

ueDWL)NK,ne Fow): (Lu+ Au+Bu+nv—u)>0, VveK. (431

It is clear from its definition that 3 is a (single-valued) pseudomonotone mapping

w.r.t. D(L) from Xg to X(’;. Moreover, fi = b + fo satisfies (F1)—(F3), and thus

F1 = B+ Fy is pseudomonotone with respect to D (L) according to Proposition 3.3.
Now, let us verify that A + B + Fy is coercive on Xy in the following sense:

A B S U —
im |: in (Au + Bu +n. u (p)i|:oo, (4.32)
llell g =00 | neFou) lluell x,
for any (fixed) ¢ € Xo. In fact, from (A3), we have
m
(Au,u) = c3 ) | Vur] 15 ) — €10, Vu € Xo, (4.33)

k=1
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with some constants c3, cjg > 0. For n € Fo(u), n = i*n with n € Fy(u), we have

/ f]k“k dxdt
0

ERIEDD
k=1

=<

(4.34)
(k)
s |

NE

llc llurllLre@)-

L' (0)

=~
Il

1

Combining (4.26) with (4.33) and (4.34), one gets for all u € Xy

m m
(A + Bu+n,u) = e3 ) Vel 175 )+ 08 2 1l o)
! k= (4.35)

m
k
=DM ) leklri o) = €9 = cro-
k=1

For ¢ € Xy fixed, it is inferred from (A1), (4.23), and (4.22) that

m
—1
[{Au + Bu +1n, ¢)| <cn <E IIMIII)?;M + 1) , Yu € X, (4.36)
k=1

for some constant ¢;; > 0. From (4.35) and (4.36), we obtain (4.32). Let ug €
D(L) N K be fixed. With the particular choice of ¢ = ug, we see that all conditions
of Theorem 4.1 are fulfilled with F; = B + Fy in place of F. According to Theorem
4.1, (4.31) has solutions.

Next, we show that any solution u of (4.31) satisfies: u < u < u a.e. in Q. We
verify that u < u, the second inequality is proved in the same way. Let u be a solution
of (4.31), which is equivalent to the system

ug € D(L)N Ky, nie € For(u) © (g + Akt + Brug +ni, ve —ug) > 0, Yy € Ky,

(4.37)
withk =1, ..., m. Because u; € Ky, it follows that
ug + (uy —up)* =u; Vug € Ky.
Letting vy = uy + (uy, — ur) T into (4.37), one gets
(e, (g — ) ") + (Arug + Brug + nie, (g — ) ™) > 0. (4.38)

On the other hand, let n be associated with the subsolution u as in Definition 4.2. For
[wlk = [Tuly € [u, ulk, and

vk =y — (e —up) T = wy Aug € uy A K,

@ Springer



On systems of parabolic variational inequalities with ... 249

we have from (4.20) that
— (g (up—ur) ™) — (A, (zk—uk)+)—(ifgk(', S Tul), (—u)™) = 0. (4.39)
Adding (4.38) and (4.39) yields

((ur — up)e, (uy —uR) ™) + (Akuk — Axuy + Brug, (g — u) ™)

e — i, G [Tl g — u)*) = 0. (4.40)
We have u;, — ux € Wy and (u; — ux) ™ (-, 0) = 0, and thus
4y ] + 2
(e = i), (g —u)™) = Sl = u)™ ¢ Ol g) 2 0. (4.41)
On the other hand, it is easy to check from (A2) that
(Aguy — Aug, (w —ug) ™) = 0. (4.42)

Moreover, with ng = i}/, 7k € For(u), we have

(e — i, G [Tul), (e —w)™)

= /Q(ﬁk(x, 1) =, (6, 1 [Tue, D10) (g (x, 1) — ue(x, )" dxdr

= /{ }(ﬁk(x, 1) =0, (e, 1, [Tulx, D]0) (g (x, 1) — ug(x, 1)) dxdt,
Up>Ug

where {u; > u;} = {(x,1) € QO : uy(x,1) > ur(x, t)}. But because of (4.30), we
have

Me(x, 1) =n, (x, 1, [Tu(x, )]p) forae. (x,1) € {uy > ur}.
Therefore
(e — i, G- [Tule), (g —u)™) = 0. (4.43)
Combining (4.41)—(4.43) with (4.40), we obtain

0 < (Brug, (uy —up)™) = —/ (uy, — up)P* dxdt < 0.

{ug>ur}

This proves that u; — u; = 0 a.e. on {u; > ug}, i.e., {u; > ux} has measure zero,
and thus u; < uy a.e. on Q. Since this holds true for all k = 1, ..., m, we have
u < u. A similar proof shows that © < u. From u < u < u, we have Bu = 0 and
Fo(u) C F(u). Consequently, a solution u of (4.31) is also a solution of (4.1). O
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5 Application: obstacle problem

In this section we deal with the system of multivalued parabolic variational inequalities
(1.D—(1.2) with Ay = —Ap, (pr > 2) being the pi-Laplacian, and under upward
obstacle constraints K given by (4.16), that is,

Ki = {ug € Xor : ur <y ae.on Q}, 5.1

with ¥ a given function in Wy such that i (-,0) > O on £2, ¥4 > O on I, and
Vit + Ag¥r > 0in X(,, in the sense that

(Ve + Ak, vi) = 0, Yur € Xor N LY (Q).

In other words, the obstacle function v is assumed to be a (weak) supersolution of
the parabolic initial boundary value problem:

v, —Apv=0, v(-,00=00n2, v=0o0nI".

Thus, by comparison we have ¥ (x, t) > 0 for a.a. (x, ) € Q. Moreover, it has been
shown in Sect. 4 that there exists a penalty operator Py associated with Ky satisfying
property (P).

Assuming hypotheses (F1)—(F3) for the multivalued lower order terms f; : Q X
R™ — 28\ {@}, our main goal is to construct an ordered pair of sub-supersolutions for
the obstacle problem. Only for simplifying the presentation in this section, we assume
£2 = B(0, 1) with B(0, 1) being the unit ball in RN . Further, let 2z = B(0, R) be
the ball with radius R > 1. Fork = 1,...,m,let h; € Wol’p" (£2r) be the unique
weak solution of

—Aphp=1 inQ2g, hy=0 ondfp, 5.2)

which means
hy € Wy P (2R) 1 —Api = 1 in (WP (2R))". (5.3)
Let s~ = max{—s, 0} for s € R, and using —h, € Wol’pk (£2R) as a test function in

(5.3), we see that
(= Ap e =) = IVB N 0 = —/Q hi (x)dx <0,
R

which implies that 2, = 0, and thus /x> 0. From the nonlinear regularity theory (cf.,
e.g. [12]) we have hy € Cé (2R), and from the nonlinear strong maximum principle
due to Vazquez (see [17]) we infer that hx € int (C}(22g)+). Here int (C}(2r)+)
denotes the interior of the positive cone Cé (.Q_R)+ ={ue Cé (2r) : u(x) >0, Vx
g} in the Banach space C}(2g) = {u € C'(2g) : u(x) =0, Vx € 3R2g}, given
by
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. _ 3
int (C}(2r)+) = {u € Cy(2g) : u(x) > 0, Vx € 2g, and a—”(x) <0, Vx € 32 |,
n

where n = n(x) is the outer unit normal at x € 0§2g. We are going to construct
a pair of sub-supersolutions by means of the solutions /sy of the Dirichlet problem
(5.3)on 2g = B(0, R) with R > 0. Since the lower order multivalued nonlinearities
fr : O x R™ — KC(R) satisfy (F1)-(F3), we have the following representation of f;
fora.a. (x,t) € Q = B(0,1) x (0, 7) and for all s € R™

filx.t,5) = [fulx.1,5), filx,1,5)]. (5.4)

By means of [11, Proposition 4.2] we see that the (single-valued) functions ﬁ , ﬁ :
0 x R™ — R have the following properties for a.a. (x, #) € Q and for all s € R™:

(x,1) — E(x, t,s), (x,1) — ﬁ(x, t, s) are measurable on Q,

s+ fr(x,t,s)is lower semicontinuous on R™,

s > fr(x,t,s) is upper semicontinuous on R".

Thus fx, fr : O x R — R belong to a Baire—Carathéodory class, and are

therefore superpositionally measurable, that is, the associated Nemytskij operators

Fr(u)(x, 1) = fr(x,t,u(x, 1)), and Fx(u)(x, 1) = fi(x,t, u(x,t)) map measurable

functions into measurable functions. We now make the following assumption on the

(single-valued) functions fy, fi: OxR" > R:

(H) There exist functions ¢x € L>(Q) and ¢ € L*(Q) such that for a.a. (x,7) € Q
and for all s € R™ we have

Je(x,t,5) < cr(x, 1), fe(x, t,8) > (x, 1), k=1,...,m. (5.5)

Assume 0 ¢ fi(x,t,0) foratleastonei € {1, ..., m}.

We note that hypothesis (H) excludes the trivial solution, and the one-sided bounds in
(5.5) still allow the multi-valued functions f; to be unbounded.

We are now in the position to explicitly construct an ordered pair of sub-
supersolution for the (upward) obstacle problem (1.1)—=(1.2) with Ay = —A,,
(px = 2), and Ky given by (5.1).

Theorem 5.1 Assume (F1)—(F3) for the multivaluﬁi lower order terms fi and let
hypothesis (H) on the single-valued functions fi, fi generating fi through (5.4) be
satisfied. Then

u(x, 1) = (=Mig1(Dhi1(x), ..., =M () hm(x)) and
u(x, 1) = (Mig1(Dh1(x), ..., Mypdm(©hpm(x)), (x,1) € Q,
form an ordered pair of sub- and supersolution for My, > 0 sufficiently large, where hy

are the positive solutions of problem (5.2) on 2g, and ¢y € C([0, 7)) are supposed
to satisfy ¢r(0) = 0, and ¢y (¢) > 0, qb,’((t) >dr, >0, Vrel0, ], k=1,...,m.
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Proof Let us verify that u and u satisfy Definition 4.2. Clearly, we have 1 < u and
properties (i) and (ii) of Definition 4.2 with K; given by (5.1) are satisfied. So it
remains to check property (iii) in Definition 4.2, that is, we need to show the existence
of functions N N+ Qr — Rsuch that for any [w]i € [u, ul, the functions (x, 7)

Qk(x, t, [w(x,)]x) and (x, 1) = N (x, ¢, [w(x, t)]x) belong to L”I/c(Q), and

Qk(x’ tr [w(x7 t)]k) € fk(xs t’ Ek(-xr t)’ [W(.x, t)]k)v (56)
(s 2, [we, D) € felx, tur(x, 1), [wx, )], (5.7

fora.e. (x,t) € Q, and

(Upy — Appity, vk—gk)+/QQk(-, o [wle) (vg —uy) dxdt > 0, Yoi € uy AKg, (5.8)
and

(U — Ap U, vk—ﬁk)—l—/Qﬁ(~, - [wlk) (vk —up) dxdt > 0, Vv € ur vV Ky, (5.9)

where u; (x, 1) = =M (t)hi(x) and up (x, 1) = Mydr(t)hi(x). Let g € Ky, then
vk € u; N Ky has the representation vy = u; — (uy, — @), and thus (5.8) becomes

gy — Apity, (e — p0)™) + /QQ,((-, (W) (g — )" dxdt <0,V ¢ € K.

(5.10)
Similarly, vy € Uy V K can be written as vy = 1y + (@x — ux)™ with ¢ € Ky, and
thus (5.9) becomes

(ki — A p g, (wk—ﬂk)+)+/ 70, - [wl) (g —ux) " dxdt = 0, Yo € K. (5.11)
Q

We are going to verify (5.10) with n ‘ given by
N, 1w, D) = fi(x, 1, =My ()i (x), [w(x, D) for (x, 1) € Q. (5.12)

Since fj is superpositionally measurable, the growth condition (F3) on fi implies

that n, given by (5.12) belongs to L7 (Q). Applying hypothesis (H) we have for all
[w(x, 1)k

Jie(x, t, =My (Dhi (x), [wx, D) < cr(x, 1),
and thus we get the following inequalities (in the weak sense)

Ekt - Alfkﬂk + Qk(.’ Kl [w]k)
= — Mgy — (Meg)™ ™" + f(x, 1, =My (DR (x), [w(x, D))
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< —Mgdihy + ck(x, 1)

We note that /i is the positive solution on the bigger ball £2g with R > 1, and therefore
the restriction of /i on 2 = B(0, 1) has a positive minimum, that is,

min hg(x) =& > 0,
xe€B(0,1)

which yields the estimate

Ek[ - Alfkﬂk + Qk(.’ *y [U)]k)
= —Midphi — (Meg)? ™" + f(x, 1, =My (Dhy (x), [w(x, D))
—Mydihi + ci(x, 1)

<
< —Mydidi + llckll L) <0, for My large

and thus (5.10) is verified. Let us next check (5.11). To this end we take
M, 1, [wx, D) = filx, 1, Midr(Dhi(x), [w(x, D) for (x,1) € Q. (5.13)

By the same arguments as for n . e have that 77, € LV (Q), and from hypothesis (H)
we get, for all [w(x, 1)]x,

Sfix, t, Mygihy, [w(x, 1)k) > T (x, 1).

Using the definition of h; we obtain the following inequalities (in the weak sense)
with ug (x, 1) = M (t)hi(x)
e — Apuk +7C, - [wle)

= Myphi + (M)~ + fi(x, t, Migchg, [w(x, £)1k)
> Mydihi — |IckllLe(g) = 0, for My large,

which proves (5.11). This completes the proof of Theorem 5.1. O
An immediate consequence is the following corollary.

Corollary 5.1 Under the hypotheses of Theorem 5.1 there exists a solution u of the
(upward) obstacle problem (1.1)—(1.2) with Ay = —Ap, (px = 2), and Ky given by
(5.1) satisfying

usu=<uny,

for My > O sufficiently large, where u and u are as in Theorem 5.1, and  is the
obstacle function.

Proof Since (u, u) is an ordered pair of sub-supersolution, by Theorem 4.2 there
exists a solution u € [u, u] of the obstacle problem with Kj given by (5.1), and thus
Uu<u=<uAniy. O
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6 Systems of evolutionary variational-hemivariational inequalities|

Variational-hemivariational inequalities have been proved a powerful tool to describe
relevant models in mechanical engineering, and have been first introduced by Pana-
giotopoulos see e.g. [14],[15]. With the notations of the preceding sections, in this
section we consider the following system of evolutionary variational-hemivariational
inequalities: Find u € D(L) N K such that

m
(Lu+Au,v—u)+f ijo(x,t,uk,[u]k;vk—uk)dxdt20, VveK, (6.1
Q=1

which is equivalentto (k =1, ..., m)
(Ugr + Ay, v — ug) -I—/ Je et ug, [ulg; ve —up) dxdt > 0, Y € K. (6.2)
o

The functions j; : @ x R" — R, k =1, ..., m, are supposed to be Carathéodory
functions with sx — ji(x, t, sk, [s]x) being locally Lipschitz for a.a. (x,7) € Q
and for all [s]y € R™"! and s; — Ji (e, t, sk, [s]k: ox) denotes Clarke’s partial
generalized directional derivative with respect to the s; component of s € R™ in the
direction g; € R, which is defined by

. . ik (x,t, h 4+ €0k, [sk) — je(x, t, h, [sTk)
Je (e, t, sk, [slk: ox) = limsup / e / , (6.3)
h— sk, €0 €

(cf., e.g., [7, Chap. 2]). Further, let us introduce Clarke’s partial generalized gradient
o jx of the locally Lipschitz function s +— jx(x, ¢, sk, [s]x) given by

O jr(x,t,8) ={neR:jox, 1,56 [slk; 06) = nok, Yor €R}. (6.4)

We assume the following hypotheses on j.

(J1) The functions jz : Q@ x R" — R, k = 1,...,m, are supposed to be
Carathéodory functions, that is, (x,t) — ji(x,?,s) is measurable in Q for
all s € R™, and s — ji(x,t,s) is continuous in R” for a.a. (x,t) € Q,
and sx > Jji(x, t, sk, [s]x) is locally Lipschitz for a.a. (x,¢) € Q and for all
[s] € R™"—1,

(J2) The functions s +— j?(x,t, sk, [slk; 0k), kK = 1, ..., m, are upper semicontin-
uous for g = *£1.

(J3) Clarke’s partial generalized gradient 0y ji satisfies the growth condition

m ﬁ
sup{|n] : n € Bjic(x. 1. 9)} < o, 1)+ P Y Isj|%%
j=1

forae. (x,1) € O, Vs € R™ where oy € LplL(Q), and B > 0.
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Remark 6.1 Regarding assumption (J2) on Clarke’s partial generalized directional
derivative s +> j7(x, 1, Sk, [s]k; ox) a few comments are in order. One may ask
for sufficient conditions on the function ji = jx(x,t, s) itself such that the general
condition (J2) is satisfied. Here, we provide such sufficient conditions for functions
Jk : Q@ x R™ — R of the following class:

Jie(x,t,8) = gk (x, t,56) by (x, 8, [sk) (6.5)
for (x,1) € Q, s = (st, [slx) € R™.
Corollary 6.1 Assume that gx : Q x R — Rand hy : Q x R"™ ' — R are
Carathéodory functions such that for a.e. (x,t) € Q, sk — gr(x,t,sx) is locally
Lipschitz, and hy(x,t, [s]x) > 0 for a.e. (x,t) € Q, all [s]x € R™=L. Then Jk given
by (6.5) fulfills (J2), that is, s — j(x,t, sk, [s]k; 0k) is upper semicontinuous for
ox = £1.

Proof Let (s)) < R™ such that s¥) — s as j — oo. To prove that s >
j,f (x, t, sk, [s]k; ox) is upper semicontinuous, we need to show that

limsup ji (v, 1,557, 59T 00) < 0t sk [sTks k) (6.6)

j—o00
In fact, we have, for any g € R,

Je(e t, h 4 e 0k, [sTk) — Je(x, t, b, [sTk)

JR e, t, sk, [s]k; k) = limsup

h—si, €l0 €
’ ta h - 2 t’ h
— lim sup [g"(x Teo) gL L R e, [s]k)}
h—> sk, €10 €
Jt, h — ,t, h
= limsup |:gk(x e ) — gk(x ):| hi (x, 1, [slk)
h—sg, €0 €

= gr(x, 1, sk; oK) hi (x, 1, [s]k) -

As s — s in R™, it follows that s/’ — s in R and [s/)]; — [s] in R™~". Thus
fora.e. (x,1) € Q, all gx € R, we have from a basic property of Clarke’s generalized
directional derivative (see [7, Chap. 2]) that

lim sup g7 (x, 1, S,EJ); 0k) < g (x, 1, 5k; 0k)-

j—o00
By the Carathéodory property we have

lim hy(x, 2, [sOT) = hi(x, 2, [sh),

J—>00
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and along with h (x, t, [s]x) > O we obtain

timsup ji (x, £, 537, [s91; o) = limsuplgf (x, 1, 54”5 o) hie(x, 1, [s D101
Jj—o0o j—o00 ) )
= limsup g7 (x, 1, s,EJ); ox) lim hy(x,t, [s(f)]k)]
j—o0o J—>0
< gL(x, 1, sk5 00)hi (x, 1, [s]k)
= Je(x, 1, 5%, [slk: or)

which proves (6.6). O

We note that these arguments also hold when ji is a finite sum of functions of the
above form.
Let us introduce the multivalued functions fi : Q x R” — 2R\ {#} defined by

Je(x, t,8) = O jk(x,t,5). 6.7)

Our main goal in this section is to show that under some lattice condition on
the constraint K and assuming (J1)—(J3), the system of evolutionary variational-
hemivariational inequalities (6.1) is equivalent to the system of multi-valued parabolic
variational inequalities (1.1)—(1.2) with f; specified by (6.7). Thus, system (6.1) is
only a particular case of system (1.1)—(1.2).

To this end, first we are going to show the following lemma.

Lemma 6.1 Under the assumptions (J1)—(J3), the multivalued functions fi : Q X
R™ — 2R\{@} defined by (6.7) satisfy hypotheses (F1)~(F3).

Proof Clearly, (F3) follows directly from (J3). As for the proof of the graph measur-
ability of f and the upper semicontinuity of s — fi(x, f, s) we follow an idea from
[6, Sect.5].

By definition of Clarke’s gradient o jx(x,?,s) and the positive homogeneity of
the mapping ox + j7(x,t, s, [slk: 0k) = j{(x,t,s; ox), we see that for almost all
(x,t) € Q,and all s € R™,

O ji(x, t,8) = [—jr(x,t, 85 =1), jP(x, 1,5 D].
Hence,

Gr(fy) ={(x,t,5,7) € O xR" xR :n € dgjr(x,t,5)}
={(x,t,5,m) € O xR" xR:—j’(x,t,5;—1) <n < jl(x,t,s5: 1)}
={(x,.t,5,mM) € O xXR" xR:n>—jl(x,t,5; =1)}
(Wx,t,5,m) € O xR" xR:n<jl(x,t,s; D}

For each gx € R, it follows from (J1) that the function (x, ¢, s) — j,f(x, t,S; 0k)
is measurable on Q x R™ with respect to the measure £(Q) x B(R™) x B(R),
as “countable limit superior” of measurable functions there. Hence the functions
(x,t,8) = jl(x,t,s;1)and (x,t,s) = j?(x,t,s; —1) are measurable on Q x R™
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with respect to the measure £(Q) x B(R™). This implies that Gr(f;) belongs to
[L(Q) x B(R™)] x B(R), i.e., fy satisfies (F1).

As for the proof of (F2), let (x,¢) € Q be a point such that the functions s +>
Jg (x,t,s; £1) are upper semicontinuous on R™. Let so € R™ and U be an open
neighborhood of 9 ji (x, t, s9). Then there exists ¢ > 0 such that

(—Jg e, t,s0: =1) — &, jP(x,t,50; 1) + &) CU.

From the upper semicontinuity of the (single-valued) functions s + j7(x,t,s; 1)
at so, there exists an open neighborhood O of sg such that

JRGe,t, 85 1) < jl(x, 1,505 1) + &, and
Jlx sy —1) < jl(x,t,s0; —1) +¢, Vs € O.

Hence, forall s € O,

8kjk(.x,t,s):[_j]?(x,t,s;_l),j]f(x,t,s; 1)]
C (—jku(x,t,S();—1)—8,j,?(x,l‘,S(); 1)+€)
cU.

which shows the upper semicontinuity of fi at sq. O

With the multivalued functions f; specified by (6.7), let us consider the system (1.1)—
(1.2), that is, we consider the following system of multivalued parabolic variational

inequalities: Foreachk =1, ..., m, find uy € Wox N Ky and ny € L”Z'(Q) such that
up(,0) =0 in 2, ne(x, 1) € filx, t,ur(x,t),...,un(x, 1)), (6.8)
(Uge + Agug, v — ug) +/ Nk (g — ug)dxdt >0, Yo € K,  (6.9)

)

The following equivalence result of system (6.1) and (6.8)—(6.9) holds true.

Theorem 6.1 Let (Al)—(A3) and (J1)—(J3) be satisfied and assume the following lattice
condition for the constraint K :

KVvVKCK and KANK CK. (6.10)

Then u is a solution of the system of evolutionary variational-hemivariational inequali-
ties (6.1) ifand only if u is a solution of the system of multi-valued parabolic variational
inequalities (6.8)—(6.9) with the multi-functions fy given by (6.7).

Proof Let u be a solution of (6.8)—(6.9) , which means u € D(L) N K and there are
Nk € LPx(Q) with

N(x,t) € fix, t,ur(x, ), .., upm(x, 1) = O je(x, t,ur(x, 1), ..., um(x,1))
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such that

<uk,+Akuk,vk—uk>+/ me (o —up)dxdi = 0, Yo € Koy (6.11)
¢

By definition of 9 ji (x, ¢, u) we get for any v € Kj

TGt ug, [ules v — ug) = me(x, 1) (v — ug). (6.12)

From (J1) and (J3) it follows that the left-hand side of inequality (6.12) is integrable,
which by combining with (6.11) yields (6.2) or equivalently (6.1). We have seen by
this way that any solution of (6.8)—(6.9) is a solution of the system of evolutionary
variational-hemivariational inequalities (6.1).

Now let us show the reverse, and assume u is a solution of (6.1). In order to show
that u is a solution of (6.8)—(6.9), we are going to show that u is both a subsolution
and a supersolution for (6.8)—(6.9) which, via Theorem 4.2, completes the proof. In
fact, according to Theorem 4.2, there exists a solution # within the interval of sub-
and supersolutions, that is, # < @ < u, and therefore ¥ = # must be a solution of
(6.8)—(6.9), completing the proof. We note that Theorem 4.2 can be applied in this
situation, since by Lemma 6.1 the hypotheses (F1)-(F3) for f; (defined by (6.7)) are
fulfilled and (F3) implies (F4).

Let u be a solution of (6.1), that is, of (6.2). By assumption, K has the lattice
property (6.10), so Kj has the same property. In particular, we can use in (6.2) vy €
ug AKy C Ki,ie., vp = up Ao = ug — (ug — @)+ with ¢ € Ky, which yields for
all px € Ky,

(g + Aguge, —(ug — o)) + / JeGe,t, ug, [ule; —(ue — @) *) dxdt > 0.
0

Because ¢ > j{(x, ¢, uy, [ul; ok) is positively homogeneous, the last inequality is
equivalent to

(g + Aguge, — (g — o) ™) +/ JeGe t ug, [l =D (ug — o) " dxdt > 0,
0

for all ¢; € K. Using again vy = ug A @x = uy — (ux — @)™, the last inequality is
equivalent to

(Upr + Agttk, v — ug) +/ — (et ug, [ulg; —1) (v — ug) dxdt > 0,
(@)

Yo €up A K.
(6.13)
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In view of [7, Proposition 2.1.2] we have

JRGe, tup(x, 1), [u(x, H)]; —1)
=max{—0(x,1) : O (x, 1) € O ji(x, t, up(x, 1), [ulx, )]k)}
= —min{O (x, 1) : Oc(x, 1) € I ji(x, 1, up(x, 1), [u(x, 1)])}
=: —Qk(x,t),

(6.14)

where

Qk(x, t) € jr(x,t,up(x,t), [ulx,)lx) = felx,t,u1(x, 1), ..., um(x,1)). (6.15)

Since (x,1) +— j,f(x,t,uk(x,t), [u(x, t)]x; —1) is measurable, it follows that
(x,t) —~ n, (x, t) is measurable in Q as well. Thus, in view of the growth condi-

tions (J3) on the Clarke’s gradients, we infer that S LPk (Q). Taking (6.14)—(6.15)
into account, from (6.13) we get (k =1, ..., m)

(ure + Agug, v — ug) +/ 1, (x, 1) (v — ug) dxdt = 0,
0~ (6.16)

Voo €up A K.

which shows that u is a subsolution for (6.8)—(6.9)(with respect to the interval [u, u]).
By similar arguments one shows that u is also a supersolution, which completes the
proof. O
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