Einbau der Seltenen Erden in Aluminate und Borate Synthese, Charakterisierung und Anwendung der Basisstrukturen lumineszierender Verbindungen

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftlich Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik

der Martin-Luther-Universität Halle -Wittenberg

vorgelegt von

von Frau Chimednorov Otgonbayar geb. am 27.02.1990 in Ulaanbaatar

Gutachter:

1. Prof. Dr. Dr. Herbert Pöllmann

2. Prof. Dr. Harald Justnes

Tag der Verteidigung: 23.07.2021

Inhaltsverzeichnis

Inhaltsverzeichnis	I
Eidesstattliche Erklärung	III
Danksagung	IV
Nomenklatur und Abkürzungen	V
Kurzzusammenfassung	VI
Abstract	VII
1. Einleitung	1
1.1. Einführung	
1.2. Aufgabenstellung	4
2 Grundlagen und Kenntnisstand	5
2. Of unuagen unu Kenntinsstand	
2.1. Eurinneszenz	
2.3. Seltene Erden und ihre spektralen Eigenschaften	
2.3.1. Sm^{3+} -Lumineszenz (4f ⁵)	
2.3.2. Dv^{3+} -Lumineszenz (4f ⁹)	
2.3.3. Eu^{3+} -Lumineszenz (4f ⁶)	16
3. Experimentelle Methoden	
3.1. Röntgenpulverdiffraktometrie (PXRD)	
3.2. Fourier-Transform-Infrarot-Spektroskopie (FTIR)	
3.3. Fluoreszenzspektroskopie	19
3.4. Rasterelektronenmikroskopie	20
4. Synthesemethode	
4.1. Festkörpermethode	
4.2. Pechini-Methode	24
4.3. Verwendete Chemikalien	
5. Ergebnisse und Diskussion	
5.1. Erdalkali-Aluminate	
5.1.1. Einleitung	
5.1.2. Synthese und Charakterisierung von Erdalkali-Aluminaten	
5.1.3. Sm^{3+} -Lumineszenz in MAl ₂ O ₄ (M = Ca, Sr, Ba)	
5.1.4. Dy ³⁺ -Lumineszenz in MAl ₂ O ₄ (M = Ca, Sr, Ba)	
5.1.5. Zusammenfassung und Diskussion	

5.2. Erda	alkali-Borate	47
5.2.1.	Einleitung	47
5.2.2.	Synthese und Charakterisierung von Erdalkali-Boraten	
5.2.3.	Sm^{3+} -Lumineszenz in MB ₂ O ₄ (M = Ca, Sr, Ba)	54
5.2.4.	Dy^{3+} -Lumineszenz in MB ₂ O ₄ (M = Ca, Sr, Ba)	
5.2.5.	Zusammenfassung und Diskussion	59
5.3. Erda	alkali-Seltenerd-Oxide	61
5.3.1.	Einleitung	61
5.3.2.	Synthese und Charakterisierung von Erdalkali-Seltenerd-Oxiden	62
5.3.3.	Sm ³⁺ -Lumineszenz in SrEu ₂ O ₄ und BaEu ₂ O ₄	73
5.3.4.	Dy ³⁺ -Lumineszenz in SrEu ₂ O ₄ und BaEu ₂ O ₄	76
5.3.5.	Zusammenfassung und Diskussion	77
5.4. Einb	au von Europium in SrAl2O4 und SrB2O4	
5.4.1.	Einleitung	
5.4.2.	Synthesereihe SrEu _x Al _{2-x} O ₄ $(0 \le x \le 2)$	
5.4.3.	Synthesereihe SrEu _x B _{2-x} O ₄ $(0 \le x \le 2)$	
5.4.4.	Zusammenfassung und Diskussion	
5.5. Erda	alkali-Seltenerd-Aluminate	
5.5.1.	Einleitung	
5.5.2.	Synthese und Charakterisierung von Erdalkali-Seltenerd-Aluminaten	90
5.5.3.	Sm ³⁺ -Lumineszenz in CaEuAlO ₄ und SrEuAlO ₄	99
5.5.4.	Dy ³⁺ -Lumineszenz in CaEuAlO ₄ und SrEuAlO ₄	102
5.5.5.	Zusammenfassung und Diskussion	103
5.6. Erda	alkali-Seltenerd-Borate	107
5.6.1.	Einleitung	107
5.6.2.	Synthese und Charakterisierung von Erdalkali-Seltenerd-Boraten	108
5.6.3.	Sm^{3+} -Lumineszenz in M ₃ Eu ₂ (BO ₃) ₄ (M = Ca, Sr, Ba)	116
5.6.4.	Dy^{3+} -Lumineszenz in M ₃ Eu ₂ (BO ₃) ₄ (M = Ca, Sr, Ba)	119
5.6.5.	Zusammenfassung und Diskussion	121
6. Zusamm	enfassung und Ausblick	124
Literaturvo	erzeichnis	130
Anhang		143
Abbildung	sverzeichnis	196
Tabellenve	rzeichnis	201
Lebenslauf		203

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die Arbeit selbstständig und ohne fremde Hilfe verfasst, keine anderen als die von mir angegeben Quellen und Hilfsmittel benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommen Stellen als solche kenntlich gemacht habe.

Datum

Unterschrift

Danksagung

Die vorliegende Arbeit wurde im Zeitraum von März 2016 bis Oktober 2020 am Institut für Geowissenschaften in der Naturwissenschaftlichen Fakultät III der Martin-Luther-Universität Halle Wittenberg angefertigt.

Zuerst möchte ich meinem Doktorvater Prof. Dr. Dr. Herbert Pöllmann für die Bereitstellung des interessanten Themas und der Möglichkeit zur Promotion danken. Die fachlichen Diskussionen und die moralische Unterstützung bei der Durchführung der Arbeit haben mir immens geholfen. Die zeitliche und finanzielle Unterstützung zur Teilnahme an diversen nationalen und internationalen Tagungen erweiterten meinen Horizont.

Bei PD Dr. Stefan Stöber möchte ich mich für die vielen Diskussionen wissenschaftlicher und allgemeiner Natur bedanken. Bei den technischen Mitarbeiterinnen Gabriele Kummer und Diana Becher danke ich herzlichst für die Unterstützung im Labor und den täglichen freundschaftlichen Umgang.

Meinen Kolleginnen und Kollegen Sophie Kretschmer, Claudia Reissner, Leonardo Negrao, Tobias Beirau, Sabrina Galluccio und Rebecca Kühn danke ich für die tolle Arbeitsatmosphäre in der Arbeitsgruppe. Es war mir stets eine Freude mich mit euch fachlich auszutauschen und uns gegenseitig zu unterstützen.

Ganz herzlich danke ich schließlich meiner Familie, insbesondere meinen Eltern Chimedtsogzol Anaad und Otgonbayar Choijiljav sowie meinem Bruder Tegshigzugder für ihre liebevolle Unterstützung und ihre große Anteilnahme während meiner gesamten Ausbildung. Ich schätze mich sehr glücklich, stets eine so tolle, starke Familie hinter mir zu wissen (маш их баярлалаа).

Für die Kraft der Liebe geht mein Dank an den Mann an meiner Seite, Johannes. Ich danke dir für deine großartige seelische und moralische Unterstützung, dein Verständnis, deine Geduld und nicht nachlassende Aufmunterung - und für das Korrekturlesen der Arbeit.

Nomenklatur und Abkürzungen

a.p.f.u.	Atome pro Formeleinheit (atoms per formula unit)
a.u.	Unskalierte Einheit (arbitrary unit)
counts	Anzahl
EG	Ethylenglycol
FTIR	Fourier-Transformations-Infrarotspektrometer
IC	Innere Umwandlung (internal conversion)
ICDD	International Centre for Diffraction Data
ISC	Interkombination (intersystem crossing)
ICSD	Inorganic Crystal Structure Database
ΚZ	Koordinationszahl
MS	Massenspektrometrie
p.A.	Analyserein (per analysis)
PDF	Powder Diffraction $File^{TM}$
REE	Seltenerdelemente bzw. Metalle der Seltenen Erden
REM	Rasterelektronenmikroskopie
RG	Raumgruppe
RG Nr.	Raumgruppennummer
WLED	Weiße Leuchtdiode (white light-emitting diode)
XRD	Röntgendiffraktometrie (X-ray diffraction)
ZS	Zitronensäure

Kurzzusammenfassung

In Anbetracht der begrenzt verfügbaren Ressourcen wird es immer wichtiger, industrielle Prozesse und Produkte energieeffizienter und ressourcenschonender zu gestalten. Weiße Lichtdioden (WLEDs) stellen eine hervorragende Alternative zu herkömmlichen Glüh- und Leuchtstofflampen, bei denen fast 90 % der Energie als Wärme verloren geht, dar. Wenngleich in den letzten Jahren große Fortschritte in der Entwicklung der WLEDs erzielt werden konnten, besitzen sie weiterhin erhebliches Optimierungspotenzial insbesondere hinsichtlich der Lichtausbeute, Farbstabilität und Farbwiedergabeeigenschaften sowie nicht zuletzt der Herstellungskosten.

Im Rahmen der gezielten Suche nach Leuchtstoffen für WLEDs behandelt die vorliegende Dissertationsschrift die systematische Analyse der Eigenschaften potentiell geeigneter Wirtsgitter auf Basis von Erdalkali-Aluminaten und -Boraten mit den allgemeinen Formeln MAl_2O_4 , MB_2O_4 , $MREEAlO_4$ und $M_3REE_2(BO_3)_4$ (M = Ca, Sr, Ba; REE = Metalle der Seltenen Erden). Durch den vollständigen Austausch von Aluminium bzw. Bor gegen Seltene Erden wurden Verbindungen des Typs $MREE_2O_4$ synthetisiert und charakterisiert. Für die Verbindungsklassen $MREEAlO_4$ und $MREE_2O_4$ konnte eine Beziehung zwischen der Strukturstabilität und dem Verhältnis der Ionenradien von Seltener Erde und Erdalkalimetall hergestellt werden. Die ermittelten kristallographischen Daten von $Ca_3Dy_2(BO_3)_4$, $Ca_3Eu_2(BO_3)_4$, $Ca_3La_2(BO_3)_4$, $Ca_3Nd_2(BO_3)_4$ und $Ca_3Yb_2(BO_3)_4$ wurden zur Archivierung in der ICDD-Datenbank weitergeleitet.

Als potenzielle Leuchtstoffe für WLEDs wurden dreiwertiges Samarium und Dysprosium bis zu 2 mol-% in die verschiedenen Wirtsgittertypen eingebaut. Von den insgesamt 26 untersuchten Leuchtstoffsystemen zeigten lediglich BaAl₂O₄:Sm, SrB₂O₄:Dy und BaB₂O₄:Dy keinerlei Fluoreszenz. Die besten Lumineszenzeigenschaften konnten mit dem Einbau von Dysprosium in Bariumaluminat (BaAl₂O₄:Dy) und Samarium in Calciumborat (CaB₂O₄:Sm) erzielt werden.

Abstract

In the light of limited available resources, it is getting increasingly important to optimize industrial processes and products to be more energy-efficient and resource-saving. White lightemitting diodes (WLEDs) are an excellent alternative to conventional incandescent and fluorescent lamps, where almost 90 % of the energy is consumed by the emission of heat. Although great progress has been made in the development of WLEDs in recent years, there is still considerable potential for their optimization, particularly in terms of luminous efficacy, color stability, color rendering properties and manufacturing costs.

Aim of this thesis is to find novel phosphors for WLEDs. A series of potentially suitable host lattices based on alkaline earth aluminates and borates with the general composition MAl_2O_4 , MB_2O_4 , $MREEAlO_4$ and $M_3REE_2(BO_3)_4$ (M = Ca, Sr, Ba; REE = rare earth elements) were studied systematically. Furthermore, compounds of the type $MREE_2O_4$ were studied, which result from the complete substitution of aluminum or boron by rare earth elements. The results show a dependence of structural stability on the ratio of the ionic radii of rare earth and alkaline earth metal for the compound classes $MREEAlO_4$ and $MREE_2O_4$. The crystallographic data determined for the compounds $Ca_3Dy_2(BO_3)_4$, $Ca_3Eu_2(BO_3)_4$, $Ca_3La_2(BO_3)_4$, $Ca_3Nd_2(BO_3)_4$ and $Ca_3Yb_2(BO_3)_4$ was forwarded for filing in the ICDD database.

Up to 2 mol-% trivalent samarium and dysprosium were incorporated into the different host lattice types as potential phosphors for WLEDs. From the studied 26 luminescent systems only BaAl₂O₄:Sm, SrB₂O₄:Dy and BaB₂O₄:Dy showed no fluorescence at all. The best luminescence properties were obtained by incorporation of dysprosium in barium aluminate (BaAl₂O₄:Dy) and samarium in calcium borate (CaB₂O₄:Sm).

1. Einleitung

1.1. Einführung

Ohne die unterschiedlichsten Licht- und Beleuchtungssysteme wäre die Welt, wie wir sie kennen, nicht denkbar. In Anbetracht der begrenzt verfügbaren Ressourcen und des fortschreitenden anthropogenen Klimawandels wird immer wichtiger, industrielle Prozesse und Produkte energieeffizienter und ressourcenschonender zu gestalten. Von Seiten der Politik werden deshalb Impulse gesetzt, die beispielsweise alternative Leuchtmittel erfordern, da herkömmliche Glühbirnen aus Umweltschutzgründen verboten wurden. Weiterhin werden Klimaziele formuliert, die eine weitere Steigerung der Effizienz und Minimierung des Rohstoffaufwands erfordern .

Herkömmliche Glüh- und Leuchtstofflampen basieren entweder auf dem Prinzip des Erhitzens eines Glühfadens oder auf Gasentladung. Beide Methoden sind mit großen Energieverlusten durch die Abgabe von Wärme verbunden. Bei Glühbirnen werden circa 90 % der Elektrizität genutzt, um Wärme zu erzeugen, nur 10 % werden in sichtbares Licht umgesetzt [1, 2]. Weitere negative Aspekte sind eine vergleichsweise kurze Lebensdauer, der recht hohe Stromverbrauch und eine häufige Notwendigkeit des Austauschs [3].

Im Jahr 1996 wurde von der Nichia Chemical Co. ein völlig neues Beleuchtungssystem aus Basis eines blauen InGaN-LED-Chips entwickelt, der mit Yttriumaluminiumgranat als Leuchtstoff beschichtet wurde ($Y_3Al_5O_{12}$:Ce, YAG:Ce). Ein schematischer Aufbau dieser weißen Leuchtdioden (WLEDs, engl. <u>white light-e</u>mitting <u>d</u>iode) ist in Abb. 1 dargestellt.

Abb. 1: Schematischer Aufbau von WLEDs (nach [4])

Bei aktivierter Stromzufuhr wird blaues Licht vom InGaN-Chip durch Elektronen-Loch-Rekombination in den p-n-Übergängen abgegeben. Ein Teil des erzeugten blauen Lichts regt den YAG:Ce Leuchtstoff an, dabei wird gelbes Licht ausgesendet. Die Vermischung des emittierten gelben Lichts mit dem Rest blauen Lichts ergibt das sichtbare weiße Licht. Bei dieser auf LED basierenden Beleuchtungsart handelt es sich um die so genannte Solid-State-Beleuchtung (SSL). Vorteile von SSL sind [3, 5–7]:

- eine hohe Lichtausbeute,
- die vergleichsweise hohe Energieeinsparung,
- eine kleinere Baugröße,
- die lange Haltbarkeit.

Inzwischen haben die herkömmlichen weißen Lichtquellen, wie in Abb. 2 dargestellt, ihre physikalische Grenze der Effizienz fast erreicht, während weiße LEDs weiteres Potenzial zur Effizienzsteigerung aufweisen. Es wird angenommen, dass LED-basierte SSL die nächste Generation von Beleuchtungsquellen für generelle Leuchtmittelanwendungen ist [4]. Darüber hinaus werden sie in der Hintergrundbeleuchtung von Flüssigkristallanzeigen, Fahrzeugscheinwerfern, Allgemeinbeleuchtung, Ampeln, Kamerablitzen und Röntgendetektoren eingesetzt.

Abb. 2: Entwicklung der Lichtausbeute von Weißlichtquellen (Punkte entlang der blauen Kurve: Leistung handelsüblicher Hochleistungs-LEDs [4]

Generell gibt es drei verschiedene Herangehensweisen, um weißes Licht auf Basis von SSL zu erzeugen [8]:

- Kombination einer blauen LED mit einem klassischen gelben Leuchtstoff, z.B. oben erwähnte YAG:Ce³⁺. Diese LEDs finden breite Anwendung als einfache langlebige weiße Lichtquelle in Ampeln, Außenbeleuchtungen oder Markierungsleuchten in Tunneln. Das erzeugte weiße Licht wirkt auf das Auge blaustichig-kalt.
- Kombination einer blauen (Ga,In)N-LED mit zwei Leuchtstoffen, die rot und grün emittieren. Ein Beispiel hierfür ist die Beschichtung eines blau emittierenden GaInN-Chips mit orange leuchtendem Sr₂Si₅N₈:Eu²⁺ und grün fluoreszierendem SrSi₂O₂N₂:Eu²⁺. Durch die Rotanteile erzielt man einen warm-weißen Lichteindruck, diese Art der Lichterzeugung wird deshalb insbesondere als Innenraumbeleuchtung verwendet.
- 3. Kombination von (Ga,Al)N-UV-LEDs mit drei unterschiedlichen Leuchtstoffen, die rot, grün und blau lumineszieren. Das erzielte weiße Licht ist dem Tageslicht am ähnlichsten. Die Herausforderung hierbei ist, die drei verschiedenen Leuchtstoffe auf einem LED-Chip aufzutragen. Dieses Problem kann umgangen werden, indem Zwei-Farben-Leuchtstoffe verwendet werden: ein geeignetes Wirtsgitter wird mit zwei Aktivatoren dotiert, um bei mindestens zwei Wellenlängen zu emittieren. So gibt z.B. α-Sr(PO₃)₂:Eu²⁺,Mn²⁺ unter UV-Anregung weißes Licht ab.

Fortschritte bei der Synthese von Mikro- und Nanofestkörpern, der Funktionalisierung und Charakterisierung von Materialien sowie der Entwicklung neuartiger Leuchtstoffe ermöglichten wesentliche Verbesserungen von Phosphoren in pc-WLEDs. Moderne Leuchtstoffe besitzen allerdings weiterhin wesentliches Optimierungspotenzial insbesondere hinsichtlich der Verbesserung der Lichtausbeute, der Farbstabilität und der Farbwiedergabeeigenschaften sowie nicht zuletzt der Herstellungskosten.

Dabei ist es aufgrund des komplexen Wechselspiels der zahlreichen Parameter schwer konkrete Voraussagen über Anregungs- und Emissionswellenlängen der Emitter in möglichen Wirtsgittern zu treffen. Die Synthese phasenreiner und sorgfältig dotierter Wirtsgitter ist daher für die Forschung immer noch unerlässlich [8]. Die wichtigsten Anforderungen für Phosphoraktivatoren für WLEDs sind effiziente Absorptionsbanden im blauen Bereich (420-480 nm) bzw. im nahen UV-Bereich (365-410 nm) und weiterhin starke Emissionsübergänge. Diese Anforderungen werden von den starken 4f \rightarrow 5d-Übergängen der Metalle der Seltenen Erden hervorragend erfüllt [9–13]. Dabei zählen Samarium und Dysprosium zu den wichtigen Aktivator-Ionen. Die intensive orangefarbene Lichtemission von verschiedenen mit Sm³⁺ aktivierten anorganischen Wirtsgittern ist sehr nützlich bei der Herstellung weißer Leuchtdioden (WLEDs) durch die Kombination von UV-LEDs mit cyan- und orangeemittierenden Phosphormaterialien. Weiterhin wird Samarium in der optischen Speichertechnologie, in Temperatursensoren, im Bereich der Unterwasser-Kommunikation, in verschiedenen fluoreszierenden Geräten, Farbdisplays und sichtbaren Festkörperlasern eingesetzt. Im Vergleich dazu emittiert Dysprosium in zwei Bereichen, zum einen im gelben und zum anderen im blauen Spektrum. Die relativen Intensitäten dieser beiden Emissionsbanden hängen von der Dotierungskonzentration, der Wirtszusammensetzung und der Anregungswellenlänge ab [14]. Im Hinblick auf die oben genannten Anwendungen und Eigenschaften wurden Sm³⁺ und Dy³⁺ als Aktivatoren für die vorliegende Arbeit verwendet.

Die zu erwartende Emissionslage eines Leuchtstoffs hängt nicht nur vom Aktivator, sondern auch von der chemischen Zusammensetzung und den strukturellen Eigenschaften des Wirtsgitters ab. In dieser Arbeit wurden potenzielle Wirtsgittermaterialien basierend auf Aluminaten und Boraten sowie Seltenerdoxiden monophasig synthetisiert und analysiert. Diese Wirtsgitter sind aufgrund ihrer niedrigen Synthesetemperaturen, chemischen Stabilität und niedrigen Herstellungskosten sehr gut als Wirtsgitter für Leuchtstoffe geeignet.

1.2. Aufgabenstellung

Wie bereits in der Einführung angesprochen, ist die Suche nach neuen geeigneten Wirtsgittern und Aktivatoren von großer Bedeutung. Im Rahmen dieser Arbeit sollen Wirtsgitter basierend auf Erdalkali-Aluminaten und -Boraten synthetisiert und analysiert werden. Dabei werden als Synthesemethoden die Festkörpermethode und die Pechini-Methode angewendet. Die Synthese der reinphasigen Wirtsgitter wird durch die Optimierung der Synthesemethoden sichergestellt. Im Fokus steht die kristallographische Charakterisierung der Wirtsgitter. Ein weiterer Schwerpunkt der Arbeit liegt in der Analyse der Lumineszenzeigenschaften der mit dreiwertigen Seltenen Erden dotierten Wirtsgitter. Dafür werden die ausgewählten Wirtsgitter mit Sm³⁺ und Dy³⁺ monodotiert. Die Lumineszenzeigenschaften werden mit Hilfe eines auf Festkörper ausgelegten Fluoreszenzspektrometers untersucht. Schwerpunkt ist hierbei die Bestimmung der optimalen Konzentration der Seltenen Erden für das jeweilige Wirtsgitter, da die Fluoreszenzintensität ab einer bestimmten Aktivatorkonzentration erheblich reduziert wird (sog. Quenching-Effekt).

2. Grundlagen und Kenntnisstand

2.1. Lumineszenz

Lumineszenz (von lat. lumen = Licht) ist ein Sammelbegriff für Leuchterscheinungen, die keine Wärmestrahlung sind. Wenn das Licht unmittelbar (innerhalb weniger Mikrosekunden) nach der Anregung des strahlenden Mediums emittiert wird, spricht man von Fluoreszenz. Die Lebensdauer der Fluoreszenz beträgt 10⁻⁶ bis 10⁻¹² Sekunden. Es leuchtet nur während der Anregung. Klingt das Leuchten nach Abschalten der Anregungsquelle langsam ab, dann spricht man von Phosphoreszenz.

Die Lichtstrahlung lässt sich anhand des Jablonski-Diagramms erläutern (Abb. 3). Wird einem Atom Energie zugeführt, so können dadurch Elektronen vom Grundzustand auf einen angeregten Zustand angehoben werden. Ein derart angeregtes Atom hat nun mehrere Möglichkeiten, seine Anregungsenergie abzugeben. Erfolgt die Abgabe durch die Aussendung eines Lichtquants, so handelt es sich um Fluoreszenz. Da dieser Vorgang quantenmechanisch erlaubt ist, passiert dies schnell und es gibt kein Nachleuchten. Das emittierte Fluoreszenzspektrum ist dabei aufgrund der strahlungslosen Energieverluste im angeregten Zustand zu größeren Wellenlängen verschoben (sog. Stokes-Verschiebung). Die zweite Möglichkeit zur Abgabe von Energie ist in Form von Schwingungsenergie (Wärme) an die Umgebung. Die dritte Möglichkeit ist ein quantenmechanischer verbotener Wechsel in einen angeregten Zustand bzw. die Umwandlung in den Triplettzustand vom Singulettzustand (sog. intersystem crossing, IC). Die Rückkehr in den Grundzustand ist ebenfalls quantenmechanisch verboten und findet daher langsam statt. Erfolgt die Rückkehr unter Lichtabstrahlung, so spricht man von Phosphoreszenz. Aus diesem Grund ist Phosphoreszenz nach dem Abschalten der Anregungsquelle über längere Zeiträume zu beobachten als Fluoreszenz [10, 11, 15, 16].

Für das Ausbleiben des Fluoreszenzlichts (eng. Quenching) kann es mehrere Gründe geben:

- 1. Konzentrationslöschung: die Anregungsenergie geht durch Stöße mit anderen Molekülen verloren,
- Sensibilisierte Fluoreszenz: die Anregungsenergie wird als elektronische Energie auf andere Moleküle übertragen,
- Die Anregungsenergie geht in ein langlebiges Niveau über und wird später als Phosphoreszenzlichtquant abgestrahlt.

Abb. 3: Jablonski-Diagramm [17]

Weiterhin kann eine Unterteilung der Lumineszenz in Abhängigkeit von der anregenden Energiequelle vorgenommen werden (siehe Tab. 1).

Tab. 1: Formen von Lumineszenz [1	8		
-----------------------------------	---	--	--

Lumineszenztyp	Anregungsquelle	Anwendung	
Kathodelumineszenz	Elektronen	Fernsehgeräte, Monitore	
Photolumineszenz	(UV-)Photonen	Leuchtstofflampen,	
Röntgenlumineszenz	Röntgenstrahlen	Röntgenstrahlenverstärker	
Elektrolumineszenz	Elektrisches Feld	LEDs, EL-Displays	
Sonolumineszenz	Ultraschall		
Solvatolumineszenz	Photonen	Detektoren, analytische Geräte	
Chemolumineszenz	Chemische Reaktionsenergie	Analytische Chemie	
Biolumineszenz	Biochemische	Analytische Chemie	
Tribolumineszenz	Mechanische Energie		

2.2. Leuchtstoffe

Licht wird heutzutage fast ausschließlich unter Verwendung von Leuchtstoffen erzeugt. Als Leuchtstoffe (engl. phosphors) bezeichnet man allgemein feste Stoffe, die Lumineszenz zeigen. Anorganische Leuchtstoffe bestehen in der Regel aus einem Wirtsgitter mit einer Dotierung an Aktivator-Ionen in der Größenordnung von etwa 1 mol-% oder weniger. Die Zusammenstellung der möglichen Wirtsgitterelemente und Aktivatorelemente ist von Jüstel H. et al. unter dem Periodensystem der "Beleuchtungs"-Elemente zusammengefasst (Abb. 4). Die AktivatorIonen sind dabei gelb markiert. Sie verfügen über die Energieniveaus, die für Lumineszenz verantwortlich sind. Generell lassen sich die Aktivatoren in zwei Klassen einteilen:

- Die Energiezustände, die am Emissionsprozess beteiligt sind, wechselwirken mit dem Wirtsgitter schwach. Dazu gehört eine Vielzahl der Metalle der Seltenen Erden. Die optischen Übergänge finden ausschließlich zwischen 4f-Termen statt, die durch die äußeren Elektronen sehr gut von ihrer chemischen Umgebung abgeschirmt sind. Die Spektren umfassen scharfe Linien, die aus rein elektronischen Übergängen entstehen [19].
- Die Energiezustände, die am Emissionsprozess beteiligt sind, wechselwirken mit dem Wirtsgitter stark. Einige Emissionsbanden sind dabei durch die starke Kopplung der elektronischen Zustände der Aktivatoren mit den Schwingungen der Atome oder Ionen der Wirtsgitter verbreitet. Das ist der Fall bei der Beteiligung von d-Elektronen (z.B. Mn²⁺), s²-Ionen (z.B. Pb²⁺, Sb³⁺) oder Komplexanionen wie MoO4²⁻ oder NbO4³⁻.

In der vorliegenden Arbeit wurden die Wirtsgitter ausschließlich mit Metallen der Seltenen Erden dotiert. Auf die spektralen Eigenschaften der Seltenen Erden wird detailliert in Abschnitt 2.3 eingegangen.

Abb. 4: Darstellung von Wirtsgitter-Ionen und Aktivator-Ionen im Periodensystem der Elemente [9, 18]

Die Eigenschaften eines Leuchtstoffs hängen nicht nur vom Aktivator, sondern auch von der Grundstruktur des Wirtsgitters ab. Mögliche Wirtsgitterelemente sind im Periodensystem der "Beleuchtungs"-Elemente grün gekennzeichnet (vgl. Abb. 4). Die Anionen sind dabei in Oxidform ausgewiesen, um zu verdeutlichen, dass jedes eine ganze Verbindungsklasse darstellt. Somit repräsentiert SiO_4^{4-} die Silikatverbindungen, die z.B. $Si_2O_7^{6-}$, SiO_3^{-} und $Si_4O_{11}^{5-}$ -Anionen enthalten. Man unterscheidet zwischen zwei Arten von Wirtsgittern: inerten und selbst aktivierten. Dem Namen entsprechend weisen inerte Wirtsgitter keine eigenen Fluoreszenzeigenschaften auf. Die mit einem Kreis gekennzeichneten Anionen gehören zu der Gruppe der selbst aktivierten, sie benötigen also keinen Aktivator. So ist z.B. die Lumineszenzeffizienz von CaWO₄ bei einer Anregung mit 147 nm fast vergleichbar mit dem kommerziell verfügbaren Leuchtstoff BaMgAl₁₀O₁₇: Eu²⁺ [20, 21].

2.3. Seltene Erden und ihre spektralen Eigenschaften

Zu den Metallen der Seltenen Erden gehören die Elemente der 3. Nebengruppe des Periodensystems (La, Sc und Y) und die Lanthanoide (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und Lu). Die Bezeichnung stammt aus der Zeit der Entdeckung der Elemente. Damals glaubte man, dass diese sporadisch in der Natur verteilt sind. Heutzutage ist evident, dass die Seltenerdmetalle recht gleichmäßig verteilt in der Erdkruste vorkommen. Selten sind jedoch die wirtschaftlich ausbeutbaren Vorkommen, bei denen die Konzentration über einem Prozent liegt. Eines der weltweit größten Vorkommen an Seltenen Erden beherbergt bspw. die Bayan Obo Mine in der Inneren Mongolei in China [22].

Die Elektronenkonfigurationen der Seltenen Erden sind in Tab. 2 dargestellt. Scandium, Yttrium und Lanthan haben die Valenzelektronenkonfiguration $ns^2(n-1)d^1$ mit n = 4, 5, 6 und treten in Verbindungen somit fast ausschließlich in der Oxidationsstufe +III auf. Die Valenzelektronen der Lanthanoide unterscheiden sich lediglich durch die Zahl der f-Elektronen. Sie treten also in Verbindungen ebenfalls meist in der Oxidationsstufe +III auf, denn die Aufenthaltswahrscheinlichkeit der f-Elektronen ist so nah am Kern lokalisiert, dass diese Elektronen nur unter erhöhtem Energieaufwand abgegeben werden. Ausnahmen bilden Cer und Praseodym, bei denen es auch stabile +IV-Verbindungen gibt. Aufgrund der Stabilität der 4f⁷-Konfiguration gibt es +IV-Verbindungen ebenfalls für Terbium. Diese Stabilität einer halb-bzw. vollbesetzten Schale findet sich auch bei der Oxidationsstufe +II bei Europium und Ytterbium [23, 24].

Name	Symbol	Atom REE ³⁺		REE ⁴⁺	REE ²⁺
Scandium	Sc	$[Ar]4s^23d^1$	[Ar]		
Yttrium	Y	$[Kr]5s^23d^1$	[Kr]		
Lanthan	La	$[Xe]6s^23d^1$	[Xe]		
Cer	Ce	$[Xe]6s^25d^14f^1$	[Xe]4f ¹	[Xe]	
Praseodym	Pr	$[Xe]6s^25d^14f^2$	[Xe]4f ²	[Xe]4f ¹	
Neodym	Nd	$[Xe]6s^25d^14f^3$	[Xe]4f ³	$[Xe]4f^2$	
Promethium	Pm	$[Xe]6s^25d^14f^4$	[Xe]4f ⁴		
Samarium	Sm	$[Xe]6s^{2}5d^{1}4f^{5}$	[Xe]4f ⁵		[Xe]4f ⁶
Europium	Eu	$[Xe]6s^{2}5d^{1}4f^{6}$	[Xe]4f ⁶		[Xe]4f ⁷
Gadolinium	Gd	$[Xe]6s^25d^14f^7$	[Xe]4f ⁷		
Terbium	Tb	$[Xe]6s^{2}5d^{1}4f^{8}$	[Xe]4f ⁸	[Xe]4f ⁷	
Dysprosium	Dy	$[Xe]6s^25d^14f^9$	[Xe]4f ⁹	[Xe]4f ⁸	
Holmium	Но	$[Xe]6s^25d^14f^{10}$	[Xe]4f ¹⁰		
Erbium	Er	$[Xe]6s^25d^14f^{11}$	[Xe]4f ¹¹		
Thulium	Tm	$[Xe]6s^25d^14f^{12}$	$[Xe]4f^{12}$		[Xe]4f ¹³
Ytterbium	Yb	$[Xe]6s^25d^14f^{13}$	$[Xe]4f^{13}$		[Xe]4f ¹⁴
Lutetium	Lu	$[Xe]6s^25d^14f^{14}$	[Xe]4f ¹⁴		

Tab. 2:Elektronenkonfiguration der Seltenen Erden [23]

Die wichtigste aperiodische physikalische Eigenschaft der Lanthanoide ist die sogenannte Lanthanoiden-Kontraktion. Darunter versteht man die Abnahme des REE³⁺-Ionenradius mit wachsender Kernladungszahl der Lanthanoide. Diese kommt dadurch zustande, dass die steigende Ladung des Atomkerns eine zunehmende Anziehungskraft auf die Elektronenhülle ausübt und dadurch die Elektronenhülle bzw. der Radius der Ionen kleiner wird [15]. Der Zusammenhang ist grafisch in Abb. 5 dargestellt.

Abb. 5: Ionenradien der hexakoordinierten REE³⁺ Ionen [25]

Die charakteristischen Eigenschaften der REE-Ionen sind auf das Vorhandensein einer nicht vollständig gefüllten, tief liegenden 4f-Schale im Ion zurückzuführen. Die 4f-Orbitale liegen tief im Inneren des Atoms und werden durch vollständig gefüllte 5s²- und 5p⁶-Orbitale sehr gut gegenüber äußeren Feldern abgeschirmt. Zum einen wird dadurch eine Vielzahl von diskreten Energieniveaus erzeugt. Zum anderen werden diese Energieniveaus kaum von den Wirtsgittern beeinflusst. Dies führt zu einer Ähnlichkeit zwischen dem Energieniveaudiagramm eines freien REE³⁺ und dem des eingebauten REE³⁺.

Die drei beobachtbaren Hauptübergänge sind:

- Übergang $4f \rightarrow 4f$
- Übergang $4f \rightarrow 5d$
- Ladungstransferübergang (engl. charge transfer) vom Wirtsgitter auf den Aktivator

4f→4f-Übergang

Mit Ausnahme von Ce³⁺ und Yb³⁺ lassen sich bei REE³⁺ eine große Anzahl an 4f-Energieniveaus beobachten. Für Gd³⁺ gibt es bspw. bis zu 327 Niveaus. Die Übergänge innerhalb von 4f-Schalen sind strengstens verboten, da sich die Parität nicht ändert (Laporte-Auswahlregel). Diese verbotenen Übergänge werden trotzdem beobachtet, da bei der Wechselwirkung der Seltenerdionen mit dem Kristallfeld oder mit den Gitterschwingungen Zustände entgegengesetzter Paritäten, wie z.B. 5d-Zustände, mit den 4f-Zuständen vermischt werden.

Dieke ermittelte die energetische Lage der 4f-Niveaus trivalenter Lanthanoid-Ionen aus einer Vielzahl an experimentellen Daten und fasste die Ergebnisse in einem nach ihm benannten Dieke-Diagramm (siehe Abb. 6) zusammen [26]. Dabei sind die Energieniveaus der REE³⁺ über einer vertikalen Energieskala aufgetragen. Es handelt sich dabei um eine eindimensionale Darstellung aller Energiezustände relativ zum energetischen Grundzustand. Der Energiezustand eines Atoms lässt sich quantenmechanisch über den Spindrehimpuls S mit der Spinmultiplizität 2S+1, dem Bahndrehimpus L sowie dem Gesamtdrehimpuls J beschreiben. Alle drei Drehimpulse können in einem Termsymbol ^{2S+1}L_J zusammengefasst werden. Das Diagramm ermöglicht eine schnelle Zuordnung der Absorptions- und Emissionslinien in den optischen Spektren von Verbindungen, die Seltenerdionen enthalten. Die Strichbreite der Energiezustände gibt die Größe der Kristallfeldaufspaltung wieder [27]. Aus dem Dieke-Diagramm kann man die Emissionslinien der Seltenen Erden in verschiedenen Wirtsgittern näherungsweise ermitteln, da die f→f-Übergänge der REE³⁺ kaum von den Wirtsgittern beeinflusst werden.

Die geringe Elektronen-Photonen-Kopplung der Absorptions- und Emissionsbanden der f \rightarrow f-Übergänge lässt sich in den zugehörigen Spektren anhand von außerordentlich scharfen Peaks mit Halbwertsbreiten von nur ca. 1 cm⁻¹ erkennen. Weiterhin ist diese geringe Kopplung Grund dafür, dass sich Lumineszenz viel häufiger bei REE³⁺ beobachtet lässt als bspw. bei den Übergangsmetallverbindungen. Die sichtbare f \rightarrow f-Emission und deren große Häufigkeit haben dazu geführt, dass viele der heute verwendeten lumineszierenden Materialien REE³⁺ enthalten [15].

Abb. 6: Dieke-Diagramm für freie REE³⁺-Ionen [26]

4f→5d-Übergang

Man spricht von einem 4f→5d-Übergang, wenn eines der 4f-Elektronen auf das höher liegende 5d-Niveau angehoben wird. Dieser Übergang ist nach der Laporte-Auswahlregel erlaubt und deshalb sehr intensiv.

Die 5d-Orbitale sind nicht so stark durch andere Elektronenschalen abgeschirmt wie die 4f-Orbitale. Die resultierende starke Elektronen-Photonen-Kopplung und die Änderung des Gleichgewichtsabstandes während der Übergänge führen zu breiteren Banden in den Spektren. Als Folge der starken Kristallfeldwirkung hängt die Lage des 4f→5d-Übergangs stark vom Wirtsgitter ab.

Der 4f \rightarrow 5d-Übergang wird bei einer Linienbreite von mehr als 50000 cm⁻¹ beobachtet und ist somit nicht bei UV-Anregung zu sehen. Weiterhin findet er bei leicht oxidierbaren Ionen wie Ce³⁺, Pr³⁺ und Tb³⁺ statt [10, 15, 24].

	$4f \rightarrow 4f$	$4f \rightarrow 5d$
Dipoloszillatorstärke	10-6	10 ⁻¹ - 10 ⁻²
Elektronen-Photonen-Kopplung	schwach	stark
Emissionswellenlänge	200 - 500 nm	150 - 1000 nm
Linienbreite	10 cm^{-1}	$> 1000 \text{ cm}^{-1}$
Lebensdauer	10 ⁻² - 10 ⁻⁵ s	10 ⁻⁸ - 10 ⁻⁶ s

Tab. 3: Vergleich von $4f \rightarrow 4f$ -Übergang und $4f \rightarrow 5d$ -Übergang [10]

Ladungstransferübergang (engl. charge transfer)

Hierbei handelt es sich um einen elektronischen Übergang aus den Orbitalen des Wirtsgitters in Orbitale des Aktivators bzw. REE³⁺ (4fⁿ \rightarrow 4fⁿ⁺¹L¹, L = Ligand). Im Wesentlichen ähnelt er sehr dem 4f \rightarrow 5d-Übergang: er ist energiereich bzw. intensiv, besitzt eine kurze Lebensdauer und erscheint in Spektren als breite Banden. Ladungstransferübergänge sind sehr von den Wirtsgittereigenschaften, insbesondere von Elektronennegativität und nephelauxetischen Effekten (partielle Verschiebung der Elektronendichte eines Zentralatoms auf die des umgebenden Liganden), abhängig. Allgemein gilt, dass Ladungstransferübergänge bei relativ leicht reduzierbaren Seltenerdionen wie Sm³⁺, Eu³⁺ und Yb³⁺ stattfinden [27, 15].

2.3.1. Sm³⁺-Lumineszenz (4f⁵)

Samarium wurde erstmals im Jahr 1880 von Paul Èmil Lecoq de Boisbaudran aus dem Mineral Samarskit isoliert, aus welchem sich auch sein Name ableitet [28]. Es besitzt die Ordnungszahl

62 im Periodensystem der Elemente und die Elektronenkonfiguration [Xe]4f⁶6s². Samarium kann in den Oxidationsstufen +II und +III vorkommen, dabei ist +III stabiler. Bei einer UV-Anregung zeigen die mit Sm³⁺ dotierten Wirtsgitter scharfe Elektronenübergänge in sichtbaren und NIR-Bereichen. Abb. 7 stellt die für diese Arbeit relevanten Übergänge von Sm³⁺ in einem vereinfachten Dieke-Diagramm dar. Die Energien orientieren sich an den für CaAl₂O₄ ermittelten Werten. Diese sind aufgrund der geringen Abhängigkeit vom jeweiligen Wirtsgitter allgemein verwendbar [29–32].

Abb. 7: Energieniveaudiagramm für Sm3+ in CaAl2O4

Sämtliche im sichtbaren Spektralbereich liegenden Übergänge sind paritätsverboten. Zudem ist der Großteil der Übergänge spinverboten, mit Ausnahme von ${}^{6}H_{5/2} \rightarrow {}^{6}P_{J}$ (J = 3/2, 5/2, 7/2). Die wichtigen Übergänge für die Anregung sind mit Pfeilen nach oben dargestellt. Der intensivste Anregungspeak des Sm³⁺-Ions ist einer Gruppe von Übergängen zugeschrieben, die unter anderem den spinerlaubten Übergang ${}^{6}H_{5/2} \rightarrow {}^{6}P_{3/2}$ enthält. Die Anregungspeaks können aufgrund der sehr nah zueinander liegenden Energieniveaus nicht einem einzelnen Übergang zugeschrieben werden [26, 33]. Die orangene Emission von Sm³⁺ findet vom untersten der angeregten Zustände, dem ${}^{4}G_{5/2}$ Niveau, in das Grundzustandsmultiplett ${}^{6}H_{J}$ mit J = 5/2, 7/2 bis 9/2, statt [26]. Dabei sind die Übergänge ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ und ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ erlaubte magnetische Dipolübergänge mit der Auswahlregel $\Delta J = 0$ und ± 1 . Der Übergang ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ ist ein elektrischer Dipolübergang, der der Auswahlregel $\Delta J = 2$ gehorcht [34–36]. Die schärfste Emissionsintensität beobachtet man bei einer Wellenlänge von 600 nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$) [37–39].

2.3.2. Dy³⁺-Lumineszenz (4f⁹)

Abb. 8: Energieniveaudiagramm für Dy3+ in CaAl2O4

Dysprosium wurde 1886 von Paul Èmil Lecoq de Boisbaudran mithilfe der Spektralanalyse entdeckt, und zwar als Begleitmittel des Holmiums in der Yttererde. Der Name Dysprosium kommt aus dem Griechischen und bedeutet "schwer zugänglich", um die Schwierigkeiten in seiner Gewinnung zu betonen [40]. Es besitzt die Ordnungszahl 66 im Periodensystem der Elemente und die Elektronenkonfiguration [Xe]4f¹⁰6s². In seinen Verbindungen geht es die Oxidationsstufen +II, +III und +IV ein, wobei die Oxidationsstufe +III die häufigste und beständigste ist. Abb. 8 stellt die für diese Arbeit relevanten Übergänge von Dy³⁺ in einem vereinfachten Dieke-Diagramm dar. Die Zuordnung der Übergänge erfolgte anhand der Daten von Dieke und Carnall [26, 33]. Die für die Anregung wichtigen Übergänge sind mit Pfeilen dargestellt. Sie bestehen aus mehreren Banden mit Peaks bei 317, 322, 336, 346, 361, 363, 381,

386, 399 und 424 nm und entsprechen den elektronischen Übergängen von Dy^{3+} vom Grundzustand ${}^{6}H_{15/2}$ in den angeregten Zustand ${}^{4}G_{7/2} + {}^{4}D_{5/2}$ (317 nm), ${}^{4}M_{17/2} + {}^{6}P_{3/2}$ (322 nm), ${}^{4}I_{9/2} + {}^{4}F_{5/2}$ (336 nm), ${}^{6}P_{7/2} + {}^{4}M_{15/2}$ (346 nm), ${}^{4}I_{11/2}$ (361 nm), ${}^{6}P_{5/2}$ (363 nm), ${}^{4}M_{19/2}$ (381 nm), ${}^{4}K_{17/2} + {}^{4}F_{7/2} + {}^{4}I_{13/2}$ (386 nm), ${}^{4}M_{21/2}$ (399 nm) und ${}^{4}G_{11/2}$ (424 nm).

Wie man weiterhin in Abb. 8 sehen kann, erzeugt Dy^{3+} intensiv gelbe (${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$) und blaue (${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$) Emissionen. Die gelbe Emission gehört zum hypersensiblen Übergang mit $\Delta J = 2$ und ist ein elektrischer Dipolübergang, welcher stark von der Ligandenfeldumgebung von Dy^{3+} beeinflusst wird, während die blaue Emission von ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ ein von der Ligandenfeldumgebung unabhängiger magnetischer Dipolübergang ist [41–43].

2.3.3. Eu³⁺-Lumineszenz (4f⁶)

Europium wurde 1901 von Eugène-Anatole Demarçay aus Samarium/Europium-Magnesium-Nitrat-Doppelsalzen durch fraktionierte Kristallisation isoliert. Es ist nach dem Kontinent Europa genannt [44]. Es besitzt die Ordnungszahl 63 im Periodensystem der Elemente und die Elektronenkonfiguration [Xe]4f⁷6s². In Verbindungen werden die zwei- und dreiwertige Oxidationsstufe bevorzugt. Abb. 9 stellt die für diese Arbeit relevanten Übergänge von Eu³⁺ in einem vereinfachten Dieke-Diagramm dar. Die Zuordnung der Übergänge erfolgte wiederum anhand der Daten von Dieke und Carnall [26, 33]. Im Wirtsgitter CaEuAlO₄ liegen die wesentlichen Anregungsübergänge von Eu³⁺ bei Wellenlängen von 395 nm (⁷F₀ \rightarrow ⁵L₆) und 465 nm (⁷F₀ \rightarrow ⁵D₂).

Abb. 9: Energieniveaudiagramm für Eu³⁺ in CaEuAlO₄

Die Emissionsübergänge finden vom angeregten Niveau ${}^{5}D_{0}$ zu niedrigen Niveaus ${}^{7}F_{J}$ (J = 0 - 4) statt. Die meisten f \rightarrow f-Übergänge der dreiwertigen Lanthanoide werden von der Umwelt kaum beeinflusst. Einige reagieren jedoch empfindlich auf die Umwelt und werden intensiver. Solche Übergänge werden als hypersensible Übergänge bezeichnet [45]. Ein solcher hypersensibler Übergang ist der elektrische Dipolübergang ${}^{5}D_{0}\rightarrow{}^{7}F_{2}$ mit $\Delta J = 2$. Die Intensität des Übergangs variiert in Abhängigkeit von der lokalen Umgebung um Größenordnungen [31]. Im Gegensatz dazu ist der magnetischer Dipolübergang ${}^{5}D_{0}\rightarrow{}^{7}F_{1}$ unempfindlich gegenüber der Ortssymmetrie, da er paritätserlaubt ist. Aus diesem Grund lässt sich bei Eu $^{3+}$ anhand des Intensitätsverhältnisses der beiden Emissionsübergänge eine Aussage über die lokale Symmetrie von Eu $^{3+}$ treffen.

3. Experimentelle Methoden

3.1. Röntgenpulverdiffraktometrie (PXRD)

Die Wellenlänge von Röntgenstrahlung entspricht etwa den Abständen der Gitterebenen eines Kristalls. Daher werden Röntgenstrahlen an den Netzebenen des Kristalls gebeugt. Diese Beugung bzw. sogenannte Diffraktion von Röntgenstrahlen an den Gitterebenen der kristallinen Stoffe gleicht formal einer Reflexion, sodass der Beugungswinkel gleich dem Einfallswinkel ist. Dabei werden die Röntgenstrahlen bei gegebener Wellenlänge λ nur unter bestimmten Beugungswinkeln θ gespiegelt, deren Größe von dem Netzebenenabstand d gemäß der Bragg-Gleichung

$$2d\sin\theta = n\lambda\tag{1}$$

abhängt. Dabei ist n eine ganze Zahl bzw. Ordnung des Reflexes [15]. Das beobachtete Beugungsmuster bzw. Diffraktogramm einer Substanz wird mit Beugungsmustern aus einer Datenbank (z.B. PDF-4/ICDD oder ICSD) verglichen, um die kristallinen Phasen zu identifizieren und die Reinheit der Messprobe zu bestimmen.

Die pulverdiffraktometrischen Untersuchungen wurden an einem Röntgendiffraktometer X'Pert³ Powder der Firma PANalytical mit Bragg-Brentano-Geometrie durchgeführt. Das Gerät war mit einem PIXcel^{1D} Detektor ausgestattet. Die Probenpräparation erfolgte mittels Backloading-Verfahren. Die Messparameter für die röntgenographische Untersuchung der Syntheseprodukte sind in Tab. 4 angegeben.

Zur qualitativen Phasenanalyse und Gitterparameterverfeinerung wurde das Programm HighScore Plus 4.8 der Firma PANalytical verwendet. Dabei erfolgte die Gitterparameterverfeinerung mittels Pawley-Fit nach der Methode der kleinsten Quadrate. Zur Korrektur des Probenhöhenfehlers wurde den Reinphasen bei der Probenpräparation zusätzlich Silizium ($a_0 = 5,4309$ Å, Fluka, 99,999 % z.A.) zugemischt. Für die bildliche Darstellung der Kristallstruktur wurde die Software VESTA (Version 4.3.0) verwendet [46].

Einstellungen	Werte
Winkel 20 [°]	5 - 70
Temperatur [°C]	25
Strahlung	Cu $K_{\alpha 1,2}$ ($\lambda = 1,5406$ Å)
Spannung [kV]	45
Stromstärke [mA]	40
Schrittweise 20 [°]	0,013
Messzeit [min]	17:32
Filter	Ni
Sollerschlitz [rad]	0,04
Divergenzblende [°]	1/8
Antistreublende [°]	1/4
Strahlenmaske [mm]	10
Probenträger	Standardprobenträger Ø 16 mm

Tab. 4: Messparameter für die röntgenographische Untersuchung der Edukte und Produkte

3.2. Fourier-Transform-Infrarot-Spektroskopie (FTIR)

Die Infrarotspektroskopie ist ein physikalisches Analyseverfahren. Die Molekülschwingungen werden mit infraroter Strahlung (Wellenlänge: 800 nm - 1 mm) angeregt. Die Schwingungsfrequenz ist dabei abhängig von den schwingenden Massen und der Bindungsstärke. Somit lassen sich anhand der Absorptionsbanden die funktionellen Gruppen des Moleküls identifizieren und charakterisieren.

Zur Herstellung von Presslingen wurde ein fein zerriebenes Gemisch aus ca. 2 mg Pulverprobe und ca. 300 mg getrocknetem KBr-Pulver in die Pressform gegeben. Die zusammengesetzte Pressform wurde nach ausreichender Evakuierung (ca. 45 s) unter einer hydraulischen Presse für ca. 2 min mit einem Druck von 10 Torr belastet. Die präparierten KBr-Presslinge wurden an einem FTIR-Spektrometer Tensor II der Firma Bruker im Wellenlängenbereich von 400 cm⁻¹ bis 4000 cm⁻¹ gemessen.

3.3. Fluoreszenzspektroskopie

Die Fluoreszenzspektroskopie ist eine empfindliche Messmethode, um strukturelle und insbesondere dynamische Eigenschaften von Molekülen zu untersuchen [47]. Die Methode dient zur Untersuchung der Lumineszenzeigenschaften der dotierten Wirtsgitter. Dabei kann man zum einen die Anregungswellenlänge (i.d.R. bei der Wellenlänge maximaler Absorption) fixiert bleiben, während die Wellenlänge des emittierten Lichts aufgezeichnet wird (Emissionsspektrum). Zum anderen kann die Emissionswellenlänge (i.d.R. bei der Wellenlänge maximaler Absorption) festgehalten und das Anregungsspektrum aufgenommen werden.

Alle Spektren wurden an einem FluoroMax-4 Spektrofluorometer der Firma Horiba Jobin Yvon Inc. bei Raumtemperatur aufgenommen. Als Anregungsquelle diente eine 150 W Xenonlampe, das emittierte Licht wurde in einem Winkel von 90 ° zum anregenden Licht detektiert. Eine stabilisierte Photodiode als Referenzdetektor kontrolliert die Intensität des Anregungslichts und ermöglicht so Fluoreszenzmessungen, die unabhängig von Intensitätsschwankungen der Lichtquelle sind. Die Pulverproben wurden zur Messung in einem Pulverprobenträger dicht gepresst (Abb. 10).

Abb. 10: Präparierte Pulverprobe (links) und senkrechter Probenträger für den Pulverprobenhalter

3.4. Rasterelektronenmikroskopie

Als Rasterelektronenmikroskop (REM) (englisch scanning electron microscope, SEM) bezeichnet man ein Elektronenmikroskop, bei dem die Oberfläche der Probe in einem Rasterabtastmuster mit einem fokussierten Elektronenstrahl abgetastet wird. Die Elektronen wechselwirken mit den Atomen in der Probe und erzeugen verschiedene Signale, die Informationen über die Oberflächentopographie und die Zusammensetzung der Probe enthalten. Die erzeugten Bilder der Objektoberflächen weisen eine hohe Schärfentiefe auf.

Verschiedene Syntheseprodukte wurden mittels REM optisch charakterisiert und die Partikelgröße ermittelt. Zusätzlich wurde mittels energiedispersiver Mikroanalyse (EDX) die Reinheit der Wirtsgitter überprüft. Die Messungen erfolgten an einem JEOL JSM 6300 Rasterelektronenmikroskop, das mit einem Quantax XFlash 5010 EDX-Detektor der Firma Bruker ausgestattet war.

4. Synthesemethode

4.1. Festkörpermethode

Die Festkörpermethode ist die zumeist verwendete Methode, um anorganische Leuchtstoffe basierend auf einer Vielzahl von Wirtsgittern wie bspw. Aluminaten, Silikaten, Boraten und Vanadaten zu synthetisieren. Ein schematischer Ablauf des Verfahrens ist in Abb. 11 gezeigt. Die Ausgangsstoffe werden als Oxide, Carbonate oder Nitrate stöchiometrisch in einem Achatmörser homogenisiert und zusammen aufgemahlen. Eine gute Homogenisierung und eine Vergrößerung der Oberfläche der Reaktanten erhöhen die Reaktionsgeschwindigkeit. Schließlich wird die gemahlene Mischung in einem Korund- oder Platintiegel im Muffelofen gesintert. Mehrmalige Aufmahlschritte zwischen dem Sintern sind notwendig, um reinphasige Wirtsgitter zu synthetisieren. Die Sintertemperatur variiert zwischen 1100 °C und 1500 °C.

Abb. 11: Schematischer Ablauf der Festkörpersynthese

Die mittels Festkörpermethode durchgeführten Synthesen der Wirtsgitter (Tab. 5) und der dotierten Wirtsgitter (Tab. 6) sind im Folgenden aufgeführt.

theoretische chemische Zusammensetzung der Wirtsgitter					
CaB ₂ O ₄	SrB ₂ O ₄	BaB ₂ O ₄			
$Ca_3La_2(BO_3)_4$	$Sr_3La_2(BO_3)_4$	$Ba_3La_2(BO_3)_4$			
$Ca_3Nd_2(BO_3)_4$	$Sr_3Nd_2(BO_3)_4$	$Ba_3Nd_2(BO_3)_4$			
$Ca_3Sm_2(BO_3)_4$	$Sr_3Sm_2(BO_3)_4$	$Ba_3Sm_2(BO_3)_4$			
Ca ₃ Eu ₂ (BO ₃) ₄	$Sr_3Eu_2(BO_3)_4$	$Ba_3Eu_2(BO_3)_4$			
$Ca_3Gd_2(BO_3)_4$	$Sr_3Gd_2(BO_3)_4$	$Ba_3Gd_2(BO_3)_4$			
$Ca_3Dy_2(BO_3)_4$	Sr ₃ Dy ₂ (BO ₃) ₄	$Ba_3Dy_2(BO_3)_4$			
$Ca_3Y_2(BO_3)_4$	Sr ₃ Y ₂ (BO ₃) ₄	$Ba_3Y_2(BO_3)_4$			
Ca ₃ Yb ₂ (BO ₃) ₄	$Sr_3Yb_2(BO_3)_4$	$Ba_3Yb_2(BO_3)_4$			

Tab. 5: Theoretische chemische Zusammensetzung der mittels Festkörpermethode synthetisierten Wirtsgitter

Dotierung	c(REE ³⁺) [mol-%]	c(Na ⁺) [mol-%]	chemische Zusammensetzung	Abkürzung
Wirtsgitter C	CaB ₂ O ₄			
mit Sm ³⁺	0,25	0,25	$Ca_{0,995}Sm_{0,0025}Na_{0,0025}B_2O_4$	CaB ₂ O ₄ :0,0025Sm
	0,50	0,50	$Ca_{0,99}Sm_{0,005}Na_{0,005}B_2O_4$	CaB ₂ O ₄ :0,0050Sm
	1,00	1,00	$Ca_{0,98}Sm_{0,01}Na_{0,01}B_2O_4$	CaB2O4:0,0100Sm
	1,50	1,50	$Ca_{0,97}Sm_{0,015}Na_{0,015}B_2O_4$	CaB ₂ O ₄ :0,0150Sm
	2,00	2,00	$Ca_{0,96}Sm_{0,02}Na_{0,02}B_2O_4$	CaB ₂ O ₄ :0,0200Sm
mit Dy ³⁺	0,25	0,25	$Ca_{0,995}Dy_{0,0025}Na_{0,0025}B_2O_4$	CaB2O4:0,0025Dy
	0,50	0,50	$Ca_{0,99}Dy_{0,005}Na_{0,005}B_2O_4$	CaB2O4:0,0050Dy
	1,00	1,00	$Ca_{0,98}Dy_{0,01}Na_{0,01}B_2O_4$	CaB2O4:0,0100Dy
	1,50	1,50	$Ca_{0,97}Dy_{0,015}Na_{0,015}B_2O_4$	CaB2O4:0,0150Dy
	2,00	2,00	$Ca_{0,96}Dy_{0,02}Na_{0,02}B_2O_4$	CaB2O4:0,0200Dy
Wirtsgitter S	BrB_2O_4			
mit Sm ³⁺	0,25	0,25	$Sr_{0,995}Sm_{0,0025}Na_{0,0025}B_2O_4$	SrB2O4:0,0025Sm
	0,50	0,50	$Sr_{0,99}Sm_{0,005}Na_{0,005}B_2O_4$	SrB ₂ O ₄ :0,0050Sm
	1,00	1,00	$Sr_{0,98}Sm_{0,01}Na_{0,01}B_2O_4$	SrB2O4:0,0100Sm
	1,50	1,50	$Sr_{0,97}Sm_{0,015}Na_{0,015}B_2O_4$	SrB ₂ O ₄ :0,0150Sm
	2,00	2,00	$Sr_{0,96}Sm_{0,02}Na_{0,02}B_2O_4$	SrB2O4:0,0200Sm
mit Dy ³⁺	0,25	0,25	$Sr_{0,995}Dy_{0,0025}Na_{0,0025}B_2O_4$	SrB ₂ O ₄ :0,0025Dy
	0,50	0,50	$Sr_{0,99}Dy_{0,005}Na_{0,005}B_2O_4$	SrB ₂ O ₄ :0,0050Dy
	1,00	1,00	$Sr_{0,98}Dy_{0,01}Na_{0,01}B_2O_4$	SrB2O4:0,0100Dy
	1,50	1,50	$Sr_{0,97}Dy_{0,015}Na_{0,015}B_2O_4$	SrB2O4:0,0150Dy
	2,00	2,00	$Sr_{0,96}Dy_{0,02}Na_{0,02}B_2O_4$	SrB ₂ O ₄ :0,0200Dy
Wirtsgitter E	BaB ₂ O ₄			
mit Sm ³⁺	0,25	0,25	$Ba_{0,995}Sm_{0,0025}Na_{0,0025}B_2O_4$	BaB ₂ O ₄ :0,0025Sm
	0,50	0,50	$Ba_{0,99}Sm_{0,005}Na_{0,005}B_2O_4$	BaB2O4:0,0050Sm
	1,00	1,00	$Ba_{0,98}Sm_{0,01}Na_{0,01}B_2O_4$	BaB2O4:0,0100Sm
	1,50	1,50	$Ba_{0,97}Sm_{0,015}Na_{0,015}B_2O_4$	BaB2O4:0,0150Sm
	2,00	2,00	$Ba_{0,96}Sm_{0,02}Na_{0,02}B_2O_4$	BaB ₂ O ₄ :0,0200Sm
mit Dy ³⁺	0,25	0,25	$Ba_{0,995}Dy_{0,0025}Na_{0,0025}B_2O_4$	BaB ₂ O ₄ :0,0025Dy
	0,50	0,50	$Ba_{0,99}Dy_{0,005}Na_{0,005}B_2O_4$	BaB2O4:0,0050Dy
	1,00	1,00	$Ba_{0,98}Dy_{0,01}Na_{0,01}B_2O_4$	BaB ₂ O ₄ :0,0100Dy
	1,50	1,50	$Ba_{0,97}Dy_{0,015}Na_{0,015}B_2O_4$	BaB2O4:0,0150Dy
	2,00	2,00	$Ba_{0,96}Dy_{0,02}Na_{0,02}B_2O_4$	BaB2O4:0,0200Dy

Tab. 6: Mittels Festkörpermethode synthetisierte Leuchtstoffe

Dotierung	c(REE ³⁺) [mol-%]	c(Na ⁺) [mol-%]	chemische Zusammensetzung	Abkürzungen		
Wirtsgitter C	Wirtsgitter Ca ₃ Eu ₂ (BO ₃) ₄					
mit Sm ³⁺	0,25	0,25	Ca3Eu1,995Sm0,005B4O12	Ca ₃ Eu ₂ (BO ₃) ₄ :0,005Sm		
	0,50	0,50	$Ca_3Eu_{1,99}Sm_{0,01}B_4O_{12}$	Ca ₃ Eu ₂ (BO ₃) ₄ :0,010Sm		
	1,00	1,00	$Ca_{3}Eu_{1,98}Sm_{0,02}B_{4}O_{12}$	Ca3Eu2(BO3)4:0,020Sm		
	1,50	1,50	$Ca_3Eu_{1,97}Sm_{0,03}B_4O_{12}$	Ca3Eu2(BO3)4:0,030Sm		
	2,00	2,00	$Ca_{3}Eu_{1,96}Sm_{0,04}B_{4}O_{12}$	Ca ₃ Eu ₂ (BO ₃) ₄ :0,040Sm		
mit Dy ³⁺	0,25	0,25	$Ca_{3}Eu_{1,995}Dy_{0,005}B_{4}O_{12}$	Ca3Eu2(BO3)4:0,005Dy		
	0,50	0,50	$Ca_{3}Eu_{1,99}Dy_{0,01}B_{4}O_{12}$	Ca3Eu2(BO3)4:0,010Dy		
	1,00	1,00	$Ca_{3}Eu_{1,98}Dy_{0,02}B_{4}O_{12}$	Ca3Eu2(BO3)4:0,020Dy		
	1,50	1,50	$Ca_{3}Eu_{1,97}Dy_{0,03}B_{4}O_{12}$	Ca3Eu2(BO3)4:0,030Dy		
	2,00	2,00	$Ca_{3}Eu_{1,96}Dy_{0,04}B_{4}O_{12}$	Ca ₃ Eu ₂ (BO ₃) ₄ :0,040Dy		
Wirtsgitter S	$r_3Eu_2(BO_3)_4$					
mit Sm ³⁺	0,25	0,25	$Sr_3Eu_{1,995}Sm_{0,005}B_4O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,005Sm		
	0,50	0,50	$Sr_3Eu_{1,99}Sm_{0,01}B_4O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,010Sm		
	1,00	1,00	$Sr_{3}Eu_{1,98}Sm_{0,02}B_{4}O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,020Sm		
	1,50	1,50	$Sr_{3}Eu_{1,97}Sm_{0,03}B_{4}O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,030Sm		
	2,00	2,00	$Sr_{3}Eu_{1,96}Sm_{0,04}B_{4}O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,040Sm		
mit Dy ³⁺	0,25	0,25	$Sr_3Eu_{1,995}Dy_{0,005}B_4O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,005Dy		
	0,50	0,50	$Sr_{3}Eu_{1,99}Dy_{0,01}B_{4}O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,010Dy		
	1,00	1,00	$Sr_{3}Eu_{1,98}Dy_{0,02}B_{4}O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,020Dy		
	1,50	1,50	$Sr_3Eu_{1,97}Dy_{0,03}B_4O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,030Dy		
	2,00	2,00	$Sr_{3}Eu_{1,96}Dy_{0,04}B_{4}O_{12}$	Sr ₃ Eu ₂ (BO ₃) ₄ :0,040Dy		
Wirtsgitter B	$a_3Eu_2(BO_3)_4$					
mit Sm ³⁺	0,25	0,25	$Ba_3Eu_{1,995}Sm_{0,005}B_4O_{12}$	Ba3Eu2(BO3)4:0,005Sm		
	0,50	0,50	$Ba_{3}Eu_{1,99}Sm_{0,01}B_{4}O_{12}$	Ba3Eu2(BO3)4:0,010Sm		
	1,00	1,00	$Ba_{3}Eu_{1,98}Sm_{0,02}B_{4}O_{12}$	Ba3Eu2(BO3)4:0,020Sm		
	1,50	1,50	$Ba_{3}Eu_{1,97}Sm_{0,03}B_{4}O_{12}$	Ba3Eu2(BO3)4:0,030Sm		
	2,00	2,00	$Ba_{3}Eu_{1,96}Sm_{0,04}B_{4}O_{12}$	Ba3Eu2(BO3)4:0,040Sm		
mit Dy ³⁺	0,25	0,25	$Ba_3Eu_{1,995}Dy_{0,005}B_4O_{12}$	Ba3Eu2(BO3)4:0,005Dy		
	0,50	0,50	$Ba_{3}Eu_{1,99}Dy_{0,01}B_{4}O_{12}$	Ba ₃ Eu ₂ (BO ₃) ₄ :0,010Dy		
	1,00	1,00	$Ba_{3}Eu_{1,98}Dy_{0,02}B_{4}O_{12}$	Ba ₃ Eu ₂ (BO ₃) ₄ :0,020Dy		
	1,50	1,50	$Ba_{3}Eu_{1,97}Dy_{0,03}B_{4}O_{12}$	Ba3Eu2(BO3)4:0,030Dy		
	2,00	2,00	$Ba_{3}Eu_{1,96}Dy_{0,04}B_{4}O_{12}$	Ba ₃ Eu ₂ (BO ₃) ₄ :0,040Dy		

Tab. 6: Mittels Festkörpermethode synthetisierte Leuchtstoffe (Fortsetzung)

4.2. Pechini-Methode

Die Pechini-Methode ist eine Weiterentwicklung der Sol-Gel-Methode (engl. polymer precursor process oder citrate gel method). M.P. Pechini entwickelte die Methode, um Blei-Erdalkalititanate und -niobate zu synthetisieren [48]. Die Vorteile der Methode sind eine leichte Einstellung stöchiometrischer Verhältnisse sowie die sehr gute Homogenisierung der Ausgangssubstanzen (als Lösungen). Dadurch werden im Vergleich zur Festkörpersynthese niedrigere Sintertemperaturen und kürzere Sinterzeiten benötigt. Weiterhin entfallen die mehrmalige Zwischenmahlschritte.

Abb. 12: Schematischer Ablauf der Pechini-Synthese

Der Prozess wird in einem Becherglas durchgeführt. Zunächst werden die benötigten Nitratsalze der eingesetzten Elemente in Wasser gelöst. Im Anschluss wird die Lösung mit Zitronensäure versetzt, deren Citratgruppen mit den gelösten Metallionen Komplexe bilden. Nach der Zugabe von Ethylenglykol beginnt die Polykondensationsreaktion, bei der durch die Reaktion der Carboxyl- mit den Hydroxygruppen eine Vernetzung der Reaktionspartner erfolgt. Das Verhältnis zwischen Metallkation, Zitronensäure und Ethylenglykol ist 1:4:7. Beim Verdampfen des Wassers entsteht eine gelartige Substanz, die im Anschluss vollständig getrocknet und kalziniert wird (Abb. 12). Mit der Pechini-Methode wurden die Wirtsgitter der Erdalkali-Aluminate (vgl. Tab.7 und Tab. 8) synthetisiert. Die Pechini Methode ist jedoch

ungeeignet für die Synthese der auf Boraten basierten Wirtsgittern, da sich beim Verdampfen des Wassers eine Glasschicht bildet, die nicht ohne weiteres aus dem Becherglas entnommen werden kann.

CaAl ₂ O ₄	SrAl ₂ O ₄	BaAl ₂ O ₄
CaLa ₂ O ₄	SrLa ₂ O ₄	BaLa ₂ O ₄
CaNd ₂ O ₄	SrNd ₂ O ₄	$BaNd_2O_4$
CaSm ₂ O ₄	SrSm ₂ O ₄	$BaSm_2O_4$
CaEu ₂ O ₄	SrEu ₂ O ₄	BaEu ₂ O ₄
$CaGd_2O_4$	SrGd ₂ O ₄	$BaGd_2O_4$
CaDy ₂ O ₄	SrDy ₂ O ₄	BaDy ₂ O ₄
CaY ₂ O ₄	SrY ₂ O ₄	BaY_2O_4
CaYb ₂ O ₄	SrYb ₂ O ₄	$BaYb_2O_4$
$CaSc_2O_4$	SrSc ₂ O ₄	BaSc ₂ O ₄
CaLaAlO ₄	SrLaAlO ₄	BaLaAlO ₄
CaNdAlO ₄	SrNdAlO ₄	BaNdAlO ₄
CaSmAlO ₄	SrSmAlO ₄	BaSmAlO ₄
CaEuAlO ₄	SrEuAlO ₄	BaEuAlO ₄
CaGdAlO ₄	SrGdAlO ₄	BaGdAlO ₄
CaDyAlO ₄	SrDyAlO ₄	BaDyAlO ₄
CaYAlO ₄	SrYAlO ₄	BaYAlO ₄
CaYbAlO ₄	SrYbAlO ₄	BaYbAlO ₄

Tab.7: Theoretische chemische Zusammensetzung der mittels Pechini-Methode synthetisierten Wirtsgitter

Tab. 8:	Mittels	Pechini-	-Methode	synthetisierte	Leuchtstoffe
				2	

Dotierung	c(REE ³⁺) [mol-%]	c(Na ⁺) [mol-%]	chemische Zusammensetzung	Abkürzungen
Wirtsgitter CaAl ₂ O ₄				
mit Sm ³⁺	0,25	0,25	$Ca_{0,995}Sm_{0,0025}Na_{0,0025}Al_2O_4$	CaAl ₂ O ₄ :0,0025Sm
	0,50	0,50	$Ca_{0,99}Sm_{0,005}Na_{0,005}Al_2O_4$	CaAl ₂ O ₄ :0,0050Sm
	1,00	1,00	$Ca_{0,98}Sm_{0,01}Na_{0,01}Al_2O_4$	CaAl ₂ O ₄ :0,0100Sm
	1,50	1,50	$Ca_{0,97}Sm_{0,015}Na_{0,015}Al_2O_4$	CaAl ₂ O ₄ :0,0150Sm
	2,00	2,00	$Ca_{0,96}Sm_{0,02}Na_{0,02}Al_2O_4$	CaAl ₂ O ₄ :0,0200Sm
mit Dy ³⁺	0,25	0,25	$Ca_{0,995}Dy_{0,0025}Na_{0,0025}Al_{2}O_{4}$	CaAl ₂ O ₄ :0,0025Dy
	0,50	0,50	$Ca_{0,99}Dy_{0,005}Na_{0,005}Al_2O_4$	CaAl ₂ O ₄ :0,0050Dy
	1,00	1,00	$Ca_{0,98}Dy_{0,01}Na_{0,01}Al_2O_4$	CaAl ₂ O ₄ :0,0100Dy
	1,50	1,50	$Ca_{0,97}Dy_{0,015}Na_{0,015}Al_2O_4$	CaAl ₂ O ₄ :0,0150Dy
	2,00	2,00	$Ca_{0,96}Dy_{0,02}Na_{0,02}Al_2O_4$	CaAl ₂ O ₄ :0,0200Dy

Dotierung	c(REE ³⁺) [mol-%]	c(Na ⁺) [mol-%]	chemische Zusammensetzung	Abkürzungen
Wirtsgitter SrAl ₂ O ₄				
mit Sm ³⁺	0,25	0,25	$Sr_{0,995}Sm_{0,0025}Na_{0,0025}Al_2$	SrAl ₂ O ₄ :0,0025Sm
	0,50	0,50	$Sr_{0,99}Sm_{0,005}Na_{0,005}Al_2O_4$	SrAl ₂ O ₄ :0,0050Sm
	1,00	1,00	$Sr_{0,98}Sm_{0,01}Na_{0,01}Al_2O_4$	SrAl ₂ O ₄ :0,0100Sm
	1,50	1,50	$Sr_{0,97}Sm_{0,015}Na_{0,015}Al_2O_4$	SrAl ₂ O ₄ :0,0150Sm
	2,00	2,00	$Sr_{0,96}Sm_{0,02}Na_{0,02}Al_2O_4$	SrAl ₂ O ₄ :0,0200Sm
mit Dy ³⁺	0,25	0,25	Sr _{0,995} Dy _{0,0025} Na _{0,0025} Al ₂ O	SrAl ₂ O ₄ :0,0025Dy
	0,50	0,50	$Sr_{0,99}Dy_{0,005}Na_{0,005}Al_2O_4$	SrAl ₂ O ₄ :0,0050Dy
	1,00	1,00	$Sr_{0,98}Dy_{0,01}Na_{0,01}Al_2O_4$	SrAl ₂ O ₄ :0,0100Dy
	1,50	1,50	$Sr_{0,97}Dy_{0,015}Na_{0,015}Al_2O_4$	SrAl ₂ O ₄ :0,0150Dy
	2,00	2,00	$Sr_{0,96}Dy_{0,02}Na_{0,02}Al_2O_4$	SrAl ₂ O ₄ :0,0200Dy
Wirtsgitter I	BaAl ₂ O ₄			
mit Sm ³⁺	0,25	0,25	$Ba_{0,995}Sm_{0,0025}Na_{0,0025}Al_2$	BaAl ₂ O ₄ :0,0025Sm
	0,50	0,50	$Ba_{0,99}Sm_{0,005}Na_{0,005}Al_2O_4$	BaAl ₂ O ₄ :0,0050Sm
	1,00	1,00	$Ba_{0,98}Sm_{0,01}Na_{0,01}Al_2O_4$	BaAl ₂ O ₄ :0,0100Sm
	1,50	1,50	$Ba_{0,97}Sm_{0,015}Na_{0,015}Al_2O_4$	BaAl ₂ O ₄ :0,0150Sm
	2,00	2,00	$Ba_{0,97}Sm_{0,015}Na_{0,015}Al_2O_4$	BaAl ₂ O ₄ :0,0200Sm
mit Dy ³⁺	0,25	0,25	$Ba_{0,995}Dy_{0,0025}Na_{0,0025}Al_2$	BaAl ₂ O ₄ :0,0025Dy
	0,50	0,50	$Ba_{0,99}Dy_{0,005}Na_{0,005}Al_2O_4$	BaAl ₂ O ₄ :0,0050Dy
	1,00	1,00	$Ba_{0,98}Dy_{0,01}Na_{0,01}Al_2O_4$	BaAl ₂ O ₄ :0,0100Dy
	1,50	1,50	$Ba_{0,97}Dy_{0,015}Na_{0,015}Al_2O_4$	BaAl ₂ O ₄ :0,0150Dy
	2,00	2,00	$Ba_{0,96}Dy_{0,02}Na_{0,02}Al_2O_4$	BaAl ₂ O ₄ :0,0200Dy
der Wirtsgit	ter CaEuAlC) ₄		
mit Sm ³⁺	0,25	0,25	CaEu0,9975Sm0,0025AlO4	CaEuAlO4:0,0025Sm
	0,50	0,50	CaEu0,995Sm0,005AlO4	CaEuAlO4:0,0050Sm
	1,00	1,00	CaEu _{0,99} Sm _{0,01} AlO ₄	CaEuAlO ₄ :0,0100Sm
	1,50	1,50	CaEu0,985Sm0,015AlO4	CaEuAlO4:0,0150Sm
	2,00	2,00	CaEu0,98Sm0,02AlO4	CaEuAlO4:0,0200Sm
mit Dy ³⁺	0,25	0,25	CaEu0,9975Dy0,0025AlO4	CaEuAlO4:0,0025Dy
	0,50	0,50	CaEu0,995Dy0,005AlO4	CaEuAlO ₄ :0,0050Dy
	1,00	1,00	CaEu0,99Dy0,01AlO4	CaEuAlO ₄ :0,0100Dy
	1,50	1,50	CaEu0,985Dy0,015AlO4	CaEuAlO4:0,0150Dy
	2,00	2,00	CaEu _{0,98} Dy _{0,02} AlO ₄	CaEuAlO ₄ :0,0200Dy

Tab. 8: Mittels Pechini-Methode synthetisierte Leuchtstoffe (Fortsetzung)

Dotierung	c(REE ³⁺) [mol-%]	c(Na ⁺) [mol-%]	chemische Zusammensetzung	Abkürzungen
Wirtsgitter SrEuAlO ₄				
mit Sm ³⁺	0,25	0,25	SrEu0,9975Sm0,0025AlO4	SrEuAlO4:0,0025Sm
	0,50	0,50	SrEu _{0,995} Sm _{0,005} AlO ₄	SrEuAlO ₄ :0,0050Sm
	1,00	1,00	SrEu _{0,99} Sm _{0,01} AlO ₄	SrEuAlO ₄ :0,0100Sm
	1,50	1,50	SrEu0,985Sm0,015AlO4	SrEuAlO4:0,0150Sm
	2,00	2,00	SrEu _{0,985} Sm _{0,015} AlO ₄	SrEuAlO ₄ :0,0200Sm
mit Dy ³⁺	0,25	0,25	SrEu0,9975Dy0,0025AlO4	SrEuAlO4:0,0025Dy
	0,50	0,50	SrEu0,995Dy0,005AlO4	SrEuAlO4:0,0050Dy
	1,00	1,00	SrEu0,99Dy0,01AlO4	SrEuAlO4:0,0100Dy
	1,50	1,50	SrEu0,985Dy0,015AlO4	SrEuAlO4:0,0150Dy
	2,00	2,00	SrEu _{0,98} Dy _{0,02} AlO ₄	SrEuAlO ₄ :0,0200Dy
Wirtsgitter S	SrEu ₂ O ₄			
mit Sm ³⁺	0,25	0,25	SrEu1,995Sm0,005O4	SrEu2O4:0,005Sm
	0,50	0,50	SrEu1,99Sm0,01O4	SrEu2O4:0,010Sm
	1,00	1,00	$SrEu_{1,98}Sm_{0,02}O_{4}$	SrEu ₂ O ₄ :0,020Sm
	1,50	1,50	SrEu1,97Sm0,03O4	SrEu2O4:0,030Sm
	2,00	2,00	SrEu1,96Sm0,04O4	SrEu2O4:0,040Sm
mit Dy ³⁺	0,25	0,25	SrEu1,995Dy0,005O4	SrEu2O4:0,005Dy
	0,50	0,50	SrEu1,99Dy0,01O4	SrEu ₂ O ₄ :0,010Dy
	1,00	1,00	SrEu1,98Dy0,02O4	SrEu2O4:0,020Dy
	1,50	1,50	SrEu1,97Dy0,03O4	SrEu2O4:0,030Dy
	2,00	2,00	SrEu _{1,96} Dy _{0,04} O ₄	SrEu ₂ O ₄ :0,040Dy
Wirtsgitter BaEu ₂ O ₄				
mit Sm ³⁺	0,25	0,25	BaEu1,995Sm0,005O4	BaEu2O4:0,005Sm
	0,50	0,50	BaEu1,99Sm0,01O4	BaEu2O4:0,010Sm
	1,00	1,00	$BaEu_{1,98}Sm_{0,02}O_4$	BaEu2O4:0,020Sm
	1,50	1,50	BaEu1,97Sm0,03O4	BaEu2O4:0,030Sm
	2,00	2,00	BaEu1,96Sm0,04O4	BaEu2O4:0,040Sm
mit Dy ³⁺	0,25	0,25	BaEu1,995Dy0,005O4	BaEu2O4:0,005Dy
	0,50	0,50	$BaEu_{1,99}Dy_{0,01}O_4$	BaEu ₂ O ₄ :0,010Dy
	1,00	1,00	$BaEu_{1,98}Dy_{0,02}O_4$	BaEu2O4:0,020Dy
	1,50	1,50	BaEu1,97Dy0,03O4	BaEu2O4:0,030Dy
	2,00	2,00	$BaEu_{1,96}Dy_{0,04}O_4$	BaEu2O4:0,040Dy

Tab. 8: Mittels Pechini-Methode synthetisierte Leuchtstoffe (Fortsetzung)

4.3. Verwendete Chemikalien

Sämtliche in dieser Arbeit verwendete Chemikalien sind in Tab. 9 aufgeführt. Sie wurden röntgenographisch auf mögliche Verunreinigungen und mittels Glühverlust mit Ausnahme von Natriumnitrat auf ihren Wassergehalt untersucht. Dabei stellte sich heraus, dass es sich bei dem als Lanthanoxid deklarierten Material der Firma Omikron um Lanthanhydroxid (La(OH)₃) handelte. Dies wurde bei den stöchiometrischen Berechnungen berücksichtigt.

Bei Natriumnitrat wurde der Na-Gehalt spektroskopisch bestimmt. Dafür wurde 0,0502 g NaNO₃ in 1 L Reinstwasser gelöst (entspricht 13,53 ppm Na), der Na-Gehalt wurde anschließend mittels ICP-OES zu 13,81 ppm bestimmt. Dieser Wert wurde bei den stöchiometrischen Berechnungen berücksichtigt.

Verbindungsname	Summenformel	Molare Masse [g/mol]	Reinheits- grad	Hersteller
Calciumnitrat-Tetrahydrat	$Ca(NO_3)_2 \cdot 4H_2O$	236,15	p.A.	Carl Roth
Strontiumnitrat	Sr(NO ₃) ₂	211,63	p.A.	Sigma
Bariumnitrat	Ba(NO ₃) ₂	261,34	p.A.	Carl Roth
Aluminiumnitrat	$Al(NO_3)_3 \cdot 9H_2O$	375,13	p.A.	Carl Roth
Borsäure	H ₃ BO ₃	61,83	p.A.	Merck
Zitronensäure	$C_6H_8O_7$	192,13	≥99,5 %	Carl Roth
Ethylenglycol	$C_2H_6O_2$	62,07	\geq 99 %	Carl Roth
Natriumnitrat	NaNO ₃	84,99	p.A.	AppliChem
Europium(III)oxid	Eu_2O_3	351,93	99,9 %	ChemPUR
Dysprosium(III)oxid	Dy_2O_3	373,00	99,9 %	Aldrich
Gadolinium(III)oxid	Gd_2O_3	362,50	≥99,9 %	Aldrich
Lanthanoxid*	La_2O_3	189,93	99,9 %	Omikron
Neodym(III)oxid	Nd_2O_3	336,48	99,9 %	ChemPUR
Samarium(III)oxid	Sm_2O_3	348,72	99,9 %	Aldrich
Scandium(III)oxid	Sc_2O_3	137,91	99,999 %	Aldrich
Ytterbium(III)nitrat-Pentahydrat	Yb(NO ₃) ₃ ·5H ₂ O	449,13	99,9 %	ChemPUR
Yttrium(III)nitrat-Hexahydrat	$Y(NO_3)_3 \cdot 6H_2O$	383,01	99,8 %	Aldrich

Tab. 9: Hersteller und Reinheitsgrade der verwendeten Chemikalien
5. Ergebnisse und Diskussion

Die Darstellung der Ergebnisse ist in sechs Abschnitte unterteilt (vgl. Abb. 13). Die Wirtsgitter mit der allgemeinen Formel $M^{2+}M^{3+}_{2}O_{4}$ werden in den Abschnitten 5.1 – 5.3 behandelt. Die eingesetzten Synthesemethoden sind dabei jeweils angegeben. Für die Dotierung mit Sm³⁺ bzw. Dy³⁺ wurden die Wirtsgitter MAl₂O₄, MB₂O₄ (M = Ca, Sr, Ba), SrEu₂O₄ und BaEu₂O₄ ausgewählt. Ziel der Versuche an SrEu₂O₄ und BaEu₂O₄ war es, den Einfluss von Sm³⁺ und Dy³⁺ auf die Emission von Eu³⁺ in Wirtsgittern zu untersuchen. Insgesamt wurden fünf Dotierungskonzentrationen je Wirtsgitter und Aktivator festgelegt: 0,25 mol-%, 0,50 mol-%, 1,00 mol-%, 1,50 mol-%, und 2,00 mol-%. Dabei entsteht bei Erdalkali-Aluminaten und - Boraten durch die Substitution der zweiwertigen Erdalkalimetalle M²⁺ durch dreiwertige Seltenerdmetalle Sm³⁺ bzw. Dy³⁺ eine Ladungsungleichheit. Diese wurde durch den Einbau von Na⁺ in den Leuchtstoff kompensiert.

Die Ergebnisse der Untersuchung der Mischreihen $SrAl_2O_4 - SrEu_2O_4$ und $SrB_2O_4 - SrEu_2O_4$ sind in Abschnitt 5.4 beschrieben. Die Synthese und Charakterisierung der isotypischen Verbindungen zu den intermediären Verbindungen, $SrEuAlO_4$ und $Sr_3Eu_2(BO_3)_4$, werden in den Abschnitten 5.5 und 5.6 dargestellt. Von den stabilen Wirtsgittern wurden diejenigen ausgewählt, die Europium enthalten. Diese wurden anschließend mit Sm^{3+} bzw. Dy^{3+} dotiert – es handelt sich dabei um die Wirtsgitter CaEuAlO₄, $SrEuAlO_4$, und $M_3Eu_2(BO_3)_4$ (M = Ca, Sr, Ba). Ziel dieser Versuche war es, den Einfluss des Gehalts an Sm^{3+} bzw. Dy^{3+} auf die Emissionseigenschaften von Eu^{3+} in tetragonalem Erdalkali-Europiumaluminat und orthorhombischem Erdalkali-Europiumborat zu charakterisieren.

Abb. 13: Struktur des Ergebniskapitels

5.1. Erdalkali-Aluminate

5.1.1. Einleitung

Erdalkali-Aluminate sind eine wichtige Klasse lumineszierender Materialien, die seit in letzten Jahrzehnten zunehmend in Leuchtstofflampen und Plasmabildschirmen verwendet werden. Die verschiedenen Verbindungen der Aluminate zeichnen sich durch ihre gute thermische Stabilität sowie stabile physikalische und chemische Eigenschaften aus. Zu diesen binären Erdalkali-Aluminaten gehören beispielsweise Erdalkali-Monoaluminat MAl₂O₄ und -hexaaluminat MAl₁₂O₁₉. In der vorliegenden Arbeit werden ausschließlich Erdalkali-Monoaluminate betrachtet.

Die Struktur von MAl₂O₄ (M = Ca, Sr, Ba) besteht aus einem dreidimensionalen Gerüst von AlO₄-Tetraedern, wobei jeder Sauerstoff mit den entsprechenden zwei Aluminiumionen geteilt wird, sodass jedes Tetraeder eine negative Nettoladung besitzt. Ladungsausgleich wird durch die zweiwertigen Kationen erreicht, welche die Zwischengitterplätze innerhalb des Wirtsgitters besetzen. Die Strukturen der Erdalkali-Aluminate wurden in der Literatur von mehreren Autoren beschrieben. Calciumaluminat kristallisiert in der monoklinen Raumgruppe P2₁/n [49, 50]. Eine metastabile orthorhombische Modifikation wurde von Raab und Pöllmann bei einer Temperatur von 900 °C synthetisiert [51]. SrAl₂O₄ kristallisiert monoklin in P2₁ oder P2₁/n bei Raumtemperatur und durchläuft einen Phasenübergang von der monoklinisch verzerrten Struktur zur hexagonalen Tridymitstruktur bei etwa 650 °C [52]. BaAl₂O₄ kristallisiert in einem hexagonalen Kristallgitter [53, 54].

Nach dem ersten Bericht von Frohlich aus dem Jahr 1946 über die Möglichkeit der Verwendung von Strontium-Aluminat als Wirtsgitter ist das Interesse an den mit seltenen Erden dotierten Erdalkali-Aluminaten weiterhin sehr groß. Dieses hohe Interesse ist im Wesentlichen auf die hohe Lumineszenzeffizienz unter UV-Anregung sowie die Fähigkeit, ihre Phosphoreszenz über mehrere Stunden aufrechtzuerhalten, zurückzuführen. In Arbeiten von Matsuzawa et al. [55] zu SrAl₂O₄:Eu²⁺,Dy³⁺ aus dem Jahr 1996 ist bspw. ein Nachleuchten von bis zu 10 Stunden dokumentiert. Seitdem versucht eine Vielzahl von Autoren den Mechanismus der lang anhaltenden Phosphoreszenz dieser Materialien nachzuvollziehen [56].

In der vorliegenden Arbeit wurden MAl_2O_4 (M = Ca, Sr, Ba) mittels Pechini-Methode reinphasig synthetisiert und anschließend mit Sm³⁺ bzw. Dy³⁺ dotiert. Anhand der

Untersuchung der Lumineszenzeigenschaften kann anschließend die optimale Konzentration des jeweiligen Aktivators festgelegt werden.

5.1.2. Synthese und Charakterisierung von Erdalkali-Aluminaten

Die Erdalkali-Aluminate MAl_2O_4 (M = Ca, Sr, Ba) wurden mittels Pechini-Methode synthetisiert. In Tab. 10 sind die Synthesebedingungen der jeweiligen Phase aufgeführt. Die chemische Reaktionsgleichung für die Pechini-Methode ist beispielhaft für die Synthese von Calciumaluminat in Formel (2) dargestellt. Die Molverhältnisse von Erdalkalikation, Zitronensäure und Ethylenglykol von 1:4:7 für die Polykondensationsreaktion wurden in der Formel berücksichtigt.

$$Ca(NO_3)_2 \cdot 4H_2O + 2Al(NO_3)_3 \cdot 9H_2O + 4C_6H_8O_7 + 7C_2H_6O_2$$

→ CaAl₂O₄ + 8NO_x ↑ +38CO₂ ↑ +59H₂O ↑ (2)

Tab. 10: Bedingungen für die Synthese von MAl₂O₄ (M = Ca, Sr, Ba)

Phase	Sintertemperatur	Gesamte Sinterzeit
CaAl ₂ O ₄	1200 °C	6 h
SrAl ₂ O ₄	1200 °C	6 h
BaAl ₂ O ₄	1200 °C	6 h

Calciumaluminat kristallisiert im monoklinen System in der Raumgruppe P2₁/n. Das gemessene Röntgenpulverdiffraktogramm (Abb. 14) zeigt eine gute Übereinstimmung mit Literaturdaten (ICDD 01-070-0134 [57]). Die verfeinerten Gitterparameter betragen a = 8,700(7) Å, b = 8,091(2) Å, c = 17,478(5) Å und $\beta = 119,64(8)$ °. Die Calciumatome befinden sich auf drei verschiedenen Gitterplätzen Ca1, Ca2 und Ca3 in der Kristallstruktur. In Abb. 15 sind die verschiedenen Positionen von Calcium dargestellt. Ca1 und Ca2 sind von sechs und Ca3 von neun Sauerstoffatomen umgeben.

Abb. 14: Röntgendiffraktogramm von CaAl₂O₄

Abb. 15: Kristallstruktur von CaAl₂O₄

Abb. 16 zeigt das Röntgendiffraktogramm von Strontiumaluminat bei Synthesetemperaturen zwischen 900 °C und 1200 °C. Bei 900 °C ist bei einem Winkel 20 von 32,016 ° noch unreagiertes Al₂O₃ zu sehen. Dieses verschwindet mit steigender Sintertemperatur, ab 1100 °C erhält man das reinphasige SrAl₂O₄. Es kristallisiert in einer monoklinen Struktur mit der Raumgruppe P2₁ (ICDD 01-074-0794 [58]). Die verfeinerten Gitterparameter betragen a = 5,151(2) Å, b = 8,833(9) Å und c = 8,444(8) Å. Das dreidimensionale Netzwerk besteht aus einem AlO₄-Tetraeder mit großen Hohlräumen, in dem sich die 9-fach koordinierten Atompositionen Sr1 und Sr2 befinden. Die zwei Stellen Sr1 und Sr2 unterscheiden sich lediglich durch eine leichte Verzerrung ihrer quadratischen Ebene (vgl. Abb. 17).

Abb. 16: Röntgendiffraktogramm von SrAl₂O₄ im Bereich 10 - 60 °20, Sintertemperatur 900 °C - 1200 °C

Abb. 17: Kristallstruktur von SrAl₂O₄

Bei der Synthese von Bariumaluminat (siehe Abb. 18) ist bei 900 °C noch eine große Menge Bariumcarbonat vorhanden (u.a. 23,910 °20 und 24,31 °20). Ab 1000 °C verschwinden die Peaks des Bariumcarbonats und bei 1200 °C liegt das reinphasige BaAl₂O₄ (ICDD 01-082-1349 [59]) vor. Es kristallisiert im hexagonalen System mit der Raumgruppe P6₃. Die verfeinerten Gitterparameter betragen a = 10,449(6) Å und c = 8,793(9) Å. In Abb. 19 ist die Kristallstruktur des hexagonalen Wirtsgitters Bariumaluminat mit zwei Ba²⁺-Stellen, die jeweils von neun Sauerstoffen umgeben sind, dargestellt.

Abb. 18: Röntgendiffraktogramme von BaAl₂O₄ im Bereich 10 - 60 °2 θ , Sintertemperatur 900 °C – 1200 °C

Abb. 19: Kristallstruktur von BaAl₂O₄

Mit Hilfe der FTIR-Spektroskopie wurden die Absorptionsbanden der Wirtsgitter MAl₂O₄ untersucht (siehe Abb. 20). Die Spektren im Bereich zwischen 1200 und 400 cm⁻¹ bestehen aus drei Gruppen von Absorptionsbanden, die in den Bereichen 920 bis 700, 700 bis 500 und 500 bis 400 cm⁻¹ liegen. Die Zuordnung der Peaks zur asymmetrischen Deformationsschwingung Al-O-Al, symmetrischen Deformationsschwingung Al-O-Al und symmetrischen Streckschwingung O-Al-O erfolgte nach Cheng et al. [60]. Diese Banden stammen aus dem tetraedrisch koordinierten Aluminium.

Abb. 20: FTIR-Spektren von CaAl₂O₄, SrAl₂O₄ und BaAl₂O₄

Abb. 21: REM-Aufnahmen von a) $CaAl_2O_4$, b) $SrAl_2O_4$ und c) $BaAl_2O_4$

Die Oberflächenmorphologie der präparierten Pulver wurde mittels REM analysiert. Abb. 21 zeigt die Aufnahmen des Wirtgitters: in allen drei Proben neigen die Partikel zur Agglomeration und bilden kleine Cluster ungleichmäßiger Form und Größe. Die Morphologie der Phosphore ist unregelmäßig mit einem Durchmesser von zwei bis mehrere Mikrometer.

5.1.3. Sm³⁺-Lumineszenz in MAl₂O₄ (M = Ca, Sr, Ba)

Mit Sm³⁺ dotierte Erdalkali-Aluminate wurden mittels Pechini-Methode bei 1200 °C synthetisiert. Zur Ladungskompensation wurde Na⁺ zugegeben. Abb. 22 zeigt die Röntgendiffraktogramme von mit Sm³⁺ dotierten Erdalkali-Aluminaten. In der ersten Spalte ist das Wirtsgitter CaAl₂O₄, in der zweiten SrAl₂O₄ und in der dritten BaAl₂O₄ dargestellt. Die erste Zeile enthält die undotierten Wirtsgitter (x = 0,00), mit zunehmender Zeilenzahl steigt die Dotierungskonzentration der Wirtsgitter bis 2,00 mol-% Sm³⁺ (x = 0,02).

Abb. 22: Röntgendiffraktogramme von mit Sm^{3+} dotierten MAl_2O_4 ($\bullet = \text{CaAl}_4\text{O}_7$; $\blacksquare = \text{CaSmAl}_3\text{O}_7$; $\bullet = \text{SmAlO}_3$)

Beim Einbau von Samarium in das Wirtsgitter CaAl₂O₄ ließ sich bis zu einem Gehalt von 1,00 mol-% Sm³⁺ röntgenographisch lediglich CaAl₂O₄ nachweisen, sodass angenommen werden kann, dass Sm³⁺ in die Struktur von CaAl₂O₄ aufgenommen wurde. Bei einem Gehalt von 1,50 mol-% Sm³⁺ konnten die Nebenphasen CaSmAl₃O₇ (bei 31,22 °2θ (*hkl* = 211)) und CaAl₄O₇ (bei 25,42 °2θ (*hkl* = -311)) nachgewiesen werden. Diese sind in Abb. 22 mit einem Viereck bzw. einem Kreis gekennzeichnet. Die Anregungs- und Emissionsspektren von mit 0,25 mol-% Sm³⁺-dotiertem CaAl₂O₄ sind in Abb. 23 dargestellt. Das Anregungsspektrum (graue Linie) wurde für die Emission bei 600 nm und das Emissionsspektrum (schwarze Linie)

für Anregung bei 401 nm aufgenommen. Die Lage der Übergänge ist in guter Übereinstimmung mit Literaturwerten [61, 62]. Die den jeweiligen Anregungs- und Emissionslinien zugordneten Übergänge sind in Tab. 11 aufgeführt. Es existieren drei prominente Gruppen von Emissionslinien im Bereich von circa 550 bis 700 nm, die dem intra-4f-Orbitalübergang vom ${}^{4}G_{5/2}$ -Niveau zum ${}^{6}H_{J}$ -Niveau (J = 7/2, 9/2, 11/2) zugeordnet werden können. Die höchste Emissionsintensität kann auf den Übergang ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ bei 600 nm zurückgeführt werden. Die Emissionsspektren von CaAl₂O₄:xSm (x = 0,0025; 0,0050 und 0,0100) im Bereich von 525 bis 675 nm sind in Abb. 24 dargestellt. Die höchste Emissionsintensität konnte bei CaAl₂O₄:0,0100Sm³⁺ erzielt werden.

Abb. 23: Anregungs- und Emissionsspektrum von CaAl₂O₄:0,0025Sm, Übergänge der nummerierten Peaks siehe Tab. 11

Abb. 24: Emissionsspektren von CaAl₂O₄:xSm $(\lambda_{Anr} = 401 \text{ nm})$

Im Fall von mit Sm³⁺ dotiertem SrAl₂O₄ entsteht die Nebenphase SmAlO₃ (bei 33,91 °20 (*hkl* = 020)) ab einer Dotierung mit 2,00 mol-% Sm³⁺. Diese Nebenphase ist in Abb. 22 mit einem Dreieck markiert. Anregungs- und Emissionsspektrum zeigen einen Anregungspeak bei 399 nm (${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{7/2} + {}^{6}\text{P}_{3/2} + {}^{4}\text{K}_{11/2}$) bzw. Emissionspeaks bei 557 nm (${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{5/2}$), 595 nm (${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{7/2}$) und 642 nm (${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{9/2}$). Die Zuordnung der weiteren Peaks ist in Tab. 11 aufgelistet. Die Intensitätsverhältnisse der Sm³⁺-Peaks bei CaAl₂O₄ und SrAl₂O₄ sind im Bereich um 600 nm sehr unterschiedlich. Dies lässt sich u.a. auf Defekte und Symmetrie-verzerrungen zurückführen, die entstehen, wenn Sm³⁺ die Position von Ca⁺ oder Sr⁺ einnimmt. Das Ergebnis der Messung der Fluoreszenzintensitäten von SrAl₂O₄:Sm (x = 0,0025; 0,0050; 0,0100 und 0,0150) ist in Abb. 26 dargestellt. Die Fluoreszenzintensität steigt mit zunehmendem Gehalt an Sm³⁺ bis 1,00 mol-%.

Pool Nr	Übergeng	beobachtete Wellenlänge [nm] im Wirtsgitter			
	Obergang	CaAl ₂ O ₄	SrAl ₂ O ₄		
1	$^6\mathrm{H}_{5/2} \rightarrow {}^4\mathrm{F}_{9/2}$	360	358		
2	$^6\mathrm{H}_{\mathrm{5/2}} \rightarrow {}^4\mathrm{D}_{\mathrm{5/2}}$	373	374		
3	${}^{6}\mathrm{H}_{5/2} \rightarrow {}^{6}\mathrm{P}_{7/2}$	390	388		
4	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{7/2} + {}^{6}\text{P}_{3/2} + {}^{4}\text{K}_{11/2}$	401	399		
5	${}^{6}\mathrm{H}_{5/2} \to {}^{6}\mathrm{P}_{5/2} + {}^{4}\mathrm{M}_{19/2}$	418	422		
6	${}^{6}\mathrm{H}_{5/2} \to {}^{4}\mathrm{G}_{9/2} + {}^{4}\mathrm{I}_{15/2}$	442	446		
7	${}^{6}\mathrm{H}_{5/2} \to {}^{4}\mathrm{F}_{5/2} + {}^{4}\mathrm{I}_{13/2}$	467	467		
8	${}^{6}\mathrm{H}_{5/2} \to {}^{4}\mathrm{I}_{11/2} + {}^{4}\mathrm{M}_{15/2}$	472	474		
9	$^6\mathrm{H}_{5/2} \rightarrow {}^4\mathrm{G}_{7/2}$	496	497		
10	$^6\mathrm{H}_{5/2} \rightarrow {}^4\mathrm{F}_{3/2}$	526	522		
11	${}^4\mathrm{G}_{5/2} \rightarrow {}^6\mathrm{H}_{5/2}$	562	557		
12	${}^4\mathrm{G}_{5/2} \rightarrow {}^6\mathrm{H}_{7/2}$	600	595		
13	${}^4\text{G}_{5/2} \rightarrow {}^6\text{H}_{9/2}$	647	642		

Tab. 11: Beobachtete Sm³⁺-Übergänge in CaAl₂O₄ und SrAl₂O₄ (Nummerierung siehe Abb. 23 und Abb. 25)

Abb. 25: Anregungs- und Emissionsspektrum von SrAl₂O₄:0,0050Sm, die Übergänge der nummerierten Peaks sind in Tab. 11 angegeben

Abb. 26: Emissionsspektren von SrAl₂O₄:xSm $(\lambda_{Anr} = 399 \text{ nm})$

Im Wirtsgitter BaAl₂O₄ wurde bis zu 2,00 mol-% Sm³⁺ ohne das Entstehen von Nebenphasen eingebaut. Die Röntgendiffraktogramme für diese Synthesereihe sind in Abb. 22 (dritte Spalte) zu sehen. Bei der Fluoreszenzmessung an BaAl₂O₄:0,01Sm konnte keine Fluoreszenz nachgewiesen werden. Die Variation der Samarium-Konzentration auf 0,25 mol-% und 2,00 mol-% veränderte das Ergebnis nicht. Als repräsentatives Beispiel sind die Emissionsspektren von mit 1,00 mol-% Sm³⁺ dotiertem BaAl₂O₄ bei Anregungswellenlängen von 399, 401 und 403 nm gezeigt. Die Verschiebung der Emissionspeaks mit der Änderung der

Anregungswellenlänge zeigt, dass es sich nicht um Emissionspeaks, sondern um Raman-Peaks handelt.

Abb. 27: Emissionsspektren von mit 1,00 mol-% Sm³⁺ dotiertem BaAl₂O₄ bei verschiedenen Anregungswellenlängen

5.1.4. Dy^{3+} -Lumineszenz in MAl₂O₄ (M = Ca, Sr, Ba)

Die Leuchtstoffe MAl₂O₄:xDy (x = 0,0025; 0,005; 0,01; 0,015 und 0,02) wurden mittels Pechini-Methode bei 1200 °C synthetisiert. Zur Ladungskompensation wurde Na⁺ zugegeben. Abb. 28 zeigt die Röntgendiffraktogramme der mit Dy³⁺ dotierten Erdalkali-Aluminate MAl₂O₄, wobei die erste Spalte M = Ca, die zweite Spalte M = Sr und die dritte Spalte M = Ba enthält. In der ersten Zeile sind die undotierten Wirtsgitter (x = 0,000) zu sehen. Bei allen drei Wirtsgittern konnten ab einer Dotierung von 1,50 mol-% Dy³⁺ röntgenographisch Nebenphasen nachgewiesen werden. Dementsprechend erfolgte die Fluoreszenzmessung lediglich bei Dy³⁺-Dotierungen bis 1,00 mol-%.

Abb. 28: Röntgendiffraktogramme von mit Dy^{3+} dotiertem MAl_2O_4 ($\bullet = CaAl_4O_7$; = $CaDyAl_3O_7$; $\bullet = SrDyAl_3O_7$; $\bullet = Ba_6Dy_2Al_4O_{15}$)

CaAl₂O₄:Dy-Leuchtstoffe wurden mittels Pechini-Methode bei einer Temperatur von 1200 °C hergestellt. Abb. 29 zeigt die Anregungs- und Emissionsspektren von mit 0,50 mol-% Dy³⁺ dotiertem CaAl₂O₄. Die charakteristischen Absorptionspeaks von Dy³⁺ befinden sich bei 322, 336, 346, 361, 386 und 424 nm im Anregungsspektrum. Die den jeweiligen Emissionslinien zugordneten Übergänge sind in Tab. 12 aufgeführt [63–67]. Die Emissionsspektren zeigen zwei intensive Emissionspeaks bei 484 (blau) und 570 nm (gelb) bei einer Anregungswellenlänge von 346 nm, die den elektronischen Übergängen der Dy³⁺-Ionen (⁴F_{9/2} \rightarrow ⁶H_{15/2} bzw. ⁴F_{9/2} \rightarrow ⁶H_{13/2}) entsprechen. Der Übergang ⁴F_{9/2} \rightarrow ⁶H_{15/2} dem erzwungenen elektrischen Dipolübergang (hypersensitiv) entsprechen, der der Auswahlregel (Δ S = 0, Δ L = 2, Δ J = 2) unterliegt [68, 69]. Die optimale Dy³⁺-Konzentration für CaAl₂O₄ beträgt 1,00 mol-%, wie in Abb. 30 erkennbar ist. Oberhalb von 1,00 mol-% Dy³⁺ konnten Sekundärphasen wie CaDyAl₃O₇ (bei 31,45 °20 (*hkl* = 211)) und CaAl₄O₇ (bei 25,42 °20 (*hkl* = -311)) nachgewiesen werden. Diese sind in Abb. 28 jeweils mit einem Viereck bzw. einem Kreis gekennzeichnet.

Abb. 29: Anregungs- und Emissionsspektrum von mit 0,50 mol-% Dy³⁺ dotiertem CaAl₂O₄, Übergänge der nummerierten Peaks siehe Tab. 12

Abb. 30: Emissionsspektren von CaAl₂O₄:xDy $(\lambda_{Anr} = 346 \text{ nm})$, Raumtemperatur

Tab. 12: Beobachtete Dy³⁺ Übergänge in MAl₂O₄ (M = Ca, Sr, Ba; Nummerierung siehe Abb. 29, Abb. 31, Abb. 34 und Abb. 35)

Peak	Üborgong	beobachtete We	ellenlänge [nm] i	m Wirtsgitter
Nr.	Obergang	CaAl ₂ O ₄	SrAl ₂ O ₄	BaAl ₂ O ₄
1	${}^{6}\mathrm{H}_{15/2} \to {}^{4}\mathrm{M}_{17/2} {+}^{6}\mathrm{P}_{3/2}$	322	322	324
2	$^6\mathrm{H}_{15/2} \longrightarrow {}^4\mathrm{I}_{9/2} + {}^4\mathrm{F}_{5/2}$	336	336	335
3	${}^{6}\mathrm{H}_{15/2} \rightarrow {}^{6}\mathrm{P}_{7/2} + {}^{4}\mathrm{M}_{15/2}$	346	346	349
4	$^{6}\mathrm{H}_{15/2} \rightarrow {}^{4}\mathrm{I}_{11/2}$	361	361	365
5	${}^{6}\mathrm{H}_{15/2} \to {}^{4}\mathrm{K}_{17/2} + {}^{4}\mathrm{F}_{7/2} + {}^{4}\mathrm{I}_{13/2}$	386	385	386
6	$^6\mathrm{H}_{15/2} \rightarrow {}^4\mathrm{M}_{21/2}$	399	400	400
7	$^6\mathrm{H}_{15/2} \rightarrow {}^4\mathrm{G}_{11/2}$	424	424	421
8	${}^4\mathrm{F}_{9/2} \longrightarrow {}^6\mathrm{H}_{15/2}$	484	477	479
9	${}^4F_{9/2} \rightarrow {}^6H_{13/2}$	570	568	573

Das Anregungs- sowie Emissionsspektrum von SrAl₂O₄:0,005Dy ist in Abb. 31 abgebildet. Das Anregungsspektrum zeigt Peaks bei 322, 336, 346, 361, 385 und 424 nm und ähnelt dem von CaAl₂O4:0,005Dy sehr stark. Die zwei Emissionspeaks liegen bei 477 und 568 nm. Die höchste Emissionsintensität konnte bei einer Dotierungskonzentration von 1,00 mol-% Dy³⁺ erreicht werden. Bei 1,50 mol-% Dy³⁺ konnte SrDyAl₃O₇ (bei 31,08 °20 (*hkl* = 211)) als Sekundärphase nachgewiesen werden.

Abb. 31: Anregungs- und Emissionsspektrum von mit 0,50 mol-% Dy³⁺ dotiertem SrAl₂O₄, Übergänge der nummerierten Peaks siehe Tab. 12

 Dy^{3+} dotiertes BaAl₂O₄ wurde mittels Pechini-Methode bei einer Temperatur von 1200 °C synthetisiert. Ab einer Zugabemenge von 1,50 mol-% Dy^{3+} konnte die Entstehung der Nebenphase Ba₆Dy₂Al₄O₁₅ nachgewiesen werden (vgl. Dreieck bei 30,97 °2 θ (*hkl* = 311) in Abb. 28).

Abb. 33: Emissionsspektren von BaAl₂O₄:0,0025Dy bei unterschiedlichen Anregungswellenlängen, Raumtemperatur

Die Suche nach der optimalen Anregungswellenlänge gestaltete sich schwierig, da die Emissionsintensität sehr gering war. Emissionsspektren von mit 0,25 mol-% Dy³⁺ dotiertem BaAl₂O₄ bei einer Anregungswellenlänge im Bereich von 380 bis 400 nm, die aus einer 3D-Anregungs-Emissionsmessung stammen, sind in Abb. 33 dargestellt. Einige der Emissionspeaks verschieben sich mit zunehmender Anregungswellenlänge, es handelt sich dabei um Raman-Peaks. Der Emissionspeak bei 573 nm verschiebt sich bei Änderung der Anregungswellenlänge nicht, lediglich die Intensität variiert. Das Anregungsspektrum bei

 $\lambda_{Em} = 573$ nm (vgl. Abb. 34) zeigt ein Maximum bei 386 nm, das mit früheren Anregungsmessungen übereinstimmt. Die Zuordnung der Peaks ist in Tab. 12 aufgelistet. Die Messung des mit 0,25 mol-%, 0,50 mol-% und 1,00 mol-% Dy³⁺ dotierten BaAl₂O₄ resultierte in einer Abnahme der Emissionsintensität mit zunehmender Dotierungskonzentration. Die höchste Emissionsintensität konnte bei einem Gehalt von 0,25 mol-% Dy³⁺ erreicht werden.

5.1.5. Zusammenfassung und Diskussion

Die Erdalkali-Aluminate MAl₂O₄ (M = Ca, Sr, Ba) wurden reinphasig mittels Pechini-Methode synthetisiert. Die Vorteile der Pechini-Methode spiegelten sich in den erforderlichen Synthesebedingungen wider. Bei der klassischen Festkörpersynthese werden zum Erreichen eines guten Syntheseergebnisses Temperaturen von bis zu 1650 °C über einen Zeitraum von bis zu 72 h benötigt [70]. Die hervorragende Homogenisierung zu Beginn der Synthese ist ein entscheidender Faktor für die kürzere Gesamtsinterzeit und niedrigere Sintertemperatur. Die Röntgendiffraktogramme bestätigten die monokline Struktur von CaAl₂O₄ und SrAl₂O₄ mit der Raumgruppe P2₁/n (Nr. 14) bzw. P2₁ (Nr. 4) sowie die hexagonale Struktur für BaAl₂O₄ mit der Anordnung von Aluminium in den Wirtsgittern anhand der charakteristischen Al-O-Schwingungen bestätigt werden.

Bei der Dotierung der Wirtsgitter der Erdalkali-Aluminate mit Samarium und Dysprosium wurde Ladungsausgleich durch den Einsatz von einwertigem Natrium erreicht. In der Literatur kommen auch weitere Alkalimetalle wie Lithium und Kalium zum Einsatz. Dabei wurde festgestellt, dass die Wahl des Kations zum Ladungsausgleich Auswirkung auf die Lumineszenzeigenschaften der Leuchtstoffe hat [71–74]. Natrium wurde aufgrund seines zu Erdalkalimetallen ähnlichen Ionenradius (166 pm) gewählt.

Wirts-	Alatington	optimale	Aktivatorkonzentration [mol-%]					
gitter	AKIIVALOF	λ_{Anr} [nm]	0,25	0,50	1,00	1,50	2,00	
CaAl ₂ O ₄	Sm ³⁺	401	Max. NP: CaAl4O7; CaSm				.l4O7; CaSmAl3O7	
SrAl ₂ O ₄	Sm ³⁺	399			Max.		NP: SmAlO ₃	
BaAl ₂ O ₄	Sm ³⁺	-	n. d.					
CaAl ₂ O ₄	Dy ³⁺	346			Max.	NP: CaA	l ₄ O ₇ ; CaDyAl ₃ O ₇	
SrAl ₂ O ₄	Dy ³⁺	346	Max. NP: SrDyAl ₃ O ₇			: SrDyAl ₃ O ₇		
BaAl ₂ O ₄	Dy ³⁺	386	Max. NP: Ba ₆ Dy ₂ Al ₄ O ₁₅				Ba ₆ Dy ₂ Al ₄ O ₁₅	

Tab. 13:Zusammenfassung der Synthese- und Lumineszenzeigenschaften der Leuchtstoffe MAl2O4:Sm und
MAl2O4:Dy (M = Ca, Sr, Ba)

NP: Nebenphase

grau hinterlegt: Fluoreszenz detektiert n. d.: keine Fluoreszenz detektiert Max.: maximale Fluoreszenzintensität

Die Dotierung der Calcium-, Strontium- und Bariummonoaluminate mit dreiwertigem Samarium bzw. Dysprosium erfolgte mittels Pechini-Methode bei 1200 °C für 6 h. Die maximale Konzentration der Seltenen Erden betrug 2,00 mol-%. Dabei konnte, mit Ausnahme von BaAl₂O₄:Dy, die Entstehung von Sekundärphasen beobachtet werden. Ab einer Dotierung mit 1,50 mol-% wurden bei CaAl₂O₄:Sm, CaAl₂O₄:Dy, SrAl₂O₄:Dy und BaAl₂O₄:Dy Nebenphasen wie bspw. CaSmAl₃O₇ und CaAl₄O₇ detektiert. Bei SrAl₂O₄:Sm konnte erst ab einem Gehalt von 2,00 mol-% die Entstehung von SmAlO₃ festgestellt werden. Der Abgleich der erzielten Ergebnisse mit Literaturdaten gestaltet sich aufgrund der schlechten Veröffentlichungslage schwierig. Bei den meisten dokumentierten Ergebnissen wurde die Dotierungskonzentration auf 1,00 mol-% festgelegt und die Lumineszenzeigenschaften studiert [70]. Lumineszenzmessungen erfolgten lediglich an röntgenographisch reinphasigen Leuchtstoffen, sodass sich die Emissionen einem Aktivator-Ion im bestimmtem Wirtsgitter zuordnen lassen.

Die optimale Anregungswellenlängen betragen für CaAl₂O₄:Sm 401 nm und für SrAl₂O₄:Sm 399 nm. Diese entsprechen dem Übergang ${}^{6}H_{5/2} \rightarrow {}^{4}F_{7/2} + {}^{6}P_{3/2} + {}^{4}K_{11/2}$ von Sm³⁺. Beide Emissionsspektren zeigen, dass der magnetische Dipolübergang (ca. 600 nm, ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$) intensiver ist als der elektrische Dipolübergang (ca. 645 nm, ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$). Dies zeigt, dass Sm³⁺ bei den beiden untersuchten Wirtsgittern hauptsächlich das Symmetriezentrum des Gitters einnimmt. Die maximale Fluoreszenzintensität konnte jeweils bei einer Sm-Konzentration von 1,00 mol-% erzielt werden. Im Gegensatz dazu wurde bei BaAl₂O₄:xSm keine Fluoreszenz

detektiert. In der Literatur wurde BaAl₂O₄ zumeist mit Eu²⁺ und mit weiteren dreiwertigen Seltenen Erden, wie z. B. mit Sm³⁺, co-dotiert. Dabei ist Eu²⁺ das Lumineszenzzentrum, Sm³⁺ fungiert als Trap bzw. Elektronenfalle, um den Nachleuchteffekt zu erhöhen. Es gibt keine Referenzen über mit Sm³⁺ dotiertes BaAl₂O₄, mit Ausnahme der Arbeit von Benourdja et al. [75]. Dieser stellte BaAl₂O₄:0,02Sm mittels Festkörpersynthese und Verbrennungssynthese (sol combustion) her. Ähnlich wie in der vorliegenden Arbeit waren die Leuchtstoffe dabei röntgengraphisch reinphasig. Die für Sm³⁺ typischen Übergänge im Bereich zwischen 600 und 650 nm wurden bei einer Anregung durch Elektronenstrahlung (Kathodenlumineszenz) detektiert. Der Einfluss der Synthesemethode bzw. Synthesebedingungen auf die Lumineszenzeigenschaften wurde dabei mehrfach betont.

Die optimale Anregungswellenlänge für CaAl₂O₄:Dy und SrAl₂O₄:Dy betrug 346 nm. Die dabei beobachteten intensiven Emissionen im Bereich zwischen 480 und 570 nm entsprechen dem blauen (${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$) und gelben (${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$) Übergang von Dy³⁺. Die höchste Emissionsintensität wurde bei den Proben mit einer Dotierung von 1,00 mol-% erreicht. Diese Dotierung stellt gleichzeitig den maximalen Dotierungsgehalt für röntgenographisch reine Phasen dar. Ziyauddin et al. synthetisierten CaAl₂O₄:xDy mit einem wesentlich geringerem Dy-Gehalt von 0,01 bis 0,2 mol-% [76]. Die mittels Verbrennungsmethode synthetisierten Leuchtstoffe zeigten eine optimale Dotierungskonzentration von 0,02 mol-%. Das starke Rauschen im Untergrund der Messungen lässt dabei auf generell niedrige Emissionsintensitäten schließen. Da sich sowohl Synthesemethode als auch Synthesetemperatur wesentlich von denen in dieser Arbeit unterscheiden ist ein direkter Vergleich der Ergebnisse nicht sinnvoll.

Das synthetisierte BaAl₂O₄:xDy (x = 0,0025, 0,0050 und 0,0100) zeigte generell sehr schwache Emissionen. Bei einer Dotierung mit 0,25 mol-% Dy³⁺ konnte die höchste Intensität gemessen werden. Der Vergleich zur Literatur ist aufgrund der oben erwähnten zusätzlichen Dotierung mit Eu²⁺ nicht möglich. Lediglich die Arbeit von Zhai et al. zu monodotiertem BaAl₂O₄ kann zum Abgleich herangezogen werden. Mittels Verbrennungsmethode wurden 4 mol-% Dy³⁺ in BaAl₂O₄ eingebaut, ohne dass sich die Struktur änderte [77]. Dabei wurde ebenfalls lediglich eine sehr schwache Emission bei einer Anregungswellenlänge von 575 nm detektiert (vgl. 573 nm in dieser Arbeit).

5.2. Erdalkali-Borate

5.2.1. Einleitung

Im Bereich der Erdalkali-Borate existiert eine große Anzahl borhaltiger Oxyanionen. Die drei Baueinheiten, aus denen alle Oxoborate aufgebaut sind, sind die trigonal planare Einheit $(BO_3)^{3-}$, die tetraedrische Einheit $(BO_4)^{5-}$ und die planarringförmige Einheit $(B_3O_6)^{3-}$. Diese Einheiten können in einer Verbindung entweder isoliert oder miteinander verknüpft vorkommen. So sind bspw. in CaB₂O₄ $(BO_3)^{3-}$ -Ionen kettenförmig aneinandergereiht, während im Mg₂B₂O₅ zwei kondensierte $(BO_3)^{3-}$ -Gruppen vorliegen [78]. Verbindungen auf Boratbasis sind aufgrund ihrer hervorragenden physikalischen, piezoelektrischen und optischen Eigenschaften von großem Interesse [79–86]. Zu den bekanntesten Verbindungen gehört β -BaB₂O₄, welches einer der wichtigsten nichtlinearen optischen Kristalle für die Frequenzumwandlung im UV-Bereich, im sichtbaren Bereich und im nahen IR ist.

Für den Einsatz in Leuchtstoffen wurden viele Borate als Wirtsgitter aufgrund ihrer großen Bandlücke, ihrer thermischen und chemischen Stabilität sowie ihrer geringen Herstellungskosten ausgewählt [87–92]. Erwähnenswert dabei sind (Y,Gd)BO₃:Eu³⁺, ein bekannter rot-emittierender Leuchtstoff in quecksilberfreien Leuchtstoffröhren und Plasmadisplays, und SrB₂O₄:Pb²⁺ für UV-Lampenanwendungen.

Von dieser Vielzahl an Borat-Verbindungen sind für den folgenden Abschnitt die Erdalkali-Borate mit der allgemeinen Formel MB₂O₄ (M = Ca, Sr, Ba) von Bedeutung. CaB₂O₄ kristallisiert abhängig vom Synthesedruck in vier verschiedenen Modifikationen [93, 94]. Beim Atmosphärendruck ist CaB₂O₄ isostrukturell zu SrB₂O₄. Es besitzt eine orthorhombische Struktur mit der Raumgruppe Pbcn. Alle Boratome sind in dieser Struktur dreieckig angeordnet; Calcium bzw. Strontium ist jeweils von acht Sauerstoffen umgeben. Bei BaB₂O₄ sind drei Modifikationen bekannt, wobei γ -BaB₂O₄ beim Erhitzen über 600 °C vollständig in β -BaB₂O₄ umgewandelt wird. β -Bariumborat unterscheidet sich von der α -Modifikation durch die Position der Bariumionen innerhalb des Kristalls. Beide Phasen sind doppelbrechend, jedoch besitzt die α -Phase eine zentrische Symmetrie und weist daher andere nichtlineare Eigenschaften im Vergleich zur β -Phase auf. Die Kristallstruktur der Hochtemperaturphase α -BaB₂O₄ gehört zur Raumgruppe R3c (Nr. 167) und besteht aus planaren (B₃O₆)³-Ringen [95]. Ähnlich wie die α -Form besitzt die Niedertemperaturphase β -Bariumborat eine trigonale Kristallstruktur mit der Raumgruppe R3c (Nr. 161). Die Struktur enthält nahezu planare trimere Ionen $(B_3O_6)^{3-}$. Jedes Bariumatom wird von acht Sauerstoffatomen benachbarter Anionen koordiniert [96, 97].

Im folgenden Abschnitt werden die Ergebnisse der mittels Festkörpermethode synthetisierten und anschließend mit Sm³⁺ bzw. Dy³⁺ dotierten MB₂O₄ (M = Ca, Sr, Ba) dargestellt.

5.2.2. Synthese und Charakterisierung von Erdalkali-Boraten

Die Wirtsgitter der Erdalkali-Metaborate MB_2O_4 (M = Ca, Sr, Ba) wurden mittels Festkörpermethode bei Normaldruck synthetisiert. Dabei ist das mehrmalige Aufmahlen der Ausgangsoxide für die Gewinnung der monophasigen Phase entscheidend. Die chemische Reaktionsgleichung für die Festkörpermethode ist beispielhaft für die Synthese von Calciumborat in Formel (3) dargestellt.

$$Ca(NO_3)_2 \cdot 4H_2O + 2H_3BO_3 \rightarrow CaB_2O_4 + 7H_2O \uparrow + 2NO_x \uparrow$$
(3)

Weiterhin darf die Heizrate des Muffelofens bei einer Sintertemperatur von 900 °C 5 °C/min nicht überschreiten, denn schon das kurzzeitige Überheizen des Muffelofens auf 910 °C führt dazu, dass die Erdalkali-Borate im Korundtiegel schmelzen. Die angewendeten Synthesebedingungen sind in Tab. 14 angegeben.

Phase	Sintertemperatur	Gesamte Sinterzeit	Anzahl der Aufmahlschritte
CaB ₂ O ₄	900 °С	6 h	4
SrB_2O_4	900 °C	8 h	4
BaB_2O_4	900 °С	6 h	4

Tab. 14: Bedingungen für die Synthese von MB₂O₄ (M = Ca, Sr, Ba)

Der Versuch der Synthese von Calciumborat mittels Pechini-Methode führte dazu, dass der Verlust an leichtflüchtigem Bor im Trockenschrank über Nacht sehr hoch war. Es konnten anschließend lediglich CaO und Ca₃B₂O₆ als Syntheseergebnis nachgewiesen werden. Bei der Festkörpersynthese wurden stöchiometrische Mengen an Ca(NO₃)·4H₂O und H₃BO₃ gründlich pulverisiert und gemischt. Zusätzlich wurde ein Überschuss an H₃BO₃ in Höhe von 5 mol-% hinzugefügt, um das Verflüchtigen des Bors während des Syntheseprozesses im Muffelofen zu kompensieren. In den folgenden Synthesen, welche Borsäure als Ausgangssubstanz beinhalteten, wurde stets ein Überschuss von 5 mol-% H₃BO₃ verwendet.

Abb. 36: Röntgendiffraktogramm von CaB₂O₄, im Bereich 10 - 70 °2θ, Vergleich der Syntheseergebnisse von Pechini- und Festkörpermethode

Das Röntgenpulverdiffraktogramm von Calciumborat (vgl. Abb. 36) stimmt gut mit der ICSD-Karte 01-076-0747 überein [94]. Calciumborat kristallisiert im orthorhombischen Kristallsystem (Raumgruppe Pbcn) mit Z = 4. Im Gitter ist jedes Ca²⁺-Ion von acht Sauerstoffatomen umgeben. Drei Sauerstoffatome bilden ein fast gleichseitiges Dreieck um jedes Boratom. Die dreickigen BO₃⁻ teilen sich ein Sauerstoffatom und bilden dadurch die -O-B-O-B-Ketten, die parallel zu [001] entlang der c-Achse verlaufen. Die in die Kette eingebauten Sauerstoffatome sind in Abb. 37 als O2 gekennzeichnet.

Abb. 37: Kristallstruktur von CaB₂O₄

Die Röntgendiffraktogramme der Syntheseversuche des Wirtsgitters Strontiumborat im Temperaturbereich von 700 °C bis 900 °C sind in Abb. 38 dargestellt. Bei 700 °C entstehen das gewünschte Produkt SrB₂O₄ sowie die Nebenprodukte Sr₃B₂O₆ und Sr₂B₂O₅. Diese

verschwinden mit steigender Temperatur, ab 900 °C liegt reinphasiges Strontiumborat vor. Das Diffraktogram stimmt mit der Literatur (ICSD: 01-084-2175) überein [98].

Abb. 38: Röntgendiffraktogramm von SrB₂O₄ im Bereich 10 - 70 °20, Sintertemperatur 700 °C - 900 °C

Bei Calciumborat und Strontiumborat handelt es sich um isostrukturelle Verbindungen [99], d.h. sie gehören zum selben Strukturtyp (Pbcn). Vergleicht man die Diffraktogramme der beiden Stoffe, so ist der Hauptpeak von 29,740 °20 (CaB₂O₄) zu 25,685 °20 (SrB₂O₄) verschoben. Diese Verschiebung des Diffraktogramms zu kleineren Winkeln ist auf die Zunahme des Zellvolumens zurückzuführen, welches wiederum an den unterschiedlichen Ionenradien von Calcium und Strontium liegt. Die verfeinerten Gitterparamater sind in Tab. 15 angegeben.

Gitterparameter	CaB ₂ O ₄	SrB ₂ O ₄	BaB ₂ O ₄
Raumgruppe	Pbcn	Pbcn	R3c
Zellvolumen [Å ³]	308,64(6)	342,51(1)	1730,28(9)
V_0/Z	77,16	85,63	96,13
Z	4	4	18
Zelle a [Å]	11,597(4)	11,992(3)	12,528(3)
b [Å]	4,279(1)	4,329(9)	12,528(3)
c [Å]	6,219(8)	6,596(1)	12,729(2)
α [°]	90,00	90,00	90,00
β [°]	90,00	90,00	90,00
γ [°]	90,00	90,00	120,00

Tab. 15: verfeinerte Gitterparameter von CaB₂O₄, SrB₂O₄ und BaB₂O₄

Die entlang der c-Achse laufenden $(BO_2)_n$ -Ketten von CaB_2O_4 und SrB_2O_4 wurden mittels FTIR untersucht. Die Zuordnung der Absorptionsbanden, aufgeführt in Tab. 16, erfolgte u.a. nach Rulmont und Almou [99–102]: zwei verschiedene B-O-Valenzschwingungen wurden beobachtet, zum einen in der Region um 1450 cm⁻¹ und zum anderen in der Region um 1150 cm⁻¹ (siehe Abb. 39). Diese spiegeln die zwei verschiedenen Positionen von Sauerstoff in der Phase wider, die in Abb. 37 mit O1 und O2 bezeichnet sind. Dabei ist O2 der Brückensauerstoff in den langen (BO₂)_n-Kette. Die unterschiedlichen Bindungslängen B-O1 (1,321(3) Å für CaB₂O₄ und 1.325(1) Å für SrB₂O₄) und B-O2 (1,388(0) Å für CaB₂O₄ und 1.394(1) Å für SrB₂O₄) sind verantwortlich für die Aufspaltung der B-O-Valenzschwingungen. Weiterhin werden Deformationsschwingungen im Bereich zwischen 770 und 635 cm⁻¹ beobachtet.

Abb. 39: FTIR-Spektren von CaB₂O₄ und SrB₂O₄

Tab. 16: FTIR-Absorptionsbanden von CaB₂O₄ und SrB₂O₄

Banden	Zuordnung	
CaB2O4	SrB ₂ O ₄	Zuorunung
1501; 1442	1487; 1430	B-O1 Valenzschwingungen
1182	1147	B-O2 Valenzschwingung (Kette)
775; 739; 712; 692; 642	771; 734; 699; 687; 635	B-O Deformationsschwingungen

Der erste Syntheseversuch zur Herstellung von BaB₂O₄ erfolgte wiederum mittels Pechini-Methode bei einer Sintertemperatur von 1000 °C. Ähnlich wie bei CaB₂O₄ ließen sich im Produkt lediglich BaCO₃ und Ba₄B₂O₇ nachweisen, was auf einen starken Verlust an Bor während der langen Verweilzeit im Trockenschrank zurückzuführen ist. Wie das Röntgenpulverdiffraktogramm (Abb. 40) zeigt, konnte nach der Festkörpersynthese bei 700 °C neben der Hauptphase BaB₂O₄ auch eine kleine Menge an Ba₂B₂O₅ gefunden werden, die nach Sinterung bei 900 °C komplett zu BaB₂O₄ weiterreagierte (BaB₂O₄: ICSD 01-080-1489 [97, 103]). Es handelt sich hierbei um Niedertemperatur-Beta-Borate, die in der Literatur als β -Bariumborate (BBO) bekannt sind [104, 105]. Die verfeinerten Gitterparameter sind in Tab. 15 angegeben. Die synthetisierte Phase BaB₂O₄ hat eine trigonale Kristallstruktur mit der Raumgruppe R3c. Sie ist aus Ba²⁺-Kationen und (BO₃)³⁻-Anionen mit BO₃ als Grundstruktureinheit aufgebaut. In der BO₃-Einheit wirken die drei Sauerstoffatome als Brückenelement in der Netzwerkverbindung und dehnen sich zu planaren anionischen Ringgruppen ((B₃O₆)³⁻) aus [83]. Somit ist jedes Bariumatom von acht Sauerstoffatomen umgeben (vgl. Abb. 41).

Abb. 40: Röntgendiffraktogramm von BaB2O4 im Bereich 10 - 70 °20

Abb. 41: Kristallstruktur von BaB2O4

Das FTIR-Spektrum von Bariumborat ist in Abb. 42 dargestellt. Die Zuordnung der Absorptionsbanden erfolgte nach Babeela et al. und Zhang et al. [80, 106]. Die Banden bei 1244 und 1195 cm⁻¹ können der charakteristischen B-O-Valenzschwingung in der (BO₃)³⁻-Einheit, die Bestandteil des (B₃O₆)³⁻-Rings ist, zugeordnet werden. Die bei 705 cm⁻¹ beobachteten starken Absorptionsbanden sind auf O-B-O-Deformationsschwingung derselben Einheit zurückzuführen. Die Absorptionsspitzen bei 963 und 1420 cm⁻¹ können der Valenzschwingung der B-O-Bindungen des Rings zugeordnet werden.

Abb. 42: FTIR-Spektrum von BaB₂O₄

Bandenlage [cm ⁻¹]	Zuordnung
1420	B-O Valenzschwingung
1244	B-O Valenzschwingung von (B ₃ O ₆) ³⁻ Rings
1195	B-O Valenzschwingung von (B ₃ O ₆) ³⁻ Rings
963	B-O Valenzschwingung
705	B-O Deformationsschwingung von (B ₃ O ₆) ³⁻ Rings

Tab. 17: FTIR-Absorptionsbanden von BaB₂O₄

5.2.3. Sm^{3+} -Lumineszenz in MB₂O₄ (M = Ca, Sr, Ba)

Unter den Seltenerdmetallen ist Sm³⁺ ein wichtiger Aktivator für die Erzeugung roten Lichts. Die Substitution der zweiwertigen Erdalkalimetalle M²⁺ durch die dreiwertigen Seltenerdmetalle Sm³⁺ erfordert eine Ladungskompensation, die durch die Zugabe von einwertigem Na⁺ erreicht wurde. Die Synthese der Reihe M_{1-2x}Sm_xNa_xB₂O₄ (M = Ca, Sr, Ba und 0,00 < x < 0,02) erfolgte mittels Festkörpermethode bei 900 °C. Abb. 43 zeigt die zugehörigen Röntgendiffraktogramme der Leuchtstoffe. Dabei steht jede Spalte für ein Wirtsgitter: in der ersten Spalte sind die Substitutionen im Wirtsgitter CaB₂O₄, in der zweiten Spalte im Wirtsgitter SrB₂O₄ und in der dritten Spalte im Wirtsgitter BaB₂O₄ dargestellt. Mit zunehmender Zeilenzahl steigt der Dotierungsgehalt mit Sm³⁺. In der ersten Zeile sind die Röntgendiffraktogramme der undotierten Wirtsgitter (x = 0,00) und in der untersten Zeile die der Wirtsgittern mit 2,00 mol-% Sm³⁺ (x = 0,02) zu sehen. Bei allen Wirtsgittern konnte röntgenographisch keine Nebenphase nachgewiesen werden, sodass davon auszugehen ist, dass Sm³⁺ vollständig in die Struktur von MB₂O₄ eingebaut wurde.

Abb. 43: Röntgendiffraktogramme von mit Sm3+ dotierten MB2O4

Die Anregungs- und Emissionsspektren von CaB₂O₄:0,01Sm sind in Abb. 44 dargestellt. Das Anregungsspektrum wurde bei einer Emissionswellenlänge von 599 nm im Bereich von 350 bis 530 nm aufgenommen. Zu sehen sind die 4f \rightarrow 4f-Übergänge des Sm³⁺-Ions, wobei der Peak bei 401 nm (⁶H_{5/2} \rightarrow ⁴K_{11/2}) der stärkste ist. Das Emissionsspektrum, welches bei einer Anregungswellenlänge von 401 nm aufgenommen wurde, besteht aus Peaks bei 563, 599 und 646 nm, die den Übergangszuständen ⁴G_{5/2} \rightarrow ⁶H_{5/2}, ⁴G_{5/2} \rightarrow ⁶H_{7/2} und ⁴G_{9/2} \rightarrow ⁶H_{9/2} des Sm³⁺-Ions entsprechen [107]. Im Vergleich dazu zeigten auch die Anregungs- und Emissionsspektren der Wirtsgitter SrB₂O₄ (Abb. 46) und BaB₂O₄ (Abb. 48) die charakteristischen 4f \rightarrow 4f-Übergänge des Sm³⁺-Ions. Die Zuordnung der Peaks ist in Tab. 18 aufgeführt [36, 108, 43].

Abb. 44: Anregungs- und Emissionsspektrum von mit 1,00 mol-% Sm³⁺ dotiertem CaB₂O₄, Übergänge der nummerierten Peaks siehe Tab. 18

Abb. 45: Emissionsspektren von CaB₂O₄:xSm $(\lambda_{Anr} = 401 \text{ nm})$, Raumtemperatur

Tab. 18: Beobachtete Sm³⁺-Übergänge in MB₂O₄ (M = Ca, Sr, Ba; Nummerierung siehe Abb. 44, Abb. 46 und Abb. 48)

		beobachtete W	ellenlänge [nm]	in Wirtsgittern
Peak Nr.	Übergang	CaB ₂ O ₄	SrB ₂ O ₄	BaB ₂ O ₄
1	$^6\mathrm{H}_{5/2} \rightarrow {}^4\mathrm{F}_{9/2}$	360	359	361
2	$^6\mathrm{H}_{5/2} \rightarrow {}^4\mathrm{D}_{5/2}$	375	374	374
3	$^6\mathrm{H}_{5/2} \rightarrow {}^6\mathrm{P}_{7/2}$	389	389	389
4	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{7/2} + {}^{6}\text{P}_{3/2} + {}^{4}\text{K}_{11/2}$	401	400	401
5	${}^{6}\mathrm{H}_{5/2} \to {}^{6}\mathrm{P}_{5/2} + {}^{4}\mathrm{M}_{19/2}$	416	413	418
6	${}^{6}\mathrm{H}_{5/2} \to {}^{4}\mathrm{I}_{15/2} + {}^{4}\mathrm{G}_{9/2}$	448	440	437
7	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{5/2} + {}^{4}\text{I}_{13/2}$	465	460	461
8	${}^{6}\mathrm{H}_{5/2} \to {}^{4}\mathrm{I}_{11/2} + {}^{4}\mathrm{M}_{15/2}$	472	472	477
9	${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{5/2}$	563	562	561
10	${}^4\text{G}_{5/2} \rightarrow {}^6\text{H}_{7/2}$	599	602	595
11	${}^4\text{G}_{5/2} \rightarrow {}^6\text{H}_{9/2}$	646	644	477

Abb. 46: Anregungs- und Emissionsspektrum von mit 1,00 mol-% Sm³⁺ dotiertem SrB₂O₄, Übergänge der nummerierten Peaks siehe Tab. 18

Abb. 47: Emissionsspektren von SrB2O4:xSm $(\lambda_{Anr} = 400 \text{ nm})$

600

Wellenlänge [nm]

625

575

525

550

Abb. 49: Emissionsspektren von BaB2O4:xSm $(\lambda_{Anr} = 401 \text{ nm})$

Eine Serie von Erdalkali-Boraten mit unterschiedlichem Sm³⁺-Gehalt wurde synthetisiert, um die Auswirkung des Samariumgehalts auf die Lumineszenzeigenschaften von MB₂O₄:xSm³⁺ zu untersuchen. Dabei wurde die Konzentration von Sm3+ im Bereich zwischen 0,25 und 2,00 mol-% variiert. Die Emissionsspektren zeigen, dass die Emissionsintensität anfangs mit steigender Sm³⁺-Konzentration zunimmt. Sobald die optimale Konzentration erreicht ist nimmt die Intensität mit weiterem Einbau von Sm3+ wieder ab. Dies ist auf den Quencheffekt zurückzuführen, welcher hauptsächlich durch die strahlungsfreien Energietransfers zwischen Sm³⁺-Ionen verursacht wird. Mit zunehmender Konzentration wird der Abstand zwischen den Sm³⁺-Ionen kleiner, was zu einer höheren Wahrscheinlichkeit derartiger Energieübertragungen führt. Die maximale Intensität wird bei CaB₂O₄:0,010Sm (Abb. 45), SrB₂O₄:0,015Sm (Abb. 47) und BaB₂O₄:0,010Sm (Abb. 49) erreicht.

x = 0,0150x = 0,0200

650

675

5.2.4. Dy^{3+} -Lumineszenz in MB₂O₄ (M = Ca, Sr, Ba)

Aufgrund des angeregten Niveaus ${}^{4}F_{9/2}$ sind dreiwertige Seltenerdionen Dy³⁺ ausgezeichnete Aktivatoren in vielen lumineszierenden Materialien. In dieser Arbeit wurde Dy³⁺ bis zu einem Gehalt von 2,00 mol-% in Erdalkali-Borate CaB₂O₄, SrB₂O₄ und BaB₂O₄ eingebaut. Zur Ladungskompensation wurde Na⁺ verwendet.

Abb. 50: Röntgendiffraktogramme von mit Dy^{3+} dotiertem MB_2O_4 ($\blacksquare = DyBO_3$, Hauptpeak bei 27,16 °20 (*hkl* = 100))

Im Wirtsgitter CaB₂O₄ konnte bis zu 1,00 mol-% Dy³⁺ eingebaut werden. Ab einem Gehalt von 1,50 mol-% Dy³⁺ konnte die Nebenphase DyBO₃ (Hauptpeak bei 27,16 °2 θ (*hkl* = 100)) röntgenographisch nachgewiesen werden (vgl. Abb. 50). Im Gegensatz dazu konnte in SrB₂O₄ bis zu 2,00 mol-% Dy³⁺ ohne Bildung einer Nebenphase eingebaut werden. Bei BaB₂O₄ ließ sich bei einem Gehalt von 2,00 mol-% Dy³⁺ die Nebenphase DyBO₃ röntgenographisch nachweisen. Diese Nebenphase ist in Abb. 50 mit einem Viereck gekennzeichnet.

Das Anregungs- und Emissionsspektrum von CaB₂O₄:1,00Dy ist Abb. 51 dargestellt. Der intensivste Peak im Anregungsspektrum liegt bei einer Wellenlänge von 360 nm und entspricht dem Übergang ${}^{6}H_{15/2} \rightarrow {}^{4}I_{11/2}$ von Dy³⁺. Das Emissionsspektrum wurde im Bereich zwischen 450 und 600 nm aufgenommen. Es enthält Peaks bei 478 und 574 nm, welche den Übergängen ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ bzw. ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ entsprechen [109]. Tab. 19 beinhaltet die Zuordnung der jeweiligen Übergänge zu den entsprechenden Wellenlängen. Die Messung des Emissionsspektrums in Abhängigkeit von der Dy³⁺-Konzentration zeigte, dass die höchste Intensität bei einem Gehalt von 1,00 mol-% Dy³⁺ erreicht wird. Wegen der sekundär gebildeten Phase DyBO₃ wurde auf die Durchführung von Fluoreszenzmessungen bei Proben mit einem Dy³⁺-Gehalt von mehr als 1,50 mol-% verzichtet.

Abb. 51: Anregungs- und Emissionsspektrum von mit 1,00 mol-% Dy³⁺ dotiertem CaB₂O₄ Übergänge der nummerierten Peaks siehe Tab. 19

Abb. 52: Emissionsspektren von CaB₂O₄:xDy $(\lambda_{Anr} = 360 \text{ nm})$

TT 1 10	D 2+	1 ¹ 11	•	CDO	AT .	• •	411	E 1)
Tab 19.	$\mathbf{V}^{\mathbf{V}}$	Ubergange	1n	CaB_2O_4	(Nummerieru	ng siehe	Abb	51)
140.17.	25	Coergange	***	CuD204	(1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ing brene	1100.	21)

Peak Nr.	Übergang	Wellenlänge [nm] in CaB ₂ O ₄
1	${}^{6}\mathrm{H}_{15/2} \to {}^{4}\mathrm{M}_{17/2} + {}^{6}\mathrm{P}_{3/2}$	320
2	${}^{6}\mathrm{H}_{15/2} \longrightarrow {}^{4}\mathrm{I}_{9/2} + {}^{4}\mathrm{F}_{5/2}$	336
3	$^6\mathrm{H}_{15/2} \longrightarrow {}^6\mathrm{P}_{7/2} + {}^4\mathrm{M}_{15/2}$	345
4	$^6\mathrm{H}_{15/2} \longrightarrow {}^4\mathrm{I}_{11/2}$	360
5	${}^{6}\mathrm{H}_{15/2} \to {}^{4}\mathrm{K}_{17/2} + {}^{4}\mathrm{F}_{7/2} + {}^{4}\mathrm{I}_{13/2}$	391
6	$^6\mathrm{H}_{15/2} \rightarrow {}^4\mathrm{G}_{11/2}$	422
7	$^6\mathrm{H}_{15/2} \longrightarrow {}^4\mathrm{I}_{15/2}$	447
8	${}^4\mathrm{F}_{9/2} \longrightarrow {}^6\mathrm{H}_{15/2}$	478
9	${}^{4}\mathrm{F}_{9/2} \rightarrow {}^{6}\mathrm{H}_{13/2}$	574

Bei den mit Dy³⁺ dotierten Wirtsgittern SrB₂O₄ und BaB₂O₄ konnte keine Fluoreszenz nachgewiesen werden. Beispielhaft dafür sind in Abb. 53 und Abb. 54 die Ergebnisse der Fluoreszenzmessung an BaB₂O₄:0,010Dy dargestellt. Das Anregungsspektrum wurde bei 572 nm im Bereich zwischen 300 und 500 nm aufgenommen. In diesem Bereich sind die charakteristischen Übergänge der Dy³⁺-Ionen zu erwarten. Die Peakintensitäten waren sehr niedrig, dennoch wurde kontrolliert, ob es sich bei 349 nm um eine mögliche Anregungswellenlänge handelt. Das Emissionsspektrum wurde bei 349 und 360 nm aufgenommen und zeigte, dass es sich um Raman-Peaks handelt, da sich die Emissionspeaks mit den Anregungswellenlängen verschieben. Eine Variation der Dotierungskonzentration änderte das Ergebnis nicht.

Abb. 53:Anregungs- und Emissionsspektrum von
mit 1,00 mol-% Dy3+ dotiertem BaB2O4Abb. 54:Emissionsspektren von BaB2O4:0,010Dy bei
Anregungswellenlängen 349 und 360 nm

5.2.5. Zusammenfassung und Diskussion

Calcium- und Strontiumborate kristallisieren im orthorhombischen Kristallsystem Pbcn (Nr. 60) und BaB₂O₄ in der trigonalen Kristallstruktur R3c (Nr. 161). Der verschiedene BO-Aufbau wurde mittels FTIR untersucht. Bei den isostrukturellen Verbindungen CaB₂O₄ und SrB₂O läuft eine (BO₂)_n-Kette entlang der c-Achse, während sich bei BaB₂O₄ die Boratome in $(B_3O_6)^{3}$ -Ringen anordnen. Weitere Modifikationen der Erdalkali-Borate wurden auf diesem Syntheseweg nicht hergestellt.

Tab. 20:Zusammenfassung der Synthese- und Lumineszenzeigenschaften der Leuchtstoffe MB2O4:Sm und
MB2O4:Dy (M = Ca, Sr, Ba)

Wirts-	Altivator	optimale	Aktivatorkonzentration [mol-%]				
gitter	AKUVALOF	λ _{Anr} [nm]	0,25	0,50	1,00	1,50	2,00
CaB ₂ O ₄	Sm ³⁺	401			Max.		
SrB ₂ O ₄	Sm ³⁺	400				Max.	
BaB ₂ O ₄	Sm ³⁺	401			Max.		
CaB ₂ O ₄	Dy ³⁺	360	Max. NP: DyBO ₃				DyBO ₃
SrB ₂ O ₄	Dy ³⁺	-	n. d.				
BaB ₂ O ₄	Dy ³⁺	-	n. d. NP: DyBO ₃				

NP: Nebenphase grau hinterlegt: Fluoreszenz detektiert n. d.: keine Fluoreszenz detektiert Max.: maximale Fluoreszenzintensität

Die Ergebnisse zur Untersuchung der Lumineszenzeigenschaften von MB₂O₄:Sm und MB₂O₄:Dy (M = Ca, Sr, Ba) sind in Tab. 20 zusammengefasst. Bei der Synthese wurde wiederum Natrium zum Ladungsausgleich zugegeben. Bis zu 2,00 mol-% Sm³⁺ konnten in CaB₂O₄, SrB₂O₄ und BaB₂O₄ ohne Änderung der Wirtsgitterstruktur und ohne die Entstehung

von Nebenphasen eingebaut werden. Der intensivste Anregungsübergang lag bei 401 nm für CaB₂O₄:Sm und BaB₂O₄:Sm und 400 nm für SrB₂O₄:Sm. Dieser entspricht dem elektronischen Übergang ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{7/2} + {}^{6}\text{P}_{3/2} + {}^{4}\text{K}_{11/2}$ von Sm³⁺. Die optimale Dotierungskonzentration lag bei 1,00 mol-% für CaB₂O₄:Sm und BaB₂O₄:Sm und 1,50 mol-% für SrB₂O₄:Sm. Für die ersten beiden Stoffe existiert keine Referenzliteratur. Da es sich bei BaB₂O₄ um einen der wichtigsten nichtlinearen optischen Kristalle handelt wurde das System bereits untersucht. Komatsu et al. β -BaB₂O₄ strukturierten Sm-dotiertes $(42BaO\cdot8Sm_2O_3\cdot50B_2O_3)$ mit Hilfe eines kontinuierlichen Yb:YVO₄-Faserlasers und untersuchten das Emissionsspektrum, das mittels Lasermikroskop ($\lambda = 488$ nm) aufgenommen wurde [110]. Die Emissionsspektren bestehen aus den Übergängen ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ (J = 5/2, 7/2, 9/2) und zeigen lediglich eine leichte Abweichung von max. 4 nm im Vergleich zu den Werten aus dieser Arbeit.

Bei der Dotierung der Erdalkali-Borate mit Dysprosium entstanden Nebenphasen bei CaB₂O₄ ab 1,50 mol-% Dy³⁺ und bei BaB₂O₄ ab 2,00 mol-% Dy³⁺. Für CaB₂O₄:Dy betrug die optimale Anregungswellenlänge 360 nm (${}^{6}H_{15/2} \rightarrow {}^{4}I_{11/2}$), die optimale Dotierungskonzentration war 1,00 mol-%. Der dominante Anteil an blauen Emissionen (Übergang ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$) deutet drauf hin, dass die Dy³⁺-Ionen sich an einer lokal hochsymmetrischen Position befinden. Unerwartet war die ausbleibende Fluoreszenz bei SrB₂O₄:Dy und BaB₂O₄:Dy. Um ein Zerfallen der Proben als Ursache auszuschließen, wurden diese vor den Fluoreszenzmessungen abermals gesintert und röntgenographisch deren Reinheit kontrolliert. Es existieren keine vergleichbaren Erkenntnisse in der Fachliteratur. Wirtsgitter aus Literaturdaten wurden ausschließlich mit anderen Seltenen Erden co-dotiert, der auftretende Energietransfer wurde charakterisiert [111, 87]. Möglicherweise ist die Emission der dotierten Wirtsgitter so schwach, dass man den Dotierungsgehalt erhöhen müsste, um einen Effekt zu erkennen. Eventuell ist jedoch die Synthesemethode nicht geeignet für die Herstellung dieser Leuchtstoffe. Für CaB₂O₄:Dy Erkenntnisse dokumentierten von Mohan et al. ihre [112]. Die maximale Dotierungskonzentration lag dabei bei 1,00 mol-%. Als Synthesemethode kam, wie in dieser Arbeit, die Festkörper-Methode zum Einsatz, anstatt Na⁺ wurde Li⁺ zur Ladungskompensation eingesetzt. Der Dotierungsgehalt lag zwischen 2 und 10 mol-%. Bei den Messergebnissen fällt auf, dass die Untergründe der Spektren sich stark unterscheiden. Trotzdem erfolgte ein direkter Vergleich der Spektren, wobei die Probe mit 4 mol-% Dy³⁺ die höchste Intensität zeigte. Trotz des schlechten Verhältnisses von Intensität zu Untergrundrauschen wurde diese Probe als Optimum bezeichnet. Die Ergebnisse der genannten Autoren sind deshalb zumindest zweifelhaft.

5.3. Erdalkali-Seltenerd-Oxide

5.3.1. Einleitung

Binäre Seltenerd-Oxide MREE₂O₄ (M = Ca, Sr, Ba; REE = Rare Earth Elements (Seltene Erden)), die in der CaFe₂O₄-Struktur kristallisieren, besitzen aufgrund ihrer besonderen Natur vielfältige potentielle Anwendungen, insbesondere in der Photolumineszenz. Über die Synthese und Kristallstruktur von MREE₂O₄ wird in zahlreichen Literaturquellen berichtet [113–120]. Für den Einsatz als Leuchtstoffe wurden die Strukturen und Lumineszenzeigenschaften von SrY₂O₄, SrLu₂O₄, BaY₂O₄ und BaGd₂O₄ umfassend untersucht [121–125, 121, 126, 126, 127]. Kobayashi et al. untersuchten die Ionenleitfähigkeit von BaREE₂O₄ (für REE = La, Nd, Sm, Gd, Ho und Y) und stellten eine Beziehung zwischen der Ionenleitfähigkeit und den Ionenradien der Seltenen Erden fest [128]. Die Strukturparameter von SrREE₂O₄ (für R = Gd, Dy, Ho, Er, Tm, Yb) [129] und BaREE₂O₄ (für REE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) [130] wurden durch Pulverneutronenbeugung verfeinert und ihre magnetischen Eigenschaften systematisch untersucht. In jüngster Zeit wurde BaREE₂O₄ (für REE = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) zum ersten Mal in einkristalliner Form mittels Metallflusstechnik synthetisiert und die strukturellen und magnetischen Eigenschaften beschrieben [131].

Insgesamt lässt sich feststellen, dass eine Vielzahl an Veröffentlichungen zu magnetischen und weiteren physikalischen Eigenschaften von MREE₂O₄-Verbindungen existiert, während über die Lumineszenzeigenschaften dieser Verbindungen nur in begrenztem Umfang geforscht wurde. Dotiert mit Seltenen Erden sind die ternären Oxide MREE₂O₄ jedoch ausgezeichnete lumineszierende Materialien [132–134]. Mit Eu³⁺ dotiertes BaGd₂O₄, BaLa₂O₄ und SrLa₂O₄ wurde von Mari et al. mittels Verbrennungsmethode synthetisiert und zeigte starke Lichtemissionen [135].

Im Rahmen dieser Arbeit erfolgte die Synthese der MREE₂O₄ (für M = Ca, Sr, Ba und REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb) mittels Pechini-Methode. Die fein abgestuften Ionenradien der Seltenen Erdmetalle stellen eine gute Voraussetzung für Struktursystematik zum CaFe₂O-Typ dar. Die Lumineszenzeigenschaften der mit Sm³⁺ bzw. Dy³⁺ dotierten Verbindungen SrEu₂O₄ und BaEu₂O₄ wurden untersucht.

5.3.2. Synthese und Charakterisierung von Erdalkali-Seltenerd-Oxiden

In diesem Kapitel wird die Synthese von $MREE_2O_4$ (M = Ca, Sr, Ba) behandelt. Die Synthese erfolgte mithilfe der Pechini-Methode, die im Vergleich zur Festkörpersynthese eine kürzere Sinterzeit und niedrigere Sintertemperaturen benötigt.

$CaREE_2O_4$ (REE = La, Nd, Sm, Eu, Gd, Dy, Y, Yb, Sc)

Die Tabelle fasst die Ergebnisse der Synthese der Calciumseltenerdoxide zusammen. Dabei sind sowohl die angewandten Synthesebedingungen als auch die Endprodukte angegeben.

Einwaage- stöchiometrie	Angewandte Synthesebedingungen	Ergebnisse
$CaO \cdot La \circ O_3$	1200 °C · 4 h / 1400 °C · 4h	$CaO + La_2O_3$
$CaO \cdot Nd_2O_3$	1300 °C; 4 h / 1400 °C, 4 h / gepresst als Tablette	$CaO + Nd_2O_3$
$CaO \cdot Sm_2O_3$	1200 °C; 4 h / 1300 °C, 10 h / gepresst als Tablette	$CaO + Sm_2O_3$
CaO·Eu ₂ O ₃	1100 °C; 4 h / 1300 °C, 2-10 h / gepresst als	$CaO + Eu_2O_3$
	Tablette / Variation des EG/ZS - Verhältnisses	
$CaO \cdot Gd_2O_3$	1200 °C; 4 h / 1400 °C, 2 h	$CaO + Gd_2O_3$
CaO·Dy ₂ O ₃	1300 °C, 10 h / Tablette	$CaO + Dy_2O_3$
$CaO \cdot Y_2O_3$	1000 °C; 4 h / 1100 °C, 4 h / 1300 °C, 4 h Tablette,	$CaO + Y_2O_3$
	schnelles Abkühlen	
CaO·Yb ₂ O ₃	1400 °C; 4 h / 1450 °C, 10 h / schnelles Abkühlen	$CaO + Yb_2O_3$
$CaO \cdot Sc_2O_3$	800 – 1400 °C / 100 °C Schritte	$CaSc_2O_4$

Tab. 21: Zusammenfassung der Ergebnisse zur Synthese der Reihe CaO·REE₂O₃

Bei der Reihe der CaREE₂O₄ war einzig die Phase CaSc₂O₄ unter den Synthesebedingungen stabil. Bei weiteren Phasen wurden sowohl die Sintertemperatur als auch die Sinterzeit und die Abkühlzeit variiert: als Ergebnis lagen jedoch lediglich die Ausgangsoxide vor. Als Beispiel ist das Röntgendiffraktogramm von CaO·La₂O₃, gesintert bei 1200 °C, 1300 °C und 1400 °C, in Abb. 55 dargestellt. Ausgehend von den Ausgangsstoffen CaNO₃·4H₂O und La(OH)₃ entstehen nach Verdampfen von Wasser und nitrosen Gasen außer CaO (ICDD 01-070-4068 [136]) und La₂O₃ (ICDD: 01-074-2430 [137]) keine neuen Phasen. Mit zunehmender Temperatur bis 1400 °C ist ebenfalls keine Phasenneubildung zu beobachten. Die zwei Ausgansoxide werden lediglich kristalliner, was man anhand der steigenden Intensitäten der Peaks erkennt.

Weiterhin kann die Umwandlung von Eu₂O₃ von kubischer zu monokliner Modifikation beim Sintern der Mischung CaO·Eu₂O₃ im Temperaturbereich 1100 bis 1300 °C nachgewiesen werden (vgl. Abb. 56). Der Hauptpeak des kubischen Eu₂O₃ beim 28,53 °20, identifiziert mit

■ CaO CaO·La₂O₃, Pechini, 1200 °C, 2 h 10000 • La_2O_3 5000 0 CaO·La₂O₃, Pechini, 1300 °C, 2 h 10000 5000 [ntensität [cts] 0 CaO·La₂O₃, Pechini, 1400 °C, 2 h 10000 5000 0 CaO·La₂O₃, Pechini, 1400 °C, 4 h 10000 5000 0 10 15 20 25 30 35 40 45 50 55 60 65 70 Position [°20] (Kupfer (Cu))

ICDD 01-086-2476 [138], ist nach Sinterung bei 1300 °C nicht mehr zu finden, stattdessen kann man hier nur monoklines Eu₂O₃ (ICDD: 01-071-0589 [139]) erkennen.

Abb. 55: Röntgendiffraktogramm von CaO·La2O3, Pechini-Methode, Sintertemperatur 1200 - 1400 °C

Abb. 56: Röntgendiffraktogramm von CaO·Eu2O3, Pechini-Methode, Sintertemperatur 1100 - 1300 °C

Die einzige stabile Verbindung der Synthesereihe CaREE₂O₄ ist CaSc₂O₄. Die Röntgendiffraktogramme der Phase, gesintert im Temperaturbereich zwischen 800 und 1300 °C, sind in Abb. 57 dargestellt. Bei einer Sintertemperatur von 800 °C sind sowohl die Zielphase CaSc₂O₄ als auch ein kleiner Anteil an noch nicht reagiertem Sc₂O₃ (ICDD 00-043-1028) im Röntgendiffraktogramm zu sehen. Die Nebenphase verschwindet mit steigender Sintertemperatur und Sinterzeit, bei 1300 °C erhält man das reinphasige Wirtsgitter CaSc₂O₄ (ICDD: 00-043-1028) [113, 140]. Es kristallisiert im orthorhombischen Kristallsystem (Raumgruppe Pnma) mit Z = 4. Die verfeinerten Gitterparameter betragen a = 9,462(0) Å, b = 3,141(2) Å und c = 11,111(6) Å. In dieser Struktur bilden die verzerrten [ScO₆]-Oktaeder ein dreidimensionales Netzwerk, indem sie Kanten und Ecken mit benachbarten Oktaedern teilen (vgl. Abb. 58). Durch diese Anordnungen entstehen parallel zur c-Achse leere Kanäle, in denen sich Ca²⁺-Ionen (KZ = 8) aufhalten. Die Reaktionsgleichung für die Pechini-Synthese lautet:

$$Ca(NO_3)_2 \cdot 4H_2O + Sc_2O_3 + 4C_6H_8O_7 + 7C_2H_6O_2$$

→ CaSc_2O_4 + 2NO_x ↑ +38CO_2 ↑ +41H_2O ↑ (4)

Abb. 57: Röntgendiffraktogramm von CaSc2O4, Pechini-Methode, Sintertemperatur 800 - 1300 °C

Abb. 58: Kristallstruktur von CaSc₂O₄

SrREE₂O₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y, Yb, Sc)

Tab. 22 fasst die Ergebnisse der Synthese der Strontiumseltenerdoxide zusammen. In der ersten Spalte ist die Einwaagestöchiometrie der Ausgangsoxide angegeben. Abgesehen von den Synthesen mit Lanthan und Neodym war die Herstellung der Strontium-Seltenerdoxide erfolgreich.

Einwaage- stöchiometrie	Unterschiedliche Synthesebedingungen	Ergebnisse
SrO·La ₂ O ₃	700 - 1400 °C jeweils 4 h	$SrO + La_2O_3$
$SrO \cdot Nd_2O_3$	700 - 1400 °C jeweils 4 h / gepresst als	$SrO + Nd_2O_3 +$
	Tablette	Mischoxide
$SrO \cdot Sm_2O_3$	1200 - 1300 °C, bis 4 h	SrSm ₂ O ₄
SrO·Eu ₂ O ₃	1300 - 1400 °C, bis 4 h	SrEu ₂ O ₄
$SrO \cdot Gd_2O_3$	1200, 1250, 1275 °C	SrGd ₂ O ₄
$SrO \cdot Dy_2O_3$	1300 - 1400 °C, bis 4 h	SrDy ₂ O ₄
$SrO \cdot Y_2O_3$	1000 - 1300 °C, als Tablette	SrY ₂ O ₄
$SrO \cdot Yb_2O_3$	1300 - 1400 °C, bis 4 h	SrYb ₂ O ₄
$SrO \cdot Sc_2O_3$	700 - 1400 °C	SrSc ₂ O ₄

Tab. 22: Zusammenfassung der Ergebnisse zur Synthese der Reihe SrO·REE₂O₃

Abb. 59: Röntgendiffraktogramm von SrO·La₂O₃, Pechini-Methode, Sintertemperatur 1100 - 1300 °C

Als ein Beispiel für nicht stabile Verbindungen in dieser Reihe ist das Röntgendiffraktogramm von SrO·La₂O₃ im Temperaturbereich zwischen 700 °C und 1400 °C in Abb. 59 gezeigt. Bei 700 °C sind noch Strontium- und Lanthancarbonat (ICDD: 01-084-1778 [141] und ICDD 00-048-1113 [142]) vorhanden. Im Temperaturbereich zwischen 1100 °C und 1400 °C sind lediglich die Ausgangsoxide SrO (ICDD 00-048-1477 [143]) und La₂O₃ (ICDD 01-073-2141 [144]) zu detektieren.

In dieser Synthesereihe wurden SrSm₂O₄, SrEu₂O₄, SrGd₂O₄, SrDy₂O₄, SrY₂O₄ und SrYb₂O₄ reinphasig synthetisiert. Als Beispiel für eine stabile Verbindung in dieser Reihe ist das Röntgendiffraktogramm von SrEu₂O₄ im Temperaturbereich zwischen 900 °C und 1300 °C in Abb. 60 dargestellt. Bei 900 °C lassen sich noch große Menge an nicht reagiertem Eu₂O₃ (ICDD: 01-086-2476 [145]) und Sr(OH)₂ (ICDD: 01-071-2365 [146]) nachweisen. Dies ist sowohl auf die zu niedrige Sintertemperatur als auch auf die zu geringe Sinterdauer zurückzuführen. Bei 1000 °C ist noch Eu₂O₃ vorhanden, welches mit steigender Temperatur verschwindet. Bei 1300 °C zeigt das Röntgendiffraktogramm schließlich nur die Reinphase SrEu₂O₄. Diese Phase wurde identifiziert mit ICDD: 01-071-2188 [147] für Eu₃O₄. Aus der Literatur ist bekannt, dass es sich bei den beiden Verbindungen um isotypische Verbindungen handeln [148, 149]. Da die Pechini-Synthese unter normaler Atmosphäre stattfand, kein Strontium übrigblieb und das synthetisierte Pulver nicht die für Eu₃O₄ charakteristische dunkelrote Farbe aufweist, ist davon auszugehen, dass es sich bei der synthetisierten Phase um SrEu₂O₄ handelt. SrEu₂O₄ ist isotypisch zu dem im vorherigen Abschnitt beschriebenen $CaSc_2O_4$ und kristallisiert im orthorhombischen Kristallsystem (Raumgruppe Pnma) mit Z = 4. Die verfeinerten Gitterparameter betragen a = 10,1361(9) Å, b = 3,497(0) Å und

c = 12,080(2) Å. Die Untersuchung der Morphologie des Wirtsgitters zeigte unregelmäßige blockförmige Agglomerate mit einer Partikelgröße von zwei bis mehrere Mikrometer (Abb. 61).

Abb. 60: Röntgendiffraktogramm von SrEu2O4, Pechini-Methode, Sintertemperatur 1100 - 1300 °C

Abb. 61: REM Aufnahme von SrEu₂O₄

Die Röntgendiffraktogramme der stabilen Verbindungen der Synthesereihe SrSm₂O₄, SrEu₂O₄, SrGd₂O₄, SrDy₂O₄, SrY₂O₄, SrYb₂O₄ und SrYb₂O₄ sind in Abb. 62 gezeigt. Oben ist zudem die Referenzkarte ICDD: 00-032-1254 [150] für SrSm₂O₄ und unten die Referenzkarte ICDD: 00-020-1213 für SrSc₂O₄ [151] dargestellt. Die gleichen Kristallstrukturen und ähnlichen

Ionenradien der variierten Elemente resultieren in ähnlichen Röntgendiffraktogrammen. Die Verschiebung der Peaks zu größeren Winkeln von Samarium- zu Scandiumstrontiumoxid ist auf das kleiner werdende Zellvolumen der Verbindungen zurückzuführen.

Abb. 62: Röntgendiffraktogramm der Verbindungen SrREE₂O₄ (REE = Sm, Eu, Gd, Dy, Y, Yb, Sc) Zur Verfeinerung der Gitterparameter der SrREE₂O₄ (REE = Sm, Eu, Gd, Dy, Y, Yb, Sc) wurde

die ICSD-Referenzkarte: 193592 für SrGd₂O₄ [152] als Ausgangsstruktur verwendet. Die ermittelten Gitterparameter sind in Tab. 23 angegeben.

Verbindungen	a [Å]	b [Å]	c [Å]	V [Å ³]
SrSm ₂ O ₄	10,142(6)	3,519(8)	12,116(6)	432,55(7)
SrEu ₂ O ₄	10,136(2)	3,497(0)	12,080(2)	428,19(8)
SrGd ₂ O ₄	10,103(3)	3,464(0)	12,018(7)	420,62(6)
SrDy ₂ O ₄	10,086(0)	3,426(1)	11,932(7)	412,34(3)
SrY ₂ O ₄	10,029(9)	3,392(1)	11,859(4)	403,48(0)
SrYb ₂ O ₄	9,992(0)	3,356(9)	11,771(7)	394,85(1)
$SrSc_2O_4$	9,692(6)	3,183(8)	11,299(3)	348,68(6)

Tab. 23: Verfeinerte Gitterparameter für SrREE₂O₄ (REE = Sm, Eu, Gd, Dy, Y, Yb und Sc) bei Raumtemperatur. Raumgruppe: Pnam.

Das Röntgendiffraktogramm des Wirtsgitters SrSc₂O₄ zeigt große Übereinstimmungen mit Literaturdaten [151, 153, 140], u.a. mit den Ergebnissen von Carter und Feigelson, die zuerst die Struktur gelöst und beschrieben haben. SrSc₂O₄ kristallisiert im orthorhombischen Kristallsystem mit der Raumgruppe Pnam. Zur Verfeinerung der Zellstruktur wurde die Karte ICSD: 16886 [154] für CaSc₂O₄ als Ausgangspunkt genommen (Tab. 23).

BaREE₂O₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y, Yb, Sc)

Die Ergebnisse der Synthese der Bariumseltenerdoxide sind in Tab. 24 zusammengefasst dargestellt. Dabei sind BaLa₂O₄, BaNd₂O₄, BaSm₂O₄, BaEu₂O₄, BaGd₂O₄, BaDy₂O₄ BaY₂O₄ die reinphasig synthetisierten Verbindungen, die im Kristallsystem Pnam stabil sind.

Barium-Lanthanoxid BaLa₂O₄ wurde bei 1200 °C synthetisiert. Auf die Stabilität der Verbindung hat die Abkühlrate eine große Rolle. Die Röntgendiffraktogramme von bei 1200 °C gesintertem BaO·La₂O₃ mit unterschiedlicher Abkühlung sind in Abb. 63 abgebildet. Wird BaO·La₂O₃ langsam im abgeschalteten Ofen bis 70 °C bzw. 350 °C abgekühlt, so entstehen als Syntheseprodukte BaO₂ und La₂O₃. Lässt man die Mischung hingegen zuerst langsam abkühlen und schreckt sie ab 500 °C ab, dann entstehen als Hauptphase die orthorhombische Verbindung BaLa₂O₄ und als Nebenphase weiterhin eine kleine Menge an La₂O₃. Die Menge an La₂O₃ erhöht sich jedoch, wenn die Mischung bei einer höheren Temperatur abgeschreckt wird.

Abb. 63: Röntgendiffraktogramm von BaO·La2O3, Pechini-Methode, Sintertemperatur 850 - 1450 °C

Die Röntgendiffraktogramme der reinphasig synthetisierten, zueinander isotypischen Phasen BaNd₂O₄, BaSm₂O₄, BaEu₂O₄, BaGd₂O₄, BaDy₂O₄ BaY₂O₄ sind in Abb. 64 dargestellt. Hier lässt sich, analog zur Sr-Reihe, eine Abnahme des Zellvolumens mit kleiner werdendem Ionenradius der eingebauten Seltenen Erde beobachten.

Einwaage-	Synthesehedingungen	Ergebnisse
stöchiometrie	Synthesebedingungen	Elgebhisse
BaO·La ₂ O ₃	1200 °C; 4 h	$BaLa_2O_4 (+ La_2O_3)$
$BaO \cdot Nd_2O_3$	1300 °C; 4 h	BaNd ₂ O ₄
BaO·Sm ₂ O ₃	1300 °C; 3 h	BaSm ₂ O ₄
$BaO \cdot Eu_2O_3$	1300 °C; 4 h	BaEu ₂ O ₄
$BaO \cdot Gd_2O_3$	1200 °C; 6 h	$BaGd_2O_4$
BaO·Dy ₂ O ₃	1400 °C; 4 h	BaDy ₂ O ₄
$BaO \cdot Y_2O_3$	1400 °C; 4 h	BaY ₂ O ₄
$BaO \cdot Yb_2O_3$	850 - 1450 °C; 10 h; als Tablette	$Ba_3Yb_4O_9 + Yb_2O_3$
$BaO \cdot Sc_2O_3$	700 - 1300 °C; 10 h	BaSc ₂ O ₄

Tab. 24: Zusammenfassung der Ergebnisse zur Synthese der Reihe BaO·REE₂O₃

Abb. 64: Röntgendiffraktogramm der Verbindungen BaREE₂O₄ (REE = Nd, Sm, Eu, Gd, Dy und Y)

1	0 11			
Verbindungen	a [Å]	b [Å]	c [Å]	V [Å ³]
BaLa ₂ O ₄	10,676(6)	3,706(5)	12,646(5)	500,46(1)
$BaNd_2O_4$	10,589(6)	3,604(6)	12,446(9)	475,11(2)
BaSm ₂ O ₄	10,518(3)	3,560(3)	12,332(9)	461,84(5)
BaEu ₂ O ₄	10,505(1)	3,537(6)	12,295(7)	456,94(5)
$BaGd_2O_4$	10,488(9)	3,515(4)	12,265(3)	452,25(2)
BaDy ₂ O ₄	10,419(6)	3,472(0)	12,144(5)	439,34(4)
BaY ₂ O ₄	10,394(2)	3,449(3)	12,115(2)	434,36(1)

Tab. 25:Verfeinerte Gitterparameter für $BaREE_2O_4$ (REE = La, Nd, Sm, Eu, Gd, Dy und Y) bei
Raumtemperatur. Raumgruppe: Pnam.

Das Sintern der stöchiometrischen Mischung BaO·Yb₂O₃ mit der Pechini-Methode führte zu verschiedenen Bariumytterbiumoxiden: Ba₂Yb₂O₅ (ICDD 00-046-0669 [155]) bei 1000 °C und Ba₃Yb₄O₉ (ICDD 01-075-2476 [156]) bei 1200 °C. Die gewünschte reine Phase BaYb₂O₄ konnte auf diesem Weg nicht synthetisiert werden. Sowohl eine höhere Sintertemperatur als auch das Pressen in einer Tablette zur Steigerung der Reaktivität führten nicht zum Ziel. Nach Sinterung bei der jeweiligen Temperatur konnte im Produkt stets ein Rest Yb₂O₃ (ICDD 01-084-1879 [157]) festgestellt werden, wie Abb. 65 zeigt.

Abb. 65: Röntgendiffraktogramm von BaO·Yb2O3, Pechini-Methode, Sintertemperatur 850 - 1450 °C

Die Synthese des Wirtsgitters BaSc₂O₄ erfolgte bei 1300 °C für 10 Stunden. Im Gegensatz zu anderen stabilen Phasen der Synthesereihe kristallisiert BaSc₂O₄ in monokliner Struktur mit der Raumgruppe C2/c. Die große Übereinstimmung des Röntgendiffraktogramms mit der Literatur [158] ist in Abb. 66 dargestellt. Die anfangs bestehende Nebenphase Ba₃Sc₄O₉ verschwand bei einer höheren Sintertemperatur von 1500 °C und langer Sinterdauer von 30 Stunden. Die verfeinerten Gitterparameter betragen a = 9,834(6) Å, b = 5,815(0) Å, c = 20,571(8) Å und $\beta = 89,91^{\circ}$.

Abb. 66: Röntgendiffraktogramm von BaO·Sc₂O₃, Pechini-Methode, Sintertemperatur 1400 - 1500 °C

5.3.3. Sm³⁺-Lumineszenz in SrEu₂O₄ und BaEu₂O₄

Die Wirtsgitter SrEu₂O₄ und BaEu₂O₄ wurden mit bis zu 2 mol-% Sm³⁺ dotiert. Die Synthese der Reihen SrEu_{2(1-x)}Sm_{2x}O₄ und BaEu_{2(1-x)}Sm_{2x}O₄ (0,00 < x < 0,02) erfolgte mittels Pechini-Methode bei 1300 °C für 6 Stunden. Die zugehörigen Röntgendiffraktogramme der Leuchtstoffe sind in Abb. 67 dargestellt. Dabei ist das Wirtsgitter SrEu₂O₄ in der ersten und das Wirtsgitter BaEu₂O₄ in der zweiten Spalte enthalten. Der Sm³⁺-Anteil ist rechts angegeben und nimmt von oben nach unten zu. Die Röntgendiffraktogramme der dotierten Phasen sind identisch mit den nicht dotierten, es wurden keine neuen Nebenphasen detektiert. Dies war zu erwarten, da die ähnlichen Ionenradien der Seltenen Erden die Besetzung der Eu³⁺-Position mit dem Aktivator Sm³⁺ begünstigt.

Die Anregungs- und Emissionspektren von reinphasigem SrEu₂O₄ und BaEu₂O₄ sind in Abb. 68 dargestellt. Die Zuordnung der nummerierten Peaks zu den jeweiligen Übergängen enthält Tab. 26. Das Anregungsspektrum im Bereich von 350 und 750 nm besteht aus mehreren Peaks, die den charakteristischen Eu³⁺-Übergängen entsprechen. Der intensivste Peak bei 393 nm entspricht dem Übergang ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$. Beim zugehörigen Emissionsspektrum sind sechs Peaks zwischen 550 und 750 nm erkennbar. Diese entsprechen den Übergängen innerhalb der 4f-Schale vom angeregten Niveau ${}^{5}D_{0}$ zum niedrigen Niveaus ${}^{7}F_{J}$ (J = 0 - 5). Lumineszenz aus höher angeregten Zuständen wie ${}^{5}D_{1}$ wurde nicht beobachtet. Das deutet auf eine sehr effiziente strahlungsfreie Relaxation von ${}^{5}D_{1} \rightarrow {}^{5}D_{0}$ hin. Wie bereits in Abschnitt 2.3.3 erwähnt kann anhand des Intensitätsverhältnisses der Übergange ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ und ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ eine Aussage über die lokale Symmetrie von Eu³⁺ getroffen werden. Der magnetische Dipolübergang ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ dominiert mit Inversionssymmetrie, während der elektrische Dipolübergang ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ ohne Inversionssymmetrie stärker ist [31]. Dementsprechend dominiert bei SrEu₂O₄ und BaEu₂O₄ der hypersensible Dipolübergang ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (611 nm).

Abb. 67: Röntgendiffraktogramme von mit Sm3+ dotiertem SrEu2O4 und BaEu2O4

Die Lumineszenzintensitäten von SrEu₂O₄ und BaEu₂O₄ sind so intensiv, dass sich bei mit maximal 2 mol-% Sm³⁺ dotierten Phasen kein Sm³⁺-Effekt erkennen lässt. Aufgrund der Energielagen der f-Orbitale ist davon auszugehen, dass es einen Energieübertrag von Sm³⁺ auf Eu³⁺ gibt [159–164]. Die Bestimmung der Anregungswellenlänge für Sm³⁺ ist daher essentiell. Vergleicht man die Anregungsspektren der dotierten und nicht dotierten Erdalkali-Seltenerd-Oxide, dann wird deutlich, dass der Hauptanregungspeak ⁶H_{5/2} \rightarrow ⁴K_{11/2} von Sm³⁺ bei ca. 400 nm von dem sehr intensiven Übergang ⁷F₀ \rightarrow ⁵L₆ von Eu³⁺ überdeckt wird (vgl. Abb. 68 und Abb. 69). Der Peak bei ca. 485 nm entspricht wahrscheinlich einem Übergang von Sm³⁺ (⁶H_{5/2} \rightarrow ⁴G_{7/2}), aufgrund der geringen Intensität wurden an dieser Stelle keine weiteren Fluoreszenzmessungen vorgenommen.

Abb. 68: Anregungs- und Emissionsspektrum von SrEu₂O₄ und BaEu₂O₄, Übergänge der nummerierten Peaks siehe Tab. 26

Abb. 69: Anregungs- und Emissionsspektrum von SrEu₂O₄:0,02Sm und BaEu₂O₄:0,02Sm, Raumtemperatur

Pool Nr	Üborgong	beobachtete Wellenlän	ge [nm] im Wirtsgitter
	Obergang	SrEu ₂ O ₄	BaEu ₂ O ₄
1	$^{7}F_{0} \rightarrow {}^{5}D_{4}$	361	362
2	${}^{7}F_{0} \rightarrow {}^{5}L_{8}$	365	366
3	$^{7}F_{0} \rightarrow {}^{5}G_{3}$	376	376
4	$^{7}F_{0} \rightarrow {}^{5}L_{7}$	382	381
5	${}^{7}F_{0} \rightarrow {}^{5}L_{6}$	393	393
6	$^{7}F_{0} \rightarrow {}^{5}D_{3}$	414	414
7	$^{7}F_{0} \rightarrow {}^{5}D_{2}$	464	463
8	${}^{7}F_{0} \rightarrow {}^{5}D_{1}$	525	526
9	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{0}$	578	579
10	${}^5D_0 \rightarrow {}^7F_1$	590	591
11	${}^5D_0 \rightarrow {}^7F_2$	611	611
12	${}^5D_0 \rightarrow {}^7F_3$	654	651
13	${}^5D_0 \rightarrow {}^7F_4$	691	691
14	${}^5D_0 \rightarrow {}^7F_5$	699	699

Tab. 26: Beobachtete Eu³⁺-Übergänge in SrEu₂O₄ und BaEu₂O₄ (Nummerierung siehe Abb. 68)

5.3.4. Dy³⁺-Lumineszenz in SrEu₂O₄ und BaEu₂O₄

Die Dotierung der Wirtsgitter SrEu₂O₄ und BaEu₂O₄ erfolgte, analog zum vorherigen Abschnitt, mittels Pechini-Synthese bei 1300 °C für 6 Stunden. Der Dotierungsbereich lag zwischen 0,25 und 2,00 mol-%. Die resultierenden Röntgendiffraktogramme sind in Abb. 70 gezeigt. Es wurden keine neuen Nebenphasen detektiert.

Abb. 70: Röntgendiffraktogramme von mit Dy3+ dotiertem SrEu2O4 und BaEu2O4

Die Anregungs- und Emissionsspektren von mit bis zu 2 mol-% Dy^{3+} dotiertem SrEu₂O₄ und BaEu₂O₄ sind in Abb. 71 gezeigt. Auch hier ist die Lumineszenzintensität von SrEu₂O₄ und BaEu₂O₄ so intensiv, dass die Anregungswellenlänge von Dy^{3+} nicht sichtbar ist (Eu³⁺: ⁷F₀ \rightarrow ⁵L₈ bei 361 bzw. 362 nm und Dy^{3+} : ⁶H_{15/2} \rightarrow ⁴I_{11/2} bei ca. 360 nm). Weiterhin lassen sich im Emissionsspektrum lediglich die für Eu³⁺ typischen Übergänge, die bereits in Abschnitt 5.3.3 aufgelistet sind, erkennen. Das liegt zum einen an der starken Emission von Eu³⁺ und zum anderen an einem Energieübertrag von Dy^{3+} auf Eu³⁺. Das ⁴F_{9/2}-Niveau von Dy^{3+} und das ⁵D₀-Niveau von Eu³⁺ liegen nah genug, um eine photonenunterstützte, strahlungsfreie Relaxation von Dy^{3+} und Eu³⁺ zu ermöglichen. [165]. Aufgrund der großen Überlappung der Anregungswellenlänge von Eu³⁺ und Dy^{3+} wurden keine konzentrationsabhängigen Lumineszenzmessungen durchgeführt.

Abb. 71: Anregungs- und Emissionsspektrum von SrEu₂O₄:0,02Dy und BaEu₂O₄:0,02Dy, Raumtemperatur

5.3.5. Zusammenfassung und Diskussion

Die Ergebnisse der reinphasig synthetisierten Erdalkali-Seltenerd-Oxide sind in Tab. 27 übersichtlich zusammengefasst. Die Kombinationen ergeben sich aus den eingesetzten Erdalkali-Oxiden von Calcium, Strontium und Barium (Spalten zwei, drei und vier) und den Oxiden der Seltenen Erden (Zeilen zwei bis zehn). Die Oxide sind entsprechend ihrer Ionenradien sortiert, was durch die Pfeile gekennzeichnet ist. Die theoretischen Zusammensetzungen der nicht stabilen Erdalkali-Seltenerd-Oxide sind durchgestrichen hinterlegt. Die stabilen Phasen, welche reinphasig im Rahmen der Arbeit mittels Pechini-Methode synthetisiert wurden, sind grau hinterlegt. Lediglich bei BaLa₂O₄ konnte ein geringer Anteil der Nebenphase La₂O₃ nicht vollständig entfernt werden. Das Sternchen über BaSc₂O₄ zeigt an, dass dies die einzige Synthesereihe ist, die eine abweichende Kristallstruktur besitzt (monoklin, RG: C2/c, Nr. 15). Im Vergleich zur klassischem Festkörpersynthese waren die für Pechini-Methode notwendigen Sintertemperaturen und -zeiten niedriger bzw. kürzer. Beispielweise wurden zur reinphasigen Synthese von CaSc₂O₄ mittels Pechini-Methode 6 h bei 1400 °C (vgl. 4 h bei 1500 °C) und zur Synthese von SrSm₂O₄ insgesamt 4 h bei 1300 °C (vgl. 1650 °C für 1 h) benötigt [166, 167].

Abgesehen von BaSc₂O₄ kristallisieren alle stabilen Phasen der Synthesereihe der Erdalkali-Seltenerd-Oxide im orthorhombischen Kristallsystem Pnma (Nr. 62). Die Struktur besteht aus verzerrten [REEO₆]-Oktaedern, welche über alle Ecken und Kanten mit benachbarten Oktaedern verknüpft sind. Der resultierende Zwischenraum wird zentral durch das zweiwertige Erdalkalikation besetzt. Die Stabilität der Verbindungen hängt stark von der Ionengröße der Erdalkali- und Seltenerdelemente ab. Die Ionengrößen der diskutierten Elemente sind in Abb. 72 dargestellt.

_		CaO	SrO	BaO
	La ₂ O ₃	CaLa ₂ O ₄	SrLa ₂ O ₄	(BaLa ₂ O ₄)
	Nd ₂ O ₃	$CaNd_2O_4$	SrNd ₂ O ₄	BaNd ₂ O ₄
	Sm ₂ O ₃	CaSm ₂ O ₄	SrSm ₂ O ₄	BaSm ₂ O ₄
	Eu ₂ O ₃	CaEu ₂ O ₄	SrEu ₂ O ₄	BaEu ₂ O ₄
	Gd2O3	CaGd ₂ O ₄	$SrGd_2O_4$	$BaGd_2O_4$
	Dy ₂ O ₃	$CaDy_2O_4$	SrDy ₂ O ₄	BaDy ₂ O ₄
	Y2O3	<u>CaY2O4</u>	SrY ₂ O ₄	BaY ₂ O ₄
	Yb ₂ O ₃	$CaYb_2O_4$	SrYb ₂ O ₄	BaYb ₂ O ₄
	Sc ₂ O ₃	$CaSc_2O_4$	$SrSc_2O_4$	$BaSc_2O_4*$

Tab. 27: Darstellung der durchgeführten Synthesen von Erdalkali-Seltenerd-Oxiden

grau hinterlegt: stabile Verbindungen

in Klammern: Nebenphase in kleinen Mengen vorhanden

durchgestrichen: theoretische Zusammensetzung der nicht stabilen Verbindung

Abb. 72: Ionenradien der ausgewählten Elemente

Bei der Calcium-Reihe ist CaSc₂O₄ die einzige stabile Phase: die kleinen Calcium-Ionen konnten lediglich mit den kleineren [ScO₆]-Oktaedern stabilisiert werden. In der Synthesereihe mit Strontium waren die Verbindungen mit den größeren Seltenen Erden (Lanthan und Neodym) nicht stabil, dafür jedoch die Verbindungen mit Samarium bis zu Ytterbium. Bei der Barium-Reihe sind die Verbindungen mit den größeren Seltenen Erden (Lanthan bis Yttrium) stabil, lediglich mit dem vergleichsweise kleinen Yttrium-Ion konnte kein stabiles Syntheseergebnis erzielt werden. Bildet man für die stabilen orthorhombischen Erdalkali-

Seltenerd-Oxide MREE₂O₄ ein Verhältnis der Ionenradien der Seltenen Erden und Erdalkali-Metalle (r_{REE3+}/r_{M2+}), dann ist festzustellen, dass dies zwischen 0,64 (r_{Yb3+}/r_{Ba2+}) und 0,81 (r_{Sm3+}/r_{Sr2+}) liegt. Die einzige stabile Verbindung in der Calcium-Reihe (CaSc₂O₄) erfüllte diese Voraussetzung mit einem Wert von 0,75.

Die verfeinerten Gitterparameter sind in Abb. 73 gegen die Ionenradien der Seltenen Erden aufgetragen. Zur besseren Einordnung wurden die Werte durch Literaturwerte ergänzt (nicht gefüllte Symbole). Es zeigt sich bei allen vier Parametern ein linearer Zusammenhang.

Abb. 73: Abhängigkeit der orthorhombischen MREE₂O₄-Gitterparameter vom REE³⁺-Ionenradius

Die Lumineszenzspektren der Wirtsgitter SrEu₂O₄ und BaEu₂O₄ zeigen scharfe Linien, die den elektronischen Übergängen zwischen verschiedenen Energieniveaus der Europium-Ionen entsprechen. Die optimale Anregungswellenlänge von 393 nm entspricht dem elektronischen Übergang ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$. Die Peaks im Emissionsspektrum konnten den Eu³⁺-Übergängen zugeordnet werden. Dabei lag der intensivste Übergang bei 611 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$).

Die Monodotierung von SrEu₂O₄ und BaEu₂O₄ mit Sm³⁺ und Dy³⁺ erfolgte mittels Pechini-Methode bei 1300 °C für 6 Stunden. Die Dotierungskonzentrationen betrugen jeweils zwischen 0,25 und 2,00 mol-%. Die Anregungs- und Emissionspektren der dotierten Phasen zeigten keine wesentlichen Unterschiede zu denen der nicht dotierten Wirtsgitter. Die Übergänge von Sm³⁺ und Dy³⁺ wurden von Eu³⁺-Übergängen überlagert, weshalb eine eindeutige Zuordnung nicht möglich war.

5.4. Einbau von Europium in SrAl₂O₄ und SrB₂O₄

5.4.1. Einleitung

Dieser Abschnitt behandelt die Untersuchung der Systeme SrO-Eu₂O₃-Al₂O₃ und SrO-Eu₂O₃-B₂O₃. Die Synthese der Endglieder der Mischreihe (SrAl₂O₄, SrB₂O₄ und SrEu₂O₄) wurde bereits in den Abschnitten 5.1.1 bis 5.1.3. beschrieben und deren Eigenschaften charakterisiert.

Abb. 74 und Abb. 75 zeigen die ternären Diagramme der beiden Systeme. Für die Zusammenstellung der bekannten Verbindungen in den jeweiligen Systemen wurden sowohl die ICSDals auch die ICDD-Datenbank benutzt. Die Verbindungen sind als Punkte dargestellt. Bei Verwendung von ICDD-Daten wurden die Karten der Qualitäten "blank" (B), "deleted" (D) und "low precision" (O) nicht berücksichtigt. Die vorgesehen Synthesen bzw. deren theoretische Zusammensetzungen sind mit roten Punkten markiert.

Abb. 74: Ternäres Diagramm SrO-Al₂O₃-Eu₂O₃, rote Punkte entsprechen der theoretischen Zusammensetzung der eigenen Synthesen, schwarze Punkte entsprechen den Verbindungen, die aus den Datenbanken ICDD und ICSD bekannt sind

Das binäre System SrO-Al₂O₃ enthält eine Vielzahl intermediärer Verbindungen, wie beispielsweise SrAl₄O₇ und SrAl₁₂O₁₉, welche unter anderem für hydraulische Zemente und Lasermaterialien von großer Bedeutung sind. Viele der Verbindungen im System Eu₂O₃-Al₂O₃ enthalten Europium in der Oxidationsstufe +II, wie z. B. Eu₃AlO₅ und Eu₃Al₂O₆. Diese können unter leicht reduzierenden Bedingungen durch Ausnutzen der Stabilität der halbgefüllten Orbitale der Eu²⁺-Ionen synthetisiert werden.

Das System SrO-B₂O₃ ist eines der grundlegenden glasbildenden Systeme. In diesem System sind sechs kristalline Phasen bekannt: Sr₃B₂O₆, Sr₂B₂O₅, SrB₂O₄, Sr₄B₁₄O₂₅, SrB₄O₇ und Sr₂B₁₆O₂₆.

Analog zum System Eu₂O₃-Al₂O₃ enthalten einige der Verbindungen im System Eu₂O₃-B₂O₃ Europium in der Oxidationsstufe +II, wie z. B. EuB₂O₄ und Eu₂B₂O₅. SrEu₂O₄ ist die einzige in der Literatur dokumentierte Verbindung im System SrO-Eu₂O₃. Die Eigenschaften dieser Phase sind in Abschnitt 5.3.2 beschrieben.

Abb. 75: Ternäres Diagramm SrO-B₂O₃-Eu₂O₃, rote Punkte entsprechen der theoretischen Zusammensetzung der eigenen Synthesen, schwarze Punkte entsprechen Verbindungen, die aus den Datenbanken ICDD und ICSD bekannt sind

5.4.2. Synthesereihe $SrEu_xAl_{2-x}O_4$ ($0 \le x \le 2$)

Die Synthesen der Mischkristallreihe erfolgten mittels Pechini-Methode bei 1300 °C für 4 Stunden. Die Einwaagestöchiometrie der Synthesereihe und die entstandenen Phasen sind in Tab. 28 angegeben. Beim Auftreten mehrerer Phasen sind diese nach abnehmendem Gehalt geordnet.

Tab. 28: Zusammenfassung der Ergebnisse zur Synthese der Mischreihe SrEu_xAl_{2-x}O₄ (0 ≤ x ≤ 2), bei Auftreten mehrerer Phasen Sortierung nach abnehmendem Gehalt

Nr.	Einwaagestöchiometrie	Ergebnisse
1	SrO·Al ₂ O ₃	SrAl ₂ O ₄
2	$SrO \cdot 0,9Al_2O_3 \cdot 0,1Eu_2O_3$	SrAl ₂ O ₄ ; SrEuAlO ₄ ; SrEu ₂ Al ₂ O ₇
3	$SrO \cdot 0,7Al_2O_3 \cdot 0,3Eu_2O_3$	SrEuAlO ₄ ; SrEu ₂ Al ₂ O ₇ ; SrAl ₂ O ₄
4	$SrO \cdot 0, 5Al_2O_3 \cdot 0, 5Eu_2O_3$	SrEuAlO ₄
5	$SrO \cdot 0, 3Al_2O_3 \cdot 0, 7Eu_2O_3$	SrEuAlO ₄ ; SrEu ₂ O ₄
6	$SrO \cdot 0, 1Al_2O_3 \cdot 0, 9Eu_2O_3$	SrEu ₂ O ₄ ; SrEuAlO ₄
7	$SrO \cdot Eu_2O_3$	SrEu ₂ O ₄

Abb. 76: Röntgendiffraktogramme der Mischkristallreihe SrEu_xAl_{2-x}O₄ (x = 0; 0,1; 0,3; 0,5; 0,7; 0,9; 1)

Die Kristallstruktur der Endglieder der Synthesereihe SrEu_xAl_{2-x}O₄ ($0 \le x \le 2$), SrAl₂O₄ und SrEu₂O₄, wurden bereits in den Abschnitten 5.1.2 und 5.3.2 ausführlich beschrieben. Die Röntgendiffraktogramme der Verbindungen, die den schrittweisen Austausch des Alumiuniumkations gegen Europium zeigen, sind in Abb. 76 zu sehen. Die Phase bei der Strontiumeuropiumaluminat SrEuAlO₄ entstand schon Stöchiometrie $SrO \cdot 0.9Al_2O_3 \cdot 0.1Eu_2O_3$. Zwischen 0 < x < 0.5 konnte eine geringfügige Menge der Nebenphase $SrEu_2Al_2O_7$ (ICDD 01-076-0095 [168]) nachgewiesen werden. Bei x = 0,5 liegt lediglich reinphasiges SrEuAlO₄ vor. Ein weiterer Austausch von Aluminium gegen Strontium führt zur verstärkten Synthese von SrEu₂O₄, bis bei x = 2 ausschließlich diese Phase als Produkt vorliegt.

Abb. 77: Kristallstruktur von SrEuAlO₄

Die intermediäre Phase Stromtiumeuropiumaluminat kristallisiert im tetragonalen Kristallsystem (Raumgruppe I4/mmm) mit Z = 2. Die entsprechende Kristallstruktur ist in Abb. 77 gezeigt. Die AlO₆-Oktaeder bilden über geteilte Ecken eine zweidimensionale Schicht. Zwischen den Schichten, auf der Punktlage 4e, sind Sr²⁺ und Eu³⁺ statistisch verteilt und jeweils von neun Sauerstoff umgeben. Die Verfeinerung der Gitterparameter erfolgte mithilfe der ICSD-Karte 157158 [169], dargestellt in Abb. 78. Sie betragen a = 3,7015(2) Å, und c = 12,399(6) Å.

Die zu SrEuAlO₄ isotypischen Verbindungen, die Erdalkalimetalle, Seltene Erden und Aluminium im Verhältnis von 1:1:1 enthalten, werden in der Arbeit als Erdalkali-Seltenerd-Aluminate bezeichnet und in Abschnitt 5.5 genauer untersucht.

Abb. 78: Graphische Darstellung der Verfeinerung von SrEuAlO4 mittels Rietveld-Fit

5.4.3. Synthesereihe SrEu_xB_{2-x}O₄ ($0 \le x \le 2$)

Die Synthese der Mischkristallreihe SrEu_xB_{2-x}O₄ ($0 \le x \le 2$) erfolgte mittels Festkörpermethode im Temperaturbereich zwischen 900 und 1100 °C für 4 bis 8 Stunden. Die Einwaagestöchiometrie der Synthesereihe sowie die entstandenen Phasen sind in Tab. 29 angegeben. Beim Auftreten mehrerer Phasen sind diese nach ihrem abnehmenden Gehalt geordnet.

Tab. 29:Zusammenfassung der Ergebnisse zur Synthese der Mischreihe SrEuxB2-xO4 ($0 \le x \le 2$), bei Auftreten
mehrerer Phasen Sortierung nach abnehmendem Gehalt

Nr.	Einwaagestöchiometrie	Ergebnisse	
1	$SrO \cdot 1,0B_2O_3$	SrB ₂ O ₄	
2	$SrO \cdot 0,9B_2O_3 \cdot 0,1Eu_2O_3$	SrB_2O_4 ; $Sr_3Eu_2B_4O_{12}$	
3	$SrO \cdot 0,7B_2O_3 \cdot 0,3Eu_2O_3$	Sr ₃ Eu ₂ (BO ₃) ₄ ; SrB ₂ O ₄ (6 %)	
4	$SrO \cdot 0,5B_2O_3 \cdot 0,5Eu_2O_3$	Eu ₂ O ₃ (kubisch und monoklin); Sr ₃ B ₂ O ₆ ;	
		Sr ₃ Eu ₂ (BO ₃) ₄ ; EuBO ₃	
5	$SrO \cdot 0, 3B_2O_3 \cdot 0, 7Eu_2O_3$	SrEu ₂ O ₄ ; Sr ₃ B ₂ O ₆ ; Eu ₂ O ₃	
6	$SrO \cdot 0, 1B_2O_3 \cdot 0, 9Eu_2O_3$	SrEu ₂ O ₄ ; Eu ₂ O ₃ ; Sr ₃ B ₂ O ₆	
7	SrO·1,0Eu ₂ O ₃	SrEu ₂ O ₄	

Abb. 79: Röntgendiffraktogramme der Mischkristallreihe SrEu_xAl_{2-x}O₄ (x = 0; 0,1; 0,3; 0,5; 0,7; 0,9; 1)

Das Syntheseprodukt von Mischung 3 (vgl. Tab. 29) enthielt hauptsächlich $Sr_3Eu_2(BO_3)_4$ und 6 M.-% SrB_2O_4 (Rietveld-Analyse). Durch Anpassung der gewichteten Ausgangszusammensetzung auf $SrO \cdot 0,67B_2O_3 \cdot 0,33Eu_2O_3$ wurde die intermediäre Phase $Sr_3Eu_2(BO_3)_4$ bei 1300 °C durch die Festkörpermethode synthetisiert (siehe Abb. 80). Ihre Kristallstruktur ist in Abb. 81 dargestellt (Z = 4). Es gibt 13 kristallographisch unabhängige Atompositionen, von denen drei Gitterplätze von Eu- und Sr-Atomen gemeinsam besetzt sind. Die Besetzungszahlen für die drei Atompositionen M1, M2 und M3, dargestellt in Abb. 81, wurden mit Hilfe der Rietveld-Verfeinerung bestimmt: sie betragen 0,330Sr und 0,670Eu für M1, 0,691Sr und 0,309Eu für M2 und 0,644Sr und 0,356Eu für M3. Diese Metallkationen sind durch acht Sauerstoffatome koordiniert und bilden verzerrte MO₈-Polyeder ohne Inversionszentrum. Jedes Boratom ist mit drei Sauerstoffatomen verbunden und bildet so ein BO₃-Dreieck. Die verfeinerten Gitterparameter betragen a = 7,412(8) Å, b = 16,093(8) Å und c = 8,766(2) Å.

Die zu Sr₃Eu₂(BO₃)₄ isotypischen Verbindungen, die Erdalkali-Seltenerd-Borate, werden in Abschnitt 5.6 genauer untersucht.

Abb. 80: Graphische Darstellung der Verfeinerung von Sr₃Eu₂(BO₃)₄ mittels Rietveld-Fit

Abb. 81: Kristallstruktur von Sr₃Eu₂(BO₃)₄

5.4.4. Zusammenfassung und Diskussion

Ausgehend von den in vorangegangenen Abschnitten synthetisierten und charakterisierten Phasen SrAl₂O₄ und SrB₂O₄ wurden in diesem Teil der Arbeit Aluminium- und Bor-Atome schrittweise gegen Europium ausgetauscht. Für die Synthesereihe SrEu_{2x}Al_{2(1-x)}O₄ (x = 0,1; 0,3; 0,5; 0,7; 0,9 und 1,0) wurde die Pechini-Methode eingesetzt (1300 °C, 4 h). Für die Synthesereihe SrEu_{2x}B_{2(1-x)}O₄ (x = 0,1; 0,3; 0,5; 0,7; 0,9 und 1,0) kam die Festkörpermethode (900 – 1100 °C; 4 – 8 h) zum Einsatz .

Aufgrund des recht großen Unterschieds der Ionenradien von Europium (94,7 pm) zu Aluminium (53,5 pm) bzw. Bor (27 pm) kam es bei der Herstellung der Synthesereihen zu keiner Mischkristallbildung.

Im System SrO·xEu₂O₃·(1-x)Al₂O₃ entstand die intermediäre Phase SrEuAlO₄ schon beim ersten Einbauschritt (x = 0,1). Bei x = 0,5 lag diese Phase reinphasig vor. Der geringe Unterschied der Ionenradien von Strontium (118 pm) und Europium (94,7 pm) ist wesentlich für die Stabilität dieser Struktur, in der die beiden Ionen eine Atomposition statistisch gleichmäßig verteilt besetzen. Es handelt sich um eine tetragonale Struktur mit der Raumgruppe I4/mmm. Abgesehen von der Arbeit von Fava et al. von 1972, in der die Struktur bestimmt wurde, gibt es keine weiteren Publikationen zu der intermediären Verbindung [170]. Die veröffentlichten Gitterparameter (a = 3,703 Å und c = 12,39 Å) sind in großer Übereinstimmung mit den hier ermittelten Daten (a = 3,701 Å und c = 12,40 Å).

Im System $SrO \cdot xEu_2O_3 \cdot (1-x)B_2O_3$ wurde $Sr_3Eu_2(BO_3)_4$ als einzige intermediäre Phase detektiert. Bei x = 0,3 war diese das Hauptsyntheseprodukt. Durch Anpassung der gewichteten Ausgangszusammensetzung konnte die intermediäre Phase mittels Festkörpersynthese reinphasig synthetisiert werden. Sie kristallisiert in orthorhombischer Struktur mit der Raumgruppe Pnma (Nr. 62).

5.5. Erdalkali-Seltenerd-Aluminate

5.5.1. Einleitung

Erdalkali-Seltenerd-Aluminate mit der Summenformal MREEAlO₄ sind von hohem wissenschaftlichem Interesse, da sie eine ausgezeichnete Anpassung der Gitter- und Wärmeausdehnung an Hochtemperatursupraleiter aufweisen. Sie gehören zu den wichtigsten Substratmaterialien für die Herstellung supraleitender Dünnschichten.

Mit SrLaAlO₄ wurde eine der ersten Verbindungen von Popper und Ruddlesden im Jahr 1957 synthetisiert und die kristallographischen Daten veröffentlicht [171]. Seither wurden Struktur, Kristallisation und Eigenschaften von MREEAlO₄ von einer Vielzahl an Autoren untersucht [172–180]. Alle Verbindungen besitzen die vollständige Symmetrie des Strukturtyps K₂NiF₄, I4/mmm. Dabei sind die M²⁺- und REE³⁺-Ionen im Verhältnis 1:1 auf die neun koordinierten Stellen der C_{4v}-Symmetrie verteilt, während Al³⁺-Ionen auf D_{4h}-Stellen von sechs Sauerstoffatomen umgeben sind. Die Strontium-Europium-Aluminate SrEuAlO₄ im System SrO-Eu₂O₃-Al₂O₃ wurden bereits in Abschnitt 5.4.2 synthetisiert und charakterisiert.

Zvereva et al. [180] stellten fest, dass diese Struktur durch 1:1-Verwachsung von Steinsalz (MO) und Perowskit-Schichten (REEAIO₃) gebildet wird, und wiesen auf das Problem der Kompatibilität dieser Schichten hin. Die Autoren diskutierten den Toleranzfaktor für diese Struktur und kamen zu dem Schluss, dass CaYAIO₄ und SrLaAIO₄ stabile Verbindungen sind, CaLaAIO₄ jedoch instabil ist. Sie erklärten dies anhand der schwachen Al-O-Bindung in CaLaAIO₄. Im Rahmen dieser Arbeit wurde eine systematische Untersuchung an Erdalkali-Seltenerd-Aluminaten MREEAIO₄ mit M= Ca, Sr, Ba und REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb vorgenommen. Die Phasen wurden mittels Pechini-Methode synthetisiert.

In den letzten Jahren wurden die mit Seltenen Erden dotierten MREEAlO₄ vermehrt für die Anwendung als Lasermaterialien und Leuchtstoffe untersucht. Die vielversprechendsten dabei sind CaGdAlO₄:Er⁴⁺ [181], SrGdAlO₄:Eu³⁺ [182], CaGdAlO₄:Yb³⁺ [183], CaYAlO₄:Tb³⁺/Eu³⁺ [184], SrLaAlO₄:Ho³⁺/Er³⁺ [185] und CaLaAlO₄:Tb³⁺/Eu³⁺ [186].

In dieser Arbeit wurden CaEuAlO₄ und SrEuAlO₄ mit Sm³⁺ bzw. mit Dy³⁺ dotiert.

5.5.2. Synthese und Charakterisierung von Erdalkali-Seltenerd-Aluminaten

Die Synthese von MREEAlO₄ (M = Ca, Sr, Ba) erfolgte mithilfe der Pechini-Methode im Temperaturbereich von 1000 bis 1450 °C. Die verallgemeinerte Reaktionsgleichung unter Berücksichtigung der Molverhältnisse von Erdalkalikation, Zitronensäure und Ethylenglykol 1:4:7 ist in Formel (5) dargestellt.

$$2M(NO_3)_2 \cdot yH_2O + REE_2O_3 + 2AI(NO_3)_3 \cdot 9H_2O + 8C_6H_8O_7 + 14C_2H_6O_2$$

$$\rightarrow 2MREEAIO_4 + 10NO_x \uparrow + 38CO_2 \uparrow + (92 + 2y)H_2O \uparrow$$
(5)

CaREEAIO₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y, Yb, Sc)

Tab. 30 fasst die Ergebnisse der Synthese der Calcium-Seltenerd-Aluminate zusammen. Der Einbau der Seltenen Erden in Aluminate waren in der Ca-Serie von Lanthan mit großem Ionenradius bis zu Ytterbium mit kleinem Ionenradius durchweg erfolgreich. Dabei ist zu beachten, dass bei CaO·0,5La₂O₃·0,5Al₂O₃ die stabile Phase LaAIO₃ (ICDD: 01-070-4096 [187]) bereits bei einer Sintertemperatur von 950 °C entstanden ist und bei weiterer Temperaturerhöhung nicht weiterreagierte. Die weitere Erhöhung der Sintertemperatur führte zur Verschiebung der Produktverhältnisse zugunsten von LaAIO₃. Die Röntgenpeaks dieser Nebenphase sind in Abb. 82 mit einem Viereck gekennzeichnet (Hauptpeak bei 33,48 °20 (*hkl* = 104)). Bei 1200 °C sind nur noch LaAIO₃, CaO und La₂O₃ vorhanden; das tetragonale CaLaAIO₄ ist nicht mehr nachweisbar (vgl. Abb. 82). LaAIO₃ ist dabei wahrscheinlich ein Zersetzungsprodukt von CaLaAIO₄. Um die Synthese zu optimieren wurden die Syntheseergebnisse bei einer Sintertemperatur zwischen 950 und 1050 °C in Schritten von 10 °C genauer betrachtet. Es entstanden stets relativ große Mengen an LaAIO₃, auch ein Abschrecken änderte das Ergebnis nicht.

Einwaagestöchiometrie	Synthesebedingungen	Ergebnisse
$CaO \cdot 0,5La_2O_3 \cdot 0,5Al_2O_3$	1000 °C − 1400 °C	$CaLaAlO_4 + LaAlO_3 + CaO$
$CaO \cdot 0,5Nd_2O_3 \cdot 0,5Al_2O_3$	1300 °C; 4 h	CaNdAlO ₄
$CaO{\cdot}0,5Sm_2O_3{\cdot}0,5Al_2O_3$	1300 °C; 4 h	CaSmAlO ₄
$CaO \cdot 0,5Eu_2O_3 \cdot 0,5Al_2O_3$	1100 °C; 4 h	CaEuAlO ₄
$CaO \cdot 0,5Gd_2O_3 \cdot 0,5Al_2O_3$	1300 °C; 4 h	CaGdAlO ₄
$CaO \cdot 0,5 Dy_2 O_3 \cdot 0,5 Al_2 O_3$	1450 °C; 6 h	CaDyAlO ₄
$CaO \cdot 0,5Y_2O_3 \cdot 0,5Al_2O_3$	1300 °C; 4 h	CaYAlO ₄
$CaO{\cdot}0,5Yb_2O_3{\cdot}0,5Al_2O_3$	1450 °C; 6 h	CaYbAlO ₄

Tab. 30: Zusammenfassung der Ergebnisse zur Synthese der Reihe CaO·0,5REE₂O₃·0,5Al₂O₃

Abb. 82: Röntgendiffraktogramm von CaO·0,5La₂O₃·0,5Al₂O₃, Pechini-Methode, Sintertemperatur 1000 - 1200 °C

Die Röntgendiffraktogramme der reinphasig synthetisierten Calcium-Seltenerd-Aluminate CaNdAlO₄, CaSmAlO₄, CaEuAlO₄, CaGdAlO₄, CaDyAlO₄, CaYAlO₄, CaYbAlO₄ sind in Abb. 83 gezeigt. Zudem ist oberhalb die Referenzkarte ICDD: 01-081-0743 für CaNdAlO₄ [178] dargestellt. Die Röntgendiffraktogramme ähneln sich aufgrund der gleichen Kristallstruktur I4/mmm sehr stark. Bedingt durch die variierenden Ionenradien der eingebauten Seltenerdmetalle kommt es zu einer leichten Verschiebung der Peakpositionen, bspw. von 32,85 °20 (CaNdAlO₄, *hkl* = 103) zu 33,56 °20 (CaYbAlO₄, *hkl* = 103).

Tab. 31:Verfeinerte Gitterparameter für CaREEAlO4 (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb) bei
Raumtemperatur. Raumgruppe: I4/mmm ($\alpha = \beta = \gamma = 90,00^\circ$; a = b)

Verbindungen	a [Å]	c [Å]	V [Å ³]	
CaLaAlO ₄	3,715(1)	12,338(3)	170,29(0)	
CaNdAlO ₄	3,679(9)	12,149(2)	164,52(0)	
CaSmAlO ₄	3,670(6)	12,061(5)	162,50(7)	
CaEuAlO ₄	3,663(7)	12,025(1)	161,40(4)	
CaGdAlO ₄	3,657(1)	11,997(4)	160,45(3)	
CaDyAlO ₄	3,647(8)	11,909(5)	158,47(2)	
CaYAlO ₄	3,643(2)	11,895(5)	157,89(2)	
CaYbAlO ₄	3,643(0)	11,755(2)	156,00(4)	

Ausgehend von der Struktur für CaSmAlO₄ (ICSD: 2570 [188]) wurden die Gitterparameter der Calcium-Seltenerd-Aluminate mittels Rietveld-Methode verfeinert. Die verfeinerten

Gitterparameter der Verbindungen variieren systematisch mit den Ionenradien der Seltenen Erden. So nimmt beispielsweise das Zellvolumen von 170,29 Å³ (CaLaAlO₄) auf 156,05 Å³ (CaYbAlO₄) ab. Die Gitterparameter a, c und V sind Tab. 31 aufgelistet. Die vollständigen Reflexlisten können dem Anhang entnommen werden.

Abb. 83: Röntgendiffraktogramme der Verbindungen CaREEAlO4 (REE = Nd, Sm, Eu, Gd, Dy, Y und Yb)

REM-Aufnahmen von CaYAlO₄ und CaDyAlO₄ sind in Abb. 84 als repräsentative Beispiele für die Verbindungsreihe CaREEAlO₄ dargestellt. Die Proben sind recht homogen, da die Ausgangsstoffe als Lösung gut vermischt wurden. Die Partikel haben keine klare Form und die Korngrößen liegen im Bereich von bis zu 5 µm, was zu einer intensiven Agglomeratbildung führt. Das undefinierte Aussehen ist in der angewendeten Sol-Gel-Methode, der hohen Sintertemperatur und der anschließenden Zerkleinerung der Proben begründet.

Abb. 84: REM-Aufnahmen von a) CaYAlO₄ und b) CaDyAlO₄

Abb. 85: Wärmeflussdiagramme von CaAl₂O₄, CaDyAlO₄, CaEuAlO₄ CaGdAlO₄ und CaYAlO₄

Ergebnisse der kalorimetrischen Untersuchung von $CaAl_2O_4$ und $CaREEAlO_4$ (REE = Dy, Eu, Gd und Y) sind in Abb. 6 dargestellt. Das untersuchte Wasser/Feststoff-Verhältnis war 1. Der Hydratationsprozess von Calciummonoaluminat wurde in der Vergangenheit umfassend untersucht, da $CaAl_2O_4$ die wichtigste hydraulische Komponente von Tonerdezement mit

hohem Tonerdegehalt darstellt. Die Wärmepeaks werden der Bildung der metastabilen Hydrate CaO·Al₂O₃·10H₂O (CAH₁₀), 2CaO·Al₂O₃·8H₂O (C₂AH₈) und 3CaO·Al₂O₃·6H₂O (C₃AH₆) zugeordnet, die während der ersten Stufe der Festigkeitsentwicklung in Tonerdezementen entstehen. Im Gegensatz dazu zeigten die synthetisierten CaREEAlO₄ kein hydraulisches Verhalten. Die kleinen Peaks können der Benetzungswärme, die beim Einspritzen des Wassers frei wird, zugeordnet werden. PXRD-Muster von Proben, die nach der Vermischung mit Wasser gemessen wurden, zeigten ebenfalls keine neuen Peaks. Die Zugabe von Wasser zum Pulver CaREEAlO₄ führte lediglich zur Bildung einer Suspension.

SrREEAlO₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y, Yb, Sc)

Bei der Synthese von Strontium-Seltenerd-Aluminaten SrREEAlO₄ waren im Gegensatz zu den im vorherigen Abschnitt behandelten CaREEAlO₄ nicht alle angestrebten Phasen stabil. Die Synthese war lediglich für Seltene Erden mit größerem Ionenradius (La, Nd, Sm, Eu und Gd) erfolgreich. Tab. 32 enthält die angewendeten Synthesebedingungen für die jeweiligen Phasen. Die Sintertemperatur variierte zwischen 1300 und 1450 °C.

Synthesebedingungen	Ergebnisse
1400 °C; 10 h	SrLaAlO ₄
1300 °C; 6 h	SrNdAlO ₄
1300 °C; 6 h	SrSmAlO ₄
1300 °C; 6 h	SrEuAlO ₄
1350 °C; 7 h	SrGdAlO ₄
1450 °C; 16 h, als Tablette	SrDyAlO ₄ ; Mischoxide
1300 °C; 8 h	SrYAl ₃ O ₇ ; SrAl ₂ O ₄ ; Y ₂ O ₃
900 - 1500 °C; 20 h	SrYbAl ₃ O ₇ ; SrAl ₂ O ₄ ; Yb ₂ O ₃
	Synthesebedingungen 1400 °C; 10 h 1300 °C; 6 h 1300 °C; 6 h 1300 °C; 6 h 1350 °C; 7 h 1450 °C; 16 h, als Tablette 1300 °C; 8 h 900 - 1500 °C; 20 h

Tab. 32: Zusammenfassung der Ergebnisse zur Synthese der Reihe SrO·0,5REE₂O₃·0,5Al₂O₃

Die Röntgendiffraktogramme der Verbindungen SrREEAIO₄ (REE = La, Nd, Sm, Eu, Gd und Dy) sind in Abb. 86, von oben nach unten mit zunehmendem Ionenradius der Seltenen Erden, dargestellt. Erwartungsgemäß sind die Diffraktogramme einander aufgrund der gleichen Kristallstruktur und ähnlicher Ionenradien der Seltenerden sehr ähnlich. Für SrDyAlO₄ existieren in der Literatur zwar keine Strukturdaten. Aufgrund der Ähnlichkeit zu den synthetisierten Phasen der Sr-Reihe kann jedoch darauf geschlossen werden, dass die Phase SrDyAlO₄ hergestellt wurde. Die Hauptpeaks der tetragonalen I4/mmm-Struktur bei 25,21 °20 (*hkl* = 101), 32,65 °20 (*hkl* = 103), 34,39 °20 (*hkl* = 110) und 45,59 °20 (*hkl* = 114) sind eindeutig vorhanden. Auch die leichte Verschiebung dieser Peaks zu größeren Winkeln 20 im

Vergleich zu Peaks von SrGdAlO₄ ist in Übereinstimmung mit dem kleineren Ionenradius von Dysprosium im Vergleich zu Gadolinium (25,15 °20 (hkl = 101), 32,54 °20 (hkl = 103), 34,31 °20 (hkl = 110) und 45,43 °20 (hkl = 114)). Die Zuordnung zu weiteren möglichen Phasen war mit den verwendeten Datenbanken ICDD und ICSD nicht möglich. Weitere, vergleichsweise kleinere Peaks im Bereich zwischen 30 und 40 °20 können anderen Mischoxiden wie SrDy₂Al₂O₇ (ICDD 01-076-0095 [168]), Sr₃DyAl₂O_{7,5}, (ICDD 00-047-0777 [189]sowie Dy₂O₃ (ICDD 01-079-1722 [190]) zugeordnet werden. Die mittels Pawley-Fit verfeinerten Gitterparameter sind in Tab. 33 angegeben.

Abb. 86: Röntgendiffraktogramme der Verbindungen SrREEAlO₄ (REE = La, Nd, Sm, Eu, Gd, und Dy)

Als Beispiel für eine nicht erfolgreiche Synthese ist das Röntgendiffraktogramm für den Pechini-Einsatz der stöchiometrischen Einwaage von SrO·0,5Yb₂O₃·0,5Al₂O₃ in Abb. 87 gezeigt. Die Sintertemperatur wurde zwischen 1000 und 1500 °C variiert. Auch eine Variation

der an die Sinterung anschließenden Abkühlrate änderte das Ergebnis nicht. Als Sinterprodukt konnten lediglich Yb₂O₃ (ICDD 01-084-1879 [157]), SrAl₂O₄ (ICDD 01-074-0794 [58]) und Sr₃Al₂YbO_{7,5} (ICDD 00-043-0121 [191]) nachgewiesen werden. Mit höherer Sintertemperatur werden diese Phasen lediglich kristalliner, was anhand der zunehmenden Peakintensitäten erkennbar ist.

Tab. 33: Verfeinerte Gitterparameter für SrREEAlO₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb) bei Raumtemperatur. Raumgruppe: I4/mmm ($\alpha = \beta = \gamma = 90,00^\circ$; a = b)

Verbindungen	a [Å]	c [Å]	V [Å ³]	
SrLaAlO ₄	3,755(1)	12,642(9)	178,28(3)	
SrNdAlO ₄	3,722(1)	12,490(9)	173,05(8)	
SrSmAlO ₄	3,707(3)	12,421(7)	170,72(9)	
SrEuAlO ₄	3,701(5)	12,399(6)	169,89(1)	
SrGdAlO ₄	3,696(0)	12,366(9)	168,94(5)	
SrDyAlO ₄	3,685(5)	12,301(4)	167,09(6)	

Abb. 87: Röntgendiffraktogramme von SrO·0,5Yb₂O₃·0,5Al₂O₃, Pechini-Methode, Sintertemperatur 1000 - 1500 °C

BaREEAlO₄ (REE = La, Nd, Sm, Eu, Dy, Y, Yb, Sc)

Tab. 34 fasst die Ergebnisse der Synthese der Barium-Seltenerdoxide zusammen. Es sind sowohl die angewendeten Synthesebedingungen als auch die erzielten Endprodukte angegeben.

Einwaagestöchiometrie	unterschiedliche Synthesebedingungen	Ergebnisse
$BaO \cdot 0,5La_2O_3 \cdot 0,5Al_2O_3$	1300 °C; 6 h	BaLaAlO ₄
$BaO \cdot 0,5Nd_2O_3 \cdot 0,5Al_2O_3$	1300 - 1400 °C; 12 h	Ba ₃ Al ₂ NdO _{7,5} ; BaNd ₂ O ₄ , Nd ₂ O ₃ ;
		NdAlO ₃
$BaO \cdot 0,5Sm_2O_3 \cdot 0,5Al_2O_3$	1200 - 1300 °C; 12 h	BaAl ₂ O ₄ Sm ₂ O ₃
$BaO \cdot 0,5Eu_2O_3 \cdot 0,5Al_2O_3$	900 - 1500 °C; 20 h	BaAl ₂ O ₄ ; Ba ₃ Al ₂ O ₆ ; Eu ₂ O ₃ (unter
		1300 °C kub. und drüber monokl.)
$BaO \cdot 0,5 Dy_2 O_3 \cdot 0,5 Al_2 O_3$	1450 °C; 15 h	BaAl ₂ O ₄ ; Ba ₃ DyAl ₂ O _{7,5} ; Dy ₂ O ₃
$BaO \cdot 0,5Y_2O_3 \cdot 0,5Al_2O_3$	1300 °C; als Tablette	BaAl ₂ O ₄ ; Ba ₃ YAl ₂ O _{7,5} ; Y ₂ O ₃ ;
$BaO \cdot 0,5Yb_2O_3 \cdot 0,5Al_2O_3$	1200 °C - 1450 °C	BaAl ₂ O ₄ ; Yb ₂ O ₃ ; Ba ₂ YbAlO ₅

Tab. 34: Zusammenfassung der Ergebnisse zur Synthese der Reihe BaO·0,5REE₂O₃·0,5Al₂O₃

Bei der Synthesereihe BaREEAIO₄ war einzig die Phase BaLaAIO₄ unter den gewählten Synthesebedingungen stabil. Im Gegensatz zu den tetragonalen CaREEAIO₄ und SrREEAIO₄, die in den vorherigen Abschnitten beschrieben sind, kristallisiert BaLaAIO₄ in einer orthorhombischen Struktur mit der Raumgruppe P2₁2₁2₁ [192, 193]. Die mittels Rietveld verfeinerten Gitterparameter betragen a = 5,828(8) Å, b = 7,288(1) Å und c = 9,881(9) Å. Die Nebenphase LaAIO₃ verschwindet vollständig ab einer Sintertemperatur von 1200 °C (vgl. Abb. 88). Im BaLaAIO₄-Wirtsgitter besetzen Al³⁺-Ionen die tetraedrischen Stellen (AlO₄) und La³⁺-Ionen die dodekaedrischen Stellen (LaO₈). Ba²⁺-Ionen sind durch die Verbindung mit benachbarten Polyedern mit zehn O²⁻-Ionen koordiniert. Die Oberflächenmorphologie und Korngröße der synthetisierten Phasen wurden mittels REM (siehe Abb. 89) untersucht: das Wirtsgitter tritt in unregelmäßigen Formen mit Agglomeraten einer durchschnittlichen Korngröße von 0,5 bis 2 µm auf.

Abb. 88: Röntgendiffraktogramme von BaLaAlO₄, Pechini-Methode, Sintertemperatur 1200 - 1300 °C

Abb. 89: REM-Aufnahmen von BaLaAlO₄

Abgesehen von Lanthan konnte mit keiner weiteren Seltenen Erde eine Verbindung mit der allgemeinen Formel BaREEAlO₄ synthetisiert werden. Es wurde ebenfalls versucht, durch Variation der Sintertemperatur und der Sinter- und Abkühlzeit zu einem Syntheseerfolg zu kommen. Beispielhaft ist in Abb. 90 das Röntgendiffraktogramm von BaO·0,5Dy₂O₃·0,5Al₂O₃ nach Sinterung bei 1300 °C und 1450 °C dargestellt. Die Phasen BaAl₂O₄ (ICDD: 01-073-0202 [194]), Dy₂O₃ (ICDD: 01-088-2164 [195]) und Ba₃DyAl₂O_{7,5} (ICDD: 00-037-0291 [196]) entstehen bei 1300 °C und werden mit zunehmender Temperatur bis 1450 °C lediglich kristalliner, was die steigende Intensität der jeweiligen Peaks verdeutlicht.

Abb. 90: Röntgendiffraktogramme von BaO·0,5Dy₂O₃·0,5Al₂O₃, Pechini-Methode, Sintertemperatur 1300 und 1450 °C

5.5.3. Sm³⁺-Lumineszenz in CaEuAlO₄ und SrEuAlO₄

Die Synthese der Leuchtstoffe CaEu_{1-x}Sm_xAlO₄ und SrEu_{1-x}Sm_xAlO₄ (x = 0,00 - 0,02) erfolgte mittels Pechini-Methode bei 1300 °C für 6 Stunden. Die Röntgendiffraktogramme von mit bis zu 2,00 mol-% Sm³⁺ dotiertem CaEuAlO₄ und SrEuAlO₄ sind in Abb. 91 dargestellt. Ganz oben ist die undotierte Phase dargestellt, mit zunehmender Zeilenzahl steigt die Sm³⁺-Konzentration. Es sind keine zusätzlichen Phasen entstanden: Sm³⁺ wurde vollständig in die tetragonale Struktur der Calcium- bzw. Strontiumeuropiumaluminate eingebaut.

Abb. 91: Röntgendiffraktogramme von mit Sm3+ dotiertem CaEuAlO4 und SrEuAlO4

Abb. 92: Anregungs- und Emissionsspektrum von CaEuAlO₄ und SrEuAlO₄, Übergänge der nummerierten Peaks siehe Tab. 35

Abb. 93: Anregungs- und Emissionsspektrum von CaEuAlO₄:0,02Sm und SrEuAlO₄:0,02Sm, Raumtemperatur

Die Anregungs- und Emissionsspektren von CaEuAlO₄ und SrEuAlO₄ sind in Abb. 92 dargestellt. Das Anregungsspektrum wurde bei einer Emissionswellenlänge von 619 nm im Bereich von 350 bis 550 nm aufgenommen. Die Anregungsspektren bestehen aus 4f \rightarrow 4f-Übergängen des Eu³⁺-Ions, wobei der Peak bei 395 nm (⁷F₀ \rightarrow ⁵L₆) der stärkste ist. Die Peaklagen stimmen mit Daten aus der Literatur für tetragonale Strukturen überein [197–199]. Das Emissionsspektrum, welches bei einer Anregungswellenlänge von 395 nm aufgenommen wurde, besteht aus Peaks bei 590, 619, 648 und 699 nm, die den Übergangszuständen ⁵D₀ \rightarrow ⁷F_J (J = 1 - 4) des Eu³⁺-Ions entsprechen. Alle beobachteten Übergänge und die entsprechende Zuordnung sind in Tab. 35 aufgeführt.
Pool Nr	Üborgong	beobachtete Wellenläng	ge [nm] im Wirtsgitter
	Obergang	CaEuAlO ₄	SrEuAlO ₄
1	$^{7}F_{0} \rightarrow {}^{5}D_{4}$	362	362
2	${}^{7}F_{0} \rightarrow {}^{5}L_{8}$	366	366
3	$^{7}F_{0} \rightarrow {}^{5}G_{3}$	376	376
4	$^{7}F_{0} \rightarrow {}^{5}L_{7}$	383	382
5	$^{7}F_{0} \rightarrow {}^{5}L_{6}$	395	395
6	${}^7\mathrm{F}_0 \rightarrow {}^5\mathrm{D}_3$	415	415
7	$^{7}F_{0} \rightarrow {}^{5}D_{2}$	465	465
8	${}^7\mathrm{F}_0 \rightarrow {}^5\mathrm{D}_1$	526	525
9	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}$	590	590
10	${}^5D_0 \rightarrow {}^7F_2$	619	618
11	${}^5D_0 \rightarrow {}^7F_3$	648	651
12	${}^5D_0 \rightarrow {}^7F_4$	699	699

Tab. 35: Beobachtete Eu³⁺-Übergänge in CaEuAlO₄ und SrEuAlO₄ (Nummerierung siehe Abb. 92)

In Abb. 93 sind die Anregungs- ($\lambda_{Em} = 619$ nm) und Emissionsspektren ($\lambda_{Anr} = 395$ nm) von mit 2 mol-% Sm3+ dotiertem CaEuAlO4 und SrEuAlO4 dargestellt. Vergleicht man diese mit den Spektren der reinen Wirtsgitter, dann sind überwiegend die für Eu³⁺ charakteristischen Übergänge sowie ein intensiver Peak bei 406 nm und ein schwacher Peak bei 484 nm zu erkennen. Diese Peaks sind in der Abbildung jeweils mit einem Stern markiert und entsprechen dem intensivsten Übergang ${}^{6}H_{5/2} \rightarrow {}^{4}K_{11/2}$ und ${}^{6}H_{5/2} \rightarrow {}^{4}I_{11/2} + {}^{4}M_{15/2}$ von Sm³⁺ [35, 14, 200, 201]. Die Lumineszenzeigenschaften der Leuchtstoffe CaEuAlO4:Sm und SrEuAlO4:Sm wurde in Abhängigkeit der Sm³⁺-Konzentration untersucht. Die Emissionsspektren sind in Abb. 94 dargestellt. Sie wurden bei einer Wellenlänge von 406 nm aufgenommen, um sowohl Europium als auch Samarium anzuregen. Die Emissionsspektren bestehen ausschließlich aus Peaks, die den Übergängen von Eu³⁺ entsprechen (vgl. Abb. 92): der Bereich um 600 und 650 nm weist keine Peaks auf, was typisch für die Emission von Sm³⁺ ist. Die Eu³⁺-Peaks bei 590, 619 und 690 nm nehmen mit steigender Sm³⁺-Konzentration zu. Bei der Dotierung mit 2 mol-% Sm³⁺ steigt die rote Emission in etwa um das Vierfache bei CaEuAlO4 und das Zweifache bei SrEuAlO₄. Wie bereits in Abschnitt 5.3.3 erläutert liegt dies an der Energieübertragung von Sm³⁺ auf Eu³⁺ [160]. Bei einer Anregung mit 406 nm werden Sm³⁺-Ionen aus dem Grundzustand ⁶H_{5/2} zum ⁴K_{11/2}-Niveau angehoben. Vom ⁴G_{5/2}-Zustand werden die Elektronen durch Resonanz auf das 5D0-Niveau des Eu3+ übertragen. Der Energietransfer erhöht die des ⁵D₀-Niveaus der Eu³⁺-Ionen und führt zur Erweiterung ihres Population Anregungsbereichs. Das Schema des Energieübertragungsprozesses ist in Abb. 95 dargestellt.

Abb. 94: Emissionsspektrum von CaEuAlO₄:xSm und SrEuAlO₄:xSm ($\lambda_{Anr} = 406$ nm)

Abb. 95: Darstellung des Energieübertragungsprozesses bei CaEuAlO₄:xSm

5.5.4. Dy³⁺-Lumineszenz in CaEuAlO₄ und SrEuAlO₄

Die Dotierung der Wirtsgitter CaEuAlO₄ und SrEuAlO₄ mit Dy³⁺ erfolgte, analog zum vorherigen Abschnitt, mittels Pechini-Synthese bei 1300 °C für 6 Stunden. Die Röntgendiffraktogramme der mit bis zu 2,00 mol-% Dy³⁺ dotierten Erdalkali-Europium-Aluminate sind in Abb. 96 gezeigt. Dabei ist die Darstellungsart gleich der im vorherigen Abschnitt. Erwartungsgemäß wurde auch hier keine Nebenphase detektiert.

Die Anregungs- und Emissionsspektren von mit 2 mol-% Dy³⁺ dotiertem CaEuAlO₄ und SrEuAlO₄ sind in Abb. 97 dargestellt. Sie ähneln sehr stark denen der undotierten Wirtsgitter.

Da sich keine optimale Anregungswellenlänge für das eingebaute Dy³⁺ feststellen ließ und die Emissionsintensitäten von Eu³⁺ im Wirtsgitter sehr stark sind, wurden keine konzentrationsabhängigen Lumineszenzmessungen vorgenommen.

Abb. 96: Röntgendiffraktogramme von mit Dy3+ dotierten CaEuAlO4 und SrEuAlO4

Abb. 97: Anregungs- und Emissionsspektrum von CaEuAlO4:0,02Dy und SrEuAlO4:0,02Dy, Raumtemperatur

5.5.5. Zusammenfassung und Diskussion

In diesem Abschnitt wird der wesentliche Vorteil der Pechini-Methode zur Synthese reinphasiger Verbindungen von Erdalkali-Seltenerd-Aluminaten bei einer niedrigen Sintertemperatur (1200 °C, 7 h) im Vergleich zu der für die Festkörpersynthese erforderlichen Temperatur (≥ 1400 - 1600 °C, über 48 h) eindrucksvoll deutlich. Nicht alle Phasen der Synthesereihe waren jedoch stabil. Die stabilen Verbindungen sind in Tab. 36 zusammengefasst. Grau markierte Zellen markieren gelungene Synthesen. Lediglich bei den

Synthesen von CaLaAlO₄ und SrDyAlO₄ konnten noch kleine Mengen an Nebenphase nachgewiesen werden, welche auch durch die Optimierung der Synthesebedingungen nicht zu beseitigen waren. BaLaAlO₄ ist aufgrund der abweichenden Kristallstruktur im Vergleich zu den anderen stabilen tetragonalen Verbindungen der Erdalkali-Seltenerd-Aluminate (orthorhombische Struktur, Raumgruppe P2₁2₁2₁) mit einem Stern markiert.

Tab. 36:	Darstellung der	r durchgeführten	Synthesen von	Erdalkali-Selten	erd-Aluminaten
	0	0	2		

	CaO	SrO	BaO
La ₂ O ₃	(CaLaAlO ₄)	SrLaAlO ₄	BaLaAlO4 [*]
Nd ₂ O ₃	CaNdAlO ₄	SrNdAlO ₄	BaNdAtO ₄
Sm ₂ O ₃	CaSmAlO ₄	SrSmAlO ₄	BaSmA10 ₄
Eu ₂ O ₃	CaEuAlO ₄	SrEuAlO ₄	BaEuAtO ₄
Gd ₂ O3	CaGdAlO ₄	SrGdAlO ₄	BaGdA104
Dy ₂ O ₃	CaDyAlO ₄	(SrDyAlO ₄)	BaDyAlO ₄
Y2O3	CaYAlO ₄	SrYA104	BaYA104
Yb2O3	CaYbAlO ₄	SrYbAlO4	BaYbAlO ₄

grau hinterlegt: stabile Verbindungen

in Klammern: Nebenphase in kleinen Mengen vorhanden

durchgestrichen: theoretische Zusammensetzung der nicht stabilen Verbindung

Die tetragonalen Erdalkali-Seltenerd-Aluminate gehören zur großen Familie von Verbindungen mit der allgemeinen Formel ABCO₄ (A = zweiwertiges Erdalkalikation, B = dreiwertiges REE und C = dreiwertiges Übergangsmetallkation). Diese Materialien kristallisieren in einem perowskitartigen Kristallsystem mit der tetragonalen K₂NiF₄-Struktur. Die Besonderheit dieser Struktur ist, dass die zweiwertigen Erdalkalien und dreiwertige Seltenen Erden die gleiche Atompositionen im Verhältnis 1:1 besetzen.

CaREEAlO₄ kristallisiert aufgrund der ähnlichen Ionengröße von Calcium (100 pm) zu den Seltenen Erden (75 – 103 pm) mit der gesamten Bandbreite der untersuchten Seltenen Erden, während SrREEAlO₄ lediglich mit Seltenen Erden mit größerem Ionenradius (bis zu Dy) existiert. Bei der einzigen stabilen Verbindung der Ba-Reihe, BaLaAlO₄, handelt es sich um eine orthorhombische Struktur mit der Raumgruppe P2₁2₁2₁. Den größten Unterschied zwischen dem Ionenradius der Seltenen Erde und dem des Erdalkali-Metalls weist die stabile tetragonale Verbindung SrDyAlO₄ auf. Die dabei beobachtete maximale Abweichung der Ionenradien beträgt 22,7 %. Die verfeinerten Gitterparameter sind in Abb. 98 über die Ionenradien der eigebauten Seltenen Erden aufgetragen. Es ist eine Zunahme der Zellparameter mit zunehmendem Ionenradius feststellbar.

Die Stabilität der K₂NiF₄-Struktur in Verbindungen mit der Formel ABCO₄ wird üblicherweise im Hinblick auf den Goldschmidt-Toleranzfaktor t diskutiert, der definiert ist als

$$t = \frac{r(A - 0)}{\sqrt{2}r(B - 0)}$$
(6)

Abb. 98: Abhängigkeit der MREEAIO₄-Gitterparameter vom REE³⁺-Ionenradius

Die tetragonale K₂NiF₄-Struktur wird innerhalb der Grenzen 1,02 > t > 0,85 als stabil angenommen [202]. Für die stabilen Verbindungen in dieser Arbeit konnte ein Toleranzfaktor t im Bereich von 0,91 (CaYbAlO₄) und 0,97 (SrLaAlO₄) berechnet werden. Für die nicht stabilen Verbindungen der Ba-Reihe wurde ein größerer Wertbereich (0,97 – 1,00) kalkuliert. Es ist zu vermuten, dass SrYAlO₄ und SrYbAlO₄ metastabile Phasen sind, da für beide t = 0,94 beträgt. Singh et al. berichteten kürzlich von der Synthese von tetragonalem SrYAlO₄ mittels harnstoffunterstützter Lösungsverbrennungstechnik (urea-assisted solution combustion technique) [203]. Möglicherweise ist mit dieser Methode ebenfalls die Synthese von SrYbAlO₄ erfolgreich. Die Synthese der Leuchtstoffe CaEuAlO₄:xSm und SrEuAlO₄:xSm (x = 0,0025, 0,005, 0,01, 0,015; 0,02) erfolgte mittels Pechini-Synthese bei 1300 °C für 6 Stunden. Dabei entstand keine weitere Phase. Die Emissionsspektren des mit 2 mol-% Sm³⁺ dotierten CaEuAlO₄ und SrEuAlO₄ zeigten überwiegend die für Eu³⁺ charakteristischen Übergänge (bspw. 395 nm für $^{7}F_{0} \rightarrow {}^{5}L_{6}$). Man konnte weiterhin einen relativ intensiven Anregungsübergang von Sm³⁺ bei 406 nm ($^{6}H_{5/2} \rightarrow {}^{4}K_{11/2}$) beobachten. Die Sm³⁺-konzentrationsabhängige Lumineszenzmessung wurde dementsprechend bei einer Anregungswellenlänge von 406 nm durchgeführt. Mit der Dotierung von 2 mol-% Sm³⁺ steigt die rote Emission in etwa um das Vierfache bei CaEuAlO₄ und das Zweifache bei SrEuAlO₄.

Die Anregungs- und Emissionsspektren des nicht und mit 2 mol-% Dy^{3+} dotierten CaEuAlO₄ und SrEuAlO₄ zeigten keine wesentlichen Auffälligkeiten: keine für Dy^{3+} typische Übergänge wurden beobachtet. Die starken elektronischen Übergänge von Eu³⁺ überlappen mit den elektronischen Übergängen von Dy^{3+} .

5.6. Erdalkali-Seltenerd-Borate

5.6.1. Einleitung

Bei Erdalkali-Seltenerd-Boraten handelt es sich um Doppelborate, das heißt sie bestehen aus zwei unterschiedlichen Metalloxiden und Boroxid. An dieser Stelle sind lediglich solche von Interesse, die aus den Komponenten Erdalkali-Oxid (MO), Seltenerd-Oxid (REE₂O₃) und Bor-Oxid (B₂O₃) bestehen. Diese Verbindungen sind für den Einsatz in WLEDs von großer Bedeutung, da man sie sowohl mit zweiwertigen als auch mit dreiwertigen Seltenerdmetallen (z.B. Eu²⁺ und Sm³⁺) dotieren und dadurch zwei Leuchtstoffe unterschiedlicher Farbe mit demselben Wirtsgitter erhalten kann. Frühere Studien über Borate haben sich insbesondere mit den Materialien befasst, die durch verschiedene Formeln wie REE(BO₂)₃, MREE₂B₁₀O₁₉, M₃REE₂(BO₃)₄, M₃REE(BO₃)₄, M₄REEO(BO₃)₃, M₃REE(BO₃)₃ und M₃(BO₃)₂ beschrieben werden. Diese Materialien wurden zumeist in Bezug auf ihre optischen Eigenschaften untersucht [204–211]. Die Verbindungen mit isolierten planaren (BO₃)³⁻-Ionen werden Orthoborate genannt.

In der vorliegenden Arbeit werden ausschließlich Erdalkali-Seltenerd-Borate mit der allgemeinen Formel M₃REE₂(BO₃)₄ (M = Ca, Sr, Ba; REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb) behandelt. Als erster Stoff dieses Verbindungstyps wurde $Sr_3Ho_2(BO_3)_4$ im Jahr 1968 von Dzhurinskii et al. synthetisiert [212]. Die drauffolgenden Arbeiten, v.a. von Kindermann, Abdullaev und Palkina, tragen maßgebend zur strukturellen Untersuchung dieser Phasen bei [213–218]. Dabei wurden die Phasen sowohl einkristallin gezüchtet als auch mittels Festkörpermethode als Pulver synthetisiert. Die veröffentlichten Gitterparameter sind einander sehr ähnlich und variieren lediglich mit dem Radius der Seltenen Erden und Erdalkalien. Die meisten Verbindungen werden in der Literatur als kongruent schmelzend angegeben, d.h. ihre Schmelze hat dieselbe Zusammensetzung wie die feste Phase. Eine Zusammenfassung der ausgewählten Schmelz- oder Zersetzungstemperaturen ist in Tab. 37 angegeben.

Verbindungen	Schmelztemperatur	Literatur	
$Ca_3La_2(BO_3)_4$	1425 °C	[206]	
$Ca_3Y_2(BO_3)_4$	1350 °C	[207]	
$Ca_3Yb_2(BO_3)_4$	1275 °C	[214]	
Sr ₃ Gd ₂ (BO ₃) ₄	1450 °C	[219]	

Tab. 37: Ausgewählte Schmelztemperaturen der Verbindungsgruppe M₃REE₂(BO₃)₄

Die Kristallstruktur der Phasen ist in älterer Literatur mit P2₁cn (Nr. 33) beschrieben. Neuere Arbeiten, beispielsweise von Yan et al. und Mill et al., beschreiben sie mit einer höheren Symmetrie und der Raumgruppe Pnma (Nr. 62) [220, 206]. Die Struktur ist demnach zentrosymmetrisch. Durch das Auftreten systematisch ausgelöschter Reflexe sind beide Raumgruppen für die Verbindungsgruppe möglich [221]. Zur Klärung dieser Fragestellung wurden in der Vergangenheit sowohl Pulverröntgendaten als auch Einkristalldaten betrachtet, es existieren zu gleichen Verbindungen unterschiedliche Verfeinerungsergebnisse. Die Festlegung auf eine der zwei Raumgruppen ist an dieser Stelle anhand der Quellenlage deshalb nicht möglich. Die bereits in Abschnitt 5.4.3 untersuchte Verbindung Sr₃Eu₂(BO₃)₄ im System SrO-Eu₂O₃-B₂O₃ konnte mit sehr gutem Ergebnis mit der Raumgruppe Pnma verfeinert werden.

In diesem Abschnitt wird die Synthese der Phasen der Verbindungsgruppe $M_3REE_2(BO_3)_4$ (M = Ca, Sr, Ba; REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb) mittels Festkörpermethode dargestellt. Die Kristallstruktur wurde bestimmt und spektroskopische Eigenschaften untersucht.

5.6.2. Synthese und Charakterisierung von Erdalkali-Seltenerd-Boraten

Erdalkali-Seltenerd-Borate wurden mittels Festkörpermethode nach der allgemeinen chemischen Gleichung (7) reinphasig synthetisiert. Die Kristallstruktur wurde bereits in Abschnitt 5.4.3 beschrieben.

$$3M(NO_3)_2 \cdot yH_2O + REE_2O_3 + 4H_3BO_3 \rightarrow M_3REE_2(BO_3)_4 + 6NO_x \uparrow + (6 + 3y)H_2O \uparrow$$
(7)

Ca₃REE₂(BO₃)₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb)

Die Synthese aller Verbindungen der Reihe $Ca_3REE_2(BO_3)_4$ war erfolgreich. Die unterschiedlichen Synthesebedingungen sind in Tab. 38 aufgelistet. Die mehrmaligen Mahlschritte zwischen den Sinterprozessen waren entscheidend für die erfolgreiche Synthese.

Abb. 99: Röntgendiffraktogramme der Verbindungen Ca₃REE₂(BO₃)₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb)

Synthetisierte	Synthese-	Gitterparameter			
Phasen	bedingungen	a [Å]	b [Å]	c [Å]	V [Å ³]
$Ca_3La_2(BO_3)_4$	1250 °C; 12 h	7,258(9)	16,064(1)	8,675(6)	1011,66(5)
Ca ₃ Nd ₂ (BO ₃) ₄	1175 °C; 12 h	7,238(2)	15,721(3)	8,660(6)	985,54(6)
$Ca_3Sm_2(BO_3)_4$	1150 °C; 20 h	7,224(7)	15,592(4)	8,650(7)	974,52(4)
$Ca_3Eu_2(BO_3)_4$	1150 °C; 20 h	7,207(7)	15,544(5)	8,630(2)	966,93(7)
Ca ₃ Gd ₂ (BO ₃) ₄	1100 °C; 12 h	7,194(1)	15,542(0)	8,613(3)	963,06(9)
Ca ₃ Dy ₂ (BO ₃) ₄	1125 °C; 12 h	7,166(5)	15,481(1)	8,576(5)	951,53(0)
$Ca_3Y_2(BO_3)_4$	1250 °C; 26 h	7,164(2)	15,446(1)	8,548(6)	945,99(1)
Ca ₃ Yb ₂ (BO ₃) ₄	1200 °C; 10 h	7,132(0)	15,399(8)	8,508(5)	934,52(0)

Tab. 38: Zusammenfassung der Ergebnisse zur Synthese der Reihe 3CaO·La₂O₃·2B₂O₃

Die Röntgendiffraktogramme der reinphasig synthetisierten Calcium-Seltenerd-Borate $Ca_3REE_2(BO_3)_4$ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb) sind in Abb. 99 gezeigt. Die Referenzkarte ICSD: 261815 für $Ca_3La_2(BO_3)_4$ [206] ist in der ersten Zeile dargestellt. Von oben nach unten nehmen die Ionenradien der eingebauten Seltenen Erden ab. Die Strukturen besitzen die gleiche Kristallstruktur, was sich in den sehr ähnlichen Röntgendiffraktogrammen widerspiegelt. Die Verfeinerung der Daten war mit der orthorhombischen Raumgruppe Pnma (Nr. 62) erfolgreich. Die Kristallstruktur ist isostrukturell zu der von Sr₂Eu₃(BO₃)₄ und ist bereits in Abschnitt 5.4.3 beschrieben: sie besteht aus isolierten BO₃-Dreiecken und drei unabhängigen M1O₈-, M2O₈- und M3O₈-Polyedern, die durch Ecken und Kanten verbunden sind (vgl. Abb. 81).

Sr₃REE₂(BO₃)₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb)

Tab. 39 fasst die Ergebnisse der Synthese der Strontium-Seltenerd-Borate $Sr_3REE_2(BO_3)_4$ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb) zusammen. Analog zum vorherigen Abschnitt war der Einbau der Seltenen Erden in Borate in der Sr-Serie von Lanthan mit großem Ionenradius bis zu Ytterbium mit kleinem Ionenradius durchweg erfolgreich. Die zugehörigen Röntgendiffraktogramme der reinphasig synthetisierten Phasen $Sr_3La_2(BO_3)_4$, $Sr_3Nd_2(BO_3)_4$, $Sr_3Sm_2(BO_3)_4$, $Sr_3Eu_2(BO_3)_4$, $Sr_3Gd_2(BO_3)_4$, $Sr_3Dy_2(BO_3)_4$, $Sr_3Y_2(BO_3)_4$ und $Sr_3Yb_2(BO_3)_4$ sind in Abb. 100 gezeigt. Zudem ist die Referenzkarte ICSD 425612 für $Sr_3Yb_2(BO_3)_4$ [222] im unteren Bereich dargestellt. Ausgehend von der ICSD-Karte konnten die Gitterparameter aller Phasen der Sr-Reihe mit Pnma (Nr. 62) mittels Rietveld-Methode verfeinert werden. Die verfeinerten Gitterparameter sind ebenfalls in Tab. 39 aufgeführt. Die Gitterparameter unterscheiden sich nur leicht voneinander und sind direkt abhängig von den Ionenradien der eingebauten Seltenen Erden.

Synthetisierte	Synthese-	Gitterparameter			
Phasen	bedingungen	a [Å]	b [Å]	c [Å]	V [Å ³]
$Sr_3La_2(BO_3)_4$	1250 °C; 12 h	7,414(5)	16,516(9)	8,904(2)	1090,46(1)
$Sr_3Nd_2(BO_3)_4$	1300 °C; 15 h	7,421(0)	16,211(0)	8,839(5)	1063,42(8)
$Sr_3Sm_2(BO_3)_4$	1250 °C; 12 h	7,419(4)	16,137(8)	8,788(0)	1052,23(0)
$Sr_3Eu_2(BO_3)_4$	1250 °C; 12 h	7,412(8)	16,093(8)	8,766(2)	1045,81(4)
Sr ₃ Gd ₂ (BO ₃) ₄	1100 °C; 10 h	7,414(7)	16,070(7)	8,747(9)	1042,39(9)
Sr ₃ Dy ₂ (BO ₃) ₄	1075 °C; 25 h	7,399(2)	15,966(8)	8,709(0)	1028,90(8)
Sr ₃ Y ₂ (BO ₃) ₄	1200 °C; 15 h	7,387(1)	15,960(6)	8,671(3)	1022,37(8)
Sr ₃ Yb ₂ (BO ₃) ₄	1200 °C; 22 h	7,381(5)	15,893(2)	8,660(2)	1015,99(7)

Tab. 39: Zusammenfassung der Ergebnisse zur Synthese der Reihe 3SrO·La₂O₃·2B₂O₃

Abb. 100: Röntgendiffraktogramme der Verbindungen Sr₃REE₂(BO₃)₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb)

Um die Koordinationsumgebung von B-O in den synthetisierten Verbindungen zu bestätigen, wurden FTIR-Untersuchungen durchgeführt. Abb. 101 zeigt das IR-Spektrum des KBr-Presslings im Bereich von 1400 bis 400 cm⁻¹. In diesem Bereich liegen die Schwingungspeaks, die für die planare BO₃-Gruppe charakteristisch sind. Die Auswertung der Daten erfolgte durch Vergleich mit Literaturdaten bekannter Orthoborate [223, 224, 102, 225]. Die Deformationsschwingungen der BO₃-Einheit erscheinen im IR-Spektrum als Banden bei 592 cm⁻¹, 731 cm⁻¹ und 787 cm⁻¹. Die schwache Bande bei 918 cm⁻¹ ist der symmetrischen Streckschwingung innerhalb der Boreinheit zugordnet. Die zwei breiten Peaks bei 1261 cm⁻¹ und 1185 cm⁻¹ sind auf die Dehnungsschwingung der dreieckigen BO₃-Gruppe zurückzuführen [102].

Abb. 101: FTIR-Spektren von Sr₃REE₂(BO₃)₄ (REE = Nd, Sm, Eu, Gd, Dy, Y und Yb)

Die Zusammensetzung der Orthoborate wurde mithilfe der EDX-Spektroskopie überprüft. Für die Verbindung Sr₃Dy₂(BO₃)₄ ist das EDX-Spektrum in Abb. 102 gezeigt. Die Messung ergab erwartungsgemäß, dass in der Struktur Strontium, Dysprosium und Bor enthalten sind. Gemessen an drei Punkten ergab sich ein Atomverhältnis von Sr:Dy:B von circa 2,8:1,8:4,3, was dem theoretischen Verhältnis (3:2:4) sehr nah ist.

Abb. 102: EDX-Spektrum von Sr₃Dy₂(BO₃)₄

Ba₃REE₂(BO₃)₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb)

Das Ergebnis der Synthesereihe der Barium-Seltenerd-Borate Ba₃REE₂(BO₃)₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und Yb) ist in Tab. 40 zusammengefasst. Dabei war die Synthese bis auf Ba₃Yb₂(BO₃)₄ erfolgreich. Die nötige Sintertemperatur variierte zwischen 1000 und 1300 °C, die Sinterdauer betrug zwischen 10 und 30 Stunden. Bis zu fünfmal wurden die Pulverproben zwischen den drei bis vierstündigen Sinterschritten durch Aufmahlen erneut homogenisiert. Die Röntgendiffraktogamme der reinphasigen Borate Ba₃La₂(BO₃)₄, Ba₃Nd₂(BO₃)₄, Ba₃Sm₂(BO₃)₄, Ba₃Eu₂(BO₃)₄, Ba₃Gd₂(BO₃)₄, Ba₃Dy₂(BO₃)₄ und Ba₃Y₂(BO₃)₄ sind in Abb. 103 abgebildet. Zur Phasenidentifizierung ist oben die Referenzkarte ICDD: 01-077-0546 für Ba₃La₂(BO₃)₄ [226] und unten die Referenzkarte ICDD: 00-048-0307 [227] für Ba₃Y₂(BO₃)₄ abgebildet.

Einwaage-stöchiometrie	Synthesebedingungen	Ergebnisse
$3BaO \cdot La_2O_3 \cdot 2B_2O_3$	1300 °C; 40 h	$Ba_3La_2(BO_3)_4$
$3BaO\cdot Nd_2O_3\cdot 2B_2O_3$	1125 °C; 18 h	$Ba_3Nd_2(BO_3)_4$
$3BaO\cdot Sm_2O_3\cdot 2B_2O_3$	1125 °C; 18 h	$Ba_3Sm_2(BO_3)_4$
$3BaO \cdot Eu_2O_3 \cdot 2B_2O_3$	1150 °C; 18 h	$Ba_3Eu_2(BO_3)_4$
$3BaO \cdot Gd_2O_3 \cdot 2B_2O_3$	1100 °C; 10 h	$Ba_3Gd_2(BO_3)_4$
$3BaO \cdot Dy_2O_3 \cdot 2B_2O_3$	1150 °C; 12 h	$Ba_3Dy_2(BO_3)_4$
$3BaO \cdot Y_2O_3 \cdot 2B_2O_3$	1200 °C; 22 h	$Ba_3Y_2(BO_3)_4$
$3BaO \cdot Yb_2O_3 \cdot 2B_2O_3$	1000 - 1150 °C; 30 h	Ba ₆ Yb ₅ (BO ₃) ₉ ; Ba ₃ Yb(BO ₃) ₃ ; Yb ₂ O ₃

Tab. 40: Zusammenfassung der Ergebnisse zur Synthese von der Reihe 3BaO·La₂O₃·2B₂O₃

Die Bariumborate Ba₃REE₂(BO₃)₄ (REE = La, Nd, Sm, Eu, Gd, Dy und Y) kristallisieren in orthorhombischer Struktur mit der Raumgruppe Pnma (Nr. 62). Sie sind isostrukturell zu den bereits beschriebenen Calcium- und Strontiumboraten (Ca₃REE₂(BO₃)₄, Sr₃REE₂(BO₃)₄). Von Ba₃La₂(BO₃)₄ zu Ba₃Y₂(BO₃)₄ kommt es zu einer leichten Verschiebung der Peakpositionen bspw. für den intensivsten (231)-Peak von 26,91 °20 zu 30,04 °20. Grund dafür ist der größere Ionenradius von Lanthan im Vergleich zu Ytterbium. Die Verfeinerung der Gitterparameter folgte stets der Korrektur des Probenhöhenfehlers mittels Siliziumzusatz. Die verfeinerten Gitterparameter sind in Tab. 41 angegeben.

Das Sintern der stöchiometrischen Mischung $3BaO \cdot Yb_2O_3 \cdot 2B_2O_3$ führte zu zwei verschiedenen Barium-Ytterbium-Boraten. Die Zielverbindung konnte nicht hergestellt werden, auch eine Variation von Sintertemperatur, Sinterdauer und Abkühlrate änderte das Ergebnis nicht. Die Probe wurde bei maximal 1150 °C gesintert, da sie bereits bei 1180 °C schmilzt. Die Zuordnung der Peaks zu Ba₃Yb(BO₃)₃ (ICDD 01-077-0977 [228]) und Yb₂O₃ (ICDD 01-084-1879 [157]) war aufgrund der vorhandenen charakteristischen Peaks wenig problematisch. Die Phasenzugehörigkeit der übrigbleibenden Peaks konnte weder mittels ICDD- noch ICSD-Datenbank identifiziert werden. Die einzige sinnvolle Zuordnung war mit der Referenzkarte COD: 2108449 für Ba₆Lu₅(BO₃)₉ [229] möglich (vgl. Abb. 104).

Abb. 103: Röntgendiffraktogramme der Verbindungen Ba₃REE₂(BO₃)₄ (REE = La, Nd, Sm, Eu, Gd, Dy und Y)

Verbindungen	a [Å]	b [Å]	c [Å]	V [Å ³]
Ba ₃ La ₂ (BO ₃) ₄	7,740(2)	17,026(5)	9,051(5)	1192,901
$Ba_3Nd_2(BO_3)_4$	7,738(3)	16,807(5)	8,979(8)	1167,952
Ba ₃ Sm ₂ (BO ₃) ₄	7,733(3)	16,719(3)	8,952(7)	1157,564
Ba ₃ Eu ₂ (BO ₃) ₄	7,727(8)	16,667(9)	8,947(4)	1152,500
Ba ₃ Gd ₂ (BO ₃) ₄	7,721(0)	16,618(2)	8,942(6)	1147,429
Ba ₃ Dy ₂ (BO ₃) ₄	7,699(0)	16,515(6)	8,960(9)	1139,429
$Ba_3Y_2(BO_3)_4$	7,693(7)	16,469(7)	8,969(6)	1136,581

Tab. 41: Verfeinerte Gitterparameter für Ba₃REE₂(BO₃)₄ (REE = La, Nd, Sm, Eu, Gd, Dy und Y) bei Raumtemperatur. Raumgruppe: Pnma

Da sich die Ionenradien von dreiwertigem Lutetium (86,1 pm) und dreiwertigem Ytterbium (86,8) leicht unterscheiden [25], kann man an dieser Stelle von einer isostrukturellen Verbindung ausgehen. Die mittels Rietveld-Methode erfolgte Verfeinerung der Phase, ausgehend von der Struktur für Ba₆Lu₅(BO₃)₉, resultierte in den Gitterparametern a = 13,103(5) Å, b = 9,992(4) Å, c = 20,542(0) Å, $\alpha = \gamma = 90$ ° und $\beta = 106,77$ °. Es handelt sich um eine monoklinische Struktur mit der Raumgruppe C12/c1 (Nr. 15). Die vollständigen Reflexlisten sind im Anhang angegeben.

5.6.3. Sm^{3+} -Lumineszenz in M₃Eu₂(BO₃)₄ (M = Ca, Sr, Ba)

Die Leuchtstoffe $M_3Eu_{2(1-x)}Sm_{2x}(BO_3)_4$ (M = Ca, Sr und Ba; $x \le 0,02$) wurden mittels Festkörpermethode synthetisiert. Die stöchiometrische Menge der Metalloxide bzw. -nitrate und Borsäure wurden homogen aufgemahlen und bei 1150 °C für 6 h gesintert. Nach einer Sinterzeit von 2 Stunden wurden die Proben erneut aufgemahlen bzw. homogenisiert. Die Röntgendiffraktogramme der dotierten Wirtsgitter sind in Abb. 105 gezeigt. Jede Spalte steht für eine Erdalkalireihe: In der ersten Spalte ist das Wirtsgitter Ca₃Eu_{2(1-x)}Sm_{2x}(BO₃)₄, in der zweiten Sr₃Eu_{2(1-x)}Sm_{2x}(BO₃)₄ und in der dritten Ba₃Eu_{2(1-x)}Sm_{2x}(BO₃)₄ dargestellt. In der ersten Zeile sieht man die undotierten Wirtsgitter (x = 0,00), mit zunehmender Zeilenzahl steigt die Dotierungskonzentration der Wirtsgitter bis 2,00 mol-% Sm^{3+} (x = 0,02). Röntgenographisch konnte keine Nebenphase detektiert werden.

Abb. 105: Röntgendiffraktogramme von mit Sm3+ dotiertem Ca3Eu2(BO3)4, Sr3Eu2(BO3)4 und Ba3Eu2(BO3)4

Die Anregungs- und Emissionsspektren der Wirtsgitter sind in Abb. 106 dargestellt. Sie bestehen aus für Eu³⁺ charakteristischen Übergängen. Die Zuordnung der Übergänge zu entsprechenden Wellenlängen ist in Tab. 42 aufgelistet. Die Übergänge wurden ausführlich in Abschnitt 5.3.3 beschrieben. Die Röntgendiffraktogramme der mit 2 mol-% Sm³⁺ dotierten Erdalkali-Europium-Aluminate zeigen eine sehr große Übereinstimmung zu den nicht dotierten Wirtsgittern. Die Anregungs- und Emissionsintensitäten von Eu³⁺ sind so hoch, dass die von Sm³⁺ verursachte Lumineszenz überdeckt wird.

Abb. 106: Anregungs- und Emissionsspektrum von Ca₃Eu₂(BO₃)₄, Sr₃Eu₂(BO₃)₄ und Ba₃Eu₂(BO₃)₄, Übergänge der nummerierten Peaks siehe Tab. 42

Tab. 42:	Beobachtete Eu ³⁺ -Übergänge in Ca ₃ Eu ₂ (BO ₃) ₄ , Sr ₃ Eu ₂ (BO ₃) ₄ und Ba ₃ Eu ₂ (BO ₃) ₄ (Nummerierung siehe
	Abb. 106)

		beobachtete W	/ellenlänge [nm] ir	n Wirtsgitter
Peak Nr.	Übergang	Ca3Eu2(BO3)4	Sr3Eu2(BO3) 4	Ba3Eu2(BO3)4
1	$^{7}F_{0} \rightarrow {}^{5}D_{4}$	361	361	361
2	$^{7}F_{0} \rightarrow {}^{5}L_{8}$	365	365	365
3	$^{7}F_{0} \rightarrow {}^{5}G_{3}$	376	376	376
4	$^{7}F_{0} \rightarrow {}^{5}L_{7}$	381	381	381
5	$^{7}F_{0} \rightarrow {}^{5}L_{6}$	394	393	393
6	$^{7}F_{0} \rightarrow {}^{5}D_{3}$	414	414	413
7	$^{7}F_{0} \rightarrow {}^{5}D_{2}$	464	464	463
8	$^{7}F_{0} \rightarrow {}^{5}D_{1}$	525	525	525
9	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{0}$	578	578	578
10	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}$	591	591	591
11	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$	611	610	610
12	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{3}$	649	648	649
13	$^5\mathrm{D}_0 \rightarrow {}^7\mathrm{F}_4$	700	701	702

Abb. 107: Anregungs- und Emissionsspektrum von Ca₃Eu₂(BO₃)₄:0,02Sm, Sr₃Eu₂(BO₃)₄:0,02Sm und Ba₃Eu₂(BO₃)₄:0,02Sm, Raumtemperatur

5.6.4. Dy³⁺-Lumineszenz in M₃Eu₂(BO₃)₄ (M = Ca, Sr, Ba)

Die Dotierung der Wirtsgitter M₃Eu₂(BO₃)₄ (M = Ca, Sr, Ba) mit Dy³⁺ erfolgte, analog zum vorherigen Abschnitt, mittels Festkörpermethode bei 1150 °C für 6 Stunden. Die Röntgendiffraktogramme der mit bis zu 2,00 mol-% Dy³⁺ dotierten Erdalkali-Europium-Aluminate sind in Abb. 108 gezeigt. Dabei ist die Darstellungsart gleich der im vorherigen Abschnitt. Erwartungsgemäß konnte auch hier keine Nebenphase detektiert werden.

Die Anregungs- und Emissionsspektren von mit 2 mol-% Dy^{3+} dotiertem M₃Eu₂(BO₃)₄ (M = Ca, Sr, Ba) sind in Abb. 109 gezeigt. Auch hier ist die Lumineszenzintensität des Europiums des Wirtsgitters so intensiv, dass die Anregungswellenlänge von Dy^{3+} nicht sichtbar ist (Eu³⁺: ${}^{7}F_{0} \rightarrow {}^{5}L_{8}$ bei 361 bzw. 362 nm und Dy^{3+} : ${}^{6}H_{15/2} \rightarrow {}^{4}I_{11/2}$ bei ca. 360 nm). Im Emissionsspektrum sind lediglich die für Eu³⁺ typischen Übergänge, die bereits in Abschnitt 5.6.3 aufgelistet sind, erkennbar. Aufgrund der großen Überlappung der Anregungswellenlänge des Eu³⁺ des Wirtsgitter und des Aktivators Dy^{3+} wurden keine Dy^{3+} -konzentrationsabhängigen Lumineszenzmessungen durchgeführt.

Abb. 108: Röntgendiffraktogramme von mit Dy3+ dotiertem Ca3Eu2(BO3)4, Sr3Eu2(BO3)4 und Ba3Eu2(BO3)4

Abb. 109: Anregungs- und Emissionsspektrum von Ca₃Eu₂(BO₃)₄:0,02Dy, Sr₃Eu₂(BO₃)₄:0,02Dy und Ba₃Eu₂(BO₃)₄:0,02Dy, Raumtemperatur

5.6.5. Zusammenfassung und Diskussion

Ein Überblick der Erdalkali-Seltenerd-Borate, die im Rahmen dieser Arbeit reinphasig mittels Festkörpermethode synthetisiert wurden, ist in Tab. 43 gegeben. Stöchiometrische Mengen an Ausgangsoxiden bzw. Nitraten wurden gut homogenisiert und je nach gewünschter Phase bei 1000 bis 1300 °C für 10 bis 30 Stunden im Muffelofen gesintert. Dabei wurde darauf geachtet, 5 mol-% Überschuss an Borsäure zuzugeben, um den Borverlust beim Sintern zu kompensieren.

		CaO	SrO	BaO
	La ₂ O ₃	$Ca_3La_2(BO_3)_4$	Sr ₃ La ₂ (BO ₃) ₄	Ba ₃ La ₂ (BO ₃) ₄
	Nd ₂ O ₃	Ca ₃ Nd ₂ (BO ₃) ₄	Sr ₃ Nd ₂ (BO ₃) ₄	Ba ₃ Nd ₂ (BO ₃) ₄
	Sm ₂ O ₃	Ca ₃ Sm ₂ (BO ₃) ₄	Sr ₃ Sm ₂ (BO ₃) ₄	Ba ₃ Sm ₂ (BO ₃) ₄
	Eu ₂ O ₃	Ca ₃ Eu ₂ (BO ₃) ₄	Sr ₃ Eu ₂ (BO ₃) ₄	Ba ₃ Eu ₂ (BO ₃) ₄
	Gd ₂ O3	Ca ₃ Gd ₂ (BO ₃) ₄	Sr ₃ Gd ₂ (BO ₃) ₄	Ba ₃ Gd ₂ (BO ₃) ₄
	Dy ₂ O ₃	Ca ₃ Dy ₂ (BO ₃) ₄	Sr ₃ Dy ₂ (BO ₃) ₄	Ba ₃ Dy ₂ (BO ₃) ₄
V	Y2O3	Ca ₃ Y ₂ (BO ₃) ₄	Sr ₃ Y ₂ (BO ₃) ₄	$Ba_3Y_2(BO_3)_4$
	Yb2O3	Ca ₃ Yb ₂ (BO ₃) ₄	Sr ₃ Yb ₂ (BO ₃) ₄	Ba ₃ Yb ₂ (BO ₃) ₄

Tab. 43: Darstellung der durchgeführten Synthesen von Erdalkali-Seltenerd-Boraten

grau hinterlegt: stabile Verbindungen

durchgestrichen: theoretische Zusammensetzung der nicht stabilen Verbindung

Die in Tab. 43 grau hinterlegten stabilen Verbindungen sind zueinander isostrukturell, sie kristallisieren in orthorhombischer Struktur mit der Raumgruppe Pnma (Nr. 62). Bei der Zuordnung der Raumgruppe kam außer Pnma ebenfalls P2₁cn (Nr. 33) infrage. Anhand der Röntgendiffraktogramme sind beide Raumgruppen durch das Auftreten der systematisch ausgelöschten Reflexe möglich. Die Verfeinerung der Daten erfolgte mit der Raumgruppe Pnma, welche eine höhere Symmetrie aufweist. Die Anordnung der Struktureinheiten ist der des Strukturtyps Gd₅Si₄ mit vier Formeleinheiten pro Elementarzelle sehr ähnlich [230]. Die Erdalkali- und Seltenerdatome ersetzen in der Struktur von Gd₅Si₄ formal die Gadolinium-Atome, während die isolierten Borat-Anionen (BO₃)³⁻ die Siliziumplätze übernehmen [231]. Die planaren (BO₃)³⁻-Einheiten konnten des Weiteren mittels FTIR bestätigt werden.

Abb. 110: Abhängigkeit der M3REE2(BO3)4-Gitterparameter vom REE3+-Ionenradius

Um die Abhängigkeit der Gitterparameter der synthetisierten Phasen von den eingebauten Seltenen Erden zu verdeutlichen wurden die verfeinerten Gitterparameter a, b, c sowie das Zellvolumen V in Abb. 110 gegen die Ionenradien der Seltenen Erden aufgetragen. Die Plots für den Einheitszellparameter b und das Volumen verhalten sich nahezu linear, während die Variationen der Gitterparameter a und c offensichtlich nichtlinear sind. Die beobachtete Nichtlinearität ist wahrscheinlich auf Unterschiede in der partiellen Besetzung der Erdalkalimetalle durch REE-Ionen zurückzuführen [232].

Die Synthese der Leuchtstoffe M₃Eu₂(BO₃)₄:xSm und M₃Eu₂(BO₃)₄:xDy (0,0025 \leq x \leq 0,02) erfolgte mittels Festkörpersynthese bei 1150 °C für 6 h. Röntgenographische Untersuchungen haben gezeigt, dass dabei keine neue Phase entstanden ist: aufgrund der ähnlichen Ionenradien nehmen Samarium und Dysprosium die Atomposition von Europium ein. Aus diesem Grund sind auch die Anregungs- und Emissionsspektren der dotierten und nicht dotierten Phasen sehr ähnlich. Der stärkste Peak im Anregungsspektrum ist dem Übergang ⁷F₀ \rightarrow ⁵L₆ von Eu³⁺

zuzuordnen (bei ca. 394 nm), im Emissionsspektrum entspricht das Maximum dem Übergang ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ von Eu³⁺. Es konnten keine zusätzlichen Übergänge detektiert werden, die typisch für Sm³⁺ oder Dy³⁺ wären. Die starken elektronischen Übergänge von Eu³⁺ überlappten mit den elektronischen Übergängen von Sm³⁺ und Dy³⁺. Aus diesem Grund kann an dieser Stelle nicht prognostiziert werden, ob eine höhere Dotierungskonzentration zu einem anderen Ergebnis führen würde.

6. Zusammenfassung und Ausblick

Weiße LEDs gewinnen als Leuchtmittel in den letzten zwei Jahrzehnten zunehmend an Bedeutung. Sie sind charakterisiert durch eine hohe Lichtausbeute, kleine erforderliche Baugrößen und insbesondere einen geringen Energiebedarf. Trotz weltweit intensiver Forschung zur Verbesserung dieser Leuchtstoffe besteht nach wie vor ein hohes Optimierungspotenzial. Bessere WLEDs zeichnen sich dabei durch verbesserte Lumineszenzeigenschaften und eine gesteigerte Energieeffizienz aus. Die vorliegende Arbeit stellt eine Erweiterung des Forschungsstands zu energieeffizienten WLED dar. Im Fokus steht die Synthese und Charakterisierung von Festkörperverbindungen wie Aluminaten und Boraten mit Erdalkalimetallen und deren Überprüfung in Hinblick auf ihre Eignung als Wirtsgitter für lumineszierende Stoffe.

Die Synthese der reinphasigen Wirtsgitter geschah vorzugsweise mittels Pechini-Methode, da die gute Homogenisierung der Ausgangssubstanzen in einer Lösung die notwendige Sinterdauer verkürzt und eine niedrigere Sintertemperatur benötigt wird. Für borhaltige Verbindungen kam die Festkörpermethode zum Einsatz, um die Bildung einer Borschicht zu vermeiden. Weiterhin wurde versucht, neue und bereits bekannte Wirtsgitterverbindungen mit dreiwertigem Samarium und Dysprosium zu dotieren, um den Einfluss der Kristallsymmetrie auf die optischen Eigenschaften zu untersuchen und ggf. den optimalen Dotierungsgehalt festzustellen.

Die reinphasige Synthese und anschließende Charakterisierung der Wirtsgitter sind essentielle Schritte vor der Analyse der Wirkung einer Dotierung der Wirtsgitter mit Seltenen Erden. Deshalb wurden zuerst die Wirtsgitter mit der allgemeinen Formel M²⁺M³⁺₂O₄ systematisch hergestellt und charakterisiert. Als zweiwertige Metalle wurden dabei Calcium, Strontium und Barium verwendet. Als M³⁺ fungierten Al³⁺ (Abschnitt 5.1), B³⁺ (Abschnitt 5.2) und REE³⁺ (Abschnitt 5.3). CaAl₂O₄ und SrAl₂O₄ besitzen eine monokline Struktur (P2₁/n bzw. P2₁), BaAl₂O₄ kristallisiert in hexagonaler Struktur mit der Raumgruppe P6₃. CaB₂O₄ und SrB₂O₄ sind isostrukturell und kristallisieren im orthorhombischen Kristallsystem Pbcn, während BaB₂O₄ die trigonale Kristallstruktur R3c besitzt. Im Bereich der Erdalkali-Seltenerd-Verbindungen MREE₂O₄ waren nicht alle Verbindungen stabil. Aufgrund der ähnlichen Ionenradien der Seltenen Erden ist es möglich, eine systemische Untersuchung der Stabilität der orthorhombischen MREE₂O₄ durchzuführen. Die zweiwertigen Erdalkalimetalle müssen in den Lücken, die durch das Netzwerk von [REEO₆]-Oktaedern entstehen, stabilisiert werden können. Liegt das Ionenverhältnis von Seltener Erde zu Erdalkali-Metall (r_{REE3+}/r_{M2+}) zwischen 0,64 und 0,81, dann ist diese Verbindung stabil. Für die Stabilität der orthorhombischen MREE₂O₄ wurde bisher keine Regel für das zulässige Verhältnis der Ionenradien festgelegt. Die verfeinerten Gitterparameter der Erdalkali-Seltenerd-Oxide sind in Übereinstimmung mit den Literaturwerten [131, 129, 115, 155, 233–235].

Im Rahmen der gezielten Suche nach weiteren für die Herstellung von lumineszierenden Materialien geeigneten Wirtsgitterverbindungen, insbesondere unter Einbindung von Seltenerdelementen als Kation, wurden die Systeme SrAl₂O₄-SrEu₂O₄ und SrB₂O₄-SrEu₂O₄ analysiert (Abschnitt 5.4). Dabei ergaben sich die intermediären Verbindungen SrEuAlO4 im erstgenannten System sowie $Sr_3Eu_2(BO_3)_4$ bei letzterem. Bei der systematischen Untersuchung des Verbindungstyps SrEuAlO₄ mit variierenden Erdalkali-Metallen und Seltenen Erden ergab sich eine Abhängigkeit der Stabilität der tetragonalen intermediären Verbindung vom Ionenradius der substituierten Elemente. Die Ca-Reihe war vollständig stabil, während die Sr-Reihe lediglich mit größeren Seltenen Erden kristallisierte. Der größere Ionenradius von Barium erschwerte den Einbau von Seltenen Erden in diesen Strukturtyp: die einzig stabile Verbindung der Ba-Reihe, BaLaAlO₄, kristallisiert nicht wie erwartet in tetragonaler, sondern in orthorhombische Struktur. Für die stabilen tetragonalen MREEAlO4 wurde eine zulässige maximale Abweichung von 22,7 % zwischen den Ionenradien festgestellt. Die Verbindungen M₃REE₂(BO₃)₄ waren, mit Ausnahme von Ba₃Yb₂(BO₃)₄, durchgängig stabil und besitzen eine orthorhombische Kristallstruktur (Nr. 62). Die mittels Pawley-Fit verfeinerten Gitterparameter zeigten ebenfalls eine lineare Abhängigkeit vom Ionenradius der eingebauten Seltenen Erden.

Ein vielversprechender nächster Schritt zur Ermittlung geeigneter Wirtsgitter ist die systematische Analyse möglicher Hochtemperaturmodifikationen. Weiterhin wäre es für zukünftige Arbeiten von großem Interesse, anstatt von Bor und Aluminium andere Elemente aus der dritten Hauptgruppe (bspw. Gallium oder Indium) in das Wirtsgitter einzubauen. Dies würde völlig neue Strukturtypen als Wirtsgitter ermöglichen. So wurden z.B. von Michler die Verbindungen MGa₂O₄ und MLaGaO₄ (M = Ca und Sr) untersucht [236]. Dabei konnte festgestellt werden, dass lediglich SrLaGaO₄ in tetragonaler Struktur kristallisiert.

Zur Überprüfung der Eignung der synthetisierten monophasigen Verbindungen als Wirtsgitter für Leuchtstoffe ist eine Dotierung mit geeigneten Aktivatoren notwendig. Zu den wichtigsten Aktivatoren gehören dreiwertiges Samarium und Dysprosium. Beide zeigen sehr effiziente Absorptionsbanden im blauen bzw. nahen UV-Bereich, was eine der wichtigsten Anforderungen für den Einsatz in WLEDs ist. In den obengenannten Anregungswellenlängenbereichen zeigt Sm³⁺ intensive rot-orangene Emission und Dy³⁺ gelbe Emission. In der vorliegenden Arbeit wurden die Erdalkali-Aluminate und -Borate mit Sm³⁺ und Dy³⁺ im Bereich von 0,25 bis 2,00 mol-% monodotiert. Na⁺ wurde als Ladungskompensator stets mit in die Struktur eingebaut. Vergleicht man die Syntheseerfolge der Leuchtstoffe MAl₂O₄:Sm mit MB₂O₄:Sm bzw. MAl₂O₄:Dy mit MB₂O₄:Dy, dann lässt sich feststellen, dass die Wirtsgitter MB₂O₄ besser geeignet erscheinen: die meisten der synthetisierten Phasen blieben röntgenographisch reinphasig. Bei den Erdalkalialuminaten traten, mit Ausnahme von BaAl₂O₄:Sm, ab einer Dotierung von ca. 1,50 mol-% Nebenphasen wie SmAlO₃ und SrDyAl₃O₇ auf.

Für zukünftige, weiterführende Arbeiten zur Verbesserung der Syntheseerfolge könnten andere Synthesemethode zum Einsatz kommen. Abgesehen von den hier in der Arbeit eingesetzten Methoden der Pechini- und Festkörpersynthese sind die Verbrennungsmethode (sol combustion) und Fällungsmethode (precipitation method) in der Literatur am weitesten verbreitet. Die Verbrennungsmethode ist eine Weiterentwicklung der Pechini-Methode. Die durch den Einsatz von Glycin als Brennstoff erreichte hohe Reaktionstemperatur sorgt für eine erfolgreiche Synthese der reinphasigen Pulverproben. So können ohne Strukturänderung bis zu 4 mol-% Dy³⁺ in BaAl₂O₄ eingebaut werden [77]. In dieser Arbeit konnte ein maximaler Dotierungsgehalt von 1 mol-% erreicht werden.

Ein direkter Vergleich der in dieser Arbeit synthetisierten MAl₂O₄:Sm, MB₂O₄:Sm, MAl₂O₄:Dy und MB₂O₄:Dy untereinander gestaltet sich schwierig, da die Lumineszenzeigenschaften sehr stark von den Synthesebedingungen abhängen. Die unterschiedliche Kristallinität und Korngröße der Pulverproben hat einen erheblichen Einfluss auf die Lumineszenzeigenschaften. Um bei einem Leuchtstoff wie $SrB_2O_4:xSm^{3+}$ (x = 0,0025; 0,005; 0,01; 0,015 und 0,02) die optimale Dotierungskonzentration zu ermitteln wurde die Synthesereihe an einem einzigen Tag unter konstanten Bedingungen synthetisiert, auch die Lumineszenzmessungen wurden zum gleichen Zeitpunkt durchgeführt. Betrachtet man die Leuchtstoffgruppen, sind aufgrund der hohen Intensität der Emission insbesondere CaB₂O₄:Sm und BaAl2O4:Dy von großem Interesse. Bei BaAl2O4:Dy wurde schon bei einem Dotierungsgehalt von 0,25 mol-% das Lumineszenzmaximum erreicht. Die sehr hohe Emission sowohl im grünen (563 nm) als auch im orangenen Bereich (599 nm) macht CaB₂O₄:Sm äußerst attraktiv für den Einsatz in WLEDs. Für zukünftige Untersuchungen zur Erhöhung der Lumineszenzintensitäten könnten weitere Alkalimetalle wie bspw. Li⁺ und K⁺ anstatt Na⁺ zur Ladungskompensation eingesetzt werden. Je nach Größe der Alkalimetalle besetzen diese verschiedene Defektpositionen in der Kristallstruktur und verändern die Symmetrie der lokalen Umgebung des Aktivator-Ions Sm³⁺ bzw. Dy³⁺. Die bestgeeigneten Alkalimetalle müssen experimentell festgestellt werden. Im Fall des Leuchtstoffs CaMgB₂O₄:Sm kann bspw. mit Li⁺ die höchste Emissionsintensität erreicht werden, während für den Leuchtstoff CaZrO₃:Er,Y K⁺ die optimale Wahl darstellt [71, 74].

Basierend auf den erzielten Ergebnissen scheint in einem nächsten Schritt die systematische Co-Dotierung der Wirtsgitter mit weiteren Seltenen Erden sinnvoll. Dies ermöglicht nicht nur eine wesentliche Erhöhung der Emissionsintensitäten, sondern auch einen sehr langen Nachleuchteffekt (Phosphoreszenz). Derartige Stoffe sind als sogenannte persistente Lumineszenzmaterialien bekannt [159, 237, 160, 238–242]. Brito und Hölsa et al. beobachteten, dass unter den bekannten persistenten Leuchtstoffen die Kombination von Sr als Wirtskation mit einer Co-Dotierung mit Dy³⁺ unabhängig vom Wirtsgittertyp die besten Lumineszenzeigenschaften erzielt [243].

Unerwartet war das Ausbleiben jeglicher Fluoreszenz bei BaAl₂O₄:Sm, SrB₂O₄:Dy und BaB₂O₄:Dy. Möglicherweise wurde bereits bei einer Dotierung mit 0,25 mol-% die Fluoreszenzlöschung erreicht. Wahrscheinlicher ist jedoch, dass im System eine strahlungslose Deaktivierung stattfindet. Um sicherzustellen, dass die Ursache nicht in den Synthesebedingungen oder im Zusatz von Na⁺ liegt, sollte eine weitere Synthesemethode wie bspw. die Verbrennungsmethode zur Überprüfung der Ergebnisse eingesetzt werden.

Abschließend wurden die europiumhaltigen Wirtsgitter hinsichtlich ihrer Lumineszenzeigenschaften untersucht. In der Literatur lässt sich eine Vielzahl an Analysen der verschiedenen Europium-dotierten Wirtsgitter finden. Die meisten Quellen betrachten jedoch ausschließlich dreiwertiges Europium. Es existieren lediglich wenige Studien zu Lumineszenzeigenschaften von schon im Wirtsgitter enthaltenen Europium. Zu diesen Wirtsgittern zählen allerdings die in dieser Arbeit reinphasig synthetisierten Stoffe SrEu₂O₄, BaEu₂O₄, CaEuAlO₄, SrEuAlO₄, Ca₃Eu₂(BO₃)₄, Sr₃Eu₂(BO₃)₄ und Ba₃Eu₂(BO₃)₄. Die Lumineszenzanalysen zeigten bei allen betrachteten Materialien sehr scharfe Banden, die den elektronischen Übergängen zwischen verschiedenen Energieniveaus der Europium-Ionen entsprechen. Die optimale Anregungswellenlänge liegt bei diesen Wirtsgittern im Bereich zwischen 393 und 395 nm, was dem Übergang ⁷F₀ \rightarrow ⁵L₆ von Eu³⁺ entspricht. Der intensivste Emissionsübergang ⁵D₀ \rightarrow ⁷F₂ liegt bei 610 bzw. 611 nm für orthorhombische Wirtsgitter und bei 618 bzw. 619 nm für tetragonale Wirtsgitter. Die Lumineszenzintensität war dabei so hoch, dass die Messungen mit dem kleinsten Eingangs- und Ausgangsschlitz erfolgen mussten.

Die ebengenannten Wirtsgitter wurden mit Dy^{3+} bzw. Sm³⁺ im Bereich von 0,25 – 2,00 mol-% dotiert. Ziel dieser Vorgehensweise war es, abhängig vom Dotierungsgehalt den Einfluss der Kationen auf die Eu³⁺-Emission zu studieren. Die Leuchtstoffe konnten dabei durchweg röntgenographisch reinphasig synthetisiert werden. Aus der Literatur ist bekannt, dass ein Energieübertrag von Dy³⁺ und Sm³⁺ auf Eu³⁺ existiert. Die Eu³⁺-Lumineszenz war jedoch derart intensiv, dass die Übergänge von Dy³⁺ und Sm³⁺ im Anregungsspektrum von Eu³⁺ vollständig überdeckt wurden. Lediglich bei CaEuAlO4:Sm und SrEuAlO4:Sm konnte der Sm-Übergang bei 406 nm und 484 nm eindeutig detektiert und dem Übergang ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{K}_{11/2}$ und ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{I}_{11/2} + {}^{4}\text{M}_{15/2}$ zugeordnet werden. Bei Anregung der Leuchtstoffe CaEuAlO4:Sm und SrEuAlO₄:Sm mit einer Wellenlänge von 406 nm konnten die für Eu³⁺ charakteristischen Emissionsübergänge detektiert werden (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ und ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$). Bei einer Dotierung mit 2 mol-% Sm³⁺ stieg die rote Emission um das Vierfache bei CaEuAlO₄ und das Zweifache bei SrEuAlO₄. Für zukünftige Arbeiten sollte der maximale Dotierungsgehalt höher gewählt werden, um den optimalen Gehalt an Samarium bei diesem System festlegen zu können. Weiterhin wäre es interessant zu sehen, ab welchem Gehalt die Sm-Übergänge im Emissionsspektrum detektiert werden können. Diese Leuchtstoffe ist deshalb besonders interessant, da sich Europium anstatt mit der üblichen Wellenlänge von 395 nm mit einer Wellenlänge von 406 bzw. 484 nm aufgrund des Energietransfers von Samarium auf Europium anregen lässt.

Im Rahmen dieser Arbeit wurden insgesamt 61 verschiedene Wirtsgitter reinphasig synthetisiert. Die kristallographischen Daten von Ca₃Dy₂(BO₃)₄, Ca₃Eu₂(BO₃)₄, Ca₃La₂(BO₃)₄, Ca₃Nd₂(BO₃)₄ und Ca₃Yb₂(BO₃)₄ wurden zur Archivierung in der ICDD-Datenbank weitergeleitet. Die systematischen Untersuchungen der MREE₂O₄ und MREEAIO₄ machte es möglich eine Beziehung zwischen Struktur und Stabilität für die untersuchten Verbindungstypen herzustellen. Als potenzielle Leuchtstoffe für WLEDs wurden die dreiwertigen Seltenen Erden Samarium und Dysprosium in die verschiedenen Wirtsgittertypen eingebaut, insgesamt wurden 26 Leuchtstoffsysteme untersucht. Dabei zeigten drei dieser Systeme keinerlei Fluoreszenz (BaAl₂O₄:Sm, SrB₂O₄:Dy und BaB₂O₄:Dy). Die optimale Dotierungskonzentration wurde für jeden Leuchtstoff experimentell festgestellt. Die vorliegende Arbeit liefert damit einen umfassenden Beitrag zur Erweiterung des Forschungsstands bereits bekannter sowie bisher in der Forschungslandschaft nicht betrachteter Leuchtstoffe und bietet damit eine Grundlage für die weitere systematische Suche nach immer effizienteren Leuchtstoffen.

Literaturverzeichnis

- [1] Tonzani, S.: Lighting technology: Time to change the bulb. In: Nature, Vol. 459 (2009), Iss. 7245, pp. 312-314.
- [2] Nisson, N.; Wilson, A.: The Virginia Energy Savers Handbook, 2008.
- [3] Humphreys, C.J.: Solid-State Lighting. In: MRS Bulletin 33 (2008), Heft 4, S. 459-470.
- [4] Ye, S.; Xiao, F.; Pan, Y.X. et al.: Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. In: Materials Science and Engineering: R: Reports 71 (2010), Heft 1, S. 1-34.
- [5] Yamada, M.; Narukawa, Y.; Tamaki, H. et al.: A Methodological Study of the Best Solution for Generating White Light Using Nitride-Based Light-Emitting Diodes. In: IEICE Transactions on Electronics E88-C (2005), Heft 9, S. 1860-1871.
- [6] Sheu, J.K.; Chang, S.J.; Kuo, C.H. et al.: White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors. In: IEEE Photonics Technology Letters 15 (2003), Heft 1, S. 18-20.
- [7] Krames, M.R.; Shchekin, O.B.; Mueller-Mach, R. et al.: Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting. In: Journal of Display Technology 3 (2007), Heft 2, S. 160-175.
- [8] Höppe, H.A.: Aktuelle Entwicklungen auf dem Gebiet der anorganischen Leuchtstoffe. In: Angewandte Chemie 121 (2009), Heft 20, S. 3626-3636.
- [9] Ropp, R.C. (ed.): Luminescence and the solid state. ScienceDirect (Online service), Studies in inorganic chemistry no. 21, Elsevier, Amsterdam, 2004.
- [10] Shinde, K.N.; Dhoble, S.J.; Swart, H.C. et al.: Phosphate Phosphors for Solid-State Lighting, Heft 174, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
- [11] Pawade, V.; Dhoble, S.J.: Phosphors for energy saving and conversion technology. CRC Press/Taylor & Francis Group, Boca Raton FL, 2018.
- [12] Ronda, C.: Luminescence From theory to applications. Wiley-VCH, Weinheim, 2008.
- [13] Vijaya, N.; Kumar, K.U.; Jayasankar, C.K.: Dy³⁺-doped zinc fluorophosphate glasses for white luminescence applications. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 113 (2013), pp. 145-153.
- [14] Raju, K.V.; Raju, C.N.; Sailaja, S. et al.: Emission analysis of Sm³⁺ and Dy³⁺: Ba₃Y₂WO₉ ceramics. In: Journal of Luminescence 134 (2013), S. 297-302.
- [15] Holleman, A.F.; Wiberg, N.: Lehrbuch der anorganischen Chemie. De Gruyter, Berlin, 2007.
- [16] Skoog, D.A.; Holler, F.J.; Crouch, S.R.: Instrumentelle Analytik Grundlagen Geräte -Anwendungen, Lehrbuch, Springer Spektrum, Berlin, 2013.
- [17] Binnewies, M.; Finze, M.; Jäckel, M. et al.: Allgemeine und Anorganische Chemie. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.
- [18] Jüstel, T.; Nikol, H.; Ronda, C.: Neue Entwicklungen auf dem Gebiet lumineszierender Materialien für Beleuchtungs- und Displayanwendungen. In: Angewandte Chemie 110 (1998), Heft 22, S. 3250-3271.
- [19] Kasap, S.; Capper, P.: Springer Handbook of Electronic and Photonic Materials. Springer International Publishing, Cham, 2017.
- [20] Kim, S.-B.; Kum, B.G.; Jang, H.M. et al.: Luminescence efficiencies of self- and Tm³⁺ activated CaWO₄ under vacuum ultraviolet radiation excitation. In: Journal of Luminescence 131 (2011), Heft 8, S. 1625-1628.
- [21] Shi, S.; Liu, X.; Gao, J. et al.: Spectroscopic properties and intense red-light emission of (Ca, Eu, M)WO₄ (M = Mg, Zn, Li). In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 69 (2008), Iss. 2, pp. 396-399.

- [22] Adler, B.; Müller, R.: Seltene Erdmetalle Gewinnung, Verwendung und Recycling, Berichte aus der Biomechatronik Heft 10, Univ.-Verl. Ilmenau, Ilmenau, 2014.
- [23] Cotton, S.: Lanthanide and actinide chemistry, Inorganic chemistry, Wiley, Chichester, 2006.
- [24] Förg, K.: Fluoreszenz-Spektroskopie Physikalisches Fortgeschrittenenpraktikum FP28. Universität Augsburg, Lehrstuhl für Festkörperchemie Ausgabe 2016.
- [25] Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. In: Acta Crystallographica Section A 32 (1976), Heft 5, S. 751-767.
- [26] Dieke, G.H.; Crosswhite, H.M.: Spectra and energy levels of rare earth ions in crystals. Interscience, New York, 1968.
- [27] Jüstel, T.; Schwung, S.: Leuchtstoffe, Lichtquellen, Laser, Lumineszenz. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.
- [28] Gardiner, J.H.: M. Lecoq De Boisbaudran. In: Nature, Vol. 90 (1912), Iss. 2244, pp. 255-256.
- [29] Lei, B.; Liu, Y.; Tang, G. et al.: Spectra and long-lasting properties of Sm³⁺-doped yttrium oxysulfide phosphor. In: Materials Chemistry and Physics 87 (2004), Heft 1, S. 227-232.
- [30] Karali, T.; Can, N.; Townsend, P.D. et al.: Radioluminescence and thermoluminescence of rare earth element and phosphorus-doped zircon. In: American Mineralogist 85 (2000), 5-6, S. 668-681.
- [31] Yen, W.M.; Shionoya, S.; Yamamoto, H.: Phosphor handbook, The CRC Press laser and optical science and technology series, CRC Press/Taylor and Francis, Boca Raton FL, 2007.
- [32] Lei, B.; Li, B.; Zhang, H. et al.: Preparation and luminescence properties of CaSnO₃:Sm³⁺ phosphor emitting in the reddish orange region. In: Optical Materials 29 (2007), Heft 11, S. 1491-1494.
- [33] Carnall, W.T.; Goodman, G.L.; Rajnak, K. et al.: A systematic analysis of the spectra of the lanthanides doped into single crystal LaF₃. In: The Journal of Chemical Physics 90 (1989), Heft 7, S. 3443-3457.
- [34] Yang, H.K.; Chung, J.W.; Moon, B.K. et al.: Crystalline and photoluminescence characteristics of YVO₄:Sm³⁺ thin films grown by pulsed laser deposition under oxygen pressure. In: Journal of Luminescence 129 (2009), Heft 5, S. 492-495.
- [35] Raju, G.S.R.; Buddhudu, S.: Emission analysis of Sm³⁺ and Dy³⁺:MgLaLiSi₂O₇ powder phosphors. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 70 (2008), Iss. 3, pp. 601-605.
- [36] Liu, Z.; Stevens-Kalceff, M.A.; Riesen, H.: Effects of postannealing on the photoluminescence properties of coprecipitated nanocrystalline BaFCl:Sm³⁺. In: The Journal of Physical Chemistry A, Vol. 117 (2013), Iss. 9, pp. 1930-1934.
- [37] Wang, Q.; Ci, Z.; Zhu, G. et al.: Multicolor bright Ln³⁺ (Ln = Eu, Dy, Sm) activated tungstate phosphor for multifunctional applications. In: Optical Materials Express 4 (2014), Heft 1, S. 142.
- [38] Taikar, D.R.: Synthesis and luminescence property of SrY₂O₄:M (M = Eu³⁺, Tb³⁺, Sm³⁺, Ce³⁺, Bi³⁺) phosphors. In: Journal of Luminescence 204 (2018), S. 24-29.
- [39] Tian, M.; Li, P.; Wang, Z. et al.: Synthesis, color-tunable emission, thermal stability, luminescence and energy transfer of Sm³⁺ and Eu³⁺ single-doped M₃TbBO₃)₃ (M = Sr and Ba) phosphors. In: CrystEngComm 18 (2016), Heft 36, S. 6934-6947.
- [40] Sáez Puche, R.; Caro, P.: Rare earths, Cursos de verano de El Escorial, Editorial Complutense, Madrid, 1998.

- [41] Su, Q.; Pei, Z.; Lin, J. et al.: Luminescence of Dy³⁺ enhanced by sensitization. In: Journal of Alloys and Compounds 225 (1995), 1-2, S. 103-106.
- [42] Lemański, K.; Dereń, P.J.: Luminescent properties of dysprosium(III) ions in LaAlO₃ nanocrystallites. In: Journal of Rare Earths 29 (2011), Heft 12, S. 1195-1197.
- [43] Li, Y.-C.; Chang, Y.-H.; Lin, Y.-F. et al.: Synthesis and luminescent properties of Ln³⁺ (Eu³⁺, Sm³⁺, Dy³⁺)-doped lanthanum aluminum germanate LaAlGe₂O₇ phosphors. In: 439 (2007), 1-2, S. 367-375.
- [44] Crookes, W.: On the Phosphorescent Spectra of Sδ and Europium. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 76 (1905), Heft 511, S. 411-414.
- [45] Jørgensen, C.K.; Judd, B.R.: Hypersensitive pseudoquadrupole transitions in lanthanides. In: Molecular Physics 8 (1964), Heft 3, S. 281-290.
- [46] Momma, K.; Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. In: Journal of Applied Crystallography 44 (2011), Heft 6, S. 1272-1276.
- [47] Nienhaus, U.: Fluoreszenzspektroskopie Ausgabe 2012.
- [48] Kakihana, M.: Invited review "Sol-gel" preparation of high temperature superconducting oxides. In: Journal of Sol-Gel Science and Technology 6 (1996), Heft 1, S. 7-55.
- [49] Prodjosantoso, A.K.; Kennedy, B.J.: Synthesis and Evolution of the Crystalline Phases in Ca_{1-x}Sr_xAl₂O₄. In: Journal of Solid State Chemistry 168 (2002), Heft 1, S. 229-236.
- [50] Dougill, M.W.: Crystal Structure of Calcium Monoaluminate. In: Nature 180 (1957), Heft 4580, S. 292-293.
- [51] Raab, B.; Pöllmann, H.: Investigations of the hydration behavior of high reactive pure cement phases. In: International Cement Microscopy Association (Hrsg.): Proceedings of the 32nd International Conference on Cement Microscopy, New Orleans, Louisiana, USA, 2010, S. 1-20.
- [52] Avdeev, M.; Yakovlev, S.; Yaremchenko, A.A. et al.: Transitions between P2₁, P6₃(√3A) and P6₃22 modifications of SrAl₂O₄ by in situ high-temperature X-ray and neutron diffraction. In: Journal of Solid State Chemistry 180 (2007), Heft 12, S. 3535-3544.
- [53] Wang, S.; Gao, H.; Fang, L. et al.: Synthesis and Characterization of BaAl₂O₄ Catalyst and its Photocatalytic Activity Towards Degradation of Methylene Blue Dye. In: Zeitschrift für Physikalische Chemie 233 (2019), Heft 8, S. 1161-1181.
- [54] Hörkner, W.; Müller-Buschbaum, H.: Zur Kristallstruktur von BaAl₂O₄. In: Zeitschrift für anorganische und allgemeine Chemie 451 (1979), Heft 1, S. 40-44.
- [55] Matsuzawa, T.: A New Long Phosphorescent Phosphor with High Brightness, SrAl₂O₄:Eu²⁺,Dy³⁺. In: Journal of The Electrochemical Society 143 (1996), Heft 8, S. 2670.
- [56] Jestin Lenus, A.; Govinda Rajan, K.; Yousuf, M. et al.: Luminescence behaviour of rare earth doped alkaline earth aluminates prepared by the halide route. In: Materials Letters 54 (2002), Heft 1, S. 70-74.
- [57] Hörkner, W.; Müller-Buschbaum, H.: Zur kristallstruktur von CaAl₂O₄. In: Journal of Inorganic and Nuclear Chemistry 38 (1976), Heft 5, S. 983-984.
- [58] Schulze, A.-R.; Müller-Buschbaum, H.: Zur Verbindungsbildung von MeO:M₂O₃. IV. Zur Struktur von monoklinem SrAl₂O₄. In: Zeitschrift für anorganische und allgemeine Chemie 475 (1981), Heft 4, S. 205-210.
- [59] Sui-Yang, H.; Mühll, R. von der; Ravez, J. et al.: Phase transition and symmetry in BaAl₂O₄. In: Ferroelectrics 159 (1994), Heft 1, S. 127-132.
- [60] Cheng, B.; Fang, L.; Zhang, Z. et al.: BaAl₂O₄: Eu²⁺, Dy³⁺ Nanotube Synthesis by Heating Conversion of Homogeneous Coprecipitates and Afterglow Characteristics. In: The Journal of Physical Chemistry C 115 (2011), Heft 5, S. 1708-1713.

- [61] Shih, H.-R.; Chang, Y.-S.: Structure and Photoluminescence Properties of Sm³⁺ Ion-Doped YInGe₂O₇ Phosphor. In: Materials (Basel, Switzerland), Vol. 10 (2017), Iss. 7.
- [62] Chahar, S.; Taxak, V.B.; Dalal, M. et al.: Structural and photoluminescence investigations of Sm³⁺ doped BaY₂ZnO₅ nanophosphors. In: Materials Research Bulletin 77 (2016), S. 91-100.
- [63] Saddeek, Y.B.: Network structure of molybdenum lead phosphate glasses: Infrared spectra and constants of elasticity. In: Physica B: Condensed Matter 406 (2011), Heft 3, S. 562-566.
- [64] Huang, Y.M.; Ma, Q.: Long afterglow of trivalent dysprosium doped strontium aluminate. In: Journal of Luminescence 160 (2015), S. 271-275.
- [65] Ma, Q.; Zhai, B.; Huang, Y.M.: Effect of sol–gel combustion temperature on the luminescent properties of trivalent Dy doped SrAl₂O₄. In: Ceramics International 41 (2015), Heft 4, S. 5830-5835.
- [66] Kumar, M.V.V.; Jamalaiah, B.C.; Gopal, K.R. et al.: Optical absorption and fluorescence studies of Dy³⁺-doped lead telluroborate glasses. In: Journal of Luminescence 132 (2012), Heft 1, S. 86-90.
- [67] Brik, M.G.; Ishii, T.; Tkachuk, A.M. et al.: Energy Level Structure of LiYF₄:Dy³⁺: Crystal Field Analysis. In: Materials Transactions, Vol. 45 (2004), Iss. 7, pp. 2026-2030.
- [68] Vishwakarma, A.K.; Jha, K.; Jayasimhadri, M. et al.: Red light emitting BaNb₂O₆:Eu³⁺ phosphor for solid state lighting applications. In: Journal of Alloys and Compounds 622 (2015), S. 97-101.
- [69] Raju, G.S.R.; Jung, H.C.; Park, J.Y. et al.: Synthesis and luminescent properties of Dy³⁺:GAG nanophosphors. In: Journal of Alloys and Compounds 481 (2009), 1-2, S. 730-734.
- [70] Ayvacıklı, M.; Ege, A.; Can, N.: Radioluminescence of SrAl₂O₄:Ln³⁺ (Ln = Eu, Sm, Dy) phosphor ceramic. In: Optical Materials 34 (2011), Heft 1, S. 138-142.
- [71] Manhas, M.; Kumar, V.; Sharma, V. et al.: Effect of alkali metal ions (Li⁺, Na⁺ and K⁺) on the luminescence properties of CaMgB₂O₅: Sm³⁺ nanophosphor. In: Nano-Structures & Nano-Objects 3 (2015), S. 9-16.
- [72] Pamuluri, H.; Rathaiah, M.; Linganna, K. et al.: Role of Dy³⁺ → Sm³⁺ energy transfer in the tuning of warm to cold white light emission in Dy³⁺/Sm³⁺ co-doped Lu₃Ga₅O₁₂ nanogarnets. In: New Journal of Chemistry 42 (2018), Heft 2, S. 1260-1270.
- [73] Li, J.; Wang, Y.; Liu, B.: Influence of alkali metal ions doping content on photoluminescence of (Y, Gd) BO₃:Eu red phosphors under VUV excitation. In: Journal of Luminescence 130 (2010), Heft 6, S. 981-985.
- [74] Maurya, A.; Bahadur, A.; Dwivedi, A. et al.: Optical properties of Er³⁺, Yb³⁺ co-doped calcium zirconate phosphor and temperature sensing efficiency: Effect of alkali ions (Li⁺, Na⁺ and K⁺). In: Journal of Physics: Condensed Matter 119 (2018), S. 228-237.
- [75] Benourdja, S.; Kaynar, Ü.H.; Ayvacikli, M. et al.: Preparation and cathodoluminescence characteristics of rare earth activated BaAl₂O₄ phosphors. In: Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine, Vol. 139 (2018), pp. 34-39.
- [76] Ziyauddin, M.; Tigga, S.; Brahme, N. et al.: Photoluminescence and thermoluminescence studies of CaAl₂O₄:Dy³⁺ phosphor. In: Luminescence, Vol. 31 (2016), Iss. 1, pp. 76-80.
- [77] Zhai, B.; Ma, Q.; Xiong, R. et al.: Blue–green afterglow of BaAl₂O₄ :Dy³⁺ phosphors. In: Materials Research Bulletin 75 (2016), S. 1-6.
- [78] Ropp, R.C.: Group 13 (B, Al, Ga, In and Tl) Alkaline Earth Compounds. In: Ropp, R.C. (Hrsg.): Encyclopedia of the Alkaline Earth Compounds. Elsevier, 2013, S. 481-635.
- [79] Fedorov, P.P.; Kokh, A.E.; Kononova, N.G.: Barium borate β-BaB₂O₄ as a material for nonlinear optics. In: Russian Chemical Reviews 71 (2002), Heft 8, S. 651-671.

- [80] Babeela, C.; Girisun, T.C.; Vinitha, G.: Optical limiting behavior of β-BaB₂O₄ nanoparticles in pulsed and continuous wave regime. In: Journal of Physics D: Applied Physics 48 (2015), Heft 6, S. 65102.
- [81] Berezovskaya, I.V.; Efryushina, N.P.; Voloshinovskii, A.S. et al.: Luminescence and thermoluminescence of alkaline earth metaborates. In: Radiation Measurements 42 (2007), 4-5, S. 878-881.
- [82] Carlson, E.T.: The system: CaO-B₂O₃. In: Bureau of Standards Journal of Research 9 (1932), Heft 6, S. 825-832.
- [83] Chen, C.; Wu, Y.; Li, R.: The development of new NLO crystals in the borate series. In: Journal of Crystal Growth 99 (1990), 1-4, S. 790-798.
- [84] Dotsenko, V.P.; Berezovskaya, I.V.; Efryushina, N.P. et al.: Position of the optical absorption edge of alkaline earth borates. In: Optical Materials 31 (2009), Heft 10, S. 1428-1433.
- [85] Yiannopoulos, Y.D.; Chryssikos, G.D.; Kamitsos, E.I.: Structure and properties of alkaline earth borate glasses. In: Phys. Chem. Glasses 42 (2001), Heft 3, S. 164-172.
- [86] Xue, D.F.; Zhang, S.Y.: Structure and Non-linear Optical Properties of β-Barium Borate.
- [87] Zou, W.G.; Lü, M.; Gu, F. et al.: Luminescence properties of Eu³⁺ and Dy³⁺ doped β-BaB₂O₄ nanocrystals. In: Optical Materials 28 (2006), 8-9, S. 988-991.
- [88] Zheng, J.; Ying, L.; Cheng, Q. et al.: Blue-emitting SrB₂O₄:Eu²⁺ phosphor with high color purity for near-UV white light-emitting diodes. In: Materials Research Bulletin 64 (2015), S. 51-54.
- [89] Liu, J.; Wang, X.-D.; Wu, Z.-C. et al.: Preparation, characterization and photoluminescence properties of BaB₂O₄: Eu³⁺ red phosphor. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 79 (2011), Iss. 5, pp. 1520-1523.
- [90] Fujimoto, Y.; Yanagida, T.; Kawaguchi, N. et al.: Characterizations of Ce³⁺ -Doped CaB₂O₄ Crystalline Scintillator. In: Crystal Growth & Design 12 (2012), Heft 1, S. 142-146.
- [91] Pekgözlü, İ.; Karabulut, H.: Synthesis and photoluminescence of Pb²⁺ doped SrB₂O₄. In: Inorganic Materials 45 (2009), Heft 1, S. 61-64.
- [92] Xiangzhong, C.; Weidong, Z.; Xiying, Z. et al.: Red Emitting Phosphor (Y, Gd)BO₃:Eu³⁺ for PDP Prepared by Complex Method. In: Journal of Rare Earths 24 (2006), Heft 1, S. 149-152.
- [93] Marezio, M.; Remeika, J.P.; Dernier, P.D.: The crystal structure of the high-pressure phase CaB₂O₄(IV), and polymorphism in CaB₂O₄.
- [94] Marezio, M.; Plettinger, H.A.; Zachariasen, W.H.: Refinement of the calcium metaborate structure. In: Acta Crystallographica 16 (1963), Heft 5, S. 390-392.
- [95] Mighell, A.D.; Perloff, A.; Block, S.: The crystal structure of the high temperature form of barium borate, BaO.B₂O₃. In: Acta Crystallographica 20 (1966), Heft 6, S. 819-823.
- [96] Wan, S.; Zhang, X.; Zhao, S. et al.: Growth units and growth habit of α-BaB₂O₄ crystal. In: Journal of Applied Crystallography 40 (2007), Heft 4, S. 725-729.
- [97] Fröhlich, R.: Crystal structure of the low-temperature form of BaB₂O₄. In: Zeitschrift für Kristallographie Crystalline Materials 168 (1984), 1-4.
- [98] Kim, J.B.; Lee, K.S.; Suh, I.H. et al.: Strontium Metaborate, SrB₂O₄. In: Acta crystallographica Section C: Crystal structure communications 52 (1996), Heft 3, S. 498-500.
- [99] Rulmont, A.; Almou, M.: Vibrational spectra of metaborates with infinite chain structure: LiBO₂, CaB₂O₄, SrB₂O₄. In: Spectrochimica Acta Part A: Molecular Spectroscopy 45 (1989), Heft 5, S. 603-610.

- [100] Kobayashi, S.; Ando, T.; Kanayama, A. et al.: Calciborite from the Fuka mine, Okayama Prefecture, Japan. In: Journal of Mineralogical and Petrological Sciences 109 (2014), Heft 1, S. 13-17.
- [101] Huang, H.-S.; Liu, Z.-H.: Enhanced photoluminescence property of CaB₂O₄:Eu³⁺ phosphor prepared by calcining the Ca₄B₁₀O₁₉·7H₂O:Eu³⁺ precursor. In: Materials Research Bulletin 49 (2014), S. 88-93.
- [102] Weir, C.E.; Schroeder, R.A.: Infrared spectra of the crystalline inorganic borates. In: Journal of Research of the National Bureau of Standards A. (1964), Heft 68, S. 465-487.
- [103] Filatov, S.K.; Nikolaeva, N.V.; Bubnova, R.S. et al.: Thermal expansion of β-BaB₂O₄ and BaB₄O₇ borates. In: Glass Physics and Chemistry 32 (2006), Heft 4, S. 471-478.
- [104] Eimerl, D.; Davis, L.; Velsko, S. et al.: Optical, mechanical, and thermal properties of barium borate. In: Journal of Applied Physics 62 (1987), Heft 5, S. 1968-1983.
- [105] Nikogosyan, D.N.: Beta barium borate (BBO). In: Applied Physics A Solids and Surfaces 52 (1991), Heft 6, S. 359-368.
- [106] Zhang, J.; Liang, S.; He, G.: Preparation and Structure Characterization of β-BaB₂O₄ Nanowires. In: Chemistry Letters 38 (2009), Heft 5, S. 500-501.
- [107] Zhang, Y.; Lu, C.; Sun, L. et al.: Influence of Sm₂O₃ on the crystallization and luminescence properties of boroaluminosilicate glasses. In: Materials Research Bulletin 44 (2009), Heft 1, S. 179-183.
- [108] Liao, J.; Liu, L.; You, H. et al.: Hydrothermal preparation and luminescence property of MWO₄:Sm³⁺ (M = Ca, Sr, Ba) red phosphors. In: Optik 123 (2012), Heft 10, S. 901-905.
- [109] Liu, X.; Xiang, W.; Chen, F. et al.: Synthesis and photoluminescence characteristics of Dy³⁺ doped NaY(WO₄)₂ phosphors. In: Materials Research Bulletin 48 (2013), Heft 2, S. 281-285.
- [110] Komatsu, T.; Honma, T.: Nucleation and Crystal Growth in Laser-Patterned Lines in Glasses. In: Frontiers in Materials, Vol. 3 (2016), p. 32.
- [111] Pei, Z.; Su, Q.; Li, S.: Investigation on the luminescence properties of Dy³⁺ and Eu³⁺ in alkaline-earth borates. In: Journal of Luminescence 50 (1991), Heft 2, S. 123-126.
- [112] Remya, M.P.; Saritha, K.J.; Anns, G. et al.: Synthesis and photoluminescence characteristics of near white light emitting CaB₂O₄:Dy³⁺, Li⁺ phosphor. In: Journal of Physics and Chemistry of Solids 119 (2018), S. 166-174.
- [113] Müller-Buschbaum, H.; Schnering, H.G.: Zur Kenntnis des CaSc₂O₄. In: Zeitschrift für anorganische und allgemeine Chemie 336 (1965), 5-6, S. 295-305.
- [114] Müller-Buschbaum, H.: Zur Kenntnis von SrY₂O₄. In: Zeitschrift für anorganische und allgemeine Chemie 358 (1968), 3-4, S. 138-146.
- [115] Müller-Buschbaum, H.; von Schenck, R.: Untersuchungen an SrYb₂O₄, CaYb₂O₄ und CaLu₂O₄; ein Beitrag zur Kristallstruktur des Calciumferrat(III)-Typs. In: Zeitschrift für anorganische und allgemeine Chemie 377 (1970), Heft 1, S. 70-78.
- [116] Lopato, L.M.: Highly refractory oxide systems containing oxides of rare-earth elements. In: Ceramurgia International 2 (1976), Heft 1, S. 18-32.
- [117] Mitamura, T.; Ogino, H.; Kobayashi, H. et al.: Influence of Metal Ions on the Order-Disorder Transition Temperature of the Ba-M-O (M: La, Y, In, or Ga) System. In: Journal of the American Ceramic Society, Vol. 76 (1993), Iss. 8, pp. 2127-2128.
- [118] Wong-Ng, W.; Cook, L.; Suh, J. et al.: BaO–Nd₂O₃–CuO_x subsolidus equilibria under carbonate-free conditions at pO2=100 Pa and at pO2=21 kPa. In: Journal of Solid State Chemistry 173 (2003), Heft 2, S. 476-488.
- [119] Arul Antony, S.; Nagaraja, K.; Reddy, G. et al.: A polymeric gel cum auto combustion method for the lower temperature synthesis of SrR₂O₄ (R = Y, La, Sm, Eu, Gd, Er or Yb). In: Materials Letters 51 (2001), Heft 5, S. 414-419.

- [120] Han, C.; Chen, X.; Liang, J. et al.: The ternary system Tm₂O₃–SrO–CuO: compounds and phase relations. In: Journal of Alloys and Compounds 309 (2000), 1-2, S. 95-99.
- [121] Zhou, L.; Shi, J.; Gong, M.: Preparation of SrR₂O₄:Eu³⁺ (R = Y, Lu) phosphor and its photoluminescence properties. In: Materials Letters 59 (2005), Heft 16, S. 2079-2084.
- [122] Fu, Z.; Zhou, S.; Yu, Y. et al.: Photoluminescence properties and analysis of spectral structure of Eu³⁺-doped SrY₂O₄. In: The Journal of Physical Chemistry B, Vol. 109 (2005), Iss. 49, pp. 23320-23325.
- [123] Zhou, L.; Shi, J.; Gong, M.: Synthesis and luminescent properties of phosphor. In: Journal of Physics: Condensed Matter 68 (2007), Heft 8, S. 1471-1475.
- [124] Zhou, L.; Shi, J.; Gong, M.: Red phosphor SrY₂O₄:Eu³⁺ synthesized by the sol–gel method. In: Journal of Luminescence 113 (2005), 3-4, S. 285-290.
- [125] Fu, Z.; Yang, H.K.; Jeong, J.H. et al.: Band Structure Calculations on Orthorhombic Bulk and Nanocrystalline SrY₂O₄. In: Journal of the Korean Physical Society, Vol. 52 (2008), Iss. 3, pp. 635-638.
- [126] Xu, W.; Jia, W.; Revira, I. et al.: Optical Properties of Multiple Sites of Eu³⁺ in SrY₂O₄ Single-Crystal Fibers. In: Journal of The Electrochemical Society, Vol. 148 (2001), Iss. 12, H176.
- [127] Manivannan, V.; Comanzo, H.A.; Setlur, A.A. et al.: Nature of luminescent centers in Cerium-activated materials with the CaFe₂O₄ structure. In: Journal of Luminescence 102-103 (2003), S. 635-637.
- [128] Kobayashi, H.; Ogino, H.; Nakamura, K. et al.: Order-Disorder Transition of BaM₂O₄
 Bodies (M: La, Nd, Sm, Gd, Ho or Y) Synthesized by Sintering of BaCO₃-M₂O₃
 Mixtures. In: Journal of the Ceramic Society of Japan 102 (1994), Heft 1186, S. 583-586.
- [129] Karunadasa, H.; Huang, Q.; Ueland, B.G. et al.: Honeycombs of triangles and magnetic frustration in SrL₂O₄ (L = Gd, Dy, Ho, Er, Tm, and Yb). In: Physical Review B 71 (2005), Heft 14, S. 21.
- [130] Doi, Y.; Nakamori, W.; Hinatsu, Y.: Crystal structures and magnetic properties of magnetically frustrated systems BaLn₂O₄ and Ba₃Ln₄O₉ (Ln = lanthanide). In: Journal of Physics: Condensed Matter 18 (2006), Heft 1, S. 333-344.
- [131] Besara, T.; Lundberg, M.S.; Sun, J. et al.: Single crystal synthesis and magnetism of the BaLn₂O₄ family (Ln = lanthanide). In: Progress in Solid State Chemistry 42 (2014), Heft 3, S. 23-36.
- [132] Dang, P.; Liang, S.; Li, G. et al.: Controllable optical tuning and improvement in Li⁺,Eu³⁺ -codoped BaSc₂O₄:Bi³⁺ based on energy transfer and charge compensation. In: Journal of Materials Chemistry C 6 (2018), Heft 24, S. 6449-6459.
- [133] Hao, Z.; Zhang, J.; Zhang, X. et al.: Blue-Green-Emitting Phosphor CaSc₂O₄:Tb³⁺: Tunable Luminescence Manipulated by Cross-Relaxation. In: Journal of The Electrochemical Society 156 (2009), Heft 3, H193.
- [134] Dubey, V.; Tiwari, R.; Tamrakar, R.K. et al.: Thermoluminescence and Photoluminescence Study of Erbium Doped CaY₂O₄ Phosphor. In: Indian Journal of Materials Science 2015 (2015), S. 1-5.
- [135] Marí, B.; Singh, K.C.; Sahal, M. et al.: Characterization and photoluminescence properties of some MLn_{2(1-x)}O₄:2xEu³⁺ or 2xTb³⁺ systems (M = Ba or Sr, Ln = Gd or La). In: Journal of Luminescence 131 (2011), Heft 4, S. 587-591.
- [136] Ganguly, R.; Siruguri, V.; Gopalakrishnan, I.K. et al.: Stability of the layered Sr₃Ti₂O₇ structure in La_{1.2}(Sr_{1-x}Ca_x)_{1.8}Mn₂O₇. In: Journal of Physics: Condensed Matter 12 (2000), Heft 8, S. 1683-1689.
- [137] Müller-Buschbaum, H.; Schnering, H.G.V.: Zur Struktur der A-Form der Sesquioxide der Seltenen Erden. Strukturuntersuchungen an La₂O₃. In: Zeitschrift für anorganische und allgemeine Chemie 340 (1965), 5-6, S. 232-245.
- [138] Saiki, A.; Ishizawa, N.; Mizutani, N. et al.: Structural Change of C-Rare Earth Sesquioxides Yb₂O₃ and Er₂O₃ as a Function of Temperature. In: Journal of the Ceramic Association, Japan 93 (1985), Heft 1082, S. 649-654.
- [139] Yakel, H.L.: A refinement of the crystal structure of monoclinic europium sesquioxide. In: Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 35 (1979), Heft 3, S. 564-569.
- [140] Gaume, R.; Viana, B.; Derouet, J. et al.: Spectroscopic properties of Yb-doped scandium based compounds Yb:CaSc₂O₄, Yb:SrSc₂O₄ and Yb:Sc₂SiO₅. In: Optical Materials 22 (2003), Heft 2, S. 107-115.
- [141] Jarosch, D.; Heger, G.: Neutron diffraction investigation of strontianite, SrCO₃. In: Bulletin de Minéralogie 111 (1988), Heft 2, S. 139-142.
- [142] Gobichon, A.-E.; Auffrédic, J.-P.; Louër, D.: Thermal decomposition of neutral and basic lanthanum nitrates studied with temperature-dependent powder diffraction and thermogravimetric analysis. In: Solid State Ionics 93 (1996), Heft 1, S. 51-64.
- [143] Verbraeken, M.C.; Suard, E.; Irvine, J.T.S.: Structural and electrical properties of calcium and strontium hydrides. In: Journal of Materials Chemistry, Vol. 19 (2009), Iss. 18, p. 2766.
- [144] Koehler, W.C.; Wollan, E.O.: Neutron-diffraction study of the structure of the A-form of the rare earth sesquioxides. In: Acta Crystallographica 6 (1953), Heft 8, S. 741-742.
- [145] Saiki, A.; Ishizawa, N.; Mizutani, N. et al.: Structural Change of C-Rare Earth Sesquioxides Yb₂O₃ and Er₂O₃ as a Function of Temperature. In: Journal of the Ceramic Association, Japan 93 (1985), Heft 1082, S. 649-654.
- [146] Grueninger, H.W.; Bringhausen, H.: Die Kristallstruktur von Strontiumhydroxid Sr(OH)₂. In: Zeitschrift f
 ür anorganische und allgemeine Chemie 368 (1969), 1-2, S. 53-61.
- [147] Rau, R.C.: The crystal structure of Eu₃O₄. In: Acta Crystallographica 20 (1966), Heft 6, S. 716-723.
- [148] Bärnighausen, H.; Brauer, G.: Ein neues Europiumoxid Eu₃O₄ und die isotype Verbindung Eu₂SrO₄. In: Acta Crystallographica 15 (1962), Heft 10, S. 1059.
- [149] Fu, S.; Dai, J.; Yin, T. et al.: Synthesis and spectral properties of a new europium strontium oxide SrEu₂O₄. In: Guang pu xue yu guang pu fen xi = Guang pu 26 (2006), Heft 6, S. 1113-1116.
- [150] Chaker, H.; Kabadou, A.; Toumi, M. et al.: Rietveld refinement of the gadolinium strontium oxide SrGd₂O₄. In: Powder Diffraction 18 (2003), Heft 4, S. 288-292.
- [151] Carter, J.R.; Feigelson, R.S.: Preparation and Crystallographic Properties of A²⁺B₂³⁺O₄, Type Calcium and Strontium Scandates. In: Journal of the American Ceramic Society 47 (1964), Heft 3, S. 141-144.
- [152] Young, O.; Balakrishnan, G.; Lees, M.R. et al.: Magnetic properties of geometrically frustrated SrGd₂O₄. In: Physical Review B 90 (2014), Heft 9, S. 94421.
- [153] Müller, M.; Volhard, M.-F.; Jüstel, T.: Photoluminescence and afterglow of deep red emitting SrSc₂O₄:Eu²⁺. In: RSC Advances 6 (2016), Heft 10, S. 8483-8488.
- [154] Horyn, R.; Lukaszewicz, K.: Refinement of the Crystal Structure of CaCs₂O₄. In: Bulletin de l'Academie Polonaise des Sciences 14 (1966), S. 499-504.
- [155] Hodorowicz, E.; Hodorowicz, S.A.; Eick, H.A.: Phases observed at 900 1100°C in the binary Ln-Ba-O systems for Ln = Dy, Ho, Er, Tm, and Yb. In: Journal of Solid State Chemistry 84 (1990), Heft 2, S. 401-407.
- [156] Müller-Buschbaum, H.; Schrandt, O.: Zur Kristallstruktur von Ba₃Ln₄O₉ (Ln = Dy, Er, Y/Yb). In: Journal of Alloys and Compounds 191 (1993), Heft 1, S. 151-154.
- [157] Schleid, T.; Meyer, G.: Single crystals of rare earth oxides from reducing halide melts. In: Journal of the Less Common Metals 149 (1989), S. 73-80.

- [158] Agafonov, V.; Kahn, A.; Michel, D. et al.: Crystal structure of BaSc₂O₄; its relation with perovskite. In: Materials Research Bulletin 18 (1983), Heft 8, S. 975-981.
- [159] Min, X.; Huang, Z.; Fang, M. et al.: Energy transfer from Sm³⁺ to Eu³⁺ in red-emitting phosphor LaMgAl₁₁O₁₉:Sm³⁺, Eu³⁺ for solar cells and near-ultraviolet white light-emitting diodes. In: Inorganic chemistry, Vol. 53 (2014), Iss. 12, pp. 6060-6065.
- [160] Brito, S.L.; Lodi, T.A.; Muniz, R.F. et al.: Energy transfer investigation of Sm³⁺/Eu³⁺ CaBAl glasses. In: Journal of Luminescence 219 (2020), S. 116947.
- [161] Lin, H.; Yang, D.; Liu, G. et al.: Optical absorption and photoluminescence in Sm³⁺and Eu³⁺-doped rare-earth borate glasses. In: Journal of Luminescence 113 (2005), 1-2, S. 121-128.
- [162] Wu, X.; Jiao, Y.; Ren, Q. et al.: Photoluminescence and energy transfer in Sr₃La(BO₃)₃:Ce, Sm and Sr₂TiO₄:Sm, Eu phosphors. In: Optics & Laser Technology 108 (2018), S. 456-465.
- [163] Yadav, R.S.; Dwivedi, Y.; Rai, S.B.: Structural and optical properties of Eu³⁺, Sm³⁺ codoped La(OH)₃ nano-crystalline red emitting phosphor. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 132 (2014), pp. 599-603.
- [164] Zhong, J.; Zhao, W.; Lan, L. et al.: Hydrothermal synthesis and luminescence properties of Eu³⁺ and Sm³⁺ codoped BiPO₄. In: Journal of Rare Earths 32 (2014), Heft 1, S. 5-11.
- [165] Guan, H.; Song, Y.; Ma, P. et al.: Magnetic-downconversion luminescent bifunctional BaGdF₅:Dy³⁺,Eu³⁺ nanospheres: energy transfer, multicolor luminescence and paramagnetic properties. In: RSC Advances, Vol. 6 (2016), Iss. 58, pp. 53444-53453.
- [166] Opravil, T.; Ptáček, P.; Šoukal, F. et al.: Solid-state synthesis of SrY₂O₄ and SrSm₂O₄. In: Journal of Thermal Analysis and Calorimetry 123 (2016), Heft 1, S. 181-194.
- [167] Shimomura, Y.; Kurushima, T.; Kijima, N.: Photoluminescence and Crystal Structure of Green-Emitting Phosphor CaSc₂O₄:Ce³⁺. In: Zeitschrift f
 ür anorganische und allgemeine Chemie 154 (2007), Heft 8, J234.
- [168] Fava, J.; Le Flem, G.: Les phases SrLa₂Al₂O₇ et SrGd₂Al₂O₇. In: Materials Research Bulletin 10 (1975), Heft 2, S. 75-80.
- [169] Smirnov, Y.E.; Zvereva, I.A.: Short-range ordering of cations in complex oxides LnSrAlO₄ (Ln = La, Nd, Sm, Eu). In: Vestnik Sankt-Peterburgskogo Universiteta, Seriya 4: Fizika, Khimiya (2005), Heft 3, S. 34-42.
- [170] Fava, J.; Oudalov, Y.P.; Reau, J.M. et al.: Sur une nouvelle famille d'alluminates double de strontium ou d'europium divalent et de terres rares. In: CR Seances Acad. Sci., Ser. C 274 (1972), S. 1837-1839.
- [171] Ruddlesden, S.N.; Popper, P.: New compounds of the K₂NIF₄ type. In: Acta Crystallographica 10 (1957), Heft 8, S. 538-539.
- [172] Sobolewski, R.; Gierlowski, P.; Kula, W. et al.: High-T/sub c/ thin films on low microwave loss alkaline-rare-earth-aluminate crystals. In: IEEE Transactions on Magnetics 27 (1991), Heft 2, S. 876-879.
- [173] Brown, R.; Pendrick, V.; Kalokitis, D. et al.: Low-loss substrate for microwave application of high-temperature superconductor films. In: Applied Physics Letters 57 (1990), Heft 13, S. 1351-1353.
- [174] Pajaczkowska, A.; Gloubokov, A.: Synthesis, growth and characterization of tetragonal ABCO₄ crystals. In: Progress in Crystal Growth and Characterization of Materials 36 (1998), 1-2, S. 123-162.
- [175] Fan, X.C.; Chen, X.M.; Liu, X.Q.: Structural Dependence of Microwave Dielectric Properties of SrRAlO₄ (R = Sm, Nd, La) Ceramics: Crystal Structure Refinement and Infrared Reflectivity Study. In: Chemistry of Materials 20 (2008), Heft 12, S. 4092-4098.
- [176] Chen, X.M.; Xiao, Y.; Liu, X.Q. et al.: SrLnAlO₄ (Ln = Nd and Sm) Microwave Dielectric Ceramics. In: Journal of Electroceramics 10 (2003), Heft 2, S. 111-115.

- [177] Liu, X.Q.; Chen, X.M.; Xiao, Y.: Preparation and characterization of LaSrAlO₄ microwave dielectric ceramics. In: Materials Science and Engineering: B 103 (2003), Heft 3, S. 276-280.
- [178] Shannon, R.D.; Oswald, R.A.; Parise, J.B. et al.: Dielectric constants and crystal structures of CaYAlO₄, CaNdAlO₄, and SrLaAlO₄, and deviations from the oxide additivity rule. In: Journal of Solid State Chemistry 98 (1992), Heft 1, S. 90-98.
- [179] Berkowski, M.: SrLaGaO₄-SrLaAlO₄ solid solutions: new promising substrate materials for HTSc, Heft 251,, 1997.
- [180] Smirnov, Y.E.; Zvereva, I.A.: Cation Distribution and Interatomic Interactions in Oxides with Heterovalent Isomorphism: III. Complex Aluminates LnCaAlO₄ (Ln = Y, La, Nd, Gd, Ho, Er, Yb). In: Russian Journal of General Chemistry 71 (2001), Heft 6, S. 845-852.
- [181] Vasylechko, L.; Kodama, N.; Matkovskii, A. et al.: Crystal structure and optical spectroscopy of CaGdAlO₄:Er single crystal. In: Journal of Alloys and Compounds 300-301 (2000), S. 475-478.
- [182] Kadyan, S.; Singh, S.; Simantilleke, A. et al.: Rapid-gel combustion synthesis, structure and luminescence investigations of trivalent europium doped MGdAlO₄ ($M = Mg^{2+}$, Ca^{2+} , Sr^{2+} and Ba^{2+}) nanophosphors (2020).
- [183] Di, J.Q.; Xu, X.D.; Xia, C.T. et al.: Crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO₄ crystal. In: Laser Physics 26 (2016), Heft 4, S. 45803.
- [184] Geng, D.; Li, G.; Shang, M. et al.: Nanocrystalline CaYAlO₄:Tb³⁺/Eu³⁺ as promising phosphors for full-color field emission displays. In: Dalton Transactions, Vol. 41 (2012), Iss. 10, pp. 3078-3086.
- [185] Mosses, R.; Wells, J.-P.; Gallagher, H. et al.: Czochralski growth and IR-to-visible upconversion of Ho³⁺- and Er³⁺-doped SrLaAlO₄. In: Chemical Physics Letters 286 (1998), 3-4, S. 291-297.
- [186] Mendhe, M.S.; Puppalwar, S.P.; Dhoble, S.J.: Novel single-component CaLaAlO₄:Tb³⁺, Eu³⁺ phosphor for white light-emission. In: Optical Materials 82 (2018), S. 47-55.
- [187] Howard, C.J.; Kennedy, B.J.; Chakoumakos, B.C.: Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition. In: Journal of Physics: Condensed Matter, Vol. 12 (2000), Iss. 4, pp. 349-365.
- [188] Müller-Buschbaum, H.; Lehmann, U.: Zum Problem der Oktaederstreckung an La₂CuO₄, La₂NiO₄ mit einem Beitrag über CaSmAlO₄. In: Zeitschrift für anorganische und allgemeine Chemie 447 (1978), Heft 1, S. 47-52.
- [189] Wang, C.-H.; Guo, D.-F.; Li, Z.-F. et al.: Crystal structure of Sr₆Y₂Al₄O₁₅: XRD refinements and first-principle calculations. In: Journal of Solid State Chemistry 192 (2012), S. 195-200.
- [190] Antic, B.; Önnerud, P.; Rodic, D. et al.: The structure characteristics of the diluted magnetic semiconductor Y_{2-x}Dy_xO₃. In: Powder Diffraction 8 (1993), Heft 4, S. 216-220.
- [191] Fotiev, V.A.; Berezovskaya, I.V.; Efryushina, N.P. et al.: ChemInform Abstract: Novel Phases in the Systems Based on the Oxides of Strontium, Aluminum and Rare Earth Elements. In: ChemInform, Vol. 20 (1989), Iss. 47.
- [192] Azhagiri, A.; Ponnusamy, V.; Satheesh Kumar, R.: A development of new red phosphor based on europium doped as well as substituted Barium Lanthanum Aluminate (BaLaAlO₄: Eu³⁺). In: Optical Materials 90 (2019), S. 127-138.
- [193] Ryba-Romanowski, W.; Gołąb, S.; Pisarski, W.A. et al.: Optical characterization of BaLaALO4:Nd. In: Journal of Alloys and Compounds 259 (1997), 1-2, S. 69-73.
- [194] Do Dinh, C.; Lewy-Bertaut, E.F.: Paramètres atomiques de BaAl₂O₄ et études des solutions solides BaFe_xAl_{2-x}O₄ et BaGa_xAl_{2-x}O₄. In: Bulletin de Minéralogie 88 (1965), Heft 3, S. 413-416.

- [195] Bartos, A.; Lieb, K.P.; Uhrmacher, M. et al.: Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy. In: Acta Crystallographica Section B: Structural Science 49 (1993), Heft 2, S. 165-169.
- [196] Kovba, L.M.; Lykova, L.N.; Balashov, V.L.: New Compound in the Barium Oxide-Lanthanum Oxide (La₂O₃)-Tungsten Trioxide System. In: Chemischer Informationsdienst 16 (1985), Heft 20.
- [197] Rodriguez-Liviano, S.; Becerro, A.I.; Alcántara, D. et al.: Synthesis and properties of multifunctional tetragonal Eu:GdPO₄ nanocubes for optical and magnetic resonance imaging applications. In: Inorganic chemistry, Vol. 52 (2013), Iss. 2, pp. 647-654.
- [198] Vidya, Y.S.; Anantharaju, K.S.; Nagabhushana, H. et al.: Combustion synthesized tetragonal ZrO₂: Eu³⁺ nanophosphors: structural and photoluminescence studies. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 135 (2015), pp. 241-251.
- [199] Liao, J.; Zhou, D.; Yang, B. et al.: Sol-gel preparation and photoluminescence properties of tetragonal ZrO₂:Y³⁺, Eu³⁺ nanophosphors. In: Optical Materials 35 (2012), Heft 2, S. 274-279.
- [200] Zhou, Y.; Lin, J.; Wang, S.: Energy transfer and upconversion luminescence properties of Y₂O₃:Sm and Gd₂O₃:Sm phosphors. In: Journal of Solid State Chemistry 171 (2003), 1-2, S. 391-395.
- [201] Li, X.; Yang, Z.; Guan, L. et al.: Fabrication and luminescence properties of red emitting phosphor Y₂O₂S:Sm³⁺ for white LED by combustion method. In: Journal of Alloys and Compounds 464 (2008), 1-2, S. 565-568.
- [202] Xiao, Y.; Cheng, X.; Liu, X.: Stability and microwave dielectric characteristics of (Ca₁₋ _xSr_x)LaAlO₄ ceramics (2007).
- [203] Singh, S.; Kadyan, S.; Sheoran, S. et al.: Synthesis and optical investigations of Eu³⁺ activated MYAlO₄ (M = Ca and Sr) as promising display nanomaterials. In: Optik 208 (2020), S. 164552.
- [204] Saidu, A.; Wagiran, H.; Saeed, M.A. et al.: Thermoluminescence response of rare earth activated zinc lithium borate glass. In: Radiation Physics and Chemistry 144 (2018), S. 413-418.
- [205] Xu, J.-L.; Tu, C.-Y.; Wang, Y. et al.: Multi-wavelength continuous-wave laser operation of Yb:Ca₃Gd₂(BO₃)₄ disordered crystal. In: Optical Materials 33 (2011), Heft 11, S. 1766-1769.
- [206] Mill, B.V.; Tkachuk, A.M.; Belokoneva, E.L. et al.: Growth, structure, and intensities of spectra of Ln₂Ca₃B₄O₁₂:Nd³⁺ crystals (Ln = Y, La, Gd). In: Optics and Spectroscopy 84 (1998), Heft 1, S. 65-72.
- [207] Wei, B.; Hu, Z.; Lin, Z. et al.: Growth and spectral properties of Er³⁺/Yb³⁺-codoped Ca₃Y₂(BO₃)₄ crystal. In: Journal of Crystal Growth 273 (2004), 1-2, S. 190-194.
- [208] Gaumé, R.; Haumesser, P.-H.; Antic-Fidancev, E. et al.: Crystal field calculations of Yb³⁺-doped double borate crystals for laser applications. In: Journal of Alloys and Compounds 341 (2002), 1-2, S. 160-164.
- [209] Brenier, A.; Tu, C.; Wang, Y. et al.: Diode-pumped laser operation of Yb³⁺-doped Y₂Ca₃B₄O₁₂ crystal. In: Journal of Applied Physics, Vol. 104 (2008), Iss. 1, p. 13102.
- [210] Gudzenko, L.; Kosmyna, M.; Shekhovtsov, A. et al.: Crystal Growth and Glass-Like Thermal Conductivity of Ca₃RE₂(BO₃)₄ (RE = Y, Gd, Nd) Single Crystals. In: Crystals 7 (2017), Heft 3, S. 88.
- [211] Gao, S.F.; Lv, S.Z.; Zhu, Z.J. et al.: Polarized spectral properties and potential application of large-size Nd³⁺:Ba₃Gd₂(BO₃)₄ crystal. In: Laser Physics, Vol. 24 (2014), Iss. 6, p. 65701.

- [212] Dzhurinskii, B.F.; Tananev, I.V.; Aliev, O.A.: Synthesis of single crystals of double borats in the system Ln₂O₃-SrO-B₂O₃. In: Inorganic Materials 4 (1968), S. 1972-1974.
- [213] Bambauer, H.U.; Kindermann, B.: Darstellung und kristallographische Daten von Orthoboraten (SE)₂Ca₃[BO₃]₄. In: Zeitschrift f
 ür Kristallographie - Crystalline Materials 147 (1978), 1-4.
- [214] Bambauer, H.U.; Khodaverdi, A.; Kindermann, B. et al.: Synthese und kristallographische Daten von Yb₂Ca₃[BO₃]₄. In: Zeitschrift f
 ür Kristallographie -Crystalline Materials 146 (1977), 1-3, S. 1075.
- [215] Abdullaev, G.K.; Mamedov, K.S.: Crystal structure of the binary orthoborate of erbium and strontium, Er₂Sr₃(BO₃)₄. In: Journal of Structural Chemistry 17 (1976), Heft 1, S. 166-168.
- [216] Abdullaev, G.K.; Mamedov, K.S.: Crystal structure of Nd₂Sr₃(BO₃)₄. In: Journal of Structural Chemistry 15 (1974), Heft 1, S. 145-147.
- [217] Abdullaev, G.K.; Mamedov, K.S.; Amirov, S.T.: Crystal structure of La₂Sr₃(BO₃)₄. In: Kristallografiya 18 (1973), Heft 5, S. 1075-1077.
- [218] Palkina, K.K.; Kuznetsov, V.G.; Moruga, L.G.: Crystal structure of Pr₂Sr₃(BO₃)₄. In: Zhurnal Strukturnoj Khimii 14 (1973), Heft 6, S. 1053-1057.
- [219] Zhang, Y.; Lin, Z.; Zhang, L. et al.: Growth and optical properties of Yb³⁺-doped Sr₃Gd₂(BO₃)₄ crystal. In: Optical Materials 29 (2007), Heft 5, S. 543-546.
- [220] Yan, J.F.; Hong, H.-P.: Crystal structure of a new mini-laser material, Nd₂Ba₃(BO₃)₄. In: Materials Research Bulletin 22 (1987), Heft 10, S. 1347-1353.
- [221] Zhang, Y.; Li, Y.: Red photoluminescence and crystal structure of Sr₃Y₂(BO₃)₄. In: Journal of Alloys and Compounds 384 (2004), 1-2, S. 88-92.
- [222] Fu-Lin, L.; Jian-Hua, H.; Xing-Hong, G. et al.: Growth and structure of Sr₃Yb₂(BO₃)₄ Crystal. In: Jiegou Huaxue 32 (2013), S. 434-438.
- [223] Dobretsova, E.A.; Borovikova, E.Y.; Boldyrev, K.N. et al.: IR spectroscopy of rareearth aluminum borates RAl₃(BO₃)₄ (R = Y, Pr-Yb). In: Optics and Spectroscopy 116 (2014), Heft 1, S. 77-83.
- [224] Lixia, Z.; Tao, Y.; Jiang, W. et al.: FT-IR and Raman spectroscopic study of hydrated rubidium (cesium) borates and alkali double borates. In: Russian Journal of Inorganic Chemistry 52 (2007), Heft 11, S. 1786-1792.
- [225] Jun, L.; Shuping, X.; Shiyang, G.: FT-IR and Raman spectroscopic study of hydrated borates. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 51 (1995), Heft 4, S. 519-532.
- [226] Hamaganova, T.N.; Trunov, V.K.; Dzhurinskii, B.F. et al.: Crystal-structure of Ba₃La(BO₃)₄, Ba₃Pr(BO₃)₄. In: Kristallografiya 35 (1990), S. 856-860.
- [227] Ma, P.; Chen, J.; Hu, Z. et al.: Structure Of Ba₃Y₂(BO₃)₄ Crystal. In: Materials Research Innovations 9 (2005), Heft 3, S. 63-64.
- [228] Ilyukhin, A.B.; Dzhurinskij, B.F.: Crystal structures of double borates LnBa₃(BO₃)₃ (Ln Dy, Ho, Tm, Yb, Lu). In: Zhurnal Neorganicheskoj Khimii 38 (1993), Heft 10, S. 1625-1630.
- [229] Filatov, S.K.; Biryukov, Y.P.; Bubnova, R.S. et al.: The novel borate Lu₅Ba₆B₉O₂₇ with a new structure type: synthesis, disordered crystal structure and negative linear thermal expansion. In: Acta Crystallographica Section B: Structural Science, Vol. 75 (2019), Pt 4, pp. 697-703.
- [230] Höppe, H.A.; Kazmierczak, K.; Grumbt, C. et al.: The Oxonitridoborate Eu₅(BO_{2.51(7)}N_{0.49(7)})₄ and the Mixed-Valent Borates Sr₃Ln₂(BO₃)₄ (Ln = Ho, Er). In: European Journal of Inorganic Chemistry, Vol. 2013 (2013), Iss. 31, pp. 5443-5449.

- [231] Misra, S.; Miller, G.J.: $Gd_{5-x}Y_{x}Tt_{4}$ (Tt = Si or Ge): effect of metal substitution on structure, bonding, and magnetism. In: Journal of the American Chemical Society, Vol. 130 (2008), Iss. 42, pp. 13900-13911.
- [232] Sulich, A.; Domagala, J.Z.; Härtwig, J. et al.: Nature and spatial distribution of extended defects in Czochralski-grown Ca₃RE₂(BO₃)₄ (RE = Y, Gd) orthoborate single crystals. In: Journal of Physics D: Applied Physics 52 (2019), Heft 5, S. 55102.
- [233] Erfan, S.; Ravi Kumar, V.; Suresh, G. et al.: Luminescence Studies of Eu Doped AY₂O₄ (A=Ca, Ba) Phosphor. In: International Journal of Luminescence and Applications 5 (2015), Heft 2, S. 261-263.
- [234] Li, H.-F.; Wildes, A.; Hou, B. et al.: Magnetization, crystal structure and anisotropic thermal expansion of single-crystal SrEr₂O₄. In: RSC Advances 4 (2014), Heft 96, S. 53602-53607.
- [235] Li, H.-F.; Zhang, C.; Senyshyn, A. et al.: Incommensurate antiferromagnetic order in the manifoldly-frustrated SrTb₂O₄ with transition temperature up to 4.28 K. In: Frontiers in Physics 2 (2014), Heft 10, S. 599.
- [236] Michler, N.: Einbau von Seltenerdelementen in Erdalkaligallate Synthese, Charakterisierung und Anwendung. Halle, Martin-Luther-Universität Halle-Wittenberg, Master Thesis, 2018.
- [237] Ramakrishna, G.; Naik, R.; Nagabhushana, H. et al.: White light emission and energy transfer (Dy³⁺→ Eu³⁺) in combustion synthesized YSO: Dy³⁺, Eu³⁺ nanophosphors. In: Optik 127 (2016), Heft 5, S. 2939-2945.
- [238] Meza-Rocha, A.N.; Camarillo, I.; Lozada-Morales, R. et al.: Reddish-orange and neutral/warm white light emitting phosphors: Eu³⁺, Dy³⁺ and Dy³⁺/Eu³⁺ in potassiumzinc phosphate glasses. In: Journal of Luminescence 183 (2017), S. 341-347.
- [239] Gedekar, K.A.; Wankhede, S.P.; Moharil, S.V. et al.: d–f luminescence of Ce³⁺ and Eu²⁺ ions in BaAl₂O₄, SrAl₂O₄ and CaAl₂O₄ phosphors. In: Journal of Advanced Ceramics 6 (2017), Heft 4, S. 341-350.
- [240] Aitasalo, T.; Hölsä, J.; Jungner, H. et al.: Thermoluminescence study of persistent luminescence materials: Eu²⁺- and R³⁺-doped calcium aluminates, CaAl₂O₄:Eu²⁺,R³⁺. In: The Journal of Physical Chemistry B, Vol. 110 (2006), Iss. 10, pp. 4589-4598.
- [241] Yu, Y.-T.; Kim, B.-G.: Effects of adding B₂O₃ as a flux on phosphorescent properties in synthesis of SrAl₂O₄:(Eu²⁺, Dy³⁺) phosphor. In: Korean Journal of Chemical Engineering 20 (2003), Heft 5, S. 973-976.
- [242] Yamamoto, H.; Matsuzawa, T.: Mechanism of long phosphorescence of SrAl₂O₄:Eu²⁺, Dy³⁺ and CaAl₂O₄:Eu²⁺, Nd³⁺. In: Journal of Luminescence 72-74 (1997), S. 287-289.
- [243] Brito, H.F.; Hölsä, J.; Laamanen, T. et al.: Persistent luminescence mechanisms: human imagination at work. In: Optical Materials Express 2 (2012), Heft 4, S. 371.

Anhang

Calcium Al	AluminatCaAl ₂ O $Z = 4$ $a = 8$, $z = 3$				CaAl ₂ O ₄	GoF = 2,07				07	
	7	= 4	4		a = 8,700(8)	Å b=	8.0	91(2	Å (c = 17	478(6) Å
$P2_1/n$	V	=	1069	9,39(1) Å ³	$\alpha = 90^{\circ}$	β =	119),64((8) °	$\gamma = 90$)°
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
15,99	0	1	2	5,5375	1,29	41,48	-4	0	4	2,1752	1,78
16,03	1	1	0	5,5245	1,93	42,07	0	2	6	2,1461	1,47
16,06	-1	1	2	5,5154	2,16	42,21	3	2	0	2,1393	2,31
18,96	1	1	1	4,6772	5,00	42,31	-3	2	6	2,1345	2,06
19,00	-1	1	3	4,6661	4,69	42,34	1	3	3	2,1329	1,60
20,31	-1	0	4	4,3694	1,63	43,03	-4	1	4	2,1006	1,44
21,95	0	2	0	4,0456	8,69	43,13	0	1	7	2,0959	1,01
22,73	0	2	1	3,9093	1,20	43,48	-4	1	5	2,0798	1,02
23,59	-2	0	4	3,7691	1,73	44,77	0	4	0	2,0228	4,08
23,95	-2	1	3	3,7124	2,85	44,77	-4	1	6	2,0228	5,85
24,24	-1	2	1	3,6684	1.17	46.26	-2	3	6	1,9608	1.35
25,99	2	1	0	3,4253	1.64	47.12	2	2	4	1.9270	6.62
26.99	-1	2	3	3.3013	2.80	47.25	-2	2	8	1.9223	14.22
27.85	1	1	3	3.2008	2.23	47.42	-4	2	4	1.9158	6.66
27,91	-1	1	5	3,1936	2,72	49,62	-1	4	4	1.8356	2.05
28.21	0	2	3	3,1606	2.94	49.63	-4	1	8	1.8354	1.56
29.16	2	1	1	3.0600	1.72	54.50	-4	3	5	1.6822	1.16
29.25	-2	1	5	3.0507	1.38	55.25	-5	1	3	1.6613	1.17
30.04	1	2	2	2,9728	3.54	55.45	-1	0	10	1.6558	1.37
30.08	-1	2	4	2.9686	100.00	58.25	0	5	2	1.5827	1.26
30.14	-2	2	2	2,9625	18.81	58.26	ĩ	5	0	1.5824	1.49
30.74	-2	2	3	2,9064	1.72	58.27	-1	5	2	1.5822	1.43
31.12	1	0	4	2.8714	3.23	58.45	3	4	0	1.5776	1.31
31.19	-1	0	6	2.8650	2.89	58.46	2	3	5	1.5774	1.28
31.30	-2	Ő	6	2,8558	6.55	58.53	-3	4	6	1.5757	1.49
31.35	-3	Ő	2	2,8506	1.96	59.68	4	3	Ő	1.5480	1.11
31.43	0	1	5	2,8441	1.55	59.96	0	5	3	1.5414	1.05
32.44	-2	2	4	2.7577	1.14	60.28	1	2	8	1.5342	4.40
35.43	0	0	6	2.5317	14.90	60.35	-1	2	10	1.5324	3.45
35.59	3	0	Ő	2,5205	31.32	60.46	4	2	2	1.5300	3.74
35.70	-3	0	6	2.5127	9.21	60.49	1	3	7	1.5292	3.43
36.80	1	3	1	2.4404	2.04	60.56	-1	3	9	1.5277	3.78
36.97	0	2	5	2,4293	1.08	60.64	-5	2	2	1.5258	2.51
37.18	0	1	6	2.4162	9.11	60.66	-4	2	10	1.5254	3.95
37.34	3	1	0	2,4065	19.77	60.77	-5	2	8	1.5229	3.05
37,45	-3	1	6	2,3997	8.81	60,98	1	5	2	1.5181	3.14
37.70	2	1	3	2.3842	1.42	61.01	-1	5	4	1.5175	4.86
37.82	-2	1	7	2.3769	1.29	62.53	-2	4	8	1.4843	1.21
38.46	2	2	2	2.3386	1.09	63.64	3	0	6	1.4610	1.10
38.47	-1	2	6	2.3381	1.70	63.64	-2	3	10	1.4609	2.58
38.56	-2	2	6	2.3331	2.09	63.72	1	4	6	1.4593	1.64
38,68	-1	1	7	2,3260	2.39	63,74	-3	3	10	1,4589	1.01
39.19	1	3	2	2,2970	1.75	63.78	-1	4	8	1.4581	2.08
39.27	-2	3	2	2,2923	2.57	63,81	3	4	2	1,4574	3,28
39.72	-2	3	1	2,2672	1.77	63,86	-3	0	12^{-12}	1,4565	2,28
41.01	0	3	4	2,1989	3,29	63,89	-5	3	4	1,4559	1,68
41.08	2	3	0	2,1957	4.20	64,06	-2	5	5	1,4524	1,23
41.12	-2	3	4	2,1934	2,60	64,17	-6	0	6	1,4501	4,25
41,16	2	0	4	2,1916	1,40	66,34	-2	5	6	1,4079	1,02
41,29	-2	0	8	2,1847	3,19	69,98	0	6	1	1,3433	1,79

 Tabelle A 1: Gitterparameter und Reflexiliste von CaAl₂O₄ (rel. Int. > 1,0 %)

Strontium .	Alun	IminatSrAl2O4GoF = 1,44 $Z = 4$ $a = 5,151(2)$ Å $b = 8,834(0)$ Å $c = 8,44$		44							
	$Z = 4$ $V = 383,64(7) Å^{3}$			a = 5,151(2)	Å b =	8,8	34(0) Å	c = 8.4	444(8) Å	
P2 ₁	V	= 3	383,	64(7) ų	$\alpha = 90^{\circ}$	β=	93,	31(1)°	$\gamma = 90$	°
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,52	0	1	1	6,0950	8,42	47,63	-2	1	3	1,9076	4,76
17,24	1	0	0	5,1398	6,06	47,79	0	2	4	1,9019	6,98
19,69	-1	0	1	4,5054	3,70	48,70	1	1	4	1,8683	12,38
19.97	1	1	0	4,4423	48.64	48.82	1	3	3	1.8638	1.60
20.10	0	2	0	4,4149	26.17	50.23	-1	2	4	1.8148	1.81
21.07	Õ	0	2	4.2135	1.96	51.08	-2	2	3	1.7867	2.53
22.13	-1	1	1	4.0134	12.71	52.68	0	4	3	1.7362	3.35
22.72	0	2	1	3.9109	18.42	53.82	2	2	3	1.7020	1.44
23.07	1	1	1	3.8515	10.34	54.49	3	1	0	1.6826	2.94
23.37	0	1	2	3.8029	2.61	54.65	-2	0	4	1.6780	1.59
26.59	1	2	0	3.3496	3.69	54.76	2	4	0	1.6751	3.68
28.12	1	0	2	3,1705	1.36	54.91	1	5	0	1.6707	4.61
28.27	-1	2	1	3,1538	10.14	55.00	-3	1	1	1.6683	1.46
28,43	-1	1	2	3 1367	100.00	55 19	-1	4	3	1,6630	1 97
29,13	0	2	2	3 0485	96 39	55 44	0	1	5	1,6560	5,67
29,27	1	1	2	2 9841	78 58	55 69	-1	3	4	1,6500	5,00
33 44	0	1	3	2,5011	2 15	55.86	-1	5	1	1,6447	1 50
33 51	-1	2	2	2,6717	1 17	56.48	_2	3	3	1,6280	7 23
34 87	2	0	0	2,5707	35.17	56 50	-2	4	3	1,6274	1,00
35,10	1	3	0	2,5707	77 19	57.43	1	3	5 4	1,6033	8 28
35.10	1	0	3	2,5547	1.68	57.44	1	1	5	1,6030	4.08
35,49	-1	0	1	2,5270	1,00	57.64	-1	2	0	1,0050	7,00
36.37	2	1	0	2,4995	8 22	57.70	2	1	2	1,5978	2,00
36,37	1	2	1	2,4082	8 50	58.13	-5	2	1	1,5941	3 01
36.96	-1	1	3	2,4040	10.46	58.13	-5	0	1	1,5855	3,91
30,90	-1 1	1	1	2,4301	8 42	58 47	2	4	+ 2	1,5855	5,01
37,03	2	5	1	2,4237	3,42	58 56	-2	+ 2	2 5	1,5772	3,14
37,12	2	2	2	2,4202	3,04	50,50	2	2	5 1	1,5750	2,60
37,23	1	5	2	2,4134	2,98	50,02	-2 1	2 5	4	1,5080	3,91
37,32	2	1	3	2,4070	4,07	59,05	-1	2	2 1	1,5052	1 02
37,30 27.03	-2	2	1	2,4030	7,12	59,40	3 1	1	1	1,3347	1,02
57,95 29 5 4	2	1	3	2,5705	5,75	59,50	1	5	2	1,5506	2,12
30,34	1	1	1	2,3342	4,38	59,89	1	3	2	1,3432	0,44
38,/3	1	1	2	2,3229	3,38	00,10 (0,22	2	4	2	1,5570	10,45
39,98 40.57	-2	0	2	2,2555	3,40	00,33	3	1	2	1,5550	8,45
40,37	1	2	2	2,2217	10,17	60,49	-1	4	3	1,5295	2,03
40,74	-1	3	2	2,2131	13,30	60,70 60,82	2	4	4	1,5245	3,0/
40,84	0	4	2	2,2080	8,00 10.24	00,83	-3	2	2	1,5215	1,08
41,11	-1	2	2	2,1938	10,24	01,09	-3	0	3	1,5025	2,06
41,32	-2	1	2	2,1834	/,5/	62,15	2	2	4	1,4923	3,60
41,48	-2	2	1	2,1755	1,30	02,55	1	2	2	1,4857	1,21
41,84	1	3	2	2,15/5	16,08	62,67	3	3	0	1,4813	14,85
42,19	2	0	2	2,1404	6,39	62,68	-3	1	3	1,4811	1,60
42,28	0	4	1	2,1360	1,/4	62,79	-1	4	4	1,4/86	1,/1
42,56	2	2	1	2,1224	1,07	63,10	0	6	0	1,4/21	10,19
42,88	0	0	4	2,1072	18,79	63,53	-2	4	5	1,4633	1,14
44,15	0	1	4	2,0497	1,44	63,54	0	3	2	1,4630	1,02
44,54	0	3	3	2,0326	3,52	64,28	-1	5	3	1,4480	1,57
44,63	1	4	0	2,0289	2,22	64,54	-2	5	1	1,4427	1,15
45,14	-2	2	2	2,0072	10,97	65,21	-2	1	5	1,4296	4,07
45,53	-1	0	4	1,9906	1,98	65,93	2	4	3	1,4156	1,40
45,72	-1	4	1	1,9829	1,64	66,29	3	1	3	1,4088	1,22
46,39	0	4	2	1,9559	20,62	66,50	0	0	6	1,4049	2,56

Tabelle A 2: Gitterparameter und Reflexliste von $SrAl_2O_4$ (rel. Int. > 1,0 %)

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
46,44	-2	0	3	1,9537	1,94	67,29	-2	5	2	1,3903	1,22
46,74	-1	1	4	1,9419	4,58	68,05	-2	2	5	1,3766	2,22
46,88	2	3	0	1,9365	1,86	69,35	3	4	0	1,3540	1,48
47,15	2	2	2	1,9261	24,67	69,79	-3	4	1	1,3465	1,69
47,53	1	0	4	1,9115	1,00						

Tabelle A 3: Gitterparameter und Reflexliste von $BaAl_2O_4$ (rel. Int. > 0,1 %)

Barium Alu	ımin	at		1	BaAl ₂ O ₄					GoF = 1,34			
DC	Z	<u> </u>	3		a = 10,449(6)	Å b=	10,4	449(6) Å	c = 8,	794(0) Å		
P6 ₃	V	r = 8	331,	60(8) ų	$\alpha = 90^{\circ}$	$\beta =$	90	D		$\gamma = 12$	20 °		
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]		
16,98	1	1	0	5,2162	0,40	54,54	2	2	4	1,6813	8,45		
19,63	2	0	0	4,5184	47,16	54,65	4	2	1	1,6780	0,13		
20,21	0	0	2	4,3909	5,75	54,83	5	0	2	1,6729	0,33		
22,10	2	0	1	4,0184	9,26	55,55	3	1	4	1,6530	0,27		
22,49	1	0	2	3,9500	0,14	56,08	2	0	5	1,6386	1,59		
26,06	2	1	0	3,4168	0,16	56,14	4	1	3	1,6371	0,18		
27,99	2	1	1	3,1847	2,13	56,61	5	1	0	1,6246	0,20		
28,31	2	0	2	3,1503	100,00	56,84	3	3	2	1,6185	0,15		
29,62	3	0	0	3,0137	0,13	57,65	5	1	1	1,5976	0,99		
31,35	3	0	1	2,8508	0,19	57,83	4	2	2	1,5932	14,58		
34,33	2	2	0	2,6103	37,56	58,52	4	0	4	1,5760	5,44		
35,10	1	1	3	2,5545	0,25	59,04	2	1	5	1,5635	0,23		
35,77	3	1	0	2,5080	0,78	60,05	5	0	3	1,5394	0,18		
35,86	2	2	1	2,5023	3,36	60,73	5	1	2	1,5239	0,16		
36,11	3	0	2	2,4856	0,56	60,95	3	0	5	1,5188	0,36		
36,52	2	0	3	2,4583	1,55	61,40	3	2	4	1,5088	0,87		
37,25	3	1	1	2,4118	0,30	61,45	6	0	0	1,5077	5,95		
39,84	4	0	0	2,2609	9,66	62,45	6	0	1	1,4860	0,21		
40,15	2	2	2	2,2444	22,50	62,89	4	2	3	1,4766	0,78		
40,52	2	1	3	2,2243	0,25	63,27	4	1	4	1,4685	0,13		
41,05	0	0	4	2,1970	8,83	63,38	4	3	1	1,4663	0,26		
41,19	4	0	1	2,1896	1,37	63,44	0	0	6	1,4651	0,82		
42,30	1	0	4	2,1350	0,13	63,77	2	2	5	1,4584	0,19		
44,71	1	1	4	2,0252	0,46	64,25	5	2	0	1,4485	0,31		
44,85	3	2	1	2,0194	0,88	64,37	1	0	6	1,4462	0,21		
45,06	4	0	2	2,0105	17,22	64,69	3	1	5	1,4398	0,19		
45,88	2	0	4	1,9763	11,68	65,22	5	2	1	1,4293	0,33		
46,56	2	2	3	1,9492	0,69	65,39	6	0	2	1,4261	0,71		
47,16	4	1	1	1,9257	0,39	65,65	5	1	3	1,4209	0,21		
47,69	3	1	3	1,9055	0,15	66,19	1	1	6	1,4107	0,25		
50,66	4	1	2	1,8005	0,16	66,94	5	0	4	1,3968	0,40		
50,98	4	0	3	1,7901	0,55	67,10	2	0	6	1,3938	2,26		
51,54	5	0	1	1,7719	0,14	67,41	4	0	5	1,3881	0,61		
52,53	3	3	0	1,7407	0,26	68,10	5	2	2	1,3758	0,14		
53,02	1	0	5	1,7256	0,17	68,73	3	3	4	1,3647	0,26		
53,57	4	2	0	1,7094	5,07	69,62	4	2	4	1,3494	4,50		
54,11	3	2	3	1,6934	0,24	69,78	2	1	6	1,3467	0,23		

Calcium Bo	rat				CaB2O4					GoF = 1,	40
DI	Z	Z = 4	1		a = 11,597(4)	Å b=	4,2	79(1) Å	$\mathbf{c}=6,$	219(8) Å
Pocn	V	7 = 3	308,	66(7) ų	$\alpha = 90^{\circ}$	β=	90	0		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
15,29	2	0	0	5,7903	19,28	54,38	2	2	2	1,6859	7,35
22,15	1	1	0	4,0106	0,52	54,59	3	1	3	1,6797	7,93
26,42	1	1	1	3,3702	61,58	55,35	4	2	1	1,6586	0,49
28,70	0	0	2	3,1075	22,08	55,99	6	0	2	1,6411	8,20
29,65	2	1	1	3,0101	46,31	57,43	3	2	2	1,6033	1,22
29,74	1	0	2	3,0016	100,00	58,83	4	1	3	1,5685	0,91
30,84	4	0	0	2,8973	22,29	59,41	0	0	4	1,5544	0,44
31,18	3	1	0	2,8666	17,55	59,83	7	1	0	1,5445	1,24
32,67	2	0	2	2,7388	15,03	60,00	1	0	4	1,5406	0,43
34,42	3	1	1	2,6032	43,99	60,36	6	1	2	1,5322	2,04
36,54	1	1	2	2,4571	0,36	60,71	5	2	1	1,5242	0,84
39,02	2	1	2	2,3066	2,07	61,54	4	2	2	1,5057	10,61
40,26	4	1	1	2,2381	15,12	61,73	2	0	4	1,5014	3,47
42,23	0	2	0	2,1385	36,89	61,85	7	1	1	1,4990	8,43
42,62	4	0	2	2,1196	23,53	62,33	0	2	3	1,4884	0,87
42,88	3	1	2	2,1075	1,64	62,90	1	2	3	1,4763	1,16
44,41	5	1	0	2,0382	4,24	63,60	7	0	2	1,4618	0,47
44,78	0	2	1	2,0223	0,32	64,01	5	1	3	1,4534	1,11
45,16	2	2	0	2,0063	10,99	64,22	8	0	0	1,4492	0,82
45,49	1	2	1	1,9922	1,82	64,57	3	0	4	1,4422	1,17
46,87	5	1	1	1,9368	52,58	64,59	2	2	3	1,4417	0,73
46,99	6	0	0	1,9320	2,21	64,99	6	2	0	1,4338	1,12
47,58	2	2	1	1,9094	6,73	65,87	2	1	4	1,4167	0,84
47,85	4	1	2	1,8993	6,08	66,60	5	2	2	1,4030	0,76
48,97	5	0	2	1,8585	4,00	66,92	6	2	1	1,3972	1,33
49,46	1	1	3	1,8413	38,99	67,36	3	2	3	1,3890	0,71
51,43	2	1	3	1,7754	0,27	67,68	7	1	2	1,3833	0,29
51,85	0	2	2	1,7620	3,58	67,86	1	3	1	1,3800	2,16
52,49	1	2	2	1,7420	6,35	68,43	4	0	4	1,3699	1,80
53,18	4	2	0	1,7209	3,22	68,62	3	1	4	1,3666	0,55
53,73	5	1	2	1,7046	0,27	69,49	2	3	1	1,3516	1,42
54,09	6	1	1	1.6942	1.74					-	-

Tabelle A 4: Gitterparameter und Reflexliste von CaB_2O_4 (rel. Int. > 0,1 %)

Tabelle A 5: Gitterparameter und Reflexliste von SrB_2O_4 (rel. Int. > 0,1 %)

Strontium I	Bora	t		1	SrB ₂ O ₄				GoF = 2,01			
Dhan	Ζ	= 4	1		a = 11,992(3)	Å b=	4,3	30(0) Å	c=6,	596(1) Å	
Poch	V	$V = 342,51(2) Å^3$			$\alpha=~90~^\circ$	$\beta =$	90	C		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
14,76	2	0	0	5,9981	1,54	44,45	2	2	0	2,0365	0,33	
25,68	1	1	1	3,4659	2,46	45,32	5	1	1	1,9996	0,81	
27,01	0	0	2	3,2986	0,66	45,33	6	0	0	1,9989	0,24	
28,03	1	0	2	3,1805	0,83	46,64	2	2	1	1,9459	0,18	
28,78	2	1	1	3,0994	0,25	46,92	1	1	3	1,9349	0,70	
29,77	4	0	0	2,9985	0,65	50,37	0	2	2	1,8100	0,15	
30,40	3	1	0	2,9376	0,13	51,90	3	1	3	1,7603	0,22	
30,91	2	0	2	2,8902	0,69	52,06	4	2	0	1,7553	0,16	
33,36	3	1	1	2,6835	1,51	52,79	2	2	2	1,7328	0,25	
40,63	4	0	2	2,2187	0,54	53,57	6	0	2	1,7095	0,18	
41,68	0	2	0	2,1652	0,52	59,62	4	2	2	1,5495	0,35	

Barium Boi	rat]	BaB2O4					GoF = 1,	62
D 2	Ζ	=	18		a = 12,528(3)	Å b=	12,	528	(3) Å	c = 12	2,729(2) Å
R3c	V	=	1730),28(9) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 12$	20 °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,13	1	1	0	6,2626	24,46	55,21	2	1	7	1,6623	0,22
16,14	1	0	-2	5,4885	4,68	55,23	5	1	4	1,6618	0,50
21,51	2	0	2	4,1280	4,04	56,00	6	1	-1	1,6407	2,21
22,77	2	1	1	3,9027	4,48	57,26	5	2	-3	1,6077	2,40
24,60	3	0	0	3,6161	55,25	57,26	5	2	3	1,6077	2,62
25,34	1	1	3	3,5125	100,00	57,51	6	1	2	1,6013	0,86
25,83	2	1	-2	3,4468	0,33	57,68	4	2	5	1,5968	1,66
28,48	2	2	0	3,1317	13,06	58,36	4	1	-6	1,5799	1,22
29,23	1	0	4	3,0533	17,03	58,36	4	1	6	1,5799	1,57
30,50	3	1	-1	2,9282	7,37	58,59	1	0	-8	1,5742	0,21
32,60	2	0	-4	2,7446	1,33	58,93	4	4	0	1,5660	0,70
32,90	3	1	2	2,7202	3,37	59,33	3	1	-7	1,5563	0,66
35,60	2	2	3	2,5197	36,42	59,35	4	3	4	1,5559	0,36
35,69	2	1	4	2,5139	0,36	59,71	5	1	-5	1,5473	0,67
35,97	4	0	-2	2,4951	2,42	60.09	5	3	-1	1,5385	0,11
36,76	3	2	1	2,4426	1,18	60,60	2	0	8	1,5268	0.31
37,98	4	1	0	2,3674	9.89	61.53	5	3	2	1,5059	2.03
38.82	3	2	-2	2.3179	4.01	61.53	7	0	-2	1,5059	0.45
41.26	3	1	-4	2,1863	0.86	62.07	6	2	1	1,4941	0.19
41,73	2	1	-5	2,1628	2,43	62,35	3	3	6	1,4881	3,38
42.58	0	0	6	2,1214	7,41	63.25	4	4	3	1,4691	0.99
43.30	3	3	0	2,0879	5.24	63.29	3	2	7	1.4683	0.16
43,75	4	1	-3	2,0674	15.62	63.30	6	1	-4	1,4679	0.46
43,75	4	1	3	2,0674	14.35	63.48	6	2	-2	1,4642	0.79
43,82	4	0	4	2,0642	0,64	63.65	4	3	-5	1,4608	0,55
44,06	5	0	2	2,0537	4.15	64.83	7	1	0	1,4370	0.30
44,74	4	2	-1	2,0242	7.20	66.41	3	1	8	1,4066	0.37
45.09	1	1	6	2.0093	5.78	67.12	5	3	-4	1.3934	1.63
46.27	3	2	4	1.9605	3.19	67.12	7	0	4	1.3934	0.29
46.50	4	2	2	1.9515	0.67	67.46	6	1	5	1.3873	1.39
46,70	3	1	5	1,9435	1.65	67.81	5	4	1	1.3809	1.11
47.15	5	1	1	1,9261	2,84	67.89	1	1	9	1.3796	3.25
48.56	3	3	3	1.8734	0.32	68.08	6	0	-6	1.3762	1.10
48.84	5	1	-2	1.8632	0.15	68.08	6	0	6	1.3762	0.84
49.79	3	0	-6	1.8298	6.40	68.29	4	Ő	-8	1.3724	0.25
49.79	3	0	6	1.8298	7.28	68.60	6	3	Õ	1.3669	1.45
50.43	6	Ő	Õ	1,8082	2.28	68.94	7	1	-3	1.3611	0.77
50.90	5	Ő	-4	1,7927	2.56	68.94	7	1	3	1.3611	0.96
51 29	3	2	-5	1 7797	0.54	68 97	4	2	-7	1 3604	1 43
51 71	4	3	1	1 7663	1.08	68 99	6	$\frac{2}{2}$	4	1 3602	0.41
52.03	2	2	6	1 7564	2,89	69.16	5	4	_2	1 3572	0 10
52,65	5	2	0	1 7373	1 79	69.93	5	2	-6	1 3441	0.41
53 00	4	2	_4	1 7235	0.32	69.93	5	2	6	1 3441	0 32
53,30	4	3	-2	1,7174	1,13	07,95	5	2	0	1,5471	0,52

Tabelle A 6: Gitterparameter und Reflexliste von BaB_2O_4 (rel. Int. > 0,1 %)

54,39

5 0 3

1,6854

0,46

,111(6) Å ° rel. Int. [%] 2,12 0,21 1,15 16.08
rel. Int. [%] 2,12 0,21 1,15
rel. Int. [%] 2,12 0,21 1,15
2,12 0,21 1,15
0,21 1,15
1,15
16.09
10,08
10,49
12,68
3,09
23,19
2,16
17,15
1,76
16,19
0,22
1,44
8.25
2,61
0.92
0.91
2,40
1.02
3.00
0.42
0.36
0.72
1.22
1.58
0.68
0.32
1.66
0.88
1.61
0.48
0.43
0.40
1 12
3 29
9 43
8 17
0.59
14 66
0.87
0.43

Tabelle A 7: Gitterparameter und Reflexliste von $CaSc_2O_4$ (rel. Int. > 0,1 %)

Strontium S	Sam	ariu	m C	xid	SrSm ₂ O ₄					GoF = 1,24		
	Z	<u> </u>	4		a = 10,142(6)	Å b=	3,5	19(8) Å	c = 12	2,116(6) Å	
Pnma	V	[′] = 4	432,	55(7) ų	$\alpha = 90^{\circ}$	$\beta =$	90	C		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
11,38	1	0	1	7,7710	0,48	51,92	0	2	0	1,7596	18,43	
14,62	0	0	2	6,0545	1,20	52,58	5	1	1	1,7391	3,47	
17,04	1	0	2	5,1983	10,51	52,77	3	0	6	1,7335	16,73	
17,48	2	0	0	5,0686	10,57	53,02	1	1	6	1,7258	17,76	
18,96	2	0	1	4,6758	0,81	53,68	1	0	7	1,7060	0,66	
22,86	2	0	2	3,8872	4,35	53,83	4	1	4	1,7017	19,86	
23,70	1	0	3	3,7509	0,45	54,23	6	0	0	1,6902	3,01	
26,36	0	1	1	3,3789	6,12	54,24	0	2	2	1,6898	5,59	
27,37	3	0	1	3,2554	1,79	54,31	5	1	2	1,6877	15,34	
27,81	1	1	1	3,2056	3,69	54,79	6	0	1	1,6740	0,54	
28,23	2	0	3	3,1583	0,30	55,05	1	2	2	1,6668	1,89	
29,47	0	0	4	3,0283	52,27	55,21	2	2	0	1,6624	0,98	
30,26	3	0	2	2,9514	100,00	55,46	2	1	6	1,6554	5,24	
30,65	1	1	2	2,9142	99,66	55,77	2	2	1	1,6470	0,29	
30,91	2	1	0	2,8907	46,59	56,11	2	0	7	1,6379	0,33	
31,80	2	1	1	2,8118	7,51	56,48	6	0	2	1,6280	0,28	
33,76	0	1	3	2,6528	0,33	57,12	5	1	3	1,6114	3,49	
34,35	2	1	2	2,6089	1,87	57,44	2	2	2	1,6031	0,36	
34,47	2	0	4	2,5999	3,11	57,83	1	2	3	1,5931	0,38	
34,58	3	0	3	2,5918	2,29	58,38	4	0	6	1,5795	1,78	
34,93	1	1	3	2,5665	18,80	58,84	4	1	5	1,5682	0,88	
35,38	4	0	0	2,5350	0,16	59,21	6	0	3	1,5592	0,39	
36,17	4	0	1	2,4813	1,48	59,38	5	0	5	1,5553	0,52	
37.61	3	1	1	2,3898	9,60	59.38	3	1	6	1,5551	0.68	
38,16	1	0	5	2,3565	1,26	59,68	3	2	1	1,5481	0,44	
38,26	2	1	3	2,3506	7,28	60,23	1	1	7	1,5352	1,78	
38,46	4	0	2	2,3385	3,79	60,74	6	1	0	1,5236	0,44	
39,94	3	0	4	2,2556	0,71	60,83	0	2	4	1,5215	9,87	
40,25	1	1	4	2,2388	6,62	61,15	0	0	8	1,5144	1,10	
41,26	2	0	5	2,1861	0.30	61.27	6	1	1	1,5117	19,80	
42,05	4	0	3	2,1471	1,28	61,28	3	2	2	1,5115	4,85	
43,23	2	1	4	2,0912	46,50	61,90	1	0	8	1,4978	2,15	
43,32	3	1	3	2,0870	1,77	62,49	2	1	7	1,4850	0,45	
43,98	4	1	0	2,0570	28,22	62,84	6	1	2	1,4776	0,25	
44,65	4	1	1	2,0280	2,33	62,92	6	0	4	1,4760	9,02	
44,85	0	0	6	2,0191	0,50	63,82	2	2	4	1,4573	1,49	
45,30	5	0	1	2,0003	0,45	64,13	2	0	8	1,4511	1,01	
45,41	0	1	5	1,9956	1,88	64,63	4	1	6	1,4410	1,87	
45,78	1	0	6	1,9802	1,42	64,91	4	2	1	1,4354	0,36	
46,05	3	0	5	1,9693	0,53	65,14	5	0	6	1,4310	0,98	
46,33	1	1	5	1,9581	1,20	65,21	4	0	7	1,4295	0,22	
46,59	4	1	2	1,9478	0,87	65,57	5	1	5	1,4226	0,68	
46,69	4	0	4	1,9440	1,67	66,16	3	1	7	1,4113	1,25	
47,22	5	0	2	1,9232	2,37	66,43	4	2	2	1,4061	1,35	
47.86	3	1	4	1,8991	0,64	67.45	3	2	4	1,3875	0,25	
48,49	2	0	6	1,8759	6,48	67,51	6	0	5	1,3863	0,42	
49.01	2	1	5	1,8570	5.79	67.75	3	0	8	1,3821	0,23	
49,70	4	1	3	1,8329	0.52	67.96	1	1	8	1,3782	2,14	
50.30	5	0	3	1.8124	1.46	,- ~	-	-	-	, =	,	

Tabelle A 8: Gitterparameter und Reflexliste von $SrSm_2O_4$ (rel. Int. > 0,1 %)

Strontium I	Euro	piu	m O	xid S	SrEu2O4					GoF = 1,	59
D	Z	(= 4	4		a = 10,135(7)	Å b=	3,4	96(7) Å	c = 12	2,079(5) Å
Pnma	V	^r = 4	428,	11(4) ų	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,66	0	0	2	6,0386	0,88	52,90	3	0	6	1,7294	10,39
17,08	1	0	2	5,1876	6,91	53,23	1	1	6	1,7194	11,66
17,49	2	0	0	5,0671	7,04	53,99	4	1	4	1,6971	13,32
22,89	2	0	2	3,8818	3,32	54,26	6	0	0	1,6892	4,81
26,52	0	1	1	3,3585	4,29	54,44	5	1	2	1,6841	9,89
27,97	1	1	1	3,1880	2,80	54,48	5	0	4	1,6830	0,69
29,56	0	0	4	3,0196	48,27	55,41	1	2	2	1,6567	1,25
30.29	3	0	2	2,9483	100.00	55.67	2	1	6	1.6496	4,39
30.81	1	1	2	2.8994	91.76	56.12	2	2	1	1.6374	0.66
30.87	1	0	4	2,8939	0.43	56.27	2	0	7	1.6335	0.11
31.05	2	1	0	2.8778	41.54	56.52	6	Õ	2	1.6268	1.00
31.94	2	1	1	2,7995	6.22	57.25	5	1	3	1 6078	2,83
33,93	0	1	3	2,6399	0.20	57 79	2	2	2	1 5941	140
34 49	2	1	2	2,5980	1.88	58 20	1	$\frac{2}{2}$	3	1 5839	0.29
34 55	$\frac{2}{2}$	0	4	2,5940	2 24	58,20	4	0	6	1,5055	1.63
34.63	3	0	3	2,5940	2,24	59.02	4	1	5	1,5702	1,05
35,10	1	1	3	2,5000	18 94	59,02	6	0	3	1,5055	0.95
36.10	1	0	1	2,3347	1 21	59,20	5	0	5	1,5578	0,53
37.74	3	1	1	2,4798	0.18	59,48	0	1	7	1,5528	0,33
38.77	1	0	5	2,3010	0.20	60.02	2	2	1	1,5400	0,47
38,27	2	1	3	2,3499	6.75	60.17	3	0	1	1,5400	0,48
38,42	2 1	1	2	2,3413	3.24	60.47	1	1	7	1,5307	0,39
30,50	2	1	2	2,3303	0.29	60,47	2	2	2	1,5297	0,10
40.01	2	1		2,2340	0,28	61 21	2 0	2	5 1	1,5269	1,58
40,01	5 1	1	4	2,2314	6.35	61.62	2	2	4	1,5150	0,90
40,43	2	1	4	2,2294	0,55	62.10	3 1	2	2	1,3036	11,00
41,57	∠ 1	0	2	2,1607	0,41	62,10	1	1	0 2	1,4954	1,20
42,10	4	1	3	2,1443	0,80	62,97	6	1	2 1	1,4730	4,05
43,40	2 1	1	4	2,0855	30,70	64,10	2	2	4	1,4742	2,18
44,10	4	1	1	2,0317	22,25	04,19	4	2	4	1,4496	1,99
44,77	4	1	I C	2,0227	2,20	04,/3	4	2	1	1,4390	0,22
44,99	5	0	0	2,0132	0,89	04,80	/	1	ſ	1,4370	0,18
45,55	2	1	1	1,9991	0,55	04,83	4	1	0	1,4370	1,39
45,61	0	1	2	1,9875	2,27	65,24	4	2	1	1,4289	0,73
45,92	1	0	6	1,9746	1,37	65,38	4	0	2	1,4263	0,11
46,16	3	0	S	1,9651	0,49	65,55	6	1	3	1,4229	0,30
46,53	1	1	2	1,9504	0,90	65,/5	2	1	2	1,4192	0,84
46,72	4	l	2	1,9427	0,62	66,33	7	0	2	1,4080	0,49
46,76	4	0	4	1,9410	0,98	66,40	3	1	7	1,4069	0,63
47,26	5	0	2	1,9217	2,11	66,77	4	2	2	1,3998	1,61
48,02	3	l	4	1,8930	0,78	67,62	6	0	5	1,3844	1,21
48,63	2	0	6	1,8709	5,68	67,95	3	0	8	1,3785	0,41
49,20	2	1	5	1,8503	4,28	68,23	1	1	8	1,3734	1,95
49,84	4	1	3	1,8281	0,92	68,76	2	2	5	1,3641	0,34
50,36	5	0	3	1,8105	1,18	69,09	6	1	4	1,3584	0,81
52,29	0	2	0	1,7483	12,36	69,29	4	2	3	1,3551	0,96
52,70	5	1	1	1,7355	0,60						

Tabelle A 9: Gitterparameter und Reflexliste von $SrEu_2O_4$ (rel. Int. > 0,1 %)

Strontium Gadolinium Oxid SrGd ₂ O ₄ GoF = 2,45 $7 = 4$ $a = 10, 103(3)$ Å $b = 12, 018(7)$ Å $c = 3, 464(0)$ Å								45			
_	Ζ	= 4	ł		a = 10,103(3)	Å b=	12,0	018(7) Å	c = 3,	464(0) Å
Pnma	V	= 4	120,	62(6) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90 9	c `	<i>,</i>	$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,65	0	2	0	6,0423	1,07	55,95	2	6	1	1,6421	0,42
17,46	2	0	0	5,0748	14,19	56,50	2	7	0	1,6275	0,81
22,90	2	2	0	3,8802	6,69	57,48	5	3	1	1,6020	1,77
26,68	0	1	1	3,3382	7,33	58,26	2	2	2	1,5824	0,60
28,13	1	1	1	3,1700	2,44	58,68	1	3	2	1,5722	0,18
29,63	0	4	0	3,0125	56,12	58,72	4	6	0	1,5712	1,04
30,98	1	2	1	2,8840	100,00	59,29	4	5	1	1,5575	0,68
31,21	2	0	1	2,8638	43,88	59,43	6	3	0	1,5540	0,45
32,10	2	1	1	2,7860	4,66	59,88	3	6	1	1,5433	0,34
34,63	2	4	0	2,5880	3,04	59,95	3	0	2	1,5419	0,30
34,66	2	2	1	2,5857	2,19	60,49	3	1	2	1,5294	0,38
35,28	1	3	1	2,5418	15,27	60,79	1	7	1	1,5224	1,26
37,90	3	1	1	2,3720	7,02	61,31	5	4	1	1,5108	0,94
38,56	4	2	0	2,3330	7,37	61,61	6	1	1	1,5041	1,61
40,63	1	4	1	2,2186	4,15	61,62	0	8	0	1,5039	0,70
43,61	2	4	1	2,0738	29,52	61,70	0	4	2	1,5021	5,53
44,27	4	0	1	2,0442	16,96	62,10	3	2	2	1,4935	11,43
44,94	4	1	1	2,0153	1,48	62,46	1	4	2	1,4858	0,37
45,84	0	5	1	1,9779	1,10	63,06	2	7	1	1,4731	6,20
46,88	4	4	0	1,9364	0,35	63,19	6	4	0	1,4704	0,12
46,91	4	2	1	1,9354	0,43	63,21	6	2	1	1,4700	0,83
48,24	3	4	1	1,8849	0,26	64,61	2	8	0	1,4414	1,15
48,80	2	6	0	1,8647	4,53	64,73	3	3	2	1,4390	1,20
49,44	2	5	1	1,8419	2,29	65,14	4	6	1	1,4309	1,62
50,05	4	3	1	1,8210	0,29	65,20	4	0	2	1,4298	0,94
52,44	4	5	0	1,7435	0,99	65,64	4	7	0	1,4213	1,33
52,74	0	0	2	1,7342	6,09	66,04	5	5	1	1,4136	1,20
52,90	5	1	1	1,7295	7,81	66,73	3	7	1	1,4005	2,01
53,51	1	6	1	1,7112	11,34	67,26	4	2	2	1,3909	1,87
54,16	1	1	2	1,6922	11,50	67,84	6	5	0	1,3804	1,81
54,22	4	4	1	1,6904	1,34	68,32	3	4	2	1,3718	1,56
54,37	6	0	0	1,6860	6,14	68,61	1	8	1	1,3668	2,62
54,65	5	2	1	1,6782	8,81	69,29	2	5	2	1,3550	2,13
55,07	0	2	2	1,6663	0,35	69,79	4	3	2	1,3466	2,64
55,88	1	2	2	1,6441	3,82	-				-	-

Tabelle A 10: Gitterparameter und Reflexliste von $SrGd_2O_4$ (rel. Int. > 0,1 %)

Strontium Dysprosium Oxid SrDy ₂ O ₄ GoF = 0,98 Z = 4 $a = 10,086(0)$ Å $b = 3,426(1)$ Å $c = 11,932(7)$ Å							98				
D	Ζ	; = 4	4		a = 10,086(0)	Å b=	3,42	26(1) Å	c = 11	,932(7) Å
Pnma	V	· = 4	412,	34(3) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
11,44	1	0	1	7,7266	0,52	53,41	0	2	0	1,7140	13,49
14,80	0	0	2	5,9804	1,19	53,46	3	0	6	1,7127	11,47
17,22	1	0	2	5,1455	9,40	54,01	1	1	6	1,6964	13,22
17,54	2	0	0	5,0530	11,77	54,52	6	0	0	1,6819	7,79
23,04	2	0	2	3,8572	5,26	54,60	4	1	4	1,6796	16,18
24,00	1	0	3	3,7055	0,34	54,83	1	2	1	1,6731	0,57
27,02	0	1	1	3,2972	5,20	54,87	5	0	4	1,6719	0,40
27,51	3	0	1	3,2400	0,18	54,94	5	1	2	1,6698	12,12
28,46	1	1	1	3,1341	0,69	55,10	6	0	1	1,6654	0,32
29,89	0	0	4	2,9865	49,61	55,76	0	2	2	1,6474	0,27
30,46	3	0	2	2,9322	100,00	56,45	2	1	6	1,6287	3,98
31,21	1	0	4	2,8637	9,12	56,56	1	2	2	1,6258	0,65
31,33	1	1	2	2,8530	84,07	56,67	2	2	0	1,6228	0,60
31,51	2	1	0	2,8369	38,10	56,95	2	0	7	1,6157	0,21
32,41	2	1	1	2,7601	4,16	57,24	2	2	1	1,6080	0,15
34,49	0	1	3	2,5983	0,58	57,81	5	1	3	1,5936	1,28
34,88	3	0	3	2,5701	2,53	58,93	2	2	2	1,5660	0,22
34,88	2	0	4	2,5700	1,28	59,08	4	0	6	1,5623	1,29
34,99	2	1	2	2,5622	1,94	59,38	1	2	3	1,5553	0,41
35,54	4	0	0	2,5238	0,56	59,71	4	1	5	1,5474	0,77
35,65	1	1	3	2,5162	15,05	60,37	3	1	6	1,5320	0,48
36,35	4	0	1	2,4692	0,70	61,35	6	1	0	1,5098	2,06
38,19	3	1	1	2,3545	7,77	61,68	5	1	4	1,5026	0,23
38,70	4	0	2	2,3245	2,06	61,90	6	1	1	1,4979	0,40
38,71	1	0	5	2,3243	1,62	62,16	0	0	8	1,4922	1,88
38,96	2	1	3	2,3099	3,22	62,44	0	2	4	1,4862	7,71
40,45	3	1	2	2,2281	0,98	62,76	3	2	2	1,4794	16,72
41,04	1	1	4	2,1976	5,69	62,91	1	0	8	1,4762	0.71
42,38	4	0	3	2,1312	0,20	63,19	1	2	4	1,4703	1,11
44,00	3	1	3	2,0561	20,48	63,44	6	0	4	1,4651	6,47
44,00	2	1	4	2,0561	16,45	63,51	6	1	2	1,4637	1,22
44,55	4	1	0	2,0322	20,84	65,14	2	0	8	1,4309	0,66
45,23	4	1	1	2,0034	3,09	65,41	3	2	3	1,4256	0,53
45,54	5	0	1	1,9903	0,13	65,63	4	1	6	1,4215	2,13
46,29	0	1	5	1,9596	2,18	65,83	4	2	0	1,4175	0,14
46,47	1	0	6	1,9525	0,73	65,87	5	0	6	1,4168	0,56
47,12	4	0	4	1,9270	0,84	66,35	4	2	1	1,4077	0,40
47,51	5	0	2	1,9122	1,28	66,70	7	0	2	1,4012	0.16
48.63	3	1	4	1.8710	0.53	67.29	3	1	7	1.3902	0.87
49.18	2	0	6	1,8513	6.37	67.91	4	2	2	1,3792	0,17
49.89	2	1	5	1,8266	2.69	68.77	3	0	8	1,3639	0.22
50.38	4	1	3	1,8098	0.28	69.04	3	2	4	1,3593	0,17
50.67	5	0	3	1,8001	0.44	69.25	1	1	8	1,3557	1,13
53.18	5	1	1	1.7211	1.54	69.28	7	0	3	1.3552	0.67

Tabelle A 11: Gitterparameter und Reflexliste von $SrDy_2O_4$ (rel. Int. > 0,1 %)

Strontium	Yttri	um	Oxi	d S	SrY2O4					GoF = 1,10		
	Z	; = 4	4		a = 10,029(9)	Å b=	3,39	92(1) Å	c = 11	,859(4) Å	
Pnma	V	4	403,	48(0) ų	$\alpha = 90^{\circ}$	$\beta =$	90	c		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
14,62	0	0	2	6,0551	0,61	53,75	0	2	0	1,7042	11,99	
17,05	1	0	2	5,1964	1,26	54,18	1	1	6	1,6916	11,25	
17,36	2	0	0	5,1037	3,20	54,60	6	0	0	1,6795	10,02	
18,89	2	0	1	4,6938	0,48	54,75	4	1	4	1,6751	13,15	
22,90	2	0	2	3,8798	6,43	54,97	5	0	4	1,6692	2,15	
27,02	0	1	1	3,2973	7,79	55,10	5	1	2	1,6655	10,36	
27,40	3	0	1	3,2529	0,40	56,10	0	2	2	1,6380	0,76	
28,46	1	1	1	3,1338	1,62	56,64	2	1	6	1,6238	4,24	
29,82	0	0	4	2,9943	51,23	57,02	2	2	0	1,6137	0,10	
30,37	3	0	2	2,9406	100,00	57,08	2	0	7	1,6122	0,31	
31,14	1	0	4	2,8701	4,49	57,60	2	2	1	1,5990	0,35	
31,34	1	1	2	2,8516	53,52	57,99	5	1	3	1,5891	1,87	
31,52	2	1	0	2,8359	25,87	59,23	4	0	6	1,5588	2,23	
32,43	2	1	1	2,7587	4,53	59,30	2	2	2	1,5572	0,30	
34,83	2	0	4	2,5734	0,95	59,92	4	1	5	1,5426	1,08	
35,02	2	1	2	2,5600	0,79	60,12	5	0	5	1,5379	0,20	
35,48	4	0	0	2,5279	0,55	60,59	3	1	6	1,5270	0,53	
35,69	1	1	3	2,5136	25,24	60,82	0	1	7	1,5217	0,13	
36,30	4	0	1	2,4727	0,44	61,51	3	2	1	1,5063	0,60	
38,24	3	1	1	2,3519	12,21	61,59	1	1	7	1,5045	1,68	
38,67	4	0	2	2,3264	2,77	61,90	5	1	4	1,4979	0,10	
38,69	1	0	5	2,3252	3,33	62,07	2	2	3	1,4942	0,36	
39,01	2	1	3	2,3068	4,63	62,10	6	1	1	1,4934	0,21	
40,51	3	1	2	2,2250	0,93	62,35	0	0	8	1,4882	1,70	
41,11	1	1	4	2,1939	5,59	62,83	0	2	4	1,4778	6,66	
41,82	2	0	5	2,1585	0,16	63,11	1	0	8	1,4721	9,76	
44,09	3	1	3	2,0524	28,11	63,15	3	2	2	1,4712	6,84	
44,09	2	1	4	2,0521	8,31	63,59	1	2	4	1,4620	8,66	
44,63	4	1	0	2,0288	18,12	63,61	6	0	4	1,4616	0,38	
45,31	4	1	1	1,9998	6,81	65,31	7	0	1	1,4276	0,26	
45,55	5	0	1	1,9898	0,27	65,36	2	0	8	1,4267	0,33	
46,40	0	1	5	1,9552	3,70	65,83	2	2	4	1,4176	1,42	
46,52	1	0	6	1,9506	0,50	65,89	4	1	6	1,4165	0,33	
47,16	4	0	4	1,9256	0,27	66,08	5	0	6	1,4129	0,43	
47,31	4	1	2	1,9199	1,36	66,90	7	0	2	1,3976	0,21	
47,33	1	1	5	1,9192	0,22	67,58	3	1	7	1,3851	1,15	
48,74	3	1	4	1,8667	0,45	68,34	4	2	2	1,3716	0,28	
49,24	2	0	6	1,8489	8,50	68,35	1	2	5	1,3713	0,31	
50,02	2	1	5	1,8220	3,96	69,02	3	0	8	1,3596	0,16	
50,51	4	1	3	1,8056	0,80	69,48	3	2	4	1,3517	0,54	
53,31	5	1	1	1,7169	1,47	69,56	1	1	8	1,3504	0,49	
53,56	3	0	6	1,7097	14,74							

Tabelle A 12: Gitterparameter und Reflexliste von SrY_2O_4 (rel. Int. > 0,1 %)

Strontium 7	Yttei	biu	m O	xid	SrYb ₂ O ₄					GoF = 2,24		
	Z	= 4	1		a = 9,992(0)	Å b =	3,3:	56(9) Å	c = 11	,771(7) Å	
Pnma	V	= 3	394,	85(1) ų	$\alpha = 90^{\circ}$	β=	90 °	D C		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
15,04	0	0	2	5,8852	2,01	53,92	5	1	1	1,6991	0,78	
17,47	1	0	2	5,0709	12,11	54,22	3	0	6	1,6904	14,45	
17,74	2	0	0	4,9955	14,74	54,64	0	2	0	1,6784	14,33	
19,29	2	0	1	4,5985	0,12	54,94	1	1	6	1,6700	14,67	
23,34	2	0	2	3,8086	5,51	55,00	3	1	5	1,6683	1,34	
24,35	1	0	3	3,6521	0,25	55,11	6	0	0	1,6653	9,11	
27,61	0	1	1	3,2281	4,99	55,36	1	0	7	1,6583	1,40	
27,82	3	0	1	3,2047	0,78	55,43	4	1	4	1,6564	18,51	
28,91	2	0	3	3,0857	0,79	55,54	5	0	4	1,6532	1,61	
29,05	1	1	1	3,0717	3,67	55,70	6	0	1	1,6489	3,47	
30,35	0	0	4	2,9428	48,57	55,72	5	1	2	1,6484	11,21	
30,82	3	0	2	2,8986	100,00	57,01	0	2	2	1,6141	0,23	
31,67	1	0	4	2,8229	3,40	57,40	2	1	6	1,6041	5,32	
31,95	1	1	2	2,7991	91,03	57,47	6	0	2	1,6024	0,25	
32,10	2	1	0	2,7862	36,62	57,81	2	0	7	1,5938	0,33	
33,01	2	1	1	2,7113	2,73	57,82	1	2	2	1,5934	0,52	
35,15	0	1	3	2,5507	0,30	57,91	2	2	0	1,5910	1,14	
35,32	3	0	3	2,5391	0,30	58,64	5	1	3	1,5731	1,76	
35,37	2	0	4	2,5356	3,53	59,90	4	0	6	1,5429	1,34	
35,62	2	1	2	2,5183	2,09	60,20	2	2	2	1,5359	0,66	
36,32	1	1	3	2,4715	12,26	60,63	4	1	5	1,5260	0,62	
36,75	4	0	1	2,4435	0,33	61,35	3	1	6	1,5098	0,53	
38,82	3	1	1	2,3180	5,73	61,75	3	0	7	1,5011	0,10	
39,15	4	0	2	2,2994	2,80	62,18	6	1	0	1,4918	0,53	
39,29	1	0	5	2,2915	0,23	62,41	3	2	1	1,4869	0,50	
39,64	2	1	3	2,2718	1,68	62,41	1	1	7	1,4868	0,53	
40,89	3	0	4	2,2053	0,46	62,58	5	1	4	1,4831	0,39	
41,11	3	1	2	2,1939	1,09	62,73	6	1	1	1,4800	0,33	
41,78	1	1	4	2,1605	7,11	63,14	0	0	8	1,4714	2,01	
44,71	3	1	3	2,0251	5,34	63,79	0	2	4	1,4580	9,75	
44,76	2	1	4	2,0233	33,84	63,90	1	0	8	1,4557	1,85	
45,21	4	1	0	2,0040	23,55	64,05	3	2	2	1,4525	20,82	
45,90	4	1	1	1,9755	3,90	64,21	6	0	4	1,4493	8,40	
46,24	0	0	6	1,9619	0,82	64,37	6	1	2	1,4461	0,41	
47,11	0	1	5	1,9275	2,10	64,54	1	2	4	1,4427	0,80	
47,17	1	0	6	1,9251	1,35	66,15	2	0	8	1,4115	0,57	
47,91	4	1	2	1,8970	1,69	66,66	4	1	6	1,4019	2,88	
48,03	1	1	5	1,8926	0,80	66,75	3	2	3	1,4002	0,18	
48,04	5	0	2	1,8922	2,18	66,76	5	0	6	1,4000	0,68	
49,41	3	1	4	1,8431	1,20	66,79	2	2	4	1,3996	0,84	
49,90	2	0	6	1,8261	6,48	68,40	3	1	7	1,3704	0,64	
50,73	2	1	5	1,7983	1,65	69,25	4	2	2	1,3557	0,43	
51,14	4	1	3	1,7847	0,58	69,82	3	0	8	1,3459	0,58	
53,44	4	0	5	1,7133	0,16							

Tabelle A 13: Gitterparameter und Reflexliste von $SrYb_2O_4$ (rel. Int. > 0,1 %)

Strontium S	Scan	diur	n O	xid S	SrSc ₂ O ₄					GoF = 1,29		
D	Ζ	= 4	1		a = 9,692(6)	Å b=	3,1	83(8) Å	c = 11	,299(3) Å	
Pnma	V	= 3	348,	68(6) ų	$\alpha = 90^{\circ}$	$\beta =$	90 °	c		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
12,01	1	0	1	7,3647	1,33	52,05	2	0	6	1,7557	15,36	
15,66	0	0	2	5,6543	1,90	53,08	5	0	3	1,7240	3,87	
18,15	1	0	2	4,8844	20,43	53,12	2	1	5	1,7228	4,64	
18,28	2	0	0	4,8497	0,35	53,32	4	1	3	1,7167	1,26	
19,91	2	0	1	4,4568	1,33	55,55	4	0	5	1,6530	0,65	
24,16	2	0	2	3,6803	16,28	56,08	5	1	1	1,6386	3,56	
25,34	1	0	3	3,5124	0,96	56,51	3	0	6	1,6273	10,15	
28,70	3	0	1	3,1077	2,75	56,95	6	0	0	1,6157	9,14	
29,10	0	1	1	3,0658	25,76	57,58	6	0	1	1,5995	1,22	
30,01	2	0	3	2,9751	0,63	57,60	1	1	6	1,5990	6,87	
30,56	1	1	1	2,9231	20,29	57,61	5	0	4	1,5986	0,61	
31,64	0	0	4	2,8259	51,03	57,84	4	1	4	1,5928	0,22	
31,87	3	0	2	2,8057	100,00	57,85	1	0	7	1,5925	23,44	
32,99	1	0	4	2,7130	8,03	57,87	0	2	0	1,5922	2,44	
33,57	1	1	2	2,6676	29,56	57,99	5	1	2	1,5892	2,45	
33,64	2	1	0	2,6619	11,58	59,34	1	2	1	1,5561	0,42	
34,59	2	1	1	2,5910	14,50	60,14	2	1	6	1,5374	4,36	
36,60	3	0	3	2,4530	1,82	60,35	0	2	2	1,5325	0,28	
36,79	2	0	4	2,4413	4,53	61,08	5	1	3	1,5160	6,25	
36,93	0	1	3	2,4322	1,38	62,39	4	0	6	1,4872	3,17	
37,06	4	0	0	2,4239	6,56	62,50	6	0	3	1,4849	1,73	
37,31	2	1	2	2,4081	0,63	63,13	5	0	5	1,4716	0,55	
37,93	4	0	1	2,3700	2,61	63,35	4	1	5	1,4670	3,45	
38,12	1	1	3	2,3591	67,71	63,63	2	2	2	1,4612	0,90	
40,46	4	0	2	2,2276	17,67	64,18	1	2	3	1,4500	0,28	
40,53	3	1	1	2,2240	26,69	64,23	3	1	6	1,4490	1,46	
40,96	1	0	5	2,2014	1,96	64,64	6	1	0	1,4408	0,59	
41,51	2	1	3	2,1739	8,30	64,68	0	1	7	1,4399	0,42	
42,46	3	0	4	2,1272	3,26	65,23	6	1	1	1,4292	0,55	
42,93	3	l	2	2,1051	3,16	65,26	5	1	4	1,4287	0,96	
43,80	1	l	4	2,0651	5,92	65,48	1	1	1	1,4243	5,22	
44,17	2	0	2	2,0486	1,29	65,87	3	2	l	1,4169	0,38	
46,71	3	1	3	1,9432	23,85	66,09	0	0	8	1,4126	0,16	
46,86	2	1	4	1,9374	17,95	66,57	2	2	3	1,4037	5,53	
47,08	4	l	0	1,9287	10,04	66,63	6	0	4	1,4025	0,65	
4/,54	S ⊿	0	1	1,9110	0,26	66,88	1	0	8	1,3978	5,//	
4/,80	4	1		1,9012	19,/8	0/,4/	0	2	4	1,38/0	8,37	
48,28	0	0	6	1,8836	0,54	67,60	5	2	2	1,3846	/,60	
49,41	0	1	⊃ ∡	1,8432	8,4 <i>3</i>	08,25	1	2	4	1,3/30	2,19	
49,51	4	U	4	1,8396	2,45	69,22	2	0	8	1,3362	0,58	
49,07	Э л	U 1	2	1,8340	0,33	09,/4	4	1	0	1,54/4	1,90	
49,93	4	1	25	1,8232	2,30	09,88 60.06	/	0	27	1,3430	1,19	
			•	1 0 1 1 0	11.19	1 119 90	4			1 14 10	11 / /	

Tabelle A 14: Gitterparameter und Reflexliste von $SrSc_2O_4$ (rel. Int. > 0,1 %)

Barium Lar	Barium Lanthan Oxid Z = 4				BaLa2O4						GoF = 1,15			
	Z	= 4	1		a = 10.676(6)	Å h=	3 7()6(5) Å	c = 12	2.646(5) Å			
Pnma	V	= 5	, 500	46(1) Å ³	$\alpha = 90^{\circ}$	β =	90 °)))) Л	$\gamma = 90$)°			
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]			
10,84	1	0	1	8,1565	1,66	52,09	1	2	2	1,7542	2,27			
14,00	0	0	2	6,3223	1,93	52,21	2	2	0	1,7507	0,30			
16,28	1	0	2	5,4400	0,94	52,74	2	2	1	1,7342	0,54			
16,60	2	0	0	5,3376	2,53	52,78	2	1	6	1,7329	1,43			
18,02	2	0	1	4,9175	0,13	53,45	6	0	2	1,7128	1,58			
21,77	2	0	2	4,0787	5,81	54,09	5	1	3	1,6942	1,57			
22,66	1	0	3	3,9206	0,79	54,33	2	2	2	1,6872	1,22			
25,02	0	1	1	3,5566	0,67	54,74	1	2	3	1,6755	1,36			
25,99	3	0	1	3,4255	2,40	55,51	4	0	6	1,6541	4,18			
26,39	1	1	1	3,3743	1,02	55,84	4	1	5	1,6451	1,41			
26,93	2	0	3	3,3081	1,67	56,05	6	0	3	1,6393	0,99			
28,21	0	0	4	3,1614	60,15	56,34	5	0	5	1,6316	0,83			
28,76	3	0	2	3,1012	100,00	56,63	0	1	7	1,6239	0,71			
29,13	1	1	2	3,0630	8,84	56,91	2	2	3	1,6168	0,68			
29,31	2	1	0	3,0444	3,97	57,13	3	0	7	1,6109	0,31			
29,44	1	0	4	3,0313	5,38	57,34	1	1	7	1,6055	0,38			
30,17	2	1	1	2,9598	1,68	57,40	6	1	0	1,6041	1,14			
32,62	2	1	2	2,7430	0,43	57,68	5	1	4	1,5968	0,41			
32,90	2	0	4	2,7202	1,28	57,90	6	1	1	1,5914	2,40			
32,91	3	0	3	2,7192	1,55	58,31	1	2	4	1,5811	5,34			
33,24	1	1	3	2,6934	3,83	59,02	1	0	8	1,5637	3,74			
33,55	4	0	0	2,6690	0,96	59,39	6	1	2	1,5548	0,47			
34,31	4	0	1	2,6115	0,58	59,45	2	1	7	1,5537	0,11			
35,66	3	1	1	2,5157	1,15	59,57	6	0	4	1,5507	28,28			
36,37	2	1	3	2,4680	1,80	60,39	2	2	4	1,5316	0,15			
36,51	4	0	2	2,4589	2,74	61,09	2	0	8	1,5157	0,39			
38,04	3	0	4	2,3635	0,78	61,32	4	1	6	1,5105	1,17			
38,33	1	1	4	2,3465	0,31	61,83	6	1	3	1,4992	1,20			
39,39	2	0	5	2,2856	0,66	61,98	4	0	7	1,4961	0,22			
41,13	2	1	4	2,1930	1,99	62,60	7	0	2	1,4827	0,95			
41,14	3	1	3	2,1925	3,34	62,71	1	2	5	1,4804	0,46			
41,67	4	1	0	2,1659	4,41	62,73	4	2	2	1,4800	0,26			
42,30	4	1	1	2,1348	0,88	62,85	3	1	7	1,4774	0,70			
42,87	0	0	6	2,1077	1,12	63,77	3	2	4	1,4584	0,75			
43,27	0	l	5	2,0891	1,00	63,92	6	0	5	1,4553	0,91			
43,74	1	0	6	2,0678	0,18	64,44	3	0	8	1,4447	1,50			
43,88	3	0	2	2,0616	0,49	64,64	1	1	8	1,4408	1,06			
44,14	1	1	2	2,0502	1,08	64,70	2	2	2	1,4395	0,15			
44,16	4	1	2	2,0490	0,13	65,10	4	2	3	1,4318	0,72			
44,38	4	0	4	2,0394	0,01	05,10	0	1	4	1,4305	0,18			
44,70	2	1	2	2,0230	2,23	00,01	2	1	ð 1	1,4029	3,31			
45,48	3	1	4	1,9928	1,05	66,67	/	1	1	1,4018	0,82			
40,27	2	1	0	1,9604	5,20	0/,14 67.25	1	2	9	1,3931	0,03			
40,03		1	2	1,9433	4,04	67,23	3	2 1	1	1,3911	0,93			
47,14 17.71	4	1	2 2	1,9203	1,54	67.86	4 1	1 ว	6	1,30/3	0,22			
4/,/1	0	0 2	5 0	1,9040	2,05	67.06	1	∠ ว	5	1,3001	1 78			
47,12	1	2 0	5	1,0332	2,00	68.05	כ ד	∠ 1	י ר	1,3766	1,70			
49,02	4	1	5 1	1,0339	0,94	68 22	' 7	1	∠ ∧	1,3700	0 26			
42,77	2	1	1	1,0507	1,17	68 3/	/ /	2	+ ∕	1,3737	1.16			
50,27	2	1	5	1 8016	1 40	68 67	+ 5	∠ 2	$\frac{1}{2}$	1 3665	0.32			
51,08	4	1	4	1,7868	1,84	68,99	4	$\overset{2}{0}$	8	1,3601	0,69			

Tabelle A 15: Gitterparameter und Reflexliste von BaLa₂O₄ (rel. Int. > 0,1 %)

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
51,30	6	0	0	1,7794	82,00	69,31	6	1	5	1,3546	1,47
51,61	5	0	4	1,7695	1,06	69,78	2	2	6	1,3467	0,34
51.85	6	0	1	1.7620	1.18						

Tabelle A 16: Gitterparameter und Reflexliste von $BaNd_2O_4$ (rel. Int. > 0,1 %)

$\frac{\text{Barium Neodym Oxid}}{7 = 4}$				BaNd ₂ O ₄				GoF = 1,31				
D	Ζ	= 4	1		a = 10,589(6)	Å b=	3,6	04(6) Å	c = 12	,446(9) Å	
Pnma	V	= 4	475,	11(2) Å ³	$\alpha=~90~^\circ$	β =	90 °	D		$\gamma = 90$	0	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
10,98	1	0	1	8,0503	0,79	52,33	6	0	1	1,7469	0,80	
14,24	0	0	2	6,2144	0,83	52,86	0	2	2	1,7306	0,33	
16,53	1	0	2	5,3588	0,64	53,62	1	2	2	1,7079	0,39	
16,75	2	0	0	5,2883	1,87	53,70	2	2	0	1,7056	0,27	
18,21	2	0	1	4,8668	0,13	53,82	2	1	6	1,7020	4,95	
22,04	2	0	2	4,0291	5,23	53,98	6	0	2	1,6974	0,45	
25,73	0	1	1	3,4596	10,65	54,24	2	2	1	1,6898	0,28	
26,24	3	0	1	3,3934	1,28	54,40	2	0	7	1,6851	0,58	
27,09	1	1	1	3,2885	9,67	54,91	5	1	3	1,6708	4,88	
27,31	2	0	3	3,2634	0,75	55,85	2	2	2	1,6449	1,23	
28,69	0	0	4	3,1096	46,60	56,30	1	2	3	1,6328	2,34	
29,08	3	0	2	3,0683	100,00	56,31	4	0	6	1,6324	0,59	
29,86	1	1	2	2,9901	71,20	56,65	6	0	3	1,6236	0,38	
29,92	1	0	4	2,9835	4,64	56,80	4	1	5	1,6196	3,14	
29,98	2	1	0	2,9777	33,15	57,07	5	0	5	1,6126	0,94	
30,85	2	1	1	2,8959	14,66	57,49	3	1	6	1,6017	0,77	
32,91	0	1	3	2,7195	0,51	57,79	0	1	7	1,5942	0,21	
33,32	3	0	3	2,6869	2,78	57,89	3	2	1	1,5915	0,16	
33,33	2	1	2	2,6859	0,44	58,05	3	0	7	1,5876	0,45	
33,39	2	0	4	2,6812	0,15	58,17	6	1	0	1,5847	0,31	
34,01	1	1	3	2,6340	23,24	58,50	1	1	7	1,5764	3,26	
34,63	4	0	1	2,5880	1,40	58,58	5	1	4	1,5745	0,78	
36,34	3	1	1	2,4705	12,23	58,68	6	1	1	1,5720	0,79	
36,89	4	0	2	2,4349	3,66	59,21	0	2	4	1,5592	11,22	
37,09	1	0	5	2,4221	0,58	59,37	0	0	8	1,5554	4,77	
37,14	2	1	3	2,4189	5,28	59,44	3	2	2	1,5539	26,01	
38,50	3	1	2	2,3362	1,12	59,92	1	2	4	1,5425	1,52	
38,56	3	0	4	2,3331	0,59	60,07	1	0	8	1,5389	3,28	
39,17	1	1	4	2,2982	5,94	60,21	6	1	2	1,5357	2,67	
40,01	2	0	5	2,2518	0,65	60,25	6	0	4	1,5348	10,68	
40,40	4	0	3	2,2307	1,35	60,61	2	1	7	1,5265	0,67	
41,90	3	1	3	2,1541	7,34	61,74	7	0	1	1,5014	0,59	
41,97	2	1	4	2,1512	32,59	61,95	3	2	3	1,4966	0,24	
42,34	4	1	0	2,1328	21,41	62,00	2	2	4	1,4957	0,78	
42,99	4	1	1	2,1022	7,10	62,15	2	0	8	1,4924	0,35	
43,32	5	0	1	2,0870	0,32	62,40	4	1	6	1,4870	2,80	
43,61	0	0	6	2,0736	0,49	62,65	5	0	6	1,4816	0,47	
44,20	0	1	5	2,0475	4,71	62,71	6	1	3	1,4804	0,75	
44,49	1	0	6	2,0350	0,63	62,78	4	2	1	1,4789	0,44	
44,52	3	0	5	2,0335	0,32	63,11	5	1	5	1,4720	0,43	
44,89	4	1	2	2,0176	1,85	63,22	7	0	2	1,4696	0,48	
45,21	5	0	2	2,0042	0,95	64,04	3	1	7	1,4529	2,32	
46,32	3	1	4	1,9585	1,30	64,25	4	2	2	1,4485	1,12	
47,03	2	0	6	1,9308	8,83	64,39	1	2	5	1,4458	0,40	
47,58	2	1	5	1,9097	7,35	64,71	6	0	5	1,4394	0,35	
47,92	4	1	3	1,8968	0,68	65,53	3	0	8	1,4234	0,37	
50,49	5	1	1	1,8061	2,02	65,95	1	1	8	1,4153	2,08	

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
50,62	0	2	0	1,8017	18,97	66,12	6	1	4	1,4121	0,46
51,04	3	0	6	1,7879	16,33	67,93	2	1	8	1,3789	3,03
51,53	1	1	6	1,7720	14,40	68,37	1	0	9	1,3710	0,71
51,77	6	0	0	1,7643	12,27	68,40	5	1	6	1,3704	2,29
51,94	4	1	4	1,7592	17,41	68,67	4	1	7	1,3657	0,54
51,96	1	2	1	1,7583	0,54	68,91	5	0	7	1,3615	0,71
52,13	1	0	7	1,7530	1,36	68,95	7	1	2	1,3609	6,16
52,18	5	1	2	1,7516	13,02	68,98	0	2	6	1,3602	0,30
52,22	5	0	4	1,7503	1,76						

Tabelle A 17: Gitterparameter und Reflexliste von $BaSm_2O_4$ (rel. Int. > 0,1 %)

Barium Sar	nari	um (Oxi	d]	BaSm2O4					GoF = 1,31		
D	Ζ	= 4	1		a = 10,518(3)	Å b=	3,50	60(3) Å	c = 12	2,332(9) Å	
Pnma	V	= 4	461,	84(5) ų	$\alpha = 90^{\circ}$	$\beta =$	90 °	D C		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
11,06	1	0	1	7,9953	1,09	52,64	5	0	4	1,7374	2,54	
14,36	0	0	2	6,1619	1,52	52,64	1	2	1	1,7374	6,08	
16,66	1	0	2	5,3163	1,43	52,64	1	0	7	1,7373	4,89	
16,86	2	0	0	5,2559	3,13	53,55	0	2	2	1,7100	0,45	
18,33	2	0	1	4,8349	0,32	54,31	1	2	2	1,6879	0,83	
22,21	2	0	2	3,9996	6,22	54,37	6	0	2	1,6860	3,88	
23,22	1	0	3	3,8272	0,30	54,38	2	2	0	1,6859	0,74	
26,04	0	1	1	3,4193	12,28	54,38	2	1	6	1,6859	1,27	
26,42	3	0	1	3,3712	0,73	54,92	2	2	1	1,6704	0,62	
27,41	1	1	1	3,2517	9,72	54,92	2	0	7	1,6703	0,36	
28,95	0	0	4	3,0822	49,33	55,40	5	1	3	1,6572	4,03	
29,29	3	0	2	3,0468	100,00	56,55	2	2	2	1,6262	1,60	
30,19	1	1	2	2,9578	43,23	56,81	4	0	6	1,6192	2,43	
30,19	1	0	4	2,9577	45,08	57,08	6	0	3	1,6123	0,43	
30,30	2	1	0	2,9473	29,51	57,35	4	1	5	1,6054	3,14	
31,18	2	1	1	2,8665	10,06	57,54	5	0	5	1,6004	0,21	
33,27	0	1	3	2,6905	0,32	58,07	3	1	6	1,5870	0,79	
33,58	3	0	3	2,6669	1,04	58,40	0	1	7	1,5788	0,18	
33,68	2	1	2	2,6591	1,25	58,66	6	1	0	1,5725	1,03	
33,68	2	0	4	2,6591	1,37	59,12	5	1	4	1,5614	2,00	
34,08	4	0	0	2,6288	0,38	59,12	1	1	7	1,5614	2,65	
34,38	1	1	3	2,6066	26,37	59,18	6	1	1	1,5599	0,38	
34,87	4	0	1	2,5710	0,66	59,19	2	2	3	1,5598	1,06	
36,69	3	1	1	2,4478	13,21	59,96	0	2	4	1,5414	10,99	
37,15	4	0	2	2,4182	3,72	59,97	0	0	8	1,5414	6,65	
37,43	1	0	5	2,4008	0,48	60,16	3	2	2	1,5370	26,73	
37,52	2	1	3	2,3952	5,08	60,67	1	2	4	1,5251	3,59	
38,87	3	1	2	2,3148	0,52	60,67	1	0	8	1,5251	2,61	
38,88	3	0	4	2,3147	0,73	60,73	6	1	2	1,5237	5,57	
39,58	1	1	4	2,2750	7,04	60,73	6	0	4	1,5237	5,49	
40,37	2	0	5	2,2326	0,66	61,25	2	1	7	1,5122	0,38	
40,71	4	0	3	2,2147	0,70	62,20	7	0	1	1,4914	0,67	
42,31	3	1	3	2,1344	11,52	62,70	3	2	3	1,4805	0,24	
42,39	2	1	4	2,1304	32,58	62,77	2	2	4	1,4792	0,15	
42,72	4	1	0	2,1147	21,40	62,77	2	0	8	1,4792	0,61	
43,38	4	1	1	2,0843	7,58	63,02	4	2	0	1,4739	1,75	
44,03	0	0	6	2,0550	0,51	63,02	4	1	6	1,4739	1,04	
44,67	0	1	5	2,0271	4,90	63,20	5	0	6	1,4700	0,31	
44,90	3	0	5	2,0170	0,28	63,27	6	1	3	1,4687	0,47	
44,91	1	0	6	2,0169	0,23	63,52	4	0	7	1,4635	0,37	
45,30	4	1	2	2,0004	0,94	63,70	7	0	2	1,4597	0,49	

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
45,30	4	0	4	2,0003	0,99	64,70	3	1	7	1,4396	3,04
45,53	5	0	2	1,9906	0,88	65,01	4	2	2	1,4336	1,54
46,77	3	1	4	1,9406	0,32	65,25	6	0	5	1,4287	0,54
47,46	2	0	6	1,9141	8,86	66,17	3	2	4	1,4111	0,71
48,06	2	1	5	1,8915	6,27	66,66	1	1	8	1,4019	2,37
48,36	4	1	3	1,8805	0,80	66,72	6	1	4	1,4008	0,93
48,59	5	0	3	1,8724	0,30	67,21	2	2	5	1,3918	0,56
50,71	4	0	5	1,7987	0,33	68,11	7	1	1	1,3756	0,59
50,93	5	1	1	1,7916	2,38	68,65	2	1	8	1,3660	3,13
51,29	0	2	0	1,7798	20,06	69,07	5	1	6	1,3587	0,16
51,50	3	0	6	1,7729	16,53	69,07	1	0	9	1,3587	2,96
52,07	3	1	5	1,7549	8,55	69,37	4	1	7	1,3536	0,10
52,07	1	1	6	1,7549	8,97	69,55	7	1	2	1,3506	0,91
52,14	6	0	0	1,7528	10,55	69,55	7	0	4	1,3506	0,89
52,43	4	1	4	1,7439	20,82	69,55	5	2	1	1,3506	2,38
52,64	5	1	2	1,7374	2,70	69,55	5	0	7	1,3506	1,71

Tabelle A 18: Gitterparameter und Reflexliste von $BaEu_2O_4$ (rel. Int. > 0,1 %)

Barium Europium Oxio Z = 4				1	BaEu2O4					GoF = 1,	33
	Ζ	= 4	1		a = 10,505(1)	Å b=	3,5	37(6) Å	c = 12	2,295(7) Å
Pnma	V	4	456,	94(5) ų	$\alpha = 90^{\circ}$	$\beta =$	90	C		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
11,09	1	0	1	7,9695	0,88	52,61	4	1	4	1,7382	17,54
14,42	0	0	2	6,1375	1,06	52,75	5	0	4	1,7339	0,61
16,72	1	0	2	5,2984	1,41	52,79	6	0	1	1,7327	2,66
16,89	2	0	0	5,2451	2,34	52,80	5	1	2	1,7325	11,14
18,38	2	0	1	4,8240	0,67	52,82	1	0	7	1,7318	1,06
22,27	2	0	2	3,9892	7,06	53,91	0	2	2	1,6992	0,15
23,30	1	0	3	3,8144	0,33	54,47	6	0	2	1,6833	0,31
26,22	0	1	1	3,3967	11,86	54,60	2	1	6	1,6795	5,15
26,47	3	0	1	3,3648	0,40	54,73	2	2	0	1,6757	0,23
27,58	1	1	1	3,2318	9,85	55,11	2	0	7	1,6652	0,13
29,05	0	0	4	3,0715	51,11	55,57	5	1	3	1,6524	3,57
29,35	3	0	2	3,0403	100,00	56,91	2	2	2	1,6167	1,55
30,29	1	0	4	2,9480	13,60	56,97	4	0	6	1,6151	2,03
30,37	1	1	2	2,9412	70,85	57,19	6	0	3	1,6095	0,47
30,46	2	1	0	2,9320	25,61	57,55	4	1	5	1,6002	2,68
31,34	2	1	1	2,8520	9,83	57,68	5	0	5	1,5969	0,16
33,66	3	0	3	2,6605	0,41	58,30	3	1	6	1,5814	0,81
33,78	2	0	4	2,6512	0,30	58,78	3	0	7	1,5696	0,33
33,85	2	1	2	2,6463	1,59	58,82	6	1	0	1,5687	0,42
34,14	4	0	0	2,6245	0,74	58,95	3	2	1	1,5654	0,27
34,56	1	1	3	2,5933	26,23	59,31	5	1	4	1,5569	0,71
34,93	4	0	1	2,5667	0,76	59,34	6	1	1	1,5561	0,45
36,84	3	1	1	2,4377	13,00	59,37	1	1	7	1,5554	4,64
37,22	4	0	2	2,4137	3,89	59,55	2	2	3	1,5511	0,17
37,56	1	0	5	2,3930	0,23	60,18	0	0	8	1,5365	2,68
37,70	2	1	3	2,3844	4,80	60,34	0	2	4	1,5326	12,49
38,98	3	0	4	2,3088	0,12	60,52	3	2	2	1,5287	25,58
39,04	3	1	2	2,3055	1,31	60,86	6	0	4	1,5209	6,97
39,77	1	1	4	2,2645	6,20	60,89	1	0	8	1,5203	8,12
40,49	2	0	5	2,2259	0,25	61,05	1	2	4	1,5166	1,49
40,80	4	0	3	2,2101	0,85	61,50	2	1	7	1,5067	0,35
42,48	3	1	3	2,1261	10,95	62,30	7	0	1	1,4892	0,51
42,58	2	1	4	2,1214	30,32	62,98	2	0	8	1,4747	0,44

Anhang

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
42,87	4	1	0	2,1076	20,57	63,07	3	2	3	1,4729	0,37
43,53	4	1	1	2,0773	8,52	63,24	4	1	6	1,4692	2,70
43,69	5	0	1	2,0700	0,10	63,36	4	2	0	1,4667	1,12
44,18	0	0	6	2,0483	0,68	63,44	6	1	3	1,4650	0,21
44,87	0	1	5	2,0182	5,13	63,81	7	0	2	1,4575	0,69
45,06	1	0	6	2,0104	0,32	63,87	4	2	1	1,4563	0,14
45,41	4	0	4	1,9958	0,47	63,91	5	1	5	1,4554	0,12
45,46	4	1	2	1,9937	1,48	64,95	3	1	7	1,4347	2,75
45,61	5	0	2	1,9872	0,80	65,36	4	2	2	1,4266	1,32
45,74	1	1	5	1,9820	0,36	65,58	1	2	5	1,4223	0,42
46,96	3	1	4	1,9334	0,64	66,39	3	0	8	1,4070	0,39
47,61	2	0	6	1,9083	9,51	66,55	3	2	4	1,4040	0,14
48,27	2	1	5	1,8839	6,17	66,91	6	1	4	1,3972	1,26
48,53	4	1	3	1,8743	0,97	66,94	1	1	8	1,3968	1,75
48,68	5	0	3	1,8689	0,43	67,60	2	2	5	1,3847	0,18
50,85	4	0	5	1,7943	0,40	67,81	4	2	3	1,3809	0,62
51,08	5	1	1	1,7865	2,33	68,28	7	1	1	1,3726	1,11
51,66	0	2	0	1,7681	2,92	68,93	2	1	8	1,3611	1,73
51,66	3	0	6	1,7680	29,07	69,30	5	1	6	1,3548	0,52
52,22	6	0	0	1,7502	11,12	69,32	1	0	9	1,3544	0,23
52,28	3	1	5	1,7485	1,61	69,72	7	1	2	1,3476	3,07
52,30	1	1	6	1,7478	13,12	69,74	5	0	7	1,3473	0,38

Barium Ga	doliı	nium	ı Ox	cid 1	BaGd2O4					GoF = 1,19		
	Z	(= 4	1		a = 10,488(9)	Å b=	3,5	15(4) Å	c = 12	2,265(3) Å	
Pnma	V	[′] = 4	452,	25(2) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	D C		$\gamma = 90$) •	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
14,44	0	0	2	6,1303	0,33	52,29	6	0	0	1,7480	11,84	
16,74	1	0	2	5,2924	0,24	52,47	1	1	6	1,7424	13,96	
16,90	2	0	0	5,2427	2,43	52,76	4	1	4	1,7335	18,12	
22,29	2	0	2	3,9848	6,75	52,84	5	0	4	1,7312	1,70	
26,36	0	1	1	3,3786	11,02	52,94	5	1	2	1,7282	13,72	
27,72	1	1	1	3,2159	8,78	54,78	2	1	6	1,6745	4,87	
29,10	0	0	4	3,0658	47,74	55,06	2	2	0	1,6664	0,14	
29,39	3	0	2	3,0368	100,00	55,72	5	1	3	1,6483	3,10	
30,35	1	0	4	2,9426	6,06	57,09	4	0	6	1,6121	2,26	
30,51	1	1	2	2,9281	68,32	57,24	2	2	2	1,6081	0,81	
30,60	2	1	0	2,9196	29,79	57,72	4	1	5	1,5960	2,65	
31,47	2	1	1	2,8402	8,34	58,48	3	1	6	1,5770	0,52	
33,71	3	0	3	2,6568	0,37	58,96	6	1	0	1,5652	0,56	
33,84	2	0	4	2,6467	0,32	59,47	5	1	4	1,5531	0,36	
33,98	2	1	2	2,6360	1,50	59,49	6	1	1	1,5526	1,59	
34,17	4	0	0	2,6218	0,45	59,56	1	1	7	1,5508	3,21	
34,70	1	1	3	2,5830	24,38	60,33	0	0	8	1,5330	2,35	
34,97	4	0	1	2,5639	0,51	60,69	0	2	4	1,5248	10,41	
36,97	3	1	1	2,4295	10,76	60,85	3	2	2	1,5212	20,88	
37,27	4	0	2	2,4107	3,14	60,96	6	0	4	1,5186	9,50	
37,63	1	0	5	2,3883	0,43	61,04	1	0	8	1,5169	2,88	
37,84	2	1	3	2,3759	3,95	61,05	6	1	2	1,5165	0,25	
39,17	3	1	2	2,2980	0,95	61,39	1	2	4	1,5089	1,44	
39,92	1	1	4	2,2564	5,83	63,13	2	0	8	1,4715	0.30	
42,62	3	1	3	2,1195	9,34	63,43	4	1	6	1,4653	2,76	
42,73	2	1	4	2,1144	31,67	63,48	2	2	4	1,4642	0.11	
43.00	4	1	0	2,1016	20.41	63.50	5	0	6	1,4639	0.29	
43,66	4	1	1	2,0714	7.23	63,60	6	1	3	1,4617	0,21	
44,28	0	0	6	2,0440	0,10	63,91	7	0	2	1,4555	0,34	
45.03	0	1	5	2.0115	4.20	65.15	3	1	7	1,4307	2.35	
45,16	1	0	6	2,0062	0.22	65,69	4	2	2	1,4202	0,77	
45,48	4	0	4	1,9927	0,19	66,55	3	0	8	1,4040	0,26	
45.59	4	1	2	1.9881	1.28	67.09	6	1	4	1.3940	0.42	
45.68	5	0	2	1,9846	0.56	67.16	1	1	8	1.3928	2.10	
47.72	2	0	6	1,9044	8.33	68.44	7	1	1	1,3697	0,59	
48.43	2	1	5	1.8781	5.62	69.15	2	1	8	1.3573	2,72	
48.68	4	1	3	1,8691	0.73	69.50	5	1	6	1,3514	3,06	
51.22	5	1	1	1.7821	1.91	69.81	7	0	4	1,3462	0,43	
51.77	3	0	6	1.7645	16.31	69.89	7	1	2	1.3448	5.49	
51,99	0	2	Õ	1,7575	15,80	;07		-	-	-,	-,.,	

Tabelle A 19: Gitterparameter und Reflexliste von BaGd₂O₄ (rel. Int. > 0,1 %)

Barium Dys	ysprosium Oxid Z = 4			id	BaDy2O4					GoF = 1,	12
	Ζ	= 4	1		a = 10,419(6)	Å b=	3,4	72(0) Å	c = 12	2,144(5) Å
Pnma	V	= 4	439,	34(4) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	ò	,	$\gamma = 90$)°
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
11,19	1	0	1	7,8992	1,02	53,29	4	1	4	1,7176	6,98
14,59	0	0	2	6,0672	1,35	53,42	5	1	2	1,7137	10,74
16,90	1	0	2	5,2426	0,94	53,51	1	0	7	1,7110	0,11
17,02	2	0	0	5,2061	2,81	54,05	1	2	1	1,6952	0,55
22,48	2	0	2	3,9518	7,53	54,98	0	2	2	1,6688	0,80
23,57	1	0	3	3,7715	0,63	55,39	2	1	6	1,6574	4,62
26,69	3	0	1	3,3378	4,44	55,74	1	2	2	1,6478	0,24
26,70	0	1	1	3,3367	3,69	55,78	2	2	0	1,6466	0,61
27,90	2	0	3	3,1952	0,93	56,24	5	1	3	1,6343	2,86
28,06	1	1	1	3,1777	7,22	56,34	2	2	1	1,6317	0,91
29,41	0	0	4	3,0349	54,81	57,64	4	0	6	1,5980	2,88
29,62	3	0	2	3,0136	100,00	57,73	6	0	3	1,5956	0,47
30,66	1	0	4	2,9138	7,74	57,99	2	2	2	1,5892	1,55
30,87	1	1	2	2,8942	53,74	58,31	5	0	5	1,5813	1,76
30,94	2	1	0	2,8880	14,28	58,31	4	1	5	1,5812	1,08
31,82	2	1	1	2,8097	6,23	58,49	1	2	3	1,5768	0,16
33,99	3	0	3	2,6351	0,72	59,11	3	1	6	1,5616	1,52
34,17	2	0	4	2,6223	1,06	59,48	6	1	0	1,5529	1,34
34,36	2	1	2	2,6080	1,71	59,52	3	0	7	1,5518	0,34
34,41	4	0	0	2,6040	0,70	60,01	6	1	1	1,5403	1,82
35,11	1	1	3	2,5541	17,89	60,03	3	2	1	1,5400	0,46
37,34	3	1	1	2,4060	8,74	60,25	1	1	7	1,5347	3,00
37,55	4	0	2	2,3932	3,62	60,67	2	2	3	1,5253	0,54
38,02	1	0	5	2,3648	0,81	61,00	0	0	8	1,5178	3,51
38,25	2	1	3	2,3509	2,94	61,47	6	0	4	1,5072	14,73
39,40	3	0	4	2,2852	0,67	61,49	0	2	4	1,5068	3,50
39,57	3	1	2	2,2757	0,97	61,60	6	1	2	1,5044	13,92
40,38	1	1	4	2,2318	5,06	61,61	3	2	2	1,5041	2,12
40,98	2	0	5	2,2008	0,24	61,71	1	0	8	1,5019	3,32
41,19	4	0	3	2,1899	0,44	62,20	1	2	4	1,4912	1,73
43,06	3	1	3	2,0989	7,80	62,39	2	1	7	1,4871	0,87
43,20	2	1	4	2,0924	22,86	62,86	7	0	1	1,4772	1,11
43,41	4	1	0	2,0831	14,99	63,82	2	0	8	1,4572	1,49
44,07	5	0	1	2,0534	3,90	64,10	5	0	6	1,4517	2,62
44,07	4	1	1	2,0531	2,08	64,10	4	1	6	1,4516	1,28
44,75	0	0	6	2,0236	0,50	64,19	6	1	3	1,4498	0,45
45,55	3	0	5	1,9900	2,24	64,20	3	2	3	1,4496	0,15
45,55	0	1	5	1,9897	2,19	64,40	7	0	2	1,4455	0,82
45,88	4	0	4	1,9765	0,21	64,46	4	2	0	1,4443	0,24
46,02	5	0	2	1,9706	1,29	64,49	4	0	7	1,4437	0,35
46,03	4	1	2	1,9704	0,96	64,73	5	1	5	1,4390	0,58
46,42	1	1	5	1,9544	0,38	64,97	4	2	1	1,4342	0,71
47,60	3	1	4	1,9088	1,69	65,88	3	1	7	1,4167	2,77
48,21	2	0	6	1,8862	9,38	66,10	6	0	5	1,4124	0,86
48,97	2	1	5	1,8588	4,40	66,49	4	2	2	1,4051	1,27
49,14	5	0	3	1,8524	0,72	66,80	1	2	5	1,3993	0,25
49,15	4	1	3	1,8522	0,43	66,93	7	0	3	1,3968	0,32
51,41	4	0	5	1,7761	0,34	67,26	3	0	8	1,3908	0,67
51,68	5	1	1	1,7674	1,78	67,72	6	1	4	1,3825	0,41
52,28	3	0	6	1,7484	16,07	67,73	3	2	4	1,3823	0,94
52,68	6	0	0	1,7362	19,96	67,95	1	1	8	1,3785	2,29
52,70	0	2	0	1,7356	1,59	68,83	2	2	5	1,3629	0,55

Tabelle A 20: Gitterparameter und Reflexliste von BaDy₂O₄ (rel. Int. > 0,1 %)

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
53,00	3	1	5	1,7264	0,77	68,98	4	2	3	1,3603	0,71
53,07	1	1	6	1,7241	9,86	69,04	7	1	1	1,3593	0,51
53,25	6	0	1	1,7187	4,45	69,96	2	1	8	1,3436	2,82
53.29	5	0	4	1.7178	5.17						

Tabelle A 21: Gitterparameter und Reflexliste von BaY_2O_4 (rel. Int. > 0,1 %)

Barium Ytt	riun	ı Ox	id]	BaY2O4					GoF = 1,19		
D	Z	; = 4	1		a = 10,394(8)	Å b=	3,4	50(6) Å	c = 12	2,116(0) Å	
Pnma	V	= 4	134,	57(5) ų	$\alpha = 90^{\circ}$	$\beta =$	90 °	C		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
11,21	1	0	1	7,8851	1,06	53,42	5	0	4	1,7139	4,02	
14,62	0	0	2	6,0556	1,56	53,47	4	1	4	1,7122	8,51	
16,93	1	0	2	5,2322	9,21	53,61	5	1	2	1,7083	7,11	
17,05	2	0	0	5,1956	0,81	53,64	1	0	7	1,7072	1,00	
18,57	2	0	1	4,7750	0,30	54,40	1	2	1	1,6853	0,64	
22,53	2	0	2	3,9436	10,05	55,10	6	0	2	1,6655	0,47	
23,62	1	0	3	3,7636	0,81	55,33	0	2	2	1,6592	0,34	
26,74	3	0	1	3,3307	2,61	55,58	2	1	6	1,6523	3,59	
26,85	0	1	1	3,3179	12,63	55,95	2	0	7	1,6421	0,51	
27,96	2	0	3	3,1884	0,95	56,09	1	2	2	1,6384	0,59	
28,21	1	1	1	3,1608	12,52	56,13	2	2	0	1,6373	0,42	
29,47	0	0	4	3,0284	50,89	56,43	5	1	3	1,6292	3,36	
29,68	3	0	2	3,0071	100,00	56,69	2	2	1	1,6225	0.13	
30,73	1	0	4	2,9075	7,97	57,78	4	0	6	1,5944	3,07	
31,02	1	1	2	2,8804	36,61	58,33	2	2	2	1,5806	0.87	
31.09	2	1	0	2.8742	12.38	58,45	5	0	5	1.5777	0.58	
31,98	2	1	1	2,7966	10,64	58,51	4	1	5	1,5764	2,50	
34.07	3	0	3	2.6293	1.05	58.84	1	2	3	1.5683	0.67	
34.24	2	Õ	4	2.6166	1.27	59.31	3	1	6	1.5568	0.56	
34.49	4	Õ	0	2.5983	2.38	59.67	3	0	7	1.5483	0.26	
34.51	2	1	2	2,5967	2.04	59.68	6	1	0	1.5482	0.79	
35.26	1	1	3	2.5433	31.52	60.21	6	1	1	1.5357	1.99	
37.50	3	1	1	2.3963	15.22	60.38	3	2	1	1.5319	0.44	
37.64	4	0	2	2.3879	4.21	60.45	1	1	7	1.5302	3.69	
38.11	1	0	5	2.3596	0.70	61.02	2	2	3	1.5173	0.16	
38.41	2	1	3	2.3417	4.31	61.15	0	0	8	1.5144	1.88	
39.49	3	0	4	2.2802	0.35	61.63	6	Õ	4	1.5037	9.00	
39.73	3	1	2	2.2670	1.09	61.80	6	1	2	1,4999	1.94	
40.54	1	1	4	2.2234	3.96	61.84	Ő	2	4	1,4991	1.92	
41.07	2	0	5	2,1960	0.51	61.86	1	0	8	1,4986	7.03	
41.28	4	0	3	2,1851	0.96	61.96	3	2	2	1,4964	13.30	
43.23	3	1	3	2.0913	12.98	62.55	1	2	4	1,4837	0.94	
43.37	2	1	4	2.0849	16.68	62,60	2	1	7	1.4827	0.34	
43.57	4	1	0	2.0756	11.00	63.02	7	0	1	1,4738	0.55	
44.17	5	0	1	2.0488	0.87	63.98	2	Õ	8	1,4539	0.15	
44.24	4	1	1	2.0458	9.78	64.26	5	Õ	6	1,4484	0.94	
44.85	0	0	6	2.0191	0.37	64.31	4	1	6	1,4474	1.18	
45.65	3	Õ	5	1.9855	0.86	64.56	3	2	3	1.4424	1.31	
45.72	0	1	5	1.9828	4.56	64.57	7	0	2	1.4422	0.12	
45.98	4	0	4	1.9721	1.68	64.82	4	2	0	1.4373	0.98	
46.13	5	Ő	2	1.9662	0.50	64.94	5	1	5	1,4348	0.12	
46.20	4	1	$\overline{2}$	1,9635	1.22	65.33	4	2	1	1,4273	0.20	
46.59	1	1	5	1.9477	0.86	66.09	3	1	7	1,4126	3.23	
47.77	3	1	4	1,9023	0.71	66.27	6	0	5	1,4092	0.35	
48.32	2	0	6	1.8821	11.10	66.85	4	2	2	1,3984	1,12	
49,14	2	1	5	1,8526	6,88	67,11	7	0	3	1,3937	0,19	

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
49,32	4	1	3	1,8461	1,02	67,44	3	0	8	1,3876	0,36
51,53	4	0	5	1,7721	0,61	67,94	6	1	4	1,3785	0,53
51,86	5	1	1	1,7616	2,81	68,10	3	2	4	1,3758	0,21
52,41	3	0	6	1,7445	12,74	68,17	1	1	8	1,3745	1,42
52,80	6	0	0	1,7323	10,38	69,19	2	2	5	1,3566	0,46
53,04	0	2	0	1,7251	10,10	69,27	7	1	1	1,3554	0,78
53,26	1	1	6	1,7187	7,22	69,34	4	2	3	1,3541	0,34

Tabelle A 22: Gitterparameter und Reflexliste von $BaSc_2O_4$ (rel. Int. > 1,0 %)

Barium Sca	andiı	ım (Dxid	1	BaSc ₂ O ₄					GoF = 1,	50
G2 /	Z	[=	12		a = 9,834(6)	Å b=	5,8	15(0)) Å	c = 20),571(8) Å
C2/c	V	=	1176	5,46(6) Å ³	$\alpha = 90^{\circ}$	β=	89,	90(6	5) °	$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
17,24	0	0	4	5,1385	9,89	49,72	-5	1	2	1,8324	1,50
19,72	1	1	2	4,4989	15,15	49,72	1	3	3	1,8322	8,11
19,73	-1	1	2	4,4960	4,41	50,35	4	2	3	1,8108	6,83
20,00	2	0	2	4,4359	3,50	50,77	-5	1	3	1,7968	3,87
20,03	-2	0	2	4,4303	10,39	50,78	0	2	9	1,7965	5,38
21,97	1	1	3	4,0418	35,40	51,12	3	1	9	1,7853	2,06
21,99	-1	1	3	4,0387	3,29	51,18	1	3	4	1,7834	2,10
24,81	1	1	4	3,5864	38,70	51,20	-3	1	9	1,7828	2,36
24,83	-1	1	4	3,5834	8,57	51,44	-4	0	8	1,7751	1,10
25,03	2	0	4	3,5550	4,72	52,17	1	1	11	1,7519	6,93
25,07	-2	0	4	3,5492	34,16	52,21	-5	1	4	1,7505	4,08
25,98	0	0	6	3,4267	4,53	53,03	-1	3	5	1,7256	14,64
28,05	1	1	5	3,1781	4,38	53,60	4	2	5	1,7083	1,76
28,08	-1	1	5	3,1755	47,78	53,66	-4	2	5	1,7067	14,18
30,74	0	2	0	2,9061	4,56	53,96	5	1	5	1,6978	6,88
31,05	0	2	1	2,8776	97,31	54,30	2	2	9	1,6881	2,35
31,31	3	1	0	2,8543	95,91	54,35	-2	2	9	1,6867	1,89
31,61	3	1	1	2,8278	36,53	54,94	3	1	10	1,6699	7,98
31,63	-3	1	1	2,8267	38,51	55,01	3	3	0	1,6681	10,20
31,63	-1	1	6	2,8263	100,00	55,02	-3	1	10	1,6676	7,85
31,78	2	0	6	2,8133	87,04	55,20	3	3	1	1,6627	14,03
31,83	-2	0	6	2,8090	1,25	55,21	-3	3	1	1,6625	13,76
32,52	3	1	2	2,7514	6,76	55,21	-1	3	6	1,6624	6,65
32,54	-3	1	2	2,7494	6,41	56,08	6	0	0	1,6387	18,05
33,46	0	2	3	2,6757	5,76	56,11	5	1	6	1,6378	16,71
34,01	-3	1	3	2,6338	1,06	56,71	1	1	12	1,6219	11,85
34,88	0	0	8	2,5704	16,29	56,88	-2	0	12	1,6176	9,66
35,39	1	1	7	2,5342	2,66	57,70	1	3	7	1,5965	1,23
35,42	-1	1	7	2,5324	33,47	57,72	-1	3	7	1,5960	12,04
35,45	0	2	4	2,5300	1,62	58,25	4	2	7	1,5826	1,90
35,93	3	1	4	2,4971	5,68	58,32	-4	2	7	1,5809	15,78
35,98	-3	1	4	2,4941	6,06	58,41	4	0	10	1,5786	4,34
36,14	2	2	1	2,4837	2,59	58,59	5	1	7	1,5743	6,44
36,14	-2	2	1	2,4832	7,12	58,66	0	2	11	1,5725	3,89
37,58	4	0	2	2,3912	14,77	58,68	-5	1	7	1,5721	1,21
37,61	-4	0	2	2,3895	1,34	58,96	3	1	11	1,5652	2,22
38,28	-2	2	3	2,3495	43,82	59,05	-3	1	11	1,5631	2,38
38,38	-3	1	5	2,3435	1,41	61,37	5	1	8	1,5096	1,26
39,36	1	1	8	2,2872	2,92	61,40	1	1	13	1,5089	4,97
39,39	-1	1	8	2,2857	5,58	61,93	-2	2	11	1,4972	14,37
39,50	2	0	8	2,2794	4,01	64,01	0	4	0	1,4535	11,83
39,56	-2	0	8	2,2764	1,83	64,19	0	4	1	1,4498	1,97
40,06	-2	2	4	2,2489	1.39	65,31	6	2	0	1,4275	1.08

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
40,63	4	0	4	2,2188	15,62	65,48	6	2	1	1,4243	14,56
40,68	-4	0	4	2,2160	6,88	65,50	-6	2	1	1,4240	12,70
41,09	3	1	6	2,1950	1,58	66,23	1	1	14	1,4100	1,67
41,15	-3	1	6	2,1920	1,55	66,39	4	0	12	1,4070	7,45
42,23	2	2	5	2,1383	61,49	66,39	-2	0	14	1,4070	1,33
42,26	-2	2	5	2,1367	5,60	67,33	0	2	13	1,3896	3,67
44,00	0	0	10	2,0565	11,64	67,60	3	1	13	1,3847	1,23
44,79	2	2	6	2,0216	2,72	67,69	-3	1	13	1,3830	1,24
45,41	-4	0	6	1,9959	44,73	67,88	-5	1	10	1,3797	1,41
47,68	2	2	7	1,9056	46,02	69,41	-5	3	3	1,3529	2,70
47,73	-2	2	7	1,9041	7,71	69,71	3	3	9	1,3479	1,86
47,76	1	1	10	1,9027	3,54	69,77	-3	3	9	1,3469	1,88
47,79	-1	1	10	1,9016	1,15	69,87	-2	4	4	1,3451	2,15
47,94	-2	0	10	1,8961	3,20						

Tabelle A 23: Gitterparameter und Reflexliste von CaLaAlO₄ (rel. Int. > 0,1 %)

Calcium La	ntha	an A	lum	inat	CaLaAlO4					GoF = 1, 2	23	
τ.4./	Z	= 2	2		a = 3,715(1)	Å b =	3,7	15(1) Å	c = 12	2,338(3) Å	
14/mmm	V	= 1	170,	29(3) ų	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$ °		
Pos. [°2θ]	h k l d-Wert [Å		d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]		
14,35	0	0	2	6,1685	3,32	49,00	2	0	0	1,8575	34,96	
25,01	1	0	1	3,5571	36,83	55,79	2	1	1	1,6466	6,03	
28,92	0	0	4	3,0844	18,39	56,81	1	1	6	1,6192	9,96	
32,45	1	0	3	2,7568	100,00	57,86	1	0	7	1,5924	8,68	
34,10	1	1	0	2,6269	69,91	57,90	2	0	4	1,5913	8,96	
37,17	1	1	2	2,4169	17,58	59,93	0	0	8	1,5423	6,34	
44,00	0	0	6	2,0563	12,28	60,01	2	1	3	1,5405	16,30	
44,02	1	0	5	2,0555	12,21	67,95	2	0	6	1,3784	6,71	
45,31	1	1	4	1,9999	44,11	67,96	2	1	5	1,3782	6,75	

Tabelle A 24: Gitterparameter und Reflexliste von CaNdAlO₄ (rel. Int. > 0,1 %)

Calcium Ne	ody	m A	lum	inat	CaNdAlO4					GoF = 1,	08
T.4./	Ζ	= 2	2		a = 3,681(3)	Å b =	3,6	81(3) Å	c = 12	2,154(6) Å
14/mmm	V	= 1	64,	71(8) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,56	0	0	2	6,0770	1,56	51,86	2	0	2	1,7616	0,44
25,26	1	0	1	3,5231	41,02	56,35	2	1	1	1,6314	7,23
29,37	0	0	4	3,0386	20,58	57,61	1	1	6	1,5987	10,91
32,85	1	0	3	2,7245	100,00	58,59	2	0	4	1,5743	10,13
34,43	1	1	0	2,6030	80,47	58,75	1	0	7	1,5704	9,92
37,56	1	1	2	2,3928	11,24	60,67	2	1	3	1,5252	27,45
44,63	1	0	5	2,0285	15,11	60,93	0	0	8	1,5193	2,56
44,70	0	0	6	2,0257	13,35	68,82	2	1	5	1,3631	6,32
45,87	1	1	4	1,9769	49,23	68,87	2	0	6	1,3623	8,13
49,48	2	0	0	1,8406	39,64						

Calcium Sa	mar	ium	Alu	ıminat	CaSmAlO ₄					GoF = 0,	99
	Z	. = 2	2		a = 3,670(6)	Å b=	3,6	70(6) Å	c = 12	2,061(5) Å
14/mmm	V	=]	162,	50(7) ų	$\alpha = 90^{\circ}$	$\beta =$	90	C		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,65	0	0	2	6,0429	0,61	52,02	2	0	2	1,7566	0,30
25,31	1	0	1	3,5156	43,83	56,51	2	1	1	1,6272	7,28
29,57	0	0	4	3,0183	20,87	57,96	1	1	6	1,5900	10,46
32,99	1	0	3	2,7131	100,00	58,83	2	0	4	1,5684	8,97
34,50	1	1	0	2,5976	78,42	59,16	1	0	7	1,5604	10,32
37,67	1	1	2	2,3858	11,27	60,88	2	1	3	1,5203	25,57
44,90	1	0	5	2,0171	13,88	61,42	0	0	8	1,5083	2,15
45,03	0	0	6	2,0114	12,59	69,14	2	1	5	1,3575	4,79
46,08	1	1	4	1,9682	46,75	69,24	2	0	6	1,3558	9,14
49,61	2	0	0	1,8362	37,39						

Tabelle A 25: Gitterparameter und Reflexliste von CaSmAlO₄ (rel. Int. > 0,1 %)

Tabelle A 26: Gitterparameter und Reflexliste von CaEuAlO₄ (rel. Int. > 0,1 %)

Calcium Eu	ropi	ium	Alu	minat	CaEuAlO4					GoF = 0,	95
T.4 /	Z	= 2	2		a = 3,663(7)	Å b =	3,6	63(7) Å	c = 12	2,025(1) Å
14/mmm	V	=]	161,	40(4) ų	$\alpha = 90^{\circ}$	$\beta =$	90	С		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,73	0	0	2	6,0096	2,66	52,16	2	0	2	1,7521	0,67
25,40	1	0	1	3,5036	40,10	56,66	2	1	1	1,6233	6,69
29,70	0	0	4	3,0056	20,76	58,15	1	1	6	1,5850	10,70
33,11	1	0	3	2,7037	100,00	59,01	2	0	4	1,5641	8,44
34,60	1	1	0	2,5901	81,63	59,38	1	0	7	1,5552	11,18
37,79	1	1	2	2,3787	11,25	61,06	2	1	3	1,5165	26,73
45,06	1	0	5	2,0102	13,46	61,66	0	0	8	1,5030	2,96
45,21	0	0	6	2,0039	14,25	69,35	2	1	5	1,3540	5,06
46,23	1	1	4	1,9622	47,12	69,46	2	0	6	1,3520	9,71
49,74	2	0	0	1,8316	38,79						

Tabelle A 27: Gitterparameter und Reflexliste von CaGdAlO₄ (rel. Int. > 0,1 %)

Calcium Ga	adoli	niur	n A	luminat	CaGdAlO ₄					GoF = 0,	97
T.4./	Z	= 2	2		a = 3,658(3)	Å b =	3,6	58(3) Å	c = 12	2,002(0) Å
14/mmm	V	=]	160,	62(6) ų	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,78	0	0	2	5,9888	2,44	52,27	2	0	2	1,7488	0,77
25,46	1	0	1	3,4953	40,44	56,77	2	1	1	1,6204	7,41
29,78	0	0	4	2,9976	22,42	58,29	1	1	6	1,5818	10,96
33,19	1	0	3	2,6974	100,00	59,13	2	0	4	1,5612	9,60
34,68	1	1	0	2,5847	79,73	59,52	1	0	7	1,5519	12,16
37,87	1	1	2	2,3738	11,15	61,18	2	1	3	1,5137	28,86
45,17	1	0	5	2,0058	14,37	61,81	0	0	8	1,4997	2,91
45,33	0	0	6	1,9992	15,49	69,50	2	1	5	1,3515	7,86
46,33	1	1	4	1,9581	49,37	69,62	2	0	6	1,3495	10,71
49,84	2	0	0	1,8282	41,98						

Calcium Dy	spro	osiui	n A	luminat	CaDyAlO ₄					GoF = 1,	23	
T4/	Ζ	= 2	2		a = 3,647(8)	Å b =	3,64	47(8) Å	c = 11	11,909(5) Å	
14/mmm	V	= 1	158,	47(2) ų	$\alpha = 90^{\circ}$	$\beta =$	90 °	D		$\gamma = 90$) °	
Pos. [°2θ]	h	h k l d-Wert [Å			rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
14,86	0	0	2	5,9556	1,42	49,96	2	0	0	1,8240	40,13	
25,52	1	0	1	3,4881	40,40	56,92	2	1	1	1,6163	7,42	
29,99	0	0	4	2,9776	19,86	58,64	1	1	6	1,5731	11,73	
33,33	1	0	3	2,6862	100,00	59,37	2	0	4	1,5553	8,84	
34,75	1	1	0	2,5795	82,44	59,94	1	0	7	1,5419	11,36	
37,98	1	1	2	2,3670	11,86	61,39	2	1	3	1,5090	28,81	
45,44	1	0	5	1,9945	15,32	62,32	0	0	8	1,4887	3,63	
45,67	0	0	6	1,9850	13,74	69,82	2	1	5	1,3460	4,99	
46,54	1	0 0 6 1,9850 1 1 4 1,9496		1,9496	48,72	70,00	2	0	6	1,3430	9,82	

Tabelle A 28: Gitterparameter und Reflexliste von CaDyAlO₄ (rel. Int. > 0,1 %)

Tabelle A 29: Gitterparameter und Reflexliste von CaYAlO₄ (rel. Int. > 0,1 %)

Calcium Yt	triuı	m A	lum	inat	CaYAlO4					GoF = 1,	68
I.4 /manage	Z	= 2	2		a = 3,643(2)	Å b =	3,64	43(2) Å	c = 11	,895(6) Å
14/1111111	V	=]	157,	89(2) ų	$\alpha=~90~^{\circ}$	$\beta =$	90 °	C		$\gamma = 90$) °
Pos. [°2θ]	h	h k l d-Wert [Å]			rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,92	0	0	2	5,9348	5,41	50,06	2	0	0	1,8205	50,26
25,58	1	0	1	3,4791	25,01	52,53	2	0	2	1,7408	0,38
30,06	0	0	4	2,9707	14,81	57,04	2	1	1	1,6134	5,06
33,41	1	0	3	2,6802	100,00	58,75	1	1	6	1,5704	13,54
34,83	1	1	0	2,5738	88,61	59,49	2	0	4	1,5526	7,10
38,07	1	1	2	2,3620	12,38	60,06	1	0	7	1,5393	9,67
45,53	1	0	5	1,9906	17,83	61,51	2	1	3	1,5063	31,11
45,76	0	0	6	1,9813	19,60	62,43	0	0	8	1,4862	3,72
46,64	1	1	4	1,9459	50,29	69,95	2	1	5	1,3437	7,01

Tabelle A 30: Gitterparameter und Reflexliste von CaYbAlO₄ (rel. Int. > 0,1 %)

Calcium Yt	terb	ium	Alu	minat	CaYbAlO4					GoF = 2,	17
τ.4./	Z	= 2	2		a = 3,643(0)	Å b =	3,6	43(0) Å	c = 11	,755(2) Å
14/mmm	V	= 1	156,	00(4) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$) °
Pos. [°2θ]	h	h k l d-Wert [d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
15,06	0	0	2	5,8796	0,48	50,03	2	0	0	1,8216	30,77
25,57	1	0	1	3,4804	36,20	52,55	2	0	2	1,7400	0,13
30,39	0	0	4	2,9393	26,61	57,02	2	1	1	1,6139	6,57
33,56	1	0	3	2,6684	100,00	59,20	1	1	6	1,5595	10,85
34,79	1	1	0	2,5763	60,25	59,67	2	0	4	1,5483	7,83
38,11	1	1	2	2,3596	9,03	60,67	1	0	7	1,5252	12,63
45,90	1	0	5	1,9756	12,69	61,60	2	1	3	1,5044	25,04
46,30	0	0	6	1,9594	16,46	63,23	0	0	8	1,4695	3,25
46,86	1	1	4	1,9373	44,35						

Strontium l	Lant	han	Alu	minat	SrLaAlO4					GoF = 1,	24	
T.4 /	Ζ	= 2	2		a = 3,755(2)	Å b =	3,7	55(2) Å	Å $c = 12,642(9)$ Å		
14/mmm	V	= 1	178,	28(3) ų	$\alpha = 90^{\circ}$	$\beta =$	90	С		$\gamma = 90$) °	
Pos. [°2θ]	h k l d-Wert [Å		d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]		
14,01	0	0	2	6,3177	0,35	50,69	2	0	2	1,7996	0,48	
24,72	1	0	1	3,5986	45,76	55,13	2	1	1	1,6645	8,40	
28,22	0	0	4	3,1598	23,68	55,65	1	1	6	1,6504	9,21	
31,90	1	0	3	2,8030	100,00	56,50	1	0	7	1,6275	10,70	
33,74	1	1	0	2,6547	70,35	57,01	2	0	4	1,6141	11,13	
36,69	1	1	2	2,4476	8,15	58,35	0	0	8	1,5802	2,96	
42,89	0	0	6	2,1068	12,09	59,18	2	1	3	1,5599	24,37	
43,10	1	0	5	2,0970	10,20	66,67	2	0	6	1,4017	7,84	
44,54	1	1	4	2,0328	45,58	66,83	2	1	5	1,3988	3,81	
48,45	2	0	0	1,8773	32,32	69,12	1	1	8	1,3579	3,37	

Tabelle A 31: Gitterparameter und Reflexliste von SrLaAlO₄ (rel. Int. > 0,1 %)

Tabelle A 32: Gitterparameter und Reflexliste von SrNdAlO₄ (rel. Int. > 0,1 %)

Strontium I	Neod	lym	Alu	minat	SrNdAlO4					GoF = 1,	08
T4/	Z	= 2	2		a = 3,722(2)	Å b=	3,72	22(2) Å	c = 12	2,490(9) Å
14/mmm	V	=]	173,	05(8) ų	$\alpha = 90^{\circ}$	$\beta =$	90	C		$\gamma = 90$) °
Pos. [°2θ]	h	h k l d-Wert [Å		d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,20	0	0	2	6,2323	0,55	51,20	2	0	2	1,7827	0,32
24,97	1	0	1	3,5630	47,83	55,69	2	1	1	1,6493	8,50
28,59	0	0	4	3,1196	25,24	56,32	1	1	6	1,6321	9,76
32,26	1	0	3	2,7725	100,00	57,23	1	0	7	1,6084	12,04
34,06	1	1	0	2,6298	72,05	57,64	2	0	4	1,5980	10,32
37,06	1	1	2	2,4236	8,89	59,15	0	0	8	1,5607	2,86
43,46	0	0	6	2,0805	11,98	59,81	2	1	3	1,5451	26,17
43,63	1	0	5	2,0730	11,19	67,47	2	0	6	1,3870	7,97
45,04	1	1	4	2,0113	46,02	67,59	2	1	5	1,3848	3,25
48,93	2	0	0	1,8601	32,50						

Tabelle A 33: Gitterparameter und Reflexliste von SrSmAlO₄ (rel. Int. > 0,1 %)

Strontium S	Sama	ariu	m A	luminat	SrSmAlO ₄					GoF = 0,	96	
T.4./	Z	2 = 2	2		a = 3,707(3)	Å b =	3,7	07(3) Å	Å $c = 12,421(7)$ Å		
14/mmm	V	' = 1	170,	72(9) ų	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
14,27	0	0	2	6,2031	0,38	51,42	2	0	2	1,7757	0,13	
25,06	1	0	1	3,5501	48,10	55,92	2	1	1	1,6430	8,56	
28,74	0	0	4	3,1036	26,63	56,62	1	1	6	1,6243	10,61	
32,41	1	0	3	2,7606	100,00	57,55	1	0	7	1,6002	12,93	
34,19	1	1	0	2,6202	72,07	57,90	2	0	4	1,5913	10,64	
37,22	1	1	2	2,4141	8,42	59,50	0	0	8	1,5523	3,32	
43,70	0	0	6	2,0695	13,40	60,08	2	1	3	1,5388	27,38	
43,85	1	0	5	2,0631	11,71	67,82	2	0	6	1,3807	8,48	
45,25	1	1	4	2,0025	47,93	67,93	2	1	5	1,3788	3,93	
49.12	2	0	0	1.8531	33.09							

	restriction Equation Algorithm for Several O = 0.5												
Strontium l	Euro	piu	m A	luminat	SrEuAlO ₄					GoF = 1,	05		
T.4 /	Ζ	= 2	2		a = 3,701(5)	Å b=	3,7	01(5) Å	c = 12	2,399(6) Å		
14/mmm	V	=]	169,	89(1) ų	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$) °		
Pos. [°2θ]	$\begin{array}{c cccc} h & k & 1 & d-W \\ \hline 0 & 0 & 2 & 6 \end{array}$		d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	Pos. [°2 θ] h		1	d-Wert [Å]	rel. Int. [%]			
14,27	0	0	2	6,2012	0,28	51,49	2	0	2	1,7735	0,26		
25,08	1	0	1	3,5473	48,46	56,00	2	1	1	1,6409	8,17		
28,77	0	0	4	3,1002	24,19	56,71	1	1	6	1,6220	9,27		
32,44	1	0	3	2,7577	100,00	57,64	1	0	7	1,5979	11,65		
34,23	1	1	0	2,6176	74,47	57,99	2	0	4	1,5892	9,28		
37,26	1	1	2	2,4115	9,67	59,60	0	0	8	1,5500	2,47		
43,77	0	0	6	2,0667	12,28	60,16	2	1	3	1,5368	25,06		
43,91	1	0	5	2,0604	10,30	67,93	2	0	6	1,3788	7,93		
45,31	1	1	4	2,0000	45,19	68,04	2	1	5	1,3769	3,46		
49,19	2	0	0	1,8509	32,38								

Tabelle A 34: Gitterparameter und Reflexliste von SrEuAlO₄ (rel. Int. > 0,1 %)

Tabelle A 35: Gitterparameter und Reflexliste von SrGdAlO₄ (rel. Int. > 0,1 %)

Strontium (Gade	olini	um	Aluminat	SrGdAlO4	GoF = 1,47					
T4/	Z	= 2	2		a = 3,696(1)	Å b=	3,6	96(1) Å	c = 12	2,366(9) Å
14/mmm	V	=]	168,	94(5) ų	$\alpha = 90^{\circ}$	$\beta =$	90	С		$\gamma = 90$) °
Pos. [°2θ]	h k l d-Wert [Å		d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
14,34	0	0	2	6,1715	0,57	51,60	2	0	2	1,7698	0,78
25,15	1	0	1	3,5375	47,78	56,11	2	1	1	1,6377	9,18
28,88	0	0	4	3,0889	25,47	56,87	1	1	6	1,6178	11,26
32,54	1	0	3	2,7497	100,00	57,82	1	0	7	1,5934	14,03
34,31	1	1	0	2,6115	70,82	58,13	2	0	4	1,5857	11,28
37,35	1	1	2	2,4057	10,56	59,80	0	0	8	1,5453	4,70
43,92	0	0	6	2,0600	13,76	60,30	2	1	3	1,5336	28,63
44,04	1	0	5	2,0544	12,27	68,11	2	0	6	1,3755	8,55
45,43	1	1	4	1,9949	48,93	68,20	2	1	5	1,3739	5,23
49,29	2	0	0	1,8471	34,07						

Tabelle A 36: Gitterparameter und Reflexliste von SrDyAlO₄ (rel. Int. > 0,1 %)

Strontium 1	Dysp	rosi	um	Aluminat	SrDyAlO ₄	GoF = 1,86					86
T.4./	Z	= 2	2		a = 3,685(6)	Å b =	3,6	85(6) Å	c = 12	2,301(4) Å
14/mmm	V	=	167,	09(6) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$) °
Pos. [°2θ]	h	h k l d-Wert [Å		d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
14,39	0	0	2	6,1493	0,20	49,42	2	0	0	1,8427	37,07
25,21	1	0	1	3,5301	46,95	56,27	2	1	1	1,6336	10,43
29,01	0	0	4	3,0750	23,14	57,12	1	1	6	1,6113	11,94
32,65	1	0	3	2,7408	100,00	58,11	1	0	7	1,5862	15,39
34,39	1	1	0	2,6059	71,92	58,33	2	0	4	1,5807	12,04
37,45	1	1	2	2,3994	8,28	60,13	0	0	8	1,5376	3,81
44,14	0	0	6	2,0501	13,39	60,49	2	1	3	1,5293	32,98
44,23	1	0	5	2,0461	10,69	68,40	2	0	6	1,3705	11,52
45,59	1	1	4	1,9881	49,96	68,46	2	1	5	1,3693	4,85

Barium Lai	ntha	n Al	umi	nat l	BaLaAlO ₄ GoF = $1,22$				22		
Darium Ear	7	_ /	1	inat i	a = 5.828(8)	Å h.—	7.2	00/1	<u>،</u> ۸	0.9	22 201(0) Å
$P2_12_12_1$		- 4	+		a = 3,828(8)	A 0-	7,20	00(1) A	C - 9,0	581(9) A
	V	= 4	119,	/8(8) A ³	$\alpha = 90^{\circ}$	β=	90	5		$\gamma = 90$	0
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
15,11	0	1	1	5,8586	1,05	53,47	1	4	1	1,7122	10,95
17,67	1	0	1	5,0155	19,83	53,58	0	4	2	1,7090	4,77
17,96	0	0	2	4,9362	1,15	54,28	3	2	1	1,6888	13,25
19,50	1	1	0	4,5480	0,22	54,81	2	2	4	1,6735	5,69
21,49	1	1	1	4,1311	34,70	54,83	3	0	3	1,6731	7,40
21,73	0	1	2	4,0865	15,68	55,13	1	2	5	1,6645	2,06
23,60	1	0	2	3,7663	2,25	55,30	1	3	4	1,6600	25,97
24,42	0	2	0	3,6415	1,27	55,79	0	0	6	1,6466	1,62
26,06	0	2	1	3,4167	7,90	56,03	1	4	2	1,6400	3,01
26,62	1	1	2	3,3457	83,56	56,20	2	0	5	1,6353	0,13
28,89	1	2	0	3,0881	30,04	56,38	3	1	3	1,6306	0,73
29,76	0	1	3	2,9999	21,73	56,66	2	3	3	1,6232	3,44
30,30	1	2	1	2,9474	100,00	56,81	3	2	2	1,6193	1,23
30,47	0	2	2	2,9311	22,42	57,73	2	1	5	1,5956	16,75
30,67	2	0	0	2,9128	71,28	57,80	0	4	3	1,5940	3,03
31,18	1	0	3	2,8662	89,70	58,17	1	0	6	1,5845	0,21
32,01	2	0	1	2,7939	1,96	59,67	1	1	6	1,5484	5,65
33,09	2	1	0	2,7047	1,17	59,83	2	4	0	1,5446	0,45
34,22	1	2	2	2,6185	8,18	60,13	1	4	3	1,5375	0,60
34,35	2	1	1	2,6087	0,46	60,34	0	3	5	1,5328	0,45
35,76	2	0	2	2,5091	0,11	60,60	3	0	4	1,5269	0,27
36,35	0	0	4	2,4694	0,96	60,63	2	4	1	1,5261	2,45
36,77	0	2	3	2,4425	22,55	60,88	3	2	3	1,5205	0,25
37,89	2	1	2	2,3724	25,92	61,03	3	3	0	1,5170	0,16
38,13	0	3	1	2,3581	29,84	61,78	0	2	6	1,5005	2,36
38,46	0	1	4	2,3387	12,39	61,83	3	3	1	1,4994	0,88
39,58	2	2	0	2,2751	5,35	62,06	3	1	4	1,4944	1,71
39,99	1	2	3	2,2527	0,37	62,17	2	2	5	1,4920	1,53
40,66	2	2	1	2,2171	8,23	62,32	2	3	4	1,4887	0,75
41,27	1	3	1	2,1859	2,05	62,62	1	3	5	1,4824	0,80
41,40	0	3	2	2,1793	2,18	63,00	2	4	2	1,4742	4,77
41,57	1	1	4	2,1705	12,21	63,39	0	4	4	1,4660	0,11
43,25	2	1	3	2,0902	17,64	63,84	4	0	0	1,4569	7,25
43,77	2	2	2	2,0665	31,53	64,03	1	2	6	1,4531	3,24
44,28	0	2	4	2,0441	4,09	64,17	3	3	2	1,4502	0,22
46,42	0	3	3	1,9545	6,13	64,59	0	5	I	1,4417	0,26
47,07	l	2	4	1,9289	2,31	65,00	2	0	6	1,4336	2,28
47,65	0	1	5	1,9069	13,05	65,26	4	1	0	1,4286	0,66
47,68	3	0	l	1,9058	2,65	65,61	I	4	4	1,4218	0,77
48,46	3	1	0	1,8768	1,10	66,02	4	1	I	1,4139	0,19
48,60	2	2	3	1,8/19	14,47	66,32	3	2	4	1,4082	1,02
48,62	1	0	5	1,8/11	4,94	66,41	2	I	6	1,4066	0,57
49,39	3	1	1	1,8438	4,11	66,79	1	5	1	1,3995	3,60
49,70	2	3	1	1,8331	16,59	66,85	2	4	3	1,3985	3,42
49,96	2	1	4	1,8240	2,91	66,88	0	2	2	1,3978	0,43
50,04	0	4	0	1,8215	1,17	66,90	4	0	2	1,3974	1,06
50,31	1	l	2	1,8123	3,10	67,55	0	l	7	1,3857	0,54
50,45	3	0	2	1,8076	1,17	67,57	3	0	5	1,3853	0,51
50,94	0	4	1	1,7913	0,85	68,29	4	l	2	1,3724	0,50
52,09	3	1	2	1,7545	12,04	68,32	1	0	7	1,3/18	2,88
52,38	2	3	2	1,7452	1,52	68,95	3	Ĩ	5	1,3609	0,67
52,60	1	4	0	1,7385	2,27	69,04	1	5	2	1,3592	1,79

Tabelle A 37: Gitterparameter und Reflexliste von BaLaAlO₄ (rel. Int. > 0,1 %)

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
52,66	0	2	5	1,7368	2,61	69,70	1	1	7	1,3481	0,88
53,41	3	2	0	1,7140	5,66						

Tabelle A 38: Gitterparameter und Reflexliste von $Ca_3La_2(BO_3)_4$ (rel. Int. > 2,0 %)

Calcium La	ntha	n B	ora	t (Ca3La2(BO3)4					GoF = 1,55		
D	Ζ	= 4	1		a = 7,259(0)	Å b =	16,	064(2) Å	c = 8,	675(7) Å	
Pnma	V	=]	011	,66(5) Å ³	$\alpha=~90~^{\circ}$	$\beta =$	90	D		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
11,01	0	2	0	8,0296	2,44	38,82	2	5	1	2,3180	2,27	
19,39	1	2	1	4,5748	3,97	39,02	3	1	1	2,3064	6,83	
19,47	0	3	1	4,5559	9,63	39,36	2	4	2	2,2876	3,24	
20,46	0	0	2	4,3372	4,62	39,53	0	6	2	2,2782	5,55	
22,12	0	4	0	4,0154	12,07	39,83	2	0	3	2,2616	8,63	
23,03	1	3	1	3,8588	5,60	41,61	0	0	4	2,1688	2,02	
23,29	0	2	2	3,8163	4,35	41,90	2	6	0	2,1544	12,54	
23,88	1	0	2	3,7231	21,68	42,00	0	5	3	2,1493	5,36	
24,51	2	0	0	3,6290	2,30	42,26	3	3	1	2,1369	8,99	
24,52	1	1	2	3,6270	9,74	43,23	2	6	1	2,0909	5,89	
25,14	2	1	0	3,5398	3,69	43,52	1	0	4	2,0780	3,41	
26,94	2	2	0	3,3071	9,59	43,90	1	1	4	2,0608	23,31	
27,19	2	1	1	3,2775	19,22	44,93	3	4	1	2,0157	3,62	
28,87	2	2	1	3,0902	6,13	46,45	1	7	2	1,9535	5,07	
29,19	1	3	2	3,0568	70,43	46,86	1	3	4	1,9372	17,63	
29,63	0	5	1	3,0125	20,44	47,06	2	6	2	1,9295	14,08	
29,72	2	3	0	3,0040	11,14	47,61	0	4	4	1,9083	8,56	
30,31	0	4	2	2,9467	24,20	47,93	1	6	3	1,8963	13,25	
31,41	0	1	3	2,8459	12,01	48,03	2	7	1	1,8928	14,71	
31,49	2	3	1	2,8387	100,00	49,05	3	0	3	1,8556	7,02	
32,13	2	0	2	2,7834	19,04	49,34	1	4	4	1,8456	4,77	
32,14	1	5	1	2,7824	8,73	49,40	3	1	3	1,8434	3,76	
32,63	2	1	2	2,7425	8,46	50,43	3	2	3	1,8080	5,38	
32,78	1	4	2	2,7303	39,12	51,40	4	0	1	1,7762	6,03	
33,25	2	4	0	2,6925	5,26	51,68	1	8	2	1,7673	7,60	
33,33	1	0	3	2,6863	13,91	51,74	3	5	2	1,7654	4,86	
33,45	0	6	0	2,6771	21,32	51,96	2	3	4	1,7585	3,02	
33,80	1	1	3	2,6495	27,64	51,98	3	6	1	1,7578	3,70	
34,06	2	2	2	2,6299	15,44	52,12	3	3	3	1,7533	4,58	
34,86	2	4	1	2,5715	10,22	52,29	0	9	1	1,7482	5,25	
35,20	1	2	3	2,5476	2,29	53,15	2	8	1	1,7220	2,18	
35,25	0	3	3	2,5443	4,41	54,38	4	3	1	1,6859	6,05	
36,35	2	3	2	2,4696	12,36	54,42	3	4	3	1,6845	5,70	
36,93	1	5	2	2,4323	3,33	56,07	4	2	2	1,6388	2,05	
37,24	1	6	1	2,4126	2,09	56,62	4	4	1	1,6244	3,43	
37,35	2	5	0	2,4055	17,02	59,36	1	4	5	1,5557	2,58	
37,42	1	3	3	2,4011	2,78	62,51	4	5	2	1,4846	2,05	
38,60	3	0	1	2,3305	32,82							

Calcium Ne	eody	m B	orat	t (Ca3Nd2(BO3)4					GoF = 1,33		
	Z	(= 4	1		a = 7,238(3)	Å b=	15.	721(4) Å	c = 8.	660(7) Å	
Pnma	V	' = 9	985,	54(6) Å ³	$\alpha = 90^{\circ}$	β=	90	o 、	,	$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
16,90	1	1	1	5,2406	2,90	46,14	0	8	0	1,9656	3,15	
19,54	1	2	1	4,5389	14,13	47,07	1	3	4	1,9292	16,26	
19,77	0	3	1	4,4864	16,14	47,24	1	7	2	1,9226	5,25	
20,48	0	0	2	4,3329	7,73	47,67	2	6	2	1,9062	16,28	
22,59	0	4	0	3,9325	12,18	47,92	0	4	4	1,8969	11,25	
23,31	1	3	1	3,8136	14,24	48,53	1	6	3	1,8745	29,87	
23,42	0	2	2	3,7949	12,21	48,67	3	5	1	1,8695	2,59	
23,91	1	0	2	3,7180	25,72	48,82	2	7	1	1,8640	11,01	
24,58	1	1	2	3,6182	14,02	48,99	3	4	2	1,8579	2,15	
27,09	2	2	0	3,2889	15,71	49,16	3	0	3	1,8517	14,50	
27,27	2	1	1	3,2679	20,00	49,34	2	1	4	1,8456	5,59	
27,77	1	4	1	3,2097	5,06	49,53	3	1	3	1,8390	3,31	
29,02	2	2	1	3,0748	4,83	49,64	1	4	4	1,8349	9,99	
29,43	1	3	2	3,0325	90,52	50,60	3	2	3	1,8024	8,62	
29,97	2	3	0	2,9792	13,21	51,54	4	0	1	1,7717	8,14	
30,20	0	5	1	2,9567	21,06	51,79	4	2	0	1,7638	2,33	
30,68	0	4	2	2,9115	30,90	51,89	4	1	1	1,7605	2,37	
31,47	0	1	3	2,8405	4,07	52,18	2	3	4	1,7516	5,43	
31,74	2	3	1	2,8172	100,00	52,19	3	5	2	1,7511	5,33	
32,20	2	0	2	2,7780	10,89	52,34	2	7	2	1,7466	5,45	
32,69	1	5	1	2,7372	12,29	52,36	3	3	3	1,7460	3,15	
32,71	2	1	2	2,7356	14,44	52,58	3	6	1	1,7391	8,05	
33,14	1	4	2	2,7012	28,48	52,63	1	8	2	1,7376	10,05	
33,38	1	0	3	2,6824	16,49	52,82	1	5	4	1,7318	3,74	
33,62	2	4	0	2,6633	4,99	52,97	2	8	0	1,7273	10,22	
33,87	1	1	3	2,6442	28,58	53,14	1	7	3	1,7221	8,07	
34,18	0	6	0	2,6211	24,48	53,46	0	9	1	1,7127	11,38	
34,21	2	2	2	2,6193	7,42	53,52	4	3	0	1,7108	2,56	
35,23	2	4	1	2,5457	7,31	54,09	2	8	1	1,6940	2,81	
35,46	0	3	3	2,5294	3,26	54,58	2	4	4	1,6801	4,42	
36,58	2	3	2	2,4545	2,45	54,64	4	3	1	1,6784	2,62	
37,42	1	5	2	2,4011	2,67	54,75	1	1	5	1,6753	4,57	
37,86	2	5	0	2,3743	17,30	54,75	3	4	3	1,6751	15,08	
38,70	3	0	1	2,3249	28,68	54,94	4	0	2	1,6700	2,60	
39,14	3	1	1	2,2999	5,77	55,75	1	2	5	1,6475	2,06	
39,70	2	4	2	2,2686	4,62	55,93	3	6	2	1,6426	2,04	
39,90	2	0	3	2,2575	6,35	56,97	4	4	1	1,6152	4,46	
40,43	3	2	1	2,2295	5,56	58,82	4	5	0	1,5687	3,79	
42,15	1	6	2	2,1420	2,75	59,39	2	1	5	1,5550	5,83	
42,46	0	5	3	2,1271	5,20	59,68	2	9	1	1,5481	2,16	
42,50	3	3	1	2,1252	3,09	60,00	3	3	4	1,5405	4,09	
42,55	2	6	0	2,1229	13,45	60,72	1	7	4	1,5241	3,15	
43,30	0	2	4	2,0880	2,11	61,91	2	3	5	1,4975	3,19	
43,87	2	6	1	2,0619	2,38	63,50	1	9	3	1,4639	2,26	
43,98	1	1	4	2,0571	19,52	67,68	4	1	4	1,3833	3,11	
44,35	1	5	3	2,0408	5,34	69,87	3	9	2	1,3451	3,29	
45,16	1	2	4	2,0062	2,48							

Tabelle A 39: Gitterparameter und Reflexliste von $Ca_3Nd_2(BO_3)_4$ (rel. Int. > 2,0 %)
Calcium Sa	mar	ium	Boi	rat	$Ca_3Sm_2(BO_3)_4$ GoF = 1,35					35	
	Ζ	= 4	1		a = 7,224(7) Å	b =	15,	592(5) Å	c = 8,	650(8) Å
Pnma	V	· = 9	974,	52(5) Å ³	$\alpha = 90^{\circ}$	β=	90	o	<i>,</i>	$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
11,69	0	1	1	7,5654	5,10	47,57	1	7	2	1,9099	4,43
16,96	1	1	1	5,2250	10,96	47,94	2	6	2	1,8961	7,81
19,63	1	2	1	4,5191	23,62	47,94	2	7	0	1,8961	6,82
19,91	0	3	1	4,4555	16,66	48,07	0	4	4	1,8912	11,18
20,52	0	0	2	4,3257	5,72	48,79	1	6	3	1,8651	26,11
22,79	0	4	0	3,8983	6,84	49,05	2	0	4	1,8556	3,17
23,44	1	3	1	3,7924	26,22	49,15	2	7	1	1,8521	4,36
23,50	0	2	2	3,7825	21,15	49,17	3	4	2	1,8516	4,81
23,96	1	0	2	3,7113	34,90	49,26	3	0	3	1,8485	8,64
24,64	1	1	2	3,6105	12,53	49,42	2	1	4	1,8426	5,95
27,18	2	2	0	3,2778	20,23	49,53	1	8	1	1,8388	4,41
27,34	2	1	1	3,2599	20,99	49,62	3	1	3	1,8356	4,13
27,95	1	4	1	3,1891	7,41	49,80	1	4	4	1,8295	9,73
29,11	2	2	1	3,0651	5,25	50,52	2	2	4	1,8052	3,12
29,55	1	3	2	3,0204	100.00	50,72	3	2	3	1,7986	14,10
30,10	2	3	0	2,9664	15,55	51,38	0	8	2	1,7770	2,61
30,44	0	5	1	2,9338	26,82	51,66	4	0	1	1,7681	5,27
30,85	0	4	2	2,8958	31,15	52,42	3	5	2	1,7442	9,75
31,87	2	3	1	2,8060	89,78	52,67	2	7	2	1,7365	4,78
32,26	2	0	2	2,7727	11,92	52,86	3	6	1	1,7307	17,09
32,78	2	1	2	2,7299	12,48	53,03	1	8	2	1,7256	8,36
32,92	1	5	1	2,7182	23,09	53,22	0	1	5	1,7196	3,79
33,31	1	4	2	2,6879	24,33	53,37	2	8	0	1,7153	14,51
33,43	1	0	3	2,6783	15,42	53,46	1	7	3	1,7126	4,35
33,80	2	4	0	2,6497	7,67	53,80	2	6	3	1,7026	3,09
33,93	1	1	3	2,6396	31,30	53,93	0	9	1	1,6988	16,88
34,30	2	2	2	2,6124	5,25	54,49	1	0	5	1,6826	3,90
34,48	0	6	0	2,5988	32,34	54,74	2	4	4	1,6755	2,59
35,40	2	4	1	2,5335	7,76	54,83	1	1	5	1,6729	8,54
35,57	0	3	3	2,5216	4,46	54,93	3	4	3	1,6702	12,79
37,64	1	5	2	2,3876	2,67	55,85	1	2	5	1,6447	2,34
38,09	2	5	0	2,3606	16,58	56,07	4	4	0	1,6388	2,37
38,78	3	0	1	2,3201	37,11	57,16	4	4	1	1,6102	3,28
39,23	3	1	1	2,2948	5,24	58,77	1	9	2	1,5699	4,54
39,87	2	4	2	2,2595	8,61	59,05	4	5	0	1,5630	3,18
39,97	2	0	3	2,2537	4,96	59,49	2	1	5	1,5527	5,80
40,53	3	2	1	2,2237	5,97	60,14	2	9	1	1,5373	7,33
42,43	1	6	2	2,1288	2,72	61,03	1	7	4	1,5171	2,40
42,64	3	3	1	2,1186	7,35	62,05	2	3	5	1,4945	2,14
42,67	0	5	3	2,1172	3,03	62,15	3	8	1	1,4924	2,44
42,83	2	6	0	2,1096	9,51	63,95	1	9	3	1,4547	5,28
43,38	0	2	4	2,0841	2,36	64,59	0	0	6	1,4418	2,29
44,05	1	1	4	2,0539	21,00	65,10	2	10	0	1,4316	2,44
44,56	1	5	3	2,0318	2,96	66,66	5	2	1	1,4020	2,87
46,53	3	3	2	1,9504	2,46	68,17	5	3	1	1,3745	2,22
46,56	0	8	0	1,9491	3,53	69,45	0	4	6	1,3523	2,88
47,19	1	3	4	1,9246	14,30					-	-

Tabelle A 40: Gitterparameter und Reflexliste von $Ca_3Sm_2(BO_3)_4$ (rel. Int. > 2,0 %)

Calcium Eu	iropi	ium	Bor	at (Ca3Eu2(BO3)4				GoF = 1,24		
	Z	= 4	1		a = 7,207(7)	Å b =	15,:	544(5) Å	c = 8,	630(3) Å
Pnma	V	= 9	966,	93(8) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90 9	c `		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
17,00	1	1	1	5,2119	6,18	42,79	0	5	3	2,1115	13,06
19,68	1	2	1	4,5070	11,80	42,96	2	6	0	2,1036	9,02
19,97	0	3	1	4,4424	5,03	43,50	0	2	4	2,0790	4,91
20,57	0	0	2	4,3151	2,38	43,76	1	0	4	2,0670	2,33
22,87	0	4	0	3,8861	3,42	43,90	1	7	1	2,0608	3,07
23,51	1	3	1	3,7818	17,17	44,17	1	1	4	2,0489	25,71
23,56	0	2	2	3,7727	3,88	44,28	2	6	1	2,0438	6,07
24,02	1	0	2	3,7023	15,06	44,68	3	2	2	2,0265	4,91
24,68	2	0	0	3,6039	2,92	45,37	1	2	4	1,9975	4,00
24,70	1	1	2	3,6016	2,29	45,58	3	4	1	1,9886	2,44
27,25	2	2	0	3,2695	8,91	46,71	0	8	0	1,9431	10,89
27,40	2	1	1	3,2520	12,31	47,31	1	3	4	1,9198	100.00
28,04	1	4	1	3,1800	4,67	47,72	1	7	2	1,9044	4,99
29.19	2	2	1	3.0574	4.03	48.08	2	6	2	1,8909	12.37
29.63	1	3	2	3.0124	61.81	48.09	2	7	0	1.8906	3.27
30.18	2	3	0	2.9586	9.73	48.20	0	4	4	1.8863	10.99
30.54	0	5	1	2,9249	13.93	48.93	1	6	3	1.8599	31.18
30.94	Ő	4	2	2,8877	20.93	49.18	2	Ő	4	1 8512	2.21
31,95	2	3	1	2,7987	75,26	49 30	3	4	2	1 8469	7 84
32 34	2	0	2	2,7561	8.06	49 38	3	0	3	1 8440	6 37
32,86	2	1	2	2 7233	977	49 55	2	1	4	1 8382	4 89
33.02	1	5	1	2,7203	18.05	49.69	1	8	1	1 8333	6 78
33,40	1	4	2	2,7105	19 33	49 75	3	1	3	1,8312	2 70
33 51	1	0	3	2,0000	18.96	49,75	1	4	4	1 8249	8 64
33,90	2	4	0	2,6710	6.08	50.85	3	2	3	1,0249	10.68
34.02	1	1	3	2,0423	34.18	51 79	4	0	1	1,7539	4 86
34,02	2	2	2	2,0352	1 73	52 56	2	5	2	1,7057	8 /3
34,59	0	6	0	2,0000	3/ 0/	52,50	2	7	2	1,7317	3 27
35 50	2	4	1	2,5908	185	52,85	2	6	1	1,7261	9.97
35,50	0	3	2	2,5207	4,05	53,01	1	5	1	1,7213	3 73
37,07	1	5	2 2	2,3131	4,17	53,17	1	8	2	1,7215	5,75
38.20	2	5	2 0	2,3808	2,91	53,19	2	0	2 0	1,7203	0,00
30,20	2	5	1	2,5540	22,74 45.61	53,54	2 1	07	2	1,7105	10,09
20,00	2	1	1	2,5140	43,01	53,02	1	6	2	1,7078	2,00
39,32 20,65	<i>з</i>	1	1	2,2895	8,40	53,95	2	0	3	1,0981	2,74
39,03	2	2	1	2,2711	2,57	54,11	0	9	1	1,0930	0,83
39,98	2	4	2	2,2535	13,47	54,89	2	4	4	1,6/12	2,53
40,07	2	0	3	2,2483	9,68	54,94	4	3	1	1,6698	4,14
40,51	2	I	3	2,2251	2,96	55,08	3	4	5	1,6660	16,91
40,58	0	6	2	2,2212	2,53	56,12	0	3	2	1,0376	14,59
40,64	3	2	1	2,2183	12,27	57,32	4	4	l	1,6062	2,33
40,96	1	4	3	2,2017	2,04	59,22	4	2	Ű	1,5590	3,09
41,79	2	2	3	2,1598	4,54	59,64	2	1	5	1,5490	2,22
42,56	1	6	2	2,1227	4,80	60,31	3	3	4	1,5334	4,15
42,75	3	3	1	2,1133	11,13						

Tabelle A 41: Gitterparameter und Reflexliste von $Ca_3Eu_2(BO_3)_4$ (rel. Int. > 2,0 %)

Calcium Ga	adoli	niur	n B	orat	Ca ₃ Gd ₂ (BO ₃) ₄			GoF = 1,20			
	Ζ	= 4	1		a = 7,194(1)	Å b =	15,	542(0) Å	c = 8,	613(4) Å
Pnma	V	= 9	963,	07(0) Å ³	$\alpha = 90^{\circ}$	β=	90	o `		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
11,74	0	1	1	7,5338	2,06	42,59	1	6	2	2,1211	3,25
16,04	1	0	1	5,5215	2,27	42,83	3	3	1	2,1099	3,98
17,03	1	1	1	5,2029	11,75	42,84	0	5	3	2,1091	3,78
19,71	1	2	1	4,5010	18,98	42,99	2	6	0	2,1020	9,68
19,98	0	3	1	4,4395	13,32	43,58	0	2	4	2,0752	2,45
20,61	0	0	2	4,3067	3,21	43,85	1	0	4	2,0629	2,39
22,87	0	4	0	3,8855	4,78	44,26	1	1	4	2,0450	7,56
23,53	1	3	1	3,7780	31,77	44,32	2	6	1	2,0421	13,14
23,60	0	2	2	3,7669	7,75	44,77	3	2	2	2,0229	2,31
24,06	1	0	2	3,6952	26,25	45,45	1	2	4	1,9939	3,18
24,75	1	1	2	3,5950	8,97	46,73	3	3	2	1,9423	5,03
26,69	1	2	2	3,3371	5,51	47,40	1	3	4	1,9166	25,76
26,84	2	0	1	3,3193	9,74	47,75	1	7	2	1,9032	3,61
27,30	2	2	0	3,2643	20,67	48,12	2	7	0	1,8894	4,38
27,45	2	1	1	3,2461	14,66	48,13	2	6	2	1,8890	4,75
28,06	1	4	1	3,1776	10,08	48,28	0	4	4	1,8834	13,66
29,23	2	2	1	3,0525	5,48	48,99	1	6	3	1,8580	12,62
29,67	1	3	2	3,0083	91,05	49,09	3	5	1	1,8542	9,84
30,22	2	3	0	2,9547	16,08	49,38	3	4	2	1,8441	9,15
30,55	0	5	1	2,9238	26,00	49,48	3	0	3	1,8405	3,63
30,97	0	4	2	2,8849	36,78	49,65	2	1	4	1,8347	3,81
31,67	0	1	3	2,8234	3,63	49,71	1	8	1	1,8326	4,84
32,00	2	3	1	2,7948	100,00	50,02	1	4	4	1,8220	4,93
32,40	2	0	2	2,7608	13,48	50,10	2	5	3	1,8194	7,11
32,92	2	1	2	2,7182	9,45	50,95	3	2	3	1,7910	7,05
33,04	1	5	1	2,7087	27,90	51,08	4	1	0	1,7866	3,19
33,44	1	4	2	2,6776	20,55	51,57	0	8	2	1,7709	2,81
33,58	1	0	3	2,6666	31,16	51,89	4	0	1	1,7606	4,65
33,93	2	4	0	2,6396	6,20	52,03	0	7	3	1,7564	3,28
34,09	1	1	3	2,6282	36,45	52,16	4	2	0	1,7522	2,46
34,45	2	2	2	2,6015	5,52	52,64	3	5	2	1,7373	4,46
34,60	0	6	0	2,5903	25,48	52,74	3	3	3	1,7343	5,02
35,54	2	4	1	2,5238	7,67	53,07	3	6	1	1,7241	7,67
35,73	0	3	3	2,5113	6,37	53,23	1	8	2	1,7196	5,57
36,86	2	3	2	2,4364	2,53	53,57	2	8	0	1,7094	5,38
37,79	1	5	2	2,3787	5,39	53,67	1	7	3	1,7063	6,97
38,24	2	5	0	2,3519	17,50	54,12	0	9	1	1,6932	6,42
38,35	1	6	1	2,3451	6,32	55,18	3	4	3	1,6633	12,46
38,96	3	0	1	2,3102	36,11	55,31	4	0	2	1,6596	3,77
39,40	3	1	1	2,2851	6,68	56,12	1	2	5	1,6377	2,81
40,03	2	4	2	2,2505	7,02	56,23	0	3	5	1,6347	4,92
40,15	2	0	3	2,2440	9,71	59,77	2	1	5	1,5460	2,56
40,61	0	6	2	2,2198	2,10	60,43	3	3	4	1,5307	2,98
40,71	3	2	1	2,2144	10,01	64,20	1	9	3	1,4495	3,15
41.87	2	2	3	2,1559	2.77						

Tabelle A 42: Gitterparameter und Reflexliste von $Ca_3Gd_2(BO_3)_4$ (rel. Int. > 2,0 %)

Calcium Dy	spro	osiur	n B	orat	Ca3Dy2(BO3)4					GoF = 1,08		
D	Ζ	= 4	1		a = 7,166(5)	Å b =	15,4	481(1) Å	c = 8,	576(5) Å	
Pnma	V	= 9	951,	53(0) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90 °	þ		$\gamma = 90$	0	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
11,42	0	2	0	7,7406	2,84	42,16	0	7	1	2,1415	2,06	
17,10	1	1	1	5,1821	10,34	42,77	1	6	2	2,1126	3,39	
19,79	1	2	1	4,4831	14,17	43,00	3	3	1	2,1017	4,89	
20,07	0	3	1	4,4217	6,41	43,03	0	5	3	2,1004	4,66	
20,70	0	0	2	4,2883	2,04	43,17	2	6	0	2,0938	5,91	
22,96	0	4	0	3,8703	2,99	43,78	0	2	4	2,0663	4,06	
23,62	1	3	1	3,7631	25,28	44,05	1	0	4	2,0542	2,42	
23,70	0	2	2	3,7511	14,28	44,45	1	1	4	2,0363	10,98	
24,17	1	0	2	3,6798	24,45	44,51	2	6	1	2,0341	7,25	
24,83	2	0	0	3,5833	4,31	44,95	3	2	2	2,0149	3,08	
24,85	1	1	2	3,5801	3,13	45,66	1	2	4	1,9854	3,35	
26,80	1	2	2	3,3234	2,16	46,91	0	8	0	1,9351	4,68	
27,41	2	2	0	3,2518	17,68	47,61	1	3	4	1,9085	10,69	
27,56	2	1	1	3,2334	16,48	47,95	1	7	2	1,8956	3,08	
28,17	1	4	1	3,1650	11,23	48,32	2	7	0	1,8820	2,49	
29,35	2	2	1	3,0405	4,25	48,33	2	6	2	1,8815	7,96	
29,80	1	3	2	2,9961	87,35	48,50	0	4	4	1,8756	8,34	
30,34	2	3	0	2,9433	14,46	49,20	1	6	3	1,8505	16,23	
30,67	0	5	1	2,9123	21,92	49,55	2	7	1	1,8383	4,13	
31,10	0	4	2	2,8731	40,10	49,70	3	0	3	1,8331	5,27	
32,13	2	3	1	2,7839	100,00	49,92	1	8	1	1,8254	5,96	
32,54	2	0	2	2,7497	11,75	50,24	1	4	4	1,8144	7,69	
33,06	2	1	2	2,7073	11,97	51,17	3	2	3	1,7838	7,07	
33,18	1	5	1	2,6980	31,24	51,29	4	1	0	1,7798	2,50	
33,58	1	4	2	2,6668	22,04	51,79	0	8	2	1,7639	2,21	
33,73	1	0	3	2,6554	20,89	52,11	4	0	1	1,7538	3,80	
34,07	2	4	0	2,6294	8,16	52,25	0	7	3	1,7493	2,38	
34,23	1	1	3	2,6171	39,34	52,86	3	5	2	1,7305	2,49	
34,59	2	2	2	2,5911	5,78	52,97	3	3	3	1,7274	4,94	
34,74	0	6	0	2,5802	26,03	53,30	3	6	1	1,7174	9,32	
35,69	2	4	1	2,5139	3,99	53,49	1	5	4	1,7117	5,70	
35,72	1	2	3	2,5117	3,43	53,80	2	8	0	1,7027	6,17	
35,88	0	3	3	2,5007	5,08	53,91	1	7	3	1,6994	5,82	
37,95	1	5	2	2,3691	3,05	54,35	0	9	1	1,6865	6,56	
38,39	2	5	0	2,3428	19,51	54,93	2	8	1	1,6701	2,82	
39,11	3	0	1	2,3013	34,43	55,35	1	1	5	1,6586	2,34	
39,56	3	1	1	2,2762	5,13	55,42	3	4	3	1,6567	11,99	
40,20	2	4	2	2,2416	9,11	55,97	1	9	1	1,6417	3,96	
40,33	2	0	3	2,2347	6,91	56,38	1	2	5	1,6308	2,96	
40,76	2	1	3	2,2118	2,30	56,68	3	6	2	1,6226	2,14	
40,88	3	2	1	2,2058	9,06	60,05	2	1	5	1,5395	2,93	
42,05	2	2	3	2,1471	2,90							

Tabelle A 43: Gitterparameter und Reflexliste von $Ca_3Dy_2(BO_3)_4$ (rel. Int. > 2,0 %)

Calcium Vt	trim	m R	orat	-	Ca ₃ Y ₂ (BO ₃) ₄				GoF = 1.53					
	7	·	1		a = 7.164(2)	Å 1	15	116(1) Å	001 1,	519(7) Å			
Pnma	Z	, — 4	+	00(0) ⁸ 2	a = 7,104(2)	A 0-	13,4	+40(1) A	$c = \delta$,	348(7) A			
	V	= 9	945,	99(2) A ³	$\alpha = 90^{\circ}$	β=	90	, 		$\gamma = 90$) •			
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]			
11,45	0	2	0	7,7231	2,11	40,91	3	2	1	2,2043	8,81			
17,12	1	1	1	5,1738	7,33	42,14	2	2	3	2,1425	2,80			
19,82	1	2	1	4,4752	7,20	42,87	1	6	2	2,1077	3,59			
20,12	0	3	1	4,4105	3,05	43,04	3	3	1	2,1000	7,29			
23,67	1	3	1	3,7559	14,50	43,16	0	5	3	2,0946	4,55			
23,77	0	2	2	3,7398	7,37	43,24	2	6	0	2,0905	6,30			
24,23	1	0	2	3,6707	17,60	43,92	0	2	4	2,0598	2,91			
24,91	1	1	2	3,5712	3,89	44,58	2	6	1	2,0307	18,46			
27,42	2	2	0	3,2496	10,60	45,06	1	5	3	2,0104	2,78			
27,59	2	1	1	3,2307	10,50	45,80	1	2	4	1,9796	2,93			
28,23	1	4	1	3,1587	7,90	46,99	3	3	2	1,9324	2,33			
29,38	2	2	1	3,0375	3,41	47,03	0	8	0	1,9308	2,18			
29,87	1	3	2	2,9889	76,14	47,76	1	3	4	1,9030	9,69			
30,37	2	3	0	2,9405	7,87	48,07	1	7	2	1,8912	2,44			
30,75	0	5	1	2,9053	18,46	48,41	2	7	0	1,8787	6,42			
31,19	0	4	2	2,8654	36,27	48,43	2	6	2	1,8779	6,57			
31,91	0	1	3	2,8023	3,46	48,65	0	4	4	1,8699	7,07			
32,17	2	3	1	2,7806	100,00	49,33	1	6	3	1,8458	17,56			
32,59	2	0	2	2,7455	9,59	49,66	3	4	2	1,8345	7,55			
33,11	2	1	2	2,7031	9,13	49,78	3	0	3	1,8303	2,91			
33,25	1	5	1	2,6924	27,71	50,00	2	1	4	1,8225	2,55			
33,66	1	4	2	2,6605	28,21	50,04	1	8	1	1,8214	4,07			
33,83	1	0	3	2,6478	17,38	50,15	3	1	3	1,8176	2,16			
34,11	2	4	0	2,6262	7,40	50,40	1	4	4	1,8093	6,49			
34,33	1	1	3	2,6097	42,27	51,25	3	2	3	1,7810	7,35			
34,65	2	2	2	2,5869	8,00	52,13	4	0	1	1,7530	3,32			
34,82	0	6	0	2,5744	26,70	52,94	3	5	2	1,7281	5,92			
35,74	2	4	1	2,5104	9,65	53,21	2	7	2	1,7199	2,04			
35,99	0	3	3	2,4932	4,13	53,37	3	6	1	1,7152	7,15			
37,08	2	3	2	2,4226	2,87	53,59	1	8	2	1,7088	2,58			
38,04	1	5	2	2,3636	4,06	53,90	2	8	0	1,6996	7,50			
38,45	2	5	0	2,3394	23,79	53,91	0	1	5	1,6994	2,49			
38,60	1	6	1	2,3309	3,34	54,49	0	9	1	1,6827	3,63			
39,13	3	0	1	2,3000	39,34	55,38	2	4	4	1,6576	2,39			
39,58	3	1	1	2,2749	7,61	55,52	3	4	3	1,6539	8,99			
40,27	2	4	2	2,2376	12,98	56,60	4	4	0	1,6248	3,11			
40,42	2	0	3	2,2300	7,68	60,23	2	1	5	1,5354	2,32			
40,85	2	1	3	2,2071	3,89	60,77	2	9	1	1,5230	3,35			

Tabelle A 44: Gitterparameter und Reflexliste von $Ca_3Y_2(BO_3)_4$ (rel. Int. > 2,0 %)

Calcium Yt	terb	ium	Boi	rat	Ca ₃ Yb ₂ (BO ₃) ₄				GoF = 1,99		
D	Ζ	= 4	ł		a = 7,132(1)	Å b =	15,3	399(8) Å	c = 8,	508(6) Å
Pnma	V	= 9	934,	52(1) ų	$\alpha = 90^{\circ}$	$\beta =$	90 °	c		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
11,49	0	2	0	7,6956	3,74	43,34	0	5	3	2,0861	2,87
17,21	1	1	1	5,1491	14,78	43,41	2	6	0	2,0829	7,81
19,91	1	2	1	4,4556	14,98	44,14	0	2	4	2,0501	4,70
20,19	0	3	1	4,3939	5,52	44,28	2	5	2	2,0439	3,19
23,09	0	4	0	3,8489	2,01	44,82	1	1	4	2,0205	26,10
23,77	1	3	1	3,7408	32,24	46,03	1	2	4	1,9703	3,70
23,88	0	2	2	3,7227	15,06	47,18	0	8	0	1,9247	5,31
24,35	1	0	2	3,6527	26,97	47,21	3	3	2	1,9238	4,54
25,04	1	1	2	3,5541	5,56	47,99	1	3	4	1,8943	12,83
27,00	1	2	2	3,3001	2,45	48,25	1	7	2	1,8845	4,96
27,55	2	2	0	3,2351	28,69	48,63	2	6	2	1,8707	18,74
27,72	2	1	1	3,2156	18,82	48,88	0	4	4	1,8616	11,31
28,34	1	4	1	3,1468	15,82	49,54	1	6	3	1,8385	21,80
29,52	2	2	1	3,0239	4,64	49,83	2	7	1	1,8284	11,26
30,00	1	3	2	2,9760	84,48	50,03	3	0	3	1,8217	6,71
30,50	2	3	0	2,9281	16,39	50,21	1	8	1	1,8155	8,73
30,86	0	5	1	2,8955	20,00	50,26	2	1	4	1,8139	3,02
31,32	0	4	2	2,8540	36,57	50,40	3	1	3	1,8091	7,05
32,07	0	1	3	2,7887	3,84	50,64	1	4	4	1,8013	9,58
32,31	2	3	1	2,7687	100,00	50,66	2	5	3	1,8006	5,43
32,75	2	0	2	2,7324	16,56	51,20	4	0	0	1,7828	2,34
33,28	2	1	2	2,6904	18,62	51,51	3	2	3	1,7728	12,69
33,37	1	5	1	2,6828	31,85	52,11	0	8	2	1,7536	2,28
33,80	1	4	2	2,6497	24,78	52,39	4	0	1	1,7449	6,13
34,00	1	0	3	2,6350	23,85	53,18	3	5	2	1,7209	9,77
34,25	2	4	0	2,6157	9,64	53,32	3	3	3	1,7168	2,05
34,51	1	1	3	2,5972	58,99	53,43	2	7	2	1,7135	3,74
34,81	2	2	2	2,5750	5,76	53,60	3	6	1	1,7084	10,08
34,94	0	6	0	2,5662	31,47	53,79	1	8	2	1,7029	6,15
35,89	2	4	1	2,5002	6,66	54,10	2	8	0	1,6938	8,77
36,16	0	3	3	2,4821	5,77	54,28	1	7	3	1,6887	5,78
38,60	2	5	0	2,3305	27,29	54,63	2	6	3	1,6788	2,59
38,73	1	6	1	2,3229	2,33	54,68	0	9	1	1,6773	3,76
39,32	3	0	1	2,2893	47,25	55,58	4	3	1	1,6521	4,34
39,78	3	1	1	2,2644	5,21	55,78	3	4	3	1,6467	9,82
40,45	2	4	2	2,2282	12,78	55,82	1	1	5	1,6456	5,00
40,62	2	0	3	2,2194	8,95	56,22	4	1	2	1,6350	2,28
41,06	2	1	3	2,1967	3,20	56.87	4	4	0	1,6178	4,57
41,10	3	2	1	2,1944	13.23	57,98	4	4	1	1,5893	3,01
42,35	2	2	3	2,1326	2,92	60,54	2	1	5	1,5281	2,88
43.04	1	6	2	2,0999	3,67	61,14	3	3	4	1,5145	5,17
43,24	3	3	1	2,0908	11,09	,	-			· · ·	, .

Tabelle A 45: Gitterparameter und Reflexliste von $Ca_3Yb_2(BO_3)_4$ (rel. Int. > 2,0 %)

Strontium Lanthan Borat					$Sr_3La_2(BO_3)_4$ GoF = 1,53				53		
	Ζ	= 4	1		a = 7,414(5) Å	k b=	16,	516(9) Å	c = 8,	904(3) Å
Pnma	V	= 1	1090),46(1) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	0		$\gamma = 90$)°
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
16,45	1	1	1	5,3844	2,84	46,77	1	8	1	1,9409	8,64
18,91	1	2	1	4,6884	20,31	47,62	2	0	4	1,9082	2,47
21,51	0	4	0	4,1281	9,52	47,86	3	0	3	1,8990	10,53
22,44	1	3	1	3,9582	30,51	47,92	2	5	3	1,8967	10,24
22,68	0	2	2	3,9179	15,06	47,99	1	4	4	1,8942	12,58
23,29	1	0	2	3,8160	46,37	48,20	3	1	3	1,8866	6,83
23,91	1	1	2	3,7180	16,14	48,57	0	8	2	1,8728	3,31
25,70	1	2	2	3,4640	2,44	49,12	4	0	0	1,8534	2,06
26,34	2	2	0	3,3814	21,58	49,19	3	2	3	1,8507	10,96
26,58	2	1	1	3,3506	19,00	50,17	2	7	2	1,8170	17,97
28,21	2	2	1	3,1611	14,25	50,24	4	0	1	1,8145	18,74
28,44	1	3	2	3,1362	50,50	50,42	4	2	0	1,8084	19,28
28,81	0	5	1	3,0965	24,14	50,43	3	5	2	1,8082	2,38
29,02	2	3	0	3,0745	23,59	50,56	4	1	1	1,8037	14,47
29,49	0	4	2	3,0270	27,93	50,58	2	3	4	1,8030	2,45
30,58	0	1	3	2,9208	12,21	50,65	3	6	1	1,8009	17,42
30,74	2	3	1	2,9061	100,00	50,76	0	9	1	1,7972	8,42
31,28	1	5	1	2,8573	32,08	50,82	3	3	3	1,7952	4,51
31,38	2	0	2	2,8484	6,64	50,91	1	7	3	1,7921	11,00
31,86	2	1	2	2,8069	15,45	51,53	4	2	1	1,7723	2,77
31,91	1	4	2	2,8024	25,66	51,58	0	1	5	1,7704	3,11
32,44	2	4	0	2,7581	8,05	51,67	2	8	1	1,7677	6,79
32,47	1	0	3	2,7550	10,01	52,81	2	4	4	1,7322	5,79
32,51	0	6	0	2,7523	15,66	52,85	0	6	4	1,7308	2,95
32,93	1	1	3	2,7175	30,56	53,03	3	4	3	1,7253	22,48
33,25	2	2	2	2,6927	2,44	53,10	4	3	1	1,7233	10,50
34,00	2	4	1	2,6346	11,17	53,82	4	1	2	1,7020	2,89
34,30	0	3	3	2,6122	4,50	53,90	3	6	2	1,6996	3,03
35,45	2	3	2	2,5298	2,59	54,07	I	2	2	1,6946	2,72
36,40	2	2	0	2,4659	1/,62	55,25 55,55	4	4	1	1,6612	8,61
37,75	3	0	1	2,3811	41,34	55,52 56,25	3	0	4	1,6539	3,46
38,16	3	1	1	2,3568	6,02	56,25	4	5	2	1,6340	2,80
38,36	2	4	2	2,3446	8,81	56,92	4	5	0	1,6164	1,13
38,84	2	2	3	2,3107	9,23	57,05	2	1	5	1,5970	0,50
39,33	5 1	6	1 2	2,2079	5.32	58 20	1	4	1	1,5907	2,51
40,37	1	0	2 1	2,2324	3,32 2 70	58.20	5 1	3 7	4 1	1,5840	3,90
40,30	2	6	4	2,2238	2,70	50,29	2	8	1	1,5818	2,35
40,80	0	5	3	2,2098	5,41	50.00	2 2	3	5	1,5399	2,35
41.28	3	3	1	2,2075	11.97	60.58	1	9	3	1,5410	5,10
42.01	0	2	4	2,1055	3 24	61.98	2	4	5	1,9279	2 70
42,01	2	6	1	2,1491 2 1448	2 16	62 58	1	8	4	1 4831	2,70
42.15	3	1	2	2,1110	2,10	62,30	0	11	1	1 4805	3 14
42.37	1	0	4	2,1318	2,49	63 41	1	6	5	1,1005	2 13
42.70	1	5	3	2,1157	5 78	64 09	1	11	1	1 4519	2,90
42.73	1	1	4	2,1142	20.13	66.04	5	3	1	1,4136	2,87
43.25	3	2	2	2,0902	2,73	66,69	2	8	4	1,4013	3,68
43,82	1	2	4	2,0641	5,00	66,83	3	9	2	1,3987	6,23
43,86	3	4	1	2,0627	2,86	66,91	1	11	2	1,3972	3,14
45,14	1	7	2	2,0068	3,86	67,26	1	9	4	1,3908	3,05
45,54	2	7	0	1,9903	2,28	68,29	1	4	6	1,3724	2,65
45,60	1	3	4	1,9879	16,15	68,70	4	6	3	1,3651	2,91

Tabelle A 46: Gitterparameter und Reflexliste von $Sr_3La_2(BO_3)_4$ (rel. Int. > 2,0 %)

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
45,80	2	6	2	1,9794	18,75	68,83	4	8	1	1,3629	3,41
46,30	0	4	4	1,9592	17,32	69,06	2	2	6	1,3589	2,61
46,60	1	6	3	1,9473	27,53	69,17	3	10	1	1,3571	2,95
46.73	2	7	1	1.9424	7.70						

Tabelle A 47: Gitterparameter und Reflexliste von Sr₃Nd₂(BO₃)₄ (rel. Int. > 2,0 %)

Strontium Neodym Borat				at	Sr3Nd2(BO3)4				GoF = 1,21		
	Ζ	= 4	1		a = 7,421(0)	Å b =	16,	211(1) Å	c = 8,3	839(6) Å
Pnma	V	=]	1063	,42(8) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	0	ĺ	$\gamma = 90$	0
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
10,91	0	2	0	8,1055	3,22	47,60	1	8	1	1,9087	8,93
16,51	1	1	1	5,3636	7,47	47,98	3	0	3	1,8946	13,00
19,06	1	2	1	4,6536	18,47	48,22	2	1	4	1,8858	6,15
19,24	0	3	1	4,6105	2,92	48,33	3	1	3	1,8818	7,83
20,07	0	0	2	4,4198	3,35	48,46	1	4	4	1,8771	16,14
21,91	0	4	0	4,0528	8,81	49,06	4	0	0	1,8553	2,74
22,69	1	3	1	3,9162	38,22	49,36	3	2	3	1,8448	12,35
22,90	0	2	2	3,8804	19,44	49,44	0	8	2	1,8420	2,82
23,41	1	0	2	3,7973	47,22	50,06	0	7	3	1,8208	2,87
24,05	1	1	2	3,6973	13,40	50,21	4	0	1	1,8157	11,77
25,89	1	2	2	3,4387	2,94	50,42	4	2	0	1,8085	2,02
26,02	2	0	1	3,4213	3,35	50,54	4	1	1	1,8044	3,37
26,40	2	2	0	3,3738	24,31	50,77	3	5	2	1,7968	17,63
26,61	2	1	1	3,3476	21,05	50,82	2	7	2	1,7953	6,96
27,00	1	4	1	3,2998	4,46	51,05	1	8	2	1,7878	14,15
28,29	2	2	1	3,1520	18,67	51,07	3	6	1	1,7868	17,11
28,71	1	3	2	3,1069	91,62	51,33	2	8	0	1,7785	16,58
29,17	2	3	0	3,0588	24,87	51,54	4	2	1	1,7718	2,10
29,32	0	5	1	3,0439	31,78	51,65	1	7	3	1,7683	10,24
29,89	0	4	2	2,9871	39,35	51,75	0	9	1	1,7650	12,92
30,82	0	1	3	2,8990	7,07	51,99	0	1	5	1,7575	3,38
30,91	2	3	1	2,8906	100,00	52,08	4	3	0	1,7547	3,13
31,45	2	0	2	2,8418	11,69	52,44	2	8	1	1,7435	6,12
31,75	1	5	1	2,8162	34,97	53,17	4	3	1	1,7211	7,84
31,95	2	1	2	2,7992	12,80	53,22	1	0	5	1,7198	2,69
32,28	1	4	2	2,7710	29,98	53,31	1	9	1	1,7171	6,87
32,67	1	0	3	2,7386	11,16	53,34	3	4	3	1,7163	20,88
32,70	2	4	0	2,7367	4,75	53,54	1	1	5	1,7102	3,23
33,13	0	6	0	2,7018	35,52	53,85	4	1	2	1,7012	4,25
33,15	1	1	3	2,7003	30,35	54,34	4	4	0	1,6869	3,39
33,38	2	2	2	2,6818	2,49	54,50	1	2	5	1,6823	2,45
34,27	2	4	1	2,6143	11,56	55,05	1	6	4	1,6669	2,01
34,65	0	3	3	2,5869	6,30	55,40	4	4	1	1,6570	6,43
36,76	1	3	3	2,4428	6,45	56,04	3	1	4	1,6396	5,34
36,78	2	5	0	2,4415	10,24	56,23	2	7	3	1,6346	2,53
37,73	3	0	1	2,3822	46,01	56,37	4	3	2	1,6309	2,12
38,15	3	1	1	2,3569	3,05	56,44	1	8	3	1,6289	3,16
38,67	2	4	2	2,3268	8,27	57,16	4	5	0	1,6103	7,16
39,00	2	0	3	2,3075	6,17	58,02	2	1	5	1,5883	8,52
39,39	3	2	1	2,2855	8,35	58,23	1	4	5	1,5832	2,18
40,62	2	2	3	2,2193	2,19	58,52	4	4	2	1,5760	5,35
40,96	l	6	2	2,2015	3,05	59,07	4	l	3	1,5627	3,12
41,30	2	6	0	2,1842	7,39	59,22	1	10	1	1,5589	2,19
41,37	0	2	3	2,1806	4,26	59,88	3	8	l 7	1,5435	2,95
41,39	3	3	1	2,1798	7,13	60,43	2	3	5	1,5307	2,69
42,36	0	2	4	2,1321	2,23	61,48	4	6	1	1,5070	2,62

Anhang

Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
42,57	2	3	3	2,1221	2,08	61,58	1	9	3	1,5049	5,46
43,04	1	1	4	2,1001	19,88	62,47	2	10	0	1,4855	3,35
43,21	1	5	3	2,0921	5,68	63,05	0	0	6	1,4733	3,19
44,16	1	2	4	2,0492	4,50	64,00	0	11	1	1,4537	2,02
44,68	0	8	0	2,0264	5,99	65,36	1	11	1	1,4266	3,35
45,86	1	7	2	1,9772	6,14	65,94	4	1	4	1,4155	2,60
45,99	1	3	4	1,9719	13,69	66,48	0	7	5	1,4053	3,14
46,17	2	7	0	1,9646	2,25	67,60	0	4	6	1,3846	2,02
46,33	2	6	2	1,9581	18,35	67,69	3	9	2	1,3830	5,05
46,78	0	4	4	1,9402	17,63	68,91	5	3	2	1,3616	7,61
47,22	1	6	3	1,9233	32,78	69,15	4	6	3	1,3574	2,41
47,36	2	7	1	1,9178	19,13						

Strontium S	Sama	ariu	m B	orat	Sr ₃ Sm ₂ (BO ₃) ₄					GoF = 0,	96
	Ζ	= 4	4		a = 7,419(4)	Å b =	16,	137(8) Å	c = 8,	788(1) Å
Pnma	V	=	1052	2,23(0) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90 °	C		$\gamma = 90$	0
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
10,96	0	2	0	8,0689	2,55	44,41	1	2	4	2,0383	4,17
16,56	1	1	1	5,3487	7,98	44,90	0	8	0	2,0172	5,13
19,12	1	2	1	4,6387	18,55	46,25	1	3	4	1,9616	13,15
20,19	0	0	2	4,3941	3,85	46,51	2	6	2	1,9511	18,64
22,01	0	4	0	4,0345	10,68	47,06	0	4	4	1,9295	14,11
22,77	1	3	1	3,9022	40,99	47,46	1	6	3	1,9141	25,30
23,03	0	2	2	3,8590	23,01	47,54	2	7	1	1,9112	12,94
23,51	1	0	2	3,7808	46,49	47,82	1	8	1	1,9005	6,40
23,97	2	0	0	3,7097	2,22	48,11	3	0	3	1,8897	10,40
24,16	1	1	2	3,6811	15,48	48,44	2	1	4	1,8775	8,34
26,01	1	2	2	3,4236	3,66	48,46	3	1	3	1,8769	2,37
26,05	2	0	1	3,4177	2,13	48,72	1	4	4	1,8674	14,75
26,42	2	2	0	3,3706	20,67	49,50	3	2	3	1,8399	11,74
26,64	2	1	1	3,3435	26,43	49,69	0	8	2	1,8333	3,16
27,11	1	4	1	3,2871	5,06	50,23	4	0	1	1,8149	6,37
28,34	2	2	1	3,1470	12,67	50,33	0	7	3	1,8117	5,37
28,84	1	3	2	3,0932	100,00	50,91	3	5	2	1,7924	9,70
29,22	2	3	0	3,0539	20,51	51,02	2	7	2	1,7886	4,98
29,46	0	5	1	3,0297	31,50	51,18	2	3	4	1,7835	3,13
30,05	0	4	2	2,9718	41,66	51,19	3	3	3	1,7829	3,26
30,98	2	3	1	2,8847	92,86	51,20	3	6	1	1,7827	3,27
31,00	0	1	3	2,8823	13,12	51,29	1	8	2	1,7798	15,07
31,54	2	0	2	2,8346	10,46	51,53	2	8	0	1,7722	11,64
31,88	1	5	1	2,8049	34,91	51,58	4	2	1	1,7706	2,12
32,03	2	1	2	2,7919	13,17	51,91	1	7	3	1,7599	8,22
32,43	1	4	2	2,7587	31,05	52,01	0	9	1	1,7569	10,92
32,84	1	0	3	2,7247	15,77	52,12	4	3	0	1,7535	2,54
33,28	0	6	0	2,6896	13,46	52,32	0	1	5	1,7473	3,24
33,32	1	1	3	2,6867	55,16	52,64	2	8	1	1,7372	4,18
33,48	2	2	2	2,6744	4,44	53,49	2	4	4	1,7118	9,51
34,36	2	4	1	2,6078	10,99	53,50	3	4	3	1,7113	11,94
34,85	0	3	3	2,5726	9,06	53,56	1	9	1	1,7096	3,99
36,88	2	5	0	2,4350	17,25	53,59	4	0	2	1,7088	3,89
36,96	1	6	1	2,4300	2,03	53,91	4	1	2	1,6993	2,36
37,76	3	0	1	2,3807	39,36	54,40	4	4	0	1,6853	2,25
38,18	3	1	1	2,3552	2,49	55,47	4	4	1	1,6551	4,85
38,79	2	4	2	2,3194	7,65	56,25	3	1	4	1,6341	2,67
39,15	2	0	3	2,2990	5,17	57,24	4	5	0	1,6082	4,90
39,43	3	2	1	2,2834	7,45	58,33	2	1	5	1,5807	5,17
40,78	2	2	3	2,2110	2,35	58,73	3	3	4	1,5709	3,66
41,15	1	6	2	2,1916	2,46	60,10	4	2	3	1,5384	3,10
41,44	3	3	1	2,1770	13,06	61,90	1	9	3	1,4978	3,54
41,60	0	5	3	2,1692	5,47	68,04	0	4	6	1,3768	2,14
43,28	1	1	4	2,0889	17,46	68,99	5	3	2	1,3602	3,00
43,43	1	5	3	2,0820	8,06	69,14	2	1	6	1,3575	2,76

Tabelle A 48: Gitterparameter und Reflexliste von $Sr_3Sm_2(BO_3)_4$ (rel. Int. > 2,0 %)

Strontium l	Euro	piu	n B	orat	Sr3Eu2(BO3)4				GoF = 0,94		
	Z		1		a = 7,412(8)	Å b =	16.	093(8) Å	c = 8.	766(2) Å
Pnma	V	=]	1045	5,81(4) Å ³	$\alpha = 90^{\circ}$	β=	90 °	0		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
10,99	0	2	0	8,0469	2,92	43,54	1	5	3	2,0769	5,00
16,59	1	1	1	5,3397	7,93	44,52	1	2	4	2,0334	3,71
19,16	1	2	1	4,6297	16,29	45,03	0	8	0	2,0117	5,67
19,38	0	3	1	4,5758	2,71	46,36	1	3	4	1,9568	13,41
20,24	0	0	2	4,3831	3,47	46,61	2	6	2	1,9469	19,52
22,08	0	4	0	4,0235	9,03	47,19	0	4	4	1,9246	14,51
22,82	1	3	1	3,8937	34,88	47,59	1	6	3	1,9093	21,55
23,09	0	2	2	3,8491	19,29	47,65	2	7	1	1,9070	16,48
23,56	1	0	2	3,7729	40,69	47,95	1	8	1	1,8956	5,35
23,99	2	0	0	3,7064	2,32	48,19	3	0	3	1,8868	11,06
24,21	1	1	2	3,6733	11,87	48,54	3	1	3	1,8740	2,66
26,06	1	2	2	3,4161	2,59	48,55	2	1	4	1,8736	8,12
26,08	2	0	1	3,4138	2,88	48,85	1	4	4	1,8628	15,18
26,45	2	2	0	3,3665	19,32	49,12	4	0	0	1,8532	2,61
26,67	2	1	1	3,3395	27,06	49,58	3	2	3	1,8370	10,99
27,17	1	4	1	3,2794	6,26	50,28	4	0	1	1,8131	9,12
28,38	2	2	1	3,1427	12,54	50,47	0	7	3	1,8069	4,58
28,91	1	3	2	3,0861	91,91	51,00	3	5	2	1,7893	10,70
29,26	2	3	0	3,0494	18,92	51,15	2	7	2	1,7845	5,38
29,54	0	5	1	3,0215	29,54	51,29	3	3	3	1,7799	3,43
30.13	0	4	2	2,9640	43.08	51.30	2	3	4	1,7796	4,51
31.03	2	3	1	2.8801	100.00	51.30	3	6	1	1,7795	4.32
31.59	2	0	2	2.8302	10.19	51.44	1	8	2	1,7752	17.37
31.96	1	5	1	2,7980	35.10	51.63	4	2	1	1.7688	2.19
32.08	2	1	2	2,7874	11.57	51.66	2	8	0	1,7681	11.71
32.51	1	4	2	2,7522	31.78	52.05	1	7	3	1.7555	9.50
32.92	1	0	3	2,7185	15.60	52.16	0	9	1	1.7521	12.80
33.38	0	6	0	2.6823	13.47	52.46	Ő	1	5	1.7429	4.39
33.40	Ĩ	1	3	2,6805	55.11	52.78	2	8	1	1,7332	5.32
33.54	2	2	2	2.6699	4.94	53.29	4	3	1	1.7177	2.98
34.43	2	4	1	2,6031	9.71	53.61	3	4	3	1,7083	13.69
34.94	0	3	3	2,5661	5.93	53.61	2	4	4	1,7080	8.59
36.96	2	5	0	2.4303	17.72	53.65	4	0	2	1.7069	10.11
37.80	3	0	1	2.3783	39.41	53.71	1	9	1	1,7051	2.89
38.22	3	1	1	2.3527	2.81	53.98	4	1	2	1.6974	3.71
38.87	2	4	2	2.3149	7.92	54.47	4	4	0	1.6832	2.30
39.23	2	0	3	2.2947	4.96	55.55	4	4	1	1.6530	6.84
39.35	0	6	2	2.2879	2.31	56.94	1	9	2	1.6159	3.19
39.48	3 3	2	1	2,2807	6.27	57 32	4	5	0	1 6060	5 67
39.64	2	1	3	2,2717	2.85	58.47	2	1	5	1.5772	7.54
40.86	2	2	3	2,2067	2,00	58,85	3	3	4	1 5680	2.94
41.26	1	6	2	2,1861	2,58	59,55	1	7	4	1,5512	2,69
41 50	3	ĩ	1	2,1742	11 35	60 19	4	2	3	1,5362	3,77
41 52	2	6	0	2,1730	2 94	62.08	1	9	3	1 4940	4 94
41 71	0	5	3	2,1635	4 52	62,98	2	4	5	1,4746	2.66
41.94	3 3	0	2	2,1525	2.04	63.77	$\frac{1}{2}$	7	4	1.4584	2,00
42.73	0	2	$\frac{2}{4}$	2,1125	2,33	64 68	$\frac{2}{4}$	6	2	1 4401	2,28
43 39	1	1	4	2,0839	16.89	68 24	0	4	6	1 3733	2,26
43.49	3	2	2	2,000	3.88	69.08	5	3	2	1,3586	5.80

Tabelle A 49: Gitterparameter und Reflexliste von $Sr_3Eu_2(BO_3)_4$ (rel. Int. > 2,0 %)

Strontium (Gado	olini	um	Borat	Sr ₃ Gd ₂ (BO ₃) ₄					GoF = 0,92		
D	Ζ	= 4	1		a = 7,414(7)	Å b =	16,	070(7) Å	c = 8,	747(9) Å	
Pnma	V	= 1	1042	2,39(9) Å ³	$\alpha=~90~^{\circ}$	$\beta =$	90	0		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
11,00	0	2	0	8,0354	3,27	45,10	0	8	0	2,0088	6,83	
16,60	1	1	1	5,3354	9,38	46,27	1	7	2	1,9605	3,86	
19,17	1	2	1	4,6253	18,86	46,45	1	3	4	1,9532	7,12	
19,41	0	3	1	4,5684	4,43	46,49	2	7	0	1,9519	3,61	
20,29	0	0	2	4,3740	5.07	46,67	2	6	2	1,9447	15,70	
22,11	0	4	0	4,0177	10,15	47,28	0	4	4	1,9208	22,81	
22.85	1	3	1	3.8894	35.77	47,67	1	6	3	1,9063	10.30	
23.13	0	2	2	3.8417	19.84	47,70	2	7	1	1,9050	18,94	
23.60	1	0	2	3.7673	43.99	47.92	3	4	2	1.8969	4.12	
23.98	2	Õ	0	3.7074	2.17	48.02	1	8	1	1.8930	2.50	
24.25	1	1	2	3.6679	13.21	48.23	3	0	3	1.8854	8.81	
26.08	2	0	1	3.4135	2.20	48.58	3	1	3	1.8726	3.59	
26.46	2	2	0	3.3663	19.20	48.63	2	1	4	1.8709	6.63	
26.68	2	1	1	3,3390	24.74	48.95	1	4	4	1.8595	10.59	
27,20	1	4	1	3 2755	5 38	49 11	4	0	0	1 8537	5 10	
28 39	2	2	1	3 1417	43 59	49.63	3	2	3	1,8356	8 70	
28,95	1	3	2	3 0816	85.52	49.67	2	2	4	1 8339	3 14	
29,27	2	3	0	3 0485	18 95	49.92	0	8	2	1 8255	3.06	
29,59	0	5	1	3,0170	25.60	50.27	4	0	1	1,8134	8 72	
30.18	Ő	4	2	2 9589	39 79	50,27	0	7	3	1 8038	3 44	
31.04	2	3	1	2,9309	100.00	51.04	3	5	2	1,8050	9.67	
31.61	$\frac{2}{2}$	0	2	2,8781	9 90	51 21	2	7	$\frac{2}{2}$	1,7824	5.01	
32.00	1	5	1	2,0201	30.73	51 33	2	3	2	1,785	3,01	
32,00	2	1	2	2,7943	12.82	51 33	3	6	1	1,7785	3 15	
32,11	1	1	2	2,7855	12,82	51,35	2	3	1	1,7785	3,43	
32,50	2	-	0	2,7401	20,20	51,50	1	8	2	1,7776	5,05 8 72	
32,85	2 1	4	2	2,7240	2,29	51,52	1	0 2	1	1,7720	0,72	
32,90	1	6	5	2,7137	14.01	51,05	4	~	1	1,7009	2,34	
33,43	1	1	2	2,0785	14,01	52.02	2 1	0	1	1,7002	9,00	
33,40	2	1	2	2,0738	40,17	52,02	1	5 7	4	1,7500	2,03	
55,57 24 45	2	4	2 1	2,0077	10.22	52,14	1	2	2 0	1,7519	5,52	
25.01	2	4	2	2,0014	7 20	52,17	4	5	1	1,7316	4,10	
35,01	0	2	2	2,3011	7,29	52,24	2	9	1	1,7490	9,75	
35,88	1	5	2	2,5010	3,11	52,51	2	0	5	1,/414	2,29	
30,73	1	5	2	2,4452	2,10	52,58	0	1	3	1,/393	2,33	
36,99	2	2	1	2,4285	15,98	52,84	2	8	1	1,/313	4,07	
37,79	3	1	1	2,3783	33,43	53,29 52.66	4	3	1	1,/1//	3,00 6 72	
38,22	3	1	1	2,3528	3,33 772	53,00	3	4	3	1,7068	0,72	
38,91	2	4	2	2,3120	1,13	53,00	4	0	2	1,7067	9,00	
39,28	2	0	5	2,2920	6,39 5.25	53,70	2	4	4	1,7055	4,11	
39,48	3	2	1	2,2807	3,33	55,79	1	0	3	1,7028	2,11	
39,69	2	1	3	2,2690	3,08	53,79	1	9	1	1,7028	2,27	
40,91	2	2	3	2,2041	3,41	54,47	4	4	0	1,6832	2,43	
41,51	3	3	I	2,1738	7,89	55,56	4	4	I	1,6529	4,61	
41,56	2	6	0	2,1711	5,84	56,11	3	0	4	1,6378	3,40	
41,79	0	2	3	2,1596	3,48	56,11	2	8	2	1,6377	4,01	
41,95	3	0	2	2,1518	2,73	57,33	4	5	0	1,6058	4,16	
42,82	0	2	4	2,1102	3,28	58,58	2	1	5	1,5746	5,36	
43,47	l	1	4	2,0800	10,42	58,92	3	3	4	1,5663	2,15	
43,50	3	2	2	2,0786	6,03	59,77	1	10	1	1,5459	2,46	
43,62	1	5	3	2,0735	5,99	60,22	4	2	3	1,5355	2,24	
44,22	3	4	1	2,0467	2,16	62,18	1	9	3	1,4917	3,73	
44,61	1	2	4	2,0296	4,96	69,09	5	3	2	1,3585	5,32	

Tabelle A 50: Gitterparameter und Reflexliste von $Sr_3Gd_2(BO_3)_4$ (rel. Int. > 2,0 %)

Strontium 1	Dysp	orosi	um	Borat	Sr3Dy2(BO3)4					GoF = 1,	05
	Z	2 = 4	4		a = 7,399(3)	Å b=	15,	966(8) Å	c = 8,	709(0) Å
Pnma	V	/ =]	1028	3,90(8) Å ³	$\alpha = 90^{\circ}$	β=	90	o		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
11,07	0	2	0	7,9834	3,08	41,78	2	6	0	2,1603	4,00
16,66	1	1	1	5,3170	8,27	42,03	0	5	3	2,1481	3,51
19,26	1	2	1	4,6058	16,05	43,03	0	2	4	2,1005	2,51
19,53	0	3	1	4,5414	2,77	43,64	3	2	2	2,0725	6,09
20,38	0	0	2	4,3545	3,78	43,67	1	1	4	2,0711	8,83
22,25	0	4	0	3,9917	9,11	43,85	1	5	3	2,0629	2,34
22,96	1	3	1	3,8705	37,30	44,82	1	2	4	2,0207	2,86
23,25	0	2	2	3,8228	20,41	45,41	0	8	0	1,9959	4,29
23,69	1	0	2	3,7529	41,52	46,56	1	7	2	1,9492	4,77
24,03	2	0	0	3,6996	2,59	46,68	1	3	4	1,9443	5,58
24,34	1	1	2	3,6533	12,20	46,75	2	7	0	1,9416	3,03
26,22	1	2	2	3,3963	2,59	46,91	2	6	2	1,9353	10,64
26,53	2	2	0	3,3567	18,22	47,53	0	4	4	1,9114	9,69
26,75	2	1	1	3,3302	29,31	47,94	1	6	3	1,8962	21,71
27,35	1	4	1	3,2580	6,11	47,97	2	7	1	1,8951	2,09
28,47	2	2	1	3,1321	22,06	48,34	1	8	1	1,8815	5,64
29,09	1	3	2	3,0671	81,60	48,39	3	0	3	1,8796	5,41
29,38	2	3	0	3,0378	18,27	48,74	3	1	3	1,8667	4,90
29,78	0	5	1	2,9982	26,53	48,83	2	1	4	1,8636	2,34
30,35	0	4	2	2,9425	39,57	49,19	1	4	4	1,8507	7,80
31,16	2	3	1	2,8683	100,00	49,22	4	0	0	1,8498	2,40
31,71	2	0	2	2,8194	11,02	49,80	3	2	3	1,8296	8,20
32,19	1	5	1	2,7787	33,06	50,39	4	0	1	1,8095	5,52
32,21	2	1	2	2,7765	10,57	51,25	3	5	2	1,7812	7,26
32,73	1	4	2	2,7342	28,98	51,49	2	7	2	1,7733	4,59
32,98	2	4	0	2,7134	2,02	51,56	3	6	1	1,7711	5,34
33,12	1	0	3	2,7025	13,66	51,84	1	8	2	1,7622	7,77
33,61	1	1	3	2,6646	43,95	52,02	2	8	0	1,7566	7,22
33,65	0	6	0	2,6611	21,03	52,45	1	7	3	1,7431	8,21
33,69	2	2	2	2,6585	2,95	52,61	0	9	1	1,7384	4,45
34,60	2	4	1	2,5906	10,29	53,15	2	8	1	1,7219	2,48
35,19	0	3	3	2,5486	6,35	53,44	4	3	1	1,7132	2,38
37,16	2	5	0	2,4174	15,85	53,80	4	0	2	1,7026	2,67
37,88	3	0	1	2,3731	33,04	53,87	3	4	3	1,7005	15,15
38,31	3	1	1	2,3473	2,79	55,73	4	4	1	1,6480	3,67
39,08	2	4	2	2,3029	6,24	57,41	1	9	2	1,6039	2,62
39,42	2	0	3	2,2838	6,03	58,84	2	1	5	1,5683	2,16
39,59	3	2	1	2,2747	4,10	69,29	5	3	2	1,3550	2,07
41.64	3	3	1	2.1674	7.54						

Tabelle A 51: Gitterparameter und Reflexliste von $Sr_3Dy_2(BO_3)_4$ (rel. Int. > 2,0 %)

Strontium Y	Yttri	um	Bor	at S	Sr3Y2(BO3)4					GoF = 2,2	23
D	Ζ	= 4	4		a = 7,387(1)	Å b =	15,	960(7) Å	c = 8,	671(4) Å
Pnma	V	=]	1022	2,37(8) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	D		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
16,70	1	1	1	5,3037	4,14	33,74	1	1	3	2,6543	25,88
19,29	1	2	1	4,5967	11,43	34,64	2	4	1	2,5871	9,97
19,56	0	3	1	4,5347	3,54	35,31	0	3	3	2,5398	3,97
20,47	0	0	2	4,3357	4,68	37,20	2	5	0	2,4152	12,27
22,26	0	4	0	3,9902	10,26	37,96	3	0	1	2,3687	27,27
22,99	1	3	1	3,8647	27,14	38,39	3	1	1	2,3431	2,65
23,33	0	2	2	3,8097	15,07	39,16	2	4	2	2,2984	4,46
23,78	1	0	2	3,7392	38,27	39,56	2	0	3	2,2763	4,99
24,08	2	0	0	3,6936	3,42	39,66	3	2	1	2,2708	3,23
24,43	1	1	2	3,6406	11,31	41,63	1	6	2	2,1676	2,10
26,20	2	0	1	3,3981	2,43	41,71	3	3	1	2,1639	5,51
26,57	2	2	0	3,3519	13,58	41,81	2	6	0	2,1586	3,19
26,80	2	1	1	3,3236	24,68	42,14	0	5	3	2,1426	2,62
27,39	1	4	1	3,2542	4,73	43,74	3	2	2	2,0680	4,30
28,53	2	2	1	3,1265	9,18	43,86	1	1	4	2,0627	9,78
29,17	1	3	2	3,0592	82,39	45,42	0	8	0	1,9951	3,52
29,42	2	3	0	3,0341	15,79	46,62	1	7	2	1,9467	3,49
29,80	0	5	1	2,9956	23,91	46,78	2	7	0	1,9402	4,26
30,42	0	4	2	2,9360	34,73	46,86	1	3	4	1,9373	5,94
31,21	2	3	1	2,8638	100,00	46,99	2	6	2	1,9323	7,25
31,43	0	1	3	2,8442	2,19	47,71	0	4	4	1,9049	7,80
31,80	2	0	2	2,8116	10,90	48,01	2	7	1	1,8934	19,02
32,22	1	5	1	2,7760	29,54	48,37	1	8	1	1,8803	4,89
32,30	2	1	2	2,7690	6,67	48,53	3	0	3	1,8744	5,25
32,80	1	4	2	2,7284	33,07	48,88	3	1	3	1,8616	5,53
33,26	1	0	3	2,6917	12,18	49,30	4	0	0	1,8468	8,06
33,66	0	6	0	2,6601	32,39	49,94	3	2	3	1,8248	5,81

Tabelle A 52: Gitterparameter und Reflexliste von $Sr_3Y_2(BO_3)_4$ (rel. Int. > 2,0 %)

Strontium Y	Yttei	rbiu	m B	orat	Sr3Yb2(BO3)4				GoF = 1,27		
D	Z	$\zeta = 2$	1		a = 7,381(6)	Å b=	15,	893(2) Å	c = 8,	660(3) Å
Pnma	V	[=]	1015	5,99(7) Å ³	$\alpha = 90^{\circ}$	β=	90	0		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
11,13	0	2	0	7,9466	4,39	48,19	1	6	3	1,8869	12,53
16,72	1	1	1	5,2966	9,17	48,28	3	4	2	1,8836	2,00
19,33	1	2	1	4,5873	16,78	48,57	1	8	1	1,8730	2,88
19,63	0	3	1	4,5192	2,65	48,58	3	0	3	1,8726	10,05
20,49	0	0	2	4,3301	3,23	48,94	3	1	3	1,8597	7,00
22,36	0	4	0	3,9733	10,52	49,08	2	1	4	1,8547	5,17
23,06	1	3	1	3,8543	45,35	49,23	2	5	3	1,8494	2,01
23,38	0	2	2	3,8023	23,81	49,47	1	4	4	1,8411	12,57
23,80	1	0	2	3,7349	38,10	50,00	3	2	3	1,8227	11,37
24,09	2	0	0	3,6908	3,10	50,53	4	0	1	1,8049	8,47
24,46	1	1	2	3,6359	11,22	51,45	3	5	2	1,7748	7,85
26.61	2	2	0	3,3474	18.01	51.74	3	3	3	1,7656	8,90
26.83	2	1	1	3.3204	31.53	51.75	3	6	1	1,7649	7,97
27.47	1	4	1	3.2439	6.41	52.10	1	8	2	1,7540	10.11
28.57	2	2	1	3,1223	3.09	52.25	2	8	0	1.7493	12.32
29.23	1	3	2	3.0526	76.20	52,47	4	3	Õ	1.7427	2.94
29.47	2	3	0	3.0283	18.34	52.73	1	7	3	1.7346	10.26
29.92	0	5	1	2,9840	22.45	52.87	0	9	1	1 7303	8 99
30,51	Ő	4	2	2,9276	43.03	53.15	Ő	1	5	1 7219	3 91
31.27	2	3	1	2,8586	100.00	53 39	2	8	1	1 7147	2,93
31.83	2	0	2	2,8089	12.33	53,60	4	3	1	1 7085	3.88
32,33	1	5	1	2,7665	35 69	54 10	3	4	3	1 6939	24 56
32.34	2	1	2	2,7660	11.98	54 23	2	4	4	1 6901	4 95
32,89	1	4	2	2 7214	30.02	54 30	4	1	2	1 6881	4 22
33,10	2	4	0	2,7042	2.01	54.81	4	4	0	1 6737	3 26
33 30	1	0	3	2,6885	13.85	55.68	1	2	5	1 6495	2,36
33 79	1	1	3	2,6508	50.32	55,00	4	4	1	1 6433	5 58
33.81	0	6	0	2,6380	21.62	57 72	4	5	0	1 5959	5 84
34 73	2	4	1	2,5812	8 67	59.13	4	4	2	1,5939	3 47
35 38	0	3	3	2,5012	6.78	59.16	2	1	5	1,5604	3,00
37 30	2	5	0	2,4085	17.64	59.43	3	3	4	1,5539	3,00
37,99	3	0	1	2,1009	38.26	60 34	1	7	4	1,5327	3,05
39.25	2	4	2	2,2009	615	60.49	1	10	1	1,5293	2 08
39.60	2	0	3	2,2530	4 98	60.82	3	8	1	1,5217	3,23
39,70	3	2	1	2,2730	6 70	61.64	2	3	5	1,5035	2 35
40.02	2	1	3	2,2001	2 25	62 19	4	6	1	1,3035	2,35
41 77	3	3	1	2,2509	10.37	62,28	1	5	5	1 4896	2,50
41.95	2	6	0	2,1520	3 68	62,92	1	9	3	1 4760	5 69
43 29	2	6	1	2 0885	3.08	63 76	2	4	5	1 4585	2 80
43.92	1	1	4	2,0600	16.61	64.51	0	0	6	1,4434	3.12
45.63	0	8	0	1,9867	5.25	64.56	2	7	4	1,4423	2.32
46 79	1	7	2	1 9401	3 72	65 90	3	Ó	5	1 4163	2,32
46 94	1	3	$\frac{2}{4}$	1 9341	13 19	66 82	4	1	4	1 3990	3 84
47.12	2	6	2	1,9271	16 32	68.89	3	9	2	1.3619	2.50
47.80	õ	4	$\frac{2}{4}$	1 9011	12 56	69.14	4	â	$\overline{4}$	1 3576	2,20
48.18	2	7	1	1 8874	17.85	69.52	5	3	2	1 3511	7 30

Tabelle A 53: Gitterparameter und Reflexliste von $Sr_3Yb_2(BO_3)_4$ (rel. Int. > 2,0 %)

Barium Lai	ntha	n Bo	orat]	Ba3La2(BO3)4					GoF = 1,	24
	Ζ	; = 4	1		a = 7,740(3)	Å b =	17,0)26(6) Å	c = 9,	051(5) Å
Pnma	V	=]	1192	2,90(1) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90 °	, ,		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
18,32	1	2	1	4,8392	12,99	43,81	1	7	2	2,0648	3,82
18,44	0	3	1	4,8080	2,43	44,32	2	6	2	2,0422	14,39
19,60	0	0	2	4,5254	4,70	44,64	1	3	4	2,0284	14,57
20,85	0	4	0	4,2563	12,52	45,12	2	7	1	2,0080	8,37
21,74	1	3	1	4,0842	29,62	45,18	3	5	1	2,0053	2,11
22,23	0	2	2	3,9959	13,03	45,28	1	8	1	2,0013	3,80
22,74	1	0	2	3,9067	39,49	45,35	0	4	4	1,9980	17,16
23,34	1	1	2	3,8077	16,71	45,38	1	6	3	1,9971	14,13
23,56	2	1	0	3,7736	2,98	46,26	3	0	3	1,9608	12,12
25,00	2	0	1	3,5583	2,34	46,52	2	5	3	1,9504	2,47
25,06	1	2	2	3,5506	2,03	46,59	3	1	3	1,9480	4,99
25,26	2	2	0	3,5230	21,59	46,77	2	1	4	1,9407	4,70
25,55	2	1	1	3,4830	21,97	46,92	4	0	0	1,9350	7,37
27,14	2	2	1	3,2830	2,59	46,93	1	4	4	1,9346	5,42
27,70	1	3	2	3,2180	77,65	47,15	0	8	2	1,9259	2,62
27,88	2	3	0	3,1973	24,17	47,55	3	2	3	1,9108	9,30
27,97	0	5	1	3,1870	21,70	48,04	4	0	1	1,8923	10,88
28,77	0	4	2	3,1005	28,04	48,36	4	1	1	1,8807	2,68
29,61	2	3	1	3,0148	100,00	48,53	2	7	2	1,8744	2,82
30,30	1	5	1	2,9470	31,69	48,59	3	5	2	1,8722	17,43
30,37	2	0	2	2,9412	11,60	48,68	1	8	2	1,8689	6,08
30,83	2	1	2	2,8983	9,15	48,71	3	6	1	1,8679	13,56
31,05	1	4	2	2,8782	30,29	48,79	2	8	0	1,8649	12,68
31,50	0	6	0	2,8376	16,49	49,12	3	3	3	1,8533	6,07
31,81	1	0	3	2,8110	8,60	49,16	0	9	1	1,8518	4,50
32,17	2	2	2	2,7800	2,03	49,52	1	7	3	1,8393	7,78
32,25	1	1	3	2,7735	35,69	49,75	1	5	4	1,8311	3,76
32,78	2	4	1	2,7300	11,93	49,89	2	8	1	1,8265	5,42
33,55	1	2	3	2,6693	2,39	50,82	4	3	1	1,7951	5,27
33,61	0	3	3	2,6640	4,43	51,26	3	4	3	1,7810	23,36
35,07	2	5	0	2,5564	12,22	51,43	2	4	4	1,7754	4,63
35,08	1	6	1	2,5558	5,88	51,61	4	1	2	1,7696	2,49
36,17	3	0	1	2,4812	41,45	52,91	4	4	1	1,7291	6,94
37,13	2	4	2	2,4197	5,53	53,97	4	3	2	1,6977	3,41
37,73	3	2	1	2,3820	5,18	54,50	4	5	0	1,6824	6,09
37,78	2	0	3	2,3794	6,90	56,32	2	1	5	1,6322	6,41
39,21	1	6	2	2,2959	2,67	56,42	3	3	4	1,6296	4,73
39,34	2	6	0	2,2884	7,69	56,78	1	7	4	1,6200	2,11
39,61	3	3	1	2,2734	8,26	56,96	3	8	1	1,6154	2,17
39,89	0	5	3	2,2582	3,35	58,55	2	3	5	1,5753	2,53
41,25	0	2	4	2,1869	2,17	58,79	1	9	3	1,5695	4,37
41,63	3	2	2	2,1675	3,16	60,45	2	4	5	1,5301	2,09
41,90	1	1	4	2,1544	17,03	61,92	1	6	5	1,4973	3,31
42,44	0	8	0	2,1282	3,53	64,39	3	9	2	1,4457	4,19
42,94	1	2	4	2,1045	3,00	65,80	5	3	2	1,4182	5,24

Tabelle A 54: Gitterparameter und Reflexliste von $Ba_3La_2(BO_3)_4$ (rel. Int. > 2,0 %)

	arium Neodym Borat Ba3Nd2(BO3) $G_0F = 1.02$										
Barium Neo	odyn	n Bo	orat]	Ba3Nd2(BO3)4					GoF = 1,	02
р	Z	<u></u>	4		a = 7,738(4)	Å b =	16,	807(5) Å	c = 8,	979(9) Å
Pnma	V		1167	7,95(2) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	o		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
16,00	1	1	1	5,5350	4,09	42,29	3	4	1	2,1352	2,83
18,44	1	2	1	4,8078	17,13	43,02	0	8	0	2,1009	4,01
18,65	0	3	1	4,7532	3,68	44,32	1	7	2	2,0423	4,44
19,76	0	0	2	4,4899	6,27	44,71	2	6	2	2,0251	13,01
21,13	0	4	0	4,2018	17,14	45,02	1	3	4	2,0122	11,85
21,93	1	3	1	4,0502	42,46	45,56	2	7	1	1,9895	8,98
22,43	0	2	2	3,9601	19,82	45,79	0	4	4	1,9801	5,93
22,88	1	0	2	3,8835	45,39	45,84	1	8	1	1,9778	21,19
23,49	1	1	2	3,7838	18,11	45,93	3	4	2	1,9743	2,37
25,04	2	0	1	3,5533	4,29	46,43	3	0	3	1,9540	10,28
25,24	1	2	2	3,5253	2,28	46,77	3	1	3	1,9409	3,43
25,32	2	2	0	3,5145	18,33	46,93	4	0	0	1,9346	2,92
25,60	2	1	1	3,4765	28,02	47,07	2	1	4	1,9289	5,29
26,07	1	4	1	3,4151	2,45	47,26	4	1	0	1,9219	4,15
27,93	1	3	2	3,1917	86,03	47,35	1	4	4	1,9183	11,59
28,00	2	3	0	3,1837	20,12	47,76	0	8	2	1,9029	7,41
28,33	0	5	1	3,1481	42,75	48,07	4	0	1	1,8912	5,40
29,08	0	4	2	3,0679	35,37	48,87	3	5	2	1,8621	9,41
29,75	2	3	1	3,0007	100,00	49,00	2	7	2	1,8574	7,10
30,47	2	0	2	2,9310	12,69	49,03	3	6	1	1,8565	4,00
30,63	1	5	1	2,9161	32,04	49,27	1	8	2	1,8479	12,27
30,95	2	1	2	2,8874	10,37	49,32	2	8	0	1,8463	3,53
31,34	1	4	2	2,8520	30,88	49,35	3	3	3	1,8450	2,76
31,92	0	6	0	2,8012	21,09	49,83	4	3	0	1,8286	7,92
32,03	1	0	3	2,7917	10,72	50,07	1	7	3	1,8204	7,74
32,49	1	1	3	2,7540	39,51	50,43	2	6	3	1,8082	3,52
32,99	2	4	1	2,7132	12,22	50,92	4	3	1	1,7919	4,98
33,93	0	3	3	2,6401	7,14	51,54	3	4	3	1,7718	17,85
35,34	2	5	0	2,5376	12,50	51,69	4	1	2	1,7668	2,19
36,20	3	0	1	2,4792	34,06	51,83	2	4	4	1,7627	3,39
37,38	2	4	2	2,4039	4,22	53,06	4	4	1	1,7246	3,62
37,80	3	2	1	2,3779	2,96	54,70	4	5	0	1,6767	4,11
37,98	2	0	3	2,3675	5,03	56,16	4	4	2	1,6364	2,98
39,69	2	6	0	2,2690	9,73	56,75	3	3	4	1,6210	6,81
39,73	3	3	1	2,2671	3,07	57,46	3	6	3	1,6026	4,28
40,31	0	5	3	2,2355	2,21	59,52	1	5	5	1,5519	3,90
42,04	1	5	3	2,1476	2,12	65,00	5	4	1	1,4337	2,03
42.22	1	1	4	2.1385	12.69	65.93	5	3	2	1.4157	2.75

Tabelle A 55: Gitterparameter und Reflexliste von $Ba_3Nd_2(BO_3)_4$ (rel. Int. > 2,0 %)

	$rium Samarium Borat Ba_3Sm_2(BO_3)_4 GoF = 0.93$										
Barium Sar	nari	um	Bor	at 1	Ba3Sm2(BO3)4					GoF = 0,	93
D	Z	; = 4	1		a = 7,733(4)	Å b=	16,	719(4) Å	c = 8,	952(7) Å
Pnma	V	=]	1157	7,56(4) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	c		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
16,03	1	1	1	5,5235	3,76	39,84	2	6	0	2,2607	7,93
18,49	1	2	1	4,7941	14,84	42,35	1	1	4	2,1324	11,53
18,74	0	3	1	4,7312	3,34	42,38	3	4	1	2,1310	2,61
19,82	0	0	2	4,4763	6,37	43,26	0	8	0	2,0899	4,35
21,24	0	4	0	4,1798	17,17	43,43	1	2	4	2,0822	2,25
22,01	1	3	1	4,0358	42,19	44,53	1	7	2	2,0331	2,94
22,51	0	2	2	3,9461	20,92	44,88	2	6	2	2,0179	12,76
22,94	1	0	2	3,8741	39,75	45,17	1	3	4	2,0059	11,90
22,98	2	0	0	3,8666	2,85	45,75	2	7	1	1,9816	8,45
23,55	1	1	2	3,7741	17,03	45,96	0	4	4	1,9731	10,62
23,60	2	1	0	3,7672	2,14	46,08	1	8	1	1,9682	17,22
25,07	2	0	1	3,5497	3,76	46,52	3	0	3	1,9508	10,11
25,32	1	2	2	3,5150	3,15	46,85	3	1	3	1,9376	3,24
25,36	2	2	0	3,5094	15,50	47,06	2	5	3	1,9295	3,12
25,63	2	1	1	3,4723	30,22	47,20	2	1	4	1,9242	4,72
26,18	1	4	1	3,4013	3,06	47,52	1	4	4	1,9118	8,21
28,03	1	3	2	3,1810	74,49	47,84	3	2	3	1,8997	7,39
28,06	2	3	0	3,1769	25,47	48,11	4	0	1	1,8898	3,84
28,47	0	5	1	3,1325	48,73	48,18	2	2	4	1,8871	2,70
29,21	0	4	2	3,0550	34,62	49,00	3	5	2	1,8575	8,87
29,82	2	3	1	2,9940	100,00	49,17	3	6	1	1,8514	6,23
30,53	2	0	2	2,9261	11,89	49,20	2	7	2	1,8503	4,10
30,77	1	5	1	2,9033	31,34	49,52	1	8	2	1,8393	5,04
31,00	2	1	2	2,8823	9,72	49,54	2	8	0	1,8385	12,91
31,46	1	4	2	2,8413	27,41	50,11	0	9	1	1,8189	7,11
31,49	2	4	0	2,8384	4,87	50,29	1	7	3	1,8128	8,84
32,10	0	6	0	2,7865	15,24	50,65	2	8	1	1,8010	2,29
32,12	1	0	3	2,7841	16,80	50,99	4	3	1	1,7897	3,76
32,58	1	1	3	2,7463	39,41	51,67	3	4	3	1,7677	16,62
33,08	2	4	1	2,7057	10,95	51,75	4	1	2	1,7650	4,73
34,05	0	3	3	2,6308	6,91	53,15	4	4	1	1,7220	3,85
35,46	2	5	0	2,5292	13,46	54,80	4	5	0	1,6737	4,48
36,23	3	0	1	2,4771	32,46	56,89	3	3	4	1,6173	4,01
37,49	2	4	2	2,3971	3,30	59,80	1	9	3	1,5453	3,31
37,85	3	2	1	2,3750	2,84	63,20	5	3	1	1,4701	2,74
38,06	2	0	3	2,3624	3,70	65,27	3	9	2	1,4283	2,92
39 79	3	3	1	2 2636	4 02	66.02	5	3	2	1 4140	4 24

Tabelle A 56: Gitterparameter und Reflexliste von $Ba_3Sm_2(BO_3)_4$ (rel. Int. > 2,0 %)

Barium Eur	ropiu	um]	Bora	nt I	Ba3Eu2(BO3)4			GoF = 0,91			
	7	= 4	4		a = 7,727(8)	Å b=	16.	668(0) Å	c = 8	947(5) Å
Pnma	V	=	1152	2,50(0) Å ³	$\alpha = 90^{\circ}$	β=	90	0		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
16,05	1	1	1	5,5184	2,83	44,97	2	6	2	2,0140	13,06
18,52	1	2	1	4,7871	14,91	45,21	1	3	4	2,0040	12,84
18,79	0	3	1	4,7199	4,29	45,86	2	7	1	1,9770	8,78
19,83	0	0	2	4,4736	6,75	46,01	0	4	4	1,9708	10,36
21,31	0	4	0	4,1669	18,48	46,09	3	4	2	1,9677	3,63
22,05	1	3	1	4,0280	41,09	46,14	1	6	3	1,9659	6,20
22,54	0	2	2	3,9416	19,95	46,22	1	8	1	1,9627	9,54
22,95	1	0	2	3,8717	43,18	46,55	3	0	3	1,9495	10,12
23,57	1	1	2	3,7713	16,56	46,88	3	1	3	1,9363	3,63
25,08	2	0	1	3,5472	4,92	47,13	2	5	3	1,9267	4,43
25,39	2	2	0	3,5054	16,59	47,58	1	4	4	1,9097	7,76
25,66	2	1	1	3,4695	30,67	47,88	3	2	3	1,8982	8,70
26,24	1	4	1	3,3936	3,07	48,14	0	8	2	1,8887	2,16
28,07	1	3	2	3,1765	79,70	48,15	4	0	1	1,8884	3,08
28,11	2	3	0	3,1722	20,09	48,22	2	2	4	1,8857	3,08
28,55	0	5	1	3,1238	25,90	48,47	4	1	1	1,8764	2,19
29,27	0	4	2	3,0491	32,34	49,08	3	5	2	1,8548	8,64
29,86	2	3	1	2,9898	100,00	49,27	3	6	1	1,8481	6,98
30,55	2	0	2	2,9242	12,27	49,31	2	7	2	1,8464	3,51
30,85	1	5	1	2,8961	30,03	49,65	1	8	2	1,8347	4,63
31,02	2	1	2	2,8802	9,29	49,67	2	8	0	1,8339	12,81
31,52	1	4	2	2,8363	25,34	50,27	0	9	1	1,8135	7,20
31,55	2	4	0	2,8333	6,89	50,40	1	7	3	1,8091	8,63
32,14	1	0	3	2,7824	12,53	50,78	2	8	1	1,7965	3,27
32,20	0	6	0	2,7780	19,52	51,04	4	3	1	1,7880	4,70
32,60	1	1	3	2,7444	40,07	51,31	0	1	5	1,7793	2,39
33,14	2	4	1	2,7011	11,47	51,73	3	4	3	1,7658	16,15
34,09	0	3	3	2,6278	7,10	51,79	4	1	2	1,7637	3,42
35,54	2	5	0	2,5240	13,18	52,05	2	4	4	1,7557	3,11
36,26	3	0	1	2,4754	30,25	53,21	4	4	1	1,7200	4,78
37,55	2	4	2	2,3936	2,16	54,88	4	5	0	1,6715	3,05
37,89	3	2	1	2,3729	2,73	56,94	3	3	4	1,6159	4,32
38,08	2	0	3	2,3609	4,09	57,80	2	2	5	1,5938	2,86
39,84	3	3	1	2,2611	4,84	59,11	4	6	1	1,5617	2,59
39,94	2	6	0	2,2555	6,70	59,95	1	9	3	1,5417	3,64
42,38	1	1	4	2,1310	11,81	62,03	4	6	2	1,4949	2,43
42,44	3	4	1	2,1282	2,14	65,43	3	9	2	1,4253	2,84
43,40	0	8	0	2,0835	4,25	66,08	5	3	2	1,4128	3,83
44.64	1	7	2	2.0282	4.27	-				-	

Tabelle A 57: Gitterparameter und Reflexliste von $Ba_3Eu_2(BO_3)_4$ (rel. Int. > 2,0 %)

Barium Ga	doliı	nium	n Bo	rat	Ba3Gd2(BO3)4					GoF = 0,	97
	Z	<u></u>	1		a = 7,721(0)	Å b =	16,	518(3) Å	c = 8,	942(6) Å
Pnma	V	(= 1	1147	7,42(9) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90	þ		$\gamma = 90$) °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
16,06	1	1	1	5,5132	2,97	43,53	0	8	0	2,0773	3,67
18,55	1	2	1	4,7802	14,85	44,75	1	7	2	2,0235	3,59
18,83	0	3	1	4,7091	4,17	45,06	2	6	2	2,0102	10,64
19,84	0	0	2	4,4713	6,89	45,25	1	3	4	2,0023	13,20
21,37	0	4	0	4,1546	16,79	45,97	2	7	1	1,9725	6,54
22,09	1	3	1	4,0204	40,24	46,07	0	4	4	1,9687	10,58
22,56	0	2	2	3,9374	19,43	46,22	1	6	3	1,9624	12,08
22,97	1	0	2	3,8693	40,26	46,35	1	8	1	1,9573	6,11
23,59	1	1	2	3,7685	16,23	46,58	3	0	3	1,9481	9,71
25,10	2	0	1	3,5443	4,17	46,92	3	1	3	1,9348	2,68
25,37	1	2	2	3,5076	3,35	47,04	4	0	0	1,9303	2,50
25,42	2	2	0	3,5011	14,78	47,20	2	5	3	1,9239	3,91
25,68	2	1	1	3,4664	31,66	47,63	1	4	4	1,9077	7,99
26,30	1	4	1	3,3861	3,79	47,93	3	2	3	1,8966	7,79
27,33	2	2	1	3,2601	2,41	48,19	4	0	1	1,8868	3,91
28,11	1	3	2	3,1721	75,41	48,27	0	8	2	1,8839	2,85
28,15	2	3	0	3,1672	22,36	48,52	4	1	1	1,8748	2,01
28,63	0	5	1	3,1154	27,09	49,15	3	5	2	1,8521	8,13
29,32	0	4	2	3,0435	33,69	49,36	3	6	1	1,8448	7,95
29,90	2	3	1	2,9855	100,00	49,42	2	7	2	1,8426	3,10
30,57	2	0	2	2,9221	12,71	49,81	2	8	0	1,8293	11,48
30,93	1	5	1	2,8891	30,09	49,89	2	3	4	1,8265	6,29
31,05	2	1	2	2,8779	10,09	50,42	0	9	1	1,8083	3,07
31,57	1	4	2	2,8315	26,81	50,51	1	7	3	1,8056	12,56
31,61	2	4	0	2,8280	7.09	50,91	2	8	1	1,7922	3,04
32,16	1	0	3	2,7808	9.37	51,10	4	3	1	1,7860	4,75
32,30	0	6	0	2,7697	22,67	51,79	3	4	3	1,7638	9,23
32,62	1	1	3	2,7427	39.68	51.84	4	1	2	1.7622	12.23
33.20	2	4	1	2,6964	12.94	52.11	2	4	4	1.7538	2.22
34.13	0	3	3	2,6249	6.96	52.21	4	4	0	1.7505	2,64
35.62	2	5	0	2.5188	13.08	53.28	4	4	1	1.7179	5.17
36.29	3	0	1	2,4733	31.76	54.97	4	5	0	1.6692	3.10
37.60	2	4	2	2.3901	2.38	56.99	3	3	4	1.6145	3.26
37.93	3	2	1	2.3705	2.61	57.07	4	1	3	1.6126	2,60
38.11	2	0	3	2,3594	3.08	57.94	4	2	3	1.5903	2,67
39.89	3	3	1	2.2584	3.87	59.29	2	3	5	1.5574	2.60
40.00	1	6	2	2,2522	2.41	60.10	1	9	3	1.5383	2,48
40.03	2	6	0	2,2504	4,30	62.24	0	0	6	1,4904	3.17
42.41	1	1	4	2,1297	11.64	63.98	5	1	2	1,4540	2.18
42,50	3	4	1	2,1252	3,10	66,15	5	3	2	1,4114	3,49

Tabelle A 58: Gitterparameter und Reflexliste von $Ba_3Gd_2(BO_3)_4$ (rel. Int. > 2,0 %)

Barium Dy	spro	siun	ı Bo	orat	Ba3Dy2(BO3)4					GoF = 1,02		
	Z	= 4	1		a = 7,699(1)	Å b =	16,	515(7) Å	c = 8,9	960(9) Å	
Pnma	V	=]	1139	9,42(9) Å ³	$\alpha = 90^{\circ}$	$\beta =$	90 °	5		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
16,09	1	1	1	5,5034	3,36	45,24	2	6	2	2,0026	13,95	
18,60	1	2	1	4,7663	13,22	45,88	3	5	1	1,9764	3,42	
18,91	0	3	1	4,6891	4,07	46,06	0	4	4	1,9688	11,86	
19,81	0	0	2	4,4790	4,99	46,22	2	7	1	1,9625	12,49	
21,51	0	4	0	4,1277	19,38	46,29	3	4	2	1,9598	3,77	
22,18	1	3	1	4,0046	44,34	46,35	1	6	3	1,9574	14,74	
22,57	0	2	2	3,9370	21,23	46,63	3	0	3	1,9463	8,65	
22,95	1	0	2	3,8714	35,88	46,63	1	8	1	1,9462	7,41	
23,58	1	1	2	3,7692	15,92	46,97	3	1	3	1,9329	5,72	
25,16	2	0	1	3,5361	4,57	47,19	4	0	0	1,9245	5,21	
25,52	2	2	0	3,4882	17,98	47,23	2	1	4	1,9228	4,24	
25,74	2	1	1	3,4577	33,63	47,64	1	4	4	1,9074	7,51	
26,42	1	4	1	3,3705	2,77	47,99	3	2	3	1,8944	9,82	
28,16	1	3	2	3,1666	72,74	48,24	2	2	4	1,8849	2,41	
28,27	2	3	0	3,1541	22,67	48,33	4	0	1	1,8816	7,09	
28,79	0	5	1	3,0986	23,02	48,53	4	2	0	1,8743	2,32	
29,40	0	4	2	3,0356	35,91	48,67	4	1	1	1,8695	2,58	
30,01	2	3	1	2,9751	100,00	49,32	3	5	2	1,8463	9,17	
30,60	2	0	2	2,9192	15,33	49,58	3	6	1	1,8370	8,82	
31,09	2	1	2	2,8747	24,28	49,64	3	3	3	1,8350	5,41	
31,09	1	5	1	2,8745	16,52	50,03	1	8	2	1,8215	10,07	
31,66	1	4	2	2,8240	33,08	50,10	2	8	0	1,8191	8,91	
31,76	2	4	0	2,8151	3,00	50,18	4	3	0	1,8167	3,96	
32,12	1	0	3	2,7842	11,34	50,61	1	5	4	1,8023	2,72	
32,51	2	2	2	2,7523	13,64	50,68	1	7	3	1,7999	9,60	
32,51	0	6	0	2,7521	7,64	50,75	0	9	1	1,7976	7,85	
32,59	1	1	3	2,7455	42,14	51,20	2	8	1	1,7828	4,32	
33,34	2	4	1	2,6856	10,38	51,27	4	3	1	1,7805	7,03	
34,13	0	3	3	2,6250	6,60	51,65	4	0	2	1,7683	3,82	
35,80	2	5	0	2,5064	12,89	51,89	3	4	3	1,7605	22,48	
36,12	1	3	3	2,4845	2,72	51,97	4	1	2	1,7582	3,55	
36,39	3	0	1	2,4667	34,34	52,14	2	4	4	1,7528	3,36	
37,71	2	4	2	2,3836	2,64	52,41	4	4	0	1,7443	2,36	
38,04	3	2	1	2,3635	3,47	53,47	4	4	1	1,7122	6,02	
38,11	2	0	3	2,3595	3,49	55,19	4	5	0	1,6628	3,37	
40,02	3	3	1	2,2511	5,82	55,36	1	9	2	1,6581	2,12	
40,17	1	6	2	2,2432	2,15	56,22	4	5	1	1,6349	2,98	
40,25	2	6	0	2,2387	3,27	57,04	3	3	4	1,6134	3,42	
41,75	0	2	4	2,1618	2,17	57,98	1	7	4	1,5894	2,04	
42,35	1	1	4	2,1327	12,25	60,37	1	9	3	1,5321	3,69	
42,43	1	5	3	2,1288	3,00	62,10	0	0	6	1,4934	2,02	
42,66	3	4	1	2,1176	2,12	63,98	4	1	4	1,4541	3,81	
43,82	3	3	2	2,0641	3,99	66,35	4	8	0	1,4077	2,75	
44,96	1	7	2	2,0146	6,83	66,35	5	3	2	1,4077	2,67	
45,23	1	3	4	2,0033	14,82							

Tabelle A 59: Gitterparameter und Reflexliste von $Ba_3Dy_2(BO_3)_4$ (rel. Int. > 2,0 %)

$\mathbf{P}_{\text{outum}} \mathbf{V}_{\text{trium}} \mathbf{P}_{\text{out}} \mathbf{r}_{\text{out}} = \mathbf{P}_{\text{out}} \mathbf{V}_{\text{out}} \mathbf{P}_{\text{out}} \mathbf{r}_{\text{out}} \mathbf{r}_{$												
Barium Ytt	riun	n Bo	rat]	Ba3Y2(BO3)4					GoF = 1,	05	
	Z	z = 4	4		a = 7,693(7)	Å b =	16,	469(8) Å	c = 8,	969(7) Å	
Pnma	V		1136	5,58(1) Å ³	$\alpha = 90^{\circ}$	β =	90	0		$\gamma = 90$) °	
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	
18,61	1	2	1	4,7634	9,41	46,32	2	7	1	1,9587	7,96	
18,94	0	3	1	4,6823	5,88	46,33	3	4	2	1,9583	3,82	
19,78	0	0	2	4,4847	7,60	46,39	1	6	3	1,9556	14,95	
21,57	0	4	0	4,1173	17,09	46,62	3	0	3	1,9466	10,52	
22,21	1	3	1	3,9998	33,77	46,75	1	8	1	1,9416	3,41	
22,56	0	2	2	3,9385	16,01	46,97	3	1	3	1,9331	5,04	
22,94	1	0	2	3,8745	29,52	47,20	2	1	4	1,9240	3,52	
23,57	1	1	2	3,7715	15,73	47,22	4	0	0	1,9234	7,31	
25,17	2	0	1	3,5354	4,00	47,63	1	4	4	1,9078	5,38	
25,54	2	2	0	3,4852	16,17	47,99	3	2	3	1,8944	8,15	
25,75	2	1	1	3,4566	35,41	48,36	4	0	1	1,8807	6,44	
28,17	1	3	2	3,1655	73,06	48,69	4	1	1	1,8685	4,18	
28,31	2	3	0	3,1504	20,40	49,37	3	5	2	1,8445	7,02	
28,85	0	5	1	3,0920	15,28	49,65	3	3	3	1,8347	3,70	
29,43	0	4	2	3,0330	27,43	49,66	3	6	1	1,8343	6,89	
30,04	2	3	1	2,9723	100,00	50,14	1	8	2	1,8180	7,45	
30,59	2	0	2	2,9198	16,19	50,22	4	3	0	1,8152	4,94	
31,08	2	1	2	2,8750	10,41	50,22	2	8	0	1,8151	5,79	
31,15	1	5	1	2,8690	17,51	50,74	1	7	3	1,7978	7,94	
31,69	1	4	2	2,8217	30,95	50,89	0	9	1	1,7930	7,26	
32,09	1	0	3	2,7868	11,40	51,18	0	1	5	1,7834	2,00	
32,56	1	1	3	2,7477	42,35	51,31	4	3	1	1,7792	4,15	
32,60	0	6	0	2,7449	5,22	51,31	2	8	1	1,7791	4,89	
33,38	2	4	1	2,6823	10,26	51,67	4	0	2	1,7677	3,28	
34,12	0	3	3	2,6257	7,10	51,92	3	4	3	1,7598	23,62	
35,86	2	5	0	2,5020	9,68	52,14	2	4	4	1,7529	4,00	
36,41	3	0	1	2,4657	45,56	52,47	4	4	0	1,7426	2,19	
38,07	3	2	1	2,3621	4,06	53,53	4	4	1	1,7107	9,23	
40,05	3	3	1	2,2493	5,08	55,26	4	5	0	1,6610	3,57	
40,33	2	6	0	2,2344	5,82	56,28	4	5	1	1,6332	2,75	
42,31	1	1	4	2,1347	11,41	57,03	3	3	4	1,6135	2,36	
42,71	3	4	1	2,1154	2,39	58,02	1	7	4	1,5883	2,55	
43,95	0	8	0	2,0587	2,71	60,47	1	9	3	1,5297	2,38	
45,04	1	7	2	2,0111	6,90	63,02	1	6	5	1,4739	2,58	
45,21	1	3	4	2,0042	14,23	63,97	4	1	4	1,4542	2,54	
45,31	2	6	2	1,9999	12,53	64,19	5	1	2	1,4498	2,87	
45,94	3	5	1	1,9739	2,64	66,06	4	7	2	1,4133	2,95	
46.05	0	4	4	1.9693	9.91	66.40	5	3	2	1.4069	3.63	

Tabelle A 60: Gitterparameter und Reflexliste von $Ba_3Y_2(BO_3)_4$ (rel. Int. > 2,0 %)

Barium Yt	terbi	um	Bor	at	Ba6Yb5(BO3)9					GoF = 1,	21
C^{2}/C	Z	2 = 4	4		a = 13,103(5)	Å b=	9,9	92(4	4) Å	c = 20),542(0) Å
	V	(= 2	2575	5,22(2) Å ³	$\alpha = 90^{\circ}$	β=	106	5,77	0	γ = 9() °
Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]	Pos. [°2θ]	h	k	1	d-Wert [Å]	rel. Int. [%]
11,38	-1	1	1	7,7720	18,02	37,58	-5	1	5	2,3917	9,04
12,89	1	1	1	6,8638	6,84	40,45	0	4	4	2,2282	5,23
15,67	1	1	2	5,6517	10,06	43,57	-4	2	8	2,0756	5,49
15,97	-1	1	3	5,5440	11,71	44,98	1	1	9	2,0137	8,24
19,49	-1	1	4	4,5513	7,99	45,00	3	3	5	2,0128	9,66
19,90	0	2	2	4,4588	100,00	45,19	5	3	0	2,0049	5,69
22,33	0	2	3	3,9773	8,19	45,24	0	2	9	2,0030	7,54
22,34	-2	2	1	3,9756	12,82	45,35	-2	4	6	1,9982	8,01
22,72	2	2	0	3,9115	16,51	45,43	-1	1	10	1,9949	7,55
23,00	1	1	4	3,8641	36,05	45,59	4	2	5	1,9884	6,78
23,38	-1	1	5	3,8019	67,99	45,62	-4	4	2	1,9868	34,36
23,96	2	2	1	3,7109	5,92	45,77	-5	3	5	1,9806	6,86
24,29	-2	2	3	3,6617	16,75	45,93	1	5	0	1,9744	5,28
24,63	3	1	1	3,6114	34,62	45,95	5	1	4	1,9734	6,54
25.23	-3	1	4	3,5276	46.04	45,98	-6	2	1	1,9721	7.84
27,19	-4	0	2	3,2766	31,51	46,88	-4	2	9	1,9364	5,57
27,67	1	3	0	3.2215	15,19	47,02	2	2	8	1,9311	24.84
27.70	-3	1	5	3.2175	7.53	47.33	1	5	2	1,9190	13.17
28.38	1	3	1	3.1423	14,90	47.45	-1	5	3	1,9147	13.69
28,41	4	0	0	3,1386	22,96	47.83	-2	2	10	1,9000	17.39
28.57	2	2	3	3,1214	10.76	48.34	5	3	2	1.8815	15.17
28,84	0	2	5	3.0927	21.33	48,89	3	1	8	1,8615	8.66
28,97	-4	0	4	3,0796	18.00	49.34	-5	3	7	1.8457	14.95
29.79	1	3	2	2,9966	45.92	49.64	-7	1	4	1.8350	8.60
29.79	3	1	3	2,9965	81.72	50.14	-3	1	11	1.8179	6.10
29.96	-1	3	3	2,9802	67.80	50.23	-3	5	2	1.8147	8.65
30.69	-3	1	6	2,9110	56.50	50,49	2	4	6	1,8060	34.19
31.39	1	1	6	2.8477	41.03	50.56	-7	1	1	1.8039	12.61
31.66	2	2	4	2,8239	14.28	51.10	-2	4	8	1,7861	32.65
31.80	-1	1	7	2,8115	23.10	51.31	-7	1	6	1.7791	11.20
32.29	-2	2	6	2,7702	16.00	51,40	3	5	1	1,7763	6.56
33.69	4	2	0	2.6579	56.14	51.82	-6	2	8	1.7630	7.39
33.84	-3	3	1	2,6470	13.07	52.18	6	0	4	1,7514	12.82
33.93	-3	3	2	2,6402	19.26	52.69	5	1	6	1.7359	6.13
34.17	-4	2	4	2.6217	29,23	53,94	-6	0	10	1,6984	11.89
34.28	2	0	6	2,6137	13.93	55,94	0	6	2	1,6425	9.16
34.36	1	3	4	2.6078	5.74	58.12	-6	4	6	1.5859	5.28
34.37	3	3	0	2,6068	5.01	59.84	-8	2	2	1,5442	6.36
34.63	-1	3	5	2,5884	7.92	59.91	7	3	1	1.5427	6.08
35.10	-2	0	8	2,5543	11.02	61.05	1	3	11	1,5166	9,95
35.38	-5	1	2	2,5349	7.35	61.67	5	5	2	1,5029	5,37
35.53	-5	1	3	2,5249	9.52	61.91	6	2	6	1,4977	11.01
35.82	-4	2	5	2,5048	12.43	62.52	-5	5	7	1,4845	6.77
35.90	0	4	0	2,4994	6.13	63.14	4	6	0	1,4713	5.22
35,94	-3	3	4	2,4966	5.42	64.56	-5	3	12	1.4424	5,61
36.23	-1	1	8	2,4774	12.58	66.49	0	0	14	1.4052	6.75
37 10	4	2	2	2 4211	5.60	68 45	-8	4	4	1 3696	10.47

Tabelle A 61: Gitterparameter und Reflexliste von $Ba_3Yb_2(BO_3)_4$ (rel. Int. > 5,0 %)

Abbildungsverzeichnis

Schematischer Aufbau von WLEDs (nach [7])	1
Entwicklung der Lichtausbeute von Weißlichtquellen (Punkte entlang der blau	en
Kurve: Leistung handelsüblicher Hochleistungs-LEDs [7]	2
Jablonski-Diagramm (nach [20]	6
Darstellung von Wirtsgitter-Ionen und Aktivator-Ionen im Periodensystem der	
Elemente [12,21]	7
Ionenradien der hexakoordinierten REE ³⁺ Ionen [28]	. 10
Dieke-Diagramm für freie REE ³⁺ -Ionen [29]	12
Energieniveaudiagramm für Sm ³⁺ in CaAl ₂ O ₄	. 14
Energieniveaudiagramm für Dy ³⁺ in CaAl ₂ O ₄	15
Energieniveaudiagramm für Eu ³⁺ in CaEuAlO ₄	17
Präparierte Pulverprobe (links) und senkrechter Probenträger für den	
Pulverprobenhalter	20
Schematischer Ablauf der Festkörpersynthese	21
Schematischer Ablauf der Pechini-Synthese	24
Struktur des Ergebniskapitels	30
Röntgendiffraktogramm von CaAl2O4	33
Kristallstruktur von CaAl2O4	33
Röntgendiffraktogramm von SrAl ₂ O ₄ im Bereich 10 - 60 °20, Sintertemperatur	
900 °C – 1200 °C	34
Kristallstruktur von SrAl ₂ O ₄	34
Röntgendiffraktogramme von BaAl2O4 im Bereich 10 - 60 °20, Sintertemperate	ur
900 °C – 1200 °C	35
Kristallstruktur von BaAl ₂ O ₄	35
FTIR-Spektren von CaAl2O4, SrAl2O4 und BaAl2O4	36
REM-Aufnahmen von a) CaAl ₂ O ₄ , b) SrAl ₂ O ₄ und c) BaAl ₂ O ₄	36
Röntgendiffraktogramme von mit Sm^{3+} dotierten MAl ₂ O ₄ (• = CaAl ₄ O ₇ ; = =	
$CaSmAl_3O_7$; $\blacklozenge = SmAlO_3$)	37
Anregungs- und Emissionsspektrum von CaAl2O4:0,0025Sm, Übergänge der	
nummerierten Peaks siehe Tab. 11	38
Emissionsspektren von CaAl ₂ O ₄ :xSm ($\lambda_{Anr} = 401 \text{ nm}$)	38
Anregungs- und Emissionsspektrum von SrAl2O4:0,0050Sm, die Übergänge de	er
nummerierten Peaks sind in Tab. 11 angegeben	39
Emissionsspektren von SrAl ₂ O ₄ :xSm ($\lambda_{Anr} = 399 \text{ nm}$)	39
Emissionsspektren von mit 1,00 mol-% Sm3+ dotiertem BaAl2O4 bei	
verschiedenen Anregungswellenlängen	40
Röntgendiffraktogramme von mit Dy^{3+} dotiertem MAl ₂ O ₄ (• = CaAl ₄ O ₇ ;	
$\blacksquare = CaDyAl_3O_7; \blacklozenge = SrDyAl_3O_7; \blacktriangle = Ba_6Dy_2Al_4O_{15})$	41
	Schematischer Aufbau von WLEDs (nach [7]) Entwicklung der Lichtausbeute von Weißlichtquellen (Punkte entlang der blauk Kurve: Leistung handelsüblicher Hochleistungs-LEDs [7] Jablonski-Diagramm (nach [20] Darstellung von Wirtsgitter-Ionen und Aktivator-Ionen im Periodensystem der Elemente [12,21] Ionenradien der hexakoordinierten REE ³⁺ Ionen [28] Dicke-Diagramm für freie REE ³⁺ -Ionen [29]. Energieniveaudiagramm für Sm ³⁺ in CaAl ₂ O ₄ . Energieniveaudiagramm für Bu ³⁺ in CaAl ₂ O ₄ . Energieniveaudiagramm für Bu ³⁺ in CaEuAlO ₄ . Präparierte Pulverprobe (links) und senkrechter Probenträger für den Pulverprobenhalter. Schematischer Ablauf der Festkörpersynthese Schematischer Ablauf der Pechini-Synthese Struktur des Ergebniskapitels. Röntgendiffraktogramm von CaAl ₂ O ₄ . Kristallstruktur von CaAl ₂ O ₄ . Röntgendiffraktogramm von SrAl ₂ O ₄ im Bereich 10 - 60 °20, Sintertemperatur 900 °C – 1200 °C. Kristallstruktur von SrAl ₂ O ₄ . Röntgendiffraktogramm von BaAl ₂ O ₄ im Bereich 10 - 60 °20, Sintertemperatur 900 °C – 1200 °C. Kristallstruktur von BaAl ₂ O ₄ . Röntgendiffraktogramm von BaAl ₂ O ₄ und BaAl ₂ O ₄ . REM-Aufnahmen von a) CaAl ₂ O ₄ . REM-Aufnahmen von a) CaAl ₂ O ₄ . REM-Aufnahmen von a) CaAl ₂ O ₄ . Anregungs- und Emissionsspektrum von CaAl ₂ O ₄ . Anregungs- und Emissionsspektrum von CaAl ₂ O ₄ . Anregungs- und Emissionsspektrum von SrAl ₂ O ₄ . Römsendiffraktogramme von mit Sm ³⁺ dotiertem BaAl ₂ O ₄ (• = CaAl ₄ O ₇ ; • = CaSmAl ₃ O ₇ ; • = SrD ₄ O ₃ O; • = SrD ₂ O ₄ O; • = CaD ₄ A ₀ O; • = CaAl ₄ O ₇ ; • = CaDyAl ₃ O ₇ ; • SrD ₄ O ₃ O; • = SrD ₄ A ₃ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ; • = SrD ₄ A ₁ O ₇ ;

Abb. 29:	Anregungs- und Emissionsspektrum von mit 0,50 mol-% Dy ³⁺ dotiertem
	CaAl ₂ O ₄ , Übergänge der nummerierten Peaks siehe Tab. 12
Abb. 30:	Emissionsspektren von CaAl ₂ O ₄ :xDy (λ_{Anr} = 346 nm), Raumtemperatur
Abb. 31:	Anregungs- und Emissionsspektrum von mit 0,50 mol-% Dy ³⁺ dotiertem SrAl ₂ O ₄ ,
	Übergänge der nummerierten Peaks siehe Tab. 12
Abb. 32:	Emissionsspektren von SrAl ₂ O ₄ :Dy (λ_{Anr} = 346 nm), Raumtemperatur
Abb. 33:	Emissionsspektren von BaAl2O4:0,0025Dy bei unterschiedlichen
	Anregungswellenlängen, Raumtemperatur
Abb. 34:	Anregungsspektrum von BaAl ₂ O ₄ :0,0025Dy mit ($\lambda_{Em} = 573$ nm),
	Raumtemperatur
Abb. 35:	Emissionsspektren von BaAl ₂ O ₄ :xDy ($\lambda_{Anr} = 386$ nm), Raumtemperatur
Abb. 36:	Röntgendiffraktogramm von CaB2O4, im Bereich 10 - 70 °20, Vergleich der
	Syntheseergebnisse von Pechini- und Festkörpermethode
Abb. 37:	Kristallstruktur von CaB ₂ O ₄
Abb. 38:	Röntgendiffraktogramm von SrB ₂ O ₄ im Bereich 10 - 70 °20, Sintertemperatur 700
	°C – 900 °C
Abb. 39:	FTIR-Spektren von CaB ₂ O ₄ und SrB ₂ O ₄
Abb. 40:	Röntgendiffraktogramm von BaB ₂ O ₄ im Bereich 10 - 70 °20
Abb. 41:	Kristallstruktur von BaB ₂ O ₄ 53
Abb. 42:	FTIR-Spektrum von BaB ₂ O ₄ 53
Abb. 43:	Röntgendiffraktogramme von mit Sm3+ dotierten MB2O454
Abb. 44:	Anregungs- und Emissionsspektrum von mit 1,00 mol-% Sm ³⁺ dotiertem CaB ₂ O ₄ ,
	Übergänge der nummerierten Peaks siehe Tab. 18
Abb. 45:	Emissionsspektren von CaB ₂ O ₄ :xSm ($\lambda_{Anr} = 401$ nm), Raumtemperatur
Abb. 46:	Anregungs- und Emissionsspektrum von mit 1,00 mol-% Sm ³⁺ dotiertem SrB ₂ O ₄ ,
	Übergänge der nummerierten Peaks siehe Tab. 18
Abb. 47:	Emissionsspektren von SrB ₂ O ₄ :xSm ($\lambda_{Anr} = 400 \text{ nm}$)
Abb. 48:	Anregungs- und Emissionsspektrum von mit 1,00 mol-% Sm ³⁺ dotiertem BaB ₂ O ₄ ,
	Übergänge der nummerierten Peaks siehe Tab. 18
Abb. 49:	Emissionsspektren von BaB ₂ O ₄ :xSm ($\lambda_{Anr} = 401 \text{ nm}$)
Abb. 50:	Röntgendiffraktogramme von mit Dy^{3+} dotiertem MB ₂ O ₄ (\blacksquare = DyBO ₃ , Hauptpeak
	bei 27,16 °2θ (<i>hkl</i> = 100))57
Abb. 51:	Anregungs- und Emissionsspektrum von mit 1,00 mol-% Dy ³⁺ dotiertem CaB ₂ O ₄
	Übergänge der nummerierten Peaks siehe Tab. 1958
Abb. 52:	Emissionsspektren von CaB ₂ O ₄ :xDy ($\lambda_{Anr} = 360 \text{ nm}$)
Abb. 53:	Anregungs- und Emissionsspektrum von mit 1,00 mol-% Dy ³⁺ dotiertem BaB ₂ O ₄
Abb. 54:	Emissionsspektren von BaB2O4:0,010Dy bei Anregungswellenlängen 349 und
	360 nm
Abb. 55:	Röntgendiffraktogramm von CaO·La2O3, Pechini-Methode, Sintertemperatur
	1200 - 1400 °C

Abb. 56:	Röntgendiffraktogramm von CaO·Eu ₂ O ₃ , Pechini-Methode, Sintertemperatur 1100 - 1300 °C
Abb. 57:	Röntgendiffraktogramm von CaSc ₂ O ₄ , Pechini-Methode, Sintertemperatur 800 -
Abb 58.	$1300 - C \dots 04$ Kristalletruktur von CaScoQ4
Abb 59.	Röntgendiffraktogramm von SrO·L a_2O_2 Pechini-Methode Sintertemperatur 1100
1100.07.	- 1300 °C
Abb. 60:	Röntgendiffraktogramm von SrEu ₂ O ₄ , Pechini-Methode, Sintertemperatur 1100 -
	1300 °C
Abb. 61:	REM Aufnahme von SrEu ₂ O ₄ 67
Abb. 62:	Röntgendiffraktogramm der Verbindungen SrREE ₂ O ₄ (REE = Sm, Eu, Gd, Dy, Y, Yb, Sc)
Abb. 63:	Röntgendiffraktogramm von BaO·La ₂ O ₃ , Pechini-Methode, Sintertemperatur 850 - 1450 °C
Abb. 64:	Röntgendiffraktogramm der Verbindungen BaREE2O4 (REE = Nd, Sm, Eu, Gd,
	Dy und Y)
Abb. 65:	Röntgendiffraktogramm von BaO·Yb ₂ O ₃ , Pechini-Methode, Sintertemperatur 850 - 1450 °C
Abb. 66:	Röntgendiffraktogramm von BaO·Sc ₂ O ₃ , Pechini-Methode, Sintertemperatur 1400 - 1500 °C
Abb. 67:	Röntgendiffraktogramme von mit Sm ³⁺ dotiertem SrEu ₂ O ₄ und BaEu ₂ O ₄ 74
Abb. 68:	Anregungs- und Emissionsspektrum von SrEu ₂ O ₄ und BaEu ₂ O ₄ , Übergänge der nummerierten Peaks siehe Tab. 26
Abb. 69:	Anregungs- und Emissionsspektrum von SrEu ₂ O ₄ :0,02Sm und BaEu ₂ O ₄ :0,02Sm, Raumtemperatur
Abb. 70:	Röntgendiffraktogramme von mit Dy ³⁺ dotiertem SrEu ₂ O ₄ und BaEu ₂ O ₄
Abb. 71:	Anregungs- und Emissionsspektrum von SrEu ₂ O ₄ :0,02Dy und BaEu ₂ O ₄ :0,02Dy,
	Raumtemperatur
Abb. 72:	Ionenradien der ausgewählten Elemente
Abb. 73:	Abhängigkeit der orthorhombischen MREE ₂ O ₄ -Gitterparameter vom REE ³⁺ -
	Ionenradius
Abb. 74:	Ternäres Diagramm SrO-Al ₂ O ₃ -Eu ₂ O ₃ , rote Punkte entsprechen der theoretischen
	Zusammensetzung der eigenen Synthesen, schwarze Punkte entsprechen den
	Verbindungen, die aus den Datenbanken ICDD und ICSD bekannt sind
Abb. 75:	Ternäres Diagramm SrO-B ₂ O ₃ -Eu ₂ O ₃ , rote Punkte entsprechen der theoretischen
	Zusammensetzung der eigenen Synthesen, schwarze Punkte entsprechen
	Verbindungen, die aus den Datenbanken ICDD und ICSD bekannt sind
Abb. 76:	Röntgendiffraktogramme der Mischkristallreihe $SrEu_xAl_{2-x}O_4$ (x = 0; 0,1; 0,3; 0,5;
	0,7; 0,9; 1)
Abb. 77:	Kristallstruktur von SrEuAlO ₄
Abb. 78:	Graphische Darstellung der Verfeinerung von SrEuAlO ₄ mittels Rietveld-Fit 85

Abb. 79:	Röntgendiffraktogramme der Mischkristallreihe SrEu _x Al _{2-x} O ₄ ($x = 0; 0, 1; 0, 3; 0, 5; 0, 7; 0, 0; 1$)
Abb 80.	Graphische Deretellung der Verfeinerung von SreEu-(PO-), mittele Bietveld Eit?
$\begin{array}{c} A00.80. \\ Abb 81 \end{array}$	$K_{ristallstruktur von Sr_{Fuc}(BO_{2})}$
Abb 87.	Rinstanstruktur von Si3Eu2(BO3)4
AUU. 82.	Sintertemperatur 1000 - 1200 °C
Abb. 83:	Röntgendiffraktogramme der Verbindungen CaREEA IO_4 (REE = Nd. Sm. Eu. Gd.
1100.05.	Dv Y und Yh) 92
Abb 84.	$REM-Aufnahmen von a) CaYAlO_4 und b) CaDvAlO_4 93$
Abb. 85:	Wärmeflussdiagramme von CaAl ₂ O ₄ , CaDvAlO ₄ , CaEuAlO ₄ , CaGdAlO ₄ und
1100.00.	$CaYAIO_4$
Abb. 86:	Röntgendiffraktogramme der Verbindungen SrREEAlO ₄ (REE = La, Nd, Sm, Eu,
	Gd, und Dy)
Abb. 87:	Röntgendiffraktogramme von SrO·0,5Yb ₂ O ₃ ·0,5Al ₂ O ₃ , Pechini-Methode,
	Sintertemperatur 1000 - 1500 °C
Abb. 88:	Röntgendiffraktogramme von BaLaAlO4, Pechini-Methode, Sintertemperatur
	1200 - 1300 °C
Abb. 89:	REM-Aufnahmen von BaLaAlO ₄
Abb. 90:	Röntgendiffraktogramme von BaO·0,5Dy2O3·0,5Al2O3, Pechini-Methode,
	Sintertemperatur 1300 und 1450 °C
Abb. 91:	Röntgendiffraktogramme von mit Sm3+ dotiertem CaEuAlO4 und SrEuAlO4 99
Abb. 92:	Anregungs- und Emissionsspektrum von CaEuAlO4 und SrEuAlO4, Übergänge
	der nummerierten Peaks siehe Tab. 35
Abb. 93:	Anregungs- und Emissionsspektrum von CaEuAlO4:0,02Sm und
	SrEuAlO ₄ :0,02Sm, Raumtemperatur
Abb. 94:	Emissionsspektrum von CaEuAlO ₄ :xSm und SrEuAlO ₄ :xSm (λ_{Anr} = 406 nm) 102
Abb. 95:	Darstellung des Energieübertragungsprozesses bei CaEuAlO ₄ :xSm 102
Abb. 96:	Röntgendiffraktogramme von mit Dy ³⁺ dotierten CaEuAlO ₄ und SrEuAlO ₄ 103
Abb. 97:	Anregungs- und Emissionsspektrum von CaEuAlO4:0,02Dy und
	SrEuAlO ₄ :0,02Dy, Raumtemperatur
Abb. 98:	Abhängigkeit der MREEAlO ₄ -Gitterparameter vom REE ³⁺ -Ionenradius105
Abb. 99:	Röntgendiffraktogramme der Verbindungen $Ca_3REE_2(BO_3)_4$ (REE = La, Nd, Sm,
	Eu, Gd, Dy, Y und Yb)109
Abb. 100:	Röntgendiffraktogramme der Verbindungen $Sr_3REE_2(BO_3)_4$ (REE = La, Nd, Sm,
	Eu, Gd, Dy, Y und Yb)111
Abb. 101:	FTIR-Spektren von $Sr_3REE_2(BO_3)_4$ (REE = Nd, Sm, Eu, Gd, Dy, Y und Yb) 112
Abb. 102:	EDX-Spektrum von Sr ₃ Dy ₂ (BO ₃) ₄
Abb. 103:	Röntgendiffraktogramme der Verbindungen $Ba_3REE_2(BO_3)_4$ (REE = La, Nd, Sm,
	Eu, Gd, Dy und Y)115
Abb. 104:	$R\"{o}ntgendiffraktogramme \ von \ 3BaO\cdot Yb_2O_3\cdot 2B_2O_3 \dots \dots 116$
Abb. 105:	Röntgendiffraktogramme von mit Sm3+ dotiertem Ca3Eu2(BO3)4, Sr3Eu2(BO3)4
	und Ba ₃ Eu ₂ (BO ₃) ₄ 117

Abb. 106:	Anregungs- und Emissionsspektrum von Ca3Eu2(BO3)4, Sr3Eu2(BO3)4 und	
	Ba ₃ Eu ₂ (BO ₃) ₄ , Übergänge der nummerierten Peaks siehe Tab. 42 118	
Abb. 107:	Anregungs- und Emissionsspektrum von Ca ₃ Eu ₂ (BO ₃) ₄ :0,02Sm,	
	Sr ₃ Eu ₂ (BO ₃) ₄ :0,02Sm und Ba ₃ Eu ₂ (BO ₃) ₄ :0,02Sm, Raumtemperatur119	
Abb. 108:	Röntgendiffraktogramme von mit Dy ³⁺ dotiertem Ca ₃ Eu ₂ (BO ₃) ₄ , Sr ₃ Eu ₂ (BO ₃) ₄	
	und Ba ₃ Eu ₂ (BO ₃) ₄	
Abb. 109:	Anregungs- und Emissionsspektrum von Ca ₃ Eu ₂ (BO ₃) ₄ :0,02Dy,	
	Sr ₃ Eu ₂ (BO ₃) ₄ :0,02Dy und Ba ₃ Eu ₂ (BO ₃) ₄ :0,02Dy, Raumtemperatur120	
Abb. 110:	Abhängigkeit der M ₃ REE ₂ (BO ₃) ₄ -Gitterparameter vom REE ³⁺ -Ionenradius 122	

Tabellenverzeichnis

Tab. 1:	Formen von Lumineszenz [21]	6
Tab. 2:	Elektronenkonfiguration der Seltenen Erden [26]	9
Tab. 3:	Vergleich von 4f \rightarrow 4f-Übergang und 4f \rightarrow 5d-Übergang [13]	13
Tab. 4:	Messparameter für die röntgenographische Untersuchung der Edukte und Produkte	19
Tab. 5:	Theoretische Zusammensetzung der mittels Festkörpermethode synthetisierten	
	Wirtsgitter	21
Tab. 6:	Mittels Festkörpermethode synthetisierte Leuchtstoffe	22
Tab.7:	Theoretische chemische Zusammensetzung der mittels Pechini-Methode	
	synthetisierten Wirtsgitter	25
Tab. 8:	Mittels Pechini-Methode synthetisierte Leuchtstoffe	25
Tab. 9:	Hersteller und Reinheitsgrade der verwendeten Chemikalien	28
Tab. 10:	Bedingungen für die Synthese von MAl ₂ O ₄ (M = Ca, Sr, Ba)	32
Tab. 11:	Beobachtete Sm ³⁺ -Übergänge in CaAl ₂ O ₄ und SrAl ₂ O ₄ (Nummerierung siehe Abb.	
	23 und Abb. 25)	39
Tab. 12:	Beobachtete Dy^{3+} Übergänge in MAl ₂ O ₄ (M = Ca, Sr, Ba; Nummerierung siehe Ab	b.
	29, Abb. 31, Abb. 34 und Abb. 35)	42
Tab. 13:	Zusammenfassung der Synthese- und Lumineszenzeigenschaften der Leuchtstoffe	
	MAl_2O_4 : Sm und MAl_2O_4 : Dy (M = Ca, Sr, Ba)	45
Tab. 14:	Bedingungen für die Synthese von MB ₂ O ₄ (M = Ca, Sr, Ba)	48
Tab. 15:	verfeinerte Gitterparameter von CaB2O4, SrB2O4 und BaB2O4	50
Tab. 16:	FTIR-Absorptionsbanden von CaB2O4 und SrB2O4	51
Tab. 17:	FTIR-Absorptionsbanden von BaB2O4	54
Tab. 18:	Beobachtete Sm^{3+} -Übergänge in MB ₂ O ₄ (M = Ca, Sr, Ba; Nummerierung siehe Ab	b.
	44, Abb. 46 und Abb. 48)	55
Tab. 19:	Dy ³⁺ Übergänge in CaB ₂ O ₄ (Nummerierung siehe Abb. 51)	58
Tab. 20:	Zusammenfassung der Synthese- und Lumineszenzeigenschaften der Leuchtstoffe	
	MB_2O_4 :Sm und MB_2O_4 :Dy (M = Ca, Sr, Ba)	59
Tab. 21:	Zusammenfassung der Ergebnisse zur Synthese der Reihe CaO·REE $_2O_3$	62
Tab. 22:	Zusammenfassung der Ergebnisse zur Synthese der Reihe SrO·REE $_2O_3$	65
Tab. 23:	Verfeinerte Gitterparameter für SrREE ₂ O ₄ (REE = Sm, Eu, Gd, Dy, Y, Yb und Sc))
	bei Raumtemperatur. Raumgruppe: Pnam	69
Tab. 24:	Zusammenfassung der Ergebnisse zur Synthese der Reihe BaO·REE ₂ O ₃	70
Tab. 25:	Verfeinerte Gitterparameter für $BaREE_2O_4$ (REE = La, Nd, Sm, Eu, Gd, Dy und Y)
	bei Raumtemperatur. Raumgruppe: Pnam.	71
Tab. 26:	Beobachtete Eu ³⁺ -Übergänge in SrEu ₂ O ₄ und BaEu ₂ O ₄ (Nummerierung siehe Abb.	
	68)	75
Tab. 27:	Darstellung der durchgeführten Synthesen von Erdalkali-Seltenerd-Oxiden	78

Tab. 28: 2	Zusammenfassung der Ergebnisse zur Synthese der Mischreihe SrEu_xAl_2-xO4 ($0 \le x \le x$
2	2), bei Auftreten mehrerer Phasen Sortierung nach abnehmendem Gehalt
Tab. 29: 2	Zusammenfassung der Ergebnisse zur Synthese der Mischreihe SrEu _x $B_{2-x}O_4$ ($0 \le x \le 1$
2	2), bei Auftreten mehrerer Phasen Sortierung nach abnehmendem Gehalt
Tab. 30: 2	Zusammenfassung der Ergebnisse zur Synthese der Reihe CaO·0,5REE ₂ O ₃ ·0,5Al ₂ O ₃
Tab. 31: V	Verfeinerte Gitterparameter für CaREEAlO4 (REE = La, Nd, Sm, Eu, Gd, Dy, Y und
X	Yb) bei Raumtemperatur. Raumgruppe: I4/mmm ($\alpha = \beta = \gamma = 90,00^\circ$; a = b)91
Tab. 32: 2	Zusammenfassung der Ergebnisse zur Synthese der Reihe SrO·0,5REE ₂ O ₃ ·0,5Al ₂ O ₃
Tab. 33: V	Verfeinerte Gitterparameter für SrREEAlO ₄ (REE = La, Nd, Sm, Eu, Gd, Dy, Y und
Ţ	Yb) bei Raumtemperatur. Raumgruppe: I4/mmm ($\alpha = \beta = \gamma = 90,00^\circ$; a = b)96
Tab. 34: 2	Zusammenfassung der Ergebnisse zur Synthese der Reihe BaO·0,5REE ₂ O ₃ ·0,5Al ₂ O ₃
Tab. 35: I	Beobachtete Eu ³⁺ -Übergänge in CaEuAlO4 und SrEuAlO4 (Nummerierung siehe
I	Abb. 92)
Tab. 36: I	Darstellung der durchgeführten Synthesen von Erdalkali-Seltenerd-Aluminaten 104
Tab. 37: A	Ausgewählte Schmelztemperaturen der Verbindungsgruppe M ₃ REE ₂ (BO ₃) ₄ 107
Tab. 38: 2	Zusammenfassung der Ergebnisse zur Synthese der Reihe 3CaO·La ₂ O ₃ ·2B ₂ O ₃ 110
Tab. 39: 2	Zusammenfassung der Ergebnisse zur Synthese der Reihe 3SrO·La ₂ O ₃ ·2B ₂ O ₃ 111
Tab. 40: 2	Zusammenfassung der Ergebnisse zur Synthese von der Reihe 3BaO·La ₂ O ₃ ·2B ₂ O ₃
Tab. 41: V	Verfeinerte Gitterparameter für $Ba_3REE_2(BO_3)_4$ (REE = La, Nd, Sm, Eu, Gd, Dy und
Ţ	Y) bei Raumtemperatur. Raumgruppe: Pnma
Tab. 42: I	Beobachtete Eu ³⁺ -Übergänge in Ca ₃ Eu ₂ (BO ₃) ₄ , Sr ₃ Eu ₂ (BO ₃) ₄ und Ba ₃ Eu ₂ (BO ₃) ₄
(Nummerierung siehe Abb. 106)
Tab. 43: I	Darstellung der durchgeführten Synthesen von Erdalkali-Seltenerd-Boraten 121

Lebenslauf

Persönliche Daten

Name:	Chimednorov Otgonbayar
Geburtsdatum:	27.02.1990
Geburtsort:	Ulaanbaatar

Schulbildung

2005 - 2006	Südstadtgymnasium, Halle
2006 - 2008	Georg-Cantor-Gymnasium, Halle, Abitur

Hochschulstudium

2008 - 2012	Martin-Luther-Universität Halle-Wittenberg
	Chemie (B.Sc.)
2012 - 2014	Martin-Luther-Universität Halle-Wittenberg
	Chemie (M.Sc.)
2014 - 2016	Universität Leipzig
	Fachchemiker für Analytik und Spektroskopie

Berufliche Tätigkeiten

seit 07/2021	Landesamt für Umweltschutz Sachsen-Anhalt Dezernentin für instrumentelle Analytik
02/2021 - 06/2021	Analytik Jena GmbH Applikationsspezialistin ICP-MS
2016 - 2020	Martin-Luther-Universität Halle-Wittenberg Arbeitsgruppe: Mineralogie und Geochemie Wissenschaftliche Mitarbeiterin
2015	Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt Landesmuseum für Vorgeschichte Mitarbeiterin

Naumburg (Saale)

Chimednorov Otgonbayar