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Abstract
Death-associated protein 1 (DAP1) is a proline-rich cytoplasmatic protein highly conserved in most eukaryotes. It has been 
reported to be involved in controlling cell growth and migration, autophagy and apoptosis. The presence of human DAP1 
is associated to a favourable prognosis in different types of cancer. Here we describe the almost complete 1H , 13C , and 15N 
chemical shift assignments of the human DAP1. The limited spectral dispersion, mainly in the 1HN region, and the lack of 
defined secondary structure elements, predicted based on chemical shifts, identifies human DAP1 as an intrinsically disor-
dered protein (IDP). This work lays the foundation for further structural investigations, dynamic studies, mapping of potential 
interaction partners or drug screening and development.
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Biological context

The human Death-associated protein 1 (DAP1) is a mem-
ber of the DAP family (DAP1-5)—originally identified as a 
diverse group of proteins that constitute biochemical path-
ways leading to apoptosis (Levy-Strumpf and Kimchi 1998). 
DAP1 is highly conserved in most eukaryotes and ubiqui-
tously expressed in many cells and tissues. It was originally 
discovered in HeLa-cells, which were under the constant 
influence of apoptosis-inducing IFN-γ (Deiss et al. 1995). 
The high sequence homology especially within higher 
eukaryotes (Fig. 1) raises the question whether DAP1 is a 
young protein in evolutionary terms or whether the strong 

sequence conservation is a prerequisite for a fundamental 
function of DAP1 identical in all higher organisms.

The human DAP1 gene encodes for a cytoplasmatic pro-
tein (UniProtKB - P51397) of 102 amino acid with a proline 
content of nearly 15%. Human cell line experiments identi-
fied DAP1 as a phosphoprotein (S3 and S51 are phosphoryl-
ated) under nutrient-rich conditions. However, stress condi-
tions trigger rapid dephosphorylation of DAP1 (Koren et al. 
2010b). The downstream effectors of DAP1 are still subject 
of intensive research (Yahiro et al. 2014; Nie et al. 2020), 
but a proposed candidate for upstream regulation is mTOR 
(Koren et al. 2010a, b). The important role of mTOR in cell 
proliferation and metabolism is well known and DAP1 is 
constantly phosphorylated by mTOR due to its SerineThreo-
nine kinase activity under normal conditions. The interplay 
between de- and phosphorylation is hypothesized to be a key 
factor for the activity of DAP1. Koren et al. (2010a, b) iden-
tified dephosphorylated DAP1 as a suppressor of autophagy 
and as a novel substrate of mTOR. DAP1 is rapidly activated 
by dephosphorylation upon inactivation of mTOR, so that 
the suppressive influence of dephosphorylated DAP1 acts 
as an antagonist to the autophagic flux (Koren et al. 2010a, 
b). Lacking any functional motif the role and precise mecha-
nism of DAP1 in autophagy is still poorly understood.
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Displaying a general regulatory effect on cellular growth 
DAP1 seems to have an inhibitory effect on cell migration, 
autophagy and apoptosis (Koren et al. 2010b; Wazir et al. 
2012; Xia et al. 2017; Yahiro et al. 2014). An imbalance 
in autophagy leads to the formation of different types of 
tumours (Udristioiu and Nica-Badea 2019). In this context 
a connection between DAP1, autophagocytosis and human 
carcinogenesis has been discovered (Wazir et al. 2015). The 
presence of DAP1 is associated to a favorable prognosis in 
breast, ovarian, colorectal cancer and others (Wazir et al. 
2015; Nie et al. 2020; Jia et al. 2014), even though the posi-
tive influence is still under discussion in the literature (San-
tos et al. 2015).

Its role in cellular growth, programmed cell death and 
autophagy renders DAP1 an interesting target for future 
structural and/or interaction studies with regard to potential 
drug screening and development. But so far, there are no 
biophysical or structural studies available in literature. Here 
we report the almost complete 1H , 13C , and 15N backbone 
and side chain resonance assignments of the human DAP1.

Methods and experiments

Protein expression and purification

The full-length human DAP1 gene, codon optimized for 
expression in E. coli, was ordered from Thermo Fischer 
Scientific (Germany) and subcloned with NdeI and XhoI 
restriction enzymes into a pET28a expression vector, pro-
viding an N-terminal His

6
 tag. Subcloning was confirmed 

by DNA sequencing (Eurofins Genomics, Germany). The 
construct pET28a-His

6
-hDAP1 was transformed in E. coli 

BL21(DE3) cells and plated onto kanamycin plates. A single 
colony from the plate was picked and grown in LB-Medium 
(supplemented with 50 μg/ml kanamycin) at 37 °C until 
OD

600 nm
 reached 0.7. Cells were pelleted at 5250xg for 20 

min using a Beckman Coulter SX4750A swinging bucket 

rotor, subsequently washed with 20 ml PBS (phosphate 
buffered saline) and pelleted again. After resuspension in 
250 ml M9 mineral salts medium supplemented with 1 g/l 
15NH

4
Cl and 4 g/l 13C

6
-labeled glucose, gene expression was 

induced by adding 1 mM IPTG (isopropyl-1-thio-D-galacto-
pyranoside) at 37 °C to the bacteria culture. After 3 h the E. 
coli cells were harvested and stored at − 20 °C. For human 
DAP1 protein purification the frozen cells were resuspended 
in buffer (50 mM Na

2
HPO

4
 , pH 8, 300 mM NaCl, 10 mM 

imidazole), lysed with sonification and then centrifuged at 
10,000×g for 15 min. The clear supernatant was applied 
to Ni-NTA affinity chromatography. The resin was washed 
with at least 10 column volumes each of 10 mM and 20 mM 
imidazole containing lysis buffer. Purified human DAP1 was 
eluted with 0.25 M imidazole and subsequently further puri-
fied on a 16/60 HiLoad S75 size exclusion chromatography 
column (GE Healthcare) with 10 mM Na

2
HPO

4
 , pH 6.5, 

150 mM NaCl. The fractions containing human DAP1 were 
pooled together and concentrated. The purity of the obtained 
protein was additionally confirmed by SDS-PAGE. The final 
concentration of the human DAP1 NMR sample was about 
0.8 mM.

We want to mention that the used construct has a throm-
bin cleavage site between the N-terminal His

6
 tag and the 

native human DAP1 sequence. Although no further throm-
bin cleavage site is predicted for the native human DAP1, 
the addition of thrombin results not only in the cleavage of 
the N-terminal His

6
 tag but also in a construct shortened by 

9 amino acids at the C-terminus (cleavage after R93). There-
fore the removal of the purification tag was waived and the 
amino acid numbering is as follows: − 19 to 0 indicates the 
purification tag and the native human DAP1 sequence starts 
with methionine number 1.

NMR spectroscopy

All NMR experiments for 1H , 15N and 13C chemical shift 
assignments were acquired at 10 °C in 10 mM Na

2
HPO

4
 , 

Fig. 1   Sequence alignment 
of Death-associated proteins 
1 from selected species. The 
human DAP1 sequence is used 
as consensus. Identical residues 
in other sequences are blanked 
out, mismatches are shown

10. 20. 30. 40. 50. 60.
human MSSPPEGKLETKAGHPPAVKAGGMRIVQKHPHTGDTKEEKDKDDQEWESPSPPKPTVFIS
bos ................................S...R.......................
mus ...................................G...R.........T..........
rattus ....................VA.I...........G..K..........T.......Y..
sus ................................S..A........................
pan ............................................................

70. 80. 90. 100.
human GVIARGDKDFPPAAAQVAHQKPHASMDKHPSPRTQHIQQPRK
bos .........................I.R..............
mus .............................V............
rattus .............................V............
sus .A.......................I....C...........
pan ..........................................
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Fig. 2   [1H , 15N]-HSQC spectrum of 13C,15N-labeled human DAP1 
at pH 6.5, 10 °C. Assignments for backbone amides are annotated in 

bold face. Non-degenerate protons of the side chain amino groups are 
connected by a dashed line. Assignable resonances originating from 
the N-terminal purification tag are marked in italic
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Fig. 3   [13CO , 15N]-spectrum of 13C,15N-labeled human DAP1 at pH 6.5, 10 °C. Assignments for backbone 13CO , 15N correlations of neighboring 
residues are annotated in bold face. Assignable resonances originating from the N-terminal purification tag are marked in italic
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pH 6.5, 150 mM NaCl (90 % H2O/10 % D2O) on a Bruker 
Avance III NMR system equipped with a 5 mm TXI triple 
resonance probe and a magnetic field strength of 16.4 T, 
corresponding to a 1H resonance frequency of 700.5 MHz.

Backbone chemical shifts were assigned from a series 
of spectra including 2D [ 1H , 15N]-HSQC and the Band-
selective Excitation Short-Transient (BEST) version of the 
following standard 3D experiments: HNCO, HN(CA)CO, 
HNCA, HN(CO)CA and HNCACB (Schanda et al. 2006; 
Lescop et al. 2007). The bandwidth of the shaped 1H pulses 
was 5 ppm and the offset was set to 8.3 ppm. The inter-
scan delay was set to 200 ms. Side chain assignments were 
obtained by analysis of spectra including 2D constant-
time [ 1H , 13C]-HSQC, [ 1H , 15N]-TOCSY-HSQC, HCCH-
COSY, HCCH-TOCSY, CC(CO)NH and H(CCCO)NH. 
The sequential assignment, mainly of the proline residues, 
was accompanied by 13C-detected 2D CON and CACO 
and a series of additional 3D experiments using HANH, 
HA(CO)NH, (H)N(COCA)NNH, H(NCOCA)NNH, 
(HCA)CON(CA)H, HACACO, HACAN, HACA(CO)N. 
Sequence-specific side chain assignments of the aromatic 
residues were obtained from 2D aromatic [ 1H , 13N]-HSQC, 
(HB)CB(CGCD)HD and (HB)CB(CGCDCE)HE experi-
ments. All applied experiments are implemented in the 
Bruker Topspin pulse catalogue and applied without any 
further modification. Data acquisition and processing was 
performed with Topspin 3.6.2 (Bruker Biospin GmbH, 
Rheinstetten). The 3D experiments were recorded with 
25% non-uniform sampling (NUS) and Multi-Dimensional 
Decomposition (MDD) was used for data reconstruction 

(Orekhov and Jaravine 2011). The spectra were analyzed 
using CCPNmr Analysis 2.5 (Vranken et al. 2005) within 
the NMRbox virtual environment (Maciejewski et  al. 
2017).

1H resonances were calibrated with respect to the sig-
nal of 2,2-dimethylsilapentane-5-sulfonic acid (DSS). 13C 
and 15N chemical shifts were referenced indirectly to the 1H 
standard (Wishart et al. 1995).

Table 1   Extent of backbone and side chain assignment of human 
DAP1

Nucleus Assigned (%) Total number

1H
N 99 86 out of 87

15N
H 99 101 out of 102

13CO 100 102 out of 102
1H

� 100 109 out of 109
1H

� 98 163 out of 167
1H

� 98 120 out of 122
1H

� 88 69 out of 78
1H

� 50 28 out of 56
13C

� 100 102 out of 102
13C

� 100 95 out of 95
13C

� 81 71 out of 88
13C

� 66 40 out of 61
13C

� 65 17 out of 26

A

B

Fig. 4   a IUPred2A analysis of human DAP1 indicating the intrinsic 
disorder. The residue-specific IUPred2A score for hDAP1 is indicated 
as solid line. Disordered segments are indicated by values higher than 
the default cut-off (0.5), lower values predict structured regions. b 
The sequence specific secondary structure propensity (SSP) scores 
are depicted (open circles). Values below and above 0 indicate 
β-sheet and helical-structure propensity, respectively. A SSP score of 
1 reflects fully formed helical-structure. Fully formed β-structure is 
indicated by a SSP value of -1. As recommended for disordered pro-
teins, only 13C� , 13C� and 1H� chemical shifts were applied and resi-
dues immediately preceding prolines were considered when running 
the SSP script
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Structure prediction

For the sequence-based prediction of disordered protein 
regions the IUPred2A server was used (Dosztányi 2018; 
Mészáros et al. 2018). Since no essential structural elements 
were predicted for human DAP1 we could assume that it is 
an intrinsically disordered protein. Therefore, the random 
coil chemical shifts of human DAP1 were calculated using 
POTENCI (Nielsen and Mulder 2018). The potential sec-
ondary structure elements of human DAP1 were analyzed by 
applying the NMR chemical shifts with the web server CSI 
3.0 (Hafsa et al. 2015). The secondary structure propensity 
was examined with the approach provided by Ja et al. (2006).

Extent of assignments and data deposition

Sequence specific resonance assignments of human DAP1 
could be carried out for nearly all 1H , 13C and 15N spins 
using the suite of 2D and 3D NMR experiments men-
tioned in Methods and Experiments 2.2. The extent of 
assignment is summarized in Table 1. The 1H,15N assign-
ments obtained are indicated in the [ 1H , 15N]-HSQC 
spectrum of human DAP1 (Fig. 2). The backbone 13CO
,15N-correlations of neighboring residues in the 2D CON 
experiment is given in Fig. 3.

The [ 1H , 15N]-HSQC spectrum shows a limited signal 
dispersion in the 1H dimension typically observed for highly 
flexible or intrinsically disordered proteins. The obtained 
human DAP1 chemical shifts assignment was validated 
against the sequence based predicted random coil chemi-
cal shifts for intrinsically disordered proteins from the 
POTENCI web server.

The analysis of secondary structure content from the 
assigned chemical shifts by the CSI web server predicts an 
all coil formation for the entire human DAP1. This supports 
the observation made from the [ 1H , 15N]-HSQC spectrum. 
An amino acid sequence based disorder prediction using 
IUPred2A identifies human DAP1 also as entirely intrin-
sically disordered (Fig. 4a). In addition, we analyzed the 
chemical shift data using the secondary structure propen-
sity (SSP) method to reveal potential structural elements (Ja 
et al. 2006). Even when applying this method no relevant 
α-helical and β-sheet elements can be detected in the human 
DAP1 protein (Fig. 4b). The overall content of α-helical and 
β-sheet elements estimated by the SSP method amounts to 
0% and 14%, respectively. From the experimental data and 
the structural predictions derived, it becomes clear that the 
human DAP1 is an intrinsically disordered protein under the 
chosen conditions.

We report the 13C� and 13C� resonances for all 15 proline 
residues. All prolines’ 13C� and 13C� chemical shifts are in 
the range of 32.2 ppm and 27.5 ppm, respectively. Therefore, 

it can predicted that all proline residues are in a trans con-
formation (Schubert et al. 2002). The 4 proline residues 
preceding another proline reveal 1H� , 13C� chemical shifts 
at 4.7 ppm and 61.7 ppm, respectively, and can be clearly 
distinguished from the other prolines, that have 1H� , 13C� 
chemical shifts at 4.45 ppm and 63.2 ppm.

We also assigned the chemical shifts of the shorter throm-
bin cleaved construct (G-2-R93) and would like to empha-
size that the 1H , 13C and 15N chemical shifts are nearly iden-
tical compared to the full-length construct including the 
purification tag.
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