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1 INTRODUCTION

Utilizing dialogue assistants endowed with weak artificial intelligence has become a common technology, which is
widespread across many industrial spheres - from operating robots using voice to speaking with an intelligent bot
by telephone. However, such systems are still far from being essentially intelligent systems, since they cannot fully
mimicry or replace humans during human-computer interaction (HCI). Nowadays, paralinguistic analyses is becoming
one of the most important parts of HCI, because current requirements to such systems have been increased due to
sharped improvement of speech-recognition systems: now, the HCI system should not only recognize, what the user
is talking about, but also how he/she is talking, and which intention/state does he/she have now. Those include
analyzing and evaluating such high-level features of dialogue as stress, emotions, engagement, and many others.

Although there have been a lot of studies in paralinguistics devoted to recognizing high-level features (such as
emotions[1] and stress[17, 25]) using audio cues, there are still almost no insights on how it could work for engagement.

2 WHAT DOWE KNOW ALREADY?

Engagement is a complex phenomenon, which is still not strictly defined in the scientific community. The most common
definitions in the context of HCI are stated in the following. Sidner et al. in [24] stated engagement as a "process by
which two (or more) participants establish, maintain and end their perceived connection", where "connection" can
be expressed in various ways. Poggi [21] characterized engagement by "the value that a participant in an interaction
attributes to the goal of being together with the other participant(s) and of continuing the interaction". However, the
engagement was considered also in terms of qualities of interfaces [22], user experience [20], in the context of social
media [12], and many other areas.

From a theoretic point of view, researchers divide the engagement concept into cognitive, emotional, and behavioral
components [7]. The cognitive part is mostly expressed by a person’s attention to the interlocutor or task to do,
while emotional (affective) engagement encompasses the person’s emotions and attitudes, which are reflected by the
enjoyment of the particular action. Apart from "brain"-related components of engagement, some researchers further
point out a behavioral construct of engagement[5, 16], which is strictly conveyed by actions, giving a possibility to
measure engagement more objectively.
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Whichever point researchers will lean ultimately, engagement recognition using audio-only is becoming a hot topic
in HCI, especially in dialogue systems and human-robot interactions. The key point is that people are able to understand,
whether an interlocutor is engaged in the conversation or not, yet it is still difficult for all kinds of HCI systems.

3 HOW DO WE STUDY THE PHENOMENON?

Depending on the usage, the present engagement recognition systems are based on either facial or multi-modal features.
In e-learning, researchers [18, 26] use mostly facial features, since a participant is usually silent during lecturer’s
monologue. However, when the participant is involved in the conversation with other persons (or robots), utilization of
facial features is not enough, since a complexity of signals interpretation increases: there are more visual occlusions due
to high movements amount of other participants and visual activity of the target participant. However, at the same time,
we have a richness of the acoustic signals - speech itself and social signals expressed via laughter, fillers, backchannels
and many others. In that case, researchers deploy multi-modal systems, which fuse various cues to do a final prediction.
Those include postures and gestures [6, 9], gaze activity [11], visual focus of attention [23], and audio features[14, 15].
It should be noted, however, that audio features in this case mean high-level features such as laughter, backchannels,
and turn-taking and play just a complementary role for the generation of the final decision.

According to aforementioned use-cases, there are several databases to study engagement: (1) devoted to e-learning
[10, 19], (2) acquired during human-robot interaction [3, 13] and (3) represent human-human dyadic conversations [4].
To the best of our knowledge, neither was exploited for engagement recognition using audio-only features.

4 WHAT WEWOULD LIKE TO KNOW?

One of the key problems in all presented databases and in the engagement recognition domain overall is inconsistency
in label scale - it differs from paper to paper, including 2-point scale (disengaged, engaged) [15], 4-point scale (very
low, low, high, very high engagement) [10, 14] and 5-point scale (disengaged, low engaged, neutral, engaged, highly
engaged)[4, 6]. Sometimes researchers use even more fine-grained scales with more classes [2, 9], although it is rare.
Utilization of the 5-level scale looks the most attractive since we can neatly adjust the system response to the user.
However, it is not clear, whether human annotators are able to distinctly separate the engagement on 5 states. To
prove it, a comprehensive perception study is needed. First of all, there is an important question to be answered: Is it
theoretically possible to set apart engagement on 5 levels?

The second key problem lies in the domination of video-based systems in engagement recognition. While researchers
are actively implementing multi-modal and video systems to capture user engagement in domains related to e-learning
and offline conversations, dialogue related technical systems, such as voice assistants endure a lack of analysis of
such characteristics just because they are limited to speech analyses. Audio is mostly exploited as complementary
information in multi-modal systems for final decision making, and therefore is not used as a standalone signal for
engagement recognition. However, there are many use-cases, when a researcher has only audio, yet should predict the
user’s state such as engagement. There are almost no studies on audio features in this direction. Thus, it comes to the
second important question: Can we build a system, which is able to recognize interlocutor’s engagement using
audio-only (speech and linguistic) cues?

5 WHAT DO WEWANT TO LEARN FROM DIFFERENT DISCIPLINES?

Trying to answer the second question, we need to define suitable audio features, which are able to characterize
engagement. Since people are capable to understand the engagement of interlocutors, it can be assumed that there
exist a set of features able to effectively express engagement through audio cues. Finding an "optimal" (in terms of
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the efficiency of the engagement recognition system) set of audio features, which will highly correlate with user
engagement state, will allow training a machine learning model to automatize the process of engagement identification.
However, just iterating over all available features is not efficient and hardly implementable, as to characterize acoustics
a large number of different features can be used [8]. Thus, we need strong theory-based evidence, which can advise the
direction of feature search.

The problem of engagement scales should be also solved starting from the theoretical background. Despite empirical
studies on different scales and fact that 4-point and 5-point scales can be turned into 2-point or 3-point scales, the
choice of scale should be firstly theoretically supported with psychological researches.

6 WHAT DOWEWANT TO TEACH OTHER DISCIPLINES?

The machine learning (ML) approach is widely known among many research areas. In truth, ML and deep learning (DL)
have permeated more or less into all research disciplines. Today it is difficult to imagine the processing and analysis of
some data acquired during any work without ML. On the other hand, DL is a fast developing domain of ML, earning
a new "breath" with developing special frameworks capable to run DL scripts on GPUs. However, the task of an ML
engineer is not only to develop algorithms, but also to work with data during the whole development loop: acquisition,
analysis, pre-process, and post-process. All these stages require specific skills to be applied and failure in any of them
can be cause of turning into "wrong" data, leading to the incorrect decision provided by the chosen algorithm.

In the case of engagement recognition, the implementation of an recognition systemwill be based on theoretically (and
experimentally) proved valuable features. There are numerous techniques we can utilize for data analysis - processing
the raw audios with 1D or 2D convolutional neural networks (CNN), engineering new features from raw signal to
diverse the set of available features, using linear and non-linear transformations to reduce the dimension of selected
features, evaluating the significance of the obtained features and many others.

7 CONCLUSION

It has been a long path to teach computer systems understanding of human speech. Today, such systems are able to
some extend. However, still far from maintain the conversation in the way humans do: dialogue systems do not take
into account paralinguistics, were we see engagement of the interlocutor (user) as one important aspect. Although the
problem of engagement recognition is under consideration in the research community nowadays, the limitation to
audio-only cues is still challenging. To eliminate this drawback, we the developments should be guarded by theoretical
groundings to be able to define appropriate features and develop an automated engagement recognition system, which
will be able to reliably predict user engagement and act appropriately when the user is about to fall into disengagement
during a conversation with a speech-based technical system.
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