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Abstract
Aim: To identify functional traits that best predict community assembly without 
knowing the underlying environmental drivers.
Methods: We propose a new method based on the correlation r(XY) between two 
matrices of potential community composition: the matrix X is fuzzy-weighted by 
trait similarities of species, and the matrix Y is derived by Beals smoothing using 
the probabilities of species co-occurrences. Since X is based on one or more traits, 
r(XY) measures how well the traits used for fuzzy-weighting reflect the species co-
occurrence patterns in Y. We developed an optimisation algorithm to identify the 
traits maximising this correlation, together with an appropriate permutational test for 
significance. Using metacommunity data generated by a stochastic, individual-based, 
spatially explicit model, we assessed the type I error and the power of our method 
across different simulation scenarios, varying environmental filtering parameters, 
number of traits and trait correlation structures. Then, we applied the method to 
real-world community and trait data of dry calcareous grassland communities across 
Germany to identify, out of 49 traits, the combination of traits that maximised r(XY).
Results: The method correctly identified the relevant traits involved in the assem-
bly mechanisms of simulated communities, showing high power and accurate type I 
error. It proved to be robust against confounding aspects related to interactions be-
tween environmental factors, strength of limiting factors, and trait collinearity. In the 
grassland dataset, the method identified five traits that best explained community 
assembly. These traits reflect the size and the leaf economics spectrum, which are 
related to succession and resource supply, factors that may not be always measured 
in real-world situations.
Conclusions: Our method successfully identified the relevant traits mediating com-
munity assembly, therefore providing insights on the underlying environmental and 
biotic factors, even if these are hidden, unmeasured or not accessible at the spatial or 
temporal scale of the study.
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1  | INTRODUC TION

Understanding how species assemble in space and time is criti-
cal for predicting biodiversity responses to environmental change 
(D’Amen et al., 2017) and the effects of biodiversity losses on 
ecosystem processes and services (Newbold, 2018). In communi-
ties connected by dispersal, patterns of repeated co-occurrence 
and apparent mutual avoidance among species have often been 
observed (e.g. Diamond, 1975; Münzbergová and Herben, 2004). 
This is a consequence of the species’ ecological niches and inter-
actions, both mediated by species’ morphological, physiological, 
phenological, or behavioural characteristics, here collectively indi-
cated as functional traits (Keddy, 1992; McGill et al., 2006; Wilson, 
2007; Götzenberger et al., 2012). These restrictions on the ob-
served patterns constitute community assembly rules (Wilson 
et al., 1999).

Community assembly is driven by abiotic and biotic environ-
mental factors favouring species with a specific set of traits. As a 
consequence, species co-occurrence patterns may naturally arise, 
because species similar with respect to these traits are expected to 
respond similarly to factors. Imagine an environmental factor e1 af-
fecting the performance (w) of species i via a trait t1, i.e. wi|t1 = ƒ(e1), 
or adopting a causal graph representation for the sake of simplicity: 
e1 → t1. All else being equal, at a given level of e1 some species will 
tend to co-occur with those having similar values of trait t1. This will 
generate trait convergence for t1 or, in other words, a trend in com-
munity-weighted means (CWMs) along changing e1, i.e. e1 →CWMt1. 
However, community assembly involves more complex mechanisms 
than that. First, the units subject to environmental filtering are 
whole organisms with sets of morpho-physio-phenological traits 
(Violle et al., 2007) which cannot be physically disentangled in re-
sponse to different factors. Second, traits are often correlated, given 
that the multivariate trait space of species is strongly concentrated 
in a small number of trait value combinations, owing to coordination 
and trade-offs between traits as well as ecological and phylogenetic 
constraints (Murren, 2002; Díaz et al., 2016; Céréghino et al., 2018). 
As a consequence of these two constraints, a factor effect (e1) on 
a trait (t1) may depend on the value of another trait (t2) in the same 
organism, either under the effect of the same factor, i.e. e1 → t1|t2, or 
another factor, i.e. (e1 → t1) | (e2 → t2). In this case, one trait may be 
more limiting than another depending on the strength of the factor 
effects (Sih and Gleeson, 1995; Gorban et al., 2011). Also, unknown 
factors affecting t1 will generate increased variance in t1 along the 
known e1 gradient (Kaiser et al., 1994; Thomson et al., 1996; Cade 
and Noon, 2003). These mechanisms may generate patterns of trait 
divergence (Pillar et al., 2009), e.g. when the community-weighted 
variance, or functional diversity (FD), of a trait increases along an 
environmental gradient.

But how to identify which functional traits are relevant in me-
diating community assembly, irrespective of whether the mecha-
nisms lead to convergence or divergence patterns? Traditionally, 
these traits have been identified by relating community trait pat-
terns to environmental conditions or resource levels, hereafter 
called environmental factors for simplicity (Pillar and Orlóci, 1993; 
Díaz and Cabido, 1997; Pillar, 1999; Lavorel and Garnier, 2002; 
Pillar et al., 2009; Bruelheide et al., 2018). This approach, however, 
falls short when the factors are hidden, i.e. unknown or not ob-
servable. This is the case, for instance, when the factor was simply 
not measured, when it is related to unknown past conditions, but 
also when it affects community assembly at a much finer resolu-
tion than the grain size of the studied community units. Moreover, 
community assembly might also depend on biotic factors related to 
species interactions, such as predation, facilitation, or competition. 
The interactions might be indirect, as in the case of a plant sub-
tracting or adding resources to other plants, or direct, such as graz-
ing and predation, which might filter traits related to avoidance or 
tolerance. Both classes of environmental factors are often difficult 
to measure, but are likewise expected to shape the functional pro-
file of ecological communities (Mason and Wilson, 2006; D’Amen 
et al., 2017).

Under the assumption that these relevant yet hidden factors 
are reflected in community composition, compositional data might 
be analysed in a way that allows to identify the fundamental traits 
mediating community assembly. Once the traits are known, one 
can use factor–trait relations known from ecological theory or from 
other empirical studies (e.g. Díaz et al., 2007; Dubuis et al., 2013; 
Bruelheide et al., 2018) to make inferences about those factors, even 
if hidden, that are responsible for filtering (Keddy, 1992) species in 
the studied communities.

Here we propose and test a data-driven method to identify 
those functional traits that best predict community assembly 
without knowing the relevant environmental or biotic factors 
shaping the studied communities. The foundation of our ap-
proach is to relate two ways of predicting potential community 
composition to each other, either based on the probability of spe-
cies co-occurrence (Beals, 1984) or using fuzzy-weighting based 
on species traits (Pillar et al., 2009). Given a pool of m species 
spread across n communities in a metacommunity (Leibold et al., 
2004), Beals (1984) smoothing predicts the probability of occur-
rence of every species j in each community k, estimated as the 
weighted average of the pairwise co-occurrence probabilities of 
species j with those species actually present in community k. Beal 
smoothing has been proved to effectively recover the latent com-
munity structure in metacommunities described by noisy data (De 
Cáceres and Legendre, 2008; Smith, 2017). Fuzzy-weighting (Pillar 
et al., 2009) has some analogy to Beals smoothing but, instead 
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of co-occurrence probabilities, it predicts the probability of oc-
currence of every species in each community based on the trait 
similarity with those species actually present in the community. 
Fuzzy-weighting results in a trait-based transformation of spe-
cies composition in a metacommunity. Thus, it fully describes the 
potential community composition regarding traits encompassing 
both convergence and divergence, which may reflect the envi-
ronmental structure depending on the selected traits (Pillar et al., 
2009). The correlation between these two matrices of predicted 
species composition should thus measure how well the traits used 
for fuzzy-weighting reflect the species co-occurrence patterns. 
Hence, finding the set of functional traits mediating community 
assembly can be reduced to the task of developing an optimisa-
tion algorithm that identifies the traits maximising this correlation, 
together with an appropriate permutational test for significance.

To test our method, we generated data with known environ-
mental filtering mechanisms and analysed how often our method 
correctly identified the traits involved in the simulated process of 
community assembly. Then, we applied the method to real plant 
community data and checked whether it identified traits that can 
be considered relevant in mediating species assembly in the studied 
communities.

2  | METHODS

As input, the analysis uses community composition matrix W of sites 
by species, and matrix B of traits describing the species found in the 
metacommunity.

The Beals smoothing (Figure 1) requires a matrix P of pairwise 
probabilities of species co-occurrences, which is derived from W:

where pi|j is the probability of species i to occur in a community when 
species j is present, w0

ki
 and w0

kj
 are the incidences (0, 1) of the species i 

and j in the community k, and w0
.j
 is the total incidence of species j across 

the n communities in W. Normalising W by its site totals, to compute 
relative species abundances (Wp), and multiplying it by P (Figure  1) 
results in Beals-smoothed matrix Y of species by communities (Beals, 
1984; De Cáceres and Legendre, 2008). In this definition, the target 
species were included for the estimation of their own probability of 
occurrence in a community (Beals, 1984).

For the fuzzy-weighting of the community composition in W (see 
Figure 1), the species probability of occurrence in a community is 
estimated based on the species’ trait similarities with other species 
observed in the same community (Pillar et al., 2009). For this task, 
considering the traits in B, a species by species similarity matrix S 
is computed by using the Gower similarity index (ranging 0–1). By 
normalising the rows of S by their row total, a matrix U is obtained 
whose elements define self- and cross-belongings of species to 
fuzzy sets (Duarte et al., 2016). Each column j of U defines a fuzzy set 
of species functionally similar to species j. This way the degrees of 
belonging of each species across the fuzzy sets sum up to 1, though 
symmetry is lost, i.e. uij ≠ uji. The closer a given species is to species 
j in trait space, the higher is its degree of belonging to the fuzzy set j 
and the better it can functionally represent the species j. The fuzzy-
weighted community composition is computed by multiplying the 
site total standardised matrix Wp by U, resulting in a communities 
by species matrix X (Figure 1). As in Wp the values in X also add to 1 
for every site, so that the species proportions may be interpreted as 

(1)p ( i � j ) =
∑n

k=1
w0
ki
w0
kj

w0
.j

F I G U R E  1   Data analysis steps for: (a) 
fuzzy-weighting applied to the species 
composition matrix W which, combined 
with the species traits in the matrix 
B, generates the matrix X; (b) Beals 
smoothing applied to W to generate the 
matrix Y; and (c) permutation test for 
the significance of the matrix correlation 
r(XY) by permuting the columns of B 
(or U) generating B0 (or U0) and derived 
X0 = WpU0
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probabilities. While in Wp these probabilities refer to the species ac-
tually observed in the community, in X they refer to the species pool 
in the metacommunity. That is, each element in X is an estimation 
of the probability to find the species j in the community k, given the 
functional similarity of j to the species actually occurring in k.

To assess the correlation r(XY) between the matrices X and Y, 
we used the Rd coefficient (Omelka and Hudecová, 2013), which is 
a Pearson correlation coefficient of the Gower-centred pairwise dis-
tances (Gower, 1966) based on X and Y, considering the full distance 
matrices. The closer Rd is to 1, the higher is the association between 
community distances in the fuzzy-weighted species composition 
based on traits and those in the potential composition based on spe-
cies co-occurrences. The Rd correlation r(XY) can be interpreted as 
the degree to which the traits used in X reflect co-occurrence pat-
terns in Y. We chose the Rd coefficient based on Euclidean distances 
because, compared to the Mantel correlation or the RV coefficient 
(Robert and Escoufier, 1976), it can also detect non-linear relations 
between the matrices (Omelka and Hudecová, 2013). Note that, if 
squared distances were used, the Rd would coincide with the RV 
(Omelka and Hudecová, 2013).

2.1 | Testing for significant traits

The significance of the Rd correlation r(XY) was tested under the 
null hypothesis that species assembly is unrelated to species traits. 
This null model was originally described by Pillar et al. (2009) for 
testing matrix correlations between environmental variables and 
CWMs or fuzzy-weighted composition; it corresponds to the col-
umn-based permutation test described in Zelený (2018) for the 
analogous case of the community-weighted mean approach (see 
also Zelený and Schaffers, 2012; Duarte et al., 2018; ter Braak et al., 
2018). This is achieved by keeping W and Y constant and permuting 
the columns of B (or, equivalently, of U) enough times to allow the 
computation of a probability p[r(X0Y) ≥ r(XY)] (Figure 1c). If the p-
value is not larger than an a priori fixed error probability threshold 
α, then r(XY) is deemed significant and we conclude that the trait 
or traits included in the definition of X has/have been relevant for 
community assembly in the analysed metacommunity. This permu-
tation approach breaks all the relations between the functional trait 
characteristics of the species and their presence or abundance in W. 
This has the following advantages: First, it controls for the fact that 
the species composition (W) is used to derive the matrices at both 
sides of r(XY), thus it avoids bias that would result if permutations 
were done among the sites in X or Y. Second, it avoids the source of 
bias described by Hawkins et al. (2017) affecting aggregated meas-
ures in community analysis. Third, by keeping W and Y constant, any 
spatial or temporal autocorrelation in the compositional data will be 
incorporated in the null model, thus avoiding bias in the permutation 
testing (Pillar et al., 2009; Gotelli and Ulrich, 2012). Note that this ap-
proach was preferred to the max test described by ter Braak (2018), 
since the latter cannot be theoretically justified for testing the cor-
relation r(XY) relating two intrinsic sample attributes (Zelený, 2018).

This permutation procedure can be repeated by considering dif-
ferent subsets of traits to obtain various fuzzy-weighted community 
composition matrices in X. The trait or combination of traits maxi-
mising r(XY), as long as its p-value is significant, is expected to be 
optimal for observational and experimental studies aiming at iden-
tifying traits linked to hidden environmental factors in community 
assembly.

To select the optimal subset of traits, for the simulated data 
we considered the p-values generated according to Figure  1c only, 
whereas for the real-world data we combined the permutation test 
with bootstrap resampling. Thus, since the real-world data are a sam-
ple, in addition to testing for significance, we calculated confidence in-
tervals for the observed r(XY) for each trait or trait combination, and 
compared them across traits or trait combinations. For this task, in 
each bootstrap iteration, the plots were resampled with replacement 
to obtain a bootstrap sample, which redefined X* and Y* with the se-
lected plots, used to recalculate r(X*Y*). The distribution of r(X*Y*) 
across the bootstrap samples allowed estimating the 95% confidence 
interval of the observed r(XY). Yet, as both X and Y are based on the 
same species composition W, they are expected to have non-zero 
r(XY) even if the trait combination used to build X plays no role in 
community assembly. Thus, we applied the permutational approach 
shown in Figure 1c to compare r(X*Y*) with a possible expected cor-
relation r(X*0Y*) assuming the selected trait or traits has/have no role 
in community assembly. After a large number of bootstrap/permuta-
tion iterations, the probability p[r(X*0Y) ≥ r(X*Y*)] was the proportion 
of iterations in which r(X*0Y*) was larger than r(X*Y*).

Finally, we used the 95% confidence intervals of each correlation 
r(XY) to compare and rank the trait combinations. Ideally, we would 
examine iteratively every trait subset with 1 to k traits in B and the 
corresponding significance of the resulting r(XY) to find an optimal 
trait subset. However, when the number of traits is large (e.g. >20), the 
number of possible combinations may become numerically unman-
ageable (e.g. 1,048,575 possible combinations for 20 traits). Here we 
adopted a partial stepwise algorithm to efficiently explore the space of 
trait combinations and reduce computation demand. The optimal trait 
set was then compared with the one obtained by testing all possible 
trait combinations. Further, we benchmarked the results with those of 
the analyses performed on simulated data with known assembly rules. 
The partial stepwise algorithm acts as follows: once computed r(XY) 
for each single trait, the traits resulting with significant r(XY) correla-
tions were selected. We then repeated the procedure by considering 
all the pairwise combinations of traits being individually significant. 
If any pairwise combinations had an r(XY) significantly better than 
the best trait (i.e. whose 95% confidence intervals did not overlap 
with those of the best trait), we considered the pairwise combination 
having the highest and significantly better r(XY) as the new best. We 
then kept these two traits as fixed, while testing the effect of adding 
another trait, trying to find a new best. If no pairwise combination 
performed better than the best trait, we tested all possible three-way 
combinations including the initial best trait, and checked if a new best 
combination could be found. If no new best existed, we proceeded 
considering all four-way combinations, and so on. We added one trait 
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at a time up to the number of individually significant traits, so as to 
find the optimal combination of traits. This should not be seen as the 
absolute optimal combination of traits, but rather an optimal solution 
conditional on the previously selected traits. For each combination, 
we generated p-values using 999 random iterations of bootstrap/per-
mutation plus one iteration for the observed r(XY).

2.2 | Analyses with simulated communities

To test whether our method is able to discriminate relevant and 
non-relevant traits, we applied it to simulated plant community 
composition data. We generated data by repeatedly modelling 
metacommunities (sets of plant communities) based on specified 
assembly mechanisms in which the underlying environmental fac-
tors were known. Then, we analysed the simulated data with the 
above-described method to identify the traits driven by these fac-
tors. This way we could check by means of type I error and power 
analyses whether the relevant traits for the assembled communities 
were correctly revealed. We assessed type I error as the propor-
tion of metacommunities in which neutral traits, i.e. traits not being 
favoured by a given set of environmental factors, were incorrectly 
identified as relevant. To quantify power, we calculated the propor-
tion of metacommunities in which traits involved in the simulated 
assembly mechanisms were correctly identified as being significant, 
i.e. when the test with the simulated metacommunity resulted in 
p[r(X0Y) ≥ r(XY)] ≤ 0.05. Given the low number of traits involved in 
the generation of the simulated data, we evaluated significance both 
for all traits considered individually, as well as for all possible trait 
combinations.

We used a stochastic, individual-based model for simulating 
metacommunities stepwise from a given pool of species and their 
functional traits (Pillar and Camiz, unpublished). At each step, the 
model can predict the arrival, establishment, and extinction of in-
dividuals belonging to each species, based on probability functions 
with specific parameters. We then analysed the metacommunity 
structure after a given number of years (iterations). We generated 
different simulated metacommunities by specifying different com-
binations of trait numbers, environmental filtering parameters, and 
species level trait correlations (Appendix S1). The other parameters 
were set at random. For each set of model parameters, we generated 
and analysed 100 simulated metacommunities.

We explored four simulation scenarios to assess whether the 
method can correctly identify the relevant traits in the simulated 
metacommunities, when confounding aspects related to correlation 
among traits and contrasting strengths and interactions between 
environmental filtering effects are in play. In the first case (Scenario 
1), we generated communities assuming two environmental factors 
and three functional traits. The first trait t1 was directly dependent 
on e1, i.e. e1 → t1, while t2 related directly to e2, i.e. e2 → t2. An ad-
ditional trait tn was neutral with respect to the environment. The 
metacommunities were generated according to an increasing magni-
tude of e1 → t1, obtained by varying from 0 to 0.6 the specified linear 

response parameters for environmental filtering, while fixing the 
effect of e2 → t2 at 0.3. We used this basic scenario to explore both 
the effect of the interaction between the environmental factors e1 
and e2 on t1 (three levels: 0, 0.3, 0.5) and to explore the effect of the 
correlation between traits t1 and t2 (three levels, 0, 0.4, 0.8).

Scenario 2 was similar to the first one, but we added a third trait 
t3 directly dependent on factor e1, i.e. e1 → t3. In this case, both traits 
t1 and t3 were affected by the same factor e1, but while the strength 
of the effect e1 → t1 varied from 0 to 0.6, the effect e1 → t3 was 
fixed at 0.3. As in the first scenario, we also examined the effect of 
an interaction between the factors e1 and e2 on t1, and of pairwise 
correlations between traits t1, t2 and t3.

In Scenario 3, we varied the effect e1 → t1 from 0 to 0.6, as above, 
but progressively including also the effect of additional environmen-
tal factors on their respective functional traits (i.e. e2 → t2; e3 → t3; 
e4 → t4), all fixed to 0.3. In all simulations, a neutral trait tn was added 
with the purpose of testing the type I error. Both factor interaction 
effects and pairwise trait correlations were set to zero in this sce-
nario. We also examined a variation of this situation in Scenario 4 
by setting the environmental factor effects on the last two traits 
(e3 → t3; e4 → t4) with a very weak magnitude of 0.01, to simulate an 
increasing number of nearly neutral traits.

We performed supplementary analyses to help understand and 
interpret our results. We tested whether the Rd correlation r(XW) be-
tween fuzzy-weighted composition (X) and simulated species propor-
tions in the communities (Wp) would be able to discriminate between 
relevant and non-relevant traits. We did the same for the correlation 
r(XE) between X and environmental factors (E) driving the simulated 
community assembly process. For these tests, we considered only the 
simulated communities described in Scenario 1. Additionally, we as-
sessed the effect of sample size, i.e. the number of communities sam-
pled from a metacommunity, on the power of our method to detect 
relevant traits for a selected case of simulated data, for both the r(XY) 
and r(XW) correlations. Furthermore, we partitioned the taxonomic 
diversity of our simulated data into α, β and γ components (De Bello 
et al., 2010), to show the effect of Beals smoothing and fuzzy-weight-
ing on β diversity. Also, by means of Rd correlations r(YE) and r(WE) 
we assessed whether Beals smoothing (Y) improved the correlation 
between environmental structure (E) and community composition.

2.3 | Analyses with real communities

To test whether our method is helpful in highlighting relevant traits 
in a real-world dataset, we used data on dry calcareous grasslands 
vegetation in Germany. Such grasslands belong to the Festuco-
Brometea class (Mucina et al., 2016) and are coded “E1.2a Semi-dry 
perennial calcareous grassland” in the European Red List of Habitats 
(Grassland Habitat Group, 2017). The dataset had been previously 
used in a continental survey (Willner et al., 2019). Here we analysed 
a subsample of 565 plots randomly taken from the original data (see 
map in Appendix S2), and including 488 species. We combined the 
compositional data (square-root-transformed percentage cover, 
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to reduce the excessive weight of dominant species) with the spe-
cies trait information for 49 traits (Appendix  S3) taken from the 
BIOLFLOR (Klotz et al., 2002) and TRY databases (Kattge et al., 
2011, 2020). The TRY data, which included 16 traits, were gap-filled 
and aggregated to species mean values (Shan et al., 2012; Fazayeli 
et al., 2014; Schrodt et al., 2015; Bruelheide et al., 2019). Trait cov-
erage was complete, except for pollination, leaf persistence, sclero-
phylly, and succulence, for which the species with functional trait 
information accounted for an average of at least 96.5% of the plot 
total cover across the plots in our sample (Appendix S3).

Based on the procedure described above we identified an op-
timal subset of traits, i.e. the combination of traits with the max-
imum relevance for the assembly of these grassland communities. 
Furthermore, we used principal components analysis (PCA) based 
on pairwise trait correlations to identify the main trends of trait vari-
ation at the species level.

To illustrate how well the selected traits reflected community 
composition, we applied PCA to the dry grassland data based on the 
covariance of Beals’ smoothed community composition (matrix Y). 
We then superimposed three sets of supplementary variables on 
this ordination space: (a) the principal components of another PCA 
computed based on the covariance of fuzzy-weighted composition 
(matrix X) for the optimal traits; (b) the CWMs of all significant traits; 
and (c) available environmental variables. These projections were 

based on the Pearson correlations between the supplementary vari-
ables and the principal components of Y. As environmental variables, 
we compiled annual mean temperature and annual mean precipita-
tion from CHELSA, V1.1 (Karger et al., 2017) and assigned these val-
ues to the plots with a 30 arcsec resolution. Also, two soil variables 
(soil pH and content of soil organic carbon) were extracted from the 
SOILGRIDS project (https://soilg​rids.org/, licensed by ISRIC—World 
Soil Information), downloaded at 250-m resolution and then resam-
pled using the 30 arcsec grid of CHELSA.

3  | RESULTS

3.1 | Simulated communities

In the first scenario (Figure 2, top, leftmost panel), the proportion 
of simulated metacommunities with a significant r(XY) correlation 
taking the trait t1 alone expectedly increased when the factor ef-
fect e1 on t1 increased beyond zero, and reached 100% power with 
the strongest effect. However, as the effect of e1 on t1 increased, 
the power to detect a significant r(XY) for the trait t2 alone was 
suppressed. In addition, the method correctly indicated that the 
proportion of simulated metacommunities with a significant r(XY) 
for tn alone was low and close to the nominal α threshold α = 0.05, 

F I G U R E  2  Proportion of significant Rd correlation r(XY) between community distances based on trait-based fuzzy-weighted (X) and 
Beals-smoothed (Y) species composition across simulated metacommunities with increasing strength of factor effect e1 on trait t1, and 
varying the magnitude of the e1 × e2 interaction, and the strength of the pairwise correlations between traits t1 and t2 (Scenario 1). The 
vertical axis indicates the proportion of simulated metacommunities for which the p-value for r(XY) found by permutation was not larger 
than the threshold α = 0.05. The graphics show traits considered individually and different trait combinations defining fuzzy-weighted 
species composition. Further details on the set of parameters for community assembly simulations and summary statistics for some 
simulated data are in Appendix S1. Dashed lines represent combinations of traits including the neutral trait (tn)

https://soilgrids.org/
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i.e. the type I error was not inflated. However, considering combi-
nations of traits, we found that all two-trait combinations involv-
ing the neutral trait tn returned significant r(XY) at similar power 
to the one obtained when considering traits t1 or t2 alone. This 
is clearly misleading considering that tn was not under environ-
mental filtering in community assembly. We took this result as 
evidence for the need to test only combinations of traits which 
produced a significant r(XY) when taken individually.

Furthermore, as the effect of factor interaction e1 × e2 on trait 
t1 increased (Figure 2, top panels), the relevance of t1 was high ir-
respective of how low the factor effect e1 was on the same trait. 
The power to detect a significant r(XY) for t2 alone was even more 
strongly suppressed with increasing interaction e1 × e2 on trait 
t1 (Figure  2, mid and right column of panels). However, when the 

correlation between t1 and t2 increased (Figure 2, mid and bottom 
panels), the suppression of t2 by t1 was weakened.

The effect of suppression between traits can be better exam-
ined in the second scenario (see results in Appendix S4). Similarly 
to what was shown in Figure 2, in the absence of factor interac-
tion and trait correlation the detection of the trait t2 as relevant 
in community assembly was progressively suppressed by t1 when 
the filtering effect of factor e1 increased. However, t3, which in 
this scenario is filtered by the same factor e1, was very little sup-
pressed while the filtering effect on t1 increased, i.e. became more 
limiting for the establishment and the survival of plant individuals. 
Yet, under increasing strength of the interaction e1 × e2 on t1, the 
power to detect a significant r(XY) for t3 alone decreased. Further, 
similar to the first scenario, the pairwise correlation increase at 

F I G U R E  3  Proportion of significant Rd correlation r(XY) between community distances based on trait-based fuzzy-weighted (X) and 
Beals-smoothed (Y) species composition across simulated metacommunities with increasing strength of factor effect e1 on trait t1, and 
increasing the number of traits used in simulating metacommunities (Scenario 3). The vertical axis indicates the proportion of simulated 
metacommunities for which the p-value found by permutation was not larger than the threshold α = 0.05. The number of traits ranged from 
3 to 5 (left to right panels), with one trait tn always being neutral. Traits are either shown individually (top row), or in combinations (from two 
to five, top to bottom rows) to improve visualization. Dashed lines represent combinations of traits including the neutral trait (tn)
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the species level between t1, t2 and t3 reduced such a suppression 
effect. As before, the type I error was not inflated regarding the 
neutral trait tn taken alone.

In the third scenario, we analysed whether the performance of 
our method is influenced by the number of traits involved in commu-
nity assembly (Figure 3). The simulations based on three traits gener-
ated power graphs with a similar pattern compared to those based on 
four or five traits. In all cases, the trait t1 was filtered under increasing 
factor effect e1, tn was always neutral, and the other traits were under 
a fixed, intermediate factor effect. As in Figure 2, the analysis of the 
r(XY) using trait combinations including the neutral trait tn would be 
as relevant as using the other non-neutral traits alone. The results of 
the simulations performed under the conditions set for the fourth 
scenario indicated that neutral traits were equally non-significant ir-
respective of the increasing number of neutral traits (Appendix S5).

The supplementary analyses with data simulated under the 
same scenario as used in Figure  2 indicated that the power for 
detecting knowingly significant traits was consistently higher 

when using the correlation r(XY) compared to r(XW) (Figure 2 vs. 
Appendix S6a). Also, the power for detecting knowingly significant 
traits by the correlation r(XE) showed a steep increase at very low 
levels of factor effect e1, but for intermediate or stronger effect 
levels the power of r(XE) was similar to r(XY) (Appendix S6b). As ex-
pected, the correlation r(XE) based on t2 remained non-significant, 
except when t2 was highly correlated with t1. Further, the power to 
detect a significant correlation r(XY) correlation was affected only 
when samples with less than 50 communities were used, and the 
drop in the power was steeper for correlation r(XW) (Appendix S7). 
Eventually, it was clear that Beals smoothing strongly reduced pro-
portional beta diversity in the composition matrix (Appendix S8). 
The same was observed for fuzzy-weighting (results not shown). 
Despite the homogenising effect, the correlation between commu-
nity patterns and environmental structure was not only preserved 
but enhanced by Beals smoothing, and this was not affected by 
sample size, at least for the range of simulated conditions we con-
sidered (Appendix S8).

F I G U R E  4   The Rd correlation r(XY) 
between community distances based 
on trait-based fuzzy-weighted (X) and 
Beals-smoothed (Y) species composition, 
when considering one trait at a time. The 
observed r(XY) was deemed significant 
(at p-value ≤ 0.05, one-sided) when it 
was greater than the corresponding 
correlation coefficient calculated using 
permuted species traits in at least 95% 
of the bootstrap samples. The segments 
represent the 95% bootstrap confidence 
intervals of the observed r(XY); in red are 
the traits with significant r(XY), in blue are 
the non-significant ones
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3.2 | Real communities

While applying the same approach to dry calcareous grasslands, 
seven out of the 49 traits returned a significant r(XY) when taken 
one by one: sclerophylly, plant height, specific leaf area (SLA), na-
nophanerophyte and hemiphanerophyte growth-forms, flowering 
duration, and vegetative propagation through fragmentation. Taken 
singularly, sclerophylly was the trait that best explained community 
assembly (Figure 4).

By using the partial stepwise algorithm, the iterative increase 
of the number of traits used to calculate the matrix X resulted in 
a progressive increase in r(XY), although the confidence intervals 
of the regression coefficients were mostly overlapping (Figure 5). 
When considering pairwise combinations of traits, sclerophylly 
combined with flowering duration returned a significantly higher 
r(XY) than sclerophylly alone. There were no three- and four-
way combinations of traits significantly improving the r(XY) com-
pared to the sclerophylly/flowering duration pair (for details see 
Appendix S9). Only when considering five traits together, the im-
provement of r(XY) became significant: besides sclerophylly and 
flowering duration, the other traits composing this combination 
of traits were plant height, SLA, and propagation by fragmenta-
tion. We assumed this as being the optimal combination of traits 
for predicting fuzzy-weighted species composition related to spe-
cies co-occurrences, as no additional increase in dimensionality 
resulted in a significant improvement of r(XY) (Figure 5). This same 
subset of traits was found as best by testing all the 127 combina-
tion of the seven significant traits (results not shown).

The PCA of the trait correlations at the species level (Appendices 
S10, S11) revealed two main axes of independent trait variation, one 
reflecting the leaf economics spectrum (SLA vs. sclerophylly), which 
was also associated with the hemiphanerophyte growth form and 
the propagation by fragmentation, and the other the size spectrum 
(plant height), which was also associated with the nanophanerophyte 
growth form and the flowering duration. However, uncorrelated 
traits at species level were not necessarily also uncorrelated at com-
munity level. For example, while at species level plant height was 
uncorrelated to sclerophylly (r = −0.06) and fragmented vegetative 

propagation (r = −0.07), their corresponding CWM values showed 
considerable Pearson correlations ( −0.44 and 0.31, respectively; 
Appendix S12).

The five traits that were identified as the most relevant ones 
(Figure  5), and the so defined principal components of fuzzy-
weighted composition (FW-PCs, Appendix S13) reflected different 
dimensions (PCs) of Beals-smoothed community composition, as 
shown in Figure 6 (see correlations in Appendix S14). FW-PC1 re-
flected the leaf economics spectrum (SLA vs. sclerophylly) and was 
correlated also to PC1 but mostly to PC3 of the Beals-smoothed 
community composition (11.2% of total variation). FW-PC2 reflected 
an increasing representation of the nanophanerophyte growth form 
vs. decreasing flowering duration and was mostly correlated to the 
first principal component (PC1) of the Beals-smoothed community 
composition (27.7% of total variation). FW-PC3 was only (weakly) 
correlated to PC4 but did not reflect any trait in particular. Yet, the 
links between the FW-PCs, the traits and the PCs of the Beals-
smoothed community composition become clearer by examining 
the two-dimensional ordination spaces. In the space defined by PC1 
and PC2, two diagonal axes may be identified, one reflecting FW-
PC1 and the other FW-PC2, both representing different traits. The 
size spectrum (height) was captured by both FW-PC1 and FW-PC2. 
Finally, the available potential environmental predictors presented 
weak correlations with the first four principal components, being 
highest for mean annual precipitation (−0.386 with PC1, Figure 6, 
Appendix S14).

4  | DISCUSSION

How to identify those functional traits mediating community assem-
bly when relevant environmental factors are unknown? Answering 
this question is crucial to improve our predictions on how ecologi-
cal assemblages will change in the face of global change (Newbold, 
2018). Here, we developed a method to identify the functional traits 
mediating community assembly, which does not rely on measuring 
the actual environmental gradients ultimately driving it. Our ap-
proach relies on the comparison of two alternative ways of predicting 

F I G U R E  5   Rd correlation r(XY) (black squares) and confidence interval (red lines) between community distances based on trait-based 
fuzzy-weighted (X) and Beals-smoothed (Y) species composition, when progressing in tiers (bottom to top) based on a selected subset of 
traits. Only the seven significant traits defining fuzzy-weighting alone (see Figure 4) are represented. For each tier, we tested the effect of 
adding a new trait to the best combination of the previous tier, and only show the best result. Identical results were found by examining 
every combination of the seven traits. We used thick lines for traits or trait combinations providing a significant (p ≤ 0.05) improvement with 
respect to the best solution at the previous tier(s). Detailed results are shown in Appendix S9
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species composition: Beals’ smoothing of species co-occurrences 
probability (Beals, 1984) and fuzzy-weighting of functional traits 
(Pillar et al., 2009). The method comes with an optimisation algo-
rithm able to efficiently explore the trait combination space, and 
derives unbiased significance values and confidence intervals using 
permutation and bootstrap resampling, respectively.

The results with the simulated data show that our method can 
identify the most relevant trait combinations mediating the assembly 
of biological communities along gradients. Weak trait–environment 
links may give low power to detect a relevant trait. However, the 
power of our analysis quickly increased to 100% when the magni-
tude of the main environmental filtering effect was greater than 0.3; 
the effect was specified as a linear parameter relating the factor to 
the expected trait values at the community level in the metacommu-
nity model that generated the data. This suggests that the method 
might be sensitive enough to detect the most important traits re-
lated to discriminant environmental factors in real-world situations. 
Furthermore, in the simulations our approach proved sufficiently 
robust against the inclusion of non-relevant traits, the type I error 
always being close to the nominal levels, as well as against confound-
ing factors related to interactions between environmental gradients, 
and correlation among traits.

However, the results with the simulated data also indicated 
that only those traits found to be significant when taken individ-
ually should be retained in the analysis and tested in combination 
with other equally relevant ones. In other words, the consideration 

of correlation and p-values per se is not sufficient to discriminate 
trait combinations that include irrelevant traits. For the real data, we 
solved this problem by using bootstrap to calculate the confidence 
intervals of our matrix correlation coefficients, and by adopting a 
partial stepwise algorithm only considering combinations of traits 
that were relevant when taken individually. This way, we could reli-
ably ascertain that a combination of, e.g., two traits was significantly 
better than any of the two traits taken singularly. And yet, our op-
timisation algorithm remained sufficiently flexible to be adapted to 
situations under which the examination of every combination of rel-
evant traits would be unfeasible.

Our results using simulated metacommunity data demonstrated 
a suppression effect among traits mediating community assembly, 
suggesting that traits under stronger filtering effects tend to mask 
traits weakly filtered. We argue that the suppression effect is not an 
artefact of our method of analysis, because suppression may arise 
in community assembly from the obvious fact that the units being 
filtered are not traits but whole organisms, whose traits cannot be 
physically disentangled according to trait responses to different 
factors. Under such filtering effect, the most limiting trait (Sih and 
Gleeson, 1995; Gorban et al., 2011) likely suppresses less limiting 
traits. However, suppression is stronger between traits that are 
filtered by different, independent environmental factors than be-
tween traits that are filtered by the same factor. Correlation among 
traits, contrastingly, reduces such suppression effects. We note, 
however, that assessing whether a trait is found non-significant for 

F I G U R E  6  Principal components analysis of dry grassland plots based on the species variance–covariance matrix of Beals’ smoothed 
composition (Y matrix). The communities (plots) are shown as cross symbols with the scores multiplied by a constant to fit into the −1 to 
+1 range. The community-weighted means (CWMs) for the traits with a significant Rd correlation r(XY) in Figure 4, in green, the principal 
components based on the fuzzy-weighted composition defined by these traits (FW-PC1, -PC2, -PC3, Appendix S13), in purple, and four 
environmental variables, in orange, are superimposed according to their Pearson correlations with the PCA axes (see correlations in 
Appendix S14). The five traits identified in Figure 5 as the best combination of traits are shown in bold green fonts. See Appendix S15and 
S16 for the scatterplots with the species.



     |  11 of 15
Journal of Vegetation Science

PILLAR et al.

having a weak effect or because it is suppressed by another, strongly 
filtered trait, is only possible when dealing with simulated data, but 
not in real-world applications. The opposite is also true, i.e. a trait, al-
though significant, might not be mediating community assembly, but 
simply be highly correlated to another, unknown trait that is the cru-
cial one for the species’ success or failure in the communities. These 
problems, however, are common to most observational approaches, 
where causality can only be inferred, but never ascertained.

Models are useful but offer simplified representations of real 
systems. Thus, models should always be compared with or comple-
mented by the analysis of real data (Noy-Meir and van der Maarel, 
1987). We believe this approach was successful here. While there is 
no way to disentangle all the environmental factors that drive the 
community composition of the whole range of dry calcareous grass-
lands in our study system, the identification of the five most relevant 
traits allows some conclusions on the underlying processes. Three 
of the five traits are part of the two main spectra of global plant 
forms and functions at the species level (Díaz et al., 2016). While 
plant height reflects the size spectrum, SLA and sclerophylly repre-
sent the leaf economics spectrum (Wright et al., 2004).

On the one hand, plant height points to management as a key 
factor in community assembly of dry grasslands. Indeed, aban-
donment of grazing and mowing favours tall grasses, shrubs and 
trees. Taller species indicate ongoing secondary succession, which 
is a major threat for dry grasslands (Kahmen and Poschlod, 2004; 
Burrascano et al., 2016). We found that the successional gradient is 
reflected by the first and second ordination dimensions of the fuzzy-
weighted composition based on the five key traits: this supports the 
outcomes of experiments that revealed land-use intensity and time 
since abandonment as main drivers of trait composition of dry grass-
lands (Moog et al., 2002). On the other hand, the leaf economics 
spectrum, characterised by SLA vs. sclerophylly (Wright et al., 2004), 
forms a second gradient, yet not completely independent from 
the successional one. In our communities, the ability to propagate 
through fragmentation coincides with the leaf economics spectrum 
gradient because this trait is represented in slow-growing perennial 
species fragmenting with age. In dry grasslands, the leaf economics 
spectrum reflects the gradient in both nutrient and water supply, 
along which different communities, alliances and orders are distin-
guished (Royer, 1991; Jandt, 1999; Willner et al., 2019). However, 
the overall nutrient availability, especially of N and P, in these grass-
lands is low, making them rather stressful habitats, home to many 
specialist species adapted to these specific conditions (Gilbert et al., 
2009; Ceulemans et al., 2011), which favour the hemiphanerophytic 
life form (i.e. resting buds are situated on woody shoots).

These explanations might give the impression that the five key 
traits follow clear environmental gradients of easily measurable vari-
ables, yet the real-world situation is much more complex. While to 
some degree the plant height and leaf economics spectra follow mac-
roclimatic gradients and result in different species pools of dry grass-
lands (see the map of the species pools in Bruelheide et al., 2020), 
microclimate might strongly deviate from macroclimate (Bruelheide 
and Jandt, 2007; Burrascano et al., 2013). Similarly, topographic 

conditions and soil depth have strong impacts on water availability, 
resulting in small-scale variation of communities (Leuschner, 1989). 
This is illustrated by one of our five traits of the optimal combination, 
that is flowering period duration. The CWM of this trait was neither 
correlated with the community trends related to height nor to the 
leaf economics spectrum. This is consistent with the results reported 
by Bouchet et al. (2017): while flowering period duration showed a 
strong relationship to community trait composition, it was not re-
lated to successional age. We would assume that flower duration 
indicates a combination of environmental factors that are usually 
hidden behind the main effects of these factors. Flower production 
depends on the availability of resources and is supported by warm 
and wet conditions (Craine et al., 2012). These conditions occur in 
early successional stages with an open vegetation structure where 
deeper soils provide an above-average resource supply. In the space 
of the traits, these particular micro-environmental conditions would 
promote a combination of low-stature growth close to the ground 
(small height) with acquisitive leaf traits (high SLA), to both of which 
flower period duration was moderately related.

While microclimate and soil depth are measurable, other addi-
tional factors adding to the complexity of dry grassland community 
assembly are not. In particular, historical factors are hidden in the 
present-day community assembly. For example, traditional shep-
herding between the 15th and 20th centuries has strongly affected 
the species composition of the calcareous grasslands (Poschlod and 
WallisDeVries, 2002). There might be further hidden factors driving 
the community trait composition, about which we can only specu-
late. For example, resource supply in dry calcareous grasslands may 
vary at very fine scales (Regan et al., 2014). This is both caused by a 
large variation of microsite soil conditions at small distances and by 
heterogeneous effects of grazing. Overall, it becomes apparent that, 
in real-world situations, community composition is not driven by a 
single trait–environment relation, but by a complex of different traits 
that are only partly related to known environmental factors.

It is worth keeping in mind the assumptions our method re-
lies on, which is that both Beals smoothing and fuzzy-weighting 
of functional traits can reliably predict potential community com-
position. If these conditions do not hold for a given dataset, then 
it is likely that the r(XY) correlation will not be significant. How 
predictive fuzzy-weighting of potential species composition is will 
depend only on the defining traits, so a careful initial selection of 
traits is crucial. As for Beals smoothing, it may be unreliable at ex-
tremely low beta diversity when each species is present in nearly 
every community in the set (McCune, 1994), at extremely high 
beta diversity when very few communities share species (Smith, 
2017), or when the sample is very small or with very few species, or 
with a large proportion of species occurring at random (De Cáceres 
and Legendre, 2008). Thus, a non-significant r(XY) correlation may 
indicate that the traits are actually not relevant, that the dataset 
does not meet adequately the conditions for Beals smoothing, 
or that the sample is too small. In this regard, the Beals test (De 
Cáceres and Legendre, 2008) may be helpful to identify which 
species in a given dataset may have their potential occurrences 
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reliably predicted by Beals smoothing, but whether only these 
species should be further retained is open to further research. A 
possible concern is that both fuzzy-weighting and Beals smoothing 
sharply reduce beta diversity in the composition matrix, but our re-
sults indicate that in this process existing community patterns re-
flecting the environmental structure are preserved (see also Smith, 
2017 for the case of Beals smoothing).

Although trait divergence patterns may also arise in commu-
nity assembly (Mason and Wilson, 2006; Wilson, 2007; Pillar et al., 
2009), we did not examine the ability of our method to faithfully 
reveal relevant traits linked to biotic and/or abiotic factors causing 
trait divergence in the simulated community assembly. Yet, as the 
fuzzy-weighting adopted in our method integrates trait similarities at 
the species level fully into the community level, by means of the ma-
trix X of species composition (Pillar et al., 2009), we expected that rel-
evant traits would be revealed irrespective of the actual mechanism, 
whether it generated trait convergence, trait divergence or both.

The method we propose here successfully identified the rel-
evant traits mediating community assembly, without relying 
on the measurement of the environmental factors responsible 
for the restrictions imposed on the species co-occurrence pat-
terns. Trait–environment relations affecting community assem-
bly (Keddy, 1992; Wilson et al., 1999; Götzenberger et al., 2012) 
leave persisting marks in the patterns of species co-occurrences. 
These marks are revealed by our approach. Considering that indi-
viduals within species tend to be more similar to each other than 
between species (Kazakou et al., 2014; Siefert et al., 2015), by 
relating species traits to species co-occurrence in communities, 
our method is able to identify the traits most likely affected by 
those trait–environment relations, even when the environmental 
factors are hidden, unknown, or not easily measurable. Even when 
environmental data are available to evaluate their correlation with 
functional traits, our method can identify hidden factors linked to 
traits unrelated to the available environmental factors. If in this 
case hidden factors are not found beyond the observed ones, we 
suggest that the right environmental factors may have been used 
to analyse the data. Going beyond the reliance on measured envi-
ronmental factors, our method is particularly promising in those 
domains where obtaining a set of consistent and comprehensive 
environmental measurements is unfeasible. We think specifically 
of analysing large biodiversity databases of co-occurrence data 
(Bruelheide et al., 2018, 2019), where the use of our method might 
be instrumental to reveal the key traits underlying the geographi-
cal distribution of ecological communities, so as to better infer the 
key ecological gradients behind these patterns.
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