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Abstract
Aim: To identify functional traits that best predict community assembly without 
knowing the underlying environmental drivers.
Methods: We propose a new method based on the correlation r(XY) between two 
matrices of potential community composition: the matrix X is fuzzy-weighted by 
trait	 similarities	 of	 species,	 and	 the	matrix	Y is derived by Beals smoothing using 
the probabilities of species co-occurrences. Since X	is	based	on	one	or	more	traits,	
r(XY) measures how well the traits used for fuzzy-weighting reflect the species co-
occurrence patterns in Y. We developed an optimisation algorithm to identify the 
traits	maximising	this	correlation,	together	with	an	appropriate	permutational	test	for	
significance.	Using	metacommunity	data	generated	by	a	stochastic,	individual-based,	
spatially	explicit	model,	we	assessed	the	type	I	error	and	the	power	of	our	method	
across	 different	 simulation	 scenarios,	 varying	 environmental	 filtering	 parameters,	
number	of	 traits	 and	 trait	 correlation	 structures.	Then,	we	applied	 the	method	 to	
real-world community and trait data of dry calcareous grassland communities across 
Germany	to	identify,	out	of	49	traits,	the	combination	of	traits	that	maximised	r(XY).
Results: The method correctly identified the relevant traits involved in the assem-
bly	mechanisms	of	simulated	communities,	showing	high	power	and	accurate	type	I	
error. It proved to be robust against confounding aspects related to interactions be-
tween	environmental	factors,	strength	of	limiting	factors,	and	trait	collinearity.	In	the	
grassland	dataset,	the	method	identified	five	traits	that	best	explained	community	
assembly.	These	traits	reflect	the	size	and	the	leaf	economics	spectrum,	which	are	
related	to	succession	and	resource	supply,	factors	that	may	not	be	always	measured	
in real-world situations.
Conclusions: Our method successfully identified the relevant traits mediating com-
munity	assembly,	therefore	providing	insights	on	the	underlying	environmental	and	
biotic	factors,	even	if	these	are	hidden,	unmeasured	or	not	accessible	at	the	spatial	or	
temporal scale of the study.
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1  | INTRODUC TION

Understanding	 how	 species	 assemble	 in	 space	 and	 time	 is	 criti-
cal for predicting biodiversity responses to environmental change 
(D’Amen	 et	 al.,	 2017)	 and	 the	 effects	 of	 biodiversity	 losses	 on	
ecosystem	processes	and	services	(Newbold,	2018).	In	communi-
ties	 connected	by	dispersal,	 patterns	of	 repeated	 co-occurrence	
and apparent mutual avoidance among species have often been 
observed	(e.g.	Diamond,	1975;	Münzbergová	and	Herben,	2004).	
This	is	a	consequence	of	the	species’	ecological	niches	and	inter-
actions,	 both	mediated	 by	 species’	morphological,	 physiological,	
phenological,	or	behavioural	characteristics,	here	collectively	indi-
cated	as	functional	traits	(Keddy,	1992;	McGill	et	al.,	2006;	Wilson,	
2007;	 Götzenberger	 et	 al.,	 2012).	 These	 restrictions	 on	 the	 ob-
served patterns constitute community assembly rules (Wilson 
et	al.,	1999).

Community assembly is driven by abiotic and biotic environ-
mental	 factors	 favouring	 species	with	a	 specific	 set	of	 traits.	As	a	
consequence,	 species	 co-occurrence	 patterns	may	 naturally	 arise,	
because species similar with respect to these traits are expected to 
respond similarly to factors. Imagine an environmental factor e1 af-
fecting the performance (w) of species i via a trait t1,	i.e.	wi|t1 = ƒ(e1),	
or adopting a causal graph representation for the sake of simplicity: 
e1 → t1.	All	else	being	equal,	at	a	given	level	of	e1 some species will 
tend to co-occur with those having similar values of trait t1. This will 
generate trait convergence for t1	or,	in	other	words,	a	trend	in	com-
munity-weighted	means	(CWMs)	along	changing	e1,	i.e.	e1	→CWMt1. 
However,	community	assembly	involves	more	complex	mechanisms	
than	 that.	 First,	 the	 units	 subject	 to	 environmental	 filtering	 are	
whole organisms with sets of morpho-physio-phenological traits 
(Violle	et	al.,	2007)	which	cannot	be	physically	disentangled	 in	re-
sponse	to	different	factors.	Second,	traits	are	often	correlated,	given	
that the multivariate trait space of species is strongly concentrated 
in	a	small	number	of	trait	value	combinations,	owing	to	coordination	
and trade-offs between traits as well as ecological and phylogenetic 
constraints	(Murren,	2002;	Díaz	et	al.,	2016;	Céréghino	et	al.,	2018).	
As	a	consequence	of	 these	two	constraints,	a	 factor	effect	 (e1) on 
a trait (t1) may depend on the value of another trait (t2) in the same 
organism,	either	under	the	effect	of	the	same	factor,	i.e.	e1	→	t1|t2,	or	
another	factor,	i.e.	(e1	→	t1) | (e2	→	t2).	In	this	case,	one	trait	may	be	
more limiting than another depending on the strength of the factor 
effects	(Sih	and	Gleeson,	1995;	Gorban	et	al.,	2011).	Also,	unknown	
factors affecting t1 will generate increased variance in t1 along the 
known e1	gradient	(Kaiser	et	al.,	1994;	Thomson	et	al.,	1996;	Cade	
and	Noon,	2003).	These	mechanisms	may	generate	patterns	of	trait	
divergence	 (Pillar	et	al.,	2009),	e.g.	when	the	community-weighted	
variance,	 or	 functional	 diversity	 (FD),	 of	 a	 trait	 increases	 along	 an	
environmental gradient.

But how to identify which functional traits are relevant in me-
diating	 community	assembly,	 irrespective	of	whether	 the	mecha-
nisms	 lead	 to	 convergence	 or	 divergence	 patterns?	 Traditionally,	
these traits have been identified by relating community trait pat-
terns	 to	 environmental	 conditions	 or	 resource	 levels,	 hereafter	
called environmental factors	 for	simplicity	 (Pillar	and	Orlóci,	1993;	
Díaz	 and	 Cabido,	 1997;	 Pillar,	 1999;	 Lavorel	 and	 Garnier,	 2002;	
Pillar	et	al.,	2009;	Bruelheide	et	al.,	2018).	This	approach,	however,	
falls	 short	when	 the	 factors	 are	 hidden,	 i.e.	 unknown	or	 not	 ob-
servable.	This	is	the	case,	for	instance,	when	the	factor	was	simply	
not	measured,	when	it	 is	related	to	unknown	past	conditions,	but	
also when it affects community assembly at a much finer resolu-
tion	than	the	grain	size	of	the	studied	community	units.	Moreover,	
community assembly might also depend on biotic factors related to 
species	interactions,	such	as	predation,	facilitation,	or	competition.	
The	 interactions	might	be	 indirect,	 as	 in	 the	 case	of	 a	plant	 sub-
tracting	or	adding	resources	to	other	plants,	or	direct,	such	as	graz-
ing	and	predation,	which	might	filter	traits	related	to	avoidance	or	
tolerance. Both classes of environmental factors are often difficult 
to	measure,	but	are	likewise	expected	to	shape	the	functional	pro-
file	of	ecological	communities	(Mason	and	Wilson,	2006;	D’Amen	
et	al.,	2017).

Under	 the	 assumption	 that	 these	 relevant	 yet	 hidden	 factors	
are	reflected	 in	community	composition,	compositional	data	might	
be analysed in a way that allows to identify the fundamental traits 
mediating	 community	 assembly.	 Once	 the	 traits	 are	 known,	 one	
can use factor–trait relations known from ecological theory or from 
other	empirical	 studies	 (e.g.	Díaz	et	 al.,	 2007;	Dubuis	et	 al.,	 2013;	
Bruelheide	et	al.,	2018)	to	make	inferences	about	those	factors,	even	
if	hidden,	that	are	responsible	for	filtering	(Keddy,	1992)	species	in	
the studied communities.

Here we propose and test a data-driven method to identify 
those functional traits that best predict community assembly 
without knowing the relevant environmental or biotic factors 
shaping the studied communities. The foundation of our ap-
proach is to relate two ways of predicting potential community 
composition	to	each	other,	either	based	on	the	probability	of	spe-
cies	 co-occurrence	 (Beals,	 1984)	 or	 using	 fuzzy-weighting	based	
on	 species	 traits	 (Pillar	 et	 al.,	 2009).	 Given	 a	 pool	 of	m species 
spread across n	communities	 in	a	metacommunity	(Leibold	et	al.,	
2004),	Beals	 (1984)	smoothing	predicts	 the	probability	of	occur-
rence of every species j in each community k, estimated as the 
weighted average of the pairwise co-occurrence probabilities of 
species j with those species actually present in community k. Beal 
smoothing has been proved to effectively recover the latent com-
munity structure in metacommunities described by noisy data (De 
Cáceres	and	Legendre,	2008;	Smith,	2017).	Fuzzy-weighting	(Pillar	
et	 al.,	 2009)	 has	 some	 analogy	 to	 Beals	 smoothing	 but,	 instead	
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of	 co-occurrence	 probabilities,	 it	 predicts	 the	 probability	 of	 oc-
currence of every species in each community based on the trait 
similarity with those species actually present in the community. 
Fuzzy-weighting results in a trait-based transformation of spe-
cies	composition	in	a	metacommunity.	Thus,	it	fully	describes	the	
potential community composition regarding traits encompassing 
both	 convergence	 and	 divergence,	 which	 may	 reflect	 the	 envi-
ronmental	structure	depending	on	the	selected	traits	(Pillar	et	al.,	
2009). The correlation between these two matrices of predicted 
species composition should thus measure how well the traits used 
for fuzzy-weighting reflect the species co-occurrence patterns. 
Hence,	 finding	 the	 set	 of	 functional	 traits	mediating	 community	
assembly can be reduced to the task of developing an optimisa-
tion	algorithm	that	identifies	the	traits	maximising	this	correlation,	
together with an appropriate permutational test for significance.

To	 test	 our	 method,	 we	 generated	 data	 with	 known	 environ-
mental filtering mechanisms and analysed how often our method 
correctly identified the traits involved in the simulated process of 
community	 assembly.	 Then,	 we	 applied	 the	 method	 to	 real	 plant	
community data and checked whether it identified traits that can 
be considered relevant in mediating species assembly in the studied 
communities.

2  | METHODS

As	input,	the	analysis	uses	community	composition	matrix	W of sites 
by	species,	and	matrix	B of traits describing the species found in the 
metacommunity.

The	Beals	smoothing	 (Figure	1)	 requires	a	matrix	P of pairwise 
probabilities	of	species	co-occurrences,	which	is	derived	from	W:

where pi|j is the probability of species i to occur in a community when 
species j	is	present,	w0

ki
 and w0

kj
	are	the	incidences	(0,	1)	of	the	species	i 

and j in the community k,	and	w0
.j
 is the total incidence of species j across 

the n communities in W.	Normalising	W	by	its	site	totals,	to	compute	
relative species abundances (Wp),	 and	multiplying	 it	 by	P (Figure 1) 
results in Beals-smoothed matrix Y	of	species	by	communities	(Beals,	
1984;	De	Cáceres	and	Legendre,	2008).	 In	this	definition,	the	target	
species were included for the estimation of their own probability of 
occurrence	in	a	community	(Beals,	1984).

For the fuzzy-weighting of the community composition in W (see 
Figure	1),	 the	 species	probability	of	occurrence	 in	 a	 community	 is	
estimated based on the species’ trait similarities with other species 
observed	in	the	same	community	(Pillar	et	al.,	2009).	For	this	task,	
considering the traits in B,	a	species	by	species	similarity	matrix	S 
is computed by using the Gower similarity index (ranging 0–1). By 
normalising the rows of S	by	their	row	total,	a	matrix	U is obtained 
whose elements define self- and cross-belongings of species to 
fuzzy	sets	(Duarte	et	al.,	2016).	Each	column	j of U defines a fuzzy set 
of species functionally similar to species j. This way the degrees of 
belonging	of	each	species	across	the	fuzzy	sets	sum	up	to	1,	though	
symmetry	is	lost,	i.e.	uij	≠	uji. The closer a given species is to species 
j	in	trait	space,	the	higher	is	its	degree	of	belonging	to	the	fuzzy	set	j 
and the better it can functionally represent the species j. The fuzzy-
weighted community composition is computed by multiplying the 
site total standardised matrix Wp by U,	 resulting	 in	a	communities	
by species matrix X	(Figure	1).	As	in	Wp the values in X also add to 1 
for	every	site,	so	that	the	species	proportions	may	be	interpreted	as	

(1)p ( i � j ) =
∑n

k=1
w0
ki
w0
kj

w0
.j

F I G U R E  1   Data analysis steps for: (a) 
fuzzy-weighting applied to the species 
composition matrix W	which,	combined	
with the species traits in the matrix 
B, generates the matrix X; (b) Beals 
smoothing applied to W to generate the 
matrix Y; and (c) permutation test for 
the significance of the matrix correlation 
r(XY) by permuting the columns of B 
(or U) generating B0 (or U0) and derived 
X0 = WpU0
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probabilities. While in Wp these probabilities refer to the species ac-
tually	observed	in	the	community,	in	X they refer to the species pool 
in	the	metacommunity.	That	 is,	each	element	 in	X is an estimation 
of the probability to find the species j in the community k,	given	the	
functional similarity of j to the species actually occurring in k.

To assess the correlation r(XY) between the matrices X and Y,	
we	used	the	Rd	coefficient	(Omelka	and	Hudecová,	2013),	which	is	
a	Pearson	correlation	coefficient	of	the	Gower-centred	pairwise	dis-
tances	(Gower,	1966)	based	on	X and Y,	considering	the	full	distance	
matrices.	The	closer	Rd	is	to	1,	the	higher	is	the	association	between	
community distances in the fuzzy-weighted species composition 
based on traits and those in the potential composition based on spe-
cies co-occurrences. The Rd correlation r(XY) can be interpreted as 
the degree to which the traits used in X reflect co-occurrence pat-
terns in Y. We chose the Rd coefficient based on Euclidean distances 
because,	compared	to	the	Mantel	correlation	or	the	RV	coefficient	
(Robert	and	Escoufier,	1976),	it	can	also	detect	non-linear	relations	
between	the	matrices	 (Omelka	and	Hudecová,	2013).	Note	that,	 if	
squared	 distances	were	 used,	 the	Rd	would	 coincide	with	 the	RV	
(Omelka	and	Hudecová,	2013).

2.1 | Testing for significant traits

The significance of the Rd correlation r(XY) was tested under the 
null hypothesis that species assembly is unrelated to species traits. 
This	 null	model	was	 originally	 described	 by	 Pillar	 et	 al.	 (2009)	 for	
testing matrix correlations between environmental variables and 
CWMs	 or	 fuzzy-weighted	 composition;	 it	 corresponds	 to	 the	 col-
umn-based	 permutation	 test	 described	 in	 Zelený	 (2018)	 for	 the	
analogous case of the community-weighted mean approach (see 
also	Zelený	and	Schaffers,	2012;	Duarte	et	al.,	2018;	ter	Braak	et	al.,	
2018).	This	is	achieved	by	keeping	W and Y constant and permuting 
the columns of B	 (or,	equivalently,	of	U) enough times to allow the 
computation of a probability p[r(X0Y)	≥	r(XY)] (Figure 1c). If the p-
value is not larger than an a priori fixed error probability threshold 
α,	 then	 r(XY) is deemed significant and we conclude that the trait 
or traits included in the definition of X has/have been relevant for 
community assembly in the analysed metacommunity. This permu-
tation approach breaks all the relations between the functional trait 
characteristics of the species and their presence or abundance in W. 
This	has	the	following	advantages:	First,	it	controls	for	the	fact	that	
the species composition (W) is used to derive the matrices at both 
sides of r(XY),	thus	it	avoids	bias	that	would	result	if	permutations	
were done among the sites in X or Y.	Second,	it	avoids	the	source	of	
bias described by Hawkins et al. (2017) affecting aggregated meas-
ures	in	community	analysis.	Third,	by	keeping	W and Y	constant,	any	
spatial or temporal autocorrelation in the compositional data will be 
incorporated	in	the	null	model,	thus	avoiding	bias	in	the	permutation	
testing	(Pillar	et	al.,	2009;	Gotelli	and	Ulrich,	2012).	Note	that	this	ap-
proach	was	preferred	to	the	max	test	described	by	ter	Braak	(2018),	
since the latter cannot be theoretically justified for testing the cor-
relation r(XY)	relating	two	intrinsic	sample	attributes	(Zelený,	2018).

This permutation procedure can be repeated by considering dif-
ferent subsets of traits to obtain various fuzzy-weighted community 
composition matrices in X. The trait or combination of traits maxi-
mising r(XY),	as	 long	as	 its	p-value	 is	significant,	 is	expected	to	be	
optimal for observational and experimental studies aiming at iden-
tifying traits linked to hidden environmental factors in community 
assembly.

To	 select	 the	 optimal	 subset	 of	 traits,	 for	 the	 simulated	 data	
we considered the p-values	 generated	 according	 to	 Figure	 1c	 only,	
whereas for the real-world data we combined the permutation test 
with	bootstrap	resampling.	Thus,	since	the	real-world	data	are	a	sam-
ple,	in	addition	to	testing	for	significance,	we	calculated	confidence	in-
tervals for the observed r(XY)	for	each	trait	or	trait	combination,	and	
compared	 them	across	 traits	or	 trait	 combinations.	For	 this	 task,	 in	
each	bootstrap	iteration,	the	plots	were	resampled	with	replacement	
to	obtain	a	bootstrap	sample,	which	redefined	X* and Y* with the se-
lected	plots,	used	to	recalculate	 r(X*Y*). The distribution of r(X*Y*) 
across	the	bootstrap	samples	allowed	estimating	the	95%	confidence	
interval of the observed r(XY).	Yet,	as	both	X and Y are based on the 
same species composition W,	 they	 are	 expected	 to	 have	 non-zero	
r(XY) even if the trait combination used to build X plays no role in 
community	assembly.	Thus,	we	applied	the	permutational	approach	
shown in Figure 1c to compare r(X*Y*) with a possible expected cor-
relation r(X*0Y*) assuming the selected trait or traits has/have no role 
in	community	assembly.	After	a	large	number	of	bootstrap/permuta-
tion	iterations,	the	probability	p[r(X*0Y)	≥	r(X*Y*)] was the proportion 
of iterations in which r(X*0Y*) was larger than r(X*Y*).

Finally,	we	used	the	95%	confidence	intervals	of	each	correlation	
r(XY)	to	compare	and	rank	the	trait	combinations.	Ideally,	we	would	
examine iteratively every trait subset with 1 to k traits in B and the 
corresponding significance of the resulting r(XY) to find an optimal 
trait	subset.	However,	when	the	number	of	traits	is	large	(e.g.	>20),	the	
number of possible combinations may become numerically unman-
ageable	(e.g.	1,048,575	possible	combinations	for	20	traits).	Here	we	
adopted a partial stepwise algorithm to efficiently explore the space of 
trait combinations and reduce computation demand. The optimal trait 
set was then compared with the one obtained by testing all possible 
trait	combinations.	Further,	we	benchmarked	the	results	with	those	of	
the analyses performed on simulated data with known assembly rules. 
The partial stepwise algorithm acts as follows: once computed r(XY) 
for	each	single	trait,	the	traits	resulting	with	significant	r(XY) correla-
tions were selected. We then repeated the procedure by considering 
all the pairwise combinations of traits being individually significant. 
If any pairwise combinations had an r(XY) significantly better than 
the	 best	 trait	 (i.e.	whose	 95%	 confidence	 intervals	 did	 not	 overlap	
with	those	of	the	best	trait),	we	considered	the	pairwise	combination	
having the highest and significantly better r(XY) as the new best. We 
then	kept	these	two	traits	as	fixed,	while	testing	the	effect	of	adding	
another	 trait,	 trying	 to	 find	a	new	best.	 If	no	pairwise	combination	
performed	better	than	the	best	trait,	we	tested	all	possible	three-way	
combinations	including	the	initial	best	trait,	and	checked	if	a	new	best	
combination	could	be	found.	 If	no	new	best	existed,	we	proceeded	
considering	all	four-way	combinations,	and	so	on.	We	added	one	trait	
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at	a	time	up	to	the	number	of	individually	significant	traits,	so	as	to	
find the optimal combination of traits. This should not be seen as the 
absolute	optimal	combination	of	traits,	but	rather	an	optimal	solution	
conditional	on	the	previously	selected	traits.	For	each	combination,	
we generated p-values using 999 random iterations of bootstrap/per-
mutation plus one iteration for the observed r(XY).

2.2 | Analyses with simulated communities

To test whether our method is able to discriminate relevant and 
non-relevant	 traits,	 we	 applied	 it	 to	 simulated	 plant	 community	
composition data. We generated data by repeatedly modelling 
metacommunities (sets of plant communities) based on specified 
assembly mechanisms in which the underlying environmental fac-
tors	were	 known.	 Then,	we	 analysed	 the	 simulated	 data	with	 the	
above-described method to identify the traits driven by these fac-
tors. This way we could check by means of type I error and power 
analyses whether the relevant traits for the assembled communities 
were correctly revealed. We assessed type I error as the propor-
tion	of	metacommunities	in	which	neutral	traits,	i.e.	traits	not	being	
favoured	by	a	given	set	of	environmental	factors,	were	incorrectly	
identified	as	relevant.	To	quantify	power,	we	calculated	the	propor-
tion of metacommunities in which traits involved in the simulated 
assembly	mechanisms	were	correctly	identified	as	being	significant,	
i.e. when the test with the simulated metacommunity resulted in 
p[r(X0Y)	≥	r(XY)]	≤	0.05.	Given	the	low	number	of	traits	involved	in	
the	generation	of	the	simulated	data,	we	evaluated	significance	both	
for	all	 traits	considered	 individually,	as	well	as	 for	all	possible	trait	
combinations.

We	 used	 a	 stochastic,	 individual-based	 model	 for	 simulating	
metacommunities stepwise from a given pool of species and their 
functional	 traits	 (Pillar	 and	Camiz,	 unpublished).	At	 each	 step,	 the	
model	 can	predict	 the	arrival,	 establishment,	 and	extinction	of	 in-
dividuals	belonging	to	each	species,	based	on	probability	functions	
with specific parameters. We then analysed the metacommunity 
structure after a given number of years (iterations). We generated 
different simulated metacommunities by specifying different com-
binations	of	trait	numbers,	environmental	filtering	parameters,	and	
species	level	trait	correlations	(Appendix	S1).	The	other	parameters	
were	set	at	random.	For	each	set	of	model	parameters,	we	generated	
and analysed 100 simulated metacommunities.

We explored four simulation scenarios to assess whether the 
method can correctly identify the relevant traits in the simulated 
metacommunities,	when	confounding	aspects	related	to	correlation	
among traits and contrasting strengths and interactions between 
environmental filtering effects are in play. In the first case (Scenario 
1),	we	generated	communities	assuming	two	environmental	factors	
and three functional traits. The first trait t1 was directly dependent 
on e1,	i.e.	e1 → t1,	while	t2 related directly to e2,	i.e.	e2 → t2.	An	ad-
ditional trait tn was neutral with respect to the environment. The 
metacommunities were generated according to an increasing magni-
tude of e1 → t1,	obtained	by	varying	from	0	to	0.6	the	specified	linear	

response	 parameters	 for	 environmental	 filtering,	 while	 fixing	 the	
effect of e2 → t2 at 0.3. We used this basic scenario to explore both 
the effect of the interaction between the environmental factors e1 
and e2 on t1	(three	levels:	0,	0.3,	0.5)	and	to	explore	the	effect	of	the	
correlation between traits t1 and t2	(three	levels,	0,	0.4,	0.8).

Scenario	2	was	similar	to	the	first	one,	but	we	added	a	third	trait	
t3 directly dependent on factor e1,	i.e.	e1 → t3.	In	this	case,	both	traits	
t1 and t3 were affected by the same factor e1,	but	while	the	strength	
of the effect e1 → t1	 varied	 from	0	 to	0.6,	 the	effect	e1 → t3 was 
fixed	at	0.3.	As	in	the	first	scenario,	we	also	examined	the	effect	of	
an interaction between the factors e1 and e2 on t1,	and	of	pairwise	
correlations between traits t1,	t2 and t3.

In	Scenario	3,	we	varied	the	effect	e1 → t1	from	0	to	0.6,	as	above,	
but progressively including also the effect of additional environmen-
tal factors on their respective functional traits (i.e. e2 → t2; e3 → t3; 
e4 → t4),	all	fixed	to	0.3.	In	all	simulations,	a	neutral	trait	tn was added 
with the purpose of testing the type I error. Both factor interaction 
effects and pairwise trait correlations were set to zero in this sce-
nario. We also examined a variation of this situation in Scenario 4 
by setting the environmental factor effects on the last two traits 
(e3 → t3; e4 → t4)	with	a	very	weak	magnitude	of	0.01,	to	simulate	an	
increasing number of nearly neutral traits.

We performed supplementary analyses to help understand and 
interpret our results. We tested whether the Rd correlation r(XW) be-
tween fuzzy-weighted composition (X) and simulated species propor-
tions in the communities (Wp) would be able to discriminate between 
relevant and non-relevant traits. We did the same for the correlation 
r(XE) between X and environmental factors (E) driving the simulated 
community	assembly	process.	For	these	tests,	we	considered	only	the	
simulated	communities	described	in	Scenario	1.	Additionally,	we	as-
sessed	the	effect	of	sample	size,	i.e.	the	number	of	communities	sam-
pled	from	a	metacommunity,	on	the	power	of	our	method	to	detect	
relevant	traits	for	a	selected	case	of	simulated	data,	for	both	the	r(XY) 
and r(XW)	correlations.	Furthermore,	we	partitioned	the	taxonomic	
diversity of our simulated data into α,	β and γ components (De Bello 
et	al.,	2010),	to	show	the	effect	of	Beals	smoothing	and	fuzzy-weight-
ing on β	diversity.	Also,	by	means	of	Rd	correlations	r(YE) and r(WE) 
we assessed whether Beals smoothing (Y) improved the correlation 
between environmental structure (E) and community composition.

2.3 | Analyses with real communities

To test whether our method is helpful in highlighting relevant traits 
in	a	real-world	dataset,	we	used	data	on	dry	calcareous	grasslands	
vegetation in Germany. Such grasslands belong to the Festuco-
Brometea	class	(Mucina	et	al.,	2016)	and	are	coded	“E1.2a	Semi-dry	
perennial	calcareous	grassland”	in	the	European	Red	List	of	Habitats	
(Grassland	Habitat	Group,	2017).	The	dataset	had	been	previously	
used	in	a	continental	survey	(Willner	et	al.,	2019).	Here	we	analysed	
a	subsample	of	565	plots	randomly	taken	from	the	original	data	(see	
map	in	Appendix	S2),	and	including	488	species.	We	combined	the	
compositional	 data	 (square-root-transformed	 percentage	 cover,	
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to reduce the excessive weight of dominant species) with the spe-
cies	 trait	 information	 for	 49	 traits	 (Appendix	 S3)	 taken	 from	 the	
BIOLFLOR	 (Klotz	 et	 al.,	 2002)	 and	 TRY	 databases	 (Kattge	 et	 al.,	
2011,	2020).	The	TRY	data,	which	included	16	traits,	were	gap-filled	
and	aggregated	to	species	mean	values	(Shan	et	al.,	2012;	Fazayeli	
et	al.,	2014;	Schrodt	et	al.,	2015;	Bruelheide	et	al.,	2019).	Trait	cov-
erage	was	complete,	except	for	pollination,	leaf	persistence,	sclero-
phylly,	 and	 succulence,	 for	which	 the	 species	with	 functional	 trait	
information	accounted	for	an	average	of	at	least	96.5%	of	the	plot	
total	cover	across	the	plots	in	our	sample	(Appendix	S3).

Based on the procedure described above we identified an op-
timal	 subset	 of	 traits,	 i.e.	 the	 combination	 of	 traits	with	 the	max-
imum relevance for the assembly of these grassland communities. 
Furthermore,	we	 used	 principal	 components	 analysis	 (PCA)	 based	
on pairwise trait correlations to identify the main trends of trait vari-
ation at the species level.

To illustrate how well the selected traits reflected community 
composition,	we	applied	PCA	to	the	dry	grassland	data	based	on	the	
covariance of Beals’ smoothed community composition (matrix Y). 
We then superimposed three sets of supplementary variables on 
this	ordination	space:	(a)	the	principal	components	of	another	PCA	
computed based on the covariance of fuzzy-weighted composition 
(matrix X)	for	the	optimal	traits;	(b)	the	CWMs	of	all	significant	traits;	
and (c) available environmental variables. These projections were 

based	on	the	Pearson	correlations	between	the	supplementary	vari-
ables and the principal components of Y.	As	environmental	variables,	
we compiled annual mean temperature and annual mean precipita-
tion	from	CHELSA,	V1.1	(Karger	et	al.,	2017)	and	assigned	these	val-
ues	to	the	plots	with	a	30	arcsec	resolution.	Also,	two	soil	variables	
(soil pH and content of soil organic carbon) were extracted from the 
SOILGRIDS	project	(https://soilg	rids.org/,	licensed	by	ISRIC—World	
Soil	Information),	downloaded	at	250-m	resolution	and	then	resam-
pled	using	the	30	arcsec	grid	of	CHELSA.

3  | RESULTS

3.1 | Simulated communities

In	the	first	scenario	(Figure	2,	top,	leftmost	panel),	the	proportion	
of simulated metacommunities with a significant r(XY) correlation 
taking the trait t1 alone expectedly increased when the factor ef-
fect e1 on t1	increased	beyond	zero,	and	reached	100%	power	with	
the	strongest	effect.	However,	as	the	effect	of	e1 on t1	increased,	
the power to detect a significant r(XY) for the trait t2 alone was 
suppressed.	 In	addition,	 the	method	correctly	 indicated	that	the	
proportion of simulated metacommunities with a significant r(XY) 
for tn alone was low and close to the nominal α threshold α =	0.05,	

F I G U R E  2  Proportion	of	significant	Rd	correlation	r(XY) between community distances based on trait-based fuzzy-weighted (X) and 
Beals-smoothed (Y) species composition across simulated metacommunities with increasing strength of factor effect e1 on trait t1,	and	
varying the magnitude of the e1 × e2	interaction,	and	the	strength	of	the	pairwise	correlations	between	traits	t1 and t2 (Scenario 1). The 
vertical axis indicates the proportion of simulated metacommunities for which the p-value for r(XY) found by permutation was not larger 
than the threshold α =	0.05.	The	graphics	show	traits	considered	individually	and	different	trait	combinations	defining	fuzzy-weighted	
species composition. Further details on the set of parameters for community assembly simulations and summary statistics for some 
simulated	data	are	in	Appendix	S1.	Dashed	lines	represent	combinations	of	traits	including	the	neutral	trait	(tn)

https://soilgrids.org/
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i.e.	the	type	I	error	was	not	inflated.	However,	considering	combi-
nations	of	traits,	we	found	that	all	two-trait	combinations	involv-
ing the neutral trait tn returned significant r(XY) at similar power 
to the one obtained when considering traits t1 or t2 alone. This 
is clearly misleading considering that tn was not under environ-
mental filtering in community assembly. We took this result as 
evidence for the need to test only combinations of traits which 
produced a significant r(XY) when taken individually.

Furthermore,	as	the	effect	of	factor	interaction	e1 × e2 on trait 
t1	 increased	 (Figure	2,	 top	panels),	 the	 relevance	of	 t1 was high ir-
respective of how low the factor effect e1 was on the same trait. 
The power to detect a significant r(XY) for t2 alone was even more 
strongly suppressed with increasing interaction e1 × e2 on trait 
t1	 (Figure	 2,	mid	 and	 right	 column	 of	 panels).	However,	when	 the	

correlation between t1 and t2	 increased	(Figure	2,	mid	and	bottom	
panels),	the	suppression	of	t2 by t1 was weakened.

The effect of suppression between traits can be better exam-
ined	in	the	second	scenario	(see	results	in	Appendix	S4).	Similarly	
to	what	was	shown	in	Figure	2,	 in	the	absence	of	factor	 interac-
tion and trait correlation the detection of the trait t2 as relevant 
in community assembly was progressively suppressed by t1 when 
the filtering effect of factor e1	 increased.	However,	 t3,	which	 in	
this scenario is filtered by the same factor e1,	was	very	little	sup-
pressed while the filtering effect on t1	increased,	i.e.	became	more	
limiting for the establishment and the survival of plant individuals. 
Yet,	under	increasing	strength	of	the	interaction	e1 × e2 on t1,	the	
power to detect a significant r(XY) for t3	alone	decreased.	Further,	
similar	 to	 the	 first	 scenario,	 the	 pairwise	 correlation	 increase	 at	

F I G U R E  3  Proportion	of	significant	Rd	correlation	r(XY) between community distances based on trait-based fuzzy-weighted (X) and 
Beals-smoothed (Y) species composition across simulated metacommunities with increasing strength of factor effect e1 on trait t1,	and	
increasing the number of traits used in simulating metacommunities (Scenario 3). The vertical axis indicates the proportion of simulated 
metacommunities for which the p-value found by permutation was not larger than the threshold α =	0.05.	The	number	of	traits	ranged	from	
3	to	5	(left	to	right	panels),	with	one	trait	tn	always	being	neutral.	Traits	are	either	shown	individually	(top	row),	or	in	combinations	(from	two	
to	five,	top	to	bottom	rows)	to	improve	visualization.	Dashed	lines	represent	combinations	of	traits	including	the	neutral	trait	(tn)
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the species level between t1,	t2 and t3 reduced such a suppression 
effect.	As	before,	the	type	I	error	was	not	 inflated	regarding	the	
neutral trait tn taken alone.

In	 the	 third	 scenario,	we	analysed	whether	 the	performance	of	
our method is influenced by the number of traits involved in commu-
nity assembly (Figure 3). The simulations based on three traits gener-
ated power graphs with a similar pattern compared to those based on 
four	or	five	traits.	In	all	cases,	the	trait	t1 was filtered under increasing 
factor effect e1,	tn	was	always	neutral,	and	the	other	traits	were	under	
a	fixed,	intermediate	factor	effect.	As	in	Figure	2,	the	analysis	of	the	
r(XY) using trait combinations including the neutral trait tn would be 
as relevant as using the other non-neutral traits alone. The results of 
the simulations performed under the conditions set for the fourth 
scenario	indicated	that	neutral	traits	were	equally	non-significant	ir-
respective	of	the	increasing	number	of	neutral	traits	(Appendix	S5).

The supplementary analyses with data simulated under the 
same scenario as used in Figure 2 indicated that the power for 
detecting knowingly significant traits was consistently higher 

when using the correlation r(XY) compared to r(XW) (Figure 2 vs. 
Appendix	S6a).	Also,	the	power	for	detecting	knowingly	significant	
traits by the correlation r(XE) showed a steep increase at very low 
levels of factor effect e1,	 but	 for	 intermediate	or	 stronger	 effect	
levels the power of r(XE) was similar to r(XY)	(Appendix	S6b).	As	ex-
pected,	the	correlation	r(XE) based on t2	remained	non-significant,	
except when t2 was highly correlated with t1.	Further,	the	power	to	
detect a significant correlation r(XY) correlation was affected only 
when	samples	with	 less	than	50	communities	were	used,	and	the	
drop in the power was steeper for correlation r(XW)	(Appendix	S7).	
Eventually,	it	was	clear	that	Beals	smoothing	strongly	reduced	pro-
portional	beta	diversity	 in	 the	composition	matrix	 (Appendix	S8).	
The same was observed for fuzzy-weighting (results not shown). 
Despite	the	homogenising	effect,	the	correlation	between	commu-
nity patterns and environmental structure was not only preserved 
but	 enhanced	 by	 Beals	 smoothing,	 and	 this	was	 not	 affected	 by	
sample	size,	at	least	for	the	range	of	simulated	conditions	we	con-
sidered	(Appendix	S8).

F I G U R E  4   The Rd correlation r(XY) 
between community distances based 
on trait-based fuzzy-weighted (X) and 
Beals-smoothed (Y)	species	composition,	
when considering one trait at a time. The 
observed r(XY) was deemed significant 
(at p-value	≤	0.05,	one-sided)	when	it	
was greater than the corresponding 
correlation coefficient calculated using 
permuted	species	traits	in	at	least	95%	
of the bootstrap samples. The segments 
represent	the	95%	bootstrap	confidence	
intervals of the observed r(XY); in red are 
the traits with significant r(XY),	in	blue	are	
the non-significant ones
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3.2 | Real communities

While	 applying	 the	 same	 approach	 to	 dry	 calcareous	 grasslands,	
seven out of the 49 traits returned a significant r(XY) when taken 
one	by	one:	 sclerophylly,	plant	height,	 specific	 leaf	area	 (SLA),	na-
nophanerophyte	 and	 hemiphanerophyte	 growth-forms,	 flowering	
duration,	and	vegetative	propagation	through	fragmentation.	Taken	
singularly,	sclerophylly	was	the	trait	that	best	explained	community	
assembly (Figure 4).

By	using	the	partial	stepwise	algorithm,	the	 iterative	 increase	
of the number of traits used to calculate the matrix X resulted in 
a progressive increase in r(XY),	although	the	confidence	intervals	
of	the	regression	coefficients	were	mostly	overlapping	(Figure	5).	
When	 considering	 pairwise	 combinations	 of	 traits,	 sclerophylly	
combined with flowering duration returned a significantly higher 
r(XY) than sclerophylly alone. There were no three- and four-
way combinations of traits significantly improving the r(XY) com-
pared to the sclerophylly/flowering duration pair (for details see 
Appendix	S9).	Only	when	considering	five	traits	together,	the	im-
provement of r(XY) became significant: besides sclerophylly and 
flowering	 duration,	 the	 other	 traits	 composing	 this	 combination	
of	 traits	were	 plant	 height,	 SLA,	 and	 propagation	 by	 fragmenta-
tion. We assumed this as being the optimal combination of traits 
for predicting fuzzy-weighted species composition related to spe-
cies	 co-occurrences,	 as	 no	 additional	 increase	 in	 dimensionality	
resulted in a significant improvement of r(XY)	(Figure	5).	This	same	
subset of traits was found as best by testing all the 127 combina-
tion of the seven significant traits (results not shown).

The	PCA	of	the	trait	correlations	at	the	species	level	(Appendices	
S10,	S11)	revealed	two	main	axes	of	independent	trait	variation,	one	
reflecting	the	leaf	economics	spectrum	(SLA	vs.	sclerophylly),	which	
was also associated with the hemiphanerophyte growth form and 
the	propagation	by	fragmentation,	and	the	other	the	size	spectrum	
(plant	height),	which	was	also	associated	with	the	nanophanerophyte	
growth	 form	 and	 the	 flowering	 duration.	 However,	 uncorrelated	
traits at species level were not necessarily also uncorrelated at com-
munity	 level.	 For	 example,	while	 at	 species	 level	 plant	 height	was	
uncorrelated to sclerophylly (r =	−0.06)	and	fragmented	vegetative	

propagation (r =	−0.07),	 their	corresponding	CWM	values	showed	
considerable	 Pearson	 correlations	 (	 −0.44	 and	 0.31,	 respectively;	
Appendix	S12).

The five traits that were identified as the most relevant ones 
(Figure	 5),	 and	 the	 so	 defined	 principal	 components	 of	 fuzzy-
weighted	composition	 (FW-PCs,	Appendix	S13)	 reflected	different	
dimensions	 (PCs)	 of	 Beals-smoothed	 community	 composition,	 as	
shown	 in	Figure	6	 (see	correlations	 in	Appendix	S14).	FW-PC1	re-
flected	the	leaf	economics	spectrum	(SLA	vs.	sclerophylly)	and	was	
correlated	 also	 to	 PC1	 but	mostly	 to	 PC3	 of	 the	 Beals-smoothed	
community	composition	(11.2%	of	total	variation).	FW-PC2	reflected	
an increasing representation of the nanophanerophyte growth form 
vs. decreasing flowering duration and was mostly correlated to the 
first	principal	component	 (PC1)	of	the	Beals-smoothed	community	
composition	 (27.7%	of	 total	 variation).	 FW-PC3	was	 only	 (weakly)	
correlated	to	PC4	but	did	not	reflect	any	trait	in	particular.	Yet,	the	
links	 between	 the	 FW-PCs,	 the	 traits	 and	 the	 PCs	 of	 the	 Beals-
smoothed community composition become clearer by examining 
the	two-dimensional	ordination	spaces.	In	the	space	defined	by	PC1	
and	PC2,	 two	diagonal	axes	may	be	 identified,	one	reflecting	FW-
PC1	and	the	other	FW-PC2,	both	representing	different	traits.	The	
size	spectrum	(height)	was	captured	by	both	FW-PC1	and	FW-PC2.	
Finally,	 the	available	potential	environmental	predictors	presented	
weak	 correlations	with	 the	 first	 four	 principal	 components,	 being	
highest	 for	mean	annual	precipitation	 (−0.386	with	PC1,	Figure	6,	
Appendix	S14).

4  | DISCUSSION

How to identify those functional traits mediating community assem-
bly	when	relevant	environmental	factors	are	unknown?	Answering	
this	question	is	crucial	to	improve	our	predictions	on	how	ecologi-
cal	assemblages	will	change	in	the	face	of	global	change	(Newbold,	
2018).	Here,	we	developed	a	method	to	identify	the	functional	traits	
mediating	community	assembly,	which	does	not	rely	on	measuring	
the actual environmental gradients ultimately driving it. Our ap-
proach relies on the comparison of two alternative ways of predicting 

F I G U R E  5   Rd correlation r(XY)	(black	squares)	and	confidence	interval	(red	lines)	between	community	distances	based	on	trait-based	
fuzzy-weighted (X) and Beals-smoothed (Y)	species	composition,	when	progressing	in	tiers	(bottom	to	top)	based	on	a	selected	subset	of	
traits.	Only	the	seven	significant	traits	defining	fuzzy-weighting	alone	(see	Figure	4)	are	represented.	For	each	tier,	we	tested	the	effect	of	
adding	a	new	trait	to	the	best	combination	of	the	previous	tier,	and	only	show	the	best	result.	Identical	results	were	found	by	examining	
every combination of the seven traits. We used thick lines for traits or trait combinations providing a significant (p	≤	0.05)	improvement	with	
respect	to	the	best	solution	at	the	previous	tier(s).	Detailed	results	are	shown	in	Appendix	S9
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species composition: Beals’ smoothing of species co-occurrences 
probability	 (Beals,	 1984)	 and	 fuzzy-weighting	 of	 functional	 traits	
(Pillar	 et	 al.,	 2009).	 The	method	 comes	with	 an	optimisation	 algo-
rithm	 able	 to	 efficiently	 explore	 the	 trait	 combination	 space,	 and	
derives unbiased significance values and confidence intervals using 
permutation	and	bootstrap	resampling,	respectively.

The results with the simulated data show that our method can 
identify the most relevant trait combinations mediating the assembly 
of biological communities along gradients. Weak trait–environment 
links	may	give	 low	power	 to	detect	 a	 relevant	 trait.	However,	 the	
power	of	our	analysis	quickly	 increased	to	100%	when	the	magni-
tude of the main environmental filtering effect was greater than 0.3; 
the effect was specified as a linear parameter relating the factor to 
the expected trait values at the community level in the metacommu-
nity model that generated the data. This suggests that the method 
might be sensitive enough to detect the most important traits re-
lated to discriminant environmental factors in real-world situations. 
Furthermore,	 in	 the	 simulations	 our	 approach	 proved	 sufficiently	
robust	against	the	inclusion	of	non-relevant	traits,	the	type	I	error	
always	being	close	to	the	nominal	levels,	as	well	as	against	confound-
ing	factors	related	to	interactions	between	environmental	gradients,	
and correlation among traits.

However,	 the	 results	 with	 the	 simulated	 data	 also	 indicated	
that only those traits found to be significant when taken individ-
ually should be retained in the analysis and tested in combination 
with	other	equally	relevant	ones.	In	other	words,	the	consideration	

of correlation and p-values per se is not sufficient to discriminate 
trait	combinations	that	include	irrelevant	traits.	For	the	real	data,	we	
solved this problem by using bootstrap to calculate the confidence 
intervals	 of	 our	matrix	 correlation	 coefficients,	 and	 by	 adopting	 a	
partial stepwise algorithm only considering combinations of traits 
that	were	relevant	when	taken	individually.	This	way,	we	could	reli-
ably	ascertain	that	a	combination	of,	e.g.,	two	traits	was	significantly	
better	than	any	of	the	two	traits	taken	singularly.	And	yet,	our	op-
timisation algorithm remained sufficiently flexible to be adapted to 
situations under which the examination of every combination of rel-
evant traits would be unfeasible.

Our results using simulated metacommunity data demonstrated 
a	 suppression	effect	among	 traits	mediating	community	assembly,	
suggesting that traits under stronger filtering effects tend to mask 
traits weakly filtered. We argue that the suppression effect is not an 
artefact	of	our	method	of	analysis,	because	suppression	may	arise	
in community assembly from the obvious fact that the units being 
filtered	are	not	traits	but	whole	organisms,	whose	traits	cannot	be	
physically disentangled according to trait responses to different 
factors.	Under	such	filtering	effect,	the	most	 limiting	trait	 (Sih	and	
Gleeson,	 1995;	Gorban	 et	 al.,	 2011)	 likely	 suppresses	 less	 limiting	
traits.	 However,	 suppression	 is	 stronger	 between	 traits	 that	 are	
filtered	 by	 different,	 independent	 environmental	 factors	 than	 be-
tween traits that are filtered by the same factor. Correlation among 
traits,	 contrastingly,	 reduces	 such	 suppression	 effects.	 We	 note,	
however,	that	assessing	whether	a	trait	is	found	non-significant	for	

F I G U R E  6  Principal	components	analysis	of	dry	grassland	plots	based	on	the	species	variance–covariance	matrix	of	Beals’	smoothed	
composition (Y	matrix).	The	communities	(plots)	are	shown	as	cross	symbols	with	the	scores	multiplied	by	a	constant	to	fit	into	the	−1	to	
+1	range.	The	community-weighted	means	(CWMs)	for	the	traits	with	a	significant	Rd	correlation	r(XY)	in	Figure	4,	in	green,	the	principal	
components	based	on	the	fuzzy-weighted	composition	defined	by	these	traits	(FW-PC1,	-PC2,	-PC3,	Appendix	S13),	in	purple,	and	four	
environmental	variables,	in	orange,	are	superimposed	according	to	their	Pearson	correlations	with	the	PCA	axes	(see	correlations	in	
Appendix	S14).	The	five	traits	identified	in	Figure	5	as	the	best	combination	of	traits	are	shown	in	bold	green	fonts.	See	Appendix	S15and	
S16 for the scatterplots with the species.
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having	a	weak	effect	or	because	it	is	suppressed	by	another,	strongly	
filtered	trait,	is	only	possible	when	dealing	with	simulated	data,	but	
not	in	real-world	applications.	The	opposite	is	also	true,	i.e.	a	trait,	al-
though	significant,	might	not	be	mediating	community	assembly,	but	
simply	be	highly	correlated	to	another,	unknown	trait	that	is	the	cru-
cial one for the species’ success or failure in the communities. These 
problems,	however,	are	common	to	most	observational	approaches,	
where	causality	can	only	be	inferred,	but	never	ascertained.

Models	 are	 useful	 but	 offer	 simplified	 representations	 of	 real	
systems.	Thus,	models	should	always	be	compared	with	or	comple-
mented	by	the	analysis	of	real	data	(Noy-Meir	and	van	der	Maarel,	
1987).	We	believe	this	approach	was	successful	here.	While	there	is	
no way to disentangle all the environmental factors that drive the 
community composition of the whole range of dry calcareous grass-
lands	in	our	study	system,	the	identification	of	the	five	most	relevant	
traits allows some conclusions on the underlying processes. Three 
of the five traits are part of the two main spectra of global plant 
forms	 and	 functions	 at	 the	 species	 level	 (Díaz	 et	 al.,	 2016).	While	
plant	height	reflects	the	size	spectrum,	SLA	and	sclerophylly	repre-
sent	the	leaf	economics	spectrum	(Wright	et	al.,	2004).

On	 the	one	hand,	plant	height	points	 to	management	as	a	key	
factor	 in	 community	 assembly	 of	 dry	 grasslands.	 Indeed,	 aban-
donment	 of	 grazing	 and	 mowing	 favours	 tall	 grasses,	 shrubs	 and	
trees.	Taller	species	 indicate	ongoing	secondary	succession,	which	
is	 a	major	 threat	 for	dry	grasslands	 (Kahmen	and	Poschlod,	2004;	
Burrascano	et	al.,	2016).	We	found	that	the	successional	gradient	is	
reflected by the first and second ordination dimensions of the fuzzy-
weighted composition based on the five key traits: this supports the 
outcomes of experiments that revealed land-use intensity and time 
since abandonment as main drivers of trait composition of dry grass-
lands	 (Moog	 et	 al.,	 2002).	On	 the	 other	 hand,	 the	 leaf	 economics	
spectrum,	characterised	by	SLA	vs.	sclerophylly	(Wright	et	al.,	2004),	
forms	 a	 second	 gradient,	 yet	 not	 completely	 independent	 from	
the	successional	one.	 In	our	communities,	 the	ability	 to	propagate	
through fragmentation coincides with the leaf economics spectrum 
gradient because this trait is represented in slow-growing perennial 
species	fragmenting	with	age.	In	dry	grasslands,	the	leaf	economics	
spectrum	 reflects	 the	 gradient	 in	 both	 nutrient	 and	water	 supply,	
along	which	different	communities,	alliances	and	orders	are	distin-
guished	 (Royer,	 1991;	 Jandt,	 1999;	Willner	 et	 al.,	 2019).	However,	
the	overall	nutrient	availability,	especially	of	N	and	P,	in	these	grass-
lands	 is	 low,	making	 them	rather	stressful	habitats,	home	to	many	
specialist	species	adapted	to	these	specific	conditions	(Gilbert	et	al.,	
2009;	Ceulemans	et	al.,	2011),	which	favour	the	hemiphanerophytic	
life form (i.e. resting buds are situated on woody shoots).

These explanations might give the impression that the five key 
traits follow clear environmental gradients of easily measurable vari-
ables,	yet	the	real-world	situation	is	much	more	complex.	While	to	
some degree the plant height and leaf economics spectra follow mac-
roclimatic gradients and result in different species pools of dry grass-
lands	(see	the	map	of	the	species	pools	in	Bruelheide	et	al.,	2020),	
microclimate might strongly deviate from macroclimate (Bruelheide 
and	 Jandt,	 2007;	 Burrascano	 et	 al.,	 2013).	 Similarly,	 topographic	

conditions	and	soil	depth	have	strong	impacts	on	water	availability,	
resulting	in	small-scale	variation	of	communities	(Leuschner,	1989).	
This	is	illustrated	by	one	of	our	five	traits	of	the	optimal	combination,	
that	is	flowering	period	duration.	The	CWM	of	this	trait	was	neither	
correlated with the community trends related to height nor to the 
leaf economics spectrum. This is consistent with the results reported 
by Bouchet et al. (2017): while flowering period duration showed a 
strong	 relationship	 to	 community	 trait	 composition,	 it	was	not	 re-
lated to successional age. We would assume that flower duration 
indicates a combination of environmental factors that are usually 
hidden behind the main effects of these factors. Flower production 
depends on the availability of resources and is supported by warm 
and	wet	conditions	 (Craine	et	al.,	2012).	These	conditions	occur	 in	
early successional stages with an open vegetation structure where 
deeper soils provide an above-average resource supply. In the space 
of	the	traits,	these	particular	micro-environmental	conditions	would	
promote a combination of low-stature growth close to the ground 
(small	height)	with	acquisitive	leaf	traits	(high	SLA),	to	both	of	which	
flower period duration was moderately related.

While	microclimate	and	soil	depth	are	measurable,	other	addi-
tional factors adding to the complexity of dry grassland community 
assembly	are	not.	 In	particular,	historical	 factors	are	hidden	 in	 the	
present-day	 community	 assembly.	 For	 example,	 traditional	 shep-
herding	between	the	15th	and	20th	centuries	has	strongly	affected	
the	species	composition	of	the	calcareous	grasslands	(Poschlod	and	
WallisDeVries,	2002).	There	might	be	further	hidden	factors	driving	
the	community	trait	composition,	about	which	we	can	only	specu-
late.	For	example,	resource	supply	in	dry	calcareous	grasslands	may	
vary	at	very	fine	scales	(Regan	et	al.,	2014).	This	is	both	caused	by	a	
large variation of microsite soil conditions at small distances and by 
heterogeneous	effects	of	grazing.	Overall,	it	becomes	apparent	that,	
in	real-world	situations,	community	composition	 is	not	driven	by	a	
single	trait–environment	relation,	but	by	a	complex	of	different	traits	
that are only partly related to known environmental factors.

It is worth keeping in mind the assumptions our method re-
lies	 on,	which	 is	 that	 both	Beals	 smoothing	 and	 fuzzy-weighting	
of functional traits can reliably predict potential community com-
position.	If	these	conditions	do	not	hold	for	a	given	dataset,	then	
it is likely that the r(XY) correlation will not be significant. How 
predictive fuzzy-weighting of potential species composition is will 
depend	only	on	the	defining	traits,	so	a	careful	initial	selection	of	
traits	is	crucial.	As	for	Beals	smoothing,	it	may	be	unreliable	at	ex-
tremely low beta diversity when each species is present in nearly 
every	 community	 in	 the	 set	 (McCune,	 1994),	 at	 extremely	 high	
beta	diversity	when	very	 few	 communities	 share	 species	 (Smith,	
2017),	or	when	the	sample	is	very	small	or	with	very	few	species,	or	
with	a	large	proportion	of	species	occurring	at	random	(De	Cáceres	
and	Legendre,	2008).	Thus,	a	non-significant	r(XY) correlation may 
indicate	that	the	traits	are	actually	not	relevant,	 that	the	dataset	
does	 not	 meet	 adequately	 the	 conditions	 for	 Beals	 smoothing,	
or	 that	 the	sample	 is	 too	small.	 In	 this	 regard,	 the	Beals	 test	 (De	
Cáceres	 and	 Legendre,	 2008)	 may	 be	 helpful	 to	 identify	 which	
species in a given dataset may have their potential occurrences 
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reliably	 predicted	 by	 Beals	 smoothing,	 but	 whether	 only	 these	
species	should	be	further	retained	 is	open	to	further	research.	A	
possible concern is that both fuzzy-weighting and Beals smoothing 
sharply	reduce	beta	diversity	in	the	composition	matrix,	but	our	re-
sults indicate that in this process existing community patterns re-
flecting	the	environmental	structure	are	preserved	(see	also	Smith,	
2017 for the case of Beals smoothing).

Although	 trait	 divergence	 patterns	 may	 also	 arise	 in	 commu-
nity	assembly	 (Mason	and	Wilson,	2006;	Wilson,	2007;	Pillar	et	al.,	
2009),	 we	 did	 not	 examine	 the	 ability	 of	 our	 method	 to	 faithfully	
reveal relevant traits linked to biotic and/or abiotic factors causing 
trait	 divergence	 in	 the	 simulated	 community	 assembly.	 Yet,	 as	 the	
fuzzy-weighting adopted in our method integrates trait similarities at 
the	species	level	fully	into	the	community	level,	by	means	of	the	ma-
trix X	of	species	composition	(Pillar	et	al.,	2009),	we	expected	that	rel-
evant	traits	would	be	revealed	irrespective	of	the	actual	mechanism,	
whether	it	generated	trait	convergence,	trait	divergence	or	both.

The method we propose here successfully identified the rel-
evant	 traits	 mediating	 community	 assembly,	 without	 relying	
on the measurement of the environmental factors responsible 
for the restrictions imposed on the species co-occurrence pat-
terns. Trait–environment relations affecting community assem-
bly	 (Keddy,	1992;	Wilson	et	al.,	1999;	Götzenberger	et	al.,	2012)	
leave persisting marks in the patterns of species co-occurrences. 
These marks are revealed by our approach. Considering that indi-
viduals within species tend to be more similar to each other than 
between	 species	 (Kazakou	 et	 al.,	 2014;	 Siefert	 et	 al.,	 2015),	 by	
relating	 species	 traits	 to	 species	 co-occurrence	 in	 communities,	
our method is able to identify the traits most likely affected by 
those	trait–environment	relations,	even	when	the	environmental	
factors	are	hidden,	unknown,	or	not	easily	measurable.	Even	when	
environmental data are available to evaluate their correlation with 
functional	traits,	our	method	can	identify	hidden	factors	linked	to	
traits unrelated to the available environmental factors. If in this 
case	hidden	factors	are	not	found	beyond	the	observed	ones,	we	
suggest that the right environmental factors may have been used 
to analyse the data. Going beyond the reliance on measured envi-
ronmental	 factors,	our	method	 is	particularly	promising	 in	 those	
domains where obtaining a set of consistent and comprehensive 
environmental measurements is unfeasible. We think specifically 
of analysing large biodiversity databases of co-occurrence data 
(Bruelheide	et	al.,	2018,	2019),	where	the	use	of	our	method	might	
be instrumental to reveal the key traits underlying the geographi-
cal	distribution	of	ecological	communities,	so	as	to	better	infer	the	
key ecological gradients behind these patterns.
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