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1  | INTRODUC TION

The major driver of the current extinction crisis (Pimm et al., 2014) 
is, and is also projected to remain for the first half of the 21st 
century, change in land use (Maxwell, Fuller, Brooks, & Watson, 

2016; Pereira et al., 2010; Sala et al., 2000). Yet, vulnerability to 
extinction from habitat loss is not constant across species. Among 
the strongest predictors of the threat of extinction in terrestrial 
species is small geographical range size (Gaston & Fuller, 2009; 
Manne, Brooks, & Pimm, 1999). In part, this is simply because 

 

Received: 8 December 2018  |  Revised: 6 August 2019  |  Accepted: 9 August 2019

DOI: 10.1111/geb.13003  

R E S E A R C H  P A P E R

Range size predicts the risk of local extinction from habitat loss

Ingmar R. Staude1,2  |   Laetitia M. Navarro1,2  |   Henrique M. Pereira1,2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2019 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd

1German Centre for Integrative Biodiversity 
Research (iDiv), Halle‐Jena‐Leipzig, Leipzig,  
Germany
2Institute of Biology, Martin‐Luther 
University Halle‐Wittenberg, Halle (Saale), 
Germany

Correspondence
Ingmar R. Staude, German Centre for 
Integrative Biodiversity Research (iDiv), 
Halle‐Jena‐Leipzig, Deutscher Platz 5e, 
04103 Leipzig, Germany.
Email: ingmar.staude@idiv.de

Funding information
Deutsche Forschungsgemeinschaft, Grant/
Award Number: DFG FZT 118

Editor: David Storch

Abstract
Aim: The geographical range size of species is a strong predictor of vulnerability to 
global extinction. However, it remains unclear whether range size is also a good pre‐
dictor of extinction risk at much smaller scales. Here, we reconstruct biodiversity 
time series to ask whether species with small ranges have declined preferentially with 
habitat loss at the local scale.
Location: Global.
Time period: 1500–2015.
Major taxa studied: Vascular plants.
Method: We collated 70 million occurrence records of 180,000 species of vascular 
plants from three biodiversity data‐sharing networks. We combined these with data 
on changes in global land use to find locations (0.25° grid cells) with biodiversity data 
before and after loss of natural habitat. First, we examined the change in community 
median range size before and after habitat loss. Second, we quantified the prob‐
abilities of local persistence of small‐ and large‐ranged species at different levels of 
habitat loss.
Results: Community median range size was higher after habitat loss, on average. 
Species with small ranges had lower probabilities of persistence than species with 
large ranges at already  moderate habitat loss (≤50%).
Main conclusions: The loss of natural habitat has a differential effect on the local 
extinction risk of species with different range sizes. Given that species with small 
ranges decline preferentially, habitat loss can create a linkage between temporal and 
spatial species turnover, in that changes within communities decrease compositional 
differences between communities.
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species with small ranges have a lower number of localities at 
which, upon habitat loss, they either persist or go extinct. But 
even within a locality, small‐ranged species might suffer from a 
higher extinction risk than widespread ones. One reason for this 
could be that species with small ranges tend also to have smaller 
local populations (Brown, 1984; Gaston et al., 2000), and with de‐
creasing population size, the vulnerability to environmental per‐
turbations increases (Christiansen & Fenchel, 2012; Schoener & 
Spiller, 1987). However, it remains poorly documented whether 
the threat of local extinction in species experiencing habitat loss 
can indeed be predicted by range size.

One corollary of an increased local extinction risk for small‐
ranged species would be that habitat loss creates a linkage between 
temporal and spatial species turnover, in that spatial turnover is re‐
duced by temporal turnover. This is because previously differentiated 
local communities would increasingly resemble one another in spe‐
cies composition when habitat loss results in a net loss of exactly the 
species that drive that very differentiation (McKinney & Lockwood, 
1999; Olden & Poff, 2003). Recent analyses of biodiversity time se‐
ries find that temporal species turnover in local communities is oc‐
curring at rates in excess of background levels predicted by null and 
neutral models (Dornelas et al., 2014; Magurran, Dornelas, Moyes, 
Gotelli, & McGill, 2015).  It is hypothesized that this pattern is driven 
by biotic homogenization; that is, widespread species replace those 
with small ranges, and thereby, decrease spatial turnover but main‐
tain local numbers of species (Dornelas et al., 2014). However, the 
empirical evidence that supports this hypothesis is scarce, all the 
more so for areas that are representative of habitat loss (Cardinale, 
Gonzalez, Allington, & Loreau, 2018; Gonzalez et al., 2016).

Moreover, evidence is lacking with regard to the amount of habi‐
tat loss that species can tolerate before becoming vulnerable to local 
extinction. Albeit highly relevant for conservation, we do not know 
whether thresholds of local habitat loss differ between species with 
small and large ranges. If small‐ranged species are more vulnerable 
to even moderate habitat loss, the effect of habitat loss on biodi‐
versity might be amplified, simply because most species have small 
ranges (Gaston, 1996). Although some models predict abrupt species 
loss when natural habitat availability falls below a threshold of 30% 
in the landscape (Andrén, 1994), it has recently been documented 
that initial intrusion in intact landscapes can substantially erode local 
biodiversity (Betts et al., 2017; Staude et al., 2018). This might be at‐
tributable to the local extinction of numerous small‐ranged species 
that are already vulnerable to lower amounts of habitat loss.

Empirical applications to study temporal community changes and 
species persistence in human modified landscapes on a global scale 
have been, to date, constrained by a general paucity of represen‐
tative ecological time series and high‐resolution historical land‐use 
data. However, over the last two decades, millions of digital species 
records have been mobilized via international data‐sharing net‐
works, providing spatio‐temporal information on species occurrences 
(Meyer, Weigelt, & Kreft, 2016). Moreover, global change in land 
use has been reconstructed for the late Holocene and has recently 
been made available at high temporal and spatial resolution with the 

LUH2vh product (http://luh.umd.edu/data.shtml; Hurtt et al., 2011). 
Integrating single point occurrences to the spatio‐temporal resolu‐
tion of such land‐use data uncovers new vantage points for ecological 
research, because community time series data in areas undergoing 
change in land use can be reconstructed (Johnson et al., 2011).

Here, we use these data sources to compare the frequency dis‐
tribution of species range sizes in vascular plant communities be‐
fore and after habitat loss. We test whether this distribution shifts 
towards larger ranges. Next, we quantify the probability of local 
persistence of species with small and large ranges along a gradient 
of habitat loss. We hypothesize that small‐ranged species are more 
vulnerable to local extinction from habitat loss.

2  | METHODS

2.1 | Land‐use data

We used historical land‐use reconstruction data provided by the 
Land Use Harmonization v2h product (LUHv2h; http://luh.umd.
edu/data.shtml​; Hurtt et al., 2011). Inputs of LUHv2h include HYDE 
3.2 (Klein Goldewijk, Beusen, Drecht, & Vos, 2011), Food and 
Agriculture Organization (FAO) wood harvest data (FAO, 2008) and 
Landsat‐based forest loss data (Hansen et al., 2013), among others 
(Hurtt et al., 2011). LUHv2h provides information about the annual 
states of 12 land‐use classes at a 0.25° spatial resolution for the pe‐
riod 850–2015; that is, each grid cell gives a value for the percentage 
of cover of each of the land‐use classes. Land use is divided into two 
classes of natural vegetation (forests or non‐forests) and 10 human 
land uses (five cropland, two secondary vegetation, two grazing and 
one urban uses). Here, the natural forest and non‐forest classes were 
aggregated into one natural habitat class. We define habitat loss as 
the loss of this natural habitat class. Note that the aggregate of the 
10 human land uses is complementary to this natural habitat class.

2.2 | Vascular plant data

We downloaded all openly available, georeferenced data on vas‐
cular plant occurrences via the Global Biodiversity Information 
Facility (GBIF; https​://doi.org/10.15468/​dl.chiubr, accessed 6 
December 2017), Botanical Information and Ecology Network 
(BIEN; R package bien; Maitner et al., 2018) and the Projecting 
Responses of Ecological Diversity In Changing Terrestrial Systems 
(PREDICTS; https​://doi.org/10.5519/0066354; Hudson et al., 
2014) databases. We applied geographical filters to exclude impos‐
sible, incomplete or unlikely sampling locations (R package scrubr; 
Chamberlain, 2016). Temporal filters confined biodiversity data to 
the period 1500–2015. Taxonomic filtering and taxon resolution 
and standardization included iPlant's Taxonomic Name Resolution 
Service (R package taxize; Chamberlain & Szöcs, 2013). We ex‐
cluded duplicates of species, sampling location and year combi‐
nation. Joining these data resulted in 73,097,393 unique records 
for 177,774 vascular plant species (i.e., c.  56% taxonomic cover‐
age of c. 315,000 vascular plant species; theplantlist.org). Missing 

http://luh.umd.edu/data.shtml
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species are most likely to be rare, small‐ranged species and those 
endemic to regions with little documentation and data‐mobiliza‐
tion effort. We provide R code for data retrieval and cleaning in 
the Supporting Information (section R code 2.1–2.4).

2.3 | Range sizes

For most species, scarcity of point occurrences at unique locations 
prevents the construction of meaningful species distribution mod‐
els (Feeley, 2012; Guisan et al., 2007) or extent‐of‐occurrence range 
maps (Gaston & Fuller, 2009). In particular, species with restricted 
geographical distribution might be underrepresented when con‐
fining diversity data to species for which distribution modelling is 
appropriate. We thus opted for an alternative approximate but trans‐
parent approach to estimate range sizes. Initially, we gridded the 
c. 73 million species records to the spatial resolution of the LUHv2h 
data, which we had previously re‐projected into an equal‐area grid 
(Behrmann projection). Next, we simply counted the number of cells 
that each species occupied on that grid (Gaston, 1996). Each species 
thus had one range size estimate that was derived from all its occur‐
rence records to date and measured the species’ area of occupancy 
(Gaston & Fuller, 2009).

Owing to the incomplete spatial coverage of digital biodiversity 
data, we probably underestimated range size (Isaac & Pocock, 2015). 
Importantly, underestimation is worse for species that have parts 
of their ranges in areas with severe data gaps. This uneven spatial 
coverage is particularly problematic when comparing locations. 
However, this limitation did not affect our analyses, because we 
were comparing the temporal change within locations rather than 
between them.

2.4 | Communities before and after habitat loss

First, we gridded all species occurrence records to the spatial and 
temporal resolution of the LUHv2h data. This allowed us to iden‐
tify cells that had species records before (≥80% of natural habitat 
remaining) and after (0% of natural habitat remaining) habitat loss. 
Each of these cells therefore gave us an individual set of species 
for a before and after habitat loss period. Henceforth, we refer to 
these species sets as communities. We further introduced a lower 
bound for the number of species in these communities to account 
for under‐documentation. When cells had one community with < 10 
species, either before or after habitat loss, we discarded them (see 
Supporting Information for discussion of thresholds and sensitivity 
test; Supporting Information Figure S1).

The application of the two rules for inclusion of cells (records 
before and after habitat loss and ≥ 10 species recorded before and 
after habitat loss) resulted in an inclusion of one in 1,000 cells. From 
the c. 90,000 cells, over which the 70 million species occurrence re‐
cords were distributed, 657 cells had biodiversity data both before 
and after habitat loss. Of the 657 cells, 89 had ≥10 species recorded 
before and after habitat loss. The final 89 cells cover 11 out of 14 
biomes (Figure 1). Their distribution reflects both change in land 

use and the spatial bias typical of biodiversity records (e.g., severe 
gaps across Asia, Northern and Central Africa, Amazonia and Arctic 
Canada; Meyer et al., 2016) but also that areas of exceptionally high 
biodiversity might be over‐represented (e.g., Atlantic Forest in SE 
Brazil, the Cape Provinces, Western Australia and California).

Digital biodiversity data suffer from not only spatial but also 
temporal bias (Meyer et al., 2016). Typically, the number of species 
records, and consequently, the number of species, increase progres‐
sively in time. In the LUHv2h data, natural habitat can only be lost 
but not gained with time; more natural habitat generally corresponds 
to earlier years and little natural habitat to later years. Given that 
documentation is higher in later years, the number of species is 
generally higher when little natural habitat remains (i.e., after hab‐
itat loss). In our subset of cells, the average time that passed until a 
cell went from ≥80 to 0% natural habitat was 81 years (Supporting 
Information Figure S2) and the average community richness was 55 
and 218 species, respectively.

Nevertheless, because we do not compare the number of spe‐
cies but range size composition before and after habitat loss, we can 
account for this temporal bias by artificially keeping the number of 
species constant over time. For each cell, we repeatedly subsampled 
species from the community with the higher number of species (with‐
out replacement), so that the before and after community of a cell had 
the same number of species (number of sampling repetitions, n = 100; 
Figure 2). For each cell, community and nth subsample, we then cal‐
culated a summary statistic that described the composition of species 
range sizes before and after habitat loss. We calculated median range 
sizes, because range‐size frequency distributions are strongly right 
skewed. The medians that were obtained from the 100 subsamples 
of the community with the higher number of species in a cell were 
averaged. For each cell, we then calculated the log ratio of median 
range size after and before habitat loss to obtain effect sizes. With 
a pairwise permutation test (Monte Carlo Fisher–Pitman test) we 
tested whether the mean of the effect sizes was different from zero.

Finally, we used a simulation approach to test whether our 
method introduces any bias. We simulated 1,000 before and after 
habitat loss communities with 50 and 200 species, respectively. 
For both the before and the after community, species range sizes 
were simulated from the same log‐normal distribution. We fol‐
lowed the protocol above and subsampled the community with 
more species, in this case always the after community, 100 times. 
We averaged medians from the subsamples and compared this 
value with the median range size of the before community. If our 
method is indeed free of bias, effect sizes obtained from the 1,000 
community comparisons should be normally distributed. We  
provide R code for this simulation in the Supporting Information 
(section R code 3.1 & 3.2).

2.5 | Probability of persistence along a habitat 
loss gradient

By gridding species occurrence records to the spatio‐temporal 
resolution of the LUH2vh data, we could link each record to the 
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amount of natural habitat that remained at the time (year) and loca‐
tion (0.25° grid cell) where it was made. Hence, for each species 
we could produce a list of habitat values for each cell that it oc‐
cupied. We could then find, for each species, the amount of habitat 
that remained at its last record in a given cell (hereafter, minimum 

habitat value). The minimum habitat value indicated the amount 
of habitat loss at the latest time when a species was still reported 
to be present in a cell. These values were used to calculate per‐
sistence curves for small‐ and large‐ranged species experiencing 
habitat loss.

F I G U R E  1   Spatial distribution of locations (0.25° cells) with biodiversity data both before (≥80% of natural habitat remaining) and after 
(0% of natural habitat remaining) habitat loss and with ≥ 10 plant species reported before and after habitat loss. Circles are semi‐transparent 
and coloured according to biomes. Map is in Eckert IV projection [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  2   Schematic representation of our approach to comparison of species range sizes before and after habitat loss. The scheme 
focuses on one cell, celli. Celli has species occurrence records before and after habitat loss. These give an individual set of species for before 
and after habitat loss. These sets we name communities. Communities had to have ≥ 10 species (not shown for clarity). For each community, 
we calculate the median (med) range size. Given that digital biodiversity records increase with time, there are typically more species in the 
after community. We subsample the after community 100 times. Each time, we take as many samples as there are species in the before 
community and calculate, for that subset, the median range size. These medians are averaged. We compare this value with the median range 
size from the before community [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


20  |     STAUDE et al.

It was not possible to find minimum habitat values for all species 
and all cells in our data collation. This was because of insufficient 
sampling for many species but also because we needed to confine 
data to cells that had experienced habitat loss. Therefore, we set 
three rules for the inclusion of species and cells: (a) in each cell, a 
species had to be sampled at least twice; (b) in each cell, a species 
had to be recorded before habitat loss (≥80% of natural habitat re‐
maining); and (iii) species had to occur in cells that eventually experi‐
enced habitat loss (ultimately 0% natural habitat remaining).

Applying these inclusion rules led again to a drastic reduction of 
data. From c. 180,000 species, 102,970 met the first rule and were sam‐
pled at least twice within one cell. Of those, 53,199 species also met the 
second rule and were present before habitat loss. Finally, only 2,678 
species also met the third rule and occurred in cells that experienced 
complete loss of natural habitat. Correspondingly, cell numbers reduced 
from c. 90,000 to c. 43,000 (first rule), to c. 10,000 (second rule) to 365 
cells (third rule). The spatial extent of these cells was largely comparable 
to the previous analysis (Supporting Information Figure S3). For the final 
subset of species and cells, we found minimum habitat values.

We then used those species’ minimum habitat values to calculate 
probabilities of persistence as follows (for a schematic representa‐
tion, see Figure 3). Species’ minimum habitat values were assigned to 
one of five 20%‐wide intervals of habitat loss. The number of species 
in each of these intervals was then counted. Finally, these counts 
were divided by the total number of species. This gave the percent‐
age of species that persisted within a given interval of habitat loss 
and allowed us to plot a persistence curve. We extend this basic ap‐
proach conceptually in the following two paragraphs.

Note that a species can have more than one minimum habitat 
value. Theoretically, a species could have as many minimum habitat 

values as cells it occupies. We could simply average these to obtain 
one value for each species, but this would also return only one per‐
sistence curve. Instead, if we sample one minimum habitat value 
from each species at a time and repeat this many times, we arrive 
at many persistence curves, one for each sampling repetition. From 
these, we can still calculate an average persistence curve but also 
gain information about the variance of this curve. Therefore, we 
sampled from each species one minimum habitat value at a time, re‐
peated this 100 times, and calculated the mean and standard devia‐
tion of the resulting 100 persistence curves.

To arrive at a separate persistence curve for small‐ranged spe‐
cies and large‐ranged species, we divided the total set of species into 
two classes as follows. From the range‐size frequency distribution of 
the 2,678 species, we calculated the median range size. Species with 
range sizes below the median were classified as small‐ranged species 
and species with range sizes above the median as large‐ranged spe‐
cies (Supporting Information Figure S4). We then calculated proba‐
bilities of persistence for each range size class separately.

The central assumption of our calculation of persistence prob‐
ability is that a species has become extinct after its last record.  
Of course, the fact that a species goes unrecorded is not proof that 
is has become extinct, but a necessary condition for extinction is ab‐
sence from further samples. We also examined how reasonable this 
assumption is. We examined the number of years that had passed 
and the number of occurrence records that had accrued since the 
last time a species was reported to be present in a cell. If these 
numbers are low, our assumption is probably unrealistic; that is, a 
species is not recorded anymore because there was simply no sam‐
pling in the meantime. Moreover, low detectability in certain types 
of plants can make them likely to be present but not recorded in 

F I G U R E  3   Schematic representation of our approach to calculation of persistence curves for species under habitat loss. The scheme 
focuses on one cell, celli. In this cell, the focus is on three species. All of them have been sampled at least twice, occurred before habitat loss, 
and importantly, celli experienced complete habitat loss and was sampled further. For each species, we identified its last record (minimum 
habitat value). We assigned the species’ minimum habitat values to one of five intervals of equal length. Given that species were present 
before habitat loss, they also occurred in the intervals that preceded those of the last records. Given that species went unrecorded in 
subsequent intervals, they were absent from those. We calculated the probability of persistence as the number of species in each interval 
divided by the total number of species [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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a census or inventory. In particular, small‐ranged species that may 
be locally less abundant may have a lower probability of being re‐
sampled. This could bias our results. Therefore, we also examined 
whether resampling differed between small‐ and large‐ranged spe‐
cies. Assuming that species are resampled at an equal and constant 
rate, the number of records would always be higher for species that 
withstood more habitat loss. Hence, we compared the number of 
records per percentage of habitat loss for small‐ and large‐ranged 
species.

Finally, we used a simulation approach to test whether our way 
of calculating persistence probabilities produces any bias. The null 
hypothesis is that extinction, and consequently, the amount of 
habitat that remained at the time of extinction is random for both 
small‐ and large‐ranged species. Thus, we simulated minimum hab‐
itat values from a uniform distribution. In particular, we simulated 
n minimum habitat values for each species, where n is the species’ 
range size (i.e., the number of cells it occupies). We sampled one 
minimum habitat value from each species, calculated probabilities 
of persistence as above, repeated this 100 times and compared 
the average persistence curve of small‐ranged species with the 
average persistence curve of large‐ranged species. If our approach 
is free of bias, the two persistence curves should be largely the 
same. We provide R code for this simulation in the Supporting 
Information (section R Code 4.1 & 4.2).

3  | RESULTS

We studied changes in the frequency distribution of the range sizes 
of vascular plant species in 0.25° grid cells that experienced com‐
plete loss of natural habitat. Keeping species richness constant, the 
distribution of changes was towards higher median range size after 
habitat loss (pairwise permutation test: Z = −2.99, p < .001, r = .22; 
Figure 4a). Our approach to control for temporal bias by subsampling 

communities to keep numbers of species before and after habitat 
loss constant did not induce any systematic bias. The distribution of 
effect sizes was not skewed towards positive log ratios but distrib‐
uted evenly around zero (Supporting Information Figure S5a). In ad‐
dition, relaxing our data selection thresholds did not change results 
(Supporting Information Figure S1).

Next, we studied the role of species range size in predicting 
vulnerability to local extinction from habitat loss. For this, we in‐
vestigated the probability of persistence of small‐ and large‐ranged 
species at different levels of habitat loss. Probabilities of persistence, 
expressed as the percentage of species of a given range size class 
that still occurred at, but not above, a given amount of habitat loss, 
indicated a generally higher vulnerability of small‐ranged species to 
local extinction from habitat loss (Figure 4b). Small‐ranged species 
had a steeper descending persistence curve and, moreover, a lower 
probability of persistence than widespread ones even at moderate 
levels (i.e., ≤50%) of habitat loss.

The absence of a species at higher levels of habitat loss is not 
proof of extinction. Therefore, we quantified the strength of this 
assumption. On average, 106 years passed and 806 species records 
accrued between the last record of a species and the last record 
of a cell, when species went extinct early (last reported present 
with ≥80% habitat remaining). Species that persisted longer (last 
reported present between 60 and 80% habitat loss) had, on av‐
erage, 60  years and 1,591 other species’ records between their  
last record and the last record of a cell (Supporting Information 
Figure S6). Assessing potential sampling effects, we found that 
sampling frequencies per percentage of habitat loss were not 
higher for species with large ranges (Supporting Information 
Figure S7). Simulation results based on random extinctions of 
small‐ and large‐ranged species showed that our approach did 
not produce any systematic bias. The simulated persistence curve 
of small‐ and large‐ranged species followed the same trajectory 
(Supporting Information Figure S5b).

F I G U R E  4   (a) Change in median range size of vascular plant communities before and after habitat loss. Positive log ratios indicate that 
median range size was higher after habitat loss. (b) Relationship between probability of persistence and habitat loss for species with small 
and large ranges. Small and large ranges include species with ranges from 1 to 63 and from 64 to 5,000 occupied cells, respectively. Error 
bars represent ± two standard deviations from the mean
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4  | DISCUSSION

Here, we show that habitat loss has a differential effect on the local 
extinction risk of vascular plant species with different range sizes. 
We find that the frequency distribution of range sizes in a commu‐
nity changes after habitat loss towards a higher median range size. 
In addition, we document lower persistence probabilities of small‐
ranged species at already moderate habitat loss. Together, this sug‐
gests that range size can be a predictor of the risk of local extinction 
from habitat loss. Moreover, our results imply that temporal species 
turnover under habitat loss can reduce spatial species turnover.

The differential vulnerabilities of species with small and large 
ranges to local habitat loss might have several explanations; here, we 
present four. First and most simply, it could follow from the effect of 
range size on metacommunity dynamics. Species with larger ranges 
are more likely to retain intact habitats that can act as a source and, 
via the “rescue effect”, help to uphold local persistence in sites with 
habitat loss (Hanski, 1991; Leibold et al., 2004). Second, it has been 
demonstrated for a number of taxa that range size is strongly and pos‐
itively correlated with local abundance [plants (Gotelli & Simberloff, 
1987), birds (Gaston & Blackburn, 1996) and mammals (Brown, 1984)]. 
Given that the probability of local extinction increases with decreas‐
ing population size (Christiansen & Fenchel, 2012; Schoener & Spiller, 
1987), species with small ranges could be more vulnerable to habitat 
loss at any one site. Third, narrow habitat breadth, yet another dimen‐
sion of rarity that may relate to range size (Brown, 1984), could make 
species with small ranges more susceptible to anthropogenic change 
(Rabinowitz, 1986). Fourth, habitat breadth and local abundance may 
influence the spatial distribution of species (Cornell, 1982). Species 
with relatively narrow habitat breadth and small population size are 
often unevenly distributed in aggregations within their range (Condit 
et al., 2000; Rodríguez, 2002). The more aggregated a species, the 
less habitat must be lost, on average, to cause local extinction. The 
individual importance of these potential mechanisms to make species 
vulnerable to local extinction still needs to be quantified.

Importantly, the higher local extinction risk from habitat loss 
of species with small ranges might contribute to the explanation of 
the systematic shifts in species composition and the scale‐depen‐
dent patterns of diversity change that other studies report with 
long‐term data. Evidence across biomes indicates no net loss in 
local species richness (Vellend et al., 2013), but loss of species at 
the continental to global scale (IPBES, 2019). If species with small 
ranges are preferentially declining at any one site with habitat 
loss, species with large ranges may also be more likely to colonize 
successfully, replacing small‐ranged species systematically. Given 
that it is more likely that the entire range of small‐ranged species 
is affected, habitat loss could then produce a homogenization 
pattern, where small‐scale richness is largely unchanged through 
time, whereas larger‐scale richness declines. Although our ap‐
proach does not allow any inference about local‐scale changes 
in species richness and thus species replacement, we can never‐
theless infer homogenization. This is because for biotic homog‐
enization to occur, it is sufficient that the most localized species 

are systematically lost (McKinney & Lockwood, 1999; Olden & 
Poff, 2003) and precisely those, we find, are at higher risk of local 
extinction from habitat loss. This preferential decline of species 
with small ranges is consistent with a recent global assessment 
of the effects of land use on small‐ranged and widespread spe‐
cies (Newbold et al., 2018). Those authors used space‐for‐time 
substitution to show that disturbed habitats have both reduced 
abundances of small‐ranged species and increased abundances of 
widespread ones. Here, we used time series data. This allowed us, 
in addition to studying changes in species’ range size composition, 
to explore how local extinction risk changes with habitat loss. To 
our knowledge, this is the first time that local extinction curves 
have been plotted against a habitat loss gradient and shown to 
differ for species with small and large ranges.

In the case of vascular plants, many species appear to cope well 
with habitat loss (Figure 4b). Recognition is growing that many species 
are not entirely constrained to native habitat fragments and persist 
in agricultural landscapes (Daily, Ehrlich, & Sanchez‐Azofeifa, 2001; 
Mendenhall, Karp, Meyer, Hadly, & Daily, 2014); that is, habitat loss 
does not create a matrix entirely inhospitable to species, as is com‐
monly assumed in studies that apply the species–area relationship 
from island biogeography theory to estimate the species loss at‐
tributable to change in land use. Countryside biogeography (sensu 
Mendenhall et al. (2014)), instead, considers the affinity of species for 
human‐modified habitats, such as agriculture and forestry (Pereira, 
Daily, & Roughgarden, 2004), and argues that their qualities are 
crucial determinants of the conservation of biodiversity (Karp et al., 
2012; Prugh, Hodges, Sinclair, & Brashares, 2008). Although we do 
not quantify the differential importance of anthropogenic habitats on 
the persistence of species, our results indicate that a large percentage 
of species can survive loss of natural habitat. Our results therefore 
highlight that the overextension of island biogeography theory to 
human‐dominated ecosystems might overestimate projections of bio‐
diversity loss driven by change in land use (Mendenhall et al., 2014).

Our approach to combine reconstructed biological time series 
and land‐use data is novel, but also has weaknesses. The land‐use 
harmonization product, although constrained by satellite and census 
data, is a model‐based reconstruction from limited empirical data. 
It thus has differing accuracy in time and space (Ellis et al., 2013). 
Nonetheless, it provides the most comprehensive global land‐use 
data available and has been widely applied in the literature. The dig‐
ital biodiversity data also suffer from biases (Meyer et al., 2016). We 
accounted for the temporal documentation bias by subsampling com‐
munities, and simulations showed that this step did not induce any 
systematic bias (Supporting Information Figure S5a). We note that 
different before–after time periods were compared for this analysis 
(Supporting Information Figure S2). Therefore, cells that lost habitat 
early on would have had a longer time for extinctions to occur over 
and also a longer time to accrue opportunistic records. However, 
comparison of different time periods would not alone lead to higher 
community median range sizes, on average, after habitat loss.

For the calculation of persistence probabilities, we found no sampling 
bias towards species with larger ranges in our data subset (Supporting 
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Information Figure S7). This could reflect the ter Steege effect, which de‐
scribes the fact that botanists tend to avoid collecting large‐ranged spe‐
cies that they have already collected in the general vicinity (ter Steege, 
Haripersaud, Bánki, & Schieving, 2011), but it is more likely that this is 
because we set strict inclusion rules for species and cells, meaning that 
our data subset includes rather well‐sampled species. But this might also 
mean that we are neglecting truly rare species (Supporting Information 
Figure S4), potentially weakening the effect of range size in our analysis. 
Nonetheless, persistence curves differed between relatively small‐ and 
large‐ranged species. Importantly, we can exclude the possibility that our 
approach produced these differences. Under simulated random extinc‐
tions, the persistence curves of small‐ and large‐ranged species did not 
differ (Supporting Information Figure S5b).

In addition, we find that the assumption that a species goes 
extinct after its last record is justifiable for our data subset, be‐
cause in general, many other species records were made in the 
meantime (Supporting Information Figure S6). Finally, we note 
that locations of this analysis are spatially biased. For example, 
no cell in Asia or tropical Africa met the inclusion criteria of the 
before–after comparison. This spatial bias is typical for digital bio‐
diversity data, and only with increasing data‐mobilization efforts 
in these regions will analyses based on such data become truly 
globally representative. Although we acknowledge that data bi‐
ases are inherent to our data, we contend that they do not nullify 
the implications of our results. Given that small‐ranged species 
are at higher risk of local extinction, temporal species turnover 
is biased towards species with larger ranges in local communities 
undergoing habitat loss.

Although it is expected that species with smaller ranges will be 
more vulnerable to global extinction from habitat loss than wide‐
spread ones, because the drivers of threat are more likely to affect 
the entire range of these species (Collen et al., 2016), we emphasize 
that there is a lack of studies that quantify this expectation at differ‐
ent spatial scales. Here, we find that relatively small‐ranged species 
are more vulnerable to extinction from habitat loss even at a local 
scale. This will necessarily cause a disproportionate effect of range 
size on the risk of extinction at broader spatial scales. Understanding 
and quantifying the mechanisms that determine local extinction risk 
from anthropogenic change, how these depend on spatial scale and 
how local extinction risk, in turn, can be used to predict the con‐
sequences of range loss will be imperative for the conservation of 
species.
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