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Abstract

Proteins and the complexes they form with their ligands are the players of cellular

action. Their function is directly linked with their structure making the structural anal-

ysis of protein-ligand complexes essential. Classical techniques of structural biology

include X-ray crystallography, nuclear magnetic resonance spectroscopy and recently

distinguished cryo-electron microscopy. However, protein-ligand complexes are

often dynamic and heterogeneous and consequently challenging for these tech-

niques. Alternative approaches are therefore needed and gained importance during

the last decades. One alternative is native mass spectrometry, which is the analysis

of intact protein complexes in the gas phase. To achieve this, sample preparation and

instrument conditions have to be optimised. Native mass spectrometry then reveals

stoichiometry, protein interactions and topology of protein assemblies. Advanced

techniques such as ion mobility and high-resolution mass spectrometry further add

to the range of applications and deliver information on shape and microheterogeneity

of the complexes. In this tutorial, we explain the basics of native mass spectrometry

including sample requirements, instrument modifications and interpretation of native

mass spectra. We further discuss the developments of native mass spectrometry and

provide example spectra and applications.
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1 | INTRODUCTION

The development of two soft ionisation techniques, namely, matrix-

assisted laser desorption/ionization1,2 and electrospray ionisation

(ESI),3 in the late 1980s made the analysis of intact biomolecules pos-

sible and advanced the field of biomolecular mass spectrometry (MS).

In particular, ESI is nowadays indispensable for proteomics, lipidomics,

glycomics or, generally speaking, the analysis of various biomolecules

in solution. Improvements in instrumentation and technology further

advanced the application of MS and enabled the development of

numerous specialised techniques. One such technique is ‘native’ MS,

which is the analysis of intact proteins and protein complexes in the

gas phase of a mass spectrometer.

During native MS, noncovalent interactions between proteins

and their ligands, for example, other proteins, nucleotides, lipids or

other small molecules, are maintained.4,5 The obtained mass spectra

therefore reveal the composition and stoichiometry of the formed

complexes. Native MS further provides information on subunit inter-

actions and topology as well as heterogeneity of the assemblies. The

mass range spans from individual subunits or ligands up to large

assemblies giving clues on the stability of the complexes as well as

preferred interactions. Native MS, consequently, takes an important
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role in the structural analysis of proteins and protein complexes

by MS.

However, there are some prerequisites for the application of

native MS: Sample preparation often has to be customised, and an

optimal instrument environment for transmission of high-mass com-

plexes under nondenaturing conditions has to be achieved. In addi-

tion, data analysis is not automated and requires an experienced

scientist. In this tutorial, we introduce the application of native MS,

including sample preparation, instrument requirements and data anal-

ysis, and discuss advanced applications such as ion mobility (IM) and

high-resolution native MS.

2 | SAMPLE PREPARATION FOR NATIVE MS

The first step of sample preparation is the purification of the protein

or protein complex of interest (Figure 1). This is most commonly

achieved by overexpressing the protein or protein complex in bacte-

rial cells followed by purification using affinity tags. Nonetheless, the

protein complexes of interest can also be obtained from natural

sources such as plant or organ tissue. Each purification protocol has

to be optimised individually to obtain sufficient amounts for further

analyses. However, during purification, interfering substances, which

cause signal suppression during ESI-MS analysis, are commonly

used.6–8 These substances are, for instance, metal cations, inorganic

ions, alkylammonium and guanidinium salts or typical buffers such as

HEPES, PBS, MES, MOPS or Tris. In addition, some proteins (for

instance, membrane proteins) require detergents or stabilizers such as

Tween, Chaps, Triton, SDS, PEG, PPG or urea. All these interfering

substances need to be removed or at least diluted prior to native MS

analysis. Additives, electrolytes and supercharging reagents can coun-

teract effects of nonvolatile buffer components.9–12 However, this

strategy is only applicable for low concentrations of nonvolatile com-

ponents and might increase frequency of instrument cleaning. The

main challenge of sample preparation is therefore to preserve

noncovalent interactions and the native structure of the proteins and

protein complexes and, at the same time, provide an MS compatible

protein solution at sufficient concentration in the range of 1–20 μM.

A robust one-step affinity purification protocol was therefore intro-

duced allowing efficient and rapid purification of endogenous protein

complexes by coupling affinity purification and buffer exchange.13

Nonetheless, for native MS, the purification buffer has to be

exchanged to an aqueous and volatile solvent like ammonium acetate,

ammonium bicarbonate or ammonium formate prior to analysis. In

most cases, ammonium acetate at a pH between 6 and 8 is the solu-

tion of choice. The components ammonia and acetic acid are volatile

and evaporate readily during ESI.14 In addition, high concentrations of

ammonium acetate reduce interfering effects of nonvolatile buffers

such as HEPES or Tris.6,11,14 However, one has to keep in mind that

ammonium acetate does not provide ideal physiological conditions of

the protein complexes.15

The purification buffer is typically exchanged using miniaturised

gel filtration columns, molecular weight cut-off filters or dialysis

devices (Figure 1). Automated inline gel filtration maximises storage

times of the proteins in a suitable buffer before analysis.16 However,

in some cases, the protein precipitates or aggregates during buffer

exchange. Possible solutions are increasing the ionic strength of the

buffer (higher ammonium acetate concentrations above the typically

used 100–200 mM) or working at a different pH. Filters are used to

deplete nonvolatile buffer components like salts and detergents and

simultaneously concentrate the sample.17 However, the proteins

might be absorbed at the membrane or detergent micelles are too

large to pass through the filter membrane and remain in the solution.

Therefore, different membrane materials and pore sizes have to be

tested.17 Note that larger pore sizes might cause loss of individual

subunits which might have dissociated from the protein complexes.

Dialysis and in particular online microdialysis18 have the advantage of

limited dilution of the protein concentration; however, incomplete

removal of nonvolatile buffer components and a more complex tech-

nical set-up are disadvantageous. In a nutshell, the buffer, the

F IGURE 1 Sample preparation for native MS. The protein or protein complex is purified from cell or tissue lysate, usually following traditional
purification protocols or affinity purification when the proteins are overexpressed with an affinity tag. The purified protein is stored in purification
buffer until MS analysis. Following gel filtration, filtration or dialysis, the buffer is exchanged against an aqueous and volatile solution
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exchange method and the concentration have to be carefully selected

and optimised for each protein or protein complex.

Recent developments in sample preparation for native MS include

the analysis of protein and protein complexes in buffers of physiologi-

cal ionic strength and containing nonvolatile components. For this,

small emitter tips (0.5 μm) are employed leading to a decrease in salt

adducts with decreasing tip size.19 However, pulling emitters with

small tip diameters requires specialised expertise. Another recent

development includes the analysis of overexpressed proteins directly

from cell lysate.20,21 For this, the cells that overexpress a certain pro-

tein are lysed in ammonium acetate and subsequently analysed by

native MS. High concentrations of ammonium acetate (typically 1 M)

facilitate removal of salt adducts. Further developments include the

automated, online buffer exchange of cell lysates.22

3 | INSTRUMENT MODIFICATIONS FOR
TRANSMISSION OF HIGH-MASS COMPLEXES

To maintain noncovalent interactions of proteins and their ligands

during native MS experiments, the employed mass spectrometer is

usually modified for transmission of high-mass complexes (Figure 2).

Traditionally, quadrupole time-of-flight (Q-ToF) mass spectrometers,

composed of a quadrupole mass filter, a hexapole collision-gas

cell and a ToF mass analyser,23 are used for native MS.24 Major modi-

fications of the Q-ToF mass spectrometer include (i) changes in the

pressure gradient in the different pumping stages of the instrument

and (ii) reducing the radiofrequency of the quadrupole mass

analyser.24

i When compared with conventional Q-ToF instruments, the pres-

sure of all pumping stages is increased, and as a consequence,

transmission of high m/z ions is improved.24–27 This is mainly

achieved by collisional cooling and, at the same time, collisional

focusing of high m/z ions in the hexapole ion guide of the initial

vacuum stage.25,28,29 In detail, the background pressure in the ini-

tial vacuum stages of the mass spectrometer (p1) is raised by

reducing the pumping of the rotary pump; for this, the back-

ground pressure p1 is controlled through a SpeediValve and,

depending on the required mass range, varies between 3 to

7 mbar. Ions that enter the mass spectrometer through the atmo-

spheric pressure ion source lose kinetic energy and axial motion,

and the ion beam is confined towards the central axis of the ion

guide. At this stage, partly solvated ions are activated by colli-

sions with background gas atoms and subsequently lose residual

attached solvent molecules. The energy input for this activation

should not induce dissociation of the complexes, and acceleration

voltages should therefore be controlled carefully. The pressure of

the second pumping stage (p2) is increased and optimised by

fitting an additional leak valve allowing a neutral gas such as

argon or xenon to admit to this pumping stage resulting in pres-

sures between 3 × 10−4 and 1 × 10−2 mbar. The third pumping

stage (p3) holds a pressure of 3–10 × 10−5 mbar. The ToF ana-

lyser operates at pressures in the upper 10−7 mbar range.24 See

Figure 2 for an overview on the pumping stages.

ii Quadrupoles transmit ions to an upper limit that depends on the

radiofrequency and amplitude as well as the diameter (or inner

radius) between the quadrupole rods. The quadrupole of a con-

ventional Q-ToF mass spectrometer operates at a frequency of

832 kHz resulting in an upper limit of 4190 m/z.23 For native MS,

the frequency is usually decreased to 300 kHz allowing transmis-

sion of ions up to approximately 32 000 m/z.24

In addition to the above discussed changes in the pressure gradi-

ent and the quadrupole, the aperture of the collision-gas cell entrance

and exit is decreased to allow higher collisional pressure; at the same

F IGURE 2 Schematic of a
modified Q-ToF mass spectrometer.

Relevant elements and components
are shown. Ions are generated by ESI.
The ion beam (red) is shown
throughout the instrument. The
different pumping stages (p1 to p4)
are indicated and typical pressures
are given. See Section 3 for details
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time, the orifice is optimised for transmission of precursor and prod-

uct ions obtained in native MS experiments.24

4 | TRANSFER OF PROTEINS AND PROTEIN
COMPLEXES INTO THE GAS PHASE

For native MS, ions are usually obtained from ESI in positive ion

mode. The first step during ESI is the formation of charged droplets

from the analyte solution. This is achieved by applying a potential of

several kilovolts to the spray emitter (the ‘needle’) pulling the liquid

towards the counter electrode. At a certain voltage, a so-called ‘Taylor

cone’ is formed30 and a spray of charged droplets is emitted from the

tip of the cone (Figure 3A). The introduction of nano-ESI greatly facili-

tated the analysis of proteins; the smaller size of the droplets enables

the use of aqueous solutions, tolerates higher salt concentrations and,

importantly, requires lower sample amounts.31 There are different

models that explain the ionisation process of molecules from charged

droplets.32,33 Accordingly, low molecular weight species such as pep-

tides, lipids or sugars are thought to be expelled in a solvation shell

from charged droplets when, due to evaporation of the solvent, the

droplet charge is sufficiently high. The remaining solvent shell is then

lost at the interface of the mass spectrometer (‘ion evaporation

model’).34 A single large, globular species such as a folded protein usu-

ally occupies one charged droplet. After complete evaporation of the

solvent, the charge is transferred to the analyte ion (‘charged residue

model’; Figure 3B).35 Ions of unfolded proteins, in contrast, are

generated through a different mechanism; due to their large hydro-

phobic proportion, they are unstable in the interior of charged drop-

lets and migrate to the droplet surface. After one chain terminus has

been expelled into the gas phase, the remaining chain is then ejected

sequentially (‘chain ejection model’).36

Even though noncovalent interactions of protein complexes can

be maintained during transfer into the gas phase, one has to keep in

mind that the gas phase structure of a protein or protein complex

might differ from its solution structure. Possible reasons are, amongst

others, the decreasing pH of shrinking ESI droplets,37 applied heat

during ESI38 and, most importantly, loss of the protein's hydration

shell.39 Accordingly, molecular dynamics simulations revealed collapse

of charged side chains and formation of a network of electrostatic

interactions on the protein surface when fully desolvated in the gas

phase; since the protein's backbone remained unchanged in these

simulations, stabilisation of the structure through these newly formed

interactions is assumed.40 In contrast, at long time periods, formation

of new conformers as a result of unfolding and refolding in the gas

phase was observed experimentally.41–43 Importantly, these processes

strongly depend on the time-scale and experimental conditions.44

Several computational and experimental studies confirmed that the

overall structures with only minimal differences between solution

state and gas phase can be maintained in the typical analysis

time frame.40,45–47 In an optimised set-up, the transfer of proteins

and protein complexes by ESI while maintaining solution-like struc-

tures is therefore possible and allows the analysis of intact

assemblies.44

F IGURE 3 Transfer of proteins into
the gas phase. (A) The ESI process. A
spray of charged droplets is emitted from
the ESI emitter. The ionisation process of
molecules differing in size from charged
droplets is explained by different models.

See text for details. (B) Ionisation of
folded proteins and protein complexes is
explained by the charged residue model.
Upon evaporation, the charges are
transferred to the molecule ion. The
charges correlate with the surface of a
globular protein of similar size
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5 | NATIVE MS AND TANDEM MS
EXPERIMENTS

In standard native MS experiments, the protein solution is sprayed

through an ESI emitter, and obtained ions of the proteins or protein

complexes are detected in the mass spectrometer. In these experi-

ments, the quadrupole mass analyser is operated in ‘scanning mode’,

that is, the full range of ions is transmitted. The acquired mass spectra

show mass-to-charge (m/z) ratios of the intact complexes that can be

deconvolved to obtain the masses of the complexes. When multiple

complexes or proteins are present in solution and the resolution of

the mass spectrometer is sufficient to separate the different com-

plexes, they are all observed in the same mass spectrum. Native MS

therefore also provides information on homogeneity or heterogeneity

of the assemblies (Figure 4A).

Similar to other MS applications, a precursor ion can be isolated

in the quadrupole and dissociated in tandem MS experiments

(Figure 4B). For this, collision-induced dissociation (CID) is usually

employed. While CID of proteins or peptides causes their fragmenta-

tion, dissociation of a protein complex's precursor ion yields, with few

exceptions, an unfolded, highly charged monomer and a so-called

‘stripped’ complex comprising the remaining subunits.48–50 The char-

ges of the precursor ion are therefore asymmetrically distributed

between the dissociated monomer and the stripped complex. Similar

results are obtained from higher energy collision dissociation (HCD),

which is applied when using Orbitrap mass spectrometers.51

6 | MASS SPECTRA OF INTACT PROTEIN
COMPLEXES REVEAL THEIR STRUCTURAL
ARRANGEMENTS

In accordance with the charged residue model (see Section 4 and

Figure 3B), native mass spectra of folded proteins or protein com-

plexes show a series of few charge states with Gaussian distribution

(Figure 5). The number of acquired charges usually correlates with the

surface area of the globular protein. Observing a distribution of sev-

eral charge states of the species allows calculating the molecular

weight of the protein complex from two neighbouring peaks with m/z

ratios of (mProtein + z·mProton)/z and (mProtein + (z + 1)·mProton)/(z + 1),

where z is the number of charges (i.e., protons) that differs by one

between the two neighbouring charge states (Figure 5). To facilitate

annotation of native MS spectra and calculation of molecular masses

of protein-ligand assemblies, several deconvolution software tools

have been developed; these include MaxEnt,52 Massign,53 UniDec,54

PeakSeeker55 or Intact Mass™56,57 (see Allison et al58 for a complete

summary). However, in most cases, annotation of peak series is semi-

automated, and manual evaluation is required. Note that during native

MS, the experimentally determined mass of a protein or protein com-

plex is usually higher than its theoretical mass. This mass shift is cau-

sed by incomplete desolvation and remaining buffer and salt adducts.

In contrast to a folded protein, a protein that is denatured in solution

shows a larger distribution of charge states with higher charges. The

observed charge states in native MS spectra are therefore indicative

F IGURE 4 Native MS
experiments. (A) MS experiment. Ions
are generated by ESI. The quadrupole
mass analyser allows transmission of
all m/z's. Masses of all proteins and
protein complexes are determined by
deconvolution from the observed
mass spectrum. (B) Tandem MS
experiment. The quadrupole mass
analyser allows transmission of one
specific m/z. The collision cell is
operated at higher collisional voltage
causing dissociation of a highly
charged monomer. The masses of the
monomeric subunit and the
remaining stripped complex are
obtained from the mass spectrum.

(C) Native MS of a membrane
protein. The quadrupole mass
analyser allows transmission of all
m/z's. The collision cell is operated at
higher collisional voltage causing
dissociation of the detergent micelle
and releasing the membrane protein
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for the folding state of the proteins/protein complexes, that is, folded

or unfolded states.

In many cases, proteins and protein complexes interact with

ligands, for instance, nucleotides, lipids or sugars. For these com-

plexes, a mass shift corresponding to the mass of the ligand is

observed for all charge states. For ligands that stoichiometrically bind

the protein complex, this mass shift is observed for the entire popula-

tion; substoichiometric binding of ligands is unveiled by the presence

of peak populations corresponding to the apo- and ligand-bound

forms (see Figure 6A for an example).

When collisional voltages in the range of 30–70 V are applied

during native tandem MS, dissociation is usually observed for one

peripheral subunit (see Figure 6B for an example). Note that several

dissociation processes can take place in parallel yielding a set of disso-

ciation products. Tandem MS spectra therefore reveal peripheral sub-

units and thus provide information on the structural arrangements of

protein complexes. An alternative dissociation technique that has also

been developed for protein complexes is surface induced dissociation

(SID).60,61 During SID, multi-subunit complexes dissociate into smaller

subcomplexes of few subunits.62,63 Symmetrical distribution of

charges between these subcomplexes gave rise to the assumption

that dissociated subcomplexes are folded; this could be confirmed by

further experiments.63–65

To gain additional information on the protein complex' architec-

ture, intact protein complexes can be dissociated in solution by addi-

tion of organic solvents or acids.6,66 Following this approach, stable

interaction modules of the protein complexes are observed in the

mass spectrum, which can further be analysed by tandem MS as

described above. This strategy is particularly promising when studying

multi-subunit assemblies such as the human eukaryotic initiation fac-

tor 3 comprising 13 subunits67 or various CRISPR complexes compris-

ing few subunits in varying stoichiometries.68,69

7 | THE CHALLENGE OF ANALYSING LARGE
MACROMOLECULAR ASSEMBLIES BY
NATIVE MS

Since the first developments of native MS, the analysis of macromo-

lecular, multi-subunit protein assemblies was one of the major goals.

F IGURE 5 Typical native MS
spectrum of tetrameric concanavalin
A. A Gaussian distribution of charge
states (19+ to 23+) is observed. The
molecular weight of the protein
complex can be calculated from two
neighbouring m/z ratios using the
given equations (rhs). The molecular
weight of 103 380 Da was calculated

for the concanavalin A tetramer

F IGURE 6 Native MS spectrum of trimeric eIF2. (A) MS spectrum. The trimeric complex (α + γ + β, blue triangles) as well as a dimeric complex
(α + γ, red diamonds) and the monomeric γ subunits (green circles) are observed. The trimeric complex stoichiometrically binds GTP. The dimeric
complex substoichiometrically binds GTP (filled versus unfilled diamonds). The γ subunit substoichiometrically binds GTP (filled and unfilled red
circles). (B) Tandem mass spectrum. The 26+-charge state of trimeric eIF2 (blue triangle) was selected in the quadrupole. A stripped complex,
which lost the β subunit was observed at high m/z (filled and unfilled red diamonds). The highly charged β subunit was assigned in the low m/z
region (unfilled light-blue circles). The charges of the dissociated β subunit and the stripped complex add up to the initial charge of the selected
precursor (17 + 9 = 26). The figure was partially adapted from Gordiyenko et al59 under the CC BY 3.0 license
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Among the first targets were ribosomes, which presented a major

challenge for native MS in terms of high-mass instrumentation and

data analysis. Ribosomes are large protein-RNA machineries that

translate messenger-RNA into proteins in all living cells. The small and

large ribosomal subunits assemble on the messenger-RNA resulting in

intact 70S and 80S ribosomes in bacteria or eukaryotes, respectively.

Despite size and complexity, mass spectra of ribosomes from various

species including Escherichia coli,70 Saccharomyces cerevisiae71 and

Thermus thermophilus72 were acquired. Even though the resolution of

these mass spectra was limited at that time, series of charge states

could be assigned to the small and large ribosomal subunits as well as

intact ribosomes (see Figure 7A for an example). Later studies took

advantage of MS and focused on the analysis of ribosomal stalk com-

plexes that extrude from the large ribosomal subunit and were, due to

their dynamic nature, difficult to study by X-ray crystallography

(Figure 7B).71,75,76 MS consequently allowed determination of stalk

complex' stoichiometries of ribosomes from various species and in dif-

ferent growth phases.

The largest assemblies studied by native MS to-date are viruses

which reach molecular weights up to several megadaltons in their

DNA-filled forms. Their well-ordered and stable arrangement of only

few capsid proteins makes them an ideal model system. However, due

to their large size, complexity of assembly intermediates and dynamics

in solution ('capsid breathing'), their analysis by native MS remains

challenging.77 In an early study, an intact virus was successfully trans-

ferred into the gas phase of a mass spectrometer;78 however, an

actual mass analysis could not be performed with the unmodified

instrument employed in this study. Two decades later and using a

modified Q-ToF mass spectrometer (see Section 3), well-resolved

spectra of hepatitis B virus capsids allowed the assignment of two

capsid morphologies of 3 and 4 MDa, respectively (Figure 7C).74 Fur-

ther improvements and developments advanced the application of

native MS to study viruses; accordingly, exchange dynamics,79 capsid

stability80,81 or ligand binding (e.g., carbohydrate binding)82,83 is now-

adays accessible. Recent developments in high-resolution native MS

instrumentation even allowed the distinction between virus particles

that differed in cargo loading and capsid composition.84,85

8 | UNRAVELLING THE ARCHITECTURE OF
MEMBRANE PROTEIN ASSEMBLIES AND
LIPID BINDING

Specific to all integral membrane proteins is their requirement for a

membrane-like environment to maintain solubility after extraction

from the natural membrane environment. This is in most cases

achieved by employing membrane mimetics. The simplest membrane

mimetic is a detergent micelle; due to their structural properties,

detergents form micelles in solution and arrange around the hydro-

phobic transmembrane domains of integral membrane proteins.86 The

association of detergent molecules, however, hampers the analysis by

MS and causes severe peak broadening or ion suppression.87,88 To

overcome this problem, membrane proteins or protein complexes are

released from the detergent micelle by CID in the gas phase of the

F IGURE 7 Native MS of large
macromolecular assemblies. (A) Native
mass spectrum of ribosomes from
Thermus thermophilus. Intact 70S
ribosomes as well as 30S and 50S small
and large ribosomal subunits were
observed. Panel A adapted from Schmidt
et al73 under the CC BY 4.0 license.
(B) Populations of stalk complexes
differing in protein stoichiometry were
observed for mesophilic archaea.
Figure adapted from Schmidt et al73

under the CC BY 4.0 license. (C) Native
MS spectrum of hepatitis B virus. Two
charge state distributions corresponding
to capsids of 3 (red) and 4 (blue) MDa
were observed. Panel B adapted from
Uetrecht et al74 Copyright 2008
National Academy of Sciences
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mass spectrometer89,90 (Figure 4C). A similar effect is observed by

reducing collisional cooling in the ion source.91 However, the required

energy to release the intact membrane proteins from the detergent

micelle is often too high causing unfolding of the proteins or dissocia-

tion of protein subunits from the intact assemblies. Screening a vari-

ety of MS-compatible detergents followed by fine-tuning of

instrument parameters is therefore recommended to determine ideal

conditions for native MS experiments of membrane proteins.92,93

Recent developments therefore include the design of specialised

detergents for native MS analysis.94

ATP synthases (ATPases) were among the first membrane protein

assemblies to be studied by native MS.95 They are multi-subunit pro-

tein complexes containing a large soluble domain and a multimeric

membrane ring connected through a central stator stalk and stabilised

by peripheral stalk complexes.96,97 ATP synthases utilise a proton gra-

dient for ATP synthesis while ATPases hydrolyse ATP and thereby

establish a proton gradient.98 The first study targeted the Thermus

thermophilus ATPase/Synthase.95 Even though the detergent micelle

caused severe peak broadening, selection of a wider m/z region

yielded well-resolved stripped complexes of defined stoichiometry.

Later improvements in sample preparation and instrument tuning89,90

then allowed the analysis of intact ATPases and revealed stoichiome-

tries, subunit interactions and lipid binding99,100 as well as complex

stability in response to removal of post-translational

modifications.101,102 An example spectrum of an intact ATP synthase

is shown in Figure 8.

In addition to ATP synthases, many membrane transporters and

channels have been analysed. Most of these proteins are small homo-

or hetero-oligomers with large hydrophobic domains embedded in the

lipid bilayer. Early studies mainly focussed on the methodological

advances to study protein stoichiometries and binding of associated

lipids.90,103 However, recent improvements enabled the analysis of

cooperative binding of lipids, drugs or other ligands such as nucleo-

tides or peptides.104,105 Importantly, native MS directly reveals the

effects of lipid binding onto the stability and formation of protein

complexes.106–108

Due to several drawbacks of detergent micelles, other membrane

mimetics that better resemble the lipid bilayer of biological mem-

branes are favoured and explored.109 However, these are usually

more complex including phospholipids and scaffold proteins or poly-

mers.110,111 A first study explored nanodiscs, bicelles and amphipols

for native MS and showed that indeed the native oligomeric states of

several integral membrane proteins were preserved in nanodiscs and

bicelles while they differed from those obtained from detergent

micelles or amphipols.112 In particular, nanodiscs were therefore

examined in detail; the complex and heterogeneous mass spectra fur-

ther induced improvements in spectral deconvolution,113–116 sample

preparation117–119 and method optimisation.119,120 These

F IGURE 8 Native MS of an ATP
synthase. The native mass spectrum
shows several complexes that dissociated
in solution (9000–10 000 m/z). The high
energy required to release the complex
from the detergent micelle caused

dissociation of peripheral subunits and
revealed first (12 000–14 000 m/z) and
second (17 000–25 000 m/z) generation
CID products. The inset shows a
subcomplex containing the membrane
ring. Figure adapted from Schmidt
et al101 under the CC BY 3.0 license

8 of 17 BARTH AND SCHMIDT
Journal of 

 MASS 
SPECTROMETRY



improvements allowed, for instance, monitoring the insertion and olig-

omer assembly in the lipid bilayer.120,121

A recent breakthrough was the analysis of intact protein-ligand

assemblies directly from native membranes.122,123 For this, native

membranes were purified and subsequently sonicated in ammonium

acetate to reduce integrity; they were then directly analysed by native

MS. Following this approach, respiratory chain complexes of mito-

chondrial membranes as well as transporters and the SecYEG trans-

locon from E. coli inner membranes were, amongst others, identified

and assigned. The identification of many interactions with ligands of

these proteins reveals the importance of the native membrane for

maintaining these interactions.122

9 | ASSESSING PROTEIN SHAPE AND
STABILITY THROUGH NATIVE IM-MS

IM is a tool for separation of complex ion mixtures in the gas

phase.124,125 It is routinely applied as an analytical technique in the

fields of drug and explosive detection as well as pharmaceutical and

food industry. The coupling of IM and native MS provides additional

structural information on size, shape and stability of proteins or

protein-ligand complexes. The first step of a native IM-MS experiment

is ionisation of the proteins by nano-ESI and subsequent transfer of

the ions into a modified mass spectrometer (see Sections 3 and 4). In

the mass spectrometer, the ions are guided through an IM cell126,127

preceded or followed by MS or tandem MS analysis. Four IM-MS

techniques are mainly used: drift-time ion mobility (DTIM) MS, travel-

ling wave ion mobility (TWIM) MS, trapped ion mobility (TIM) MS and

field asymmetric ion mobility spectrometry (FAIMS). Of these, the lat-

ter is primarily employed to filter out unwanted interferences at atmo-

spheric pressure.128 While it is increasing specificity and sensitivity

for the subsequent MS analysis, the major disadvantage of FAIMS in

respect of protein complex’ analysis is that information on the struc-

ture of the analytes is not obtained.129 This rather specialized tech-

nique will therefore not be discussed in detail.

DTIM is the traditional form of IM. Separation of ions is achieved

by passing the ions through a drift tube containing an inert buffer

gas.130 A uniform electric field gradient is applied along the drift tube

propelling the ions in the direction of the applied field. The drift time

of the ions through the drift tube is related to their shape, providing

information on their collision cross section (CCS). In detail, compact,

smaller structures experience fewer collisions with the buffer gas and

therefore travel faster than elongated structures (Figure 9A). From

F IGURE 9 Native IM-MS of protein complexes. (A) Basic principle of DTIM. Ions are accelerated in a counter gas flow. According to their
shape, they undergo more (larger ions) or fewer (smaller ions) collisions. (B) Basic principle of TWIM. A traveling voltage wave is applied. Smaller
ions are carried with the wave and larger ions are retained. (C) Basic principle of TIM. Ions are trapped in the IM cell. When decreasing the electric
field strength (t1 > t2 > t3), the ions are carried along the drift tube by the IM gas. Larger ions undergo more collisions and are released first. (D) IM
drift plot. Ions with the same m/z but differing in shape are separated by IM and are observed at different drift times. The CCSs of ions are
calculated using the Mason-Schamp equation
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recorded arrival time distribution at the detector, drift time distribu-

tions through the IM cell are obtained which are then used to calcu-

late the CCS following the Mason-Schamp equation.131

During TWIM, a travelling voltage wave is applied to a series of

electrically connected ring electrodes pushing the ions through the IM

cell.132 This ‘travelling wave’ is created by the application of a tran-

sient direct current voltage pulse to each electrode located at both

ends of the IM tube.132 Smaller, compact ions with higher mobility are

carried by the travelling wave, while bigger, elongated structures with

lower mobility are slower (Figure 9B). Differential separation of a

complex mixture is obtained by optimizing velocity and height of the

travelling wave. Improved resolution in TWIM can be achieved by

multipass cyclic IM133; this has successfully been applied to separate

conformers of monomeric and tetrameric proteins.134 The CCSs of

the analyte ions are calculated after calibration of the drift time with

similar ions of known CCS and charge state.135,136 For this, a set of

standard proteins is available for which CCSs are obtained from DTIM

experiments.136 By acquiring arrival time distributions of the

calibrants at varying travelling wave height and velocity, a calibration

curve of CCSs is obtained and applied to proteins and protein com-

plexes with unknown CCS.137 Of note, calibrants and analytes should

be comparable in terms of mass, shape and charge states. Calibration

of drift time measurements is also advised for DTIM if gas purity,

pressure and temperature are not stable or cannot be recorded accu-

rately. Different software was developed and is often applied to auto-

mate the calibration process and to calculate CCSs from arrival time

distributions.138–141 Note that the requirement for calibration

increases the analysis time when usingTWIM.

Recently, TIM was introduced.142,143 During TIM, the ions are

trapped by an electrostatic force and a flow of buffer gas in oppo-

site directions.144,145 When decreasing the strength of the electric

field, the ions are “pushed” forward by the buffer gas and are

released from the IM cell (Figure 9C). When compared with other

IM techniques, analytes with low mobility and extended shape are

released first because they undergo more collisions with the buffer

gas. Similar to TWIM, the CCS is then determined after

calibration.145–148

IM adds another dimension of separation during native MS analy-

sis of proteins and protein complexes; ions with the same m/z but dif-

fering in shape can be distinguished and structurally characterized

(Figure 9D). A key finding was the observation that the ring structure

of the tRNA binding protein TRAP was maintained in the gas phase

evidencing the applicability of native IM-MS for studying protein com-

plex structures.127 The structural interpretation of obtained drift times

and CCSs of proteins and protein complexes mostly relies on molecu-

lar modelling approaches.149,150 One possible procedure is to calculate

CCS values for candidate models and compare them with experimen-

tally obtained CCS values.151 Several algorithms are employed in spe-

cialized software to calculate CCSs from models. They are based on

projection approximation,152–154 projection superposition

approximation,155–158 local collision probability approximation,159

exact hard spheres scattering,160,161 scattering on electron density

isosurfaces162 or trajectory methods.163,164

Another application of native IM-MS is collision-induced

unfolding to analyse the conformational stability of a protein complex

under different conditions.139,165–167 For this, the collisional energy is

increased leading to collisional activation and sequential unfolding of

the protein. The unfolding process of the protein is then monitored by

an increase in CCS. For visualization of changes in protein or protein

complex stability, unfolding plots are generated manually or using spe-

cialised software.138–140,168,169 These plots allow a comparison of

activation levels and transition states of the proteins or protein com-

plexes under varying conditions. Collision-induced unfolding has suc-

cessfully been applied to study the effects of ligands, for instance,

binding of substrates and co-factors170–172 or associated lipids,139,173

onto protein stability.

As a consequence of the variety of IM techniques, the application

of native IM-MS is diverse. It ranges from building structural models

to functional studies. Prominent examples are epitope mapping

utilising IM separation to identify antigen-epitope complexes174–176

or fibril and amyloid formation.177–180 Recent improvements in sam-

ple preparation (see Section 2) even allow the native IM-MS analysis

of proteins from cell lysates.21

10 | RECENT ADVANCES ENABLE HIGH-
RESOLUTION NATIVE MS

Sample preparation, instrumentation and data analysis of native MS

were continuously improved over the last two decades. A major

breakthrough was the establishment of high-resolution mass spec-

trometers modified for transmission of high-mass complexes. The first

modifications were conducted on an Exactive Plus Orbitrap mass

spectrometer and included software modifications allowing detection

of high-mass ions up to 24 000 m/z, tuning radiofrequencies of trans-

port multipoles and increased pressure in the HCD cell.181 In detail,

maximum radiofrequency voltages were applied to all RF multipoles

allowing transmission of high-mass ions. For better desolvation and

increased sensitivity, the ions were trapped in the HCD cell instead of

the C-trap. A new gas line allowed switching between different colli-

sion gases and manual pressure adjustments in the range of 5 × 10−10

and 2 × 10−9 mbar. Additional desolvation was induced by applying

in-source dissociation energy. Mass filtering of ions was optimised by

manually tuning voltages of multipoles and lenses. Using this instru-

ment, highly resolved mass spectra of an IgG antibody, the 20S

proteasome, bacteriophage capsid complexes and GroEL chaperone

were recorded resulting in masses of the complexes within

10–50 ppm accuracy.181

The developments of high-resolution instrumentation were then

pursued on a Q Exactive hybrid quadrupole-Orbitrap mass spectrome-

ter and included, as described above for Q-ToF instruments, lower

radiofrequency of the quadrupole to allow precursor mass selection

up to 20 000 m/z, a modified preamplifier for detection of high-mass

signals and changes in the HCD-gas inlet to achieve even higher pres-

sures up to 1 × 10−9 mbar.182 Figure 10A shows a schematic of the

modified mass spectrometer. Using this instrument and additionally
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tuning of voltage gradients then allowed the protection of membrane

protein complexes by the detergent micelles, which was removed by

collisional dissociation in the HCD cell. Following this procedure,

high-resolution native MS was extended by the analysis of membrane

protein-ligand complexes. Strikingly, binding of associated lipids,

detergent molecules and small molecule drugs could be resolved and

revealed binding stoichiometries and preferences for endogenous

lipids that differ in acyl chain length.182

Continuous improvements in high-resolution instrumentation

followed. The establishment of a Q Exactive ultra-high mass range spec-

trometer (QE-UHMR) extended the mass range dramatically for the

analysis of large macromolecular complexes up to 50 000 m/z as exem-

plified by the 9-MDa Flock House virus.184 Another instrument modifi-

cation included the addition of a dual funnel interface allowing the

detection of an intact protein complex without in source activation and

at lower collisional energies.185 This instrumental set-up enabled com-

plete desolvation and dissociation of the protein complex in the front-

end of the mass spectrometer, between dual funnel and injection

flatapole, providing the possibility of pseudo-MS3 experiments for frag-

mentation of monomer subunits.185,186 Recently, the range of high-

resolution instrumentation was further extended by tribrid mass spec-

trometers allowing multistage activation and thereby dissociation and

subsequent fragmentation of bound ligands.187 This approach is crucial

for unambiguously linking ligands with their target proteins.

The possibility of high-resolution native MS revolutionised the field

of native MS and extended its applications enormously. To name a few

examples, lipid binding to various membrane proteins,188,189 heteroge-

neous populations of post-translationally modified proteins,183,190,191

virus particles differing in genome content and capsid composition84,85

and many other proteins and protein complexes have been explored to-

date. A high-resolution mass spectrum revealing the microheterogeneity

of Asialo-HP glycoprotein is shown in Figure 10B as an example. Very

recently, high-resolution native MS and IM were successfully coupled

allowing separation of the gas phase structures of highly resolved pro-

tein complex' populations.192 In future, many more applications of high-

resolution native MS are anticipated.

F IGURE 10 High-resolution native MS. (A) Schematic of a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer. Relevant elements and
components are shown. Ions are generated by ESI. The ion beam (red) is shown throughout the instrument. See text for details on instrument
modifications. (B) High-resolution mass spectrum of Asialo-HP glycoprotein (lhs). Deconvolution of the mass spectrum reveals the

microheterogeneity of Asialo-HP (rhs). Peaks corresponding to the same hexose composition are highlighted (see colour legend). The number of
fucose residues is indicated for each peak. Panel B adapted from Wu et al183 under the CC BY-NC 3.0 license
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11 | CONCLUSIONS

Native MS has emerged as a robust method to determine the stoichi-

ometry of protein complexes and protein-ligand assemblies. However,

native MS is a versatile technique and, in addition to this rather

simple application, provides information on protein(-ligand)

interactions, complex' heterogeneity and topology. The establishment

of high-resolution instrumentation nowadays allows taking snapshots

of co-existing populations of protein-ligand complexes thereby

uncovering mechanistic details and synergistic effects. When com-

bined with IM, native MS delivers insights into complex' shape and

stability of the proteins under different conditions. Together with bio-

chemical or biophysical techniques, native MS provides invaluable

information that is often difficult to achieve with the classical tech-

niques alone. It therefore takes an important role in structural biology

and future developments raise high expectations for further

applications.
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