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This paper proposes a height-function algorithm to estimate the curvature of two-
dimensional curves and three-dimensional surfaces that are defined implicitly on two-
and three-dimensional non-uniform Cartesian grids. It relies on the reconstruction of local 
heights, onto which polynomial height-functions are fitted. The algorithm produces curva-
ture estimates of order N − 1 anywhere in a stencil of (N + 1)d−1 heights computed from 
the volume-fraction data available on a d-dimensional non-uniform Cartesian grid. These 
estimates are of order N at the centre of the stencil when it is symmetric about its main 
axis. This is confirmed by a comprehensive convergence analysis conducted on the errors 
associated with the application of the algorithm to a fabricated test-curve and test-surface.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

When modelling interfacial flows, accurately estimating the curvature of the fluid-fluid interface is key to correctly 
account for capillary effects, and to avoid the generation of parasitic flow currents [1–3]. In the context of the widely used 
volume-of-fluid (VOF) method [4–8], the immiscible fluid phases a and b are identified by the indicator function

χ(x) =
{

1 if x ∈ fluid a
0 if x ∈ fluid b

. (1)

The quantity that is correspondingly available in each cell K of the computational grid is the local volume-fraction

γK = 1

�(K )

∫
K

χ(x)dx , (2)

where �(K ) = ∫
K dx is the Lebesgue measure of K . The interface between the domains occupied by fluid a and fluid b can 

be represented in the form of an implicit hypersurface F (x) = 0, resulting in the local mean curvature of this interface 
reading as [9]1
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1 Note that Eq. (3) is applicable to both the two- and three-dimensional cases because the following definition of the three-dimensional mean curvature 
is considered in the present work: κ = κ1 + κ2, κ1 and κ2 being the principal curvatures of the surface. Goldman [9] uses the following definition: 
κ = (κ1 + κ2)/2 for the three-dimensional mean curvature, yielding formulas for the two- and three-dimensional cases that differ by a factor 2.
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Fig. 1. Illustration of the computation of the heights of fluid associated with an interface, in the context of the VOF method. The left figure shows the 
indicator function for the fluid phases a and b. The central figure shows the associated volume-fraction field on a 7 × 7 uniform Cartesian grid. The 
right figure shows the corresponding heights of fluid, if the y-direction is chosen to be the “vertical” direction, i.e. the direction of summation of the 
volume-fractions.

κ = ∇ F T · ∇ (∇ F ) · ∇ F − |∇ F |2 tr (∇ (∇ F ))

|∇ F |3 . (3)

The challenge in estimating κ thus lies in the estimation of the first and second partial derivatives of the function F (x)

at the location of the interface, from the values of the integrals of χ in the computational cells. This has been addressed 
in numerous ways and with varying success in the literature, yet the only method that has been shown to converge with 
mesh refinement is the height-function (HF) method [10–15]. The HF method relies on the computation of local heights 
of fluid, which are then used to compute the first and second partial derivatives of the interface. Having chosen a local 
“vertical” direction (based on the components of the local interface normal vector), these heights are simply obtained from 
the summation of the volume-fractions along the vertical direction, as illustrated in Fig. 1. The formulation of the HF method 
classically found in the literature is second-order accurate and restricted to uniform Cartesian grids [10,11,13,3]. A strategy 
to extend the HF method to higher orders was first suggested by Sussman and Ohta [12], and applied to obtain fourth-
order accurate estimates of curvature on three-dimensional uniform Cartesian grids. Francois and Swartz [16] and Bornia 
et al. [17] then proposed fourth-order formulas for the two-dimensional case, with Francois and Swartz [16] considering 
two-dimensional non-uniform Cartesian grids. More recently, Zhang [18] extended the HF method to arbitrary order on 
two-dimensional uniform Cartesian grids.

To this date, however, there does not exist a unique, arbitrary-order, HF method that allows to estimate curvature on 
two- and three-dimensional non-uniform Cartesian grids. In this paper, we present such a method for the estimation of 
curvature on two- and three-dimensional non-uniform Cartesian grids, with arbitrary order of accuracy. Moreover, we show 
that the proposed method allows to estimate curvature anywhere in the stencil of heights, i.e. not necessarily at its centre, 
and that the said stencil does not need to be made of contiguous intervals. Section 2 and 3 present the proposed approach 
for the two- and three-dimensional cases, respectively. These are then validated in Section 4, where they are shown to 
produce arbitrarily accurate estimates of curvature on non-uniform Cartesian grids, at any location of the column stencil. 
Finally, conclusions are drawn in Section 5. Note that a list of low-order formulas for the two- and three-dimensional cases, 
and the C implementations of the approaches presented in Section 2 and 3, are provided in the appendix.

2. Two-dimensional case

Consider an arbitrary two-dimensional curve that can locally be expressed in the form of the height-function

z = f (x) , (4)

as illustrated in Fig. 2. To each local interval [xi, xi+1], we can associate the height

Hi = 1

�xi

xi+1∫
xi

f (x) dx , (5)

where �xi = xi+1 − xi . The middle of this interval is defined as xi+1/2 = (xi+1 + xi)/2. In many scientific fields – such as 
interfacial flow modelling – the heights Hi constitute one of the few pieces of information that are available to recover 
important geometric properties of the curve (e.g. normals, curvatures). Without loss of generality, let us now consider the 
interval [x0, x1] centred around the value x1/2, which is fixed. We choose the interval to be such that �x0 = h, with h ∈R+ , 
and we assume that all intervals [xi, xi+1], with i ∈Z, are such that �xi = αi h where αi ∈ R+ is a constant. This way, by 
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Fig. 2. An arbitrary curve, locally defined as z = f (x). The middle of the interval [xi, xi+1] is xi+1/2. The point Pi is located on the curve at (xi+1/2, f (xi+1/2)).

varying the value of h while keeping everything else constant, we can stretch the stencil of intervals (or columns) centred 
around [x0, x1] without modifying the ratio between their widths. It is known that when �x−1 = �x0 = �x1 = h, i.e. when 
the three consecutive columns centred around x1/2 are of uniform width, then κ , the curvature of the curve at point 
P0 = (x1/2, f (x1/2)), is given by [10,17]

κ = Hxx(
H2

x + 1
)3/2

+O
(

h2
)

, (6)

with Hx and Hxx obtained from the central-difference formulas

Hx = H1 − H−1

2h
, (7a)

Hxx = H1 − 2 H0 + H1

h2
. (7b)

In fact, this process can be shown to be equivalent to finding the coefficients a, b, and c of the parabola

f̃ (x) = ax2 + bx + c , (8)

that satisfy

Hi = 1

�xi

xi+1∫
xi

f̃ (x)dx , ∀i ∈ {−1,0,1} , (9)

the curvature κ thus being equivalently given by [19]

κ = f̃ xx(x1/2)(
f̃ x(x1/2)2 + 1

)3/2
+O

(
h2

)
. (10)

We now extend this analogy to arbitrary order, and to non-uniform column widths. Consider the polynomial function of 
order N

f̃ (x) = ATP(x) , (11)

where A is a vector of N + 1 scalar coefficients, and P(x) the vector of polynomial basis functions

P j(x) = x j−1, j ∈ {1, . . . , N + 1} . (12)

The heights generated by the function f̃ read as

H̃i = 1

�xi

xi+1∫
xi

ATP(x) dx = 1

�xi
AT (Q(xi+1) − Q(xi)) , (13)

where Q(x) is the vector of antiderivatives of the basis functions in P(x), that is
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Fig. 3. An arbitrary surface, locally defined as z = f (x, y). The point Pi, j is located on the surface at (xi+1/2, y j+1/2, f (xi+1/2, y j+1/2)).

Q j(x) = x j

j
, j ∈ {1, . . . , N + 1} . (14)

Assuming that N + 1 heights are available as inputs, each being associated to an arbitrary interval [xk, xk+1] with k ∈ Z
(the intervals not needing to be consecutive), then equating these heights to those generated by the function f̃ reduces to 
solving the following linear system for A,

MA = H , (15)

where H is a vector containing the N + 1 heights. Each ith row of the matrix M reads as

Mi, j = Q j(xk+1) − Q j(xk)

�xk
, j ∈ {1, . . . , N + 1} , (16)

where [xk, xk+1] is the arbitrary interval associated with the ith height in H. The first and second derivatives of the poly-
nomial f̃ (x) can be expressed at any coordinate x as a function of the scalar coefficients in A. When x = 0, however, these 
first and second derivatives are each a function of only one scalar coefficient of A. Since we want to estimate curvature at 
x = x1/2, then it is judicious to express the limits of the intervals [xk, xk+1] in terms of their value relative to x1/2 when 
calculating the coefficients of the matrix M, i.e. to locate the origin of the local reference frame at x = x1/2. This way, the 
first and second derivatives of f̃ at x = x1/2 are simply given by

f̃ x(0) = A2 , (17a)

f̃ xx(0) = 2 A3 , (17b)

so the curvature of the curve at point P0 = (x1/2, f (x1/2)) is given by [9]

κ = 2 A3(
A2

2 + 1
)3/2

+O
(

hN−1
)

, (18)

meaning that κ = 2 A3/(A2
2 + 1)3/2 is an approximation of the curvature at P0 of order N − 1. If the stencil of N + 1 height 

intervals is symmetric about the value x = x1/2 and includes the interval [x0, x1], then the approximation in Eq. (18) can be 
shown to be of order N [16,18].

The first and second derivatives obtained with this approach, in the central and boundary cells of a stencil of N + 1
consecutive intervals of uniform width, are listed in Appendix A.1 for values of N up to 4. The C code allowing to estimate 
curvature at any coordinate xc from N + 1 heights is given in Appendix B.1.

3. Three-dimensional case

Consider an arbitrary surface that can locally be expressed in the form of the height-function

z = f (x, y) , (19)

as illustrated in Fig. 3. To each local domain [xi, xi+1] × [y j, y j+1], we can associate the height

Hi, j = 1

�xi �y j

xi+1∫
x

y j+1∫
y

f (x, y) dx dy , (20)
i j



F. Evrard et al. / Journal of Computational Physics: X 7 (2020) 100060 5
where �xi = xi+1 − xi and �y j = y j+1 − y j . The centre of this domain is defined as (xi+1/2, y j+1/2) = ((xi + xi+1)/2, (y j +
y j+1)/2). Without loss of generality, let us consider the domain [x0, x1] × [y0, y1] centred around the point (x1/2, y1/2), 
which is fixed. We choose the domain to be such that �x0 = h and �y0 = rh, with (h, r) ∈ R2+ , and we assume that 
all intervals [xi, xi+1] and [y j, y j+1], with (i, j) ∈ Z2, are such that �xi = αi h and �y j = β j rh, where (αi, β j) ∈ R2+ are 
constants. This way, by varying the value of h while keeping everything else constant, we can stretch the stencil of columns 
centred around [x0, x1] × [y0, y1] without modifying the ratio between their widths. It is known that when �x−1 = �x0 =
�x1 = h and �y−1 = �y0 = �y1 = rh, then κ , the mean curvature of the surface at point P0,0 = (x1/2, y1/2, f (x1/2, y1/2)), 
is given by [11]

κ = Hxx
(
1 + H2

y

) + H yy
(
1 + H2

x

) − 2 Hx H y Hxy(
H2

x + H2
y + 1

)3/2
+O

(
h2

)
, (21)

with Hx , H y , Hxx, H yy , and Hxy obtained from the central-difference formulas

Hx = H1,0 − H−1,0

2 h
, (22a)

H y = H0,1 − H0,−1

2 rh
, (22b)

Hxx = H1,0 − 2 H0,0 + H1,0

h2
, (22c)

H yy = H0,1 − 2 H0,0 + H0,1

(rh)2
, (22d)

Hxy = H1,1 + H−1,−1 − H1,−1 − H−1,1

4 rh2
. (22e)

Let us now extend the strategy employed for the two-dimensional case to the three-dimensional case. To that end, consider 
the bivariate polynomial function

f̃ (x, y) = ATvec
(

P(x)P(y)T
)

, (23)

where A is a vector of (N + 1) × (N + 1) scalar coefficients, and vec
(
P(x)P(y)T

)
the vector of (N + 1) × (N + 1) bivariate 

polynomial basis functions, which consists of the concatenation of the columns of the matrix formed by the outer product 
of P(x) by P(y). The heights generated by the function f̃ read as

H̃i, j = 1

�xi �y j

xi+1∫
xi

y j+1∫
y j

ATvec
(

P(x)P(y)T
)

dx dy

= 1

�xi �y j
ATvec

(
(Q(xi+1) − Q(xi))

(
Q(y j+1) − Q(y j)

)T
) (24)

where Q(x) is the vector of N + 1 antiderivatives defined in Eq. (14). Assume that (N + 1) × (N + 1) heights, associated to 
N + 1 arbitrary intervals [xk, xk+1] and N + 1 arbitrary intervals [yl, yl+1], with (k, l) ∈Z2, are available as inputs. Equating 
these heights to those generated by the function f̃ then reduces to solving the following linear system for A,

MA = H , (25)

where H is a vector containing the (N + 1) × (N + 1) heights. Each ith row of the matrix M reads as

Mi, j =
(

Q m(xk+1) − Q m(xk)
) (

Q n(yl+1) − Q n(yl)
)

�xk �yl
,

{
n = 1 + �( j − 1)/(N + 1)�
m = j − (n − 1)(N + 1)

, j ∈ {1, . . . , (N + 1)2} , (26)

where [xk, xk+1] and [yl, yl+1] are the arbitrary intervals forming the domain associated with the ith height in H. The first 
and second partial derivatives of the bivariate polynomial f̃ (x, y) can be expressed at any coordinate (x, y) as a function of 
the scalar coefficients in A. When x = y = 0, however, these first and second partial derivatives are each a function of only 
one scalar coefficient of A. Since we want to estimate curvature at (x, y) = (x1/2, y1/2), then it is judicious to express the 
limits of the intervals [xk, xk+1] and [yl, yl+1] in terms of their value relative to x1/2 and y1/2, respectively, when calculating 
the coefficients of the matrix M, i.e. to locate the origin of the local reference frame at (x, y) = (x1/2, y1/2). This way, the 
first and second partial derivatives of f̃ at (x, y) = (x1/2, y1/2) are simply given by
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Fig. 4. Test-surface given by Eq. (29) with λ = η, coloured based on the local mean curvature normalised by its maximum value κref .

f̃ x(0,0) = A2 , (27a)

f̃ y(0,0) = AN+2 , (27b)

f̃ xx(0,0) = 2 A3 , (27c)

f̃ yy(0,0) = 2 A2N+3 , (27d)

f̃ xy(0,0) = AN+3 , (27e)

so the mean curvature of the surface at point P0,0 = (x1/2, y1/2, f (x1/2, y1/2)) is given by [9]

κ = 2
(

A3
(
1 + A2

N+2

) + A2N+3
(
1 + A2

2

) − A2 AN+2 AN+3
)

(
A2

2 + A2
N+2 + 1

)3/2
+O

(
hN−1

)
. (28)

If the stencil of (N + 1) × (N + 1) height domains is symmetric about the axis x = x1/2 and y = y1/2, and includes the 
intervals [x0, x1] and [y0, y1], then the previous approximation can be shown to be of order N .

The first and second partial derivatives obtained with this approach, in the central and boundary cells of a stencil formed 
by N +1 consecutive intervals of uniform width along both x- and y-axis, are listed in Appendix A.2 for values of N up to 4. 
The C code allowing to estimate curvature at any coordinate (xc, yc) from (N +1) × (N +1) heights is given in Appendix B.2.

4. Numerical tests

In order to test the proposed approach for curvature estimation, let us consider the surface

z = λ

4
cos

(
2π x

λ

)
cos

(
2π y

η

)
exp

(
− x2

4λ2

)
exp

(
− y2

4η2

)
, (29)

which cannot be rewritten in the form of a polynomial height-function of finite order. This test-surface is illustrated in 
Fig. 4. To prevent the systematic occurrence of cases where the principal directions of curvature of the surface are aligned 
with the x- and y-axis, we conduct our tests in a reference frame R′ = (x′, y′, z) that results from the rotation of the 
fundamental reference frame R = (x, y, z) about the z-axis, with a random angle θ ∈ [0, 2π ]. We consider the following 
domains for the two- and three-dimensional studies, namely D2d = {x′ ∈ R | 0 ≤ x′ ≤ λ} and D3d = {(x′, y′) ∈ R2 | 0 ≤
x′ ≤ λ and 0 ≤ y′ ≤ λ}, respectively. The study of the two-dimensional curvature estimation is conducted in the (x′, z) plane, 
and the test-curve thus corresponds to the intersection of the test-surface with the (x′, z) plane. The test-curve and test-
surface respectively associated with the domains D2d and D3d are illustrated in Fig. 5, where the test-curve used for the 
two-dimensional study is highlighted in red, and the test-surface used for the three-dimensional study is coloured based on 
its mean curvature.

4.1. Two- and three-dimensional convergence studies

Figs. 6 and 7 show the errors associated with the estimation of curvature for the two- and three-dimensional cases, 
respectively. Four different types of stencils are considered in each study, corresponding to the four columns of graphs of 
each figure. Curvature is estimated at the centre of the stencil, but also in cells that lie on its boundary.

For the two-dimensional study (Fig. 6), the following types of stencils are considered:

A Symmetric stencil of N + 1 consecutive intervals of uniform width along the x′-axis.
B Symmetric stencil of N + 1 consecutive intervals of non-uniform width along the x′-axis (the intervals are stretched 

by a factor s = 1.2 around the central interval).
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Fig. 5. Test-surface and test-curve associated with the test-domains D2d and D3d considered for the two- and three-dimensional studies, with λ = 1, 
η = 2/3, and θ = π/10. The test-surface used for the three-dimensional study is coloured based on its mean curvature normalised by its maximum value 
κref , and the test-curve used for the two-dimensional study in the (x′, z) plane is highlighted in red.

Fig. 6. Maximum errors associated with estimating the curvature of the test-curve in NS = 5 × 105 random configurations. Four different stencil types are 
considered, each corresponding to a column of the figure. The stencils are sketched at the top of the columns. The first row of graphs corresponds to the 
errors obtained in the central cell of the stencil, and the second row to the errors obtained in the left cell of the stencil. The use of N + 1 heights results in 
a curvature estimate of order N − 1, unless the stencil is symmetric about its centre, in which case curvature can be estimated at its centre with order N .

C Non-symmetric stencil of N + 1 consecutive intervals of non-uniform width along the x′-axis (the intervals are 
stretched by a factor s = 1.2 in the positive x′ direction).

D Non-symmetric stencil of N + 1 non-consecutive intervals of uniform width along the x′-axis.

Curvature (and the associated error) is computed in:

I The central interval of the stencil (for N even).
II The extreme left interval of the stencil.
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Fig. 7. Maximum errors associated with estimating the mean curvature of the test-surface in NS = 5 × 105 random configurations. Four different stencil 
types are considered, each corresponding to a column of the figure. The stencils are sketched at the top of the columns. The first row of graphs corresponds 
to the errors obtained in the central cell of the stencil, the second row to the errors obtained in the cell at the intersection of the left column and middle 
row of the stencil, and the third row to the errors in the bottom-left corner of the stencil. The use of (N + 1) × (N + 1) heights results in a curvature 
estimate of order N −1, unless the stencil is symmetric about its central x- and y-axis, in which case curvature can be estimated at its centre with order N .

For the three-dimensional study (Fig. 7), the following types of stencils are considered:

A Symmetric stencil formed by N + 1 consecutive intervals of uniform width along both the x′- and y′-axis.
B Symmetric stencil formed by N + 1 consecutive intervals of non-uniform width along both the x′- and y′-axis (the 

intervals are stretched by a factor sx = 1.1 in the x′ direction, and by a factor sy = 1.2 in the y′ direction). The ratio 
between the widths of the y′ and x′ intervals is r = 0.5.
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C Non-symmetric stencil formed by N + 1 consecutive intervals of non-uniform width along both the x′- and y′-axis 
(the intervals are stretched by a factor sx = 1.1 in the positive x′ direction, and by a factor sy = 1.2 in the positive y′
direction). The ratio between the widths of the y′ and x′ intervals is r = 0.5.

D Non-symmetric stencil formed by N + 1 non-consecutive intervals of uniform width along both the x′- and y′-axis.

Curvature (and the associated error) is computed in:

I The central cell of the stencil (for N even).
II The cell at the intersection between the extreme left column and middle row of the stencil.

III The cell in the bottom left corner of the stencil.

These stencils are sketched above each column of Figs. 6 and 7. The intervals/cells in which curvature is estimated 
are highlighted on the stencil in red (central cell), green (left cell), and blue (corner cell). The errors are normalised with 
respect to κref, the mean curvature of the surface at the centre of the domain, i.e. for x = y = 0. The width h of the cell 
under consideration is chosen as to yield h/λ ratios between 10−3 and 10−1. For each value of h, NS = 5 × 105 curvature 
evaluations are conducted, each corresponding to a cell centre randomly chosen in D2d or D3d, and each associated with 
a random value of θ , the angle of the rotation of R′ relatively to R. Values of N between 2 and 10 are considered for this 
study, resulting in a maximum possible order of convergence equal to 10. Finally, the coefficients λ = 1 and η = 2/3 are 
chosen.

From a computational point of view, all calculations are conducted in quadruple precision (128 bits) in order to not be 
limited by floating-point errors for the range of resolutions considered. The heights are integrated using the Gauss-Legendre 
quadrature rule with enough integration points so that no significant bias is introduced in the convergence study. The linear 
systems in Eqs. (15) and (25) are solved using LU decomposition.

Fig. 6 confirms that curvature can be estimated with a minimum order of accuracy N − 1 anywhere in a stencil of N + 1
(not necessarily consecutive) intervals of non-uniform width. If the stencil is symmetric about its centre, then curvature can 
be estimated with order N . Fig. 7 shows similar results for the three-dimensional case, i.e. that curvature can be estimated 
with a minimum order of accuracy N − 1 anywhere in a stencil of (N + 1) × (N + 1) (not necessarily consecutive) domains 
of non-uniform dimensions. If the stencil is symmetric about its central x- and y-axis, then curvature can be estimated with 
order N .

Note that in the context of interfacial flow modelling, it is common to be unable to produce N + 1 (in 2d) or (N + 1) ×
(N + 1) (in 3d) well-defined (or consistent) consecutive heights around a given cell [13]. This may, for instance, be due to 
the cell being close to a wall or domain boundary, to the interface being locally very curved, or to the interface topology 
being locally that of a thin film. The ability of the proposed approach to estimate curvature anywhere in a stencil of heights, 
as well as in stencils that are not made of consecutive heights, may prove useful when dealing with such configurations.

4.2. Comparison between second-order accurate formulations

On uniform Cartesian grids, in two dimensions, the approach proposed in this paper yields the exact same formulas for 
the second-order estimation of Hx and Hxx as those commonly used in the literature [10]. In the three-dimensional case, 
however, the coefficients resulting from the proposed approach, given in Eqs. (A.8), differ from those commonly found in 
the literature [11], given in Eqs. (22). Both formulations result in a second-order accurate estimation of curvature, but they 
produce different estimates of curvature and therefore different absolute errors.

The classical second-order central-difference formulas can actually be recovered from the fitting of a quadratic bivariate 
polynomial,

z = f̃ (x, y) = ax2 + bxy + cy2 + dx + ey + g , (30)

as opposed to the bivariate polynomial surface defined in Eq. (23). Such a polynomial surface, however, is characterised by 
only six scalar coefficients, meaning that the direct fitting of the surface onto the nine heights available in a 3 × 3 stencil 
results in an overdetermined equation system. The fitting problem thus needs to be reformulated into the following form,

{
H̃i, j = Hi, j , ∀(i, j) ∈ {−1,0,1} | i j = 0 ,

H̃1,1 + H̃−1,−1 − H̃1,−1 − H̃−1,1 = H1,1 + H−1,−1 − H1,−1 − H−1,1 ,
(P)

that allows to uniquely recover the six scalar coefficients. The first five equations in (P) uniquely determine the coefficients 
a, c, d, e, and g . The sixth equation in (P) can be understood as a way to approximate the mixed second derivative of the 
surface height-function, therefore determining the coefficient b. Note that the coefficient b resulting from the solution of 
(P) can also be recovered by averaging the coefficients resulting from the solution of the four fitting problems (Pk,l)

{
H̃i, j = Hi, j , ∀(i, j) ∈ {−1,0,1} | i j = 0 ,

H̃ = H ,
(Pk,l)
k,l k,l
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Fig. 8. Comparison between the errors obtained with the proposed second-order formulation (HF2) and the second-order formulation classically found in 
the litterature (CD2).

with (k, l) ∈ {−1, 1}2. The fitting problem (P) thus uniquely determines the six coefficients of the quadratic bivariate poly-
nomial from the nine available heights, while retaining symmetry. The resulting formulas for the first and second partial 
derivatives are then those commonly found in the literature (Eqs. (22)).

The maximum errors associated with the formulas proposed in this paper (given in Eqs. (A.8) and referred to as HF2) and 
those found in the literature (given in Eqs. (22) and referred to as CD2), for the test-case described in Section 4, are shown 
in Fig. 8a. The relative differences between the maximum and root mean square errors associated with both methods are 
shown in Fig. 8b. These show that for the NS = 5 × 105 random configurations considered in the study, the maximum and 
root mean square errors associated with the proposed formulation (HF2) are approximately 3 % and 1 % smaller, respectively, 
than those associated with the classical formulation (CD2) – a difference that bears no major significance.

5. Conclusions

We have proposed a height-function method for the estimation of the local curvature on two- and three-dimensional 
non-uniform Cartesian grids, with arbitrary order of accuracy. The method relies upon the fitting of polynomial height-
functions onto the heights of the discrete indicator function computed on the grid. The estimation of curvature at any 
arbitrary location of a non-uniform grid, and with arbitrary order, requires to solve a linear system for the coefficients of 
the polynomial height-function. This results in estimates of curvature that are of order N − 1 if (N + 1)d−1 heights are 
available on a d-dimensional non-uniform grid. These estimates are of order N at the centre of the stencil if it is symmetric 
about its main central axis. This was confirmed by a comprehensive convergence analysis on the errors associated with the 
estimation of the local curvature of a fabricated test-curve and of a fabricated test-surface.

In the context of interfacial flow modelling, previous studies have shown that an increase in the order of accuracy of the 
curvature estimation can lead to an improved prediction of the interface dynamics, even when using a flow solver of lower 
order [12,2]. The method presented in this paper is thus expected to allow to tailor curvature estimation to the needs of the 
user and characteristics of the numerical framework employed. Moreover, recent work on the design of higher (than first) 
order surface tension models points towards the need for high-order representations of the fluid-fluid interface [20].

Finally, it should be mentioned that the fitting problems defined for the d-dimensional cases can be generalised to 
unstructured meshes, as done by the authors for the two-dimensional case [19]. The recovery of a curvature estimate of 
order N − 1 can thus be expected if (N + 1)d−1 interfacial cells are used. The polynomial fitting problems, however, become 
non-linear and therefore need to be solved iteratively.
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Appendix A. Low-order formulas on uniform Cartesian grids

For conciseness, this appendix only considers the estimation of curvature on uniform Cartesian grids (up to 4th-order). 
Equivalent formulas for non-uniform Cartesian grids are considerably lengthier, which is why we recommend to use the 
general algorithms provided in Appendix B for such cases.

A.1. Two-dimensional case

The curvature at a given point on the curve is given by [9]

κ = Hxx(
H2

x + 1
)3/2

. (A.1)

A.1.1. Central cell
Consider the following stencil of consecutive intervals of uniform width h. Curvature is estimated at the centre of the 

cell with index 0, represented by the red dot.

A 2nd-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx = −H−1 + H1

2 h
, (A.2a)

Hxx = H−1 − 2 H0 + H1

h2
. (A.2b)

A 4th-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx = 5 H−2 − 34 H−1 + 34 H1 − 5 H2

48 h
(A.3a)

Hxx = −H−2 + 12 H−1 − 22 H0 + 12 H1 − H2

8 h2 (A.3b)

A.1.2. Boundary cell
Consider the same stencil, in which curvature is now estimated at the centre of the extreme left cell.

A 1st-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx = −3 H0 + 4 H1 + −H2

2 h
(A.4a)

Hxx = H0 − 2 H1 + H2

h2
(A.4b)

A 2nd-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx = −43 H0 + 69 H1 − 33 H2 + 7 H3

24 h
(A.5a)

Hxx = 2 H0 − 5 H1 + 4 H2 − H3

h2
(A.5b)

A 3rd-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx = −95 H0 + 174 H1 − 120 H2 + 50 H3 − 9 H4

48 h
(A.6a)

Hxx = 23 H0 − 68 H1 + 74 H2 − 36 H3 + 7 H4
2

(A.6b)

8 h
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A.2. Three-dimensional case

The mean curvature at a given point on the surface is given by

κ = Hxx
(
1 + H2

y

) + H yy
(
1 + H2

x

) − 2 Hx H y Hxy(
H2

x + H2
y + 1

)3/2
. (A.7)

A.2.1. Central cell
Consider the following stencil of consecutive x- and y-intervals of uniform width h and rh, respectively. Curvature is 

estimated at the centre of the cell with indices (0, 0), represented by the red dot.

A 2nd-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx = H−1,−1 − H1,−1 − 26 H−1,0 + 26 H1,0 + H−1,1 − H1,1

48 h
(A.8a)

H y = H−1,−1 − H−1,1 − 26 H0,−1 + 26 H0,1 + H1,−1 − H1,1

48 rh
(A.8b)

Hxx = − H−1,−1 + 2 H0,−1 − H1,−1 + 26 H−1,0 − 52 H0,0 + 26 H1,0 − H−1,1 + 2 H0,1 − H1,1

24 h2
(A.8c)

H yy = − H−1,−1 + 2 H−1,0 − H−1,1 + 26 H0,−1 − 52 H0,0 + 26 H0,1 − H1,−1 + 2 H1,0 − H1,1

24 (rh)2
(A.8d)

Hxy = H−1,−1 − H1,−1 − H−1,1 + H1,1

4 rh2
(A.8e)

A 4th-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx =

45 H−2,−2 − 580 H−2,−1 + 10670 H−2,0 − 580 H−2,1 + 45 H−2,2 − 306 H−1,−2 + 3944 H−1,−1
−72556 H−1,0 + 3944 H−1,1 − 306 H−1,2 + 306 H1,−2 − 3944 H1,−1 + 72556 H1,0

−3944 H1,1 + 306 H1,2 − 45 H2,−2 + 580 H2,−1 − 10670 H2,0 + 580 H2,1 − 45 H2,2

92160 h
(A.9a)

H y =

45 H−2,−2 − 306 H−2,−1 + 306 H−2,1 − 45 H−2,2 − 580 H−1,−2 + 3944 H−1,−1 − 3944 H−1,1
+580 H−1,2 + 10670 H0,−2 − 72556 H0,−1 + 72556 H0,1 − 10670 H0,2 − 580 H1,−2

+3944 H1,−1 − 3944 H1,1 + 580 H1,2 + 45 H2,−2 − 306 H2,−1 + 306 H2,1 − 45 H2,2

92160 rh
(A.9b)

Hxx =

25608 H−1,0 − 198 H0,−2 + 2552 H0,−1 − 9 H−2,−2 + 116 H−2,−1 + 116 H−2,1 − 9 H−2,2 + 108 H−1,−2
−1392 H−1,−1 − 1392 H−1,1 + 108 H−1,2 + 25608 H1,0 − 2134 H2,0 + 2552 H0,1 + 108 H1,−2 − 1392 H1,−1

−1392 H1,1 + 108 H1,2 − 9 H2,−2 − 2134 H−2,0 − 46948 H0,0 − 198 H0,2 + 116 H2,−1 + 116 H2,1 − 9 H2,2

15360 h2

(A.9c)

H yy =

2552 H−1,0 − 2134 H0,−2 + 25608 H0,−1 − 9 H−2,−2 + 108 H−2,−1 + 108 H−2,1 − 9 H−2,2 + 116 H−1,−2
−1392 H−1,−1 − 1392 H−1,1 + 116 H−1,2 + 2552 H1,0 − 198 H2,0 + 25608 H0,1 + 116 H1,−2 − 1392 H1,−1

−1392 H1,1 + 116 H1,2 − 9 H2,−2 − 198 H−2,0 − 46948 H0,0 − 2134 H0,2 + 108 H2,−1 + 108 H2,1 − 9 H2,2

15360 (rh)2

(A.9d)

Hxy =
25 H−2,−2 − 170 H−2,−1 + 170 H−2,1 − 25 H−2,2 − 170 H−1,−2 + 1156 H−1,−1 − 1156 H−1,1 + 170 H−1,2

+170 H1,−2 − 1156 H1,−1 + 1156 H1,1 − 170 H1,2 − 25 H2,−2 + 170 H2,−1 − 170 H2,1 + 25 H2,2
(A.9e)
2304 rh2
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A.2.2. Boundary cell
Consider the following stencil of consecutive x- and y-intervals of uniform width h and rh, respectively. Curvature is 

estimated at the centre of the cell with indices (0, 0), represented by the red dot.

A 1st-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx = 3 H0,−1 − 4 H1,−1 + H2,−1 − 78 H0,0 + 104 H1,0 − 26 H2,0 + 3 H0,1 − 4 H1,1 + H2,1

48 h
(A.10a)

H y = −23 H0,−1 − 2 H1,−1 + H2,−1 + 23 H0,1 + 2 H1,1 − H2,1

48 rh
(A.10b)

Hxx = − H0,−1 + 2 H1,−1 − H2,−1 + 26 H0,0 − 52 H1,0 + 26 H2,0 − H0,1 + 2 H1,1 − H2,1

24 h2
(A.10c)

H yy = 23 H0,−1 + 2 H1,−1 − H2,−1 − 46 H0,0 − 4 H1,0 + 2 H2,0 + 23 H0,1 + 2 H1,1 − H2,1

24 (rh)2
(A.10d)

Hxy = 3 H0,−1 − 4 H1,−1 + H2,−1 − 3 H0,1 + 4 H1,1 − H2,1

4 rh2
(A.10e)

A 2nd-order accurate estimation of curvature at the highlighted coordinate can be obtained using

Hx =
43 H0,−1 − 1118 H0,0 + 43 H0,1 − 69 H1,−1 + 1794 H1,0 − 69 H1,1

+33 H2,−1 − 858 H2,0 + 33 H2,1 − 7 H3,−1 + 182 H3,0 − 7 H3,1

576 h
(A.11a)

H y =
−154 H0,−1 − 330 H0,0 + 594 H0,1 − 110 H0,2 − 35 H1,−1 − 75 H1,0 + 135 H1,1 − 25 H1,2

+28 H2,−1 + 60 H2,0 − 108 H2,1 + 20 H2,2 − 7 H3,−1 − 15 H3,0 + 27 H3,1 − 5 H3,2

576 rh
(A.11b)

Hxx =
−2 H0,−1 + 52 H0,0 − 2 H0,1 + 5 H1,−1 − 130 H1,0 + 5 H1,1

−4 H2,−1 + 104 H2,0 − 4 H2,1 + H3,−1 − 26 H3,0 + H3,1

24 h2
(A.11c)

H yy =
22 H0,−1 − 44 H0,0 + 22 H0,1 + 5 H1,−1 − 10 H1,0 + 5 H1,1

−4 H2,−1 + 8 H2,0 − 4 H2,1 + H3,−1 − 2 H3,0 + H3,1

24 (rh)2
(A.11d)

Hxy =
301 H0,−1 + 645 H0,0 − 1161 H0,1 + 215 H0,2 − 483 H1,−1 − 1035 H1,0 + 1863 H1,1 − 345 H1,2

+231 H2,−1 + 495 H2,0 − 891 H2,1 + 165 H2,2 − 49 H3,−1 − 105 H3,0 + 189 H3,1 − 35 H3,2

576 rh2
(A.11e)

A.2.3. Corner cell
Consider the following stencil of consecutive x- and y-intervals of uniform width h and rh, respectively. Curvature is 

estimated at the centre of the cell with indices (0, 0), represented by the red dot.
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A 1st-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx = −69 H0,0 + 92 H1,0 − 23 H2,0 − 6 H0,1 + 8 H1,1 − 2 H2,1 + 3 H0,2 − 4 H1,2 + H2,2

48 h
(A.12a)

H y = −69 H0,0 − 6 H1,0 + 3 H2,0 + 92 H0,1 + 8 H1,1 − 4 H2,1 − 23 H0,2 − 2 H1,2 + H2,2

48 rh
(A.12b)

Hxx = 23 H0,0 − 46 H1,0 + 23 H2,0 + 2 H0,1 − 4 H1,1 + 2 H2,1 − H0,2 + 2 H1,2 − H2,2

24 h2
(A.12c)

H yy = 23 H0,0 + 2 H1,0 − H2,0 − 46 H0,1 − 4 H1,1 + 2 H2,1 + 23 H0,2 + 2 H1,2 − H2,2

24 (rh)2
(A.12d)

Hxy = 9 H0,0 − 12 H1,0 + 3 H2,0 − 12 H0,1 + 16 H1,1 − 4 H2,1 + 3 H0,2 − 4 H1,2 + H2,2

4 rh2
(A.12e)

A 2nd-order accurate estimate of curvature at the highlighted coordinate can be obtained using

Hx =
−946 H0,0 − 215 H0,1 + 172 H0,2 − 43 H0,3 + 1518 H1,0 + 345 H1,1 − 276 H1,2 + 69 H1,3

−726 H2,0 − 165 H2,1 + 132 H2,2 − 33 H2,3 + 154 H3,0 + 35 H3,1 − 28 H3,2 + 7 H3,3

576 h
(A.13a)

H y =
−946 H0,0 + 1518 H0,1 − 726 H0,2 + 154 H0,3 − 215 H1,0 + 345 H1,1 − 165 H1,2 + 35 H1,3

+172 H2,0 − 276 H2,1 + 132 H2,2 − 28 H2,3 − 43 H3,0 + 69 H3,1 − 33 H3,2 + 7 H3,3

576 rh
(A.13b)

Hxx =
44 H0,0 + 10 H0,1 − 8 H0,2 + 2 H0,3 − 110 H1,0 − 25 H1,1 + 20 H1,2 − 5 H1,3

+88 H2,0 + 20 H2,1 − 16 H2,2 + 4 H2,3 − 22 H3,0 − 5 H3,1 + 4 H3,2 − H3,3

24 h2
(A.13c)

H yy =
44 H0,0 − 110 H0,1 + 88 H0,2 − 22 H0,3 + 10 H1,0 − 25 H1,1 + 20 H1,2 − 5 H1,3

−8 H2,0 + 20 H2,1 − 16 H2,2 + 4 H2,3 + 2 H3,0 − 5 H3,1 + 4 H3,2 − H3,3

24 (rh)2
(A.13d)

Hxy =
1849 H0,0 − 2967 H0,1 + 1419 H0,2 − 301 H0,3 − 2967 H1,0 + 4761 H1,1 − 2277 H1,2 + 483 H1,3

+1419 H2,0 − 2277 H2,1 + 1089 H2,2 − 231 H2,3 − 301 H3,0 + 483 H3,1 − 231 H3,2 + 49 H3,3

576 rh2

(A.13e)

Appendix B. C implementations

B.1. Two-dimensional case

Listing 1: C code to estimate the curvature of a two-dimensional curve from N + 1 heights.
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B.2. Three-dimensional case

Listing 2: C code to estimate the mean curvature of a three-dimensional surface from (N + 1) × (N + 1) heights.
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