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Abstract

This thesis considers Gaussian processes and their applications in control theory. As
a representative of many algorithms from machine learning, Gaussian processes are
able to utilize the increasingly available data in today’s digitalized and interconnected
world. They allow to learn certain underlying relations and functional dependencies,
which can then be leveraged for improved system understanding, control performance,
and facilitate new applications.
The first part of this thesis uses dynamic Gaussian processes models in a model

predictive control formulation denoted as recursive Gaussian process model predictive
control (rGP-MPC). The key property of the approach is that it includes newly avail-
able data if it contributes sufficient novel information to the model. Based on new data,
it recursively performs the necessary computations to reduce computational costs. The
scheme is formulated in such a way that it can be applied to many processes, including
those without accessible states, changing process conditions, or fast dynamics. Even
though that the prediction model changes during operation, conditions are derived,
which guarantee that the controller is nominally and inherently robustly stable. The
approach is validated in simulations, illustrating increased performance due to the on-
line learning approach, especially in situations where only limited training data and/or
limited process knowledge is available. The derived feasibility and stability guarantees
are not confined to rGP-MPC. They hold for a wide class of model predictive control
approaches that use Gaussian processes and other machine learning algorithms, as
long as the outlined conditions are satisfied.
Secondly, online learning of disturbance signals via Gaussian processes is considered

and employed within a two-degree-of-freedom control approach for scanning quantum
dot microscopy, which is a recently developed microscopy technique that generates
images of electrostatic potentials of nanostructures such as atoms and molecules. The
two-degree-of-freedom controller is the first advanced control scheme developed for
scanning quantum dot microscopy. It comprises two feedback controllers that track
specific electrical quantities during the scanning process. These quantities are used in
post-processing to generate the final images. Improving the scanning/tracking speed
and precision is of major importance. For this reason, two feedforward controllers are
developed, of which one utilizes Gaussian processes. Both simulations and experiments
validate the performance of the presented control approach. It increases the scan
speed, renders the tracking more robust, and allows to scan larger surface areas than
before.
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Deutsche Kurzfassung

Diese Dissertation befasst sich mit der Anwendung und Theorie von Gaußprozessen
in der Regelungstechnik. Als einer von vielen Algorithmen aus dem Bereich des ma-
schinellen Lernens sind Gaußprozesse in der Lage verfügbare Informationen in den
zunehmend anfallenden Messdaten der heutigen digitalisierten Welt zu nutzen um zu
Grunde liegende funktionale Abhängigkeiten zu lernen. Dies lässt sich zur verbesserten
Regelung bestehender Systeme oder für neue Anwendungen einsetzen.
Der erste Teil befasst sich mit recursive Gaussian process model predictive control

(rGP-MPC), ein Regelungskonzept welches Prozessmodelle verwendet die auf Gauß-
prozessen basieren. Hierbei werden neu verfügbare Datenpunkte nur dann im Lernen
berücksichtigt insofern diese ausreichend neue Informationen beinhalten. Die notwen-
digen Berechnungen werden rekursiv für eine effizientere Berechnung durchgeführt.
rGP-MPC lässt sich für viele Anwendungen einsetzen, z. B. für Prozesse mit unvoll-
ständigen Zustandsinformationen, Prozesse mit sich ändernden Prozessbedingungen
oder mit schnellen Dynamiken. Es werden Bedingungen angegeben unter denen das
Regelungskonzept nominal sowie inhärent robust stabil ist, auch wenn sich das Gauß-
sche Prädiktionsmodell während des Betriebs ändert. Die Stabilität sowie das verbes-
serte Regelverhalten, insbesondere im Fall von limitierten Daten und/oder limitiertem
Prozesswissen, werden in Simulationen validiert. Bemerkenswerterweise sind die Sta-
bilitätsgarantien nicht auf den rGP-MPC Ansatz beschränkt, sondern gelten für eine
breite Klasse von modellprädiktiven Regelungen die Gaußprozesse oder andere Ver-
fahren des maschinellen Lernens für das Prädiktionsmodell verwenden.
Der zweite Teil dieser Arbeit untersucht die Verwendung von Gaußprozessen zum

Lernen externer Referenz- bzw. Störsignale, insbesondere im Kontext als Teil einer
Zwei-Freiheitsgrade-Regelung für die sogenannte Rasterquantenpunktmikroskopie. Die-
se kürzlich entwickelte Mikroskopietechnik erlaubt es Bilder der elektrostatischen Po-
tentiale von Nanostrukturen, wie zum Beispiel von Atomen oder Molekülen, zu er-
zeugen. Die vorgestellte Zwei-Freiheitsgrade-Regelung ist das erste Regelverfahren für
die Rasterquantenpunktmikroskopie. Sie besteht aus zwei unterschiedlichen Reglern
die spezifische elektrische Signale während des Scanprozesses verfolgen. Diese Signale
werden nach einer Aufnahme zur Erzeugung des Bildes verwendet. Es werden zwei
Vorsteuerungen vorgestellt, eine basierend auf Gaußprozessen, die eine robustere Si-
gnalverfolgung erlauben und damit höhere Scangeschwindigkeiten sowie das Scannen
größerer Objektproben ermöglichen. Die hergeleiteten Regler werden sowohl simulativ
als auch experimentell validiert.
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1 Introduction and Motivation

The world of today becomes ever more complex and that at an unprecedented speed.
Every day new technologies emerge that require and increase the level of systems’
autonomy. Popular examples are flying drones (used, e.g., in surveillance, logistics, and
cinematography), self-driving cars, robots with human interaction, or self-organizing
assembly streets in manufacturing. Besides, more and more of these systems are
connected through local or even global communication systems.
For many autonomous systems – and their respective underlying functionalities –

control and decision making are key components and thus, the design of appropriate
control and decision systems is paramount. Some of the aspects that go into the design
process are typical challenges in control. For example, nonlinear system behavior,
safety issues expressed as constraints of the involved variables, or uncertainty in the
systems themselves or their surroundings. In the case of autonomous systems, however,
additional challenges arise. For instance, they have to be mostly independent and
flexible, i.e., they need to be able to adapt to changing process and environmental
conditions on their own. Furthermore, they might also have to cooperate with other
autonomous systems or humans in their working environment. To cope with these
challenges, many systems exchange and gather information from their environment
at an increasing rate. This is facilitated, among other developments, by the ongoing
digitalization of today’s world. Data is automatically collected and stored, which can
be used for proper system operation, statistical analysis, and general improvement of
systems’ performance. In order to leverage the information of all this data acquisition
for control and decision systems, traditional methods from control are increasingly
combined with methods from machine learning. From this combination emerge new
interesting applications, as well as questions regarding the (provable) properties of the
resulting control algorithms. This thesis is intended to a shed a bit more light on these
aspects.

1.1 Machine Learning

The term machine learning was first introduced in [163] and can be considered as a
subfield of artificial intelligence. It denotes algorithms that enable a computer agent
to solve specific problems in a way that resembles human learning by improving from
experience, i.e., using acquired data. To this end, machine learning puts more emphasis
on the data aspect than other more traditional methods that use rigid functional
instructions. The utilized data is usually denoted as training data and used, for

1



1 Introduction and Motivation

instance, to build models to make predictions or take decisions. The employed methods
are closely related to other fields, such as computational statistics, probability theory,
stochastic systems, and mathematical optimization to name a few. Some popular
examples of machine learning algorithms are decision trees, artificial neural networks
(e.g. recurrent and deep learning networks), support vector machines, or Gaussian
processes. Applications are manifold and span from speech [66] and image recognition
[102], over medical diagnosis [136] and email filtering [8], to machine translations (e.g.
linguee and deeple [201]), which many of us use in daily life. Some machine learning
algorithms even gained significant media attention when they beat for the first time
human professional players in traditional board games (e.g. chess and Go [172]) and
also competitive computer games [190].
Approaches of machine learning are often divided into the three categories super-

vised learning, unsupervised learning, and reinforcement learning (see Fig. 1.1). The
arguably most prominent learning scheme is supervised learning, which is character-
ized by the objective to determine a mapping

ML :W → Z , (1.1)

given a labeled training data set D = {(wi, zi)}i∈N, where the variables w ∈ W are the
independent input variables (also denoted as attributes or features) and the variables
z ∈ Z are the dependent output variables (also denoted as targets). The mapping
(1.1) is usually used to predict the targets z, given some previously unseen inputs
w. Supervised learning is probably used most frequently in control, in particular in
the form of regression algorithms because in theory any functional dependency can be
learned or approximated. A prominent example in model-based control is learning the
(open or closed-loop) model of the controlled process [42, 43, 77, 141, 157, 176, 185].
This has two important advantages. First, the typical and time consuming modeling
process (via first principles and conducted by a human expert) can be skipped and
second, newly available data during operation allows to adapt and improve the model
to changing process and environmental conditions. Further examples in combination

Figure 1.1: Common learning paradigms in machine learning. Note that they do not exclude
each other.

2



1.1 Machine Learning

Figure 1.2: Possibilities for the inclusion of machine learning in control: Learning external
reference or disturbance signals (left), learning a model of the controlled process
(middle), or learning the controller or parts of it (right).

with control are learning of disturbances or unknown references [84, 92, 125, 198, 199],
the cost function in optimization-based approaches [16, 19, 45, 123, 124], or learning
directly the control policy or their parameters [5, 35, 83, 114, 208], see Fig. 1.2.
In contrast to supervised learning, only a set of independent variables {wi}i∈N is

available in unsupervised learning, i.e., one cannot differentiate between independent
and dependent variables. There the objective can be, for example, to determine the
structure of or similarities within the data itself, as is done in model reduction (differ-
entiating between dominant and nondominant parts of a model, e.g. see [97]) or the
determination of outliers within data. Thus, unsupervised learning can be employed
as a preprocessing step in supervised learning and control.
Whereas supervised and unsupervised learning are rather general concepts, rein-

forcement learning [179] considers specifically dynamic environments or processes.
Therein it seeks to learn suitable input actions/decisions to influence the state of
a system, such that a numerical reward or a respective cumulative reward over time,
also called value function1, is maximized. This does not only allow to compute spe-
cific input values but also to find suitable control policies (or feedback laws). The
reward or value function can be modeled in different ways, including linear function
approximations, neural networks, or Gaussian processes [157, 179].

Besides the achievements of machine learning algorithms, they do have also some
drawbacks. One of them is that they often lack interpretability. In contrast to state-of-
the-art mathematical modeling that uses, for instance, first principles (also called white
box) models (models arising, e.g., from energy or mass balances), machine learning
algorithms often model or learn only an input-output behavior (also called black box
modeling). Thus, internal working principles or insightful relations cannot be derived
and interpretability from a physical point of view is low.
Another drawback is the high computational load that many machine learning algo-

rithms exhibit, at least during the learning phase. This rendered potential algorithms
impractical for many application cases in the past. Fortunately, the involved compu-

1The value function of reinforcement learning is closely related to the cost function in model predictive
control and reinforcement learning itself is closely related to techniques of optimal control and dynamic
programming [104, 180]. One of the main differences is that in reinforcement learning no model of the
dynamic process is necessary or typically used.

3



1 Introduction and Motivation

tations become more and more feasible. This is driven, on one hand, by algorithmic
developments from the scientific community but mostly by the increase of compu-
tational power and services such as cloud computing. This is also one of the main
reasons, besides good performance, that machine learning is also increasingly used for
and in combination with control and automation.

One particular method that benefits from these developments are Gaussian processes
(GPs, [87, 158]), which are the focus of this thesis. GPs are stochastic processes
that are particularly well suited for generating maps, whose output is corrupted by
normally/Gaussian distributed noise. Given their stochastic nature, the tendency
of overfitting is low and their expected model quality can be evaluated via confi-
dence intervals of the predictions. Gaussian processes can be used to model or ap-
proximate a wide variety of functions that can be used to capture static maps or
dynamic systems. They allow to combine data-driven learning, by using measure-
ments as training points, and a priori knowledge via user defined mean and covariance
functions. This incorporates good interpolation quality with extrapolation capabili-
ties. Furthermore, Gaussian processes can be utilized for purely data derived models
[24, 31, 32, 90, 91, 106, 135, 141, 184, 185] or they can be combined in a hybrid way
with other, for instance, deterministic models [4, 17, 20, 76, 94, 132, 147, 176, 203]. For
these reasons, GPs have been increasingly utilized for control in the last two decades,
both in theory and practice.

1.2 Contributions
In this thesis, we consider and develop new methods for fusing and combining control
and Gaussian processes. We show how Gaussian processes can contribute, (i) to the
improvement of established control paradigms (model predictive control in particular)
while maintaining stability guarantees and, (ii) to the development of designated
controllers for new cutting-edge technologies (scanning quantum dot microscopy). The
following provides a brief summary of the contributions of this thesis, divided into the
respective chapters. More detailed lists of the respective contributions can be found
in the introductory sections of each of the Chapters 3 and 4.

Chapter 3: Recursive Gaussian Process Model Predictive Control
Recursive Gaussian process model predictive control (rGP-MPC) is presented, a model
predictive control scheme that can be used for a wide class of application cases. It
employs Gaussian process prediction models of the controlled processes, which can
be learned online using only input-output data. Hence, no physical system model
is required. The possible application cases are further increased by the use of an
output feedback formulation, which does not require the individual process states to be
available. In addition, rGP-MPC can also be applied to processes with fast dynamics.

4



1.3 Thesis Outline

To this end, a recursive GP learning approach is adopted that includes updates of
the training data set and respective updates of the inverse covariance matrix. Besides
the possibility for wide application, conditions for guaranteed recursive constraint
satisfaction, as well as nominal and inherent robust stability are derived. Additionally,
a structured calculation of the required terminal MPC components, based on the
linearized GP posterior mean function and linear matrix inequalities, is presented.
These contributions were published in [121] and [120].

Chapter 4: Control of Scanning Quantum Dot Microscopy
Chapter 4 considers an important and challenging application example of machine
learning in control. The first (two-degree-of-freedom) control framework for scanning
quantum dot microscopy (SQDM) is presented, a novel microscopy technique that gen-
erates images of the electrostatic potentials of nanostructures. The control framework
is a key enabling component that turns SQDM into a well applicable microscopy tech-
nique. It consists of two different feedback and two different feedforward controllers
tailored to SQDM. In one of the feedforward controllers Gaussian processes are utilized
to increase performance and correct operation by online learning and compensation
of a signal that can be interpreted as a disturbance to the closed-loop. The control
framework allows to scan the sample continuously, thereby generating electrostatic
potential images in less time, of larger surface areas, and with higher resolution than
before. This also puts SQDM in line with other microscopy techniques like scanning
tunneling microscopy and atomic force microscopy. Parts of these contributions were
published in [122] and used for [196].

1.3 Thesis Outline

Following this introduction, Chapter 2 deals with Gaussian processes. We first review
the basics, in particular of Gaussian process regression in supervised learning, and
after that the literature concerning the application of Gaussian process regression in
control and focus on the categories of reference and disturbance learning, as well as
learning of dynamic models. These two categories are of particular importance for
this thesis.
In Chapter 3, we present the rGP-MPC scheme that employs Gaussian process re-

gression to learn prediction models of the controlled process and update them online
during operation. After an introduction to model predictive control and a literature
review of model predictive control in combination with Gaussian processes, we state
the considered problem definition, move on to the online learning scheme, and for-
mulate the rGP-MPC optimal control problem. We prove, as one of the first groups,
that the scheme is inherently robustly stable, despite the changing Gaussian process
prediction model, which is also validated in simulations. The scheme is notably not
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limited to Gaussian processes. The provided guarantees hold also for other machine
leaning algorithms.
In Chapter 4, we present the control framework for scanning quantum dot mi-

croscopy. We start with an explanation of the working principle of this novel mi-
croscopy technique, followed by the developed two-degree-of-freedom control frame-
work of this thesis that encompasses two designated feedback controllers and two
feedforward signal generators, of which one is based on learning with Gaussian pro-
cesses. We validate the control framework and extensively investigate its properties
and performance in simulations. At last we discuss implementation details for the
experiment and present experimentally acquired images.
The thesis is concluded in Chapter 5.
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2 An Introduction and Review of Gaussian
Processes

This chapter presents Gaussian processes (GPs, [87, 158]), which play a key role in
Chapters 3 and 4 of this thesis. They can be used for classification and regression
problems, though the latter is the one that is more important in the context of con-
trol. For this reason, Gaussian process regression is presented in detail in Section 2.1.
In Section 2.2 we conceptualize Gaussian process regression in the realm of control
systems, in particular for reference/disturbance learning and learning of dynamic mod-
els. We also provide a literature overview that serves as a basis for the contributions
following in Chapters 3 and 4. A short summary is presented in Section 2.3.

2.1 Gaussian Process Regression
In this section we discuss Gaussian process regression. To this end we start with the
standard Gaussian (normal) distribution of a one dimensional variable (Section 2.1.1),
move on to the Gaussian distribution in higher dimensions and finally introduce Gaus-
sian processes as a generalization to the space of functions. Then, in Section 2.1.2 we
present them in the context of supervised learning and present the core equations that
will be used also in Chapters 3 and 4.

2.1.1 Basics

Many processes are subject to stochastic disturbances or other influencing factors that
render the process itself stochastic in nature. To describe the stochastic properties, a
probability density function can be assigned. Of the many existing density functions,
the Gaussian (normal) distribution, which we consider in the following, is the most
prominent one1.
The probability density function of a 1-dimensional Gaussian (normal) distribution

(Fig. 2.1) is

N (µ, σ2) : f(g) = 1√
2πσ2

exp
[
−1

2
(g − µ)2

σ2

]
(2.1)

with the mean value µ and the variance σ2 (or standard deviation σ respectively). If a
scalar random variable g ∈ R is normally distributed according to (2.1), then we have
µ = E[g] and σ2 = E[(g − µ)2], where E[·] is the expected value. To indicate that g is

1Note that if the true distribution is not Gaussian (e.g. a Gamma or Poisson distribution), then assuming
a Gaussian distribution is only an approximation.
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2 An Introduction and Review of Gaussian Processes

Figure 2.1: Probability density functions of a 1D Gaussian distribution (left) and a 2D
multivariate Gaussian distribution (right). The mean is in both cases zero,
whereas the variance is σ2 = 1 in the 1D case and Σ =

[
1 −0.7
−0.7 1

]
in the 2D

case. The mutual dependence of g1 and g2 in the right figure is due to the
nonzero off-diagonal elements −0.7 in the covariance matrix Σ.

normally distributed, we write g ∼ N (µ, σ2) or p(g) = N (µ, σ2), where p(·) denotes
the probability density function. Note that the expected value µ and variance σ2 are
constants and that the distribution of the random variable g depends only on these
parameters.
Many applications require multiple variables. The n-dimensional multivariate Gaus-

sian distribution is given by

Nn(µ,Σ) : f(g) = 1√
(2π)n det(Σ)

exp
[
−1

2(g − µ)TΣ−1(g − µ)
]

(2.2)

with mean vector µ ∈ Rn and covariance matrix Σ ∈ Rn×n, which is symmetric and
positive definite. If a n-dimensional random vector g = [g1 · · · gn]T has a multivariate
Gaussian distribution according to (2.2) we write

g ∼ Nn(µ,Σ)

with µ =
[
E[g1] · · · E[gn]

]T and Σi,j = E[(gi − µi)(gj − µj)], where i, j ∈ {1, . . . , n}.
As in the one dimensional case, the multivariate distribution of g depends only on the
mean vector µ and covariance matrix Σ. Note that for i = j we have Σi,j = σ2

i , i.e.,
the variances of each element of g are located on the diagonal of Σ. On the other
hand, all off diagonal entries Σi,j with i 6= j are covariances and quantify the mutual
dependencies between gi and gj (see Fig. 2.1). Accordingly, if all off diagonal covari-
ance entries in Σ are zero, then all random variables gi are independently normally
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2.1 Gaussian Process Regression

distributed. In that case we do not have a n-dimensional multivariate distribution but
n 1-dimensional Gaussian distributions.
Given such distributions, a Gaussian process g(w) : Rnw → R is a stochastic process

and is a generalization of the Gaussian probability distribution to functions. It is
usually written in the form

g(w) ∼ p(g(w)) = GP
(
m(w), %(w,w′)

)
,

wherew,w′ ∈ Rnw is a deterministic input, called vector of regressors (or just regressor
for short), m(w) = E[g(w)] is the GP mean function, and

%(w,w′) = cov[g(w), g(w′)] = E
[(
g(w)−m(w)

)(
g(w′)−m(w′)

)]
denotes the GP covariance (or kernel) function. Note that the covariance function
%(w,w′) is written as a function of the inputs w,w′ but yields the covariance between
the outputs g(w), g(w′).

The GP mean and covariance are now functions and completely define a Gaus-
sian process. For a given input w, the mean function m(w) denotes the most likely
value of the output of g(w) and the covariance function yields the corresponding
variance %(w,w) = σ2

g . For different w and w′, %(w,w′) yields the respective covari-
ances. Hence, in contrast to the Gaussian distributions discussed above, a GP g(·)
is a stochastic process, whose probabilistic parameters, mean and (co-)variance, are
not any longer constants but functions that depend on another deterministic input
parameter, or set of input parameters w. Accordingly, different inputs w can lead to
different random variables g(w), which are all normally distributed but with possibly
different mean and variance.
Furthermore, n different inputs w to a GP lead to a n-dimensional multivariate

Gaussian (2.2). For this reason, in [158] a GP is also defined as a collection of random
variables, any finite number of which have a joint Gaussian distribution.2 In other
words, a GP is a collection of infinitely many normally distributed random variables
for which each finite n-dimensional subset of them is a n-variate Gaussian distribution.
In particular, for each finite number of sampling points W = [w1 · · · wn]T ∈ Rn×nw ,
the GP provides a n-variate normal distribution of g(wi)

g(W ) = [g(w1) · · · g(wn)]T ∼ Nn(µ,Σ) ,

with mean vector µ = [m(w1) · · · m(wn)]T and covariance matrix Σ = %(W ,W ) =
[%(wi,wj)] ∈ Rn×n. A GP can also be seen as a distribution over possible functions
in a continuous domain that maps from deterministic input signals w to stochastic
output signals g(w). Example functions are illustrated in Fig. 2.2.

2Consider, for instance, a time series generated by a Gaussian process (e.g. Fig. 2.2 with w = t.), then each
point in time is another dimension in the multivariate distribution and the covariance matrix describes
the relations between the points.
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2 An Introduction and Review of Gaussian Processes

2.1.2 GP Supervised Learning

In the realm of machine learning algorithms, Gaussian processes are often used for (see
[97] for an exception) supervised learning (Chapter 1), i.e., labeled input-output data
{(wi, zi)}i∈N is used to determine a mapping of the form (1.1), which is particularly
relevant for control.
The general goal is to approximate and generate predictions of maps of the form

z = f(ν) + ε (2.3)

with deterministic inputs ν ∈ Rnν and output z ∈ R that is assumed to be corrupted
by Gaussian noise ε ∼ N (0, σ2

n), ε ∈ R with zero mean and noise variance σ2
n. The

approximation of (2.3) consists in inferring the underlying but unknown latent function
f(ν) using a GP g(w) and measured input-output data points (ν, z).

Remark 1. We have used different variables ν and w to denote the inputs to the
latent function and the Gaussian process because the two do not necessarily have to
be equal. For instance, the input regressor vector w that is used for modeling might
contain less elements than ν if, e.g., not all elements in ν can be measured. In the
rest of this chapter, however, we consider w = ν for simplicity of presentation.

2.1.2.1 Posterior Distribution

In order to approximate (2.3), we require a suitable prior mean function m(w) and
covariance function %(w,w′), where the only constraint on %(w,w′) is that the result-
ing covariance matrix is symmetric and positive definite. The GP prior g(w) has then
to be trained using a set of n measured input-output data points (w, z). This training
data set is D = {W , z} with input data W = [w1 · · · wn]T ∈ Rn×nw and output
data z = [z1 · · · zn]T ∈ Rn. Furthermore, we now consider w to be a new (unseen)
test input for which we are interested in the predicted output. The joint distribution
of g(W ) and g(w) isg(W )

g(w)

 ∼ N
m(W )

m(w)

,
 K %(W ,w)
%(w,W ) %(w,w)

 (2.4)

with m(W ) = [m(w1) · · · m(wn)]T ∈ Rn×1, %(w,W ) = [%(w,w1) · · · %(w,wn)] ∈
R1×n, %(W ,w) = %(w,W )T, and the covariance matrix K that also accounts for the
measurement noise σ2

n via K = %(W ,W ) + σ2
nI = [%(wi,wj) + σ2

nδij] ∈ Rn×n, where
I is the identity matrix and δij the Kronecker delta.
To obtain an explicit prediction for a test point w, the joint Gaussian prior distri-

bution (2.4) has to be restricted to contain only those functions that go through or
pass (if σ2

n 6= 0) the points in the training data set D. This can be achieved by condi-
tioning the joint prior (2.4) on the training data [50, 191], leading to a GP posterior

10



2.1 Gaussian Process Regression

Figure 2.2: Gaussian process inference: The top figure depicts a GP prior distribution with
the dashed black line representing the mean function m(w) and the green lines
representing random function realizations drawn from the prior distribution.
The grey shaded area is the 95% (twice the standard deviation) confidence
interval computed via %(w,w′). When data points D are added (bottom figure,
red crosses), the GP posterior with m+(w|D) and σ2

+(w|D) is inferred from
this data. When the inputs w leave the training data region (for w > 5) the
posterior tends towards the prior.

distribution
g(w|D) ∼ N

(
m+(w|D), σ2

+(w|D)
)

(2.5)

with posterior mean function m+(w|D) and posterior variance σ2
+(w|D) given by

m+(w|D) = m(w) + %(w,W )K−1(z −m(W )) (2.6a)
σ2

+(w|D) = %(w,w)− %(w,W )K−1%(W ,w) . (2.6b)

This conditioning of the prior on the training data is also called inference. The infer-
ence step from prior to posterior distribution is illustrated in Fig. 2.2.
The posterior mean functionm+(w|D) is the sought estimator of the latent function

f(·). It yields an estimate ẑ = m+(w|D) for the target z at the test point w and given
training data D. The posterior variance σ2

+(w|D) yields the corresponding variance at
the test point, which allows quantifying the model quality by calculating confidence
intervals.

Remark 2 (Posterior notation). Note that the notation for the GP posterior distribu-
tion is not unique in the literature. Compare, for instance, the notations in [158] and
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2 An Introduction and Review of Gaussian Processes

[87]. We have adopted the notation of [158], where (2.5) is denoted as the posterior
GP but is written with N and not GP. The main reason is probably (nothing is said in
this regard) that by conditioning the GP prior on the training data, we automatically
obtain a n-variate normal distribution. Furthermore, for one specific test input w the
resulting output g is then normally distributed with

p
(
g(w|D)

)
= N

(
m+(w|D), σ2

+(w|D)
)

:

f(g) = 1√
2πσ2

+(w|D)
exp

[
−1

2
(g −m+(w|D))2

σ2
+(w|D)

]
.

Remark 3 (Infinitely many realizations). As the posterior is conditioned on the train-
ing data points D, it rejects all possible function realizations that do not go through or
nearby (if σ2

n 6= 0) these points. However, the number of possible function realizations
is still infinite.

2.1.2.2 Mean and Covariance Function

The key elements for a Gaussian process to yield a sensible model, describing the
mapping (2.3), are the prior mean and covariance function. Both depend on a set
of parameters θ, i.e., m(w|θ) and %(w,w′|θ), which are called hyperparameters to
delimit them from parameters used in parametric system models. Very often just a
constant zero prior mean m(w|θ) = c = 0 is used [68, 91, 122]. However, other choices
include, for instance, the use of a deterministic base model as the prior mean function
[161, 203].
Regarding the covariance function, it is often assumed or known that the target

function (2.3) can be modeled by a member of the space of smooth functions C∞. A
covariance function that provides this property is the squared exponential covariance
function3 with automatic relevance determination

%(w,w′|θ) = σ2
f exp

(
−1

2(w −w′)TΛ(w −w′)
)
, (2.7)

with Λ = diag(l−2
1 , . . . , l−2

nw ). The resulting hyperparameters are θ = {σ2
f ,Λ}, where

σ2
f is called the signal variance and represents a vertical scaling factor of the resulting

values from (2.7). The parameters lj are called length scale parameters. The larger
lj, the less vary the resulting function realizations with respect to the associated
regressor wj and hence, the smaller the influence of wj and the less important it is.
The reciprocal 1/l2j can be interpreted as a weighting factor for the regressor wj. This
allows to determine the minimum required number of regressors nw in w by excluding
those with particularly large length scales [88, 202].

3Note that the squared exponential covariance function is sometimes also denoted as Gaussian radial basis
function; especially in the field of neural networks or support vector machines.
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2.1 Gaussian Process Regression

Most of the publications that involve Gaussian processes use (2.7) in one way or
another. However, other choices include, for instance, the combination of (2.7) with
a linear kernel [2, 184, 202], a periodic kernel [84, 125, 144], or the product of a linear
and a Matérn kernel [17, 94]. Note that one can compose infinitely many covariance
functions from basic ones using addition and multiplication operations [48, 49, 158].

2.1.2.3 Hyperparameter Optimization

Since both the mean function m(w|θ) and the covariance function %(w,w′|θ) depend
on the hyperparameters θ, a good set of hyperparameters is required to match the
behavior of the latent function. The hyperparameters can, in principle, be chosen by
prior knowledge and physical insight, though this can be challenging. Instead, they
are usually determined using the available training data D = {W , z}. Given a prior
probabilistic belief of the hyperparameters’ distribution p(θ) (often a uniform distri-
bution is assumed, i.e., all values of the hyperparameters are equally probable), the
goal is to infer the hyperparameters’ posterior distribution p(θ|W , z). Theoretically,
this can be done by application of Bayes’ theorem

p(θ|W , z) = p(z|W ,θ)p(θ)
p(z|W ) .

Here p(z|W ,θ) is the likelihood and p(z|W ) the marginal likelihood (or evidence).
Unfortunately, the involved integrals are intractable in most cases and numerical ap-
proximations have to be employed. One such approximation, for example, consists
in using the Markov chain Monte Carlo method, which is, however, computationally
expensive. Another approach consists in maximizing the likelihood p(z|W ,θ) (see,
e.g., [87] for a good explanation in this regard), which works well when the likelihood
is very peaked, as is often the case for a large training data set [161]. In particular,
the approach that has become standard is to compute a point estimate of the most
likely hyperparameters by maximizing the log likelihood

log(p(z|W ,θ)) = −1
2z

TK−1z − 1
2 log(det(K))− n

2 log(2π) (2.8)

with respect to θ.

Remark 4 (GP learning). In the context of Gaussian processes, the term “learning”
is often used ambiguously. It is used for both the inference step from prior to posterior
and for the optimization of the hyperparameters. However, these two steps have to be
performed always. Therefore, GPs are often also distinguished whether the learning
is performed only once offline or online during operation. Then, learning can refer
to (i) inference and hyperparameter optimization performed offline [91, 106, 146],
(ii) inference and hyperparameter optimization performed online [84, 135, 144], or
(iii) a hybrid approach that combines offline hyperparameter optimization and online
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inference updates, based on newly available training data [77, 146, 147]. The latter
case is also considered in this work.

2.1.2.4 Drawback

Besides the many advantages that Gaussian processes offer, their main drawback is
the computational complexity with respect to the number of training data points. The
computations of the covariance matrix inversionK−1 in (2.6a), (2.6b), and (2.8) scale
with O(n3), where n is the number of training data points. This severely limits the
application of GP models for fast processes, where small sampling times are required;
especially in the case of relatively large training data sets with several hundred or
thousands of data points. If online or close to online hyperparameter optimization
is needed, this drawback becomes even more pronounced. In Chapter 3, we tackle
the issue in the context of model predictive control and show how to reduce the
computational costs.

2.2 Gaussian Process Learning in Control

Supervised Gaussian process regression can be utilized to learn a wide variety of dif-
ferent mappings, as long as the provided training data contains enough information.
Whatever is learned with a Gaussian process, the posterior mean m+(w|D) with re-
gressor vector w and training data set D yields the approximation or estimate of the
mapping one is interested in. In this section we focus on the application of GP re-
gression in the context of control. Although many different parts and aspects of a
closed-loop can be learned with Gaussian processes, we focus on the two categories
that are of particular importance to this thesis. These are reference and disturbance
learning, as well as learning of models that represent dynamic systems (see Fig. 2.3).
Learning of dynamic models plays a central role in Chapter 3, where we combine

it with model predictive control and show under which circumstances robust stability
can be guaranteed despite an online changing GP model. On the other hand, GP
disturbance learning is a central element in Chapter 4, where a prediction of the
disturbance is required to improve the closed-loop performance of a controller for the
new microscopy technique scanning quantum dot microscopy.
In the following we review different modeling approaches for reference and distur-

bance learning (Section 2.2.1) and dynamic models learning (Section 2.2.2) and show
how these approaches are reflected in the GP regressor vector w and the target z.

2.2.1 Reference and Disturbance Learning

Reference signals to a closed-loop system (see Fig. 2.3) depend usually only on time
and are predetermined by the respective application or are chosen by an operator
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2.2 Gaussian Process Learning in Control

Figure 2.3: Possibilities for the inclusion of machine learning in control: Learning external
reference or disturbance signals (left), learning a model of the controlled process
(middle), or learning the controller or parts of it (right).

beforehand. External disturbances on the other hand are often signals from other
dynamic systems or environments that influence the closed-loop system of interest.
Despite this difference, reference and disturbance signals can often be transformed
into one another and can then be considered conceptually equivalent. For this reason
we treat them together in the following.
Notice that most of the examples in the literature are denoted as disturbance mod-

eling. If a model of such a disturbance signal is desired to enhance closed-loop control,
one has mainly two options; either model the disturbance only as a time dependent
signal (to some extent, this works well for periodic or quasi periodic signals) or try to
model the underlying disturbance dynamics. Another possibility for the case of dis-
turbance signals is considered in this section, which will also be investigated in more
detail in Chapter 4.

NARModels One approach to model and predict the evolution of reference/disturbance
signals yk is via nonlinear autoregressive (NAR) models [111]

yk+1 = f(yk, yk−1, . . . , yk−my) .

Here the input argument of f(·) comprises yk and its my previous values, which also
determine the NAR model order. The GP target is then z = yk+1 and the regressor
vector w = (yk, yk−1, . . . , yk−my).
For instance, in [198, 199] a model predictive controller for a drinking water net-

work was developed. The unknown water demand was considered as a disturbance and
modeled via the combination of a deterministic model and a GP-NAR model. Further
examples can also be found in the realm of time series modeling and prediction. For
instance, GPs have been employed for faulty measurement detection and reconstruc-
tion in urban traffic [92], data-driven forecasting of building energy consumption [143],
or prediction of respiratory signals [27] and mine gas emissions [46].

Time Dependent Signals For the case of periodic or quasi periodic reference/disturbance
signals, another approach is to model the signal to be only dependent on time, i.e.,

yk = f(k)
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with z = yk and w = k for the GP. In that case, a covariance function with periodic
term has to be employed. For instance, in [84, 125, 144] the covariance function

%(k, k′) = σ2
f · exp

(
−(k − k′)2

2l21

)
· exp

(
−

2 sin2(πλ(k − k′))
l22

)

with hyperparameters θ = {σ2
f , l1, l2, λ} was used. In [84], a model predictive control

scheme for periodic error correction of a telescope mount was developed. A similar
MPC controller was considered in [144] for the control of blood glucose for patients,
where the GP model was used to model the individual human insulin sensitivity. [125]
investigated robot-assisted surgery, where the time-varying reference depends on the
patient’s breathing motion. A GP model with time as regressor was used to learn this
reference and provide a prediction for a MPC controller.
Note again that this type of modeling with Gaussian processes is only possible for

periodic or quasi periodic signals because otherwise, given a finite training data set
D = {(wi, zi)}i∈N with z = y, w = k, the input time k will eventually leave the
training data set during operation. Then, the posterior mean function will return to
the prior mean and thus, will not generate any longer useful predictions.

Learning Static Maps We will use another, application-driven approach, to model
and learn a disturbance signal. In Chapter 4, we will deal with image generation
of electrostatic potentials of surface nanostructures (single atoms or molecules, or
nanoscopic structures built from several atoms/molecules), which depend on spatial
coordinates (see Fig. 2.4). These potentials are unknown before operation but a model
of them is highly desirable to generate predictions for a controller.4 The dependence
of the electrostatic potential as a function of spatial coordinates can be modeled by
general static maps of the form

y = f(u)

with output y ∈ R and where the map f(·) depends only on a vector of independent
input variables u ∈ Rnu. It does not depend on time k, nor previous values of y or u.
For the GP we then have z = y and w = u.
Learning such static maps with Gaussian processes has been done in the context

of control, e.g., to evaluate and learn unknown cost functions and constraints. For
instance, in [123, 124] a linear quadratic regulator (LQR) was used to control a pole
balancing example. The unknown cost function depended on the LQR controller pa-
rameters and was learned by a GP. The same application case was considered in [45],
only that the cost function depended on the parameters of multivariate PID controllers.
The approach was generalized in [16, 19], where cost functions of general closed-loop
systems in dependence of the controller parameters were learned. In [154], a hierar-
chical MPC scheme was considered and a GP learned cost function that depended

4This explanation is a simplification of the actual image generation process. For more details see Chapter 4.
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Figure 2.4: Electrostatic potential Φs of a nanostructure (measured at a specific distance
from the surface) as a function of spatial coordinates x and y. For more details
see Chapter 4.

on the prediction horizon and design parameters of an inner control loop. Similarly,
the cost function, together with the constraints, was learned in [26]. In [126], force
feedback robot control was considered, where a GP learned a function that maps the
robot states to the generated force between the robot and its environment.

2.2.2 Dynamic Model Learning

One is often interested in learning of dynamic models (see Fig. 2.3), which we divide
into the two classes of input-output models and state space models. Both model
classes can be used in model-based controllers such as model predictive control. The
input-output models are of particular importance to this thesis.

State Space Models State space models of the form

xk+1 = f(xk,uk)
yk = h(xk)

with state xk ∈ Rnx, input uk ∈ Rnu, state dynamics f(·), and output map h(·) are
usually the go-to model class for model-based controllers because they can, in principle,
capture the complete dynamics of a system. If Gaussian processes are employed to
model a state space system, then usually nx independent GPs are used to model the
evolution of each state.5 To model the j-th state equation, data pairs (z,w) with
target z = xj,k+1 and regressor w = (xk,uk) are required to train the j-th GP.

5An exception to this approach can be found in [17, 85], where a single GP is used to model the complete
state space model. Further explanations can be found in [15]. See also [41] and [161].
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When it comes to learning of state space systems with Gaussian processes the ap-
proaches can roughly be divided into the following two categories. Into the first cate-
gory fall approaches that model the process exclusively with a Gaussian process, i.e.,
no a priori deterministic model is available. One of the first works of this type is [157],
where a GP state space model was employed for model-based reinforcement learn-
ing. Other works that considered and extended this combination are [42, 43, 185]. A
predictive control approach, based on a receding horizon LQR, together with a GP
state space model was used in [24] to control a cart-pole system. The approach was
also validated in experiments. In [148], a state space GP model was linearized along
trajectories and used for policy search via dynamic programming. In [82], model-
based reinforcement learning was formulated as a model predictive control problem
and combined and experimentally validated with a GP state space model of the con-
trolled processes. The combination of state space models and MPC was applied to
linear time-varying systems in [30] and in [31, 32] local linearized GP models were
considered for deployment in MPC. In contrast to other works, where the posterior
mean function is employed as the model predictor, in [184] various deterministic model
instances are drawn from the GP posterior distribution and used in a scenario MPC
approach. The works [188, 189] considered general closed-loop systems, i.e., not con-
fined to a specific class of controllers, and established a posteriori stability certificates
and regions based on GP state space models.
The second category contains approaches that combine a Gaussian process with a

deterministic state space model, often also denoted as hybrid modelling approaches.
For instance, using first principles a deterministic base model can be derived. This,
however, does not usually capture every aspect of the system dynamics and the GP is
then employed to learn the unknown part. A typical example is that a deterministic
linear model approximation is available and the remaining nonlinear part is learned
by a suitable Gaussian process [77, 176, 203]. One of the first works that combined
Gaussian processes and deterministic state space models is [85], where a GP dynamics
model was combined with a model of ordinary differential equations to control a blimp
via reinforcement learning. Another work is [118], where this model combination
was employed in a fault-tolerant MPC approach. The follow-up work [203] used the
deterministic base model as the prior mean function to the GP. In [146] and [147], the
combination of a GP and deterministic state space model was applied to the control of
autonomous vehicles and validated in experiments. In [18], the combined state space
model is linearized and used to design a linear robust H∞ controller. Application
to robot control was considered in [142], where local GP models were considered in
different regions of the state space to account for unknown nonlinearities. Further
references that also include the topic of guarantees (e.g. safety, stability) are discussed
in Section 3.1.3.
Besides the advantages of state space systems modeled by Gaussian processes, which

is also expressed in the large number of publications on the topic, there is one major
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2.2 Gaussian Process Learning in Control

drawback, which is of general nature and holds for all state space models. In order to
be able to obtain an adequate model, data points of all inputs, outputs, and especially
states have to be available, i.e., the states have to be accessible, either by measurements
or by means of state estimation.

Input-Output Models Another possibility to learn the dynamics of a system with a
Gaussian process is to generate input-output models of the form

yk+1 = f(yk, yk−1, . . . , yk−my ,uk,uk−1, . . . ,uk−mu) .

This model class is denoted as nonlinear autoregressive model with exogenous input
(NARX) and is an extension of the NAR model (see Section 2.2.1) by an external
input uk and its predecessors. The model order is determined by my and mu, which
are, not necessarily but often, chosen to be equal. If, for instance, my = mu = 1, then
a NARX model of order one is obtained.

Remark 5. Regarding the GP state space models of the previous subsection, note that
each GP that models one state equation xj,k+1 = fj(xk,uk) can be considered as a
NARX model of order zero.

There are many examples of Gaussian process-based NARX models employed for
control, in particular for model predictive control. For instance, one of the first com-
binations of Gaussian processes with model predictive control can be found in [91]
and [135], where GP-NARX models were employed as the prediction models. Follow
up works of the same authors are [90] and [89] that applied these models to other
processes, though still in simulations. In [106], the combination of model predictive
control and a GP-NARX model was applied for the first time in an experiment for a
gas-liquid separation plant. Further works consider, for example, explicit model predic-
tive control [64, 65], the use of local linearized GP models that also include derivative
measurements in the training data [13], or the application to building control in [141],
where the authors used a hybrid kernel that combined a squared exponential kernel,
with the NARX state as input, and a periodic kernel with time as input.
The main advantages, in comparison to state space models, are that no information

on internal system states is required and only one GP suffices to model the target out-
put. However, if such a model shall be used in a controller, then certain observability
assumptions have to be satisfied such that a NARX model is sufficient to describe the
dynamics of a wide class of systems [103]. Furthermore, the performance of NARX
models is usually inferior to those of state space models because not the complete
dynamics can be captured. This can lead, for instance, to larger settling times of the
closed-loop. However, this can be (to a certain extent) accounted for if the model
order is increased, i.e., if more previous inputs and outputs are considered.
In Chapter 3, we also consider the use of GP-NARX models for model predictive
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control and investigate the question how nominal and robust stability can be guaran-
teed in the case of an online learned prediction model and model-plant mismatch.

2.3 Summary
In this chapter we presented the necessary foundations of Gaussian processes, on which
we build upon in the following chapters. Using the one- and multivariate normal
distribution we showed how Gaussian processes generalize the normal distribution to
the space of functions and how they can be used in supervised learning to solve the
regression problem. In this context, we also presented the equations of the posterior
distribution, which will be utilized in Chapters 3 and 4. We furthermore reviewed and
categorized the deployment of Gaussian process regression for control in the literature,
with a special focus on reference/disturbance learning and learning of dynamic models.
Thereby, setting up the frame for the following chapters because in Chapter 3 we
use GP dynamic models for model predictive control and in Chapter 4 to learn a
disturbance signal that is then used to generate images of electrostatic potentials of
nanostructures.
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3 Gaussian Process based Model Predictive
Control with Guarantees

We present a model predictive control scheme that uses Gaussian process prediction
models and is capable of online learning. To this end, we employ a GP-NARX predic-
tion model and derive conditions under which the MPC scheme guarantees recursive
constraint satisfaction, as well as nominal and robust stability in the case of online
learning and model-plant mismatch. We denote the scheme as recursive Gaussian
process model predictive control (rGP-MPC).
The chapter starts with an introduction (Section 3.1) to the topic of model predic-

tive control and its challenges, in particular data-driven generation and adaptation of
prediction models with a special focus on Gaussian processes. Afterwards we outline
the concept of rGP-MPC. Section 3.2 provides the mathematical basics of model pre-
dictive control, together with a detailed discussion of feasibility and stability required
later for the main theoretical results of this chapter. In Section 3.3, we formulate
the considered control problem and present the online learning scheme of rGP-MPC
in Section 3.4 and the resulting optimal control problem in Section 3.5. The stabil-
ity properties, together with the necessary conditions, are derived in Section 3.6. A
practical approach to determine the model predictive control terminal components
is presented in Section 3.7. The rGP-MPC scheme is investigated and verified in
simulations in Section 3.8.

3.1 Model Predictive Control and Learning

Model predictive control (MPC, [160]) is a control scheme that is naturally capable
of dealing with multi-input multi-output systems and that allows taking constraints
already in the design process into account. Basically, MPC is reiterated optimal
control, where a model of a real process xk+1 = f(xk,uk) with state xk and input uk at
time instant k is used for prediction (see Fig. 3.1) and to solve a finite horizon optimal
control problem (OCP). The first element of a computed optimal input sequence is
applied to the plant and the OCP is re-solved at the next time step. By this means,
it is accounted for possible disturbances and uncertainties to the system that occur
between two consecutive time steps. Re-solving the OCP at the next time instant shifts
the prediction horizon one step into the future, which is why MPC is also denoted as
receding horizon control [131]. The basic procedure applied by a model predictive
control scheme can be summarized as follows:
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3 Gaussian Process based Model Predictive Control with Guarantees

1. Obtain the state xk at the current time step k.

2. Solve a finite horizon optimal control problem by means of predicting the system
evolution and determining an optimal input sequence such that it minimizes a
given cost function.

3. Apply the first part of the optimal input sequence. Go back to 1.

Reference

FuturePast

Figure 3.1: MPC illustration: For a particular initial condition xk at time instant k, a
predicted open-loop sequence of inputs û is computed up to a prediction horizon
N . The input sequence, together with the resulting predicted states x̂, are
computed in such a way that they minimize a given cost function.

In terms of performance, model predictive control can be superior to other con-
trol approaches because the prediction of the process under consideration allows to
compute control actions based on future outcomes and also facilitates taking preview
information about references and disturbances into account if available. Moreover, in
contrast to many other control approaches, constraints on the input, the state, and
the output can be directly addressed already in the design process1. This has led
to manifold scientific interest, as well as practical applications (see, e.g., the reviews
[115, 129]). In addition, a mature theoretical framework has been developed over
the last decades that enables to provide guarantees regarding, for instance, recursive
constraint satisfaction and stability.

However, besides the benefits that model predictive control offers, there are also some
challenges. For instance, the standard MPC formulation requires full state informa-
tion, i.e., the complete state xk has to be measurable. If this is not the case, then
one might employ state estimation methods such as Luenberger observers, Kalman

1In other control schemes, such as, for example, state feedback or PID control, constraint satisfaction is
accounted for only after the controller design, e.g. by means of anti-windup.
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filters, or more advanced estimation techniques, such as moving horizon estimation
[159]. If this is also not possible, then output feedback MPC schemes that just utilize
the measured system output are an alternative. This type of MPC scheme will also
be a subject of this chapter.
In comparison to other control methods, another challenge are the potentially high

computational costs of model predictive control. A (possibly nonlinear and nonconvex)
optimal control problem must be solved within the given time frame of less than
the sampling time. In practice, this originally restricted the deployment of MPC to
systems with large time constants, e.g. process industry plants. However, advanced
algorithms capable of solving optimal control problems in short time (e.g. acados
[187]) and the steadily increasing computational power of digital processors nowadays
also allows the deployment of MPC for more demanding applications, e.g. embedded
systems for mechatronics [209]. Yet, model predictive control is not only restricted
to classical engineering tasks but can be employed as well for such extraordinary
applications as HIV treatment strategies in medicine [75] and many more [129].

3.1.1 Prediction Model

For many applications it can be challenging to obtain an appropriate prediction model,
which is fundamental to the performance of MPC. Dynamic models for prediction are
often based on first principles modeling approaches. Doing so in practice, however, can
be very time consuming and therewith expensive or even impossible. Furthermore, if
the underlying process or environmental conditions change, a once good model can
degrade and therefore needs to be adapted. An alternative to first principles models
is to derive prediction models directly from measured data. The resulting models,
which are also called black or grey box models [111], can in principle, be learned or
refined during operation by including newly available data. Thereby, they are able to
account for changing process dynamics or a changing process environment. For this
reason, the data-driven approach (in particular the use of Gaussian process learning,
see Chapter 2) to generate and update prediction models for MPC is addressed in this
chapter.

Although data-driven modeling is not a new field of research, it gained significant
attention over the last years due to increasing computational power, the possibility
to widely collect data, and the rise of machine learning algorithms, such as neural
networks, deep learning, support vector machines, or Gaussian processes. Especially
the use of Gaussian processes within model predictive control has attracted significant
interest in recent years [31, 84, 91, 121, 147, 203]. However, combining GPs with MPC
leads to multiple challenges, e.g., the computational load increases cubically with the
number of training data points. This also increases the overall necessary computations
to solve the resulting optimal control problem. Furthermore, the utilization of GPs
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3 Gaussian Process based Model Predictive Control with Guarantees

in an optimal control problem can render the resulting optimization very nonlinear,
even for a small number of data points, which increases the probability of obtaining
suboptimal or infeasible solutions. Despite these challenges, GPs provide several ad-
vantages. For instance, they do not only allow to compute a prediction of the system
evolution but also a prediction variance (an effective measure of the uncertainty of
the learned model), they are less susceptible to overfitting, and they have, under not
too stringent circumstances, universal approximation capabilities for a large class of
functions [178], thereby allowing to model the underlying dynamics of a wide variety
of nonlinear systems.

3.1.2 Online Learning

As outlined in Section 2.1.2, Gaussian process learning is in general computationally
demanding. Thus, online adjustments of GP models can be challenging. In order to
reduce the computational load of using and learning Gaussian processes, two main ap-
proaches can be distinguished. The first approach basically fixes the maximum number
of training data points, while the second approach employs the typically present spar-
sity [98, 174]. We consider the first approach, which often entails the drawback that
the GP might not be able to model the system with sufficient accuracy throughout
the full operation space. To compensate for this, one can resort to online learning
(or adaptation) of the Gaussian process during operation. This way, also time-varying
systems or changing environmental conditions can be accounted for. On the downside,
some of the computation time that is saved by reducing the number of training data
points is in turn spent by the learning process, which includes updates of the training
data set and covariance matrix, recalculation of the covariance matrix inverse, and
especially hyperparameter optimization in each time step. While these computation-
ally expensive calculations can be often performed offline, only very few publications
exist that combine MPC with online learning of GPs. The required computations take
too long to control most processes. Thus, GPs are still mostly trained/learned offline
[31, 76, 77, 146]. Exceptions are, for instance, the work [144], where the system has
a large time constant in the order of hours or [84], which provides a hyperparameter
optimization tailored to the specific application.
In Section 3.4 we present an online learning approach for Gaussian processes that

adapts itself only when necessary. The adaptations are performed in a recursive man-
ner, making use of the GP components of the previous step, thereby effectively reduc-
ing the computational overhead.

3.1.3 Learning with Guarantees

Independently of how a prediction model is generated (i.e. using first principles or
data-driven methods), there is always a certain process-model error or model uncer-
tainty present that can also change over time and which in turn limits the prediction
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quality of the model. Furthermore, this uncertainty can destroy the guarantees for
recursive constraint satisfaction and stability of MPC (see Sections 3.2.2 and 3.2.3).
Traditionally, one way to deal with this situation is to resort to robust MPC schemes,
such as, for instance, min-max MPC [167], tube-based MPC [130], multi-scenario ap-
proaches [113, 119], or stochastic approaches [151] that take the uncertainty explicitly
into account.
In order to establish guarantees for the specific combination of model predictive

control and Gaussian processes different approaches exists. One early approach is
not to enforce stability by design but to include the GP posterior variance in the
cost function of the optimal control problem instead. This avoids steering the plant
into regions where the model validity is questionable [13, 89, 135]. In addition, one
can perform a posteriori stability verification. For instance, the region of attraction
of a closed-loop system is learned in [17] using a combined deterministic and GP
model and a Lyapunov function for uncertain systems. Instead of just learning the
region of attraction for a fixed closed-loop system, it is furthermore maximized by
optimizing the controller parameters in [20]. Another verification approach is given
in [188, 189], where invariant sets for the validation of stability in a closed-loop with
GP models are calculated. Another possibility is to use invariant safe sets and employ
a two-layer control framework, where a safe controller is combined with a control
policy that optimizes performance [4, 57, 94, 192]. For example, in [4] and [57], a
safety framework for general closed-loop systems was developed. The safety guarantees
were achieved by the construction of safe regions in the state space using reachability
analysis. In [11] and [21] two different prediction models are used in parallel, where
the first is a nominal model used to guarantee robust stability using tubes and the
other can be a general learning-based model (e.g. a Gaussian process) used to optimize
performance. [94] provides (high probability) safety guarantees, utilizing ellipsoidal
confidence regions constructed using the GP model and propagating it forward in
time. The two-layer framework was extended to three layers in [14]. A tube-based
MPC scheme was also considered in [176] together with GPs, which are also used
to derive robust stability. To this end, uncertainty sets that are based on the GP
variance are used to construct tightened state and input constraint sets. Since the
uncertainty sets hold probabilistically, the same is true for the stability result. The
aforementioned approaches are based on the assumption of full state information and
the use of invariant terminal regions.
On the other hand, nominal MPC, which does not take uncertainty explicitly into

account, can itself provide a certain degree of inherent robustness if certain conditions
are fulfilled. A suitable stability concept to analyze and describe such properties is
input-to-state stability (ISS). Input-to-state stability has also been presented in [107]
as a unifying framework to robust MPC, generalizing, e.g., results on tube-based and
min-max MPC. It was also shown that if a system under a predictive controller is
ISS, then this property is preserved even in the case of suboptimal solutions of the
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3 Gaussian Process based Model Predictive Control with Guarantees

involved optimal control problem. At the expense of a potentially smaller domain of
attraction, the advantage of guaranteeing inherent robust stability lies in its simplicity.
The already involved ingredients in MPC merely have to satisfy certain properties
(e.g. uniform continuity). The aforementioned methods in the literature on the other
hand are conceptually more complex and/or more computationally expensive than
the nominal MPC case because different control layers with backup controllers are
required [4, 14, 57, 94, 192], different prediction models are employed that have to be
evaluated in parallel [21], or tubes have to be computed [176].
In Section 3.6, we use the ISS concept for rGP-MPC and derive conditions for

inherent robust stability.

Contributions
The contributions associated with the presented rGP-MPC scheme of this chapter are
as follows.

• The developed rGP-MPC scheme can be used for a wide class of application
cases.
– Processes for which no physical system model is available: This is

achieved by modeling the process using only measurement data and a Gaus-
sian process regression model (as discussed in Section 2.2.2), which is further-
more learned and refined online during operation. This allows to account for
a changing process, process environment, and the effect of a possible limited
training data set (this entails limited process knowledge, e.g. lack of training
data in important regions of the operation space). The GP prediction error
and variance are utilized to determine which data points are added to the
training data set.

– Processes whose internal states are not accessible by measurement or
estimation: This is achieved using an output feedback formulation. The
approach can, however, be easily extended to the state space case.

– Processes with fast dynamics can be handled due to the reduction of the
involved computations: The computational load associated with the evalu-
ation and update of the GP equations is reduced via

∗ a recursive data inclusion approach with recursive computations of the
inverse covariance matrix and the involved Cholesky factor,

∗ the possibility to use a limited number of training data points, and
∗ excluding hyperparameter optimization.

The computational load associated with the solution of the optimization
problem is reduced

∗ by not using a terminal region.
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This is especially beneficial in the case when no state constraints are present
because then the optimization has to deal with input constraints only.

• Conditions are derived for which the rGP-MPC is equipped with guarantees
– for recursive constraint satisfaction, and
– for nominal and inherent robust (input-to-state) stability.

These guarantees can be extended to general prediction models (including tradi-
tional data-based or other machine learning methods) that are learned or updated
online.

• A structured calculation of the terminal MPC components, based on the
linearized GP posterior mean function and linear matrix inequalities.

The core of these results (GP-based prediction model for output feedback MPC,
proof of stability) was outlined in [121]. Further contributions (recursive online learn-
ing scheme, an extended stability proof, calculation of terminal components) were
presented in [120].

3.2 Model Predictive Control
In this section, we provide the mathematical foundation of model predictive control,
which will be required to establish stability and recursive constraint satisfaction of
rGP-MPC.
In Section 3.2.1, we present the general model predictive control formulation for

set-point stabilization2. In Section 3.2.2, we discuss feasibility, including initial and
recursive feasibility, where many of the theoretical elements are introduced. These
also play a key role in establishing stability in Section 3.2.3 and will be extended later
to the rGP-MPC case in Section 3.6.

3.2.1 MPC Formulation

We consider discrete3 time-invariant and constrained nonlinear state space systems of
the form

xk+1 = f(xk,uk)
uk ∈ U
xk ∈ X ,

(3.1)

2Model predictive control is not restricted to set-point stabilization. For instance, it can also be used for
trajectory tracking and path following problems [53, 54].

3Model predictive control is often formulated in discrete time because in practice it is always implemented
by means of digital processors that work with a finite sampling time. However, the true nature of many
systems lies in continuous time and hence, there also exists the corresponding theory for MPC to address
these problems [53, 55].
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where k ∈ N0 denotes the discrete time4, xk ∈ Rnx the state, and uk ∈ Rnu the input.
The state and input constrained sets are subsets of the respective spaces, i.e., X ⊂

Rnx and U ⊂ Rnu. Input constraints usually arise due to actuator saturation, e.g.
a valve cannot be opened more than 100% and not less than 0%. State constraints
often arise as a consequence of process operation conditions, for example, if for safety
reasons a temperature should not exceed a predefined limit.
A particular initial condition xk at time instant k and a sequence of inputs uk =
{uk,uk+1, . . .} applied to (3.1) result in a state sequence xk = {xk,xk+1, . . .}. The
state sequence as a whole depends on the initial condition and the applied input
sequence, i.e., xk = xk(xk,uk). However, for the sake of a simpler notation we do not
emphasize this dependence.
For the standard MPC formulation, together with its theoretical results as presented

in the following, the common objective is regulation to and stabilization of the origin.
Thus, it is assumed that the system possesses an equilibrium point at the origin, i.e.,
f(0, 0) = 0. From Section 3.3 on we will consider regulation to and stabilization of
arbitrary (forced) reference points xref.

3.2.1.1 Prediction Model

In order to compute the future behavior of the process (3.1), a prediction model

x̂k+i+1|k = f̂
(
x̂k+i|k, ûk+i|k

)
x̂k|k = xk

(3.2)

is used, which is evaluated over a finite prediction horizon N ∈ N and where i ∈
I0:N−1 = {0, 1, . . . , N − 1}. The variable k denotes the global discrete time, whereas i
denotes the internal controller time within the prediction horizon N . The hat notation
(̂·) denotes a predicted variable and the subset notation (·|k) emphasizes that the
prediction is based on the information available at the specific time step k. The
current measurement xk = x̂k|k serves as the initial condition for the prediction.
Given a predicted input sequence ûk|k = {ûk|k, ûk+1|k, . . . , ûk+N−1|k} and initial

condition xk, the predicted state evolution is x̂k|k = {x̂k|k, x̂k+1|k, . . . , x̂k+N |k} with
x̂k|k = xk (see Fig. 3.1). Note that x̂k|k has N + 1 elements, whereas ûk|k has N
elements because no further input is needed in the last stage. The difference between
the signal sequences uk and xk of the real process (3.1) and the sequences ûk|k and
x̂k|k of the prediction model (3.2) is that the predicted sequences are computed for
each time instant k and used as internal variables of the controller, whereas uk and
xk describe the applied control inputs and actual system evolution over time.

4The discrete time k and the continuous time t are connected by t = kT , where T is the sampling period.
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3.2.1.2 Cost Function

The model predictive controller determines an open-loop input sequence ûk|k by means
of minimizing a cost function over the finite horizon N for the initial condition xk.
The cost function

VN
(
xk, ûk|k

)
=

N−1∑
i=0

`
(
x̂k+i|k, ûk+i|k

)
+ Vf

(
x̂k+N |k

)
(3.3)

consists of the stage cost `(x,u) with ` : Rnx × Rnu → R≥0 and the terminal cost
Vf(x) with Vf : Rnx → R≥0. The stage cost penalizes deviations of the predicted state
and input evolutions from the origin at each prediction step, whereas the terminal
cost emphasizes penalizing the deviation of the last predicted state. To this end, the
following Assumption 1 has to be satisfied. Furthermore, as we see in Section 3.2.3.1,
both play a key role in establishing stability of the origin.

Assumption 1 (Positive definite cost). Both the stage and the terminal cost are
positive definite and zero at the origin, i.e., `(0, 0) = 0, `(x,u) > 0 ∀(x,u) 6= (0, 0),
and Vf(0) = 0, Vf(x) > 0 ∀x 6= 0.

Note that the cost function (3.3) does not explicitly depend on the state sequence
x̂k|k because the latter results from the given initial condition xk and the input se-
quence ûk|k.

A common control task is to drive the state to the origin as fast as possible but at
the same time the control energy should not exceed certain limits. Hence, there is
an inherent trade-off that has to be addressed when choosing a particular stage cost.
Determining the best cost function with respect to the specific control objective is
therefore a task of its own [73].

3.2.1.3 Optimal Control Problem

The resulting optimal control problem used in model predictive control is

PN(xk) : minimize
ûk|k

VN
(
xk, ûk|k

)
subject to ∀i ∈ I0:N−1 :

x̂k+i+1|k = f̂
(
x̂k+i|k, ûk+i|k

)
x̂k|k = xk

ûk+i|k ∈ U
x̂k+i|k ∈ X
x̂k+N |k ∈ Xf .

(3.4)
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It minimizes the cost function (3.3) at each time step k with respect to the open-loop
input sequence ûk|k and subject to the state and input constraints, while satisfying
the modeled system dynamics (3.2) and the initial condition xk. Additionally, the last
predicted state x̂k+N |k is forced to lie in a terminal region Xf ⊆ X that contains the
origin. The terminal region plays a crucial role when it comes to establishing recursive
feasibility (see Section 3.2.2.2).
The solution to PN(xk) is denoted by û∗k|k = {û∗k|k, û∗k+1|k, . . . , û

∗
k+N−1|k} where the

superscript ∗ indicates the optimal solution. The resulting optimal state sequence is de-
noted as x̂∗k|k = {x̂∗k|k, x̂∗k+1|k, . . . , x̂

∗
k+N |k}. The optimal cost is V ∗N(xk) = VN(xk, û∗k|k)

and usually denoted as value function. The first element5 of the optimal input se-
quence û∗k|k, i.e., û∗k|k, is applied to the process and defines the MPC control law
uk = κMPC(xk) = û∗k|k. The successor state is then xk+1 = f(xk, κMPC(xk)) and at
the next time step, the procedure is repeated and PN(xk) is solved again.
Note that model predictive control differs substantially from conventional control

methods because uk = κMPC(xk) = û∗k|k is not a real control law in the usual feedback
sense.
As is well known, the recursive solution to an optimal control problem does not

automatically lead to stability [81]. One can in general not even guarantee that the
problem is feasible, i.e., that a solution to the optimal control problem exists at the next
time instant. Fortunately, a sound theory has been developed by now that provides the
necessary assumptions and components to guarantee feasibility and stability [128, 160].
This usually utilizes concepts from Lyapunov stability and set theory; the latter in
particular to guarantee recursive feasibility. In the following subsections we provide
insight into the underlying concepts and methods.

3.2.2 Feasibility

Feasibility of model predictive control includes the notion of initial and recursive
feasibility. Initial feasibility basically translates to the existence of a solution to the
initial optimal control problem at k = 0, whereas recursive feasibility guarantees that
if the optimal control problem can be solved at k = 0, it can also be solved at all future
time steps k > 0. We start with the notion of initial feasibility where we introduce
the concept of admissible inputs, which in turn leads to the important notion of the
feasible set. We also present the first two basic assumptions that will be needed
for recursive feasibility and later on stability. Afterwards, we proceed to recursive
feasibility, introducing further assumptions.
In the following we consider the nominal case where the prediction model is also

considered as the real process, i.e., there is no error between the prediction model
f̂(xk,uk) and the plant f(xk,uk). For narrative convenience, we drop the estimate
notation (̂·) and the dependence on the actual time instant (·|k) for the rest of this

5It is also possible to apply more elements of the input sequence, see, e.g., [93, 117].
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section. As we are going to discuss feasibility of optimal control problems in general,
the difference between the real and predicted variables is not necessary. Occasionally,
we write x+ = f(x,u) as an abbreviation to xk+1 = f(xk,uk). Most of the content
presented in the following is based on [107, 108, 160].

3.2.2.1 Initial Feasibility

Initial feasibility of a model predictive control scheme translates to the question
whether the initial optimal control problem admits a solution. In static optimiza-
tion, the problem

minimize
u∈U

J(u) (3.5)

admits a solution according to Weierstrass’s theorem if J is a continuous function and
if U is a compact and nonempty set [116, 160]. In this case, (3.5) is said to be feasible
and U is called the feasible set.
In optimal control problems of the form PN(xk), besides the constrained set U , we

are facing additional constraints in the form of a dynamical system x+ = f(x,u) and
the constrained sets X and Xf. In addition, one is interested in finding a sequence of
control inputs that transfers the initial state xk within a finite prediction horizon to the
terminal region Xf (and eventually to the origin) with minimal cost, while satisfying
the state and input constraints. An input sequence that satisfies these constraints is
called an admissible6 input.

Definition 1 (Admissible input). An input sequence u = {u0,u1, . . . ,uN−1} is said
to be admissible if for the initial condition x0, the resulting state sequence x =
{x0,x1, . . . ,xN}, and for all i ∈ I0:N−1 the conditions

(i) : ui ∈ U
(ii) : xi ∈ X

(iii) : xN ∈ Xf

hold, i.e., u satisfies the input constraints and the resulting state sequence x satisfies
the state and terminal constraint.

Note that because Xf ⊆ X , also xN ∈ X holds. Moreover, an admissible input does
not necessarily need to minimize the cost function, i.e., it is only a solution candidate
for the optimal control problem PN(xk).
Admissibility of an input sequence u is defined for a specific initial state x0 and

there are initial states for which an admissible input exists and others for which no
admissible input can be found. This is especially important in model predictive control
because progressing with time, the initial value is often the only element that changes

6In the literature, admissible inputs are sometimes also called feasible inputs.
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from the current optimal control problem to the one at the next time step. This
motivates the definition of the feasible set.

Definition 2 (Feasible set). The set of all initial states x0 for which there exists at
least one admissible input sequence u is called the feasible set

XN :=
{
x0 ∈ X : ∃u according to Definition 1

}
.

Due to Definition 1, XN ⊆ X .

The optimal control problem PN(xk) can only admit a solution if xk ∈ XN . This,
however, is only a necessary but not a sufficient condition because the admissible input
sequences associated with the points in XN might not minimize the cost function.
Hence, further assumptions have to hold to establish a certificate for the existence of
an optimal solution, i.e., an input sequence that leads to constraint satisfaction and
also minimizes the cost function.

Assumption 2 (Continuity of system and cost). The functions f(x,u), `(x,u), and
Vf(x) are continuous.

The underlying initial value problem x+ = f(x,u) with initial condition x0 has to
admit a solution. It does so if f(x,u) is continuous.

Assumption 3 (Properties of constrained sets). The set X is closed and the sets U
and Xf are compact (closed and bounded); each set contains the origin.

With these assumptions, the following proposition can be made.

Proposition 1 (Existence of solutions to OCPs). Suppose Assumption 2 and 3 hold.
Then, for each xk ∈ XN a solution to PN(xk) exists.

Proof. The complete proof is given in [160]. The basic idea is that Assumption 2
establishes continuity of the cost function VN(xk, ûk|k) and Assumption 3 leads to a
compact set of admissible input sequences for every x ∈ XN . Applying then Weier-
strass’s theorem yields the existence of a solution to PN(xk) for every xk ∈ XN .

Proposition 1 guarantees the existence of solutions to optimal control problems for
initial values xk that lie in XN . This means that if it has to be decided whether
a particular OCP admits a solution or not, we merely have to check if the initial
condition is contained in XN , as long as Assumption 2 and 3 are satisfied. Again,
the solution which is guaranteed to exist by Proposition 1 satisfies the constraints
and minimizes the cost function. If we consider mere constraint satisfaction without
minimizing the cost function7, then Assumption 2 and 3 do not have to be fulfilled;
xk ∈ XN is already a sufficient condition.

7This is suboptimal control, see [168] for further information.
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Remark 6 (Some remarks regarding Proposition 1).

• Proposition 1 is a slightly shortened version of the corresponding proposition in
[160], where also the case of a closed but unbounded set U is considered.

• If the cost function VN(xk, ûk|k) is continuous, the value function V ∗N(xk) is not
automatically continuous (see [160]). Furthermore, the conditions to Proposi-
tion 1 might be very strong (depending on the specific application case) and one
might also want to explicitly allow for discontinuous value functions. Note that
this does not necessarily hinder the existence of solutions to optimal control prob-
lems (see [7, 69, 160]).

• Proposition 1 does not state how XN may be computed. In static optimization,
it is directly defined by the constraints. In optimal control, it depends on the
constraints (e.g. XN ⊆ X ), the length of the prediction horizon (the longer
the horizon N , the larger XN), and the controllability properties of the given
system. For instance, if the origin is an unstable equilibrium and the system is
uncontrollable, even without constraints, there does not exist any input sequence
u that will transfer the state to the origin or the terminal region. Thus, XN
would be empty and the optimal control problem would not admit a solution. In
principle, XN can only be computed for simple cases, such as linear systems and
polyhedral constraints. For further information concerning the computation of
XN , see [23, 160].

3.2.2.2 Recursive Feasibility

In the preceding section, we have seen which conditions have to be satisfied to establish
feasibility of an optimal control problem. MPC is repeated optimal control, where at
each time step k the same OCP has to be solved but with a different initial condition
xk. The question which then arises in MPC is: If the initial OCP at k = 0 has
a solution, do all successive OCP also have a solution? An equivalent formulation
would be: Does the model predictive controller confine the state to the set XN? If
this is the case, the MPC problem is called recursively feasible.
Unfortunately, initial feasibility does not automatically lead to recursive feasibility,

because, according to Definition 2, any point in XN admits an admissible sequence
pair (u,x) where x stays in X for the considered time interval. However, since XN is
usually a subset of X , x might leave the set XN at a particular instant in time for an
i ∈ I0:N−1, and for this instant, the OCP does not any longer admit a solution.

Definition 3 (Recursive feasibility). The MPC controller is recursively feasible if and
only if for all initially feasible xk ∈ XN and for all sequences of admissible control
inputs u, the MPC optimization problem remains feasible for all time.
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This definition is sometimes also called strong recursive feasibility, whereas a weaker
form uses only optimal instead of just admissible inputs [112]. Note that using ad-
missible input sequences (as in Definition 3) is equivalent to the use of suboptimal
solutions, i.e., the resulting input leads, in general, to higher costs as compared to the
optimal input [128].
To establish recursive feasibility, as in Definition 3, we first provide some definitions

regarding set properties.

Definition 4 (Positive and control invariant sets).

• A set S is positive invariant for x+ = f(x) if for all x ∈ S we get x+ ∈ S.

• A set S is control invariant for x+ = f(x,u) if for all x ∈ S there exists a
u ∈ U such that x+ ∈ S.

For recursive feasibility, one has to ensure that the state x stays in the set XN for
all time instants, i.e., XN must be control invariant for x+ = f(x,u) with the model
predictive control law u = κMPC(xk). The necessary assumption on this regard is the
following.

Assumption 4 (Control invariant terminal region). The terminal region Xf ⊆ X is
compact, contains the origin, and is control invariant for x+ = f(x,u),u ∈ U .

Proposition 2 (Recursive feasibility of MPC). Suppose Assumption 2 to 4 hold. Then
XN is positive invariant for xk+1 = f(xk, κMPC(xk)).

Proof. For the complete proof to Proposition 2 see [160]. The underlying idea is to
begin with X0 := Xf and set

X1 = {x ∈ X : ∃u ∈ U such that f(x,u) ∈ X0} . (3.6)

So X1 is the set of all states for which a control can be found such that the state is
moved to Xf. This implies that X0 ⊆ X1. Since Xf is control invariant by Assumption 4,
it follows that also X1 is control invariant. By backward recursion and induction, one
arrives at the conclusion that XN is positive invariant. Note that the existence of a
corresponding u for all x ∈ XN in (3.6) is guaranteed by Proposition 1.

Hence, recursive feasibility can be guaranteed for initial conditions that lie in XN
and a suitable terminal region Xf. Obviously we have Xf ⊆ XN ⊆ X (Fig. 3.2).
This terminal region must be control invariant with some u ∈ U , i.e., we assume the
terminal region is rendered control invariant by a controller that is usually denoted as
terminal controller κf(x). In Section 3.7, one possibility is shown how to compute a
terminal controller together with the corresponding terminal region.
So the key idea for establishing recursive feasibility is to steer the state with MPC

to the terminal region Xf and then switch to the terminal controller that renders
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Figure 3.2: Illustration of the constrained set X , the set of feasible initial conditions XN ,
and the terminal region Xf.

Xf invariant. However, note that the terminal controller is usually not applied (the
MPC control law is applied the whole time), it is more of a tool to establish recursive
feasibility.

3.2.3 Stability

In 1960, R.E. Kalman stated in his famous paper [81] that optimality does not au-
tomatically lead to stability. Since then, different approaches to establish stability of
model predictive control have been proposed. For a good and short overview of the
different stabilizing MPC approaches see [39, 131], for a historical overview [117].
In this section, we present some of these literature results because they establish the

basis for stability of the rGP-MPC scheme. In Section 3.2.3.1, we focus on establishing
nominal stability in the classical way, where the key ingredients are the terminal region
Xf, the terminal cost function Vf(x), and a certain type of stage cost `(x,u). In
Section 3.2.3.2, we move on to robust stability, using the concept of input-to-state
stability.

3.2.3.1 Nominal Stability

We provide two results that establish stability of the origin under a model predic-
tive controller. The first (classical approach) uses the components of MPC (in-
cluding the terminal region Xf) to establish stability. Lyapunov theory (see Ap-
pendix A.2.1) is used to establish stability of the origin for the closed-loop system
x+ = f(x, κMPC(xk)). The key therein is to use the value function as a Lyapunov
function candidate. In the following, we provide the necessary conditions for the fully
constrained case (input and state constraints) that make the value function indeed a
Lyapunov function. The second approach extends the results to the case of an optimal
control problem without terminal region Xf.
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Assumption 5 (Bounds on stage and terminal costs). The stage cost `(x,u) and the
terminal cost Vf(x) satisfy

`(x,u) ≥ α1(‖x‖) ∀x ∈ XN , ∀u ∈ U
α2(‖x‖) ≤ Vf(x) ≤ α3(‖x‖) ∀x ∈ Xf

in which α1(·), α2(·), and α3(·) are K∞ functions.
A K∞ function is a function that is continuous, strictly increasing, zero at zero,

and unbounded (see Definition 10 in Appendix A.1). Therefore, Assumption 5 is an
extension to the positive definiteness of Assumption 1 and hence, completely implies
Assumption 1.
Assumption 6 (Basic stability assumption). For all x ∈ Xf, there exists an admissible
u ∈ U satisfying

x+ ∈ Xf

Vf(x+) ≤ Vf(x)− `(x,u)

with x+ = f(x,u).
For all points within the terminal region, the successor point is also contained in that

region and has less or equal cost. Thus, Assumption 6 implies partially Assumption 4.
Note that Assumption 5 and 6 ensure that Vf(x) is a Lyapunov function on Xf for the
system x+ = f(x,u) and therefore, the origin is asymptotically stable on the positive
invariant set Xf (see Appendix A.2), while satisfying state and input constraints. Such
a Lyapunov function can be constructed if a, at least, local valid description of the
process at the origin is available. This can, for instance, be a linearized version of the
nonlinear prediction model, see also Section 3.7.
With the given assumptions, the following theorem can be established.

Theorem 1 (MPC stability [160]). Suppose that Assumption 2 to 6 are satisfied and let
κMPC(xk) be the predictive controller resulting from the solution to the optimal control
problem (3.4). Then, the origin is asymptotically stable with a region of attraction XN
for the system xk+1 = f(xk, κMPC(xk)).
Proof. For the complete proof of Theorem 1 see [160]. Assumption 2 to 4 need to
be satisfied to guarantee that PN(xk) is recursively feasible. Assumption 5 and 6
ensure that the value function V ∗N(xk) is a Lyapunov function (see Definition 14 in
Appendix A.2.1) for the closed-loop system xk+1 = f(xk, κMPC(xk)) on the set XN .
Hence, the origin is asymptotically stable in the region of attraction XN .

Note that here, the region of attraction, in which the origin is asymptotically stable,
is equal to the feasible set XN , i.e., it is the largest possible region of attraction.
However, as we will see below, the region of attraction can also be smaller than the
feasible set.
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Stability without Terminal Region
In the following, we review a result from [108], which will be important for the forth-
coming developments. It establishes stability without the terminal region Xf being
part of the optimal control problem.
Consider the following optimal control problem

minimize
ûk|k

N−1∑
i=0

`
(
x̂k+i|k, ûk+i|k

)
+ λVf

(
x̂k+N |k

)
subject to ∀i ∈ I0:N−1 :

x̂k+i+1|k = f̂
(
x̂k+i|k, ûk+i|k

)
x̂k|k = xk

ûk+i|k ∈ U
x̂k+i|k ∈ X ,

(3.7)

which differs from OCP (3.4) in two aspects. First, the terminal constraint x̂k+N |k ∈ Xf
is dropped and second, the terminal cost Vf is multiplied by a factor λ ≥ 1.
To guarantee recursive feasibility and stability, the following assumptions are re-

quired.

Assumption 7. Let Vf(x) be a Lyapunov function and let the terminal region be a
level set of the terminal cost Xf = {x ∈ Rnx : Vf(x) ≤ ν}, with ν > 0, such that
Xf ⊆ X .

As before, Assumption 5 and 6 ensure that Vf(x) is a Lyapunov function on Xf. As-
sumption 7 introduces a direct connection between Xf and Vf by defining the terminal
region via the terminal cost and introducing the parameter ν that is utilized further
below.

Assumption 8. Let d be a positive constant such that `(x,u) > d for all x /∈ Xf and
for all u ∈ U .

Using these assumptions, the following stability result can be formulated.

Theorem 2 (MPC stability without terminal region [108]). Suppose that Assump-
tion 2 to 8 are satisfied and let κMPC(xk) be the predictive controller resulting from the
solution to the optimal control problem (3.7) without terminal region. Then, the ori-
gin is asymptotically stable with a region of attraction Υ(λ) = {xk ∈ Rnx : V ∗N(xk) ≤
N · d+ λ · ν} for the system xk+1 = f(xk, κMPC(xk)).

Proof. Theorem 2 is a reformulation of Theorem 3 and its preceding results in [108].
It is first shown that the set Υ = {xk ∈ Rnx : V ∗N(xk) ≤ N · d + ν} is a region of
attraction of the origin for the optimal control problem without terminal constraint.
Afterwards, it is shown that this region can be enlarged by multiplying the terminal
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cost with the factor λ ≥ 1 resulting in the region of attraction Υ(λ) = {xk ∈ Rnx :
V ∗N(xk) ≤ N · d+ λ · ν}. At last, it is established that for any state of the feasible set
xk ∈ XN of (3.7), there exists a λ ≥ 1 such that xk ∈ Υ(λ).

Note that here, the region of attraction is not equal to but only a subset of the
feasible set, i.e., Υ(λ) ⊂ XN .

The advantages of an optimal control problem without terminal region are two-fold.

1. Practical: The necessary constraints are reduced. This is particularly interesting
if no further state constraints are considered, i.e., X = Rnx. Then, only input
constraints U have to be considered, which makes the optimal control problem
computationally much easier to solve.

2. Theoretical: For any xk ∈ Υ(λ), the resulting state sequence stays in Υ(λ)
because it is invariant. Hence, the state constraints X never become active. For
non-active state constraints, it can be shown that the value function V ∗N(xk) is
uniformly continuous in xk [107].

3.2.3.2 Robust (input-to-state) Stability

So far, a perfect prediction model (without uncertainties) was assumed. Now we move
on to the case that the process f(·) and the (nominal) prediction model f̂(·) are not
the same, i.e., there is some uncertainty associated with the prediction model. The
causes of uncertainty can be, for instance, noise, unknown disturbances, uncertain
model parameters, or model-plant mismatch. We denote this uncertainty by a general
error signal ek and implicitly account for it by writing the process as f(xk,uk, ek).
This leads to the closed-loop system

xk+1 = f(xk, κMPC(xk), ek) , (3.8)

employing the model predictive controller κMPC(xk) to the real process.
In order to maintain the guarantees of recursive feasibility and stability in the case

of uncertainty, different robust MPC schemes have been developed. Input-to-state
stability can be utilized to establish when the optimal control problem is inherently
robust, i.e., the nominal MPC scheme is stabilizing despite (possibly small) uncertain-
ties. For some basic definitions and results with respect to input-to-state stability we
refer to Appendix A.2.2.

Remark 7. We use the general implicit nomenclature f(xk,uk, ek) to account for
the uncertainty, similar to [107]. In Section 3.6, we will consider the specific form
f(xk,uk, ek) = f̂(xk,uk) + ek.
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Definition 5 (MPC input-to-state stability). The origin of the closed-loop (3.8) is
input-to-state stable (ISS) if there exist a KL-function8 β(·, ·) and a K-function γ(·)
such that

‖xk‖ ≤ β(‖x0‖, k) + γ
(

sup
k≥0
‖ek‖

)
holds for all initial states x0, all uncertainties ek, and for all k ∈ N0.

Input-to-state stability combines nominal stability as well as uniformly bounded
influence of uncertainty in a single condition. It implies asymptotic stability of the
undisturbed (nominal) system (with ek ≡ 0) and a bounded effect of the uncertainty
on the state evolution. Furthermore, if the error signal ek fades, the uncertain system
asymptotically converges to the equilibrium.

Assumption 9 (Bounded uncertainty). Assume that ek ∈ E ∀k, where E is a compact
set that contains the origin.

This assumption is required to be able to still guarantee feasibility and recursive
constraint satisfaction. If the uncertainty was unbounded and counteracted the con-
troller, it would be impossible to guarantee these properties.

The following theorem is a restatement of Theorem 4 in [107] for the case of an
optimal control problem without terminal region. This will serve as a starting point
in Section 3.6.2 to prove input-to-state stability of the rGP-MPC scheme.

Theorem 3 (MPC ISS [107]). Suppose that Assumption 2 to 9 are satisfied. Let
κMPC(x) be the predictive controller resulting from the solution to the optimal control
problem (3.7) without terminal region and let XN be its feasible region. Let furthermore
the true process f(xk,uk, ek) be uniformly continuous in ek for all xk ∈ XN , all
ek ∈ E, and all uk ∈ U . If one of the two conditions

1. The optimal cost V ∗N(xk) is uniformly continuous in xk for all xk ∈ XN .

2. The nominal model f̂(xk, κMPC(xk)) is uniformly continuous in xk for all xk ∈
XN .

holds, then the closed-loop system xk+1 = f(xk, κMPC(xk), ek) controlled by the nomi-
nal predictive controller fulfills the ISS property in a robust invariant set Ω ⊆ XN for
a sufficiently small bound of the uncertainties.

Proof. The complete proof is provided in [107], where Theorem 2 considers the case of
general closed-loop systems, i.e., with arbitrary controllers, and Theorem 4 considers
the case of a closed-loop controlled by model predictive control.

8See Appendix A.1 for the definition.
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1. It is shown in Condition 1 of Theorem 2 (Condition 2 of Theorem 4) that if
there exists a uniformly continuous Lyapunov function (the value function in
MPC) for the nominal system and if the closed-loop xk+1 = f(xk, κMPC(xk), ek)
is uniformly continuous in ek for all xk ∈ Rnx, then the Lyapunov function is a
ISS-Lyapunov function and the origin of the closed-loop is input-to-state stable
(see Appendix A.2.2).

2. In the proof regarding Condition 2, it is shown how to (through a clever con-
struction) obtain a general Lyapunov function for the nominally asymptotically
stable system. Using the assumption of Condition 2 that the nominal model
is uniformly continuous in xk for all xk ∈ Rnx it is shown that this Lyapunov
function is uniformly continuous, which was the assumption of Condition 1.

Remark 8. One might conclude that Condition 1 and Condition 2 are independent
(i.e. uniform continuity of the Lypapunov function and of the nominal model), which
is, however, not the case. In fact, Condition 2 and the corresponding proof show one
way how Condition 1 can be fulfilled.

Besides the results in [107], there is also a proposition that establishes under which
conditions the optimal cost function is uniformly continuous. We omit these results
and refer to Section 3.6.2, where we will utilize them to prove input-to-state stability
of the rGP-MPC scheme.

3.3 Control Problem Formulation

We consider nonlinear discrete-time systems that can be represented by nonlinear
autoregressive models with exogenous input (NARX, see also Section 2.2.2)

yk+1 = f(xk, uk) + ε (3.9a)
s.t. uk ∈ U (3.9b)

yk ∈ Y . (3.9c)

Here, uk ∈ R denotes the input, yk ∈ R the output, and xk ∈ Rnx is the NARX “state
vector”

xk =
[
yk yk−1 · · · yk−my uk−1 · · · uk−mu

]T (3.10)

that consists of the current and past outputs and inputs, and where my,mu determine
the NARX model order nx = my+mu+1. The output is corrupted by Gaussian noise9

ε ∼ N (0, σ2
n) with zero mean and noise variance σ2

n. Input and outputs are restricted
9In real processes the measurement noise is always bounded, e.g., due to the limitations of the involved data
acquisition systems. For the moment, however, we consider the case of normal unbounded Gaussian noise.
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to lie in the constraint compact sets U ⊂ R and Y ⊂ R, where U are hard constraints
and Y can be hard or soft constraints that we denote by Yh and Ys respectively. The
NARX state and the output are connected via yk = cTxk with cT =

[
1 0 · · · 0

]
.

The considered control objective is set-point stabilization and optimal set-point
change, i.e., we want to steer the system from an initial point (x0, u0) to a target
reference point (xref, uref), while satisfying the constraints and stabilizing the system
at the target. We employ model predictive control, which uses the prediction model

ŷk+1 = f̂(xk, uk) (3.11)

that is capable of predicting future output values of (3.9a) with sufficient accuracy.
The model shall be based on input-output measurement data. The approach should
furthermore be able to adapt to a changing process or process environment and shall
apply to a wide variety of processes, including those with fast dynamics. Hence, the
computational load of the approach has to be reduced. We outline an approach to
learn the system model approximation f̂(xk, uk) from measured input-output data
using a Gaussian process that is capable of online learning during operation, based on
newly available data.
Note that the real process has also a (possibly unknown) state space representation.

We choose the input-output formulation because this will be also the nature of the
prediction model. In comparison with the state space formulation of the previous
section, the input-output formulation of (3.9) is more general in the sense that it
allows applying the developed control scheme also to systems, whose state is not fully
accessible, thereby allowing to apply the control scheme to a broader class of processes.
However, this generality comes at the cost of a usually inferior performance because
the process dynamics can be captured only to a certain extent.

Remark 9. For simplicity of presentation we consider a NARX model with one output
modeled by a Gaussian process. It can be extended to more outputs or state space
models, where for each output/state an individual GP is used [84, 146, 147]. Note
that the theoretical results obtained in Section 3.6 are also valid, without limitation,
for the multi-output case.

3.4 Online Learning of Gaussian Process based Prediction
Models

We outline an approach to learn a prediction model only from measured input-output
data using a Gaussian process to tackle the control problem formulated in Section 3.3.
This results in a GP-NARX prediction model, which is used in a model predictive
control scheme.
In Section 2.1.2 we reviewed Gaussian process regression, where the posterior mean

function m+(w|D) (2.6a) is the desired estimator of an unknown output latent func-
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tion. We will use the posterior mean to model the NARX process function f(xk, uk)
of (3.9a), leading to the MPC prediction model

ŷk+1 = f̂(xk, uk) := ẑ = m+(wk|Dk) , (3.12)

where the regressor w and the training data set D now depend on the time k. In
order to cope with the requirement of adapting to changing processes and process
environments, we present an online learning approach of the Gaussian process, based
on the concept of evolving GPs (Section 3.4.1) that will update the training data
set during operation whenever beneficial. For this reason Dk might depend on k

and therefore, the covariance matrix and its inverse have to be recalculated online.
For numerical stability and efficiency, we use the Cholesky factor decomposition to
compute the covariance matrix inverse (Section 3.4.2). To reduce the computational
load, we update the involved Cholesky factor recursively, making use of the previously
available factor.

Remark 10. As we aim for the potential application of the resulting control scheme
to fast processes, we do not consider online hyperparameter optimization because this
is the computationally most expensive part and cannot be dealt with in a recursive
fashion.

3.4.1 Evolving Gaussian Processes

In order to efficiently refine the GP model online, we seek to update the training
data set Dk, possibly at each time step k during operation. To this end, we resort
to the concept of so-called evolving GPs [87, 153], which can be used, for instance,
if the underlying system to be modeled by a GP is time-varying and needs to be
adjusted/learned online or if the training data is only available for certain regions of
the operating space and one wants to expand operation beyond these regions. Basically
one has Gaussian processes whose training data set Dk is updated online using some
type of information criterion. Different criteria can be used to select new data points
to be added and already existing points to be removed if necessary.
The general idea is to include an incoming data point to the training data set only if

it contributes enough new valuable information, which can be defined in different ways
and depends on the specific application. Possible options are the use of the information
gain, entropy difference, or the expected likelihood [170, 173]. We employ the Gaussian
process as a prediction model in model predictive control and are therefore particularly
interested in how accurate the current model can predict the output value at the
next time step and how confident this prediction is. To this end, given a new data
point (wk, yk+1) of current regressor wk and resulting output yk+1, we first define the
prediction error via

ep := yk+1 − ŷk+1 = f(xk, uk) + ε−m+(wk|Dk) , (3.13)
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and use the following rule that determines a new training data candidate D′k+1.

Rule 1 (New training data set candidate). At the current time step k with regressor
wk and training data set Dk compute posterior mean ŷk+1 = m+(wk|Dk) and posterior
variance σ2

+ = σ2
+(wk|Dk). Once the next output yk+1 is available, the new data point

is (wk, yk+1) and
if |ep| > ēp OR σ2

+ > σ̄2 then
D′k+1 = Dk ∪ (wk, yk+1)

end if
where ēp and σ̄2 are pre-specified thresholds and D′k+1 is the new training data set
candidate for k + 1.

Thus, if the prediction error ep is larger than the threshold ēp, the data point is
considered to be included in the training data set Dk because the current posterior
model is not able to predict the output with the specified accuracy. If it is smaller
but the resulting posterior variance σ2

+(w|Dk) is larger than the threshold σ̄2, the
data point is also a candidate because the current posterior model is not sufficiently
confident in its prediction. This allows including data points that are relevant to
attain a certain prediction quality and to effectively limit the necessary number of
data points in Dk. This becomes especially important for long operation times and
many encountered data points with new information during operation.

Remark 11. Since update Rule 1 also considers outliers for inclusion, we propose to
combine it with an additional update rule presented in Theorem 4 (Section 3.6.1) for
filtering. The application order of both update rules is also contained in Algorithm 1.

As the available computational power is always limited and depending on the spe-
cific system, this can require the limitation of the maximum number of points in Dk to
a constant number n̄ ∈ N.10 If this limit is reached, data points have to be removed to
maintain the size of Dk. Again, different criteria can be employed to determine which
data point shall be deleted. For instance, the point in the training data set with
the lowest benefit for the model quality (e.g. the data point that is most accurately
predicted under the current posterior) can be deleted. This however can be compu-
tationally expensive because the prediction has to be evaluated for every of the n̄+ 1
training data points at each time instant k. For online implementation, we employ a
more simple approach that deletes the oldest point contained in Dk. Note that the
calculations do not need to be performed at all times. They could also be performed
in larger time intervals.

Remark 12. The concept of evolving GPs, in particular the outlined data handling
approach, leads to a training data set Dk that captures the system dynamics in an
(evolving) subregion of the whole operating region. Thus, information about already
10This approach is also sometimes denoted as truncated GP [33].
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visited regions can, in principle, be lost when moving towards other regions and have to
be regained when visited again. This could be counteracted, for instance, by exploiting
multiple GPs for different regions or by GP blending [21, 132].

Remark 13. In principle, the smaller the thresholds ēp and σ̄2, the better the predic-
tion. However, then also the overhead for the computational evaluation for adding and
removing data points increases. In addition, the smaller the thresholds, the smaller
the region in which the training data set captures the system behavior, given the case
that only a finite number of training data points is allowed. Hence, the selection
of the thresholds ēp and σ̄2 is an application specific trade-off and might be cho-
sen heuristically by the user. Some general guidelines are (i), a lower bound for
σ̄2 is the measurement noise variance and (ii), ēp could be chosen proportional to
1/n̄

∑n̄
i=1|z −m+(W |Dk)|, i.e., to the mean value of all the absolute values of the pre-

diction errors, based on the current training data set Dk. In the same way σ̄2 could be
chosen.

3.4.2 Avoiding Numerical Ill Conditioning by Cholesky Decomposition

The squared exponential covariance function (2.7), as well as other smooth covariance
functions, can lead to numerical problems when computing the inverse K−1 [138,
145]. The reason is that smoothness requires that two nearby points are strongly
correlated. In that case, the corresponding rows/columns of these points in K are
very similar, which leads to a large condition number (the ratio of the largest and
smallest eigenvalue). This results in numerical problems when computing the inverse
K−1 with computational cost O(n3), as required for the posterior mean (2.6a), the
posterior variance (2.6b), or the log likelihood (2.8). These problems become even
worse if (2.6a) and (2.6b) are nested within an optimization procedure like model
predictive control. One way to alleviate this problem is by adding an additional noise
or jitter term to the diagonal of the covariance matrix [138]. A more effective approach,
however, is to avoid the numerical instabilities that arise in the explicit computation
of the matrix inverse by performing the required computations using the Cholesky
decomposition, which is numerically more stable.
Given a system of linear equations Ax = b with a symmetric positive matrix A =

AT, we denote the solution by x = A−1b := A\b. The Cholesky decomposition of
A is A = RTR, where R = chol(A) is an upper triangular matrix that is called the
Cholesky factor. It can be used to obtain the solution to the linear equations system
via x = R\(RT\b).
In order to use the Cholesky factor to calculate the posterior mean m+(w|D) (2.6a)

and variance σ2
+(w|D) (2.6b), we define

α := K−1(z −m(W ))
β := K−1%(W ,w)
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and obtain

m+(w|D) = m(w) + %(w,W )α
σ2

+(w|D) = %(w,w)− %(w,W )β ,

where α and β can be computed with the Cholesky decomposition K = RTR via

α = R\
(
RT\(z −m(W ))

)
(3.14)

β = R\
(
RT\%(W ,w)

)
.

The resulting computational cost of computing R is O(n3
/6) and the cost of computing

α and β is O(n2) [158].
If the training data set Dk does not change, the Cholesky decompositionK = RTR

and the computation of α have to be performed only once at the beginning, whereas
β has to be recomputed for every new test point w. If Dk changes, i.e., with each
inclusion or removal of a data point, the covariance matrix K has to be updated for
an appropriate evaluation of the GP posterior. If a data point is included, a row
and column have to be added to K. If a data point is removed, the respective row
and column associated with this point have to be removed. These changes require, in
principle, a full recalculation of the Cholesky factor R, which is the most expensive
computation. To reduce this computational load we employ the approach of Osborne in
[145] to recalculate the Cholesky factor recursively, taking advantage of the available
factor of the previous step. The precise procedure is outlined in Sec. A.3 of the
appendix.
Remark 14. The recursive update of the Cholesky factor can only be applied if the
hyperparameters θ do not change because otherwise, every single element ofK changes
and a recursive approach is not applicable anymore.
Remark 15. Note that sometimes [79, 152, 186] not the Cholesky decomposition but
the covariance matrix inverse K−1 is recursively computed, which is based on the
partitioned block inverse using the Woodbury matrix identity. Presumably for the
numerical issues outlined above, this approach has never been used in combination with
model predictive control. It has, however, been used in the signal processing literature,
where it is strongly connected to the concept of kernel recursive least-squares [152, 186].
Due to the recursive nature, both in the data inclusion approach and the Cholesky

decomposition, we denote the resulting Gaussian process as recursive GP (rGP). The
most important steps of the rGP are presented as part of Algorithm 1 in Section 3.5.

3.5 rGP-MPC Formulation
In this section, we summarize the output feedback model predictive control formula-
tion, based on the rGP-NARX model for prediction.

45



3 Gaussian Process based Model Predictive Control with Guarantees

3.5.1 GP-NARX Prediction Model

In Section 3.6, we establish input-to-state stability in terms of the evolution of the
state xk and not the output yk. For this reason, we first reformulate the GP output
prediction in terms of the predicted NARX state x̂k. We start by setting k := k + 1
in x̂k and arrive at

x̂k+1 =
[
ŷk+1, yk, . . . , yk+1−my , uk, . . . , uk+1−mu

]
,

where only ŷk+1 is an estimated quantity as all the other elements are or have been
measured/computed. Since the predicted output ŷk+1 is computed by (3.12) we obtain
the NARX prediction model

x̂k+1 = F̂ (x̂k, uk|Dk) :=
[
m+(wk|Dk), yk, . . . , yk+1−my , uk, . . . , uk+1−mu

]
, (3.15)

which we also denote as the nominal model.
Correspondingly, for the NARX model of the real process (3.9a) we have

xk+1 =
[
yk+1, yk, . . . , yk+1−my , uk, . . . , uk+1−mu

]
=
[
f(xk, uk) + ε, yk, . . . , yk+1−my , uk, . . . , uk+1−mu

]
and due to (3.13) this can be reformulated as

xk+1 =
[
m+(wk|Dk) + ep, yk, . . . , yk+1−my , uk, . . . , uk+1−mu

]
= F̂ (xk, uk|Dk) + dep =: F (xk, uk, ep)

(3.16)

with d =
[
1 0 · · · 0

]T, i.e., the real NARX model can be represented as the super-
position of the nominal/prediction model and the prediction error.

3.5.2 Resulting Optimal Control Problem

In order to steer system (3.9) to and stabilize at the target reference point (xref, uref),
as detailed in the problem formulation in Section 3.3, we use the prediction model
(3.15) at each time step k in the optimization problem

minimize
ûk|k

VN
(
xk, ûk|k

)
subject to ∀i ∈ I0:N−1 :

x̂k+i+1|k = F̂
(
x̂k+i|k, ûk+i|k|Dk

)
x̂k|k = xk

ûk+i|k ∈ U
x̂k+i|k ∈ X .

(3.17)
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Note that we do not employ a terminal region (see (3.7)). Here, the constraint set X
is a combination of multiple instances of Yh, depending on the specific composition of
xk.11 If only soft output constraints Ys are considered, the hard constraints X can be
removed.
We consider the cost function

VN
(
xk, ûk|k

)
=

N−1∑
i=0

`
(
x̂k+i|k, ûk+i|k

)
+ λVf

(
x̂k+N |k − xref

)
,

where Vf(·) is the terminal cost function, which is weighted by λ ≥ 1. The employed
positive stage cost is given by

`(x̂k, ûk) = `s(x̂k − xref, ûk − uref) + `b(ŷk) ,

where `s(·) penalizes input and state deviations from the reference point (xref, uref)
and `b(·) is a barrier function that can account for soft output constraints Ys. The
barrier function is defined by

`b(ŷk) ≥ αb
(
d(ŷk,Ys)

)
and must satisfy `b(ŷk) = 0,∀ŷk ∈ Ys

12, where αb(·) is a K-function and d(·) the
distance function as defined in Appendix A.1.

Remark 16 (Barrier functions). The use of barrier functions is a trade-off between
constraint satisfaction and computation time. In case of hard constraints, the bar-
rier function `b(·) is omitted (or set to zero) and the solution of the optimal control
problem is computationally expensive. If, however, satisfaction of the constraints X
is not required 100% of the time (soft constrained case), one can remove the con-
straints X from (3.17), which makes the solution of the optimal control problem much
faster. In that case a barrier function can be employed, which establishes/recovers
constraint satisfaction for most of the operating time, though not guaranteed as with
hard constraints.

The feasible set of (3.17) is denoted by XN , the optimal solution by û∗k|k, and
the resulting optimal state sequence by x̂∗k|k. The first element of û∗k|k, i.e., û∗k|k, is
applied to the process such that we obtain uk = κMPC(xk|Dk) = û∗k|k. Note that
here the implicitly defined control law κMPC(xk|Dk) is time-varying, as well as the
value function V ∗N(xk|Dk) = VN(xk, û∗k|k|Dk) because they depend on the changing
prediction model associated with Dk.

The resulting rGP-MPC formulation of (3.17) is given in Algorithm 1.

Remark 17. The control objective is to steer the state to xref and stabilize it there.
This is a forced set-point, associated with the nonzero input uref. To achieve the con-
11If for instance xk = [yk, yk−1, yk−2], then X = Yh × Yh × Yh.
12This way, the barrier function does not influence the construction of the terminal cost.
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trol objective, the cost function is designed such that it penalizes deviations from this
known reference point (xref, uref). If uref is unknown beforehand, one option is to refor-
mulate (3.17) such that a sequence of input changes {∆ûk|k,∆ûk+1|k, . . . ,∆ûk+N−1|k}
is computed. This formulation also allows attaining zero control error [117].

3.6 Stability of rGP-MPC

We establish stability of the rGP-MPC scheme. In particular, we adapt and extend
the presented nominal and robust stability results of Section 3.2.3 to the rGP-MPC
case. The biggest change originates from the changing Gaussian process prediction
model F̂ (xk, uk|Dk) due to the online learning scheme. A further but smaller change
originates from the fact that we do not consider stabilization of the origin but an
arbitrary forced reference point (xref, uref).
We start by reformulating the input-to-state stability condition in terms of the

nonzero reference point xref.

Definition 6 (Input-to-state Stability).
The closed-loop system xk+1 = F (xk, κMPC(xk|Dk), ep) is input-to-state stable (ISS)
with respect to the the set-point xref if there exist a KL-function β(·, ·) and a K-function
γ(·) such that

‖xk − xref‖ ≤ β(‖x0 − xref‖, k) + γ
(

max
k≥0
|ep|

)
holds for all initial states x0, prediction errors ep, and for all k.

Note that input-to-state stability combines nominal stability as well as uniformly
bounded influence of uncertainty in a single condition. Therefore, we consider stability
first for the nominal case in Section 3.6.1, i.e., when the prediction/nominal model
(3.15) and the true system (3.16) are exactly the same. Afterwards, we establish
robust stability in the sense of input-to-state stability.

3.6.1 Nominal Stability of rGP-MPC

In the following, let the current deviation from the reference point and the deviation
at the next time step be x̃k = xk − xref and x̃k+1 = xk+1 − xref respectively.

Assumption 10. Assume that

1. the stage cost function `(x, u) is positive definite, i.e., `(xref, uref) = 0 and there
exists a K∞-function α(·) such that `(x, u) ≥ α(‖x̃‖) for all u ∈ U ,

2. let d be a positive constant such that `(x, u) > d for all x /∈ Xf and all u ∈ U ,
and
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Algorithm 1 Recursive Guassian Process Model Predictive Control
MPC Parameters: Prediction horizon N , stage cost `(·) with respective parame-
ters, hard input constraint set U , output constraint set Y .
rGP Parameters: Prior mean m(·), covariance function %(·, ·), initial hyperpa-
rameters θ, thresholds ēp and σ̄2, maximum number of training points n̄.

Initialization
Training data set D.
Optimize hyperparameters θ (2.8) with initial data set D.
Initialize GP posterior mean function m+(w) with covariance matrix K, Cholesky
factor R, and α (Section 3.4.2).
Compute GP posterior mean gradient ∇m+(w) (Section 3.7.1).
Compute linear GP model at xref (Section 3.7).
Compute terminal cost function Vf(·) (Section 3.7).

Recursion
for each time step k do

Solve optimal control problem (3.17) for initial condition xk and obtain optimal
input sequence û∗k|k.

Apply first element uk = κMPC(xk|Dk) = û∗k|k.
Obtain new output yk+1.
Construct new GP data point (wk, yk+1) with wk = (xk, uk).
Update GP:
Compute ŷk+1 = m+(wk|Dk) and σ2

+ = σ2
+(wk|Dk).

if |yk+1 − ŷk+1| > ēp OR σ2
+ > σ̄2 then

D′k+1 = Dk ∪ (wk, yk+1).
Using D′k+1, compute K’ and R’ via (A.2).
if number of training points > M then

Remove oldest data point and downdate K’ and R’ via (A.3).
end if
Compute α’ via (3.14).
if V ∗N

(
xk|D

′

k+1
)
≤ V ∗N

(
xk|Dk

)
then

Dk+1 = D′k+1
Make K’, R’, and α’ effective.

else
Dk+1 = Dk
Reverse K’, R’, and α’.

end if
else
Dk+1 = Dk

end if
end for
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3. there exists a terminal control law κf(x̃k) and a control Lyapunov function Vf(x̃k)
such that the conditions

α1(‖x̃k‖) ≤ Vf(x̃k) ≤ α2(‖x̃k‖)

and

Vf(x̃k+1) ≤ Vf(x̃k)− `(x̃k + xref, κf(x̃k) + uref)

hold for all x̃k ∈ Xf = {x̃k ∈ Rnx : Vf(x̃k) ≤ ν} ⊆ X with ν > 0 and x̃k+1 =
F̂ (x̃k +xref, κf(x̃k)+uref | D)−xref, and where α1(·) and α2(·) are K∞-functions.
The constant ν is chosen such that Xf ⊆ X and κf(x̃k)+uref ∈ U for all x̃k ∈ Xf.

Assumption 10 is a reformulation of Assumptions 4 to 8 to the present case of the
rGP-MPC scheme and regulation to the reference point (xref, uref). It ensures that the
system is locally asymptotically stable on the positive invariant set Xf, while satisfying
state and input constraints. It can be satisfied if we have a, at least, locally valid
description of the process at the target point. This can, for instance, be a linearized
version of the GP prediction model at the reference (with e.g. D = Dref), which in turn
can then be used to derive a suitable terminal cost and controller. Possible options are
then, for instance, the use of a linear-quadratic regulator and/or applying Lyapunov
methods (see also Section 3.7).

Remark 18. Although it is sufficient to determine the terminal components from the
nominal model (see Section 3.7), one could also consider the design of a robust terminal
controller and cost. For instance, using a Gaussian process model for the target region
one could consider a specific probability bound given by the posterior variance and then,
based on this, design a robust terminal controller.

We now state the nominal stability result for rGP-MPC. It is an extension of Theo-
rem 2 (which considers a MPC formulation without terminal region) that also accounts
for the changing GP prediction model.

Theorem 4 (rGP-MPC nominal stability). Let κMPC(xk|Dk) be the predictive control
law derived from the optimal control problem (3.17) and let Assumption 10 hold. Fur-
thermore, let Dk be the training data set at time k, Dk+1 the data set that will be used
at time k+ 1, and D′k+1 the updated training data set candidate resulting from Rule 1.
If Dk is updated using the rule
if V ∗N(xk|D

′

k+1) ≤ V ∗N(xk|Dk) then
Dk+1 ← D

′

k+1
else
Dk+1 ← Dk

end if

50



3.6 Stability of rGP-MPC

then ∀λ ≥ 1, there exists a region of attraction Υ0(λ) ⊂ XN such that ∀x0 ∈ Υ0(λ) the
target xref of the nominal closed-loop system xk+1 = F̂ (xk, κMPC(xk|Dk)) is asymp-
totically stable. The size of the set Υ0(λ) increases with λ.

Proof. We first prove that the value function V ∗N(xk|Dk) is a Lyapunov function and
afterwards specify the region of attraction Υ0(λ).

1. Let x̂∗k|k = {x̂∗k|k, x̂∗k+1|k, . . . , x̂
∗
k+N |k} be the predicted state sequence that results

from applying the optimal input sequence û∗k|k. Then we can write the optimal
cost for initial condition xk = x̂∗k|k also as V ∗N(xk|Dk) = VN(xk, û∗k|k|Dk) =
VN(x̂∗k|k, û∗k|k|Dk). Let furthermore be û∗k+1|k = {û∗k+1|k, . . . , û

∗
k+N−1|k, κf(x̂∗k+N |k−

xref) + uref} and x̂∗k+1|k = {x̂∗k+1|k, . . . , x̂
∗
k+N+1|k} the respective sequences that

start at k + 1 computed at time k, where the last state is given by the terminal
control law, that is to say, x̂∗k+N+1|k = F̂

(
x̂∗k+N |k, κf(x̂∗k+N |k − xref) + uref|Dk

)
.

By Assumption 10 we have that the stage and terminal cost are positive definite.
Hence, the cost function VN(xk, ûk|k) is positive definite. Furthermore we also
obtain, given a fixed Dk+1, the decreasing property

VN
(
x̂∗k+1|k, û∗k+1|k|Dk+1

)
≤ VN

(
x̂∗k|k, û∗k|k|Dk+1

)
− `(xk, uk)

by Assumption 10, which is a well known result in standard MPC (for the deriva-
tion see, for instance, [160] or [156]).
Given the update rule in Theorem 4 we have

VN
(
x̂∗k|k, û∗k|k|Dk+1

)
− `(xk, uk) ≤ VN

(
x̂∗k|k, û∗k|k|Dk

)
− `(xk, uk) .

Combining the previous two equations we obtain

VN
(
x̂∗k+1|k, û∗k+1|k|Dk+1

)
≤ VN

(
x̂∗k|k, û∗k|k|Dk

)
− `(xk, uk) ,

which is the same as

V ∗N
(
x̂k+1|Dk+1

)
≤ V ∗N

(
x̂k|Dk

)
− `(xk, uk)

⇔ V ∗N
(
xk+1|Dk+1

)
≤ V ∗N

(
xk|Dk

)
− `(xk, uk)

(3.18)

because predicted and non-predicted values are the same in the nominal case.
Thus, the value function is decreasing even if the prediction model changes due
to the change from Dk to Dk+1.

2. Regarding the region of attraction, we use Theorem 2 from [108], and show
its extension to the rGP-MPC case. In particular, Theorem 2 (Theorem 3 in
[108]) shows for the nominal and time-invariant case of (3.17) (i.e. constant
prediction model and no model-plant mismatch) with value function V ∗N(xk)
that ∀λ ≥ 1 there exists a region of attraction Υ(λ) ⊂ XN such that ∀x0 ∈
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Υ(λ) the nominal closed-loop system xk+1 = F̂ (xk, κMPC(xk)) is recursively
feasible and asymptotically stable. The region of attraction is characterized
by Υ(λ) = {xk ∈ Rnx : V ∗N(xk) ≤ N · d+ λ · ν}, where ν and d are defined in
Assumption 10. The size of the set Υ(λ) increases with λ.13

In this work, the value function V ∗N(xk|Dk) changes at certain time instances k
whenever the data set Dk changes. Thus, we extend the definition of the region
of attraction to

Υk(λ) := {xk ∈ Rnx : V ∗N(xk|Dk) ≤ N · d+ λ · ν} ,

which then also changes with k. Due to (3.18), the optimal cost is decreasing for
a particular state sequence x = {x0,x1, . . . ,xk, . . .} with

Nd+ λν ≥ V ∗N(x0|D0) ≥ V ∗N(x1|D1) ≥ . . . ≥ V ∗N(xk|Dk)

and therefore Υk(λ) is increasing along the state sequence. Thus, if the initial
state x0 ∈ Υ0(λ), then the subsequent states xk ∈ Υk(λ) and the optimal control
problem is recursively feasible. Hence, the target xref is asymptotically stable in
Υ0(λ) for the nominal closed-loop system xk+1 = F̂ (xk, κMPC(xk|Dk)).

At xk (with the current output measurement yk) the optimal control problem (3.17)
is solved with the data set Dk and the resulting input uk = κMPC(xk|Dk) = û∗k|k is
applied to the system. If the next data point (wk, yk+1) is a candidate for updating
the GP, the previous optimal cost is recomputed using the updated GP. If the cost
does not increase, the GP update becomes effective; otherwise it is discarded. Thus,
the update rule in Theorem 4 is executed additionally after update Rule 1 presented
in Section 3.4.1. This is also reflected in Algorithm 1.

Remark 19. Assume that, for instance, the update rule of Theorem 4 is satisfied to
update the training data set from k = 1 to k = 2, i.e., from D1 to D2 for a particular
state x. This however does not automatically translate to that D1 can be updated
to D2 for a different state x’. Put more generally, the update rule to update Dk to
Dk+1 might not be satisfied for all states x. For this reason we cannot guarantee that
Υk(λ) increases in general for all x, i.e., Υ0(λ) ⊆ Υ1(λ) ⊆ Υ2(λ) ⊆ . . . cannot be
guaranteed. We can only guarantee that Υk(λ) increases along a specific trajectory
x = {x0,x1, . . . ,xk, . . .} and for this trajectory we have xk ∈ Υk(λ) ∀k.

Remark 20 (Conflicting objectives). Theorem 4 establishes nominal stability despite
a changing training data set Dk. To determine the new data set candidate D′k+1 we use
13Note that Theorem 3 in [108] (Theorem 2 in this thesis) is stated the other way round, i.e., for each region

Υ(λ) ⊂ XN and for all xk ∈ Υ(λ), there exists a λ ≥ 1 such that the nominal closed-loop system is
asymptotically stable at xref.
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Rule 1, whose objective is to refine the current prediction model. Note that also other
rules, which utilize different selection criteria for model refinement (e.g. statistical
methods, see Section 3.4.1), can be employed. One could assume that the additional
update rule in Theorem 4 is not necessary because with every new data point the predic-
tion model should become more accurate. This is, however, not necessarily the case if,
for instance, the output is corrupted by noise or if outliers are present. In both cases,
the apparent process behavior differs from the true behavior and it cannot be guar-
anteed that the prediction model becomes more accurate with every added data point,
nor that the value function continues decreasing monotonically. Thus, the objective
of the update rule in Theorem 4 is to make sure that safety, in the sense of stability
and constraint satisfaction, is guaranteed. This is also illustrated in the examples,
see, e.g., Fig. 3.11. In the same simulations we also see that data points, selected by
Rule 1 and which carry valuable information, are discarded by the update rule of The-
orem 4 because the decreasing value function condition, and with that stability, could
not be guaranteed. In other words, the two objectives of model refinement (expressed
by Rule 1) and safety (in the sense of stability, expressed by the update rule of The-
orem 4) are conflicting objectives, especially in the case of corrupted measurements.
In this work we prioritize safety, thereby sacrificing a bit of the potential
of model refinement.

On the basis of the nominal stability result for the online rGP-MPC scheme, we
now establish robust stability.

3.6.2 Robust Stability of rGP-MPC

We show that the reference xref of the real process (3.9), controlled by the proposed
predictive control law κMPC(xk|Dk), is input-to-state stable w.r.t. the prediction error
ep.

Assumption 11. We assume that the Gaussian measurement noise ε of the real pro-
cess (3.9a) has bounded support, i.e., |ε| ≤ ε̄ <∞.

Remark 21. Assumption 11 allows establishing a bounded prediction error ep required
for robust constraint satisfaction of Theorem 5. This restricts the considered system
class (3.9a) in Section 3.3 to those with bounded measurement noise, which includes
real processes because there, the measurement noise is always bounded (e.g. due to the
limitations of the involved data acquisition systems).

Remark 22. The concept of Gaussian process regression assumes Gaussian noise in
the measurements, i.e., noise with unbounded support. Thus, employing GP regression
for systems with Gaussian measurement noise with bounded support can be questioned
from a probabilistic point of view. One can regain Gaussian noise with unbounded
support by means of GP warping [175]. The smaller the bounded support, the larger the
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difference between the distributions and the larger the correcting effect of warping. Note
furthermore that any resulting approximation error can be absorbed into the prediction
error ep.

Theorem 5 (rGP-MPC input-to-state stability). Let κMPC(xk|Dk) be the predictive
controller derived from optimal control problem (3.17) satisfying Assumption 10, The-
orem 4, and Assumption 11. If

• the nominal model F̂ (xk, uk|Dk) is uniformly continuous in xk for all xk ∈ XN ,
all uk ∈ U , and all Dk during the prediction horizon14, and

• the stage cost function `(xk, uk) and the terminal cost function Vf(xk) are uni-
formly continuous in xk for all xk ∈ XN and all uk ∈ U ,

then the target xref of the closed-loop system xk+1 = F (xk, κMPC(xk|Dk), ep) is ISS
w.r.t. the prediction error ep with |ep| ≤ µ <∞ in a robust invariant set Ωr

0(λ) ⊂ XN
for a sufficiently small µ. The smaller µ, the larger the set Ωr

0(λ).

Proof. We first establish the set Ωr
0(λ) and prove recursive feasibility. Afterwards we

prove ISS.

1. Regarding the nature of Ωr
0(λ), first note that in Theorem 4 we have shown

that Υ0(λ) is a region of attraction for the nominal case with ep ≡ 0. This
was an extension of the results presented in [108] to the case of a changing GP
prediction model. Now, in a similar manner, we review a result of [107], where
ISS for MPC was shown with a constant prediction model, and then extend it to
our case of a changing prediction model. Note that [107] can itself be considered
as an extension of [108] because the authors also proved the ISS property for an
optimal control problem without terminal region.
Proposition 1 (C2) in [107] shows for the time-invariant case of (3.17) (i.e. for
an optimal control problem without terminal region and a constant prediction
model) that the closed-loop xk+1 = F (xk, κMPC(xk|Dk), ep) is robustly feasible
for all xk in a robust invariant set Ωr(λ). In particular, it is proven that if
|ep| ≤ µ with a sufficiently small µ, there exists a r > 0 such that Ωr(λ) :=
{xk ∈ Rnx : V ∗N(xk) ≤ r} ⊂ XN is a compact and robust invariant set such
that for all xk ∈ Ωr(λ) the resulting predicted state sequence remains in Ωr(λ).
Therefore the state constraints X do not become active. Hence, for all x0 ∈ Ωr(λ)
the MPC scheme is recursively feasible and the constraints are robustly satisfied.
Furthermore, larger values of λ lead to a larger region Ωr(λ).
Regarding rGP-MPC, first note that in Proposition 1 (C2) of [107] the following
is not shown: Since an optimal control problem without terminal region is con-
sidered, according to the results in [108] (reviewed in this thesis as Theorem 2

14Note that this condition does not prohibit the change of the nominal model from the current time instant
k to the next k + 1.
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and in Theorem 4), the region of attraction for the nominal case can be charac-
terized by Υ(λ) = {xk ∈ Rnx : V ∗N(xk) ≤ N · d+ λ · ν}. Thus, in the robust case
we need Ωr(λ) ⊂ Υ(λ) ⊂ XN . For this to hold we require 0 < r < N · d + λ · ν,
which establishes an upper bound on r.
Second, in the definition of Ωr(λ) in [107] the value function V ∗N(xk) is time-
invariant, whereas in this work V ∗N(xk|Dk) depends on the changing data set Dk.
For this reason, we extend the definition of the robust invariant set to

Ωr
k(λ) := {xk ∈ Rnx : V ∗N(xk|Dk) ≤ r} ⊂ Υk(λ) ,

which then also changes with k. In order for Ωr
k(λ) ⊂ Υk(λ) to hold we require,

as shown above, 0 < r < N · d + λ · ν. Like the region of attraction Υk(λ) of
the nominal case (see the proof to Theorem 4), also Ωr

k(λ) increases with λ and,
in particular, with k along a specific state sequence x = {x0,x1, . . .} because
V ∗N(xk|Dk) decreases due to the update rule in Theorem 4. Therefore, if the
initial state x0 ∈ Ωr

0(λ), then the subsequent states xk ∈ Ωr
k(λ) and the state

constraints do not become active. The existence of Ωr
0(λ) is thereby established

by Proposition 1 (C2) in [107] (as outlined above) and therefore, if x0 ∈ Ωr
0(λ)

then (3.17) is recursively feasible and the constraints are robustly satisfied.

2. Now we show that the closed-loop system xk+1 = F (xk, κMPC(xk|Dk), ep) is
input-to-state stable w.r.t. the prediction error ep. To this end, we start by show-
ing that the cost function VN(xk, ûk|k) is uniformly continuous in xk. Since the
nominal model F̂ (xk, uk|Dk) is uniformly continuous in xk during the prediction
horizon and due to Lemma 1 (Appendix A.1), there exists a K-function σx(·) such
that

∥∥∥F̂ (xk, uk|Dk)− F̂ (zk, uk|Dk)
∥∥∥ ≤ σx(‖xk − zk‖) for all xk, zk ∈ XN , all uk ∈

U , and for a given data set Dk. In accordance with Lemma 2 (Appendix A.1),
the predicted state evolution then satisfies

∥∥∥x̂k+i|k − ẑk+i|k
∥∥∥ ≤ σix(‖xk − zk‖)

for i ∈ I0:N−1. Furthermore, since the stage and terminal cost are uniformly
continuous in xk, there exists a couple of K-functions σ`(·), σVf(·) such that
‖`(xk, uk)− `(zk, uk)‖ ≤ σ`(‖xk − zk‖) and ‖Vf(xk)− Vf(zk)‖ ≤ σVf(‖xk − zk‖)
for all xk, zk ∈ XN and all u ∈ U . Combining these properties we obtain

∥∥∥VN(xk, ûk|k)− VN(zk, ûk|k)
∥∥∥ ≤ N−1∑

i=0

∥∥∥`(x̂k+i|k, ûk+i|k)− `(ẑk+i|k, ûk+i|k)
∥∥∥

+
∥∥∥Vf(x̂k+N |k)− Vf(ẑk+N |k)

∥∥∥
≤

N−1∑
i=0

σ` ◦ σix(‖xk − zk‖) + σVf ◦ σNx (‖xk − zk‖)

=: σV (‖xk − zk‖) ,

where ◦ denotes the concatenation of functions (e.g. σ1 ◦ σ2(x) = σ1(σ2(x))) and
σV (·) is a K-function. Therefore the cost function is uniformly continuous in xk
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for all xk ∈ XN and all ûk|k.

As shown, for every xk ∈ Ωr
0(λ) the state constraints do not become active.

Thus, the optimal solution û∗k|k of (3.17) is feasible for every x0 ∈ Ωr
0(λ) and we

obtain

‖V ∗N(xk|Dk)− V ∗N(zk|Dk)‖ =
∥∥∥VN(xk, û∗k|k)− VN(zk, û∗k|k)

∥∥∥ ≤ σV (‖xk − zk‖) .

Therefore, the value function V ∗N(xk|Dk) is also uniformly continuous in xk for
all xk ∈ Ωr

0(λ) and a given data set Dk.

Last we show that the value function is a ISS-Lyapunov function. Since V ∗N(xk|Dk)
is a Lyapunov function for the nominal system (Theorem 4) there exists K∞-
functions α1(·), α2(·), α3(·), such that

α1(‖x̂k‖) ≤ V ∗N(x̂k|Dk) ≤ α2(‖x̂k‖)
V ∗N(x̂k+1|Dk+1)− V ∗N(x̂k|Dk) ≤ −α3(‖x̂k‖) .

Moreover, from (3.16) we have that the true process F (xk, uk, ep) is affine in ep

and can be written as F (xk, uk, ep) = F̂ (xk, uk|Dk) + dep. Then F (xk, uk, ep) is
always uniformly continuous in ep because

‖F (xk, uk, e1)− F (xk, uk, e2)‖
=
∥∥∥F̂ (xk, uk|Dk) + de1 −

(
F̂ (xk, uk|Dk) + de2

)∥∥∥
= ‖d(e1 − e2)‖

is Lipschitz continuous with Lipschitz constant L = 1 and therefore also uni-
formly continuous. Then, there exists aK-function σe(·) such that ‖F (xk, uk, e1)−
F (xk, uk, e2)‖ ≤ σe(|e1 − e2|) for all xk ∈ XN , all uk ∈ U , and all |e1|, |e2| ≤ µ.
From these facts, it can be inferred that

V ∗N(xk+1|Dk+1)− V ∗N(xk|Dk)
= V ∗N

(
F (xk, κMPC(xk), ep)|Dk+1

)
− V ∗N(xk|Dk)

= V ∗N
(
F (xk, κMPC(xk), ep)|Dk+1

)
− V ∗N

(
F (xk, κMPC(xk), 0)|Dk+1

)
+ V ∗N

(
F (xk, κMPC(xk), 0)|Dk+1

)
− V ∗N(xk|Dk)

≤
∥∥∥V ∗N(F (xk, κMPC(xk), ep)|Dk+1

)
− V ∗N

(
F (xk, κMPC(xk), 0)|Dk+1

)∥∥∥
+ V ∗N

(
x̂k+1|Dk+1

)
− V ∗N(xk|Dk)

≤ σV
(
‖F (xk, κMPC(xk), ep)− F (xk, κMPC(xk), 0)‖

)
− α3(‖xk‖)

≤ σV ◦ σe(|ep|)− α3(‖xk‖) .

Therefore, according to Definition 17 in Appendix A.2.2 the value function
V ∗N(xk|Dk) is a ISS-Lyapunov function and with that the closed-loop system
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xk+1 = F (xk, κMPC(xk|Dk), ep) is ISS w.r.t. ep for all x0 ∈ Ωr
0(λ).

Remark 23 (Differences in soft and hard output constraints). In the case of soft con-
straints Ys, the proposed controller ensures robust stability and constraint satisfaction
for all initial states that lie in the feasible region Υ0(λ) of the optimal control problem.
In the case of hard constraints Yh, the proposed controller ensures robust stability and
constraint satisfaction for all initial states in a robust invariant set Ωr

0(λ) ⊂ Υ0(λ)
where the constraints are not active. Thus, from a practical point of view, if in the soft
constraints case the initial state xk leads to a feasible solution, we have xk ∈ Υ0(λ)
and the above guarantees hold. If in the hard constraints case the initial state xk leads
to a feasible solution, then we also have xk ∈ Υ0(λ). However, in that case, one
cannot be sure if xk ∈ Ωr

0(λ) is satisfied. If xk /∈ Ωr
0(λ), then feasibility might be lost

at one point. Thus, for safety critical applications the set Ωr
0(λ) would required to be

known in order to check xk ∈ Ωr
0(λ), which is challenging because Ωr

0(λ) (as well as
Υ0(λ)) can in general not be computed but has to be estimated via simulations [160].
This issue could be circumvented if the hard constraints were tightened [107], thereby
enlarging Ωr

0(λ).

Remark 24. Notice that the ISS property is based on the uniform continuity of the
optimal cost function and this does not depend on the size of the error signal. Hence,
even if |ep| is larger than µ for a short period of time in which we assume that the
feasibility of the optimal control problem is not lost, i.e., xk remains in Υk(λ) and
ends in Ωr

k(λ), then the closed-loop ISS property and constraint satisfaction will still
hold.

Remark 25 (Generalization). Theorems 4 and 5 are independent of the input di-
mension and do not require the considered NARX case. They also hold for state
space systems where each state is modeled by an individual GP. Then, the process is
also affine in the prediction error (a vector in that case). Thus, Theorems 4 and 5
also include the multi-input multi-output case. In addition, as long as the presented
assumptions are satisfied, in particular, the update rule in Theorem 4, the stability
results also hold for the case of online hyperparameter optimization and even further,
for general prediction models F̂ (xk, uk|Dk) that are updated online, i.e., the stability
guarantees are not confined to the use of Gaussian process prediction models.

A necessary condition of Theorem 5 is that the nominal model F̂ (xk, uk|Dk) is
uniformly continuous in xk for all xk ∈ XN , all uk ∈ U , and all Dk during the
prediction horizon. In the case of Gaussian processes this can be guaranteed by the
following proposition.

Proposition 3 (GP uniform continuity). The nominal model (3.15) is uniformly con-
tinuous in xk if f̂(xk, uk) = m+(wk|D) with wk = (xk, uk) is uniformly continuous
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in xk. Since the prior mean m(wk) is added to the posterior mean m+(wk|D), the
prior mean has to be uniformly continuous in xk.15 One way to ensure that m+(wk|D)
is uniformly continuous in xk, is to employ continuously differentiable kernels16 (e.g.
the squared exponential covariance function, the Matérn class covariance function with
appropriate hyperparameters, or the rational quadratic covariance function). In that
case, the process is mean square differentiable [1, 158], i.e., the posterior mean function
is differentiable and therefore also uniformly continuous.

Remark 26. Although not required for Theorem 5, note that uniform continuity of
the process F (xk, uk, ep) = F̂ (xk, uk|Dk) + dep in xk is ensured if F̂ (xk, uk|Dk) is
uniformly continuous in xk, which can be established via Proposition 3.

Remark 27. In the majority of publications that utilize a Gaussian process prediction
model within model predictive control, the employed kernel is the squared exponential
covariance function. Thus, the Gaussian process prediction model is usually uniformly
continuous. Furthermore, the uniform continuity assumption of the stage and terminal
cost function is usually also satisfied. Then, all conditions of Theorem 5 are satisfied,
which presents one possible explanation why the model predictive control schemes that
employ Gaussian process prediction models usually seem to be robustly stable, though
in many cases not specifically designed to be so.

3.6.2.1 Resulting Prediction Errors

We finish this section with a discussion on the prediction error ep = yk − ŷk =
f(xk, uk) + ε − m+(wk|Dk). According to Theorem 5, the smaller the error bound
|ep| ≤ µ, the better because the positive invariant set Ωr

0(λ) increases. Since the noise
ε is in practice bounded by a finite ε̄ (Assumption 11), the error bound µ is finite
if the true process f(xk, uk) and the GP posterior mean m+(wk|Dk) are bounded.
Boundedness of the true process is certainly a reasonable assumption in many practi-
cal relevant cases. Boundedness of the GP posterior mean, however, is more subtle.
From a theoretical point of view, such a bound exists under certain conditions.
The posterior mean (with zero prior mean m(w) = 0) can also be expressed via

m+(w∗|D) = ∑n
i=1 αik(wi,w

∗), with wi ∈ W , as a linear combination of n kernel
functions that determines a reproducing kernel Hilbert space (RKHS, [158]). As shown
in [178], a bound in the RKHS exists if universal kernels are employed. One such
kernel is, for instance, the squared exponential covariance function (2.7) for which the
existence of a bound has been established in [150]. The authors of [40] presented a
similar result when modeling the impulse response via a spline kernel. This result has
also been used in [155]. Furthermore, the works [52, 177] provide ways to explicitly
compute the bound, though only with high probability.
15The prior mean is usually specified by the user and often set to zero. Thus, uniform continuity of m(w) is

usually not an issue.
16Note that limiting the kernel to such functions might limit the expressiveness of the Gaussian process.
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In practice, however, m+(w∗|D) will generally be bounded assuming that the em-
ployed GP prior is well chosen and sufficiently informative training data D is used.
Thus, the actual bound depends on the designer’s choices regarding the specific em-
ployed GP model and the involved tuning parameters. Among these, in particular
the thresholds for the prediction error and posterior variance for the presented rGP
approach.

3.7 Terminal Components

The terminal cost function Vf(·) of (3.17) is elementary for stability and can be de-
termined in many ways, as long as Assumption 10 is satisfied. In the following, we
outline a possible approach that is based on the analytic linearization of the Gaussian
process prediction model.

3.7.1 GP Posterior Mean Gradient

In order to analytically linearize the Gaussian process prediction model, we require
the gradient of the posterior mean function m+(w|D) with respect to the regressor
vector w, which we derive in the following.
First note that the regressor training data set W = [w1 · · ·wn]T consists of n

regressor vectors and one regressor vector w = [w1 · · ·wnw ]T consists of nw scalar
regressors. We define the posterior mean gradient with respect to w as

∇m+(w|D) := ∂m+(w|D)
∂w

=


∂m+(w|D)

∂w1...
∂m+(w|D)
∂wnw

 ∈ Rnw ,

which can be determined as follows. From (2.6a) we obtain

∇m+(w|D) = ∂m+(w|D)
∂w

= ∂m(w)
∂w

+ ∂%(w,W )
∂w

K−1(z −m(W ))
(3.19)

with
∂m(w)
∂w

=
[
∂m(w)
∂w1

· · · ∂m(w)
∂wnw

]T
and

∂%(w,W )
∂w

= ∂

∂w

[
%(w,w1) · · · %(w,wn)

]
=
[
∂%(w,w1)

∂w
· · · ∂%(w,wn)

∂w

]
,

and where the derivative ∂%(w,w′)
∂w ∈ Rnw depends on the employed kernel %(·, ·). For
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the squared exponential covariance function (2.7) we obtain

∂%(w,w′)
∂w

= ∂

∂w

(
σ2

f exp
(
−1

2(w −w′)TΛ(w −w′)
))

= σ2
f exp

(
−1

2(w −w′)TΛ(w −w′)
)

︸ ︷︷ ︸
%(w,w′)

· ∂

∂w

(
−1

2(w −w′)TΛ(w −w′)
)

= %(w,w′)(−Λ)(w −w′)
= %(w,w′)Λ(w′ −w) .

(3.20)

The penultimate step results from the identity ∂xTAx
∂x = (A + AT)x = 2Ax for

symmetric matrices A = AT.
At last, assuming a constant prior mean m(w), i.e., ∂m(w)

∂w = 0, and inserting (3.20)
into (3.19) yields the sought gradient of the posterior mean with respect to the regressor
vector

∇m+(w|D) =
[
%(w,w1)Λ(w1 −w) · · · %(w,wn)Λ(wn −w)

]
︸ ︷︷ ︸

[nw×n]

K−1(z −m(W ))︸ ︷︷ ︸
[n×1]

.

3.7.2 Calculation of Terminal Components

We choose the terminal controller as κf(x) = kT(x − xref) + uref and the terminal
cost function as Vf(x̃k) = ‖xk − xref‖2

P = (xk − xref)TP (xk − xref), where k ∈ Rnx

and P ∈ Rnx×nx with P = P T > 0. Vector k and matrix P are computed using
the linearization of the GP prediction model (3.15), based on a training data set Dref
obtained near the reference xref.
The linearization of the nominal NARX model xk+1 = F̂ (xk, uk) with state xk =

[yk yk−1 · · · yk−my uk−1 · · · uk−mu]T takes the following form:


yk+1
yk
yk−1
...

yk−my+1


=



a11 a12 · · · a1my a1(my+1)
1 0 0 0
0 1 0 0
... ... ...
0 0 · · · 1 0


︸ ︷︷ ︸

A



yk
yk−1
yk−2
...

yk−my


+



b1 b2 b3 · · · bmu+1
0 0 0 · · · 0
0 0 0 · · · 0

...
0 0 0 · · · 0


︸ ︷︷ ︸

B



uk
uk−1
uk−2
...

uk−mu



(3.21)
As the next output is computed using the GP with yk+1 = m+(wk|D), the param-

eters in A and B can be determined using the GP posterior mean gradient derived
in Section 3.7.1. The linear model (3.21) has to capture the system behavior at
the reference point xref. Therefore we compute [a11, . . . , a1(my+1), b1, b2, . . . , bmu+1] =
∇m+(wref|Dref)T with wref = (xref, uref) and a training data set Dref obtained near the
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reference.
We furthermore define the feedback vector as kT = sTP with s ∈ Rnx and set

G = P−1. In addition, we define the state constraint set X as the combination
of nx multiple instances of Yh, i.e., X = Yh × · · · × Yh and reformulate X and U
as polyhedral sets of the form X =

{
y ∈ Rmy+1 : qT

i y ≤ ri, i = 1, . . . , nX
}
and U ={

u ∈ Rmu+1 : vT
l u ≤ tl, l = 1, . . . , nU

}
, where nX and nU are the respective numbers

of inequalities. Then, we compute s and G (and therewith P ) offline by solving the
semidefinite optimization problem

max
G,s

log
(

det(G)
)

(3.22a)

s.t. G = GT > 0 (3.22b) G
(
AG+ bsT

)T(
AG+ bsT

)
G

 ≥ 0 (3.22c)
 G (Gqi)
(Gqi)T r2

i

 ≥ 0, ∀i ∈ {1, . . . , nX} (3.22d)
 G (sTvl)
(sTvl)T t2l

 ≥ 0, ∀l ∈ {1, . . . , nU} . (3.22e)

The optimization problem (3.22) results from using the Schur complement in combi-
nation with the discrete time Lyapunov equation and the support function concept of
closed convex sets. The derivation of (3.22) is provided in detail in Appendix A.4. The
resulting s and P are such that the closed-loop linearized system is asymptotically
stable in Xf =

{
xk ∈ Rnx : Vf(x̃k) = ‖xk − xref‖2

P ≤ 1
}
⊆ X and kXf ⊆ U .

Remark 28. If only soft output constraints Ys are considered, Eq. (3.22d) that ac-
counts for the hard state constraints can be removed. If furthermore no input con-
straints U are considered, also (3.22e) can be removed.

Remark 29. As is well known, the quadratic Lyapunov function can be used for the
nonlinear system in a certain neighborhood of the equilibrium, given certain assump-
tions hold. The terminal region definition Xf =

{
x ∈ Rnx : Vf(x) = ‖x− xref‖2

P ≤ ν
}
,

parameterized with ν, could be used to characterize this neighborhood. Then one would
need to take the nonlinear remainder term into account to calculate a particular value
for ν, which would require the solution of a global optimization problem. Such a prob-
lem could be solved by using scenarios or a Monte Carlo approach. However, since the
optimal control problem (3.17) does not need the terminal region constraint, ν is not
required.
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3.8 Simulations

In this section, we provide simulation results for the presented rGP-MPC scheme and
compare it with other MPC controllers. To this end, we consider a continuous stirred-
tank reactor as simulation case study and present the training data set generation and
the resulting terminal components for the MPC, based on the linearized GP posterior
mean function. The closed-loop simulations illustrate and validate the theoretical
properties, as well as that the proposed controller works as expected. This includes
the influence of different initial training data sets, the evolving GP thresholds (Rule 1),
the update rule of Theorem 4, the effect of a limited number of training data points,
the reduction in computational time, and the region of attraction.

3.8.1 Continuous Stirred-tank Reactor

We consider the continuous stirred-tank reactor (CSTR), where substrate A is con-
verted into product B [169]. The following set of differential equations describes the
reactor dynamics:

ĊA(t) = q0

V

(
CAf − CA(t)

)
− k0 exp

(
−E
RT (t)

)
CA(t) (3.23a)

Ṫ (t) = q0

V

(
Tf − T (t)

)
− ∆Hrk0

ρCp
exp

(
−E
RT (t)

)
CA(t) + UA

V ρCp

(
Tc(t)− T (t)

)
(3.23b)

Ṫc(t) = Tr(t)− Tc(t)
τ

(3.23c)

The coolant temperature reference Tr (K) is the input and the concentration CA (mol/l)
the output, i.e., u = Tr and y = CA. The tank and coolant temperatures are T and
Tc, respectively. The model parameters are given in Tab. 3.1.

3.8.2 Training Data Sets

A raw data set Draw (depicted in Fig. 3.3) is generated in simulations using the
plant model (3.23). The data points (zi,wi) consist of values of (yk+1, yk, . . . , yk−my ,

uk, . . . , uk−mu), where z = yk+1 is going to be the GP output and w = (yk, . . . , yk−my ,

uk, . . . , uk−mu) its corresponding regressor. Based on this data, we generate the three
training data sets D0, Dref, and Dcomb. The set D0 is a local subset around the initial
point y0 = CA = 0.6 mol/l. The associated input is u0 = Tr = 353.5 K. The set
Dref is a local subset around the target reference point yref = CA = 0.439 mol/l with
associated input uref = Tr = 356 K. The set Dcomb = D0 ∪Dref is the union of the two
sets.
The sets D0 and Dref are generated by selecting first all points z = yk+1 (and

their corresponding regressor w) that are located within a local neighborhood of the
respective set-points and second, by reducing the number of points via exclusion of
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Table 3.1: CSTR Parameters

Parameters Explanation Value

q0 Reactive input flow 10 l/min
V Liquid volume in the tank 150 l
k0 Frequency constant 6 · 1010 1/min
E/R Arrhenius constant 9750K
∆Hr Reaction enthalpy 10000 J/mol
UA Heat transfer coefficient 70000 J/(min K)
ρ Density 1100 g/l
Cp Specific heat 0.3 J/(g K)
τ Time constant 1.5min
CAf CA in the input flow 1mol/l
Tf Input flow temperature 370K

those that add only little information. For a given data point (zi,wi), all following
points (zj,wj), j > i, are removed for which ‖wi −wj‖ < w̄ with a chosen threshold
w̄. As a result, the sets are less dense but still contain enough informative data points.
The thresholds for D0 and Dref are chosen such that both sets contain approximately
40 data points.
Note that we used arbitrary inputs to sufficiently excite the system. In practice,

one could use tailored excitations to avoid implementation challenges.

Remark 30. All input and output values are given in the original units of the system
(3.23). However, it is beneficial for the modeling process with the GP to normalize the
input-output data to the interval [0, 1].

3.8.3 GP Prediction Models

For the Gaussian process prior we employ a constant mean function m(w) = c. Since
the underlying process equations are smooth and to obtain the universal approximation
property (see Section 3.6.2) we employ the squared exponential covariance function
(2.7) with regressor w = [yk yk−1 yk−2 uk]T. According to (3.10), the NARX state is
then xk = [yk yk−1 yk−2]T. The hyperparameters are θ = {c, l1, l2, l3, l4, σ2

f } and are
computed offline via maximization of (2.8) for each of the three data sets D0, Dref, and
Dcomb. We obtain three sets of hyperparameters respectively (Tab. 3.2) and with that
three different GP prediction models that use the same prior but different training data
sets and hyperparameters. The cross validation results of these different GP models are
shown in Fig. 3.4, where we select test points throughout the regions of the respective
training data sets. Test points are chosen such that they are not part of D0, Dref, or
Dcomb. As can be seen, appropriate GP predictions are achieved with prediction error
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Figure 3.3: Training data sets: The raw data set Draw was generated by chirp signals on the
input. The sets D0 and Dref are local neighborhoods of the initial point u0 and
the reference point yref and their associated inputs.

ep < ēp = 0.02 mol/l and posterior standard deviation σ+ < σ̄2 = 5 · 10−3 mol/l for all
three GPs.

Table 3.2: Hyperparameters

c l1 l2 l3 l4 σ2
f

D0 0.64 0.07 0.29 0.14 9.93 0.06
Dref 0.36 0.20 11.7 0.64 5.07 0.13
Dcomb 0.43 0.42 2.09 1.01 2.83 0.26

3.8.4 rGP-MPC Optimal Control Problem

The continuous-time model (3.23) is discretized with Euler’s method using a sampling
time of Ts = 0.5 min. The input constraints are U = {335 K ≤ Tr ≤ 372 K}, the (hard)
output constraints Yh = {0.35 mol/L ≤ CA ≤ 0.65 mol/l}. We add measurement noise
ε ∼ N (0, σ2

n) to the output data with σ2
n = 0.0032, which we furthermore bound17

17According to the considered system class and Assumption 11 we add Gaussian noise with bounded support.
However, due to the large bound of four standard deviations, the difference is so small that the following
simulation results are equal to the case of unbounded noise.
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Figure 3.4: Cross validation results: Top, the prediction error ep (3.13) is depicted. Bottom,
the posterior standard deviation σ+(w) =

√
σ2

+(w).

by ±4σn. This, together with the universal approximation property of the squared
exponential covariance function (also discussed in Section 3.6.2.1), yields a prediction
error ep that is bounded, thereby fulfilling Assumption 11.

The employed quadratic stage cost is given by

`s(xk, uk) = ‖xk − xref‖2
Q + ‖uk − uref‖2

R

with Q = diag(100, 0, 0), and R = 5.
The linearized GP model at xref, together with the associated terminal controller

and cost function, are computed as explained in Section 3.7 with the training data set
Dref. The resulting linear model becomes

xk+1 =


0.162 0.005 −0.012

1 0 0
0 1 0

xk +


−0.034

0
0

uk .
The feedback vector k and the terminal cost matrix P are computed as presented

in Section 3.7 and we obtain

kT =
[
1.745 0.082 −0.001

]
and P =


16.38 −0.556 −0.066
−0.556 16.32 −0.554
−0.066 −0.554 16.30

 .
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The prediction horizon is set to N = 5 and the resulting optimal control problem is
solved in MATLAB using fmincon on a standard desktop computer.

3.8.5 Simulation Results

First, we simulate the set-point change from (u0, y0) to (uref, yref) and compare the
closed-loop results of the rGP-MPC, a batch GP approach (bGP-MPC) that uses a
fixed training data set, and an output feedback MPC scheme (oMPC) that uses the
model equations (3.23) and acts as a performance bound. We evaluate the performance
for the three cases, where D0, Dref, and Dcomb are used as initial training data sets. The
bGP and rGP are initialized with the same initial training data and hyperparameters
but the rGP updates its training data set during operation. We set ēp = σ̄2 = 0 such
that every data point is considered as a candidate for inclusion18 with no upper limit
on the number of data points, i.e., n̄ =∞. Hence, no points are removed. Due to the
stochastic nature of the noise component, we simulate each case Nsim = 50 times. The
results are depicted in Fig. 3.5 to Fig. 3.7. To quantify the performance we employ
the measure

V̄ = 1
Nsim

Nsim∑
j=0

Nstep∑
k=0

`
(
xjk, u

j
k

)
, (3.24)

which averages the stage costs of the resulting state and input sequences over all time
steps k ∈ {0, 1, . . . , Nstep}, as well as the individual simulations j ∈ {1, 2, . . . , Nsim}.
The resulting V̄ values are presented in Table 3.3.

Table 3.3: MPC Performance V̄ computed by (3.24).

D0 Dref Dcomb

oMPC 59.5 59.5 59.5
bGP-MPC 71.3 95.3 66.2
rGP-MPC 64.5 63.6 66.7

As expected, the output MPC scheme that uses the true model performs best and
always the same (see Table 3.1) because it does not depend on any training data
points. The rGP outperforms the bGP in the D0 and Dref cases due to the additional
information gained during operation. The performance difference is especially large
for Dref, where the bGP, throughout the whole operation, has only data points at the
reference at its disposal but not at the initial condition. The rGP performs significantly
better due to the added data points at the beginning of operation. In the Dcomb case,
the rGP and bGP performance is almost the same for the employed training data
points.
18Not every data point is added due to the update rule of Theorem 4.
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Figure 3.5: Comparison of the three MPC schemes for the case of initial training data D0.
Thin lines represent individual simulations, thick lines represent mean values.

Figure 3.6: Comparison of the three MPC schemes for the case of initial training data Dref.
Thin lines represent individual simulations, thick lines represent mean values.
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Figure 3.7: Comparison of the three MPC schemes for the case of initial training data Dcomb.
Thin lines represent individual simulations, thick lines represent mean values.

Remark 31. The previous simulation results suggest that one should in general prefer
the Dref case over the other cases, which is convenient for the model predictive control
scheme because knowledge at the reference is required anyway to determine the terminal
cost and controller (see Section 3.7). Furthermore, this also suggests a practical rule
for offline hyperparameter determination, namely that the hyperparameters should be
optimized for a data set that contains the target reference.

In the second set of simulations, we investigate the influence of different thresholds
used in Rule 1, i.e., different values for the maximum prediction error ēp and the
maximum prediction variance σ̄2. To this end, we start with Fig. 3.8 that combines
the rGP results of the previous figures for the three training data cases, together with
the now plotted evolution of the prediction error ep and the prediction variance σ2

+.
In particular the prediction variance illustrates nicely the difference between the three
cases. In the case of D0, the variance is small at the beginning and increases around
t = 8 min when the system leaves the neighborhood of the initial condition and moves
towards the reference. The same holds, but the other way round, for the case with Dref,
where the initial (t < 3 min) large error and variance is caused by their computation
before the first data points are added to the training set. The prediction error bound
µ is 0.033, 0.021, and 0.024 for the cases D0, Dref, and Dcomb respectively.
Fig. 3.9 and Fig. 3.10 show results for different threshold values, where we focus on

the simulation case with Dref. The results illustrate that instead of adding all data
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Figure 3.8: Simulation results with the rGP-MPC for the different training data cases to-
gether with the absolute value of prediction error |ep| and the prediction variance
σ2

+.

points, almost the same closed-loop performance can be achieved by adding only a
fraction of them. Hence, this shows not only that online learning can be achieved but
also that it allows working with significantly smaller training data sets, which in turn
result in lower computational costs.
After evaluating the influence of the parameters of Rule 1, we illustrate the influence

of the update rule in Theorem 4 that guarantees a decrease of the value function. To
this end, we continue with the Dref case and additionally insert outliers into the output
measurements in the course of the simulations. The effect of the update rule is shown in
Fig. 3.11. With it, the results are almost the same as before, except for the distortions
due to the outliers, which however are compensated shortly after. All simulation
outcomes are very similar in that case. Without the update rule, the resulting mean
output sequence is different but not necessarily worse (smaller rise time, similar settling
time, no overshoot) than the mean output sequence with the update rule. Some of the
individual simulation outcomes perform even better, which is an indication that data
points with valuable information are indeed discarded by the update rule as was also
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Figure 3.9: Influence of ēp on the rGP-MPC with initial training data Dref. With ēp = 0,
every encountered data point is considered to be added to the training data set.
The variance threshold σ̄2 was set to a large value to not affect the result.

pointed out in Remark 20. On the other hand, the variability among the individual
simulations is much larger. Several of the simulated output evolutions converge slower
to the target, some do not converge at all until the end of the simulation. This is
a direct result of the corresponding input sequences computed by the optimizer. In
between 5min and 11min, the deviation of the mean input sequence from the optimal
input sequence of the performance bound (oMPC, see Fig. 3.5 to Fig. 3.7) is larger
than in the case with the update rule. Furthermore, the individual input sequence
outcomes vary considerably, even hitting the lower constraints. Due to the inclusion of
every encountered data point candidate, the prediction model changes in some cases
in an unfavorable way during the respective simulations, which leads to the depicted
results. Note that qualitatively the same results (including not converging output
sequences) are obtained, even without outliers. For instance, between the reference
change at 5min and the first outlier at 7min, we observe that the input sequences
already deviate considerably from the case with an active update rule, i.e., the outlier
is not the cause but usual noisy data points. This illustrates the importance of the
update rule in Theorem 4, not only for theoretical guarantees but also in terms of
practical application.
Next, we consider the case that the number of training data points is limited by n̄.

For the case of Dref we set n̄ = 40, which is the number of initially available training
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Figure 3.10: Influence of σ̄2 on the rGP-MPC with initial training data Dref. With σ̄2 = 0,
every encountered data point is considered to be added to the training data
set. The prediction error threshold ēp was set to a large value to not affect the
result.

points, i.e., the training data set cannot increase but old data points are exchanged
with newer more informative ones. To this end, whenever a new point is added, the
oldest data point is removed. In Fig. 3.12, we compare the bGP (the initial training
data set is not updated at all), the rGP with n̄ =∞, ēp = σ̄2 = 0 (every encountered
data point is considered to be added), and the rGP with n̄ = 40, ēp = 0.01, σ̄2 = 2·10−5

(data points are only exchanged). The bGP result is the same as in Fig. 3.6 and
represents the worst case because the training data set is not updated at all. The
n̄ =∞ case on the other hand represents the performance bound for this specific case
because it includes the maximum of the incoming data points and does not remove any.
As can be seen, the reaction of the limited case is a bit slower than the performance
bound case but the resulting settling times are almost identical. Thus, with a training
data set of only 40 points, where the points are exchanged during operation, almost the
same performance can be achieved for the considered example as if every encountered
point was included in the training data set D.
Besides the computational cost reduction due to the possibility to work with smaller

training data sets, we also illustrate the computational reduction due to the recursive
update of the Cholesky factor. In Fig. 3.13, we continue with the Dref case, where
we add every incoming point to the training data set and compare the computation
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Figure 3.11: Influence of the update rule in Theorem 4, which permits inclusion of data
point candidates only if they result in a decreasing value function. Outliers
are generated at 7min, 10min, 12.5min, and 20min.

Figure 3.12: Influence of a limited number of training data points on the rGP-MPC with
initial training data Dref.
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times of the full and the recursive update of the Cholesky factor. The results show
that the larger the training data set becomes, the larger the absolute and relative
computational reduction. At t = 24 min the full recomputation of the Cholesky factor
increases the computation times significantly. Investigations point to the reason lying
in the generation of the covariance matrix and the inner workings of Matlab’s chol
function to compute the Cholesky decomposition.

Figure 3.13: Comparison of computation times of the full recalculation of the Cholesky
factor and the recursive update. The computational reduction that goes along
with the recursive update increases with the amount of training data points.

At last, we present simulations of the robust invariant set Ωr
0(λ), also denoted region

of attraction (ROA), and how it changes for different maximum prediction errors µ.
We continue with the Dref case with ēp = σ̄2 = 0 such that every data point is
considered as a candidate for inclusion and n̄ = ∞ so that no points are removed
from Dk. We select 32 different initial conditions x0 = [y0 y0 y0]T and repeat each
of the associated simulations 30 times. These simulations are furthermore repeated
for different µ values, which are obtained by varying the measurement noise from
σ2

n = 0.0032 to σ2
n = 0.0122, where µ is then the largest error of all simulation runs and

time steps. The result in Fig. 3.14 yields a clear tendency. The larger µ, the smaller
Ωr

0(λ).
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Figure 3.14: Change of the region of attraction Ω0 for different µ. Red stars denote infeasible
initial conditions, green stars feasible initial conditions. An initial condition is
marked as infeasible if at least one simulation resulted in a constraint violation.
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3.9 Conclusions

Gaussian processes are increasingly used as prediction models in model predictive
control. We presented an output feedback model predictive control formulation that
uses a Gaussian process-based nonlinear model for prediction, denoted as rGP-MPC.
The approach is applicable to a wide variety of processes, including those where the
state cannot be measured or is difficult to be estimated. In order to gear the control
approach towards the possible application for fast processes, we reduced the compu-
tational costs by reducing and eventually limiting the maximum number of training
data points. To counteract a limited amount of training data (and with that limited
process knowledge) and account for a possibly changing process and process environ-
ment, the approach includes online learning by means of updating the training data
set during operation. To this end, the concept of evolving Gaussian processes was
adapted together with a recursive update of the Cholesky decomposition to minimize
the computational costs associated with updating the covariance matrix inverse.
We showed that the presented rGP-MPC scheme is nominally, as well as inherently

robustly (input-to-state) stable with respect to the prediction error, despite a changing
prediction model. To this end, we presented a structured approach to determine the
necessary MPC terminal components, based on a GP prediction model at the target
point. Notably, the theoretical guarantees hold not only for rGP-MPC. They are
applicable for general model predictive control schemes that use a Gaussian process, or
even other machine learning methods, as prediction model. This possibly explains why
many of the schemes that combine model predictive control and Gaussian processes
in the literature present robust stability properties, though not specifically designed
for it.
Simulations verfied that it is in general possible to start with limited a priori process

knowledge and to refine the model during operation. One important finding is that it
is particularly beneficial to start with a model that captures at least the behavior at
the target reference, which is fortunately an intrinsic necessity for all MPC schemes
that use a terminal region, cost, and controller to guarantee recursive feasibility and
stability. In the case of fixed GP hyperparameters during online operation, a further
consequence is that the hyperparameters should be optimized offline for a data set that
captures the target reference. The simulations underline that rGP-MPC yields good
closed-loop performance with few training data points, thereby efficiently reducing the
computational load. This presents itself as a possible option for very fast processes,
where hyperparameter optimization is not an option but some kind of online learning
is desirable.

Current research is seeking to validate and confirm the presented results for applica-
tion cases that exhibit a more nonlinear system behavior and faster dynamics. One
such example is wind energy generation via tethered kites. Besides the practical rele-
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vance for renewable energy generation, this application case is also interesting from a
theoretical point of view because the rGP-MPC scheme has to be extended from set-
point changes to time-varying reference tracking. Interesting questions in this context
are, for instance, what conditions has the initial training data set to satisfy to achieve
acceptable tracking results, and how to automatically compute safe thresholds for the
data inclusion approach?
Similar to time-varying reference tracking, another question to investigate would be

how the approach performs for time-varying processes. A possible hypothesis to test
could be to combine the squared exponential covariance function with a non-stationary
one to account for time variance in the process model.
At last, future work has to aim at implementing the presented approach in labora-

tory experiments, either with a fully Gaussian process-based prediction model or via
a combination of a deterministic base model and the Gaussian process model.
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4 Gaussian Process supported Control of
Scanning Quantum Dot Microscopy

In this chapter, we present a control framework for scanning quantum dot microscopy,
a novel microscopy technique that generates images of electrostatic potentials of nanos-
tructures. The designated framework uses a two-degree-of-freedom control concept,
including a Gaussian process to learn online, static but unknown maps related to the
scanned nanostructure. The Gaussian process model is used to calculate predictions
that are utilized as a feedforward signal in the two-degree-of-freedom control frame-
work.
The outline of this chapter is as follows. After a first introduction into the topic

(Section 4.1), we present the details of scanning quantum dot microscopy, including the
physical working principle, the original image generation process, as well as a model
derived for simulation purposes (Section 4.2). The proposed two-degree-of-freedom
control framework is detailed in Section 4.3, which includes different developed options
for the feedback and the feedforward part. The performance of the control scheme
and its different parts is investigated via simulations in Section 4.4 and experimental
results are presented in Section 4.5. The chapter is concluded in Section 4.6.

4.1 Introduction

Research in physical chemistry and nanotechnology is driven by a wide field of possible
future applications such as, for instance, molecular manipulation that would enable
the assembly of molecular machines or nanoscopic electric circuits by single molecule
placement [56, 134]. Doing so requires a fundamental understanding of the specific
characteristics of the basic building blocks of matter, namely atoms and molecules.
Some of these characteristics are the electric properties that govern in many cases the
functionality of nanoscale objects and systems. This is particularly important for new
materials and devices associated with nanoscale electronics, such as semiconductors.
The investigation of electrostatics at the nanoscale becomes therefore more and more
important and is a vivid field of ongoing research (see, e.g., [59, 78, 127, 137, 196]).
Scanning quantum dot microscopy (SQDM), introduced in [67, 195] is a novel mi-

croscopy technique that allows to measure and generate 2D images of the electrostatic
potentials (Fig. 4.1) of surface nanostructures (single atoms or molecules, or nanoscopic
structures built from several atoms/molecules) with sub-nanometer resolution at large
imaging distances. It furthermore allows to separately image the electrostatic poten-
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tial and the surface topography. It was recently shown in [196] that SQDM does not
only allow to generate qualitative but also quantitative measurements of electrostatic
potentials. The work [196] also demonstrated large-scale imaging (Fig. 4.1), resolving
both small (single atoms and molecules) and large structures (an island composed
of several hundreds of molecules) in the same image, whereas in the previous works
[67, 195] only isolated atoms and molecules could be imaged independently of each
other. Given this progress scanning quantum dot microscopy has become a widely
applicable microscopy technique for the area of nanotechnology.
One of the key components is a tailored control framework, as presented in this

chapter. Its main contribution is a significant increase of the scanning speed and
therewith a decrease of the time required for image generation. This in turn enables
to scan larger samples than before, as for example shown in Fig. 4.1 [196].

Figure 4.1: Left: Scanning tunneling microscope image of a sample [196] that shows a silver
Ag(111) substrate with a large island located on the right, consisting of PTCDA
(Perylenetetracarboxylic dianhydride) molecules and further individual features
distributed on the whole sample (see [196] for more information). The image
size is 600 × 600 Å2. Right: 2D electrostatic potential image generated with
SQDM of the same sample. The SQDM image consists of 200×200 pixels.

Contributions
The contributions of this chapter are as follows.

• We present the first control framework for scanning quantum dot mi-
croscopy, which is a key enabling component that turns SQDM into a well
applicable microscopy technique.

• The designated framework is a two-degree-of-freedom control scheme that
consists of a feedback and a feedforward part.
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– Feedback part: Two different controllers tailored to SQDM are developed;
an extremum seeking controller and a slope tracking controller.

– Feedforward part: Two different feedforward signal generators are developed;
an approach that uses the last line scan as a prediction for the next line and
an approach that utilizes a Gaussian process that online learns unknown
static maps, which arise in the process of SQDM and can be leveraged to
generate suitable feedforward signals.

• The control framework allows to continuously scan the sample (opposed to
the initial method of generating SQDM images, based on spectroscopy grids
[195]) at different scan speeds, which can be adapted during operation. This
allows order-of-magnitude faster image generation and eliminates the need for
spectroscopy. This puts it in line with other microscopy techniques like scanning
tunneling microscopy [22] and atomic force microscopy [6].

• The resulting increased scan speeds enable to generate larger images and with
higher resolution than before.

• The control framework furthermore allows scanning images with highly vary-
ing electrostatic potentials. Before, highly varying electrostatic potentials
resulted in an even slower image generation process due to the employed spec-
troscopy grids.

The extremum seeking feedback controller and the Gaussian process-based feedfor-
ward were published in [122]. Slope tracking controller and the last line feedforward
are under preparation for publication and were used to generate the results published
in [196].

4.2 Scanning Quantum Dot Microscopy

In this section, we explain the working principle of scanning quantum dot microscopy
(Section 4.2.1), present the original image generation process (Section 4.2.2), and
provide a model that will be required for simulations (Section 4.2.3).

4.2.1 Working Principle

Scanning quantum dot microscopy is able to measure electric surface potentials and
allows distinguishing between topographical effects and those generated by electric
charges. It utilizes a frequency modulated non-contact atomic force microscope (NC-
AFM [6]), operating in ultra-high vacuum and at a temperature of 5K. The atomically
sharp tip (Fig. 4.2) is mounted on a tuning fork (qPlus sensor [62]) that oscillates with
a frequency f = f0 + ∆f of around 30 kHz, where f0 is the free resonance frequency
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Figure 4.2: Schematic of scanning quantum dot microscopy (left). The tuning fork tip of a
frequency modulated non-contact atomic force microscope is decorated with a
quantum dot (QD), a bias voltage source Vb is connected between the tip and
the sample. Depending on the electrostatic potential of the nanostructure on
the sample surface and the bias voltage, a single electron (e−) can tunnel back
and forth between the tip and the quantum dot. The tip together with the
quantum dot is moved back and forth in a line by line raster scanning pattern
(right).

and ∆f is the frequency change that is caused by a vertical force gradient acting on
the tip. Typically, this force is the result of the tip-sample interaction.
The AFM tip is decorated [56, 58, 183, 193, 194] with a quantum dot (QD)1, a

nano-sized object whose energy levels can take only discrete values. Changes of the
electrostatic potential Φs of the surface can change the QD’s charge state via gating
as an electron tunnels from the tip into the QD or the other way round (charging
or discharging), which leads to an abrupt change in the tip-sample force. These tip-
sample force changes lead to a shift in the measured oscillation frequency of the NC-
AFM, effectively transducing the information about the electrostatic potential of, e.g.
a complex nanostructure, into the measurable quantity ∆f . Monitoring the charging
events of the quantum dot while scanning the sample is the basic working principle of
scanning quantum dot microscopy.
In order to detect the charging events, a bias voltage source Vb is connected to the

sample while the tip is grounded (Fig. 4.2). The associated electrostatic potential Φb
that is generated by Vb is superimposed on the intrinsic electrostatic surface potential
of the sample Φs. At the position of the QD/the microscope tip p = [x y z]T, the
effective electrostatic potential is Φ∗(p) = Φs(p) + Φb(p). Accordingly, a change in Vb
then leads to a change of the effective electric potential Φ∗(p). Therefore, by varying
Vb, charging or discharging of the QD can be induced at will.
The quantum dot’s charging events lead to a change in the tip-sample force, whose

gradient is proportional to ∆f for small amplitudes of the AFM tip oscillation [61].
1Currently a PTCDA (Perylenetetracarboxylic dianhydride) molecule serves as quantum dot.
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Figure 4.3: The spectrum ∆f(Vb,p) (left image) describes how the tuning fork oscillation
frequency changes with the bias voltage Vb and the position p of the microscope
tip over an exemplary sample topography (right image). The overall parabolic
shape of the spectrum is a consequence of the tip-sample capacitance [70]. The
SQDM specific dips result from the charging events of the quantum dot. The
voltage values where the two dips reach their minimum are indicated by V −(p)
and V +(p).

The changes of the tip-sample force generated by the charging events appear in the
so-called spectrum as features that we denote as dips (Fig. 4.3). Within the voltage
interval of these two dips, one electron tunnels back and forth between the QD and
the microscope tip. Thus, the dips lead to different Vb intervals with different charge
states of the quantum dot. We denote the voltage values at which the dips reach their
minimum with V −(p) and V +(p), or short V ∓(p). These values characterize the dips’
positions within the spectrum and depend on the microscope tip position p because
the electrostatic potential Φs varies in space and therefore the charging events occur
at different Vb values for different tip positions (see Fig. 4.4). Hence, the spectrum,
denoted by ∆f(Vb,p), depends on both the bias voltage and the tip position and
therewith on the surface and it’s properties.

By means of

Φ∗(p) = V −0 ·∆V (p)
∆V0

− V −(p) , (4.1)

the effective surface potential Φ∗(p) at the position of the tip can be calculated, where
∆V (p) = V +(p)−V −(p) and V −0 ,∆V0 are calibration values usually measured at the
start of an image scan. The actual surface potential Φs can be recovered from Φ∗(p)
through deconvolution in post-processing. A deconvoluted version of the SQDM image
in Fig. 4.1 can be found in [196]. In the rest of this chapter we will deal with Φ∗ unless
otherwise indicated. For more details see [197]. The V ∓(p) maps together with Φ∗(p)
of the sample shown in Fig. 4.1 are illustrated in Fig. 4.5.
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Figure 4.4: Exemplary cutout (left image) of the spectrum ∆f(Vb,p) illustrating the move-
ment of the negative dip along the parabola at different microscope tip positions
p and p′ (right image). Each plotted line corresponds to the spectrum at the
respective tip position.

Figure 4.5: From left to right: the V −(p) map, the V +(p) map, and the resulting effective
electrostatic potential Φ∗(p) of Fig. 4.1.

4.2.2 Original Image Generation Process

The image generation process previously used [67, 195] performed on the basis of pixel
discretization (Fig. 4.2), where the tip with the quantum dot is moved from pixel to
pixel. At the first pixel p0, a complete spectrum (like Fig. 4.3) is measured and the
V ∓0 values, i.e., the positions of the dips, at this pixel are determined. Then, the tip
is moved to the next pixels to determine the corresponding V ∓(p) values. To this
end, the intervals in which the V ∓(p) values will change while scanning the sample
are assumed to be known a priori. Then, the tip is moved from pixel to pixel and the
bias voltage Vb is swept accordingly within these two intervals (e.g. a voltage range of
0.2V instead of 6V for the complete spectrum). This results in the measurement of
local dip spectra. After obtaining the local dip spectra for all pixels, the V ∓(p) values
are determined for each pixel and used in (4.1) to generate Φ∗(p).
The main limitation of this image generation process is the required large measure-

ment time. For instance, measuring the local dip spectra takes about 3 s for each
dip and pixel for a certain Vb interval size. Hence, the determination of the complete
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V ∓(p) maps in Fig. 4.5 would require 66.7 h (in comparison, the data shown in Fig. 4.5
was generated by the proposed control approach in this thesis, which results in signif-
icantly smaller measurement times). This severely limits the applicability of scanning
quantum dot microscopy. In particular,

• the microscope is blocked for several hours for the generation of one image,

• the longer the measurement time, the higher the probability of failures, and

• effects like (e.g. piezo and temperature) drift increase and deteriorate image
quality.

Furthermore, obtaining Φ∗(p) images from a grid of spectra limits scanning quantum
dot microscopy in several ways:

• Generation of fast and rough images for a first impression is not possible.

• Generation of images like the one presented in Fig. 4.1 and Fig. 4.5 are practically
impossible.

• The measurement times of the local spectra increase if the aforementioned voltage
intervals, wherein the dips move, increase. This can occur, for instance, for other
substrate-sample combinations with stronger electrostatic variations and thus,
reduce the applicability even further.

4.2.3 Model

To evaluate and develop the control framework, a model and simulation environment
was developed, which involves a model of scanning quantum dot microscopy, together
with reference data maps of V −(p) and V +(p).

Figure 4.6: SQDM block diagram.

Fig. 4.6 illustrates the SQDM system. In the experiment, the current bias voltage
Vb and tip position p result in an oscillation frequency f of the tuning fork different
from the free resonance frequency f0. Hence, Vb and p are the inputs to the system
and the frequency change ∆f is the output. The bias voltage Vb is the control input
to the system and can be chosen freely, whereas the tip position p changes according
to the line by line raster scanning pattern as shown in Fig. 4.2.
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The relatively small frequency change ∆f (only up to a few Hz, see Fig. 4.4), com-
pared to 30 kHz of the free resonance frequency f0, is determined from the oscillation
signal using a phase-locked loop (PLL), which can be modeled as a first order system
(right block in Fig. 4.6)

GPLL(s) = ωPLL

s+ ωPLL

with bandwidth ωPLL. The output of the PLL is furthermore corrupted by white
Gaussian noise.
Regarding the left block in Fig. 4.6, when Vb or p changes, the oscillation frequency

changes almost instantaneously. Therefore, this block can be modeled as a memoryless
function. In fact, this function is the spectrum of Fig. 4.3. To simulate SQDM and the
corresponding image generation process, the spectrum ∆f(Vb,p) has to be available
as an analytic function that depends on the bias voltage and the tip position. Since
the spectrum is the superposition of a parabola (see Fig. 4.3 and [70]) and the two
dips, which we model as Gaussian curves2, the ansatz for the spectrum is

∆f(Vb,p) = ∆fpara(Vb) + ∆f−(Vb,p) + ∆f+(Vb,p) (4.2)

with the parabola function

∆fpara(Vb) = c1V
2

b + c2Vb + c3 (4.3)

and the Gaussian curves

∆f−(Vb,p) = d− · exp
−(Vb − V −(p)

w−

)2 (4.4a)

∆f+(Vb,p) = d+ · exp
(
−g

(
Vb − V +(p)

w+

))
(4.4b)

for the dips, where d∓, V ∓(p), w∓ are the respective depth, position, and width of
the dips. The depth and width of the dips are nearly constant while scanning the
sample, whereas the dips’ position V ∓(p) depend on the tip position p and has to be
provided via reference data. The function g(·) in (4.4b) is considered as a polynomial
g(x) = a1x

2 + a2x
4 + a3x

6 to account for the slightly deformed shape of the positive
dip. The parameters in (4.3) and (4.4) are then fitted using experimental data. The
resulting fit in Fig. 4.7 and Table 4.1 shows that the proposed ansatz is well suited to
model the experimentally acquired ∆f spectrum.
To simulate the changing tip position, the experimental reference data of Fig. 4.5

for V ∓(p) for every pixel is fed to (4.4). Thus, at each new pixel in the simulation,
the dips are shifted according to the experimental reference. This model is used for

2Note that in the actual experiment the shape of the dips is somewhere between a Gaussian curve and a
compressed half-circle that depends on the chosen tip oscillation amplitude, the value of V ∓(p), and the
width of the electronic level of the quantum dot. See also [86].
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Figure 4.7: Spectrum of Fig. 4.3 with the fitted function (4.2).

Table 4.1: ∆f Spectrum Fit Parameters

c1 = −1.3 a1 = 0.70 d− = −1.1 d+ = −4.6
c2 = 0.56 a2 = −0.61 V − = −1.3 V + = 4.3
c3 = −0.76 a3 = 1.64 w− = 0.022 w+ = 0.087

the simulation results presented in Section 4.4.

4.3 Two-degree-of-freedom Control Framework

Two-degree-of-freedom (2DOF) control is an approach that consists of two parts,
a feedback part/controller and a feedforward part/controller [9, 80], illustrated in
Fig. 4.8. The objective of the feedback controller is to regulate the error between a
reference and the controlled variable to zero. The objective of the feedforward part
is to “help” the feedback part by increasing the regulation performance. To this end,
the feedforward part often contains a model approximation of the controlled process,
which allows computing open-loop inputs that assist the regulation when, for instance,
the reference changes.
Two-degree-of-freedom control approaches are well known in scanning probe tech-

niques like scanning tunneling microscopy (STM) or atomic force microscopy (AFM).
There, the objective is to control the piezo stages that govern the movement of the
microscope tip in x, y, and z-direction to achieve fast scanning. The z-piezo is con-
trolled according to the topography feedback signal (e.g. tunneling current in STM
or cantilever deflection in contact mode AFM [165, 166]), whereas the piezos in x and
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Figure 4.8: General two-degree-of-freedom control structure.

y-direction are controlled such that the tip follows specific reference trajectories in
the (x, y)-plane (that implement the raster scanning pattern) as close and as fast as
possible. For the main scanning direction, this is usually a triangular signal [149]. The
controllers are often based on models of the respective piezo stages. The feedforward
part of the 2DOF controllers is therefore also usually model-based and techniques
like H∞, l1-optimal, model inversion, or iterative learning control are employed. For
overviews on this topic see [37, 44, 71, 100, 149, 204].
Although scanning quantum dot microscopy is based on AFM, the considered con-

trol problem is different from the one in AFM. First, notice that electrostatic potential
images are generated via SQDM at a constant height z. Thus, control of the z-piezo is
not necessary. Furthermore, the controllers of commercially available NC-AFMs (used
for SQDM) are, up to now, sufficient to deal with the occurring scan speeds. One of
the reasons for this is the fact that the bottleneck in achieving high image generation
rates with SQDM is not the task of tracking reference trajectories for the microscope
tip but tracking unknown and changing electric parameters (the V ∓ values) via the
quantum dot.
As detailed in Section 4.2.1, the effective electrostatic potential of the sample at the

position of the tip Φ∗(p) changes in the three dimensional space and to compute it
we need, according to (4.1), measurements of the negative and positive dip positions
V ∓(p) that depend themselves on the position of the microscope tip. Therefore, from
a control point of view, SQDM with the changing V ∓(p) values can be regarded as
a parameter varying system and the objective of this chapter is to design a control
framework that automatically determines and tracks the unknown parameters V ∓(p)
while scanning the sample. The better a potential controller can track the V ∓(p)
values, the faster the sample can be scanned.
As outlined, V ∓(p) cannot be measured directly and a model of the respective

dynamics is unavailable because it depends, besides the scan speed, directly on the
electrostatic potential, which itself is unknown. Thus, a potential control approach
should be majorly model-independent. It furthermore has to adapt Vb indirectly, based
on a quantity that can be measured, in this case, the frequency change ∆f . Hence,
we are looking for a control law of the form Vb = κ(∆f).
In addition, we want to exploit the repetitive nature of the line by line raster scan

pattern to improve control performance. To this end, we present in the following a two-
degree-of-freedom control approach, consisting of a feedback and a feedforward part
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(Fig. 4.9). For both parts we develop two different approaches, leading to different
versions of the 2DOF controller.

Figure 4.9: Proposed 2DOF control structure: The bias voltage Vb is the sum of the feedback
and feedforward output. The feedforward part is influenced by the current tip
position p.

The first feedback controller is an extremum seeking controller and the second con-
troller is called slope tracking controller. The central idea to both controllers is, instead
of measuring the dip spectrum (time consuming, contains a lot of unnecessary data),
to track one specific reference point in each dip. One major difference between the
extremum seeking and the slope tracking controller is this reference point. While the
extremum seeking controller tracks directly V ∓(p), the slope tracking controller tracks
a point on the dip’s slope (thus the name).
The objective of the feedforward part is to provide a prediction for the course of

V ∓(p) for the next line. With a good prediction, the feedback controller is already
close to the true value of the reference point, and the better the prediction, the less the
feedback controller has to correct. This leads to a more accurate tracking of V ∓(p),
which in turn allows to increase the scanning speed. In addition, if the Vb value leaves
the interval of the respective dip, it yields a ∆f value that is located on the parabola
part of the spectrum (Fig. 4.3). This can lead to the Vb value further diverging from the
dip. As we will discuss in the next subsection, the feedforward signal is also critical to
prevent this situation (or at least significantly lower the probability of this happening).
The presented feedforward approaches both leverage the repetitive nature of scanning
quantum dot microscopy. In particular we present (i), an approach that merely uses
the last scanned line as a prediction for the next and (ii), an approach that utilizes
a Gaussian process to generate a model of V ∓(p) online and from that a prediction
for the next line to be scanned. The individual 2DOF parts will be discussed in more
detail in the remainder of this section.

4.3.1 Feedback Control

We develop two different feedback controllers, namely an extremum seeking controller
(Section 4.3.1.1) and a so-called slope tracking controller (Section 4.3.1.2). Afterwards,
we investigate the influence of the shape and size of the dips on the feedback controllers’
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performance (Section 4.3.1.3). This already yields some specific recommendations for
practitioners of scanning quantum dot microscopy.

4.3.1.1 Extremum Seeking Controller

The fact that the dips’ positions V ∓(p) characterize the minima of the local convex
functions ∆f∓ satisfying

V −(p) = argmin
Vb

∆f−(Vb,p) (4.5a)

V +(p) = argmin
Vb

∆f+(Vb,p), (4.5b)

can be exploited for the determination of V ∓(p). Since ∆f is measured online by the
phase-locked loop, the minima of ∆f∓ can be determined continuously by appropri-
ately adapting the input Vb in (4.5a) and (4.5b) during the scanning process.
This can be achieved by employing methods of extremum seeking control [10, 207].

As the name indicates, these methods are designed to find the extremum, i.e., a min-
imum or a maximum, of the output/a function of a given system. The core principle
includes a seeking element that continuously samples the output signal at the current
operating point to obtain some kind of direction or gradient information. If a mea-
sure of the gradient is available, the current operating point is changed accordingly in
the negative gradient direction. If the optimum is reached, the gradient is zero and
the operating point is not changed anymore. Thus, extremum seeking approaches are
closely related to optimization and are therefore also sometimes called real-time opti-
mization methods [10]. In principle, an extremum seeking controller can be realized
in different ways, though they have to satisfy a variety of additional properties, such
as, for instance, low computational load or the ability to deal with constraints.
Works on extremum seeking date back to as early as 1922 [101] or 1951 [47]. Though

many other works were published in the second half of the 20th century, e.g. [72], it
wasn’t until 2000 that a rigorous stability analysis of extremum seeking control was de-
veloped [96]. Since then, interest has sparked again and found its realizations in appli-
cations such as anti-lock-breaking systems [205, 206], maximum-power-point-tracking
[29, 105], source seeking [38, 206], beam control in particle accelerators [164], or the
control of plasma in a Tokamak reactor [34]. Extensions for discrete time systems
[36], for multivariable systems [162], systems with partial model information [3, 72],
and further results on stability [164, 182] exist. Generalizations of the extremum
seeking control scheme such as a unifying framework [139] and with optimization ap-
proaches, such as Newton like extremum seeking [60, 133], stochastic [109, 110], and
a non-gradient approach [140] have been developed too. For extensive lists of further
publications see [164, 181, 207].
We employ an adapted version of the approach of [96] as shown in Fig. 4.10, where

we deal with a local convex function h(u) for which there exists a minimum at u = u∗.
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Figure 4.10: Block diagram of the extremum seeking control approach.

At this minimum we naturally have dh
du

∣∣∣
u∗

= 0. To search for u∗, a dither signal
d(t) = ad sin(ωdt) is used to perturb the current operating point û, i.e., u(t) = û+d(t).
The resulting signal y(t) = h(u(t)) is passed through a high pass filter GH(s) = s

s+ωH
to eliminate any constant offsets. The filtered signal ξ1(t) is then multiplied by the
phase shifted dither signal3 and low pass filtered with GL(s) = ωL

s+ωL
. This leads to

ξ2(t) and it can be shown (see Appendix A.5) that

lim
t→∞

ξ2(t) = a2
d

2
dh
du

∣∣∣∣
û

at the current operating point û. Choosing K := −2/a2
d in Fig. 4.10, one obtains

lim
t→∞

ξ3(t) = −dh
du

∣∣∣∣
û
,

i.e. ξ3(t) tends to the negative gradient of h(û). Hence, ξ3(t) can be used subsequently
to implement a gradient descent approach, realized by the integration of ξ3(t), turning
û into an estimation of the minimizer u∗.
In SQDM we have h(u) = ∆f(Vb), which is locally convex in the dips ∆f− and

∆f+. Then, the extremum seeking controller computes the derivative ∆f ′ = d∆f
dVb

by
modulating the dither signal d(t) onto the Vb signal. Since ∆f ′ = 0 characterizes the
dips’ minima, it also characterizes exactly the value of V ∓(p). Thus, if a potential
controller regulates ∆f ′ to zero, it automatically yields Vb = V ∓(p).4 Therefore,
∆f ′ = 0 can be interpreted as the control reference and the gradient descent is achieved
by using an integral controller

Vb,FB(t) = KESC

∫ t

0
ed(τ) dτ

that minimizes the error ed(t) = ∆f ′ref − ∆f ′(t) with ∆f ′ref = 0 and KESC > 0. The

3The phase of ξ1(t) is shifted by the high pass filter by φ. In order to be in phase, the dither signal that is
multiplied with ξ1(t) is shifted also by φ.

4Note that only one dip can be tracked at a time.
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voltage applied to the AFM tip is

Vb,mod(t) = Vb,FB(t) + Vb,FF(t) + d(t)
= Vb(t) + d(t) ,

where Vb,FF is the feedforward signal computed as detailed in Section 4.3.2. Note that
the signal Vb = Vb,FB + Vb,FF without the dither signal is used for image generation.
The corresponding block diagram is depicted in Fig. 4.11.

Figure 4.11: Block diagram of the closed-loop with the ESC.

The extremum seeking controller parameters that need to be chosen are the dither
signal amplitude ad and frequency ωd, the low and high pass filter cut-off frequencies
ωL and ωH, and the control gain KESC. In the following, we present some general
guidelines for choosing these parameters, based on the characteristics of the respective
dip and the phase-locked loop.

Dither Signal The interval in which the applied bias voltage varies locally is [Vb −
ad, Vb +ad]. The gradient of the dip d∆f

dVb
is then approximated within this interval, i.e.,

an average gradient around the current bias voltage Vb is computed. A natural upper
bound for the dither signal amplitude ad is therefore the dip width w∓ itself. On the
other hand, the smaller ad, the more accurate the gradient at the current Vb. Thus,
we get

ad ≤ w∓ ,

where ad should be chosen as small as possible. However, the ∆f measurements for
the gradient computation are corrupted by noise, which poses a lower limit on ad.
Regarding the choice of the dither signal frequency ωd: the higher the frequency, the

faster the gradient estimate converges but also the higher the variance of the estimate.
Additionally, if ωd is much larger than the system’s bandwidth, the dither signal
is damped and shifted significantly and in consequence, the gradient computation
deteriorates. Hence, an upper bound depends on the maximum bandwidth of the
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system dynamics. In SQDM, the limiting element is the phase-locked loop with its
bandwidth ωPLL. We have found

2ωPLL ≤ ωd ≤ 10ωPLL

to work well, where larger values decrease convergence time but increase variance.

Filter Cut-Off Frequencies The objective of the high pass filter is to remove the
constant offset of the ∆f signal. This can be achieved sufficiently fast for

ωH ≥ 0.5ωd .

The objective of the low pass filter is to smoothen the signal ξ2. The smaller ωL the
stronger the smoothing. The stronger the smoothing, the less oscillatory the gradient
approximation becomes but also the slower the convergence. Hence, choosing ωL is a
trade-off between convergence speed and variance, similar to ωd. We have found that

0.1ωd ≤ ωL ≤ 0.5ωd

works well. Accordingly, ωL can be chosen within this interval, depending on the
objective of fast convergence (fast scanning) or small variance.

Phase Shift The phase-locked loop and the high pass filter introduce an additional
phase shift

φ = arg
(
GPLL(jωd)GH(jωd)

)
w.r.t. the dither signal d(t). This can be accounted for by adding the same phase
shift φ to the dither signal that is multiplied with the high pass outcoming signal (see
Fig. 4.10).

Control Gain To facilitate gain tuning, we define KESC via

KESC = kESC

|GPLL(jωd)GH(jωd)|
, (4.6)

where kESC > 0 is the new tunable extremum seeking controller gain. This redefinition
automatically compensates the amplitude change of ξ3(t) introduced by the PLL and
the high pass filter. This way the PLL and the high pass filter can be changed without
influencing the amplitude of ξ3(t). Note that the low pass filter GL(jωd) is not included
in (4.6) because then one loses the possibility of adjusting the convergence of ξ3(t)
independently of that of û(t).
The larger kESC, the faster the convergence to the minimum but also the more

oscillatory the estimated minimizer û(t) = Vb(t). Hence, the larger kESC, the faster we
can scan the sample but at the cost of less accurate tracking. In particular, oscillations
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due to high kESC values eventually appear in the final image as noise. Furthermore, if
the oscillations in Vb become too large, the dip might be lost. For instance, when the
negative dip is tracked the oscillations might cause Vb to leave the dip towards the left
side of the dip. In that case, the gradient descent then leads the controller to further
decrease the Vb value down the parabola, making it impossible to recover the dip.

4.3.1.2 Slope Tracking Controller

The second feedback controller is based on the idea to track a point on the dips’ slope
(Fig. 4.12), instead of tracking the dips’ minima. The resulting ∆f value is then set as
the reference value ∆fref for the whole sample and the deviations ef (t) = ∆fref−∆f(t)
are used directly as an error to the integral controller

Vb,FB(t) = KSTC

∫ t

0
ef (τ) dτ (4.7)

that adapts Vb accordingly. The resulting voltage applied to the AFM tip is

Vb(t) = Vb,FB(t) + Vb,FF(t)

with Vb,FF computed as detailed in Section 4.3.2. The resulting block diagram is
depicted in Fig. 4.13.

The slope tracking controller parameters that need to be chosen are the exact position
of the reference point ∆fref and the control gain KSTC.

Reference Point The choice of the slope tracking controller reference point ∆fref is
very important, in particular, because most of the ∆f values of a dip appear three
times in the local spectrum around the respective dip (see Fig. 4.12). We choose ∆fref
to lie on the inner slope of the dips (i.e. on the right slope of the negative dip and on
the left slope of the positive dip) and detail the reasons in the following.
First, note that the inner slope is always larger than the outer slope (compare

Fig. 4.3 and Fig. 4.12), which suggests better control performance on the inner slope.
Second, if the reference point is located on the inner slope, according to (4.7) the
controller is able to drive Vb back to ∆fref even if Vb has left the dips towards the
vertex of the parabola (the sign of ef does not change until the vertex), although
convergence to ∆fref would not be as fast as within the dip due to the relatively flat
slope of the parabola. This property is lost if the reference point is chosen to lie on
the outer slope and Vb had left the dips towards the part of the parabola where values
decrease indefinitely. In that case, the controller would drive the bias voltage to even
larger absolute values until the corresponding ∆fref value on the parabola is reached
(crossing of the dashed black line and the blue parabola on the left side in Fig. 4.12).
In general, the slope tracking controller won’t be able to recover the dip in that case.
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Figure 4.12: Measured spectrum of the negative dip with controller reference points for ex-
tremum seeking and slope tracking controller. The dashed black line indicates
that the ∆fref point of the slope tracking controller has three crossings with
the blue spectrum. Hence, three possible equilibria of the closed-loop system
exist for the slope tracking controller. The one on the dip’s inner slope (on the
right-hand side for the negative dip) is the point we want to track. In case of
the positive dip, everything is mirrored on the vertical axis.

Regarding the exact position, ∆fref should lie relatively far away from the dip min-
imum at V ∓(p) because this is another critical point for the slope tracking controller.
If Vb moves over this point (e.g. Vb < V −(p) for the negative dip) the control error ef
becomes smaller instead of larger, which automatically has a deteriorating effect on
the control performance and increases the probability that the dip is left towards the
part of the parabola where values decrease indefinitely.
Good starting points for the reference point are ∆fref := ∆f(V −0 + w−) for the

negative dip and ∆fref := ∆f(V +
0 − w+) for the positive dip.

Controller Gain As the reference point is chosen to lie on the inner slope of the two
dips and the corresponding slopes’ gradients have different sign, we need KSTC > 0
for the negative dip and KSTC < 0 for the positive dip. As for the extremum seeking
controller, the larger the absolute value of KSTC the faster the convergence to ∆fref
but also the more oscillatory. Thus, the larger the absolute value, the faster the sample
can be scanned but at the cost of less accurate tracking.

Systematic Error The slope tracking controller does not require the computation
of the derivative and is therefore, in principle, faster, i.e., the resulting control error
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Figure 4.13: Block diagram of the closed-loop with the slope tracking controller.

decays faster. However, it introduces a systematic error eSTC := V ∓(p) − Vb(∆fref)
due to the difference between V ∓(p) and the Vb value at the slope tracking controller
reference ∆fref (approximately5 20 mV in Fig. 4.12). Additionally, this error is not
constant and changes while scanning because when the dip changes its position it slides
the parabola up- or downwards. For further clarification imagine that the negative
dip moves vertically upwards (no horizontal movement). In that case, V −(p) does not
change but Vb(∆fref) changes to more negative values, moving closer to V −(p). Hence,
eSTC decreases as the dip moves vertically upwards and decreases as the dip moves
downwards. This effect also occurs when the dip moves along the parabola because
there is always a vertical motion component. Furthermore, the effect is larger for the
positive dip because it is typically located at steeper parts of the parabola where the
vertical motion is more pronounced.

4.3.1.3 Influence of Dip Shape and Size

We have established a connection between some of the parameters of the feedback
controllers, the dips, and the phase-locked loop. Here we also investigate how the
performance of the feedback controllers is influenced by the dips’ shape and size,
which depend on the dips’ depth d∓ and width w∓. To this end, and for the moment,
we do not consider the tracking but only the set-point regulation problem, i.e., we do
not consider the scanning process but let the microscope tip rest at one position in
space. Then, the electrostatic potential does not change and the dips’ positions are
constant.
We illustrate the influence of the dips’ depth d∓ via simulations for the negative dip

(Fig. 4.14) and positive dip (Fig. 4.15) and observe that the deeper the dip, the better
for control as the settling times decrease with larger dip depths. We observe that, as
explained in Section 4.3.1.2, the slope tracking controller is generally a bit faster than
the extremum seeking controller because it does not need to estimate the gradient.

5Since the positive dip is wider, this error is larger for the positive dip.
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Figure 4.14: Influence of the dip depth: Extremum seeking (left) and slope tracking (right)
simulations with kESC = 10−5 and KSTC = 0.005. The simulations were per-
formed for the negative dip and for different dip depths m ·d− with the scaling
factors m as indicated in the legend. At t = 2.5 s the current bias voltage Vb
was shifted by d− to the right of the dip (i.e. to less negative values) such that
the controllers had to regain their reference point.

Figure 4.15: Influence of the dip depth: Extremum seeking (left) and slope tracking (right)
simulations with kESC = 10−5 and KSTC = −0.001. The simulations were
performed for the positive dip and for different dip depths m · d+ with the
scaling factors m as indicated in the legend. At t = 2.5 s the current bias
voltage Vb was shifted by d+ to the left of the dip (i.e. to less positive values)
such that the controllers had to regain their reference point.
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Figure 4.16: Influence of the dip width: Extremum seeking (left) and slope tracking (right)
simulations with kESC = 10−5 and KSTC = 0.005. The simulations were per-
formed for the negative dip and for different dip widths m ·w− with the scaling
factors m as indicated in the legend. At t = 2.5 s the current bias voltage Vb
was shifted by d− to the right of the dip (i.e. to less negative values) such that
the controllers had to regain their reference point.

Figure 4.17: Influence of the dip width: Extremum seeking (left) and slope tracking (right)
simulations with kESC = 10−5 and KSTC = −0.001. The simulations were
performed for the positive dip and for different dip widths m · w+ with the
scaling factors m as indicated in the legend. At t = 2.5 s the current bias
voltage Vb was shifted by d+ to the left of the dip (i.e. to less positive values)
such that the controllers had to regain their reference point.
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The drawback is the slope tracking controller’s systematic error eSTC (a constant offset
from the true V ∓ value).
In Fig. 4.16 and Fig. 4.17, we illustrate the influence of the dips’ width w∓ via sim-

ulations for the negative and positive dip, respectively, and observe that the narrower
the dip, the better for control as the settling times decrease. In this case, the effect
appears to be a bit stronger for the extremum seeking than for the slope tracking
controller. Regarding the slope tracking controller, due to the different dip widths
and therefore different reference points ∆fref, the error eSTC is different for each of the
simulations.
Thus, we conclude that sharp (deep and narrow) dips are beneficial for control

performance and that practitioners of SQDM should aim for sharp dips whenever
possible. This can be achieved, for instance, with small oscillation amplitudes of the
microscope’s tuning fork [86]. However, such amplitudes increase the noise at the same
time, which ultimately imposes a lower bound on the oscillation amplitude. Thus, the
selection of the oscillation amplitude is a trade-off.

4.3.2 Feedforward Control

The main objective is to track the dips’ positions V ∓(p), which is achieved by formu-
lating and solving surrogate control problems. In case of the extremum seeking con-
troller, V ∓(p) is tracked by regulating Vb such that the gradient reference ∆f ′ref = 0
is attained. In case of the slope tracking controller, V ∓(p) is approximately tracked
by regulating Vb such that a reference ∆fref on the dips’ inner slope is attained. Now,
while scanning the sample the tip position p changes and with it, the dips move along
the parabola. This changes the respective controlled variables, i.e., ∆f ′ (extremum
seeking) or ∆f (slope tracking) and thus, the influence of a changing tip position p can
be considered as a disturbance to the extremum seeking and slope tracking controller.
In principle, it is possible that the dips change their position faster than the employed
controller can adapt the bias voltage Vb, which eventually leads to the controller “los-
ing the dip”. This is caused by a combination of a rapid change of the electrostatic
potential, a high scan speed, and the controller dynamics. In that case, the scanning
process has often to be aborted and restarted from the beginning.
The risk of losing the dip can be substantially reduced by the generation of an ap-

propriate feedforward signal Vb,FF(p) that provides a prediction of the disturbance as
a function of the tip position p. With a suitable disturbance prediction, the initial
value for each controller at each tip position stays always within the dips’ interval and
is closer to ∆f ′ref (extremum seeking) or ∆fref (slope tracking) than without the feed-
forward signal. In that way, the feedforward has not only the potential for increased
performance, and with that eventually higher scan speeds, but is even essential for
correct operation of SQDM.
In the following, we present two approaches to generate such a feedforward signal.
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The first approach (Section 4.3.2.1) takes the last scanned line, filters it, and applies
it as the feedforward signal. The second approach (Section 4.3.2.2) employs a Gaus-
sian process to model the respective V ∓(p) maps online and generate an adequate
feedforward signal prediction from these models. Whereas the first approach is con-
ceptually simple, the second approach yields a feedforward signal that is closer to the
true values, though at the expense of increased complexity and computational costs.

Depending if the feedforward signals are adjusted online or only after each scanned
row/or a series of time points, the presented feedforward approaches are related to the
concept of iterative learning control [28, 200], a tracking control approach for repet-
itively operated systems. It uses information from previous iterations to reduce the
tracking error in the next iteration [74]. Iterative learning control has been applied
to scanning probe microscopy techniques like AFM [99], where it was used, e.g., to
improve the accuracy of the microscope tip trajectory and thereby increase the scan-
ning speed [51]. In SQDM however, we do not need the feedforward signal to improve
the trip trajectory but to predict the unknown parameters V ∓(p) that depend on the
sample and tip position.

4.3.2.1 Last Line Feedforward Signal

The electrostatic potential Φs is smooth, as well as the maps V ∓(p). Thus, the V ∓(p)
values do not change too much from one line to the next and a straightforward choice
is therefore to use the Vb values of the previously scanned line to generate a prediction
for the next line. Fig. 4.18 shows a block diagram of the feedforward signal generator
that stores the last scanned line in a buffer and filters the data (to cancel measurement
noise and obtain a smooth output signal) before it is output as the feedforward signal
for the next line. The individual elements and features are detailed in the following
list.

Figure 4.18: Block diagram of the last line feedforward. Current Vb values are indexed with
corresponding p values, delayed by one line, stored in a buffer, and output
through a mean filter at the next line as the feedforward signal Vb,FF.

• Buffer: The Vb(p) values with p = (x, y) of the currently scanned line y (see
the raster scan pattern in Fig. 4.2) are stored in a buffer alongside the indexing
x values within the line6. At the same time, already stored Vb(x, y− 1) values of

6Note that x is the fast scan direction.
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the previously scanned line y − 1 are used as a basis for the feedforward signal
Vb,FF(x, y) of the current line y.

• Filter: The measured and buffered Vb values are corrupted by noise and small
ripples (caused by the controllers) that have a deteriorating effect on the con-
trol performance, especially in regions where the electrostatic potential is rela-
tively flat. Therefore, while scanning the current line y, the previously measured
Vb(x, y − 1) values are smoothed to generate the feedforward signal Vb,FF(x, y)
using the mean filter

Vb,FF(x, y) = 1
n

n∑
i=1

Vb

(
x− n

2 + i, y − 1
)

with filter window length n.

• Scan speed adaptation: The previous line y−1 is indexed using the measured
x-position values. In the current line scan, the active x-position is determined
and used for picking the right reference value. This allows for varying scan speed
within a line.

4.3.2.2 Gaussian Process Feedforward Signal

As can be seen from Fig. 4.19, the V ∓(p) values can vary rapidly in certain regions of
the sample. In these regions, using the last scanned line as a prediction for the next
line may not be sufficient. For this reason, we propose another approach that generates
a model of the V ∓(p) maps, which are continuously updated during operation and
generate after each line scan a prediction for the upcoming line.

Figure 4.19: 3D representation of the V ∓(p) maps of Fig. 4.5. The V ∓(p) values are drawn
onto the vertical axis to illustrate rapid changes in voltage values. Red points
indicate lines that have already been scanned. The green lines indicate the
next line that has to be scanned and for which a prediction is required. Note
that each map corresponds to a scan at a constant height z.
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The dip position maps V ∓(p) : R × R → R are general static and smooth maps,
which are a priori unknown and contain different features and large variations as
illustrated in Fig. 4.19. In order to generate suitable models, we propose to use
Gaussian process regression (see learning of static maps, Section 2.2.1), which then
provide the required feedforward signal. Using a suitable kernel (e.g. the squared
exponential covariance kernel), a Gaussian process can model any possible smooth
map and is not bound to special functions, such as linear functions or polynomials of
specific orders. For each of the V ∓(p) maps we employ one GP that we denote by
GPV − and GPV +.
The input/regressor to both GPV − and GPV + is the tip position p and the output are

the respective V ∓(p) values. The associated training data sets are D+ = {P ,V +} and
D− = {P ,V −} with all collected tip position pairs P = {(xi, yi)} and dip positions
V + = {V +

i }, V − = {V −i }. As we are not interested in a point prediction but a line
prediction we define the line input to the GPs as

p̄ =
x1 x2 · · · xnl
y y · · · y

T

∈ Rnl×2 ,

where nl is the number of pixels in a line and the y value indicates the line that we seek
to predict. Then, the predictions/feedforward signals are generated by the posterior
mean function (2.6a) of GPV − and GPV +, which become

V +(p̄) = m+(p̄|D+) = m(p̄) + %(p̄,P )K−1(V + −m(P )) (4.8a)
V −(p̄) = m+(p̄|D−) = m(p̄) + %(p̄,P )K−1(V − −m(P )) . (4.8b)

A simple block diagram representation of the Gaussian process-based feedforward
is shown in Fig. 4.20.

Figure 4.20: Block diagram of the Gaussian process feedforward. Current Vb, together with
corresponding p values, are collected as training data for the Gaussian process.

4.4 Evaluation of the 2DOF Control Approaches in
Simulations

We evaluate the two-degree-of-freedom control approaches in simulations both qual-
itatively and quantitatively. We compare the extremum seeking and slope tracking
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feedback controllers and illustrate the principle effect and the necessity of a feedfor-
ward signal using the last line in Section 4.4.1 and finish with the improvement of the
GP-based feedforward signal in Section 4.4.2.
For the simulations we employ the SQDM model of Section 4.2.3 implemented in

MATLAB/Simulink and use a fixed-step ode3 (Bogacki-Shampine) solver with a sam-
pling time of Ts = 5 ms. The scanning time for each of the two dip maps V −(p) and
V +(p) is Tscan = 2 h. To realistically mimic the experiment, each line is furthermore
scanned back and forth. This results in approximately 18 s for each single line scan,
which in turn equals a scanning speed of approximately 33.3Å/s with the given area
of 600× 600 Å2.
Experimentally acquired and fitted dip spectra (Fig. 4.21) and the V ∓(p) maps of

Fig. 4.5 (from [196]) are used as reference data. The cutoff frequency of the phase-
locked loop was determined by fitting a step response and was computed as ωPLL =
10 s−1. The normally distributed white noise has a standard deviation of σ2

n = 0.03 Hz.
The parameters of the two controllers are listed in Table 4.2.

Figure 4.21: Experimentally acquired negative dip (left) and positive dip (right) with model
fit. The dips were scanned twice, forward and backward.

4.4.1 2DOF Control with Last Line Feedforward

We now use the experimentally acquired reference data (Fig. 4.5 and Fig. 4.21) to
compare the extremum seeking and slope tracking controllers with and without feed-
forward using the last scanned line. We start with an exemplary time evolution of the
involved signals and illustrate the influence of the feedforward. Afterwards we turn
our attention to the whole image generation and discuss the final images qualitatively
and quantitatively.
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Table 4.2: Controller Parameters (if not given otherwise)

Negative Dip Positive Dip

Extremum seeking controller Extremum seeking controller
ad = 1 mV ad = 1 mV
ωd = 4ωPLL ωd = 4ωPLL
ωL = 0.2ωd ωL = 0.2ωd
ωH = 3ωd ωH = 3ωd

kESC = −5 · 10−5 kESC = −4 · 10−5

Slope tracking controller Slope tracking controller
∆fref = ∆f(V −0 + 1 · w−) ∆fref = ∆f(V +

0 − 0.9 · w+)
KSTC = 0.04 KSTC = −0.003

4.4.1.1 Time Evolution

In Fig. 4.22 and Fig. 4.23, exemplary time evolutions of the Vb signal for the extremum
seeking and slope tracking controllers without and with the last line feedforward of
Section 4.3.2.1 are shown.

In case of tracking the negative dip V −(p) (Fig. 4.22), at the beginning of the de-
picted evolution interval, all four controller instances can adequately track the dip,
though the slope tracking controller with a constant error because it tracks a point
on the dips’ slope. As the variations in the electrostatic potential increase, both
controllers without the feedforward are unable to fully follow the reference. The ex-
tremum seeking controller is unable to fully follow the V − variations (beginning around
t = 160 s) but still stays close by, whereas the slope tracking controller loses the dip
completely around t = 340 s because the bias voltage leaves the dip towards the lower
part of the parabola (more negative values in this case) as discussed in Section 4.3.1.2.
Something similar happens in the case of the positive dip (Fig. 4.23). Again, the
extremum seeking controller is unable to fully follow the V + variations in the time
intervals [280, 300] s and [355, 370] s but stays close, whereas the slope tracking con-
troller without feedforward completely loses the dip (around t = 553 s) because the
bias voltage leaves the dip towards the lower part of the parabola (more positive val-
ues in this case). As one would expect, all these cases occur when the V ∓ values are
changing rapidly, i.e., the changes are too fast for the feedback controllers to follow.

On the other hand, when the extremum seeking and slope tracking controllers are
operating together with the last line feedforward signal, the V ∓ are successfully tracked
and the resulting errors are smaller. Thus, we see that the probability of both con-
trollers successfully tracking the dips is significantly higher with feedforward.
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Figure 4.22: The top figure shows the reference evolution (V −) together with the results of
the extremum seeking and slope tracking controllers (ESC and STC) with and
without feedforward (FF). The bottom figure shows the error. Note that each
image line is scanned forward and backward.

4.4.1.2 Overall Imaging Quality

Now we turn to the complete scans of the negative and positive dip maps V ∓(p)
and the resulting electrostatic potential Φ∗(p) computed by (4.1). Note that, as it
becomes apparent in the following, the implementation of the scanning process in the
simulations is done column by column (rather than line by line as outlined so far) to
simplify the implementation.7 Thus, predictions are also generated column-wise. This
does, however, not change the principle observations.
Fig. 4.24a and Fig. 4.24b show the resulting maps of the extremum seeking and slope

tracking controller without the last line feedforward signal. Also here we observe that
both dips cannot be tracked throughout the complete image scan, which results in
corrupted final electrostatic potential images.
On the other hand, Fig. 4.24c and Fig. 4.24d show the resulting maps of the ex-

tremum seeking and slope tracking controller with the last line feedforward, which are
now successfully tracked, though with some oscillations in the V +(p) map. Due to the
way Φ∗ is computed (4.1) and the larger variation of V −(p) (≈ 200 mV vs. ≈ 100 mV

7A line by line scan could be realized by rotating the image before processing, do a column-wise processing,
and rotating it back afterwards. The results would be the same.
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Figure 4.23: The top figure shows the reference evolution (V +) together with the results of
the extremum seeking and slope tracking controllers (ESC and STC) with and
without feedforward (FF). The bottom figure shows the error. Note that each
image line is scanned forward and backward.

for V +(p)), the oscillations of V +(p) are attenuated in the final Φ∗ images.
To better evaluate these results, we provide the respective error maps of the feed-

forward case in Fig. 4.25. They reveal that the errors are in the range of −5 mV to
5.6 mV. As the total Φ∗ variation is 190.25 mV, the relative errors w.r.t. this varia-
tion are −2.6 % to 2.9 %. It can be furthermore observed that the extremum seeking
control error image presents some small oscillations almost everywhere, whereas the
slope tracking control error image generally presents fewer oscillations, except for some
larger oscillations in the right part of the sample above the molecular island.
In addition, we quantify the image quality in Table 4.3, using the image mean square

error (MSE) per pixel

MSE = 1
nrowsncols

ncols∑
i=1

nrows∑
j=1

(
V ∓ref(i, j)− V ∓(i, j)

)2

and the image peak signal-to-noise ratio (PSNR)

PSNR = 10 log
(
MAX2

I
MSE

)
,
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(a) Extremum seeking controller without feedforward

(b) Slope tracking controller without feedforward

(c) Extremum seeking controller with feedforward

(d) Slope tracking controller with feedforward

Figure 4.24: Resulting images with the 2DOF controller. Depicted are the resulting negative
dip maps V −(p) (left), positive dip maps V +(p) (middle), and electrostatic
potential Φ∗(p) (right).
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Figure 4.25: Resulting image errors of the 2DOF controllers.

where nrows and ncols are the number of image rows and columns and MAXI the
maximum possible pixel value of the image, which is taken from the range of the
image data type and is automatically determined by MATLAB. The MSE and PSNR
are often used in imaging science as objective quality measures [12, 171].
Based on Table 4.3 we can conclude from a quantitative viewpoint that the slope

tracking controller has the potential to outperform the extremum seeking controller.
However, for different controller parameters and/or other surfaces, the results may
change and therefore more experience via simulations and experiments has to be
gathered. Note that the systematic slope tracking control error eSTC, as discussed
in Section 4.3.1.2, is already included in these results and is apparently not very im-
portant for the final Φ∗ image.

Table 4.3: MSE and PSNR per pixel for Fig. 4.25.

MSE PSNR
[mV] [dB]

Extremum seeking 0.804 60.9
Slope tracking 0.507 63.0

The total scan time for each of the results was 4 h (2 h per dip map). This is
approximately 17 times faster than the original image generation process, based on
spectroscopy grids that would have taken 66.7 h (see Section 4.2.2). In fact, such
a long measurement time would be completely impractical or close to impossible in
experiments. Therefore, without the 2DOF approach images of that size and resolution
would not be possible.

4.4.2 2DOF Control with Gaussian Process Feedforward

We evaluate the potential of the Gaussian process-based feedforward generation (FF-
GP) by comparing the resulting maps assembled from offline last line feedforward
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(FF-LL) predictions and offline GP predictions (Section 4.4.2.1). By the term offline
we refer to the case that we use only the experimentally acquired V ∓(p) reference
data to compute the predictions. After that, we move on to the online/closed-loop
case (Section 4.4.2.2), where the data points used to generate the predictions are
also influenced by the employed feedback controller and therefore deviate from the
reference V ∓(p) values.

4.4.2.1 Offline Comparison

The offline last column/line predicted map is simply generated by substituting a col-
umn/line with the previous one. The resulting error maps for the negative and positive
dip are depicted in Fig. 4.26a and Fig. 4.26b. The errors are small where the respec-
tive V ∓(p) map is relatively flat (columns are similar to their precursors) and errors
are large when the V ∓(p) values change considerably from one column to the next.
The MSE and maximum errors for the negative and positive dip maps are listed in
Table 4.4. The errors associated with the negative dip are larger because the change
of the negative dip position is larger than that of the positive dip position (≈ 200 mV
vs. ≈ 100 mV, see Fig. 4.19). Thus, also the errors from one column to the next are
larger for the negative dip position map.

Table 4.4: Offline comparison of last line (FF-LL) and Gaussian process based (FF-GP)
feedforward in Fig. 4.26.

FF-LL FF-GP
V − V + V − V +

MSE [mV] 7.003 2.511 0.7588 0.9626
max. error [mV] 17.24 10.66 8.450 8.955

Concerning the GP predictions, the models GPV − and GPV + for the negative and
positive dip maps, respectively, are assigned a constant zero prior mean function and
the squared exponential kernel (2.7) with one and the same length scale parameter
for both inputs p = (x, y). The GPs are then trained using columns 90 to 120, which
cover the edge of the large island. The optimized hyperparameters are θV − = {c =
−0.9784, l = 5.8766, σ2

f = 0.0265} and θV + = {c = 4.4706, l = 4, 7710, σ2
f = 0.0137}.

The predictions are generated using the previous five columns as training data. The
resulting error maps of the GP predictions are presented in Fig. 4.26c and Fig. 4.26d
and we observe that the errors are considerably smaller on average. This is also
confirmed quantitatively by means of smaller MSE and maximum errors in Table 4.4.
The superior prediction capabilities of the Gaussian process feedforward, especially

in regions where the dip maps (and therewith the electrostatic potential) change con-
siderably, is reflected in Fig. 4.27. There, we compare the average pixel error per
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(a) Negative dip map V −(p). (b) Positive dip map V +(p).

(c) Negative dip map V −(p). (d) Positive dip map V +(p).

Figure 4.26: Comparison of the offline computed (best outcome) last line feedforward (FF-
LL, top row) and Gaussian process feedforward (FF-GP, bottom row) pre-
diction errors for the negative (left column) and positive (right column) dip
maps.
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(a) Results for negative dip map V −(p). (b) Results for positive dip map V +(p).

Figure 4.27: Comparison of the average pixel error in each column.

column
1

nrows

nrows∑
i=1
|V ∓(x, i)− V̂ ∓(x, i)| ,

where x denotes the column index, nrows is the number of rows or pixels in one column,
and V̂ ∓ the predicted voltage value by either the last line or the Gaussian process
feedforward
The resulting errors are similar for the first 100 columns. An exception appears

right at the beginning of the dip maps, where the Gaussian process feedforward error
is larger because it does not yet have the required five columns of training data points.
After the first 100 columns, where the large island appears, the Gaussian process
feedforward clearly outperforms the last line feedforward, especially where the V ∓(p)
values change considerably.

4.4.2.2 Closed-loop Comparison

For the closed-loop case, we now use the Gaussian process feedforward together with
the extremum seeking and slope tracking controller to determine the V ∓(p) values of
the complete surface and generate the resulting electrostatic potential image Φ∗(p)
computed by (4.1). We compare the obtained results with those of the last line feed-
forward of Section 4.4.1.

Fig. 4.28a (same as Fig. 4.24c) and Fig. 4.28b show the resulting maps of the ex-
tremum seeking controller with the FF-LL and FF-GP, respectively. We observe that
both dips are tracked successfully, with the FF-GP outperforming the FF-LL. The
oscillations that appear in Fig. 4.28a are significantly attenuated by the FF-GP. The
results for the slope tracking controller (Fig. 4.28c and Fig. 4.28d) are qualitatively
similar to that of the extremum seeking controller, i.e., the FF-GP outperforms the
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(a) Extremum seeking controller with FF-LL

(b) Extremum seeking controller with FF-GP

(c) Slope tracking controller with FF-LL

(d) Slope tracking controller with FF-GP

Figure 4.28: Comparison of the 2DOF controllers with the last line feedforward (FF-LL) and
the Gaussian process feedforward (FF-GP). Depicted are the resulting negative
dip maps V −(p) (left), positive dip maps V +(p) (middle), and electrostatic
potential Φ∗(p) (right). The images generated with the FF-LL (Fig. 4.28a and
Fig. 4.28c) are the same as Fig. 4.24c and Fig. 4.24d.
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(a) 2DOF with extremum seeking controller

(b) 2DOF with slope tracking controller

Figure 4.29: Resulting image errors of the 2DOF controllers (extremum seeking and slope
tracking controller) with the FF-LL and FF-GP. The error images on the left
are the same as in Fig. 4.25.

FF-LL.
For better comparison, we evaluate the respective error maps in Fig. 4.29. In case

of the extremum seeking controller (Fig. 4.29a), the small oscillations that appear
almost everywhere with the FF-LL are reduced when instead the FF-GP is employed.
The same goes for the larger oscillations in case of the slope tracking controller in
Fig. 4.29b. Some (relatively) large errors, however, remain in both cases at the island
edge in the right part of the sample. The resulting error image of the slope tracking
controller with the FF-GP looks qualitatively better than that generated with the
extremum seeking controller. This observation is also confirmed quantitatively in
Table 4.5, where we provide the respective MSE and PSNR values. The MSE of the
slope tracking controller is significantly smaller than that of the extremum seeking
controller and the PSNR is larger.
Thus, we conclude, despite the fact that both the extremum seeking and slope track-

ing controller with the FF-GP yield good closed-loop performance with small errors
in the final Φ∗ image, that the slope tracking controller outperforms the extremum
seeking controller both qualitatively and quantitatively. Again, for different controller
parameters and/or other surfaces, though, the results may turn out differently. For
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Table 4.5: MSE and PSNR per pixel for Fig. 4.29.

MSE PSNR
[mV] [dB]

ESC FF-LL 0.804 60.9
ESC FF-GP 0.653 61.7

STC FF-LL 0.507 63.0
STC FF-GP 0.397 64.0

instance, online hyperparameter optimization of the Gaussian process could further re-
duce the errors and change the outcome for both extremum seeking and slope tracking
controller.

4.5 Experimental Results

In this section, we briefly present some information on the implementation of the
2DOF controller in the experimental setup, discuss the SQDM operation procedure,
and present experimentally generated images of nanoscale samples with the presented
control approach of this work. For the 2DOF controller we only present results for
the last line feedforward. The Gaussian process-based feedforward scheme is subject
of future work.

4.5.1 Implementation

The 2DOF controller is designed and tested in MATLAB/Simulink. For the experi-
mental implementation it is automatically converted into C-code and then loaded to
and executed on a dSPACE ds1104 controller board. The controller board is installed
in a PC and connected via analog-digital and digital-analog converters to a Createc
non-contact atomic force/scanning tunneling microscope (STM/NC-AFM, Fig. 4.30)
that operates at 5 K and under ultra-high vacuum. The microscope is equipped with
a qPlus sensor tuning fork [63] with resonance frequency f0 = 31.2 kHz and stiffness
κ0 = 1800 Nm−1.
Note that the scanning procedure and acquisition of the V ∓(p) data are different and

largely independent processes (see Fig. 4.31). The scanning procedure is controlled by
the hardware and associated computer of the Createc STM/NC-AFM. This involves
the generation of the reference signal pref for the microscope’s piezo stages and control
of the stages such that the reference signal is tracked with high accuracy, which yields
a precise scanning pattern. The PC on which the 2DOF controller is running is
responsible for regulation of the Vb voltage. To this end, it also receives the current
tip position p.

112



4.5 Experimental Results

Figure 4.30: The Createc non-contact atomic force/scanning tunneling microscope, located
in the laboratory of the Peter Grünberg Institute at the Jülich Research Centre.

Figure 4.31: Experimental SQDM set-up.
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4.5.2 Scanning and Image Generation Procedure

The procedure used to acquire a new image is as follows:

1. Move to the first image pixel and measure the local spectrum ∆f∓(Vb) of the
respective dip V ∓(p).

2. Adjust Vb manually to the reference point within the dip (the selection of the
reference point depends on whether the slope tracking or the extremum seeking
controller is used, see Fig. 4.12).

3. Start the 2DOF controller.

4. Start the raster scanning protocol.

5. Enable the feedforward after one or more lines have been scanned.

6. Increase scanning speed if desired.

7. Finish the scan for the current dip ∆f∓(Vb).

8. Goto 1) and repeat for the other dip ∆f±(Vb).

4.5.3 Experimental Results

We present a collection of obtained SQDM images.
Fig. 4.32a is one of the first images generated via SQDM and the 2DOF controller

[195] and shows the electrostatic potential of a single PTCDA molecule. Accordingly,
the covered image area is relatively small with 150 × 150 Å2. On the other hand,
Fig. 4.32b, which is used throughout this chapter as reference image, is the image that
covers the largest area so far generated via SQDM with a dimension of 600×600 Å2. As
explained further above, the time required for the image generation without the 2DOF
controller would have been 66.7 h. With the controller the scan time was reduced to
4 h in total, which made the generation of the image only possible in the first place.
This also holds for the images in Fig. 4.33, especially for Figs. 4.33b and 4.33c, which

are divided into 256×256 pixels. Using the original image generation procedure, based
on spectroscopy grids, the time required for the corresponding measurements of each
V ∓(p) map would be approximately 109 h. The scan times with the 2DOF controller
for each V ∓(p) map were 2 h for Fig. 4.33b and 0.75 h for Fig. 4.33c, equalling a
speed increase of a factor of 54.5 and 145 respectively. These factors are expected to
increase further with the implementation of the Gaussian process feedforward in the
experimental setup.
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(a) SQDM image of a single PTCDA molecule.
Dimensions: 150 × 150 Å2 divided into
128×128 pixels. Measured at a height of z =
24.4 Å above the surface and a scan speed of
18Å/s.

(b) The SQDM image published in [196] en-
compasses a large PTCDA island on the
right and several more individual atoms and
molecules located along the island edge or to
its left. Dimensions: 600 × 600 Å2 divided
into 200×200 pixels. Measured at a height of
z = 20 Å above the surface and a scan speed
of 33Å/s.

Figure 4.32: Experimentally acquired SQDM images of electrostatic potential Φ∗. All ex-
periments were conducted on silver Ag(111) substrate.
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(a) SQDM image of a PTCDA molecule, a PTCDA-Ag2 molecule, and a Ag adatom. Dimensions:
260 × 210 Å2 divided into 100×81 pixels pixels. Measured at a height of z = 29 ± 1.5 Å above
the surface and a scan speed of 14Å/s.

(b) SQDM image of many Ag dimers (two
adatoms right next to each other) and one
adatom. Dimensions: 360 × 360 Å2 divided
into 256×256 pixels. Measured at a height of
z = 29 ± 1.5 Å above the surface and a scan
speed of 36Å/s.

(c) SQDM image of a structural defect of the
Ag(111) surface. The defect is decorated
with PTCDA molecules that are alternat-
ingly standing on their long side and lying
flat. Dimensions: 200 × 200 Å2 divided into
256×256 pixels. Measured at a height of z =
27± 1.5 Å above the surface and a scan speed
of 30Å/s.

Figure 4.33: Experimentally acquired SQDM images of electrostatic potential Φ∗. All ex-
periments were conducted on silver Ag(111) substrate.
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4.6 Conclusions

In this chapter, we have presented a control approach for scanning quantum dot mi-
croscopy, a recently developed microscopy technique that generates images of the
electrostatic potential of nanostructures with unprecedented accuracy. A key enabling
part of this is the developed two-degree-of-freedom controller of this chapter, with-
out which most of the so far experimentally generated images would not have been
possible. It now allows to continuously scan a sample, which puts scanning quantum
dot microscopy in line with other scanning probe microscopy techniques like scanning
tunneling or atomic force microscopy.
The presented control framework encompasses a feedback and a feedforward part.

For the feedback part, we have developed two different controllers, namely an ex-
tremum seeking controller that directly tracks the minimum of the involved dips that
arise in scanning quantum dot microscopy and a controller that tracks a reference
point on the dips’ slope. We have discussed the individual working principles, respec-
tive advantages and drawbacks, and provided guidelines for controller parameteriza-
tion. Among these, we have shown that the sharpness of the dips plays a central role
in the control performance, which leads to the recommendation that practitioners of
scanning quantum dot microscopy should aim for sharper dips if possible. Simulations
with the used reference data and the chosen controller parameters have shown that
both feedback controllers yield good closed-loop performance, though the slope track-
ing controller slightly outperforms the extremum seeking controller, despite having an
intrinsic nonzero error.
For the feedforward part, we outlined two different approaches. The first approach

stores and filters the dips’ position values of the previously scanned line during the
scanning process and uses it as a prediction for the next line. The second approach
utilizes Gaussian processes to model each of the dips’ position maps via data of their
already scanned parts. These Gaussian process models then allow generating better
predictions for the upcoming lines to be scanned by the microscope.
In simulations, we could show how the utilization of a feedforward decreases the

resulting image error and with that the probability of losing the dips. This leads to a
several times faster image generation process and enables to scan larger images in rea-
sonable time than before, which was also verified in experiments. The simulations have
also shown that the more complex Gaussian process-based feedforward outperforms
the simple last line approach, thereby illustrating the potential of Gaussian processes
in cutting edge technologies.

The presented work leaves room for improvements and further development. Regard-
ing the performance of the two feedback controllers, the obtained simulation results
have to be further validated in experiments. In particular, if the slope tracking con-
troller really and always outperforms the extremum seeking controller or if this depends

117



4 Gaussian Process supported Control of Scanning Quantum Dot Microscopy

on the sample to be scanned and the chosen controller parameters.
Related to this, a further improvement would be an automatic controller parameter

adaptation scheme for varying scan speeds. As was shown in this chapter, several
parameters (e.g. the controller gains) can be tuned to achieve fast convergence, which
is important for high scan speeds. The respective parameterizations, however, come
at the expense of larger transient oscillations. Thus, for larger scan times (lower
scan speeds) other parameterizations are better suited and an automatic controller
parameter adaptation scheme could account for this.
Regarding the Gaussian process feedforward, so far, a priori knowledge of the in-

volved hyperparameters was assumed to show the potential for improving closed-loop
performance. For successful experimental application, however, such a priori knowl-
edge cannot be assumed to be available for new unseen samples. Hence, the hyperpa-
rameters have to be calculated and updated online during the scanning process. Since
hyperparameter optimization is computationally expensive, especially for real-time
operation, the deployment of methods such as sparse Gaussian process approaches
and optimization in parallel to the scanning process are currently investigated.
Another interesting question that could be investigated is whether the uncertainty

measure provided by the GP (in the form of its posterior variance) can be used in
a beneficial way for the performance of the closed-loop. One idea is to check if the
uncertainty should influence the current scan speed, for instance, decrease the scan
speed if the uncertainty is large and vice versa.
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This thesis considers Gaussian process supervised learning and its deployment in con-
trol. As a specific example of machine learning algorithms, Gaussian processes are
capable to learn and make designated use of the increasingly available data to enhance
control performance, which is an advantageous property to cope with the technological
developments and challenges of today’s world. For example, learning from data en-
ables both simple and complex systems to better adapt to changing process conditions
or their surroundings, thereby increasing autonomy and performance. Furthermore,
through the steady increase of computational power and theoretical developments,
the benefits of Gaussian processes can be better absorbed into the design and the
execution of control systems. This thesis aimed at pushing further in this direction.
In Chapter 2 we reviewed Gaussian processes for regression in supervised learning

and the literature of its utilization in a control context. In particular, we considered
the cases of reference and disturbance learning, as well as learning models of dynamical
systems for model-based control. Thereby, we set up the frame for the developments
of the following chapters, where we presented both theoretical and practical relevant
contributions regarding the combination of Gaussian processes and control.
In Chapter 3 we presented recursive Gaussian process model predictive control (rGP-

MPC), a specific model predictive control scheme that employs Gaussian process pre-
diction models which are learned online. The approach was designed in such a way as
to maximize the possible cases for application (e.g. no process model available, chang-
ing process conditions, fast dynamics, or non-accessible process states). We derived
conditions under which the involved optimal control problem is recursively feasible
and the resulting control law nominally and inherently robustly stable, despite the
changing prediction model. These guarantees are not limited to rGP-MPC but are
applicable to a wide spectrum of model predictive control schemes that use Gaussian
process prediction models and other machine learning algorithms.
In Chapter 4 we presented the first control framework utilizing Gaussian processes

for the novel microscopy technique scanning quantum dot microscopy, which generates
images of the electrostatic potential of nano-size objects (e.g. atoms or molecules). The
developed control framework is a two-degree-of-freedom controller with two feedback
and two feedforward controllers. In one of the feedforward parts, Gaussian processes
are learning and predicting specific disturbances which can then be accounted for.
This helps in correct operation and improves the overall performance. The developed
control framework allows generating images by continuously scanning the sample and
puts scanning quantum dot microscopy in line with other established scanning probe
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microscopy techniques.

Specific outlooks and possible future undertakings of rGP-MPC and control of scan-
ning quantum dot microscopy are discussed at the end of the respective chapters and
we conclude with a general outlook on Gaussian processes in control.
Over the last two decades, there have been many theoretical works and some prac-

tical applications that combine Gaussian processes and control. This development is
furthermore accelerating as the increasing number of scientific publications in recent
years indicates and it can be interpreted as an expression of the great interest to com-
bine the benefits of system and control theory with Gaussian processes in particular
and machine learning in general. While methods from machine learning are strongly
based on data and enable adaptive and high performance behavior, methods from
control allow for safe behavior with respective guarantees. The latter are particularly
important when it comes to processes that are safety critical, such as self-driving cars
or autonomous drones in urban areas. At the moment, the number of concrete real
world applications that employ machine learning is lacking behind its possibilities.
Therefore, the ongoing fusion of the two fields is necessary and expected to intensify
in upcoming years to develop further concepts that enable and enhance the autonomy
of today’s present and arising technologies. As a side effect, the two communities of
control theory and machine learning, which can be considered as once separated, are
approaching each other, blurring the lines between them and therewith creating new
opportunities for research, collaborations, and technological advancements.
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A.1 Function Definitions and Lemmas

In this section, we provide the definitions of important functions and classes of func-
tions that are used in this thesis.

Definition 7 (Distance function). The distance of a point z ∈ Rp to a set Y ⊂ Rp is
defined by the function d(z,Y) := infy∈Y‖y − z‖∞, where ‖·‖∞ is the infinity norm.
If z ∈ Y, then d(z,Y) = 0.

Definition 8 (Positive (semi-) definite function). A function f : R→ R≥0 is positive
definite if f(0) = 0 and f(x) > 0 for all x 6= 0. It is positive semidefinite if f(0) = 0
and f(x) ≥ 0 for all x 6= 0, i.e., the function can be zero also at other locations than
x = 0.

Definition 9 (K-function). A function α : R≥0 → R≥0 is a K-function if it is contin-
uous, α(0) = 0, and if it is strictly increasing.

Note that a K-function is a special case of a positive definite function.

Definition 10 (K∞-function). A function α : R≥0 → R≥0 is a K∞-function if it is a
K-function and unbounded, i.e., limx→∞ α(x) =∞.

Definition 11 (KL-function). A function β : R≥0 × R≥0 → R≥0 is a KL-function if
β(s, t) is K∞ in s for any value of t and limt→∞ β(s, t) = 0,∀s ≥ 0.

Lemma 1 ([107], Lemma 1). Let f be a function f(x,y) : Ra×Rb → Rc. Then, f is
uniformly continuous in x for all x ∈ A ⊆ Ra and all y ∈ B ⊆ Rb if and only if there
exists a K∞-function σ(·), such that

‖f(x1,y)− f(x2,y)‖ ≤ σ(‖x1 − x2‖), ∀x1,x2 ∈ A, ∀y ∈ B .

Lemma 2 ([107], Lemma 2). Consider a discrete-time system xk+1 = f(xk,uk) with
xk ∈ X and uk ∈ U . Denote with xk+i = φ(i,xk,u) the solution to this equation at
time instant i with initial condition xk and input sequence u. Assume that f(xk,uk)
is uniformly continuous in xk for all xk ∈ X and all uk ∈ U , and let σx(·) be a suitable
function such that ‖f(x1,u)− f(x2,u)‖ ≤ σx(‖x1 − x2‖). Then,

‖xk+i − zk+i‖ ≤ σix(‖xk − zk‖) .
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A.2 Stability Theory
Stability theory is a wide subject with many different concepts and definitions of
stability and results on how stability can be guaranteed. In this section, we provide
only the necessary definitions and results required for this work.

A.2.1 Nominal Stability

Definition 12 (Positive and control invariant sets).

• A set X is positive invariant for the system x+ = f(x) if x+ ∈ X for all x ∈ X .

• A set X is control invariant for the system x+ = f(x,u) if for all x ∈ X there
exists a u ∈ U such that x+ ∈ X .

Definition 13 ((Global) asymptotic stability). Assume that the set X ⊆ Rnx is posi-
tive invariant for the system xk+1 = f(xk) with xk ∈ Rnx and where the origin is an
equilibrium of the system, i.e., f(0) = 0. The origin is asymptotically stable in X if
there exists a KL-function β(·, ·) such that for each x0 ∈ X

‖xk‖ ≤ β(x0, k) ∀k ∈ N0 .

If X = Rnx, the origin is globally asymptotically stable. The set X is called region of
attraction.

Definition 14 (Lyapunov function). Assume that the set X ⊆ Rnx is positive invariant
for the system xk+1 = f(xk) with xk ∈ Rnx and where the origin is an equilibrium
of the system. A function V : Rnx → R≥0 is called a Lyapunov function in X for
xk+1 = f(xk) if there exist functions α1(·), α2(·) ∈ K∞ and a continuous and positive
definite function α3(·) such that for any xk ∈ X

α1(‖xk‖) ≤ V (xk) ≤ α2(‖xk‖)
V (xk+1)− V (xk) ≤ −α3(‖xk‖) .

Theorem 6 (Lyapunov stability, [160]). Assume that the set X ⊆ Rnx is positive
invariant for the system xk+1 = f(xk) with xk ∈ Rnx and where the origin is an
equilibrium of the system. If there exists a Lyapunov function in X for the system
xk+1 = f(xk), then the origin is asymptotically stable in X . If X = Rnx, the origin is
globally asymptotically stable.

A.2.2 Robust (input-to-state) Stability

In robust stability, one deals with uncertain systems of the form x+ = f(x, e), where
the signal e ∈ E represents an uncertain or unknown part of the process. This can be,
for instance, an unknown disturbance to the system or a mismatch between the true
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process and the employed model. This mismatch can also be considered as an error,
which is also why we denote the uncertainty with e. One way to establish (robust)
stability despite uncertainty is via the concept of input-to-state stability. Most of the
following is motivated by [107].

Definition 15 (Input-to-state stability). A system xk+1 = f(xk, ek) with the origin
as an equilibrium is input-to-state stable (ISS) if there exist a KL-function β(·, ·) and
a K-function γ(·) such that

‖xk‖ ≤ β(‖x0‖, k) + γ
(

sup
k≥0
‖ek‖

)
(A.1)

holds for all initial states x0, uncertainties ek, and for all k ∈ N0.

Input-to-state stability combines nominal stability as well as uniformly bounded
influence of uncertainty in a single condition. It implies asymptotic stability of the
undisturbed (nominal) system (with ek ≡ 0) and a bounded effect of the uncertainty
on the state evolution. Furthermore, if the error signal ek fades, the uncertain system
asymptotically converges to the equilibrium.

Definition 16 (Robust positive and control invariant sets).

• A set X is robust positive invariant for the system x+ = f(x, e) if x+ ∈ X for
all x ∈ X and all e ∈ E.

• A set X is robust control invariant for the system x+ = f(x, e) if for all x ∈ X
and all e ∈ E there exists a u ∈ U such that x+ ∈ X .

Definition 17 (ISS-Lyapunov function). Assume that X ⊆ Rnx is robust positive in-
variant for xk+1 = f(xk, ek). A function V : Rnx → R≥0 is called an ISS-Lyapunov
function in X for xk+1 = f(xk, ek) if there exist functions α1(·), α2(·) ∈ K∞, a con-
tinuous and positive definite function α3(·), and a K-function λ(·) such that for all
xk ∈ X and all ek ∈ E

α1(‖xk‖) ≤ V (xk) ≤ α2(‖xk‖)
V (xk+1)− V (xk) ≤ −α3(‖xk‖) + λ(‖ek‖) .

Theorem 7 (ISS via ISS-Lyapunov function, [107]). Consider the system xk+1 =
f(xk, ek) with the origin as an equilibrium and where the uncertainty ek ∈ E is bounded
by the compact set E. If this system admits an ISS Lyapunov function in X w.r.t. ek,
then it is input-to-state stable w.r.t. ek in X .
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A.3 Recursive Cholesky Factor Update

The Cholesky decomposition of a symmetric positive matrix K = KT > 0 is K =
RTR, where R = chol(K) is an upper triangular matrix that is called the Cholesky
factor. According to [145], the Cholesky factor can be updated recursively as presented
in the following.

Consider the covariance matrix K, represented in block form asK11 K13
KT

13 K33


and its Cholesky factor R11 R13

0 R33

 .
Now, due to a new data point the updated covariance matrix is

K11 K12 K13
KT

12 K22 K23
KT

13 KT
23 K33

 ,
which differs from the previous by insertion of a new row and column. The updated
Cholesky factor 

S11 S12 S13
0 S22 S23
0 0 S33


can be computed via

S11 = R11 S22 = chol
(
K22 − ST

12S12
)

S12 = RT
11\K12 S23 = ST

22\
(
K23 − ST

12S13
)

S13 = R13 S33 = chol
(
RT

33R33 − ST
23S23

)
.

(A.2)

On the other hand, if the current covariance matrix in block form
K11 K12 K13
KT

12 K22 K23
KT

13 KT
23 K33


with Cholesky factor 

R11 R12 R13
0 R22 R23
0 0 R33


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is reduced by one row and column (removing one data point), such that we obtainK11 K13
KT

13 K33

 ,
the downdated Cholesky factor S11 S13

0 S33


can be computed via

S11 = R11

S13 = R13

S33 = chol
(
RT

23R23 +RT
33R33

)
.

(A.3)

A.4 Terminal Components Computation

In this section, we present a more detailed explanation of how to compute a terminal
cost function Vf(x), as well as the associated terminal control law κf(x) and termi-
nal region Xf for model predictive control, as employed for the rGP-MPC scheme in
Section 3.7. A variant of the presented approach was published for a different MPC
scheme in [119].

A.4.1 Invariance of Terminal Region

We consider a linearized version of the discrete-time prediction model

x+ = Ax+Bu
s.t. x ∈ X

u ∈ U

with state x ∈ Rnx, input u ∈ Rnu, and matrices A and B of appropriate dimensions.
As the terminal controller we choose the linear control law

u = κf(x) = kTx

and define kT := sTP with s ∈ Rnx, P ∈ Rnx×nx, and P = P T > 0. For the terminal
cost, we use the quadratic function

Vf(x) = xTPx .

The matrix P is determined such that Vf(x) is a Lyapunov function for the closed-
loop system x+ = (A +BkT)x. Therefore, P must be positive definite for Vf(x) to
be positive definite. Additionally, we need to ensure that Vf(x+) − Vf(x) is negative
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semidefinite, i.e.,

Vf(x) ≥ Vf(x+)
xTPx ≥ (Ax+Bu)T

P (Ax+Bu)

0 ≥ xT
[(
A+BkT

)T
P
(
A+BkT

)
− P

]
x

0 ≥
(
A+BkT

)T
P
(
A+BkT

)
− P

0 ≥
(
A+BsTP

)T
P
(
A+BsTP

)
− P .

Substituting G := P−1 (this implies G = GT > 0) gives

0 ≥
(
A+BsTG−1

)T
G−1

(
A+BsTG−1

)
−G−1

and multiplied with G from both sides yields

0 ≥
(
AG+BsT

)T
G−1

(
AG+BsT

)
−G

0 ≤ G−
(
AG+BsT

)T
G−1

(
AG+BsT

)
. (A.4)

The sought variables are G and s and appear in a nonlinear manner in (A.4), which
makes their determination difficult. Fortunately, (A.4) can be reformulated into a
linear matrix inequality (LMI) using the Schur complement.

Lemma 3 (Schur complement, [25]). For a matrix

X =
D Π
ΠT C


with det(D) 6= 0, the matrix

S = C −ΠTD−1Π

is called the Schur complement of D in X. Moreover, the following properties hold:

X > 0, if and only if D > 0 and S > 0. (A.5a)
If D > 0, then X ≥ 0, if and only if S ≥ 0. (A.5b)

(A.5b) can be applied to (A.4) with C = D = G and Π =
(
AG+BsT

)
. Then,

 G
(
AG+BsT

)
(
AG+BsT

)T
G

 ≥ 0 (A.6)

is equivalent to (A.4) and hence, can be used instead of it. The LMI (A.6) is affine
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in the unknowns G and s and can therefore be solved efficiently. A solution yields
the matrix P = G−1 that makes Vf(x) = xTPx a Lyapunov function for the closed-
loop system and defines at the same time together with s the terminal control law
κf(x) = sTPx.
Now, one can choose a level set of the Lyapunov function as the terminal region

Xf :=
{
x ∈ Rnx : xTPx ≤ 1

}
. (A.7)

Then, u = κf(x) is a stabilizing terminal controller on Xf. Note that (A.7) describes
an ellipsoid in the state space Rnx, whose size is determined by P .

A.4.2 Constraint Satisfaction

State constraint satisfaction of the terminal region Xf translates to

Xf ⊆ X (A.8a)

and since u = kTx ∈ U for all x ∈ Xf, input constraint satisfaction translates to

kTXf ⊆ U . (A.8b)

These are general set conditions and usually hard to verify because one would have
to check if they hold for every point in Xf. In the case of closed convex sets, such as
polyhedral sets

X =
{
x ∈ Rnx : qT

i x ≤ ri, i = 1, . . . , nX
}

(A.9a)
U =

{
u ∈ Rnu : vT

l u ≤ tl, l = 1, . . . , nU
}

(A.9b)

with the numbers of inequalities denoted by nX , nU ∈ N, this problem can be circum-
vented using the support function concept which allows us to reformulate conditions
(A.8) as LMIs [23, 95].

Definition 18 (Support function). The support function of a closed convex set S ⊂
Rnx, evaluated at a point η ∈ Rnx, is

hS(η) = sup
x∈S

ηTx .

For a given vector η, the support function chooses the x ∈ S for which the scalar
product ηTx is maximal. In particular, it yields the supremum of all possible scalar
products of the points of the set S with a given vector η. Any nonempty closed and
convex set S can be uniquely represented by its support function hS(·) via

S =
{
x ∈ Rnx : ηTx ≤ hS(η), ∀η ∈ Rnx

}
.

For instance, the support function of an ellipsoidal set as defined by (A.7) is given by
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hXf(η) =
√
ηTP−1η.

A.4.2.1 Satisfaction of State Constraints

Given the two closed convex sets Xf and X , checking the state constraint condition
Xf ⊆ X is equivalent to checking if hXf(η) ≤ hX (η) holds for all η ∈ Rnx. In case that
X is a polyhedral set as defined in (A.9), checking Xf ⊆ X simplifies even further to
verifying that hXf(qi) ≤ ri holds for all i ∈ {1, . . . , nX}. Putting all this together, we
arrive at the equivalence

Xf ⊆ X ⇔
√
qT
i P

−1qi ≤ ri, ∀i ∈ {1, . . . , nX} .

The right hand side inequality can be reformulated by means of the Schur complement
into the set of LMIs  G (Gqi)

(Gqi)T r2
i

 ≥ 0, ∀i ∈ {1, . . . , nX} , (A.10)

with the same G as in (A.6).

A.4.2.2 Satisfaction of Input Constraints

The same procedure can be applied to transform the input constraint condition into a
set of LMIs. First, note that the inclusion kTXf ⊆ U holds if the inequality hkTXf(η) ≤
hU(η) is satisfied for all η ∈ Rnu. Since U is polyhedral, this simplifies to hkTXf(vl) ≤
tl for all l ∈ {1, . . . , nU}. Applying the identity hXY (η) = hY (XTη) [95] yields
hXf(kvl) ≤ tl for all l ∈ {1, . . . , nU} and we arrive at the equivalence

kTXf ⊆ U ⇔
√

(kTvl)T
P−1(kTvl) ≤ tl, ∀l ∈ {1, . . . , nU} .

Again, the right hand side inequality can be reformulated by means of the Schur
complement into the set of LMIs P−1 (P−1kTvl)

(P−1kTvl)T t2l


=
 G (sTvl)
(sTvl)T t2l

 ≥ 0, ∀l ∈ {1, . . . , nU} .
(A.11)

A.4.3 Optimization Problem

In order to determine the terminal cost function Vf(x) = xTPx, together with the
terminal control law κf(x) = kTx and corresponding terminal region Xf, (A.6), (A.10)
and (A.11) have to be satisfied. To this end we use them as constraints to the opti-
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mization problem

max
G,s

log
(

det(G)
)

s.t. G = GT > 0 G
(
AG+BsT

)T(
AG+BsT

)
G

 ≥ 0
 G (Gqi)
(Gqi)T r2

i

 ≥ 0, ∀i ∈ {1, . . . , nX} G (sTvl)
(sTvl)T t2l

 ≥ 0, ∀l ∈ {1, . . . , nU} ,

(A.12)

whose objective is to maximize Xf by means of maximizing log(det(G)) (see [25, 119]).
(A.12) is a semidefinite program and can be efficiently solved employing, e.g. MAT-
LAB together with the YALMIP toolbox and the solvesdp command.

A.5 Extremum Seeking Control

In this section, we provide the derivation of the extremum seeking control approach
according to [96] as shown in Fig. A.1.

Figure A.1: Block diagram of the extremum seeking control approach.

Let h(u) : R → R be a smooth and locally convex function for which there exists
a minimum h∗ at u = u∗. The objective of the extremum seeking controller is to find
this minimum.
The Taylor series expansion up to order two of h(u) around an evaluation point û

is
h(u) ≈ h(û) + dh

du

∣∣∣∣
û

(u− û)︸ ︷︷ ︸
∆u

+d2h

du2

∣∣∣∣
û

(u− û)2︸ ︷︷ ︸
∆u2

.

Now, in extremum seeking control, the point û is disturbed by a so-called sinusoidal
dither signal d(t) = ad sin(ωdt). Then, the input becomes u(t) = û + ad sin(ωdt) and
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one obtains for small dither amplitudes ad

h
(
û+ ad sin(ωdt)

)
≈ h(û) + dh

du

∣∣∣∣
û
ad sin(ωdt) + d2h

du2

∣∣∣∣
û
a2
d sin2(ωdt) .

The resulting output signal of h(u(t)) is passed through a high pass filter GH(s) = s
s+ωH

to eliminate any constant offsets, which yields

ξ1(t) ≈ dh
du

∣∣∣∣
û
ad sin(ωdt+ φ) + d2h

du2

∣∣∣∣
û
a2
d sin2(ωdt+ φ)

and where φ = arg
(
GH(jωd)

)
is the phase shift introduced by the high pass filter.

The signal ξ1(t) is then multiplied by the phase shifted dither signal ad sin(ωdt + φ),
obtaining

dh
du

∣∣∣∣
û
a2
d sin2(ωdt+ φ) + d2h

du2

∣∣∣∣
û
a3
d sin3(ωdt+ φ) ,

which can be expressed via sin2(x) = 1
2(1− cos(2x)) as

dh
du

∣∣∣∣
û
a2
d

1
2
[
1− cos

(
2(ωdt+ φ)

)]
+ d2h

du2

∣∣∣∣
û
a3
d sin3(ωdt+ φ) .

This signal is then smoothed by the low pass filter GL(s) = ωL
s+ωL

, which in turn leads
to the signal ξ2(t). Since cos(·) and sin3(·) have zero mean, one obtains for small filter
frequencies ωL

lim
t→∞

ξ2(t) = a2
d

2
dh
du

∣∣∣∣
û

at the current operating point û. Choosing K := −2/a2
d in Fig. A.1, one obtains

lim
t→∞

ξ3(t) = −dh
du

∣∣∣∣
û
,

i.e. ξ3(t) tends to the negative gradient of h(û). Hence, ξ3(t) can be used subsequently
to implement a gradient descent approach, realized by the integration of ξ3(t), turning
û into an estimation of the minimizer u∗.
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