Medizinische Fakultät der Martin-Luther-Universität Halle-Wittenberg

Untersuchungen zur Expression und Funktion von FCGRT-Transkriptvarianten im Ewing-Sarkom

Dissertation

zur Erlangung des akademischen Grades Doktor der Medizin (Dr.med.)

vorgelegt

der Medizinischen Fakultät

der Martin-Luther-Universität Halle-Wittenberg

von Thekla Wünsche geboren am 26.07.1993 in Dresden

Betreuer: apl. Prof. Dr. rer. nat., rer. medic. habil. Martin S. Staege

Gutachter: 1. apl. Prof. Dr. med. Malte Kornhuber, Sangerhausen2. PD Dr. rer. nat. Benno Weigmann, Erlangen

06.10.2020 15.09.2021 Meinen lieben Eltern, Großeltern und für alle Kinder und jungen Erwachsenen, die gegen die Erkrankung am Ewing-Sarkom kämpfen müssen

Referat

Das Ewing-Sarkom ist der zweithäufigste maligne Knochentumor des Kindesalters und mit einer aktuellen 5-Jahres-Überlebenswahrscheinlichkeit von 70 % einer der schlecht heilbaren. Um die Heilungschancen der Patienten zu verbessern, sollte ein Fokus auf die Entwicklung gezielter Therapieansätze gelegt werden. Hierzu ist es notwendig, spezifische Charakteristika dieser Krebserkrankung zu untersuchen. Aus Vorarbeiten des Labors geht hervor, dass die Genexpression von FCGRT in der Ewing-Sarkom-Zelllinie SK-N-MC erhöht ist. FCGRT ist ein Gen, das die schwere α -Kette des neonatalen Fc-Rezeptors codiert. Der Rezeptor wird lebenslang und beinahe ubiquitär im menschlichen Körper exprimiert. Seine Hauptfunktion ist die Aufrechterhaltung der Homöostase von Immunglobulin G und Albumin, was über zelluläre Aufnahme- und rezeptorvermittelte Recycling-Mechanismen erreicht wird. Für FCGRT hinterlegt die NCBI-Datenbank zwei RNA-Referenzsequenzen. In dieser Arbeit wurden Ewing-Sarkom-Zellen auf das Vorkommen unbekannter FCGRT-Transkriptvarianten untersucht. Hierfür wurde eine Polymerase-Kettenreaktion an der cDNA der Ewing-Sarkom-Zelllinie A673 durchgeführt. Es konnten drei weitere Transkriptvarianten von FCGRT identifiziert werden. Mittels quantitativer Real Time Polymerase-Kettenreaktion wurde die Expression der FCGRT-Transkriptvarianten in den ausgewählten Ewing-Sarkom-Zelllinien A673, RD-ES und SK-N-MC gemessen. Diese wurde vergleichend zur FCGRT-Expression in den Neuroblastom-Zelllinien CHP-126, KELLY, SH-SY5Y und SiMA ausgewertet und zeigte für jede Transkriptvariante höhere Expressionslevel in den Ewing-Sarkom-Zelllinien, wobei sich das Muster der Expression unterschied. Zur Untersuchung funktioneller Aspekte der gefundenen Transkriptvarianten wurden Expressionsvektoren hergestellt und in A673-Zellen transfiziert. Nach Überexpression der einzelnen Transkriptvarianten ergaben sich Hinweise auf eine regulierende Einflussnahme einer neu gefundenen Transkriptvariante auf die Expression der bekannten RNA-Referenzsequenzen von FCGRT. Mittels Fluorescence-activated Cell Scanning wurde anschließend an nativen und transgenen A673-Zellen die Bindungskapazität von Immunglobulin G erfasst. Diese zeigte sich nach Überexpression erhöht. Es bestätigte sich die Annahme, dass der neonatale Fc-Rezeptor auf der Zelloberfläche von Ewing-Sarkom-Zellen vorkommt, Immunglobulin G bindende Rezeptoren aus den neu gefundenen FCGRT-Transkriptvarianten ausgebildet werden oder eine regulative Einflussnahme durch diese stattfindet. Die Erkenntnisse über die FCGRT-Überexpression und -Variation im Ewing-Sarkom könnten zukünftig zur Entwicklung neuer Therapien wie der Anwendung Immunglobulin G- oder Albumin-konjugierter Medikamente beitragen.

Wünsche, Thekla: Untersuchungen zur Expression und Funktion von FCGRT-Transkriptvarianten im Ewing-Sarkom, Halle (Saale), Univ., Med. Fak., Diss., 79 Seiten, 2020

Inhaltsverzeichnis

I	A	bbildungsverzeichnis	IV
II	Т	abellenverzeichnis	V
III	A	bkürzungsverzeichnis	VI
1.	Einlei	tung	1
1	L.1 C	Der neonatale Fc-Rezeptor (FcRn)	1
	1.1.1	Struktur des FcRn und Bindung seiner Liganden	1
	1.1.2	FcRn vermittelte zelluläre Mechanismen	2
	1.1.3	FcRn-Expression im Gewebe und funktionelle Aspekte	2
	1.1.4	FCGRT – Codierung der schweren α -Kette des FcRn	4
1	L.2 C	Das Ewing-Sarkom	5
	1.2.1	Definition und Epidemiologie	5
	1.2.2	Ätiologie	6
	1.2.3	Klinisches Erscheinungsbild und Diagnostik	7
	1.2.4	Therapie und Prognose	8
	1.2.5	Verlinkung zwischen FCGRT und dem Ewing-Sarkom	9
2.	Zielse	tzung	11
3.	Mate	rial und Methodik	12
3	8.1 N	Naterial	12
	3.1.1	Geräte und Verbrauchsmaterialen	12
	3.1.2	Chemikalien, Kits und Enzyme	13
	3.1.3	Medien und Puffer	14
	3.1.4	RNA aus Zelllinien	15
	3.1.5	Primer	15
	3.1.6	Vektoren	16
3	3.2 N	/lethodik	17
	3.2.1	Reverse Transkription	17
	3.2.2	Polymerase-Kettenreaktion (PCR) und Aufreinigung von PCR-Produkten	18
	3.2.3	Gelelektrophorese und Extraktion von cDNA aus dem Agarosegel	19
	3.2.4	Photospektrometrische Quantifizierung von Nukleinsäuren	19

	3.2.5 Kolonie-Polymerase-Kettenreaktion (Kolonie-PCR)		20
3.2.6		Sequenzierung von Nukleinsäuren	
3.2.7		Klonierung von cDNA in Plasmidvektoren	22
	3.2.8	Zellkultur und Zellzahlbestimmung	25
	3.2.9	Transfektion	26
	3.2.10	RNA-Isolation	26
	3.2.11	Quantitative Real Time Polymerase-Kettenreaktion (qPCR)	26
	3.2.12	Immunmarkierung transgener Zellen	28
	3.2.13	Fluorescence-activated Cell Scanning (FACS)	29
4.	Ergebr	isse	30
4	.1 Id	entifizierung unbekannter Transkriptvarianten des Gens FCGRT	30
	4.1.1	Erstellen von Primern an FCGRT-Referenzsequenzen und deren PCR-Produkte	30
	4.1.2	Mittels Sequenzierung identifizierte FCGRT-Transkriptvarianten	33
	4.1.3	Vorhergesagte Proteine sequenzierter FCGRT-Transkriptvarianten	34
4	.2 Ex	pression der FCGRT-Transkriptvarianten in verschiedenen Zelllinien	35
	4.2.1	Erstellen von Primern für Messungen mittels qPCR	35
	4.2.2	Expression der Transkriptvarianten durch Berechnung mittels 2- $\Delta\Delta Ct$ - Methode	36
	4.2.3	Mengenvergleich der Transkriptvarianten in den verschiedenen Zelllinien	38
4	.3 Fu	unktionelle Effekte der FCGRT-Transkriptvarianten in transgenen Zellen	40
	4.3.1	Erstellen von Expressionsvektoren zur Transfektion genetischen Materials	40
	4.3.2	Expression der Transkriptvarianten in nativen und transgenen A673-Zellen	42
	4.3.3	FACS-Analyse nativer und transgener A673-Zellen	45
5.	Diskus	sion	50
5	.1 F0	CGRT-Transkriptvarianten – Produkte des alternativen Spleißens?	50
5	.2 F0	CGRT-Expression im Ewing-Sarkom – ein tumorspezifisches Ereignis?	52
	5.2.1	Expression der FCGRT-Transkriptvarianten im Ewing-Sarkom	52
	5.2.2	Differentielle Expression von FCGRT in anderen malignen Erkrankungen	55
5	.3 Fi	unktionelle Aspekte der gefundenen FCGRT-Transkriptvarianten	56
	5.3.1	Einflussnahme der Transkriptvarianten auf die FCGRT-Genexpression	56
	5.3.2	Rezeptorstatus nach Überexpression der FCGRT-Transkriptvarianten	57
6.	Zusam	menfassung	59

7.	Literaturverzeichnis		
8.	Thesen		
9.	Anla	age	71
ç	9.1	Sequenzierte Transkriptvarianten von FCGRT an cDNA von A673-Zellen	71
9	9.2	Abweichungen der Transkriptvarianten aus A673-Zellen zur Referenz	73
ç	9.3	Aminosäuren der sequenzierten Transkriptvarianten des Gens FCGRT	74
9.4 Standardkurven von FCGRT_III, FCGRT_IV und FCGRT_V		75	
9	9.5 FACS-Analyse nativer und transgener A673-Zellen 75		
10.	Selb	stständigkeitserklärung	х
11.	Dan	ksagung	XI

I Abbildungsverzeichnis

- Abbildung 1: Darstellung der Primer-Lokalisation auf den Transkriptvarianten 1 und 2 des Gens FCGRT
- Abbildung 2: Gelelektrophorese der an cDNA der Zelllinie A673 durchgeführten PCR
- Abbildung 3: Gelelektrophorese der an pGEM-T Easy-Vektor tragenden Kolonien durchgeführten PCR
- Abbildung 4: Darstellung des schematischen Aufbaus sequenzierter PCR-Produkte
- Abbildung 5: Darstellung der Proteindomänen codierender Exons sequenzierter Transkriptvarianten
- Abbildung 6: Darstellung der *Primer*-Lokalisation auf den gefundenen Transkriptvarianten des Gens FCGRT
- Abbildung 7: Expression der Transkriptvarianten in verschiedenen Zelllinien nach der 2^{-ΔΔCt}-Methode
- Abbildung 8: Standardkurven des Haushaltgens HPRT1 und der Transkriptvariante FCGRT_I+II
- Abbildung 9: Verhältnis molarer Mengen der Transkriptvarianten nach Berechnung mithilfe der Standardkurven
- Abbildung 10: Restriktionsverdau von pUC19Sfil-Vektoren zur Überprüfung der Insert-Ausrichtung
- Abbildung 11: Gelektrophorese Insert tragender Klonierungs- und Expressionsvektoren
- Abbildung 12: Expression der Transkriptvarianten in transgenen A673-Zellen
- Abbildung 13: Verhältnis molarer Mengen der Transkriptvarianten in transgenen A673-Zellen
- Abbildung 14: Cy5 markierte native und transgene A673-Zellen nach Behandlung mit Immunglobulinen
- Abbildung 15: FACS-Analyse mit *Gating*-Strategie der mit pRTS1_Leervektor transfizierten A673-Zellen
- Abbildung 16: FACS-Analyse mit *Gating*-Strategie der mit pRTS1_FCGRT_VI transfizierten A673-Zellen
- Abbildung 17: Genexpression von FCGRT im gesunden Körpergewebe und im Ewing-Sarkom
- Abbildung 18: Abweichungen in der Basenabfolge der Transkriptvarianten zu deren Referenzsequenzen
- Abbildung 19: Standardkurven der Transkriptvarianten FCGRT_III, FCGRT_IV und FCGRT_V von FCGRT
- Abbildung 20: FACS-Analyse mit Gating-Strategie der nativen A673-Zellen

- Abbildung 21: FACS-Analyse mit *Gating*-Strategie der mit pRTS-1_FCGRT_II transfizierten A673-Zellen
- Abbildung 22: FACS-Analyse mit *Gating*-Strategie der mit pRTS-1_FCGRT_III transfizierten A673-Zellen
- Abbildung 23:
 FACS-Analyse mit *Gating*-Strategie der mit pRTS-1_FCGRT_V transfizierten

 A673-Zellen

II Tabellenverzeichnis

- Tabelle 1: Geräte und Verbrauchsmaterial Tabelle 2: Chemikalien, Kits und Enzyme Tabelle 3: Medien und Puffer Tabelle 4: Zelllinien Tabelle 5: Primer Tabelle 6: Vektoren Tabelle 7: Reaktionsansatz reverse Transkriptase Tabelle 8: Konditionen für cDNA im Thermocycler Tabelle 9: **Reaktionsansatz PCR** PCR-Programm "Standard" Tabelle 10: Tabelle 11: Agarosegel Tabelle 12: PCR-Programm "Kolonie-PCR" Tabelle 13: Reaktionsansatz Sequenzierung Tabelle 14: PCR-Programm "Sequenzierung" Tabelle 15: Reaktionsansatz Restriktionsverdau Tabelle 16: Reaktionsansatz Dephosphorylierung Tabelle 17: **Reaktionsansatz Ligation**
- **Tabelle 18:**Reaktionsansatz qPCR
- Tabelle 19:
 Zu erwartende PCR-Produktlängen
- Tabelle 20:Erwartete Basenpaarlängen des Restriktionsverdaus von Klonierungs- und
Expressionsvektoren

III Abkürzungsverzeichnis

%	Prozent
°C	Grad Celsius
Δ	delta
α	alpha
γ	gamma
3	epsilon
μ	ту
Abb.	Abbildung
AP	Alkalische Phosphatase
APC-A	Allophycocyanin
AYA	Adolescent and Young Adult
β₂m	Beta-2-Mikroglobulin
bp / kbp	Basenpaare / Kilo-Basenpaare
bzw.	beziehungsweise
CAVI	Carbonic Anhydrase VI
CD	Cluster of Differentiation
cDNA	Complementary DNA
cm	Zentimeter
cm ²	Quadratzentimeter
CO ₂	Kohlenstoffdioxid
CpG	Desoxycytidin-Phosphorsäure-Desoxyguanosin
CRP	C-reaktives Protein
C _T	treshold cycle
СТ	Computertomographie
CITED	Cbp/p300 Interacting Transactivator with Glu/Asp rich carboxy-terminal Domain
Cy5	Indodicarbocyanin
d.h.	das heißt
DC	Dendritic cell
DNA	Desoxyribonukleinsäure
DMEM	Dulbecco's MEM
DMSO	Dimethylsulfoxid
dNTP	Desoxyribonukleosid-Triphosphat

- DPBS Dulbecco's Phosphat Buffered Saline
- DPEC Diethylpyrocarbonat-Wasser
- E. coli Escherichia coli
- EDTA Ethylendiamintetraessigsäure
- eGFP enhanced Green Fluorescent Protein
- ERG ETS-Related Gene
- et al. et alii
- ETS E26 erythroblastosis virus Transforming Sequence
- ETV1 ETS Variant Transcription Factor 1
- ETV4 ETS Variant Transcription Factor 4
- EVAID Etoposid, Vincristin, Actinomycin D, Ifosphamid, Doxorubicin
- EWSR1 Ewing Sarcoma breakpoint Region 1
- EWS Ewing-Sarkom-Gen
- FACS Fluorescence-activated Cell Scanning
- Fc fragment crystallisable
- FCGRT Fc fragment of IgG receptor and transporter
- FcR Fc-Rezeptor
- FcRn neonataler Fc-Rezeptor
- FCS Fetales Kälberserum
- FEV Fifth Ewing Variant
- FET FUS/EWSR1/TAF15-Gen-Familie
- FLI1 Friend Leukaemia Integration 1
- FSC Forward Scatter
- FSC-A Forward Scatter Area
- FSC-H Forward Scatter Height
- FUS Fused in Liposarcoma
- g Gramm
- GFP Green Fluorescent Protein
- GFP-A Green Fluorescent Protein Area
- H₂O Wasser
- HLA Humanes Leukozyten Antigen
- HPLC High performance liquid chromatography
- HPRT1 Hxypoxanthin-Guanin-Phosphoribosyltransferase
- lg Immunglobulin
- IgG-IC Immunglobulin G-Immunkomplex

INF-γ	Interferon gamma
JAK/STAT	Januskinase/Signal Transducers and Activators of Transcription
KRAS	Kirsten Rat Sarcoma Virus
LB	Lysogeny Broth
Μ	molare Masse
MCS	multiple cloning site
MHC-I	Haupthistokompatibilitätskomplex I
MIC2	Major histocompatibility complex class I chain related 2
ml	Milliliter
μg	Mikrogramm
μΙ	Mikroliter
MRT	Magnetresonanztomographie
mV	Millivolt
NCBI	National Center of Biotechnology Information
NF-κB	nuclear factor 'kappa-light-chain-enhancer' of activated B-cells
ng	Nanogramm
nm	Nanometer
NTC	No Template Control
O ₂	Sauerstoff
0.g.	oben genannt
OLFM1	Olfactomedin 1
ORF	open reading frame
PCR	Polymerase-Kettenreaktion
рН	potentia hydrogenii
PTTG1IP	Pituitary tumor-transforming gene 1 protein-interacting protein
qPCR	quantitative Real Time Polymerase-Kettenreaktion
RNA	Ribonukleinsäure
RNase	Ribonuklease
rpm	revolutions per minute
RUNX2	Runt-related transcription factor 2
SBRCT	small-blue-round-cell-tumor
SOC	Super Optimal Broth with Catabolite Repression
SSC	Side Scatter
SSC-A	Side Scatter Area

SSC-W	Side Scatter Width		
TAE	Tris-Acetat-Ethylendiamintetraessigsäure		
TAF15	TATA-binding protein Associated Factor 2N		
Таq	thermus aquaticus		
Trypsin-EDTA	Trypsin-Ethylendiamintetraessigsäure		
U	Unit		
u.a.	unter anderem		
UV	Ultraviolett		
VACD	Vincristin, Actinomycin D, Cyclophosphamid, Doxorubicin		
VAID	Vincristin, Actinomycin D, Ifosphamid, Doxorubicin		
WHO	World Health Organization		
x g	Erdbeschleunigung		
z.B.	zum Beispiel		

1. Einleitung

1.1 Der neonatale Fc-Rezeptor (FcRn)

1.1.1 Struktur des FcRn und Bindung seiner Liganden

Fc-Rezeptoren (FcR) sind membranständige Oberflächenmoleküle, die eine spezifische Bindungsaffinität zur konstanten Region von Immunglobulinen besitzen, dem fragment crystallisable (Fc). Dabei richtet sich ihre Einteilung nach der Erkennung der Immunglobulinisotypen IgA, IgG, IgE und IgM, was zur Untergliederung der Rezeptoren in Fc α R, FcγR, FcεR und FcμR führt. Ihre Expression erfolgt vor allem durch die Zellen des Immunsystems, die über aktivierende und inhibierende Effektorfunktionen der Rezeptoren wesentlich in der Ausbildung von Abwehrmechanismen gegenüber pathogenen Erregern gesteuert werden (Ben Mkaddem et al. 2019). Der neonatale Fc-Rezeptor (FcRn) als FcyR ist durch seine strukturelle Verwandtschaft zum Haupthistokompatibilitätskomplex der Klasse I (MHC-I) ein atypischer Vertreter. Die Bestandteile des heterodimeren FcRn setzen sich durch eine nicht kovalente Bindung zwischen der schweren α -Kette p51 und der leichten Kette p14, dem Beta-2-Mikroglobulin (β_2 m), zusammen (Abdiche *et al.* 2015). Die α -Kette besteht aus drei extrazellulären α -Domänen (α 1, α 2 und α 3), denen sich eine Transmembranregion und ein kurzes zytoplasmatisches Ende von 40 Aminosäuren anschließen (Simister und Mostov 1989, Burmeister et al. 1994). Diese weist im Gegensatz zu herkömmlichen MHC-I-Molekülen jedoch keine Bindungsstellen für Peptide zur Präsentation von Antigenen auf, da die entsprechende Verankerungsstruktur durch eine Argininseitenkette und einen Prolinrest verlegt ist (Raghavan et al. 1993, Burmeister et al. 1994). FcRn interagiert mit den Proteinen Immunglobulin G (IgG) und Albumin. Das stöchiometrische Verhältnis des FcRn zu IgG beträgt bei der Interaktion 2:1, wobei zwei FcRn mit gleicher Affinität zu je einen Fc-Teil des homodimeren IgG Bezug nehmen (Huber et al. 1993, Abdiche et al. 2015). FcRn bindet den Fc-Teil des IgG an der Scharnierregion C_H2-C_H3 seiner α 1- und α 2-Domäne im pH-Wertbereich von 6,0 bis 6,5 (Raghavan *et al.* 1995). Die pH-Wert abhängige Bindung zwischen Rezeptor und IgG wird über die Ausbildung von Wasserstoff- und Salzbrücken im sauren Milieu ermöglicht, die sich unter dieser Kondition zwischen Histidinen und dem Isoleucin 253 des Fc-Teils von IgG und verschiedenen Aminosäuren des Rezeptors formieren (Raghavan et al. 1995, Kim et al. 1999, Oganesyan et al. 2014). Neben der schweren α -Kette des FcRn ist dabei auch β_2 m in die Adhäsion involviert (Shields *et al.* 2001, Oganesyan et al. 2014). Durch in-vitro-Experimente konnte eine simultane Bindung der beiden Liganden IgG und Albumin als möglich erwiesen werden (Oganesyan et al. 2014). Dabei liegt der IgG-Bindungsstelle ein Verankerungspunkt für Albumin gegenüber, dessen Bindung gleichermaßen pH-Wert abhängig über Histidinreste des Liganden aktiviert wird. Das stöchiometrische Verhältnis des FcRn zu Albumin beträgt 1:1 (Chaudhury *et al.* 2006).

1.1.2 FcRn vermittelte zelluläre Mechanismen

Die Proteinmodifikation des FcRn findet im endoplasmatischen Retikulum statt, deren fehlerfreie Ausbildung von β_2 m abhängig ist (Zhu *et al.* 2002). Die Liganden IgG und Albumin können über Pinozytose in das Zellinnere gelangen (Junghans und Anderson 1996). Dies gilt im Zusammenhang der Rezeptor-Liganden-Interaktion z.B. für Endothelzellen (Ober et al. 2004). Dort werden die mit IgG und Albumin beladenen Vesikel in frühe, EEA1-, Rab5-, Rab4- und Rab11a-positive Endosomen mit saurem Milieu geschleust und an den dort befindlichen FcRn gebunden. Der Rezeptor sortiert die Liganden in Rab4- und Rab11a-positive Recycling-Endosomen. Dies bewirkt einen Schutz der Liganden vor dem lysosomalen Abbau in Phagolysosomen (Ward et al. 2005). Beide Liganden werden wieder über die Zellmembran per Exozytose durch Verschmelzung der Endosomen mit der Zellmembran ausgeschleust. Aufgrund des neutralen pH-Wertes der extrazellulären Matrix wird die Bindung von Rezeptor und Ligand gelöst (Ober et al. 2004). In dendritischen Zellen (DC) werden größere Immunglobulin-Komplexe (IgG-IC) allerdings FcRn vermittelt in lysosomale Kompartimente sortiert (Weflen et al. 2013). In polarisierten Epithelzellen, bei denen der Rezeptor auch auf der Zelloberfläche lokalisiert ist, kann die Transzytose der Liganden bidirektional ablaufen (Dickinson et al. 1999, Tzaban et al. 2009). Das zytoplasmatische Ende des FcRn, das u.a. an Clathrin bindet, ist in den gerichteten Transport der Vesikel und die Rückführung des FcRn nach intrazellulär involviert. So hängt die Funktionalität des Rezeptors u.a. von diesem strukturellen Element ab (He et al. 2008).

1.1.3 FcRn-Expression im Gewebe und funktionelle Aspekte

Die Forschungsergebnisse von F.W. Brambell über den Erwerb angeborener Immunität im Jahr 1969 veranlassten ihn, die Hypothese von der Existenz eines rezeptorvermittelten Transfers mütterlichen IgGs auf den Fetus bzw. das Neugeborene zu postulieren (Brambell 1969). Diese Vorstellung wurde 30 Jahre später durch die Isolierung und Sequenzierung eines FcR aus dem Darm einer 11 Tage alten Ratte bestätigt, was zur Bezeichnung *"The neonatal Fc Receptor"* führte (Simister und Mostov 1989). Inzwischen ist bekannt, dass sich die Funktion des FcRn nicht nur auf den Transfer von IgG über die Plazenta und das proximale Intestinum in der Fetal- und Neonatalperiode beläuft, sondern dass dieser Rezeptor lebenslang in die Regulierung des Immunsystems und in den Stoffwechsel des Albumins eingreift. Die Expression durch Enterozyten befähigt den bidirektionalen Transport von IgG über das Darmepithel (Dickinson *et* al. 1999, Claypool et al. 2004). Dies führt zum einen zur Sekretion von IgG aus dem Blut in das Lumen des Intestinum zur Abwehr pathogener Erreger. Zum anderen ermöglicht es den Rücktransport von IgG-ICs aus dem Darm zu den DCs des Immunsystems, die den Komplex aufnehmen, um das entsprechende Antigen den T-Zellen zu präsentieren und eine Immunantwort zu induzieren (Yoshida et al. 2004). Neben DCs exprimieren auch weitere Zellen des hämatopoetischen Systems den FcRn. Dies betrifft vor allem Zellen der myeolischen Linie wie Monozyten, Makrophagen und neutrophile Granulozyten, aber auch Zellen der lymphatischen Reihe wie B-Zellen (Zhu et al. 2001, Akilesh et al. 2007). Diese Zellen sowie die Endothelien tragen durch FcRn vermittelte Transzytose und Recycling seiner Liganden zum Schutz des IgG vor dem intrazellulär organisierten katabolen Abbau bei. Sie greifen dabei durch Verlängerung der IgG-Halbwertszeit entscheidend in die Regulierung des IgG-Serumspiegels ein (Akilesh et al. 2007, Challa et al. 2019). Obwohl FcRn selbst unfähig ist, als MHC-I ähnliches Molekül Peptide zu präsentieren, ist der Rezeptor doch in die Kreuzpräsentation von Antigenen involviert. Hierfür werden im Unterschied zum monomeren IgG, das vor dem katabolen Abbau geschützt wird, IgG-ICs FcRn vermittelt in Phagolysosomen manövriert, damit einzelne Bestandteile von Antigenen auf der Zellmembran von DCs präsentiert werden können (Qiao et al. 2008, Baker et al. 2011). Bakterien, die mittels IgG opsoniert wurden, können durch die Anwesenheit des FcRn auf Neutrophilen leichter internalisiert und Phagolysosomen zugeführt werden (Vidarsson et al. 2006). Eine FcRn vermittelte Sekretion von IgG über die bronchiale Schleimhaut zum Schutz dieser vor Infektionskrankheiten wurde beobachtet (Spiekermann et al. 2002). Um einen Verlust von IgG und Albumin über den Primärharn zu vermeiden, können die Epithelzellen des proximalen Tubulussystems der Niere beide Proteine mittels FcRn aus dem Harn resorbieren (Kobayashi et al. 2002). Podozyten in den Glomeruli der Niere verhindern in einem FcRn gesteuerten Prozess die Akkumulation von IgG und IgG-ICs auf der Basalmembran und schützen das Organ somit vor autoimmun ausgelösten Entzündungen (Akilesh et al. 2008). In der Leber wird die Homöostase von Albumin und somit der Serumspiegel von Albumin auch über FcRn reguliert (Kim et al. 2006, Pyzik et al. 2017). Weitere Expressionsorte des FcRn sind die Blut-Hirn-Schranke, die Haut und das Auge (Schlachetzki et al. 2002, Cianga et al. 2007, Kim et al. 2008).

1.1.4 FCGRT – Codierung der schweren α -Kette des FcRn

Die schwere α -Kette des FcRn wird durch das Gen *Fc fragment of IgG receptor and transporter* (FCGRT) codiert. Die Lokalisation des menschlichen FCGRT befindet sich auf den langen Armen von Chromosom 19 an der Stelle 19q13.3. Sie liegt damit außerhalb des codierenden Bereichs des Haupthistokompatibilitätskomplexes (Kandil et al. 1996). Jedoch weist FCGRT eine ähnliche Organisation wie das Gen des MCH-I-Moleküls auf. Jede Domäne der schweren α -Kette wird durch ein separates Exon verschlüsselt (Kandil et al. 1995). Insgesamt umfasst das Gen FCGRT sieben Exons und sechs Introns. Das erste Exon codiert den größten Anteil der nicht translatierten Region der α -Kette des FcRn, deren Information durch das Intron 1 von der übrigen auf Exon 2 getrennt wird. Dieses Exon chiffriert auch das Signalpeptid des Proteins und die erste Aminosäure der α 1-Domäne der schweren α -Kette des FcRn. Somit liegt das zweite Intron zwischen dem ersten und zweiten Nukleotid dieser Domäne, deren Rest durch das Exon 3 verschlüsselt wird. Darauf folgt ein kurzes drittes Intron und Exon 4, das für die α 2-Domäne codiert. Die genetische Information der letzten α -Domäne liegt auf Exon 5. An das fünfte Intron schließt das sechste Exon an, das die Transmembranregion des FcRn repräsentiert und die ersten sieben Aminosäuren des kurzen zytoplasmatischen Endes codiert. Dabei haben Exon 5 und Exon 6 jeweils schwache alternative Spleißstellen, was eine nicht membrangebundene Form des Rezeptors hervorbringen könnte. Dem letzten Intron folgt Exon 7, das die verbleibenden Aminosäuren des zytoplasmatischen Endes codiert und die untranslatierte Region am Ende der Sequenz enthält. Der erste Transkriptionsstartpunkt ist 869 Basenpaare vom Startcodon entfernt, ein weiterer liegt 828 Basenpaare vor dem Translationsstart (Mikulska et al. 2000). Der offene Leserahmen (ORF) umfasst 1098 Nukleotide (Story et al. 1994). Die NCBI-Datenbank legt von FCGRT zwei RNA-Referenzsequenzen vor. Diese unterscheiden sich vor allem in ihrer anfänglichen Organisation der Exons. Transkriptvariante 1 besitzt alle beschriebenen Exon-Strukturen, während bei Transkriptvariante 2 die untranslatierte Region nicht durch 2 Exons gekennzeichnet ist. Hier liegt das Signalpeptid zum Start der Transkription der schweren α-Kette des FcRn schon im ersten Exon, so dass ihr zweites Exon die genetische Information für die α 1-Domäne trägt. Im restlichen Aufbau gleichen sich die beiden Transkriptvarianten. Der Promotor für FCGRT liegt im 5' untranslatierten Bereich und wird durch multiple Transkriptionsfaktoren gesteuert (Mikulska und Simister 2000). Verschiedene Chromatin-Methylierungsmuster von CpG-Dinukleotiden in der Umgebung des FCGRT-Gens sind in die Regulation der Aktivität des Promotors involviert, was u.a. eine diverse Expression des FcRn in verschiedenen Zellen bewirkt. Dies spielt auch eine Rolle bei der Ausbildung einer unterschiedlichen Expression des Rezeptors in Tumoren und dem angrenzenden Gewebe (Cejas et al. 2019). Weitere epigenetische Einflüsse

auf die Kontrolle der Expression des FcRn besitzen spezifische *Micro*-RNAs (Ferguson und Blanco 2018). Über die JAK/STAT Signalkaskade und INF- γ wird die Expression des FcRn inhibiert, durch proinflammatorische Prozesse im Zusammenhang mit NF- κ B aktiviert (Liu *et al.* 2007, Liu *et al.* 2008). Für das Pankreaskarzinom wurde nachgewiesen, dass die KRAS-Aktivierung FcRn vermittelte Mechanismen reduziert, was einen Anstieg des katabolen Albuminstoffwechsels in der Zelle zur Folge hat. Dies bedingt eine höhere Proliferations- und Progressionsrate (Liu *et al.* 2019).

1.2 Das Ewing-Sarkom

1.2.1 Definition und Epidemiologie

In der WHO-Klassifikation der Knochen- und Weichteiltumore wird der Begriff des Ewing-Sarkoms für eine Familie von Tumoren verwendet, die sich durch charakteristische morphologische und immunphänotypische Eigenschaften auszeichnen sowie durch eine tumorspezifische chromosomale Translokation gekennzeichnet sind. Dies umfasst das klassische Ewing-Sarkom, extraossäre Formen, die peripheren malignen primitiven neuroektodermalen Tumore und Askin-Tumore (Fletcher et al. 2013). Histologisch sind für die Tumore kleine, runde Zellkerne und ein spärlicher Saum des Zytoplasmas bezeichnend (Roessner und Jurgens 1993). Die Mehrzahl der Fälle ist molekulargenetisch durch die Fusion des auf Chromosom 22g12 gelegenen EWSR1 (Ewing Sarcoma breakpoint Region 1)-Gens mit Mitgliedern der ETS (E26 erythroblastosis virus Transforming Sequence)-Transkriptionsfaktor-Familie charakterisiert (Delattre et al. 1994, Watson et al. 2018). Das Unterscheidungsmerkmal zur Einteilung der Ewing-Sarkome liegt in der Expression von neuronalen Markern. Klassische Ewing-Sarkome weisen keine neuronale Differenzierung auf, während atypische Formen einen neuronalen Marker, periphere maligne primitive neuroektodermale Tumore sogar zwei oder mehr besitzen (Schmidt et al. 1991). Die Abgrenzung zu anderen Weichteilsarkomen und Lymphomen besteht durch die fehlende Expression muskulärer und hämatopoetischer Marker (Roessner et al. 1984). Immunphänotypisch ist bei über 95 % der Ewing-Sarkome die Expression von CD99, auch bekannt als MIC2 (Major histocompatibility complex class I chain related 2)-Antigen, ausgeprägt (Ambros et al. 1991). Da dieses Oberflächenprotein u.a. aber auch bei der akuten myeolischen Leukämie vorkommt, gilt es für Ewing-Sarkome als nicht spezifisch (Zhang et al. 2000).

Ewing-Sarkome sind die zweithäufigsten bösartigen Knochentumore im Kindesalter sowie der Adoleszenz und des jungen Erwachsenenalters (AYA), jedoch von insgesamt seltener Erscheinung. Global treten etwa 1,5 Fälle pro 1.000.000 Kinder und AYAs auf. Die Anzahl der Neuerkrankungen pro Jahr weicht jedoch bei unterschiedlichen Ethnien voneinander ab. Die

Bevölkerung kaukasischer Abstammung weist eine Inzidenz von 0,155 % auf, während sie bei der asiatischen Bevölkerung bei 0,082 % liegt. Das niedrigste Erkrankungsrisiko besitzen Menschen afroamerikanischer Herkunft mit 0,017 %. (Jawad *et al.* 2009). Der Häufigkeitsgipfel der Erkrankung liegt um das 15. Lebensjahr. 50 % der Diagnosen werden zwischen der ersten und zweiten Lebensdekade gestellt, 23 % fallen auf Kinder unter 10 Jahren und etwa ein Viertel der Betroffenen entwickelt ein Ewing-Sarkom erst nach dem 20. Lebensjahr. Es besteht eine männliche Prädominanz mit einem Verhältnis von 3:2 zwischen männlichem und weiblichem Geschlecht (Esiashvili *et al.* 2008).

1.2.2 Ätiologie

Charakteristisch für die Entstehung von Ewing-Sarkomen ist die tumorspezifische Fusion der FET-Genfamilie mit Genen der ETS-Transkriptionsfaktoren. Die häufigste genetische Aberration bildet die balancierte chromosomale Translokation t(11;22)(q12q24), die sich zwischen dem auf Chromosom 22 befindlichen EWRS1-Gen und den auf Chromosom 11 gelegenen FLI1-Gen (Friend Leukaemia Integration 1) ereignet (Delattre et al. 1992). In 15 bis 20 % der Fälle ist die Translokation nicht nachweisbar, jedoch können bei diesen Patienten meist andere Fusionsvarianten der FET- und ETS-Genfamilien beobachtet werden. Den größten Anteil daran besitzt die Kombination des EWRS1-Gens mit dem ERG (ETS-Related Gene)-Transkriptionsfaktor (Zucman et al. 1993, Sorensen et al. 1994). Seltener sind beim Ewing-Sarkom Fusionsproteine, die sich aus der Vereinigung von EWRS1 mit den Mitgliedern der ETS Variant Transcription Factors ETV1, ETV4 und FEV (Fifth Ewing Variant) formen (Jeon et al. 1995, Peter et al. 1997, Urano et al. 1998). FUS (Fused in Liposarcoma) und TAF15 (TATA-binding protein Associated Factor 2N) der FET-Genfamilie können ebenfalls an der Bildung von Translokationen beteiligt sein, die zur Entstehung eines Ewing-Sarkoms führen (Ng et al. 2007). Gene der FET-Genfamilie exprimieren RNA bindende Proteine, die in Transkriptionsprozesse und die RNA-Prozessierung wie das Spleißen involviert sind. ETS-Transkriptionsfaktoren haben einen Einfluss auf die Zellproliferation und -differenzierung, sind in Kontrollmechanismen des Zellzyklus eingebunden und an Prozessen der Angiogenese und Apoptose beteiligt. FL1 kodiert ein Protein mit carboxyterminaler DNA-Bindungsdomäne, das die EWRS1-RNA-Bindungsdomäne bei der Fusion beider Gene ersetzt (Delattre et al. 1992). Es entsteht das tumorspezifische Onkofusionsprotein EWRS1-FLI1, das als abnormaler Transkriptionsfaktor neoplastische Effekte hervorruft, was zu dysregulativen Effekten der Zellzykluskontrolle, Zellmigration, Signaltransduktion und Aktivität der Telomerase führt sowie die Organisation der Chromatinstruktur beeinflusst (May et al. 1993, Ohno et al. 1993, Lessnick et al. 1995, Cidre-Aranaz und Alonso 2015). Bindungsstellen des Fusionsproteins betreffen GGAA-Sequenzen, die auch für ETS-Transkriptionsfaktoren typisch sind. GGAA-Sequenzen, die in Form von *Tandem repeats* in Mikrosatelliten vorkommen, bilden zudem spezifische Bindungsstellen des onkogenen Transkriptionsfaktors (Guillon *et al.* 2009). Dadurch kommt es zur *de-novo*-Induktion von *Enhancern*, was das epigenetisch festgesetzte Regelprogramm der Zelle ändert (Riggi *et al.* 2014, Tomazou *et al.* 2015).

1.2.3 Klinisches Erscheinungsbild und Diagnostik

Zum Großteil entwickeln sich Ewing-Sarkome im Knochen, sie kommen allerdings in 30 % der Fälle auch als extraossäre Form im Weichteilgewebe vor (Applebaum et al. 2011). Bei 25 % der Patienten ist der Primärtumor in der knöchernen Region des Beckens manifestiert, was die häufigste Lokalisation markiert. Überwiegend werden Ewing-Sarkome aber auch in den langen Röhrenknochen identifiziert, wobei die untere Extremität deutlich häufiger betroffen ist. Dies beläuft sich zu 16 % auf den Femur, zu 8 % auf die Tibia und zu 7 % auf die Fibula. Dagegen ist der Tumor nur zu 5 % im Humerus und zu je 1 % in Radius und Ulna lokalisiert. Andere öfter befallene knöcherne Strukturen sind die Rippen mit 12 % und die Wirbelsäule mit 8 %. Seltenere Manifestationsorte sind die Skapula, der Schädel, die Klavikula und die Fußknochen (Cotterill et al. 2000). Initial beginnt die Symptomatik meist lokal mit intermittierenden und belastungsabhängigen Schmerzen, die häufig im Zusammenhang mit kleineren Traumata auftreten. Diese bleiben oftmals ungewöhnlich lange bestehen und können gelegentlich auch nachts persistieren. Neben den Schmerzen kommt es bei vielen Patienten im Verlauf zu einer tastbaren Schwellung und zum Funktionsverlust der betroffenen Region (Widhe und Widhe 2000). Bei Läsionen von Nervenwurzeln durch das Tumorwachstum im Bereich der Wirbelsäule kann es zu neurologischen Ausfallerscheinungen kommen. Fieberschübe, erhöhte Entzündungsparameter in Form von Leukozytose, CRP-Anstieg und beschleunigter Blutsenkungsgeschwindigkeit sowie Anämie treten bei einem Drittel der Patienten auf. Laborchemisch weist ein unspezifischer Anstieg der Laktatdehydrogenase auf einen vermehrten Zellumsatz hin (Bacci et al. 1999, Venkateswaran et al. 2001, Bacci et al. 2006). Zum Zeitpunkt der Diagnosestellung besteht bei 75 % der Patienten keine Primärmetastasierung, bei 13 % finden sich Metastasen in der Lunge, bei 7 % im Knochen und Knochenmark. 4 % der Patienten weisen Metastasen in beiden genannten Organen auf und bei 1% kommt es zur Metastasierung außerhalb der Lunge und des Knochens (Paulussen et al. 2001).

Nach Erhebung der Krankengeschichte und der klinischen Befunde erfolgt initial eine konventionelle Röntgenaufnahme der suspekten Region in zwei Ebenen. Die charakteristischen radiologischen Merkmale zeigen sich beim Ewing-Sarkom als permeative Osteolysen, maligne

Periostreaktionen und extraossäre Weichteilkomponenten. Die röntgenologische Bildgebung kann zur näheren Untersuchung der Knochenveränderungen durch eine Aufnahme mittels nativer Computertomographie (CT) ergänzt werden. Eine anschließende Magnetresonanztomographie (MRT) ist zur Größen- und Lagebestimmung der Primärtumorregion notwendig. Die Sicherung der Diagnose folgt über eine Biopsie, die histologisch und molekularbiologisch begutachtet wird (S1-Leitlinie: Ewing-Sarkome des Kindes- und Jugendalters 2014, 02.05. 2020). Histologisch zeigen sich unter Hämatoxylin-Eosin-Färbung des Tumors Zellen mit kleinen, blauen, runden Zellkernen begleitet von einem spärlichen Zytoplasmasaum (Roessner und Jurgens 1993). Bei 95 % der Ewing-Sarkome können MIC2-Antigene detektiert werden (Ambros et al. 1991). In 30 % sind neuronale Marker wie die neuronenspezifische Enolase und Synaptobrevin nachweisbar (Schmidt et al. 1991). Als pathognomonisch für Ewing-Sarkome gilt die Translokation t(11;22)(q12q24), die molekulargenetisch über eine Fluoreszenz-in-situ-Hybridisierung oder eine Polymerase-Kettenreaktion erwiesen wird und die Abgrenzung zu anderen klein-und rundzelligen Tumoren dominiert (Sorensen et al. 1993). Für den Ausschluss bzw. Nachweis von Lungen- und Knochenmetastasen erfolgt eine Röntgenaufnahme des Thorax in zwei Ebenen, ein CT-Thorax sowie eine 3-Phasen-Skelettszintigraphie. Die Szintigraphie kann durch eine Positronenemissionstomographie mit 18-Fluor-Deoxyglukose ersetzt werden. Daneben sollte noch ein MRT aller klinisch und nuklearmedizinisch verdächtigen Regionen stattfinden (S1-Leitlinie: Ewing-Sarkome des Kindes- und Jugendalters 2014, 02.05. 2020).

1.2.4 Therapie und Prognose

Die Behandlung der Ewing-Sarkome erfolgt multidisziplinär und umfasst standardgemäß eine chemotherapeutische Induktionsphase mit anschließender chirurgischer Tumorexzision und/oder lokaler Bestrahlung. Adjuvant wird der Erfolg des Therapiekonzeptes durch die Gabe weiterer Chemotherapeutika unterstützt (S1-Leitlinie: Ewing-Sarkome des Kindes- und Jugendalters 2014, 02.05. 2020). Das präoperative Behandlungsziel liegt in der Eradikation von zum Zeitpunkt der Diagnosestellung bestehenden Mikrometastasen und der Reduktion des Tumorvolumens für eine optimierte operativ-kurative Situation (Ozaki 2015). Hierfür dienen verschiedene Kombinations-Chemotherapie-Regime. Patienten mit Standardrisiko, d.h. einer lokalen Tumormasse von unter 100 ml, profitieren von der Behandlung mit Vincristin, Actinomycin D, Cyclophosphamid und Doxorubicin (VACD) (Jurgens *et al.* 1988, Smith *et al.* 1991). Gleiches gilt für den Ersatz von Cyclophosphamid durch Ifosphamid bei dem eben genannten Schema (VAID). Dies führt überdies zu einer höheren Überlebensrate bei

Hochrisikopatienten mit einem Tumorvolumen über 100 ml (Paulussen et al. 2001). Die zusätzliche Gabe von Etoposid (EVAID) zeigt noch stärkere Effekte bei diesen Patienten im Vergleich zur Behandlung mit VIAD (Paulussen et al. 2008). Konsolidierungstherapien für Hochrisikopatienten, die bei schlechtem histologischen Ansprechen auf die laufende Chemotherapie erprobt werden, sind aktuell Gegenstand der Forschung und werden kontrovers diskutiert. Dies betrifft Hochdosis-Chemotherapien mit Melphalan/Bulsulfan-Mephalan und Etoposid sowie eine Ganzkörperbestrahlung mit folgender Stammzelltransplantation (Meyers et al. 2001, Ladenstein et al. 2010). Das Gesamtkonzept der Therapie beinhaltet zudem Maßnahmen einer Lokaltherapie. Hierfür dienen operative und radiotherapeutische Behandlungsalternativen. Die chirurgische Tumorexzision ist einer alleinigen Radiotherapie allerdings überlegen, da die Rezidivrate geringer ausfällt (Wilkins et al. 1986, Bacci et al. 1989, Ozaki et al. 1996). Der Sicherheitsabstand zwischen gesundem Gewebe und Tumor sollte nach Exzision 2 cm betragen (Kawaguchi et al. 2004). Die definitive Bestrahlung ist der operativen Therapie vorzuziehen, wenn sich der Tumor zentral im Wirbelkörper befindet oder andere Gründe der Inoperabilität vorliegen. Postoperative Radiotherapie verbessert das Überleben bei schlechtem histologischen Ansprechen auf Chemotherapie und nicht ausreichendem Sicherheitsabstand nach chirurgischer Intervention (Schuck et al. 2003).

Die 5-Jahres-Überlebenswahrscheinlichkeit für lokoregionale Ewing-Sarkome wird mit 70 % angegeben (Biermann 2013, Biswas *et al.* 2014). Die Erkrankung ist eine der schlecht heilbaren Tumore des Kindes- und Jugendalters. Als wichtigster, die Prognose ungünstig beeinflussender Faktor gilt die primäre Metastasierung zum Zeitpunkt der Diagnosestellung (Stahl *et al.* 2011). Bei Patienten mit Fernmetastasen oder einem Rezidiv sinkt die Überlebensrate auf 20 bis 30 %, insbesondere bei disseminiertem Befall von Knochen und Knochenmark (Lee *et al.* 2010, Duchman *et al.* 2015). Prognostische Aussagekraft besitzen weitere Parameter wie die Größe des Primärtumors, die Tumorlokalisation, das Patientenalter, das histologische Ansprechen auf chemotherapeutische Regime und der Zeitpunkt des Auftretens von Metastasen nach intensiver Therapie (Cotterill *et al.* 2000, Oberlin *et al.* 2001, Sluga *et al.* 2001, Burdach *et al.* 2003, Krasin *et al.* 2004, Bacci *et al.* 2006, Ladenstein *et al.* 2010).

1.2.5 Verlinkung zwischen FCGRT und dem Ewing-Sarkom

Ewing-Sarkome treten als *small-blue-round-cell-tumour* (SBRCT) in Erscheinung. SBRCTs sind maligne Neoplasien, die sich durch charakteristische histologische Merkmale auszeichnen. Sie präsentieren sich als kleine, runde Zellen, die über eine Hämatoxilin-Eosin-Reaktion blau eingefärbt werden. Zu der SBRCT-Gruppe gehört auch das Neuroblastom (Gregorio *et al.* 2008).

Anhand ausgewählter Zelllinien des Ewing-Sarkoms und Neuroblastoms wurde gezeigt, dass sich deren Genexpression in einigen Aspekten unterscheidet, was u.a. auf die Expression von FCGRT zutrifft. Die Ewing-Sarkom-Zelllinie SK-N-MC bildet dabei höhere Genexpressionslevel aus als die Zelllinien CHP-126, SH-SY5Y und SiMA des Neuroblastoms und normales Gewebe (Staege 2015). Das Ewing-Sarkom hebt sich molekulargenetisch durch eine Genfusion mit entstehender Translokation t(11;22)(q24;q12) von anderen SBRCTs ab, die als biologischer Marker für diese Tumorentität gilt (Owen et al. 2008). Für Ewing-Sarkom-Zelllinien wurden in silico Gen-Assoziationen des Fusionsprodukts EWSR1-FLI1 über Computeragorithmen als virtuelles Netzwerk dargestellt. Dabei rücken vor allem FCGRT und OLFM1 (Olfactomedin 1) als zentrale Interaktionszentren der assoziierten Gene in den Vordergrund. Das Protein von FCGRT wurde als Marker für die Translokation von EWS-FLI ausgewiesen. Hohe FCGRT-Expressionslevel werden jedoch durch die Interaktion mit CITED2 (Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain), CAVI (Carbonic Anhydrase VI), und PTTG1IP (Pituitary tumor-transforming gene 1 protein-interacting protein) supprimiert (Tong et al. 2014). CITED2 induziert die Resistenz gegenüber Cisplatin (Wu et al. 2011). Die Überexpression von CAVI fördert die Ausbildung von Metastasen beim Ewing-Sarkom (Sainz-Jaspeado et al. 2010, Sengupta et al. 2011). PTTG1IP korreliert mit RUNX2 (Runt-related transcription factor 2), das in die Differenzierung von Osteoklasten eingreift, aber durch die Fusion von EWSR1-FLI1 geblockt wird, was das Tumorwachstum begünstigt (Stock et al. 2004, Li et al. 2010). Informationen zu solchen Interaktionen könnten in Zukunft bei der Entwicklung potenzieller Targets für Ewing-Sarkome nützlich sein (Tong et al. 2014). Die FCGRT-Expression wurde für einige andere Tumore schon erfasst und stößt Überlegungen an, den FcRn vermittelten Metabolismus des Albumins für die Therapie maligner Krebserkrankungen zu nutzen. So werden bei einem niedrigen Expressionslevel von FCGRT Albumin-konjugierte Chemotherapeutika in Betracht gezogen, die in der Tumorzelle bei verringerter Ausbildung des FcRn akkumulieren und ihre zytotoxische Wirkung entfalten. Bei Überexpression des Gens wäre die Aufnahme von Chemotherapeutika über Albumin-konjugierte Stoffe ebenfalls denkbar. Unter diesen Umständen sollte sich der zytotoxische Anteil des Medikamentes in der Zelle frühzeitig vom Albumin lösen, bevor der endosomale Recycling-Mechanismus über FcRn mit dem Rücktransport des Albumins über die Zellmembran einsetzt (Cadena Castaneda et al. 2020)

2. Zielsetzung

Da Ewing-Sarkome mit einer 5-Jahres-Überlebenswahrscheinlichkeit von 70% noch immer deutlich schlechtere Prognosen aufweisen als andere Tumorentitäten im Kindesalter, ist es notwendig, einen Fokus auf die Untersuchung spezifischer Charakteristika dieser Krebserkrankung zu setzen, um neue gezielte und effiziente Therapieansätze zur Bekämpfung der Erkrankung zu etablieren.

FCGRT scheint nach aktueller Studienlage eine Schlüsselrolle als zentraler Interaktionsvermittler assoziierter Gene für die Entwicklung des Sarkoms zu besitzen (Tong *et al.* 2014). Aus Vorarbeiten der Arbeitsgruppe Staege ist bekannt, dass sich die Genexpression von FCGRT in der Ewing-Sarkom-Zelllinie SK-N-MC erhöht zeigt (Staege 2015). Zudem ergeben sich aus den Arbeiten Hinweise auf das Bestehen verschiedener Transkriptvarianten von FCGRT in Ewing-Sarkom- wie auch Neuroblastom-Zelllinien, die neben den bekannten RNA-Referenzsequenzen der NCBI-Datenbank noch nicht beschrieben wurden (Yau, unveröffentlicht).

Zunächst war es Ziel dieser Arbeit, Ewing-Sarkom-Zellen auf das Vorkommen unbekannter Transkriptvarianten zu untersuchen, um die These der Vorarbeiten zu stützen. Hierfür sollte die cDNA der Ewing-Sarkom-Zelllinie A673 mittels Polymerase-Kettenreaktion und anhand ausgewählter Primer getestet werden. Anschließend wurde über eine Real Time Polymerase-Kettenreaktion die quantitative Expression der gefundenen Transkriptvarianten in weiteren Ewing-Sarkom- sowie Neuroblastom-Zelllinien gemessen, um Aussagen über charakteristische Ausprägungsmuster bezüglich FCGRT zu treffen und gegebenenfalls die erhöhte Genexpression als tumorspezifisches Ereignis des Ewing-Sarkoms näher herauszuarbeiten. Durch die Klonierung der Transkriptvarianten in eukaryotische Expressionsvektoren zur Herstellung transgener A673-Zellen sollte die Überexpression einzelner Transkriptvarianten erreicht und wechselseitige Beeinflussungen geprüft werden. Zur weiteren Untersuchung funktioneller Aspekte der Transkriptvarianten erfolgte eine Immunmarkierung des FcRn auf der Oberfläche von nativen und transgenen A673-Zellen mit Farbstoff markiertem IgG. Dies sollte im Fluorescence-activated Cell Scanning der Erfassung einer veränderten Bindungskapazität von IgG dienen. Somit sollte die Funktionstüchtigkeit einzelner FCGRT-Transkriptvarianten bezüglich bekannter Eigenschaften des FcRn beobachtet werden.

3. Material und Methodik

3.1 Material

3.1.1 Geräte und Verbrauchsmaterialen

In der vorliegenden Arbeit wurden folgende Geräte und Verbrauchsmaterialien verwendet:

Tabelle 1: Geräte und Verbrauchsmaterial

Geräte	Hersteller	
Brutschrank	Heraeus, Hanau	
BD FACSAria™ II	BD Biosciences, Franklin Lakes (USA)	
Fluoreszenzmikroskop Axiovert25	Carl Zeiss, Oberkochen	
Gelelektrophoresekammer, -schlitten, -kamm	Bio-Rad Laboratories, München	
Imager Quantum ST5	Vilber Lourmat, Eberhardzell	
Lichtmikroskop	Carl Zeiss, Oberkochen	
Mastercycler [®] personal und gradient	Eppendorf, Hamburg	
Multifuge [®] 1 S-R	Heraeus, Hanau	
Neubauer-Zählkammer	Laborfachhandel Schubert, Leipzig	
Pipetboy Accujet®	Brand, Wertheim	
Pipetten	Eppendorf, Hamburg	
RotorGene RG-300	Corbett, Sidney (Australien)	
RotorGene Q	Qiagen, Hilden	
Schüttler mit Inkubationshaube	Edmind Bühler, Hechingen	
SpeedVac™ Concentrator 5301	Eppendorf, Hamburg	
UV-Spektrophotometer (UV/VIS) DU800	Beckman Instruments, Brea (USA)	
Sterilwerkbank HERAsafe®	Heraeus, Hanau	
Thermomixer compact	Eppendorf, Hamburg	
Tischzentrifuge Biofuge fresco™	Heraeus, Hanau	
UV-Illuminator	Biotec Fischer, Reiskirchen	
Vortex Genie [®] 2	Scientific Industries, Bohemia (USA)	
Waage, Feinwaage	Sartorius, Göttingen	
Wasserbad	GFL, Burgwedel	
Material		
FACS-Röhrchen	Sarstedt, Nümbrecht	

Kryo-Röhrchen	Nalgene, Waltham (USA)	
Pipettenspitzen (Größen)	Greiner Bio-One, Kremsmünster	
Pipettenspitzen mit Filter (Größen)	Biozyme, Hessisch Oldendorf	
Reaktionsgefäß (0,5 ml, 1,5 ml)	Laborfachhandel Schubert, Leipzig	
PCR-Gefäß (0,2 ml)	Greiner Bio-One, Kremsmünster	
Serologische Einmalpipette (10 ml und 20 ml)	Greiner Bio-One, Kremsmünster	
Zellkulturflaschen Cellstar [®] (25 cm ²)	Greiner Bio-One, Kremsmünster	
Zellkulturplatten TPP (6-Well, 24-Well)	Sigma-Aldrich, Heidelberg	
Zentrifugengefäß (15 ml, 50 ml)	Greiner Bio-One, Kremsmünster	

3.1.2 Chemikalien, Kits und Enzyme

Tabelle 2 listet genutzte Chemikalien, Kits und Enzyme auf.

Tabelle 2: Chemikalien, Kits und Enzyme

Chemikalie	Hersteller	
Ampicillin	Sigma-Aldrich <i>jetzt</i> Merck, Darmstadt	
Diethylpyrocarbonat-Wasser (DPEC)	ThermoFischer Scientific, Waltham (USA)	
Dimethylsulfoxid (DMSO)	Sigma-Aldrich <i>jetzt</i> Merck, Darmstadt	
dNTP Mix	ThermoFischer Scientific, Waltham (USA)	
Doxycyclin	Sigma-Aldrich jetzt Merck, Darmstadt	
Ethanol (96%)	Roth Industries, Buchenau	
Ethidiumbromid	Sigma-Aldrich jetzt Merck, Darmstadt	
Ethylendiamintetraessigsäure (EDTA)	ThermoFischer Scientific, Waltham (USA)	
Fetales Kälberserum (FCS)	Biochrom, Berlin	
GeneRuler™ 100 bp Plus DNA-Leiter	ThermoFischer Scientific, Waltham (USA)	
GeneRuler™ 1 kbp DNA-Leiter	ThermoFischer Scientific, Waltham (USA)	
HPLC-Wasser	ThermoFischer Scientific, Waltham (USA)	
Humanes Immunglobulin G	Sigma-Aldrich <i>jetzt</i> Merck, Darmstadt	
Hygromycin B	Pan, Aidenbach	
Ladepuffer 6xLB	ThermoFischer Scientific, Waltham (USA)	
Natriumacetat	Sigma-Aldrich jetzt Merck, Darmstadt	
Nuclease free H ₂ O	Promega, Mannheim	
Penicillin/Streptomycin	ThermoFischer Scientific, Waltham (USA)	
Trypsin-EDTA	Biochrom, Berlin	

Tryptanblau	Sigma-Aldrich jetzt Merck, Darmstadt	
Universalagarose	PEQLab, Erlangen	
Kits		
BigDye™ Terminator v1.1 Cycle Sequenzing Kit	ThermoFischer Scientific, Waltham (USA)	
Cy5 [®] Fast Conjugation Kit	Abcam, Cambride (England)	
GoTaq [®] qPCR Master Mix	Promega, Mannheim	
GeneJet Gel Extraktion Kit	ThermoFischer Scientific, Waltham (USA)	
GeneJet Plasmid Miniprep Kit	ThermoFischer Scientific, Waltham (USA)	
Nucleo Spin [®] Gel und PCR Clean-up	Machery-Nagel, Berlin	
High Pure RNA Isolation Kit	Roche, Basel (Schweiz)	
PromoFectin Transfection Reagent PromoKine	PromoCell, Heidelberg	
	QuantaBio, Beverly (USA)	
qScript cDNA Supermix	QuantaBio, Beverly (USA)	
qScript cDNA Supermix Enzyme	QuantaBio, Beverly (USA)	
qScript cDNA Supermix Enzyme BamHI	QuantaBio, Beverly (USA) ThermoFischer Scientific, Waltham (USA)	
qScript cDNA Supermix Enzyme BamHI Eco72I	QuantaBio, Beverly (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA)	
qScript cDNA Supermix Enzyme BamHI Eco72I FastAP thermosensitive alkaline Phosphatase	QuantaBio, Beverly (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA)	
qScript cDNA Supermix Enzyme BamHI Eco72I FastAP thermosensitive alkaline Phosphatase GoTaq® Polymerase	QuantaBio, Beverly (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) Promega, Mannheim	
qScript cDNA Supermix Enzyme BamHI Eco72I FastAP thermosensitive alkaline Phosphatase GoTaq [®] Polymerase NotI	QuantaBio, Beverly (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) Promega, Mannheim ThermoFischer Scientific, Waltham (USA)	
qScript cDNA Supermix Enzyme BamHI Eco72I FastAP thermosensitive alkaline Phosphatase GoTaq [®] Polymerase NotI Sfil	QuantaBio, Beverly (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) Promega, Mannheim ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA)	
qScript cDNA Supermix Enzyme BamHI Eco72I FastAP thermosensitive alkaline Phosphatase GoTaq® Polymerase NotI Sfil T4 DNA Ligase	QuantaBio, Beverly (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) Promega, Mannheim ThermoFischer Scientific, Waltham (USA) Promega, Mannheim	
qScript cDNA Supermix Enzyme BamHI Eco72I FastAP thermosensitive alkaline Phosphatase GoTaq® Polymerase NotI Sfil T4 DNA Ligase T4 Ligase	QuantaBio, Beverly (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) ThermoFischer Scientific, Waltham (USA) Promega, Mannheim ThermoFischer Scientific, Waltham (USA) Promega, Mannheim ThermoFischer Scientific, Waltham (USA)	

3.1.3 Medien und Puffer

Verwendete Medien und Puffer werden in Tabelle 3 aufgeführt.

Medien und Puffer	Hersteller	
LB Medium (SOC)	Roth Industries, Buchenau	
Dulbecco's MEM (DMEM)	Biochrom, Berlin	
Dulbecco's Phosphat Buffered Saline (DPBS)	Sigma-Aldrich <i>jetzt</i> Merck, Darmstadt	
Opti-MEM™	ThermoFischer Scientific, Waltham (USA)	
Tris-Acetat-EDTA (TAE)	Eigenherstellung im Labor: 2M Tris-HCl,	
	1M Acetat, 0.05M EDTA	

Tabelle 3: Medien und Puffer

3.1.4 RNA aus Zelllinien

Zur Untersuchung der Genexpression der Transkriptvarianten von FCGRT wurde RNA der humanen Ewing-Sarkom-Zelllinien A673, RD-ES und SK-N-MC sowie der humanen Neuroblastom-Zelllinien CHP-126, KELLY, SH-SY5Y und SiMA verwendet. Diese wurden freundlicherweise von Mitarbeitern des pädiatrischen Forschungslabors der Martin-Luther-Universität Halle präpariert und bei -80 °C eingelagert. Die Zellen stammen von der American Type Culture Collection und der deutschen Sammlung von Mikroorganismen und Zellkulturen. Tabelle 4 führt die zugehörigen Referenzen auf.

Zelllinie	Zelltyp	Ursprung	Referenz
A673	Ewing-Sarkom	Tumor aus Muskelgewebe einer	Giard <i>et al.</i> 1973
		15-jährigen Patientin	
CHP-126	Neuroblastom	Retroperitonealer Tumor einer	Schlesinger <i>et al.</i> 1976
		14-Monate alten Patientin	
KELLY	Neuroblastom	Tumorgewebe einer einjährigen	Schwab <i>et al.</i> 1983, Preis
		Patientin	<i>et al.</i> 1988
RD-ES	Ewing-Sarkom	Knochentumor aus dem Humerus	Staege <i>et al.</i> 2003
		eines 19-jährigen Patienten	
SH-SY5Y	Neuroblastom	Knochenmarkmetastase einer 4-	Biedler <i>et al.</i> 1978, Ross
		jährigen Patientin	<i>et al.</i> 1983
SiMa	Neuroblastom	Nebennierentumor eines 20-	Marini <i>et al.</i> 1999
		Monate alten Patienten	
SK-N-MC	Ewing-Sarkom	supraorbitale Metastase einer 14-	Biedler <i>et al.</i> 1973, Dunn
		jährigen Patientin	et al. 1994

Tabelle 4: Zelllinien

3.1.5 Primer

Tabelle 5 zeigt *Primer* zur Amplifikation verwendeter Haushaltsgene und erstellte *Primer*-Sequenzen zur Untersuchung der FCGRT-Transkriptvarianten. Letztere wurden mit Primer3Plus (Untergasser *et al.* 2007) ermittelt und von Sigma-Aldrich bezogen. Die NCBI-Datenbank zeigt für FCGRT zwei Transkriptvarianten. Für beide wurden *Primer* erstellt, die den ORF der Transkriptvarianten umfassen. Zur Untersuchung der Genexpression der FCGRT-Transkriptvarianten wurden *Primer* erstellt, die in ihrer Kombination als Vorwärts- und Rückwärts-*Primer* selektiv an die in dieser Arbeit gefundenen Varianten binden und diese amplifizieren.

Tabelle	5:	Primer	

Name	Тур	Sequenz
Aktin	forward	5'-GGC ATC GTG ATG GAC TCC G-3'
Aktin	reverse	5'-GCT GGA AGG TGG ACA GCG A-3'
FCGRT_var1_L	forward	5'-AGA GAG GAA CTG GGG TCT CC-3'
FCGRT_var1_R	reverse	5'-TCG CTT TTA GCA GTC GGA AT-3'
FCGRT_var2_L	forward	5'-GGC ATT GTT GTC AGT CTG GA-3'
FCGRT_var2_R	reverse	5'-AGG CTC AGA GAT GCC AGT GT-3'
FCGRT_I+II_L	forward	5'-CTT TGG GGG GAA AAG GTC C-3'
FCGRT_I+II_R	reverse	5'-CTT GGC TGG AGA TTC CAG CT-3'
FCGRT_III_L	forward	5'-GAG CCT GGG CGC AGA AAG-3'
FCGRT_III_R	reverse	5'-AGA TCC AAG GGG CCT TCC-3'
FCGRT_IV_L	forward	5'-AGC CTG GGC GCA GAG CC-3'
FCGRT_IV_R	reverse	5'-GGG AGA TCC AAG GGG CTG G-3'
FCGRT_V_L	forward	5'-CGA GGC TGA AGG GAA CAA AG-3'
FCGRT_V_R	reverse	5'-CTT GAG CTT GGG AGG TTG AG-3'
HPRT1_for RT 190bp	forward	5'-ACC AGT CAA CAG GGG ACA TAA-3'
HPRT1_rev RT 190bp	reverse	5'-CTT CGT GGG GTC CTT TTC ACC-3'

3.1.6 Vektoren

Um die gefundenen FCGRT-Transkriptvarianten *in vitro* zu exprimieren, wurden Plasmidvektoren erstellt. Diese bestehen aus autonom replizierenden doppelsträngigen DNA-Molekülen und besitzen eine *multiple cloning site* (MCS), welche Schnittstellen für verschiedene Restriktionsenzyme aufweist und selektiv Nukleinsäuren aufnehmen kann. Die aufgenommene DNA wird dann als *Insert* bezeichnet. Die Vektoren pGEM-T Easy und pUC19Sfil wurden als Klonierungsvektoren zur Aufnahme und Vervielfältigung selektiver Nukleinsäuren genutzt, welche anschließend in Expressionsvektoren übertragen werden konnten. Tabelle 6 zeigt die verwendeten Vektoren. Der Expressionsvektor pRTS-1 verfügt über einen bidirektionalen Promotor, der bei Aktivierung durch Doxycyclin die Expression einer Luciferase und des grün fluoreszierenden Proteins (eGFP) reguliert. Anstelle der Luciferase kann der Expressionsvektor in der MCS ein *Insert* aufnehmen, wodurch dieses über die Aktivierung des Promotors exprimiert wird. Die gleichzeitige Expression des eGFP dient dabei als Marker zur optischen Selektion transgener Zellen. Regionen mit Informationen zur Antibiotikaresistenz verhelfen der Wirtszelle zum Selektionsvorteil.

Vektor	Bp-Länge	Resistenz	Floureszenz	Hersteller
pGEM-T Easy	3015	Ampicillin		Promega, Mannheim
pRTS-1	18400	Ampicillin	eGFP	Bornkamm, München
		Hygromycin B		(Bornkamm <i>et al.</i> 2005)
pUC19Sfil	2735	Ampicillin		Bornkamm, München
				(Bornkamm <i>et al.</i> 2005)

Tabelle 6: Vektoren

3.2 Methodik

3.2.1 Reverse Transkription

Zur Synthese von komplementärer Desoxyribonukleinsäure (cDNA) wurde eine reverse Transkription an der mRNA unter Verwendung des Kits qScript cDNA Supermix nach Angaben des Herstellers durchgeführt. Der Reaktionsansatz ist in Tabelle 7 aufgelistet. Die Herstellung von cDNA erfolgte aus bei -80°C gelagerter RNA der Zelllinien A673, CHP-126, KELLY, RD-ES, SH-SY5Y, SiMA und SK-N-MC, die zunächst langsam auf Eis aufgetaut wurden sowie an zuvor extrahierter RNA aus transgenen Zellen der Zelllinie A673. Eine Inkubation des Ansatzes im *Thermocycler* fand nach den Konditionen in Tabelle 8 statt.

Tabelle 7: Reaktionsansatz reverse Transkription

Substanz	Menge
qScript cDNA Supermix (5X)	4 μΙ
RNA	1 μg
RNase-freies Wasser	auf 20 μl

Tabelle 8: Konditionen für cDNA im Thermocycler

Zyklen	Zeit	Temperatur
1	5 Minuten	25 °C
1	30 Minuten	42 °C
1	5 Minuten	85 °C
	Hold	42 °C

3.2.2 Polymerase-Kettenreaktion (PCR) und Aufreinigung von PCR-Produkten

Die Polymerase-Kettenreaktion (PCR) ist eine Methode zur selektiven Vervielfältigung von cDNA *in vitro*. Unter Verwendung der *Primer*-Kombinationen FCGRT_var1_L und FCGRT_var1_R, FCGRT_var1_L und FCGRT_var2_R, FCGRT_var2_L und FCGRT_var2_R sowie FCGRT_var2_L und FCGRT_var1_R wurde die hergestellte cDNA der Zelllinie A673 in einer PCR auf das Vorkommen von Transkriptvarianten der RNA-Referenzensequenzen 1 und 2 des FCGRT-Gens untersucht. Hierfür wurde der aus Tabelle 9 zu entnehmende Reaktionsansatz pipettiert. Die Reaktionsschritte und -zyklen fanden im *Thermocycler* zu Konditionen der Tabelle 10 statt.

lasenc	5	Reionoai	 	

Tabelle 9: Reaktionsansatz PCR

Substanz	Menge
GoTaq [®] Polymerase (5 U/µl)	0,2 μΙ
GoTaq [®] Buffer (5X)	5 μl
dNTP Mix (10mM)	0,5 μl
Sense-Primer	0,25 μl
Antisense-Primer	0,25 μl
cDNA	2 μl
RNase-freies Wasser	16,8 μl

Tabelle 10: PCR-Programm "Standard"

PCR-Schritt	Zyklen	Zeit	Temperatur
		Lid	105 °C
		Hold	95 °C
Denaturierung	1	5 Minuten	95 °C
Denaturierung		30 Sekunden	95 °C
Annealing	35	60 Sekunden	60 °C
Elongation		90 Sekunden	72 °C
Finale Elongation	1	5 Minuten	72 °C
		Hold	12 °C

Zur weiteren Verwendung der PCR-Produkte wurden verbliebene Enzyme mit dem Nucleo Spin[™] PCR und Gel Clean-up gemäß Protokoll des Herstellers entfernt. Das entstandene Eluat wurde bei -20 °C gelagert.

3.2.3 Gelelektrophorese und Extraktion von cDNA aus dem Agarosegel

Die Gelelektrophorese wurde zur Auftrennung von cDNA und Bestimmung ihrer Basenpaarlängen genutzt. Verwendet wurden 1 % ige und 1,5 % ige Agarosegele. Die Universalagarose wurde mit Tris-Acetat-EDTA (TAE) versetzt und aufgekocht. Die eingesetzten Mengen sind der Tabelle 11 zu entnehmen. Der durch Verdunstung entstandene Flüssigkeitsverlust wurde mit Wasser aufgefüllt. Nach Hinzugabe von 6 µl Ethidiumbromid erfolgte für eine Stunde die Aushärtung der Gele unter Aussparung von Taschen auf einem Gelschlitten. Anschließend wurden die Gele in eine Gelelektrophoresekammer mit TAE gelegt. In die Geltaschen wurden Proben im Umfang von 10 bis 20 μ l gefüllt und mit 3 μ l 6x DNA Ladepuffer zur Markierung der Laufmittelfront eingefärbt. Es wurde eine Spannung von 80 V für 10 Minuten und nachfolgender Steigerung auf 100 V über eine Stunde angelegt. Als Referenzgrößen dienten GeneRuler™ 100 bp Plus und GeneRuler™ 1 kbp DNA-Leitern, die zuvor mit 10 µl Wasser und 3 µl 6x DNA Ladepuffer versetzt wurden. Die DNA-Banden wurden mithilfe des Geräts Quantum ST5 unter Emission von UV-Licht fotografiert. Um einzelne cDNA-Banden zu isolieren, wurden diese unter UV-Licht aus dem Agarosegel geschnitten. Nach dem Abwiegen der ausgeschnittenen Gelstücke wurden die Banden mittels GeneJet Gel Extraktion Kit gemäß Protokoll des Herstellers isoliert. Das Eluat wurde photospektrometrisch gemessen und bei -20 °C gelagert.

Substanz	Menge für 1% Agarosegel	Menge für 1,5 % Agarosegel
Universalagarose	0,8 g	1,5 g
Tris-Acetat-EDTA	79,2 ml	98,5 ml
Wasser	auf 80 ml	auf 100 ml
Ethidiumbromid	6 μΙ	6 μΙ

Tabelle 11: Agarosegel

3.2.4 Photospektrometrische Quantifizierung von Nukleinsäuren

Die Konzentration extrahierter Nukleinsäuren wurde über die Lichtabsorption im UV-Spektrophotometer gemessen. Hierbei wird die Konzentration der Nukleinsäuren anhand der Absorption bei 260 nm ermittelt. Die zu untersuchenden Proben wurden vor der Messung im Verhältnis 1:50 oder 1:100 mit RNase-freien Wasser verdünnt. Über den Quotienten von 260/280 nm wurde die Reinheit der präparierten Nukleinsäure bestimmt. Diese sollte zwischen 1,6 und 2,0 liegen.

3.2.5 Kolonie-Polymerase-Kettenreaktion (Kolonie-PCR)

Die PCR-Produkte der o.g. Primer-Kombinationen an A673 enthielten cDNA-Fragmente verschiedener Basenpaarlängen, die in der Gelelektrophorese sichtbar waren. Zur Trennung und weiteren Untersuchung wurden die PCR-Produkte mit dem Vektor pGEM-T Easy ligiert (s. Kapitel 2.3.7 Klonierung von cDNA in Plasmidvektoren). Pro Plasmid wurde eines der verschieden langen cDNA-Fragmente aufgenommen. Nach der Transformation der cDNA tragenden Plasmide in Escherichia coli (E. coli) und Ausplattierung auf Agar entwickelten sich Bakterienkolonien, die jeweils Klone des Vektors eines cDNA-Fragments enthielten. Einzelne dieser E. coli-Kolonien wurden von ihrem Kulturmedium mittels Pipettenspitze gepickt und in je 5 µl Wasser gelöst. Zur Freisetzung von Nukleinsäuren aus dem Zytosol der Bakterien erfolgte eine Zytolyse durch Erhitzen auf 95 °C für 5 Minuten im Thermocycler. Zum beimpften Wasser wurde der in Tabelle 9 aufgeführte PCR-Ansatz pipettiert und dieser auf 20 µl mit RNase-freien Wasser aufgefüllt. Dabei wurde darauf geachtet, die entsprechende Primer-Kombination der cDNA des PCR-Produkts auszuwählen. Die Reaktionsschritte und -zyklen der PCR fanden nach den Konditionen aus Tabelle 12 im Thermocycler statt. In der Gelelektrophorese zeigte sich pro Kolonie-PCR-Produkt die cDNA-Bande, die im Vektor aufgenommen wurde. Die zur weiteren Analyse ausgewählten und isolierten Vektoren wurden als pGEM-T Easy FCGRT I, pGEM-T Easy FCGRT II, pGEM-T Easy FCGRT III, pGEM-T Easy FCGRT IV und pGEM-T Easy FCGRT V entsprechend den aufgenommenen Inserts bezeichnet und anschließend für weitere Experimente verwendet oder bei -20 °C gelagert.

PCR-Schritt	Zyklen	Zeit	Temperatur
		Lid	105 °C
		Hold	95 °C
Denaturierung	1	5 Minuten	95 °C
Denaturierung		30 Sekunden	95 °C
Annealing	30	60 Sekunden	60 °C
Elongation		90 Sekunden	72 °C
		Hold	12 °C

Tabelle 12: PCR-Programm "Kolonie-PCR"

3.2.6 Sequenzierung von Nukleinsäuren

Um die Basenabfolge der *Inserts* der ausgewählten pGEM-T Easy-Vektoren zu bestimmen, erfolgte eine Sequenzierung der überführten cDNA an den entsprechenden pGEM-T Easy-Vektoren nach Sanger im HLA-Labor des Universitätsklinikums Halle. Zunächst wurde eine PCR an der Vektor-DNA nach dem in Tabelle 13 aufgelisteten Reaktionsansatz durchgeführt. Für die Reaktionsansätze der Vektoren pGEM-T Easy_FCGRT_II, pGEM-T Easy_FCGRT_III und pGEM-T Easy_FCGRT_IV wurde die *Primer* FCGRT_var1_L oder FCGRT_var1_R für den Reaktionsansatz der Vektoren pGEM-T Easy_FCGRT_I und pGEM-T Easy_FCGRT_V die *Primer* FCGRT_var2_L oder FCGRT_var2_R eingesetzt. Tabelle 14 zeigt die Konditionen der Reaktionen im *Thermocycler*.

Tabelle 13: Reaktionsansatz Sequenzierung

Substanz	Menge
BigDye™ Mix	1 μΙ
BigDye™ Buffer (5X)	2 μΙ
Primer (reverse oder forward)	0,2 μΙ
Vektor	300 ng
HPLC-Wasser	auf 10 μl

Tabelle 14: PCR-Programm "Sequenzierung"

Zyklen	Zeit	Temperatur
1	10 Sekunden	96 °C
30	4 Minuten	60 °C
	Hold	12 °C

Es erfolgte eine Fällung des PCR-Produkts. Hierbei wurde 1 µl 3 M Natriumacetat (pH 4,6) sowie 25 µl 100 % Ethanol zugegeben. Die Lösung wurde für 15 Minuten bei Raumtemperatur inkubiert und danach für weitere 15 Minuten bei 13000 x g zentrifugiert. Nach Abnahme des Überstandes wurde erneut 70 % Ethanol zum Produkt pipettiert und für 5 Minuten zentrifugiert. Der Überstand wurde abermals entfernt und die Probe im SpeedVac[™] Concentrator getrocknet. Nach der Sequenzierung konnten die Ergebnisse mit der NCBI-Datenbank verglichen werden. Die als *Inserts* aufgenommenen und als unterschiedliche Transkriptvarianten des FCGRT-Gens identifizierten cDNA-Sequenzen wurden mit FCGRT_I, FCGRT_II, FCGRT_III, FCGRT_IV und FCGRT_V benannt. Die durch die Sequenz codierten Aminosäuren wurden mittels *Internettool* ExPASy Translate (Swiss Institute of Bioinformatics Members 2016) ermittelt und wiederum mit der NCBI-Datenbank verglichen.

3.2.7 Klonierung von cDNA in Plasmidvektoren

Ziel der Klonierung war das Einbringen der cDNA von FCGRT I, FCGRT II, FCGRT III, FCGRT IV und FCGRT V in den Expressionsvektor pRTS-1 mit deren selektiven Vervielfältigung. Die cDNA wurde nach der Kolonie-PCR aus dem Gel extrahiert und mit dem bereits in offener Form vorliegenden pGEM-T Easy-Plasmid ligiert. Nach der Transformation in kompetente Zellen wurden die Plasmide gewonnen und das cDNA-Insert mittels Restriktionsverdau mit dem Enzym Notl aus dem Vektor geschnitten. Hierbei entstanden sticky ends, welche mit den kompatiblen Überhängen des durch den gleichen Restriktionsverdau linearisierten pUC19Sfil-Plasmids abermals ligiert wurden. Der Zwischenschritt erfolgte über pUC19Sfil, da dieser Vektor über die gemeinsame Erkennungssequenz für das Enzym Sfil vom pRTS-1-Plasmid verfügt, welche im pGEM-T Easy-Plasmid nicht vorhanden ist. Der Vektor pUC19Sfil wurde nach der Transformation isoliert und mit dem Enzym Sfil zum Restriktionsverdau angesetzt. Dieses Enzym öffnet ebenfalls den Expressionsvektor pRTS-1. Dadurch konnte das Insert aus dem pUC19Sfil-Plasmid in den pRTS-1-Vektor überführt werden. Die Expressionsvektoren wurden nach dem zugehörigen Insert pRTS-1 FCGRT I, pRTS-1 FCGRT II, pRTS-1 FCGRT IV und pRTS-1 FCGRT V bezeichnet. Um die Vektoren und das Insert schematisch darzustellen, wurde die Software SnapGene Viewer (GSL Biotech LLC, 13.03. 2020) genutzt. Die einzelnen Vorgänge des Restriktionsverdaus, der Ligation, Transformation und Extraktion der Vektoren aus kompetenten Zellen werden in den nächsten Abschnitten erläutert. Beim Restriktionsverdau wurde DNA mithilfe von Restriktionsenzymen an spezifischen Erkennungssequenzen geschnitten. Das verwendete Pipettierschema zeigt Tabelle 15.

Tabelle 15: Reaktionsansatz Restriktionsverdau

Substanz	Menge
DNA	1 bis 2 μg
Restriktions-Puffer	2 μΙ
Restriktionsenzym (10 U)	0,5 μΙ
RNase-freies Wasser	auf 20 μl

Der Ansatz wurde für eine Stunde bei einer für die Enzymaktivität spezifischen Temperatur inkubiert. Anschließend wurde das Enzym über eine empfohlene Zeitspanne bei einer entsprechenden Temperatur im *Thermocycler* inaktiviert. Der Restriktionsverdau fand in der Region der MCS statt. Dies diente dem Öffnen und Linearisieren von Leervektoren. Außerdem entstanden somit Schnittstellen an beiden Enden des Vektors, an die eine entsprechend kompatible doppelsträngige Sequenz über eine Ligation transferiert werden konnte. Die kompatiblen Enden der Inserts entstanden durch Herausschneiden aus einem Vektor mit dem Enzym, das zum Öffnen des zu transferierenden Vektors diente. Die dabei verwendeten Enzyme wurden im ersten Abschnitt erläutert. Mittels Restriktionsverdau konnte überprüft werden, ob das Insert im Vektor nach der Ligation vorhanden war. Dafür wurde der Restriktionsverdau, bei dem das Insert aus dem Plasmid geschnitten wurde, auf ein Gel getragen. Hierbei wurden zwei Fragmente unterschiedlicher Größe entsprechend ihrer Basenpaarlänge sichtbar. Im Vergleich stellte sich ein ungeschnittener, wieder mit sich selbst ligierter Leervektor in verschieden großen Banden dar. Da sich die Überhänge an beiden Enden des durch den Restriktionsverdau mit Notl linearisierten Vektors am jeweiligen 3' und 5' Ende glichen, bestand die Möglichkeit, dass die Transkriptsequenz in verschiedene Ausrichtungen ligiert wurde. Die Ausrichtung im pUC19Sfil wurde geprüft, da später der Promotor für die regulierte Expression der Transkriptvariante im pRTS-1-Vektor in Syntheserichtung vor dem codierenden Bereich liegen musste. Die Prüfung im pUC19Sfil-Vektor war möglich, da das Restriktionsenzym Sfil jeweils die dieselben unterschiedliche Enden am Insert und dem mit diesem Enzym linearisiertem pRTS-1-Vektor verursacht, so dass nur eine Ausrichtung bei der Ligation in den Expressionsvektor möglich wird. Dazu wurde ein Restriktionsverdau eingesetzt, bei dem mit Hilfe von Enzymen die Transkriptsequenz asymmetrisch und gleichzeitig das Plasmid auf einer Seite der MCS geschnitten wurde. Die zwei im Gel aufgetragenen Fragmente zeigten je nach Ausrichtung der Inserts unterschiedliche Basenpaarlängen. Dafür dienten die Enzyme BamHI, Eco72I und Xbal. Damit sich Plasmide, die durch einen Restriktionsenzymverdau für eine Ligation geöffnet wurden, nicht automatisch wieder zu einem Ring verbanden, mussten die 3' und 5'-Phosphatgruppen von den Enden des linearisierten Vektors entfernt werden. Den Reaktionsansatz zeigt Tabelle 16.

Tabelle 16: Reaktionsansatz Dephophorylierung

Substanz	Menge
Lineare Plasmid-DNA	1 µg
FastAP thermosensitive alkaline Phosphatase (1 U/ μ I)	1 μΙ
Reaction Buffer for AP (10X)	2 μΙ
RNase-freies Wasser	auf 20 μl

Material und Methodik

Der Ansatz wurde für 10 Minuten bei 37 °C inkubiert und anschließend für 5 Minuten bei 75 °C im *Thermocycler* gestoppt.

Bei der Ligation wurden die *Inserts* an kompatible Enden eines linearisierten Plasmids hybridisiert und die Einzelstränge von Vektor und *Insert* mittels einer DNA-Ligase kovalent zu einem Ring verbunden. Die Menge des einzusetzenden *Inserts* wurde nach folgender Formel berechnet:

10 x 50 ng Vektor x bp Insert / bp Vektor

Dem Ligationsansatz aus Plasmid und *Insert* wurde eine dem ausgewählten System entsprechende T4-Ligase, der zugehörige Puffer und RNase-freies Wasser nach dem Schema in Tabelle 17 zugesetzt.

Tabelle 17: Reaktionsansatz Ligation

Substanz	Menge
pGEM-T Easy/PUC19Sfil oder pRTS-1	50 ng Vektor
Insert	Χ μΙ
T4 DNA Ligase (100 U)/T4-Ligase (2,5 U)	1 μΙ
Rapid Ligation Buffer (2X)/T4-Ligase-Buffer (5X)	5 μl/2 μl
RNase-freies Wasser	auf 10 μl / 20 μl

Der Ansatz wurde für eine Stunde bei Raumtemperatur inkubiert. Die Vektoren pUC19Sfil und pRTS-1 wurden für die Ligation durch einen Restriktionsenzymverdau linearisiert und dephosphoryliert, d.h. kompatibel zum einzusetzenden *Insert* geöffnet. Dieser Schritt war bei dem pGEM-T Easy Vektor nicht notwendig. Er lag bereits in linearisierter Form vor, an seinen Enden befanden sich jeweils 3'-Thymidin-Überhänge, welche die Rezirkulation des Vektors verhinderten und gleichzeitig kompatible Überhänge für die *Inserts* darstellten.

Bei der Transformation dienten als Wirtszelle Bakterien vom Stamm kompetenter *E. coli* XL1-Blue. Zunächst wurden 100 µl kompetente Bakterienzellen auf Eis aufgetaut. Es wurden 2 bis 10 µl des Ligationsansatzes hinzugegeben und für 30 Minuten inkubiert. Danach erfolgte ein Hitzeschock für 45 Sekunden bei 42 °C im Wasserbad. Anschließend wurde der Ansatz für 2 Minuten auf Eis gestellt und in 1 ml vorgewärmten LB-Medium (SOC) aufgenommen. Es erfolgte die Inkubation für 60 Minuten bei 37 °C und 250 rpm im Schüttler. Die Bakterien wurden für 5 Minuten auf niedrigster Stufe zentrifugiert und das überflüssige Medium durch Dekantieren verworfen. Das verbliebene Pellet wurde resuspendiert und auf eine vorgewärmte Agarplatte mit einem Spatel verteilt. Da sich im Nährmedium der Platte Ampicillin befand,
wurden durch die Ampicillinresistenz aller verwendeten Vektoren Bakterien ohne Plasmid selektioniert. Die Platten wurden 16 Stunden bei 37 °C im Brutschrank inkubiert, wobei nach 12 bis 16 Stunden die Ausbildung von Bakterienkolonien sichtbar wurde.

Um die cDNA tragenden Plasmide aus den Bakterienkolonien zu isolieren, wurden einzelne Kolonien mit einer Pipettenspitze entnommen und in 10 ml LB-Medium überführt. Dieses enthielt Ampicillin in einer Konzentration von 50 mg/ml. Der Ansatz wurde bei 37 °C im Schüttler bei 150 rpm für 16 Stunden inkubiert. Es wurden 8 ml des Ansatzes für 20 Minuten bei 5000 x g zentrifugiert und der Überstand dekantiert. Die Plasmidvektoren wurden mittels Genjet Plasmid Miniprep Kit gemäß Protokoll des Herstellers präpariert. Die Konzentration des Eluats wurde spektrophotometrisch gemessen und die Probe anschließend bei -20 °C gelagert.

3.2.8 Zellkultur und Zellzahlbestimmung

Die Arbeit mit Zellkulturen fand unter der Sterilbank statt. Die Kultivierung erfolgte mit Zellen der Zellinien A673. Die Zellen wurden in 25 cm² großen Kulturflaschen mit 10 ml DMEM kultiviert, welches zuvor mit 10 % fetalem Kälberserum und 1 % Penicillin/Streptomycin versetzt wurde. Die Kulturen wurden bei 37 °C, 5 % CO₂, 21 % O₂ und 95 % relativer Luftfeuchtigkeit im Brutschrank gelagert. Nach 3 bis 4 Tagen war die gesamte Wachstumsfläche der Kulturflasche mit Zellen bedeckt, so dass ein Passagieren der Zellen erfolgen musste. Dazu wurde das Nährmedium aus der Kulturflasche abgesaugt und anschließend mit 6 ml DPBS gespült, um zurückgebliebene Bestandteile des Mediums zu entfernen. Um die adhärenten Zellen vom Boden der Kulturflasche zu lösen, wurden diese mit 2 ml Trypsin-EDTA behandelt und für 3 Minuten im Brutschrank inkubiert. Die Reaktion wurde nach erfolgreicher Ablösung der Zellen mit Zugabe von 8 ml frischem Nährmedium gestoppt. Die so gewonnene Zellsuspension wurde im Verhältnis 1:10 gesplittet. Ein Milliliter des homogenisierten Zell-Nährmedium-Gemisches wurde in eine neue Kulturflasche mit 9 ml vorgelagertem frischen Nährmedium überführt. Die Ermittlung der Zellzahl einer Suspension erfolgte durch eine Neubauer-Zählkammer. Es wurden 10 µl Zellsuspension entnommen und mit 90 µl Tryptanblau gefärbt. Diese Substanz markiert abgestorbene Zellen, wodurch lebende von toten Zellen unterschieden werden. Es wurden 10 μ l der gefärbten Suspension in die Zählkammer gegeben und die lebenden Zellen pro Quadrant bestimmt. Nach Bestimmung des Mittelwerts wurde die Zellzahl mit folgender Formel berechnet:

```
Zellzahl / ml = gezählte Zellen x 10<sup>4</sup> x Verdünnungsfaktor
```

3.2.9 Transfektion

Die Transfektion ist ein Verfahren zum Einbringen fremder DNA in Zellen. Die Zellen der Zelllinie A673 wurden auf 6-Well-Platten ausgesät. Hierbei wurde pro Well eine Zellsuspension von 200.000 bis 400.000 Zellen verwendet. Nach 24 Stunden waren 50 bis 60 % der Bodenfläche des Wells mit Zellen bedeckt. Es wurden je 3 µg DNA der Expressionsvektoren pRTS-1 Leervektor, pRTS-1_FCGRT_II, pRTS-1_FCGRT_III, pRTS-1_FCGRT_IV und pRTS-1_FCGRT_V in Opti-MEM™ zu einem Volumen von 100 µl verdünnt. Für jeden dieser Ansätze wurden 6 µl PromoFectin in 94 µl Opti-MEM[™] gelöst und die PromoFectin-Lösung zu dem DNA-Ansatz gegeben. Es folgte eine Inkubation für 15 bis 30 Minuten bei Raumtemperatur. Das Nährmedium der Wells wurde vor der Transfektion entfernt und durch 2 ml frisches Medium ersetzt. Der gesamte DNA-PromoFectin-Ansatz wurde tropfenweise auf die Zellen gegeben und die Platte zur Homogenisierung der Mischung geschwenkt. Nach einigen Stunden wurden die Wells mit weiteren 2 ml Medium befüllt. Die Expression von FCGRT_II, FCGRT_II, FCGRT_IV und FCGRT_V wurde über die Aktivierung des bidirektionalen Promotors im Vektor pRTS-1 mit Doxycyclin induziert. Jedes Well der transgenen Zellen wurde vier Stunden nach erfolgter Transfektion mit $0.8 \,\mu$ l Doxycylin (1 μ g/ml) behandelt. Nach weiteren eineinhalb Stunden wurden 32 μ l Hygromycin B (400 μg/ml) zugesetzt, das als Antibiotikum der Selektion nicht pRTS-1 tragender Zellen diente. 24 Stunden nach Behandlung der Zellen mit Doxycyclin wurde der Erfolg der Genexpression durch optische Erfassung der Fluoreszenz von eGFP unter dem Fluoreszenzmikroskop überprüft.

3.2.10 RNA-Isolation

Es erfolgte die Präparation von RNA aus den nativen und transgenen Zellen der Zelllinie A673. Dazu wurde aus den kultivierten Zellen der 6-*Well*-Platte 24 bis 48 Stunden nach der Transfektion eine Zellsuspension gewonnen und diese bei 13000 x g für 10 Minuten zentrifugiert. Nach Abnahme des überständigen Mediums erfolgte die Isolation der RNA mit dem High Pure RNA Isolation Kit gemäß Protokoll des Herstellers auf Eis. Die isolierte RNA wurde photometrisch gemessen, direkt zur Synthese von cDNA verwendet oder bei -80 °C gelagert.

3.2.11 Quantitative Real Time Polymerase-Kettenreaktion (qPCR)

Mittels quantitativer *Real Time* Polymerase-Kettenreaktion (qPCR) wurde die Genexpression der Transkriptvarianten des Gens FCGRT anhand der gewonnenen cDNA der Ewing-Sarkom-Zelllinien A673, RD-ES und SK-N-MC sowie der Neuroblastom-Zelllinien CHP-126, KELLY, SH-SY5Y und SiMA analysiert. Zudem wurde mit diesem Verfahren die Genaktivität von FCGRT_II, FCGRT_III, FCGRT_IV und FCGRT_V 24-48 Stunden nach erfolgreicher Transfektion in A673-Zellen gemessen. Die quantitative Bestimmung dieser DNA-Mengen wurde an der synthetisierten cDNA der nativen und transgenen A673-Zellen durchgeführt. Der Reaktionsansatz wurde nach dem Schema der Tabelle 18 pipettiert.

Tabelle 18: Reaktionsansatz qPCR

Substanz	Menge
GoTaq [®] qPCR Master Mix (2X)	10 μl
Primer forward	1 μΙ
Primer reverse	1 μΙ
cDNA	1 μΙ
RNase-freies Wasser	auf 20 μl

Der bei der qPCR eingesetzte Fluoreszenzfarbstoff SYBR©-Green lagert sich an die DNA und emittiert Licht mit einem Signalmaximum bei 520 nm. Die Messung der Fluoreszenz erfolgt in der exponentiellen Phase der PCR, da in dieser Phase die Amplifikation konstant abläuft. Sie findet somit in Echtzeit parallel zur PCR statt. Die Emissionsintensität zeigt sich dabei proportional zur synthetisierten DNA-Menge. Der Schwellenwert (threshold) des Fluoreszenzsignals wurde bei 0,2 gewählt. Als Referenzwert wurde das Haushaltsgen HPRT1 mitbestimmt. Die Auswertung erfolgte u.a. nach der 2^{-AACt}-Methode (Livak und Schmittgen 2001). Hierbei wurde die Genexpression der Proben mittels fold change-Wert verglichen. Die relative Quantifizierung der Genexpression wurde ebenfalls durch das Erstellen von Standardkurven berechnet. FCGRT II, FCGRT III, FCGRT IV und FCGRT V wurden mittels PCR an der zugehörigen Vektor-DNA amplifiziert und die Nukleinsäuren aus dem Gel extrahiert. Die Konzentration der DNA wurde photospektrometrisch bestimmt und eine Verdünnungsreihe mit der Ausgangskonzentration von 5 ng/ μ l und dem Titrierfaktor 10 erstellt. Die Messungen in der qPCR umfasste die Proben der Verdünnungen von 1:10² bis 1:10¹². Die molare Masse der Transkriptvarianten wurde über das Internettool Bioinformatics Sequence Analysis (Stothard 2000) berechnet. Daraus wurde das Molgewicht der Verdünnungsproben bestimmt. Die Standardkurve wurde durch Auftragen des Logarithmus des Molgewichts der Verdünnungsproben gegen den C_T-Wert erstellt. Die Standardkurve des Haushaltsgens HPRT1 wurde freundlicherweise von Ines Volkmer, einer Mitarbeiterin des Labors, zur Verfügung gestellt. Anhand der Standardkurven wurde für jede Probe der Transkriptvarianten der Logarithmus des Molgewichts bestimmt. Durch die Normierung über das Haushaltsgen HPRT1

Material und Methodik

wurde das Molgewicht der Proben miteinander verglichen. Um die statistische Signifikanz des Ergebnisses der Genexpression von FCGRT in den verschiedenen Zelllinien zu prüfen, wurde der Wilcoxon-Mann-Whitney-Test durchgeführt. Es wurden zwei Gruppen "Ewing-Sarkom" und "Neuroblastom" gebildet und die Ränge derer Expressionswerte betrachtet. Die Berechnung erfolgte mittels *Internettool* Mann Whitney U test calculator (Statistics Kingdom, 23.04. 2020). Das Signifikanzniveau α wurde auf 5 % festgelegt. Die Nullhypothese besagt, dass die Mittelwerte der Genexpression von FCGRT in den Ewing-Sarkom-Zelllinien nicht größer waren als in den Neuroblastom-Zelllinien. Die Nullhypothese wurde bei p-Werten < 0,05 verworfen. In dem Fall kam es zur Annahme der Alternativhypothese, die eine statistisch signifikant höhere Genexpression von FCGRT in Ewing-Sarkom-Zelllinien belegt.

3.2.12 Immunmarkierung transgener Zellen

FcRn der Zelloberfläche nativer und transgener Zellen der Zelllinie A673 wurden über die Bindung eines Immunkonjugats markiert. Dabei wurden Fluoreszenzfarbstoff markierte Antikörper mit Affinität zum Rezeptor verwendet. Ein Lyophilisat aus humanen IgG wurde in 5 ml DPBS gelöst, sodass eine Antikörperkonzentration von 10 mg/ml DPBS entstand. Diese wurde nach der Aliquotierung in Proben zu 0,5 ml nochmals 1:5 in DPBS verdünnt, wobei die Endkonzentration 200 µg/100 µl DPBS betrug. Das Fluorophor Indodicarbocyanin (Cy5) wurde gemäß Protokoll des Herstellers kovalent an die Antikörper gebunden. Die Zellen der 6-Well-Platten wurden zur Markierung mit dem Immunkonjugat 24 Stunden nach erfolgter Transfektion auf eine 24-Well-Platte überführt. Dabei wurden die Zellen eines Wells auf je vier Wells der 24-Well-Platte gleichmäßig verteilt und kultiviert. Bei zwei der vier Wells erfolgte eine Behandlung der Zellen mit 0,8 μl Doxycyclin nach vier Stunden. Am Folgetag wurden 10 μl Cy5 markierte Antikörper in je ein mit und ohne Doxycyclin zugesetztem Well der Vierergruppe gegeben und diese für zwei Stunden im Brutschrank inkubiert. In dieser Zeit sollten sich die Cy5 markierten Antikörper an FcRn der Zellen binden. Cy5 ermöglicht als Fluorophor die Visualisierung der FcRn tragenden Zellen unter dem Fluoreszenzmikroskop und in der Durchflusszytometrie.

3.2.13 Fluorescence-activated Cell Scanning (FACS)

Nach der Immunmarkierung wurden native und transgene Zellen der Zelllinie A673 und SH-SY5Y mittels Fluorescence-activated Cell Scanning (FACS) analysiert. Die Versuchsreihe wurde im Zentrum für medizinische Grundlagenforschung des Universitätsklinikums Halle am BD FACSAria™ II durchgeführt. Für die Messungen wurden die Zellen der 24-Well-Platte suspendiert und in ein FACS-Röhrchen überführt. Das Zellmaterial floss fokussiert in einer Sequenz von Einzelzellen an der Laserquelle vorbei, wobei die Streuung vom Anregungslicht und die Anregung der Fluoreszenzmarker simultan gemessen wurde. Dabei ist das Vorwärtsstreulicht (Forward Scatter, FSC) ein Maß für die Zellgröße, das Seitwärtsstreulicht (Side Scatter, SSC) eines für Granularität. Dabei diente eGFP als intrazellulärer Farbstoff zur Detektion transgener Zellen. Cy5 wurde zur Darstellung FcRn tragender Zellen genutzt. Die abgestrahlte Fluoreszenz des eGFP konnte durch einen Octagon 488-nm blue laser ausgelöst werden, Cy5 emittierte rotes Licht mittels Anregung über einen Trigon 633-nm red laser. Die Messdaten wurden über zweidimensionale Punktwolkendarstellungen ausgewertet. Die Festlegung des threshold wurde eingesetzt, um echte Ereignisse von einem Hintergrundrauschen zu unterscheiden. Dieser wurde über den Parameter FSC getriggert. Hierbei wurde die Pulsfläche (FSC-Area, FSC-A) gegen die Pulshöhe (FCS- Height, FSC-H) aufgetragen. Nach Erstellen eines Gates wurden alle Zellen ab einer gewissen Größe unabhängig vom Fluoreszenzsignal registriert. Die Analyse der Pulsfläche im Vorwärtsstreulicht (FSC-A) gegen die Pulsbreite im Seitwärtsstreulicht (SSC-Width, SSC-W) ermöglichte die Unterscheidung zwischen einem Signal koinzidenter und einzelner Zellen. Um eine Population an Zellen einer bestimmten Größe und Komplexität zu erfassen, wurde der Parameter FSC-A gegen die Pulsfläche im Seitwärtsstreulicht (SSC-Area, SSC-A) aufgetragen. Die Population transgener Zellen wurde durch die Bestimmung der Parameter Pulsfläche der GFP-Fluoreszenz (GFP-Area, GFP-A) und SSC-A ermittelt. Zellen mit Immunmarkierung wurden durch die Parameter Pulsfläche der Cy5 Fluoreszenz (APC-Area, APC-A) gegen SSC-A erfasst. Um die Population transgener und FcRn tragender Zellen darzustellen, wurde GFP-A gegen die Pulsfläche der Cy5-Fluoreszenz gemessen.

4. Ergebnisse

4.1 Identifizierung unbekannter Transkriptvarianten des Gens FCGRT

4.1.1 Erstellen von Primern an FCGRT-Referenzsequenzen und deren PCR-Produkte

Für das Gen FCGRT hinterlegt die NCBI-Datenbank zwei RNA-Referenzsequenzen. Transkriptvariante 1 und 2 (Sequence ID NM 001136019.2 und NM 004107.4) unterscheiden sich in der Anzahl ihrer Exons, jedoch nicht in der Sequenz innerhalb des ORF. Die nach der Translation entstehenden Proteine sind identisch. In dieser Arbeit konnten weitere Transkriptvarianten von FCGRT identifiziert werden. Für die Untersuchung auf unbekannte Transkriptsequenzen von FCGRT wurden die Primer FCGRT_var1_L, FCGRT_var1_R, FCGRT_var2_L und FCGRT_var2_R erstellt, die den codierenden Bereich der RNA-Referenzsequenzen umschließen. Abbildung 1 zeigt den schematischen Aufbau der Transkriptvariante 1 und 2 sowie die Lage der genannten Primer. Um potentielle Variationen des FCGRT-Transkriptoms zu erfassen, wurde eine PCR mit FCGRT_var1_L und FCGRT_var1_R, FCGRT_var1_L und FCGRT_var2_R, FCGRT_var2_L und FCGRT_var2_R sowie FCGRT_var2_L und FCGRT_var1_L an cDNA der Ewing-Sarkom-Zelllinie A673 durchgeführt. Diese Zelllinie wurde ausgewählt, da sich die Genexpression von FCGRT im Ewing-Sarkom erhöht zeigt (Staege 2015). In der Gelelektrophorese zeigten deren Produkte neben den zu erwartenden Längen, die im Einzelnen Tabelle 19 zu entnehmen sind, weitere verschieden große Amplifikate. Am deutlichsten war dies an den Gelbanden des PCR-Produktes von FCGRT_var2_L und FCGRT_var2_R zu erkennen, was in Abbildung 2 dargestellt wird.

Tabelle 19: Zu erwartende PCR-Produktlängen

Primer-Kombination	Erwartete Länge des Amplifikats
FCGRT_var1_L + FCGRT_var1_R	1223
FCGRT_var1_L + FCGRT_var2_R	1282
FCGRT_var2_L und FCGRT_var2_R	1334
FCGRT_var2_L und FCGRT_var1_R	1273

Abbildung 2: Gelelektrophorese der an cDNA der Zelllinie A673 durchgeführten PCR Dargestellt ist die Negativ-Fotografie des Agarosegels nach der Gelelektrophorese der PCR-Produkte verschiedener Primer-Kombinationen an cDNA der Zelllinie A673. Die in der PCR verwendeten Primer-Kombinationen sind mit Großbuchstaben gekennzeichnet. A: FCGRT_var1_L und FCGRT_var1_R, B: FCGRT_var1_L und FCGRT_var2_R, C: FCGRT_var2_L und FCGRT_var2_R, D: FCGRT_var2_L und FCGRT_var1_R. Die Negativ-Kontrolle der Primer-Kombinationen durch PCR-Reaktionsansätze ohne cDNA ist durch NTC (No Template Control) markiert. Das PCR-Produkt von Aktin dient als Marker für die Intaktheit verwendeter cDNA. M kennzeichnet den zur Bestimmung der Produktlängen aufgetragenen 100 bp Plus-Marker. bp: Basenpaarlänge. Die Pfeile zeigen weiterverwendete PCR-Produkte an.

Die PCR-Produkte der o.g. *Primer*-Kombinationen wurden zur weiteren Untersuchung gereinigt. Um die unterschiedlich großen Amplifikate der Produkte aufzutrennen und zu isolieren, wurden diese mit dem Vektor pGEM-T Easy ligiert. Jeder Ligationsansatz enthielt Vektoren mit unterschiedlich großen *Inserts*, so dass sich nach dem Einschleusen der Vektor-DNA in *E. coli* Bakterienkolonien ausbildeten, die verschiedene Vektor-Informationen trugen. Mit dem Wachstum eines Bakterienstammes zur Kolonie wurden die verschiedenen Amplifikate selektiv vervielfältigt. Um den Erfolg der Transformation zu überprüfen, wurde eine Kolonie-PCR an insgesamt 26 Kolonien durchgeführt. Je vier Kolonien entstammten von Bakterien, die Vektor-DNA des Ligationsansatzes der *Primer*-Kombination FCGRT_var1_L und FCGRT_var1_R sowie von FCGRT_var1_L und FCGRT_var2_R aufgenommen hatten. 12 Kolonien wurden von der Agarplatte entnommen, auf der Bakteien mit der DNA-Information des Ligationsansatzes der *Primer*-Kombination FCGRT_var2_L und FCGRT_var2_L und FCGRT_var1_R. Die Gelelektrophorese der Kolonie-PCR-Produkte ist in Abbildung 3 dargestellt. Es zeigte sich, dass die Bakterien einer Transformationsreaktion Vektoren mit unterschiedlich großen *Inserts* aufgenommen hatten. PCR-Produkte der Kolonien, die ein Amplifikat selektiv vervielfältigen, wiesen dabei nur eine Gelbande auf. An den übereinstimmenden Längen vieler Kolonie-PCR-Produkte mit denen der PCR an cDNA der Zelllinie A673 zeichnete sich ab, dass ursprüngliche Amplifikate in die Vektoren übertragen wurden. Die auf Abbildung 3 mit Pfeilen gekennzeichneten PCR-Produkte wurden für die Sequenzierung ausgewählt. Kriterien für die Auswahl beliefen sich auf eine Produktlänge von mindestens 600 Basenpaaren und eine unterschiedliche Größe der Amplifikate pro *Primer*-Kombination. Da die PCR-Produkte von FCGRT_var1_L und FCGRT_var1_R sowie FCGRT_var1_L und FCGRT_var2_R ein Produkt aufwies, was sich in seiner Größe glich, wurde dieses nur aus dem PCR-Produkt von FCGRT_var1_L und FCGRT_var1_L Die Sequenzierung fand dabei an den pGEM-T Easy-Vektoren statt, die die zur Sequenzierung ausgewählten PCR-Produkte als *Insert* trugen.

Abbildung 3: Gelelektrophorese der an pGEM-T Easy-Vektor tragenden Kolonien durchgeführten PCR Dargestellt ist die Negativ-Fotografie des Agarosegels nach der Gelelektrophorese von PCR-Produkten der an pGEM-T Easy-Vektor tragenden Kolonien durchgeführten PCR. Die in der PCR verwendeten *Primer*-Kombinationen sind mit einzelnen Buchstaben gekennzeichnet. A: FCGRT_var1_L und FCGRT_var1_R, B: FCGRT_var1_L und FCGRT_var2_R, C: FCGRT_var2_L und FCGRT_var2_R, D: FCGRT_var2_L und FCGRT_var1_R. Die Negativ-Kontrolle der *Primer*-Kombinationen durch PCR-Reaktionsansätze ohne cDNA ist durch NTC markiert. M kennzeichnet den zur Bestimmung der Produktlängen aufgetragenen 100 bp Plus-Marker. bp: Basenpaarlänge. Die Pfeile zeigen weiterverwendete PCR-Produkte an.

4.1.2 Mittels Sequenzierung identifizierte FCGRT-Transkriptvarianten

Die sequenzierten PCR-Produkte wurden mit der Datenbank des NCBI verglichen. Das Produkt von FCGRT_var1_L und FCGRT_var2_R zeigte mit der Länge von 1282 Basenpaaren eine hohe Übereinstimmung mit der Transkriptvariante 1 des Gens FCGRT. Diese Sequenz wurde als FCGRT_I bezeichnet. Ein Produkt von FCGRT_var2_L und FCGRT_var2_R mit der Basenpaarlänge von 1334 ähnelte der Transkriptvariante 2 von FCGRT und wurde mit FCGRT_II benannt. Zwei kürzere sequenzierte Produkte dieser *Primer*-Kombination zeigten ebenfalls Ähnlichkeit zur Transkriptvariante 2 und wurden in Abbildung 4 als FCGRT_III (947 Basenpaare) und FCGRT_IV (806 Basenpaare) aufgeführt. Bei FCGRT_III konnte der Übergang von Exon 3 zu Exon 5 unter Ausschluss von Exon 4 festgestellt werden. Der Sequenz von FCGRT_IV fehlten die Exons 2 und 3, wobei sich Exon 4 an Exon 1 reihte. Die Sequenz des PCR-Produktes von FCGRT_var1_L und FCGRT_var1_R zeigte ebenfalls eine hohe Übereinstimmung mit der Transkriptvariante 1 von FCGRT, jedoch wurde ein eingeschobenes Exon mit 118 Basenpaaren zwischen Exon 4 und 5 gefunden. Die gesamte Länge dieser Variante betrug 1341 Basenpaare. Sie wurde mit FCGRT_V betitelt. Abweichungen in der Basenabfolge der sequenzierten PCR-Produkte zu ihren RNA-Referenzensequenzen sind im Anhang aufgeführt.

Abbildung4:DarstellungdesschematischenAufbaussequenzierterPCR-ProdukteDargestelltistderschematischeAufbausequenzierterPCR-Produkte.Primer-KombinationensinddurchGroßbuchstabengekennzeichnet.A:FCGRT_var1_LundFCGRT_var1_R,B:FCGRT_var1_LundFCGRT_var2_R,C:FCGRT_var2_LundFCGRT_var2_R.ExonsentsprechendenPfeilen,welchemitarabischenZahlen nummeriertsind.UntereinanderstehendeExonsgleichensich inihrerSequenz.AusnahmenbildendieExons, diezusätzlichmiteinemKleinbuchstabengekennzeichnetsind.1a:Exon1derTranskriptvariante1,1b:Exon1derranskriptvariante2.DienachobengeöffnetenSpitzenentsprechendemlückenlosenÜbergangzwischenExons.ZusätzlicheExonssind durchxmarkiert.DieSequenzenwurdenmitFCGRT_II,FCGRT_III,FCGRT_IVundFCGRT_V benannt.

4.1.3 Vorhergesagte Proteine sequenzierter FCGRT-Transkriptvarianten

FCGRT codiert die schwere α -Kette des FcRn. Der ORF der Transkriptvariante 1 des Gens ist durch die Exons 2 bis 7 codiert, während dieser auf Transkriptvariante 2 schon auf Exon 1 beginnt. Da die Transkriptvariante 2 das Exon 2 der Transkriptvariante 1 nicht besitzt, verschiebt sich die Nummerierung gleicher Exons beider Varianten zueinander. D.h. Exon 2 der Transkriptvariante 2 entspricht Exon 3 der Transkriptvariante 1, was so weitergeführt wird. Der codierende Teil des Exon 2 von FCGRT_I bzw. des Exon 1 von FCGRT_II verschlüsselt das am Anfang stehende Signalpeptid des Proteins. Exon 3, 4 und 5 von FCGRT_I bzw. Exon 2, 3, und 4 von FCGRT_II codieren die drei α -Domänen, welche MHC-I-Molekül-ähnliche-Domänen formen. Die Scharnierregion der ersten beiden α -Domänen besitzt die Peptidbindungsstelle für IgG und Albumin. Die α 3-Domäne stellt die Immunglobulin C1-set Domäne.

Abbildung 5: Darstellung der Proteindomänen codierender Exons sequenzierter Transkriptvarianten Dargestellt sind die Proteindomänen codierender Exons der sequenzierten Transkriptvarianten des Gens FCGRT. Die Transkriptvarianten sind mit FCGRT_I, FCGRT_II, FCGRT_III, FCGRT_IV und FCGRT_V gekennzeichnet. Die Exons der mRNA sind mit Pfeilen markiert, welche mit arabischen Zahlen nummeriert sind. 1a: Exon 1 der Transkriptvariante 1, 1b: Exon 1 der Transkriptvariante 2. Zusätzliche Exons sind durch x markiert. Die zugehörigen Proteine sind jeweils unterhalb der RNA dargestellt, ihre Domänen sind farblich abgegrenzt und ihre Funktion unterhalb der ersten Proteindarstellung beschrieben. α 1: α 1-Domäne, α 2: α 2-Domäne, α 3: α 3-Domäne. Die Verbindungslinien von RNA zu Protein zeigen die Lokalisation der Proteindomänen auf den Transkriptvarianten.

Das Exon 6 von FCGRT_I bzw. Exon 5 von FCGRT_II codiert die Transmembranregion, mit welcher das Protein an Vesikeln und der Oberfläche der Zelle verankert ist. Die jeweils letzten Exons beider Transkriptvarianten codieren für die Polyphosphorylierungsstelle am Ende des Proteins. Abbildung 5 zeigt den schematischen Aufbau der Proteindomänen sequenzierter Transkriptvarianten von FCGRT. Bei FCGRT III kann durch das fehlende Exon 4 die α3-Domäne nicht ausgebildet werden. Dieser Rezeptorvariante fehlt dementsprechend die Immunglobulin C1-set Domäne, die der konstanten Region eines Immunglobulins gleichkommt. Alle weiteren Domänen des Proteins sind vertreten. Dagegen fehlen bei FCGRT_IV die ersten beiden α -Domänen, da hier die korrespondierenden Exons 2 und 3 nicht existieren. Somit wird die IgG-Bindungsstelle bei dieser Variante nicht ausgebildet. Bei FCGRT V wird die Translation durch das eingeschobene Exon X nach Exon 4 hinter der Ausbildung der α 2-Domäne abgebrochen. Es fehlt die Immunglobulin C1-set-Domäne, die Transmembranregion zur Verankerung in die Zellmembran sowie die Polyphosphorylierungsstelle.

4.2 Expression der FCGRT-Transkriptvarianten in verschiedenen Zelllinien

4.2.1 Erstellen von Primern für Messungen mittels qPCR

Die Expression der gefundenen Transkriptvarianten von FCGRT wurde in den Ewing-Sarkom-Zelllinien A673, RD-ES und SK-N-MC sowie in den Neuroblastom-Zelllinien CHP-126, KELLY, SH-SY5Y und SiMA mittels quantitativer Real Time Polymerase-Kettenreaktion untersucht. Diese Zelllinien wurden ausgewählt, da im Vorfeld dieser Arbeit eine gesteigerte Expression von FCGRT in Ewing-Sarkom-Zellen im Vergleich zum Neuroblastom-Zellen festgestellt wurde (Staege 2015). Es wurden Primer konzipiert, welche die Transkriptvarianten spezifisch amplifizieren. Dies war möglich, da sich die Übergänge ihrer Exons unterschieden. Abbildung 6 zeigt die Lage und Namen der Primer auf den verschiedenen Transkriptvarianten. FCGRT III differenzierte sich von den anderen Varianten durch die Aussparung von Exon 4, weswegen am Übergang von Exon 3 zu Exon 5 der rückwärtige Primer positioniert wurde. Da bei FCGRT_IV die Exons 2 und 3 fehlten, wurde der vorwärtige Primer an den Übergang von Exon 1 zu Exon 4 gelegt. Der rückwärtige *Primer* für die Amplifikation von FCGRT_V befand sich im zusätzlichen Exon X. Die Referenzsequenzen FCGRT_I und FCGRT_II wurden durch die Primer-Lage am Übergang von Exon 3 und 4 bzw. 2 zu 3 und Exon 5 und 6 bzw. 4 zu 5 amplifiziert und werden folgend als FCGRT I+II zusammengefasst. Zur Überprüfung der Amplifikatlängen und Optimierung der Annealing-Temperaturen wurden die Primer in einer Gradienten-PCR an cDNA der Zelllinien getestet und die hierbei ermittelten PCR-Bedingungen für die weiteren Untersuchungen verwendet.

Abbildung 6: Darstellung der Primer-Lokalisation auf den gefundenen Transkriptvarianten des Gens FCGRT Dargestellt ist der schematische Aufbau der Transkriptvarianten von FCGRT und die gewählte Primer-Position für Messungen mittels qPCR. Die Transkriptvarianten sind mit FCGRT_II, FCGRT_III, FCGRT_IV und FCGRT_V gekennzeichnet. Exons entsprechen den Pfeilen, welche mit arabischen Zahlen nummeriert sind. 1a: Exon 1 der Transkriptvariante 1, 1b: Exon 1 der Transkriptvariante 2. Zusätzliche Exons sind durch x gekennzeichnet. Die Positionen der Primer sind durch Dreiecke markiert. ▷ : Vorwärts-Primer,⊲ : Rückwärts-Primer.

4.2.2 Expression der Transkriptvarianten durch Berechnung mittels 2^{-ΔΔCt}-Methode

Für Untersuchungen zur Expression der sequenzierten Transkriptvarianten von FCGRT in den verschiedenen Ewing-Sarkom- und Neuroblastom-Zelllinien wurde eine qPCR an cDNA der Zelllinien A673, RD-ES und SK-N-MC sowie CHP-126, KELLY, SH-SY5Y und SiMA durchgeführt. Die Auswertung erfolgte mittels 2^{-ΔΔCt}-Methode (Livak und Schmittgen 2001). HPRT1 diente hierfür als Haushaltsgen, die FCGRT-Expression in der Ewing-Sarkom-Zelllinie A673 als Kalibrator. Wie in Abbildung 7 ersichtlich, zeigte sich für die einzelnen Transkriptvarianten wie erwartet die höhere basale Expression in den Ewing-Sarkom-Zelllinien, während diese in den Neuroblastom-Zelllinien konstant unterhalb des Niveaus der A673-Zellen lag. Eine Ausnahme bildete FCGRT_V in der Neuroblastom-Zelllinie KELLY, deren Expression sich der in den A673-Zellen anglich. FCGRT_I+II zeigte in der Zelllinie SK-N-MC mit der 4-fachen, gleichzeitig die höchste Expression im Vergleich zu den A673-Zellen. Die niedrigste Expression dieses Transkripts innerhalb der Ewing-Sarkom-Zelllinien wurde für RD-ES-Zellen ermittelt. Diese betrug das 0,65-fache von A673-Zellen. Nach den RD-ES-Zellen folgte eine Expressionsabstufung in den Neuroblastom-Zelllinien CHP-126, KELLY, SH-SY5Y. Die geringste Expression fand sich in der Zelllinie SiMA, die sich relativ zu den A673-Zellen um 1000-fach verringert zeigte. Ein ähnliches Expressionsmuster bot FCGRT_IV. Mit der 9-fachen Expression dieser Transkriptvariante zeigte auch hier die Zelllinie SK-N-MC das höchste Level, die Expression in RD-ES-Zellen folgte mit dem Faktor 2 aber vor der in A673-Zellen. In der Neuroblastom-Zelllinie SiMA fand sich ebenfalls die niedrigste Expression, die sich durch den Faktor 0,03 jedoch von geringerem Ausmaß zeigte. Die im Vergleich zu den Neuroblastom-Zelllinien erhöhte Genexpression von FCGRT_I+II und FCGRT_IV im Ewing-Sarkom konnte durch den Wilcoxon-Mann-Whitney-Test als signifikant belegt werden (p = 0,029). Bei FCGRT_III und FCGRT_V wurde für die Zelllinie RD-ES das höchste Expressionslevel mit 16- bzw. 4-facher Steigerung zu den A673-Zellen vermerkt. Die Expression von FCGRT_III in der Zelllinie SK-N-MC demonstrierte sich aber im Gegensatz zu FCGRT_V um das 10-fache gegenüber A673-Zellen erhöht. Die niedrigste Expression für FCGRT_III wurde in der Zelllinie SH-SY5Y, die für FCGRT_V in SiMA-Zellen festgestellt. Für FCGRT_III zeigte sich ebenfalls eine signifikant höhere Expression in den Ewing-Sarkom-Zelllinien, da der p-Wert des Wilcoxon-Mann-Whitney-Test mit 0,014 unterhalb des geforderten Signifikanzniveaus α von 5 % lag. Bei FCGRT_V konnte die signifikant höhere Genexpression im Ewing-Sarkom allerdings nicht belegt werden. Hier zeigte sich ein p-Wert von 0,057.

Abbildung 7: Expression der Transkriptvarianten in verschiedenen Zelllinien nach der 2^{$\Delta\Delta$ ct-Methode} Dargestellt ist die Expression von FCGRT_I+II, FCGRT_III, FCGRT_IV und FCGRT_V in cDNA der Zelllinien A673, CHP-126, KELLY, RD-ES, SH-SY5Y, SiMA und SK-N-MC. Die Ewing-Sarkom-Zelllinien sind durch schwarze Balken, die Neuroblastom-Zelllinien durch graue Balken gekennzeichnet. Die Auswertung der qPCR erfolgte mittels 2^{$-\Delta$ Ct-} Methode (Livak und Schmittgen, 2001). Die Expression der Transkriptvarianten der Zelllinie A673 diente als Kalibrator, HPRT1 als Haushaltsgen.

4.2.3 Mengenvergleich der Transkriptvarianten in den verschiedenen Zelllinien

Um die molaren Mengen der Transkriptvarianten in den Ewing-Sarkom- und Neuroblastom-Zelllinien vergleichend darzustellen, wurden diese unter Zuhilfenahme von Standardkurven relativ zum Haushaltsgen HPRT1 berechnet. Dazu wurden für jede der gefundenen Transkriptvarianten und das Haushaltsgen HPRT1 Standardkurven erstellt, mittels derer die Korrelation des C_T-Wertes und der molaren Konzentration einer Probe dargestellt wurde. Stellvertretend sind in Abbildung 8 die Standardkurven von HPRT1 und FCGRT_I+II gezeigt, die Kurven der restlichen Transkriptvarianten sind dem Anhang zu entnehmen. Für jede Kurve wurde ein Korrelationsmaß R² von größer 0,99 errechnet, was einen hohen Aussagewert der Geradengleichungen anzeigte. Um die möglicherweise unterschiedlichen Ausgangsmengen von cDNA der Proben auszugleichen, wurde das Verhältnis der molaren Masse von HPRT1 zu den untersuchten Transkriptvarianten gebildet. Somit ließen sich alle Mengen der Transkriptvarianten in den verschiedenen Zelllinien miteinander vergleichen.

Abbildung 8: Standardkurven des Haushaltsgens HPRT1 und der Transkriptvariante FCGRT_I+II Dargestellt sind stellvertretend die Standardkurven des Haushaltsgens HPRT1 und FCGRT_I+II. Die Standardkurven von FCGRT_III, FCGRT_IV und FCGRT_V sind dem Anhang zu entnehmen. Die C_T-Werte zur Erstellung der Standardkurve von HPRT1 wurden freundlicherweise von Ines Volkmer, einer Mitarbeiterin des Labors, zur Verfügung gestellt. Die Geradengleichung und der Korrelations-Wert R² werden im linken unteren Quadranten der Diagramme gezeigt.

In Abbildung 9 zeigen sich die molaren Verhältnisse der einzelnen Transkriptvarianten ähnlich zu deren relativen Genexpressionen, die mittels 2^{-∆∆Ct}-Methode (Livak und Schmittgen, 2001) berechnet wurden. So waren die Produktmengen aller *Real Time-Primer* in den Ewing-Sarkom-Zelllinien A673, RD-ES und SK-N-MC größer als in den Neuroblastom-Zelllinien CHP-126, KELLY, SH-SY5Y und SiMA. Es wurden Unterschiede in der Menge zwischen den einzelnen Transkriptvarianten in den verschiedenen Zelllinien deutlich. Dabei zeigte FCGRT_I+II in jeder Zelllinie die größten Mengen. Eine Ausnahme bildete die Zelllinie SiMA, bei der FCGRT_V den größten Anteil darstellte. FCGRT_III zeigte für jede der Zelllinien den geringsten Mengenanteil der unterschiedlichen Transkriptvarianten. In den Ewing-Sarkom-Zelllinien war FCGRT_IV stärker vertreten als FCGRT_V, bei den Neuroblastom-Zelllinien verhielt sich dieses Verhältnis entgegengesetzt. Für die Zelllinien A673, RD-ES und SK-N-MC zeigte sich die Mengenverteilung der Transkriptvarianten nach folgender Abstufung: FCGRT_I+II, danach FCGRT_IV und FCGRT_V und schließlich FCGRT_III. Dabei war das Mengenverhältnis der Transkriptvarianten zueinander in den verschiedenen Zelllinien jedoch unterschiedlich groß. Den mengenmäßig größten Anteil an FCGRT_I+II und FCGRT_IV zeigten SK-N-MC-Zellen, den von FCGRT_III und FCGRT_V bildeten RD-ES-Zellen ab. Die Zelllinie A673 beinhaltete eine größere Produktmenge an FCGRT_I+II und FCGRT_V als RD-ES-Zellen. Die Neuroblastom-Zelllinien zeigten keine einheitliche Abstufung der Transkriptmengen.

Abbildung 9: Verhältnis molarer Mengen der Transkriptvarianten nach Berechnung mithilfe der Standardkurven Dargestellt ist die Expression von FCGRT_I+II, FCGRT_III, FCGRT_IV und FCGRT_V in der cDNA der Zelllinien A673, CHP-126, KELLY, RD-ES, SH-SY5Y, SiMA und SK-N-MC. Die Ewing-Sarkom-Zelllinien sind durch schwarze Balken, die Neuroblastom-Zelllinien durch graue Balken gekennzeichnet. Die Auswertung der qPCR erfolgte durch die Berechnung aus den Standardkurven. HPRT1 diente als Haushaltsgen.

4.3 Funktionelle Effekte der FCGRT-Transkriptvarianten in transgenen Zellen

4.3.1 Erstellen von Expressionsvektoren zur Transfektion genetischen Materials

Um funktionelle Effekte der sequenzierten Transkriptvarianten in Zellen der Zelllinie A673 zu untersuchen, wurden Expressionsvektoren erstellt, die das genetische Material in die Zellen einschleusen konnten. Für die Übertragung der Sequenzen von FCGRT_I, FCGRT_II, FCGRT_III, FCGRT_IV und FCGRT_V in den Expressionsvektor pRTS-1 waren Klonierungsschritte über die Vektoren pGEM-T Easy und pUC19Sfil notwendig. Nach der Ligation der Transkriptvarianten in den Vektor pGEM-T Easy entstanden die Vektoren pGEM-T Easy FCGRT I, pGEM-T Easy FCGRT II, pGEM-T Easy FCGRT III, pGEM-T Easy FCGRT IV und pGEM-T Easy FCGRT V. Der Einbau der Seguenzen wurde über den Restriktionsverdau mittels Notl überprüft. Die herausgeschnittenen Inserts wurden mit dem Vektor pUC19Sfil ligiert und der Erfolg mittels Restriktionsverdau über Sfil kontrolliert. Die Vektoren wurden als pUC19Sfil_FCGRT_I, pUC19Sfil_FCGRT_II, pUC19Sfil_FCGRT_III, pUC19Sfil_FCGRT_IV und pUC19Sfil_FCGRT_V bezeichnet. Zum weiteren Umbau der Inserts in den Vektor pRTS-1 wurde vorerst ihre Orientierung im pUC19Sfil-Vektor geprüft, um die korrekte Ausrichtung bei ihrer Übertragung in den Expressionsvektor zu gewährleisten. Es erfolgte der Restriktionsenzymverdau von pUC19Sfil FCGRT I, pUC19Sfil FCGRT II und pUC19Sfil FCGRT V mittels BamHI, von pUC19Sfil_FCGRT_III und pUC19Sfil_FCGRT_IV mittels Eco72I und Xbal, dessen Ergebnis Abbildung 10 zeigt. Vektoren mit korrekt ausgerichteten Inserts wurden über den Restriktionsverdau mittels Sfil geschnitten, mit dem pRTS-1-Vektor ligiert und die Übertragung der Inserts mittels Restriktionsverdau kontrolliert. Diese Vektoren wurden als pRTS-1 FCGRT I, pRTS-1 FCGRT II, pRTS-1 FCGRT III, pRTS-1 FCGRT IV und pRTS-1 FCGRT V bezeichnet. In Abbildung 11 sind die Ergebnisse des Notl- bzw. Sfil-Restriktionsverdaus der mit FCGRT I, FCGRT_II, FCGRT_IV und FCGRT_V ligierten Vektoren zusammengefasst. Die Produkte der Restriktionsverdaureaktionen zeigten die in Tabelle 20 abgebildeten erwarteten Längen.

Abbildung 10: Restriktionsverdau von pUC19Sfil-Vektoren zur Überprüfung der Insert-Ausrichtung Dargestellt ist die Negativ-Fotografie des Agarosegels nach Gelelektrophorese des Restriktionsverdau Insert tragender pUC19Sfil-Vektoren. Dabei ist der Restriktionsverdau repräsentativ für die Inserts FCGRT_II – FCGRT_V gezeigt. Eingesetzte Enzyme sind mit Großbuchstaben gekennzeichnet. B: BamHI, EX: Eco72I und Xbal. Kleinbuchstaben markieren die inserierende Transkriptvariante von FCGRT. a: FCGRT_II, b: FCGRT_II, c: FCGRT_V, d: FCGRT_IV. Die mit Pfeilen markierten Gelbanden zeugen von korrekt ausgerichteten Inserts in ihren puC19Sfil-Vektoren. M kennzeichnet die zur Bestimmung der Produktlängen aufgetragenen Marker. bp: Basenpaarlänge.

Abbildung 11: Gelelektrophorese *Insert* tragender Klonierungs- und Expressionsvektoren nach Restriktionsverdau Dargestellt sind die Negativ-Fotografien der Agarosegele nach Gelelektrophorese der in der Arbeit verwendeten *Insert* tragenden Vektoren mit dessen Restriktionsverdau. Dabei wurden die verwendeten Vektoren mehrfach zum Restriktionsverdau angesetzt, um die Erfolgsquote der Restriktionsverdaus zu verbessern. Eingesetzte Enzyme sind auf der Fotografie des Gels notiert. Die Zahlen bezeichnen die verwendeten Vektoren. 1: pGEM-T Easy, 2: pUC19Sfil, 3: pRTS-1. Kleinbuchstaben markieren die inserierende Transkriptvariante von FCGRT. a: FCGRT_II, b: FCGRT: IV, c: FCGRT_III, d: FCGRT_I, e: FCGRT_V. M kennzeichnet die zur Bestimmung der Produktlängen aufgetragenen Marker. bp: Basenpaarlänge.

Enzyme	Vektor	Basenpaarlängen
BamHI	puC19Sfil_FCGRT_I	3650 bp + 453 bp
BamHI	puC19Sfil_FCGRT_II	3893 bp + 392 bp
BamHI	puC19Sfil_FCGRT_V	3765 bp + 264 bp
Eco72I + Xbal	puC19Sfil_FCGRT_III	2836 bp + 880 bp
Eco72I + Xbal	puC19Sfil_FCGRT_IV	2836 bp + 739 bp
Notl	pGEM T-Easy_FCGRT_I	2981 bp + 1616 bp
Notl	pGEM T-Easy_FCGRT_II	2981 bp + 1367 bp
Notl	pGEM T-Easy_FCGRT_III	2981 bp + 981 bp
Notl	pGEM T-Easy_FCGRT_IV	2981 bp + 840 bp
Notl	pGEM T-Easy_FCGRT_V	2981 bp + 1444 bp
Sfil	pUC19SfiI_FCGRT_I	2652 bp + 1505 bp
Sfil	pUC19SfiI_FCGRT_II	2652 bp + 1451
Sfil	pUC19Sfil_FCGRT_III	2652 bp + 1064
Sfil	pUC19SfiI_FCGRT_IV	2652 bp + 923
Sfil	pUC19SfiI_FCGRT_V	2652 bp + 1633
Sfil	pRTS-1_FCGRT_I	167229 bp + 1505 bp
Sfil	pRTS-1_FCGRT_II	167229 bp + 1451
Sfil	pRTS-1_FCGRT_III	167229 bp + 1064
Sfil	pRTS-1_FCGRT_IV	167229 bp + 923
Sfil	pRTS-1_FCGRT_V	167229 bp + 1633

Tabelle 20: Erwartete Basenpaarlängen des Restriktionsverdaus von Klonierungs- und Expressionsvektoren

4.3.2 Expression der Transkriptvarianten in nativen und transgenen A673-Zellen

Zur Untersuchung der gefundenen Transkriptvarianten von FCGRT auf funktionelle Effekte wurden die erstellten Expressionsvektoren pRTS-1_FCGRT_I, pRTS-1_FCGRT_II, pRTS-1_FCGRT_III, pRTS-1_FCGRT_IV und pRTS-1_FCGRT_V in Ewing-Sarkom-Zellen der Zelllinie A673 transfiziert. Dies führte nach Behandlung der Zellen mit Doxycyclin zu einer Überexpression der in die MCS der Vektoren eingebrachten genetischen Information. Der Erfolg der Transfektion wurde über die optische Erfassung grün fluoreszierender Zellen unter dem Fluoreszenzmikroskop nach 24 Stunden überprüft. Transgene, mit Doxycyclin behandelte Zellen wiesen die beschriebene Fluoreszenz durch Bildung von GFP auf, während native Zellen und transgene Zellen ohne Doxycyclinbehandlung unter dem Mikroskop nicht sichtbar wurden. Trotz wiederholter Versuche gelang die Transfektion mit pRTS1_FCGRT_I nicht, so dass für Untersuchungen der RNA-Referensequenzen von FCGRT ausschließlich mit pRTS1-FCGRT_II gearbeitet wurde. Über eine qPCR wurde die Expression von FCGRT_I+II, FCGRT_III, FCGRT_IV und FCGRT_V in nativen und transgenen Zellen 48 Stunden nach der Transfektion untersucht. Um auszuschließen, dass erkennbare Effekte transfizierter Transkriptvarianten lediglich auf die Vektor-DNA ohne Einfluss des Inserts zurückzuführen waren, wurde die Versuchsreihe durch die Transfektion des Leervektors pRTS-1_Leervektor in A673-Zellen ergänzt. Bei der Auswertung mittels der 2^{-ΔΔCt}-Methode (Livak und Schmittgen 2001) wurde die Expression der Transkriptvarianten in nativen A673-Zellen als Kalibrator verwendet, HPRT1 diente dabei als Haushaltsgen. Das Ergebnis wird in Abbildung 12 dargestellt. Die folgend genannten Werte werden als Mittelwerte dreier unabhängiger Versuche angegeben. Nach Transfektion der Transkriptvarianten in A673-Zellen zeigte sich bei anschließender Doxycyclinbehandlung ein deutlicher Anstieg ihrer Genexpression. Am stärksten war dieser Effekt bei FCGRT_III und FCGRT_V wahrzunehmen, die ihre Expression im Vergleich zu nativen A673-Zellen um den Faktor 2627 und 424 steigerten. Für beide Varianten wurde ebenfalls eine geringfügigere erhöhte Expression in A673-Zellen verzeichnet, die mit Vektoren dieser genetischen Informationen transfiziert wurden, in denen jedoch keine gewollte Überexpression dieser Transkriptvarianten durch Zugabe von Doxycyclin induziert wurde. Hier zeigte die Expression von FCGRT III das 270-fache, von FCGRT V das 6,5-fache zum Wert in nativen A673-Zellen. Die Transfektion von FCGRT II löste bei ihrer Überexpression eine Expressionssteigerung des Transkripts FCGRT_I+II um den Faktor 20,5 aus. Ein Anstieg der Expression dieses Transkripts auf das ca. 10-fache des Wertes in nativen A673-Zellen wurde auch nach Transfektion des Vektors pRTS-1 FCGRT V mit anschließender Doxycyclinbehandlung entsprechender Zellen hervorgerufen. Bei der Überexpression von FCGRT_IV zeigte sich eine 70,5-fache Expression der gleichnamigen Transkriptvariante im Vergleich zu den Kalibratorzellen. Die mit dem Leervektor transfizierten Zellen provozierten auch nach ihrer Doxycyclinbehandlung keinen signifikanten Anstieg oder Abfall der Genexpression der Transkriptvarianten, was den Einfluss der Vektor-DNA ohne Insert auf die genannten Effekte unwahrscheinlich machte. Weiterhin wurden mit Ausnahme des genannten Effektes von pRTS-1_FCGRT_V auf FCGRT_I+II keine signifikanten wechselseitigen Effekte durch andere Transkriptvarianten ausgelöst. Abbildung 13 zeigt das Verhältnis molarer Massen der untersuchten Transkriptvarianten in nativen und transgenen A673-Zellen, welches über Berechnungen unter Zuhilfenahme der Standardkurven ermittelt wurde. Dabei ähnelte dieses Verhältnis in nativen und unbehandelten transgenen Zellen. Bei diesen Zellen stimmte das Muster der Verhältnisse gefundener Transkriptvarianten weitgehend mit dem der Zelllinie A673 im Kapitel "4.2.3 Mengenvergleich der Transkriptvarianten in verschiedenen Zelllinien" überein.

Abbildung12:ExpressionderTranskriptvariantenintransgenenA673-ZellenDargestellt sind die Mittelwerte mit Standardabweichung der Expression von FCGRT_I+II, FCGRT_III, FCGRT_IV undFCGRT_V des Gens FCGRT in der cDNA nativer und transgener A673-Zellen dreier unabhängiger Versuche. Die X-Achsebildet native und transgene A673-Zellen ab. Transgene Zellen tragen die Bezeichnung des transfizierten Vektors. MitDoxycyclin behandelte Zellen sind durch schwarze Balken, unbehandelte Zellen durch graue Balken markiert. DieAuswertung der qPCR erfolgte nach mittels $2^{-\Delta\Delta Ct}$ -Methode (Livak und Schmittgen, 2001). Die Expression derTranskriptvarianten nativer A673 diente als Kalibrator, HPRT1 als Haushaltsgen.

FCGRT_I+II zeigte den mengenmäßig größten Anteil. Dem folgten FCGRT_IV und FCGRT_V jeweils im Verhältnis 1:6 zu FCGRT_I+II. Den kleinsten Anteil bildete FCGRT_III im Verhältnis 1:355 zu FCGRT_I+II. Mengenmäßig war auch hier der Effekt nach der Doxycyclinbehandlung transgener Zellen bei FCGRT_III am stärksten zu erkennen. Die Transkriptmenge steigerte sich um den Faktor 18540 zu der in nativen A673-Zellen. Dagegen stiegen die Mengen von FCGRT_V und FCGRT_IV nur um das 170- bzw. das 80-fache an. FCGRT_I+II verzeichnete einen Anstieg auf das 20-fache. Es zeigte sich keine wechselseitige Beeinflussung der unterschiedlichen Transkriptvarianten. Eine Ausnahme bildete auch hier die 13-fache Steigerung von FCGRT_I+II durch die Überexpression von FCGRT_V.

Abbildung 13: Verhältnis molarer Mengen der Transkriptvarianten in transgenen A673-Zellen Dargestellt sind die Mittelwerte mit Standardabweichung der relativen molaren Mengen von FCGRT_I+II, FCGRT_III, FCGRT_IV und FCGRT_V des Gens FCGRT in der cDNA nativer und transgener A673-Zellen dreier unabhängiger Versuche. Die X-Achse bildet native und transgene A673-Zellen ab. Transgene Zellen tragen die Bezeichnung des transfizierten Vektors. Mit Doxycyclin behandelte Zellen sind durch schwarze Balken, unbehandelte Zellen durch graue Balken markiert. Die Berechnung erfolgte unter Zuhilfenahme der Standardkurven entsprechender Transkriptvarianten und des Haushaltsgens HPRT1.

4.3.3 FACS-Analyse nativer und transgener A673-Zellen

Mittels FACS-Analyse wurde eine Untersuchung auf die Ausbildung IgG bindender FcRn in nativen und transgenen A673-Zellen durchgeführt. Dafür wurden jeweils vier Versuchsgruppen mit nativen und mit pRTS-1_Leervektor, pRTS-1_FCGRT_II, pRTS-1_FCGRT_III, pRTS-1_FCGRT_IV und pRTS-1_FCGRT_V transfizierten A673-Zellen erstellt. Während Gruppe 1 und 3 unbehandelt blieb, erhielten die Gruppen 2 und 4 eine Doxycyclinbehandlung. Nach 24 Stunden erfolgte eine Behandlung mit Cy5 markiertem IgG der Gruppen 3 und 4. Die Zellen wurden nach zwei Stunden Inkubationszeit mittels FACS analysiert. Dabei wurde an den A673-Zellen die Auswirkung der Überexpression gefundener Transkriptvarianten auf die Bindungskapazität von IgG untersucht. Abbildungen 14 bis 16 geben die Ergebnisse wieder. Abbildung 15 und 16 zeigen die für die FACS-Analyse angewandte *Gating*-Strategie der Zellen am Beispiel von transgenen Zellen, die mit pRTS-1_Leervektor und pRTS-1_FCGRT_IV transfiziert wurden. Die *Gates* wurden manuell

erstellt. Mit Gate P1 wurde der Schwellenwert für die Größe der zu vermessenden Zellen festgelegt. Diese orientierte sich an der Größe von Tumorzellen. Gate P2 selektionierte einzelne Zellen von koinzidenten Signalen. Die Erfassung von Zellen einer bestimmten Komplexität, also die Unterscheidung zwischen lebenden und toten Zellen, wurde durch das Gate P3 registriert. Für diese Zellpopulation wurde im Gate P4 die Menge an Zellen mit GFP-Fluoreszenzsignal, im Gate P5 die mit einer Cy5-Fluoreszenz erfasst. Gate P6 diente schließlich der Selektion von Zellen, die beide Fluoreszenzsignale aufwiesen. Abbildung 14 stellt hierfür den prozentualen Anteil der im Fluoreszenzsignal doppelt positiv gemessenen Zellen an der lebenden Zellpopulation dar. Jede Gruppe der nativen A673-Zellen zeigte ähnliche Fluoreszenzsignale. Ausgenommen davon war die Cy5-Fluoreszenz, die sich in Gruppe 3 und 4 glich, aber größer als in Gruppe 1 und 2 war. Dies wurde als basale Ausbildung IgG bindender Rezeptoren in nativen A673-Zellen gewertet. Wie erwartet war das GFP-Signal vernachlässigbar klein. Doppelt positive Fluoreszenzsignale in Gate P6 wurden nicht erwartet, verzeichneten aber 0,2 % für Gruppe 1 und 3 und 0,1 % für Gruppe 2. Dieses Ergebnis wurde als Hintergrundsignal gewertet. Die Untersuchung auf Effekte in Zellen nach der Transfektion mit einem Leervektor sollten dem Ausschluss einer Beeinflussung durch die Vektor-DNA ohne Insert dienen. Auch hier zeigte sich die Fluoreszenz von Cy5 in Gruppe 3 und 4 stärker als in Gruppe 1 und 2 und glich weitgehend der der nativen Zellen aus Gruppe 3 und 4. Das GFP-Signal der Gruppe 1 und 2 zeigte sich gegenüber dem aus Gruppe 3 und 4 erhöht, da in diesen Zellen nach der Doxycyclinbehandlung der Fluoreszenzmarker GFP gebildet werden konnte. Da ohne *Insert* keine Überexpression einer Transkriptvariante von FCGRT stattfand, wurde erwartet, dass die Ausbildung der untersuchten Rezeptoren nicht beeinflusst wurde. Gruppe 1 und 2 zeigten mit je 0,1 % ein doppelt positives Fluoreszenzsignal, das zu vernachlässigen war. Das Signal der Gruppe 3 steigerte sich auf 1,7 %, das als Hintergrundrauschen gewertet wurde, da diese Zellen im Vorfeld mit dem Cy5 markierten IgG behandelt worden waren. Das auf 2,6 % ansteigende Signal der Gruppe 4 wurde darauf zurückgeführt, dass die basale Ausbildung von IgG bindenden Rezeptoren auch in Zellen stattfand, die über die Doxycyclinbehandlung GFP bildeten. Gruppe 2 und 4 der transgenen Zellen, die mit pRTS-1 FCGRT II, pRTS-1 FCGRT III, pRTS-1 FCGRT IV und pRTS-1 FCGRT V transfiziert wurden, verzeichneten einen starken Anstieg des GFP-Fluoreszenzsignals, das eine stattfindende Überexpression der im Vektor inserierenden Transkriptvarianten anzeigte. Wie erwartet war das Fluoreszenzsignal von Cy5 in Gruppe 1 nicht signifikant positiv, während es in Gruppe 3 ähnlich stark hervortrat wie bei der Referenzgruppe der mit pRTS-1_Leervektor transfizierten Zellen. Eine Steigerung dieses Signals wurde in Gate P5 der Gruppe 4 sichtbar. Eine Ausnahme in dieser Gruppe bildeten Zellen, die mit pRTS-1_FCGRT_V transfiziert wurden, hier ließ sich ein leichter Abfall des Signals erkennen. Für das Gate P6 wurden die höchsten doppelt

positiven Fluoreszenzsignale bei den transgenen Zellen der Gruppe 4 gemessen. Mit 12,6 % und 12,3 % der lebenden Zellpopulation zeigten die mit pRTS-1_FCGRT_IV und pRTS-1_FCGRT_V transfizierten Zellen den höchsten prozentualen Anteil an doppelt positiven Fluoreszenzsignal. Dahinter reihten sich mit 9,4 % und 8,9 % die mit pRTS-1_FCGRT_III und pRTS-1_FCGRT_II transfizierten Zellen ein. Zellen der Gruppe 1 und 2 ließen mit 0,1 bis 0,8% kein deutliches Signal erkennen, die Steigerung in den Zellen der Gruppe 3 auf bis zu 2,4 % wurde wie oben beschrieben als Hintergrundrauschen gewertet. Zusammenfassend wurde gezeigt, dass die Fähigkeit der IgG-Bindung in der Zelllinie A673 nach Überexpression von FCGRT_II, FCGRT_III, FCGRT_III, FCGRT_IV und FCGRT_V gesteigert wurde. Interessanterweise war diese Steigerung jedoch in den transfizierten Zellen mit pRTS-1_FCGRT_IV und pRTS-1_FCGRT_V am größten, obwohl gerade bei diesen Transkriptvarianten die Codierung für die vermutete Bindungsstelle des IgG fehlt.

Abbildung 14: Cy5 markierte native und transgene A673-Zellen nach Behandlung mit Immunglobulinen Dargestellt ist der prozentuale Anteil von Cy5 markierten nativen und transgenen A673-Zellen an im FACS lebend gemessenen Zellen nach Behandlung mit Cy5 markierten IgG. Die X-Achse bildet native und transgene A673-Zellen ab. Transgene Zellen tragen die Bezeichnung des transfizierten Vektors. IgG: mit Immunglobulin G behandelte Zellen. Mit Doxycyclin behandelte Zellen sind durch schwarze Balken, unbehandelte Zellen durch graue Balken markiert.

Abbildung 15: FACS-Analyse mit *Gating*-Strategie der mit pRTS-1_Leervektor transfizierten A673-Zellen Dargestellt ist die FACS-Analyse und *Gating*-Strategie der mit dem Vektor pRTS-1_Leervektor transfizierten A673-Zellen. 1: unbehandelte transfizierte A673-Zellen, 2: mit Doxycyclin behandelte transfizierte A673-Zellen, 3: mit Cy5 markierten IgG behandelte transfizierte A673-Zellen, 4: mit Doxycyclin und Cy5 markierten IgG behandelte transfizierte A673-Zellen. P: *Gate*. SSC-A: Pulsfläche im Seitwärtsstreulicht, FSC-A: Pulsfläche im Vorwärtsstreulicht, FSC-H: Pulshöhe im Vorwärtsstreulicht, GFP-A: Pulsfläche fluoreszierender Zellen, APC-A: Pulsfläche Cy5 markierter Zellen.

Abbildung 16: FACS-Analyse mit *Gating*-Strategie der mit pRTS-1_FCGRT_IV transfizierten A673-Zellen Dargestellt ist die FACS-Analyse und *Gating*-Strategie der mit dem Vektor pRTS-1_FCGRT_IV transfizierten A673-Zellen. 1: unbehandelte transfizierte A673-Zellen, 2: mit Doxycyclin behandelte transfizierte A673-Zellen, 3: mit Cy5markierten IgG behandelte transfizierte A673-Zellen, 4: mit Doxycyclin und Cy5 markierten IgG behandelte transfizierte A673-Zellen. P: *Gate*. SSC-A: Pulsfläche im Seitwärtsstreulicht, FSC-A: Pulsfläche im Vorwärtsstreulicht, FSC-H: Pulshöhe im Vorwärtsstreulicht, GFP-A: Pulsfläche fluoreszierender Zellen, APC-A: Pulsfläche Cy5 markierter Zellen

5. Diskussion

5.1 FCGRT-Transkriptvarianten – Produkte des alternativen Spleißens?

Bei der RNA-Prozessierung in eukaryotischen Zellen finden posttranskriptionale Modifikationen der Prä-mRNA statt, welche u.a. durch alternatives Spleißen geprägt sind. Das Spleißen dient allgemein dem Entfernen nicht codierender Anteile aus dem Transkript. Alternativ können dadurch verschiedene reife mRNA-Moleküle aus derselben DNA-Sequenz entstehen, indem überdies codierende Teile, d.h. Exons abgespalten oder Teile eines Introns im Transkript belassen werden. Der Prozess führt zu einer enormen Steigerung der Proteindiversität, da aus vielen resultierenden mRNAs verschiedene Proteine hergestellt werden können. In Säugetieren sind 95% der Gene vom alternativen Spleißen betroffen (Pan et al. 2008, Barash et al. 2010). Während dieser Arbeit ergaben sich starke Argumente bezüglich alternativer Spleißstellen für das Gen FCGRT im Ewing-Sarkom und Neuroblastom. FCGRT codiert die schwere α -Kette des FcRn. Diese besteht aus drei extrazellulären α -Domänen, von denen die ersten beiden die Bindungsregionen für IgG und Albumin ausbilden. Die dritte α -Domäne formt die konstante Immunglobulin C1-set-Domäne, der sich die Transmembranregion zur Verankerung des Rezeptors in der Zellmembran anschließt. Neben den RNA-Referenzsequenzen, die hier als FCGRT_I und FCGRT_II bezeichnet werden, konnten in dieser Arbeit drei weitere Transkriptvarianten von FCGRT nachgewiesen werden. FCGRT_I und FCGRT_II unterscheiden sich zwar in der Sequenz des ersten Exons und weisen eine unterschiedliche Exon-Anzahl auf, stimmen jedoch in der Basenabfolge im ORF überein, so dass die gleichen Proteine gebildet werden. Die anfängliche Abweichung der Sequenzen kann durch zwei existierende Transkriptionsstartpunkte für das Gen FCGRT erklärt werden (Mikulska et al. 2000). Das erste Exon der neu gefundenen Transkriptvarianten FCGRT III und FCGRT IV gleicht Exon 1 von FCGRT II. Da FCGRT III jedoch das entsprechende Exon 4 fehlt, schließt Exon 5 an Exon 3. Die konstante Immunglobulin C1-set-Domäne würde sich nicht ausbilden, die Transmembranregion des entstehenden Proteins würde an die ersten beiden α -Domänen rücken. FCGRT_IV ist durch die Absenz der Exons 2 und 3 von FCGRT II gekennzeichnet. Bei dieser Rezeptorvariante wäre somit die IgG- und Albuminbindung ohne die ersten beiden α -Domänen nicht möglich. Beide Transkriptvarianten besäßen die Struktur zur Membranverankerung. Der Ausbau verschiedener Exons aus FCGRT_II, wie es bei FCGRT_III und FCGRT_IV der Fall ist, entspricht mit 40 % der häufigsten Form des alternativen Spleißens in eukaryotischen Zellen. Die betreffenden Exons werden als Kassettenexons bezeichnet (Alekseyenko et al. 2007). FCGRT_V gleicht in ihrem Anfang FCGRT_I. Hinter das vierte Exon ist ein zusätzliches Exon X eingebaut, an das sich die Exons 5,6 und 7 von FCGRT_I anschließen. In Exon X befindet sich ein Stoppcodon, das zum

Abbruch der Translation des Proteins führen würde. Es entstünde trotz kompletter Kette von Exons eine FcRn-Variante ohne Immunglobulin C1-set-Domäne und Transmembranregion, sprich ein löslicher Rezeptor. Unveröffentlichte Daten unserer Arbeitsgruppe belegen, dass die ersten beiden α -Domänen, die durch Exon 3 und 4 von FCGRT I bzw. 2 und 3 von FCGRT II codiert werden, von der dritten, d.h. von Exon 5 bzw. 4, durch ein langes Intron getrennt werden. Bei Untersuchungen von Ewing-Sarkom-Zelllinien enthielt dieses Intron eine Sequenz von humanen endogenen Retroviren. (Yau, unveröffentlicht). In diesem Zusammenhang wäre denkbar, dass die virale DNA-Information zu zusätzlichen Spleißstellen mit Intron-Retention führen könnte, die eine seltene Form des alternativen Spleißens darstellt (Kim et al. 2008). Für das Exon 5 und 6 von FCGRT I, sprich für das Exon 4 und 5 von FCGRT II wurden vormals schon schwache alternative Spleißstellen beschrieben, die zur Diskussion über mögliche lösliche Formen des Rezeptors führten (Mikulska und Simister 2000). Veränderungen des FCGRT-Transkriptoms hinsichtlich dieser Stellen können in dieser Arbeit nicht bestätigt werden. Allerdings zeigt die Arbeit, dass aus dem FCGRT-Gen potenziell vielfältige Proteinvarianten des FcRn hervorgehen können. Möglich wäre, dass sich die Anzahl der Exons von FCGRT I und FCGRT_II nicht nur durch den Einfluss der Transkriptionsstartpunkte unterscheidet. Durch die neuen Erkenntnisse über weitere Transkriptvarianten von FCGRT kann vermutet werden, dass sich die RNA-Referenzsequenzen über alternatives Spleißen bilden. Die Expression von FCGRT_I+II in den Ewing-Sarkom-Zelllinien A673, RD-ES und SK-N-MC zeigte sich höher als die der neu gefundenen FCGRT-Transkriptvarianten. Dieses Ergebnis wäre durch schwächere bzw. stärkere Spleißstellen der Transkriptvarianten oder die Regulation über verschieden stark einflussnehmende Splice-Enhancer und -Silencer erklärbar, die maßgeblich an der Kontrolle des alternativen Spleißens beteiligt sind (Kornblihtt et al. 2013). Fehlregulationen des Spleißens rufen schwerwiegende Erkrankungen wie die Entstehung von Tumoren hervor (Wang und Cooper 2007). Mutierte Splice-Enhancer und -Silencer können falsche Spleißstellen bedienen (Lopez-Bigas et al. 2005). Die Aufklärung und Rolle eines dysregulierten Spleißvorgangs von FCGRT im Ewing-Sarkom bietet daher hinsichtlich des Erkrankungsrisikos ein interessantes Themenfeld. Verändertes Spleißen in Tumorzellen kann in Zukunft Bestandteil diagnostischer Verfahren werden. Durch Microarray-Daten kann das Spleißverhalten von Tumoren gezielt analysiert werden. Über die Menge spezifischer Isoformen von Genen können einzelne Tumorarten genauer charakterisiert und Screening-Verfahren zur Früherkennung und Zuordnung des Tumorstadiums entwickelt werden (Relogio et al. 2005, Gardina et al. 2006). Ob sich der diagnostische Ansatz auf die Expression des FCGRT-Transkriptoms im Ewing-Sarkom übertragen lässt, sollte in weiteren Experimenten untersucht werden.

5.2 FCGRT-Expression im Ewing-Sarkom – ein tumorspezifisches Ereignis?

Für Ewing-Sarkome, die mit einer 5-Jahres-Überlebenswahrscheinlichkeit von 70% noch immer deutlich schlechtere Prognosen aufweisen als andere Tumorentitäten im Kindesalter, stellt die Erforschung tumorspezifischer Ausprägungen von Genen eine Perspektive zur Entwicklung neuer und gezielter Ansätze in der Krebstherapie dar. In diesem Zusammenhang schien die Genexpression von FCGRT bzw. seiner gefundenen Transkriptvarianten interessant. Die Bedeutung der Genexpression von FCGRT sowie die Ausbildung des FcRn im Tumorgewebe sind außerdem aktuell Forschungsinhalte bezüglich der Exploration pathogener Mechanismen, die zur Entstehung maligner Erkrankungen führen oder deren Verlauf beeinflussen. In den folgenden Abschnitten wird daher die Genexpression von FCGRT im Kontext zu bisherigen Forschungsergebnissen über FCGRT in verschiedenen Tumoren betrachtet.

5.2.1 Expression der FCGRT-Transkriptvarianten im Ewing-Sarkom

Zur Genexpression von FCGRT im Ewing-Sarkom liegen bislang nur wenige Erkenntnisse vor. Auswertungen von Microarray-Datensätzen durch die Arbeitsgruppe M.S. Staege zeigen eine vergleichsweise erhöhte Genexpression von FCGRT für das Ewing-Sarkom gegenüber einem breiten Spektrum an gesundem Körpergewebe. Das Ergebnis wird in Abbildung 17 demonstriert, die freundlicherweise von M.S. Staege zur Verfügung gestellt wurde (Staege, unveröffentlicht). In einem weiteren Projekt der Arbeitsgruppe wurde das Genexpressionsmuster der Ewing-Sarkom-Zelllinie SK-N-MC mit dem der Neuroblastom-Zelllinien CHP-126, SH-SY5Y und SiMA verglichen. Beide Tumorentitäten sind der SRBCT-Gruppe angehörig. Es resultierten deutlich differenzierte Genexpressionsprofile der histologisch verwandten Zelllinien, die u.a. auch auf eine spezifisch erhöhte FCGRT-Expression in SK-N-MC hindeuten (Staege 2015). In dieser Arbeit wurde die Genexpression der gefundenen FCGRT-Transkriptvarianten ebenfalls in Ewing-Sarkom- und Neuroblastom-Zelllinien getestet. Für die breitere Repräsentation beider Tumore wurden neben den genannten weitere Zelllinien in die Messung eingeschlossen. Dies betraf die beiden Ewing-Sarkom-Zelllinien A673 und RD-ES sowie die Neuroblastom-Zelllinie KELLY. Erwartungsgemäß zeigte die basale Expression aller FCGRT-Transkriptvarianten ein verhältnismäßig höheres Niveau in den Ewing-Sarkom-Zelllinien. Für die statistische Auswertung mittels Wilcoxon-Mann-Whitney-Test bezüglich des signifikanten Unterschieds der Genexpression gefundener FCGRT-Transkriptvarianten zwischen beiden Tumorzelllinien wurde ein Signifikanzniveau von 5 % festgelegt. Ein signifikanter Unterschied, d.h. eine höhere Expression in den Ewing-Sarkom-Zelllinien zeigte sich für FCGRT_I+II (p = 0,02857) und FCGRT_III (p = 0,01428) und FCGRT_IV (p = 0,02857). Für die molaren Verhältnisse der Transkriptvarianten

in den einzelnen Zelllinien konnte dieses Resultat bestätigt werden. Die Signifikanz veränderte sich nur für FCGRT_III (p = 0,02857). Die erhöhte Genexpression von FCGRT_V in den Ewing-Sarkom-Zelllinien war statistisch nicht signifikant (p = 0,05714). Ebenso präsentierte sich dieses Ergebnis für FCGRT_V in dem molaren Mengenvergleich der verschiedenen Zelllinien (p = 0,06918). Innerhalb der Zelllinien einer Tumorgruppe wurden unterschiedliche Ausprägungen in der Genexpression hinsichtlich der verschiedenen FCGRT-Transkriptvarianten gefunden. Die Zelllinie SK-N-MC verzeichnete für FCGRT_I+II und FCGRT_IV die höchsten Werte, während diese für FCGRT_III und FCGRT_V bei der Zelllinie RD-ES lagen. Die molare Masse der Transkriptvarianten zeigte jedoch für alle Ewing-Sarkom-Zelllinien ein ähnliches Muster. Für FCGRT_I+II wurde die größte molare Menge gemessen, gefolgt von FCGRT_IV, FCGRT_III und schließlich FCGRT_V, die somit wahrscheinlich seltener in Erscheinung treten als die RNA-Referenzsequenzen. Diese Untersuchungen stützen einerseits die These, dass die FCGRT-Expression zwischen den SRBCTs Ewing-Sarkom und Neuroblastom divergiert und sich für Ewing-Sarkom-Zelllinien höher zeigt. Andererseits eröffnen sie die neue Fragestellung, ob eine spezifische Genexpression der einzelnen Transkriptvarianten innerhalb der verschiedenen Ewing-Sarkom-Zelllinien existiert. Die Ergebnisse sind auch einmal mehr ein Indiz für die Zugehörigkeit der Zelllinie SK-N-MC zum Ewing-Sarkom, deren Abstammung in der Vergangenheit dem Neuroblastom zugeordnet wurde (Dunn et al. 1994). Allerdings wäre es sinnvoll, die Versuchsreihe zur Genexpression der Transkriptvarianten und damit auch den molaren Mengenvergleich für die betreffenden Zelllinien zu wiederholen, da diese nur einmal durchgeführt wurde. Auch ist die Signifikanzprüfung kritisch zu betrachten, da hier die geforderte Anzahl der Werte grenzwertig ist. Die Ursprungszelle, die zur Entstehung des Ewing-Sarkoms führt, ist noch unbekannt. Eine Studie beschäftigte sich dahingehend mit dem pathogenen Einfluss der EWS-FLI-1-Fusion auf das Transkriptionsprogramm in humanen mesenchymalen Stammzellen (hMSC), um die initialen Prozesse der Erkrankung näher zu untersuchen. Nach der Induktion des Fusionsproteins kam es zur Übereinstimmung des Expressionsprofils im Fall von 40 Genen zwischen hMSCs und Tumoren aus der Familie der Ewing-Sarkome. Darunter befand sich auch die Genexpression von FCGRT (Riggi et al. 2008). Interessant scheint hier die Problematik, welche Kausalität zwischen der veränderten Genexpression von FCGRT und der Entstehung der tumorspezifischen Translokation vorliegt. Ob es aufgrund der EWS-FLI1-Fusion zur Überexpression von FCGRT im Ewing-Sarkom kommt oder die veränderte FCGRT-Expression zur Beeinflussung des Translokationsgeschehens führt, bleibt bislang eine offene Frage. Aktuelle Studien zeigen jedoch, dass FCGRT zumindest die zentrale Interaktion zwischen Ewing-Sarkom assoziierten Genen beeinflusst (Tong et al. 2014). Nähere Zusammenhänge wurden in der Einleitung im Kapitel "1.2.5. Die Verlinkung zwischen FCGRT und

dem Ewing-Sarkom" beschrieben. Unter dem zusätzlichen Aspekt, dass sich verschiedene Transkriptvarianten von FCGRT in Ewing-Sarkom-Zelllinien ausbilden können, ist die Klärung des beeinflussenden Faktors dieses Vorkommnisses für die Entstehung des Knochentumors zukünftig ein interessantes Forschungsfeld.

Abbildung 17: Genexpression von FCGRT im gesunden Körpergewebe und im Ewing-Sarkom Dargestellt ist die Signalintensität von FCGRT in Microarray-Datensätzen, die Proben aus Ewing-Sarkom-Gewebe und normalem, d.h. gesundem Körpergewebe umfassen. Die Signalintensität für normales Körpergewebe erscheint grün und wird repräsentiert durch fünf Proben des Hodengewebes, je zwei Proben des Ovars, der Brust, der Synovial-Membran, des Vorhofs, des Ventrikels, einer Koronaraterie, der Kardia des Magens, eines Hinterwurzelganglions, des ventralen Tegmentums, der Zervix, des Omentums, der Brustwarze, der Amygdala, des Putamens, des Nucleus Accumbens, des Kleinhirns, des Balkens, des Frontallappens, des Hippocampus, des Parietallappens, des Rückenmarks, des Nucleus Subthalamicus, der Substantia Nigra, des Temporallappens, der Vagina, der Vena saphena, des Skelettmuskels, des Thalamus, des Ganglion trigeminale, des Nucleus vestibularis superior, einer Papille der Zunge, des Mittelhirns, der Prostata, des Thymus, des Knochenmarks, der Trachea, des Duodenums, des Jejunums, des Zäkums, der Haut, der Brustdrüse, des Eileiters, der Aorta, des Penis, des m. Deltoideus, der Pars compacta der Substantia nigra, Pars reticulata der Substantia nigra, des Globus pallidus internus, des Globus pallidus externus, der lateralen Nuclei des Thalamus, des Bronchus, des subkutanen Fettgewebes, der Nebennierenrinde, des zerebralen Kortex, des Endometriums, der Nierenrinde, des Hypothalamus, des Ösophagus, der Lunge, der Medulla, des Myometriums, der Leber, des Nierenmarks, eines Lymphknotens, der pharyngealen Muskulatur, des Okzipitallappens, der Mundschleimhaut, des Magenfundus, des Pylorus, der Hypophyse, einer Speicheldrüse, der Milz, der Schilddrüse, einer Tonsille, der Vulva und der Urethra. Die Daten zur FCGRT-Expression im normalen Körpergewebe stammen aus dem GEO-Datensatz GSE7307. Die FCGRT-Expression im Ewing-Sarkom konnte durch die Auswertung der gene expression omnibus data sets GSE64985, GSE19197, GSE2109 und des ArrayExpress data set E-MEXP-1142 dargestellt werden und erscheint in Rot. Die Abbildung wurde für diese Arbeit freundlicherweise von unserem Laborleiter M.S. Staege zur Verfügung gestellt.

5.2.2 Differentielle Expression von FCGRT in anderen malignen Erkrankungen

Eine dysregulierte FCGRT-Expression zeigt Auswirkungen auf die körpereigene Abwehr entarteter Zellen. Begründet wird dies in einem Experiment an Mäusen mit kolorektalem Karzinom. Die Inaktivierung beider Allele des FCGRT-Gens führte zu einer Steigerung des Tumorwachstums und einem erhöhten Risiko der Metastasierung. Diese Ereignisse wurden auf eine verminderte FcRn vermittelte Kreuzpräsentation tumorspezifischer Antigene und die erniedrigte Sekretion von Interleukin 12 über DCs zurückgeführt. Das zog eine verringerte Menge und Aktivität an infiltrierenden T-Zellen nach sich (Baker et al. 2013). An anderen Mausmodellen mit verringerter FCGRT-Expression wurde beobachtet, dass ein FcRn-Mangel die Reifung und Differenzierung natürlicher Killerzellen beeinträchtigt, die im funktionellen Zustand abnormale Zellen wie Tumorzellen erkennen und abtöten. Die herunterregulierte Ausbildung des FcRn scheint im Zusammenhang mit einer gestörten Immunantwort zu stehen (Castaneda et al. 2018). Diese Erkenntnis wurde für verschiedene Tumoren wie das Lungen-, Blasen-, Schilddrüsen- und Prostatakarzinom bestärkt, die eine bessere Prognose durch eine intakte Funktion der natürlichen Killerzellen zeigten (Jin et al. 2014, Krpina et al. 2014, Pasero et al. 2015, Park et al. 2018). Bei Untersuchungen von Gewebeproben des Mammakarzinoms konnte die Korrelation zwischen einer FCGRT-Unterexpression und der Aggressivität des Tumors festgestellt werden (Jansen et al. 2005). Für das hepatozelluläre Karzinom und das nichtkleinzellige Lungenkarzinom wurde ein schlechteres progressionsfreies Überleben im Falle einer herunterregulierten FCGRT-Expression beobachtet (Dalloneau et al. 2016, Shi et al. 2016). Mittels immunhistochemischer Färbungen konnten u.a. für das Pankreas- und Nierenzellkarzinom signifikant erhöhte FcRn-Expressionslevel erhoben werden (Larsen et al. 2020). Es gibt also einige Studien im Hinblick auf die Genexpression von FCGRT in verschiedenen Tumorentitäten. Jedoch wurden diese Untersuchungen am primären Tumorgewebe durchgeführt, d.h. Informationen über die spezifische FCGRT-Expression für die betreffenden Tumorzelllinien fehlen meist bislang. Der Vergleich bezüglich der FCGRT-Expression im Ewing-Sarkom und Neuroblastom mit anderen Tumoren gestaltet sich demnach schwierig, da noch unklar ist, inwieweit diese Genexpression auf die Tumorzellen oder die im Tumorgewebe vorhandenen Immunzellen zurückzuführen ist. Zudem gibt es noch keinerlei Hinweise auf unterschiedliche Transkriptvarianten von FCGRT in weiteren Tumorentitäten. Anhand dieser Arbeit kann daher die Expression der gefundenen FCGRT-Transkriptvarianten hinsichtlich ihrer Tumorspezifität nur vergleichend für die Zelllinien des Ewing-Sarkoms und Neuroblastoms beurteilt werden. Hierbei ergeben sich klare Indizien für deutlich höhere Expressionslevel der FCGRT-Transkriptvarianten im Ewing-Sarkom.

5.3 Funktionelle Aspekte der gefundenen FCGRT-Transkriptvarianten

5.3.1 Einflussnahme der Transkriptvarianten auf die FCGRT-Genexpression

Um Funktionen der gefundenen Transkriptvarianten im Sinne einer wechselwirkenden Beeinflussung zu untersuchen, wurde die Transfektion von FCGRT_I, FCGRT_II, FCGRT_III, FCGRT IV und FCGRT V über den Expressionsvektor pRTS-1 zur Messung der FCGRT-Genexpression nach Überexpression einzelner FCGRT-Transkriptvarianten in A673-Zellen durchgeführt. Die Ewing-Sarkom-Zelllinie A673 als Träger der transfizierten genetischen FCGRT-Information wurde anhand der niedrigeren Basisexpression der FCGRT-Transkriptvarianten im Vergleich zu den anderen verwendeten Ewing-Sarkom-Zelllinien RD-ES und SK-N-MC ausgewählt, da hierüber eine empfindlichere Reaktion auf isoliert überexprimierte Transkriptvarianten erwartet wurde. Die Überexpression der FCGRT-Transkriptvarianten erwies sich in vier von fünf Transfektionen als erfolgreich. Die Ausnahme bildete trotz mehrfach wiederholter Versuche die Transfektion mit FCGRT I. Die Expression von FCGRT I+II war nach Doxycyclinbehandlung der transgenen A673-Zellen auf das 20-fache, von FCGRT_IV auf das 70fache und von FCGRT V und FCGRT III sogar auf das 420- bzw. 2600-fache gegenüber den nativen A673-Zellen gestiegen. Ein Einfluss der Vektor-DNA auf die Geschehnisse der Überexpression konnte durch Kontrollen über die Transfektion des pRTS-1_Leervektors ausgeschlossen werden, deren Genexpression sich nach den Überexpressionen der Transkriptvarianten nahezu unverändert zeigte. Dass sich die Expressionswerte der einzelnen Transkriptvarianten nach ihrer eigenen Überexpression in der Stärke so deutlich unterschieden, wurde wiederum durch die geringere basale Expression von FCGRT_III, FCGRT_IV und FCGRT_V im Vergleich zu FCGRT_I+II und FCGRT_IV angenommen, der eine entsprechend stärkere Reaktion auf die Überexpression folgte. Dieser Effekt war am deutlichsten nach der Transfektion mit FCGRT III zu erkennen. Die gesteigerte Expression von FCGRT III und FCGRT V in transgenen A673-Zellen ohne Doxycyclinbehandlung könnte durch die eingebrachte Menge an entsprechendem genetischen Material erklärt werden, die sich bei der geringen basalen Expression beider Transkriptvarianten auf die Messung in der qPCR auswirken könnte. Eine bemerkenswerte Expressionsveränderung der FCGRT-Transkriptvarianten nach Überexpression einer spezifischen Transkriptvariante fand nur nach der Überexpression von FCGRT V statt. Hierbei stieg die Expression von FCGRT I+II auf das 10-fache an. Andersherum galt diese Beziehung zwischen beiden Transkriptvarianten nicht. FCGRT V könnte demnach die regulatorischen Prozesse der RNA-Referenzsequenzen von FCGRT beeinflussen und zur Steigerung der Ausbildung des FcRn führen. Auf nähere Ergebnisse werden im nächsten Kapitel hingewiesen. Im Mengenvergleich der FCGRT-Transkriptvarianten wurden für native und mit dem pRTS-1_Leervektor transfizierten A673-Zellen ähnliche Ergebnisse erzielt wie bei der Untersuchung der FCGRT-Basisexpression. Die nachstehenden Werte werden in mol/mol HPRT1 angegeben. FCGRT_I+II war mit 0,017 deutlich stärker exprimiert als die zusätzlich gefundenen FCGRT-Transkriptvarianten. In absteigender Reihenfolge folgten FCGRT_IV und FCGRT_V mit je 0,003 und FCGRT_III mit 0,00005. Vergleichsweise hierzu zeigten sich in der vorrangegangenen Untersuchung zur Basisexpression der FCGRT-Transkriptvarianten folgende molare Massen für die Ewing-Sarkom-Zelllinie A673: 0,061 für FCGRT_I+II, 0,004 für FCGRT_IV, 0,002 für FCGRT_V und 0,00009 für FCGRT_III. Die nahezu äquivalenten Werte in den verschiedenen Untersuchungen sind ein Indiz für tatsächliche Expressionswerte der gefundenen FCGRT-Transkriptvarianten in den untersuchten Ewing-Sarkom- und Neuroblastom-Zelllinien. Alle Versuche zur Transfektion und Überexpression wurden dreimal unabhängig voneinander unter gleichen Bedingungen durchgeführt. Die Ergebnisse können daher als verifiziert angesehen werden.

5.3.2 Rezeptorstatus nach Überexpression der FCGRT-Transkriptvarianten

Der neonatale Fc-Rezeptor benötigt zur Bindung seiner Liganden IgG und Albumin ein saures Milieu und befindet sich überwiegend intrazellulär in Endosomen mit einem pH-Wert von 6,0 bis 6,5 (Raghavan et al. 1995, Kim et al. 1999, Oganesyan et al. 2014). Zu einem geringen Teil ist der Rezeptor extrazellulär auf der Zelloberfläche lokalisiert. Vor allem Darmepithelzellen eines Neugeborenen sind befähigt, den Rezeptor auf ihrer Zellmembran zu präsentieren (Fallingborg et al. 1990, Tesar und Bjorkman 2010, Zarate et al. 2010). Unter diesem Aspekt und zwei weiteren Gesichtspunkten, die im Folgenden erklärt werden, wurde für diese Arbeit entschieden, die Änderung der Bindungskapazität von IgG bei A673-Zellen nach Überexpression der verschiedenen FCGRT-Transkriptvarianten an der Oberfläche der Zellen zu messen. Ewing-Sarkom-Zellen sind von einem embryonalen und mesenchymalen Charakter geprägt, wobei die embryonale Komponente überwiegt (Lin et al. 2011, Gordon et al. 2016, Staege 2016). Die A673-Zellen könnten daher empfänglich gegenüber embryonalen Entwicklungsprozessen wie die vermehrte Expression des FcRn sein, der normalerweise in der Neonatalperiode vor allem der Aufnahme von IgG und somit der Ausbildung angeborener Immunität dient (Brambell 1969). Dies spiegelt sich auch in der erhöhten Genexpression von FCGRT in den untersuchten Ewing-Sarkom-Zelllinien wider. Dahingehend erschien es als durchaus möglich, dass die Ewing-Sarkom-Zelllinie A673 ähnlich zur embryonalen bzw. "neugeborenen" Darmepithelzelle den auch als "neonatal" benannten Fc-Rezeptor auf der Zelloberfläche trägt. Zudem ist seit langem bekannt, dass Tumorzellen ihre Energie hauptsächlich durch die Glykolyse gewinnen. Im Gegensatz zu

normalen Körperzellen wird das Endprodukt der Glykolyse jedoch nicht dem Citratzyklus der Mitochondrien zugeführt, sondern als Laktat aus der Zelle abgesondert, was auch als Warburg-Effekt beschrieben wird (Warburg 1956). Es entsteht ein saures Milieu im Tumorverband, was die Voraussetzung für die Ligandenbindung des FcRn erfüllt. Tatsächlich traten Veränderungen der IgG-Bindung an transfizierten und zur Überexpression der FCGRT-Transkriptvarianten stimulierten A673-Zellen gegenüber der Kontrolle an nativen Zellen auf. Während bei nativen A673-Zellen nahezu keine Antikörperbindung stattfand, war diese nach der Überexpression von FCGRT_II auf 8,9 %, von FCGRT_III auf 9,4 %, von FCGRT_IV auf 12,6 % und von FCGRT_V auf 12,3 % gestiegen. Einerseits bestätigt sich somit die Annahme des möglichen Vorkommens extrazellulärer FcRn auf der Zellmembran von Ewings-Sarkom-Zellen, andererseits wurde der funktionelle Aspekt der Rezeptorvarianten hinsichtlich ihrer Ligandenbindung überprüft. Die Überexpression von FCGRT_III zeigte anhand einer vermehrten IgG-Bindung an der Zellmembran transfizierter A673-Zellen, dass diese Rezeptorvariante ohne die konstante Immunglobulin C1-set-Domäne in der Tat fähige Rezeptoren im Sinne der IgG-Bindung hervorbringen könnte. Die im vorherigen Kapitel erwähnte Beziehung zwischen FCGRT V und FCGRT_I+II wurde bekräftigt. Es zeigte sich gleich der erhöhten Genexpression von FCGRT_I+II auch eine gesteigerte Bindung von IgG an der Zelloberfläche bei mit FCGRT V überexprimierten A673-Zellen. Für dieses Phänomen kommen mehrere Gründe in Betracht. Zum einen könnte es sich bei FCGRT_V um eine lösliche FcRn-Variante handeln, die intrazellulär durch Akkumulation ein starkes Fluoreszenzsignal auslöst, das bei der FACS-Untersuchung erfasst wurde. Zum anderen liegt die Vermutung der regulativen Komponente dieser Variante nahe, die zur vermehrten Expression der RNA-Referenzsequenzen von FCGRT führt und darüber die gesteigerte IgG-Bindung auslöst. Überraschend hoch war die Bindung von IgG an der Zelloberfläche von A673-Zellen nach der Überexpression von FCGRT IV. Da diese Variante nicht über eine entsprechende IgG-Bindungsstelle verfügt, muss auch bei ihr über eine gewisse regulatorische Einflussnahme auf die FCGRT-Expression nachgedacht werden. Zur Verifizierung dieser Ergebnisse sollte das beschriebene Experiment wiederholt werden. Neuere Studien beschreiben die FCGRT-Expression für Tumorzellen als nützlich. Eine herunterregulierte Expression des FcRn bedingt die Akkumulation von Albumin in der Tumorzelle. Dem folgt ein lysosomaler Abbau, welcher der Tumorzelle reichlich Aminosäuren bietet und somit das Tumorwachstum fördert (Swiercz et al. 2017). Die FcRn-Überexpression kann jedoch über die vermehrte Zirkulation von Albumin als Transporter von Nährstoffen auch zu einem erhöhten Tumorwachstum führen (Larsen et al. 2020). So könnten die gefundenen, hoch exprimierten FCGRT-Transkriptvarianten zur intrazellulären Anhäufung von Albumin in der Ewing-Sarkom-Zelle beitragen. Dies wäre über die erhöhte Expression von FCGRT III, die hochregulierte Genexpression der FCGRT-Referenzsequenzen durch FCGRT_V oder die Bildung eines löslichen intrazellulären FcRn möglich, der außerhalb des Endosoms den lysosomalen Abbau des Proteins verhindern würde. Dem Tumor würden reichlich Aminosäuren zur Verfügung stehen, die ihm als Nahrungsquelle dienen. Die Erforschung der extra- und intrazellulären Expression der in dieser Arbeit gefundenen Transkriptvarianten sollte in Zukunft weiterhin von Interesse sein. Dies wäre hinsichtlich der Entwicklung gezielter neuer Therapieansätze für das Ewing-Sarkom nützlich, da bei erhöhter FCGRT-Expression und Ausbildung fähiger IgG und Albumin bindender Rezeptoren eine Behandlung mit Albumin-konjugierten oder IgG basierenden Medikamenten denkbar wäre. Aufgrund der vermehrten Albumin- und IgG-Aufnahme, des *-Recyclings* und der *-*Verwertung könnten von Albumin und IgG schnell abdiffundierende Medikamente verwendet werden, die zur Ansammlung zytotoxischer Stoffe in der Tumorzelle führen.

6. Zusammenfassung

Der neonatale Fc-Rezeptor wird lebenslang und quasi ubiquitär in verschiedenen Geweben und hämatopoetischen, antigenpräsentierenden Zellen exprimiert. Seine Hauptfunktionen belaufen sich auf zelluläre Transport- und Recycling-Mechanismen von IgG und Albumin zur Aufrechterhaltung der Homöostase beider Proteine in der extrazellulären Matrix und der Blutbahn. FCGRT codiert die schwere α -Kette des Rezeptors, die sich aus drei extrazellulären α -Domänen, einer konstanten Immunglobulin C1-set-Domäne, einer Transmembranregion und einem zytoplasmatischen Ende zusammensetzt. Die Ligandenbindung von IgG und Albumin findet an der Scharnierregion zwischen der ersten und zweiten α -Domäne statt. Für die Ewing-Sarkom-Zelllinie SK-N-MC wurden in Vorarbeiten erhöhte Werte der FCGRT-Expression festgestellt. Zudem ergaben sich aus nachfolgenden Untersuchungen Hinweise auf verschiedene Transkriptvarianten des Gens. In dieser Arbeit konnten an cDNA der Ewing-Sarkom-Zelllinie A673 neben den beiden RNA-Referenzsequenzen von FCGRT, als FCGRT_I und FCGRT_II bezeichnet, drei weitere identifiziert werden. Diese unterscheiden sich in der Anzahl ihrer Exons und Exon-Übergänge. Während beide RNA-Referenzsequenzen, die sich im ORF nicht unterscheiden, ein identisches Protein ausbilden, würden sich bei den anderen Transkriptvarianten verschiedene Proteine formen. Eine der Varianten, als FCGRT III benannt, besitzt keine genetische Information für die Immunglobulin C1-set- Domäne. Einer anderen Variante, FCGRT_IV, fehlen die ersten beiden α -Domänen zur Bindung der Liganden. Bei der dritten, neu gefundenen Transkriptvariante FCGRT_V kommt es durch ein Stoppcodon zum Abbruch der Translation, was zu einer Rezeptorvariante ohne die Immunglobulin C1-set-Domäne, die Transmembranregion und das zytoplasmatische Ende führen würde. Es besteht Grund zur Annahme, dass die verschiedenen FCGRT-Transkriptvarianten Ergebnisse des

alternativen Spleißens darstellen. Um die Ausprägung der verschiedenen Varianten für das Ewing-Sarkom genauer zu untersuchen, wurden Messungen zur FCGRT-Genexpression an den Ewing-Sarkom-Zelllinien A673, RD-ES und SK-N-MC durchgeführt. Vergleichend wurden die ausgewählten Neuroblastom-Zelllinien CHP-126, KELLY, SH-SY5Y und SiMA getestet. Diese Tumorentität wurde ausgewählt, da sie gleich dem Ewing-Sarkom zur Gruppe der SRBCTs gehört. Auch in den Neuroblastom-Zelllinien konnten die verschiedenen Transkriptvarianten nachgewiesen werden. Es zeigten sich jedoch für jede Variante höhere Expressionswerte in den Ewing-Sarkom-Zelllinien. Im Mengenvergleich der Transkriptvarianten in diesen Zelllinien kam die größte Menge von FCGRT I+II und FCGRT IV in SK-N-MC-Zellen, die von FCGRT III und FCGRT_V in RD-ES-Zellen vor. Ob es sich bei der Genexpression der verschiedenen FCGRT-Transkriptvarianten um ein Ewing-Sarkom-spezifisches Ereignis handelt, kann mit dieser Arbeit allerdings nicht ausgesagt werden, da entsprechende Vergleiche mit normalen Körper- und maligne entarteten Geweben bislang fehlen und überwiegend Studien zur generellen FCGRT-Expression in Tumorzellen vorliegen. Bei der Untersuchung der gefundenen FCGRT-Transkriptvarianten auf funktionelle Aspekte zeigte sich eine Einflussnahme von FCGRT V auf die Genexpression der RNA-Referenzsequenzen von FCGRT im Sinne eines höheren Expressionslevels. Diese Regulation wurde anhand der Bestimmung der Bindungskapazität von IgG auf der Zelloberfläche von A673-Zellen bekräftigt, die sich nach Überexpression von FCGRT_V steigerte. Jedoch ist unklar, ob sich dieses Phänomen aus der vermehrten Expression von FCGRT_I und FCGRT_II ergab oder aufgrund der Ausbildung einer neuartigen (löslichen) Rezeptorvariante aus FCGRT_V entsteht. Zu einer Steigerung der Bindung von IgG kam es auch nach Überexpression von FCGRT II, FCGRT III und FCGRT IV. Daraufhin wurde die Fähigkeit der externen FcRn-Präsentation von A673-Zellen angenommen, die normalerweise größtenteils intrazellulär vorliegt. Zudem ergeben sich Hinweise auf eine funktionelle Ligandenbindung durch die gefundenen Transkriptvarianten von FCGRT. Zukünftige Forschungen über die intraund extrazelluläre Genexpression der FCGRT-Transkriptvarianten könnten weitere Optionen für Therapieverfahren des Ewing-Sarkoms erbringen, z.B. die Verwendung Albumin-konjugierter Medikamente, die FcRn vermittelt zytotoxische Substanzen gezielt in Tumorzellen mit FCGRT-Überexpression befördern könnten.
7. Literaturverzeichnis

- Abdiche Y. N., Yeung Y. A., Chaparro-Riggers J., Barman I., Strop P., Chin S. M., Pham A., Bolton G., McDonough D., Lindquist K., Pons J. und Rajpal A. (2015). "The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity." MAbs 7(2): 331-343.
- Akilesh S., Christianson G. J., Roopenian D. C. und Shaw A. S. (2007). "Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism." J Immunol 179(7): 4580-4588.
- Akilesh S., Huber T. B., Wu H., Wang G., Hartleben B., Kopp J. B., Miner J. H., Roopenian D. C., Unanue E. R. und Shaw A. S. (2008). "Podocytes use FcRn to clear IgG from the glomerular basement membrane." Proc Natl Acad Sci U S A 105(3): 967-972.
- Alekseyenko A. V., Kim N. und Lee C. J. (2007). "Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes." RNA 13(5): 661-670.
- Ambros I. M., Ambros P. F., Strehl S., Kovar H., Gadner H. und Salzer-Kuntschik M. (1991). "MIC2 is a specific marker for Ewing's sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing's sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration." Cancer 67(7): 1886-1893.
- Applebaum M. A., Worch J., Matthay K. K., Goldsby R., Neuhaus J., West D. C. und Dubois S. G. (2011). "Clinical features and outcomes in patients with extraskeletal Ewing sarcoma." Cancer 117(13): 3027-3032.
- Bacci G., Ferrari S., Longhi A., Rimondini S., Versari M., Zanone A. und Forni C. (1999). "Prognostic significance of serum LDH in Ewing's sarcoma of bone." Oncol Rep 6(4): 807-811.
- Bacci G., Longhi A., Ferrari S., Mercuri M., Versari M. und Bertoni F. (2006). "Prognostic factors in non-metastatic Ewing's sarcoma tumor of bone: an analysis of 579 patients treated at a single institution with adjuvant or neoadjuvant chemotherapy between 1972 and 1998." Acta Oncol 45(4): 469-475.
- Bacci G., Toni A., Avella M., Manfrini M., Sudanese A., Ciaroni D., Boriani S., Emiliani E. und Campanacci M. (1989). "Long-term results in 144 localized Ewing's sarcoma patients treated with combined therapy." Cancer 63(8): 1477-1486.
- Baker K., Qiao S. W., Kuo T. T., Aveson V. G., Platzer B., Andersen J. T., Sandlie I., Chen Z., de Haar C., Lencer W. I., Fiebiger E. und Blumberg R. S. (2011). "Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8-CD11b+ dendritic cells." Proc Natl Acad Sci U S A 108(24): 9927-9932.
- Baker K., Rath T., Flak M. B., Arthur J. C., Chen Z., Glickman J. N., Zlobec I., Karamitopoulou E., Stachler M. D., Odze R. D., Lencer W. I., Jobin C. und Blumberg R. S. (2013). "Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer." Immunity 39(6): 1095-1107.
- Barash Y., Calarco J. A., Gao W., Pan Q., Wang X., Shai O., Blencowe B. J. und Frey B. J. (2010). "Deciphering the splicing code." Nature 465(7294): 53-59.
- Ben Mkaddem S., Benhamou M. und Monteiro R. C. (2019). "Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools." Front Immunol 10: Artikel 811.
- Biedler J. L., Helson L. und Spengler B. A. (1973). "Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture." Cancer Res 33(11): 2643-2652.
- Biedler J. L., Roffler-Tarlov S., Schachner M. und Freedman L. S. (1978). "Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones." Cancer Res 38(11 Pt 1): 3751-3757.
- Biermann J. S. (2013). "Updates in the treatment of bone cancer." J Natl Compr Canc Netw 11(5.5): 681-683.

- Biswas B., Rastogi S., Khan S. A., Mohanti B. K., Sharma D. N., Sharma M. C., Mridha A. R. und Bakhshi S. (2014). "Outcomes and prognostic factors for Ewing-family tumors of the extremities." J Bone Joint Surg Am 96(10): 841-849.
- Bornkamm G. W., Berens C., Kuklik-Roos C., Bechet J. M., Laux G., Bachl J., Korndoerfer M., Schlee M., Holzel M., Malamoussi A., Chapman R. D., Nimmerjahn F., Mautner J., Hillen W., Bujard H. und Feuillard J. (2005). "Stringent doxycycline-dependent control of gene activities using an episomal one-vector system." Nucleic Acids Res 33(16): e137.
- Brambell F. W. (1969). "The transmission of immune globulins from the mother to the foetal and newborn young." Proc Nutr Soc 28(1): 35-41.
- Burdach S., Meyer-Bahlburg A., Laws H. J., Haase R., van Kaik B., Metzner B., Wawer A., Finke R., Gobel U., Haerting J., Pape H., Gadner H., Dunst J. und Juergens H. (2003). "High-dose therapy for patients with primary multifocal and early relapsed Ewing's tumors: results of two consecutive regimens assessing the role of total-body irradiation." J Clin Oncol 21(16): 3072-3078.
- Burmeister W. P., Gastinel L. N., Simister N. E., Blum M. L. und Bjorkman P. J. (1994). "Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor." Nature 372(6504): 336-343.
- Burmeister W. P., Huber A. H. und Bjorkman P. J. (1994). "Crystal structure of the complex of rat neonatal Fc receptor with Fc." Nature 372(6504): 379-383.
- Cadena Castaneda D., Brachet G., Goupille C., Ouldamer L. und Gouilleux-Gruart V. (2020). "The neonatal Fc receptor in cancer FcRn in cancer." Cancer Med. 00(1): 1-7
- Castaneda D. C., Dhommee C., Baranek T., Dalloneau E., Lajoie L., Valayer A., Arnoult C., Demattei M. V., Fouquenet D., Parent C., Heuze-Vourc'h N. und Gouilleux-Gruart V. (2018). "Lack of FcRn Impairs Natural Killer Cell Development and Functions in the Tumor Microenvironment." Front Immunol 9: Artikel 2259.
- Cejas R. B., Ferguson D. C., Quinones-Lombrana A., Bard J. E. und Blanco J. G. (2019). "Contribution of DNA methylation to the expression of FCGRT in human liver and myocardium." Sci Rep 9(1): 8674.
- Challa D. K., Wang X., Montoyo H. P., Velmurugan R., Ober R. J. und Ward E. S. (2019). "Neonatal Fc receptor expression in macrophages is indispensable for IgG homeostasis." MAbs 11(5): 848-860.
- Chaudhury C., Brooks C. L., Carter D. C., Robinson J. M. und Anderson C. L. (2006). "Albumin binding to FcRn: distinct from the FcRn-IgG interaction." Biochemistry 45(15): 4983-4990.
- Cianga P., Cianga C., Plamadeala P., Branisteanu D. und Carasevici E. (2007). "The neonatal Fc receptor (FcRn) expression in the human skin." Virchows Arch 451(4): 859-860.
- Cidre-Aranaz F. und Alonso J. (2015). "EWS/FLI1 Target Genes and Therapeutic Opportunities in Ewing Sarcoma." Front Oncol 5: Artikel 162.
- Claypool S. M., Dickinson B. L., Wagner J. S., Johansen F. E., Venu N., Borawski J. A., Lencer W. I. und Blumberg R. S. (2004). "Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fcgamma-receptor." Mol Biol Cell 15(4): 1746-1759.
- Cotterill S. J., Ahrens S., Paulussen M., Jurgens H. F., Voute P. A., Gadner H. und Craft A. W. (2000). "Prognostic factors in Ewing's tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group." J Clin Oncol 18(17): 3108-3114.
- Dalloneau E., Baroukh N., Mavridis K., Maillet A., Gueugnon F., Courty Y., Petit A., Kryza T., Del Rio M., Guyetant S., Cadena Castaneda D. C., Dhommee C., Arnoult C., Scorilas A., Gouilleux-Gruart V. und Heuze-Vourc'h N. (2016). "Downregulation of the neonatal Fc receptor expression in non-small cell lung cancer tissue is associated with a poor prognosis." Oncotarget 7(34): 54415-54429.
- Delattre O., Zucman J., Melot T., Garau X. S., Zucker J. M., Lenoir G. M., Ambros P. F., Sheer D., Turc-Carel C., Triche T. J. und et al. (1994). "The Ewing family of tumors--a subgroup of small-roundcell tumors defined by specific chimeric transcripts." N Engl J Med 331(5): 294-299.

- Delattre O., Zucman J., Plougastel B., Desmaze C., Melot T., Peter M., Kovar H., Joubert I., de Jong P., Rouleau G. und et al. (1992). "Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours." Nature 359(6391): 162-165.
- Dickinson B. L., Badizadegan K., Wu Z., Ahouse J. C., Zhu X., Simister N. E., Blumberg R. S. und Lencer
 W. I. (1999). "Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line." J Clin Invest 104(7): 903-911.
- Duchman K. R., Gao Y. und Miller B. J. (2015). "Prognostic factors for survival in patients with Ewing's sarcoma using the surveillance, epidemiology, and end results (SEER) program database." Cancer Epidemiol 39(2): 189-195.
- Dunn T., Praissman L., Hagag N. und Viola M. V. (1994). "ERG gene is translocated in an Ewing's sarcoma cell line." Cancer Genet Cytogenet 76(1): 19-22.
- Esiashvili N., Goodman M. und Marcus R. B., Jr. (2008). "Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: Surveillance Epidemiology and End Results data." J Pediatr Hematol Oncol 30(6): 425-430.
- Fallingborg J., Christensen L. A., Ingeman-Nielsen M., Jacobsen B. A., Abildgaard K., Rasmussen H.
 H. und Rasmussen S. N. (1990). "Measurement of gastrointestinal pH and regional transit times in normal children." J Pediatr Gastroenterol Nutr 11(2): 211-214.
- Ferguson D. C. und Blanco J. G. (2018). "Regulation of the Human Fc-Neonatal Receptor alpha-Chain Gene FCGRT by MicroRNA-3181." Pharm Res 35(1): 15.
- FletcherC. D. M., Bridge J. A., Hogendoorn P. C. W., Mertens F.: "WHO Classification of Tumours of Soft Tissue and Bone". 4. Aulf., International Agency for Research on Cancer (IARC), Lyon, 2013, S. 306-309
- Gardina P. J., Clark T. A., Shimada B., Staples M. K., Yang Q., Veitch J., Schweitzer A., Awad T., Sugnet C., Dee S., Davies C., Williams A. und Turpaz Y. (2006). "Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array." BMC Genomics 7: 325.
- Giard D. J., Aaronson S. A., Todaro G. J., Arnstein P., Kersey J. H., Dosik H. und Parks W. P. (1973). "In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors." J Natl Cancer Inst 51(5): 1417-1423.
- Gordon D. J., Motwani M. und Pellman D. (2016). "Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells." Oncogene 35(24): 3092-3102.
- Gregorio A., Corrias M. V., Castriconi R., Dondero A., Mosconi M., Gambini C., Moretta A., Moretta L. und Bottino C. (2008). "Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule." Histopathology 53(1): 73-80.
- GSL Biotech LLC (2020): "https://www.snapgene.com/snapgene-viewer/" letztes Abrufdatum: 14.09.2020
- Guillon N., Tirode F., Boeva V., Zynovyev A., Barillot E. und Delattre O. (2009). "The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function." PLoS One 4(3): e4932.
- He W., Ladinsky M. S., Huey-Tubman K. E., Jensen G. J., McIntosh J. R. und Bjorkman P. J. (2008). "FcRn-mediated antibody transport across epithelial cells revealed by electron tomography." Nature 455(7212): 542-546.
- Huber A. H., Kelley R. F., Gastinel L. N. und Bjorkman P. J. (1993). "Crystallization and stoichiometry of binding of a complex between a rat intestinal Fc receptor and Fc." J Mol Biol 230(3): 1077-1083.
- Jansen M. P., Foekens J. A., van Staveren I. L., Dirkzwager-Kiel M. M., Ritstier K., Look M. P., Meijervan Gelder M. E., Sieuwerts A. M., Portengen H., Dorssers L. C., Klijn J. G. und Berns E. M. (2005).
 "Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling." J Clin Oncol 23(4): 732-740.
- Jawad M. U., Cheung M. C., Min E. S., Schneiderbauer M. M., Koniaris L. G. und Scully S. P. (2009). "Ewing sarcoma demonstrates racial disparities in incidence-related and sex-related differences in outcome: an analysis of 1631 cases from the SEER database, 1973-2005." Cancer 115(15): 3526-3536.

- Jeon I. S., Davis J. N., Braun B. S., Sublett J. E., Roussel M. F., Denny C. T. und Shapiro D. N. (1995). "A variant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1." Oncogene 10(6): 1229-1234.
- Jin S., Deng Y., Hao J. W., Li Y., Liu B., Yu Y., Shi F. D. und Zhou Q. H. (2014). "NK cell phenotypic modulation in lung cancer environment." PLoS One 9(10): e109976.
- Junghans R. P. und Anderson C. L. (1996). "The protection receptor for IgG catabolism is the beta2microglobulin-containing neonatal intestinal transport receptor." Proc Natl Acad Sci U S A 93(11): 5512-5516.
- Jürgens H., Exner U., Gadner H., Harms D., Michaelis J., Sauer R., Treuner J., Voute T., Winkelmann W., Winkler K. und et al. (1988). "Multidisciplinary treatment of primary Ewing's sarcoma of bone. A 6-year experience of a European Cooperative Trial." Cancer 61(1): 23-32.
- Kandil E., Egashira M., Miyoshi O., Niikawa N., Ishibashi T. und Kasahara M. (1996). "The human gene encoding the heavy chain of the major histocompatibility complex class I-like Fc receptor (FCGRT) maps to 19q13.3." Cytogenet Cell Genet 73(1-2): 97-98.
- Kandil E., Noguchi M., Ishibashi T. und Kasahara M. (1995). "Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene." J Immunol 154(11): 5907-5918.
- Kawaguchi N., Ahmed A. R., Matsumoto S., Manabe J. und Matsushita Y. (2004). "The concept of curative margin in surgery for bone and soft tissue sarcoma." Clin Orthop Relat Res(419): 165-172.
- Kim E., Goren A. und Ast G. (2008). "Alternative splicing: current perspectives." Bioessays 30(1): 38-47.
- Kim H., Fariss R. N., Zhang C., Robinson S. B., Thill M. und Csaky K. G. (2008). "Mapping of the neonatal Fc receptor in the rodent eye." Invest Ophthalmol Vis Sci 49(5): 2025-2029.
- Kim J., Bronson C. L., Hayton W. L., Radmacher M. D., Roopenian D. C., Robinson J. M. und Anderson C. L. (2006). "Albumin turnover: FcRn-mediated recycling saves as much albumin from degradation as the liver produces." Am J Physiol Gastrointest Liver Physiol 290(2): G352-360.
- Kim J. K., Firan M., Radu C. G., Kim C. H., Ghetie V. und Ward E. S. (1999). "Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn." Eur J Immunol 29(9): 2819-2825.
- Kobayashi N., Suzuki Y., Tsuge T., Okumura K., Ra C. und Tomino Y. (2002). "FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells." Am J Physiol Renal Physiol 282(2): F358-365.
- Kornblihtt A. R., Schor I. E., Allo M., Dujardin G., Petrillo E. und Munoz M. J. (2013). "Alternative splicing: a pivotal step between eukaryotic transcription and translation." Nat Rev Mol Cell Biol 14(3): 153-165.
- Krasin M. J., Rodriguez-Galindo C., Davidoff A. M., Billups C. A., Fuller C. E., Neel M. D., Kun L. E. und Merchant T. E. (2004). "Efficacy of combined surgery and irradiation for localized Ewings sarcoma family of tumors." Pediatr Blood Cancer 43(3): 229-236.
- Krpina K., Babarovic E., Ethordevic G., Markic D., Maricic A. und Jonjic N. (2014). "Impact of NK cell count on bladder cancer recurrence." Urologia 81(4): 233-236.
- Ladenstein R., Potschger U., Le Deley M. C., Whelan J., Paulussen M., Oberlin O., van den Berg H., Dirksen U., Hjorth L., Michon J., Lewis I., Craft A. und Jurgens H. (2010). "Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial." J Clin Oncol 28(20): 3284-3291.
- Larsen M. T., Mandrup O. A., Schelde K. K., Luo Y., Sorensen K. D., Dagnaes-Hansen F., Cameron J., Stougaard M., Steiniche T. und Howard K. A. (2020). "FcRn overexpression in human cancer drives albumin recycling and cell growth; a mechanistic basis for exploitation in targeted albumin-drug designs." J Control Release 322: 53-63.
- Lee J., Hoang B. H., Ziogas A. und Zell J. A. (2010). "Analysis of prognostic factors in Ewing sarcoma using a population-based cancer registry." Cancer 116(8): 1964-1973.
- Lessnick S. L., Braun B. S., Denny C. T. und May W. A. (1995). "Multiple domains mediate transformation by the Ewing's sarcoma EWS/FLI-1 fusion gene." Oncogene 10(3): 423-431.

- Li X., McGee-Lawrence M. E., Decker M. und Westendorf J. J. (2010). "The Ewing's sarcoma fusion protein, EWS-FLI, binds Runx2 and blocks osteoblast differentiation." J Cell Biochem 111(4): 933-943.
- Lin P. P., Wang Y. und Lozano G. (2011). "Mesenchymal Stem Cells and the Origin of Ewing's Sarcoma." Sarcoma 2011: Artikel ID 276463.
- Liu H., Sun M., Liu Z., Kong C., Kong W., Ye J., Gong J., Huang D. C. S. und Qian F. (2019). "KRASenhanced macropinocytosis and reduced FcRn-mediated recycling sensitize pancreatic cancer to albumin-conjugated drugs." J Control Release 296: 40-53.
- Liu X., Ye L., Bai Y., Mojidi H., Simister N. E. und Zhu X. (2008). "Activation of the JAK/STAT-1 signaling pathway by IFN-gamma can down-regulate functional expression of the MHC class I-related neonatal Fc receptor for IgG." J Immunol 181(1): 449-463.
- Liu X., Ye L., Christianson G. J., Yang J. Q., Roopenian D. C. und Zhu X. (2007). "NF-kappaB signaling regulates functional expression of the MHC class I-related neonatal Fc receptor for IgG via intronic binding sequences." J Immunol 179(5): 2999-3011.
- Livak K. J. und Schmittgen T. D. (2001). "Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method." Methods 25(4): 402-408.
- Lopez-Bigas N., Audit B., Ouzounis C., Parra G. und Guigo R. (2005). "Are splicing mutations the most frequent cause of hereditary disease?" FEBS Lett 579(9): 1900-1903.
- Marini P., MacLeod R. A., Treuner C., Bruchelt G., Bohm W., Wolburg H., Schweizer P. und Girgert R. (1999). "SiMa, a new neuroblastoma cell line combining poor prognostic cytogenetic markers with high adrenergic differentiation." Cancer Genet Cytogenet 112(2): 161-164.
- May W. A., Lessnick S. L., Braun B. S., Klemsz M., Lewis B. C., Lunsford L. B., Hromas R. und Denny C. T. (1993). "The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1." Mol Cell Biol 13(12): 7393-7398.
- Meyers P. A., Krailo M. D., Ladanyi M., Chan K. W., Sailer S. L., Dickman P. S., Baker D. L., Davis J. H., Gerbing R. B., Grovas A., Herzog C. E., Lindsley K. L., Liu-Mares W., Nachman J. B., Sieger L., Wadman J. und Gorlick R. G. (2001). "High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing's sarcoma does not improve prognosis." J Clin Oncol 19(11): 2812-2820.
- Mikulska J. E., Pablo L., Canel J. und Simister N. E. (2000). "Cloning and analysis of the gene encoding the human neonatal Fc receptor." Eur J Immunogenet 27(4): 231-240.
- Mikulska J. E. und Simister N. E. (2000). "Analysis of the promoter region of the human FcRn gene." Biochim Biophys Acta 1492(1): 180-184.
- Ng T. L., O'Sullivan M. J., Pallen C. J., Hayes M., Clarkson P. W., Winstanley M., Sorensen P. H., Nielsen T. O. und Horsman D. E. (2007). "Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV." J Mol Diagn 9(4): 459-463.
- Ober R. J., Martinez C., Lai X., Zhou J. und Ward E. S. (2004). "Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level." Proc Natl Acad Sci U S A 101(30): 11076-11081.
- Ober R. J., Martinez C., Vaccaro C., Zhou J. und Ward E. S. (2004). "Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn." J Immunol 172(4): 2021-2029.
- Oberlin O., Deley M. C., Bui B. N., Gentet J. C., Philip T., Terrier P., Carrie C., Mechinaud F., Schmitt C., Babin-Boillettot A., Michon J. und French Society of Paediatric O. (2001). "Prognostic factors in localized Ewing's tumours and peripheral neuroectodermal tumours: the third study of the French Society of Paediatric Oncology (EW88 study)." Br J Cancer 85(11): 1646-1654.
- Oganesyan V., Damschroder M. M., Cook K. E., Li Q., Gao C., Wu H. und Dall'Acqua W. F. (2014). "Structural insights into neonatal Fc receptor-based recycling mechanisms." J Biol Chem 289(11): 7812-7824.
- Ohno T., Rao V. N. und Reddy E. S. (1993). "EWS/Fli-1 chimeric protein is a transcriptional activator." Cancer Res 53(24): 5859-5863.
- Owen L. A., Kowalewski A. A. und Lessnick S. L. (2008). "EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma." PLoS One 3(4): e1965.

- Ozaki T. (2015). "Diagnosis and treatment of Ewing sarcoma of the bone: a review article." J Orthop Sci 20(2): 250-263.
- Ozaki T., Hillmann A., Hoffmann C., Rube C., Blasius S., Dunst J., Jurgens H. und Winkelmann W. (1996). "Significance of surgical margin on the prognosis of patients with Ewing's sarcoma. A report from the Cooperative Ewing's Sarcoma Study." Cancer 78(4): 892-900.
- Pan Q., Shai O., Lee L. J., Frey B. J. und Blencowe B. J. (2008). "Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing." Nat Genet 40(12): 1413-1415.
- Park A., Lee Y., Kim M. S., Kang Y. J., Park Y. J., Jung H., Kim T. D., Lee H. G., Choi I. und Yoon S. R. (2018). "Prostaglandin E2 Secreted by Thyroid Cancer Cells Contributes to Immune Escape Through the Suppression of Natural Killer (NK) Cell Cytotoxicity and NK Cell Differentiation." Front Immunol 9: Artikel 1859.
- Pasero C., Gravis G., Granjeaud S., Guerin M., Thomassin-Piana J., Rocchi P., Salem N., Walz J., Moretta A. und Olive D. (2015). "Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer." Oncotarget 6(16): 14360-14373.
- Paulussen M., Ahrens S., Dunst J., Winkelmann W., Exner G. U., Kotz R., Amann G., Dockhorn-Dworniczak B., Harms D., Muller-Weihrich S., Welte K., Kornhuber B., Janka-Schaub G., Gobel U., Treuner J., Voute P. A., Zoubek A., Gadner H. und Jurgens H. (2001). "Localized Ewing tumor of bone: final results of the cooperative Ewing's Sarcoma Study CESS 86." J Clin Oncol 19(6): 1818-1829.
- Paulussen M., Craft A. W., Lewis I., Hackshaw A., Douglas C., Dunst J., Schuck A., Winkelmann W., Kohler G., Poremba C., Zoubek A., Ladenstein R., van den Berg H., Hunold A., Cassoni A., Spooner D., Grimer R., Whelan J., McTiernan A., Jurgens H. und European Intergroup Cooperative Ewing's Sarcoma S. (2008). "Results of the EICESS-92 Study: two randomized trials of Ewing's sarcoma treatment--cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients." J Clin Oncol 26(27): 4385-4393.
- Paulussen M., Frohlich B. und Jurgens H. (2001). "Ewing tumour: incidence, prognosis and treatment options." Paediatr Drugs 3(12): 899-913.
- Peter M., Couturier J., Pacquement H., Michon J., Thomas G., Magdelenat H. und Delattre O. (1997). "A new member of the ETS family fused to EWS in Ewing tumors." Oncogene 14(10): 1159-1164.
- Preis P. N., Saya H., Nadasdi L., Hochhaus G., Levin V. und Sadee W. (1988). "Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A." Cancer Res 48(22): 6530-6534.
- Pyzik M., Rath T., Kuo T. T., Win S., Baker K., Hubbard J. J., Grenha R., Gandhi A., Kramer T. D., Mezo A. R., Taylor Z. S., McDonnell K., Nienaber V., Andersen J. T., Mizoguchi A., Blumberg L., Purohit S., Jones S. D., Christianson G., Lencer W. I., Sandlie I., Kaplowitz N., Roopenian D. C. und Blumberg R. S. (2017). "Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury." Proc Natl Acad Sci U S A 114(14): E2862-E2871.
- Qiao S. W., Kobayashi K., Johansen F. E., Sollid L. M., Andersen J. T., Milford E., Roopenian D. C., Lencer W. I. und Blumberg R. S. (2008). "Dependence of antibody-mediated presentation of antigen on FcRn." Proc Natl Acad Sci U S A 105(27): 9337-9342.
- Raghavan M., Bonagura V. R., Morrison S. L. und Bjorkman P. J. (1995). "Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants." Biochemistry 34(45): 14649-14657.
- Raghavan M., Gastinel L. N. und Bjorkman P. J. (1993). "The class I major histocompatibility complex related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release." Biochemistry 32(33): 8654-8660.
- Relogio A., Ben-Dov C., Baum M., Ruggiu M., Gemund C., Benes V., Darnell R. B. und Valcarcel J. (2005). "Alternative splicing microarrays reveal functional expression of neuron-specific regulators in Hodgkin lymphoma cells." J Biol Chem 280(6): 4779-4784.

- Riggi N., Knoechel B., Gillespie S. M., Rheinbay E., Boulay G., Suva M. L., Rossetti N. E., Boonseng W.
 E., Oksuz O., Cook E. B., Formey A., Patel A., Gymrek M., Thapar V., Deshpande V., Ting D. T., Hornicek F. J., Nielsen G. P., Stamenkovic I., Aryee M. J., Bernstein B. E. und Rivera M. N. (2014).
 "EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma." Cancer Cell 26(5): 668-681.
- Riggi N., Suva M. L., Suva D., Cironi L., Provero P., Tercier S., Joseph J. M., Stehle J. C., Baumer K., Kindler V. und Stamenkovic I. (2008). "EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells." Cancer Res 68(7): 2176-2185.
- Roessner A. und Jurgens H. (1993). "Round cell tumours of bone." Pathol Res Pract 189(10): 111-136.
- Roessner A., Mellin W., Hiddemann W., Voss B., Vollmer E. und Grundmann E. (1984). "New cytomorphologic methods in the diagnosis of bone tumors: possibilities and limitations." Semin Diagn Pathol 1(3): 199-214.
- Ross R. A., Spengler B. A. und Biedler J. L. (1983). "Coordinate morphological and biochemical interconversion of human neuroblastoma cells." J Natl Cancer Inst 71(4): 741-747.
- S1-Leitlinie: Ewing-Sarkome des Kindes und Jugendalters (aktueller Stand: 06/2014). "https://www.awmf.org/uploads/tx_szleitlinien/025-006l_S1_Ewing_Sarkome_Kinder_Jugend liche_2014-06-abgelaufen.pdf" letztes Abrufdatum: 14.09.2020
- Sainz-Jaspeado M., Lagares-Tena L., Lasheras J., Navid F., Rodriguez-Galindo C., Mateo-Lozano S., Notario V., Sanjuan X., Garcia Del Muro X., Fabra A. und Tirado O. M. (2010). "Caveolin-1 modulates the ability of Ewing's sarcoma to metastasize." Mol Cancer Res 8(11): 1489-1500.
- Schlachetzki F., Zhu C. und Pardridge W. M. (2002). "Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier." J Neurochem 81(1): 203-206.
- Schlesinger H. R., Gerson J. M., Moorhead P. S., Maguire H. und Hummeler K. (1976). "Establishment and characterization of human neuroblastoma cell lines." Cancer Res 36(9 pt.1): 3094-3100.
- Schmidt D., Herrmann C., Jurgens H. und Harms D. (1991). "Malignant peripheral neuroectodermal tumor and its necessary distinction from Ewing's sarcoma. A report from the Kiel Pediatric Tumor Registry." Cancer 68(10): 2251-2259.
- Schuck A., Ahrens S., Paulussen M., Kuhlen M., Konemann S., Rube C., Winkelmann W., Kotz R., Dunst J., Willich N. und Jurgens H. (2003). "Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials." Int J Radiat Oncol Biol Phys 55(1): 168-177.
- Schwab M., Alitalo K., Klempnauer K. H., Varmus H. E., Bishop J. M., Gilbert F., Brodeur G., Goldstein M. und Trent J. (1983). "Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour." Nature 305(5931): 245-248.
- Sengupta A., Mateo-Lozano S., Tirado O. M. und Notario V. (2011). "Auto-stimulatory action of secreted caveolin-1 on the proliferation of Ewing's sarcoma cells." Int J Oncol 38(5): 1259-1265.
- Shi L., Zhang W., Zou F., Mei L., Wu G. und Teng Y. (2016). "KLHL21, a novel gene that contributes to the progression of hepatocellular carcinoma." BMC Cancer 16(1): 815.
- Shields R. L., Namenuk A. K., Hong K., Meng Y. G., Rae J., Briggs J., Xie D., Lai J., Stadlen A., Li B., Fox J. A. und Presta L. G. (2001). "High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R." J Biol Chem 276(9): 6591-6604.
- Simister N. E. und Mostov K. E. (1989). "An Fc receptor structurally related to MHC class I antigens." Nature 337(6203): 184-187.
- Sluga M., Windhager R., Lang S., Heinzl H., Krepler P., Mittermayer F., Dominkus M., Zoubek A. und Kotz R. (2001). "A long-term review of the treatment of patients with Ewing's sarcoma in one institution." Eur J Surg Oncol 27(6): 569-573.
- Smith M. A., Ungerleider R. S., Horowitz M. E. und Simon R. (1991). "Influence of doxorubicin dose intensity on response and outcome for patients with osteogenic sarcoma and Ewing's sarcoma." J Natl Cancer Inst 83(20): 1460-1470.

- Sorensen P. H., Lessnick S. L., Lopez-Terrada D., Liu X. F., Triche T. J. und Denny C. T. (1994). "A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG." Nat Genet 6(2): 146-151.
- Sorensen P. H., Liu X. F., Delattre O., Rowland J. M., Biggs C. A., Thomas G. und Triche T. J. (1993). "Reverse transcriptase PCR amplification of EWS/FLI-1 fusion transcripts as a diagnostic test for peripheral primitive neuroectodermal tumors of childhood." Diagn Mol Pathol 2(3): 147-157.
- Spiekermann G. M., Finn P. W., Ward E. S., Dumont J., Dickinson B. L., Blumberg R. S. und Lencer
 W. I. (2002). "Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung." J Exp Med 196(3): 303-310.
- Staege M. S. (2015). "A short treatise concerning a musical approach for the interpretation of gene expression data." Sci Rep 5: 15281.
- Staege M. S. (2016). "Gene Expression Music Algorithm-Based Characterization of the Ewing Sarcoma Stem Cell Signature." Stem Cells Int 2016: Artikel ID 7674824.
- Staege M. S., Hattenhorst U. E., Neumann U. E., Hutter C., Foja S. und Burdach S. (2003). "DNAmicroarrays as tools for the identification of tumor specific gene expression profiles: applications in tumor biology, diagnosis and therapy." Klin Padiatr 215(3): 135-138.
- Stahl M., Ranft A., Paulussen M., Bolling T., Vieth V., Bielack S., Gortitz I., Braun-Munzinger G., Hardes J., Jurgens H. und Dirksen U. (2011). "Risk of recurrence and survival after relapse in patients with Ewing sarcoma." Pediatr Blood Cancer 57(4): 549-553.
- Statistics Kingdom: "https://www.statskingdom.com/170median_mann_whitney.html" letztes Abrufdatum: 14.09.2020
- Stock M., Schafer H., Fliegauf M. und Otto F. (2004). "Identification of novel genes of the bonespecific transcription factor Runx2." J Bone Miner Res 19(6): 959-972.
- Story C. M., Mikulska J. E. und Simister N. E. (1994). "A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus." J Exp Med 180(6): 2377-2381.
- Stothard P. (2000). "The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences." Biotechniques 28(6): 1102, 1104.
- Swiercz R., Mo M., Khare P., Schneider Z., Ober R. J. und Ward E. S. (2017). "Loss of expression of the recycling receptor, FcRn, promotes tumor cell growth by increasing albumin consumption." Oncotarget 8(2): 3528-3541.
- Swiss Institute of Bioinformatics Members (2016). "The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases." Nucleic Acids Res 44(D1): D27-37.
- Tesar D. B. und Bjorkman P. J. (2010). "An intracellular traffic jam: Fc receptor-mediated transport of immunoglobulin G." Curr Opin Struct Biol 20(2): 226-233.
- Tomazou E. M., Sheffield N. C., Schmidl C., Schuster M., Schonegger A., Datlinger P., Kubicek S., Bock C. und Kovar H. (2015). "Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1." Cell Rep 10(7): 1082-1095.
- Tong D. L., Boocock D. J., Dhondalay G. K., Lemetre C. und Ball G. R. (2014). "Artificial neural network inference (ANNI): a study on gene-gene interaction for biomarkers in childhood sarcomas." PLoS One 9(7): e102483.
- Tzaban S., Massol R. H., Yen E., Hamman W., Frank S. R., Lapierre L. A., Hansen S. H., Goldenring J. R., Blumberg R. S. und Lencer W. I. (2009). "The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity." J Cell Biol 185(4): 673-684.
- Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R. und Leunissen J. A. (2007). "Primer3Plus, an enhanced web interface to Primer3." Nucleic Acids Res 35(Web Server issue): W71-74.
- Urano F., Umezawa A., Yabe H., Hong W., Yoshida K., Fujinaga K. und Hata J. (1998). "Molecular analysis of Ewing's sarcoma: another fusion gene, EWS-E1AF, available for diagnosis." Jpn J Cancer Res 89(7): 703-711.

- Venkateswaran L., Rodriguez-Galindo C., Merchant T. E., Poquette C. A., Rao B. N. und Pappo A. S. (2001). "Primary Ewing tumor of the vertebrae: clinical characteristics, prognostic factors, and outcome." Med Pediatr Oncol 37(1): 30-35.
- Vidarsson G., Stemerding A. M., Stapleton N. M., Spliethoff S. E., Janssen H., Rebers F. E., de Haas M. und van de Winkel J. G. (2006). "FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis." Blood 108(10): 3573-3579.
- Wang G. S. und Cooper T. A. (2007). "Splicing in disease: disruption of the splicing code and the decoding machinery." Nat Rev Genet 8(10): 749-761.

Warburg O. (1956). "On the origin of cancer cells." Science 123(3191): 309-314.

- Ward E. S., Martinez C., Vaccaro C., Zhou J., Tang Q. und Ober R. J. (2005). "From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling." Mol Biol Cell 16(4): 2028-2038.
- Watson S., Perrin V., Guillemot D., Reynaud S., Coindre J. M., Karanian M., Guinebretiere J. M., Freneaux P., Le Loarer F., Bouvet M., Galmiche-Rolland L., Larousserie F., Longchampt E., Ranchere-Vince D., Pierron G., Delattre O. und Tirode F. (2018). "Transcriptomic definition of molecular subgroups of small round cell sarcomas." J Pathol 245(1): 29-40.
- Weflen A. W., Baier N., Tang Q. J., Van den Hof M., Blumberg R. S., Lencer W. I. und Massol R. H. (2013). "Multivalent immune complexes divert FcRn to lysosomes by exclusion from recycling sorting tubules." Mol Biol Cell 24(15): 2398-2405.
- Widhe B. und Widhe T. (2000). "Initial symptoms and clinical features in osteosarcoma and Ewing sarcoma." J Bone Joint Surg Am 82-A(5): 667-674.
- Wilkins R. M., Pritchard D. J., Burgert E. O., Jr. und Unni K. K. (1986). "Ewing's sarcoma of bone. Experience with 140 patients." Cancer 58(11): 2551-2555.
- Wu Z. Z., Sun N. K. und Chao C. C. (2011). "Knockdown of CITED2 using short-hairpin RNA sensitizes cancer cells to cisplatin through stabilization of p53 and enhancement of p53-dependent apoptosis." J Cell Physiol 226(9): 2415-2428.
- Yoshida M., Claypool S. M., Wagner J. S., Mizoguchi E., Mizoguchi A., Roopenian D. C., Lencer W. I. und Blumberg R. S. (2004). "Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells." Immunity 20(6): 769-783.
- Zarate N., Mohammed S. D., O'Shaughnessy E., Newell M., Yazaki E., Williams N. S., Lunniss P. J., Semler J. R. und Scott S. M. (2010). "Accurate localization of a fall in pH within the ileocecal region: validation using a dual-scintigraphic technique." Am J Physiol Gastrointest Liver Physiol 299(6): G1276-1286.
- Zhang P. J., Barcos M., Stewart C. C., Block A. W., Sait S. und Brooks J. J. (2000). "Immunoreactivity of MIC2 (CD99) in acute myelogenous leukemia and related diseases." Mod Pathol 13(4): 452-458.
- Zhu X., Meng G., Dickinson B. L., Li X., Mizoguchi E., Miao L., Wang Y., Robert C., Wu B., Smith P. D., Lencer W. I. und Blumberg R. S. (2001). "MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells." J Immunol 166(5): 3266-3276.
- Zhu X., Peng J., Raychowdhury R., Nakajima A., Lencer W. I. und Blumberg R. S. (2002). "The heavy chain of neonatal Fc receptor for IgG is sequestered in endoplasmic reticulum by forming oligomers in the absence of beta2-microglobulin association." Biochem J 367(Pt 3): 703-714.
- Zucman J., Melot T., Desmaze C., Ghysdael J., Plougastel B., Peter M., Zucker J. M., Triche T. J., Sheer
 D., Turc-Carel C. und et al. (1993). "Combinatorial generation of variable fusion proteins in the Ewing family of tumours." EMBO J 12(12): 4481-4487.

Medizinische Fakultät der Martin-Luther-Universität Halle-Wittenberg

Thesen der Dissertation

Untersuchungen zur Expression und Funktion von FCGRT-Transkriptvarianten im Ewing-Sarkom

Zur Erlangung des akademischen Grades Doktor der Medizin (Dr.med.)

vorgelegt der Medizinischen Fakultät der Martin-Luther-Universität Halle-Wittenberg

von Thekla Wünsche geboren am 26.07.1993 in Dresden

8. Thesen

- Für das Gen FCGRT werden neben seinen bekannten RNA-Referenzsequenzen (Sequence ID NM_001136019.2 und Sequence ID NM_004107.4) in den Ewing-Sarkom-Zelllinien A673, RD-ES, SK-N-MC und in den Neuroblastom-Zelllinien CHP-126, KELLY, SH-SY5Y und SiMA weitere FCGRT-Transkriptvarianten exprimiert.
- 2. Die FCGRT-Transkriptvarianten unterscheiden sich in ihrer Anzahl der Exons und Exon-Übergänge und unterliegen wahrscheinlich Vorgängen des alternativen Spleißens.
- Die als FCGRT_III benannte Transkriptvariante von FCGRT zeichnet sich durch die fehlende Information zur Ausbildung der konstanten Immunglobulin-C1-set-Domäne des neonatalen Fc-Rezeptors aus.
- Die als FCGRT_IV benannte Transkriptvariante von FCGRT zeichnet sich durch die fehlende Information zur Ausbildung der ersten beiden α-Domänen des neonatalen Fc-Rezeptors aus und besitzt somit keine Bindungsstelle für Immunglobulin G und Albumin.
- 5. Die als FCGRT_V benannte Transkriptvariante von FCGRT zeichnet sich durch ein zusätzliches Exon mit eingebautem Stoppcodon aus, das zum Translationsabbruch vor der konstanten Immunglobulin-C1-set-Domäne, der Transmembranregion und der Phosphorylierungsstelle des neonatalen Fc-Rezeptors führt.
- 6. Die Genexpression der FCGRT-Transkriptvarianten zeigt ein insgesamt höheres Level in den Ewing-Sarkom-Zelllinien A673, RD-ES und SK-N-MC im Vergleich zu den Neuroblastom-Zelllinien CHP-126, KELLY, SH-SY5Y und SiMA, wobei sich das Expressionsmuster der FCGRT-Transkriptvarianten innerhalb der Zelllinien unterscheidet.
- Die Transkriptvariante FCGRT_V besitzt einen Einfluss auf die Genexpression der RNA-Referenzsequenzen von FCGRT und erhöht deren Expressionslevel in der Ewing-Sarkom-Zelllinie A673.
- 8. Die Ewing-Sarkom-Zelllinie A673 exprimiert Immunglobulin G bindende Rezeptorvarianten des neonatalen Fc-Rezeptors.

9. Anlage

9.1 Sequenzierte Transkriptvarianten von FCGRT an cDNA von A673-Zellen

Die Sequenzierung der in der Arbeit gefundenen Transkriptvarianten von FCGRT fand an *Inserts* der mit PCR-Produkt ligierten pGEM-T Easy-Vektoren statt. Das Start- und Stoppcodon des ORF ist durch einen verstärkten Schriftzug hervorgehoben. Die Exons sind durch eine wechselnde graue und weiße Markierung gekennzeichnet. Das zusätzliche Exon X von FCGRT_V ist grün hinterlegt.

Transkriptvariante aus pGEM T-Easy_FCGRT_I:

1	agagaggaac	tggggtctcc	agtcacggga	gccaggagcc	ggccagggcc	gcaggcagga
61	agggagcgag	gctgaaggga	acgtcgtcct	ctcagc atg g	gggtcccgcg	gcctcagccc
121	tgggcgctgg	ggctcctgct	ctttctcctt	cctgggagcc	tgggcgcaga	aagccacctc
181	tccctcctgt	accaccttac	cgcggtgtcc	tcgcctgccc	cggggactcc	tgccttctgg
241	gtgtccggct	ggctgggccc	gcagcagtac	ctgagctaca	atagcctgcg	gggcgaggcg
301	gagccctgtg	gagcttgggt	ctgggaaaac	caggtgtcct	ggtattggga	gaaagagacc
361	acagatctga	ggatcaagga	gaagctcttt	ctggaagctt	tcaaagcttt	ggggggaaaa
421	ggtccctaca	ctctgcaggg	cctgctgggc	tgtgaactgg	gccctgacaa	cacctcggtg
481	cccaccgcca	agttcgccct	gaacggcgag	gagttcatga	atttcgacct	caagcagggc
541	acctggggtg	gggactggcc	cgaggccctg	gctatcagtc	agcggtggca	gcagcaggac
601	aaggcggcca	acaaggagct	caccttcctg	ctattctcct	gcccgcaccg	cctgcgggag
661	cacctggaga	ggggccgcgg	aaacctggag	tggaaggagc	ccccctccat	gcgcctgaag
721	gcccgaccca	gcagccctgg	cttttccgtg	cttacctgca	gcgccttctc	cttctaccct
781	ccggagctgc	aacttcggtt	cctgcggaat	gggctggccg	ctggcaccgg	ccagggtgac
841	ttcggcccca	acagtgacgg	atccttccac	gcctcgtcgt	cactaacagt	caaaagtggc
901	gatgagcacc	actactgctg	cattgtgcag	cacgcggggc	tggcgcagcc	cctcagggtg
961	gagctggaat	ctccagccaa	gtcctccgtg	ctcgtggtgg	gaatcgtcat	cggtgtcttg
1021	ctactcacgg	cagcggctgt	aggaggagct	ctgttgtgga	gaaggatgag	gagtgggctg
1081	ccagcccctt	ggatctccct	tcgtggagac	gacaccgggg	tcctcctgcc	caccccaggg
1141	gaggcccagg	atgctgattt	gaaggatgta	aatgtgattc	cagccaccgc	c tga ccatcc
1201	gccattccga	ctgctaaaag	cgaatgtagt	caggcccctt	tcatgctgtg	agacctcctg
1261	gaacactggc	atctctgagc	ctc			

Transkriptvariante aus pGEM T-Easy_FCGRT_FCGRT_II:

1	ggcattgttg	tcagtctgga	ccgagcccgc	agagcccctc	ctcggcgtcc	tggtcccggc
61	cgtgcccgcg	gtgtcccggg	aggaaggggc	gggccggggg	tcgggaggag	tcacgtgccc
121	cctcccgccc	caggtcgtcc	tctcagc atg	ggggtcccgc	ggcctcagcc	ctgggcgctg
181	gggctcctgc	tctttctcct	tcctgggagc	ctgggcgcag	aaagccacct	ctccctcctg
241	taccacctta	ccgcggtgtc	ctcgcctgcc	ccggggactc	ctgccttctg	ggtgtctggc
301	tggctgggcc	cgcagcagta	cctgagctac	aatagcctgc	ggggcgaggc	ggagccctgt
361	ggagcttggg	tctgggaaaa	ccaggtgtcc	tggtattggg	agaaagagac	cacagatctg
421	aggatcaagg	agaagctctt	tctggaagct	ttcaaagctt	tggggggaaa	aggtccctac
481	actctgcagg	gcctgctggg	ctgtgaactg	ggccctgaca	acacctcggt	gcccaccgcc
541	aagttcgccc	tgaacggcga	ggagttcatg	aatttcgacc	tcaagcaggg	cacctggggt
601	ggggactggc	ccgaggccct	ggctatcagt	cagcggtggc	agcagcagga	caaggcggcc
661	aacaaggagc	tcaccttcct	gctattctcc	tgcccgcacc	gcctgcggga	gcacctggag
721	aggggccgcg	gaaacctgga	gtggaaggag	ccccctcca	tgcgcctgaa	ggcccgaccc
781	agcagccctg	gcttttccgt	gcttacctgc	agcgccttct	ccttctaccc	tccggagctg
841	caacttcggt	tcctgcggaa	tgggctggcc	gctggcaccg	gccagggtga	cttcggcccc
901	aacagtgacg	gatccttcca	cgcctcgtcg	tcactaacag	tcaaaagtgg	cgatgagcac
961	cactactgct	gcattgtgca	gcacgcgggg	ctggcgcagc	ccctcagggt	ggagctggaa
1021	tctccagcca	agtcctccgt	gctcgtggtg	ggaatcgtca	tcggtgtctt	gctactcacg

1081 gcagcggctg taggaggagc tctgttgtgg agaaggatga ggagtgggct gccagcccct 1141 tggatctccc ttcgtggagg cgacaccggg gtcctcctgc ccacccagg ggaggcccag 1201 gatgctgatt tgaaggatgt aaatgtgatt ccagccaccg cc**tga**ccatc cgccattccg 1261 actgctaaaa gcgaatgtag tcaggcccct ttcatgctgt gagacctcct ggaacactgg 1321 catctctgag cctc

Transkriptvariante aus pGEM T-Easy_FCGRT_FCGRT_III:

1	ggcattgttg	tcagtctgga	ccgagcccgc	agagcccctc	ctcggcgtcc	tggtcccggc
61	cgtgcccgcg	gtgtcccggg	aggaaggggc	gggccggggg	tcgggaggag	tcacgtgccc
121	cctcccgccc	caggtcgtcc	tctcagc atg	ggggtcccgc	ggcctcagcc	ctgggcgctg
181	gggctcctgc	tctttctcct	tcctgggagc	ctgggcgcag	aaagccacct	ctccctcctg
241	taccacctta	ccgcggtgtc	ctcgcctgcc	ccggggactc	ctgccttctg	ggtgtccggc
301	tggctgggcc	cgcagcagta	cctgagctac	aatagcctgc	ggggcgaggc	ggagccctgt
361	ggagcttggg	tctgggaaaa	ccaggtgtcc	tggtattggg	agaaagagac	cacaggtctg
421	aggatcaagg	agaagctctt	tctggaagct	ttcaaagctt	tggggggaaa	aggtccctac
481	actctgcagg	gcctgctggg	ctgtgaactg	ggccctgaca	acacctcggt	gcccaccgcc
541	aagttcgccc	tgaacggcga	ggagttcatg	aatttcgacc	tcaagcaggg	cacctggggt
601	ggggactggc	ccgaggccct	ggctatcagt	cagcggtggc	agcagcagga	caaggcggcc
661	aacaaggagc	tcaccttcct	gctattctcc	tgcccgcacc	gcctgcggga	gcacctggag
721	aggggccgcg	gaaacctgga	gtggaaggcc	ccttggatct	cccttcgtgg	agacgacacc
781	ggggtcctcc	tgcccacccc	aggggaggcc	caggatgctg	atttgaagga	tgtaaatgtg
841	attccagcca	ccgcc tga cc	atccgccatt	ccgactgcta	aaagcgaatg	tagtcaggcc
901	cctttcatgc	tgtgagacct	cctggaacac	tggcatctct	gagcctc	

Transkriptvariante aus pGEM T-Easy_FCGRT_FCGRT_IV:

1	ggcattgttg	tcagtctgga	ccgagcccgc	agagcccctc	ctcggcgtcc	tggtcccggc
61	cgtgcccgcg	gtgtcccggg	aggaaggggc	gggccggggg	tcgggaggag	tcacgtgccc
121	cctcccgccc	caggtcgtcc	tctcagc atg	ggggtcccgc	ggcctcagcc	ctgggcgctg
181	gggctcctgc	tctttctcct	tcctgggagc	ctgggcgcag	agccccctc	catgcgcctg
241	aaggcccgac	ccagcagccc	tggcttttcc	gtgcttacct	gcagcgcctt	ctccttctac
301	cctccggagc	tgcaacttcg	gttcctgcgg	aatgggctgg	ccgctggcac	cggccagggt
361	gacttcggcc	ccaacagtga	cggatccttc	cacgcctcgt	cgtcactaac	agtcaaaagt
421	ggcgatgagc	accactactg	ctgcattgtg	cagcacgcgg	ggctggcgca	gcccctcagg
481	gtggagctgg	aatctccagc	caagtcctcc	gtgctcgtgg	tgggaatcgt	catcggtgtc
541	ttgctactca	cggcagcggc	tgtaggagga	gctctgttgt	ggagaaggat	gaggagtggg
601	ctgccagccc	cttggatctc	ccttcgtgga	gacgacaccg	gggtcctcct	gcccacccca
661	ggggaggccc	aggatgccga	tttgaaggat	gtaaatgtga	ttccagccac	cgcc tga cca
721	cccgccattc	cgactgctaa	aagcgaatgt	agtcaggccc	ctttcatgct	gtgagacctc
781	ctggaacact	ggcatctctg	agcctc			

Transkriptvariante aus pGEM T-Easy_FCGRT_FCGRT_V:

1	agagaggaac	tggggtctcc	agtcacggga	gccaggagcc	ggccagggcc	gcaggcagga
61	agggagcgag	gctgaaggga	acgtcgtcct	ctcagc atg g	gggtcccgcg	gcctcagccc
121	tgggcgctgg	ggctcctgct	ctttctcctt	cctgggagcc	tgggcgcaga	aagccacctc
181	tccctcctgt	accaccttac	cgcggtgtcc	tcgcctgccc	cggggacccc	tgccttctgg
241	gtgtccggct	ggctgggccc	gcagcagcac	ctgagctaca	atagcctgcg	gggcgaggcg
301	gagccctgtg	gagcttgggt	ctgggaaaac	caggtgtcct	ggtattggga	gaaagagacc
361	acagatctga	ggatcaagga	gaagctctct	ctggaagctt	tcaaagcttt	ggggggaaaa
421	ggtccctaca	ctctgcaggg	cctgctgggc	tgtgaactgg	gccctgacaa	cacctcggtg
481	cccaccgcca	agttcgccct	gaacggcgag	gagttcatga	atttcgacct	caagcagggc
541	acctggggtg	gggactggcc	cgaggccctg	gctatcagtc	agcggtggca	gcagcaggac
601	aaggcggcca	acaaggagct	caccttcctg	ctattctcct	gcccgcaccg	cctgcgggag
661	cacctggaga	ggggccgcgg	aaacctggag	tggaagg <mark>gca</mark>	cttgcactgt	tgcctagact
721	ggagtgcagt	agcgggatta	gagttcactg	cagcctcaac	ctcccaagct	acagcgatcc
781	tcccacctta	cccttcctga	atggatgggg	ccacaagccc	ccctccatgc	gcctgaaggc
841	ccgacccagc	agccctggct	tttccgtgct	tacctgcagc	gccttctcct	tctaccctcc
901	ggagctgcaa	cttcggttcc	tgcggaatgg	gctggccgct	ggcaccggcc	agggtgactt

```
961 cggccccaac agtgacggat ccttccacgc ctcgtcgtca ctaacagtca aaagtggcga
1021 tgagcaccac tactgctgca ttgtgcagca cgcggggctg gcgcagcccc tcagggtgga
1081 gctggaatct ccagccaagt cctccgtgct cgtggtgga atcgtcatcg gtgtcttgct
1141 actcacggca gcggctgtag gaggagctct gttgtggaga aggatgagga gtgggctgcc
1201 agccccttgg atctcccttc gtggagacga caccggggtc ctcctgccca ccccagggga
1261 ggcccaggat gctgattga aggatgtaaa tgtgattcca gccaccgct gaccatccgc
1321 cattccgact gctaaaagcg a
```

9.2 Abweichungen der Transkriptvarianten aus A673-Zellen zur Referenz

Die sequenzierten Transkriptvarianten von FCGRT wurden mit den RNA-Referenzsequenzen der NCBI-Datenbank verglichen. Abweichungen in der Basenabfolge zur Referenz wurden nochmals über das Programm SnapGene Viewer (GSL Biotech LLC 13.03. 2020) unter Auswertung der Fluoreszenz-Farbstoff-Kurven entsprechender Transkriptvarianten überprüft und eindeutige Differenzen kenntlich gemacht. Abbildung 18 zeigt die Abweichungen in der Basenabfolge der Transkriptvarianten zur ihren RNA-Referenzsequenzen. Die Transkriptvariante FCGRT_I zeigte dabei keine Abweichungen zur entsprechenden Referenzsequenz.

Abbildung 18: Abweichungen in der Basenabfolge der Transkriptvarianten zu deren Referenzsequenzen Dargestellt ist der schematische Aufbau der von FCGRT_II, FCGRT_III, FCGRT_IV und FCGRT_V des Gens FCGRT. Exons entsprechen den dickeren Pfeilen, welche mit arabischen Zahlen nummeriert sind. Zusätzliche Exons sind durch x gekennzeichnet. Rote Markierungen: Lage der Basenabweichung von den Referenzsequenzen auf der jeweiligen Transkriptvariante. (): Position der Basenabweichung auf der jeweiligen Transkriptvariante. Dünnere Pfeile kennzeichnen den Basenaustausch von der Referenzaminosäure zur gefundenen Aminosäure. A: Adenosin, C: Cytosin, G: Guanin, T: Thymin.

9.3 Aminosäuren der sequenzierten Transkriptvarianten des Gens FCGRT

Die Aminosäuresequenzen der gefundenen Transkriptvarianten wurden über das *Internettool* ExPASy Translate (Swiss Institute of Bioinformatics Members 2016) ermittelt. Unterschiede zur Referenzsequenz, die der NCBI-Datenbank entstammt, wurden farblich hervorgehoben.

Transkriptvariante FCGRT_I:

```
1 mgvprpqpwa lgllfllpg slgaeshlsl lyhltavssp apgtpafwvs gwlgpqqyls
61 ynslrgeaep cgawvwenqv swywekettd lrikeklfle afkalggkgp ytlqgllgce
121 lgpdntsvpt akfalngeef mnfdlkqgtw ggdwpealai sqrwqqdka ankeltflf
181 scphrlrehl ergrgnlewk eppsmrlkar psspgfsvlt csafsfyppe lqlrflrngl
241 aagtgqgdfg pnsdgsfhas ssltvksgde hhyccivqha glaqplrvel espakssvlv
301 vgivigvlll taaavggall wrmrsglpa pwislrgddt gvllptpgea qdadlkdvnv
361 ipata
```

Transkriptvariante FCGRT_II:

1 mgvprpqpwa lglllfllpg slgaeshlsl lyhltavssp apgtpafwvs gwlgpqqyls 61 ynslrgeaep cgawvwenqv swywekettd lrikeklfle afkalggkgp ytlqgllgce 121 lgpdntsvpt akfalngeef mnfdlkqgtw ggdwpealai sqrwqqdka ankeltfllf 181 scphrlrehl ergrgnlewk eppsmrlkar psspgfsvlt csafsfyppe lqlrflrngl 241 aagtgqgdfg pnsdgsfhas ssltvksgde hhyccivqha glaqplrvel espakssvlv 301 vgivigvlll taaavggall wrrmrsglpa pwislr**y**gdt gvllptpgea qdadlkdvnv 361 ipata

Transkriptvariante FCGRT_III:

```
1 mgvprpqpwa lglllfllpg slgaeshlsl lyhltavssp apgtpafwvs gwlgpqqyls
61 ynslrgeaep cgawvwenqv swywekettg lrikeklfle afkalggkgp ytlqgllgce
121 lgpdntsvpt akfalngeef mnfdlkqgtw ggdwpealai sqrwqqqdka ankeltfllf
181 scphrlrehl ergrgnlewk apwislrgdd tgvllptpge aqdadlkdvn vipata
```

Transkriptvariante FCGRT_IV:

1 mgvprpqpwa lglllfllpg slgaeppsmr lkarpsspgf svltcsafsf yppelqlrfl 61 rnglaagtgq gdfgpnsdgs fhasssltvk sgdehhycci vqhaglaqpl rvelespaks 121 svlvvgivig vllltaaavg gallwrrmrs glpapwislr gddtgvllpt pgeaqdadlk 181 dvnvipata

Transkriptvariante FCGRT_V:

1 mgvprpqpwa lglllfllpg slgaeshlsl lyhltavssp apgtpafwvs gwlgpqq<mark>h</mark>ls 61 ynslrgeaep cgawvwenqv swywekettd lrikekl<mark>s</mark>le afkalggkgp ytlqgllgce 121 lgpdntsvpt akfalngeef mnfdlkqgtw ggdwpealai sqrwqqqdka ankeltfllf 181 scphrlrehl ergrgnlewk gtctva

9.4 Standardkurven von FCGRT_III, FCGRT_IV und FCGRT_V

Die Verdünnungsreihen von FCGRT_III, FCGRT_IV und FCGRT_V wurden mit der Ausgangskonzentration von 5 ng/µl und dem Titrierfaktor 10 erstellt. Die Messungen der qPCR umfassten Verdünnungsproben von 1:10² bis 1:10¹². Die Standardkurven wurden durch das Auftragen des Logarithmus des Molgewichts der Verdünnungsproben gegen den C_T-Wert erstellt. Abbildung 19 zeigt die Standardkurven von FCGRT_III, FCGRT_IV und FCGRT_V.

Abbildung 19: Standardkurven der Transkriptvarianten FCGRT_III, FCGRT_IV und FCGRT_V von FCGRT Dargestellt sind die Standardkurven von FCGRT_III, FCGRT_IV und FCGRT_V. Die Geradengleichung und der Korrelations-Wert R² werden im linken unteren Quadranten der Diagramme gezeigt.

9.5 FACS-Analyse nativer und transgener A673-Zellen

Die FACS-Analyse fand an nativen und transgenen A673-Zellen statt. Dabei wurden die Fluoreszenzsignale des GFP und Cy5 gemessen. GFP konnte nach Induktion mittels Doxycyclin bei transgenen Zellen hervorgerufen werden. Cy5 markierte IgGs dienten der Kennzeichnung des FcRn. Abbildung 20 bis 23 zeigen die FACS-Analyse der nativen und mit pRTS-1_FCGRT_II, pRTS-1_FCGRT_II und pRTS-1_FCGRT_V transfizierten A673-Zellen.

Native A673-Zellen:

Abbildung20:FACS-AnalysemitGating-StrategiedernativenA673-ZellenDargestellt ist die FACS-Analyse und Gating-Strategie der nativen A673-Zellen. 1: unbehandelte native A673-Zellen,
2: mit Doxycyclin behandelte native A673-Zellen, 3: mit Cy5 markierten IgG behandelte native A673-Zellen, 4: mit
Doxycyclin und Cy5 markierten IgG behandelte native A673-Zellen. P: Gate. SSC-A: Pulsfläche im Seitwärtsstreulicht,
FSC-A: Pulsfläche im Vorwärtsstreulicht, FSC-H: Pulshöhe im Vorwärtsstreulicht, GFP-A: Pulsfläche fluoreszierender
Zellen, APC-A: Pulsfläche Cy5 markierter Zellen

Abbildung 21: FACS-Analyse mit *Gating*-Strategie der mit pRTS-1_FCGRT_II transfizierten A673-Zellen Dargestellt ist die FACS-Analyse und *Gating*-Strategie der mit pRTS-1_FCGRT_II transfizierten A673-Zellen. 1: unbehandelte transfizierte A673-Zellen, 2: mit Doxycyclin behandelte transfizierte A673-Zellen, 3: mit Cy5 markierten IgG transfizierte A673-Zellen, 4: mit Doxycyclin und Cy5 markierten IgG behandelte transfizierte A673-Zellen. P: *Gate*. SSC-A: Pulsfläche im Seitwärtsstreulicht, FSC-A: Pulsfläche im Vorwärtsstreulicht, FSC-H: Pulshöhe im Vorwärtsstreulicht, GFP-A: Pulsfläche fluoreszierender Zellen, APC-A: Pulsfläche Cy5 markierter Zellen

Abbildung 22: FACS-Analyse mit *Gating*-Strategie der mit pRTS-1_FCGRT_III transfizierten A673-Zellen Dargestellt ist die FACS-Analyse und *Gating*-Strategie der mit pRTS-1_FCGRT_III transfizierten A673-Zellen. 1: unbehandelte transfizierte A673-Zellen, 2: mit Doxycyclin behandelte transfizierte A673-Zellen, 3: mit Cy5 markierten IgG transfizierte A673-Zellen, 4: mit Doxycyclin und Cy5 markierten IgG behandelte transfizierte A673-Zellen. P: *Gate*. SSC-A: Pulsfläche im Seitwärtsstreulicht, FSC-A: Pulsfläche im Vorwärtsstreulicht, FSC-H: Pulshöhe im Vorwärtsstreulicht, GFP-A: Pulsfläche fluoreszierender Zellen, APC-A: Pulsfläche Cy5 markierter Zellen

Mit pRTS-1_FCGRT_V transfizierte A673-Zellen:

Abbildung 23: FACS-Analyse mit *Gating*-Strategie der mit pRTS-1_FCGRT_V transfizierten A673-Zellen Dargestellt ist die FACS-Analyse und *Gating*-Strategie der mit pRTS-1_FCGRT_V transfizierten A673-Zellen. 1: unbehandelte transfizierte A673-Zellen, 2: mit Doxycyclin behandelte transfizierte A673-Zellen, 3: mit Cy5 markierten IgG transfizierte A673-Zellen, 4: mit Doxycyclin und Cy5 markierten IgG behandelte transfizierte A673-Zellen. P: *Gate*. SSC-A: Pulsfläche im Seitwärtsstreulicht, FSC-A: Pulsfläche im Vorwärtsstreulicht, FSC-H: Pulshöhe im Vorwärtsstreulicht, GFP-A: Pulsfläche fluoreszierender Zellen, APC-A: Pulsfläche Cy5 markierter Zellen

10. Selbstständigkeitserklärung

Hiermit erkläre ich, Thekla Wünsche, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe. Die den verwendeten Werken wörtlich oder inhaltlich entnommenen Stellen wurden als solche kenntlich gemacht.

Ich versichere, dass ich für die inhaltliche Erstellung der Arbeit keine entgeltliche Hilfe von Vermittlungs- und Beratungsdiensten (Promotionsberater oder andere Personen) in Anspruch genommen habe. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorliegenden Dissertation stehen.

Ich erkläre, dass ich mich an keiner anderen Hochschule einem Promotionsverfahren unterzogen bzw. eine Promotion begonnen habe. Diese Arbeit wurde an keiner anderen Hochschule oder Universität im In- oder Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Ort, Datum

Thekla Wünsche

11. Danksagung

An erster Stelle möchte ich mich bei Herrn apl. Prof. M.S. Staege für die Vergabe der interessanten Thematik meiner Promotion, seine hervorragende Betreuung und ständige konstruktive Diskussionsbereitschaft sowie die zügige Korrektur meiner Arbeit ganz herzlich bedanken.

Ich möchte zudem meinen großen Dank an die Arbeitsgruppe des Forschungslabors der Kinderund Jugendmedizin des Universitätsklinikums Halle aussprechen, insbesondere an Frau I. Volkmer, deren Hilfsbereitschaft wesentlich zum Gelingen dieser Arbeit beigetragen hat.

Mein besonderer Dank gilt Herrn Dr. A. Navarrete Santos, der mir mit Herzlichkeit und freundlichem Bemühen bei der Durchführung meiner FACS-Analysen eine große Hilfe war.

Außerdem bedanke ich mich sehr bei meinen Eltern für ihre uneingeschränkte Unterstützung und Ermutigung zu dieser Arbeit, ihre guten Ratschläge und die akribische Durchsicht meiner Dissertation.

Des Weiteren möchte ich meinen Freunden für ihren motivierenden Zuspruch und die stete Aufmunterung danken. Daraus konnte ich viel Kraft zum Überwinden einiger Hürden während der Promotion schöpfen.

In diesem Sinne möchte ich einen lieben Dank an meinen Freund J.-P. Mordhorst richten, der geduldig meinen Horizont *in puncto* Anwendung von Computerprogrammen erweiterte und mir unentwegt seine Hilfe bei der Lösung schwieriger Problemstellungen entgegenbrachte.