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Notation
Symbol Meaning
a A scalar (normal font)
a A 3-dimensional vector (bold font)
a A matrix (double underlined)
~a(2) A third rank tensor (vector arrow with an additional (2))
∂a Derivative with respect to a, ∂a ≡ ∂

∂a

Â A quantum mechanical operator

ϕ (r) A two component spinor, ϕ (r) =
(
ϕ↑ (r)
ϕ↓ (r)

)
Θa Θa ≡ Θ

(
a2 − k2

f

)
, where Θ is the Heaviside step function

and kf is the Fermi wave vector
Θ∗a Θ∗a ≡ Θ

(
k2
f − a2

)
, where Θ is the Heaviside step function

and kf is the Fermi wave vector

General
• Throughout this work, all quantities, unless otherwise stated, are given in

atomic units (a.u.), i.e. ~ = |e| = me = 1. The vacuum speed of light is
then equal to the inverse of the fine-structure constant, c ≈ 137. The Bohr
magneton is simply given by µB = 1

2c .

• We use the CGS system alongside with atomic units for all quantities from
electrodynamics. Therefore ε0 = 1

4π , µ0 = 4π
c
.
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Abbreviations
ALDA Adiabatic LDA
ALSDA Adiabatic LSDA
APW Augmented plane wave
C Correlation
CDW Charge-density wave
DFT Density functional theory
DOS Density of states
EMW Electromagnetic wave
FWHM Full width at half-maximum
HK Hohenberg-Kohn
IR Interstitial region
KS Kohn-Sham
LDA Local density approximation
LSDA Local spin-density approximation
MDI Magnetic dipole interaction
ML Monolayer
MOKE Magneto-optic Kerr effect
MSHG Magnetic second harmonic generation
MT Muffin-tin
RG Runge-Gross
SC Supercell
SDFT Spin-DFT
SDW Spin-density wave
SOC Spin-orbit coupling
TDDFT Time-dependent DFT
TDSDFT Time-dependent SDFT
UC Ultracell
UFD Ultrafast demagnetization
ULR Ultra long-range
X Exchange
XC Exchange-correlation
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1. Introduction

Magnetism is a fascinating and seemingly contradictory phenomenon. While the
first recorded observations of magnetism were already made at around 600 BC by
Thales of Miletus (the word “Magnet” even means “rock from Magnesia”, a Greek
region), a detailed understanding of the origin of magnetism was only achieved in
the 20th century - almost two and a half millennia later. The main reason is that,
despite being macroscopically measurable, magnetism cannot be explained without
invoking quantum mechanics. Even after the advent of quantum mechanics the
interest in magnetism did not decrease but, on the contrary, increased even further.
Nowadays, magnetism is a highly active field of research and new magnetic shapes
and effects are continuously discovered. Besides the fundamental interest, a large
driving factor for this is the crucial importance magnetic materials have on key
future technologies such as turbines, electric engines and data storage. Stating that,
since its first observation, magnetism has never been more technologically relevant
than today is not a bold claim.

In this thesis, we are mostly interested in magnetic effects relevant for data stor-
age. A classic example for magnetic data storage are hard disk drives, in which the
information is stored via magnetic domains. The magnetization inside a magnetic
domain points along a preferred direction, with different directions representing dif-
ferent bits of information. Hard disk drives, however, suffer from being intrinsically
slow, as it is necessary to mechanically move the disk and the reading head. This
of course raises the question whether different, faster mechanisms exist for reading
or writing magnetic memory. A breakthrough discovery was made in the late 1990s
[1–3], where it was found that exciting a magnetic material with a laser leads to an
ultrafast (. 100 fs) reduction of the magnetic moment of the material, suggesting
the possibility of ultrafast magnetic devices. However, despite extensive experimen-
tal and theoretical research, there is no consensus on the driving mechanism behind
ultrafast demagnetization. Another recently suggested idea for faster and denser
magnetic memory is racetrack memory [4], where instead of a reading head the
magnetic domains themselves are moving, alleviating the problems caused by me-
chanical parts. Unfortunately, theoretical insight into magnetic domains is limited,
as they are very large and can extend up to the low micron regime. This makes
a full quantum mechanical treatment computationally impossible and one has to
resort to semi-classical approaches, such as the Landau-Lifshitz-Gilbert equation[5].

In this work, we aim at achieving both, a better microscopic understanding of
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CHAPTER 1. INTRODUCTION

ultrafast demagnetization as well as developing a theoretical method for tackling
large-scale quantum systems, such as magnetic domains. This work is organized as
follows: In chapter 2 we give a detailed introduction into density-functional theory
and its extensions. Furthermore we will introduce the relevant relativistic effects
and the basics of the numerical implementation we use. We study ultrafast de-
magnetization in chapter 3. We will revisit previously suggested explanations for
ultrafast demagnetization and discuss common techniques for measuring ultrafast
magnetic signals. We will then proceed with presenting our time-dependent den-
sity functional theory approach, which is based on the work by Krieger [6]. In two
joint experimental-theoretical studies we are able to unravel the most important
microscopic contributions to ultrafast demagnetization at early times (t < 100 fs).
In our first study, we manage to explain the different temporal behavior in the de-
magnetization of bulk Ni and Co and attribute it to intrinsically different spin-orbit
coupling time scales. In our second study we consider a Co/Cu(001) interface and
are able to distinguish all relevant microscopic processes. We obtain the best quan-
titative agreement between experiment and theory reported so far. In chapter 4 we
introduce a novel numerical technique that will allow us to apply density functional
theory to ultra long-range phenomena. Our approach relies on a length-scale sepa-
ration in reciprocal space, based on which we derive a set of generalized, long-ranged
Kohn-Sham equations. This enables us to compute large, extended systems involv-
ing thousands of atoms efficiently. We also explicitly include the magnetic dipole
interaction in our approach as it is expected to be essential for the formation of
magnetic domains. Finally, in chapter 5, we derive an exchange functional for the
magnetic dipole interaction to be used with the system presented in ch. 4. This
functional will aid in the ab-initio calculation of large-scale magnetic structures.
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2. Many-electron systems

We will start off with introducing the basic formalism which is used to describe sys-
tems of many interacting particles. We will show that such systems are extremely
difficult to compute with a direct approach. Density functional theory and its ex-
tensions are a computationally feasible, formally exact method for treating such
systems. We will outline some elementary concepts of density functional theory.
This chapter is partially based on the book by Engel and Dreizler [7].

2.1 The many-body problem
The most used equation when describing atoms, molecules and solids is the Schrö-
dinger equation. The Schrödinger equation is a non-relativistic equation of motion
for treating systems of electrons and nuclei. The Schrödinger equation for the cou-
pled electron-nucleus system reads

i∂t |Ψ (t)〉 = Ĥ |Ψ (t)〉 (2.1)

where |Ψ (t)〉 is the quantum mechanical state of the system and Ĥ is the Hamilto-
nian given by

Ĥ = T̂n + T̂e + Ŵn−n + Ŵe−e + Ŵe−n + V̂n−ext + V̂e−ext (2.2)

T̂n, T̂e are the kinetic energy operators for the nuclei and the electrons and are given
by:

T̂n =
∑
α

(−i∇α)2

2Mα

, T̂e =
∑
j

(−i∇j)2

2 , (2.3)

where ∇α acts on the Cartesian coordinates Rα of nucleus α which has the mass
Mα. Similarly, ∇i acts on the coordinate rj of electron j.

The electrostatic interactions between particles are represented by Ŵn−n, Ŵe−e,
Ŵe−n corresponding to a repulsive nuclei-nuclei interaction, a repulsive electron-
electron interaction and an attractive electron-nuclei interaction:

Ŵn−n =
∑
α<β

ZαZβ
|Rα −Rβ|

, Ŵe−e =
∑
j<j′

1
|rj − rj′ |

, Ŵn−e = −
∑
α,j

Zα
|Rα − rj|

(2.4)
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2.1 The many-body problem

Finally, both electrons and nuclei may couple to an external, electromagnetic field:

V̂n−ext =
∑
α

[
ZαΦext (Rα, t) + i

Zα
Mαc

Aext (Rα, t) · ∇α + Z2
α

2c2A
2
ext (Rα, t)

−Iα ·Bext (Rα, t)
]

(2.5)

V̂e−ext =
∑
j

[ − Φext (rj, t)− 2iµBAext (rj, t) · ∇j + 2µ2
BA

2
ext (rj, t)

+ µBσj ·Bext (rj, t) ] (2.6)

Here, Φext,Aext are a scalar and a vector potential corresponding to the electromag-
netic fields

Eext = −∇Φext (r, t)− 1
c
∂tAext (r, t) (2.7)

Bext (r, t) = ∇×Aext (r, t) (2.8)
Iα is the magnetic moment of nucleus α, µB is the Bohr magneton and σi is a vector
of Pauli matrices.

The simplest case consists of a single atom without any external field. In such
a system, one can make a transformation into the center-of-mass frame and obtain
decoupled equations of motion for the motion of the whole atom and the motion
of individual electrons around the nucleus. Due to the nucleus being much heavier
than the electrons, the center-of-mass essentially coincides with the nuclear position.
It is therefore sufficient to solve a purely electronic problem where the nucleus enters
as a static external field.

If the system, however, involves multiple atoms, this decoupling is no longer
possible. It then becomes necessary to treat the coupled electron-nuclei system:

i∂tΨa (R1I1, . . . ,RKIK ; r1s1, . . . , rNsN ; t)
= ĤΨa (R1I1, . . . ,RKIK ; r1s1, . . . , rNsN ; t) (2.9)

where Ii, si denote the spin-degree of freedom of nucleus/electron i. In the absence
of explicitly time-dependent external fields, a single phase factor accounts for the
time-dependence, i.e.

Ψa (t) = Ψae
iEat, (2.10)

solves the time-dependent Schrödinger equation (eq. 2.1), provided that the ini-
tial state for the time-propagation is an eigenstate of the stationary Schrödinger
equation:

ĤΨa (R1I1, . . . ,RKIK ; r1s1, . . . , rNsN)
= EaΨa (R1I1, . . . ,RKIK ; r1s1, . . . , rNsN) (2.11)

Even solving only the stationary Schrödinger equation is exceedingly hard and not
computationally possible for most relevant applications. A common first step when
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2.1 The many-body problem

tackling this problem is a partial decoupling of the electrons from the nuclear motion.
This is achieved by the “Born-Oppenheimer approximation”, which employs the fact
that the electrons are much lighter than the nuclei. The resulting assumption is that
the nuclei are stationary during typical electronic processes. We can then factorize
the wave function:

Ψa≡ik (R1I1, . . . ,RKIK ; r1s1, . . . , rnsn)
= Ψn

ik (R1I1, . . . ,RKIK) Ψe
k (R1I1, . . . ,RKIK ; r1s1, . . . , rNsN) (2.12)

The electronic wave function now depends parametrically on the the position of the
nuclei. It satisfies the Schrödinger equation

ĤeΨe
k (R1I1, . . . ,RKIK ; r1s1, . . . , rNsN)

= Ek (R1I1, . . . ,RKIK) Ψe
k (R1I1, . . . ,RKIK ; r1s1, . . . , rNsN) (2.13)

with the electronic Hamiltonian:

Ĥe = T̂e + Ŵe−e + V̂ext (2.14)

where we have “absorbed” the electron-nuclear interaction Ŵn−e in the external
potential V̂ext (R1I1 . . . ,RKIK). This is a stationary eigenvalue problem for any
set of nuclear coordinates Rα. The eigenvalues Ek (R1I1, . . . ,RKIK) together with
V̂n−n (eq. 2.4) in turn act as potentials in which the nuclei are moving. We will
assume for the remainder of this thesis that the nuclear positions are known, either
by a previous energy minimization or from experimental values. We emphasize that
this is by no means a trivial step and generally very computationally demanding.
However, the systems treated in this thesis are relatively simple solids which are
known to exist and to be stable. In this case, we can drop the nuclear coordinates:

ĤeΨe
k (r1s1, . . . , rNsN) = EkΨe

k (r1s1, . . . , rNsN) (2.15)

or, if the external potential V̂ext is explicitly time-dependent:

i∂tΨe
k (r1s1, . . . , rNsN ; t) = ĤeΨe

k (r1s1, . . . , rNsN ; t) (2.16)

Solving eqs. 2.15, 2.16 remains a formidable task. Storing the wave function Ψ
requires storing the probability density in all space for every particle. While doing
so is feasible for a small number of particles, the required memory to store the
wave function increases exponentially with the number of particles. Solving the
Schrödinger equation with the full wave function equation for solids, molecules or
even for atoms of moderate size is currently impossible. While approximations for
the wave function of a given system exist, such as Hartree-Fock, we will take a
different route for solving eqs. 2.15, 2.16 by making use of density functional theory.
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2.2 Density functional theory

2.2 Density functional theory
The main origin of the complexity of eq. 2.15 is the electron-electron interaction
Ŵe−e, which leads to a mixture of electronic states and thus subsequently to the
exponential wall encountered in computations. A major realization was made in
1964 by Hohenberg and Kohn [8]. They proved that all observables of an interacting
non-degenerate many-body electron state can be derived from the electronic ground-
state density alone. Together with the proof that the electronic density can be
derived without knowledge of the electronic wave function, this became later known
as the Hohenberg-Kohn theorem. It is remarkable because knowledge of the full
electronic wave function is no longer mandatory to describe a system, thus reducing
the necessary degrees of freedom considerably. The Hohenberg-Kohn theorem is the
foundation of density functional theory (DFT). For all following considerations, we
consider the purely electronic Hamiltonian

Ĥ = T̂ + Ŵ + V̂ext. (2.17)

Here V̂ext is now any external electrostatic potential (e.g. the potential of fixed
nuclei).

2.2.1 The Hohenberg-Kohn Theorem
In their seminal paper Hohenberg and Kohn proved that it is sufficient to describe a
many-electron system solely through the electronic ground state density [8], which
for any quantum state |Ψ〉 is given by:

n0 (r) = 〈Ψ| n̂ (r) |Ψ〉 , n̂ (r) =
N∑
i=1

δ (r − ri) . (2.18)

It is easy to see that the electronic density is determined by the external potential:

vext (r) (2.15)−−−→ |Ψ〉 (2.18)−−−→ n0 (r) . (2.19)

The proof by Hohenberg and Kohn now shows that this map is invertible, up to a
constant, for non-degenerate ground states:

vext (r) HK←−→ n0 (r) . (2.20)

This proof was later shown to hold even for degenerate ground states [9]. A direct
consequence is that, in principle, every external potential can be written as a func-
tional of the ground state density, i.e. vext [n] (r). With the Schrödinger equation
(eq. 2.15) follows then that the ground state wave function (for non-degenerate sys-
tems) is also a functional of the electron density, i.e. |Ψ0 [n0]〉. It thus follows that
every observable of a non-degenerate, many-electron system can, in principle, be
expressed by the ground state density:〈

Ô
〉

= 〈Ψ0 [n0]| Ô |Ψ0 [n0]〉 = O [n0] . (2.21)

6



2.2 Density functional theory

Specifically, the ground state energy is then also a functional of the electron density
(even in the case of degenerate systems):

E0 [n0] = 〈Ψ0| T̂ + Ŵ + V̂ext |Ψ0〉 = T |n0] +W [n0] +
∫

dr vext (r)n0 (r) , (2.22)

where we defined the kinetic energy functional T [n] and the electron-electron inter-
action functional W [n]. By applying the Rayleigh-Ritz variational principle to eq.
2.22, Hohenberg and Kohn managed to show that:

E0 [n0] < E0 [n] , ∀ n (r) 6= n0 (r) . (2.23)

Thus the ground state density n0 is that density which minimizes the ground state
energy functional E0 [n] for a given external potential vext (r). It is instructive to
rewrite eq. 2.22 as

E0 [n0] = FHK [n0] +
∫

dr vext (r)n0 (r) , (2.24)

with FHK [n0] = T [n0] +W [n0] .

FHK [n0] is a universal functional, as it is the same functional for any interacting elec-
tronic system, be it atoms, molecules or solids. The three concepts of invertibility,
variational access and universality are the central statements of the Hohenberg-
Kohn(HK) theorem.

It is worth noting that specifying the explicit form of Ŵ is not necessary for
the proof of the HK theorem, it thus holds for any general two-particle interac-
tion. While solving for the density variationally is a formally exact approach to
the many-body system, the exact form of T [n] and W [n] is unknown and must be
approximated. A typical calculation of the ground state density proceeds via the
so-called Kohn-Sham equations, which simplify finding a good approximation for
T [n].

2.2.2 The Kohn-Sham equations
The Kohn-Sham (KS) equations were first introduced in 1965 [9]. They describe
an auxiliary system of non-interacting particles which will produce the same ground
state density as a corresponding interacting system. The equations are given by[

−∇
2

2 + vs (r)
]
ϕj (r) = εiϕj (r) , ns (r) =

N∑
j=1
|ϕj (r)|2 , (2.25)

where ϕj, j = {1, . . . , N} are the so-called KS orbitals, with N being the number of
electrons. vs (r) is the KS potential, an auxiliary single-particle potential which has
the property that the corresponding density ns (r) matches the ground state density
of the interacting system, i.e. ns (r) = n0 (r). As the HK theorem is valid for any

7



2.2 Density functional theory

general two-particle interaction, the ground state density of the KS system is that
density which minimizes the KS energy:

Es [n] = Ts [n] +
∫

dr vs (r)n (r) , (2.26)

where Ts is the KS kinetic energy which is given by:

Ts [n] = 1
2

N∑
i=1

∫
dr ϕ∗j (r)∇2ϕj (r) . (2.27)

We will use the remainder of this section to sketch the derivation of the form of
vs (r). For a more in-depth derivation, the reader is referred to the book by Dreizler
and Gross [10]. We start by rewriting eq. 2.24 as

E0 [n] =Ts [n] +
∫

dr vext (r)n (r)

+ 1
2

∫ ∫
dr dr′ n (r)w (r, r′)n (r′) + Exc [n] . (2.28)

w (r, r′) is any two-particle interaction and the exchange-correlation (XC) functional
Exc [n] is formally defined as

Exc [n] = FHK [n]− 1
2

∫ ∫
dr dr′ n (r)w (r, r′)n (r′)− Ts [n] , (2.29)

with FHK given by eq. 2.24. Due to the HK variational principle (eq. 2.23), E0 [n]
is stationary around the minimum density n0 (r). We thus take the functional
derivative of eq. 2.28 with respect to n (r) and find that

vs (r) = vext (r) +
∫

dr′ w (r, r′)n0 (r′) + vxc [n0] (r) (2.30)

with the exchange-correlation potential

vxc [n0] (r) = δExc [n]
δn (r)

∣∣∣∣∣
n0

. (2.31)

For a normal electronic system, w will correspond to the electron-electron repulsion
(Hartree interaction vH) and we have:

vs (r) = vext (r) +
∫

dr′ n0 (r′)
|r − r′|

+ vxc [n0] (r) (2.32)

= vext (r) + vH [n0] (r) + vxc [n0] (r) . (2.33)

As vs depends on the ground state density n0, it is necessary to solve eqs. (2.25),
(2.32) self-consistently. Despite this, the KS system is computationally much easier
to solve than the original, interacting system, as it no longer is limited by expo-
nential scaling (fig. 2.1). One may raise the question whether there exists for every
interacting system a potential vs which makes it possible to represent it as a non-
interacting system. This question of non-interacting v-representability has been
addressed previously and turns out not to be a limitation in practice. The reader is
again referred to the book by Engel and Dreizler [7] for a more in-depth explanation.

8



2.2 Density functional theory

Figure 2.1
Schematic comparison of an interacting, Schrödinger equation approach (left
column) and a KS system (right column). In a wave function approach, the
complexity grows exponentially, as can be seen by the number of edges. In the KS
system, electrons are non-interacting and no edges are present. Although the
environment changes (vxc ([n0] ; r) 6= 0), this barely increases the computational
cost. The KS system is formally exact and reproduces the same density n (r) as
the interacting density.
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2.2 Density functional theory

2.2.3 Extensions of DFT
All of our DFT considerations so far were only concerned with the charge density.
While every quantity can be derived from the density alone due to the HK theorem,
the functionals to do so are often not known. A standard approach to circumvent this
problem is to add extra densities to the KS system, which will then be reproduced
exactly alongside the charge density. We showcase two examples of extensions of
DFT in this section.

Spin-DFT

A prime example of an added extra density is the magnetization density. The
magnetization and spin-based phenomena in general are, due to the functionals
being unknown, typically not attainable from the charge density. To circumvent
this problem, Barth and Hedin [11] came up with spin-density functional theory
(SDFT), where the magnetization is an additional density. The aim is then to find
a non-interacting system which reproduces the correct charge and magnetization
density of an interacting system, ns (r) = n (r) , ms (r) = m (r). We extend the
Hamiltonian (eq. 2.17) to be:

Ĥ = T̂ + Ŵ +
∫

dr vext (r) n̂ (r) + 1
2cBext (r) · m̂ (r) . (2.34)

Here, m̂ is the operator of the magnetization density

m̂ (r) =
N∑
i

σiδ (r − ri) , σ =

σxσy
σz

 (2.35)

and σi are the Pauli matrices. Analogous to the ground state charge density, we can
define the ground state magnetization density:

m0 = 〈Ψ0| m̂ (r) |Ψ0〉 . (2.36)

It is then possible to derive a one-to-one correspondence similarly to the HK theorem,

|Ψ0〉 ↔ (n0,m0) (2.37)

and consequently, we can define a ground state functional:

E [n,m] =F [n,m] +
∫

dr vext (r) n̂ (r) +Bext (r) · m̂ (r) (2.38)

F [n,m] = 〈Ψ [n,m]| T̂ + Ŵ |Ψ [n,m]〉 (2.39)

with the minimum condition that

E [n0,m0] < E [n,m] ∀ (n,m) 6= (n0,m0) . (2.40)

10



2.2 Density functional theory

In this case, a minimization of the energy with respect to the non-interacting orbitals
ϕ will lead to a KS system which is spin-dependent:

[
−∇

2

2 + vs [n,m] (r) + 1
2cBs [n,m] (r) · σ

]
ϕj (r, σ) = εiϕj (r, σ) . (2.41)

where

vs [n,m] (r) = vext (r) + vH [n] (r) + δExc [n,m]
δn (r)

∣∣∣∣∣
m︸ ︷︷ ︸

vxc[n,m](r)

(2.42)

Bs [n,m] (r) = Bext (r) + 2c δExc [n,m]
δm (r)

∣∣∣∣∣
n︸ ︷︷ ︸

Bxc[n,m](r)

(2.43)

Similar to how vxc (r) represents many-particle exchange and correlation effects act-
ing on the charge density,Bxc (r) contains these effects for the magnetization density.

Current-Spin-DFT

As a second example, we will mention that one can further extend the KS equations
to also reproduce the exact interacting current density j. The formal theory is
current-spin-density functional theory [12]. The total current in a stationary system
is given by:

j = jp + 1
2∇×m (r)− 1

c
Aext (r)n (r) , (2.44)

where jp is the paramagnetic current density, which can be conveniently expressed
with the anti-commutator {. . . , . . . },

ĵp (r) =
N∑
i=1

1
2 {δ (r − ri) , p̂i} . (2.45)

As can be seen, the second and third term in eq. 2.44 will be correctly reproduced
if n (r) and m (r) are correctly reproduced. Therefore, a current extension of DFT
only needs to reproduce the exact paramagnetic current jp, which is achieved by
introducing an exchange-correlation vector potential Axc. The full KS equations for
n,m, jp are given by

{(
−i∇+ 1

c
Aext (r) +Axc (r)

)2
+ vext (r) + vH (r) + vxc (r)

+ 1
2c (Bext (r) +Bxc (r)) · σ

}
εiϕj (r, σ) = εiϕj (r, σ) . (2.46)

11



2.2 Density functional theory

Analogous to the previous DFT extensions, we have

vxc (r) = δExc [n, jp,m]
δn (r)

∣∣∣∣∣
jp,m

Axc (r) = c
δExc [n, jp,m]

δjp (r)

∣∣∣∣∣
n,m

Bxc (r) = 2c δExc [n, jp,m]
δm (r)

∣∣∣∣∣
n,jp

. (2.47)

Current-Spin-DFT in this form has not been used much, mostly due to the lack of
good approximations for Axc (r). A proposed functional by Vignale and Kohn [13]
was found to yield mixed results, performing reasonably well for optical properties
of metals [14] but very badly for semiconductors [15]. Often it is simply assumed
that Axc (r) = 0.

2.2.4 Approximate functionals

Charge density-dependent functionals

A central quantity in all our considerations up to this point is the XC energy func-
tional Exc [n], which represents quantum many-body effects. As we have already
mentioned, the XC-functional needs to be approximated. The oldest approximation
is the local-density approximation (LDA) [8]. As the name suggests, the LDA only
depends on the density locally:

ELDA
xc [n] =

∫
d3r ehom

xc (n (r)) , (2.48)

where ehom
xc (r) is the XC-energy density of the homogeneous electron gas. This is

justified because the definition of Exc [n] (eq. (2.29)) is universal, i.e. it does not
depend on any external potential, a general Exc can therefore be derived from any
electronic system. While the exchange (X) contribution is known analytically, the
correlation (C) has to be approximated. Commonly in use is a parametrization of
the correlation energy [16] based on a Monte-Carlo simulation of the homogeneous
electron gas [17]. The correlation energy as a function of the density is shown in fig.
2.2. Despite its simple form, LDA performs surprisingly well for various systems.

We will briefly state that developing better functionals has been ongoing research
throughout the years. A common goal is to also account for non-local effects in Exc.
The generalized gradient approximation (GGA) therefore also includes the first order
gradient of the density, EGGA

xc [n,∇n] [18]. Meta-GGA includes an additional second-
order gradient in the KS-orbitals, EmGGA

xc [n,∇n,∇2ϕ]. Parametrizations exist for
both approximations [18, 19] and both approximations generally perform better than
LDA.

12



2.2 Density functional theory

Figure 2.2
The correlation energy of the homogeneous electron gas as a function of the
Wigner-Seitz radius rs. rs is the radius corresponding to the average spherical
volume per electron in the system. The Perdew-Wang fit [16] matches the
Monte-Carlo data by Ceperley-Alder [17] and interpolates smoothly between the
Gell-Mann-Brueckner high density [20] and the Wigner low density limit [21].
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2.2 Density functional theory

Charge- and spin-dependent functionals

We will now focus on how to extend charge-dependent functionals to incorporate
spin-dependence as well. As can be seen from eq. 2.38, such a functional would need
to depend on n (r) and m (r). The simplest functional within SDFT is the local
spin-density approximation (LSDA), a spin-dependent version of the LDA, which
we will derive in the following. A helpful quantity in SDFT is the spin-density
matrix, which is given by:

ρ (r) = 1
2
(
n (r) I2 + σ ·m

)
= 1

2

(
n (r) +mz (r) mx (r)− imy (r)
mx (r) + imy (r) n (r)−mz (r)

)
. (2.49)

For simplicity, we will start with considering a collinear system, i.e. the magnetiza-
tion and the magnetic field are parallel to each other (Bext ‖ m) and are aligned
with a given axis at every point in space (we choose ez). As a result, n,mz 6= 0 and
mx,my = 0. vxc (r) and Bz

xc (r) are therefore the only finite XC fields in the system.
Because Bz

xc (r) couples only to σz this results in two decoupled equations for the
spin-up and spin-down components with a different local potential,

vxc,↑ (r) = vxc (r) + 1
2cB

z
xc (r) , vxc,↓ (r) = vxc (r)− 1

2cB
z
xc (r) . (2.50)

The spin-density matrix (eq. 2.49) is diagonal in this case and the diagonal elements
are typically represented as

n↑ (r) = 1
2 (n (r) +mz (r)) , n↓ (r) = 1

2 (n (r)−mz (r)) . (2.51)

Physically, n↑, n↓ correspond to the charge density of only spin-up and only spin-
down electrons, respectively. We can thus also express the XC energy for collinear
systems with n↑, n↓:

ELSDA
xc [n↑, n↓] =

∫
d3r ehom

xc (n↑ (r) , n↓ (r)) , (2.52)

where ehom
xc (n↑ (r) , n↓ (r)) is now the XC-energy density of the spin-polarized ho-

mogeneous electron gas. Similarly to the LDA, the exchange part is known exactly.
The correlation part has been generalized to spin-dependent systems based on an-
alytical spin-scaling considerations [22] and was later found to match Monte Carlo
simulations [23].
The corresponding XC-potential can be obtained via

vLSDA
xc,s [n↑, n↓] (r) = δELSDA

xc
δns (r) = ∂ehom

xc (ñ↑, ñ↓)
∂ñs

∣∣∣∣∣
ñs=ns(r)

, s = {↑, ↓} . (2.53)

We limited our discussions to collinear systems up to this point. In non-collinear
systems the spin-density matrix (eq. 2.49) is no longer diagonal and it is not sufficient
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2.3 Time-dependent density functional theory

to describe the system only by n↑, n↓. A simple way to extend the present LSDA
to non-collinear systems is to treat every point in space as locally collinear [24]. In
practice, one then has to rotate the spin-density matrix (eq. 2.49) at every point in
space with a unitary transformation such that it becomes locally diagonal

ρ̃ (r) = U (r) ρ (r)U † (r) =
(
ñ↑ (r) 0

0 ñ↓ (r)

)
. (2.54)

We can then apply eq. 2.53 on the diagonal and perform the inverse rotation,

vxc [n,m] (r) = U †
(
vLSDA

xc,↑ [ñ↑, ñ↓] (r) 0
0 vLSDA

xc,↓ [ñ↑, ñ↓] (r)

)
U. (2.55)

By working out U (r) it is possible to show that the matrix vxc can be separated
into a scalar XC-potential vxc (r) and a magnetic XC-field Bxc (r),

vLSDA
xc [n,m] (r) = 1

2
(
vLSDA

xc,↑ [ñ↑, ñ↓] (r) + vLSDA
xc,↓ [ñ↑, ñ↓] (r)

)
,

BLSDA
xc [n,m] (r) = c

(
vLSDA

xc,↑ [ñ↑, ñ↓] (r)− vLSDA
xc,↓ [ñ↑, ñ↓] (r)

) m (r)
|m (r)| . (2.56)

This is the form in which the non-collinear LSDA is typically presented and which
is employed in calculations throughout this thesis.

2.3 Time-dependent density functional
theory

When treating explicitly time-dependent effects like time-dependent currents or
fast magnetization switching, we have to use the time-dependent version of the
Schrödinger equation (eq. 2.16). In analogy to the static case, we first consider an
electronic Hamiltonian with a now explicitly time-dependent external electrostatic
potential

Ĥ = T̂ + Ŵ + V̂ext (t) . (2.57)
Solving for the wave function via eq. 2.16 is again a hopeless endeavor for more than
a few particles. The HK theorem, however, is only valid for static, time-independent
phenomena, i.e. Vext (r, t) = Vext (r). The derivations based on the HK theorem are
not sufficient for time-dependent systems. We will therefore, in this section, focus
on how to treat explicitly time-dependent systems. This section is partially based
on the textbook by Carsten Ullrich [25].

2.3.1 Fundamental Theorems

Runge-Gross Theorem

In 1984 Runge and Gross formulated what is nowadays known as the Runge-Gross
(RG) theorem [26]. The RG theorem can be understood as a time-dependent ver-
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2.3 Time-dependent density functional theory

sion of the HK theorem. It states that a one-to-one mapping between the time-
dependent external potential vext (r, t) and the interacting time-dependent electron
density n (r, t) = 〈Ψ (t)| n̂ (r) |Ψ (t)〉 exists. Similarly to how the HK theorem is the
basis of DFT, the RG theorem is the basis of time-dependent density functional
theory (TDDFT). Runge and Gross managed to prove that two densities n (r, t),
n′ (r, t) evolving from the same initial state |Ψ0〉 under the two potentials vext (r, t),
v′ext (r, t) are always different, if the potentials differ by more than a merely time-
dependent function,

vext (r, t) 6= v′ext (r, t) + c (t) RG−−→ n (r, t) 6= n′ (r, t) . (2.58)

From the uniqueness of the map follows in return that the time-dependent density
determines the time-dependent potential up to a function which only depends on
time. Subsequently, using the time-dependent Schrödinger equation (eq. (2.16)), the
time-dependent many-particle state is also determined by the many-body density
and the initial state up to a time-dependent phase factor, |Ψ (t)〉 = |Ψ [n,Ψ0] (t)〉.
Such a time-dependent phase factor does not have any physical meaning, therefore
all time-dependent observables can be calculated from the time-dependent density
and the initial state:〈

Ô
〉

(t) = 〈Ψ (t)| Ô |Ψ (t)〉 = 〈Ψ [n,Ψ0] (t)| Ô |Ψ [n,Ψ0] (t)〉 = O [n,Ψ0] (t) . (2.59)

If the system is in its ground state at t = 0, it follows from the HK theorem that
|Ψ0〉 = |Ψ0 [n0]〉 meaning that all observables can, in principle, be calculated from
the time-dependent density alone.

Van Leeuwen theorem

While the RG theorem guarantees a mapping between the potential vext (r, t) and
the electron density n (r, t) and thus lays the foundation for TDDFT, it does not
prescribe a practical approach to actually calculating the time-dependent, interact-
ing density. It is not a priori obvious that a generalized, time-dependent KS system
exists. Such a system would be a system of non-interacting particles which pro-
duces the same density as a system of interacting particles, ns (r, t) = n (r, t) for all
t. This “time-dependent v-representability” problem was solved by van Leeuwen in
1999 [27].

Van Leeuwen proved that for any time-dependent system with interaction Ŵ
evolving from an initial state |Ψ0〉 under the potential v (r, t) according to eq. 2.16,
there exists a system with a different interaction Ŵ ′ evolving from a different initial
state |Ψ′0〉 under a different potential v′ (r, t) (still according to eq. 2.16), which has
the same time-dependent density for all t, i.e. n (r, t) = n′ (r, t). Furthermore, van
Leeuwen showed that v′ (r, t) is uniquely determined (up to a merely time-dependent
function) by the density n (r, t), the initial states |Ψ0〉 , |Ψ′0〉 and the interactions
Ŵ , Ŵ ′. The only restriction is that the initial states must have the same density
and time derivative of the density at t = 0: This statement is often called van
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2.3 Time-dependent density functional theory

Leeuwen theorem. For the special case that Ŵ = Ŵ ′ and |Ψ0〉 = |Ψ′0〉 the theorem
states that an unique v′ (r, t) exists which yields n (r, t), thus the RG emerges as a
special case from the van Leeuwen theorem. Another relevant special case is that of
a non-interacting system, Ŵ ′ = 0. If a non-interacting state |Φ0〉 exists which yields
the interacting density and its time derivative, then there exists a unique potential
(up to a merely time-dependent function) vs (r, t) which reproduces the interacting
density for all t. This makes a time-dependent KS system possible.

2.3.2 Time-dependent Kohn-Sham equations
The van Leeuwen theorem not only tells that a time-dependent Kohn-Sham system
with a single-particle potential vs (r, t) exists, it also gives away the properties of
such a potential: For a given external potential, it is a functional of the interacting
ground state |Ψ0〉, the non-interacting ground state |Φ0〉 and the electron density n:

vs (r, t) = vs [Ψ0,Φ0, n] (r, t) . (2.60)

If the system is initially in the ground state, the HK theorem states that |Ψ0〉, |Φ0〉
are functionals of the density, therefore the potential will be a functional of the
density alone, vs [n] (r, t). The time-dependent KS system is then given by:

∂tϕj (r, t) =
[
−∇

2

2 + vs (r, t)
]
ϕj (r, t) , ns (r, t) =

N∑
i=1
|ϕj (r, t)|2 . (2.61)

This set of equations is similar to the ground state Kohn-Sham equations (eq. 2.25),
but the Kohn-Sham orbitals, the single-particle potential and the electron density
are now explicitly time-dependent. The time-dependent potential for electrons in-
teracting via the Coulomb interaction is given by:

vs [n] (r, t) = vext (r, t) +
∫

dr′n (r′, t)
|r − r′|

+ vxc [n] (r, t) . (2.62)

While the Hartree potential depends on the density instantaneously, the time-
dependent XC potential is usually memory-dependent. That means that vxc does
not depend only on the density at time t but it usually depends on the density
at previous times t′ < t as well. It is not possible to define the time-dependent
vxc via a functional minimization, as the energy is not generally conserved in a
time-dependent system. It is, however, possible to define it via the stationary prin-
ciple of the quantum mechanical action [28]. Analogous to the static XC potential
vxc [n] (r), the time-dependent version vxc |n] (r, t) is also not know exactly and needs
to be approximated.

2.3.3 Extensions to TDDFT
Similarly to the ground state, all time-dependent observables are in principle ob-
tainable from the time-dependent density alone (eq. 2.59). For many important
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quantities, however, practical functionals are unknown and various extensions to
TDDFT incorporating extra densities exist. We will only briefly mention some of
them here. Examples include time-dependent spin density functional theory (TDS-
DFT) for treating spin-polarized systems [29], where both, an external potential
vext (r, t) and an external magnetic field Bext (r, t) are present. A corresponding KS
then reproduces the interacting time-dependent densities ρ (r, t) ,m (r, t). Another
extension is time-dependent current density functional theory (TDCDFT), where
an external vector potential Aext (r) and the current density j (r, t) are the conju-
gated variables [30]. While a proof of the van-Leeuwen theorem exists for TDCDFT
[31], no such proof currently exists for magnetic systems. We will further explore
extensions to TDDFT in chapter 3, where we treat magnetic materials subjected to
an external laser field with TDDFT.

2.3.4 Time-dependent functionals
Much like the static KS system (eq. 2.25), the time-dependent KS system (eq. 2.61)
relies on an XC-potential (eq. 2.62) to guarantee that the time-dependent, non-
interacting system reproduces the true densities of the time-dependent interacting
system. Finding a good approximation for vxc (r, t) is therefore essential for an
accurate calculation. This time, however, the XC-potential does not only have to
absorb the spatial complexity of the interacting system, it has to account for the
temporal complexity as well. While the XC potential is a unique functional of
the time-dependent density only (assuming the system is originally in its ground
state), vxc [n] (r, t), it generally depends on the whole history of the density n (r, t),
i.e. the XC potential depends on n (r, t′) , t′ < t. The simplest time-dependent
approach is treating vxc [n] (r, t) adiabatically, i.e. assuming that vxc [n] (r, t) evolves
infinitesimally slowly in time. Every time t can then be considered as an independent
physical system, thus the history dependence vanishes. We can then use the exact
ground state XC functional with the instantaneous density as an input at every t,

vA
xc [n] (r, t) = vt=0

xc [ñ] (r) |ñ(r)=n(r,t) . (2.63)

The exact ground state functional vt=0
xc [ñ] (r), however, is also not known. In

the most famous approximation in TDDFT, the LDA is used as the ground state
functional, consequently this approximation to vxc [n] (r, t) is called adiabatic local
density approximation (ALDA):

vALDA
xc [n] (r, t) = vLDA

xc [ñ] (r) |ñ(r)=n(r,t) . (2.64)

vxc [n] (r, t) does not evolve adiabatically when computing real systems, therefore
there is always an error introduced when treating the XC potential adiabatically.
We emphasize again that this is an additional approximation. Even with the exact
spatial functional, non-adiabatic effects would not be captured. Truly non-adiabatic
functionals are currently not available. Considering that the ALDA is a very crude

18



2.4 Relativistic effects

approximation, being local in time and space, it performs surprisingly well for exci-
tation energies of finite systems. In solids, unfortunately, ALDA has shown problems
when it comes to describing excitation energies [32]. The adiabatic approximation
can of course be employed for the extensions of TDDFT as well. For example we
can simply formulate an adiabatic local spin-density approximation (ALSDA) by
using the LSDA (eq. 2.56):

vALSDA
xc [n,m] (r, t) = vLSDA

xc [ñ, m̃] (r)
∣∣∣∣∣ ñ(r)=n(r,t)
m̃(r)=m(r,t)

,

BALSDA
xc [n,m] (r, t) = BLSDA

xc [ñ, m̃] (r)
∣∣∣∣∣ ñ(r)=n(r,t)
m̃(r)=m(r,t)

, (2.65)

which is also the approximate functional we will employ in chapter 3 when calculat-
ing the time-dependent response of magnetic materials to external fields.

2.4 Relativistic effects
As stated before, the Schrödinger equation (eq. 2.15) is a non-relativistic equation
and is therefore only valid in the limit of slowly moving electrons. The proper
theory for describing relativistic many-electron systems interacting with a photonic
field is quantum electrodynamics (QED). While a relativistic density functional
theory (RDFT) has been defined rigorously [33–35], it is not easily employed. The
calculation of observables, for example, is much more involved due to the presence of
anti-particle states. A further problem is that the central observable is now the four
current jµ, consisting of the charge density and the current density. Information
about the magnetization cannot be directly accessed via the four current.

When treating systems with relevant relativistic contributions, one thus typically
employs a relativistic expansion of QED. The order of terms in this expansion is given
by the order of the coefficient 1/c, with c being the speed of light. This expansion
has been evaluated up to the order 1/c2 by Itoh [36]. The result is given by:
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H =
∑
j

{1
2p

2
j −

1
8c2p

4
j + 1

c
p ·Aext (rj) + 1

2c2Aext (rj)2
}

(2.66)

+
∑
j

{
−Φext (rj) + 1

2cσj ·Bext + 1
4c2σj · [Eext (rj)× pj] + π

2c2ρext (rj)
}

(2.67)

+ 1
2
∑
j 6=k

{
1

|rj − rk|
− π

c2 δ (rj − rk)
}

(2.68)

− 1
8c2

∑
j 6=k

{[
3 [σj · (rj − rk)] [(rj − rk) · σj]

|rj − rk|5
− σj · σk
|rj − rk|3

]

+ 8π
3 δ (rj − rk)σj · σk + 2

[
3 [pj · (rj − rk)] [(rj − rk) · pj]

|rj − rk|3
+ pj · pk
|rj − rk|

]}
(2.69)

− 1
4c2

∑
j 6=k

{
2σj · [(rk − rj)× pk]

|rj − rk|3
+ σj · [(rk − rj)× pj]

|rj − rk|3

}
. (2.70)

In eq. 2.66 are relativistic kinetic energy corrections and the contributions from an
external vector potential. Eq. 2.67 comprises the interaction with external fields and
consists of an external electrostatic potential, a Zeeman term and a contribution of
an external electric field coupling to the spin of an electron via the electron’s orbit.
The last term in eq. 2.67 is a correction to the interaction with the external potential
due to the spread of the charge of the electron and is typically called “Darwin-
term”. Here ρext (r) is that external charge density which gives rise to Φext (r), thus
∆Φext (r) = −4πρext (r). Eq. 2.68 is the Coulomb interaction between electrons with
an additional correction term. This correction term is related to the Darwin-term
in that it describes the overlap with other charges and is therefore often called “two-
electron Darwin-term”. The terms in eq. 2.69 correspond to the magnetic dipole
interaction: The first term is a dipole-dipole interaction due to the electronic spin.
The second term guarantees the correct limit for r → r′ and also exists in classical
electrodynamics [37]. The last term is a dipole-dipole interaction due to the orbital
magnetization of electrons. Lastly eq. 2.70 includes interactions between electronic
spin and electronic motion. The first term is the interaction of an electron’s spin
with the magnetic field generated by the current from other moving electrons. The
second term is an interaction of the spin of an electron with its own motion. This
is because a moving electron, in its rest frame, will experience an effective magnetic
field.

We can easily see that we can extract the terms forming the gauge-invariant elec-
tronic Schrödinger equation eq. 2.15. Out of the additional relativistic corrections
to second order the most important contributions for this work are the spin-orbit
coupling (SOC) and the magnetic dipole interaction (MDI). The SOC term

HSO = 1
4c2

∑
j

σj · [Eext (r)× pj] = 1
4c2

∑
j

σj · [∇Φext (r)× i∇] (2.71)
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is notable as it is the lowest order term which allows a coupling of an external electric
field to the spin of an electron. To second order, the Zeeman term and the SOC are
the only terms which couple external fields to the value of a single spin and thus
break conservation of spin momentum. It is therefore expected that both terms are
crucial for a simulation of ultrafast demagnetization (cf. chapter 3).

The MDI (eq. 2.69) is the quantum mechanical analog to the classical, magne-
tostatic interaction between two magnetic dipoles. It is noteworthy in that it is the
leading order magnetic-magnetic interaction. The orbital contribution to the MDI
is typically small and therefore not considered in this work. For the MDI, we are
thus left with

HDP = − 1
8c2

∑
j 6=k

{[
3 [σj · (rj − rk)] [(rj − rk) · σj]

r5
jk

− σj · σk
r3
jk

]

+ 8π
3 δ (rj − rk)σj · σk

}
. (2.72)

This interaction will be discussed later in more detail. It can be a source of non-
trivial magnetic order.

2.5 Numerical implementation
We use the Elk electronic structure code for all of our calculations. While Elk is a
general code that can handle atoms and molecules, it was designed specifically for
solids. In this section we will showcase some additional approximations made in the
implementation. For more information we refer to the Elk code documentation [38].

Periodic systems

For solids, standard periodic boundary conditions are employed. The central the-
orem is Bloch’s theorem, which we will briefly review in the following. Bloch’s
theorem states that the eigenstates of a non-interacting Schrödinger equation with
a periodic potential V (r +R) = V (r) are given by Bloch waves

ϕk (r) = 1√
V
eik·ruk (r) , uk (r +R) = uk (r) . (2.73)

Thus the Bloch waves consist of a periodic function with the same periodicity as
the potential V multiplied by a plane wave factor. Furthermore, the reciprocal wave
vectors k can be restricted to the first Brillouin zone only. This is very important
as it allows for a simple representation of eigenstates which extend throughout the
whole solid. We can use the Bloch waves (eq. 2.73) to derive a Schrödinger equation
(eq. 2.15) for each k-vector,

Hkuk (r) =
[1
2 (−i∇+ k)2 + V (r)

]
uk (r) = εkuk (r) . (2.74)
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For each k, this is a boundary value problem for a single unit cell with a set of
solutions indexed by j. The complete set of eigenstates is therefore given by ujk (r)
with the eigenenergies εjk. The states ujk (r) can be made orthonormal on the unit
cell. With the eigenstates, we can simply obtain the expectation value of a single
particle via

〈ϕ| Ô |ϕ〉 = Ω
(2π)3

∫
BZ
d3k

∑
j

fjk 〈ϕjk| Ô |ϕjk〉 , (2.75)

where Ω is the volume of a unit cell. Numerically, eq. 2.74 can be efficiently paral-
lelized over k-points, as there is an independent differential equation for every k (k
is a quantum number, Ĥ is block-diagonal in k). The k-integral in eq. 2.75 cannot
be evaluated exactly and is in practice approximated by a sum over a discrete set of
k-points. Finally we mention that Bloch’s theorem and eqs. 2.74, 2.75 can be easily
generalized to spin-dependent and time-dependent systems.

First and second variational step

In the Elk code, the KS equations for periodic systems are solved via a two-step
process. In the “first-variational” step a purely electrostatic Hamiltonian with the
kinetic energy, a scalar potential and an electric field is constructed

Ĥ = T̂s + V̂ext +E · r̂ + V̂xc (2.76)

and diagonalized, Ĥ |ϕj〉 = εj |ϕj〉. In the “second-variational” step, non-scalar
effects are added, using the first-variational step as a basis:

Hij = εiδij + 〈ϕi| σ̂ · f + g · ∇ |ϕj〉 . (2.77)

Here f contains all relevant magnetic and spin-dependent effects of the system,
such as the Zeeman effect, SOC or the MDI and g typically corresponds to a vector
potential in the system. Elk treats magnetism fully non-collinear instead of making
the usual separation into spin-up and spin-down orbitals and potentials. To that
end, the orbitals are fully variational spinor wavefunctions

ϕjk (r) =
(
u↑jk (r)
u↓jk (r)

)
eik·r (2.78)

from which follows for the charge density n (r) = ∑
jk ϕ

†
jk (r)ϕjk (r) and for the

magnetization density m (r) = ∑
jk ϕ

†
jk (r)σϕjk (r). Both, ultrafast (ch. 3) and

ultra long-range (ch. 4) calculations are solved in the second-variational basis. As
we do not update the first-variational basis, a large first-variational basis has to be
chosen initially to allow for a sufficiently large second-variational basis.

The basis

Elk is an all electron code using the APW+LO (augmented plane waves plus local
orbitals, ref. [39]) basis. The representation of a lattice periodic Bloch state |u〉 for
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given n,k in this basis is

|u〉 =
lmax∑
l=0

l∑
m=−l

N l
max∑
n=1

blmn
∣∣∣ψLO

lmn

〉
+

NG
max∑
G

aG
∣∣∣ψAPW
G

〉
. (2.79)

The central concept of the APW+LO basis is that the unit cell is divided into two
different areas (fig. 2.3). The first term on the right-hand side in eq. 2.79 is concerned
with the region in a sphere around each nucleus (“muffin-tin”, MT region). The
sums run over the azimuthal number l, the magnetic number m and the number
of local orbitals (LO) for a given l, n. lmax and N l

max have to be chosen and can
be increased for improved convergence. Inside the MTs the LOs are expanded in
spherical harmonics,

〈s, r, θ, φ| ψLO
lmn

〉
= f slmn (r)Ylm (θ, φ) . (2.80)

Outside the MTs the LOs evaluate to zero and do not contribute. The region outside
of the MTs is called “interstitial region” (IR) and is represented by the second term
in eq. 2.79. NG

max is the number of reciprocal lattice vectors G in the expansion,
which is determined from an appropriately chosen cutoff length. In the IR, each
APW is expanded with plane waves, i.e.

〈s, r|ψAPW
G 〉 ∼ eiG·r. (2.81)

The APWs are non-zero inside the MTs and expanded into radial functions. The
form of the radial functions is similar to the LOs, however, the coefficients are
not determined variationally. Instead, the radial functions have to be chosen such
that the total wave function is continuous at all MT boundaries. We emphasize
that the concept of MTs is of course not a physical concept but only an efficient
numerical choice. Close to the nuclei the electrostatic potential is very strong and
the wave function is rapidly changing (which can be efficiently represented by radial
functions). Far away from the nuclei, the wave function drops off rapidly and is only
weakly changing (almost like free electrons, best described by plane-waves). Thus
when subdividing the unit cell into the IR and MTs of appropriate size, the total
number of necessary basis functions can be drastically reduced. Finally we mention
that APW+LO is a non-orthogonal basis, thus a generalized eigenvalue solver is
required. For further details we refer to the text book by Singh [40].

Core and valence States

We already mentioned that Elk is an all-electron code. Especially for heavy atoms,
the low lying electronic states will have a very large kinetic energy, to the extent that
it is no longer accurate enough to treat them with the Schrödinger equation. This
is solved in the ELK code by splitting the electronic states into core and valence
states. Core states are all low-lying states which are strongly bound, have a large
kinetic energy and are completely contained in the MTs. These states are solved
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Figure 2.3
Schematic of the APW+LO basis. In a sphere around each nuclei (muffin-tins,
“MT”), the wave function is expanded in spherical harmonics. In the remaining
region (interstitial region, “IR”), the wave function is expanded in plane waves.

fully relativistically with the Dirac equation. Valence states refer to the states
which are farther away from the atomic cores, are less strongly bound and have less
kinetic energy. All valence states are solved with the scalar relativistic Schrödinger
equation [41], which includes the Darwin-term and a relativistic mass correction (cf.
section 2.4). The distinction between core and valence states becomes particularly
important in chapters 3 and 4. For both time-dependent and large-scale calculations
we do not re-evaluate the core states, as a significant change to the core states is only
expected for a very strong external perturbation. For small to moderate changes in
the external potentials and fields the electronic response is dominated by the loosely
bound valence electrons.
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3. Ultrafast demagnetization

In the late 1990s it was experimentally observed that femtosecond optical pulses
interacting with magnetic matter lead to an ultrafast reduction (~100 fs) of the
observed macroscopic magnetization [1–3]. This observation was nothing short of
a scientific breakthrough and ultrafast demagnetization (UFD) is still among the
fastest known ways of altering the magnetization in a material. Not surprisingly, this
discovery drew significant scientific interest and the dream of a magnetic device with
femtosecond read/write times was born. Despite ample experimental and theoretical
research, the driving mechanisms for UFD remain controversial. Experimentally, it
remains difficult to achieve precise measurements at ultrafast time-scales and the
exact electronic behavior is of course not accessible. Theoretically, one has to deal
with an out of equilibrium, interacting many-particle system, for which methods are
scarce. As a result, theoretical descriptions are often phenomenological and do not
provide a microscopic understanding.

In this chapter, we report on two joint experimental and theoretical studies to
unravel the physics of UFD. We will first start with briefly discussing previously
suggested mechanisms for UFD. We will then give a basic review of the field of
magneto-optics, on which the experimental measurements are based. We continue
with a detailed explanation of our TDDFT approach to UFD. Finally, we show a
direct comparison of experimental and theoretical results. We are able to extract
the fundamental microscopic phenomena driving UFD at the fastest time scales. For
a layered system of Co/Cu(001), we obtain the best reported agreement between
experiment and theory so far.

3.1 First observation and suggested explanations

A common phenomenological approach to UFD is the “three-temperature model”,
which assigns three different temperatures to the electron system, the spin system
and the lattice system [1, 42, 43]. This model assumes that a short laser pulse leads
to a different amount of heating and thus a different effective temperature within
the electronic, spin and lattice systems. The heat induced by the laser will during
the first ≈ 200 fs mostly affect the electronic and the spin system, resulting in an
increase in the spin-temperature and hence a loss in the magnetic moment. At
later times, the coupling between the electrons and the lattice will become more
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3.2 Ultrafast magneto-optics

important, resulting in a heat flow from the electron and spin systems to the lattice
system. As a consequence, the spin system will cool down and slowly relax back to
its original magnetic configuration. While this mechanism describes the observed
behavior quite well, it remains a phenomenological approach and does not provide
insight into the microscopic details.

Demanding a microscopic explanation has, however, not narrowed down possible
mechanisms but instead resulted in several proposed effects which may lead to ultra
fast demagnetization. Already in 2000, it was suggested that UFD might be due to
spin-orbit driven spin-flips during the excitation of the laser pulse [44]. However, in
all experiments carried out so far, UFD does not occur during the excitation but is
delayed and happens only shortly after the laser pulse is over. Another proposed
mechanism for UFD was Elliott-Yaffett spin-flip scattering [45]. This describes the
scattering of electrons with phonons in which the electronic spin is transferred to the
angular momentum of phonons. It has been questioned, however, whether the scat-
tering rate is high enough to fully explain the observed amount of demagnetization.
The so-called superdiffusive model was put forward in 2010 [46] and assumes that
majority spin-carriers are carrying magnetization away from the area of excitation.
A final possible explanation we want to mention was proposed by Krieger et. al [6]
and based on their parameter free, ab-initio treatment of the excitation process via
TDDFT. Their conclusion was that demagnetization is a two-step process, where
the laser pulse excites electrons and the demagnetization occurs due to subsequent
spin-orbit mediated spin-flips of the remaining electrons.

The results obtained in this thesis challenge the superdiffusive model as the
sole explanation for UFD and support a spin-orbit coupling mediated loss of the
magnetization.

3.2 Ultrafast magneto-optics
Investigating magnetic phenomena on femtosecond time scales is also experimentally
highly non-trivial. The only currently available methods on these time scales are
“pump-probe” experiments. In a pump-probe experiment, a sample is first excited
at a time t = 0 with a strong laser pulse (“pump” pulse) to kick the system out
of equilibrium. After a certain time t, a second, much weaker pulse is applied to
the sample (“probe” pulse). By measuring the transmitted or reflected part of the
probe-pulse, information about the magnetization in the sample at time t can then be
inferred. As the probe pulse is very weak, it is not expected to change the dynamics
in the material considerably. We will discuss general properties of laser pulses and
how to use them to measure a magnetization in more detail in the following.

3.2.1 Ultrashort laser pulses
We have already stated above that all investigations in the field of UFD rely on
pump-probe experiments. To achieve femtosecond pump-probe experiments, it is of
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3.2 Ultrafast magneto-optics

course necessary to have laser pulses with femtosecond pulse duration. Nowadays,
femtosecond pulses of high intensity with almost arbitrary shape can be generated
[47]. Maxwell’s equations yield wave equations for the propagation of a laser pulse.
In a vacuum, these wave equations are given by:

∆A (r, t)− 1
c2∂

2
tA (r, t) = 0, (3.1)

∆Φ (r, t)− 1
c2∂

2
t Φ (r, t) = 0. (3.2)

A simple, yet quite general solution is achieved by Φ (r, t) = 0 (“radiation gauge”)
and using superpositions of plane waves for the vector potential,

A (r, t) = â
∫
dkÃ (k) ei(k·r−ωt), a ⊥ k, Φ (r, t) = 0. (3.3)

Here a is the polarization vector which is always perpendicular to the propagation
direction k. k = 2π/λ is the magnitude of the wave vector associated with wave
length λ and ω is the angular frequency of the pulse. The electric and magnetic
fields E (r, t) ,B (r, t) associated with the vector potential A (r, t) are given by the
usual relations (eqs. 2.7, 2.8). In a vacuum, the propagation speed of the pulse is
simply given by c = ω/k. In the general case of a laser pulse propagating through
a medium, the dispersion relation ω (k) is typically much more involved and the
propagation speed is given by v = ∂ω/∂k. Two quantities which are commonly used
to describe the strength of a laser pulse are the peak intensity and the fluence. The
peak intensity is given by I = E2

maxc/8π and is measured in power per unit area,
Emax is the maximum of the electric field. The fluence is measured in energy per unit
area and can be obtained by a time integral of the intensity, F =

∫∞
−∞ dt [E (t)]2 c/8π.

Eq. 3.3 describes an extended pulse, but real pulses do of course not extend
infinitely, neither in space nor in time. The spatial and temporal shape of a laser
pulse is typically given by a Gaussian. An example of such a pulse traveling along
the z-axis is given by

A (r, t) = â |A| ei(kz−ωt)e
− (t−t0)2

2σ2
t e

− (x−x0)2

2σ2
x e

− (y−y0)2

2σ2
y , (3.4)

where σt, σx, σy are Gaussian standard deviations. It is simple to verify that eq. 3.4
also fulfills Maxwell’s equations. Often, the full width at half maximum (FWHM)
is specified for the width of the pulse instead of the standard deviation. For a
Gaussian pulse, it is simply given by FWHM = 2

√
2 ln 2σ.

We finish our considerations on the general properties of laser pulses with a closer
look at the polarization vector a. As we have stated previously, it should always be
perpendicular to the propagation direction k. We assume, without loss of generality,
that k ‖ ez. We can then define two orthonormal polarization vectors

a1 =

 cos θ
sin θe2iη

0

 , a2 =

 − sin θ
cos θe−2iη

0

 (3.5)
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both of which generally have the form of an ellipse. Here, 0 ≤ θ ≤ π is called
orientation angle and −π/4 ≤ η ≤ π is the ellipticity angle (fig. 3.1). While
arbitrary superpositions of a1,a2 are of course possible, we assume for simplicity in
the following that the polarization of our laser pulse is described by a1,

A (r, t) ∝

 cos θei(kz−ωt)
sin θei(kz−ωt+2η)

0

 . (3.6)

There are three different cases which one typically distinguishes. First, if η = 0, both
the x and the y component of the vector potential, Ax, Ay, reach their respective
maximum at the same time. This is referred to as “linearly-polarized”. If instead
η = ±π/4 and θ = π/4, Ax is at its maximum when Ay is zero and vice versa,
the laser pulse is right-handed (η = π/4) or left-handed (η = −π/4) circularly
polarized. Two examples are shown in fig. 3.2. All other cases are called elliptically
polarized. It should be clear that all of these cases can be represented by any two
orthogonal vectors. Nonetheless, we mention that a linearly polarized laser pulse
can be decomposed into two circularly polarized pulses:

aL = a+ + a− =

2
0
0

 =

 1
+i
0

+

 1
−i
0

 . (3.7)

This is a common decomposition encountered in magneto-optics, which will become
important in the following sections.
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Figure 3.1
The polarization ellipse. a, b are the major and minor axes, respectively. 0 ≤ θ ≤ π
is the orientation angle and −π/4 ≤ η ≤ π/4 is the ellipticity angle. If η = 0, the
laser pulse is linearly polarized, for η = ±π/4 and θ = π/4, the laser pulse is
circularly polarized. For all other angles, the laser pulse is elliptically polarized.

Figure 3.2
Linearly (left) and left-handed circularly (right) polarized pulses. The polarization
ellipse for the electric field is shown in green. Both pulses have a Gaussian shape.
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3.2.2 Laser pulses in magnetic materials -
The Faraday effect

When a linearly polarized electromagnetic wave (EMW) travels parallel to the
magnetization M in a material, a rotation of the polarization plane is observed
(θ changes, fig. 3.1). The direction of the rotation hereby depends on the relative
alignment of the EMW and the magnetization. Placing a mirror behind the magnetic
material and forcing the EMW to travel through the magnet again from the opposite
direction will thus double the observed rotation instead of reverting it to zero. This
is due to the magnetization breaking time-inversion symmetry locally. The first
experimental observation of this effect was already made in the 19th century by
Michael Faraday and the effect is nowadays known as Faraday effect. Faraday
made his original observations in non-magnetic materials subjected to an external
magnetic field. He found the following formula:

∆θ = ν (ω)Hl, (3.8)

where ∆θ is the change in the angle of rotation, H is a magnetic field applied par-
allel to the propagation direction, l is the length of the path the EMW travels in
the material and ν is the Verdet constant, which is material specific and generally
depends on the frequency of the EMW. We will in the following give a brief theo-
retical explanation on this effect based on Maxwell’s equations. Our derivations in
this and the following subsection are based on the textbook on magneto-optics by
Sugano [48].

Within classical electrodynamics, the electric displacement fieldD and the mag-
netic field H are the proper quantities for EMWs in materials, as they include the
reaction of the material:

D = E + 4πP = ε (ω,P )E, (3.9)
H = B − 4πM = µ−1 (ω,M )B. (3.10)

P ,M are the classical polarization and magnetization. ε, µ are the dielectric tensor
and the permeability tensor.

For Maxwell’s equations in materials we have

∇ · D = 4πρf ∇ ·B = 0 (3.11)

∇×E = −1
c

∂B

∂t
∇×H = 1

c

(
4πjf + ∂D

∂t

)
(3.12)

where ρf , jf are only the “free” charge and current densities of unbound electrons.
For our basic considerations, it is sufficient to assume ρf = 0, jf = 0. Our main task
is then to evaluate the remaining non-zero Maxwell equations, i.e.

∇×E = −1
c
µ (ω,M) ∂H

∂t
, ∇×H = 1

c
ε (ω,P ) ∂E

∂t
. (3.13)
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The propagation of an EMW through a material depends only on the product of
the permittivity and the permeability, εµ [49]. We can therefore always choose
µ = 1 by absorbing any functional dependence of the permeability into an effective
permittivity ε̃. If the magnetization is along the z-direction, ε̃ is given by:

ε̃ (ω,M ) =

 εxx εxy 0
−εxy εxx 0

0 0 εzz

 . (3.14)

Because we are interested only in magneto-optical effects, we dropped the depen-
dence on the polarization and will neglect it in the following. The tensor elements
of ε̃ (ω,M ) obey εxy (ω,M ) = εyx (ω,−M ) = −εyx (ω,M ) from which follows
εxy ∝ |M |, for small values of |M |. Without giving a detailed proof, we will
emphasize that this form makes intuitive sense. It is the shape one would expect
from a quantum mechanical spin-system, with a longitudinal component along the
quantization axis and coupled transversal components. We are now set for solving
eqs. 3.13. We use a plane wave as an ansatz

E (r, t) = E0e
i(k·r−ωt), H (r, t) = H0e

i(k·r−ωt), H0,E0 ⊥ k (3.15)

and arrive at a set of linear equations for E,H ,

k ×E = ω

c
H ,

k ×H = −ω
c
ε̃E, (3.16)

which we can solve for E:

k (k ·E)− k2E + ω2

c2 ε̃E = 0. (3.17)

In accordance with the phenomenological observations of the Faraday effect, we
choose the propagation direction along the z-direction as well, k ‖ M ‖ ez. As a
result, Ez = 0 and we are left with finding a general solution for eq. 3.17 which
allows for finite values of Ex, Ey. The equations for which are given by:(

n2 − εxx
)
Ex − εxyEy = 0

εxyEx +
(
n2 − εxx

)
Ey = 0. (3.18)

Here n2 = c2k2/ω2, which corresponds to the refractive index of the material. We
explicitly allow k to be complex valued, resulting in a generally complex refractive
index and an energy loss of the EMW as it propagates through the material. We
obtain non-trivial solutions to eq. 3.18 if we choose:

n2
± = εxx ± iεxy, ±iEx = Ey. (3.19)
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We then obtain the following normal modes of the EMW

D+ = n2
+ |E| (ex + iey) , D− = n2

− |E| (ex − iey) , (3.20)

which are right-handed and left-handed circularly polarized EMWs with different
complex refractive indices n2

±. As a result, two circularly polarized waves with
different handedness propagating through a magnetic material will accumulate a
difference in both, their relative phase and magnitude, due to the real and imaginary
part of the refractive indices being different. When the two waves exit the magnetic
material, these changes manifest themselves by a rotation of the orientation angle θ
and by a change in the ellipticity η (fig. 3.1):

θF = ω

2cRe (n+ − n−) , ηF = − ω2cIm (n+ − n−) . (3.21)

The transmitted EMW is therefore in general elliptically polarized. Both, θF and
ηF are experimentally accessible, θF is measured in Faraday experiments whereas
ηF is measured in magnetic circular dichroism (MCD) experiments, which mea-
sure the difference in absorption of left and right-handed circularly polarized wave
transversing a magnetic material. As a last step, it is illustrative to define the
average refraction index and the average absorption:

n0 = 1
2Re (n+ + n−) , κ0 = 1

2Im (n+ + n−) . (3.22)

Using some basic algebra, this allows us to rewrite eqs. 3.21 as

θF = − ω2c
κ0Re (εxy)− n0Im (εxy)

n2
0 + κ2

0
, ηF = − ω2c

n0Re (εxy)− κ0Im (εxy)
n2

0 + κ2
0

. (3.23)

In the limit of a transparent material, n0 � κ0, we find that θF ∝ Im (εxy) and
ηF ∝ −Re (εxy). Because εxy ∝M for small M , we also have that, to lowest order,
θF and ηF are proportional to M .

3.2.3 Reflection from surfaces - The magneto-optic
Kerr effect

A second common method of measuring the magnetization in a sample is employing
themagneto-opticKerr effect (MOKE), which is named after the Scottish Physicist
John Kerr. In a MOKE experiment, the information about the magnetization is
not obtained from the transmitted, but from the reflected EMW instead. The
observed behavior varies, depending on the relative alignment of the magnetization,
the plane of incidence of the EMW and the surface plane of the material (fig. 3.3). We
will in the following consider the polar-MOKE, where both, the magnetization and
the plane of incidence are parallel to each other and perpendicular to the material
surface. In the previous section, we derived that the normal-modes of EMWs inside a
magnetic material are given by circularly polarized waves. After an initial excitation,
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we can model the reflection process as circularly polarized waves being emitted from
the material. We can then simply use the Fresnel equations to obtain the reflection
coefficients for circularly polarized EMWs:

r+ = n+ − 1
n+ + 1 , r− = n− − 1

n− + 1 . (3.24)

We use the usual relations for circularly polarized waves r+ = rx + iry and r− =
rx − iry to obtain

rx = r+ + r−
2 , ry = −ir+ − r−

2 . (3.25)

Therefore, the reflected signal will have a finite contribution for both, rx and ry.
The complex Kerr-angle ΦK , for small changes in the polarization of the reflected
EMW, is then given by:

ΦK = θK + iηK ≈ −
ry
rx

= i (r+ − r−)
r+ + r−

, (3.26)

Using eq. 3.24, we can rewrite this and obtain:

θK = −Im n+ − n−
n+n− − 1 , ηK = Re n+ − n−

n+n− − 1 . (3.27)

Analogous to our considerations regarding the Faraday effect, it is instructive to
consider the limit n0 � κ0, in which we have

θK = − Re (εxy)
n0 (n2

0 − 1) , ηK = − Im (εxy)
n0 (n2

0 − 1) . (3.28)

We thus find that, compared to the Faraday effect, the role of the real and imaginary
parts are inverted: θK , ηF are proportional to the real part of εxy, whereas ηK , θF
are proportional to the imaginary part of εxy.

3.2.4 Magnetic second harmonic generation
The last method in magneto optics we will discuss is magnetic second harmonic
generation (MSHG), which is, unlike the MOKE and the Faraday effect, a non-
linear effect and in comparison a very recent theoretical prediction [50]. The setup
for MSHG is similar to the MOKE, in the sense that the change in the reflected
wave from a sample is measured. The key difference, however, is that the second
harmonic at frequency 2ω in the reflected signal is measured instead of the first
harmonic at frequency ω. It is well known that centrosymmetric systems do not
show a second harmonic in the reflected EMW, as centrosymmetric systems do not
have tensors of even rank in the expansion of their response function (their is no even
response to an odd excitation). In such systems, only interfaces or surfaces, where
the inversion symmetry is broken, give rise to a second harmonic. The presence
of magnetization does not break inversion symmetry, but alters the polarization
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Figure 3.3
The magneto-optical Kerr effect can be characterized according to the orientation
of the magnetization, the surface and the plane of incidence of the laser pulse. In
the polar case, the magnetization is perpendicular to the surface and parallel to
the plane of incidence. For the longitudinal case, the magnetization is parallel to
the surface and the plane of incidence. Finally, the case where the magnetization is
parallel to the surface and perpendicular to the plane of incidence is called
transversal moke.

of a generated second harmonic. MSHG is therefore an extremely sensitive tool
for measuring the contribution of surfaces or interfaces to the magnetization of the
system.

We will only give a brief motivation on the theory behind MSHG. In our case, the
relevant configuration is a transversal experiment, which is setup in the same way
as the transversal MOKE (fig. 3.3). For such a case, the optical second harmonic
polarization can be written as [51]

a (2ω,±M) =
(
~χ(2)

even (±M )± ~χ(2)
odd (±M)

)
E2 (ω) , (3.29)

where ~χ(2) are the surface response functions and tensors of rank three. Even/odd re-
fer to the sign change of the term under inversion of the magnetization. An intuitive
picture is that the even term corresponds to a crystallographic response, whereas
the odd term corresponds to a magnetic response. In a typical transversal MSHG
experiment, the reflected intensities for opposite directions of the magnetization are
measured, from which even and odd contributions can be inferred.

3.3 Ab-initio treatment of ultrafast demagnetiza-
tion

In this section we will introduce our TD-SDFT framework which we use to study
UFD theoretically. We will start with our time-dependent Kohn-Sham system (TD-
KS) and continue with explaining all relevant approximations we make.
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3.3.1 Time-dependent Kohn-Sham system
We use the TD-KS system introduced by Krieger et. al [6] to treat the interacting
electronic system formally exact in real-time. This method has been applied suc-
cessfully to varying systems, including transition metals in the original publication,
the more complicated Heusler alloys [52] and thin film systems [53]. The TD-KS
system we use is given by [6]:

i∂tϕ
k
j

(r, t) =
[

1
2

(
−i∇+ 1

c
Aext (t)

)2
+ vs (r, t) + 1

2cσ ·Bs (r, t)

+ 1
4c2σ (∇vs (r, t)× i∇)

]
ϕk
j
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with vs (r, t) = vext (r, t) + vH [n] (r, t) + vALSDA
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The KS potential and field vs (r, t) ,Bs (r, t) as well as the densities n (r, t),m (r, t)
are defined in accordance with chapter 2. The functional we will use in our cal-
culations is the ALSDA (eq. 2.65). The last term on the right hand side is the
relativistic spin-orbit coupling (eq. 2.71). This term is expected to be crucial in
our calculations: Up to second order in the relativistic expansion (cf. section 2.4),
only the Zeeman term and SOC violate conservation of spin momentum, thus al-
lowing for a macroscopic decrease in the magnetization. Throughout this work, we
approximate the SOC with a radial representation. For the laser pulse we use a
classical vector potential and employ the dipole approximation, i.e. the vector po-
tential is a function of time only, Aext ≡ Aext (t). We provide more details on the
approximations affecting the SOC and the laser pulse in the following subsections.
In all our calculations, we treat the spins as fully noncollinear, which allows us to
properly include spin currents, spin diffusion and spin flips. The Born-Oppenheimer
approximation is used throughout this work. As a result, a possible contribution to
UFD arising from phonons will not be captured by our approach. We do not expect
this to majorly effect our results, as we limit our discussions to short time scales,
where electronic processes are expected to dominate the dynamics.

A key difference to experiments is that we do not extract the information about
the magnetization via a probe pulse. Instead, we directly calculate the magnetization
from our KS-system (eq. 3.30). This may lead to a systematic difference between
our simulations and experimental observations. A theoretical modeling of a pump
probe experiment is much more computationally demanding and typically only of
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limited value, as the necessary numerical accuracy is difficult to reach.
There are some mathematical remarks we want to make. We note that it is not

mathematically clear whether a KS of the form 3.30 is valid, as neither a rigorous
proof of the RG nor of the van Leeuwen theorem for such a system exists. We also
note that angular momentum is not conserved in any calculation we make. This
has two reasons: First, due to employing the Born-Oppenheimer approximation,
we have a fixed external potential in our system, therefore momentum and angular
momentum are generally not conserved. This is well known from classical mechanics
(e.g. a pendulum). Second, the spatial operator r̂ is not well-defined within peri-
odic boundary conditions as it is not translationally invariant. Thus the angular
momentum operator L̂ = r̂ × p̂ is also not a well defined object and generally not
conserved.

3.3.2 Spin-orbit coupling for radial potentials
In all calculations in this thesis, we assume that the KS potential vs (r, t) in the
SOC term is approximately a radial function:

1
4c2σ · (∇vs (r, t)× p̂) ≈ 1

4c2σ · (∂rvs (r, t) er × p̂) . (3.31)

This is typically a reasonable approximation, as the fastest changing contribution
to vs (r, t) arises from the nuclear potential, which is close to spherically symmetric
near the nuclear positions. We furthermore assume that, in the spin-orbit term, the
time-dependence of vs (r, t) can be neglected, as the nuclei remain fixed during our
calculations. We can then define the time-independent SOC radial functions:

ξ (r) = 1
2c2r

∂rvs (r, 0) . (3.32)

With the definition of the angular momentum operator

L̂ = rer × p̂ (3.33)

the spin-orbit coupling reduces to:
1

4c2σ · (∇vs (r, t)× p̂) ≈ 1
2ξ (r)σ · L̂. (3.34)

This is the form we use in all following calculations. A more detailed numerical and
analytical discussion showing that this approximation only leads to negligible effects
can be found in the thesis by Krieger [54].

3.3.3 Classical vector potential and the dipole approxima-
tion

There are several approximations we make for describing the laser pulse. In eq. 3.30,
the laser pulse is included as a classical field instead of quantized photon excitations.
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For the exact treatment of electrons subjected to a laser pulse, using quantum
electrodynamics would be necessary. However, if the density of phonons and the
wave length of the laser pulse fulfill nph � 1/λ3, approximating the photon field by
a classical field is justified [55]. In this work, we use laser pulses of ≈ 800 nm with
peak intensities of at least 10−12 W cm−2. We therefore expect that modeling the
vector potential as a classical field is viable. A second approximation we made is the
so-called “dipole-approximation”, which assumes that the vector potential is given
as a function of time only, Aext ≡ Aext (t). The name for this approximation arose
because this approximation, in the linear-response limit, limits electronic excitations
in atoms to electric dipole transitions. Mathematically, this corresponds to taking
only the constant term of the taylor expansion of a plane wave:

ei2π
r
λ = 1 + i2π r

λ
− 1

2

(
2π r
λ

)2
+O

(
r3

λ3

)
≈ 1. (3.35)

It can be easily seen from eq. 3.35 that the dipole approximation is valid as long as
the maximum size of the system is much smaller then the wave length of the laser
pulse rmax � λ. This criterion is very well fulfilled in all following calculations,
because we only consider layered systems with a few (≤ 10) atomic layers. For
example, 10 layers of Ni are approximately 3.5 nm thick, which is small compared
to a typical optical laser wavelength of around 800 nm. We note that there is a
second limitation when applying the dipole approximation: The coupling of the
vector potential A (r, t) to the momentum operator p̂ will result in a breakdown
of the approximation for very large pulse intensities [56]. As we use only moderate
field strengths in this thesis, this should not affect us. For the laser pulses used in
this thesis, we applied the dipole approximation to the pulse given in eq. 3.4. In
addition, the spatial extent of the laser pulse is typically even larger than the wave
length, the shape of the pulse has therefore only a tiny impact on the dynamics at
the center of the pulse. The pulses in this work are thus purely time-dependent and
read

A (r, t) = â |A| sin (ωt+ δ) e
− (t−t0)2

2σ2
t . (3.36)

Finally, we note that our TD-KS system (eq. 3.30) is not coupled to Maxwell’s
equations. Radiative contributions from the material to the vector potential are
thus not captured. We will, in the following, outline why such a coupling is difficult.
As we solve for the electrostatic potential in the Coulomb gauge, we also have
to evaluate the vector potential in the Coulomb gauge. The vector potential in
Coulomb gauge is generally given by the following wave equation [57]:

∆A (r, t)− 1
c2∂

2
tA (r, t) = −4π

c
jT (r, t) , (3.37)

where jT (r, t) is the transverse current, which is used instead of the normal current
j (r, t) to maintain causality in the Coulomb gauge. It is given by

jT (r, t) = j (r, t) + 1
4π∇

(
∇ ·

∫
d3r′

j (r′, t)
|r − r′|

)
. (3.38)
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The total effective current in this case can be easily obtained by rearranging the
second equation in eq. 3.12 and is given by

j (r, t) = jf (r, t) + c∇×M (r, t) + ∂tP (r, t) . (3.39)

While formulating the equations is quite simple, there are numerous problems in
practice. First, one would need to have a good approximation forAxc (r, t) to ensure
that jf (r, t) reproduces the correct current at every time step. Good approximations
are, however, not available. Second, there is currently no trivial way to obtain the
polarization as a functional of the density and it would become necessary to also
treat the polarization as an extra variable. Lastly, even if we would assume the
contribution from the polarization to be negligible and would use the KS current
as a rough approximation to the real current, j (r, t) = js (r, t), solving Maxwell’s
equations along the KS system would remain very impractical. The vector potential
is then no longer given by a plain wave, thus the dipole approximation does not hold
any more. As the laser pulse propagates much faster than electronic currents, an
extremely large system would be required to keep track of the spatial dependence
of both, the laser pulse and the electrons. This is computationally not feasible. A
solution to this could be our ultra long-range approach (cf. chapter 4).

3.3.4 The time propagation
The first step in evaluating all of our systems is performing a self-consistent, time-
independent DFT ground state calculation of the system, from which we will obtain
the ground state charge and magnetization densities as well as the ground state
KS orbitals and occupation numbers. As stated previously, we use the APW+LO
basis along with periodic boundary conditions, for which the eigenstates are given
by Bloch orbitals. We then perform a time evolution of the system according to
eq. 3.30, where the external laser pulse drives the system out of equilibrium. As
we are propagating in real-time, we capture non-linear effects. We do not change
any details or convergence parameters in our system for the time evolution, i.e. the
boundary conditions, the basis and all convergence parameters (e.g. k-points) remain
the same. Therefore, a rather large number of empty states has to be added already
to the ground state calculation into which electrons can be excited during the time
propagation. As discussed in section 2.5, the core states remain unchanged through-
out the time-propagation. For the actual time-propagation, we use the method by
Dewhurst et. al [58]. Starting from the ground state KS orbitals ϕG

i , the time
propagation up to a final time T with time steps ∆t is achieved by:

1. Set ϕj (r, t) = ∑
i cij (t)ϕG

i (r).

2. Compute ρ (r, t) and m (r, t).

3. Compute vs (r, t) ,Bs (r, t) ,Aext (t) to obtain Ĥ (t) (eq. 3.30).

4. Compute Hij =
〈
ϕG
i

∣∣∣ Ĥ (t)
∣∣∣ϕG
j

〉
.
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5. Solve Hikdkj = εjdij for d and ε.

6. Compute cij (t+ ∆t) = ∑
kl d
∗
jkdlke

−iεk∆tcil (t).

7. If t < T go to step 1.

For more details on the performance and stability of the algorithm, see [58].

3.4 Spin flips versus spin transport in optically
excited transition metals

In this section we report on a joint theoretical and experimental effort aiming at
achieving a better understanding of the physics underlying ultrafast demagnetization
in thin films of Ni and Co. Our goal is unraveling whether spin transport or spin-flips
are the dominating contribution in UFD. The experimental contributions were made
by the group of Jean-Yves Bigot in Strasbourg, only the theoretical work was made
within the framework of this thesis. The joint results have been published [59].

Experimentally, four different samples are measured: For each material (Ni,Co)
two samples with thicknesses of 10 and 40 nm are measured. A magneto-optical
pump-probe setup is employed which pumps the system at the front face (F) of
a sample and measures the signal at both, front and back face (B) of the sample.
From this the complex Voigt vector Q̃ = Qeiϕq = −iεxy/εxx is constructed. The
modulus Q of the Voigt vector is proportional to the magnetization, which can be
seen from our considerations on the Faraday effect (subsection 3.2.2) and the MOKE
(subsection 3.2.3). A polar geometry is chosen. The experimental pump pulse has
a wavelength of 800 nm, a fluence of 5× 10−2 mJ cm−2 and a duration of 10 fs.

The central experimental results are shown in fig. 3.4. For the 10 nm Ni film
we observe a larger demagnetization at the back face (≈ 1.9 times), indicating that
spins have propagated through the material. The simultaneous demagnetization of
both the front and the back face cannot be explained by a flow of only majority
spins. This is in strong contrast with the superdiffusive model, which suggests
that only majority spins are moving. For the 40 nm thick film we see a smaller
demagnetization at the back face (≈ 0.7 times), which is most likely a result of
electron scattering/spin-flips as electrons are propagating through the sample. A
very different situation is observed in Co: During the first 50 fs a clear sign inversion
is visible on the back face of the 10 nm film, which implies that during this time
predominantly majority spins are arriving at the back face. This sign inversion is not
present for the 40 nm film suggesting again that scattering and spin-flips are more
important in the thicker sample. Experimentally, the estimated typical propagation
length on which spin-flips occur in Co was estimated to be 25± 3 nm. The estimate
was made by performing the same experiment on samples of different thicknesses.

For a better in-depth, microscopic understanding, we perform TD-SDFT calcu-
lations of Ni and Co thin films employing the Hamiltonian given in eq. 3.30. In all
our calculations, our thin films are seven mono layers (ML) thick, as only minor
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Figure 3.4
Experimental ultrafast magnetization dynamics of Ni and Co films excited with 10
fs pulses probed on their front (F) and back (B) faces. Results are for a) 10 nm Ni,
b) 40 nm Ni, d) 10 nm Co, e) 40 nm Co samples. Panels c) and f) are the
differences between the B and F faces for Ni and Co samples, respectively.
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changes were observed as long as the films were at least five ML thick. The laser
pulse we use is polarized along the sample plane, has a FWHM of 16 fs a frequency
of 1.55 eV corresponding to ≈ 800 nm and an average power density of 1012 W cm−2.
Our power density is ten times larger than in the experiment. This is in order to
make the effects more easily visible as we are using a smaller system. We note that
our observations hold for weaker pulses. We use a regular 8 × 8 × 1 k-point grid,
an angular momentum cutoff of 8 for the orbitals and 7 for densities and potentials.
Our time step for the time evolution is ∆t = 0.05.

In fig. 3.5 we present the change in majority and minority charge averaged over
all 7 layers as a function of time, ∆n (t) = nmaj/min(t)− nmaj/min (t = 0). We calcu-
lated the changes in both spin channels from the total charge and the magnitude
of the magnetization inside the MTs (eq. 2.51). Our results clearly show that the
occupation in both spin channels is changing significantly, supporting the experi-
mental findings. Such a change in majority and minority spins is in strong contrast
with the super diffusive model. We present further analysis of the time-dependent
phenomena in fig. 3.6, which shows the normalized total (a) and c)) and layer re-
solved (b) and d)) moment for Ni and Co, |M (t)| / |M (t = 0)|. In the case of the
layer resolved results, we performed two calculations, one with SOC (last term in
eq. 3.30) and one without SOC. Without SOC, the only possible mechanism for
demangetization is due to flow of spin-currents, similar to what is proposed by the
superdiffusive model. Including SOC adds the contributions from spin flips and spin
canting. We clearly find that, like in the experiment, Ni demagnetizes more than
Co. This could be due to the almost completely filled d orbital in Ni, therefore any
change in the minority spin occupation leads to a large change in the moment. Our
layer resolved results (figs. 3.6b), d)) show that the contribution of spin diffusion
in the case of Ni is very small and spin flips occur already at very early times. In
Co, however, a clear distinction between a purely diffusive and a spin flip model
only occurs at later times: A saturation of the diffusive contribution is reached after
~20 fs, at which point spin flips become the dominant contribution. In this early
time (< 20 fs), the magnetization dynamics in Co are thus different than that of
Ni, as Co shows significant diffusion of majority spins. This difference explains the
experimental findings: In the early times, majority spins accumulate at the back
face of Co, leading to an increased magnetic moment. Shortly afterwards, spin flips
start to become the significant contribution resulting in a global demagnetization.
Ni is in contrast to this, the temporal separation between spin currents and spin
flips is small and spin flips, which cause a global demagnetization, dominate the
demagnetization process already at early times.

We conclude that both, our theoretical and experimental observations cannot
be described by the superdiffusive model alone. Furthermore, we generally conclude
that a model that takes into account majority spins only, will not be able to describe
UFD in both, Co and Ni. Only the combination of spin-currents and SOC mediated
spin-flips is capable of explaining both systems. Finally, we note that our results for
Ni can also explain previous experimental findings [60].
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Figure 3.5
Layer averaged majority (left axis) and minority (right axis) as a function of time
(in femtoseconds). The results for Ni are shown in the left panel and for Co in the
right panel. As compared to the t=0 case there is a decrease in the majority and
an increase in the minority spins. The difference in the change of the spin channels
of ≈ 0.1 can be attributed to delocalized electrons, which are no longer associated
with a layer.

Figure 3.6
Total a),c) and layer resolved b),d) normalized magnetic moment for Ni and Co
films as a function of time (in femtoseconds). The layer resolved results are
calculated in two ways: 1) by time propagating the full Hamiltonian (black) and
(2) by leaving out the spin-orbit contribution (blue). The layer resolved data are
for a representative layer (third layer) of a seven ML thick film. The vertical
dotted lines in panels b) and d) show the time at which demagnetization due to
spin diffusion starts to saturate.
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3.5 Competing spin transfer and dissipation at
Co/Cu(001) interfaces

In a second joint experimental/theoretical study, we examine the effect of interfaces
between different materials on UFD. The experimental work presented in this section
was not carried out as a part of this thesis. All experimental results were obtained
by the group of Prof. Uwe Bovensiepen at the University of Duisburg-Essen. The
content of this section has been published previously [61].

The system we investigate is the ferromagnetic-paramagnetic (FM/PM) interface
Co/Cu(001). Experimentally, femtosecond time-resolved MSHG is employed, which
is specifically sensitive to the interface, where the inversion symmetry is broken
(cf. subsection 3.2.4). Theoretically, we again use TD-SDFT with an added SOC
term (eq. 3.30). We treat very similar systems in both cases: Experimentally, an
ultrathin film of 3 or 5 mono layers (ML) of Co on top of Cu(001) is measured. In
our theoretical calculation, we simulate 3 or 5 ML of Co on top of 7 ML of Cu(001).
This makes a quantitative comparison between experiment and theory possible and
enables us to distinguish all relevant microscopic processes at times t < 100 fs at
the Co/Cu(001) interface. We find a competition of photoexcited spin transfer from
Co to Cu and back transfer from Cu to Co as well as a demagnetization by SOC-
mediated spin flips.

In the experiment Co/Cu(001) films with epitaxial, atomically sharp interfaces
are prepared, characterized and measured in situ at room temperature in ultrahigh
vacuum at a pressure smaller than 1× 10−10 mbar. A pump probe MSHG exper-
iment with 35 fs (FWHM) laser pulses with 800 nm wavelength is performed and
the laser-induced magnetization dynamics at 400 nm wavelength are analyzed. The
incident pump fluence is F = 4 ± 2 mJ cm−2. All films are magnetized parallel to
the sample surface, perpendicular to the optical plane and the second harmonic
generated by the probe pulse is detected in transversal geometry (figs. 3.3, 3.7).

From the measured second harmonic intensities I↑,↓ for opposite orientations of
the magnetization M , the second harmonic fields

∣∣∣E2ω
even

∣∣∣ ≈ 1√
2

√
(I↑ + I↓),

∣∣∣E2ω
odd

∣∣∣ ≈ I↑ − I↓

4 |E2ω
even|

(3.40)

are obtained, which behave even and odd with reversal of M , respectively. They
are considered magnetization independent and magnetization dependent for E2ω

even �
E2ω

odd [62, 63]. The time-dependent changes are normalized to their respective values
before laser excitation and are represented by

∆2ω
even,odd =

E2ω
even,odd (t)

E2ω
even,odd (t < 0) − 1, (3.41)

which measure charge and spin dynamics separately. Further experimental details
can be found in ref. [64].
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Figure 3.7
Illustration of the epitaxial model interface Co/Cu(001), the interface-sensitive
pump-probe experiment and spin transfer dynamics. Vertical arrows indicate spins
and magnetic order in Co. Cu carries negligible spin polarization before optical
excitation. Horizontal arrows indicate spin transfer across the interface. The Co
magnetization M is oriented perpendicular to the optical plane. Pump and probe
pulses are s polarized and p polarized, respectively.

As mentioned above, our TD-SDFT calculations were performed for slabs of 3
or 5 ML Co on top of 7 ML Cu(001). We use a pump laser pulse of 35 fs (FWHM)
pulse length, 800 nm wavelength (1.55 eV) and an incident pump fluence of F =
0.25 mJ cm−2. This fraction corresponds to the fluence absorbed by the Co/Cu(001)
heterostructure in the experiment. In this way, we properly account for the fact
that ≈ 94% of the incident pump fluence is rejected from the sample surface. While
it is in principle possible to include the reflection from the surface in our simulation
by coupling our time-dependent system to Maxwell’s equations, this is not feasible
in practice (cf. subsection 3.3.3). In our simulation, we monitor the change in the
spin-integrated charge density n and the magnetic moment µ:

∆n = n (t)
n (t < 0) − 1, ∆µ = µ (t)

µ (t < 0) − 1. (3.42)

In fig. 3.8a we present experimental and theoretical results for three and five layers
of cobalt on top of Cu(001) (bulk substrate experimentally, 7 ML theoretically). The
experimental results are presented together with the pump-probe cross-correlation
(CC) measured on the sample surface, which indicates the experimental time res-
olution. The experimental charge dynamics, reflected by ∆2ω

even (fig. 3.8a), show an
immediate response already at t < 0, due to the finite duration of the laser pulse.
The maximum change is reached at about 50 fs. A full recovery of ∆2ω

even to the value
before pump excitation is measured to take around 700 fs.

The TD-SDFT results in fig. 3.8a analyze the relative change in the spin-
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integrated charge carrier number in the Co film, nCo (t). As the total charge is
conserved, nCo (t) quantifies the flow of optically excited, spin-integrated charge
carriers across the Co/Cu(001) interface. nCo (t) and ∆2ω

even show a different evolu-
tion with t, which could be caused by not simulating a full pump-probe experiment
in TD-DFT. However, nCo (t) and ∆2ω

even share the same temporal profile and reach,
within uncertainties, their respective minimum at the same time. We thus conclude
that the change in ∆2ω

even is dominated by spin-integrated charge transfer across the
interface. We observe that TD-SDFT even manages to capture the small difference
in the magnitude between the 3 and 5 ML system. Lastly, The observed recovery
of nCo (t) starting at 30 fs most likely indicates a backflow of charge from Cu to Co.

Fig. 3.8b shows the results for ∆2ω
odd and the calculated time-dependent change of

the Co spin magnetic moment ∆µCo (t) , where µCo ∝ µ↑Co−µ
↓
Co (↑, ↓ correspond to

majority/minority carriers, respectively). ∆2ω
odd has a qualitatively different behavior

compared to ∆2ω
even. The change starts at t = 0 and is slower than ∆2ω

even. ∆2ω
odd

only reaches its minimum after around 100 fs. This observation hints at additional
processes observed in the dynamics of the interface magnetization probed by ∆2ω

odd,
which is further supported by the slower recovery time (fig. 3.8b, inset) of ∆2ω

odd.
The timescale and behavior of ∆2ω

odd matches ∆µCo (t) excellently.
Based on the agreement between theory and experiment, we can derive further

information which is not accessible by the experiment alone. Fig. 3.9 (left) com-
pares ∆2ω

odd for 3 ML Co/Cu(001) to three different calculated curves, which account
for the spin moment change (i) in the full heterostructure (∆µ), (ii) only the Co
contribution (∆µCo) with SOC and (iii) the contribution of Co without SOC (last
term in eq. 3.30). Without SOC, the total magnetization ∆µ is conserved and the
only change in the magnetization ∆µCo is due to transfer of local moments be-
tween Co and Cu. (ii) and (iii) coincide up to ≈ 35 fs, which indicates the time
window during which spin-dependent charge transfer dominates the magnetization
dynamics. Comparing (ii) and (iii) therefore quantifies the extent of spin-orbit me-
diated demagnetization. Without SOC, the loss in µCo levels off after ≈ 35 fs, while
the system continues to lose magnetization up to ≈ 100 fs when SOC is included.
Furthermore, including SOC roughly doubles the observed demagnetization. Our
findings indicate that both, spin-transfer and SOC contribute to UFD with an ap-
proximately equal amount, but dominate on different, subsequent timescales. The
quantitative agreement between theory and experiment thus allows us to identify a
SOC mediated contribution to femtosecond demagnetization, as predicted by the-
ory [6, 44, 65]. We, moreover, observe a larger pump-induced decrease in µCo (t)
than in µ (t) at any given t. The difference of µ (t) and µCo (t) corresponds to
the dynamics of the spin moment induced in Cu, µCu (t), shown in fig. 3.9 (right).
µCu (t) reaches its maximum at t = 35 fs and recedes on longer times. Similar to
Co, the reduction observed for 35 fs < t < 100 fs is due to the coupling of both
spin channels via SOC. Electron-electron scattering than leads to spin-flip processes
and spin moment loss. Based on our TD-SDFT calculations, we estimate the spin
injection efficiency from Co to Cu before SOC mediates spin-flips start to dominate
by |µCu (35 fs)− µCu (t < 0)| / |µCo (35 fs)− µCo (t < 0)|. We obtain a spin-injection
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Figure 3.8
Pump-induced relative changes in second harmonic fields ∆2ω

even (a) and ∆2ω
odd (b)

for 3 (circles) and 5 ML Co/Cu(001) (squares). Black lines indicate the
pump-probe cross-correlation at the sample surface. It is shown inverted in (a). In
addition, solid lines show (a) the relative change of spin-integrated charge carriers
nCo and (b) the relative change of the Co magnetic moment as calculated by
TDDFT. Data for different Co thicknesses are vertically offset for display. The
inset depicts ∆2ω

odd for longer delays.
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efficiency of 40% (25%) for 3 (5) ML Co/Cu(001).
The dynamics of the spin-integrated charge carriers in Cu shown in fig. 3.10a

reinforces that the dynamics in the initial ≈ 35 fs are driven by charge transfer, as
the pump induced charge saturates after this time. Fig. 3.10b displays the calculated
time-dependent change of the number of majority (↑) and minority (↓) carriers in
Co (nCo) and Cu (nCu) layers. The increase of n↑Cu simultaneous with the decrease
of n↑Co is a consequence of spin transfer from ferromagnetic Co to paramagnetic
Cu. We observe a much weaker increase in Cu compared to the decrease in Co,
indicating SOC driven spin flips, which limit the spin injection efficiency from Co
to Cu. Additionally, we observe different rates of change in n↑Co and n↓Co before and
after ≈ 35 fs, which can again be attributed to SOC becoming the dominant process
after this point in time. The turning point at ≈ 35 fs coincides with the length
of the pump pulse, suggesting that spin transfer remains dominant as long as the
pump pulse excites further carriers. We also note that n↓Cu decreases more than n↑Cu
increases, pointing at back transfer of minority carriers from Cu to Co, enhancing
the demagnetization in Co. This back transfer can be explained by a resonant optical
excitation with the employed 1.5 eV pump photon energy from occupied Cu minority
3d states to unoccupied Co minority 3d states. The electronic density of states (fig
3.10c) supports such an optically driven minority spin back transfer from Cu to
Co only directly at the interface, where hybridization of Cu and Co generates new
Cu 3d states closer to the Fermi energy EF than in bulk Cu [66, 67]. This finding
is in accordance with previous observations that optically excited spin transfer is
determined by the availability of empty states around EF [52, 68, 69]. The amount
of excitation can therefore be tuned by changing either the substrate or the pump
pulse frequency.

Our results show that inclusion of spin-dependent charge transfer from the sub-
strate and the actual electronic structure at the interface impact the dynamics of
UFD. The back transfer of minority spins from Cu to Co is not captured in theories
which only rely on spin-dependent life times as input for modeling laser-induced
spin transport. It is important to properly include spin-dependent charge transfer
excitations across the interface. We find that SOC mediated spin flips can occur
on sub 100 fs time scales, as has been reported previously in model calculations
without accounting for phonon excitations [44, 65]. As this timescale is much faster
than Elliott-Yafet phonon-mediated spin-flip scattering [43], it might be closer to
the rate-limiting process in UFD. On the other hand, SOC mediates the interaction
of the magnetic moment with the lattice, which will inevitably act as a sink for the
angular momentum [70].

In summary, we were thus able to identify three different processes dominating ul-
trafast demagnetization at Co/Cu(001) interfaces during subsequent time intervals:
For t < 35 fs, spin transfer and back transfer between Co and Cu occur, followed
by SOC mediated spin flips during 35 fs < t < 100 fs, after which phonon-mediated
process dominate. Phonon excitation can lead to both, further demagnetization
[43, 71] or relaxation. In the experiments in our present study, the interaction with
phonons leads to a relaxation of the magnetization due to energy transport from
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the FM layer to the PM substrate. Our finding of a minority spin back transfer
from Cu to Co due to a resonant optical transition at the interface layers’ density
of states opens new possibilities for optical control of spin dynamics on femtosecond
timescales via tunable laser pulses.
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Figure 3.9
Left: Comparison of the time-dependent change of magnetic moment for 3 ML
Co/Cu(001) as observed in experiment by ∆2ω

odd and by TDDFT calculations. The
relative changes (normalized to values µ (t < 0) before excitation) of the total spin
moment in Co/Cu(001) ∆µ as well as of the Co contributions ∆µCo with and
without SOC are given. Right: Magnetic moment induced in Cu, µCu, by spin
transfer across the interface.

Figure 3.10
(a) Sum of spin polarized carriers in Cu. (b) Calculated change of number of
excited majority and minority charge carriers n↑,↓ localized at Co and Cu for 3 ML
Co/Cu(001) as a function of pump-probe delay. (c) Electronic density of states
(DOS) of Co and Cu layers at the interface (Cu d and sp states: dashed
respectively solid lines). The horizontal arrow indicates the optical pump
transition.
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4. Density functional theory for
ultra long-range phenomena

We have established in chapter 2 that, compared to traditional wave function ap-
proaches, a massive reduction in computational cost can be achieved by choosing the
density as the fundamental quantity. While employing the KS approach has proven
to be a highly successful trade-off between efficiency and accurately capturing the ki-
netic energy, solving the KS system still comes with some computational cost. This
is typically not a problem for microscopic quantities, which can be derived from sim-
ple, periodic solids with only a few atoms in the atomic basis. Computational cost,
however, will become a limiting factor if physical effects are to be considered with
a periodicity much larger than the length of a single unit cell. Such effects may in-
clude light propagating through a solid (cf. subsection 3.3.3), long-ranged collective
excitations, such as phonons, or large-scale magnetic structures, such as magnetic
domains. The usual supercell (SC) approach, in which many adjacent unit cells
are grouped together as a new basis, is no longer computationally viable for these
systems. Each additional atom adds a full set of electronic states to be accounted
for. In a typical calculation a matrix with a size proportional to the number of
electronic states in the system has to be diagonalized, resulting in an overall scaling
of the computational cost of approximately O (N3

atom) (with the number of atoms in
the system Natom). This cubic scaling plagues all DFT codes with a systematic ba-
sis set and limits computations to systems containing a maximum of ≈ 1000 atoms.
While recently proposed methods based on Chebyshev filtering [72, 73] or linear scal-
ing (O (Natom)) approaches [74] were able to increase the computable system size
considerably, these methods come with their own difficulties: Although Chebyshev
filtering reduces the number of O (N3

atom) steps in a self-consistent cycle, it of course
does not negate the cubic scaling completely, which will ultimately be the limiting
factor. Linear scaling approaches, on the other hand, require a “nearsightedness”
of the system and assume that couplings inside the material drop off exponentially.
While this might be fulfilled for effects strictly related to the charge density (i.e. XC
potential and screened Coulomb interaction), this is certainly not fulfilled for large
magnetic systems, such as magnetic domains.

In this chapter, we propose a fundamentally different approach to drastically
extend the length scale of DFT calculations without significantly increasing the
computational cost. Our ultra long-range (ULR) approach relies on altered Bloch
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4.1 The magnetic dipole interaction and magnetic domains

states and can be understood as a generalization of the spin-spiral ansatz [75, 76],
which emerges as a special case of our ansatz. In the spin-spiral ansatz, a spin-
dependent phase is added to the normal Bloch state. It then becomes possible
to compute a large, extended spiraling magnetic moment within a single unit cell.
While this is computationally very efficient, it is, at the same time, the biggest
limitation of the spin-spiral ansatz: It only allows for a change in the direction of
the magnetization while the magnitude of the magnetization and the charge density
remain unaltered. We overcome this limitation by introducing an additional sum
in the Bloch states over a finer grid in reciprocal space around each k-point. The
resulting densities then become a Fourier series with a controllable periodicity, which
may extend far beyond the length scale of a single unit cell.

Before formally introducing our method, we will first briefly revisit the MDI,
which is known to contribute to non-trivial magnetic order on large scales, such as
magnetic domains. We will then proceed to derive a general ultra long-range KS
system including external fields, the Coulomb interaction and the MDI. We demon-
strate the accuracy and efficiency of our method with two electrostatic benchmark
calculations in bulk Si and Li. We directly compare our results in Si to results ob-
tained from a SC calculation. In the case of Li, we manage to solve over 6000 unit
cells within two days on 220 cores. We proof that our method is well capable of
capturing subtle magnetic systems by computing the spin-spiral state in γ-Fe and
the spin-density wave state in bulk Cr. Finally, we will briefly discuss a general-
ization to the time-dependent case and how it could make a coupling of our ULR
KS system to Maxwell’s equation possible. The results of this section have been
published previously [77].

4.1 The magnetic dipole interaction and
magnetic domains

It is experimentally well established that inside a ferromagnetic material regions
with a preferred magnetic direction, so-called magnetic domains, exist. The key
energy terms are believed to be the XC magnetic field (eq. 2.56) and the MDI (eq.
2.72). In this section, we will revisit the MDI and discuss its effect on the formation
of ferromagnetic domains. In section 2.4, we saw that the quantum mechanical
MDI appears as a second order term in the relativistic 1/c expansion of quantum
electrodynamics

HDP ≡ Hdip +Hsc, (4.1)

Hdip = − 1
8c2

∑
j 6=k

[
3 [σj · (rj − rk)] [(rj − rk) · σj]

r5
jk

− σj · σk
r3
jk

]
,

Hsc = − π

3c2

∑
j 6=k

δ (rj − rk)σj · σk,
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4.1 The magnetic dipole interaction and magnetic domains

where we defined the non-local contributionHdip and the local spin-contact contribu-
tion Hsc. The quantum mechanical MDI is analogous to the classical magnetostatic
interaction between two magnetic dipoles. While it is the leading order magnetic-
magnetic interaction in the expansion, the MDI is almost always neglected in DFT
calculations. This is because the effective XC magnetic field (e.g. 2.56) arising from
the Coulomb interaction and the Pauli exclusion principle is much stronger as it
lacks the prefactor of 1/c2. The XC magnetic field is, however, inherently very short-
ranged and is zero for electrons with non-overlapping wave functions. The MDI on
the other hand has “infinite”-range, as it drops of as ≈ 1/r3. In a ferromagnet, the
XC field directly competes with the MDI: Whereas the XC field heavily favors a
local alignment of magnetic moments, the MDI favors a global anti-alignment. It
is this competition which is believed to be the origin of the formation of magnetic
domains. Magnetic domains, however, are very large and may extend up to the
low micron regime. Therefore, despite having the underlying interactions readily
at hand, ab-initio calculations of magnetic domains are not computationally feasi-
ble and no such calculation exists. Usually one therefore resorts to a semi-classical
treatment of magnetic domains via the Landau-Lifshitz-Gilbert equation [5]. The
method we introduce in the remainder of this chapter will enable large scale DFT
calculations, and maybe even calculations of magnetic domains in particular.

For now, however, we focus on general properties of the MDI and show how to
compute it in practice. It is straight forward to calculate the classical magnetostatic
energy contribution of the MDI, which reads:

EDP [m] = −µ
2
B
2

∫
dr
∫

dr′3 (m (r) · er,r′) (m (r′) · er,r′)−m (r)m (r′)
|r − r′|3

− 4π
3 µ2

B

∫
dr m2 (r) . (4.2)

Here er,r′ = (r − r′) / |r − r′|. The magnetic field associated with the magnetiza-
tion m (r′) is then given by the functional derivative with respect to µBm (r),

BDP (r) = −µB

∫
dr′3 (m (r′) · er,r′) er,r′ −m (r′)

|r − r′|3
− 8π

3 µBm (r) . (4.3)

BDP (r) can be easily calculated by first evaluating the vector potential associated
with the MDI [57]:

ADP (r) = µB

∫
dr′∇×m (r′)

|r − r′|
, (4.4)

for which the usual relation ∇ × ADP (r) = BDP (r) holds. Each component of
ADP (r) is given by a Poisson equation, which can be solved easily by most DFT
codes. We use the method by Weinert [78] for solving Poisson’s equation in the Elk
code. We note that the vector potential also bears physical meaning and will yield a
kinetic energy contribution due to a Lorentz force created by the spin-magnetic field.
Therefore, in the most general case, both the vector potential and the magnetic field
should be added to a Schrödinger equation.
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4.2 Ultra long-range ansatz

We conclude our considerations on the MDI with the special case of a system
with a homogeneous magnetization. It is easy to show that the mean-field energy
of the non-local termHdip (eq. 4.1) vanishes in this case. If, for example, we choose
m (r) = mez and make the shift r → r + r′ we obtain

Edip [m] = −µ
2
B

2 m
2
∫

dr
∫

dr′3 cos θ2 − 1
|r|3

(4.5)

where θ is the angle between ez and er. The angular integration now corresponds
to a full angular integration over a spherical harmonic and thus vanishes. Therefore,
for homogeneous systems, only the contact interaction contributes.

4.2 Ultra long-range ansatz
We will formally introduce our ULR method in this section. We consider a system
which can be described by the following KS equations:

Ĥ0 = −∇
2

2 + vs (r) + µBBs (r) · σ + 2iµB (Aext (r) · ∇) + 2µ2
BA

2
ext (r) . (4.6)

The KS potential vs (r) = vext (r) + vH (r) + vxc (r) consists of an external potential
vext, a Hartree potential vH and an XC potential vxc. Similarly, the KS magnetic
field Bs (r) = Bext (r)+Bxc (r)+BDP (r) can be decomposed into an external field
Bext, an XC-field Bxc and a magnetic dipole field BDP (eq. 4.3). Finally, Aext is an
external vector potential in the Coulomb gauge.

In this section, we will extend eq. 4.6 to large length scales. We will first derive a
generalization of the Bloch state from which long-ranged charge and magnetization
densities follow. From these densities, we will infer an ULR Hamiltonian and derive
all matrix elements of said Hamiltonian explicitly.

4.2.1 Wave function and densities
The central idea of our approach relies on a generalization of the Bloch state. A
similar idea was put forward with the spin-spiral ansatz [75, 76], which will emerge
as a special case of our approach. While in the spin-spiral ansatz only a spin-
dependent phase is added to the spinor Bloch state, we in addition introduce a full
set of momentum-dependent expansion coefficients, enabling also a change in the
magnitude of the magnetization and charge densities. For a fixed k-vector our Bloch
state reads:

Φk
α (r) = 1√

Nu

∑
jκ

cαjk+κ

(
u↑jk (r)
u↓jk (r)

)
ei(k+κ)·r. (4.7)

where u↑↓jk are the normalized orbitals of a lattice-periodic system, j is a band index
and k a reciprocal space vector. cαjk+κ are complex coefficients to be determined
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(a) (b)

Figure 4.1
a) Schematic of the κ-point grid. For each k-point (black dashed line) all bands
(blue) are augmented with a fine grid of κ-points (green). Three different types of
couplings between κ-points corresponding to different length scales are possible. a)
A coupling between different κ-points sharing the same band index, b) a coupling
between two identical κ-points but with different band indices and c) a coupling
between different κ-points with different band indices. The maximum length scale
of the calculation may be choosen by adjusting the κ-point grid. b) A schematic of
the long range approach. The red lines indicate unit cells. The lattice periodic
density nQ (blue) is altered by a Q-dependent modulation (orange) with a
different periodicity. The result (lower graph) depends on both, the long-range
modulation and the lattice periodic solution. a is the lattice constant of a unit cell
and A is the lattice constant of the ultra cell, which is the smallest cell that
contains the full long-range solution.

variationally. α = 1, . . . , nκ×nj is a state index and κ is the index of an additional,
finer grid around each k-point in reciprocal space (fig. 4.1a), which we use to sample
long-range effects. Finally Nu is a normalization factor which is equal to the number
of unit cells on which Φk

α is periodic. We have used the lattice periodic parts of the
orbitals at k and not k+κ here. In principle, both are complete basis sets capable
of expanding any lattice-periodic function. In practice, the choice of using u↑↓jk over
u↑↓jk+κ is more efficient for determining the density, magnetization and Hamilton
matrix elements.

From this wave function, we can construct a charge and magnetization density:

n (r) = 1
Nk

∑
k,α

fkαΦk†
α (r) Φk

α (r) , (4.8)

m (r) = 1
Nk

∑
k,α

fkαΦk†
α (r)σΦk

α (r) , (4.9)

with the number of k-points Nk and the ultra long-range occupation numbers fkα
associated with the orbitals Φk

α. The charge and magnetization densities obtained
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4.2 Ultra long-range ansatz

Figure 4.2
A simplified real space picture of the ultra cell. A supercell is very expensive for
large systems and a single, lattice periodic unit cell can lead to loss of physical
features. The ultra cell approach allows for sampling only a subset of the total
system which is considered. An arbitrary number of unit cells can be left out in
between.

from this wave function take the form

n (r) =
∑
Q

nQ (r) eiQ·r, m (r) =
∑
Q

mQ (r) eiQ·r, (4.10)

with Q = κ − κ′. The partial densities nQ,mQ in eq. 4.10 are generally complex
and act as lattice-periodic Fourier coefficients. The resulting total densities n,m are
real functions, which, depending on the values ofQ, will have a periodicity far larger
than the length scale of a unit cell (fig. 4.1b). By adjusting the underlying κ-lattice,
it is therefore possible to change the Q-vectors and hence allow for variations of
arbitrary length in the system. The Q = 0 term deserves special mention, as it
corresponds to the full lattice periodic solution. We emphasize that there is no
restriction on the magnitude of nQ,mQ and we are thus able to expand arbitrary
modulations in the charge and magnetization densities. This is a key difference
compared to the spin-spiral ansatz [75, 76]. The Fourier coefficients nQ,mQ can be
calculated efficiently by first calculating the wave function (eq. 4.7) for a subset of
unit cells, given by a set of real-space lattice vectors {Ri}. We choose theRi-vectors
to be the conjugated real-space vectors of the Q-vectors. The wave function in a
single unit cell is then given by a sum over the states j and a Fourier transform in
κ of the coefficients cαjk+κ:

Φk
α (r +Ri) ≈

∑
j

(
u↑jk (r)
u↓jk (r)

)∑
κ

cαjk+κe
iκ·Ri (4.11)

where r is restricted to a single unit cell and we have assumed that |κ · r| � 1, which
is typically fulfilled for large systems. From this we compute a set of charge and
magnetization densities on the same grid, i.e. ni = n (r +Ri) ,mi = m (r +Ri).
This set can then be partially Fourier transformed to reciprocal space to obtain
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4.2 Ultra long-range ansatz

nQ (r) ,mQ (r):

nQ (r) = 1
NR

∑
i

n (r +Ri) e−iQ·Ri ,mQ (r) = 1
NR

∑
i

m (r +Ri) e−iQ·Ri . (4.12)

Here NR denotes the number of R-vectors chosen. With the definition of R, it
is illustrative to think about the ULR ansatz in a real-space picture: Our ansatz
corresponds to a sampling of unit cells in real space, followed by a Fourier interpo-
lation between the sampled cells (fig. 4.2). With the densities at hand, we will now
focus on generalizing the Hamiltonian such that meaningful, non-trivial values for
the expansion coefficients cαjk+κ (eq. 4.7) are obtained.

4.2.2 Ultra long-range Hamiltonian

Our ULR Hamiltonian retains the full lattice periodic KS Hamiltonian Ĥ0 (eq. 4.6)
but has an added, additional “modulation” Hamiltonian

Ĥ = Ĥ0 +
∑
Q 6=0

ĤQ (r) eiQ·r ≡ Ĥ0 + ĤQ 6=0, (4.13)

where we introduced the general notation OQ 6=0 ≡
∑
Q 6=0OQ (r) eiQ·r. The total

Hamiltonian Ĥ is thus decomposed in the same way as the charge and magnetization
densities (eq. 4.10). For a KS system like eq. 4.6, our “modulation”-Hamiltonian
reads

ĤQ 6=0 =
∑
Q 6=0

eiQ·r
[
vQ (r)+µBBQ (r) ·σ+2iµB

(
Aext
Q (r) ·∇

)
+2µ2

BÃQ (r)
]
, (4.14)

vQ (r) ,BQ (r) ,Aext
Q (r) , ÃQ (r) are again complex, lattice periodic Fourier coeffi-

cients and contribute to long-ranged versions of the scalar potential, the magnetic
field and the vector potential, respectively. In the following we will discuss these
coefficients and how to compute them in more detail. We will start with the scalar
potential, which can again be decomposed into a Hartree potential vH

Q (r) an XC-
potential vxc

Q (r) and an external potential vext
Q (r). The coefficients for the ULR

Hartree potential vH
Q (r) are obtained by evaluating the Hartree potential for the

long-range density n (r) (eq. 4.10):

vH
Q 6=0 (r) =

∑
Q6=0

eiQ·r
∫
d3r′

nQ (r′)
|r − r′|

e−iQ·(r−r
′) =

∑
Q 6=0

vH
Q (r) eiQ·r. (4.15)

The coefficients associated with the XC-interaction vxc
Q (r) cannot be directly ob-

tained from nQ (r). The main difference compared to the Hartree potential is that
the XC-functional is inherently non-linear, therefore the naive approach vxc

Q (r) =
vxc [nQ] may introduce a mixing of the real and imaginary part of nQ. We will there-
fore evaluate the XC-potential for each R-vector individually followed by a Fourier
transform to Q-space to obtain vXC

Q (r):

vXC
Q (r) = 1

NR

∑
i

vxc [n] (r +Ri) e−iQ·Ri . (4.16)
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It is worth noting that defining the long-range XC-functional this way does not
change how local an XC-functional inherently is, it is merely a Fourier interpolation.
Lastly, vext

Q (r) are the coefficients of an external, long-ranged potential and can
be freely chosen. While our current method assumes a lattice-periodic underlying
system, changes to the electrostatic potential due to a shift in the nuclei can be
expanded and added perturbatively to vext

Q (r).
The magnetic field BQ (r) in eq. 4.14 consists of an external field, an XC-field

and a dipole-dipole field:
BQ (r) = Bext

Q (r) +BXC
Q (r) +BD

Q (r) . (4.17)
Again, the external magnetic field may be chosen arbitrarily and the XC-field can
be computed analogously to the XC-potential:

BXC
Q (r) = 1

NR

∑
i

BXC [n,m] (r +Ri) e−iQ·Ri . (4.18)

The last term corresponds to the magnetic field associated with the MDI:

BD
Q (r) = −µB

∫
d3r′

3 (mQ (r′) · er,r′) er,r′ −mQ (r′)
|r − r′|3

e−iQ(r−r′) − 8πµBmQ (r) ,

(4.19)
which is a long-ranged version of eq. 4.3 and should therefore contribute to non-
trivial magnetic order. Similarly to the Coulomb interaction, we expect also an
exchange contribution arising from the MDI. We derive a truly non-local exchange
functional for the MDI in chapter 5.

Finally, Aext
Q (r) , ÃQ (r) in eq. 4.14 are the contributions of a vector potential in

the Coulomb gauge. ÃQ (r) corresponds to the term arising due to the square of the
vector potential. As this term is also non-linear, it should be evaluated in real-space
first as well:

ÃQ (r) = 1
NR

∑
i

(Aext (r +Ri))2 e−iQ·Ri . (4.20)

While this makes it possible to treat the vector potential fully non-perturbatively,
we note that the term 2µ2

BA
2 (r) is commonly neglected in calculations as it is

typically small in comparison with the term 2µBA (r) · ∇.
We conclude with a remark on the kinetic energy. The kinetic energy operator

p̂2/2 does not explicitly depend on the periodicity of the problem at hand. As the
kinetic energy operator is already included in Ĥ0 (eqs. 4.6,4.13), it should not be
included in ĤQ 6=0 (eq. 4.14) again. It is important to note, however, that the kinetic
energy is sensitive to the shifts in reciprocal space of the wave function (eq. 4.7)
k → k + κ. The total kinetic energy in the long range system Ĥ is thus generally
different than the total kinetic energy in the lattice periodic system Ĥ0.

4.2.3 Hamiltonian Matrix Elements
Our goal is to diagonalize the full Hamiltonian (eq. 4.13) which consists of a lattice-
periodic part and a modulation part. For that we compute the matrix elements for
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4.2 Ultra long-range ansatz

a fixed k-point in the basis cαjk+κ = δα,jκ, i.e. we use the orbitals

ϕjk (r) = 1√
Nu

(
u↑jk (r)
u↓jk (r)

)
ei(k+κ)·r (4.21)

to evaluate
〈ϕjk| Ĥ0 + ĤQ 6=0 |ϕj′k〉 = δκκ′

(
O†k+κ,kε

0
kOk+κ,k

)
jj′

+ 〈ϕjk| ĤQ 6=0 |ϕj′k〉 . (4.22)

Here ε0k+κ is the diagonal matrix of eigenvalues of Ĥ0 at k + κ and Ok+κ,k is the
unitary overlap matrix between the orbitals at k and k + κ, i.e.

(Ok+κ,κ)jj′ =
∑
s

∫
dr u∗sjk+κ (r) e−iκ·rusj′k (r) , (4.23)

where s =↑, ↓ is a spin index. This overlap matrix is required because our chosen
basis is the set of orbitals at k and not those at k + κ. The overlap matrix Ok+κ,κ
may however not be strictly unitary. This may be due to the basis being finite or
numerical inaccuracies. As unitarity is necessary for preserving the eigenvalues ε0k+κ,
we ensure this by first performing a singular value decomposition Ok+κ,κ = UΣT †
and then making the substitution Ok+κ,κ → UT †. It is possible to show that this
new matrix is the closest - in the sense of the Frobenius norm - unitary matrix to
the original [79].

What remains to be done is the calculation of the matrix elements of ĤQ 6=0 (eq.
4.14). We start with the the scalar potential and find:

〈ϕjk| vQ 6=0 |ϕj′k〉 =
∑
s

1
Nu

∫
ultra

d3r u∗jsk (r) e−iQ′·rvQ 6=0 (r)uj′sk (r)

=
∑
s

1
Nu

∫
unit

d3r
∑
Ru

u∗jsk (r)uj′sk (r) e−iQ′(r+Ru)

×
∑
Q

vQ (r) eiQ(r+Ru)

=
∑
s

∫
unit

d3r u∗jsk (r)uj′sk (r) vQ (r) . (4.24)

In the first step we converted the integral over the ultra cell into an integral over a
unit cell and a sum over all unit cells in the ultra cell

∫
ultra d3r →

∫
unit d3r

∑
Ru and

made use of the lattice periodicity of ujk (r). In the second step we then carried out
the sum over Ru followed by the sum over Q. The matrix elements for the ultra
cell can thus be expressed by a simple unit cell integration. Similarly we find for
the magnetic field contribution:

〈ϕjk|BQ 6=0 · σ |ϕj′k〉 =
∫

unit
d3r u∗↑jk (r)u↓j′k (r)

(
Bx
Q (r)− iBy

Q (r)
)

+ u∗↓jk (r)u↑j′k (r)
(
Bx
Q (r) + iBy

Q (r)
)

+
(
u∗↑jk (r)u↑j′k (r)− u∗↓jk (r)u↓j′k (r)

)
Bz
Q (r) .

(4.25)
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And finally we have for the vector potential:

〈ϕjk|
∑
Q

i

c

(
Aext
Q (r) ·∇) + 1

2c2 ÃQ (r) |ϕj′k〉 = 1
c

∑
s

∫
unit

d3r u∗sjk (r)

×
[
iAext

Q (r) ·∇−Aext
Q (r) · (k + κ′) + 1

2cÃQ (r)
]
usj′k (r) .

(4.26)

4.3 Numerical implementation
In this section we will address how to implement the ultra long-range ansatz in
practice. The discussions in this section are based on our implementation in the
ELK electronic structure code [38].

4.3.1 Self-consistent solution

Ĥ (eq. 4.13) is a KS system in which the potentials are functionals of the partial
densities nQ (r) ,mQ (r) (eq. 4.12) which in turn depend on the orbitals Φk

α (r) (eq.
4.7). eq. 4.13 thus needs to be solved self-consistently. We employ an iteration
scheme as it is usually done when solving KS systems:

1. Solve the lattice periodic ground state (eq. 4.6) and obtain the spinor orbitals(
u↑jk (r)
u↓jk (r)

)
as well as all eigenenergies ε0jk+κ associated with the k + κ-points.

2. Initialize the external long-range potentials via vQ,BQ,AQ and the occupation
numbers fkα .

3. (a) Compute the matrix elements of ĤQ 6=0 (eq. 4.14). Diagonalize Ĥ (eq.
4.13) to obtain the expansion coefficients cαjk+κ as well as the long-range
eigenenergies εkα.

(b) Concurrently with the step above, construct the long-range densities
nQ (r) and mQ (r) (eq. 4.12).

4. Calculate the new occupation numbers fkα .

5. Calculate new long-range potentials v′Q,B′Q,A′Q. Mix the new potentials with
the potentials from the previous iteration. Monitor the relative change in the
potentials.

6. Repeat steps 3 to 5 until the change in the potentials is sufficiently small.

We will discuss two steps in this self-consistent cycle in more detail. First we
will explain why we calculate the energies εkα and densities nQ (r) ,mQ (r) before the
occupation numbers fkα . This seems counterintuitive, as the densities depend on the
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occupation numbers (eqs. 4.8,4.9). However, as we are performing a self-consistent
cycle, the occupation numbers will converge to the correct value as self-consistency
is achieved. Computing the occupation numbers last enables us to parallelize step
3 over the k-point set in a single loop: For each k-point, we diagonalize Ĥk =
Ĥk

0 + Ĥk
Q 6=0 and compute nkQ (r) ,mk

Q (r). Afterwards we carry out the k-point sum
over nkQ (r) ,mk

Q (r) to obtain nQ (r) ,mQ (r). The central computational gain is
that this ordering is much less demanding when it comes to memory: The expansion
coefficients cαjk+κ no longer have to be stored but can be calculated and used on-the-
fly instead.

Second, we note that some care has to be taken during the mixing, as only the
coefficients vQ (r), BQ (r) ,AQ (r) of a Fourier series are mixed. These coefficients
are generally complex and are not subject to the same constraints as the actual real-
space densities. We also want to emphasize that in a typical calculation a rather
slow mixing should be applied. The Coulomb interaction in a large system will react
very strongly to any external perturbation because of the 1/Q2 divergence, which
can lead to substantial charge sloshing during convergence. This is an aspect of the
method which would benefit from further investigation and improvement. One idea
is to start with a screened Coulomb interaction to remove the divergence. During
the self-consistent loop, the screening could then be slowly reduced to zero.

4.3.2 Efficient k-space grids
The underlying grids have to be carefully chosen in order to avoid computational
artifacts and to achieve a most efficient calculation. Ideally, the distance between
k-points should be much bigger than the distance between κ-points, |k − k′| �
|κ− κ′|. This will ensure that the set k+κ does not overlap for any two k-points,
which may lead to double counting and an overcomplete basis set. Physically speak-
ing, the length scales in the system should be well separated, i.e. the modulation
should be far larger than the size of a unit cell. If |k − k′| ≈ |κ− κ′|, however, the
system tends to have a size which can and should be solved with a supercell instead.

During a self-consistent iteration Fourier transformations need to be carried out
multiple times: In eiκ·Ri when calculating the wave function (eq. 4.11) and in e−iQ·R
when calculating the densities (eqs. 4.8, 4.9), the XC-potential and -field (eq. 4.16,
4.18) and the vector potential (eq. 4.20). For the computational performance it is
therefore highly beneficial to carry out all Fourier transformations via a Fast Fourier
Transform (FFT). This requires the underlying grid to be FFT compatible (having
radices 2, 3, 5 and 7 in our case). Due to Q = κ − κ′ the Q-point grid and the κ-
point grid are dependent on each other. The number of Q-points NQ along a given
direction i is N i

Q = 2N i
κ − 1. In our implementation, we ensure that the input Q-

grid snaps to the next FFT compatible grid. We then choose the κ-point grid such
that 2N i

κ − 1 ≤ N i
Q. This grid choice can sometimes result in unmatched Q-points,

e.g. if NQ = 20, Nκ = 10, the Q-vectors are not symmetric around zero. While the
unmatched Q-point is “dead-weight” and remains zero throughout the calculation,
the speed up obtained by using a FFT outweighs having additional Q-points.
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4.3.3 Computation of the Hartree and dipole interaction
We will briefly address how to calculate the complex integrals appearing in the
scalar potential (eq. 4.15) and the magnetic dipole field (eq. 4.19). When computing
the Hartree-potential (eq. 4.15, i.e. solving Poisson’s equation), the integral may be
performed efficiently by further Fourier transforming nQ (r) to nQ (G), where G is a
reciprocal lattice vector (eq. 2.81). The Hartree potential is then determined directly
via V H

Q (G) = 4πnQ (G) / |G+Q|2 and can be subsequently Fourier transformed
back to real-space. This is easily extended to the case of the APW basis by using
the method of Weinert [78].

The magnetic dipole field can be solved for in a similar way by evaluating Pois-
son’s equation component-wise for the vector potential. From classical electrody-
namics we now that the vector potential associated with a magnetization is given
by:

Adip (r) = µB

∫
dr′∇×m (r′)

|r − r′|
. (4.27)

We partially Fourier transform both sides and obtain:

∑
Q

Adip
Q (r) eiQ·r = µB

∫
dr′
∇×∑QmQ (r′) eiQ·r′

|r − r′|
. (4.28)

We thus have for the coefficients of the vector potential:

Adip
Q,j (r) = µB

∑
kl

εjkl

∫
dr′e−iQ·(r−r′)∂kmQ,l (r′) + iQkmQ,l (r′)

|r − r′|
. (4.29)

Here j, k, l indicate vector components and εjkl is the Levi-Civita symbol. The
coefficients Adip

Q (r) now have the same form as the Hartree potential (eq. 4.15) and
can also be computed by a complex version of Weinert’s method [78]. From this it is
easy to obtain the magnetic field of the dipole interaction viaBdip (r) = ∇×Adip (r).
We find for the coefficients:

Bdip
Q,j =

∑
kl

εjkl
[
∂kA

dip
Q,l (r) + iQkA

dip
Q,l (r)

]
. (4.30)

We point out that if we were to consider an exact theory for the current density,
the dipole vector potential (eq. 4.27) should be added to the total vector potential,
corresponding to a Lorentz force generated by the MDI.

4.4 Ultra long-range results
In this section, we will present several calculations to benchmark our ultra long-
range approach for both, accuracy and efficiency. We will start with two purely
electrostatic calculations and conclude with two magnetic examples, spin spirals in
γ-Fe and a spin-density wave in Cr.
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4.4 Ultra long-range results

4.4.1 Sawtooth potential in Silicon
In our first benchmark, we directly compare the results from an ultracell (UC) and a
supercell (SC). Our system consists of 20 unit cells of bulk Si subjected to an external
sawtooth potential applied along the (110) direction. For the SC we use 1x4x4 k-
points, 10 empty states per atom and expand the sawtooth microscopically with 750
G-vectors (cf. section 2.5) along the direction of the electric field. For the UC we
use 4x4x4 normal k-points, a two-atomic basis and 10x1x1 κ-points corresponding
to 20x1x1 Q-vectors (i.e. we employ the maximum of one Q-point per unit cell).
We use 60 empty states for both atoms in our atomic basis in order to obtain a large
ultra long-range basis set. In the UC, we expand the external sawtooth potential in
the coarseQ-points. The potential for both, the SC and the UC is shown in fig. 4.3a.
The potential is much closer to a real sawtooth in the SC, due to the larger number
of basis functions. In fig. 4.3b, we show the resulting self-consistent density for the
SC and the UC, plotted along the (110) direction. The plotting axis is slightly offset
relative to the atomic positions to avoid numerical spikes in the plot. We observe
very good agreement at the center and larger deviations at the edges, which can
mostly be attributed to the difference in the potentials. In both cases, the external
potential is screened, resulting in a seemingly periodic density in the center. Our
results show that our ultra long-range approach is reasonably accurate already for
a small Q-point set. We expect an even better agreement for larger systems where
we can employ more Q-points to sample the potential.
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(a) (b)

Figure 4.3
a) The external potential applied to bulk Si along the (110) direction for the
supercell and the ultracell. In the supercell, the potential is expanded
microscopically in G-vectors (750 G-vectors). In the ultracell, the potential is
expanded in coarsely sampled Q-vectors (20 Q-vectors), leading to visible
remaining oscillations. b) A comparison of the self-consistent densities in bulk Si
observed in the supercell and the ultracell along the direction of the electric field.
The plotting axis is slightly offset relative to the atomic positions to avoid
numerical spikes. We observe very good agreement in the center and worse
agreement at the edges, which can be explained by the different sampling of the
sawtooth.
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4.4.2 “Planck” potential in Lithium
Ultimately, our aim is to have an efficient method for large systems. While we
have seen in the previous section that our method can reproduce the results from
a SC, we will focus on the performance of our method in this section. To that
end, we consider bulk Li subjected to a large, extended electrostatic potential. The
electrostatic potential we choose is what we refer to as the “Planck”-potential (fig.
4.4a). We constructed this potential by pixelating a black-white photo of Max
Planck. We chose the size of our potential such that each pixel corresponds to a
unit cell of bulk Li. To ensure a periodic potential, we multiplied the outcome
with a smoothed version of the 2d rectangle function. The resulting potential is
applied to 81x81x1 unit cells of bulk Li with a two atomic basis, corresponding
to 13122 atoms in total. For our calculation we used 6x6x6 normal k-points, 4
empty states and 27x27x1 Q-points, corresponding to 14x14x1 κ-points. The total
computation time, including the ground state calculation and the plotting, was
slightly under 50 hours on 220 cores. In fig. 4.4b we plot the self-consistent change
in the density ∑Q 6=0 nQ (r) eiQ·r due to the additional external field. The imprint of
the potential is clearly visible. Upon a careful inspection, the nuclear positions can
also be recognized as a fine grid. As the electronic density is mainly found close to
the nuclei, those are the regions where the largest changes occur. This is even more
visible in fig. 4.4c, where a magnification of a specific region of the self-consistent
charge density is shown. When looking at the total self-consistent potential (fig.
4.4d), we observe that the magnitude is smaller compared to the external electric
field, indicating that the electrons screen the external potential. Convergence was
obtained after 399 self-consistent iterations and a steady convergence was observed.
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(a) (b)

(c) (d)

Figure 4.4
a) External “Planck”-potential. b) The change in the ground state of bulk Lithium
due to the electric potential shown in fig. 4.4d. The electronic density roughly
takes the shape of the external potential. The atomic positions show as a grid of
small dots. c) Magnification of a small region of the density, the atomic positions
are clearly visible. d) Total self-consistent electrostatic potential. The electrons
arrange themselves such that the external potential is screened, resulting in a lower
magnitude.
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4.4.3 Spin-spirals in γ-Iron
Spin-spirals can arguably be considered to be the most basic test for our ULR
method. As noted above, the spin-spiral state is a special case of the ULR ansatz.
For a direct comparison, we performed a calculation on fcc-Fe (the “γ phase” of
Fe) which is known to have a spiral configuration of the magnetization [80]. For
the UC we used 1 × 12 × 12 k-points, 32 × 1 × 1 Q-points and 32 × 1 × 1 unit
cells. A single unit cell was used for the spin-spiral calculation with a 12× 12× 12
k-point grid and a Q-vector of 1/32. An initial magnetic field is required to break
spin symmetry. To ensure an unbiased calculation, we applied a random field to the
UC calculation and subsequently reduced it to zero. Throughout the calculation,
we enforce the constraint

∫
unit drmQ=0 (r) = 0 to ensure that the system is not

drawn to a lattice-periodic ferromagnetic solution. The magnetization converged to
an ordered spin-spiral state where the magnitude was constant over the UC and only
the direction varied (Fig. 4.5(a)). This corresponds precisely to the spin-spiral state.
The overall magnitude of the magnetization is sensitive to the lattice parameter and
undergoes a transition from ∼ 1µB to ∼ 2.5µB for this relatively small Q-vector. As
may be seen in Fig. 4.5(b), this behavior is observed for both the UC and spin-spiral
calculations.
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Figure 4.5
(a) Ultra long-range magnetization density of γ-Fe plotted in the plane
perpendicular to [001]. The color indicates the magnitude of the magnetization
and the arrows indicate direction. The modulation encompasses 32 unit cells in the
[100] direction. (b) Plot of moment against unit cell volume for both the
long-range and spin-spiral ansatz.
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4.4.4 Spin-density wave in Chromium
Finally we aim at calculating the SDW state in Cr. The existence of a SDW in Cr
is well known and first research dates back to around 1960 [81–83]. Despite this,
computing the SDW state within DFT remains difficult and has been the topic of
many studies [84–96], with partially conflicting results [97]. It is likely that a SDW is
not the true ground state of Cr within DFT [98]. We will not focus on the inherent
difficulties of the system in the following. Instead we will benchmark our ultra-
long range approach against a direct calculation with a SC. Cr is an excellent test
case, as the periodicity of the SDW is ≈ 20.83 unit cells, which is still well within
computational reach of a conventional SC approach. This state is not achievable
by the spin-spiral ansatz because the magnitude of the moment changes but not its
direction, thus a SC calculation is required.

For our comparison, we use the LSDA and a lattice parameter of 2.905Å as
suggested by Cottenier et al. [97]. We consider 21 × 1 × 1 unit cells of bulk Cr
for both SC and UC calculations. For the SC we used a 1 × 12 × 12 k-point grid.
A randomized symmetry breaking magnetic field was used to start the calculation
and subsequently reduced to zero. Spin-orbit coupling was also applied. Our SC
calculation reproduces the result by Cottenier et al. [97]. For the UC we also used
a 1 × 12 × 12 k-point grid with a 21 × 1 × 1 Q-point grid corresponding to a grid
of 11× 1× 1 κ-points to obtain the best possible sampling of the xc-potential and
-field. Around 60 empty states in the lattice-periodic basis are used to provide
enough degrees of freedom during the convergence. We start with a randomized
initial field which we reduce during each step. Throughout the calculation, we
enforce the constraint

∫
MT drmQ=0 (r) = 0 for each muffin-tin. This ensures that

the system is not drawn to a lattice-periodic anti-ferromagnetic solution.
Our results are shown in Fig. 4.6. Specifically, Fig. 4.6(a) shows the comparison

of the magnetization in the SDW state, as obtained from the SC and UC calculations.
The maximum moment of the UC result is larger than that of the SC, 1.174 µB and
0.712 µB, respectively. We attribute this to the fact that the ULR calculation is
performed in the basis of Kohn-Sham states and not in the original LAPW basis for
which the linearization energies are optimally adjusted. It is also known that LSDA
calculations of this system are particularly sensitive to the basis and the moment
depends strongly on the lattice parameter [97].

In Fig. 4.6(b) we present the charge density wave (CDW) which is known to
stabilize alongside the SDW with twice the period. While obtaining the CDW in the
UC is straight-forward (as all ρQ(r) are known), it is numerically more challenging
to extract it for the SC. We did this by subtracting the density from the calculation
of a single unit cell. We obtain the same periodicity in both calculations as well as
a comparable magnitude.
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Figure 4.6
(a) Magnetisation density for bcc Cr over 21 unit cells. (b) Change in density over
the same range. For the ultracell, this was generated by setting ρQ=0(r) in eq.
(4.12) to zero. For the supercell, the lattice-periodic density was subtracted
leaving just the modulated density.

4.5 Time-dependent ultra long-range
systems

We will conclude this chapter with some brief considerations about a possible future
generalization of our ULR approach to time-dependent systems. Such a generaliza-
tion can be easily achieved by considering explicitly time-dependent ULR orbitals

Φk
α (r, t) = 1√

Nu

∑
jκ

cαjk+κ (t)
(
u↑jk (r)
u↓jk (r)

)
ei(k+κ)·r (4.31)

which result in time-dependent ULR densities:
n (r, t) =

∑
Q

nQ (r, t) eiQ·r, m (r, t) =
∑
Q

mQ (r, t) eiQ·r. (4.32)

It is then straight-forward to derive a time-dependent KS system analogous to the
system we derived in section 4.2.2, which can be time-propagated with the algorithm
presented in section 3.3.4.

An ULR time-dependent system seems specifically promising in the context of
light-matter interactions. We will show in the following that it is very easy to
couple such a system to Maxwell’s equations. In section 3.3.3 we found that the
vector potential in Coulomb gauge is given by

∆A (r, t)− 1
c2∂

2
tA (r, t) = −4π

c
jT (r, t) (4.33)

with the transverse current

jT (r, t) = j (r, t) + 1
4π∇

(
∇ ·

∫
d3r′

j (r′, t)
|r − r′|

)
(4.34)
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and the total effective current

j (r, t) = jf (r, t) + cµB∇×m (r, t) + ∂P (r, t)
∂t

. (4.35)

We can very easily solve for the vector potential if we have the current in the ULR
form

j (r, t) =
∑
Q

jQ (r, t) eiQ·r =
∑
G,Q

jQ (t) ei(G+Q)·r, (4.36)

where we transformed the lattice-periodic r-dependence to a plain-wave basis. The
coefficients for the transverse current jG,Q can then be derived analytically:

jTG,Q = jG,Q −
((G+Q) · jG,Q) (G+Q)

(G+Q)2 . (4.37)

With this we obtain for the vector potential (eq. 4.33)

∂2
tAG,Q (t) = 4πjTG,Q (t)− c2 ((G+Q) ·AG,Q (t)) (G+Q) , (4.38)

which is an ordinary differential equation for the Fourier coefficients of the vector
potential. A time propagation of the vector potential is thus very easy. While it
remains difficult to accurately calculate jf and P , this approach makes coupling
of a TD-KS to Maxwell’s equations computationally much more feasible. Possible
applications include real-time simulations of transmission and reflection or even real-
time simulations of the Faraday effect and the MOKE. As the dipole approximation
is often well fulfilled, it should suffice to only include the long-range contribution
in most cases, i.e. setting G = 0, which will drastically reduce the number Fourier
coefficients to describe the vector potential.

Finally, we note that if one is only interested in the time-dependent MDI, it is
possible to just evaluate a set of instantaneous Poisson equations, analogously to
the Hartree potential:

Adip (r, t) = µB

∫
dr′∇×m (r′, t)

|r − r′|
. (4.39)

This is possible because the second term in eq. 4.34 vanishes for the MDI:
∫

dr′∇r ·
∇r′ ×m (r′, t)
|r − r′|

=
∫

dr′ 1
|r − r′|

∇r′ · (∇r′ ×m (r′, t)) = 0. (4.40)

Here we employed integration by parts. A surface term does not appear as m
is typically a smooth and well-behaved function. This makes physical sense: The
second term in eq. 4.34 creates a current density at every point in space such that
causality is kept (as the scalar potential is an instantaneous function of the density).
The MDI interaction is purely magnetic and therefore not affected by a change in
gauge of the scalar potential.
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4.6 Limits of the ultra long-range method
Our ULR approach is of course an approximation to the exact result obtained by a
SC. We will therefore discuss in the following, when we expect our approximation
to break down. As mentioned in subsection 4.3.2, we expect our ansatz to perform
poorly in situations where the UC has approximately the same size as the Born-von
Karman cell. This is because the k + κ points will overlap and not maintain strict
orthogonality. Our results show, however, that the UC correctly reproduces the
magnetization for both the spin-spiral in γ-Fe (subsection 4.4.3) and the SDW in
Cr (subsection 4.4.4), which indicates that this problem might not be particularly
severe. The larger difference observed in Cr might be due to the system being smaller
and thus being more heavily effected by this. Due to only having two systems for
comparison and Cr being very difficult for DFT, one has to be careful with drawing
conclusions, though. Generally, a large separation of k and κ length-scales is still
desirable.

We further expect the method to become inefficient in cases where both the UC
is large and a high resolution of density modulations is required. This could be a
limiting factor when, for example, trying to model defects or when perturbatively
expanding the effect of atomic displacements in the external potential. The nec-
essary number of Q-vectors in these cases might be prohibitively large. Magnetic
domain walls might also be challenging, as a domain wall is very small compared
to the neighboring domains, hinting at a large number of required Q-vectors. More
generally speaking, if a very large number of Fourier components is necessary to
accurately describe the ULR modulation, the method will become inefficient. We
note, however, that there are currently no general alternatives to our approach for
such systems.

Finally, we have not yet tested our method for time-dependent systems. While
there are no mathematical restrictions, it remains to be seen how fast and accurate
simulations will be in practice. It is also not obvious, how manyQ-vectors compared
to a ground state calculation are necessary to faithfully capture the time evolution
of a time-dependent system.
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5. Exchange functional for the
magnetic dipole interaction

In the previous chapter, we derived ULR KS equations and explicitly included the
MDI. The general KS system we considered is given by eq. 4.6:

Ĥ0 = −∇
2

2 + vs (r) + µBBs (r) · σ + 2iµB (Aext (r) · ∇) + 2µ2
BA

2
ext (r) .

with vs (r) = vext (r) + vH (r) + vxc (r) and Bs (r) = Bext (r) +Bxc (r) +BDP (r).
From the basic considerations in chapter 2, it should be clear that adding an extra
interaction (in our case the MDI) to the KS system leads to an additional contri-
bution to the XC energy. This additional contribution then guarantees that the
non-interacting KS system reproduces the charge and magnetization densities of a
system interacting via both, the Coulomb interaction and the MDI.

In this chapter, we will derive an approximate functional for the contribution to
the exchange energy arising from the MDI, which we will then be able use alongside
the Coulomb XC functional. In the KS system, this will result in an extra term
BDP

x (r) in the exchange field:

Bxc (r) = BC
xc (r) +BDP

x (r) . (5.1)

Our functional is specifically designed for long length-scales and is easy to use with
the ultra long-range ansatz introduced in chapter 4. This should increase the accu-
racy when calculating large-scale magnetic structures. We will proceed as follows:
We will first consider the non-local part of the MDI (eq. 4.1) and show that a LDA
based on the homogeneous electron gas is always zero. We then consider a weakly
inhomogeneous electron gas and obtain a finite exchange functional from pertur-
bation theory. We discuss higher order energy contributions and derive the lowest
order energy contribution of the non-local contribution to the homogeneous electron
gas. Finally we show that a finite, local exchange energy contribution of the MDI
arises from the spin-contact contribution (eq. 4.1). The results of this section have
been partially published previously [99].
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5.1 Exchange energy of the homogeneous
electron gas

We want to derive an exchange energy for the MDI (eq. 2.72). We will for now focus
solely on the first term, which for two particles is given by:

Hdip = −µ2
B

(
3 [(r − r′) · σ] [(r − r′) · σ′]

|r − r′|5
− σ · σ′

|r − r′|3

)
. (5.2)

An exchange functional for the spin-contact interaction (eq. 4.1) is derived in section
5.4. With eq. 5.2, we have for the exchange energy:

Edip
x = −1

2
∑
a,b

∑
sa,sb

〈
ϕa,saϕb,sb

∣∣∣Hdip
∣∣∣ϕb,sbϕa,sa〉 . (5.3)

We use plane waves with a fixed spin as orbitals for the homogeneous electron gas:

ϕk,↑ (r) = 1√
V
eik·r

(
1
0

)
, ϕk,↓ (r) = 1√

V
eik·r

(
0
1

)
. (5.4)

We start by evaluating the expectation value
〈
ϕa,saϕb,sb

∣∣∣Hdip
∣∣∣ϕb,sbϕa,sa〉. We will

first consider the case where every spin is pointing upwards, si =↑:

〈↑↑
∣∣∣Hdip

∣∣∣ ↑↑〉 = −µ2
B

〈
ϕaϕb

∣∣∣∣∣3 (rz − r′z)
2

|r − r′|5
− 1
|r − r′|3

∣∣∣∣∣ϕbϕa
〉

= −µ
2
B
V 2

∫
dr
∫

dr′
[

3r2
z

r5 −
1
r3

]
eir·(a−b)

= −µ
2
B
V

∫
dr
[

3r2
z

r5 −
1
r3

]
eir·(a−b)

= −µ
2
B
V

4π
3

(
1− 3(az − bz)2

(a− b)2

)

≡ −µ
2
B
V

ηz (a− b) . (5.5)

In the second line, we made the shift r → r+r′. The integral over r′ then just yields
a volume factor V . The remaining integral corresponds to the Fourier transform of
the dipole interaction [100].

The following spin-combinations all yield the same result (no spin-flip occurs):

〈↑↑
∣∣∣Hdip

∣∣∣ ↑↑〉 = 〈↓↓
∣∣∣Hdip

∣∣∣ ↓↓〉 = −〈↑↓
∣∣∣Hdip

∣∣∣ ↑↓〉 = −〈↓↑
∣∣∣Hdip

∣∣∣ ↓↑〉. (5.6)
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We also have to consider the energy contribution when spin-flips occur:
〈↑↓

∣∣∣Hdip
∣∣∣ ↓↑〉 = 〈↓↑

∣∣∣Hdip
∣∣∣ ↑↓〉

= −µ2
B

〈
ϕaϕb

∣∣∣∣∣∣∣
 1
−i
0

[3 (r − r′) (r − r′)
|r − r′|5

− 1
|r − r′|3

]1
i
0


∣∣∣∣∣∣∣ϕbϕa

〉

= −µ2
B

〈
ϕaϕb

∣∣∣∣∣∣∣∣
3
(

(rx − r′x)
2 +

(
ry − r′y

)2
)

|r − r′|5
− 2
|r − r′|3


∣∣∣∣∣∣∣∣ϕaϕb

〉

= −µ
2
B
V

(ηx (a− b) + ηy (a− b)) . (5.7)

with
ηx (q) = 4π

3

(
1− 3q

2
x

q2

)
, ηy (q) = 4π

3

(
1− 3

q2
y

q2

)
. (5.8)

The total exchange energy contribution can now be calculated by evaluating the
sum in eq. 5.3 for all contributing spin combinations, 〈↑↑

∣∣∣Hdip
∣∣∣ ↑↑〉, 〈↓↓ ∣∣∣Hdip

∣∣∣ ↓↓〉,
〈↑↓

∣∣∣Hdip
∣∣∣ ↓↑〉, 〈↓↑ ∣∣∣Hdip

∣∣∣ ↑↓〉. All other combinations do not conserve spin and do
therefore not contribute. The energy is thus given by:

Edip
x = −1

2
∑
a,b

µ2
B
V

2 (ηx (a− b) + ηy (a− b) + ηz (a− b)) , (5.9)

In the continuum limit ∑i → V/ (2π)3 ∫ di we obtain:

Edip
x = − V µ

2
B

(2π)6

[∫
da

∫
db 2 (ηz (a− b) + ηx (a− b) + ηy (a− b))

]
= 0. (5.10)

The dipole exchange energy of the homogeneous electron gas is zero as ηx+ηy+ηy =
0. Even for an arbitrary polarization, we find that the exchange energy is zero, as a
full angular integration over any ηi vanishes:∫

da
∫

db ηi (a− b) =
∫
all

da
∫

db ηi (a) θ
(
k2
f − (a+ b)2

)
=
∫
all

da
∫

db ηi (a) θ
(
k2
f − a2 − b2 − 2ab cos θb

)
=
∫
all

da ηi (a)h (|a|) = 0. (5.11)

In the first step, we rewrote the integral over a as an integral over all space and
made the shift a → a + b. The integration over b then results in a function
h (|a|), which only depends on the magnitude of a. It is then easy to see that
the angular integration vanishes: In spherical coordinates ηz (q) = 4π

3 (1− 3 cos2 θq),
which is a spherical harmonic. Due to the orthogonality of spherical harmonics, a full
angular integration over any spherical harmonic is zero. From rotational invariance
it follows that full angular integrations over ηx, ηy vanish as well. Constructing a
local exchange functional for Hdip (eq. 5.2), similar to the LDA for the Coulomb
interaction, is therefore not possible.

75



5.2 Perturbative exchange functional

5.2 Perturbative exchange functional

Both the direct and the exchange interaction for Hdip (eq. 5.2) are zero in ho-
mogeneous systems. It is known, however, that the direct energy has a non-zero
contribution for inhomogeneous systems. We thus expect that the exchange energy
also has a finite contribution if the system is not homogeneous. We will, in this
section, derive an exchange functional for Hdip based on a weakly inhomogeneous
electron gas.

5.2.1 Functional form
We consider a homogeneous electron gas subjected to a spin-dependent perturbation
which is given by:

δvαQ (r) ≡ eiQ·rσαδvQ, (5.12)
where α = {1, . . . , 4} , σ = (I2,σ). We will proceed to calculate the change in
the magnetic dipole exchange energy of the homogeneous electron gas due such an
external perturbation, i.e. we will calculate the derivatives δEdip

x /δvαQ. This can be
achieved via the so-called Goldstone Diagrams, which are a diagrammatic approach
to the Rayleigh-Schrödinger perturbation theory (cf. appendix A.1 for more details).

The first derivative of the exchange energy Edip
x is zero due to conservation of

momentum (fig. 5.1). We thus have to calculate the change in the exchange energy
to second order in the external perturbations, i.e. we have to evaluate

gα,βQ = δ2Edip
x

δvαQδv
β
−Q
. (5.13)

Assuming we would know the form of gα,βQ , we could derive the exchange kernel for
the MDI via the chain rule

fαβQ ≡
δ2Edip

x

δραQδρ
β
−Q

=
∑
kl

δ2Edip
x

δvkδvl

(
χ−1

)
kj

(
χ−1

)
li

=
∑
kl

gkl
(
χ−1

)
kj

(
χ−1

)
li
, (5.14)

where χij = δρi/δvj is the response function of the system and i, j, k, l ≡ (α,Q) are
compound indices. If we have the Fourier components of the change in the density
of an actual system ∆ραQ, we can then approximate the exchange energy by

Edip
x [ρ] ≈ 1

2
∑
Q

∑
αβ

fαβQ ∆ραQ∆ρα−Q. (5.15)

Therefore, the central quantity that needs to be calculated is gkl, which we will do
in the remainder of this section.
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5.2 Perturbative exchange functional

(a) (b)

Figure 5.1
a) Goldstone diagram for the exchange energy (eq. 5.3). The dashed line indicates
the dipole-interaction. This diagram is zero for the homogeneous electron gas. b)
An external perturbation, indicated by ⊗, is added to the exchange energy
diagram. For a finite value of Q, momentum is no longer conserved at each vertex.
Thus there is no first order change in the exchange energy, i.e. δEdip

x /δvαQ = 0.

5.2.2 Second order Goldstone Diagrams
We will use Goldstone diagrams which are second order in the external perturbation
to evaluate the shift in the total exchange energy (i.e. g, eq. 5.13). All relevant
Goldstone diagrams are shown in fig. 5.2. According to the Goldstone rules (cf. A.1),
these diagrams are equal to:

a) S =
∑
abnm

(−1)3 〈na|H|mb〉 〈b| − vk|n〉 〈m| − vl|a〉
(εb − εn) (εa − εm) (5.16)

b) A = 2
∑
abnm

(−1)3 〈nm|H|ab〉 〈b| − vk|n〉 〈a| − vl|m〉
(εb − εn) (εa + εb − εn − εm) (5.17)

c) Y1 = 2
∑
abnm

(−1)3 〈ma|H|an〉 〈b| − vk|m〉 〈n| − vl|b〉
(εb − εm) (εb − εn) (5.18)

d) Y2 = 2
∑
abcn

(−1)4 〈ba|H|ac〉 〈n| − vk|b〉 〈c| − vl|n〉
(εb − εn) (εc − εn) (5.19)

e) F1 = 2
∑
abnm

(−1)3 〈ma|H|ab〉 〈b| − vk|n〉 〈n| − vl|m〉
(εb − εm) (εb − εn) (5.20)

f) F2 = 2
∑
abcm

(−1)4 〈ma|H|ac〉 〈b| − vk|n〉 〈c| − vl|b〉
(εb − εm) (εc − εm) (5.21)

All diagrams gain a prefactor of 2, as the interactions vk and vl are interchangeable
(this compensates the factor 1/2 for symmetric diagrams). Some of the diagrams
(e.g. the asymmetric diagram, fig. 5.2b) gain an additional prefactor of 2 as flipping
these diagrams upside down produces an additional diagram with identical topology.
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(a) Symmetric diagram

(b) Asymmetric diagram

(c) Yin-Yang diagram (d) Flipped Yin-Yang diagram

(e) Frog diagram (f) Flipped frog diagram

Figure 5.2
All distinct second order Goldstone diagrams. Particles are labeled with n,m, l,
holes are labeled with a, b, c. The external perturbation (eq. 5.12) is indicated
by ⊗.
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5.2.3 Spin Summation

As a first step, the summation over all possible spin combinations is considered. We
will therefore only focus on the spin-dependent indices α, β of g (eq. 5.13) in this
section. We distinguish between two different types of diagrams for the spin summa-
tion. The symmetric (S) (fig. 5.2a) and the asymmetric (A) (fig. 5.2b) diagram have
one perturbation acting on each particle, whereas the Yin-Yang (Y) (fig. 5.2c,5.2d)
and frog (F) (fig. 5.2e,5.2f) diagrams have two perturbations acting on the same
particle. In both cases, we distinguish between conventional and unconventional
processes. In conventional processes, the spin of the particles is unchanged by the
external perturbation (eq. 5.12) whereas in unconventional processes the external
perturbation may flip spins. In both, conventional and unconventional processes,
the MDI may lead to an additional spin-flip of both particles simultaneously, which
corresponds to the photon line carrying a spin of 1. We will account for all these
processes and evaluate gαβ for every combination of vα and vβ in the following. We
start with carrying out the spin summations for the symmetric and the asymmetric
diagram. All possible spin combinations are shown in table 5.1. Due to spin con-
servation, all matrix elements with only one spin-flip vanish (g01, g02, g13, g23 and
the corresponding transposed elements). The non-zero matrix elements are derived
in table 5.2. In the case of a homogeneous, unpolarized electron gas, the system
is invariant under inversion of all spins (e.g. ↑↓↑↓ and ↓↑↓↑ are identical). The re-
maining off-diagonal elements therefore also cancel. gAS is then given by only three
different matrix elements:

gAS =


g00

AS 0 0 0
0 g11

AS 0 0
0 0 g11

AS 0
0 0 0 g33

AS

 . (5.22)

We will now carry out the spin-summations for the Yin-Yang and the frog dia-
grams. Diagram 5.2c (eq. 5.18) is used as an example, the other Yin-Yang diagram
and the frog diagrams are analogous. In this diagram, there is no difference between
conventional and unconventional processes. For the unconventional processes, con-
servation of spin at the vertices is only fulfilled if the second perturbation cancels
the spin-flip of the first perturbation, therefore the result is the same as in the
conventional case. Table 5.3 summarizes all possible spin combinations, all finite
matrix elements are shown in table 5.4. As the spin of the hole b does not enter in
the scalar product 〈na|H|am〉, its orientation does not change the absolute value of
the matrix element. Consequently all spin combinations that only differ in the spin
orientation of b have the same magnitude, e.g. g00 =↑↑↑↑= g11 =↑↓↑↑. Assuming a
homogeneous, unpolarized system, the matrix for the Yin-Yang and frog diagrams
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5.2 Perturbative exchange functional

Table 5.1
All possible spin combinations for the symmetric and the asymmetric diagrams.
Unconventional combinations are only possible if both perturbations flip the spin
of the incoming particle. Hdip can lead to an overall spin-flip, in that case the
photon line carries a spin of 1.

Spin combinations a b n m Photon spin
conventional ↑ ↑ ↑ ↑ 0

↓ ↓ ↓ ↓ 0
↑ ↓ ↓ ↑ 1
↓ ↑ ↑ ↓ 1

unconventional ↑ ↓ ↑ ↓ 0
↓ ↑ ↓ ↑ 0

Table 5.2
All matrix elements of g which conserve spin at every vertex in the symmetric (S)
and asymmetric (A) case. For homogeneous, unpolarized systems, the energy is
invariant under an overall inversion of the spin, e.g. ↑↓↓↑ and ↓↑↑↓ are identical.

Matrix element Spin terms (a b n m )
g00

SA ↑↑↑↑ + ↓↓↓↓ + ↑↓↓↑ + ↓↑↑↓
g30

SA ↑↑↑↑ − ↓↓↓↓ + ↑↓↓↑ − ↓↑↑↓
g03

SA ↑↑↑↑ − ↓↓↓↓ − ↑↓↓↑ + ↓↑↑↓
g33

SA ↑↑↑↑ + ↓↓↓↓ − ↑↓↓↑ − ↓↑↑↓
g11

SA ↑↓↑↓ + ↓↑↓↑
g21

SA i ↑↓↑↓ −i ↓↑↓↑
g12

SA −i ↑↓↑↓ +i ↓↑↓↑
g22

SA ↑↓↑↓ + ↓↑↓↑

is given by a single matrix element:

gYF = g00
YF


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.23)
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Table 5.3
All possible spin combinations for the Yin-Yang and the frog diagrams.
Conventional and unconventional processes are identical, due to conservation of
spin. Hdip can lead to an overall spin-flip, in that case the photon line carries a
spin of 1.

Spin combinations a b n m Photon spin
conventional ↑ ↑ ↑ ↑ 0

↓ ↓ ↓ ↓ 0
↑ ↓ ↓ ↓ 1
↓ ↑ ↑ ↑ 1

unconventional ↑ ↓ ↑ ↑ 0
↓ ↑ ↓ ↓ 0
↑ ↑ ↓ ↓ 1
↓ ↓ ↑ ↑ 1

Table 5.4
All matrix elements of g which conserve spin at every vertex for the Yin-Yang (Y)
and the frog (F) diagrams. For homogeneous, unpolarized systems, the energy is
invariant under an overall inversion of the spin, e.g. ↑↓↑↓ and ↓↑↓↑ are identical.

Matrix element Spin terms (a b n m )
g00

YF ↑↑↑↑ + ↓↓↓↓ + ↑↓↓↓ + ↓↑↑↑
g30

YF ↑↑↑↑ − ↓↓↓↓ + ↑↓↓↓ − ↓↑↑↑
g03

YF ↑↑↑↑ − ↓↓↓↓ − ↑↓↓↓ + ↓↑↑↑
g33

YF ↑↑↑↑ + ↓↓↓↓ + ↑↓↓↓ + ↓↑↑↑
g11

YF ↑↓↑↑ + ↓↑↓↓ + ↑↑↓↓ + ↓↓↑↑
g21

YF i ↑↓↑↑ −i ↓↑↓↓ +i ↑↑↓↓ −i ↓↓↑↑
g12

YF i ↑↓↑↑ −i ↓↑↓↓ −i ↑↑↓↓ +i ↓↓↑↑
g22

YF ↑↓↑↑ + ↓↑↓↓ + ↑↑↓↓ + ↓↓↑↑
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5.2.4 Symmetric energy diagram

We will now explicitly evaluate the matrix elements gαβS of the symmetric diagram
(fig. 5.2a), which are given by eq. 5.16:

S =
∑
abnm

(−1)3 〈na|H|mb〉 〈b| − vk|n〉 〈m| − vl|a〉
(εb − εn) (εa − εm) .

Without loss of generality, vk = v+Q and vl = v−Q is assumed. The second scalar
product evaluates to

〈b| − v+Q|n〉 = −
∫

dr ei(b−n+Q)·r = −δb−n+Q. (5.24)

Similarly, we will find for the last one:

〈m| − v−Q|a〉 = −
∫

dr ei(m−a−Q)·r = −δm−a−Q. (5.25)

We can now carry out the sum over the particles n,m in eq. 5.16. This results in
the constraints that |a+Q| > kf , as |m| > kf and |b+Q| > kf , as |n| > kf (with
kf being the Fermi wave vector):

S =
∑
ab

〈
b+Qa|Hdip|a+Qb

〉
(εb − εb+Q) (εa − εa+Q)Θa+QΘb+Q. (5.26)

Here Θ is the Heaviside step function which restricts the summation to the correct
values and we write Θa = Θ

(
a2 − k2

f

)
. In the continuum limit ∑i → V/ (2π)3 ∫ di

we find:

S = 4V 2

(2π)6

∫
da

∫
db

〈
b+Q a|Hdip|a+Q b

〉
Θa+QΘb+Q(

b2 − (b+Q)2
) (
a2 − (a+Q)2

) . (5.27)

a, b are holes to be integrated over a sphere from 0 to kf . To calculate the total
contribution of this diagram, it is necessary to solve the integral for the spin combi-
nations shown in table 5.2. The remaining scalar product is given by eqs. 5.6, 5.7.
The symmetric diagram for specific spin combinations is then:

S↑↑↑↑, S↓↓↓↓,−S↑↓↑↓,−S↓↑↓↑ = 4V µ2
B

(2π)6

∫
da

∫
db ηz (b− a) Θa+QΘb+Q(

b2 − (b+Q)2
) (
a2 − (a+Q)2

) ,
(5.28)

S↑↓↓↑, S↓↑↑↓ = 4V µ2
B

(2π)6

∫
da

∫
db(ηx (b− a) + ηy (b− a)) Θa+QΘb+Q(

b2 − (b+Q)2
) (
a2 − (a+Q)2

) .

(5.29)

It is convenient to split these integrals into two parts:

S↑↑↑↑, S↓↓↓↓,−S↑↓↑↓,−S↓↑↓↑ = µ2
B

12π5V (S0 − 3Sqz) , (5.30)
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S↑↓↓↑, S↓↑↑↓ = µ2
B

12π5V
(
2S0 − 3Sqx − 3Sqy

)
, (5.31)

where
S0 =

∫
da

∫
db Θa+QΘb+Q

(Q2 + 2a ·Q) (Q2 + 2b ·Q) , (5.32)

and
Sqi =

∫
da

∫
db (q2

i /q
2) Θa+QΘb+Q

(Q2 + 2a ·Q) (Q2 + 2b ·Q) , (5.33)

with q = a− b. S0 is evaluated first and the coordinate system is chosen such that
Q ‖ ez. We can then write in spherical coordinates

S0 =
∫

da
∫

db
Θ
(
a2 +Q2 + 2aQxa − k2

f

)
Θ
(
b2 +Q2 + 2bQxb − k2

f

)
(Q2 + 2aQxa) (Q2 + 2bQxb)

, (5.34)

where the polar angle θ was substituted according to x = cos θ, hence x ∈ [−1, 1].
It is now easy to obtain the area of integration from the Heaviside function:

a2 +Q2 + 2kaQxa − k2
f > 0 ⇐⇒ xa >

k2
f − a2 −Q2

2aQ . (5.35)

But at the same time, x ≤ 1 must be fulfilled, therefore:

k2
f − a2 −Q2

2aQ ≤ 1 ⇐⇒ a = −Q± kf . (5.36)

With a being strictly positive, only the positive solution a = kf − Q is relevant.
Therefore the following integration boundaries are obtained

x = cos θ;x ∈
[
k2
f − a2 −Q2

2aQ , 1
]

; a ∈ [kf −Q, kf ]. (5.37)

Thus the area of integration for holes is:∫
da Θa+Q =

∫
VH

da =
∫ 2π

0
dφ
∫ kf

kf−Q
da a2

∫ 1

(k2
f
−a2−Q2)/(2aQ)

dx. (5.38)

We use this to rewrite eq. 5.34 as

S0 =
∫
VH

da
∫
VH

db 1
(Q2 + 2aQxa) (Q2 + 2bQxb)

, (5.39)

Computing S0 is a rather easy task as the integrals for a and b are completely
decoupled. We find:

S0 =

π
(
4kfQ+ (−4k2

f +Q2) log
[∣∣∣2kf−Q2kf+Q

∣∣∣])
8Q


2

. (5.40)
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(a) (b)

Figure 5.3
a) S0 as a function of Q (eq. 5.40). The Fermi energy is set to 1. b) Numerical
evaluation of the integral in eq. 5.45, as a function of Q. The Fermi energy is set to
1.

Fig. 5.3a shows S0 as a function of Q for kf = 1. When calculating Sqi , it is important
to realize that the denominator originating from the diagram does not depend on the
angular coordinates φ, φ′. This holds for all other diagrams as well. It is therefore
helpful to evaluate the angular integral first (in cylindrical coordinates):

∫ 2π

0
dφa

∫ 2π

0
dφb

q2
z

q2 = 4π2(za − zb)2√(
r2
a + r2

b + (za − zb)2
)2
− 4r2

ar
2
b

(5.41)

The integrals over qx, qy yield the same result due to the rotational invariance of the
integrand:

∫ 2π

0
dφa

∫ 2π

0
dφb

q2
x/y

q2 = 2π2

1− (za − zb)2√(
r2
a + r2

b + (za − zb)2
)2
− 4r2

ar
2
b

 (5.42)

Comparing the results 5.41 and 5.42 shows that:

Sqx = Sqy = 1
2S0 −

1
2S

q
z =⇒ Sqx + Sqy + Sqz = S0. (5.43)

This is a very important result as it is valid for all other diagrams as well, as none
of the other diagrams depends explicitly on φ or φ′. It is a direct consequence of
the form of the ηi. The implication is that we only need to evaluate S0 and Sqz . The
last step in evaluating the symmetric diagram is thus calculating Sqz . This integral
will be evaluated numerically. The correct area of integration for the remaining two
coordinates is:∫

VH ,cyl
d2a =

∫ kf

−kf
dz
∫ √k2

f
−z2

0
dr Θ

(
r2 + z2 + 2Qz +Q2 − k2

f

)
. (5.44)
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Combining eqs. 5.33, 5.41 and 5.44 yields:

Sqz =
∫
VH ,cyl

d2a
∫
VH ,cyl

d2b 1
Q2 (Q+ 2za) (Q+ 2zb)

4π2(za − zb)2√(
r2
a + r2

b + (za − zb)2
)2
− 4r2

ar
2
b

.

(5.45)

The numerical results for this integral are shown in fig. 5.3b.

5.2.5 Asymmetric energy diagram
The asymmetric diagram (fig 5.2b) is given by eq. 5.17:

A = 2
∑
abnm

(−1)3

〈
nm|Hdip|ab

〉
〈b| − vk|n〉 〈a| − vl|m〉

(εb − εn) (εa + εb − εn − εm) . (5.46)

Similar to the symmetric diagram, we arrive at

A = 4V 2

(2π)6

∫
V <Vf

da
∫
V >Vf

dn

〈
na+Q|Hdip|an+Q

〉
Θa+QΘ∗n+Q

(Q2 + 2n ·Q) (n ·Q− a ·Q) , (5.47)

with Θ∗a = Θ
(
k2
f − a2

)
. A key difference is that we are left with one hole integral

(a) and one particle integral (n). The integral over n goes from kf to ∞. As in the
symmetric case, A is split according to

A↑↑↑↑, A↓↓↓↓,−A↑↓↑↓,−A↓↑↓↑ = µ2
B

12π5V (A0 − 3Aqz) , (5.48)

A↑↓↓↑, A↓↑↑↓ = µ2
B

12π5V
(
2A0 − 3Aqx − 3Aqy

)
. (5.49)

Due to eq. 5.43 it is sufficient to only evaluate A0 and Aqz:

A0 =
∫
V <Vf

da
∫
V >Vf

dn
Θa+QΘ∗n+Q

(Q2 + 2n ·Q) (n ·Q− a ·Q) , (5.50)

Aqz =
∫
V <Vf

da
∫
V >Vf

dn
(q2
z/q

2) Θa+QΘ∗n+Q

(Q2 + 2n ·Q) (n ·Q− a ·Q) . (5.51)

Again, A0 will be calculated first and Q ‖ ez is assumed. In contrast to the sym-
metric diagram, we are now left with the evaluation of one particle and one hole
integration. The particle integration has, however, a different area of integration.
In the same way as eq. 5.37 was derived earlier, we can derive the boundaries also
for a particle integration. The result is:

x = cos θ;x ∈
[
−1,

k2
f − k2

n −Q2

2knQ

]
; kn ∈ [kf , kf +Q]. (5.52)
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Figure 5.4
Numerical evaluation of the integral in eq. 5.56 as a function of Q. The Fermi
energy is set to 1.

Therefore we obtain for the particle integration:
∫

dn Θ∗n+Q =
∫
VP

dn =
∫ 2π

0
dφ
∫ kf+Q

kf

dn n2
∫ (k2

f−n
2−Q2)/(2nQ)

−1
dx. (5.53)

A0 is thus equivalent to:

A0 =
∫
VH

da
∫
VP

dn 1
Q2 (Q+ 2nxn) (nxn − axa)

=

π
(
4kfQ+ (−4k2

f +Q2) log
[∣∣∣2kf−Q2kf+Q

∣∣∣])
8Q


2

, (5.54)

which is the same result obtained for S0 (eq. 5.40). We will evaluate Aqz numerically.
For the numerical integration, n is integrated over the area∫

VP ,cyl
d2a =

∫ ∞
−∞

dz
∫ ∞

0
dr Θ

(
r2 + z2 − k2

f

)
Θ
(
k2
f − r2 + z2 + 2Qz +Q2

)
, (5.55)

where the first Heaviside function constraints the integration to the particle region.
From eqs. 5.41, 5.44, 5.51 and 5.55 follows:

Aqz =
∫
VH ,cyl

d2a
∫
VP ,cyl

d2n 4π2 (zn − za)

Q2 (Q+ 2zn)
√(

r2
a + r2

n + (za − zn)2
)2
− 4r2

ar
2
n

(5.56)

The numerical evaluation of Aqz is presented in fig. 5.4.
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5.2 Perturbative exchange functional

5.2.6 Yin-Yang and frog energy diagrams
The matrix in eq 5.23 only has one entry, g00

YF =↑↑↑↑ + ↓↓↓↓ + ↑↓↓↓ + ↓↑↑↑. We
start with the derivation for the Yin-Yang diagrams, the result for the frog diagrams
follows by analogy. We find that:

Y↑↑↑↑, Y↓↓↓↓ = µ2
B

12π5V (Y0 − 3Y q
z ) , (5.57)

Y↑↓↓↓, Y↓↑↑↑ = µ2
B

12π5V
(
2Y0 − 3Y q

x − 3Y q
y

)
. (5.58)

As the Yin-Yang diagrams do not have a denominator that depends on φ or φ′,
equation 5.43 holds, therefore:

g00
Y = µ2

B
12π5V

(
−3Y q

x − 3Y q
y − 3Y q

z + 3Y0
)

= µ2
B

12π5V (−3Y0 + 3Y0) = 0. (5.59)

It is simple to show that the frog diagrams vanish due to the same identity. The
physical interpretation for this is that neither the Yin-Yang nor the frog diagram can
spin-polarize the system, as conservation of spin forces them to undo any spin-flips.
The result is that these diagrams do not contribute to a purely magnetic interaction.

5.2.7 Exact numerical and semi-analytical solution
All that is left to do is combining the results for the symmetric and the asymmetric
diagram. Using the results from the previous chapters, the matrix g (eq. 5.22) can
be calculated from eqs. 5.30, 5.31, 5.40, 5.45, 5.48, 5.49, 5.54, 5.56 and tbl. 5.2:

g00 = µ2
B

12π5V
(
−3Sqx − 3Sqy − 3Sqz + 3S0 − 3Aqx − 3Aqy − 3Aqz + 3A0

)
= 0 (5.60)

g11 = − µ2
B

6π5V (S0 + A0 − 3Sqz − 3Aqz) (5.61)

g33 = µ2
B

12π5V
[
2 (S0 − 3Sqz + A0 − 3Aqz)− 2

(
2S0 − 3Sqx − 3Sqy + 2A0 − 3Aqx − 3Aqy

)]
= 2µ2

B
6π5 V ((S0 + A0)− 3 (Sqz + Aqz)) = −2g11 (5.62)

Here we used eq. 5.43 to simplify g33.
With the definition S + A = (S0 + A0)− 3 (Sqz + Aqz) we obtain:

g = µ2
B

6π5V


0 0 0 0
0 − (S + A) 0 0
0 0 − (S + A) 0
0 0 0 2 (S + A)

 . (5.63)

The total result for g33 shown in fig. 5.5. Fig. 5.5 also shows a comparison with
a semi-analytic result, up to an integral, which was derived by a co-worker via
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5.2 Perturbative exchange functional

Feynman diagrams. This is possible because the second order change in the energy
can be identified with the interacting response function, δ2E = 1

2χ (q) δvqδv−q, via
the Hellmann-Feynman theorem [101]. In this case, only the Feynman exchange-
diagram was evaluated. The semi-analytic result reads (with q = Q/kf ):

g33 =
µ2

Bk
2
f

8π3q2

{ 4
45
(
−18 + 11q2

)
+ 4

45q
2
(
60 + 7q2

)
log [2/q]

+ 2
45q

(
−144− 20q2 + 30q3 − 15q4 + 7q5

)
log [|1− q/2|]

+ 2
45q (144 + 20q2 + 30q3 + 15q4 + 7q5) log [|1 + q/2|]

+ 16
3 q

(
(1− q/2)3 log [|1− 2/q|] log [|1− q/2|]

−(1 + q/2)3 log (|1 + 2/q|] log [|1 + q/2|]
)

− 4
3

(
q +

(
1− q2/4

)
log

[∣∣∣∣∣2 + q

2− q

∣∣∣∣∣
])2

+
∫ q/2+1

q/2−1
dz 8z log [|z|]

((
1− 1

4 (q − 2z)2
)

log
[∣∣∣∣∣q − 2z − 2
q − 2z + 2

∣∣∣∣∣
]

+
(

1− 1
4 (q + 2z)2

)
log

[∣∣∣∣∣q + 2z − 2
q + 2z + 2

∣∣∣∣∣
])}

. (5.64)

We achieve an excellent agreement between the numerical and the analytical results,
which have been derived independently with separate methods. As we are mostly
interested in large length-scales, we are interested in the behavior of g33 for small
Q. We fit the function f (x) = a + bx2 + cx2 log |x| to the numerical data of g33

close to Q = 0. Neither a constant nor a linear term are expected. A constant term
would violate that the energy contribution vanishes as Q → 0, while a linear term
would imply that the direction of the perturbation to the homogeneous electron gas
matters. The result of the fit is shown in fig. 5.6a. The parameters obtained from
the fit are:

S + A = −1, 2 · 10−12 − 2.015 · 10−3
(
Q

kf

)2

+ 7.16 · 10−4
(
Q

kf

)2

log
∣∣∣∣∣Qkf

∣∣∣∣∣ . (5.65)

We can compare our results to a taylor expansion of the analytic result (eq. 5.64),
for which, as q → 0, we find that:

g33 = k2
f

[127 + 60 log (2)− 60 log (q)]
2700π3 q2 +O

(
q4
)

(5.66)

kf=1
≈ −2.014 · 10−3

(
Q

kf

)2

+ 7.17 · 10−4
(
Q

kf

)2

log
∣∣∣∣∣Qkf

∣∣∣∣∣ , (5.67)

which agrees very well with the numerical values obtained in this thesis. An inter-
esting observation is that g is continuous, but non-analytic at Q = 0 due to the
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5.2 Perturbative exchange functional

Figure 5.5
Comparison g33 (eqs. 5.14, 5.62), obtained with a numerical evaluation of the
Goldstone diagrams and with an analytical result obtained via Feynman diagrams
for kf = 1. Excellent agreement is obtained.

term q2 log (|q|). This term does keep the correct symmetry and is even dominant
for small values of q. It can therefore not be neglected. This should, however, not
result in any practical limitations for the use of our functional. For completeness,
we also compute the expansion in the q →∞ limit and find:

g33 =
32k2

f

27π3q4 +O
(

1
q6

)
, (5.68)

g is connected with the exchange kernel via the response function (eq. 5.14). The
response of a non-interacting, homogeneous electron gas is well studied in various
literature. For a plane wave perturbation, like in this case, the non-interacting
response function is given by the Lindhard susceptibility [102]:

χ0 (Q) = − kf
2π2

[
1
2 +

4k2
f −Q2

8kfQ
ln
∣∣∣∣∣2kf +Q

2kf −Q

∣∣∣∣∣
]
. (5.69)

In the homogeneous, paramagnetic case, the non-interacting response matrix reads
[102]:

χ0 = χ0 (Q)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (5.70)

Thus the exchange kernel for Hdip (eq. 5.2) is approximately (eq. 5.14):

fx = g (χ0)−1 (χ0)−1 . (5.71)
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5.2 Perturbative exchange functional

The energy functional for the dipole exchange energy is then given by equation 5.15.
When using the Lindhard function, due to the prefactor kf , fx can be expressed
solely by q = Q/kf . The result for f 33

x is shown in fig. 5.6b. As we are interested in
the long-range behavior, we calculate the matrix fx in the q → 0 limit and find:

fx = 1
675π (127 + 60 log (2)− 60 log [q]) q2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

+O
(
q4
)
. (5.72)

For completeness, we state fx in the q →∞ limit:

fx = 8π
3 −

232π
75q2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

+O
(

1
q4

)
. (5.73)

Together with eq. 5.15, eqs. 5.72, 5.73 are the final form of our functional. More
sophisticated approximations are conceivable, for example one could try to use an
interacting response function instead of the Lindhard function to obtain fx from g
(eq. 5.15).

We conclude by noting that a similar long-range functional can be easily derived
for the Coulomb interaction. For this, one can use again the identity originating from
the Hellman-Feynman theorem, δ2E = 1

2χ (q) δvqδv−q [101], to obtain the change
in energy from the response function and then use eqs. 5.14, 5.15. The exchange
contribution to the response function has been derived previously [103–105]. Such
a functional could be used alongside a local functional, e.g. the LDA, to account for
long-range Coulomb exchange effects.
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5.3 Correlation energy and higher orders

(a) (b)

Figure 5.6
a ) Numerical evaluation of g33. The Fermi energy is set to 1. The function
kf (x) = a+ bx2 + cx2 log |x| is fitted to the data. The fit is restricted to small
perturbations, Q/kf ≤ 1/100. All integrals were evaluated with a precision and
accuracy of 8 digits. The fit shows excellent agreement with the numerical data. b)
f 33
x (eq. 5.14) as a function of Q. The Lindhard function (eq. 5.69) was used as an
approximation to obtain f 33

x from g33. Due to the prefactor kf of the Lindhard
function, f 33

x only depends on Q/kf .

5.3 Correlation energy and higher orders
We observed that in homogeneous systems both, the mean-field energy (eq. 4.5)
and the exchange energy (eq. 5.10) of Hdip (eq. 5.2) are zero. In this section, we
will investigate whether the Hdip has a finite contribution to the correlation energy
for homogeneous systems. The lowest order Goldstone diagrams associated with the
correlation energy are shown in fig. 5.7. Some of them include mixed Coulomb/dipole
interactions. The Hdip is again indicated by a dashed line, whereas we use a wavy
line for the Coulomb interaction.

Diagram a)

It turns out that the lowest order energy contribution to the homogeneous electron
gas arising from Hdip is given by diagram 5.7a. The energy associated with this
diagram is given by

Ea = (−1)4

4
∑

k,l,m,n

〈
mn

∣∣∣Hdip
∣∣∣ kl〉 〈kl ∣∣∣Hdip

∣∣∣mn〉
(εk + εl − εm − εn) , (5.74)

which after carrying out spin summations (tbl. 5.5) becomes

Ea = 1
4
µ4

B
V 2

∑
k,l,q

4η2
z (q) + 2 (ηx (q) + ηy (q))2

(εk + εl − εk+q − εl−q)
Θk+qΘl−q, (5.75)
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(a)

(b)

(c)
(d)

Figure 5.7
All distinct second order correlation energy diagrams. Dashed lines indicate dipole
interactions, wiggly lines indicate Coulomb interactions.

Table 5.5
All possible spin combinations for diagram 5.7a.

k+q k l-q l contribution
↑ ↑ ↑ ↑ η2

z

↓ ↓ ↓ ↓ η2
z

↑ ↑ ↓ ↓ η2
z

↓ ↓ ↑ ↑ η2
z

↑ ↓ ↓ ↑ (ηx + ηy)2

↓ ↑ ↑ ↓ (ηx + ηy)2
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5.3 Correlation energy and higher orders

where |k| , |l| < kf , and |q| = m − k < 2kf . By using the continuum limit ∑i →
V/ (2π)3 ∫ di for k, l, q and the dispersion relation of the homogeneous electron gas,
εk = k2/2 we obtain:

Ea = − µ4
BV

4 (2π)9

∫
dq
∫

dk
∫

dl4η
2
z (q) + 2 (ηx (q) + ηy (q))2

q2 + (k − l) · q Θk+qΘl−q. (5.76)

For the k-integration we can again use the parametrization for hole integrals (eq.
5.37) and for the l-integration we have

xl = cos θl;xl ∈
[
−1,
−k2

f + l2 +Q2

2lQ ,

]
; l ∈ [kf , kf +Q]. (5.77)

Integrating the l,k-dependent parts yields

∫
dk

∫
dl Θk+qΘl−q

q2 + (k − l) · q = π2

120q2

{(
120k4

fq
2 − 20k2

fq
4 + 3

2q
6
)

ln
[

2kf + q

2kf − q

]
+

2kf
(
−3q5 + 4k2

fq
3 (29− 40 ln (2))− 128k4

fq ln (2) + 64k4
fq ln

[
4− q2

k2
f

])}
.

(5.78)

We can now solve the angular q-integrations in equation 5.76 by introducing spher-
ical harmonics:

∫ π

0
dθ
∫ 2π

0
dφ sin (θ)

(
4η2

z (q) + 2 (ηx (q) + ηy (q))2
)

=
∫ π

0
dθ
∫ 2π

0
dφ sin (θ) 8π2

3 (1 + 3 cos (2θ))2 = 512π3

15 . (5.79)

Therefore the remaining integral from eq. 5.76 is

Ea = − µ4
BV

4 (2π)9

∫ 2kf

0
dq512π3

15
π2

120

{(
120k4

fq
2 − 20k2

fq
4 + 3

2q
6
)

ln
[

2kf + q

2kf − q

]
+

2kf
(
−3q5 + 4k2

fq
3 (29− 40 ln (2))− 128k4

fq ln (2) + 64k4
fq ln

[
4− q2

k2
f

])
.

}
(5.80)

With the final result:

Ea = −4 (43− 46 ln (2))
1575π4 µ4

Bk
7
fV. (5.81)

This is the lowest-order energy contribution of Hdip to the homogeneous electron
gas.
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Diagrams b), c), d)

We will show in the following that all other second-order correlation diagrams are
zero. We start with diagram b) (5.7b), which is equivalent to

Eb = (−1)3 × µ4
B
4
∑
i≤j

∑
q,k,l

2ηi (q) ηj (k − l + q)
(εk + εl − εk+q − εl−q)

, (5.82)

where i, j = x, y, z. Taking the continuum limit for a given i, j yields

Ei,j
b = −µ

4
B

(2π)9

∫
dq ηi (q)

∫
dk

∫
dl Θk+qΘl−q

q2 + (k − l) · qηj (k − l + q) , (5.83)

which we can rewrite as an integral over all space by introducing additional Heaviside
functions:

Ei,j
b = −µ

4
B

(2π)9

∫
dq ηi (q)

∫
all

dk
∫
all

dlΘk+qΘl−qΘ∗kΘ∗l
q2 + (k − l) · q ηj (k − l + q) . (5.84)

Using the transformations k→ k − q/2 and l→ l + q/2 then results in:

Ei,j
b = −µ

4
B

(2π)9

∫
dq ηi (q)

∫
all

dk
∫
all

dl
Θk+q/2Θk+q/2Θ∗k−q/2Θ∗l+q/2

k · q − l · q
ηj (k − l) . (5.85)

Assuming q ‖ ez for the integrations over k, l the following form is obtained

Ei,j
b = −µ

4
B

(2π)9

∫
dq ηi (q)h (|q|) = 0, (5.86)

where h is some function that only depends on the magnitude of q. As a full angular
integration over ηi vanishes, diagram 5.7b does not contribute to the correlation
energy.

Similarly, it is possible to prove that all diagrams involving only one dipole inter-
action are zero (thus also the diagrams 5.7c, 5.7d). This can be seen by considering
the diagram shown in fig. 5.8a. The continuum limit of such a diagram takes the
following form

E ∝
∫

dq
(

1− 3q
2
z

q2

)∫
dk

∫
dl
∫

da1· · ·
∫

dan
∫

dm1· · ·
∫

dmn
Vc
D
, (5.87)

where a and m are arbitrary hole and particle integrations, respectively. Vc is
comprised of all occurring Coulomb interactions and D is the denominator of the
diagram. When using plane waves, Vc and D share the property of being a product
of squared momenta

Vc ∝
∏
n

1∑
i ki

∑
j kj

, D ∝
∏
n

∑
i

k2
i −

∑
j

k2
j

 , (5.88)

94



5.4 Spin-contact interaction

(a)

(b)

Figure 5.8
a) A general diagram consisting of a single dipole interaction and an arbitrary
arrangement of Coulomb interactions (box). This diagram is zero due to the
angular integration over the dipole interaction. b) A non-vanishing third order
diagram that mixes the Coulomb and the dipole interaction.

where ki are arbitrary particle or hole momenta. The only explicitly q-dependent
terms are therefore of the form q2 and q · ki. Accordingly, when choosing the
coordinate system such that q ‖ ez for all integrals but the q-integration, the form
of eq. 5.86 is always recovered. This is physically intuitive, as it was already observed
for the exchange interaction that a single dipole interaction leads to integrating a
spherical harmonic over all angles. As the Coulomb interaction is isotropic, no
additional angular dependence is introduced, regardless of the number of Coulomb
interactions. A finite mixing between the dipole and the Coulomb interaction can
be observed at higher orders when more than a single dipole interaction are present.
One example is given in fig. 5.8b.

5.4 Spin-contact interaction
We have seen that the lowest order energy contribution of the non-local part of the
MDI (Hdip eq. 5.2) is the correlation energy. A finite exchange energy, does however,
arise from the spin-contact contribution, which we will derive in the following. The
spin-contact contribution is given by (eq. 4.1)

HSC = −4π
3 µ2

B
∑
i 6=j

δ (ri − rj)σi · σj, (5.89)

with the the direct energy contribution (eq. 4.2)

Exc
D [m] = −4π

3 µ2
B

∫
dr m2 (r) . (5.90)

As stated previously, this term also appears in classical electrodynamics and guar-
antees the correct limit of the MDI as r → r′ [37]. This term is similar to the more
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5.4 Spin-contact interaction

well-known “Fermi contact interaction”, which gives rise to the hyperfine splitting
of electronic s states [57, 106]. In that case, however, one has to consider the overlap
of the electronic spin with the nuclear spin instead of the overlap of two electronic
spins.

In the present case of purely electronic interactions, exchange and correlation
effects exist as well. The exchange energy for the spin-contact interaction can be
evaluated exactly. We use the formula for the exchange energy (eq. 5.3) and find:

Esc
x = 4π

3 µ2
B
∑
i 6=j
ss′

∫
dr
∫

dr′ ϕ†i (r, s)σjϕ†j (r′, s′) δ (r − r′)ϕj (r, s′)σiϕi (r′, s) .

(5.91)
Evaluating the trivial integral and summing over all spins yields:

Esc
x = 4π

3 µ2
B
∑
i 6=j

∫
dr 2ϕ†i (↑)ϕi (↑)ϕ†j (↓)ϕj (↓) + 2ϕ†i (↓)ϕi (↓)ϕ†j (↑)ϕj (↑)

+ ϕ†i (↑)ϕi (↑)ϕ†j (↑)ϕj (↑) + ϕ†i (↓)ϕi (↓)ϕ†j (↓)ϕj (↓) .
(5.92)

The exchange functional is then given by:

Esc
x = 4π

3 µ2
B

∫
dr 4n↑ (r)n↓ (r) + n2

↑ (r) + n2
↓ (r)

= 4π
3 µ2

B

∫
dr 3

2 (n↑ + n↓)2 − 1
2 (n↑ − n↓)2

=⇒ Esc
x [n,m] = 2π

3 µ2
B

∫
dr 3n2 (r)−m2 (r) . (5.93)

It is easy to verify that there is no self-interaction for a one-electron system from
eqs. 5.90 and 5.93, as is expected for the exact exchange energy functional:

Esc = Esc
D + Esc

x = 2πµ2
B

∫
dr n2 (r)−m2 (r) . (5.94)

We emphasize, however, that the direct interaction is already included when solving
eq. 4.4. It should therefore not be included again to avoid double counting. As the
spin-contact exchange energy (eq. 5.93) does not only depend on the magnetization
m but also depends on the electronic density n, one may consider to also include
the Coulomb contact interaction (“two-particle Darwin-interaction”) (cf. 2.4):

Hcc = −2πµ2
B
∑
i 6=j

δ (ri − rj) . (5.95)

By including this, the Coulomb and the MDI are treated consistently up to second
order. We can easily derive the direct interaction and the exchange interaction for
the two-particle Darwin-interaction:

Ecc [n (r) ,m (r)] = Ecc
D + Ecc

x

= −2πµ2
B

∫
dr n2 (r) + 2πµ2

B

∫
dr n

2 (r) +m2 (r)
2

= πµ2
B

∫
drm2 (r)− n2 (r) . (5.96)
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It is again easy to see that there is no self-interaction for a single particle. The
contact interactions (eqs. 5.94, 5.96) have to be included to treat the Coulomb
and the MDI consistently up to second order. Their contribution is expected to be
negligible, however, as they are inherently local and will thus be dominated by the
Hartree and the Coulomb exchange interaction.
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6. Conclusion

The aim of this thesis was to obtain a more in-depth, microscopic understanding of
magnetic effects relevant for future information technology. To that end we pursued
two main approaches: First, we performed simulations of ultrafast demagnetization,
which is among the fastest known effects of changing the magnetization in a sample.
Second, we derived and implemented a system of ultra long-range Kohn-Sham equa-
tions which could make the quantum mechanical calculation of magnetic domains
possible. It could also allow for improved calculations of ultrafast demagnetiza-
tion and light-matter interactions in general, as a coupling to Maxwell’s equations
becomes computationally feasible.

We started with a general introduction into many-particle systems in chapter 2.
We continued with a discussion on density functional theory and its time-dependent
generalization, time-dependent density functional theory. We highlighted the most
important relativistic terms up to second order and concluded the chapter with a
brief description of our implementation.

In chapter 3, we started with a basic introduction into the field of ultrafast
magneto-optics. We revisited some of the most common measurement techniques,
including the Faraday effect, the magneto-optic Kerr effect and magnetic second
harmonic generation. We motivated how a magnetization may lead to a change in
the ellipticity and the orientation angle of transmitted or reflected polarized light.
We then showcased our time-dependent spin density functional theory approach to
ultrafast demagnetization and provided detailed explanations for all relevant ap-
proximations. The central results in the chapter were obtained by two joint experi-
mental/theoretical studies. In our first study, we were able to explain the different
observed demagnetization behavior in Ni and Co due to different spin-orbit coupling
time scales. Furthermore, we found both experimental and theoretical evidence that
ultrafast demagnetization generally cannot be described by a flow of majority spins
alone. Our results thus strongly oppose the validity of the superdiffusive model but
instead favor spin-orbit coupling mediated spin flips alongside spin currents in both
spin channels as the central mechanisms. In our second study, we investigated thin
films of Co on top of Cu(001). In the experiment, 3 or 5 layers of Co and a Cu bulk
substrate were used. For our theoretical simulations, we considered 3 or 5 layers
of Co on top of 7 layers of Cu. We achieved the hitherto best reported quantita-
tive agreement between theoretical simulations and experimental magnetic second
harmonic generation results. Furthermore, we were able to distinguish all relevant

99



CHAPTER 6. CONCLUSION

microscopic process at the interface during the early times t < 100 fs. During the
first 35 fs, we find a flow of majority spins from Co to Cu and a backflow of minority
spins from Cu to Co leading to an initial demagnetization. Between 35 fs and 100 fs
we identified spin-orbit coupling as the main driving mechanism for further, subse-
quent demagnetization. These results are in accordance with the result obtained in
our first study and rule out explanations of ultrafast demagnetization which take
only a single spin channel into account.

In chapter 4 we presented a numerical approach for solving ultra long-range
phenomena within density functional theory. Our approach relies on a length-scale
separation in reciprocal space: In addition to the normal k-point grid, we employ a
closely packed κ-point grid, which we use to sample effects on large length-scales.
From this, we derived a set of self-consistent long range Kohn-Sham equations. All
observables in our ultra long-range system are given by a Fourier series with lattice
periodic Fourier coefficients. We demonstrated the accuracy of our approach via
a direct comparison with supercell calculations. We found that our approach can
quantitatively reproduce spin spirals in γ-Fe and still delivers good results for the
very difficult case of spin-density waves in Cr. Our method is highly efficient and
allowed us to solve over 6000 unit cells of bulk Li subjected to an external electric
field in slightly under 50 hours. We also discussed a possible generalization to time-
dependent systems and the limits of our approach.

Finally, in chapter 5, we derived an exchange functional for the magnetic dipole
interaction to be used alongside with our ultra long-range Kohn-Sham system intro-
duced in chapter 4. We showed that a local density approximation for the magnetic
dipole interaction only arises from the spin-contact interaction. We then proceeded
with calculating a perturbative exchange functional up to second order in external
perturbations employing Goldstone diagrams. Furthermore, we managed to prove
that the lowest order non-local energy contribution from the magnetic dipole inter-
action to the homogeneous electron gas is given by diagrams of second order in the
interaction. Lastly, we derived exact functionals for the spin- and charge-contact
interactions. Including these interactions results in a consistent treatment of the
Coulomb interaction and the magnetic dipole interaction up to second order in the
relativistic expansion.

100



A. Perturbative Energy
diagrams

A.1 Goldstone diagram evaluation rules
We will briefly summarize the Goldstone diagram evaluation rules in this section.
The rules and a detailed derivation can be found for example in the book by
Lindgren [107]. It is important to note that Goldstone diagrams are time-ordered,
i.e. the vertical order of the interactions in the diagram matters. The evaluation
rules for closed Goldstone diagrams are given by:

1. Label the diagram with “hole” (down-arrow) and “particle” indices. A line
that starts and ends at the same interaction is labeled with a hole index.

2. Add a matrix element for every interaction. For single-particle interactions,
use 〈out| − V |in〉 , for two-particle interactions use
〈left-out, right-out| − V |left-in, right-in〉

3. Draw a virtual line between two neighboring interactions. Add an energy de-
nominator equal to∑holes εα−

∑
particles εi, where the sum runs over all particles

and holes crossed by the virtual line.

4. Sum over all hole and particle lines. Holes are summed over all energies smaller
than the Fermi energy, particles are summed over all energies bigger than the
Fermi energy.

5. Add a prefactor of (−1)h+l, where h is the number of hole lines and l is the
number of closed loops of orbital lines.

6. An overall factor 1/2 for each two-particle interaction and an equivalence factor
equal to the number of equivalent diagrams represented by the diagram.

7. An overall factor 1/2 for each symmetry operation, such as reflection in a
vertical plane or interchange of vertices of an interaction which transforms the
diagram into itself or any other diagram appearing in the expansion.

101





Bibliography

[1] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot. Ultrafast spin
dynamics in ferromagnetic nickel. Phys. Rev. Lett., 76:4250–4253, May 1996.

[2] J. Hohlfeld, E. Matthias, R. Knorren, and K. H. Bennemann. Nonequilibrium
magnetization dynamics of nickel. Phys. Rev. Lett., 78:4861–4864, Jun 1997.

[3] M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli,
and H. C. Siegmann. Ultrafast spin-dependent electron dynamics in fcc Co.
Phys. Rev. Lett., 79:5158–5161, Dec 1997.

[4] S. S. P. Parkin, M. Hayashi, and L. Thomas. Magnetic domain-wall racetrack
memory. Science, 320(5873):190–194, 2008.

[5] T. L. Gilbert. A lagrangian formulation of the gyromagnetic equation of the
magnetization field. Phys. Rev., 100:1243, 1955.

[6] K. Krieger, J. K. Dewhurst, P. Elliott, S. Sharma, and E. K. U. Gross. Laser-
induced demagnetization at ultrashort time scales: Predictions of TDDFT.
Journal of Chemical Theory and Computation, 11(10):4870–4874, Oct 2015.

[7] E. Engel and R. M. Dreizler. Density Functional Theory: An Advanced Course
(Theoretical and Mathematical Physics). Springer, 2011.

[8] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,
136:B864–B871, Nov 1964.

[9] W. Kohn. Highlights of condensed-matter theory (Proceedings of the Interna-
tional School of Physics "Enrico Fermi"). 1985.

[10] R. M. Dreizler and E.K.U. Groß. Density Functional Theory. Springer Berlin
Heidelberg, 2013.

[11] U. von Barth and L. Hedin. A local exchange-correlation potential for the spin
polarized case. i. Journal of Physics C: Solid State Physics, 5(13):1629–1642,
Jul 1972.

103



BIBLIOGRAPHY BIBLIOGRAPHY

[12] G. Vignale and M. Rasolt. Current- and spin-density-functional theory for
inhomogeneous electronic systems in strong magnetic fields. Phys. Rev. B,
37:10685–10696, Jun 1988.

[13] G. Vignale and W. Kohn. Current-dependent exchange-correlation potential
for dynamical linear response theory. Phys. Rev. Lett., 77:2037–2040, Sep
1996.

[14] J. A. Berger, P. Romaniello, R. van Leeuwen, and P. L. de Boeij. Performance
of the Vignale-Kohn functional in the linear response of metals. Phys. Rev. B,
74:245117, Dec 2006.

[15] J. A. Berger, P. L. de Boeij, and R. van Leeuwen. Analysis of the vignale-kohn
current functional in the calculation of the optical spectra of semiconductors.
Phys. Rev. B, 75:035116, Jan 2007.

[16] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional
approximations for many-electron systems. Phys. Rev. B, 23:5048–5079, May
1981.

[17] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochas-
tic method. Phys. Rev. Lett., 45:566–569, Aug 1980.

[18] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approxima-
tion made simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996.

[19] J. Sun, A. Ruzsinszky, and J. P. Perdew. Strongly constrained and appropri-
ately normed semilocal density functional. Phys. Rev. Lett., 115:036402, Jul
2015.

[20] M. Gell-Mann and K. A. Brueckner. Correlation energy of an electron gas at
high density. Phys. Rev., 106:364–368, Apr 1957.

[21] E. Wigner. On the interaction of electrons in metals. Phys. Rev., 46:1002–1011,
Dec 1934.

[22] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of
the electron-gas correlation energy. Phys. Rev. B, 45:13244–13249, Jun 1992.

[23] G. Ortiz and P. Ballone. Correlation energy, structure factor, radial distri-
bution function, and momentum distribution of the spin-polarized uniform
electron gas. Phys. Rev. B, 50:1391–1405, Jul 1994.

[24] J. Kübler, K.-H. Höck, J. Sticht, and A. R. Williams. Local spin-density
functional theory of noncollinear magnetism (invited). Journal of Applied
Physics, 63(8):3482–3486, 1988.

104



BIBLIOGRAPHY BIBLIOGRAPHY

[25] C. Ullrich. Time-Dependent Density-Functional Theory: Concepts and Appli-
cations (Oxford Graduate Texts). Oxford University Press, 2012.

[26] E. Runge and E. K. U. Gross. Density-functional theory for time-dependent
systems. Phys. Rev. Lett., 52:997–1000, Mar 1984.

[27] R. van Leeuwen. Mapping from densities to potentials in time-dependent
density-functional theory. Phys. Rev. Lett., 82:3863–3866, May 1999.

[28] R. van Leeuwen. Causality and symmetry in time-dependent density-
functional theory. Phys. Rev. Lett., 80:1280–1283, Feb 1998.

[29] K. Capelle, G. Vignale, and B. L. Györffy. Spin currents and spin dynamics
in time-dependent density-functional theory. Phys. Rev. Lett., 87:206403, Oct
2001.

[30] S. K. Ghosh and A. K. Dhara. Density-functional theory of many-electron
systems subjected to time-dependent electric and magnetic fields. Phys. Rev.
A, 38:1149–1158, Aug 1988.

[31] G. Vignale. Mapping from current densities to vector potentials in time-
dependent current density functional theory. Phys. Rev. B, 70:201102, Nov
2004.

[32] M. A. L. Marques, N. T. Maitra, F. M. S. Nogueira, E. K. U. Gross, and
A. Rubio. Fundamentals of Time-Dependent Density Functional Theory (Lec-
ture Notes in Physics, Vol. 837). Springer, 2012.

[33] A. K. Rajagopal and J. Callaway. Inhomogeneous electron gas. Phys. Rev. B,
7:1912–1919, Mar 1973.

[34] A. K. Rajagopal. Inhomogeneous relativistic electron gas. Journal of Physics
C: Solid State Physics, 11(24):L943–L948, dec 1978.

[35] A. H. MacDonald and S. H. Vosko. A relativistic density functional formalism.
Journal of Physics C: Solid State Physics, 12(15):2977–2990, Aug 1979.

[36] T. Itoh. Derivation of Nonrelativistic Hamiltonian for Electrons from Quantum
Electrodynamics. Reviews of Modern Physics, 37(1):159–165, Jan 1965.

[37] E. Parker. An apparent paradox concerning the field of an ideal dipole. Eu-
ropean Journal of Physics, 38(2):025205, Jan 2017.

[38] “The Elk FP-LAPW Code”. http://elk.sourceforge.net/.

[39] E. Sjöstedt, L. Nordström, and D. J. Singh. An alternative way of linearizing
the augmented plane-wave method. Solid State Communications, 114(1):15–
20, 2000.

105



BIBLIOGRAPHY BIBLIOGRAPHY

[40] D. Singh. Planewaves, pseudopotentials, and the LAPW method. Springer,
2006.

[41] D. D. Koelling and B. N. Harmon. A technique for relativistic spin-polarised
calculations. Journal of Physics C: Solid State Physics, 10(16):3107–3114, Aug
1977.

[42] B. Koopmans, J. J. M. Ruigrok, F. Dalla Longa, and W. J. M. de Jonge.
Unifying ultrafast magnetization dynamics. Phys. Rev. Lett., 95:267207, Dec
2005.

[43] B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fähnle, T. Roth,
M. Cinchetti, and M. Aeschlimann. Explaining the paradoxical diversity of
ultrafast laser-induced demagnetization. Nature Materials, 9:259 EP –, Dec
2009. Article.

[44] G. P. Zhang and W. Hübner. Laser-induced ultrafast demagnetization in
ferromagnetic metals. Phys. Rev. Lett., 85:3025–3028, Oct 2000.

[45] D. Steiauf and M. Fähnle. Elliott-yafet mechanism and the discussion of
femtosecond magnetization dynamics. Phys. Rev. B, 79:140401, Apr 2009.

[46] M. Battiato, K. Carva, and P. M. Oppeneer. Superdiffusive spin transport as
a mechanism of ultrafast demagnetization. Phys. Rev. Lett., 105:027203, Jul
2010.

[47] A. M. Weiner. Femtosecond pulse shaping using spatial light modulators.
Review of Scientific Instruments, 71(5):1929–1960, 2000.

[48] S. Sugano. Magneto-Optics. Springer Berlin Heidelberg, 2000.

[49] P. S. Pershan. Magneto-optical effects. Journal of Applied Physics, 38(3):1482–
1490, 1967.

[50] Ru-Pin Pan, H. D. Wei, and Y. R. Shen. Optical second-harmonic generation
from magnetized surfaces. Phys. Rev. B, 39:1229–1234, Jan 1989.

[51] T. Rasing. Nonlinear magneto-optical probing of magnetic interfaces. Applied
Physics B, 68(3):477–484, Mar 1999.

[52] P. Elliott, T. Müller, J. K. Dewhurst, S. Sharma, and E. K. U. Gross. Ultrafast
laser induced local magnetization dynamics in heusler compounds. Scientific
Reports, 6:38911 EP –, Dec 2016. Article.

[53] K. Krieger, P. Elliott, T. Müller, N. Singh, J. K. Dewhurst, E. K. U. Gross, and
S. Sharma. Ultrafast demagnetization in bulk versus thin films: an ab-initio
study. Journal of Physics: Condensed Matter, 29(22):224001, Apr 2017.

106



BIBLIOGRAPHY BIBLIOGRAPHY

[54] K. Krieger. Spin-dynamics in strongly excited ferromagnetic systems. PhD
thesis, Martin-Luther-Universität Halle-Wittenberg, 2016.

[55] J. J. Sakurai. Advanced quantum mechanics. Addison-Wesley Pub. Co, 1967.

[56] A. Ludwig, J. Maurer, B. W. Mayer, C. R. Phillips, L. Gallmann, and
U. Keller. Breakdown of the dipole approximation in strong-field ionization.
Phys. Rev. Lett., 113:243001, Dec 2014.

[57] J. D. Jackson. Classical Electrodynamics Third Edition. Wiley, 1998.

[58] J. K. Dewhurst, K. Krieger, S. Sharma, and E. K. U. Gross. An efficient
algorithm for time propagation as applied to linearized augmented plane wave
method. Computer Physics Communications, 209:92 – 95, 2016.

[59] V. Shokeen, M. S. Sanchez Piaia, J.-Y. Bigot, T. Müller, P. Elliott, J. K.
Dewhurst, S. Sharma, and E. K. U. Gross. Spin flips versus spin transport in
nonthermal electrons excited by ultrashort optical pulses in transition metals.
Phys. Rev. Lett., 119:107203, Sep 2017.

[60] A. J. Schellekens, W. Verhoeven, T. N. Vader, and B. Koopmans. Investigating
the contribution of superdiffusive transport to ultrafast demagnetization of
ferromagnetic thin films. Applied Physics Letters, 102(25):252408, 2013.

[61] J. Chen, U. Bovensiepen, A. Eschenlohr, T. Müller, P. Elliott, E. K. U.
Gross, J. K. Dewhurst, and S. Sharma. Competing spin transfer and dissi-
pation at Co/Cu(001) interfaces on femtosecond timescales. Phys. Rev. Lett.,
122:067202, Feb 2019.

[62] J. Güdde, U. Conrad, V. Jähnke, J. Hohlfeld, and E. Matthias. Magnetization
dynamics of Ni and Co films on Cu(001) and of bulk nickel surfaces. Phys.
Rev. B, 59:R6608–R6611, Mar 1999.

[63] U. Conrad, J. Güdde, V. Jähnke, and E. Matthias. Phase effects in magnetic
second-harmonic generation on ultrathin Co and Ni films on Cu(001). Phys.
Rev. B, 63:144417, Mar 2001.

[64] J. Chen, J. Wieczorek, A. Eschenlohr, S. Xiao, A. Tarasevitch, and
U. Bovensiepen. Ultrafast inhomogeneous magnetization dynamics analyzed
by interface-sensitive nonlinear magneto-optics. Applied Physics Letters,
110(9):092407, 2017.

[65] W. Töws and G. M. Pastor. Many-body theory of ultrafast demagnetization
and angular momentum transfer in ferromagnetic transition metals. Phys.
Rev. Lett., 115:217204, Nov 2015.

107



BIBLIOGRAPHY BIBLIOGRAPHY

[66] A. Nilsson, J. Stöhr, T. Wiell, M. Aldén, P. Bennich, N. Wassdahl, M. G.
Samant, S. S. P. Parkin, N. Mårtensson, J. Nordgren, B. Johansson, and
H. L. Skriver. Determination of the electronic density of states near buried
interfaces: Application to Co/Cu multilayers. Phys. Rev. B, 54:2917–2921,
Jul 1996.

[67] W. L. Ling, E. Rotenberg, H. J. Choi, J. H. Wolfe, F. Toyama, S. Paik, N. V.
Smith, and Z. Q. Qiu. Double quantum well states in Cu/Co/Cu grown on
Co(001). Phys. Rev. B, 65:113406, Feb 2002.

[68] J. K. Dewhurst, P. Elliott, S. Shallcross, E. K. U. Gross, and S. Sharma. Laser-
induced intersite spin transfer. Nano Letters, 18(3):1842–1848, Mar 2018.

[69] J. K. Dewhurst, S. Shallcross, E. K. U. Gross, and S. Sharma. Substrate-
controlled ultrafast spin injection and demagnetization. Phys. Rev. Applied,
10:044065, Oct 2018.

[70] C. Dornes, Y. Acremann, M. Savoini, M. Kubli, M. J. Neugebauer, E. Abreu,
L. Huber, G. Lantz, C. A. F. Vaz, H. Lemke, E. M. Bothschafter, M. Porer,
V. Esposito, L. Rettig, M. Buzzi, A. Alberca, Y. W. Windsor, P. Beaud,
U. Staub, D. Zhu, S. Song, J. M. Glownia, and S. L. Johnson. The ultrafast
einstein-de haas effect. Nature, 565(7738):209–212, 2019.

[71] M. Wietstruk, A. Melnikov, C. Stamm, T. Kachel, N. Pontius, M. Sultan,
C. Gahl, M. Weinelt, H. A. Dürr, and U. Bovensiepen. Hot-electron-driven en-
hancement of spin-lattice coupling in Gd and Tb 4f ferromagnets observed by
femtosecond x-ray magnetic circular dichroism. Phys. Rev. Lett., 106:127401,
Mar 2011.

[72] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Self-consistent-field
calculations using chebyshev-filtered subspace iteration. Journal of Computa-
tional Physics, 219(1):172 – 184, 2006.

[73] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Parallel self-consistent-
field calculations via chebyshev-filtered subspace acceleration. Phys. Rev. E,
74:066704, Dec 2006.

[74] S. Goedecker. Linear scaling electronic structure methods. Rev. Mod. Phys.,
71:1085–1123, Jul 1999.

[75] C. Herring. Magnetism: Exchange interactions among itinerant electrons.
Magnetism (Ed. G. Rado and H. Suhl). Academic Press, 1966.

[76] L. M. Sandratskii. Energy band structure calculations for crystals with spiral
magnetic structure. Physica Status Solidi (b), 136(1):167–180, 1986.

108



BIBLIOGRAPHY BIBLIOGRAPHY

[77] T. Müller, S. Sharma, E. K. U. Gross, and J. K. Dewhurst. Extending solid-
state calculations to ultra long-range length scales. Phys. Rev. Lett., Accepted,
2020.

[78] M. Weinert. Solution of poisson’s equation: Beyond Ewald-type methods.
Journal of Mathematical Physics, 22(11):2433–2439, 1981.

[79] K. Fan and A. J. Hoffman. Some Metric Inequalities in the Space of Matrices,
pages 121–126. 2003.

[80] E. Sjöstedt and L. Nordström. Noncollinear full-potential studies of γ − Fe.
Phys. Rev. B, 66:014447, Jul 2002.

[81] L. M. Corliss, J. M. Hastings, and R. J. Weiss. Antiphase antiferromagnetic
structure of chromium. Phys. Rev. Lett., 3:211–212, Sep 1959.

[82] V. N. Bykov, V. S. Golovkin, N. V. Ageev, V. A. Levdik, and S. I. Vinogradov.
The Magnetic Structure of Chromium. Soviet Physics Doklady, 4:1070, March
1960.

[83] A. W. Overhauser. Spin density waves in an electron gas. Phys. Rev.,
128:1437–1452, Nov 1962.

[84] V.L. Moruzzi, J.F. Janak, and A.R. Williams. Calculated Electronic Properties
of Metals. Pergamon, 1978.

[85] J. Kübler. Spin-density functional calculations for chromium. Journal of
Magnetism and Magnetic Materials, 20(3):277 – 284, 1980.

[86] H. L. Skriver. The electronic structure of antiferromagnetic chromium. Journal
of Physics F: Metal Physics, 11:97, Nov 1981.

[87] N. I. Kulikov and E. Kulatov. Self-consistent band structure calculation of
chromium: Pressure influence. Journal of Physics F: Metal Physics, 12:2291,
Nov 1082.

[88] N. I. Kulikov, M. Alouani, M. A. Khan, and M. V. Magnitskaya. Self-energy
corrections to the ab initio band structure: Chromium. Phys. Rev. B, 36:929–
938, Jul 1987.

[89] J. Chen, D. Singh, and H. Krakauer. Local-density description of antiferro-
magnetic Cr. Phys. Rev. B, 38:12834–12836, Dec 1988.

[90] V. L. Moruzzi and P. M. Marcus. Antiferromagnetic ground state of bcc
chromium. Phys. Rev. B, 46:3171–3174, Aug 1992.

[91] D. J. Singh and J. Ashkenazi. Magnetism with generalized-gradient-
approximation density functionals. Phys. Rev. B, 46:11570–11577, Nov 1992.

109



BIBLIOGRAPHY BIBLIOGRAPHY

[92] K. Hirai. Magnetism in spin-density-wave chromium from first-principles cal-
culation. Journal of the Physical Society of Japan, 66(3):560–563, 1997.

[93] G. Y. Guo and H. H. Wang. Calculated elastic constants and electronic and
magnetic properties of bcc, fcc, and hcp Cr crystals and thin films. Phys. Rev.
B, 62:5136–5143, Aug 2000.

[94] G. Bihlmayer, T. Asada, and S. Blügel. Electronic and magnetic structure of
the (001) surfaces of V, Cr, and V/Cr. Phys. Rev. B, 62:R11937–R11940, Nov
2000.

[95] J. Schäfer, E. Rotenberg, S.D. Kevan, and P. Blaha. Energy gap of the spin
density wave at the Cr(110) surface. Surface Science, 454-456:885 – 890, 2000.

[96] R. Hafner, D. Spisák, R. Lorenz, and J. Hafner. Does density-functional the-
ory predict a spin-density-wave ground state for Cr? Journal of Physics:
Condensed Matter, 13:L239, Mar 2001.

[97] S. Cottenier, B. De Vries, J. Meersschaut, and M. Rots. What density-
functional theory can tell us about the spin-density wave in Cr. J. Phys.:
Condens. Matter, 14:3275–3283, Apr 2002.

[98] R. Hafner, D. Spišák, R. Lorenz, and J. Hafner. Magnetic ground state of Cr
in density-functional theory. Phys. Rev. B, 65:184432, May 2002.

[99] C. Pellegrini, T. Müller, J. K. Dewhurst, S. Sharma, A. Sanna, and E. K. U.
Gross. Density functional theory of magnetic dipolar interactions. Phys. Rev.
B, 101:144401, Apr 2020.

[100] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau. The physics of
dipolar bosonic quantum gases. Reports on Progress in Physics, 72(12):126401,
Nov 2009.

[101] C. Fiolhais, F. Nogueira, and M. Marques. A Primer in Density Functional
Theory (Lecture Notes in Physics) (v. 620). Springer, 2003.

[102] G. Giuliani and G. Vignale. Quantum Theory of the Electron Liquid. Cam-
bridge University Press, 2005.

[103] E. Engel and S. H. Vosko. Wave-vector dependence of the exchange contri-
bution to the electron-gas response functions: An analytic derivation. Phys.
Rev. B, 42:4940–4953, Sep 1990.

[104] Z. Qian. Static dielectric function with exact exchange contribution in the
electron liquid. Journal of Mathematical Physics, 56(11):111901, 2015.

[105] M. L. Glasser. Exchange corrections to the static Lindhard screening function.
Physical Review B, 51(11):7283–7286, March 1995.

110



BIBLIOGRAPHY BIBLIOGRAPHY

[106] W. Kutzelnigg. Origin and meaning of the fermi contact interaction. Theo-
retica chimica acta, 73(2):173–200, Mar 1988.

[107] I. Lindgren. Atomic Many-Body Theory. Springer Berlin Heidelberg, 1986.

111





List of Publications
Part of this thesis
Spin flips versus spin transport in nonthermal electrons excited by ultrashort optical
pulses in transition metals, V. Shokeen, M. Sanchez Piaia, J.-Y. Bigot, T. Müller,
P. Elliott, J. K. Dewhurst, S. Sharma, E. K. U. Gross
Phys. Rev. Lett. 119, 107203 (2017) (first author theory)

Competing spin transfer and dissipation at Co/Cu(001) interfaces on femtosecond
timescales, J. Chen, U. Bovensiepen, A. Eschenlohr, T. Müller, P. Elliott,
E. K. U. Gross, J. K. Dewhurst, S. Sharma
Phys. Rev. Lett. 122, 067202 (2019) (first author theory)

Density functional theory of magnetic dipolar interactions,
C. Pellegrini, T. Müller, S. Sharma, E. K. U. Gross, J. K. Dewhurst
Phys. Rev. B 101, 144401 (2020)

Extending solid-state calculations to ultra long-range length scales,
T. Müller, E. K. U. Gross, S. Sharma, J. K. Dewhurst
Phys. Rev. Lett, Accepted, (2020)

During the time at the Max-Planck-Institute
Ultrafast laser induced local magnetization dynamics in Heusler compounds,
P. Elliott, T. Müller, J. K. Dewhurst, S. Sharma, E. K. U. Gross
Sci. Rep. 6, 38911 (2016)

Ultrafast demagnetization in bulk versus thin films: an ab initio study,
K. Krieger, P. Elliott, T. Müller, N. Singh, J. K. Dewhurst, E. K. U. Gross,
S. Sharma
J. Phys. Condens. Matter, Vol. 29, Num. 22 (2017)

Other publications
Intrinsic magnetization of antiferromagnetic textures,
E. G. Tveten, T. Müller, J. Linder, A. Brataas
Phys. Rev. B 93, 104408 (2016)

A micro-SQUID with dispersive readout for magnetic scanning microscopy,
F. Foroughi, J.-M. Mol, T. Müller, J. R. Kirtley, K. A. Moler, H. Bluhm
Appl. Phys. Lett. 112, 252601 (2018)





Acknowledgments
First of all, I would like to thank my advisor Hardy Gross for giving me the oppor-
tunity to write my PhD thesis at the MPI in Halle. Specifically, I thank him for a
very nice working atmosphere, much scientific freedom and the opportunity to visit
many highly interesting national and international conferences.
I would also like to thank Sangeeta Sharma and Kay Dewhurst. Sangeeta managed
to acquire the initial funding for my (very well-funded) position and has helped me
a lot with her detailed knowledge about ultrafast demagnetization. Kay was very
helpful in the ultra long-range project. Besides helping with fundamental questions,
he also had many good suggestions for optimizing and benchmarking the approach
and the code.
I thank Peter Elliott for always being easy to talk to. He was always open for dis-
cussions about physics, even if the topic was unrelated to his work.
Of course I also want to thank our external experimental colleagues for fruitful col-
laborations. I want to thank Vishal Shokeen and Jean-Yves Bigot from Strasbourg.
Jean-Yves Bigot sadly passed away in 2018, which is certainly a big loss for the
ultrafast community. I also gratefully acknowledge our collaboration with Jinghao
Chen, Andrea Eschenlohr and Uwe Bovensiepen from the University of Duisburg-
Essen.
Finally I would like to thank the rest of the group for a friendly atmosphere. In
particular I would like to thank Arkady Davidov and Eli Kraisler for a fun but also
stimulating office.

Schließlich möchte ich meinen Eltern und meinem Bruder für den anhaltend guten
Support in allen Belangen außerhalb der Physik danken, der meine Ausbildung bis
hin zur Promotion erst ermöglicht hat.





Angaben zur Person und Ausbildung
Person

Vor-, Familienname: Tristan Müller
Geburtsdatum, Ort: 07.08.1991, in Simmern/Hunsrück
Staatsangehörigkeit: deutsch
Geschlecht: männlich
Akademischer Grad: M.Sc Physik
Fachgebiet der Promotion: Physik

Ausbildung

11/2015 - 09/2019: Doktorand am MPI für Mikrostrukturphysik,
in der Gruppe von Prof. Eberhard K. U. Groß

09/2014 - 09/2015: M.Sc. in Physik an der RWTH Aachen,
Masterarbeit in der Gruppe von Prof. Hendrik Bluhm

08/2013 - 05/2014: Erasmusstudent an der NTNU Trondheim
10/2010 - 08/2013: B.Sc. in Physik an der RWTH Aachen,

Bachelorarbeit in der Gruppe von Prof. Stefan Schael
08/2002 - 03/2010: Herzog-Johann-Gymnasium Simmern

Eidesstattliche Erklärung

Hiermit erkläre ich gemäß §5 der Promotionsordnung der Naturwissenschaftlichen
Fakultät II der Martin-Luther-Universität Halle-Wittenberg vom Juli 2016, dass ich
die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst habe. Ich habe
keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet und
die den benutzen Werken wörtlich sowie inhaltlich entnommenen Stellen kenntlich
gemacht. Ich habe keine vorherigen Promotionsversuche unternommen, weder an
dieser noch an einer anderen Fakultät. Darüberhinaus bin ich nicht vorbestraft und
es ist kein Ermittlungsverfahren gegen mich eingeleitet.

Halle (Saale),

gez. Tristan Müller


	Titlepage
	Notation
	Abbreviations
	Table of contents
	Introduction
	Many-electron systems
	The many-body problem
	Density functional theory
	The Hohenberg-Kohn Theorem
	The Kohn-Sham equations
	Extensions of DFT
	Approximate functionals

	Time-dependent density functional theory
	Fundamental Theorems
	Time-dependent Kohn-Sham equations
	Extensions to TDDFT
	Time-dependent functionals

	Relativistic effects
	Numerical implementation

	Ultrafast demagnetization
	First observation and suggested explanations
	Ultrafast magneto-optics
	Ultrashort laser pulses
	Laser pulses in magnetic materials - The Faraday effect
	Reflection from surfaces - The magneto-optic Kerr effect
	Magnetic second harmonic generation

	Ab-initio treatment of ultrafast demagnetization
	Time-dependent Kohn-Sham system
	Spin-orbit coupling for radial potentials
	Classical vector potential and the dipole approximation
	The time propagation

	Spin flips versus spin transport in optically excited transition metals
	Competing spin transfer and dissipation at Co/Cu(001) interfaces

	Density functional theory for ultra long-range phenomena
	The magnetic dipole interaction and magnetic domains
	Ultra long-range ansatz
	Wave function and densities
	Ultra long-range Hamiltonian
	Hamiltonian Matrix Elements

	Numerical implementation
	Self-consistent solution
	Efficient k-space grids
	Computation of the Hartree and dipole interaction

	Ultra long-range results
	Sawtooth potential in Silicon
	``Planck'' potential in Lithium
	Spin-spirals in gamma-Iron
	Spin-density wave in Chromium

	Time-dependent ultra long-range systems
	Limits of the ultra long-range method

	Exchange functional for the magnetic dipole interaction
	Exchange energy of the homogeneous electron gas
	Perturbative exchange functional
	Functional form
	Second order Goldstone Diagrams
	Spin Summation
	Symmetric energy diagram
	Asymmetric energy diagram
	Yin-Yang and frog energy diagrams
	Exact numerical and semi-analytical solution

	Correlation energy and higher orders
	Spin-contact interaction

	Conclusion
	Perturbative Energy diagrams
	Goldstone diagram evaluation rules

	Bibliography
	Publications
	Acknowledgments

