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Zusammenfassung

Der Datentransfer zwischen Speicher und Prozessor in digitalen von Neumann-
Rechnerarchitekturen verbraucht viel Energie. Dies wird besonders kritisch für daten-
intensive Aufgaben, wie das Trainieren von neuronalen Netzen. Gegenwärtig werden
Matrizen von resistiven nicht-volatilen Speicherbauelementen zur Implementierung von
neuronalen Netzen untersucht. Diese ermöglichen hochparallele Multiplikationen und
Summationen. Ebenso denkbar ist die Nutzung von (mem)-kapazitiven Bauelementen,
welche den Vorteil eines niedrigeren statischen Energieverbrauchs haben, jedoch ist das
niedrigere dynamische Hubverhältnis bei geringerer Skalierfähigkeit nachteilig. In dieser
Arbeit wird ein CMOS-kompatibles Bauelement vorgeschlagen, welches Ladungsabschirmung
ausnutzt, theoretisch simuliert und experimentell realisiert. Eine Skalierfähigkeit bis zu
45 nm-90 nm wird durch Simulationen bewiesen, wobei ein hohes dynamisches Hubverhältnis
erhalten bleibt. Unter Ausnutzung einer adiabatischen Aufladung wird eine 30-300-fach
bessere Energieeffizienz bei 6-8 Bit Präzision im Vergleich zu resistiven Technologien und
potentiell höher als das menschliche Gehirn gezeigt. Weiterhin werden experimentelle
Bauelemente und Matrizen auf der Mikrometer-Skala, sowie ein Bilderkennungsalgorith-
mus mit den Buchstaben “M”, “P” und “I” auf 156 synaptischen Bauelementen, demonstriert.



Abstract

Data transfer between memory and the processor in digital von Neumann architec-
tures consumes a large amount of energy. This becomes extremely critical in modern
data-intensive tasks, such as neural network training. Recently, neural networks were
mapped onto arrays of resistive non volatile memory for highly parallel multiply-accumulate
operations. (Mem)-capacitive devices can similarly be employed with the advantage of lower
static power consumption, but they suffer from a poor dynamic range and scalability. In this
thesis a CMOS-compatible (mem)-capacitive device based on charge screening is proposed,
theoretically simulated and experimentally demonstrated. Scalability down to 45 nm-90 nm
is shown by simulations, while retaining a large capacitance dynamic range. By using
concepts of adiabatic charging it is shown that mapping neural network inference tasks with
6-8 Bit precision can be done with 30-300x better energy efficiency compared to common
state-of-the-art resistive technologies and possibly greater efficiency than the human brain.
Experimental devices and crossbars were fabricated at the micrometer scale and an image
recognition algorithm with letters “M”, “P” and “I” is shown on 156 synaptic devices.
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1 INTRODUCTION

1 Introduction

There is considerable interest in brain-inspired computing, particularly by using ar-
tificial neural networks and their hardware implementation, a field of research often
termed neuromorphic computing. Artificial neural networks, a subform of artificial in-
telligence, have made significant progress in recent years, fueled by the internet, which
enabled the big data revolution, as well as increased hardware performance, especially
with graphical processing units (GPUs).
The first computational model of a brain-inspired neural network model can be traced
back to Warren McCulloch and Walter Pitts in 1943 [13]. The McCulloch-Pitts
neuron is a simple threshold switch which can either output a one or zero. In the
late 1940s Donald Hebb suggested the Hebbian learning rule for artificial neural net-
works [14], which forms the basis for spike timing dependent plasticity (STDP) (see
chapter 2.2) [15]. The backpropagation algorithm was invented by Paul Werbos in
1975 [16] and is the most important learning algorithm for supervised learning. Con-
volutional neural networks, which are inspired by the receptive field and visual cortex
of the human brain, were first used in 1989 by Yann LeCun [17]. Since the early 2010s
convolutional neural networks have gained significant momentum and won several im-
age recognition competitions [18,19].
Current computing hardware is not well-suited for calculating neural network, due to
the von Neumann architecture, which implies a separated memory and processor. Thus
significant data transfer between memory and processor is necessary, which leads to
a 1,000-10,000 times larger energy consumption compared to the human brain [20].
Early works on neuromorphic implementations can be traced back to Carver Mead.
In his famous paper from 1990 [21] he first proposed the replacement of digital infor-
mation processing with analog processing for neural networks. Use of more suitable
computational primitives can lead to significantly reduced circuit overhead and power
consumption. Since the intensive investigation of the memristor effect in 2008 [22] ar-
rays of resistive devices were implemented and used for highly parallel neural network
calculation.
Most recent work has been based on resistive devices and systems. There have been
some theoretical proposals for memcapacitive devices [23–31], but few practical imple-
mentations [6,7,32,33]. The aim of this thesis is to theoretically analyse and practically
implement a new memcapacitive device for neuromorphic computing. The roots of the
device can be traced back to a sensor for electrostatic fields, which was already the
topic of the authors diploma thesis [34].
The thesis is divided into the following sections: First in chapter 2 some fundamentals
on ANN are introduced, including different network topologies and learning algorithms.
Then the physical implementation (chapter 2.3) in the form of a crossbar arrangement
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and different resistive and capacitive technologies are introduced.
Thereafter a theory section (chapter 3) describes the device working principle and
provides technology computer-aided Design (TCAD) and Spice simulation, in which
the energy consumption and scalability is estimated. The next two sections describe
the fabrication (chapter 4) of single capacitive devices and crossbars, as well as the
measurement setup (chapter 5). The second last chapter (chapter 6) describes the
measurement results and the image recognition algorithm implemented on a memca-
pacitive crossbar array. The thesis is summarized by a conclusion (chapter 7).
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2 FUNDAMENTALS

2 Fundamentals

In this chapter a broad overview on neuronal networks is given, as well as the hardware
implementation (neuromorphic computing) of neural networks.

2.1 Introduction to Artificial Neural Networks

2.1.1 Biological Inspiration and General Working Principle

Fig. 2.1 shows the structure of a biological neuronal network in comparison to an
artificial version. The biological neurons comprise of a soma, a single axon and den-
drites [35–38]. Electrical signals from a pre-neuron are fed through a synaptic gap into
the dendrites (the inputs) of neurons. In the soma and the axon, electrical pulses are
generated by a membrane containing potassium (K+) and sodium (Na+) ion channels.
So the calculation is done in the neurons, while the synaptic gaps are responsible for
the learning. Details on the information processing can be found in chapter 2.2. The
output spike voltages generated by the neurons are fed along the axon to several other
synaptic terminals and thus other neurons. The synapses connect the axon with a
dendrite of a neuron and has a gap of 20 nm as shown in Fig. 2.1a). One needs
to distinguish between chemical synapses and electrical synapses [36]. While chemical
synapses use neuro-transmitter molecules that are attached to receptors of the dentrites
for communication, the electrical synapses use a direct electrical connection for com-
munication and are much faster, but less versatile. The learning in the brain is caused
by synaptic plasticity, which means connectivity can increase or decrease depending on
the activity. The principle behind the plasticity is caused by several mechanisms, but
generally the variation of the number of receptors for neuro-transmitters is one of the
main mechanism.
On average, every neuron is connected to 10000 other neurons. An adult human brain
contains approximately 14-16 billion neurons and 100-500 trillion (1E + 14− 5E + 14)
synapses, while it consumes only 20 W.
In contrast, an ANN [1,38–40] (Fig. 2.1b) is clearly biologically inspired regarding its
structure, but the detailed underlying information processing can be quite different.
The circles in Fig. 2.1b) represent the neurons and contrary to biological networks,
possess a non-linear activation function (usually a sigmoid/tanh or ReLU function).
The inputs of a neuron are summed up and applied to the non-linear activation. The
synapses are represented by the arrows in Fig. 2.1b) and are also called weights, which
means the output of a neuron is multiplied by the weight and fed to the next neuron.
The ANN forms a layered structure, where an ANN is called deep if it has several
hidden layers. The structure in 2.1b) is a simple feed forward, fully connected neural
network, which means that the data flow is only from one layer to the next and every
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pre-neuron is connected to every post-neuron. Other network topologies are explained
in the next chapter 2.1.2.
The aim of a neural network is to train the weights in such a way that they represent
certain patterns. The neural network can classify an input pattern (image, sound or
other data) into output classes after training. Using the neural network for classifica-
tion tasks after training is called inference. Different training and learning methods
are explained in chapter 2.1.3.

a)
Soma Electrical Synapse Chemical SynapseAxon

Dendrites

Synaptic 
terminals

Pre-neuron

Post-neuron

Gap junctions

Post-neuron

Pre-neuron
Pre-neuron
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Input

Output
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Figure 2.1: a) Biological neural network with neuron soma, dendrites as inputs and
axon as output. The synapses are arranged between axon branches and dendrites. b)
Artificial neuronal network with neurons as circles and synaptic weights as arrows. The
neurons sum the input values and a non-linear activation is applied. This can e.g. be
a hyperbolic tangent, sigmoid or ReLU function.

2.1.2 Different Topologies

Generally, neural networks can be classified into two different main classes: feed forward
network (FF) and recurrent neural network (RNN) (Fig. 2.2) [41]. The two main classes
can be further divided into different types. Feed forward means the information flow is
only in one direction (except during back propagation training), while recurrent neural
networks have feedback loops and thus a temporal weight sharing. In recurrent neural
networks the timing of certain events in the past have an effect on how outputs are
generated for the current state.
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Within the class of feed forward networks the fully connected neural networks were
already introduced in chapter 2.1.1: Every pre-neuron is connected to every post-
neuron of the layers. These kind of neural networks are the simplest and oldest version,
and an experimental implementation of a fully connected layer is explained in chapter
6.5. convolutional neural networks (CNNs) [17–19,42] play an important part in image
recognition, and a small filter matrix is convolved over an input image. The filter
matrix contains the filter weights and is multiplied with the pixels of the input feature
map and summed to one pixel of the output feature map. Due to the convolution,
the weights are reused over the full image and thus a weight sharing is implemented.
The aim of the convolution with a filter matrix is to extract certain features, like
edges or circles. Each convolutional layer is usually followed by a pooling layer which
reduces the dimension of the output feature map by averaging or taking the maximum
values of a small area of the output feature map. Afterwards a ReLU activation is
mostly used. The last layers of a convolutional neural network are fully connected in
order to accomplish the desired classification. Convolutional neural networks are highly
biologically-inspired by the visual cortex and the filter matrix has similarities to the
receptive field of the retina. With modern convolutional neural networks super-human
accuracy has already been achieved (e.g. ResNet-50 [19]).
Radial basis function neural networks [43,44] use a radial basis function as an activation
function for the neurons. They are used for function approximation. The autoencoder
[45] will be explained in the next chapter 2.1.3 in the context of unsupervised learning.
They have the same number of outputs as inputs and they are trained in such a way
that the output is a close representation of its original input.
As already mentioned, recurrent neural networks [41] show a much more complicated
dynamic behaviour. The oldest subtype of RNN are Hopfield networks [46], which are a
kind of associative memory. Every neuron is connected to the input of its neighbouring
neurons, but there is no feedback to its own input. Trained Hopfield networks have a
minimum energy for a certain input and thus, when a new input is applied, which is
similar to the trained input, the neurons return back to the energetic optimum. (e.g.
input vector [-1 1 1 -1] would return to the trained input [-1 1 1 1]). One can define a
Hamiltonian for Hopfield networks to obtain the minimum energy, similar to physics.
Boltzmann machines [47] are similar to Hopfield networks, but are stochastic.
In conventional recurrent neural networks the state is only stored from one moment
to the next moment. There are many practical cases where an output far in the past
should have a connection to the current input. This problem is solved by long short-
term memory (LSTM) [48,49], a network class, which contains a forget gate, input gate
and output gate, where each gate controls to what extent a cell status is considered
for the current point of time or forget. LSTM have lead to wide-spread application in
natural language processing [49].
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Due to the fact that recurrent neural networks are difficult to train echo state machines
(ESM) and reservoir computing have been developed. In this a random recurrent neural
network, the reservoir ensures a complicated dynamic behaviour, while only the output
layer is trained. There are widespread physical systems that can act as a reservoir [50].

Feed forward neural network (FF)

Recurrent neural network (RNN)

Long-short term memory (LSTM)

Hopfield network Boltzmann machine

Echo state machine (ESM) / Reservoir computing

Fully connected

Convolutional neural network (CNN)

Autoencoder

Radial basis function network

Input Convolution Pooling Pooling

Fully connected

Figure 2.2: Family tree of ANN with the two main classes: Feed forward and recurrent
neural networks.
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2.1.3 Learning in Artificial Neural Networks

Generally, one can distinguish between supervised learning, unsupervised learning and
reinforcement learning, which is a mixture of supervised and unsupervised learning.
Supervised learning is accomplished with labeled datasets, which means the weights
are initalized arbitarly in the beginning, an input (e.g. image) is applied, and an error
between current and desired output classification is calculated. This error is used to
train the network in such a way that a minimized error is achieved on the training set
of inputs. Afterwards the network is able to sort most inputs of a test set into the
correct classifications. A detailed description of the backpropagation algorithm [16] is
given below.
Unsupervised learning is achieved on an unlabeled dataset. The network is able to
sort the inputs, due to differences in the input, into different output classifications. An
example of an unsupervised algorithm is a self-organising map [39,51], which can sort
different colors into a map of similar colors (Fig. 2.3b). Self organising maps strengthen
weights to neighbourhood neurons that have a similar color. Another example, the au-
toencoder [45], was mentioned in the previous chapter: The input layer is connected
via one hidden layer to the output layer, where the input features are mapped to the
same output features. The hidden layer is a lower dimensional representation of the
inputs.
Reinforcement learning [52] (Fig. 2.3c) has an agent, which is usally a neural network,
and the agent is taking action to an environment. The environment returns the actual
status and a reward back to the agent. The aim of reinforcement learning is to max-
imize the cumulative reward with every action of the agent. Thus the agent learns a
certain policy during the exploration of the environment.

Backpropagation training [16,39] for supervised learning remains one of the most pop-
ular methods to train neural networks and was suggested in 1975. The general aim is
to change the weights in such a way that the cost function will decrease, which can
be achieved by gradient descent: The derivative of the cost function is calculated with
respect to each weight and the weights and biases of each neuron are changed with
the opposite sign of the derivative. One possible cost functions is the quadratic cost
function:

K = 1
2 ·
∑
j

(
yj − aLj

)2
(2.1.1)

with K being the cost, yi is the desired output of output neuron j and aj is the acti-
vation of neuron j in the output layer L. The upper index describes the layer number
in the neural network, while j is the index of the post-neuron and i the index of the
pre-neuron.
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a)

Input Obtained 
output

Desired output

Error
(minimize)

b)

In
p

u
t 

la
ye

r

Weights 2D output map

c)

Agent
Environment

Action

Reward

Status

Figure 2.3: a) Supervised learning with an error function, which needs to be mini-
mized, by using an desired output and obtained output. The network is trained with
a labeled dataset (desired output). b) Unsupervised learning with unlabeled data on
a self-organising map. In this case colors are sorted according to their similarities. c)
Reinforcement learning with an agent, which receives rewards for certain actions on
the environment.

Backpropagation training can be applied in a stochastic mode (equation 2.1.1), were
the cost function is calculated for every input of the training set or in a batch mode
where the cost function is averaged for all inputs of the training set:

K = 1
2n ·

∑
x

∑
j

(
yj − aLj

)2
(2.1.2)

with n being the number of samples in the training set and x the individual inputs.
The weighted input zl of a neuron in the layer l is:

zl = wlal−1 + bl (2.1.3)

so it depends on the weights wl, the activation of the pre-neurons al−1 and the bias bl.
The error at the jth neuron is defined as the derivative of the cost function from the
weighted input of the neuron zlj:
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δlj = ∂K

∂zlj
(2.1.4)

For the last layer L neurons the error is simply:

δL = ∇aK ◦ σ′(zL) (2.1.5)

With ◦ describing the Hadamard product and σ′(zL) is the derivative of the non-linear
activation function (e.g. sigmoid) of the output neurons at the weighted input.
The error of the other layers is calculated by the backpropagated error, which can be
proven by the chain rule:

δl =
((
wl+1

)T
δl+1

)
◦ σ′(zl) (2.1.6)

The error is again weighted by wl+1. From the errors one can make conclusions on the
dependence of the cost function on the weights between the ith pre-neuron and the jth

post-neuron, as well as on the bias of the jth neuron:

∂K

∂blj
= δlj (2.1.7)

∂K

∂wlji
= al−1

i · δlj (2.1.8)

These formulas can be derived from the equations 2.1.4 and 2.1.3. Thus for the weight
and bias update during training one can conclude:

∆W l
ij = −α · δlj · al−1

i (2.1.9)

∆bj = −α · δlj (2.1.10)

Where α is the learning rate and during the weight update also the output activation of
the pre-neuron needs to be considered. In a special type of backpropagation algorithm,
the Manhattan update rule, the weights are updated always by the same amount and
only the sign of equation 2.1.9 is used:

∆W l
ij = sgn

(
−α · δlj · al−1

i

)
(2.1.11)

This algorithm is implemented in chapter 6.5.
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2.1.4 Challenges

One of the big issues with ANN is the huge amount of data required to train the net-
works. For this reason the models are usually implemented in the cloud. Furthermore,
calculation of neural networks requires a vast amount of energy. This problem is ad-
dressed in chapter 2.3. Also the networks are quite often only good for specific tasks
and far away from the flexibility of the human brain.
Improvements in unsupervised learning algorithms might solve the bottleneck of avail-
able training data.

2.2 Spiking Neural Networks

Spiking neural networks [15, 53–55] are the more biologically plausible type of neural
networks and often termed third generation neural networks. The implementation of
neurons and the learning algorithms are different compared to perceptron like ANN.
The neurons integrate the input signals, and once a certain threshold of membrane
potential is achieved, the neurons send out a spike. The integration is usually im-
plemented with capacitors, while the neurons may also have a leaky path, which is
implemented with a resistor. Neurons of this type are called leaky-integrate and fire
neurons. Neurons can also have even more biologically plausible circuits, like imple-
mented in the Hodgkin-Huxley model. The learning in spiking neural networks (SNN)
is most often a STDP algorithm [54], which means in short, that neurons that fire
together, wire together (Hebbian learning rule). A typical STDP curve is shown in
Fig. 2.4b): If the post neuron fires shortly after the pre-neuron, the weight between
them is increased, while for a firing in the post-neuron shortly before the pre-neuron
the weight is depressed strongly. If the time distance between the post-neuron and
pre-neuron spike is very long, the spikes are uncorrelated and thus the weight is nearly
unaffected.
Supervised learning is more complicated to implement in SNN, since backpropagation
cannot be applied (the neuron activation function needs to be differentiable). There
are some other supervised learning algorithms specific for spiking neural networks (e.g.
NormAD [56,57]).
Generally the STDP is a very localized learning algorithm, thus the accuracy of SNN
has not reached the same as ANN and is practically barely used. The learning algo-
rithm of the biological brain is not fully understood as yet to implement efficient SNN.
The advantage of SNN is the lower energy consumption compared to ANN, since SNN
are event-driven networks.
Spiking neural networks are not the focus of this thesis, although there are some phys-
ical realisations of some ANN that use a pulse number [58] as an input signal coding
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to neurons (see next chapter 2.3). These realisations are not classified as SNN.
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Figure 2.4: a) Circuit model of a leaky-integrate and fire neuron. The corresponding
waveform of a spike is shown on the right. b) Spike-timing dependent plasticity of a
pre-neuron and post-neuron spike.

2.3 Physical Implementation

The prior described neural networks are nowadays mostly simulated on conventional
digital electronic circuits. Conventional digital electronics is not well suited for imple-
menting artificial neural networks due to the following reasons:
The fact that a neural network consists of many multiplications and many weights, lead
to the necessity to store some weights on a memory besides the processor (e.g. dynamic
random access memory (DRAM)). Most computers are nowadays designed and built
along the lines of the von Neumann-architecture (Fig. 2.5), thus the memory is strictly
seperated from the arithmetic logic unit (ALU), where the calculation is taking place.
Computers have a certain memory hierarchy from the registers, which are close to the
ALU, to larger memory arrays, which are slower. The order is [59]: Register - static
random access memory (SRAM) - DRAM - Flash - hard drive disk (HDD). In order
store the weights of neural networks, which are nowadays >50 million [19], some of
them need to be stored on the larger memory arrays and transferred for calculation
to the ALU. The calculated result is often transferred back to the higher hierarchical
memory. This data transfer consumes huge amounts of energy, because of the large
physical distance between ALU and memory, a problem well-known as von Neumann
bottleneck.
There are some digital computer architectures that are better suited for neural net-
works, like the GPUs and tensor processing unit (TPUs) from Google, due to their
multi-core architecture and more parallelism. Still these processors just improve the
energy efficiency by a factor of 10. For convolutional neural networks some processors
have been developed that make use of weight reuse, due to the fact that the filter matri-
ces are rather small (e.g. Eyeriss processor) [60,61]. Most of these application specific
integrated circuits (ASICs) still have energy efficiencies in the range of 1 TOPS/W-
10 TOPS/W (Terraoperations per second per Watt) [20, 62] and are thus still by a
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factor of 10-100 less energy efficient than the human brain, besides that the number of
parameters they can store per chip are very small. Tab. 1 gives a rough comparison of
the brain versus computers nowadays: The brain can store much more synapses com-
pared to the transistor count of conventional integrated circuits (ICs), but the single
operations are conducted much slower in the brain and it is still much more powerful
for certain tasks, like recognition. The reason for this difference is the inherent three-
dimensional structure of the brain and the high parallelism in the brain. There is no
distinct memory and processor in the brain and neural networks are directly physically
implemented.

ALU
Control 

Unit

Cache

Main Memory

Flash

HDD

Reg.

Datatransfer

D-FF

SRAM

DRAM

Floating Gate T

Magnetic

Storage Capacitity

Cost/Bit ↑
Speed ↑ Weights ↓

Figure 2.5: Illustration of von Neumann bottleneck with distinct memory and pro-
cessor (ALU, Control Unit). The different memory hierarchies are shown.

Brain Computer
1E+9 neurons, 1E+14 synapses 1E+9-1E+10 transistors

Max firing rate: 1× 103 Hz 1× 109 Hz clock speed
20 W 1000 W

10 fJ/operation 100 pJ/operation

Table 1: Properties of the brain and a typical desktop computer in comparison. The
brain is approximately 10,000 times more energy efficient and can store more weights
due to its three-dimensional structure.

One might think about implementing synapses/weights together with a multiplier unit
in digital circuits directly and arrange them in a matrix (2.6b) for highly parallel cal-
culation (also known as distributed architecture) [2], but for each 8 Bit register for
storing the weights there are ~128 transistors necessary. With SRAM there are ~48
transistors necessary for 8 Bit. Furthermore, for a 8 Bit multiplication ~400 transistors
are necessary [63], which gives a total amount of ~500 transistors for one node in the
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matrix. Assuming an advanced 7 nm technology node with ~100 MTr/mm2 the foot-
print of this circuit would be ~2.2µm x 2.2µm or ~5µm2.
The advantage of digital circuits are their noise immunity and easy design, but the
circuits themselves are very bulky. Neural Networks are to some extent inherently
noise immune, and thus the precision for neural network calculation was lowered from
floating point numbers to 6-8 Bit integer precision [11,60]. There are even publications
on binary weight precision [64]. If we now consider an analog storage device, like a vari-
able resistor with a memory effect, the device can accomplish a multiplication by using
Ohms law and an accumulation operation with Kirchhoff´s current law if arranged in a
crossbar arrangement (Fig. 2.6c) [1, 65]. A fully-connected neural network (Fig. 2.6a)
can be perfectly mapped to the crossbar arrangement with the pre-neurons attached
to the input lines (WL) and the post-neurons attached to the output lines (BL). The
advantage of this analog resistive device is the much smaller footprint, even at matured
technology nodes, compared to the digital solutions (assuming 16F2 memory footprint
and 90 nm technology node: 0.13µm2 or 0.36µm x 0.36µm). Thus the area is 38 times
smaller for the analog version at 90 nm technology node compared to the digital version
at 7 nm technology node and much more weights can be stored per chip. A precision
of 6-8 Bit is feasible for an analog weight storage and neural networks, as mentioned
earlier, are inherently tolerant to some extent with respect to device-to-device varia-
tion and write/read inaccuracy [11, 12]. Moreover, a single memory device is easier to
integrate into the third dimension compared to circuits. The weights in a crossbar are
often stored in a differential topography with two memory cells (Fig. 2.6d), thus the
negative BL is subtracted from the positive BL and a ’four-quadrant multiplication’
can be implemented. The differential weight configuration also makes the matrix more
robust to variations and read-out errors. In addition the matrix can contain a selector,
like a transistor, which is mainly used during writing/training. The input signals to the
WL of the matrix can be either coded as an analog value, where a large digital analog
converter (DAC) and a perfect linear device is needed in this case, or as a pulse length
or pulse number [1], where the disadvantages of the prior mentioned code scheme do
not exist (Fig. 2.6d). Only the latency could be higher.
Regarding inference and training, the memory cells should have several properties (see
Tab. 2) of which not all properties are yet reached with common resistive technolo-
gies [11, 12]:
For training the weights should be updated in a linear fashion and highly symmetric
with respect to writing and erasing, because the derivative of the weight update during
backpropagation training should stay constant (see chapter 2.1.3). A high endurance is
necessary for training. For inference on the other side a long retention time is required.
A high dynamic range (on/off ratio) is desired for both and the device should be as
resistive as possible to enable low power consumption and no saturation of the total
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accumulated result (R ≈ 20 MΩ).
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...
Figure 2.6: a) Fully connected neural network with the pre-neurons N1 to Nn and
post-neurons M1 to Mn b) Matrix arrangement with conventional digital CMOS to
map the neural network. c) Crossbar arrangement of resistive devices. d) Crossbar ar-
rangement with selector in differential topology and the different input coding schemes.
Similar illustrations can be found in [1, 2].

Inference Both Training
Long retention
Low read-out energy

High Rdevice ≈ 20MΩ
Dynamic range >1:60-1:100
Precision: 6-8 Bit

Low write/erase asymmetry: <6-10%
High linearity
Low noise: σ < 10%
High endurance: >1E+9
Fast programming: 10 ns-100 ns

Table 2: Desired properties of the resistive memory device for inference, training and
both. [11,12]

2.3.1 Common Resistive Devices

One of the first resistive devices used for neuromorphic computing was the floating gate
transistor [66,67]. Electrons are injected and stored in an isolated poly-Si gate (floating
gate) either by Fowler-Nordheim tunneling or hot carrier injection. The stored charge
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leads to a shifting of the threshold voltage of a MOSFET. Similarly, in a more modern
version, a silicon-oxide-nitride-oxide-silion (SONOS) memory [68–71] uses charge trap-
ping in a silicon nitride layer and Fowler-Nordheim tunneling for writing and erasing.
SONOS has a higher endurance compared to floating gate transistors. Both types of
charge trapping memories are too slow and energy consuming with respect to writing
for training applications, but are interesting for inference-only application, since they
are industrially matured.
A memristor, also known as RRAM in the context of memory technology, is a device
first postulated by Leon Chua in 1971 [72], which was experimentally described in
2008 [22]. It has a typical pinched hystersis loop in the IV-curve. Although a mem-
ristor has a rigorous mathematical definition [24], sometimes other resistive memory
technologies are also called a ’memristor’. There is even an ongoing discussion if the
device from 2008 is really a memristor [73, 74]. The memristor is written to the low
resistance state (LRS) by formation of a conducting filament, which is composed out
of oxygen vacancies or metal ions, between two metal electrodes. Usually the set-
ting is an abrupt process, while the reset can be achieved gradual, thus RRAM is a
highly asymmetric device [1]. With non-localized switching, like in PCMO devices, the
conductance can be tuned more gradually. The first demonstration on a memristor
crossbar array was implemented for a 3x3 image recognition with Manhatten update
training [75]. Recently, memristor based crossbar arrays have also been implemented
with CMOS [58]. The biggest problems with memristors are their asymmetry, large
device-to-device variations and slowness during gradual switching.
In a phase-change memory a resistance change in a material is achieved by a phase
transition from crystalline to amorphous. The material is molten by an electric cur-
rent and abruptly solidified to obtain the amorphous phase. Although phase-change
memories are a very robust memory technology with large endurance, the asymmetry
is one of the biggest obstacle for neuromorphic applications. There have been imple-
mentations with up to 165,000 synapses by using phase change memory arrays [76].
Regarding spintronic implementations, a tunnel junction is used, which depending on
the magnetization direction of the two magnetic layers, leads to a low or high resistive
state. In order to obtain a analog value storage, a domain wall motion is used in one
magnetic layer and depending on the fraction of the up to the down domain an arbi-
trary resistance state will be adjusted [77,78]. The advantage of spintronic realisations
are the high endurance and good controllability of domain wall motion. Scalability
still needs to be improved due to the large size of domain walls.
Ferroelectric resistive realisations can either be in the form of a FeFET [79–84] or a
ferroelectric tunnel junction [85, 86]. The discovery of ferroelectric hafniumoxide in
2011 [87, 88] lead to highly CMOS compatible device implementations. In a FeFET
the polarization charge of the ferroelectric material leads to a shifting of the threshold
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voltage. There is still an ongoing debate regarding the scalability of the analog storage
capabilities. In the material one has to distinguish between the switching of grains due
to small differences in the coercive field [81]. This type of switching is clearly limited
with regards to scalability to ~500 nm, due to limited grain size. The other type of
switching events are nucleation events within the grains [3,89], which are exponentially
dependent on the applied voltage, and can only be measured indirectly in a nanoscaled
FeFET by abrupt switching events after a certain number of pulses. Generally, FeFET
show a very good symmetry and thus high training accuracies for neural networks
have been simulated [83]. Ferroelectric tunnel junctions have been shown to have very
high energy efficiencies and potentially a better analog value performance compared to
FeFETs, because of their two dimensional coupling.
Resistive technologies are proven to achieve energy efficiencies during inference of up
to 100 TOPS/W [12, 62, 68, 85] for 6-8 Bit resolution and an areal efficiency of up to
3.6 TOPS/mm2 [90].
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Figure 2.7: a) RRAM device with conducting filament and corresponding pinched
hysteresis loop of IV curve. b) Phase-change memory cell with asymmetric conductance
response versus write pulse number. c) Spintronic memristor based on domain wall
motion. d) FeFET and ferroelectric tunnel juntion based synapse. Shown are domain
nucleation events and single grain switching. Similar illustrations can be found in [3,4].
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2.3.2 Capacitive Devices

One can consider to use a variable capacitor along with a memory effect instead of
a resistor for neuromorphic computing. Similarly to resistive devices a memcapacitor
is a device with pinched hystersis loop in the charge-voltage curve [24]. There have
been some theoretical proposals for memcapacitive devices [23–31], but few practical
implementations [6, 7, 32,33].
There are some reports of DRAM trenched capacitors [91,92] as a capacitive synapse,
however, these implementations only use the stored charge as a weighted value, cannot
vary capacitance of the device and moreover, such devices are volatile. However, very
high linearity has been obtained with trenched capacitor implementations.
A variable capacitance along with a non-volatile memory effect can be realized by either
varying the distance between the capacitor plates or their surface areas, or by varying
the dielectric constant of the insulating medium. Thus these devices can be devided
into ’varying plate distance memcapacitors’, ’varying surface area memcapacitors’ and
’varying dielectric constant memcapacitors’.
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Figure 2.8: Variable capacitance with changing plate distance based on: a) MEMS
device (a similar illustration can be found in [5]), b) metal-to-insulator transition (MIT)
material in series to normal dielectric layer, c) filament formation in a memristor, d)
MOS capacitance with variable depletion layer.
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Devices with variable plate distance d can be implemented in various ways and are
shown in Fig. 2.8: MEMS [5, 93]; a metal-to-insulator transition material in series
with a dielectric layer [31]; changing the oxygen vacancy front in a classical memris-
tor [27, 28]; or a simple Metal-Oxide-Semiconductor (MOS) capacitor with a memory
effect [32, 33].
Every classical memristor has a parasitic memcapacitive effect due to the changing
oxygen vacancy front distance [27]. Optimisation of a memristor with a low resistive
effect and large capacitive effect is very difficult because of leakage currents. Generally
for providing a large dynamic range with plate distance variation, one needs either a
very small plate distances, where tunnel currents are dominant and thus degrade power
efficiency [27, 28], or very large plate distances, which results in problems with lateral
scalability and stray coupling to neighboring cells [32].
Changes in surface area have been investigated by other groups using a memristor with
a much smaller area, and a normal capacitor in series with a much larger area [6] (Fig.
2.9a). The memristor, if switched off, acts as a small parasitic capacitance. In this
case, the scalability of the small surface area stray capacitor (memristor) is limited by
lithographic patterning, and since the series capacitor needs to be much larger, the full
potential of lateral scalability cannot be exploited.

v
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Cseries

Rmem Cparasitic

Varying plate surface: Varying dielectric constant:

v

v

Ferroelectric

C

V

Figure 2.9: ’Varying surface memcapacitor’ based on memristor in series to a large
area capacitor and ’Varying dielectric constant memcapacitor’ based on MFM capaci-
tor. Similar illustrations can be found in [6, 7].

Finally, changes in the dielectric constant limit the choice of materials. Materials with
very large dielectric constants are usually perovskites (εr > 1000) and they are gener-
ally not CMOS compatible, which makes their use rather difficult. There is a capacitive
device proposal based on a MFM capacitor with doped HfO2 [7], which falls into the
category of a ’varying dielectric constant memcapacitor’, but the dynamic range is
rather low and overwrite during read-out might be a problem (Fig. 2.9b). Another
implementation used the change in dielectric constant of VO2 at its metal-to-insulator
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transition point [94]. However, the change in dielectric constant is only visible at very
high frequency (THz).

2.4 Landauer Principle and Reversible Computing

In this chapter a short overview on the physical limitations of energy efficient computa-
tion is given. In 1961 Rolf Landauer explained that information and entropy are linked
and that logically irreversible computation is accompanied by an entropy increase [95].
This is also known as Landauer´s principle. In a classical AND gate as shown in Fig.
2.10a), for the zero input state there are three possible input states. Thus it is im-
possible to state from the output state, which input state was applied. Therefore, the
information of one bit is erased and the information loss is accompanied by a minimum
energy converted into heat:

E = kBT · ln 2 (2.4.1)

Where kB is the Boltzmann constant and T the temperature. In order to circumvent
the Landauer limit, reversible computing schemes were suggested by Charles Bennett
in 1973 [96–98]. Special logic operations, like the Toffoli gate or Fredkin gate were de-
veloped and later adopted for quantum computation. Reversible gates have the same
number of inputs as outputs in order to avoid information losses. The Toffoli Gate is
similar to the AND gate, where the third input is flipped, if the first two inputs are 1
(Fig. 2.10b). The first two inputs are directly connected to the outputs and are not
manipulated. With reversible computing the energy consumption can be lowered far
below the Landauer limit.
A possible physical implementation of a reversible computer is the billard ball ma-
chine [99, 100] (Fig. 2.10c): Only if the balls are fed into both inputs, an AND oper-
ation is conducted, otherwise the input billard balls are directed to each output. The
collisions have to be as elastic as possible and friction as low as possible in order to
be as reversible as possible. Generally, physical implementations of reversible comput-
ing are about reducing friction and other non-ideal processes to reach ultra low power
consumption. Another implementation used nanomechanical rods [101]. Quite often
oscillators with reduced damping are used for reversible computing.
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Figure 2.10: a) Irreversibility of the AND gate: It is not possible to conclude from the
output "0", which input was applied. b) Reversibility of the Toffoli gate. c) Physical
implementation of a reversible computer: The billiard ball computer. Ultra low friction
and elastic collisions are assumed. d) Non-adiabatic charging versus adiabatic charging
for a capacitor. The slow charging of the capacitor gives an advantage compared to
the abrupt charging.

Adiabatic circuits are implementations of reversible concepts in CMOS technology
[97, 102–110]. CMOS is mostly about charging other gate capacitances during com-
putation, and this charging energy is dissipated and also known as dynamic power
consumption. In a classical two transistor inverter first the energy is wasted during a
transition from one to zero in the upper NMOS transistor due to the fast transition,
and finally during the transition from zero to one the energy stored on the capacitor
is dissipated on the PMOS. Especially the abrupt charging transitions in CMOS give
rise to a large amount of resistive and thus irreversible losses. On the other hand, in
adiabatic circuits the capacitors are charged slower (Fig. 2.10d) with a voltage ramp
applied to the circuit. Thus a power clock gating is used in adiabatic circuits and the
power clock is able to recover the charges/energy of the capacitors during discharging
by using an energy storage, usually an off-chip inductor. The amount of recovered
energy is dependent on the efficiency of the oscillator and depends, amongst others,
on the quality factor of the inductor. Typical quality factors for inductors are in the
range of a few dozens to hundred [107,109,111].
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Adiabatic circuit design helps to reduce the dynamic power consumption, but on the
other hand side the circuits become slow and large [97]. Due to scaling of CMOS ac-
cording to Moore´s law the subthreshold leakage power has become the most dominant
power loss in advanced CMOS (<65 nm) [112]. Adiabatic circuits are not suited to
solve the subthreshold leakage problem.
The use of adiabatic charging for memcapacitive crossbars will be explained further in
chapter 3.5.
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3 Device Description and Theory

3.1 General Working Principle

In subchapter 2.3.2 several implementations were discussed for realising memcapaci-
tors. In order to solve the problem of limited scalability with ’varying plate distance’,
or ’varying area’ in a (mem)-capacitor, a device design which is based on charge
shielding is proposed in this thesis. The general structure is shown in Fig. 3.1a)
and consists of a top gate electrode, a shielding layer with contacts and a back side
read-out electrode, where each of these layers are separated by two dielectric layers.
The capacitive coupling between the top gate electrode and bottom read-out electrode
is detected during read-out and the coupling depends on the state of the shielding layer.

The lateral scalability is significantly better compared to the previously mentioned
concepts, since the thickness of the layers can be readily optimized, while the on/off
ratio is mainly dependent on the shielding efficiency of the shielding layer. Generally
charge screening depends on the Debye screening length LD [113,114]:

LD =
√
ε0εrkBT

n2e2 (3.1.1)

where kB is the Boltzmann constant, T is the temperature, n is the charge carrier
concentration and e is the elementary charge. The electric field drops exponentially
within the shielding layer and drops to 37% within the screening length LD when the
condition, Ψ<UT , applies, where ψ is the potential in the semiconductor and UT is the
thermal voltage:

UT = kBT

e
(3.1.2)

The Debye screening length is only a linear approximation of the following differential
equation [114]:

d2Ψ
dx2 = − e

ε0εr
·
(
p0 ·

[
exp

(
−Ψ
UT

)
− 1

]
− n0 ·

[
exp

(
Ψ
UT

)
− 1

])
(3.1.3)

where p0 and n0 are the charge carrier concentrations of holes and electrons in thermal
equilibrium, respectively. Therefore, using the Debye screening length 3.1.1, given the
exponential spatial dependence of the field in the material, is only a linear approxima-
tion of the non-linear differential equation 3.1.3. Especially for strong inversion and
accumulation within the shielding layer, the length scales of screening become much
smaller than the Debye length. This non-linearity with respect to the semiconductor
potential leads to either strong shielding or fairly good transmission.
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Figure 3.1: a) General Device structure with gate electrode, memory dielectric, shield-
ing layer, passive dielectric and read-out electrode. The capacitive coupling is indicated
by the blue arrow. b) Device structure with lateral p+n-n+ junction in the shielding
layer. Material from [8]

There are several possibilities on how to adjust the shielding efficiency in a non-volatile
manner: One option is to change the resistivity of the material, which can e.g. be
implemented with a metal-to-insulator transition. Another option is to use a simple
semiconductor and use a memory dielectric in the top dielectric layer. Throughout this
thesis only the latter type of variable capacitance along with a non-volatile memory
effect is investigated (Fig. 3.1b). This can be either a ferroelectric or a charge-trapping
memory. The stored charges (either trapped charges or polarization charge) will drive
the semiconductor potential either to strong inversion/accumulation or depletion and
thus adjust the shielding efficiency. Furthermore, a lateral p+n-n+ junction is used in
the shielding layer, which enables more functionality:
The p+ and n+ regions act as reservoirs for holes and electrons and lead to a sym-
metric device behaviour with respect to negative or positive gate voltages. Symmetry,
especially during writing, is an important feature for neuromorphic devices, because it
leads to higher training accuracies [1]. Moreover, the shielding layer can be depleted or
enhanced with carriers actively by applying voltages to the p+ and n+ regions. This
feature can e.g. be used for deselecting columns in a matrix arrangement, if necessary.
As shown in Fig. 3.2, the single device can be arranged into a crossbar for highly-
parallel MAC operations. In this case the gate electrode is connected to the WL,
where input signals are applied, and the SL is connected to the n+ and p+ regions
in vertical direction to the WL. The read-out electrode functions as the BL, which is
parallel to the SL, and the accumulated charge out of one BL is the calculated result
of accumulated multiplications (MAC) at each crossing point. The multiplication is
conducted between the input signal of the WL and the state of the shielding layer,
which in turn is adjusted by the memory material. The weights are encoded in the
capacitance of each crossing point.
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Writing of each memory cell can be achieved by applying a voltage between the SL
and WL. The voltages can be chosen in such a way that the disturb level is 1/3 of
the non-disturbed memory cell (see chapter 6.5). Furthermore, certain SL can also be
deselected by depletion of the p+n-n+ junction, as mentioned earlier.
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Figure 3.2: a) Crossbar arrangement of devices for highly parallel MAC operations.
The inputs signals are applied to the wordlines and weighted by the shielding layer and
memory material. The accumulated result is read-out at the bitlines. Material from [8]

3.2 TCAD Simulation on Single Devices

With TCAD Simulation the device behaviour can be simulated before fabricating it.
A drift-diffusion simulation of the 90 nm gate length and width device in Fig. 3.3a)
was performed in Synopsys. The obtained CV curves of coupling capacitance between
the gate and the read-out electrode are shown in Fig. 3.3b). In this simulation the top
dielectric layer had no memory effect in order to verify the general capacitive coupling
behaviour. As indicated in chapter 3.1 there is a certain gate voltage region (depletion
region), where electric field transmission is large. Towards higher positive or negative
gate voltages the transmission is low (accumulation and inversion region). This leads
to the observed capacitive coupling window in Fig. 3.3b).
The p+ and n+ junction was applied to different voltages, where VAK is the voltage
difference of the p+ and n+ contact. Depending as to whether the p+sn+ diode
is used in forward or reverse bias, the coupling window range can be made broader
(reverse) or extinguished (forward). The broadening of the curve is proportional to
the applied reverse voltage of VAK , which can be accounted for by the splitting of
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the Fermi potential in quasi Fermi potentials, which is directly related to the applied
voltage VAK . The half peak width of the coupling window is plotted in Fig. 3.3c) with
respect to different VAK and a linear relationship becomes obvious. The reason for
this proportionality can be explained from equation 3.1.3 with the hole and electron
concentrations:

n = ni · exp
(
φn − φi
UT

)
(3.2.1)

p = ni · exp
(
φi − φp
UT

)
(3.2.2)

With φi being the intrinsic Fermi potential and φp the quasi-Fermi potentials of holes
and φn of electrons. The intrinsic charge carrier concentration is described by ni. For
a semiconductor in equilibrium the quasi-Fermi potentials are equal: φp = φn. In case
of a pn-junction the semiconductor is brought out of equilibrium and thus the applied
voltage VAK is related to the quasi-Fermi potentials:

VAK = φn − φp (3.2.3)

Due to the fact, that the applied voltages to the p+ and n+ junction are antisymmetric
one can conclude:

φn = −VAK/2 (3.2.4)

φp = VAK/2 (3.2.5)

These terms can be put back into equation 3.1.3 and the right term rapidly increases,
when the exponential terms start to dominate (accumulation and inversion). That
is when the shielding takes place and the point where the exponential terms start to
dominate is shifted exactly by ±VAK/2. This is how the broadening by approximately
VAK is explained.
The transmitted field through the shielding layer is proportional to the accumulated
charge on the read-out electrode and the charge is shown in Fig. 3.3d) and describes a
sigmoid/tanh behaviour. The saturation comes from the inversion/accumulation. The
curves in Fig. 3.3b) are proportional to the derivatives of the curves in Fig. 3.3d).
Sigmoid transfer functions play an important role in modeling neurons in artificial
neural networks, and furthermore, adjusting their broadness by application of reverse or
forward voltages provides additional functionality. A common practice during training
is the dropout of certain neurons to avoid overfitting [115], which can be implemented
though the forward direction of the diode. Furthermore, the application of the voltage
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VAK can also enable selection and deselection of memory cells, if necessary.
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Figure 3.3: a) Simulated structure and dimensions. Silicon oxide (no memory effect)
was used for the dielectric layers. b) CV curves for the capacitive coupling between
gate electrode and read-out electrode. A voltage VAK was applied to the p+n-n+
junction. c) Half-width broadness of the capacitive window in b) versus applied VAK .
d) Accumulated charge on read-out electrode versus applied gate voltage. Material
from [8]

Along with the CV curves in Fig. 3.3b) the large on/off ratio can also be observed
(up to 1:90). Fig. 3.4a) shows the capacitive swing for different gate length and gate
oxide thicknesses. Generally, longer gate length and thinner gate oxides lead to larger
on/off ratios. The reason for the degraded on/off ratio for shorter gate length is due to
the short channel effect: At the border to the p+n- or n-n+ junction accumulation or
inversion charges get rejected because of the space charge region. Therefore, higher gate
voltages are required to overcome the rejection and less shielding charges are supplied
at the border. The border region is around 5 nm wide and becomes especially relevant
for shorter gate length. Decreasing the equivalent oxide thickness (EOT) increases
the electric field and therefore the shielding charge rejection is reduced. Usually in
transistor designs Halo-implants are used to reduce short-channel effects [114].
Including memory charges in the top gate dielectric leads to a shifting of the CV curves,
as shown in Fig. 3.4b). Typical memory window (MW) for charge trapping memories
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are in the range of 2.5 V to 3 V. For ferroelectric memories the MW depends on the
thickness and coercive field, but is usually in the range of 1 V to 2 V for ferroelectric
HfO2 [116]. Recently, a memory window of 2.5 V was reported for thick doped hafnium
oxide films [117]. Thus the memory window in Fig. 3.4b) was chosen to be 3 V.
The CV curves can be shifted in a gradual manner and a read-out sinusoidal signal is
indicated between 1 V and 2 V gate voltage and thus covers the blue shifted CV curve.
Fig. 3.4c) shows the accumulated charge on the read-out electrode for a half-period
of the shown read-out sinusoidal signal. The far left shifted curves (orange-red) are
mostly used to turn the device off, while the blue coupling window gives the largest
read-out charge. Fig. 3.4d) shows the total accumulated charge over a half-period for
different coupling window shifts Vshift.

a) this device

+ -

b)
3V MW

c)

Vshift=1.5 V

Vshift=-1.5 V

d)

Figure 3.4: a) Capacitive swing for different gate length and equivalent gate oxide
thicknesses (EOT). The inset shows the accumulated electron concentration and the
charge rejection due to the short channel effect. b) CV curve shifting due to memory
charges and c) The corresponding accumulated charge on the read-out electrode over
a half period of the sinusoidal signal in b. d) Total accumulated charge over a half
period for different CV curve shift voltages Vshift. Material from [8]
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3.3 Lateral Scalability and Read Signal Strength

With regard to lateral scalability it is necessary to distinguish three aspects:

1) The scalability of the memory technology/material itself with regard to how many
levels can be written.
2) The sensitivity of the sense amplifier.
3) The noise level of a single device during read-out.

Especially the last two aspects can be quite different for capacitive devices compared
to common resistive technologies. It is well-known from other capactive memory tech-
nologies (like DRAM, ferroelectric capacitors) that three dimensional capacitors are
necessary at a certain technology node due to low read-out signals [118, 119]. In the
case of neuromorphic applications, one needs to consider that many memory cells are
read-out at the same time and only the accumulated result is relevant for further pro-
cessing, which can be much larger than the signal of single memory cells in conventional
memory technology. For this reason, resistive memories for neuromorphic application
are made more resistive [1, 11, 12]. Quite common resolutions for input, weight and
output signals for neural networks are in the range of 4-8 bit (16-256 levels) [11, 60].
This analog-like resolution has significant influence on scalability and thus needs to be
considered.

1) With respect to the first aspect, differences of a charge trapping memory and a
ferroelectric memory were already explained in chapter 2.3.1. For the charge trapping
memory a scalability down to 40 nm with up to 31 levels was already practically proven
(SONOS memory) [68]. The scalability of a ferroelectric memory for analog storage is
still unclear. On the one side, the grain size of the material can limit the multilevel
switching (abrupt switching below 500 nm for FeFETs [81]), on the other side, nucle-
ation events should lead to more levels than grain switching events. These nucleation
events were only measured indirectly in ferroelectric field effect transistors (FeFETs) [4],
but a one dimensional current path between source and drain is necessary there. For
a two dimensional device, like a tunnel junction [85], or the device proposed here, the
situation might be different.

2) Capacitive measurement techniques are quite common in the context of DNA sens-
ing or chip interconnect measurement [9, 120–126]. Techniques for ultralow capaci-
tance measurements include CBCM [9,121–125], capacitance-to-frequency (C2F) con-
version [127] and lock-in detection [128], where lock-in detection gives resolutions down
to 65 zF. Lock-in detection will most likely not be suitable as a sense amplifier, since
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it occupies a relatively large chip area. CBCM resolutions down to <10 aF have been
shown with a compact and easy to implement detection scheme. An example circuit
for CBCM is shown in Fig. 3.5: The circuit consists of measurement capacitor CS and
a reference capacitor CR, which are charged and discharged by two non-overlapping
clock signals Φ1 and Φ2. Charging happens over the transistors M4 and M3, discharg-
ing over the transistors M2 and M1. Current mirrors are used to subtract the charging
currents of each branch (M5+M7,M8+M6 and M10+M9). The subtracted current
is finally integrated over another capacitor Cint, whose voltage is proportional to the
measurement capacitor CS.
Current mirrors and integration capacitors are also commonly used in sense ampli-
fiers for classical memories [129]. Operational amplifiers with a feedback capacitor are
sometimes used in the context of neuromorphic computing [130]. Since both imple-
mentations had similar sensitivities and the sensitivity was also comparable to CBCM
circuits, the following calculation was done with a current mirror sense amplifier [129]:

CBCM core

CBCM core + current mirrors
VDD

GND

CR CS

M8
M6 M5 M7

M10

M9

M4 M3

M2 M1

Cint

Integrator

φ1 φ2

Vout

iR iS
iS

iR

iX

Figure 3.5: CBCM detection circuit with measurement capacitor CS and reference
capacitor CR (a similar illustration can be found in [9]).

The charge integrating amplifier [129] can achieve up to 50 mV output voltage for 1µA
input current, within 3 ns or a calculated charge sensitivity of 16.67 mV/fC. Assuming
100 distinct values of the digitized output value (7 Bit) a voltage of ± 1.5 V must
be achieved on the sense amplifier output (30 mV steps by Schmitt-Trigger or analog
digital converter (ADC) [130]). The maximum/minimum output voltage corresponds
according to the sensitivity to a charge of ± 90 fC. As mentioned earlier, in neuromor-
phic systems many memory cells are read-out at the same time, thus contributing to
the charge of the sense amplifier. Usually array sizes for fully connected layers are in
the range of a few thousand, for convolutional layers they can be smaller (in the range
of 100). Thus for now it is assumed that 100 devices are read-out at the same time and
the maximum charge of each of these memory cells is for the 90 nm devices 6.32 aC
(see Fig. 3.4d). So the total charge over one half-period is for 100 devices 0.632 fC.
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So in total the following number of half-periods in the input signal are necessary to
achieve the desired 90 fC:

Nper = 90 fC
0.632 fC = 142 (3.3.1)

This number fits well into the 7-8 bit range of the input signal. Thus similarly to re-
sistive neuromorphic systems also a pulse length or pulse number coding for the input
value can be used to avoid non-linear multiplications [1] and achieve large enough out-
put signals. The used switched capacitor approach for integrating over many periods
is explained in chapter 5.2.

3) Regarding the noise immunity, one has to consider kTC noise [131] in the case
of capacitive devices and the effective noise voltage vn is:

vn =
√
kBT

C
(3.3.2)

For the 6.65 aF capacitance from Fig. 3.4b) one obtains an effective noise voltage
of 25 mV, which is 14 times less than the effective read-out voltage (0.35 V) in Fig.
3.4b). Furthermore, one has to consider that the noise level decreases with the number
of repetitive measurements by 1√

Nper
, where Nper is the number of repetitive mea-

surements, or in this context the number of periods (142), which will result in a total
noise level of 2.2 mV in this context, or 169 times less than the read-out amplitude. The
noise level defines the lower limit for the resolution and it fits well into the 7-8 bit range.

a) b)

Figure 3.6: a) Simulated structure of the 45 nm device with HfO2 as a high-k dielectric
and corresponding CV curve in b). Material from [8]

In total, a capacitance per memory cell of 6.65 aF, like in 3.4b) seems sufficient to
achieve good read-out performance for neuromorphic systems. Smaller capacitances
may lead to problems, which means that the limit for scalability is at 90 nm gate
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length when using conventional dielectric layers (SiO2). For scaling to 45 nm the SiO2

needs to be replaced with a high-k dielectric, like HfO2. This also includes the bottom
dielectric layer, because read-out is also performed over this dielectric layer. The top
high-k dielectric leads to smaller EOT and thus a reduced short channel effect (Fig.
3.4a). Fig. 3.6a) shows the simulated 45 nm device and the corresponding CV curve
(Fig. 3.6b). The on/off ratio is 1:60 and slightly worse than the 90 nm device and
the maximum capacitance is comparable to the 90 nm device, which ensures good de-
tectability.
This result reveals that a scalability down to 45 nm is feasible. The further discussion
in the next subchapters continues for the 90 nm device.

3.4 Theoretical Limitation of Energy Efficiency

Since the noise voltage defines the lowest possible resolution limit, and the energy
consumed by the resistive or capacitive device during read-out is defined by the applied
total voltage, one can make conclusions for the energy efficiency.
For resistive devices the thermal noise current is:

In,res =
√

4kBT∆f
R

(3.4.1)

The total measured current (Imeas,res) consists of the noise (In,res) and read-out current
(Is,eff ):

Imeas,res = In,res + Is,eff (3.4.2)

A measurement procedure is very similar to Nyquist–Shannon sampling [132]. A mea-
surement and thus integration of the current from 3.4.2 leads to the following charge
(Qo):

Qo =
∫ t+Tmeas
t Imeas,resdt =

∫
Imeas,res · rect

(
t

Tmeas

)
dt = Imeas,res ∗ rect

(
t

Tmeas

)
(3.4.3)

As shown in the above equation the integration can be also conducted with a convo-
lution with a rect pulse (Fig. 3.7a). The frequency spectrum of the above is obtained
by Fourier transform:

F(Qo) = F(Imeas,res) · sinc
(

t

Tmeas

)
(3.4.4)

Thus the frequency spectrum is a simple multiplication of the measured current spec-
trum with a sinc function, which is plotted in Fig. 3.7b). As can be seen, the spectrum
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of Imeas,res is band limited by approximately the zero points of the sinc function:

∆f = 1
Tmeas

(3.4.5)

Inserting equation 3.4.5 into equation 3.4.1 gives:

In,res =
√

4kBT
RTmeas

(3.4.6)

In order to achieve a certain number of levels (B bits), the maximum signal needs to
have at least the following effective value:

Is,eff = In,res · 2B (3.4.7)

Using equation 3.4.7 and 3.4.6 one can conclude for the energy needed for a single
MAC operation:

E = R · I2
s,eff · Tmeas = 4kBT · 22B (3.4.8)

This equation takes the resisitive power consumption P = RI2 into account. The max-
imum energy efficiency η can be calculated by the inverse, and considering that one
MAC operation consists out of two operations: one multiplication and one addition.
It is 1842 TOPS/W for 8 bit and 29 472 TOPS/W for 6 bit.

a) b) ∆𝑓 =
1

𝑇𝑚𝑒𝑎𝑠

Figure 3.7: a) Rect pulse for the measurement current integration b) Fourier-
transform of the rect pulse in a) with the indicated band limitation.

Many resistive devices have shot-noise, like tunnel junctions and MOSFETs in sub-
threshold regime, which leads to the following noise current:

In,shot =
√

2q · Is,eff ·∆f (3.4.9)

This leads with a similar calculation as for the thermal noise to the following energy
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per MAC:

E = 2q · Us,eff · 22B (3.4.10)

Where Us,eff is the operating voltage and assuming Us,eff = 0.35 V one obtains
269.4 TOPS/W for 8 bit or 4310 TOPS/W for 6 bit. So the energy efficiency is signifi-
cantly lower with shot noise compared to thermal noise.

On the other hand, for capacitive devices with the kTC noise (equation 3.3.2) one
obtains for the necessary signal voltage:

Vs,eff = 2B ·
√
kBT

C
(3.4.11)

and for the energy per MAC:

E = 1
2CV

2
s,eff = 1

2 · kBT · 2
2B (3.4.12)

So for capacitive devices the value is 8 times lower compared to resistive devices
with thermal noise (equation 3.4.8). Capacitive devices are more immune to noise,
due to the filtering effect of capacitors. It results in 14 736 TOPS/W for 8 bit and
235 774 TOPS/W for 6 bit. Most of the energy stored on the capacitor can be recov-
ered as explained in the next chapter, which in principle results in even higher energy
efficiencies.

3.5 Spice Simulation and Estimation of Energy Efficiency

In order to simulate a full crossbar array, a Spice model of the proposed device was
created and simulated in LTspice. The model is shown in Fig. 3.8a) and also includes
parasitic capacitances as well as leakage and supply resistors. For the gate leakage and
buried oxide leakage resistors a surface current of 1× 10−8 A/cm2 at a voltage of 2 V
was assumed [133]. The model also includes parasitic capacitances of the BL (Cbox,par
and Cdepl,par). The non-linear capacitances Cn+ and Cp+ contain models for the inver-
sion and accumulation capacitances, which are derived from equation 3.1.3. As can be
seen from Fig. 3.8b) the gate capacitance and read-out electrode capacitance fits well
with the TCAD simulation. Fig. 3.8c) shows the coupling capacitance between gate
and read-out electrode in comparison to Synopsys.
Each of these single device models was arranged in a crossbar vector along the SL/BL,
where further parasitic resistors (silicide linesRT i2Si) and capacitors (Cbox,par) are added
(Fig. 3.9a). The parasitic elements of the wordline are negligible compared to the
shielding line and bitline, due to the much lower resistivity of copper interconnects
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and the dominating gate oxide capacitance in the time delay and energy consumption.
The critical path regarding time delay and resistive losses is along the silicide lines
and the highly n-doped BL. The thickness of the silicide line was set to 28 nm and
the resistivity to 14µΩcm [134]. The bitline resistivity was assumed to be 100µΩcm,
corresponding to highly n-doped silicon, and the thickness to be 90 nm.

G

n+ p+

R

Cox

Cbox

Csi

Rleak

Cox,par

Cbox,par

Cn+ Cp+

Cdepl,par

Cn+: non-linear accumulation

Cp+: non-linear inversion

Cox , Cbox: Gate-oxide/BOX cap.
Cox,par , Cbox,par: parasitic oxide cap.

Cdepl,par: parasitic depletion cap.

Rleak: leakage resistors

a)

b) c)

Figure 3.8: a) Spice circuit model of single device with parasitic capacitors and
resistors. b) Gate oxide capacitance and coupling capacitance of spice simulation in
comparison to Synopsys simulation. c) Coupling capacitance between gate and read-
out electrode of spice simulation in comparison to Synopsys simulation. Material from
[8]

For now, simulations in extreme cases are shown, which means that all WL are activated
and all memory cells are in an erased or written state. These extreme cases will give
an upper limit for time delay and a lower limit for energy efficiency for reading or
inference. The energetically worst case scenario is that all WLs are activated at once
and all weights are zero with a resulting shielding effect, which in turn would lead
to charging in the top gate oxide. Fig. 3.9b) shows the accumulated charge on the
read-out electrode over a half-period of 15 ns on the BL for the case when all cells are
in a written state. The number of cells along the BL was varied and for the very long
BL (2500 cells) the accumulated charge is lower, due to the fact that the resistivity of
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the n+-well BL is too high to supply sufficient charge.

a)

RTi2Si

RTi2Si
RTi2Si

RBL

RTi2Si

Cbox,par

WL

WL

RTi2Si: Ti2Si resistor

RBL: n+ BL resistor

Cbox,par: parasitic oxide cap.

b)

c) d)

Figure 3.9: a) Arrangement of spice model in an array along the BL/SL with further
parasitic elements. b) Accumulated charge on the BL over a half-period of 15 ns for
different array sizes. A written state is programmed into the memory cells in this case.
c) Accumulated charge on the BL over a half-period of 15 ns for different array sizes.
An erased state is programmed into the memory cells in this case. d) Comparison of
written and erased memory cells with regards to the total accumulated charge on the
BL. Material from [8]

The charge gets lost in the parasitic capacitances. For very long BL the time delay is
thus longer than 15 ns. Similarly, for the case when all memory cells are in an erased
state (Fig. 3.9c), there is a significant overshoot of the accumulated charge on the
BL, which is the result of not sufficient shielding charge supplied by the silicide lines.
Fig. 3.9d) shows the total accumulated charge over a half-period for different period
length Tper and number of memory cells. The on/off ratio between the erased and
written state degrades for more memory cells (longer BL) and shorter Tper. From this
graph one can deduce that a minimum Tper is necessary to achieve sufficient supply of
charges. For 1000 cells in a row a period time of Tper = 30 ns is necessary, for 2500 cells
the necessary time increases to Tper = 200 ns and for smaller arrays the time can be
smaller. From the time delay (including the number of periods: Nper = 142) the areal
efficiency Aη can be calculated with an area of 8F 2 for each memory cell (one weight
consists of two memory cells and one MAC out of two operations – multiplication and
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addition):

Aη = 2
2 · 8F 2 · Tper ·Nper

(3.5.1)

The resulting areal efficiency is summarized in Tab. 3 for different array sizes.
The Spice simulation also gives results on the energy consumption of the crossbar
during read-out (inference), and since the circuit consists of capacitors and resistors,
one needs to distinguish between complex, active and reactive power or energy. The
amount of active energy Wp per period can be calculated by the applied voltage to the
WL and the total current flow as follows:

Wp =
∫ t+Tper

t
itot(t) · vWL(t)dt (3.5.2)

The active energy per memory cell is shown in Fig. 3.10a) and increases for more
memory cells and shorter periodic time Tper. This increase is in direct correlation to
the decreased on/off ratio (Fig. 3.9d). The amount of complex energy Ws is calculated
from the effective currents and voltages:

Ws =
√∫ t+Tper

t
itot(t)2dt ·

∫ t+Tper

t
vWL(t)2dt (3.5.3)

The reactive energyWr is finally obtained by the active and amount of complex energy:

Wr =
√
W 2
s −W 2

p (3.5.4)

Fig. 3.10b) shows the reactive energy per memory cell for different array sizes and
periodic times, and is approximately independent of these parameters. There is a
difference between the written and erased state, since in an erased state the larger gate
capacitance needs to be charged. The amount of reactive energy can also be estimated
from the gate capacitance (Fig. 3.8b) directly. The current for an applied effective
voltage of Uac = 0.5 V/

√
(2) = 0.35 V and gate capacitance of Cg = 44.8 aF (Fig. 3.8)

is calculated as follows:

Iac = Uac · 2πf · Cg (3.5.5)

From this current one can deduce the reactive energy per memory cell:

Wr = IacUac · Tper = U2
ac · 2π · Cg = 35.19 aJ (3.5.6)

This value is quite close to the value obtained by the simulation (3.10b). For the energy
per MAC operation the number of periods Nper needs to be included and also the fact
that each weight composes out of two memory cells (differential weight):
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EMAC = 2Ws ·Nper

Ncells

(3.5.7)

The energy efficiency η in TOPS/W can be calculated by considering that each MAC
operation consists of two operations (one multiplication and one addition):

η = 2
EMAC

· 10−12OP/TOP (3.5.8)

a) b)

c) d)

Figure 3.10: a) Active energy per memory cell Wa/Ncells and b) reactive energy per
memory cell Wq/Ncells for different array length and Tper. c) Energy efficiency without
recovery and d) energy efficiency with energy recovery, assuming q = 20. (The legend
from a) is valid for all plots) Material from [8]

The energy efficiency η is plotted in Fig. 3.10c) and is 198.5 TOPS/W for the erased
state and 400.3 TOPS/W for the written state. The efficiency stays relatively constant
since most of the complex energy is reactive and it is relatively independent on the
parameters.

In chapter 2.4 the concept of reversible computing [96, 97] and adiabatic switching
[103–110] was already introduced. Since capacitances are also charged and discharged
in this concept, a lower energy consumption can in principle be achieved by using
charge recovery techniques. The adiabatic charging/discharging would reduce the re-
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active power component of the matrix. As already noted in previous publications, a
memcapacitor is, if ideal conditions are supposed, a powerless device [24].
Regarding scalability, the proposed device does not have a subthreshold leakage power,
so even for scaled versions of the device (when using high-k dielectrics) the adiabatic
charging has an advantage, contrary to CMOS realizations of adiabetic circuits. Fur-
thermore, the speed is not as that important compared to digital electronics, making
the adiabatic charging for neuromorphic applications more applicable.
However, it is necessary to consider that the AC power source, which usually uses
inductances as an energy storage, cannot recover the energy completely. The induc-
tances have limited quality factors (q factor) in the order of some dozens to hundreds.
In common adiabatic realizations the energy recovery of supply clock generators is of
the order of 95% for harmonic signals [107, 109, 111], which means the active power is
q = 20 times lower than the reactive power.
Using this number for the quality factor we can conclude for the energy per MAC
(again two memory cells per weight):

EMAC = 2 · Nper

Ncells

·
(
Wr

q
+Wp

)
(3.5.9)

The energy recovery of the AC power source depends on its quality factor q and dictates
how much of the reactive power needs to be supplied in order to maintain the oscilla-
tion. The amount of active energy in the oscillator is the reactive energy divided by the
quality factor (equation 3.5.9) and furthermore, the active part of the crossbar array
Wp needs to be added (equation 3.5.9). Fig. 3.10d) shows the energy efficiency with
energy recovery (ηrec), assuming a quality factor of q = 20). For shorter period length
and longer bitlines the ηrec decreases, due to larger resistive losses, which cannot be
recovered. For 1000 cells and Tper = 30 ns a total energy efficiency of 3452.6 TOPS/W
for the erased state and 7468.1 TOPS/W for the written state can be achieved with
energy recovery. Tab. 3 also includes the energy efficiencies for different array sizes in
the erased state, which is the worst case scenario.
The simulated and calculated energy efficiency is amongst the highest reported so far.
For resistive systems the highest reported energy efficiencies for 6-8 Bit resolution is
around 100 TOPS/W [68, 85].
So far only the read-out energy, which is relevant for inference tasks, has been inves-
tigated. For neural network training read-out and writing is important, thus also the
write energy needs to be considered for non-inference tasks. The write energy depends
on the underlying memory principle and is very low for ferroelectric memories ( fJ
regime) and close to biological values. On the other hand, charge trap memories have
a much higher write energy due to the voltage-time dilemma.
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Array size Period Tper
[tot. delay (Nper = 142)]

Aη (TOPS/mm2) Wr(fJ/cell)*
[Wp(fJ/cell)]*

ηrec(TOPS/W )*
[η(TOPS/W )]*

100x100 1 ns
[142 ns]

108.7 TOPS/mm2 5 fJ/cell
[0.015 fJ/cell]

3782.2 TOPS/W
[199.51 TOPS/W]

500x500 15 ns
[2.13µs]

7.25 TOPS/mm2 5 fJ/cell
[0.022 fJ/cell]

3676.8 TOPS/W
[199.19 TOPS/W]]

1000x1000 30 ns
[4.25µs]

3.62 TOPS/mm2 5 fJ/cell
[0.04 fJ/cell]

3452.6 TOPS/W
[198.54 TOPS/W]

2500x2500 200 ns
[28.4µs]

0.54 TOPS/mm2 5 fJ/cell
[0.039 fJ/cell]

3461.7 TOPS/W
[198.59 TOPS/W]

Table 3: Summary of time delay, areal efficiency and active energy/reactive energy
per cell. Note that these values include Nper = 142. From the active and reactive
energy the energy efficiency (ηrec; η) is deduced.
*all cells are erased (worst case scenario), 95% energy efficiency of power clock source (q = 20)

3.6 MNIST Simulation

a) b)

Figure 3.11: a) Map of implemented weights and b) applied images of handwritten
numbers. Material from [8]

The energy efficiency in the last subchapter was simulated for the worst case scenario,
when all WL are activated and all memory cells were in the erased or written state.
This is not a realistic scenario, since e.g. in image recognition tasks the input feature
map and the weight values contain patterns. Thus sparsity has to be included. For this
reason a simple one-layer perceptron of a Modified National Institute of Standards and
Technology (MNIST) database was simulated. The trained weights (Fig. 3.11a) were
implemented on the arrays and the pixels of the handwritten numbers 0-9 (Fig. 3.11b)
were applied to the WL. The obtained output activation for the numbers 0,2 and 4 is
comparable to the directly calculated ones (Fig. 3.12a-c), showing sufficient precision
of the device. In this case an average energy efficiency of 29 600 TOPS/W is achieved
with charge recovery. Without recovery, the efficiency amounts to 1702 TOPS/W for
MNIST.
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a) b)

c)

Figure 3.12: Obtained output activation compared to the calculated activation for
a) the number 0, b) the number 2 and c) the number 4. Material from [8]

3.7 Oxide Devices

Growing the device stack (Metal-Dielectric-Semiconductor-Dielectric-Metal structure)
fully out of oxides has several advantages: There is no interface oxide between semi-
conductor and ferroelectric material, when using ferroelectric memories, thus the en-
durance and ferroelectric behaviour might be better. Moreover, the devices can be
grown at lower temperature, thus enabling back-end-of-line integration. Another ad-
vantage is the easier 3D integration, since several crossbar structures can be grown on
top of each other.
As an oxide semiconductor material several oxides are possible, e.g. SrTiO3,TiO2 or
Indium-Gallium-Zinc-Oxide (IGZO).
One disadvantage is that in most oxide semiconductors there is no possibility to achieve
p- and n-doping, thus the device must be implemented without lateral pin-junction.
This has several implications, amongst others, there is no possibility to modulate the
shielding layer with a voltage VAK . The device might behave more non-symmetric
since only one carrier type (usually electrons) can be injected for shielding. Especially
during writing with a negative voltage (assumption n-doped semiconductor) there are
only depletion charges in the shielding layer (Fig. 3.13a). Once the shielding layer is
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completely depleted no further charge can be supplied (Fig. 3.13b). This problem can
solved by using back-gating with a positive voltage from the read-out electrode (Fig.
3.13c).

a)

Shielding 
layer

-
b)

Fully 
depleted

- -

No field 
increase!

c)

Shielding 
layer

- -

+

Figure 3.13: a) Depletion of n-doped semiconductor during application of a negative
gate voltage. b) Fully depleted semiconductor layer, thus no further switching field
increase. c) Use of positive back-gate voltage from read-out electrode during writing.
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4 Fabrication and Process Development

The fabrication of the capacitive device described in the last chapter can be executed
by using SOI wafers [135–140]. These wafers have a single crystalline silicon layer
(device layer) on top of an insulating silicon oxide layer (buried oxide). Throughout
the next subchapters the steps for the process development are introduced until the
fabrication of a full crossbar arrangement of the capacitive devices is explained.
During the first stage of the investigation multiple problems were encountered with
leakage currents and pin holes in the buried oxide, which were mainly solved by using
a different doping method and etching of islands on the device layer of the SOI wafer.
The improvement will be explained in chapter 4.1. These first devices had a normal
dielectric layer instead of a memory layer and were thus used to investigate fundamen-
tal capacitive coupling properties.
Thereupon experiments were conducted on the deposition and improvement of the
memory stack on normal silicon wafers by using atomic layer deposition (ALD) of
hafnium zirconium oxide (chapter 4.2). The main challenge was the improvement of
interface oxide to achieve either a good charge trapping memory or a ferroelectric mem-
ory with a minimum amount of charge trapping.
The upcoming chapter 4.3 includes the improvement of the crossbar fabrication. These
include a trench refilling with SU-8 resist and second metallisation layer compared to
the single devices of the prior chapters. Trenches were etched in order to seperate the
read-out electrodes/bitlines of the crossbar.
The subchapter 4.3.5 summarizes the full fabrication procedure for crossbars with its
corresponding mask layers.
The last chapter 4.4 includes some fabrication trials for oxide devices with pulsed laser
deposition (PLD).

4.1 First Work on SOI Wafer and Single Device Fabrication

The first fabrication trials on SOI wafer were conducted with a solid diffusion source
[141,142] for doping because there was no access to ion implantation and it is an easy
method to implement. For p-doping a boron oxide slice was put in close proximity to
the wafer in a furnace process. The boron oxide is deposited during heating on the
wafer and the boron oxide is reduced with the following reaction:

2B2O3 + 3Si −−→ B+ SiO2

Similarly the phosphor doping was achieved by using a spin-on-dopant [143] from Hon-
eywell, which contained phosphorous oxide. The doping was done through a hardmask
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(CVD silicon dioxide).
The biggest issue was the large leakage current through the buried oxide layer, which
was mainly attributed to the doping method used. The etching of silicon islands on
the device layer prior to doping tests improved device yield. Generally, pin-holes in
the buried oxide layer are a common cause of failure in SOI based devices, and the
probability of a pin-hole within a device can be reduced by the silicon surface reduction
per device, which is achieved by island etching. Secondly, it was investigated if HF
etching performed subsequent to silicon island etching had any influence on leakage
current characteristics. The outcome of these investigations was that HF etching sig-
nificantly degrades the leakage properties, most likely as a result of defects caused by
underetching of the buried oxide layer below the silicon island (Fig. 4.1). Long HF
etching times were used after the boron and phosphorous doping with the solid source
diffusion method in order to remove rests from the source material on the wafer. It
would appear to be a better option to perform the doping and removal of source mate-
rial before the island etching, which in turn should be done at the end of the process.

a) b)

c)

Handle

Device Defects
BOX

Figure 4.1: a) IV curves between device and handle wafer for different HF etching
times b) Maximum leakage current through buried oxide layer versus HF etching time
c) Illustration of the under-etching with HF of the buried oxide layer.

In spite of this procedure, leakage properties of the fabricated devices were still unsat-
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isfactory. One of the main causes was that during the diffusion process of the dopants
oxygen is introduced to ease the removal the solid source rests on the wafer. This leads
to significant oxidation of device silicon and subsequent removal of the same during
HF etching. As a consequence, tests without oxygen introduction were tried in order
to reduce silicon consumption during diffusion.
For the purpose of testing the pin diode fabrication on the SOI wafer, a stepwise ap-
proach was followed (Fig. 4.2a). In the first step, the islands were etched and tested
after p-doping with the first piece. In the next step, the second piece was tested with
p- and n-doping. In the final step, the third piece was tested with the full fabrication
scheme, including gate-oxidation. Each piece was tested regarding buried oxide leakage
current. After the p-doping, 44.6 % had satisfying leakage properties and the undoped
island had a yield of 69.4 %. After the p-doping, already holes became visible of approx-
imately 1µm in size, which are 100-200 nm deep (Fig. 4.2b)). Most likely the silicon
was reduced totally on these parts during the reaction with the boron oxide. After
the n-doping, the p-doped regions reacted with the chemical vapor deposition (CVD)
oxide and could not be removed, even with long HF etching times. Furthermore, un-
deretching of the prior mentioned holes became visible (Fig 4.2d). In the end, the yield
of the pin junction islands was only 11.2 % and not sufficient to proceed (Fig. 4.2e).
The reaction between the dopand and the long HF etching times to remove the dopand
source made this method unsuitable for SOI wafers.
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a)

1) P doping

2) P and N doping

3) P, N, Gateoxidation, Metal

b)
Holes (~1 µm) diameter

100-
200 
nm

c)

Undoped: 62 devices; 43 working  69.4 %
P doped: 92 devices; 41 working  44.6 %

d)

e)

 PIN: 98 devices; 11 working  11.2 % 
 N: 16 devices; 13 working  81.3 %                 
 Undoped: 48 devices; 19 working  39.6 %

Figure 4.2: a) Stepwise processing of SOI Wafer piece. b) Holes after p-doping. c)
Island yield after p-doping (first piece). d) Rests on p-doped regions after n-doping
and underetching of holes. e) Island yield after p- and n- doping.

Ion implantation is the state-of-the-art doping method [10, 144, 145] and applied for
fabricating the capacitive devices after tests with solid source diffusion. Due to the
thin device layer, the energy of ion implantation was chosen low enough in order to
protect the buried oxide. The dose was chosen in such a way that high doping con-
centrations could be achieved, whilst amorphisation of the device layer is kept at an
acceptable level [146, 147]. As can be seen from Fig. 4.3, the parameters for the BF2
implantation were: E=45 keV (equivalent to 10 keV B) and D=2× 1014 1/cm2. For
the phosphorous implantation the parameters were: E=25 keV and D=2× 1014 1/cm2.
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Hence the maximum doping concentration is around 2× 1019 1/cm3 [10] and the amor-
phous layer thickness is 50 nm [146].

a) b)

Figure 4.3: a) Boron concentration with 10 keV (equivalent to 45 keV BF2) and
two different Doses [10]. b) Phosphorous concentration with 25 keV and two different
doses [10].

a) b)

Figure 4.4: a) Island yield after pin diode fabrication. b) Measured CV coupling with
lock-amplification.

Nearly 100 % yield was achieved with ion implantation and for the first time the capac-
itive coupling window became visible (Fig. 4.4). In later fabrication schemes a higher
implantation dose was used (2× 1015 1/cm2) in order to achieve better electron and
hole injection in the pin-Diode. In this case the thickness of the remaining crystalline
layer 10 nm-20 nm was sufficiently large to enable recrystallisation during activation.
Furthermore a metallic supply line on the n+ and p+ fingers was used to ensure suf-
ficient charge shielding. The Gate electrode was winded around n+ and p+ fingers to
increase the capacitance of the device (see masklayout in Fig. 4.5).
The process flow for single device fabrication is shown in Fig. 4.5. Depending on, if
the ferroelectric memory material is integrated or devices with normal silicon dioxide
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gate oxide are fabricated the process flow divides into two path. The different mask
layers for each processing step are also shown in Appendix A.1.

90 nm

190 nm

3.5 µm

0) SOI wafer with buried n+ contact 1) Ion implantation of boron and phosphorous

2a) Thermal gate oxidation 2b) Interface oxidation with HZO/TiN deposition

n-

n+

SiO2

Device

3a) Island etching 3b) TiN etching

4b) Island etching4a) Contact hole etching

5b) Contact hole etching5a) Contact hole etching

6b) Contact hole etching

G

p+

n+

Figure 4.5: Fabrication flow for single devices with the two branches a and b for the
thermal oxide and the memory dielectric with HZO/TiN. In the bottom left the mask
layout of a device with gate contact winded around n+ and p+ regions is shown.
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4.2 Deposition Experiments of Hafnium Zirconium Oxide on
Silicon

In order to optimize the properties of the memory material (ferroelectric HZO [148])
MFM and metal-ferroelectric-interfaceoxide-silicon (MFOS) capacitors were fabricated
and measured. The ferroelectric Hf0.5Zr0.5O2 (HZO) film was deposited with ALD by
Namlab gGmbH and was already an optimized process [87, 148]. TiN was used as a
metal electrode as it promotes the orthorombic phase of the film [87] during the 500 °C
N2 anneal (20 s). The precursors HyALD and ZyALD were used during ALD deposi-
tion and ozon was used as an oxygen source. The deposition temperature was 280 °C.
The HZO thickness was 15 nm. The TiN electrode was deposited by sputtering and
had a thickness of 12 nm.
As can be seen from Fig. 4.6 sufficient hystersis loops were obtained with MFM ca-
pacitors and thus showing ferroelectric behaviour. The remanent polarization with
12µC/cm2 is consistent with literature values [148].

a) b)

Figure 4.6: a) P-Vg Hysteresis loop of a MFM capacitor and b) corresponding CV
curve.

The optimization of the interface oxide for the fabrication of MFOS capacitors is more
complicated. Various interface oxide thicknesses have to be tested. Usally the interface
oxide is grown by a mixture of ammoniumydroxid and hydrogenperoxide (also known as
SC1 solution) and subsequently nitridated by an ammonia anneal [149]. The obtained
SiON has a higher dielectric constant than normal SiO2 and enables a lower electric
field drop during ferroelectric switching on the interface oxide. This in turn improves
the charge trapping characteristics of the obtained stack. Charge trapping leads to
a CV curve shifting in the opposite direction compared to ferroelectric switching and
thus both effects are contrary [150–152]. With the capabilities during this thesis there
was no option for nitridation and thus pure SC1 or thermal SiO2 has to be used.
Different SC1 concentrations at various temperatures and treatment times [153, 154]
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were first investigated by ellipsometry. After HF etching of the 1 inch test wafers, the
DI water rolled off, but a thickness of 0.7 nm was measured. Fig. 4.7a) shows the
thickness of a H2O:NH4OH:H2O2 (5:1:1) solution for different temperature. The equi-
librium thickness stays around 1 nm, no matter how long the treatment was and at
which temperature. This result reveals that the equilibrium is reached very fast. For
a 40:2:1 solution the situation is not different, but the thickness is higher (Fig. 4.7b).
Tests at various concentration levels (80:1:1, 340:1:1, 1280:1:1 and 10000:1:1) for 30 s
show (Fig. 4.7c)) that a good control over the oxide thickness can be achieved for ultra
high diluted SC1 (1280:1:1 and 10000:1:1). Therefore, Fig. 4.7d) shows the thickness
for different times with 10000:1:1 solution.

a) b)

c) d)

Figure 4.7: a) Ellipsometrically measured interface oxide thicknesses for a 5:1:1 SC1
solution at different temperatures. b) Ellipsometrically measured interface oxide thick-
nesses for a 40:2:1 SC1 solution at 36 °C. c) Interface oxide thickness for different
diluted SC1 solutions at room temperature and 30 s. d) Interface oxide thickness for
10000:1:1 SC1 solution at room temperature.

MFOS capacitances were built for the solutions 5:1:1, 40:2:1 and 10000:1:1. Further-
more thermal oxides were tested: First a SC1 in 5:1:1 solution at 53 °C was applied,
and the oxidation was done with 600 °C for 30 min, 700 °C for 30 min and 750 °C for
10 min, which results in the thicknesses 1.63 nm, 2.62 nm and 2.62 nm. Tests were also
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performed on HZO grown directly on HF etched silicon. It is expected that the inter-
face oxide grows by the Ozon [155–157] during ALD and the thermal annealing step
for crystallisation.
Fig. 4.8a) shows the CV curves for 2 min and 5 min SC1 (5:1:1) solution. The solid
line indicates the CV sweep from −5 V to 5 V and the dashed line is the vice-versa
CV sweep. The threshold voltage is determined by the tangent at the deflection point
and its intersection with the x-axis. If the CV curve shifts to the left or right for the
backward CV sweep a ferroelectric or charge trapping behaviour can be measured. For
the shown CV curves in Fig. 4.8a), the plot for 2 min reveals a ferroelectric behaviour
and for 5 min both effects are balanced. Measurement over many dots ( 10) shows a
ferroelectric behaviour for 60 % of the devices (2 min) (Fig. 4.8b). For 5 min a ferro-
electric yield of 80 % was achieved. Devices with HZO grown directly on HF etched
silicon mostly show charge trapping behaviour.
For 40:2:1 solutions, the ferroelectric behaviour was most visible at 1 min, 2 min and
5 min (Fig. 4.8c-d). Similarly, for 10000:1:1 solutions the charge trapping behaviour
was dominant at either very short or very long SC1 times (Fig. 4.8e-f). It was generally
very difficult to obtain reproducible results with respect to ferroelectric behaviour and
during a second forward and backward CV sweep the ferroelectric memory window
disappeared (Fig. 4.9). One possible explanation is the large voltage stress during the
rather slow CV sweeps. Experiments by other groups on FeFET have been done with
fast pulses [150, 152]. Furthermore, variations in the trap density of the Hf0.5Zr0.5O2

film could have an influence on the reproducibility.
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a) b)

c) d)

e) f)

Figure 4.8: a) CV sweeps for 5:1:1 SC1 solution for different times and b) correspond-
ing fraction of ferroelectric MFOS capacitors. c) CV sweeps for 40:2:1 SC1 solution
and d) corresponding ferroelectric fraction. e) CV sweeps for 10000:1:1 SC1 solution
and f) corresponding ferroelectric fraction.
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Figure 4.9: CV sweep of a ferroelectric memory window and the charge trapping
memory window after a second CV sweep.

In most cases, a charge trapping behaviour was obtained for the thermally grown inter-
face (Fig. 4.10). The 700 °C MFOS capacitors had a smaller memory window and in
some cases a ferroelectric shifting. The reason for the varying behaviour of the 700 °C
sample is unknown. However, the thermally grown interface layers are of interest in
order to realize charge trapping memories. It is expected that the polarization charge
of the ferroelectric layer assists the charge trapping behaviour [151]. It is noteworthy
that a very stable memory window of ~2.8 V was obtained for the 750 °C sample.

a) b)

Figure 4.10: a) CV sweeps for different interface oxidation temperatures and b)
corresponding fraction of charge trapping MFOS capacitors.

From Fig. 4.11a) the x-ray diffraction (XRD) pattern of the ferroelectric Hf0.5Zr0.5O2

film is shown and an orthorhombic phase is proven. Further, the TEM images of some
samples are shown in Fig. 4.11b) and the interface oxide thicknesses are nearly consis-
tent with Fig. 4.7.
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Figure 4.11: a) XRD of the HZO films, indicating the orthorhombic phase. b)
TEM images of the Si / SiO2 /Hf0.5Zr0.5O2 /TiN /Alu stack for different interface oxide
growth conditions.

In summary, different SC1 concentrations and times were tested and it seemed difficult
to obtain ferroelectric behaviour in a reproducible manner. The 10000:1:1 solutions was
best suited to obtain good control over interface oxide thicknesses. Thermally grown
interface oxides seemed good to obtain a charge trapping memory. For the single and
crossbar devices the following conditions were tested: SC1 5:1:1, SC1 10000:1:1, HF
etched, 650 °C and 750 °C thermal oxide.

4.3 Process Development for Crossbar Fabrication

In comparison to chapter 4.1, the fabrication of crossbar devices requires the separation
of the bottom electrode, which consists of a highly n-doped (n+) epitaxial layer on the
handle of the SOI Wafer. The seperated n+ layer will form the Bitline of the crossbar
arrangement. Furthermore, there is a need to connect the gate electrodes of single
memory cells to form the wordline of the crossbar arrangement (Fig. 4.12). Since the
gate electrodes are surrounded by n+ and p+ metal lines to the left and right on the
device layer, the metallisation layer of the wordline needs some insulation from a first
metallisation layer and will form a second metallisation layer.
The seperation of the 3.5µm eptaxial n+ region on the handle wafer can be achieved
by RIE. For the connection and structuring of the wordline there is a necessity to have
a relatively planar surface. Therefore, the trenches etched by RIE need to be refilled.
In conventional ICs manufacturing one would use a tetraethylorthosilicate (TEOS) ox-
ide in back end of line (BEOL) processing and chemical mechanical polishing (CMP)
to achieve inter metal insulation and planarisation. Since both were not available, a
negative resist called SU-8 was used to achieve trench planarisation and insulation.
This resist is usually used in MEMS and microfluidic systems to deposit a permanent
resist layer as an active part of fabricated devices with high biocompatibility. The SU-8
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resist, if properly hard-baked and cross-linked, is very stable and resistant to further
chemical processes [158]. The cross-section of the fabricated crossbar arrangements is
shown in Fig. 4.12 and a thin SU-8 Layer ( 1.4µm) is used for insulation of the metal
layers and thick SU-8 layer ( 4µm-5µm) for the trench refill. Consequently, the process
optimisation is divided into the chapters: Aluminium metal layer optimisation (4.3.1),
Thin SU-8 insulation optimisation (4.3.2), Trench refill optimisation (4.3.3), Bond pad
optimisation (4.3.4) and the Combination of all processes (4.3.5).

Box

n+

n-

Devicen+ p+n-

HZO
Thin SU-8

Wordline
Gate

Handle

Bitline

Trench with 
thick SU-8 refill

n+ metal line

Single device 
column

a)

Trench with 
thick SU-8 refill

Bitline 
connection

Wordline

Thin SU-8 layer

n+ metal line

n+

p+

Device layer

Gate
Single device 
column

b)

Figure 4.12: a) Cross-section of the crossbar arrangement with trenches and wordline
metallisation and b) top view of crossbar arrangement with bitline connection, trenches
and wordline.

4.3.1 Aluminium Metal Layer Optimisation

To start with, aluminium metallisation obtained from TU Dresden was used, which was
e-beam evaporated. Later, the metallisation was grown at the Max Planck Institute by
sputtering. Problems occurred with the metallisation for thick layers (230 nm) during
heating to 180 °C. The aluminium appeared to chip away in some areas, which resulted
in holes in the aluminium layer. The reason for this could be found in the tension which
developed between the aluminium layer and the underlying layer due to differences in
thermal expansion. Different temperatures and three different aluminium thicknesses
(230 nm, 160 nm, 110 nm) were used to obtain an optimal aluminium thickness and its
corresponding maximum temperature budget. Fig. 4.13a) shows microscope images of
the aluminium surface for different annealing temperatures and a thickness of 230 nm.
Temperatures over 150 °C lead to the mentioned holes and the situation deteriorates
for 180 °C, whereas slow heating to 180 °C seems to improve the hole formation slightly.
Thin aluminium layers (110 nm) are resistant against hole formation even at 180 °C.
The hole formation is slightly visible for 160 nm films at 180 °C, but still acceptable.
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a)

With 110C With 130C With 150C With 180C Slowly to 180C

230nm

110nm + 180C 160nm + 180C

b)

Figure 4.13: a) Microscope images of aluminium holes for different temperatures of
230 nm thick aluminium. b) Microscope images at 180 °C for (110 nm) and 160 nm
thick films.

The conclusion from this experiment is that aluminium layers should be kept as thin
and temperatures as low as possible.
Furthermore, a connection problem occurred between the first and second metallisa-
tion layer (contact between gate and WL). This is caused by an aluminium oxide layer
which natively grows in air when taking out the sample from the chamber between
the two metal layer growths. Moreover, this aluminium oxide layer is getting thicker
during the SU-8 resist etch back in O2 plasma (see chapter 4.3.3). An etching step
was done before the deposition of the second aluminium layer in the same chamber
with the same mask. The etching step etches approximately 7 nm into the aluminium
oxide/aluminium and ensures aluminium oxide removal.

4.3.2 Thin SU-8 Insulation Optimisation

The thin SU-8 layer after the trench refill needs to fulfil two tasks: Firstly, the word-
line metal needs to be connected throughout the full length, even at the holes/edges
where it is connected to the gates of the devices. Secondly, the SU-8 should have good
insulation properties to avoid any leakage or connection between the wordline and the
n+ or p+ metal lines.
With regard to the first issue, connectivity tests were performed along SU-8 hills and
trenches (Fig. 4.14). The aluminium films were structured by lift-off. Three differ-
ent viscosities and therefore thicknesses of SU-8 resist were tried: SU-8 TF 6000.5
(0.5µm), SU-8 TF 6001 (1.4µm) and SU-8 TF 6005 (4.3µm). The metal lines had
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different width and the trench width was also varied. Tab. 4 reveals the processing
parameters for the three different SU-8 resists.

trenchhills

SU-8

Alu

SU-8 SU-8

Aluminium

Si

SiO2

Figure 4.14: Crosssection of the trench and hill structure and corresponding top view
mask layout.

SU-8 TF 6000.5 SU-8 TF 6001 SU-8 TF 6005
• Spin coat adhesion agent: AR300-800
• 60s; 4000 rpm;
• Heat at 180C for 60s;
• Spin coat SU8: 5s 500rpm, 40s 3000rpm;
• Softbake: 1.5 min, 110C;
• Expose: 350 mJ/cm2;
• Post-exposure bake: 2 min 110C;
• Develop: 3 min, MR-dev 600;
• Aceton + IPA + DI Water for 30 s to remove rests;
• Hardbake: Start at 110C –> 180C for 1 h;
• –> 0.49 µm; resolution: 5 µm

• Spin coat: 5s 500rpm, 40s 2000rpm;
• Softbake: 2.5 min, 110C;
• Expose: 350 mJ/cm2;
• Post-exposure bake: 2 min 110C;
• Develop: 3 min, MR-dev 600;
• Aceton + IPA + DI Water for 30 s to remove rests;
• Hardbake: Start at 110C –> 180C for 1 h;
• –> 1.4 µm; resolution: 5 µm

• Spin coat: 5s 500rpm, 40s 8000rpm;
• Softbake: 4 min, 110C;
• Expose: 350 mJ/cm2;
• Post-exposure bake: 2 min 110C;
• Develop: 3 min, MR-dev 600;
• Aceton + IPA + DI Water for 30 s to remove rests;
• Hardbake: Start at 110C –> 180C for 1 h;
• –> 4.3 µm; resolution: 5 µm

Table 4: Processing conditions for SU-8 TF 6000.5, SU-8 TF 6001 and SU-8 TF 6005.

The metal lines were made out of 230 nm thick aluminium and structured by using
Lift-off of overdeveloped negative resist. The resulting microscope images for the dif-
ferent SU-8 thicknesses are shown in Tab. 5.

The lift-off worked well for the (0.5µm) and (1.4µm) resist. Due to the fact that the
negative resist for lift-off had a thickness of (1.4µm), the process did not work out well
for the (4.3µm) thick SU-8.
In Fig. 4.15a) and b) the IV plots of connected metal lines are revealed for SU-8 TF
6001. The connectivity on SU-8 TF 6005 was not good enough and thus is not shown
here. It is apparent that if all metal lines are connected a very good yield can be
achieved. In Fig. 4.15c) and d) the IV plots of neighbouring metal lines is shown and
for SU-8 TF 6001 the metal lines are well seperated.
The connectivity of the SU8-6000.5 resist (Fig. 4.16a) and b) was also good, only the
seperation of neighbouring metal lines (Fig. 4.16c and d) was not sufficient in some
cases, most likely due to bad insulation of the oxidized silicon substrate.

56



4 FABRICATION AND PROCESS DEVELOPMENT

hills trenches

SU-8 TF 6000.5

SU-8 TF 6001

SU-8 TF 6005

Table 5: Lift-off results on trenches and hills with different SU-8 resist thicknesses.

So far the SU-8 resist was hard-baked at 180 °C and the influence of the hard-bake
on connectivity was not investigated. In 4.17 the connectivity for SU-8 6001 and
130 °C hard-bake is revealed and it becomes obvious that the many metal lines are not
connected any more, especially for the trenched structures. It seems that hard-baking
at 180 °C is rounding the edges of the resist, due to the fact that the glass transition
temperature is exceeded. The glass transition temperature of SU-8 resist is in the
range of 150 °C-200 °C [158]. Furthermore, thin aluminium (110 nm) was tested as a
metallisation, and with which good connectivity of the metal lines was also achieved.
In order to ensure good connectivity without risk the thick aluminium was used for
the second metallisation layer.
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a) Hills – connected metal lines b) Trenches – connected metal lines

c) Hills – neighbouring metal lines d) Trenches – neighbouring metal lines

Figure 4.15: SU8-6001: a) IV curves of connected metal lines on hills. b) IV curves
of connected metal lines on trenches. c) IV curves of neighbouring metal lines on hills.
d) IV curves of neighbouring metal lines on trenches.
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a) Hills – connected metal lines b) Trenches – connected metal lines

c) Hills – neighbouring metal lines d) Trenches – neighbouring metal lines

Figure 4.16: SU8-6000.5: a) IV curves of connected metal lines on hills. b) IV curves
of connected metal lines on trenches. c) IV curves of neighbouring metal lines on hills.
d) IV curves of neighbouring metal lines on trenches.

a) Hills – connected metal lines b) Trenches – connected metal lines

Figure 4.17: SU8-6001 with 130C hard-bake: a) IV curves of connected metal lines
on hills. b) IV curves of connected metal lines on trenches.

Besides connectivity of the wordline along the edges, the SU-8 insulating layer should
also enable good insulation between the wordline and n+ and p+ metal lines. For
this purpose leakage tests of the SU-8 6000.5, SU-8 6001 and SU-8 6005 resist were
performed with a structure shown in Fig. 4.18. There is a fully covered aluminium
back-electrode and aluminium dots of different size on top of the SU-8 resist. As can
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be seen from Fig. 4.19 nearly all dots showed bad leakage properties with a slight
improvement for the thick SU-8 resist (6005). The reason for this problem was further
narrowed down to the tip contact with a leakage test structure as shown in Fig. 4.20.
The structure consists of a crossbar where top and buttom aluminium electrodes cross
each other with different areas. As can be seen from Fig. 4.21 the leakage current was
in the range of <1 nA for nearly all sizes of crossing area, showing the good insulating
properties of the SU-8 resist even for high voltages (20 V) when the aluminium lines
are contacted from the side pads. Only for SU-8 6000.5 there was one large crossing
area that had large leakage currents. The leakage current drastically increased with
contacting the measurement probe tip directly on the crossing area, especially with
higher pressure. Due to the fact that the SU-8 resist, even if hard-baked, is still a soft
material there is a possibility of field strength peaks at the probe tip, which might
cause the observed short circuit. In conclusion, the SU-8 resist shows good insulating
properties if not directly contacted with the probe tip, which is not the case for the
crossbar structure.

The conclusion from this process optimisation chapter is that the SU-8 6001 resist
is used as insulating layer and 230 nm thick aluminium is used as second metallisation
for crossbar fabrication, since best connectivity for the wordline was achieved with
SU-8 6001 and the insulating properties are sufficient.

SU-8

Top Alu 
(Lift-off)

SU-8 contact holes

Top alu pads

SU-8 TF 6000.5 SU-8 TF 6001 SU-8 TF 6005

Figure 4.18: Mask design of first leakage test with fully covered backside electrode.
Microscope images of the alumnium dots are provided on the right-hand side.
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a)
SU-8 6000.5

b)
SU-8 6001

c)
SU-8 6005

Figure 4.19: IV curve of leakage current for a) SU-8 6000.5 b) SU-8 6001 c) SU-8
6005.

Buttom Alu

SU-8 TF

Top Alu

Figure 4.20: Mask design of second crossbar leakage test. Microscope images of the
crossing points are provided on the right-hand side.
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a)
SU-8 6000.5

b)
SU-8 6000.5

c)
SU-8 6001

d)
SU-8 6001

e)
SU-8 6005

f)
SU-8 6005

Figure 4.21: IV curves of leakage for a) SU-8 6000.5 with side pad contact b) SU-8
6000.5 with contact on crossing point c) SU-8 6001 with side pad contact d) SU-8 6001
with contact on crossing point d) SU-8 6005 with side pad contact and e) SU-8 6005
with contact on crossing point.

4.3.3 Trench Refill Optimisation

In order to seperate the buttom electrode, the 3.5µm thick n+ epitaxial layer on the
handle wafer of the SOI wafer needs to be etched. The seperation is achieved by a deep
trench of 4.4µm-7µm depth. In the beginning the silicon device islands were seper-
ated by wide trenches as shown in Fig. 4.22. The islands (95µm, 110µm, 140µm)
and trenches (105µm, 140µm, 155µm) between them had different widths. The aim
of this chapter is to describe the effect of planarisation on the trenched surface with
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resist, in order to deposit and structure the second metallisation layer.

4.4 µm deep trench 
with resist

SU-8 6001 TF 
insulation Aluminium Gate

Si island with oxide

Aluminium contact

Oxide etch into 
BOX for buttom contact

Island width: 140 µm, 
110 µm,
95 µm

distance: 155 µm, 140 µm, 105 µm

Figure 4.22: Mask layout of device structure with islands surrounded by trenched
surface.

The structure of Fig. 4.22 was spin coated with 4.4µm thick resist and structured so
that only resist was left over in the trench. Fig. 4.23 reveals the obtained profile. The
following characteristics become obvious: 1) The trench surface is approximately 1µm
higher than the silicon island. 2) The variation of thickness on the trench part is larger
for the 150µm trench width than the 95µm trench width. 3) Annealing at 180 °C did
not change anything on the profile. Obviously, this process did not lead to sufficient
planarisation of trenches.
Spin coating of the resist with a subsequent ultrasonic step created holes in the resist,
which were closed during soft-bake. No improvement was achieved with this experi-
ment.
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a)
95 µm island + 95 µm trench width

b)
140 µm island + 150 µm trench width

c)
95 µm island + 95 µm trench width + 180°C

d)
140 µm island + 150 µm trench width + 180°C

Figure 4.23: Trench refill with structured SU-8 6005 (8000 rpm) for a) 95 µm island
+ 95 µm trench width, b) 140 µm island + 150 µm trench width, c) 95 µm island +
95 µm trench width with 180 °C anneal and d) 140 µm island + 150 µm trench width
with 180 °C anneal.

Using a thicker SU-8 resist (SU-8 6005 with 3000 rpm, 5.5µm thickness) leads to
higher trench surfaces (3µm), but the trenches were more planar, especially for the
95µm trench width (Fig. 4.24).

a)
95 µm island + 95 µm trench width

b)
140 µm island + 150 µm trench width

Figure 4.24: Trench refill with structured thicker SU-8 6005 (3000 rpm) for a) 95 µm
island + 95 µm trench width and b) 140 µm island + 150 µm trench width.
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It becomes obvious that the resist is too thick when using SU-8 6005. For this reason
experiments with several subsequent coatings of SU-8 6001 (1.4µm) were conducted.
In Fig. 4.25 the obtained profiles are shown for 3 coatings of SU-8 6001, but the struc-
tures obtained were to inhomogeneous. Once a certain inhomogeneity is obtained with
a first coating the inhomogeneity gets worse for the next coating.
Experiments with a doctor blade method lead to very high variations of resist thickness,
especially towards the edges, and were not successful. Furthermore, planarisation resist
from Brewer Science (M10-44) was tested, but the results were not satisfying [159].

a)
95 µm island + 95 µm trench width

b)
140 µm island + 150 µm trench width

Figure 4.25: Three coatings with SU-8 6001 for a) 95 µm island + 95 µm trench
width and b) 140 µm island + 150 µm trench width.

The conclusion from these experiments was that it is better to cover the whole area of
islands and trenches with SU-8 resist and then perform an etch-back with RIE [160].
In the beginning only RIE with O2 plasma was tried and the results after different
lengths in etching times are shown in Fig. 4.26 with corresponding microscope im-
ages. Long etching times were necessary to remove the resist rests on certain parts
of the island, which leads also to relativily deep trenches of 2µm. Furthermore, the
roughness during O2 etching was quite high. Other groups have shown that etching of
SU-8 resist with less roughness can be accomplished in a CF4 etching process [161,162].
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a) b)
after 10 min etching after 12 min etching

after 13 min etching
resist rests

nearly no resist rests

Figure 4.26: RIE etching of SU-8 6005 resist a) Profile of RIE etched SU-8 6005 resist
and b) corresponding microscope images.

Fig. 4.27a) shows the etching of a SU-8 step in CF4 plasma and Fig. 4.27b) the
corresponding roughness after 13 min of etching. Fig. 4.27c) reveals the etch-back of
the SU-8 resist on a trenched structure, and compared to the etching with O2 plasma
(Fig. 4.26), the roughness as well as the trench depth achieved after etching (0.8µm-
1.5µm) are much lower.

a) b)

c)

Figure 4.27: RIE etching of SU-8 6005 resist with CF4 plasma: a) Profile of an SU-8
step for different etching times, b) corresponding roughness after 14 min etching and
c) profile of the real trenched structure for different etching times.
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Although the CF4 etching improves the roughness, the problem remains that CF4 at-
tacks silicon. Therefore, firstly most of the resist is etched with CF4 until less than
1.5µm is left and secondly the left over resist thickness is etched with normal O2

plasma. Moreover, more narrow trenches are used, which should reduce the thickness
variation of the spin coated resist as a lower fraction of the total surface is covered
by the deep trench. This was already observed in Fig. 4.23 and 4.24 (95µm versus
150µm). Also the trench width was irregular, as can be seen from Fig. 4.22.
The mask layout of the new test vehicle is shown in Fig. 4.28a): The trench surrounded
the island with a constant width of 10µm, 20µm, 50µm and 100µm. The device and
buried oxide layer of the SOI wafer was etched away prior to the trench etching, which
made it possible to measure the connecting resistance along the n+ silicon island and
the separation resistance between the n+ silicon island with the trenches in the current
path. These two IV curves are shown in Fig. 4.28b) and c) respectively. The ratio
between connecting currrent at 1 V and disconnecting current at 1 V were 5817 for
the 10µm trench, 7023 for the 20µm trench and 70818 for the 50µm trench. Since
the current/charge of the read-out line is usually detected by an low input-impedance
amplifier, most of the charge is transferred to desired amplifier even at parasitic sneak
paths in the range of 1:1000. So insulation of the read-out electrodes should be suffi-
cient. Furthermore, it was later recognized that increasing the trench depth by 2.5µm
to 7µm can increase the disconnecting resistance by 2 orders of magnitude.
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a)

trench

island

b)

c)

Figure 4.28: a) Mask layout of the new trench etch. b) IV connectivity for different
trench widths along the n+ doped island. c) IV connectivity between the silicon islands
for different trench widths.

The spin coating results for 4.5µm thick (SU-8 6005, 8000 rpm), 1.4µm thick (SU-8
6001, 2000 rpm) and 8.7µm thick (SU-8 6005, 1000 rpm) resist are shown in Fig. 4.29.
The SU-8 6001 resist was only tested for the 10µm wide trenches and relatively large
variations on the trenches become visible. For the other trench width only SU-8 6005,
8000 rpm and SU-8 6005, 1000 rpm was tried. The remaining trench depth difference
remained the same for both resists for the 20µm and 50µm trench width. Only the
100µm wide trenches had a different trench depth between the SU-8 6005, 8000 rpm
and SU-8 6005, 1000 rpm.
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a)

10 µm trench width, 100 µm island width

222 nm

b)

20 µm trench width, 100 µm island width

500 nm

c)

50 µm trench width, 100 µm island width

1465 nm

d)

100 µm trench width, 150 µm island width

Figure 4.29: Before and after spin coating for a) 10µm trench width and 100µm
island width, b) 20µm trench width and 100µm island width, c) 50µm trench width
and 100µm island width and d) 100µm trench width and 150µm island width.

The height difference of the surfaces with trenches and without trenches is obviously
different between the different trench widths and is marked in Fig. 4.29 and Tab. 6.
As already stated, the remaining trench depth after spin-coating for different trench
widths did not change much, but as the relative percentage of trenched surface in-
creases, the spin coated surface is deeper compared to the surface that is not covered
with trenches. This surface height difference is plotted against the trench coverage of
the surface and a linear relationship becomes visible (Fig. 4.30). Deeper trenches lead
to a more pronounced surface height difference in a proportional manner, as proven for
7µm deep trenches. Generally, the average height difference of a surface with trenches
and without trenches is dtr ·c, where dtr is the trench depth and c is the trench coverage.
From Fig. 4.30 one can conclude a proportionality factor of 0.68 for the surface height
difference ∆h:

∆h = dtr · c · 0.68 (4.3.1)
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Trench width dtr (µm) Trench coverage c (%) Surface height difference ∆h (nm) Trench depth after spin coating (nm)
10 µm 10 % 222 nm 200 nm
20 µm 20 % 500 nm 230 nm
50 µm 50 % 1456 nm 220 nm

Table 6: Results of height difference and remaining trench depth after spin coating
for 10 µm, 20 µm and 50 µm trench width.

Figure 4.30: Surface height difference versus trench coverage.

The 10µm trench width has the lowest variation in resist thickness (Fig. 4.29), but
current separation between the islands does not appear to be optimal (Fig. 4.28c).
As a compromise for low resist thickness variation and high current separation the
20µm and 50µm wide trenches were further tested for the etch-back of the resist. The
etching was done in a two step etch process, first with CF4 and then in O2. Fig. 4.31
reveals the resist profiles for 20µm wide trenches at different etching times. The final
remaining trench depth at the center of the wafer is 0.53µm and 0.83µm at the top
of the wafer. A thinner resist thickness towards the edge of the wafer seems to be the
reason for the difference in the remaining trench.

a) b)

Figure 4.31: Profile for 20µm trench width at a) wafer center and b) wafer top.

For the 50µm wide trenches a remaining trench depth of 0.78µm (center) and 2µm
(top) was obtained (Fig. 4.32). The 20µm wide trenches seem better suited and were
used from now on.
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a) b)

Figure 4.32: Profile for 50µm trench width at a) wafer center and b) wafer top.

4.3.4 Bond Pad Optimisation

The bond pads at the border of the chip cannot be on the insulating SU-8 6001 resist,
since the material is too soft for wire bonding, although there were some reports on
the optimisation of bonding on SU-8 resist [163]. Therefore, the aluminium bond pads
need to be on top of the buried oxide.
One possible failure might be the parasitic capacitive coupling between the bond pads
due to the n+ doped epitaxial layer as a connector. This coupling can be avoided by
grounding the epitaxial layer, as shown in Fig. 4.33.
Furthermore, due to the O2 etching of the SU-8 resist in the process step described
in chapter 4.3.3, the buried oxide is attacked and degraded with respect to its leakage
properties at unprotected parts. Growing aluminium on top of this buried oxide will
lead to leaky bond pads, especially after wire bonding (Fig. 4.34a and b). Therefore,
the bond pads are deposited during the first aluminium metallisation before the SU-
8 etch-back. Thus the buried oxide is protected by the bond pad during O2 etching
and the leakage properties are much better, even after wire bonding (Fig. 4.34c and d).
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a)

190 nm

3.5 µm

n-

n+

SiO2

CV

b)

Figure 4.33: a) Crosssection of the CV parasitic coupling test between two pads. The
n+ back contact is either connected to ground or kept floating during the measurement.
b) Corresponding CV plots for grounded or floated back contact.

a)
Before wire bonding

b)
After wire bonding

c)
Before wire bonding

d)
After wire bonding

20 dots

Figure 4.34: IV curve between the aluminium Bond pad and the n+ back contact: a)
Aluminium bond pad deposited after O2 etching, before wire bonding. b) Aluminium
Bond pad deposited after O2 etching, after wire bonding. c) Aluminium bond pad
deposited before O2 etching, before wire bonding. d) Aluminium bond pad deposited
before O2 etching, after wire bonding.
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4.3.5 Combination of All Processes

Finally, all processes, namely first metal layer, trench etch and refill and thin SU-8
insulation with second metal layer, were combined on a test wafer to check electri-
cal separation and connectivity. Fig. 4.35 shows the mask design of all layer and a
corresponding zoom-in.

Figure 4.35: Mask design of the test wafer with a zoom in for one structure.

A thermal oxide was used for these test wafers instead of hafnium oxide. In Fig. 4.36a)
the connectivity along the wordline of the crossbar test fabrication is shown for 9 word-
lines. The connectivity was tested for 45 WLs and all were connected, so the WL-yield
is expected to be around 100 %. Furthermore, the insulation of the wordlines with the
p+ and n+ supply lines is proven in Fig. 4.36b) and the insulation between wordlines
in Fig. 4.36c). Fig. 4.36d) shows the current between the device layer and the bitline
and thus proves the good insulating properties of the buried oxide.
Thus generally good WL connectivity and insulation between disconnected lines was
achieved.
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a) b)

c) d)

Figure 4.36: a) Connectivity along the wordlines. The current saturation is from
the instrument. b) Insulation between wordline and n+ and p+ contact. c) Insulation
between different wordlines. d) Insulation between device layer and bitline.

The process flow for the full crossbar fabrication with the combination of the prior ex-
plained processes is shown in Fig. 4.37: At first the ion implantation is done with a sub-
sequent activation anneal. The interface oxide and the hafnium zirconium oxide/TiN
growth is followed. The TiN is firstly structured and then the silicon islands of the
device layer were etched. The contact holes into the hafnium zirconium oxide for the
n+ and p+ contacts were etched by ion beam etching and subsequent HF-etch. The
first aluminium layer was deposited and the bond pads were also structured by lift-off
in the next step. Up to this point the fabrication of crossbar devices is very similar to
the single device fabrication.
The next step is the deep trench etching of 7µm and the refill with thick SU-8 6005
resist. Then the SU-8 6001 resist was structured as an insulating layer. The last alu-
minium layer was structured by lift-off and an ion beam etch step before deposition
was done for aluminium oxide removal of the first aluminium layer.
The distance of the n+ and p+ region (gate length) of the fabricated devices was 50µm
and 100µm. The width of each memory cell was the same. The GND plate in Fig.
4.37 is the trapezoidal surface in the mask design and decreases parasitic capacitive
coupling between the bond pads. Appendix A.2 shows the mask layout for each process
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step.

90 nm
190 nm

3.5 µm

0) SOI wafer with buried n+ contact 1) Ion implantation of boron and phosphorous

n-

n+

SiO2

Device

2) Interfaceoxide growth and HfZrO2/TiN deposition 3) TiN etching and island etching

4) Contact hole etching and first aluminium layer

5) Trench insulation (RIE) or the bitlines 

6) SU-8 6005 spin coating + flood exposure 

BackcontactBondpad
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7) Etch back with two steps: CF4 + O2 8) SU8 6001 spin coating and structuring

9) Second alu metallisation and AlOx etch before

SU-8 6001 insulation
Second Alu

Bondpad (first Alu)

WL

WL n+

p+ and BL

G
N

D
 p

la
te

WL

Figure 4.37: Process flow for crossbar devices.

Several crossbar chips with either 50µmx50µm or 100µmx100µm memory cell size
and either 10 wordlines or 26 wordlines were fabricated on a sample. These chips are
diced out and wire bonded on a chip carrier for further measurement. Fig. 4.38 shows
the wire bonded chip and a microscope image of the memory matrix. The images of
the memory cells are further zoomed-in to single memory cells by SEM images.
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Figure 4.38: Wirebonded crossbar chip with microscope image of the memory matrix
and further zoomed-in SEM images. Material from [8]

4.4 Growth of Oxide Devices

Growing the Metal-Oxide-Semiconductor-Oxide-Metal structure fully out of oxides has
several advantages: There is no interface oxide between semiconductor and ferroelec-
tric, thus the endurance and ferroelectric behaviour might be better. Moreover, the
devices can be grown at lower temperature, thus enabling back end of line integration.
Another advantage is the easier 3D integration, since several crossbar structures can
be grown on top of each other.
As an oxide semiconductor material several oxides are possible, e.g. SrTiO3,TiO2 or
Indium-Gallium-Zinc-Oxide (IGZO). In the growth experiments mainly PLD grown
SrTiO3 films were investigated. SrTiO3 or SrZrO3 can also be used as an insulating
layer. The ferroelectric film can be also made of a perovskite material, like BaTiO3 or
PZT.
Fig. 4.39a) shows the PLD grown stacks, which were investigated in this thesis.
Fig.4.39b) shows the obtained RHEED pattern for the SrTiO3 stack. For the pur-
pose of this thesis only stacks without ferroelectric material were tested (e.g. SrTiO3

(ins) - SrTiO3 (conducting) - SrTiO3 (ins)).
Generally superior insulating SrTiO3 were obtained for growth and subsequent anneal-
ing in high oxygen partial pressure. For growing n-doped SrTiO3 films a lower oxygen
partial pressure is necessary in order to generate oxygen vacancies [164]. Growing an n-
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doped layer on top of an insulating SrTiO3 seems difficult, since the insulating SrTiO3

becomes too leaky when exposed to lower oxygen partial pressure during the conduct-
ing SrTiO3 growth. Growing Niobium doped SrTiO3:Nb can increase the conductivity
whilst increasing the growth pressure [165, 166]. High doping concentrations ( 10 %)
are necessary in order to obtain good conductivity. But most likely due to oxidation
of Nb to Nb2O5 [167] the SrTiO3:Nb also becomes insulating at high oxygen partial
pressure growth or annealing. In summary the growth window for obtaining a good
insulating SrTiO3 and a conducting SrTiO3:Nb layer on top seemed very narrow, and
probably does not even exist.
For this reason experiments with SrZrO3 were conducted, which has a large band gap
( 5.7 eV) [167]. The insulating properties seemed to be better, but still not good enough.
Also it was tough to obtain flat epitaxial growth of SrZrO3 for thicker films.
A better solution in future would be to grow the oxides with ALD. There is some
published work in the context of thin film transistor (TFT) with TiO2 [168–171]. The
insulating layers can be made out of normal high-k dielectrics (e.g. HfO2). Furthermore
there is a publication on a ferroelectric TFT with IGZO, including a back Gate [172].
The advantage of ALD grown devices would be the lower growth temperature and the
films are still very smooth, even though they are not epitaxial.
Due to the difficulties with the PLD grown films the oxide approach was not further
followed throughout this thesis.

a)

SrTiO3/SrZrO3

SrTiO3:Nb

Pt

SrRuO3/SrTiO3:Nb 

SrTiO3/SrZrO3

1)Insulating SrTiO3

at high oxygen
partial pressure

2) Conducting SrTiO3:Nb
(10 %) at low oxygen
partial pressure

3) Buttom SrTiO3 too
leaky

Very narrow 
growth 

window!

b)

Figure 4.39: a) Device stack and material combination and the growth problem. b)
RHEED image of a grown SrTiO3(ins)-SrTiO3:Nb stack.
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5 Measurement Setup and Printed Circuit Board

In this chapter the concepts for reading and writing single and multiple memory cells
are explained. In the first sub-chapter 5.1 the measurement setup for single devices is
explained. This includes CV measurement and write/read-out with pulses and larger
AC voltages.
For the measurement of crossbar devices and implementation of a neuromorphic al-
gorithm many different signals need to be applied to several pins and read-out. For
this purpose a PCB was developed and it was controlled with a data acquisition sys-
tem (DAQ) (see sub-chapter 5.2) (National Instruments USB-6363).

5.1 Measurement Setup for Single Devices

The general measurement setup is shown in Fig. 5.1a). The n+ and p+ contacts are
mostly connected to ground, but can be also supplied to a DC (direct current (DC))
voltage in order to deplete or enhance the pin junction with carriers. The DC voltage
was generated by two Keithley 2635B source measurement units (SMUs). The gate
electrode is subjected to an harmonic AC voltage during read-out. Furthermore, a DC
bias is applied in series. During a CV sweep the DC voltage is changed, while the AC
voltage is kept constant. Both voltages (AC and DC bias) are generated by an Agilent
33500B function generator. Usual frequencies were in the range of 1 kHz to 10 kHz. For
a normal CV sweep a lock-in amplifier SR830 from Stanford Research Instruments was
connected to the read-out electrode and locked to the signal of the function generator.
For displacement current measurements a current pre-amplifier SR570 from Stanford
Research Instruments was connected to the read-out electrode and the current was
visualized by a DSO5052A oscilloscope.
During the write operations voltage pulses were applied to the gate electrode, while the
p+ and n+ pads were grounded. The current on the read-out electrode was ignored
or it was not connected. Different write modes were tested, namely: pulse number
modulation, pulse length modulation and pulse height modulation, as shown in Fig.
5.1b)-d). Between each pulse a read-out with the harmonic AC voltage was performed.
The instruments were controlled by Labview.
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a)
p+ (A)

n+ (K)

G

R

DC

Lock-in

Current pre-amp

DC

DC

IOscilloscope

Function generator

b)

c) d)

Figure 5.1: a) Measurement setup for single device measurements. Applied write
pulse and read-out sine wave for successive programming with: b) pulse number mod-
ulation (read-out sine wave in the inset) c) pulse height modulation and d) pulse length
modulation. Material from [8]

5.2 Printed Circuit Board for Crossbar Measurement

Crossbar

WL1...WL26 
select 

SL1-6 select

BL1-6 
read-out

Figure 5.2: a) Test-PCB for selecting single Wordlines, Shielding lines and Bitlines.
The PCB is mainly used for CV measurements.

For crossbar measurements many wordlines need to be activated at the same time and
many bitlines need to be read-out at once. For this purpose firstly a PCB shown in Fig.
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5.2 was designed, in which single wordlines can be connected, but only single bitlines
can be measured with e.g. a lock-in amplification. This PCB was only used for quick
tests.

a)

Voltage Generation

1/3 and 2/3 
voltage generation

WL1 and WL2 select 
(S5+S6)

WL selection and
Connect WL (S1-S4)

Integr. capacitance

OPV

SL1 and SL2 select and 
Connection (S10-S13)

Charge switches (S7+S8)

C1

D-FF for clock syncr
C2

b)

Figure 5.3: a) Test circuit for measuring two capacitances (C1 and C2), which are
subtracted from each other. b) Corresponding picture of the PCB with the different
circuit blocks as framed in a).

Furthermore, in a second version a DAQ was used and sense amplifiers for every dif-
ferential bitline were integrated onto a PCB. A charge integration method is usually
used for measuring capacitances. A switched capacitor approach was chosen for the
implementation. With every input period number a new integration cycle is started.
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An operational amplifier with a feed back capacitor is used for charge integration and
the integration capacitance is charged up with every half period of input read-out. The
general working principle of the circuit was first tested on smaller scale with two con-
ventional capacitors. The circuit is shown in Fig. 5.3a) with a corresponding picture
of the PCB in Fig. 5.3b).
The circuit generally consists out of analog multiplexers for the WL signal selection,
for the charge seperation of the read-out (BL) and for the SL signal selection. Further-
more, there is a voltage transformer for the 1/3 and 2/3 voltage generation, which is
used during writing. These voltages are applied to the WL and SL respectively. The
first multiplexer (S1-S2) is used to select either an AC signal, which is usually used for
reading, or the 1/3 voltage (for writing). The out coming signal is applied to the WL
or the WLs are connected to ground (S3-S4). In order to always apply a full period
the ’connect WL’ signal is controlled by a D-FlipFlop, whereas the clock signal is in
phase to the AC signal. The positive and negative signal is applied to the WL selectors
(S5 and S6), which chose to apply either the positive or negative signal (black or white
pixel in image recognition). For the SL either a -2/3 or 2/3 signal can be applied, or
they are connected to ground (during reading). This is accomplished with the switches
S10-S13.
The scheme for read-out is shown in Fig. 5.4: Generally, four cases need to be consid-
ered: positive input signal + positive weight; negative input signal + positive weight;
positive input signal + negative weight and negative input signal + negative weight.
These four cases should enable a ’four-quadrant multiplication’. Furthermore, a differ-
ential weight topology is used, where one memory cell/capacitor is meant to be of a
positive type and another memory cell/capacitor as a negative type. The amount of
the input signal (applied to the WL) is encoded as the length of the sine wave or as
number of periods, where negative and positive signals are 180° phase shifted. For the
positive input signal the clock signal is defined high for the rising edge (the WL2 signal
in Fig. 5.4). For the negative input signal the clock is defined high for the falling edge
(the WL1 signal in Fig. 5.4). The clock controls the state of the two switches which
are connected between the memory cell/capacitors and the amplifier. In Fig. 5.4 two
states are shown (the low clock signal on the left side and the high clock signal on the
right side, as indicated by the purple point). For a low clock signal the switches are in
the right position and hence the C+ capacitance is connected to the amplifier, while
the C- capacitance is connected to ground. Since the WL2 signal is falling during the
zero clock signal (positive signal) the capacitance is charged up negatively and so also
is the integration capacitance of the amplifier (Cint). Due to the inverting nature of
the amplifier, a positive output voltage is obtained, as desired (positive input signal
+ positive capacitance). The negative capacitance C- is charged up positively at the
same time, due to the rising signal at zero clock (negative input), but all the current
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flows to ground. In case of a positive clock signal (right side in Fig. 5.4) the C- is
charged up negatively and the capacitance is now connected to the amplifier. Due to
the inverting nature the amplifier a positive output voltage is again obtained, as de-
sired, since negative input signal (WL1) and negative memory cell/capacitance should
give a positive result. The other two mentioned cases are obtained similarly, thus two
simple switches are sufficient to obtain a ’four-quadrant multiplication’. Furthermore,
only one period is shown in Fig. 5.4, but for more periods the integration capacitor
is charged up more and more, thus the amount of output voltage increases with the
period number. The amplfiers have a very low input impedance due to the virtual
ground of the OPV! (OPV!).
For the analog multiplexers of the WL and SL a ADG1234 from Analog Devices was
used. For the amplifier/charge switches a TMUX6119 from Texas Instruments was
used and the OPV!s were a ADA4530 from Analog Devices. For the analog multi-
plexers an ultra low charge injection is very important in order to ensure low disturb
levels from the clock signal.

-

+

-

+

+

-

+

-

+

+

Figure 5.4: Switched capacitor approach for read-out. A negative input signal is
applied to WL1, while a positive one is applied to WL2. The positive and negative
measurement capacitance (C- and C+) is either connected to ground or with the am-
plifier by switches, which are controlled by the clock signal. The state of the clock
signal is indicated by the purple point (low for the right side and high for the left side).
The arrows indicate the current flow direction.

Measurement results of the test capacitor circuit are shown in Fig. 5.5, where the
blue lines are cases without any test capacitor (C1 and C2). A total of 5 periods is
applied as input signal. Even without a measurement capacitor steps are visible, which
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are caused by the charge injection of the clock signal in the switches. The measured
signal with capacitors including charge injection are the green lines, and the red lines
are the relevant lines after subtracting the charge injection curves. Generally, the four
cases of a positive and negative input signal for a positive capacitance (a+b) and a
negative capacitance (c+d) are shown. The period length of 1 ms is indicated by the
dashed/dotted line, while the half period is indicated by the dotted line. The charge
integration only happens over a half period, and for a positive capacitance the integra-
tion on the amplifier happens at the beginning of a new period (Fig. 5.5a+b). For the
negative capacitance the integration happens at the end of a period (Fig. 5.5c+d).

a) Vr+4.7 pF; +Nper

1 period

1/2 period

charge injection

measurement charge/cycle

b)

Vr

+4.7 pF; -Nper

measurement charge/cycle

c)
-4.7 pF; +Nper

measurement charge/cycle

Vr

d)
-4.7 pF; -Nper

measurement charge/cycle

Vr

Figure 5.5: Output voltage Vo versus time for a) positive measurement capacitor
(4.7 pF) + positive input signal b) positive measurement capacitor (4.7 pF) + negative
input signal c) negative measurement capacitor (4.7 pF) + positive input signal d)
negative measurement capacitor (4.7 pF) + negative input signal. The blue line is the
charge injection background (init), the green line the result with capacitor, as obtained
and the red line the subtracted charge injection from the measurement (green line
minus blue line). The period and half period are indicated by the dashed/dotted and
dotted line and furthermore the resulting voltage Vr is indicated by the star.

Fig. 5.6a) reveals the resulting voltage after different period numbers (Nper). The
resulting output voltage is indicated by the star in Fig. 5.5. Negative period number
inputs (Nper) are 180° phase shifted to the positive ones, as explained above. From
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the output voltage the total injected charge can be calculated from the integration
capacitance, which was 10 pF for the 0.25 pF and 1 pF measurement capacitor (for the
2.2 pF and 4.7 pF measurement capacitor it was 25 pF), which is shown in Fig. 5.6b).
The slope of the curves is shown in Fig. 5.6c) and it is close to the theoretical value.
From these measurements one can conclude that a linear ’four-quadrant multiplication’
is feasible with the switched capacitor approach and a measurement resolution down
to 100 fF-250 fF is possible. The linearity is an important feature for neuromorphic
systems in the weight multiplication.

a)

180°

b)

180°

c)

Figure 5.6: a) Total resulting voltage for different measurement capacitors and in-
put period numbers. b) the total charge is calculated from a) and the integration
capacitance. c) Slope of lines in b) versus measurement capacitors, compared to the
theoretical value of charge integration.

For the crossbar chips another PCB was developed, which is similar to the one in Fig.
5.3. In this case there are 26 wordlines (5x5 image + 1 bias), six bitlines and shielding
lines to be considered (Fig. 5.7a). Hence there are 26 WL selection switches and 6 SL
selection units. Since each operational amplifier is used for two differential BLs, there
are three operational amplifiers. A picture of the PCB is shown in Fig. 5.7b).
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5 MEASUREMENT SETUP AND PRINTED CIRCUIT BOARD

a)

b)

1/3 and 2/3 
voltage generation

WL selection and
Connect WL (S1-S4)

D-FF for clock syncr

Crossbar

SL1-6 select and 
Connection (S10-S13); 
(S22-S25); (S26-S29)

Charge switches (S7+S8);
(S15+S17); (S19+S20)

OPV

Integr. capacitance

Voltage Generation

BL1+2 BL3+4 BL5+6

WL1...WL26 select 
(S5+S6+S14+S16)

Figure 5.7: a) Circuit for the crossbar measurement with 26 wordlines. b) PCB for
crossbar measurement. The crossbar chip is inserted into the black socket.
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6 Measurement Results and Discussion

In this chapter the results obtained with the measurement setups described in chapter
5 are presented and discussed. In the first sub-section, some results on single devices
with normal thermal oxide and no memory effect are shown. Thereafter, different in-
terface oxides are compared for single devices, and more detailed measurement on the
single device with the best interface oxide are presented in the subsequent chapter.
The final chapters include crossbar measurements and the performed algorithm on it.

6.1 Capacitive Coupling Curves for Single Devices with no
Memory Effect

A general coupling curve has already been shown in Fig. 4.4b) in chapter 4.1. This
curve had a poor on/off ratio (or dynamic swing) due to insufficient charge injection in
the shielding layer. Therefore, metal lines along the p+ and n+ fingers of the structure
in Fig. 4.5 were created and higher doping concentrations for the p+ and n+ regions
were used.
Fig. 6.1a) shows the obtained CV curves measured by the setup in Fig. 5.1a). The
p+ and n+ contacts were subjected to different DC-voltages during the CV sweep in
order to deplete or enhance the pin-junction. The voltages were antisymmetric, so
e.g. VAK =−4 V means that 2 V was applied to the n+ region and −2 V to the p+
regions. This ensures that the voltage within the intrinsic or slightly doped region is
still near to zero, due to the symmetry of the junction. This means that the CV curves
should stay nearly centred at the same position, as observed in Fig. 6.1a). As can be
expected from the discussion on theory in chapter 3.2 the CV curves get broader for
depletion and can be virtually switched off for the forward direction. The remaining
two small peaks for the forward direction are attributed to the recombination of the
carriers within the rather long intrinsic/slightly doped region (15µm), with the result
that not the entire channel length has shielding charge. This explanation remains an
assumption.
The curves in Fig. 6.1a) are the derivatives of the sigmoid/tanh electric field coupling
curves. In order to obtain the sigmoid/tanh curves, an AC voltage with increasing
peak-to-peak amplitude (VAC) and fixed maximum voltage to the right side in Fig.
6.1a) is applied, while the effective current (Iread) value is read-out. The obtained sig-
moid curve is shown in Fig. 6.1b). The effective current value depends on the surface,
which is covered by the AC signal under the CV curve (shaded area in Fig. 6.1a). So
the measurement method is basically an integration.
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a)
VAC

b)

Figure 6.1: CV curves (a) for different depletion and forward voltages on the pin-
junction (VAK). The applied AC voltage levels to obtain the sigmoid curve in b) are
indicated. Material from [8]

As mentioned earlier, the sigmoid transfer functions play an important role in model-
ing neurons in artificial neural networks, and furthermore, adjusting their broadness by
application of reverse or forward voltages provides additional functionality. A common
practice during training is the dropout of certain neurons to avoid over fitting [115],
which can be implemented through the forward direction of the diode. Furthermore,
the application of the voltage VAK can also enable selection and deselection of memory
cells, if necessary. Also, the high ratio between maximum and minimum capacitance
becomes obvious ( 1:100 in this case).

6.2 Comparison of Single Devices with Memory Effect and
Different Interface Oxides

The best-suited interface oxides mentioned in chapter 4.2 for MFOS capacitors were
tested on single devices, namely: SC1 5:1:1, SC1 10000:1:1, HF etched, 650 °C and
750 °C thermal oxide.
Fig. 6.2 shows a comparison of the obtained CV curves (a), the pulse number modu-
lated writing and erasing (b) and the data retention (c). The scheme for pulse number
modulation is shown in Fig. 5.1b) in chapter 5.1.
From the CV curves it becomes visible that all memories were in a charge trapping
regime, due to the shifting direction of the forward (−5 V to 5 V) and backward (5 V to
−5 V) sweep (from the left to the right). No ferroelectric behaviour was obtained. All
the CV curves were relatively broad compared to the 750 °C thermal oxide, which is
an indication of large interface trap state density. The reason for the second small side
peak in some curves is unknown. Generally, the most stable and best charge trapping
CV curves were obtained for the 750 °C thermal oxide device.
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With regard to the analog write performance for all devices the typical exponential
LTP and LTD were measured (Fig. 6.2b):

CLTP = Cmin + ∆C ·
(

1− exp
(
−Npgr

βpgr

))
(6.2.1)

CLTD = Cmin −∆C ·
(

1− exp
(
−Ner

βer

))
(6.2.2)

with the number of programming or erase pulses Npgr and Ner, the stretching factor
βpgr, βer and the Cmin for minimum and Cmax for maximum capacitance. The ∆C
describes the maximum change in capacitance.

a) b)

+5.2V

+5.2V
+5.2V

+5.2V
+5.2V

-5V

-1V
-2V

-2V
-1V

LTP LTD

c)

Figure 6.2: a) CV curves for different interface oxide. b) Pulse number modulation
of multi-level switching for different interface oxides. c) Retention of different interface
oxides. Material from [8]

From Fig. 6.2b) one can conclude an asymmetry for the LTP and LTD curve. More
importantly, the asymmetry of write and erase pulse height is much more pronounced
for the thinner interface oxide thicknesses (−1 V to −2 V for erase in the case of SC1
5:1:1, SC1 10000:1:1, HF etched and 650 °C samples, compared to −5 V for the 750 °C
thermal oxide sample). In summary, very small negative voltages are sufficient to reject
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the trapped electron charge from the HZO layer, which is an indication of very shallow
traps. The thicker interface oxide of the 750 °C sample reduces this fast de-trapping.
This is also evidenced by the retention curves, as shown in Fig. 6.2c). The 750 °C sam-
ple shows much longer retention times and thus slower de-trapping of electrons. As
mentioned in chapter 4.2, it is expected that the polarization charge of the ferroelectric
layer assists the charge trapping behaviour [151].
From these measurements the decision was made to continue measurements on single
devices and crossbar devices with 750 °C interface oxides and no longer consider the
other interface oxides any more.

6.3 Single Device Measurements

The chosen device with 750 °C interface oxide was measured in more detail. Fig. 6.3a)
shows the CV curve for ten different devices and a very stable memory window of 2.66 V
± 0.017 V was obtained. The corresponding pulse number modulation curves for the
ten different devices are shown in 6.3b), where some deviation was visible, but it was
good enough to later implement a simple learning algorithm on a crossbar (see chapter
6.4). The on/off ratio can be determined from the measured displacement current (Fig.
6.3c)+d)). It turns out to be 1:1478, which is consistent with the theoretical TCAD
simulation for micron scaled gate length (Fig. 3.4a). The applied read-out sine wave
for displacement current measurement was between 1 V and 1.5 V, where the shaded
area in Fig. 6.3a) is proportional to the measured current in the written state (Fig.
6.3c).

Fig. 6.4 shows the measured different analog write/erase modes: pulse number modu-
lation, pulse length modulation, pulse height modulation. The applied voltage pulses
are in accordance to Fig. 5.1. The pulse number modulation in Fig. 6.4a) and b)
shows the prior mentioned exponential LTP and LTD curves, and the saturation value
and steepness of the exponential increase can be adjusted by the used pulse height.
For the pulse length modulation (Fig. 6.4c), similar curves compared to the pulse
number modulation, are measured. The LTD curve is slightly more symmetric to the
LTP curve for the pulse length modulation.
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a) b)

c) d)

Figure 6.3: a) CV curves for 10 devices. The applied sine wave is used for displace-
ment current measurement in c. The current is proportional to the shaded area. b)
Pulse number modulation for 10 devices. c) Read-out current for the written state. d)
Read-out current for the erased state. Material from [8]

With regard to the pulse height modulation, a much more symmetric and linear be-
haviour was obtained. This is highly beneficial for implementing neuromorphic algo-
rithms [1].
Generally, the resulting curves exhibit some similarities to those obtained from pure
ferroelectric switching [82], indicating the ferroelectric assistance in the memory stor-
age process.
The measured read-out current during the pulse height modulation is shown in Fig. 6.5
and the pinch-off of the current due to screening is clearly observed. The capacitances
from Fig. 6.4 are calculated from the effective read-out current as follows:

C = 1
V · Tper

√∫ t+Tper

t
i(t)2 (6.3.1)
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a)
𝑡𝑝 = 1𝑚𝑠

Pulse number

+5.2 V -5 V

b)
Pulse number

𝑡𝑝 = 1𝑚𝑠

c)
Pulse length

+5.5 V -5.5 V

0.1 ms...2 ms 0.1 ms...2 ms

d)

4 V...6.1 V -4 V...-6.1 V

𝑡𝑝 = 1𝑚𝑠

Pulse height

Figure 6.4: a) Pulse number modulation for a single device. b) Pulse number mod-
ulation for different pulse heights. c) Pulse length modulation and d) Pulse height
modulation. Material from [8]

The retention for different stored levels (in this case read-out current) is shown in Fig.
6.6a), and an increased retention for lower capacitance values is observed. With regard
to the endurance, a broadening of the CV curves is measured for 1E+8 cycles (Fig.
6.6b), which indicates a decreased quality of the interface states. For 1E+5 cycles a
reduced memory window is measured. The total endurance is estimated to be in the
range of 1E+5 to 1E+6 cycles for abrupt writing/erasing events as used in the measure-
ment of Fig. 6.6b). This value is consistent to other charge trap memories and FeFETs.
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a)
LTP, Pulse height 𝑡𝑝 = 1𝑚𝑠
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LTD, Pulse height 𝑡𝑝 = 1𝑚𝑠

-4
 V

..
.-

6
.1

 V

Figure 6.5: Measured read-out current for the pulse height modulation for different
pulse numbers, during the a) LTP and b) LTD. Material from [8]

a) b)

Figure 6.6: a) Retention of different stored capacitance values (here read-out current
value) b) Endurance characteristics of the CV curves.

6.4 Crossbar Measurements

As mentioned earlier, the crossbar consisted of 26 wordlines and 6 bitlines, where a
differential weight topology was used. Therefore, a 5x5 image with a bias (=26 inputs)
can be classified into three output classes (6/2).
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The fabricated crossbars (Fig. 4.38) were first tested with regards to CV curves with
the PCB shown in Fig. 5.2. Also, CV curves from a normal probe station were mea-
sured and compared (Fig. 6.7a). The measurements in Fig. 6.7a) were performed on
a single memory cell, which means that the AC signal was applied to one wordline,
while one bitline was measured. The maximum capacitance of a single memory cell is
at 300 fF, while there is a huge background for the wire bonded chip, which is caused
by the parasitic capacitances of the wire. The conclusion is that there is minimum
capacitance for a single memory cell if the sense amplifier is off-chip, like in this case.
Smaller capacitances may become very difficult to detect off-chip due to parasitic ca-
pacitances.
The LTP and LTD curves for the wire-bonded chip for one bitline, where all wordlines
are connected to the same AC signal, is shown in Fig. 6.7b). The parasitic background
capacitance also becomes visible, but generally the curves are comparable to Fig. 6.4a).
An important feature for writing a crossbar is the disturb of the memory cell to half
selected cells. During programming some cells are subjected to a disturb voltage, where
1/3 of the programming voltage is the minimum possible voltage. Fig. 6.7c) shows
the overwriting of erased (red curve) or written (cyan and blue curve) cells with re-
spect to a certain positive (2 V) or negative (−1.5 V,−2 V) disturb voltages. If the
programming voltage is 5 V, the disturb level will be 1.67 V. As can be seen, the dis-
turbance of the erased cell for small positive voltages is nearly zero, whereas there is
some disturbance for the written cell and negative voltages. The decay might also be
caused by the limited retention, but generally overwriting at these small voltages is
much smaller compared to other interface oxides (see Fig. 6.2b). The disturb is low
enough for implementing a simple algorithm, as described in the next sub-chapter.

Furthermore, the ’four-quadrant multiplication’ was tested, as shown in Fig. 6.8: The
input period number (Nper) and the number of programming pulses (Npgr), which ad-
just the actual weight, were varied in positive and negative values, while the output
voltage is read-out. For a positive period number (Nper) all wordlines were activated
with no phase shift, and for a negative input signals all wordlines were activated by a
180° phase shifted sine signal. For positive programming pulses (Npgr) the positive BL
was changed, while the negative BL was kept in an erased state (vice versa for negative
programming pulses). This measurement was done with the PCB in Fig. 5.7.
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a) b)

+5V -5V

c)

Figure 6.7: a) CV curve for wire-bonded or probe station measured single memory
cell. b) Pulse number modulation for wire-bonded crossbar chip along one BL with
all WL being activated. c) Disturb of an erased (red line) and written (cyan and blue
line) memory cell with a small voltage.

As can be seen in Fig. 6.8a) the output voltage is negative, if either Nper or Npgr is
negative. If both are positive or negative, a positive output voltage is realized. Fig.
6.8b) shows a cross section parallel to the programming pulse number, Npgr, and the
same LTP curves as before are obtained. Contrary, Fig. 6.8c) is a cross section parallel
to the input period number, Nper, and a desired linear behaviour, as before (Fig. 5.6a),
is observed. So Fig. 6.8a)-c) prove the ’four-quadrant multiplication’ on a crossbar.
Furthermore, in Fig. 6.8d) the number of positive wordlines is varied, and a linear
accumulation operation is proven by this, since the signals at each cross-section of the
bitline is summed up and the input at each cell is determined by the input signal to
the WL.
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a)

8 -20
Nper Npgr

cross section b)
cross section c) b)

c) d)

Figure 6.8: a) 3D plot of ’four-quadrant multiplication’ with varying the input period
number (Nper) and the programming pulse number (Npgr). The output voltage is the
z-axis. Cross-sections in parallel to the Npgr and Nper axis are shown in b) and c).
d) The number of positive wordlines is varied, while all non-positive WL are negative,
thus showing the linear accumulation operation. Material from [8]

6.5 Neuromorphic Algorithm on Crossbar

In the last chapter a linear multiply-accumulation operation was verified on the cross-
bar, thus a neural network can be implemented on it. The first 25 wordlines enable a
vectorized input feature map for images of 5x5 pixels, thus one single fully-connected
layer is carried out. Dark pixels are represented by positive values and bright pixels
by negative values. The bias input is mapped to the 26th Wordline.
Regarding the implemented training algorithm, Manhatten update rule [75, 173] was
chosen, due to its simplified training procedure (see chapter 2.1.3). The weight update
is described by the following equation:

∆Wij = sgn (−α · δj(n) ·Xi(n)) (6.5.1)

With α the learning rate, δj(n) the backpropagated error on the BL and Xi(n) the
actual input to the wordline. The weight update is positive if either the error and the
WL input are both positive or negative. Thus this relationship can be described by
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a XNOR operation and pulse scheme, which is applied to the shielding line and the
wordline (Fig. 6.9a). The differential signal that is applied to each memory cell in Fig.
6.9a) describes exactly the XNOR operation. The programming is taking place with
the same amplitude, thus a pulse number modulation is used during training. Also,
the disturb level voltages of 1/3 of the programming voltages are visible, which are
low enough to effectively prevent overwriting of cells in the same column or row (the
memory cell acts as selector itself, Fig. 6.7c).
As a 5x5 image recognition task, the letters M, P and I were chosen and one pixel
in each of the samples was flipped, which results in a total set of 78 samples. These
pseudo-images were separated into a test and training set, whereas the test images are
indicated by a blue frame in Fig. 6.9b). The resulting number of mis-classified images
versus training epochs for the training and test images is shown in Fig. 6.10a). As
can be seen from the figure, the number decreases rapidly after one training epoch and
stays almost zero throughout the training epochs. Mis-classifications after epoch 1 are
caused by the very similar expected value for individual pre-synaptic neurons for fea-
tures M and P. Measurements also confirm the more stable results for classification of
I, as shown in Fig. 6.10d). Fig. 6.10b)-d) shows the obtained mean neuron activations
for the three classifications over the training epochs. The results are in accordance
with other studies [58,75] and were confirmed by computer simulations.

SL
±1/3WL

±2/3,0
+ -

+

-

+ -

- +

a) b)

Figure 6.9: a) Pulse scheme for implementation of XNOR operation of the Manhatten
update rule. b) Used training and test image set of the letters M,P and I. The test
images are framed purple. Material from [8]
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a) b)
f1=M

c)
f2=P

d)
f3=I

Figure 6.10: a) Number of mis-classified images for the training and test set versus
training epoch. b)-d) Mean neuron activations for the three classifications over the
training epochs. Material from [8]
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7 Conclusion and Outlook

The aim of this dissertation was to prove a new device concept of a memcapacitive
synapse theoretically and experimentally. The concept is based on a charge screen-
ing mechanism. In the theory section, the fundamental capacitive coupling curves
were shown with TCAD simulations, and a high dynamic range was simulated. The
high dynamic range was proven for devices down to 45 nm, thus proving the scalabil-
ity of the concept. With Spice simulation a crossbar arrangement was simulated and
very high energy efficiencies were obtained by using the concept of adiabatic charging
with a harmonic signal. This enables the combination of reversible computing and
neuromorphic computing. The energy efficiency of the human brain is estimated to
be in the range of 10fJ/operation [174] (or 100 TOPS/W). With this technological
approach one might beat this limit with an energy efficiency of several 1000 TOPS/W-
10 000 TOPS/W. As mentioned earlier, the best known resistive devices can achieve
up to 100 TOPS/W [12, 62, 68, 85]. Furthermore, the proposed technology is highly
CMOS compatible and can be fabricated by state-of-the-art processes.
The process development of crossbar devices on a SOI wafer was challenging, especially
due to deep trenches for the BL seperation and the two metal layers, but successful in
the end.
Experimentally similar capacitive coupling curves, as in the theory section, were ob-
tained. The high on/off ratio was also proven experimentally for micrometer scaled
devices. Furthermore a 5x5 image recognition task was demonstrated using an ex-
perimental crossbar array with 156 memory cells and PCB with a switched capacitor
circuit approach.
Future directions for research can be in the further scaling of experimental devices
(nanometer regime). Experimental measures of the energy efficiency are especially
meaningful for nanoscaled devices. An interesting approach is the BEOL integration
based on entirely oxide grown devices, also for achieving three dimensional integration.
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A Appendix

A.1 Single Device Fabrication

1) Ion implantation of boron and phosphorous

2a) Thermal gate oxidation 2b) Interface oxidation with HZO/TiN deposition

3a) Island etching 3b) TiN etching

4b) Island etching
4a) Contact hole etching
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5b) Contact hole etching5a) Aluminium metallisation

6b) Aluminium metallisation
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Figure A.1: Mask layers for different processes of single devices fabrication. The
steps are corresponding to Fig. 4.5.
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A.2 Crossbar Fabrication

1) Ion implantation of boron and phosphorous 3) TiN etching and island etching

4) Contact hole etching and first aluminium layer

5) Trench insulation (RIE) of the bitlines 

Read-out 
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8) SU8 6001 spin coating and structuring

9) Second Alu metallisation and AlOx etch before

Insulation

WL

BL

SL

WL

BL/SL

Figure A.2: Mask layers for different processes of crossbar devices fabrication. The
steps are corresponding to Fig. 4.37.

119



Acknowledgements

I would like to express my deepest appreciation to the supervisor of the thesis, Prof.
Dr. Stuart S. P. Parkin. I met him as a highly enthusiastic and creative person, which
I will keep in mind throughout my future career. Furthermore, I wish to acknowledge
his tolerance and understanding to allow me to work independently on my own topic.
I would like to thank all employees and fellow-students at the Max Planck Institute of
Microstructure Physics for the good work environment. Special thanks are addressed to
Alessandro Fumarola for sharing his knowledge about neuromorphic computing, which
was new to me in the beginning of my PhD. I want to thank Fang Gao for keeping
the clean room well organised and Jaechun Jeon for maintaining the Scia system in
a good shape. I also gratefully acknowledge the support by the electronics workshop,
especially Detlef Proske. Many thanks also to the administration and especially to
Simone Jäger for organising the group.
Furthermore, I want to thank the Institute of Semiconductors and Microsystems at
TU Dresden for access to the clean room and the Peter Grünberg Institute in Jülich
for their support, especially at the start of the research work into this PhD. I want
to acknowledge Karola Richter (TU Dresden) for RIE etching, Claudia Richter from
Namlab gGmbH for the hafnium zirconium oxide deposition and Jan Krügener of the
University of Hannover for the ion implantation. Moreover, I want to thank Dr. Karl-
Heinz Stegemann for fruitful discussion.
I want to thank Aron Kirschen for his support in writing the paper as well as his on-
going encouragement throughout the work on this PhD thesis.
I want to thank my friend Christian Saß for his continuous support and for the joy of
living alongside the PhD.
Many thanks also to my sister, Wiebke Demasius, and my brother-in-law, Achim Sala-
mon, for their continuous support.
My deepest gratitude goes to my parents for their continuous support and for making
my education possible.



Academic Curriculum Vitae

First Name: Kai-Uwe

Family Name: Demasius

Gender: Male

Date of Birth: May 15th, 1991

Place of Birth: Johannesburg, South Africa

Nationality: German

Education

10/2016-09/2020 PhD Student at Max Planck Institute of Microstructure

Physics

Supervisor: Prof. Dr. Stuart S. P. Parkin

09/2014-02/2015 Research Internship

IBM Almaden Research Center, San José, USA

Topic: Spin-Hall materials

DAAD scholarship

10/2011-09/2016 Dipl.-Ing. in Electrical Engineering

Dresden University of Technology, Germany

Diploma thesis: Entwicklung und Herstellung eines

Halbleitersensors zur Messung elektrostatischer Felder mittels

Ladungsträgermodulation in pin-Übergängen (Mark: 1.1)

06/2010 Abitur

Domschule, Schleswig, Germany

Ort, Datum Kai-Uwe Demasius



Publications and Conference Contributions

Publications

K.-U. Demasius: Elektrostatischer Halbleitersensor. DE102010045363B4, issued
September 14, 2010

K.-U. Demasius, T. Phung, W. Zhang, B.P. Hughes, S.-H. Yang, A. Kellock,
W. Han, A. Pushp, S.S.P. Parkin: Enhanced spin–orbit torques by oxygen incorpora-
tion in tungsten films. Nature Communications, 7, 10644 (2016)

K.-U. Demasius, A. Kirschen: Matrix mit kapazitiver Steuerungsvorrichtung.
DE102016012071A1, issued October 10, 2016

K.-U. Demasius, A. Kirschen, S.S.P Parkin: Extremely Energy-Efficient Mem-
capacitor Devices for Neuromorphic Computing. Nature Electronics, 4,748–756 (2021)

Conference contributions

K.-U. Demasius, S.S.P. Parkin: Cognitive and memory devices based on Debye length
modulation. DPG-Frühjahrstagung der Sektion Halbleiterphysik, 2017



Eidesstattliche Erklärung

Hiermit erklräre ich, Kai-Uwe Demasius, dass ich die vorliegende Arbeit mit dem Titel:
Highly Energy Efficient Neuromorphic Computing Based on Memcapacitive
Devices in allen Teilen selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe. Alle wörtlich oder sinngemäß übernommenen
Textstellen habe ich als solche kenntlich gemacht.

Ferner liegen gegen mich weder gerichtliche Vorstrafen vor, noch sind staatsanwaltliche
Ermittlungen oder Disziplinarverfahren eingeleitet worden.

Des Weiteren erkläre ich hiermit, dass ich bisher keine andere Arbeit zur Promotion
eingereicht noch mit einer anderen Arbeit den Versuch zur Promotion unternommen
habe.

Ort, Datum Kai-Uwe Demasius


	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Fundamentals
	Introduction to Artificial Neural Networks
	Biological Inspiration and General Working Principle
	Different Topologies
	Learning in Artificial Neural Networks
	Challenges

	Spiking Neural Networks
	Physical Implementation
	Common Resistive Devices
	Capacitive Devices

	Landauer Principle and Reversible Computing

	Device Description and Theory
	General Working Principle
	TCAD Simulation on Single Devices
	Lateral Scalability and Read Signal Strength
	Theoretical Limitation of Energy Efficiency
	Spice Simulation and Estimation of Energy Efficiency
	MNIST Simulation
	Oxide Devices

	Fabrication and Process Development
	First Work on SOI Wafer and Single Device Fabrication
	Deposition Experiments of Hafnium Zirconium Oxide on Silicon
	Process Development for Crossbar Fabrication
	Aluminium Metal Layer Optimisation
	Thin SU-8 Insulation Optimisation
	Trench Refill Optimisation
	Bond Pad Optimisation
	Combination of All Processes

	Growth of Oxide Devices

	Measurement Setup and Printed Circuit Board
	Measurement Setup for Single Devices
	Printed Circuit Board for Crossbar Measurement

	Measurement Results and Discussion
	Capacitive Coupling Curves for Single Devices with no Memory Effect
	Comparison of Single Devices with Memory Effect and Different Interface Oxides
	Single Device Measurements
	Crossbar Measurements
	Neuromorphic Algorithm on Crossbar

	Conclusion and Outlook
	References
	Appendix
	Single Device Fabrication
	Crossbar Fabrication

	Acknowledgements

