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Abstract
We describe visual analytics solutions aiming to support public health professionals, and thus, preventive measures. Prevention
aims at advocating behaviour and policy changes likely to improve human health. Public health strives to limit the outbreak
of acute diseases as well as the reduction of chronic diseases and injuries. For this purpose, data are collected to identify
trends in human health, to derive hypotheses, e.g. related to risk factors, and to get insights in the data and the underlying
phenomena. Most public health data have a temporal character. Moreover, the spatial character, e.g. spatial clustering of
diseases, needs to be considered for decision-making. Visual analytics techniques involve (subspace) clustering, interaction
techniques to identify relevant subpopulations, e.g. being particularly vulnerable to diseases, imputation of missing values,
visual queries as well as visualization and interaction techniques for spatio-temporal data. We describe requirements, tasks and
visual analytics techniques that are widely used in public health before going into detail with respect to applications. These
include outbreak surveillance and epidemiology research, e.g. cancer epidemiology. We classify the solutions based on the visual
analytics techniques employed. We also discuss gaps in the current state of the art and resulting research opportunities in a
research agenda to advance visual analytics support in public health.
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1. Introduction

Visual analytics—the science of analytical reasoning facilitated by
interactive visual interfaces [TC05]—has a great potential to support
the whole health care system, including decision support for clinical
medicine and rehabilitation as well as the public health (PH) care
sector which is the focus of this survey. Interactive visual interfaces
enable filtering, i.e. to restrict the amount of information to be
displayed, flexible combinations of different aspects or layers of
information and an adaptation of the visual representation, e.g. to
switch between various levels of aggregation.

According to the centre of disease control, ‘Public health is the
science of protecting and improving the health of people and their
communities . . . by promoting healthy lifestyles, researching dis-
ease and injury prevention, and detecting, preventing and responding
to infectious diseases’. https://www.cdcfoundation.org/what-
public-health. This definition is in line with the classic definition
from Amory [Amo20]. ‘Public health is the science and art

of preventing disease, prolonging life and promoting human
health through organized efforts and informed choices of society,
organizations, public and private, communities and individuals’.
Despite changes in the history of PH [Ros15], including a stronger
focus on environmental health, we consider this definition as still
valid.

PH activities aim at concrete measures to maintain or improve
health, e.g. with vaccination campaigns, screening programmes to
detect severe diseases early or measures to improve the safety in
traffic or at work. PH academics acknowledge the ‘immense capac-
ity’ of visualization tools ‘to examine various dimensions of PH
data including spatial, temporal and other attributes . . . beyond
the capacity of statistical analysis’ [JAK*17]. PH experts consider
visual analytics also as a means to improve the ‘ability to communi-
cate findings and key messages’ [MOSB16]. Despite this potential,
adoption of visual analytics in PH is slow [OS14]. PH academics
also raise concerns, e.g. that ‘visualization is misleading users due
to misinterpretation or cognitive load’ [CAD*14].
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As a basis for disease understanding, epidemiological research
employs clinical data and population-based studies where a repre-
sentative set of participants in a region is involved. The identifica-
tion of risk factors, the analysis of the relative risk of single factors
as well as their combined influence, the so-called interaction, are
primary research goals in preventive health care. We also consider
urgent problems, related to the increased frequency of a health prob-
lem, e.g. in case of a food-borne or infectious disease that spread
stronger than expected based on seasonal patterns. In these cases,
urgent decision support based on current data, e.g. over-the-counter
sales of drugs, is needed.

So far, there is no survey article on visual analytics in PH. A
survey article from Rind et al. [RWA*13] discussed the use of
electronic health records with information visualization and visual
analytics. The significant difference to this paper is their focus
on clinical decision-making instead of PH activities. Shneiderman
et al. [SPH13] provide a discussion of trends in health care and
the role of visualization. They describe PH as one component of
‘Health 2.0’ (personal health and clinical decision-making being the
two other components) with a focus on user needs and tasks. Carroll
et al. [CAD*14] focused on software for infectious disease epi-
demiology. Visual analytics is considered along with other issues,
e.g. databases, security, user needs and usability. In contrast, this
paper analyses software for PH through the lens of visualization and
analytics. In the chapter ‘Visual Analytics of Image-Centric Cohort
Studies in Epidemiology’ [PKH*16], a specific problem, namely
the analysis of population-based cohort study data, is discussed.
The this paper is broader in scope and considers more recent work.

Scope of the survey. We focus on visual analytics solutions where
the user is in the loop and their reasoning process is supported.
Thus, we exclude pure machine learning solutions. We restrict to
structured data, e.g. measured data or categorical data. We do not
consider unstructured text and related text mining methods that are
rarely used for PH-related research.

With our focus on public health, we exclude publications that
deal with decision support for the treatment of one patient. Since
visual analytics methods for epidemiology are partially based on
such techniques, we mention as selective examples the CARECRUISER

[GAK*11], VISUEXPLORE [RAM*11] and the pioneering work on
LIFELINES [PMR*96]. The major contribution of these papers is the
interactive visualization of time-dependent data characterizing the
person’s health at various dimensions, e.g. concerning laboratory
values, medication, hospital stays and interventions.

We also exclude approaches that enable patients to analyse their
health data. We consider epidemiologists and environmental health
specialists as primary target users. Due to our focus on PH ac-
tivities, we also exclude papers focused on drug development (see
[SBCvdS04] for an example). Visual analytics in basic neuroscience
research is not considered since it is not explicitly linked to pre-
ventive medicine. We do not consider animal health. However, we
include visual analytics related to zoonotic diseases that may be
transmitted to humans.

Selection strategy. A comprehensive search in digital libraries
from computer science and medicine was performed. We searched
in the following digital libraries (last update, July 4, 2019):

Eurographics DL, IEEE DL using the keywords ‘epidemiology’,
‘pandemic’, ‘PH’ and ‘prevention’. We found 21 papers in the IEEE
DL and Eurographics DL and refined our selection according to the
following criteria: we excluded poster presentations and most short
papers unless they are particularly relevant for this survey. This
resulted in nine publications. The search in the ACM Digital library
with the same keywords lead to 17 further publications that seemed
relevant based on their title. A considerable portion only discussed
the simulation models for predicting the course of outbreaks and
static visualizations were used to convey the simulation model.
After removing these papers, five further papers, from conferences
and workshops such as ACM SIGCHI and ACM Advanced Visual
Interfaces, were added. To identify medical journal papers, where
visual analytics is applied to PH problems, we searched in PubMed
using the keywords ‘Visual Analytics’. There we found 494 papers,
mostly in medical journals, where the term ‘Visual analytics’ is used
surprisingly often. Many of these papers relate to clinical decision
support, or medical research based on genomic data and are thus
not considered. Others comprise PH but are only loosely connected
to visual analytics. Since all IEEE TVCG papers are indexed by
PubMed, many ‘Visual analytics’ papers without any relation to
medicine are listed there. The PubMed search led to additional 24
papers. Furthermore, we searched the keywords ‘Visual analytics’
combined with ‘PH’, ‘Epidemiology’ or ‘Pandemics’ on Google
Scholar, which lead to 11 further publications.

With our initial search, we found several papers that discussed
the influence of air quality, which we had not anticipated. To make
sure that we do not miss anything important related to the influence
of air quality on human health, we explicitly searched for further
papers using the keywords ‘Visual Analytics Air Quality’ since this
topic gained a lot of attention and clearly fits in the PH scope. This
search resulted in 11 additional papers (in total 14 air quality-related
publications). We also searched for ‘Visual analytics water quality’
but did not find any additional paper.

Besides, we manually searched in all papers presented at the
IEEE Visual Analytics in Healthcare Workshop (2010-2018). How-
ever, only two papers of that workshop with a focus on PH were
found, since clinical medicine is the focus of this workshop. Further
papers were identified by analysing the references and citations of
the selected papers. Most papers are from IEEE TVCG (20), IEEE
VAST (6), IEEE CGA (4), Information Visualization (3) as well
as the Journal of the American Medical Informatics Association
(5), Online Journal of Public Health Informatics (3), the Interna-
tional Journal of Environmental Research and Public Health (3)
and Biomedical Informatics (3). The supplementary material lists
15 other venues where two papers were considered.

Organization. In Section 2, we describe the scope of PH activ-
ities, the essential stakeholders, high-level tasks and requirements
for visual analytics support. In Section 3, we describe data that are
frequently used in PH with a focus on research in epidemiology. In
Section 4, we discuss visualization and interaction techniques that
are widely used in PH. These commonly used techniques include
geospatial views and time-oriented visualizations.

We describe specific applications in different branches of PH in
the following sections (5–7). In these applications, we largely see the
techniques introduced in Section 4 but often combined in a specific
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manner based on characteristics of the data and the requirements
specific for this application. The detection of disease outbreaks
and response management is discussed in Section 5. In Section 6,
we analyse a wide range of epidemiology research questions, e.g.
related to cancer epidemiology, air quality and injuries. In Section 7,
we discuss the analysis of population-based cohort study data aiming
at the assessment of risk factors for frequent health disorders. In
these studies, healthy participants are assessed and followed over
time to characterize health risks and their influence on the initiation
and development of diseases.

An essential aspect of visual analytics in PH is the evaluation,
ideally based on using the systems by real users doing actual tasks.
In Section 8, we discuss evaluation strategies and selected results.
The analysis of the current state of the art also reveals a number
of gaps and research opportunities. We discuss a corresponding
research agenda in Section 9.

2. Public Health

PH activities typically start with gathering information about a po-
tential health problem, e.g. after an alert, including the exploration
of the available data, e.g. recent cases of a reportable disease, and
go on with statistical analysis and presentation of results, e.g. a set
of diagrams. Incidence and prevalence. We focus on health prob-
lems in a narrower sense and PH activities dealing with long-term
developments of incidence and prevalence. The incidence is the
proportion of a population that newly acquires a disease in a certain
period, typically in 1 year. The prevalence is the proportion of a
population affected by a disease, i.e. for chronic diseases, such as
diabetes, the incidence is rather low but the prevalence is high.

A focus of preventive health care is a better understanding of
avoidable lifestyle-related risk factors, e.g. obesity, low level of
physical exercises or poor nutrition and environmental factors, such
as air quality. A related aspect is the analysis of disease networks, i.e.
if a certain disease frequently co-occurs with another one, or whether
the outbreak of a disease involves a higher risk for the outbreak of
another, often more severe disease. Health care data often exhibit
quality problems, such as noisy, unreliable or missing data. Thus,
visual analytics solutions should consider potential quality problems
and provide remedies.

PH institutions exist at various levels: from community authorities
to the World Health Organization (WHO). These institutions are
engaged in the comprehensive surveillance of major issues related
to the health of populations. In the United States, the centres for
disease control and prevention (https://www.cdc.gov/) also provide
up-to-date information for the general public and PH experts. The
National Health Service plays a similar role in the United Kingdom
[TRL*17]. As Zakkar and Sedig point out, the available data from
these sources are enormous. However, no sophisticated tools are
provided to filter, sort or associate data [ZS17].

Interventions to improve health need to be justified by an in-
depth analysis of data, which are to a large extent collected for
the purpose of informing health policy. Thus, there is a growing
demand for evidence-based health measures [BGL99, OS14] which
includes the need for re-evaluation whether certain measures are as
effective as supposed when they were established. While the effect

on human health is the dominant criterion, other issues, in particular
cost-effectiveness, are also considered and re-evaluated. Despite the
trend towards evidence-based PH, policy development is also based
on media attention for a health problem [ZS17].

2.1. Epidemiology

Epidemiology, a term that is related to epidemic, originally dealt
with the outbreak of infectious diseases [Win20]. John Snow’s de-
tection of a water pump as a source of a Cholera outbreak in London
in the 1850s was a landmark event. Snow depicted the home of the
patients on a map and thus became aware of a spatial cluster centred
around a pump that was found to be contaminated. Today, epidemi-
ology, as an essential part of PH, aims at evidence-based knowledge
related to the distribution of diseases. The demographics, e.g. the
characterization of the patients in terms of age, gender, race, income
levels and family status, the spatial distribution of patients and tem-
poral developments are core aspects of the distribution of diseases.
Epidemiology also investigates exposures, i.e. factors that may in-
fluence the health status. Environmental conditions, poisoned air or
water, or a genetic variant are factors to which a part of the popula-
tion is exposed. Epidemiology research aims at identifying relations
between exposures and diseases or injuries in a defined population,
i.e. the population of a particular region eventually further restricted
to an age group. A representative sample of this population is defined
in a randomized manner and invited to participate in a study.

If a disease is correlated with an exposure, research follows to
assess whether correlations imply a causal effect. Often, this is not
the case, e.g. because a confounding variable is responsible for the
observed effect. A famous example is a strong association of shoe
size with life expectancy: people with larger shoe size die earlier.
The confounding variable here is the gender: people with large shoe
size are typically men and men die earlier than women [FF11].

Epidemiology research is often triggered by observations from
clinical medicine that lead to the generation of hypotheses.
Hypothesis-based testing, the use of confidence intervals, the statis-
tical significance of correlations and the computation of effect sizes
are specific examples for this statistical basis. As a further ingredi-
ent, epidemiologists employ biological and medical knowledge to
derive hypotheses and to assess the plausibility of findings.

Subfields. Epidemiology is similarly specialized according to
organ systems and related health indicators and diseases, i.e. an
epidemiologist is often an expert for a subdiscipline such as:

� Neuroepidemiology, the field that aims, for example, at the
prevention of neurodegenerative diseases, such as Morbus
Alzheimer and Morbus Parkinson, analysing the influence of
nutrition, physical exercises, social relations, cardiovascular risk
factors and genetic variants on disease outbreak.

� Pharmacoepidemiology, the field that analyses the use of drugs
and their effects on human health, including adverse effects.

� Cancer epidemiology, the field that deals with tumour dis-
eases and the influence of lifestyle-related variables and genetic
variants. An important observation is that some risk factors af-
fect a variety of tumour diseases, whereas others, e.g. some virus
types, are associated with the specific risk for one type of cancer.
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This list only describes selected examples. The specialization of
epidemiologists is necessary since the interpretation of any statisti-
cal finding requires background knowledge related to the biological
and physiological processes that may explain such phenomena. At
the same time, strong specialization may restrict the results of epi-
demiology research. Modern large-scale epidemiology is interdisci-
plinary, involving experts from different disciplines, to identify and
further study more complex relations, e.g. between mental illness
and nutrition [FST*18].

In Section 6, we present visual analytics solutions for the three
subfields mentioned above.

2.2. Epidemiological instruments

Despite the specifics of the subfields, the instruments that epidemiol-
ogists employ for answering scientific questions are broadly applied.
The selection of an instrument or study type is based on the research
questions that should be answered as well as on available resources.
According to [Pea12] and [HM*87], study types include:

� case series,
� case-control studies,
� cross-sectional studies and
� cohort studies.

A case series comprises patients who suffer from a disease or per-
sons exposed to a risk. These persons are monitored over time to
study patterns of the development of their health status.

Within a case-control study, a second group, namely the control
group, is added. The control group is as similar as possible to the case
group in terms of major demographic factors, such as age, gender
and health status. However, the members of the control group are not
exposed to the risk. The British doctor’s study is a famous example.
Already in 1956, this study clearly indicated that tobacco smoking
(case group) significantly increases the risk of getting lung cancer
[DH56]. The major result of case-control studies is the Odds ratio
that characterizes how the chance of getting a disease is affected
by an exposure. An odds ratio significantly above 1 is a risk factor.
A special type of a case-control study is the interventional study,
where one group is treated with an intervention and the control
group that is not treated.

A cross-sectional study, also called health survey, has only one
point in time where data related to the health status of a group of
patients or participants are gathered. Cross-sectional studies often
serve to analyse the prevalence of diseases and are therefore often
called prevalence studies.

Cohort studies serve to understand how the prevalence and in-
cidence of diseases develop in a group of participants. Since the
participants are followed for a period of time, Pearce [Pea12] uses
the term longitudinal study as a synonym. A cohort study can be
seen as a series of linked cross-sectional studies. Cohort studies are
appropriate for a wider range of research questions. The analysis of
the temporal development of the health status of participants may
give hints to causal relations. If persons were exposed to a risk be-
fore getting a disease, the likelihood for a causal relation is larger
compared to the pure coincidence.

Cross-sectional and cohort studies may be based on data of one
or more hospitals or it may involve data from participants who
are representative for a defined population. The latter are referred
to as population-based studies. Population-based studies involve
primarily healthy participants, i.e. the prevalence of a disease is low.

Visual analytics solutions are particularly useful for population-
based cross-sectional and cohort studies since they typically involve
many variables, and thus, may reveal surprising associations. These
study types enable a broad analysis of risk factors, whereas case
studies, case-control and interventional studies are restricted
to a specific disease (and a specific treatment). These disease-
specific studies are assessed with statistical methods.

2.3. Task analysis and requirements

In the following, we discuss the target user groups, tasks and re-
quirements relevant to them. Revere et al. [RTM*07] distinguish
between PH experts and PH academics. PH experts have to solve
routine tasks, sometimes also urgent tasks related to an unusual sit-
uation. PH academics, on the other hand, are free from the time
constraints of PH experts and are able to focus on exploratory in-
vestigations and more complex data analysis.

The major results of their activities are scientific publications
related to new insights, e.g. about risk factors. A more fine-grained
analysis of stakeholders reveals among others [OS14, RTM*07,
MRH*08]:

� Epidemiologists analyse data with an in-depth understanding of
statistics often to identify and assess potential risk factors.

� Communicable disease specialists are involved if an infectious
disease spreads and contributes with their experience related to
possible interventions to limit the effects of an outbreak.

� Specialists for nutrition provide their knowledge of food and
diseases potentially related to food.

� Environmental health scientists analyse the air or collect samples
from the ground to investigate contaminations.

� Health policy makers aim at changing health policy, e.g. with
respect to new screening procedures.

Masoodian et al. [MLK16] also mention veterinarians for support-
ing an understanding of insect vectors that are particularly relevant
for tropical diseases. The knowledge and analytical skills of these
experts need to be efficiently integrated.

Task analysis. Thew et al. [TSP*09] report on a cognitive
task analysis, including interviews and observations from meetings
where epidemiologists discussed their approach to analyse data.
They started with 22 unstructured (exploratory) interviews. An an-
alyst then took part in seven meetings where upcoming work was
discussed (1–2 h) and four longer meetings (up to 4 h) where deci-
sions were taken.

A lot of these discussions are related to the validity and credibility
of data. Thew et al. observed many discussions related to potential
confounding variables. As an example, the potential influence of
obesity on asthma is discussed. Age as well as gender are examined
as confounding variables. Low credibility and information overload
are considered major pain points by PH experts according to the
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Figure 1: The global distribution of malaria in 2010 is displayed
with a heatmap (from: Wikipedia).

systematic review by Revere et al. [RTM*07]. This paper is based
on a literature search and summarizes findings from 31 publications.
It provides a discussion of the information needs, sources of infor-
mation and quality criteria to include them for decision-making.
However, it is slightly biased towards PH in the United States, dis-
cussing the role of specific institutions, such as the National Institute
of Health.

Carroll et al. [CAD*14] cite nine papers where the need for ‘in-
teractive graphics . . . to dynamic review their data at various levels’
is emphasized. In the same article, ten papers are mentioned where
‘users demonstrated high interest in tools with multiple panels, en-
abling them to review their data from multiple perspectives’. Carroll
et al. [CAD*14] observed PH experts doing actual tasks and asked
them to explain their decisions. They also analysed differences in
education and experience, and investigated diseases among the PH
workforce to provide the right level of support.

When reporting results, epidemiologists prefer numbers over
images. Thus, epidemiologists gain substantial understanding
from statistical information, whereas images, e.g. diagrams, are
considered ambiguous or at least less accurate. In the design of
visual analytics systems, statistics should be integrated. Only
recently, data mining and visual analytics methods are used in
addition to come up with new findings, i.e. these methods serve
to generate new hypotheses [TSP*09]. Especially in the early
stages of the analysis, visualizations may help to understand the
data, e.g. with respect to distributions and potential abnormal-
ities, and to select interesting subpopulations with visual query
mechanisms [TSP*09].

Ola et al. [OS14] also discuss computer support available for
PH experts and highlight STATA (https://www.stata.com/, TABLEAU

(https://www.tableau.com/), and SPOTFIRE (https://spotfire.tibco.
com/) as general statistics and data visualization tools, but also inter-
active visualizations that map diseases spatially, e.g. maps showing
the malaria distribution (see Figure 1).1 Further information on task
analysis for supporting visual PH solutions can be found in Geste-
land et al. [GLG*12].

1https://en.wikipedia.org/wiki/Malaria_Atlas_Project Wikipedia, Creative
Commons

2.3.1. Tasks

On an abstract level, PH experts face typical analytical tasks, such
as identifying relations, testing assumptions, generating hypotheses
and supporting conclusions with sufficient evidence. On a more
concrete level, the tasks of PH experts involved include [OS14,
TSP*09, GLG*12, MLK16]:

� T1 Exploration. Gathering information about a health problem,
exploring available data, e.g. recent cases of reportable disease,
aggregating and displaying these data.

� T2 Assessment and pattern identification. Analysing a health
problem, e.g. drill down to vulnerable subpopulations, such as
children. This includes an analysis of the distribution of a disease
in a population with respect to gender and comorbidities.

� T3 Associations. Finding and analysing associations between
lifestyle-related factors, environmental factors, health risks and
diseases. Considering different strengths of associations and em-
phasizing stronger associations.

� T4 Verification. The verification of an assessment, pattern or as-
sociation relates to the quality of the data and the significance
of results. A strong type of verification is the transfer of de-
rived knowledge to another cohort to assess whether it can be 1
replicated there.

� T5 Comparisons. Support comparisons between populations, e.g.
case and control group. Comparisons may be part of the verifica-
tion process, e.g. when current data are compared with historic
data to assess plausibility.

� T6 Policy development. Design of interventions to prevent health
problems or limit their effect, including priority setting and as-
sessment of involved costs.

� T7 Dissemination. Informing and educating the public about
health problems and strategies to avoid them; ensure awareness
for potentially severe health problems.

These tasks may involve cooperative situations where multidisci-
plinary teams jointly analyse the data. The cooperative analysis
may be supported by shared large displays as well as coupled and
decoupled modes of interaction [MLK16].

Syndromic surveillance comprises the collection and analysis
of health data for outbreak detection and response management
[AAA*16]. For syndromic surveillance, e.g. related to infectious
diseases, the following tasks need to be supported [MLR*11]:

� T8 Preparedness. Regional authorities should be trained how to
respond to a major outbreak and the health care system should
provide sufficient resources, e.g. hospital beds.

� T9 Outbreak detection. Based on the monitoring of available data
and assumptions, related to seasonal patterns and disease types,
an outbreak should be detected as early as possible and assessed
regarding its severity.

� T10 Spatio-temporal assessment. An outbreak needs to be moni-
tored in space and time to understand paths of disease spreading.
An analysis in different spatial scales and for selected temporal
intervals is essential.

� T11 Prediction. Based on the available data, the progress is sim-
ulated under different assumptions, e.g. with or without certain
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interventions established. Predictions involve uncertainty that
needs to be conveyed.

Ola et al. [OS14] discuss PH problems based on a food poisoning
scenario that occurs in an unseasonable period of the year: PH
experts analysed confirmed cases, and displayed these data on a
map along with sources of water that may serve mosquitos to breed.
Thus, map-based visualizations are essential for a wide range of PH
tasks (T10).

Livnat et al. [LRS12] make general statements about visual
analytics support for syndromic surveillance. It should support
convergent and divergent thinking, i.e. on the one hand, some tasks
may be supported with guidance, but, on the other hand, a visual
analytics system should encourage users to consider alternative
decisions and assess potential consequences. Thus, a system could
counteract cognitive biases that lead to a narrow decision space.

The tools currently available to PH experts are not sufficient to ef-
fectively support these tasks. We found research prototypes address-
ing tasks T1–T3 and T5 but no visual analytics system that explicitly
supports T6 and T7. Only one system supports T4 [AHN*17a]. T8
to T11 are explicitly addressed by visual analytics (VA) systems for
syndromic surveillance (Section 5). While some of these systems
focus on Preparedness (T8), others provide support for detection
(T9) and prediction (T11). Basically, all of them support a spatio-
temporal assessment (T10). Among the means to support epidemi-
ologists, Thew et al. [TSP*09] discuss query mechanisms and a
statistics wizard that guide users to statistical tests suggests appro-
priate tests for the specific data and issues warnings when problems
occur that may prevent a reliable result. Furthermore, Thew et al.
revealed the interest in complex analysis questions where the com-
bined influence of variables is analysed.

2.3.2. Requirements

We briefly discuss requirements based on Thew et al. [TSP*09],
Sedig et al. [SPDO12] and our own experience [KOL*14, KLG*16].
PH experts benefit from direct support for the tasks discussed in
Section 2.3.1 and the involved data management problems, e.g. the
integration of data from various sources. Since PH data are often
noisy or exhibit other quality problems, careful processing is needed.
Interactive analysis and visualization techniques need to be adapted
to PH scenarios.

As general requirement, PH systems should be designed in a user-
centric way to enable users to transform the heterogeneous health
data to actionable information [AHFSP17, GLG*12]. We extract
the following specific requirements:

� R1 Provide an overview of the data.
� R2 Enable analysts to integrate expert knowledge.
� R3 Provide familiar visualizations.
� R4 Provide integrated information.
� R5 Provide visual support for association analysis.
� R6 Provide visual support for comparisons.

This set of requirements is only a starting point and needs to be
extended for any specific application. Additional requirements may
arise, for example, with respect to analytical components, spatial

and temporal visualizations. The techniques discussed to fulfil R1
to R4 are primarily related to task T1 (exploration). R5 is related
to T3 (finding associations). R6 is related to T5. In the following,
we discuss the specific meaning of these general requirements for
visual analytics in PH.

Provide an overview of the data. Users benefit from an overview
of the available dimensions and the distribution of values for ex-
ploratory analysis. For a small number of dimensions, histograms
may serve as an overview. For spatial data, frequency should be
presented along with a map. Time-line-based visualizations, e.g.
box plots over time, display a temporal development. For large
numbers of dimensions or huge number of patients, more abstract
visualizations are necessary, e.g. a diagram that shows for each di-
mension the skewness of the distribution and the interquartile range
(see [TLLH13] for such an overview of dimensions). An overview
that emphasizes pairs of variables with strong correlations is also
desirable [KLG*16].

Enable analysts to integrate expert knowledge. In particular
for hypothesis-based analysis, it is essential that analysts can spec-
ify which datasets and dimensions they are interested in. This may
include the specification of (socio-)demographic features and the
selection of participants based on lifestyle or variables characteriz-
ing their medical history. Moreover, analysts should be enabled to
exclude participants they consider as outliers. This requirement is
strongly related to task 2.

Provide familiar visualizations. A number of visualizations,
e.g. certain map-based visualizations, time-line-based visualiza-
tions, Kaplan–Meier curves and Mosaic plots are widely used in
PH research. Kaplan–Meier curves display the portion of patients
who survive after diagnosis for a certain amount of time. They may
also be used to compare the survival between subpopulations, e.g.
with different health status or to compare the survival for different
kinds of treatment, e.g. to report on a case-control study. Familiar
visualization techniques should be preferred over techniques pri-
marily known to visual analytics experts. Visualization techniques
should also be given names that are familiar in PH, e.g. a time-line-
based visualization that indicates how the frequency of a disease
changes over time is called an Epi(demic) curve (see Section 4.5).

Visualization techniques based on age pyramids are widely used
to show which age groups are affected and whether there is a gender
effect. An age pyramid consists of two vertical histograms that
indicate the number of women and men in this age group in a
certain region. The number of people is shown for age groups of 5
years or for age groups of 1 year. They can also be used to display the
incidence or prevalence of a disease in this age group (see Figure 2),
which is referred to as outcome pyramid [CWCN11].

Provide integrated information. The complexity of PH tasks
and the underlying data requires the design of a set of coordinated
views. A careful selection of individual views, an appropriate spa-
tial layout that supports the user in assessing relations and synchro-
nization techniques, e.g. synchronized emphasis of information in
different views, may support complex surveillance tasks. Overview
types of visualization, in-depth display of selected datasets or di-
mensions, displays of relations between dimensions and map-based
visualizations are typical components of visual analytics systems
(not only) for PH.
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Figure 2: Age pyramid-inspired visualizations of disease frequency.
Left: Salmonellosis in the whole United States elderly population
(aged 65–85). Right: Salmonellosis cases in Massachusetts with
strongly increased frequency for small children and a smaller second
peak among young adults (from: [CWCN11]).

Provide visual support for association analysis. Association
analysis (T3) requires dedicated support. A visual analytics sys-
tem may compute correlations for all pairwise attributes or a user-
specified subset. Matrix views may colour-code correlation coeffi-
cients to direct the user to strong (positive or negative) correlations.
Different correlation measures may be incorporated. The rank-by-
feature framework [SS05] may serve as orientation and Klemm
et al. [KLG*16] as a solution developed for epidemiology research.

Provide visual support for comparisons. Since comparisons
are essential in PH activities (T5), specific support needs to be pro-
vided. We already discussed age pyramids as a tool for gender and
age comparison. Comparison support is often also needed for tem-
poral developments, e.g. data from a current outbreak should be
compared to historic data. Temporal alignment and synchroniza-
tion are essential issues. Many techniques are available to support
comparisons in side-by-side overviews or in an integrated manner,
where different datasets are overlaid [PP95].

The requirements and tasks discussed in this section are quite
general for PH. Thus, a researcher aiming at supporting PH may use
them as a starting point. For a specific PH problem, e.g. injury or
cancer prevention, further more specific requirements arise. These
more specific requirements are discussed directly with the specific
applications (Sections 5–7).

3. Data for Public Health

We now describe the data that are acquired or already available
for PH activities. The large amount of data, related to patients’
symptoms, diagnoses and treatment in hospitals and insurance
companies can be used for research, in particular for disease
understanding and for preventing diseases or further complications
of an already diagnosed disease. PH-related data have unique
properties that make the analysis difficult.

� The high number of dimensions, e.g. in population-based cohort
study data often several thousand dimensions, hamper a compre-
hensive analysis.

� Data are heterogeneous, including scalar, ordinal, categorical and
binary variables. Diagnosis, previous treatments and prescribed
drugs are examples for categorical data. There are even hierar-
chies of categories, e.g. respiratory diseases and cardiovascular
diseases as high-level categories. Measures derived from blood
or urine samples are scalar data. The stage or severity of dis-
ease is an example for ordinal data, e.g. non-hypertensive, mild,
moderate and severe hypertension. Epidemiological studies often
consider whether a patient is exposed to a risk or not–yielding
binary data, e.g. being a smoker.

� Data often have a temporal and a spatial dimension, e.g. data
related to the outbreak of infectious or food-borne diseases.

� Despite measures to ensure data quality, it is often far from
perfect. The amount of missing data, e.g. patients dropping out
of follow-ups in cohort studies, typically is too high to restrict
the analysis to complete cases.

� Data are not perfectly reliable, in particular self-reported data,
e.g. on nutrition behaviour, alcohol and tobacco consumption is
often biased towards social expectations, i.e. people pretend to
follow a healthier lifestyle than they actually do.

In summary, PH-related data are often of complex nature and
the analysis may benefit from flexible and tailored VA solutions
(see also [AHFSP17]). A wide variety of data are systematically
collected to study public health indicators [ZS17], including:

� public health status, e.g. prevalence of diseases, such as diabetes,
� health risks, e.g. high blood pressure or obesity,
� outcomes of health care programmes, such as cancer screening,
� health equity indicators that indicate how similar the health status

is for population groups defined by social, economic or regional
factors. Health equity is an essential goal of PH activities.

� Performance indicators, e.g. waiting times for certain diagnostic
procedures or surgical intervention.

Severe diseases, such as all types of cancer, are reportable and all
known cases are collected in specialized registers. Cancer registers
comprise, e.g. age, gender, location of the tumour, stage [BZKF13]
and in case of clinical registers also diagnostic and therapeutic
procedures as well as their outcome. The same applies to severe
infectious diseases, heart diseases and neurodegenerative diseases.
Also, severe injuries are recorded in trauma registries.

For the analysis of temporal changes, it is essential to relate the
data to regulations and legislative issues, e.g. the introduction of
a screening programme or the prohibition of smoking in restau-
rants [RTM*07]. The reported cases may strongly differ from the
actual cases. Thus, when the (reported) numbers change over time,
analysts need to understand whether the likelihood has changed
that a disease is actually reported, e.g. based on media attention,
to avoid wrong conclusions. Prescription data and over-the-counter
sales are timely data and thus useful to analyse short- and long-term
trends. Research studies also create data that may be relevant for
PH activities. However, credibility and validity need to be ensured
in particular for industry-sponsored research [ZS17].
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3.1. Population-based cohort study data

Population-based cohort studies are the ideal research instrument
to answer research questions related to the ‘combined effects of
lifestyle, occupation, and environment, social and psychological
factors and genetic predisposition on disease development’ [Con14].
General goals of population-based studies are:

� estimations of prevalence and incidence of diseases,
� better understanding of the differences between healthy ageing

and beginning pathologies,
� identification of risk factors for severe diseases,
� identification of pathways from risk factors to chronic diseases,
� evaluation of markers for diseases in a preclinical stage to foster

specific prevention measures and
� assessment of geographic and socio-economic differences in

health status in different regions.

Population-based studies involve a representative sample of the pop-
ulation in the target region (recall Section 2.1). Typically, a random
sampling of registry data is performed to determine the sample of
the persons to be invited, i.e. the epidemiological researchers have
to cooperate with the local administration to get access to the rel-
evant data, including addresses. Various measures are combined to
achieve a high participation rate. Strict quality insurance policies
apply to all types of data acquisition. As an example, all enrolled
physicians and study nurses are instructed how to perform a mea-
surement, e.g. of blood pressure, to achieve the highest possible
degree of reproducibility. For the same reason, the hardware and
software of MR scanners employed in a cohort study needs to be
kept constant in the whole 4-year period of a cycle. Publications on
cohort studies in epidemiology journals therefore dedicate a large
portion to ‘Quality control’ [JHLea01]. The strong emphasis on
data quality and the unbiased selection of participants are major
differences to the retrospective analysis of data acquired in the clin-
ical routine. Not all examinations that are desirable from a research
point of view are actually integrated in cohort studies. Ethics, data
protection and cost-effectiveness lead to constraints for the design
of cohort studies.

While most of the goals can be achieved with regional and mid-
sized studies (several thousand participants), in particular the last
goal requires large, nation-wide or international studies. Cohort
studies are carefully planned, including an in-depth discussion of
the instruments to be used, i.e. the specific choice of examinations,
questions to be answered by the participants, laboratory tests as
well as imaging. The recruiting of participants is centred around the
following questions [TSP*09]:

� How many participants are needed to reliably identify risk factors
for selected diseases?

� What are the specific criteria to select participants, e.g. with
respect to age, gender and geographic area?

� How to invite participants and render the participation attractive?

Related to the privacy of data, data need to be consequently
anonymized, which means that personally identifiable information,
such as the names of patients or participants are encrypted or deleted.
Also, the exact birth date is removed. Only the year of birth is typ-
ically registered, which is sufficient to categorize participants with

respect to age groups. Moreover, it should be avoided that a de-
anonymization is possible. As an example, a computed tomography
(CT) head scan with high resolution could enable to recognize the
person.

Image data. In modern cohort study data, imaging is regularly
used to detect early subclinical signs of diseases or precursors
thereof. Hepatic steatosis (fatty liver) or left-ventricular function
are examples for such subclinical signs [BKWea15]. In population-
based studies, primarily magnetic resonance imaging (MRI) and
ultrasound data are used. X-ray or CT involve ionizing radiation
and are thus potentially harmful, representing an ethical problem
in case of healthy volunteers. For the same reason, MRI is used
without a contrast agent [BKWea15].

In the following, we describe selected cohort studies:

� Rotterdam study,
� Study of Health in Pomerania (SHiP) and
� UK Biobank.

While the first two studies are population-based, the UK Biobank
is not. However, the invitation process is the only major difference.
Thus, we mention this important study here as well.

Rotterdam study. This study was started in 1989 with a cohort
of 7983 persons aged over 55 years [HvdKHea06, IBM*17]. This
cohort was repeatedly examined to understand age-related effects of
health with a focus on diseases with high prevalence in the elderly.
This includes the coronary heart disease, neurodegenerative diseases
and eye diseases, such as Glaucoma. To enable comparability, the
set of investigations was rather stable over time. Only few new tests
were included in later cycles, e.g. because of wider availability or
increased interest in certain diseases. The initial cohort was exam-
ined in six cycles until 2015 when the cohort was reduced to 1153
persons. New cohorts with younger participants were established in
2001, 2006 and 2014 [IBM*17].

Key objectives of the study include the prevention of the first
cardiovascular event, e.g. cardiac infarction, secondary prevention
following a first event and the prevention of chronic diseases.
Gender-specific differences were considered, e.g. the concept of
a healthy menopause was developed for characterizing women’s
health.

A large variety of age- and gender-specific effects was reported
based on the Rotterdam study [IBM*17]. To give a few examples,
it was observed that men are at a higher risk to develop coronary
heart disease as first cardiovascular event, whereas women are at
a higher risk to develop cerebrovascular disease with the risk of
getting an ischemic stroke. The study also enabled the analysis of
the combined influence of endocrine, inflammatory and other factors
on disease initiation. Thus, risk markers for disease monitoring and
early detection could be identified.

SHiP. This study is carried out in the northeastern part of
Germany. It was initiated in the 1990s when this region suffered
from a high unemployment rate and below-average health and
life expectancy after the German re-unification. It was known that
differences between the East and West German population existed
in terms of health indicators, such as allergies. The SHiP aimed
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at extending this knowledge with comprehensive data acquisition.
In contrast to the Rotterdam study, a large age range of adults
(20–79 years) was considered [VASea11]. The SHiP aims at a broad
range of diseases. As an example, complex dental and medical
examinations were carried out and new hypotheses for relations
between the dental status and a range of diseases were derived.
In-depth interviews were carried out covering many aspects of the
participants’ social life, family history of health-related events and
working conditions [JHLea01].

The SHiP encompasses two cohorts: SHiP (aka SHiP-core)
started with 4308 participants in 1997 (SHiP-0) with follow-up in-
vestigations every 5 years and is currently at its fourth wave SHiP-3
(1700 participants, 2014–2016). The second cohort, SHiP-Trend,
started with 4420 participants in parallel with SHiP-2.

UK Biobank. The UK Biobank involves 500 000 participants
(aged 40–70 years) and a broad range of measures to understand the
well-being and health status of these participants, including genetic
samples, comprehensive self-reported health data and dietary intake
data [GI15, SGAea15]. Three hundred twenty nine variables related
to physical measures, such as blood pressure, and 471 variables,
e.g. related to lifestyle and health history, were acquired during
interviews. In contrast to the previously described studies, the cohort
is not a representative sample of the population because it consists of
healthy volunteers. Therefore, a selection bias occurs. The baseline
phase of the UK Biobank was between 2006 and 2010 and follow-
up investigations are ongoing. While a basic genetic phenotyping
was performed for all participants, 100 000 UK Biobank participants
have worn a 24-h activity monitor for a week. Online questionnaires
were used to study the participants’ cognitive function and work
history. Imaging data for 100 000 participants are available covering
the brain, the heart, the abdominal region and the skeletal anatomy
[PMBea13]. The UK Biobank is linked to many other sources, e.g.
electronic health records that characterize hospital information. The
study data lead to the discovery of complex relationships. As an
example, Firth et al. [FST*18] found that severe mental illnesses,
e.g. schizophrenia, and bipolar disorder are related to a low-quality
diet and poor nutritional status.

Joint analysis of cohort study data. Although the above-
mentioned cohort studies are large and enable statistically signifi-
cant results for frequent health disorders and moderate effect sizes,
they are often not sufficiently large to study subtler effects or less
frequent diseases. Moreover, it is scientifically more convincing if
the effect that was observed in one study can be replicated in an-
other one. This kind of confirmation could largely exclude specific
local effects, e.g. due to nutrition patterns and socio-demographic
specifics. The joint analysis of cohort study data is challenging,
because the examinations are not completely standardized. Despite
these difficulties, there are meta-studies. The most recent report on
the Rotterdam study (recall [IBM*17]) contained references to such
studies. To better facilitate such joint analysis, harmonization of
data collection is aimed at [Con14].

Summary. Comprehensive cohort study data are acquired for
medical research. Most data are available for all examination cy-
cles; however, some were added or removed based on changing
research priorities and availability of instruments. The data from
the Rotterdam study and the UK Biobank were widely used for

image analysis research. The first examination cycle of the German
National Cohort is announced to be completed in summer 2019 and
is not yet used for in-depth analysis. So far, only the SHiP data
were used for visual analytics research [KOL*14, KLG*16] (see
Section 7).

3.2. Clinical data

Clinical data are not the focus of most PH activities, but they add
valuable information in case of urgent health problems. Electronic
Medical Records contain all information related to the hospital
stay of each patient, e.g. all diagnostic results and treatments.
They primarily serve for billing purposes. Thus, information that
would be interesting for research may not be available or is tedious
to extract since no filtering of cohorts or statistical analysis of
relations is supported [BSM*15]. Recently, tools were developed
that support research based on medical data, e.g. the Observational
Health Data Sciences and Informatics (OHDSI) system [HDS*15].
The OHDSI system was used by an international team with 11
partners summarizing data from 250 million patients mapped to
a joint standard [HRD*16]. Such tools have a great potential, but
the large majority of medical researchers are faced with hospital
information systems optimized for billing purposes without support
for research tasks. Hospital admission and emergency department
(ED) data including basic demographics and major symptoms
are further sources of information often used for the analysis of
outbreaks [GLG*12, MTJ*07].

3.3. Other data for public health

A wide variety of sources are employed for solving PH tasks.
These include national census data and health surveys. Moreover,
the temporal development of web queries related to symptoms
and diseases, prescription data and results of laboratory tests, in-
cluding microbiological testing for respiratory and gastrointestinal
pathogens, are useful for analysing an acute epidemic [GLG*12].
Ali et al. [AAA*16] mention emergency calls, school absentees
and ambulatory data as further sources for infectious disease
outbreak detection. Mortality data involving a precise classification
of the cause of death are essential for monitoring long-term
trends, related, e.g. to chronic diseases, cause of injuries or cancer
epidemiology.

A cancer registry is an information system where comprehensive
data on cancer patients are in a standardized manner to support
statistical analysis and answer questions related to trends in partic-
ular types of cancer, e.g. changes in the incidence or survival rates.
Cancer registry data are available in most countries and include
gender- and age-specific incidence and mortality rates (the rate of
people dying from a disease) that is spatially referenced [CRN*08].
These registries are population-based, i.e. all cancer cases in the
respective region or country are considered avoiding a selection
bias. While some cancer registries only represent diagnostic
information (type of cancer, stage of the disease and tumour grad-
ing), others also represent the specific treatments and their timing
supporting an analysis of the effectiveness of treatments. The spatial
reference of patients is encoded with zip codes, electoral wards,
cities and districts and thus enables an analysis at various spatial
scales.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



552 B. Preim and K. Lawonn / A Survey of Visual Analytics for Public Health

Data that are relevant for PH differ in timeliness and reliability. As
an example, web queries are timely indications for an epidemic. The
GoogleFlu project (https://www.google.org/flutrends/about/) aimed
at predicting the development of a flu and dengue fever outbreak
based on web queries faster than with conventional methods. It
was not successful since the web queries are not reliable enough.
Confirmed lab tests for a specific pathogen represent more reli-
able information.

3.4. Data preparation and data management

The data from different sources need to be loaded, validated, cleaned
and integrated. This is often a time-consuming process that is not
fully automated since the variety of formats is large [MOSB16].
A subsequent step is the storage of the data in an appropriate
way that enables fast and convenient access. A classic relational
database is not ideal for storing the complex and heterogeneous
data of cohort studies, since it is not sufficiently flexible and leads
to performance problems in case of queries that require table joins
[AOH*14]. Data cubes, optimized for online analytical processing,
enable faster access. Angelelli et al. [AOH*14] enhanced this con-
cept that is used for the POLARIS system [STH02]. They implemented
it with n-dimensional in-memory arrays.

A data dictionary is typically provided along with a cohort study.
The SHiP, for example, contains a data dictionary with specific
information about each variable, data type, admissible range and
consistency rules that define admissible combinations between vari-
ables. We do not focus on data preparation and data management
since the visual analytics publications rarely discuss these issues.

4. Commonly Used Visual Analytics Techniques

In this section, we describe rather general techniques that we found
in a larger number of systems. In later sections (5–7), we describe
specific problems and systems that use such general techniques but
may add some special techniques or combine the general techniques
in a special way. Thus, if a new PH problem is tackled, the general
techniques described in this section should be considered first. Then,
it may be useful to consider which of the problems described in
Sections 5–7 is similar and to use the specific discussion of a similar
problem as further inspiration.

4.1. Dashboards and multiple coordinated views

In most applications, several views are combined and coordinated
to give an overview on heterogenous data. General strategies for
multiple coordinated views (MCWs) [Rob07] also apply for PH care
applications. Chui et al. [CWCN11] present a variant of MCWs that
is applicable to a wide range of PH tasks. They combine three views
to enable mental integration:

� an age or outcome pyramid, where age is depicted on the vertical
axis,

� an age-time image plot, where age is depicted on the vertical axis
and the horizontal axis represents time,

� a timeline, where the horizontal axis represents time and the
vertical axis represents the incidence of a disease.

Figure 3: An outcome pyramid (left), an image plot (lower right)
and a time-line-based view (upper right) are combined. Note the
common axis and the alignment of the views (from: [CWCN11]).

The image plot is a two-dimensional (2D) histogram, where the joint
frequency of a disease and an age group is counted and mapped to
brightness, saturation or another one-dimensional (1D) colour scale.
Such image plots may have characteristic patterns, e.g. oblique re-
gions with increased values representing a subpopulation that suf-
fered from a disease early and carries the disease along time when
they age. The three plots are aligned such that the correlation be-
tween the outcome pyramid and the image plot in terms of the
common axis ‘age’ and the correlation between the image plot and
the timeline-based visualization along the common axis ‘time’ is
easily perceived (see Figure 3 ).

While MCVs are the established term in the visual analytics field,
PH experts frequently use the term dashboard. A dashboard presents
all relevant information of a particular process or for a particular task
in an integrated manner [Few06]. Many dashboards, like MCVs, are
created with frameworks, such as Tableau. A difference relates to
the coordination between the views: While such a coordination is
mandatory for MCVs, the individual views in a dashboard are often
not coordinated. Another slight difference relates to the complex-
ity of the individual views and their combination. PH publications
include dashboards that are designed for simplicity, i.e. rather sim-
ple charts or map-based visualizations are used [JAK*17]. MCVs
introduced at Visual Analytics venues have a stronger tendency to
include novel and quite complex designs. We use the term dashboard
in particular if the authors used this term.

The individual views in dashboards and MCVs often comprise
scatterplots, partially enhanced with regression lines [AOH*14,
SMvB*10]. Scatterplots and scatterplot matrices often display two
classes, e.g. participants with a health risk and those without (see
Figure 4, left) or woman and man. The number of patients or par-
ticipants is typically not huge. Therefore, overplotting is not con-
sidered. While scatterplots represent scalar values, mosaic plots are
used for nominal or binary data (Figure 4, right). Graph and net-
work visualizations are employed to study associations (task T3),
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Figure 4: A subpopulation of the SHiP data is analysed with re-
spect to hepatic steatosis (fatty liver). The scatterplot matrix (left)
displays laboratory values for participants with and without fatty
liver. The mosaic plot (right) indicates that participants with a di-
abetes diagnosis are at higher risk for fatty liver. In both images,
orange represents participants with fatty liver (Courtesy of Shiva
Alemzadeh, University of Magdeburg).

e.g. between different diseases or between diseases and exposures
[BDD14]. Treemaps are occasionally used to indicate the relative
frequency of events [MHD*14, TRL*17]. Histograms and other
summary views may also be incorporated [LRS12].

In the EPINOME system, Livnat et al. [LRS12] also enable to add
or remove views. They discuss, however, that the typical approach
to update all views affected by a selection for example is often
not desirable and advocate loosely coordinated views, where only
summary views are adapted.

Web-based solutions are frequently used to support easy access
of various stakeholders [ANI*17, JAK*17, LRS12, KLG*16]. Also,
Carroll et al. [CAD*14] list numerous web-based systems for as-
sessing infectious disease-related data.

4.2. Interactive subpopulation definition

Traditionally, health data are separately analysed for women and
men and often also for different age groups to understand if certain
populations are particularly affected by a disease. In an interactive
system, this is supported by demographic filtering. Often, analysts
are interested in subpopulations that share some risk factors or
other health attributes and investigate the prevalence of diseases
for them. Subpopulations may be defined in an interactive manner
or by means of analytic techniques, such as clustering or decision
trees. Basic interactive selection techniques include range sliders
for numerical values, checkboxes or radio buttons for nominal data,
such as gender. Since often several hundred variables are available,
some user guidance is essential.

The challenge is to present the essential interactive facilities in
an easily accessible manner. The analysis of subpopulations with
statistical methods is only meaningful if the subpopulations’ size
is not too small. Therefore, this information should be easily rec-
ognizable whenever the filter changes. When subpopulations in a
cohort study or case-control study are selected, this is referred to as
cohort construction [KPS15].

More complex specifications may be useful, e.g. to select patients
who experienced adverse drug effects (ADEs) within a certain in-
terval after taking a drug. Thus, there are certain events, typically
categorized, e.g. as begin/end of symptoms, begin/end of treatments,
admission/readmission in the hospital, which may be used to filter
the data.

Thus, epidemiologists may drill down further, e.g. with respect
to co-occurring drugs or the indication or severity of medical prob-
lems. While the initial event-type analytics was focused on single
patients, later smaller and even larger groups of patients could be
analysed by a combination of query methods and event simplifica-
tion strategies. Advanced visual query methods have been developed
for such temporal event data based on temporal logic by Allen and
Ferguson [AF94] who described the 13 unique relations between
two intervals. Examples for such query methods include [GWP14,
MLdO*13, WLB*17, ZGP15]. These methods address the speci-
fication of an initial query, the presentation of the results and the
refinement of a query in a convenient manner (without the neces-
sity to completely reformulate). Graphical methods that present the
temporal relations in an intuitive manner are considered useful by
epidemiologists [MLdO*13]. While temporal event specification is
essential in clinical health care and some branches of PH, it is less
important for cohort study data with a few points in time only.

4.3. Analytical methods for subpopulation definition

Vulnerable subpopulations with a strongly increased risk for a dis-
ease are interesting. Thus, when the risk of a subpopulation differs
strongly from the global mean, epidemiologists want to understand
the features that characterize such subpopulations. Analytical meth-
ods may reveal such subpopulations where purely interactive meth-
ods are not powerful enough. Hrovat et al. [HSKO14] and Niemann
et al. [NSVK14a] employed association rules. Niemann et al. com-
bined them with decision trees that were automatically computed
yielding a hierarchy of split attributes. Alemzadeh et al. [AHN*17a]
employed subspace clustering. All three methods are steered by
some input parameters and yield quite complex results. Interactive
visualization is required to support the adjustment of the input pa-
rameters and inspect the results.

Association rules may characterize subpopulations with certain
characteristics, e.g. an increased risk, and were therefore used for
PH data [HSKO14, NSVK14a]. Association rule mining algorithms,
such as Apriori, effectively search for all association rules. To re-
duce the amount of rules, the search may be restricted, e.g. to rules
with minimum support (ensuring that the number of affected per-
sons is not too low) and a minimum confidence (ensuring that the
rule leads to a correct conclusion in the majority of persons). Since
even with such filters, often many rules result, they may be sorted
according to further interestingness measures, such as the maximum
length of the rules. Typically, PH academics are interested in rather
short rules avoiding a complex description of a subpopulation. As-
sociation rules may be shown as glyphs in a scatterplot where the
position in x and y directions, colour and size visually represent
up to four interestingness measures. The user may select rules to
inspect them in detail in a second view. This particular visualiza-
tion is only a proof-of-concept and not widely used. We include it
since association rules were used in data mining research related
to epidemiology.
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For time-dependent data, temporal association rule mining may
represent how subpopulations change over time. Temporal associa-
tion rule mining was employed by Hrovat et al. [HSKO14] to analyse
about seven million hospital discharge data, including up to 15 di-
agnoses along with demographic data. Niemann et al. [NSVK14a]
present the INTERACTIVEMEDICALMINER that combines decision tree
classification with association rules and presents the results graphi-
cally to support the adjustment of parameters for decision tree and
association rule computation. Their system was applied to a subset
of the SHiP data (recall Section 3.1).

Clustering is frequently applied to determine groups of patients
or participants who are similar to each other and dissimilar to oth-
ers. Clustering is a useful technique if the data do not involve too
many dimensions. Kwon et al. [KEV*18] described a clustering
method supported by various visual aids to enable an understanding
of alternative clusterings and adjust parameters in a goal-directed
method. In a case study, they applied their method to clinical data
of patients with heart failure. Clinical scientists used this method to
extend their initial selection of three patient groups, e.g. one group
with obese patients and diabetes and one group with elderly pa-
tients chronic kidney disease. If an epidemiologist manually breaks
down a larger set of data to a rather low number of dimensions, this
technique may also be useful in PH.

Subspace clustering is useful for analysing truly high-
dimensional data (>20 dimensions) where global clustering is not
promising due to the curse of dimensionality. For PH data, sub-
space clustering is beneficial, since persons are likely to be similar
in some dimensions but not in all. Subspace clustering is typically a
two-stage process: clusterable subspaces, where some regions have
a very high density are identified in the first stage and a clustering
method, such as DB-Scan [EKS*96] or Optics [ABKS99], is applied
to these clusterable subspaces in the second stage. As an example,
for the first stage, Kailing et al. [KKKW03] provide a ranking of
subspaces and enable the analyst to choose, for example, the top N
subspaces for clustering.

Subspace clustering involves several parameters that influence the
search and ranking of subspaces as well as the clustering within the
selected subspaces. Thus, Niemann et al. [NSVK14b] considered
the application to cohort study data as not advisable since the results
are too sensitive to a number of parameters. As a consequence, the
same group developed a constrained-based technique, where the
clustering is guided by a small set of constraints, given by an expert
[HNP*18]. As an example, for a few pairs of participants diagnosed
with fatty liver, the expert specifies that these participants must be in
the same clusters, whereas some other pairs of participants are forced
to be in different clusters since one in each pair is diagnosed with
the disorder and the other is not. This semi-supervised subspace
clustering turned out to yield relevant results for epidemiologists
[HNP*18].

Alemzadeh et al. [AHN*17a] used this semi-supervised subspace
clustering for the high-dimensional data of the SHiP. They described
the visual exploration of subspace clustering results for the SHiP
data (recall [JHLea01] and Section 3.1). As an overview, subspace
clusters are displayed in a 2D view where multi-dimensional scal-
ing was applied to map the similarity between the clusters to spatial
proximity (Figure 5, left). Similarity for subspace clusters relates to

Figure 5: The results of subspace clustering applied to cohort study
data are shown in an overview (left). Each subspace cluster is shown
as a donut where donuts with a larger inner circle (hole) represent
clusters with few members only. Grey values represent dimensions
that do not contribute to this subspace cluster. The four colours
represent dimensions of different categories, e.g. medication and
laboratory values. The detail view (right) reveals information on
the participants. Darker colours represent greater values and black
represents missing values (from: [AHN*17a]).

Figure 6: For all subspace clusters, red indicates the portion of
participants with a positive outcome, e.g. fatty liver, and green rep-
resents the healthy participants. The y-axis indicates the average
(and variance) of the body mass index (BMI) in these subpopula-
tions. Members of subspace cluster S2-9 with a BMI index of about
30 have an increased risk for fatty liver. Such visualizations are pro-
vided for all dimensions that contribute to several subspace clusters
(from: [AHN*17a]).

the overlap between the dimensions and the instances of subspaces
[AKMS07]. As an example, age is a dimension that contributes to
different subspace clusters. Alemzadeh et al. [AHN*17b] discuss
the use of this method in an extensive case study, involving the val-
idation of the determined subpopulations in an independent cohort.

For selected subspace clusters, details are presented in additional
views (Figure 5, right). The colours represent different categories
of the data, e.g. laboratory values, medication, physical status and
habits. To explore a selected subspace cluster in detail, scatterplot
matrices are also available (recall Figure 4, left). For supporting an
overview, scaled bar charts were also employed. They reveal for a
health risk, such as high blood pressure, the portion in the different
clusters. Thus, it becomes obvious when a cluster (representing a
subpopulation) exhibits a risk that is strongly increased compared to
the global mean (see Figure 6). Such design decisions were based on
discussions with epidemiologists with respect to good overview vi-
sualizations.
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Subspace clusters may have arbitrary shapes. Epidemiologists,
however, prefer hyper-rectangular clusters, such that a subpopula-
tion may be described by a set of intervals, related, e.g. to some
laboratory values, the body mass index and alcohol consumption. A
hyper-rectangle is the generalization of a rectangle to N dimensions.
Alemzadeh et al. [AHN*17a] therefore support the transformation
from arbitrary shapes to hyper-rectangular clusters. Since epidemi-
ologists aim at a verification of findings from any data mining tech-
nique (task T4), the authors also supported the validation of the
subpopulations in an independent cohort.

4.4. Spatial epidemiology

The spatial context of health data, e.g. regional differences in de-
mographics, social status, health risks or prevalence of diseases, is
essential to understand spatial correlations. Spatial epidemiology or
health geography, as it is also called, aims at an understanding of the
link between environmental factors and human health, pathways of
spatial distribution and resulting health risks [BAHJ08]. Spatial epi-
demiology is an instance of geo-visual analytics and thus also has its
roots in cartography. Atmospheric pollution and the consequences
of climate change are some examples for topics addressed in spatial
epidemiology [JGK10]. Spatial modelling comprises visualization,
exploration and statistical analysis of geo-referenced health data and
aims to assess whether certain deviations of local health risks are
significant and require actions.

Map data are needed to relate information to geographic desti-
nations accurately. As a consequence, geographic information sys-
tems (GIS) may be enhanced to provide support for PH tasks that
involve spatial information. Jerret et al. [JGK10] give an overview
involving aspects, such as meteorological dispersion of pollutants
and behavioural changes that interact with each other and influence
health risks. Again, finding a strong correlation of local regions with
a health risk may not represent a causal relation. Various factors,
such as pollution, infectious pathogens but also genetic susceptibil-
ity vary locally and also interact with each other.

Disease mapping. Map-based views are useful if there is a rather
constant background risk for getting a disease and a peak frequency
is likely attributed to a source of contamination. Maps are also used
to detect disease clusters, i.e. frequent co-occurrences of diseases.
Elliott and Wartenberg [EW04] mention as an example that the spa-
tially increased occurrence of infectious diseases, such as Hepatitis
B, and some types of cancer lead to the hypothesis that these infec-
tions increase the risk of cancer. An important area is disease map-
ping where the local frequency of diseases is displayed to identify
regions with excessive disease load. Elliott and Wartenberg [EW04]
mention examples, including atlas data related to cancer mortality
or more general to causes of death.

Layer-based visualization. Map-based data are often repre-
sented in different layers, e.g. a background layer with major cities,
rivers and administrative borders and various layers that may be
combined with the background layer, e.g. locations of hospitals,
diseased persons or water reservoirs as possible sources for infec-
tious diseases. An overlay of different layers is typically superior
to side-by-side displays of the individual map layers, as already
discussed by Jaques Bertin [Ber66]. Luz and Masoodian [LM14]
discuss the use of a semi-transparent foreground layer to improve

the interpretability of the map-based data. They use examples from
epidemiology to discuss the appropriateness of three transparency
levels depending on the background complexity. Colours are widely
used in all types of map-based visualization, including health ge-
ography. The ColorBrewer [HB03] provides guidance for a careful
selection of colours for map displays. It is also available online.

Malaria Atlas project. As an example for a global activity, the
Malaria Atlas project aims at integrating and communicating infor-
mation on parasite rates, parasite types and epidemiological data,
e.g. population at risk, malaria morbidity and mortality [GHL*07]
(recall Figure 1). The density of information sources is quite diverse
and a map-based visualization conveys this essential information.
Furthermore, various charts are potentially useful, e.g. how many
sources of parasite information are available per country or the
land coverage (forest, rivers, cities, etc.). Spatial queries, e.g. the
search for the k nearest neighbours, often are supported [AAA*16].
In conclusion, Jerret et al. [JGK10] stated that GIS and related
systems are established in PH. Also, Beale et al. [BAHJ08] give
an overview of tools that support mapping health data along with
spatial statistics. In this subsection, we discuss general aspects of
spatial epidemiology. In Sections 5 and 6, we shall discuss specific
examples, e.g. related to infectious disease outbreak and air quality
surveillance.

4.4.1. Data

Spatial epidemiology relies on detailed geo-referenced health data
along with precise population data. Only if these two sources of
information are accurate, summary measures per area, such as stan-
dardized mortality rates (SMRs), are meaningful. SMR, the number
of cases in a study group divided by the number of cases from
the general population, is one of the essential characteristics of the
local dispersion of a disease. The underlying spatial data, e.g. var-
ious health indicators, environmental factors and population data,
are rarely independent. Thus, spatial autocorrelation has to be taken
into account [BAHJ08].

4.4.2. Small area epidemiology

Elliott and Wartenberg [EW04] discriminate small-area statistics
and more global statistics. Small-area statistics, e.g. local indica-
tors of spatial association, are employed to understand the effect
of socio-economic differences or pollution on health. Small area
statistics identify and summarize regions with an unusual incidence
of diseases. Bayesian models and generalized mixed linear models
are frequently applied to study spatial effects taking into account
confounding variables, e.g. the effect of air pollution on respiratory
diseases with smoking behaviour as confounder [JGK10]. Small-
scale spatial epidemiology is sensitive to data protection issues. The
publication of small-scale information related to pollution and dis-
ease frequency, for example, may influence property values and thus
may be against the interest of the related population.

4.4.3. Visualization techniques

In this subsection, we introduce map types that are widely used
in PH.
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Figure 7: A choropleth map indicates the mortality due to colon
cancer on a county level. The maps can be generated for a certain
year and for different age groups. Users may see details, including
uncertainty for the selected county as tooltip (Screenshot gener-
ated from http://www.healthdata.org/data-visualization/us-health-
map at 20/7/2019).

Figure 8: A heatmap (left) shows the cases of haemorrhagic fever
in Pakistan with a hot spot in the northeast. The right view contains
markers for the most recent cases (from: [AAA*16]).

Choropleth maps are widely used to visualize area-based geo-
graphic information along with associated data, such as influenza
cases in a certain age group per region (see Figure 7). The data under-
lying a choropleth map are an aggregation within an administrative
unit, such as a county. However, administrative units are often not
ideal for such aggregation, since they may strongly differ in size and
do not necessarily represent physical boundaries [BAHJ08]. Choro-
pleth maps are sensitive to misinterpretation in case of incomplete or
sparse data [CAD*14]. For example, they may be misleading in case
of smaller regions with a low absolute number of diseases. In such
cases, Castronova et al. [CCN09] suggest to re-aggregate the data,
i.e. to merge adjacent districts until a significant number of cases
is achieved. However, aggregation bears the risk to aggregate low-
and high-risk regions and thus ignore this information by averaging.
Elliott and Wartenberg [EW04] as well as Beale et al. [BAHJ08]
discuss smoothing methods that create interpretable risk surfaces to
avoid wrong conclusions based on small numbers.

Heatmaps are also used to display area-based geographic infor-
mation. In contrast to choropleth maps, they assume continuous data
over a surface and provide more precise information (see Figure 8).
Discrete or continuous colour scales are used to map nominal or
quantitative data. Since data are typically not available for every

Figure 9: A map view is part of the LAHVA system. The spatial
distribution of emergency departments (red crosses) and veterinary
hospitals (green crosses) is shown in a dotplot. The size of the glyphs
represents the number of cases. In the lower left view, the temporal
changes of cases is shown (from: [MTJ*07]).

Table 1: Mapping techniques and their properties.

Technique Sparse Dense Continuous Discrete

Choropleth maps x x
Heat maps x x
Isopleth maps x x
Dotplots x x

unit of the map, e.g. in sparsely populated areas, missing values
are often interpolated. Jerret et al. [JGK10] discuss various inter-
polation methods for spatial data and their properties. Maciejewski
et al. [MRH*08] employ kernel density estimation, in particular
a variable-sized kernel that adapts to the population density. This
estimation improves heatmap generation and was used for the as-
sessment of alerts from an outbreak detection algorithm.

Isopleth maps represent continuous 2D data using isolines. In
spatial epidemiology, they are used frequently [JGK10].

Dotplots represent point-based health data, e.g. positions of
health care institutions or cases of a severe disease [CAD*14] (see
Figure 9). In contrast to choropleth and heatmaps, dotplots and iso-
pleth maps are sparse representations that leave room to display
the underlying geographic data. Like a scatterplot, a dotplot may
suffer from overplotting. Additive opacity may reduce this effect
[MRH*08]. The exact depiction of patient data in a dotplot at a map
with street-level scale involves privacy issues. Therefore, aggregat-
ing, e.g. at zip-code level, is recommended [MRH*08]. Table 1
summarizes essential properties of these mapping techniques.

Multivariate maps. Spatial epidemiology comprises several as-
pects, such as susceptibility of persons, exposures to risk and actual
diseases. Stacked multivariate maps, where each layer represents
one of these aspects [LHM*07], integrate different types of informa-
tion. To avoid visual clutter, layers of information can be displayed
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or hidden. The combination of two dense mapping techniques is at a
greater risk of visual clutter. The simplest multivariate maps repre-
sent for two variables the binary state whether or not a threshold is
exceeded. Thus, an exposure and disease frequency may be mapped
with appropriate colours. MacEachren et al. [MGP*04] use such
visualizations, e.g. to compare regions with respect to the income
level (low/high) and the frequency of diseases, such as acquired
immunodeficiency syndrome (AIDS) (normal/elevated frequency).
DiBiase et al. [DRK*94] give an overview of multivariate map
displays.

Focus-and-context visualization. Chen et al. [CRN*08] present
maps where only a circular region contains sharp high-contrast in-
formation, while the remaining map is shown blurred and with low
contrast. Such a focus-and-context visualization may enable the
focused analysis of regions of interest. The term focusing in the
context of health maps typically means that only regions where a
variable exceeds a threshold are mapped to colour, whereas other
regions are shown in grey [MGP*04].

4.4.4. Uncertainty quantification and visualization

Uncertainty quantification and visualization is widely discussed in
cartography and geo-visualization, see, e.g. the book by Zhang and
Goodchild [ZG02]. Thus, also most papers on spatial epidemiology
discuss the uncertainty due to sampling variability, biased informa-
tion or low absolute numbers, e.g. in case of rare diseases. Map-
based visualizations often include interpolation, simplification or
binning of data—transformations that may reduce precision and
affect interpretation. Appropriate uncertainty visualization may in-
crease trust in the data and has an influence on decisions, e.g. in
health policy. Uncertainty in map-based data occurs with respect
to positions (location uncertainty), attributes (value uncertainty),
completeness and time [MRH*05]. The combined influence of these
uncertainty types may considerably affect trends detected in spatio-
temporal analysis.

Uncertainty quantification. Most spatial analysis in PH is re-
lated to population data, e.g. the incidence and prevalence of diseases
per 100 000 inhabitants (recall Section 2). This requires up-to-date
and reliable population data—a requirement that is often only par-
tially fulfilled in developing countries or in case of stronger recent
migration. Spatial statistics provides a reasonable basis to quantify
the uncertainty in map-based data [ZG02].

Confidence intervals should be computed, in particular for all
area-level statistics [BAHJ08]. This information must be conveyed
at least as temporarily available information, e.g. via tooltips. Con-
fidence intervals assume approximate normality of the data. This
assumption is typically not fulfilled for sparse data. In this case, a
boxplot with interquartile ranges may better capture the uncertainty.
Fuzzy set theory and probability theory are also used to model and
quantify uncertainty in spatial data [MRH*05].

Uncertainty visualization. Various methods were introduced to
display the uncertainty and thus to reveal local differences. Most
of them depict the most likely interpretation of the data along with
its uncertainty. As an alternative, different interpretations of the
data may also be displayed in sequential frames or combined in an
animation [Fis93]. User-adjustable uncertainty thresholds are also

used to restrict the display of map-based data to regions where the
certainty exceeds the threshold [HM96]. Uncertainty visualizations
(in maps) may be intrinsic such that the presentation of the data is
adapted or extrinsic where additional symbols (uncertainty glyphs)
are added to the display [MRH*05].

Beale et al. recommend to analyse map displays with and with-
out smoothing to understand the effects of statistical smoothing.
Monmonier [Mon06] suggests to consider uncertainty as a second
dimension and encodes it with bivariate choropleth maps (an in-
trinsic visualization). Uncertainty in maps is often mapped to the
saturation of a colour, the transparency or blur [MRH*05].

The interpretation of map-based views depends on the chosen
colour scale and on the spatial resolution, e.g. how spatial districts
are summarized. By changing these parameters, different valid in-
terpretations may arise [EW04]. Also, Chen et al. [CRN*08] argue
for analysing and displaying health data at different scales to derive
valid conclusions. They introduced reliability maps that indicate the
certainty of the statistical measures. They employed spatial cluster-
ing with slightly different parameters to identify hot spots—regions
with an elevated risk for some type of cancer. While some clusters
are determined reliably with widely varying parameters, others are
sensitive to small parameter changes.

Evaluation. The effect of uncertainty visualization on the map
users’ perception, interpretation and actual decision-making needs
to be analysed in evaluations. Intuitiveness and trust in decisions are
criteria in such evaluations, see MacEachren et al. [MRO*12] for
an example of such an evaluation.

4.5. Temporal visualizations

The temporal aspect of health care data is often displayed with time-
lines. In contrast to patient-specific and discrete event-based clinical
data, PH data are aggregated for populations and primarily continu-
ous, e.g. the number of cases for reportable diseases is continuously
monitored. Timelines are typical components of dashboards for PH
experts. Several time-dependent data may be shown simultaneously
to enable a comparison, e.g. the number of cases for different dis-
eases, or the number of influenza cases along with the number of
hospitalized influenza cases. Temporal visualizations may be guided
by the restriction to certain regions in a spatial context.

4.5.1. Epidemic curves

Timeline-based visualizations of diseases-related data are often re-
ferred to as epidemic curves or short EpiCurves [LRS12]. They have
a characteristic shape depending on the reason for an outbreak. One
peak is typical for poisoned food that is consumed at one point in
time, whereas for a continuous contamination, like a water pump,
the number of new cases decreases slowly. EpiCurves, representing
infectious diseases, typically show an increase for a longer period.
The scaling of such curves is important. To display temporal inter-
vals with low and very high values simultaneously, e.g. influenza
cases, logarithmic scaling is recommended [CWCN11]. The tempo-
ral axis should be properly labelled. Since most surveillance data are
collected on a weekly basis, labelling based on weeks is favourable
[CWCN11]. For the exploration of longer time series, temporal
zoom and stronger aggregated values are possible.
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Figure 10: Helical icons indicate the incidence of influenza in dif-
ferent months in different districts of a part of Germany (Courtesy
of Christian Tominski, University of Rostock).

4.5.2. Static visualizations

Calendar-based views may be employed to display the incidence of
diseases on a daily basis. A clock metaphor may be used to display
the disease frequency for the 12 months of a year in different regions
of a map display. Tominski et al. [TSS05] extended this idea towards
helical icons (see Figure 10) that integrate the information from
several years and can thus convey the periodicity of the data. In
static visualizations, scalar values are mapped to colour, typically
with green denoting low frequency of a disease and yellow, orange
and red denoting higher frequency. Typically, time is considered
along a linear 1D scale. However, the incidence of diseases may
follow seasonal patterns and thus visualizations that consider the
periodic character of time are useful [AAA*16, MTJ*07].

4.5.3. Animation

The second major type of time-based visualizations is animation,
where one or a few variables are displayed on a map and an ani-
mation indicates changes over time. Animations of health-related
data gained popularity by Hans Roslings’ GAPMINDER that inte-
grates animated bubble charts showing, e.g. how life expectancy
and child mortality developed in different countries. Inspired by the
GAPMINDER, Robertson et al. [RFF*08] analysed the potential and
limitations of animations for trend visualization. In PH, animations
are rarely employed. The Motion charts, introduced by Al-Aziz
et al. [AACD10], represent a notable exception.

The analysis of spatio-temporal patterns may benefit from dy-
namic maps, i.e. animations that enable an observation of changes
of relevant variables in space and time. Castronovo et al. [CCN09]
applied principles from cartography animation [Har03] in order to
generate dynamic maps that do not overwhelm the analyst. Fab-
rikant and Goldsberry [FG05] emphasize the necessity to quantify
the magnitude of change between different frames to adjust speed
and duration of an animation. They suggest to carry out eye tracking
studies to understand which changes are detected. They also suggest
to employ a model of perceptual salience to predict how attention
is focused on different parts of a map and eventually adapt the map
display such that relevant changes are likely perceived.

Dynamic maps may be used to compare developments, e.g. the
rate of Salmonella infections with the temperature development or
the concurrent development of morbidity and mortality related to a

disease. Dynamic maps may reveal relationships that are not rec-
ognizable in static visualizations. However, such animations need
to be observed several times to enable an appropriate interpreta-
tion [CCN09]. Dynamic maps are appropriate for data with a high
temporal frequency and require a careful selection of the temporal
scale. Users may scroll in the temporal domain and thus select a
single point in time. They may also advance time incrementally
with a certain step size, e.g. a week, and restrict the dynamic map
generation to a temporal interval [MRH*08]. Castronova et al. and
Harrower [Har03] discuss principles for dynamic map generation as
well as its application for environmental health data. This includes
a discussion of the complexity, comprehensibility and confidence in
the observations gained from viewing such animations.

5. Analysis and Control of Epidemics

This is the first from three sections to discuss a particular class
of PH problems and solutions. The outbreak of infectious diseases
is a severe problem leading to rigorous surveillance activities in
PH institutions. Worldwide infectious diseases are the second most
frequent cause of death (25%), only exceeded by cardiovascular
diseases [Gon00]. An epidemic is defined as an excess of a severe
illness far beyond normal expectancy [MV13]. Epidemics relate to
communicable diseases. While air-borne infections dominate in the
Western world, water-borne and vector-borne infections, such as
Malaria, are most frequent in developing countries. Infectious dis-
eases may have devastating effects, such as the influenza epidemic
in 1918 that killed more people than World War 1. More recent
examples include the human immunodeficiency viruses (HIV) en-
demics and SARS as a special type of flu. The 1918 epidemic serves
PH authorities to prepare for worst-case scenarios [MLR*11].

Due to technical developments and the increased mobility of
people as well as demographic changes (urbanization), the potential
for a rapid spread of infectious diseases has increased [Gon00,
GLG*12]. To assess an outbreak of a tropical disease, such as
dengue fever, a multitude of information needs to be combined.
Masoodian et al. [MLK16] mention the geographic distribution of
human populations, patterns of land use, location of forests and
water reservoirs and weather information along with disease case
reports.

Often, streaming data from various sources are analysed in
real time to identify an outbreak as early as possible [AAA*16].
Maciejewski et al. [MRH*08] mention symptoms reported by pa-
tients in EDs as essential to detect outbreaks before a large number
of confirmed diagnoses are available. Diseases may not only spread
locally, but connections between cities and the flow of people be-
tween them may be relevant. Therefore, any forecast needs to be
compared regularly to currently available data. The likelihood for the
outbreak of infectious, air-borne and water-borne diseases depends
on seasonal patterns and actual weather conditions [AAA*16]. Thus,
syndromic surveillance requires to monitor multiple streams of het-
erogeneous information. Outbreak alert algorithms are used, but
produce many false-positive alarms, since at an early state, an out-
break is hard to discriminate from natural variations of disease fre-
quency. Visual analytics solutions have the potential to effectively
analyse such alerts, including hypotheses generation and testing
[MRH*08].
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The simulation of epidemics primarily serves the support of de-
cisions about interventions. Interventions include

� pharmaceutical measures, such as vaccination, and
� non-pharmaceutical measures, such as information campaigns,

school closures, travel restriction policies or cancellation of
events that attract a lot of persons [Guo07].

These interventions are carried out to minimize the negative ef-
fects, e.g. travel between distant regions is restricted to avoid that
the disease spreads in a so far unaffected region, whereas the
more frequent traffic within a spatial cluster may remain unaffected
[Guo07].

While the analysis of cohort study data leads to descriptive mod-
els, the control of an epidemic requires generative simulation mod-
els for predicting the further development [MV13]. Simulation re-
sults include the number of persons who are expected to get ill,
to get hospitalized or to die. A test bed for experiments enables
simulations under different scenarios to understand the effect of
various interventions. The temporal aspect is crucial, i.e. the ques-
tion of how much time is available for a certain measure to be
effective. For example, even if vaccination is possible, the ques-
tion is whether a sufficient amount of vaccine may be supplied fast
enough.

5.1. Interactive visualization

The most straightforward support for the analysis of epidemics is an
interactive visualization of all relevant information with support for
overview and detail visualization along with filtering mechanisms
according to Shneiderman’s mantra [Shn03].

Cooperative visual analysis. Masoodian et al. [MLK16] de-
scribed interactive visualizations with a focus on tropical diseases.
Geo-referenced disease data are displayed on cartographic and satel-
lite maps. The maps are annotated with comprehensive case reports,
including information on patient demographics and housing con-
ditions. The speciality of their nu-View system is the support for
synchronized co-located collaborative analysis, i.e. several users
analyse the data together at the same place. Based on a careful
task analysis, they designed the integration of a shared display
and private displays, where parts of the private display may be
shared. While this system provides strong cooperation support, it
does not include any simulation or prediction of the course of the
outbreak.

Mapping travel route information. A system, introduced by
Dunne et al. [DMPM15], provides visualization support focused
on travel routes at different scales since these routes are potentially
important to understand diffusion patterns. The authors combine
different visualizations: global flight connections are displayed as
arcs but also travel routes at lower scale, in particular daily com-
muting patterns, are displayed. Borders between communities that
belong to frequent community pathways are emphasized and (au-
tomatic) labelling the resulting visualizations is also discussed. A
special feature, motivated by the goal to better recognize detail, is
the transformation of a map with community borders to a Voronoi
tessellation that provides sufficient space to embed symbols for each
community, e.g. to encode the population size.

5.2. Simulation of spreading

The simulation of outbreaks is a large research area on its own
[MV13]. We only touch this area to understand the interface of such
simulation engines, namely the input and output space. Simulations
are based on assumptions and input parameters. As an example,
communicable diseases are characterized by

� a transmission rate, i.e. the likelihood that the disease spreads to
healthy persons,

� an incubation time, i.e. the time after infection until the disease
leads to symptoms,

� an infection time, i.e. the time after an infection when the patient
may spread the disease and

� the duration of the disease until the patient is cured or died.

The infection time often starts before the patient develops symp-
toms, e.g. within the incubation time. The incubation and infection
times are modelled as a probability distribution. For mosquito-borne
diseases, for example, the local differences in mosquito count are
essential but can only be guessed based on land coverage data (parks
have a higher count than office buildings) [BWMM15]. For infec-
tious diseases, differences in the local population density affect the
development. Such parameters are not precisely known and thus
need to be estimated, e.g. based on earlier outbreaks.

Modelling mobility and transmission. The mobility of people
and the contact between individuals in geographic space determine
the spread of a communicable disease. As an example for a sim-
ulation model, Eubank et al. [Eub02] modelled the course of an
epidemic by a contact graph that represents people (as nodes) and
whether they had contact (as edges). This results in a graph repre-
sentation of the social network of persons.

Activity graphs represent locations that are connected when peo-
ple (frequently) move between them. This information is integrated
in a diffusion model that represents how the disease spreads over
time. Such a diffusion-based simulation can be applied to a wide
range of diseases. Simulations aim at identifying specific locations,
e.g. restaurants, or age groups that are part of a critical transmis-
sion path. While such a simulation allows for accurate modelling,
it requires a lot of information that is typically not available. Still,
Eubank et al. demonstrated its general feasibility, using diagrams
to convey the results, e.g. the number of infected and contagious
people over time, the age distribution and properties of the contact
graph. Guo et al. [Guo07] employed the simulation model from Eu-
bank et al. for a large-scale simulation involving 1.6 million people.
Based on data from the Bureau of Transportation statistics, they
achieve a reliable estimate of traffic, e.g. how many persons move
between certain locations. Although the data are aggregated, it helps
to achieve realistic simulations.

Visualization. The simulation of spreading with detailed trans-
portation statistics and contact graphs yields huge data that need
aggregation to be displayed. Flow maps are a useful technique for
displaying the movements of people. For scalability, locations may
be spatially clustered or only considered if the number of people
moving between them exceeds a threshold [Guo07]. The display of
an activity graph also requires strategies to prevent visual clutter.
Guo et al. suggest to employ matrix-based visualizations as well
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as node-link diagrams and partition them according to spatial prox-
imity in roughly equally sized subgroups of manageable size. The
visualization aims at identifying spatial disease clusters in order to
consider interventions to limit this influence.

5.3. Predictive analytics for the simulation of outbreaks

Simulation results critically depend on the choice of input param-
eters, such as the transmission rate. Since these parameters are
estimated, they carry some uncertainty. Instead of simulating the
outbreak only once with precise input values, multiple simulations
runs with slightly changed input parameters reveal the space of pos-
sible developments [BWMM15]. The resulting ensemble data re-
flect the temporal and spatial development. Bryan et al. [BWMM15]
discuss how the large variety of results that arise from varying sev-
eral input parameters can be explored for assessing the resulting
predictions. Due to performance reasons, not every configuration
of input parameters is actually used for a full simulation. Instead,
interpolations are employed to emulate with predictive views that
enable an exploration and comparison of different simulation runs.
As a case study, they present the simulation of a mosquito-borne
disease in the Washington DC area with about 500 000 persons
involved. The simulation results to be explored are multi-variate
and spatio-temporal.

The EpiCanvas. The EPICANVAS [GLG*12] provides comprehen-
sive information related to the development of regional infectious
diseases. The focus is on an integrated display of the various streams
of information. Since their design is largely inspired by weather
maps, they refer to their system as ‘EpiCanvas infectious disease
weather map’. The central idea is to design a tag cloud visualization
that connects relevant concepts (see Figure 11). The tag cloud in
the concept view can be steered by selecting tag groups and specific
tags relevant for the current task. The concept view supports task
T3, namely to show associations (recall Section 2.3). For the layout,
various graph drawing algorithms are provided.

The size of a tag intuitively shows its frequency, e.g. of gastroin-
testinal pathogens in a certain temporal interval. The EPICANVAS

also contains time-series graphs to display how diseases developed
over time. The system is based on ED visit data from a children’s
hospital in Utah [GLG*12]. Data for a 1-year period was available,
representing different outbreaks of respiratory and gastrointestinal
infectious diseases. In total, 44 848 datasets were tagged with one
to eight pathogens. Demographic data, including location (zip code,
city) and age group, were available in addition to symptoms and
microbiological test results.

The evaluation with 10 expert users involved the free exploration,
e.g. with different temporal intervals. The following questionnaire
was based on the unified theory of acceptance [VMDD03], i.e.
standardized questions and scales were used to analyse whether the
target users intend to use such a system.

Infectious disease viewer (idViewer). This system is used to pro-
cess real-time streaming data from ED visits, emergency calls and
drug sales to detect outbreaks of epidemics in Pakistan [AAA*16].
An essential component is the classification of symptoms and com-
plaints with respect to the most likely disease. Since in Pakistan, the
likelihood for diseases depends on seasonal patterns, the seasonal
character (rainfall and temperature curves) is taken into account

Figure 11: The EPICANVAS can be configured with respect to a
temporal interval and map display options. The central part contains
a tag cloud with ‘infant’ and ‘respiratory syncytial virus’ selected.
The choropleth map displays the local incidence of the disease
(from: [GLG*12]).

along with the symptoms for the classification of a disease. This in-
put is processed by a neuronal net. Taking into account, the weather
information increased the overall sensitivity for outbreak detection
from 89% to 94% for nine major diseases. As an example, a set
of symptoms that may relate to dengue fever in summer is much
more likely to indicate a respiratory disease in winter. The fre-
quency of diseases is colour-coded in heatmaps (recall Figure 8). A
prediction component is incorporated to directly support response
management. At the time of the publication, the authors reported on
a 5-year period where the system was already in routine use.

5.4. Zoonotic diseases

Animal diseases may be important to human health if the companion
pets of a human are affected, e.g. by influenza. Thus, data related to
diseases of cats and dogs may be analysed to create warnings for a
human outbreak. The linked animal–human health visual analytics
(LAHVA) system was a pioneering work with respect to the joint
analysis of human and animal health data [MHR*09, MTJ*07].
They employed ED visit data, data of pet owners and data from
veterinary hospitals, e.g. related to respiratory diseases of dogs. The
LAHVA system (recall Figure 9) is an example for the fruitful com-
bination of a statistics component and a visualization component.
The number of cases over time is presented as timeline, to which data
transformation, i.e. logarithmic transform, was applied. Diseases are
categorized as respiratory, gastrointestinal and eye inflammation.
Seasonal trends were detected with seasonal trend decomposition.
A spatial view shows the positions of EDs and veterinary hospitals
with glyphs that are scaled according to the number of cases in
the selected temporal interval. Respiratory symptoms occur in dogs
approximately 10 days earlier than in accompanying humans.

5.5. Training of outbreak response

PH experts cannot rely solely on their personal experience with
previous outbreaks. Severe outbreaks are rare and do not represent a
learning opportunity. Similar to the education of pilots and surgeons,
training environments are essential to learn how to respond in case
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Figure 12: The course of an influenza outbreak near Chicago is
simulated on a national level. The number of diseased persons
in various parts of Indiana is displayed as choropleth maps and
compared for a situation without any intervention (left) and with
media alerts (right) (from: [MLR*11]).

of critical situations, complications or failures of devices. Robinson
et al. [RMR11] described a user needs study among PH experts.
The need for the training of specific workflows was emphasized.
For outbreak control, comprehensive training tools are essential.
Such tools should provide realistic data, e.g. based on historical
outbreaks and allow to simulate the unfolding of an outbreak. They
should also include various decision points, where PH experts can
enable interventions, such as contact tracing and vaccination of
close contacts in case of new infections. Storing these decisions and
‘replaying’ the simulation eventually with alternative decisions is
a powerful means to train appropriate response. A visual analytics
framework is required to steer the simulation and to observe and
analyse the effects of interventions. In the following, we describe
two training systems developed to improve preparedness of PH
authorities (recall task T8, Section 2.3).

PanViz. The PANVIZ system [MLR*11] supports state and lo-
cal communities to be prepared to a severe outbreak of influenza.
This visual analytics toolkit analyses the effects of measures im-
plemented during a simulated pandemic influenza scenario. Age
distribution and population density are taken into account when
simulating a pandemic starting at a certain origin. PH experts can
explore the effects of the pandemic on the population. Major traffic
routes are considered, e.g. the traffic between the 15 most impor-
tant airports. Based on this information, the spread of an outbreak
on a national level may be predicted. Once the disease reaches the
nearest airport, it spreads on the following day along the airway
connections. The core component is an interactive spatio-temporal
view, where users can move through time and insert decision points.
Thus, the impact of decisions can be displayed and compared to a
situation without any intervention (see Figure 12). Major quantita-
tive results of the simulation (number of sick, hospitalized and dead
persons) are linked to the visualization allowing users to flexibly
adjust parameters and enable intervention measures. The tool was
deployed as an educational tool.

Epinome. Livnat et al. [LRS12] present the EPINOME training sys-
tem. They incorporated the simulation of a pertussis outbreak using
detailed representations of social networks and contact patterns.
The underlying simulation is stochastic, i.e. multiple runs of the
simulation lead to different results, thus representing uncertainty in

the prediction. The visual analytics system combines a rather large
number of views along with considerable flexibility to adjust the
layout, i.e. add or remove views depending on the suitability for the
current task. In addition to map-based views, EpiCurves, and a list
with the latest new cases are displayed for an in-depth analysis. The
authors discussed the value and potential problems of coordination
between views. An elaborate filtering mechanism was included to
enable a focus on geographic regions or demographic groups. How-
ever, the views are loosely coordinated, i.e. only summary views
are adapted, when the user brushes a region. Too many adjustments
after filtering were found to be confusing.

Table 2 summarizes essential visual analytics systems for out-
break detection.

6. Visual Analytics for Epidemiological Research

In this section, we give an overview of visual analytics solutions
for epidemiological research—a second category of important PH
problems. The target user group for the solutions described in the
following is PH academics doing exploratory analysis to generate
new hypotheses in selected applications. In contrast, the solutions
described in the past section address PH experts performing routine
tasks or, in case of an outbreak, urgent problem solving. Since these
situations are fundamentally different, we dedicate special sections
to both.

The solutions cover a wide range from studying cognitive ageing,
to the prevention of child injuries and the surveillance on air and
soil quality. While some application areas are discussed more ex-
tensively than others, this does not imply that these areas are more
important but that visual analytics research—according to our paper
selection strategy—more often tackled this problem.

6.1. Study of cognitive ageing

The high prevalence of neurodegenerative diseases motivates age-
ing studies, i.e. an understanding of normal and pathologic changes
in the brain in elderly persons. This understanding may help to iden-
tify persons with a high risk to develop neurodegenerative diseases
earlier. This type of research belongs to neuroepidemiology (recall
Section 2.1).

Besides basic demographic data, cognitive and psychologic tests
as well as MRI data are typically used to study age-related effects.
MRI data incorporate structural imaging to assess different compart-
ments of the brain with respect to volume and shape descriptors. Dif-
fusion tensor MRI may be used for analysing white matter tracts with
respect to various measures, such as fractional anisotropy, which is
a measure for white matter integrity [AOH*14]. The Norwegian
cognitive ageing study is based on the previous knowledge of mor-
phological and structural changes of the ageing brain, e.g. related
to cortical thickness or hippocampal volume [WFR*05, YELL10].
Comprehensive data from 100 healthy individuals aged between 50
and 84 were acquired.

Using the Norwegian cognitive ageing study, Angellini
et al. [AOH*14] describe a visual analytics system (see Figure 13)
that enables PH academics to efficiently test hypotheses and
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Table 2: Major visual analytics systems for outbreak detection.

System Key features Key publications

ID Viewer Combined analysis of diseases and weather conditions [AAA*16]
Epinome Ensemble simulation, map-based views, loosely coordinated views and EpiCurves [LRS12]
Outbreak training Data of historic outbreaks used for decision support [RMR11]
PanViz Use of transportation statistics, predict consequences of interventions, choropleth maps [MLR*11]
LAHVA Combined analysis of human and animal health, dotplots [GLG*12]
EpiCanvas Tag cloud visualization of concepts to study associations, graph drawing [MTJ*07, MHR*09]
nu-view Analysis of tropical diseases, collaborative visualization [MLK16]

Figure 13: A multiple coordinated view framework with a measure
browser, histograms, scatterplots, parallel coordinates and a spatial
view was provided to analyse age-related effects on the structure and
morphology of the brain in the Norwegian cognitive ageing study.
The scatterplot (left) shows the age-related decline of white matter
integrity for the entire brain. The spatial view displays the brain and
representatives for each white matter tract extracted from diffusion
tensor imaging (from: [AOH*14]).

eventually generate new hypotheses. The support for ‘open-ended
exploration’ is considered the major requirement. The underlying
data are stored in a hierarchical manner with the subject and
demographic properties on top of the hierarchy. According to part
of relations, the brain, different compartments in the brain, whiter
matter tracts and their segments are further lower level components.
The system provides a measure browser that provides a list of
the available dimensions. Users can select measures and pairs of
measures for which scatterplots are generated and correlation co-
efficients are computed. A certain analysis workflow may be stored
and automatically applied to other parts of the hierarchical model.
As an example, the loss of fractional anisotropy can be analysed for
the entire brain but also for any compartment or white matter tract
to better understand which regions are more stable over time. Based
on such an analysis, PH academics can derive hypotheses about
which brain functions, e.g. language-related functions, are more
stable for elderly persons. An essential aspect of their system is that
any selection is also visually represented, e.g. the analysed fibre
tracts are also shown in a brain visualization. A brain atlas is used
to assign brain compartments to the data of an individual patient.

The system was evaluated with a neuropsychologist and a neu-
rologist. The experts gave feedback with respect to the usefulness
of the system, the flexibility needed to fully answer their research
questions as well as the efficiency. It turned out that the visual an-
alytics solution indeed enables a much faster analysis of the data
compared to the tools used so far. This efficiency is partially due to

the specific database architecture that enabled a significant speed-up
in access times compared to a standard relational database.

6.2. Food-borne diseases

Food-borne diseases typically represent an urgent PH problem
[SIC*11]. However, we discuss long-term aspects, e.g. how agri-
cultural methods and soil quality affect toxic concentrations of
substances. As an example, we discuss efforts to reduce the risk
of arsenic concentrations in food. This problem is particularly se-
vere in some regions of India and Bangladesh where the arsenic
concentration found in human samples was an order of magnitude
higher than the highest values found in a control group in Australia.
What Sims et al. [SIC*11] consider a visual analytics solution is
actually a rather simple TABLEAU-based information visualization
of arsenic food concentrations [JCIA10]. Arsenic concentration is
colour-coded and the different types of food can be sorted and
grouped flexibly. However, it is easy to envision a more powerful
system that integrates analytic capabilities, such as clustering and
time series analysis, to analyse how arsenic concentrations in food
develop in different regions. Johnson et al. [JCIA10] introduced a
TABLEAU-based solution that enables flexible filtering, e.g. related to
different types of food. This paper also explains the health disorders
that are associated with high arsenic concentrations in food.

6.3. Prevention of injuries

Injuries represent a major problem with striking local differences in
the causes of injuries. An analysis of the injury situation, the identi-
fication of trends, gender and age differences is essential for improv-
ing injury prevention, e.g. related to playground design. Information
about severe injuries and injury causes is recorded, e.g. in fire de-
partments and crime reports. Based on such information, Martinezi
et al. [MOSB16] described interactive visualizations analysing for
different American countries and different states of the United States
how the mortality related to injuries developed.

Al-Hajj et al. [AHFSP17] discuss child injury prevention and
invited experienced stakeholders to a workshop to benefit from the
spirit and dynamics of group discussion about the Canadian injury-
related data. The decision for interventions, however, is difficult,
since risk taking, risk perception and risk management are necessary
parts of normal child development. Brussoni et al. [BBP*15] make
an important distinction between risks that children voluntarily take
and hazards that are not recognizable for children. If a play structure
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breaks due to bad construction, this represents a hazard that needs
to be avoided. As a consequence, standards were developed for
playground design. We mention this discussion as an example for the
need of a broad range of experts to consider all relevant perspectives
including potentially harmful side effects.

Visual analytics support. Al-Hajj et al. [AHFSP17] designed
an injury dashboard to monitor the injury situation in Canada. The
dashboard gives an overview of all major aspects:

� A map view indicates the geographic distribution (the size of
marks represents the frequency of injuries).

� Stacked bar charts indicate for girls and boys the amount of
certain injury types, e.g. fractures or burns, further categorized
in different age groups, e.g. 2–4 years.

� A temporal view shows how the frequency of different injury
types developed over time.

The data may be flexibly filtered, e.g. with respect to the involved
body part and the cause of the injury, e.g. transport-related and falls.

We briefly describe the evaluation of this system and encourage
the reader to look in the original publication for more detail, since
this evaluation covers many aspects of the system used in an inte-
grated manner. The injury dashboard was used cooperatively: Visual
analytics experts and domain experts, including trauma surgeons
(surgeons specialized in the treatment of injuries), epidemiologists
and policymakers jointly used the system to analyse data. The VA
expert was needed to leverage the system’s potential.

The session was audio- and video-captured and also the screen
content was captured to analyse the interactions in detail. The anal-
ysis and interpretation was based on distributed cognition—an es-
tablished theory to study cooperative cognitive activities, such as
problem solving and decision-making [HHK00]. As a general re-
sult, the joint interaction with one visual representation was helpful
to enable mutual understanding, including shared assumptions and
beliefs. Patterns of cooperation could be identified that are poten-
tially useful for other PH activities as well.

6.4. Pharmacoepidemiology

Drugs may control symptoms but they are often related to adverse
effects. These effects have a high impact on the health care system,
and therefore, pharmacoepidemiology, as discussed in Section 2.1,
is an important branch of epidemiology research. This applies pri-
marily if several drugs are taken together, if drugs are taken for a
longer time and if patients are elderly with a reduced kidney func-
tion that is less capable of segregating drug components. Despite
rigorous testing before drugs are admitted to regular use, rare but
severe unwanted effects may arise and registration of such adverse
drug effects is mandatory.

Adverse effects reporting. The Adverse Effects Reporting Sys-
tem of the Food and Drug Administration in the United States reg-
istered about 1.8 million ADEs in 2017 from which about 164 000
lead to death of the patient. It is not proven whether an ADE that
is registered actually is caused by the drug. The system serves for
detecting anomalies as a prerequisite for a detailed analysis of the

cases and explanations of the ADEs. An ADE is stored with the
following properties [MHD*14]:

� indication, i.e. the reason why the drug was prescribed,
� co-occurring drugs,
� adverse reaction,
� laboratory results and
� outcome, i.e. the severity ranging from reactions that require

intervention to life-threatening situations and death.

The entries are categorized into effects that are mentioned in the
product documentation (expedited) and non-expedited ADEs to
which approximately half of the entries belong. The data are stored
along with basic demographic information.

Data mining. Classic approaches for identifying ADEs rely on
data mining, primarily the search for association rules with a mini-
mum support and lift (recall Section 4.3) and Bayesian classifiers. As
an example, Chazard et al. [CFB*11] identified 236 ADE detection
rules related to about 115.000 hospital stays in France. However,
rare events with a frequency only minimally above the expected
frequency are hardly detected. Moreover, confounders often are not
identified. Mittelstedt et al. [MHD*14] mention drugs that are pre-
scribed for diabetes patients and that are associated with myocardial
infarct. Myocardial infarct, however, is also associated with the nat-
ural course of diabetes.

Visual queries. Monroe et al. [MLdO*13] discuss a visual query
approach to identify temporal events in a drug-related database to
study interactions between drugs. They support the visual spec-
ification of interval-based events, e.g. the search for overlapping
intervals representing drugs that were given partially at the same
time and the search for point and interval-based events, e.g. whether
a symptom (point event) occurred during an interval, where a drug
was given. Also, the absence of an event can be searched for.

Visualization support. Mittelstedt et al. [MHD*14] introduce
visual analytics-based hypotheses generation with an overview of
drugs and adverse effects as well as interactive features to drill
down, e.g. to search for co-occurring drugs for the same indication.
Moreover, they support hypothesis-driven testing by an advanced
query interface that enables the selection of drugs, adverse effects
and temporal intervals that characterize when the adverse effect
happened in relation to treatment time.

For the overview, the frequency of ADE is mapped to the size
of circular glyphs, directing attention to more frequent ADE. The
ADEs are colour-coded with respect to the severity. Concentric cir-
cles are generated to represent how often a drug leads to ADEs
that require hospitalization, or even lead to life-threatening situa-
tions or death (see Figure 14). A temperature metaphor was used
for the colour scale with ‘hot’ values (red, orange) representing the
most severe events. Similar colour scales are frequently used, e.g. to
emphasize districts with increased frequency of diseases [CRN*08].

The automatic component also employs a significance analysis
based on the odds ratio (recall Section 2.2). Thus, the n most
significant ADEs are emphasized. Temporal overviews are provided
to indicate seasonal patterns of ADEs. For an overview of drug re-
action pairs, two-level treemaps are employed with drugs at the first
level and reactions on the second. This enables a comparison of the
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Figure 14: Adverse drug effects are mapped in a plane with drugs
(x-axis) and reactions (y-axis). The ADEs are categorized with re-
spect to severity (red denotes death of the patient). The size of the
glyphs represents the frequency (from: [MHD*14]).

relative frequency of ADEs for a considerable number of drugs.
Other visual analytics-based solutions for analysing ADEs
were introduced by Buaceanu et al. [BAC*09] and Marcilly
et al. [MHLA11].

In a similar way, epidemiologists analyse adverse effects related
to medical implants. Appropriate visualization adds to a statisti-
cal analysis aiming at better patient information and prevention
[FCBC15]. The temporal development, the spatial distribution of
the related hospitals and the demographics of the patients are used
for filtering and displaying results.

6.5. Surveillance of air quality

‘With the rapid development of industrial society, air pollution has
become a major issue in the modern world that has attracted increas-
ing attention from the public and governments because of its impact
on human health and societal development’ [ZYL*17]. Numerous
studies investigated how air pollution actually affects human health
[DBR*97, Ped97] and thus demonstrate causal effects. Air pollution
is considered responsible for 3.2 million deaths in 2010 worldwide
[LVF*12]. Moreover, many respiratory diseases are considered to be
caused at least partially by air pollution. Thus, monitoring air pollu-
tion, e.g. levels of respirable dust and NO2, is regularly performed to
identify changes in air pollution patterns and the influence of vehic-
ular traffic, factories, terrain attributes and meteorological aspects
on air pollution. This allows analysts to detect sources of excessive
air pollution and thus supports decision-making about measures to
improve air quality. Since air quality problems were particularly se-
vere in fast-growing Asian cities, such as Hong Kong, major efforts
were carried out there first [QCX*07, ZYL*17].

Monitoring environmental data was early considered an im-
portant challenge for visual analytics [TK09]. Although both air
and water quality are essential for PH activities, visual analytics

solutions focus on air quality surveillance. As an exception, Accorsi
et al. [ASL*14] presented a system to analyse water quality.

Data. Based on current sensor technology, the necessary data
are available in high-quality and high spatial resolution. Air qual-
ity monitoring stations may provide continuous streams of data.
However, the analysis is carried out at a certain temporal granu-
larity. Often, hourly measurements are employed [DMW*16]. Data
processing is required in particular to remove obviously wrong or
missing sensor values [DMW*16]. Air quality data typically relate
to six scalar values representing fine dust (PO2.5, PO10) as well as
CO, NO2, O3, SO2). The surveillance of air quality requires the
visualization and analysis of spatio-temporal air quality datasets
[QCX*07, ZYL*17].

Requirements and tasks. The spatial character of air quality
data requires map-based visualizations, i.e. any display should have
an explicit link to the coordinates of a single station, or the group
of stations to which it is related. The temporal character requires
displays that convey the linear time component (time series data). In
addition, the periodic character of air quality data is essential, e.g.
daily, weekly and seasonal periods. Air quality data are moderately
high-dimensional. Thus, techniques, such as parallel coordinates,
may be used to show the data of selected stations. Analytical com-
ponents may help to identify strong correlations, or to group stations
with similar quality or to analyse time-series data in order to select
and emphasize important intervals. Emissions due to vehicular traf-
fic and industry should be integrated to support the identification of
the causes of elevated pollution [DMW*16].

Visual analysis of the air pollution problem in Hong Kong. As
a first example, we briefly describe the design and employment of a
system developed in Hong Kong [QCX*07].

In contrast to later publications that did not explicitly consider
weather visualization, the air quality data were displayed along
with scalar weather data. Parallel coordinates were used to enable
an understanding of correlations between scalar weather data (tem-
perature, wind speed) and pollution. A special polar display was
developed to display wind speed and direction. The spatial charac-
ter of the data, however, is not displayed.

Multi-scale visual analysis of air pollution data. While air qual-
ity is often analysed on a local or regional level (recall [QCX*07]),
it is also interesting to analyse large-scale patterns, e.g. on a coun-
try or even international level. Zoomable user interfaces, focus-
and-context visualizations and displays that automatically adapt
to the amount of data to be displayed, are viable solutions. Du
et al. [DMW*16] introduced the AIRVIS system that is based on
data from all 1111 Chinese monitoring stations and enables in-depth
analysis of the country level. Calendar-based views are employed to
show temporal data. For a station selected in the map, these views
are presented as tooltips (see Figure 15).

Visual analytics of air quality data. The system presented by
Zhou et al. [ZYL*17] was motivated by a project in Chinese cities.
The underlying data represent six typical pollutants recorded at 946
stations in 190 cities covering a temporal range from July 2014 to
May 2015. The data representing the amount of pollutants were av-
eraged for both 8 and 24 h. Their visual analytics system comprised
MCWs:
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Figure 15: A map-based view with tooltips for two selected sta-
tions. The tooltips contain a scrollable view that initially colour
codes air pollution for four successive days on an hourly basis
(from: [DMW*16]).

Figure 16: Visual analytics of air quality: The monitoring stations
are projected to 2D according to the similarity of the concentration
of pollutants (a). The stations are clustered hierarchically accord-
ing to the similarity of the concentrations (b, c). The correspon-
dence to the geographic position is shown on a map view (d) (from:
[ZYL*17]).

� a map view with the monitoring stations,
� a view where the air quality is clustered and
� a story line that depicts changes of the air quality indicators per

monitoring station over time.

A hierarchical clustering enables the analyst to inspect clusters at
different levels. To explore the hierarchy, a treemap view is pro-
vided. The air pollution data are categorized in lower, moderate and
higher values of a pollutant. The temporal course of the informa-
tion is aggregated to daily, weekly, monthly and yearly patterns (see
Figures 16 and 17). The visualization component supports a wide
range of analysis tasks, including an overview of temporal develop-
ments and a fine-grained analysis.

Figure 17: The development of the air quality indicators over time
in every cluster is shown on different temporal scales, e.g. daily (top
row) and weekly (bottom row). Colour encodes the different clusters
(from: [ZYL*17]).

Oil and gas deployment. The air quality in the vicinity of oil
and gas deployment sites is a special problem [CKSB11]. Hsu
et al. [HCD*18] describe a system that enables the collection and
display of time-referenced air quality data along with (self-reported)
physical and psychosomatic symptoms as well as personal stories,
involving images. Personal stories provided by affected citizens rep-
resent a less structured data type. The involvement of experts and
affected citizens is a speciality carefully considered in the system
design. The data comprise peaks of contamination, e.g. with fine
dust, and are analysed with respect to peak duration (how long
values exceed a threshold) and frequency. Visualization techniques
include a map display as well as parallel coordinates to reveal re-
lations from air quality sensors and symptoms. Summary statistics
are provided at the zip-code level. This type of aggregation ensures
the privacy of the citizens.

Discussion. The surveillance of air quality is related to urban
computing, where meteorological data, traffic density or water qual-
ity are analysed. Zheng et al. [ZWC*16] provide a survey on visual
analytics in urban computing. The influence of weather attributes
on pollution gave rise to integrated visualizations [QCX*07]. Since
air quality data have a temporal component, the design of VA solu-
tions benefits from general design considerations of temporal data
[AMST11]. Several authors, e.g. Wood et al. [WDSC07], report that
they are inspired by general design principles for map-based visu-
alization.

Typically, the risk of individuals is computed based on their home
address. Pollution, however, may be quite different at their working
place or other essential places of their activity space. This limits the
expressiveness of small neighbourhood statistics [JGK10]. Predic-
tions of air quality are typically related to pollutant concentrations,
land use, and traffic. Since the quality of such data is often limited,
satellite imaging as a remote sensing technique is discussed as an
alternative [JGK10]. From a PH point of view, it is important to
correlate measures of air pollution with the incidence of respiratory
diseases to provide orientation for political measures, such as the
definition of thresholds for critically elevated values. While current
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visual analytics systems aim at PH experts, the sensitive issue of air
quality also warrants the development of (simplified) displays for
the general public.

6.6. Understanding pathways leading to asthma

An important aspect of preventive medicine is to understand how
chronic diseases arise and develop. Visual analytics support was
developed for Asthma research. Asthma is a widespread and po-
tentially severe disease. Substantial research is carried out to better
understand pathways that may lead to an asthma disease as well as
stages of the disease [BBK*15, BDD14, JGK10]. This research in-
volves complex data, such as molecular and phenotype information
as well as industrial pollution. Jerret et al. [JGK10] present an ex-
ample of map displays linking major industrial zones with adjacent
asthma rates where a strong association was found. Visual analytics
solutions may help to identify and characterize these and other sub-
populations with modified asthma risk. Bhavnani et al. [BDD14]
focused on the relation between cytokine levels and patient char-
acteristics, e.g. respiratory function values. Bi-partite graph-based
visualizations with two node types: patients and cytokines were gen-
erated. Hierarchical clustering on the patient data was performed to
reveal patients with similar respiratory function values. The graph-
based visualization was also used to quantitatively analyse the graph,
e.g. with respect to degree assortativity. Heatmaps were employed
to reveal the cytokine expression level for all patients. The heatmap
was enhanced with the dendrogram of the hierarchical clustering.
The limitation of this paper is the rather low number of patients (83)
and cytokines. Thus, this technique may not scale well to larger
data. The use of graph-based visualizations is typical for the anal-
ysis of biomedical data, e.g. in epidemiology. Bi-partite graphs are
also used to understand disease–gene and disease–protein associa-
tions [BDD14]. Also, the combination of graph visualization and
clustering, i.e. the visual encoding of cluster membership, is poten-
tially useful.

6.7. Cancer epidemiology

In Section 2.1, we described cancer epidemiology as an essen-
tial field due to the high incidence and mortality of cancer. Can-
cer epidemiology deals primarily with risk factors or combina-
tions of factors that increase the risk for acquiring a certain type
of cancer. An essential aspect is the spatio-temporal analysis, e.g.
whether a certain type of cancer is uniformly distributed in space,
time and space-time or whether there are certain hot spots. A
more fine-grained analysis also investigates the stages at which
the tumour disease is diagnosed, i.e. whether there is a higher fre-
quency for late-stage colorectal cancer in a certain region [DS07].
Such an analysis could give rise to campaigns for early detection
measures.

Bieh-Zimmermann et al. [BZKF13] discuss the need for scalable
visualizations to support the exploratory analysis of cancer registry
data. Such data are typically analysed only with hypothesis-driven
statistics methods. Simple diagrams, such as histograms, bar charts
and pie charts are used to convey major facts. Bieh-Zimmermann
et al. [BZKF13] provide an initial prototype for a subset of can-
cer registry data that employ parallel sets to reveal relations, e.g.
between different age groups and frequent locations of tumours.

Interaction facilities are provided for a fine-grained analysis. Given
the multitude of data in cancer registers, however, a more compre-
hensive visual analytics system would be needed.

Spatio-temporal analysis. The commercial software Biomed-
ware (https://www.biomedware.com/) provides support for
analysing cancer registry data. Space-time clustering may be per-
formed and the results are visualized along with various map types
to identify regions and temporal intervals with significantly in-
creased incidence of a certain cancer type. As an example, Nords-
borg et al. [NME*14] provide a visual analysis of breast cancer
data from the Danish cancer registry. In a similar way, Nords-
borg et al. [NME*13] provide an analysis of more than 3,000
cases of Non-Hodgkin lymphoma (NHL). The spatial clustering of
NHL serves to identify environmental risk factors for this disease.
SATSCAN (https://www.satscan.org/tutorials.html) is another com-
mercial software for analysing diseases clusters that was largely
used for analysing cancer registry data. The SATSCAN website lists
numerous publications where the software was used for analysing
geo-referenced health statistics, e.g. for colorectal cancer [DS07].
SATSCAN is also recommended at the website of the US National
Cancer Institute (https://giv.cancer.gov) for spatial statistics and dis-
ease clustering.

Iqbal et al. [IHN*16] analysed a large amount of patient visit data
to better understand diseases that are associated with cancer. Data
from the National Health Insurance Claims database were employed
for this research. The data were particularly large—it relates to 782
million patient visits, representing 20 million unique patients. Com-
pared to epidemiological studies, however, fewer dimensions were
available. In addition to age and gender, the procedural codes for
diseases were stored. For each patient, a disease–disease association
was assumed if the patient has both diseases within a 36 month pe-
riod. Such associations were analysed for 100 male and 100 female
age groups. Associations that were rare in relation to the overall
population were discarded.

Animated display. For nine types of cancer, Iqbal et al. [IHN*16]
found that some chronic diseases, such as diabetes, are associated
with a moderately increased risk, e.g. for breast and colon can-
cer. They displayed these associations for the entire population and
for persons of certain age groups. While most time-varying PH
data are visualized with time-line-based techniques, Iqbal et al. em-
ploy animation and refer to their system as CAMA (Cancer Asso-
ciation Map Animation). The animation conveys how the preva-
lence of diseases changes depending on age. Inspired by Hans
Roslings dynamic bubble charts, they employ similar visualizations
where circular glyphs change their position in the chart to represent
the dynamic character. The glyphs represent the co-morbidities of
chronic diseases and cancer. Due to the large differences in the
prevalence depending on age, a log-log scale is applied to the
scatterplots.

Diseases are classified into 17 categories, e.g. skin diseases, res-
piratory diseases, which corresponds to the standardized diagnosis
according to ICD-9. The categories are mapped to colour. This is not
ideal since 17 colours cannot be discriminated pre-attentively. The
visualization may be filtered for a subset of categories, individual
diseases or association strength. The implementation is based on an
open-source project [AACD10].
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Figure 18: The interface elements on the left enable the definition
of a cohort, e.g. based on age, diagnostic values or treatment. The
central view provides an overview over a cohort of prostate cancer
patients based on their well-being with red denoting metastatic
disease (from: [BSM*15]).

No comprehensive evaluation or a comparison with other time-
based visualizations is given. Thus, it is not clear whether this visual-
ization is helpful for the knowledge discovery process of PH experts.
It seems more likely that such visualizations serve the interest of
the general public. Iqbal et al. [IHN*16] discuss arising research
questions, e.g. whether the high insulin resistance associated with
diabetes causes some types of cancer.

6.8. Cohort analysis of prostate cancer

In this subsection, we describe a research effort that is at the interface
between epidemiology and clinical medicine. The underlying data
are from a hospital—thus, it is data related to patients and the data
exhibit a selection bias. We discuss this effort because the unusual
high number of patients lead to a design that may inspire PH re-
search. In contrast to the work described in the previous subsection,
it is focused on one type of tumour with a particularly high inci-
dence in males, namely prostate cancer. Bernard et al. [BSM*15]
performed a comprehensive cohort analysis of 16 000 prostate can-
cer patients to improve guidelines for prostate cancer treatment.

Radical treatment, which may cause severe side effects, such as
urinary dysfunction, is often not necessary. The subjective patient
well-being is registered at every follow-up diagnosis. Filtering com-
prises variables, such as tumour stage and tumour grading as well
as applied treatments. Correlations between the variables are auto-
matically computed whenever the filtering changes. The patients’
well-being is characterized as a categorical variable with three pos-
sible values, visually represented by green, yellow and red with red
denoting a bad state (see Figure 18). Emphasis is put on cohorts’
statistical properties, such as mean and standard deviation. A his-
tory function enables to go back to previously defined cohorts and
related visualizations and analysis results.

While many features could be translated to similar medical re-
search problems, some aspects are tailored towards prostate cancer.
As an example, the course of the prostate-specific antigen (PSA)
was considered as the most important information and thus a tem-
poral overview visualization is generated that correlates this value
with the patient well-being and optionally also with treatments, e.g.
the start and end of hormone therapy or radiation treatment. The

visual summary of the state of multiple patients in the Patient Bun-
dle View is the most carefully discussed aspect. Four aggregation
levels are provided and used for semantic zooming. The informa-
tion related to the cohort is input to a Kaplan–Meier estimation of
survival. Bernard et al. [BSB*15] may serve as an orientation with
respect to the depth of the requirements and task analysis as well as
the discussion of iterative prototyping.

Table 3 summarizes major applications in medical research for
which visual analytics solutions were developed

7. Visual Analytics of Population-Based Cohort Study Data

We now discuss a special problem in more depth, namely the analy-
sis of population-based studies (recall Section 3). Population-based
studies involve healthy volunteers, no patients, as the research de-
scribed in Section 6. The available data are much more compre-
hensive compared to clinical data, since the participants get a wide
range of examinations and interviews lasting for one or two full
days. The population-based character is the major difference to the
cohort study described in Section 6.8.

The design, conductance and analysis of such studies is a major
task for PH academics. These specialized epidemiologists should
also be enabled to reveal subtle effects of lifestyle and environmental
factors on human health. The wealth of data acquired in such studies
enables a range of retrospective research goals that may not be
completely anticipated when the cohort study was designed.

Since population-based data contain randomly selected partici-
pants, many diseases and injuries are rare. Thus, the focus is on

� frequent disorders, such as adipositas or fatty liver, known to be
risk factors for a number of diseases, and

� frequent diseases, such as diabetes and coronary heart disease.

Population-based studies aim at an understanding of complex inter-
actions between lifestyle, genetics and the outbreak of diseases.

7.1. Visual analytics and radiomics

Modern cohort studies involve medical image data, such as ultra-
sound or MRI (recall Section 3.1) to characterize the presence or
absence of pathological abnormalities. As an example, the SHiP data
contain the diagnosis of fatty liver based on ultrasound data. De-
spite efforts to standardize the process, manual diagnosis is to some
extent subjective. Thus, automatic solutions are also considered to
provide more reliable information.

Based on a segmentation of organs or other relevant structures,
imaging biomarkers may be derived to characterize the morphology,
e.g. the size, volume, circumference, compactness or non-sphericity
of anatomical structures. A whole branch of research in radiology
relates to the diagnostic value of features derived from image data.
Inspired by genomics data, this branch is referred to as radiomics.
Radiomics features are particularly interesting if they serve to iden-
tify diseases at a preclinical stage (recall Section 3.1). Most applica-
tions aim at the characterization of tumour diseases but, of course, a
broader range of research questions is possible, e.g. related to neu-
rodegenerative diseases or backpain. Meuschke et al. [MGW*18],
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Table 3: Major visual analytics systems for epidemiological research.

Application area Key features Key publications

Cognitive ageing Advanced data management, display of fibre tracts and related statistics [AOH*14]
Food-borne diseases Analysis of arsenic in different food categories [JCIA10, SIC*11]
Injury prevention Spatio-temporal analysis of injuries by type and age group [AHFSP17]
Adverse drug effects Overview of indication, frequency and outcome [MHD*14]
Air quality Spatio-temporal analysis of pollutants along with weather data [QCX*07, ZYL*17]
Asthma research Relation between cytokine levels and asthma, bipartite graphs [BDD14, JGK10]
Cancer epidemiology Animated bubble charts, coloured circular glyphs [IHN*16, BZKF13, NME*13, NME*14]
Prostate cancer Cohort definition, display of cohort at four levels [BSM*15]

for example, describe how parameters derived from the shape of
an aneurysm may be used to predict whether this aneurysm will
rupture. This is an example of the fruitful integration of visual ana-
lytics and radiomics as discussed first by Bannach et al. [BBJ*17].
Radiomics features can be used for content-based image retrieval
and cohort construction (recall Section 4.2).

Image analysis. Most radiomics-related research is carried out
by radiologists and relies on manual segmentation. This involves a
limited accuracy and reproducibility. For large- or mid-sized cohort
study data, it is also not feasible, since too many datasets need to
be processed in a tedious manner. Thus, there is a need for (semi-
)automatic processes to derive radiomics features.

Automatic segmentation is challenging due to the large variety of
anatomical and pathological variants. MRI and ultrasound data, the
prevailing modalities in cohort studies, exhibit more artefacts than
CT data. The choice of image acquisition parameters is a trade-
off between patient comfort, image quality and costs (for scanning
thousands of participants). As a consequence, the image quality
might not be ideal. On the other hand, epidemiology data come
with a lot of demographic data, e.g. gender, weight, height and age,
which may be employed to decrease learning costs for a machine
learning image analysis [TGR*15].

Toennies et al. [TGR*15] describe a general strategy for image
analysis in epidemiology and emphasize that cohort data are ac-
quired for open research. Since research questions related to the
anatomy and function of organs may arise years after the data were
acquired, they suggest a modular approach with at least partially
reusable methods. These methods were applied for automatic kidney
segmentation from MRI data of the SHiP data (recall Section 3.1)
[GTL*12]. Some anatomic structures are too complex for immedi-
ate quantitative analysis. In this case, they may be decomposed to
subshapes with reduced complexity and variability [TRE14]. As an
example, the spine may be decomposed into the spinal canal, in-
dividual vertebrae and sections such as the lumbar spine [RET13].
The problem of large-scale image analysis of whole databases is
still not solved. Further progress is expected by combining machine
learning and visual analytics research [ZM16].

Applications. Klemm et al. [KLR*13] used the SHiP data to
analyse the shape of the lumbar spinal canal to investigate whether
it is associated with lower backpain—a hypothesis of the epidemi-
ologists. After the lumbar spine was extracted and transformed to a
three-dimensional (3D) surface model, its centreline was generated

as a representative for the shape of the lumbar spine model.
Afterwards, these centrelines are grouped into clusters with an
agglomerative hierarchical clustering that was originally developed
to cluster streamlines from blood flow simulations [OLK*14]. To
visualize these clusters, a ribbon-based visualization was designed
(see Figure 19). In the evaluation, an epidemiologist emphasized
the importance of a high segmentation quality to derive imaging
biomarkers.

Later, Klemm et al. [KOL*14] extended their framework to a
web-based exploration tool. Based on an analysis workflow, they
developed a framework that facilitates the generation of hypotheses
and their subsequent statistical analysis. All variables in the co-
hort are listed, and the expert can drag and drop certain variables
onto the main canvas, which leads to a representation of the mean
lumbar spine model of the patients in the selected group. Addi-
tional refinement or selection of new variables results in a visual-
ization showing correlations. Brushing and linking options support
the analysis. With this framework, epidemiologists were able to ex-
plore shape information of the lumbar spine and its influence on
diseases.

In this work, a subset of the SHiP (the 2.240 female participants)
with 134 variables from which 21 are metric and 113 categorical
was employed. In addition, nine parameters were derived from the
spinal canal centreline.

7.2. Identification of strong correlations with disorders

Due to a large number of variables, epidemiologists benefit from
an automatic analysis related to potential associations between
lifestyle-related variables and disorders, such as increased breast
density which is known to be a risk factor for breast cancer. Klemm
et al. [KLG*16] presented the 3D regression heatmap to analyse
correlations between variables. Their idea is to let the experts in-
put simple regression formulas, e.g. Cancer ∼ X + Y to explore
the correlations. This calculates all combinations of pairwise vari-
ables for a correlation of cancer by using the R2 metric. For the
visualization, a heatmap was employed. In case the expert types
Z ∼ X + Y , a regression cube was generated showing for every
slice a 2D heatmap of correlations. The downside of their approach
was the computation time: a dataset of 100 features needs roughly
14 h to compute Z ∼ X + Y . Nonetheless, the experts stated that
the approach was helpful to gain an overview and to find non-
obvious correlations.
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Figure 19: Clustered centrelines of the spinal canal. Cluster size is
mapped to the width of the ribbons and colour encodes distance to
the midsagittal plane. Selection of a cluster leads to the display of
related image data (from: [KLR*13]).

7.3. Data quality

Visual analytics may help to identify and characterize quality prob-
lems in cohort study data, such as outliers, missing values and double
counts [JCIA10]. Severe outliers, for example, are pre-attentively
identified in an appropriate visualization and, as a consequence,
outlier removal may be considered. Johnson et al. argue that visual
analytics applications should ‘clean up the data or make the analyst
aware of the shortcomings in the data’ [JCIA10]. Few attempts were
made to assess and improve the quality of PH data. Shneiderman
and Plaisant [SP19] recently provided a discussion of visual event
analytics with a number of examples from health care, including
their use for detecting data quality problems. As a specific example,
an appropriate visualization clearly revealed that some patients were
recorded to be admitted to the hospital much more often than being
dismissed—a typical example where data relevant for billing are
correctly registered and less relevant data contain errors. There are
general strategies to clean data using visual analytics [GAM*14],
but no specific solutions for PH. The exception is related to miss-
ingness, which we discuss in the following.

Missingness is an essential quality problem that occurs in all data
sources that we discussed in this paper [Don06]. In the evaluation
of a visual analytics solution for cohort study data, PH academics
encouraged ‘techniques for detection and handling of missing data’,
e.g. the presence of incomplete data needs to be clearly communi-
cated [SMvB*10]. Missingness may occur in one cycle of a longi-
tudinal study, i.e. the values for one participant are not complete,
or between cycles, where participants do not show up in a later
stage (drop out). Missingness maps [HKB*11] may serve to iden-
tify patterns, i.e. situations where missingness is not completely at
random (see Figure 20). There are various strategies to cope with
missingness [SWC*09]:

� Complete case analysis, where only complete datasets are anal-
ysed,

� Single imputation, where missing values are replaced with a
median or average value and

Figure 20: Overview of missing data from an epidemiologic study:
Rows represent variables and columns show participants. Missing
values are indicated in black. Completely black columns represent
drop-out participants (from: [ANI*17]).

� Multiple imputations, where dependencies between variables are
considered and multiple replacements are computed.

The first two strategies are straightforward to realize but not ap-
propriate for typical PH data. If only complete cases are considered,
the number of cases often shrinks drastically. The resulting subset
may be no longer representative, if the missingness is not completely
at random, i.e. the likelihood of a missing value for one variable de-
pends on the value of another variable. Single imputation preserves
all datasets and thus also the representative character. However, the
median or average is often not a good guess for the missing value.
If all missing values are replaced with the (same) average value, the
variability of the distribution gets reduced.

Multiple imputations are based on a regression analysis: for a
variable v1 that is affected by missingness, the (linear) correlation
to all other variables is computed. To save computational effort,
only variables with a high correlation (e.g. one of the N highest val-
ues or above a threshold) are used for the prediction matrix that is
employed for imputing the missing value. Imputation is performed
several times, leading also to an estimate of the uncertainty in-
volved. In addition to the size of the predictor matrix, the number
of iterations influences the computational effort. The default value
for this number is often five [ANI*17]. Alemzadeh et al. [ANI*17]
showed the converging behaviour of the imputation with an increas-
ing number of iterations and confirmed that five iterations often are
a good choice.

The use of multiple imputations is appropriate when the miss-
ingness is likely to be not completely at random. It is supported
in major statistics tools, e.g. the multiple imputations with chained
equations (MICEs) package in R which is frequently used in epi-
demiology [BGO10]. MICE was used to prepare the data of the
UK Biobank for an analysis of the predictive value of self-reported
health data [GI15] and for the analysis of the SHiP data with respect
to hepatic steatosis [ANI*17, ANI*19]. Visual analytics plays an
essential role for the identification and the handling of missing data.
After imputation, distributions of imputed values can be compared
to distributions of the available values to validate the result.

8. Evaluation

Even if the development of a visual analytics system is based
on an extensive requirements analysis, involving observations and
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Table 4: Use of visualization techniques in public health applications.

Technique Applications Publications

Parallel coordinates Cognitive ageing, air quality and weather conditions, air quality and symptoms [AOH*14, QCX*07, HCD*18],
Parallel sets Cancer registry data [BZKF13],
Treemaps Air quality data, adverse drug effects [MHD*14, ZYL*17]
Calendar views Incidence of diseases, air quality [TSS05, DMW*16]
Age-pyramids Age and gender effects in the incidence of diseases [CWCN11]
Choropleth maps Infectious disease analysis, combined analysis of human and animal health, pandemy visualization [AAA*16, GLG*12, MLR*11]
Heatmaps Malaria map, infectious disease analysis, asthma research [AAA*16, BDD14]
Dotplots Combined animal and human health [MTJ*07, MHR*09, GLG*12]
Flow maps Outbreak detection [Guo07]
Bi-partite graphs Asthma research [BDD14]

Table 5: Use of analytics components of visual analytics solutions.

Technique Applications Publications

Spatial clustering Cognitive ageing, air quality data [AOH*14, QCX*07, HCD*18]
Space-time clustering Cancer epidemiology (breast cancer, NHL) [NME*13, NME*14]
Subspace clustering Cohort study data, identification of subpopulations [AHN*17a]
Hierarchical clustering Cohort study data (backpain), asthma research [KLR*13, BDD14]
Regression analysis Cohort study data, identification of risk factors [KLG*16]
Association rules Cohort study data, identification of risk factors [HSKO14, NSVK14a]
Multiple imputation Analysis of missing values in cohort study data [ANI*17]

interviews with all stakeholders, the prototype needs to be evaluated
before any valid claims can be made regarding the benefit for the tar-
get users. Evaluation is considered by Shneiderman et al. [SPH13]
as one of seven challenges for visual analytics in health care. ‘Field
deployment methods [ . . . ] in the real context of use and the impact
of this context on the user experience’ should be performed [ZS17].
Systems should be evaluated with respect to their ability to prevent
errors, i.e. misleading information display, and with respect to their
ability to support evidence-based explanations.

Evaluations of PH activities require the actual use of the systems
by PH experts doing ‘real’ work with representative data. A typical
lab experiment with a short timeframe is not sufficient. Informal
evaluations with a few experts and different instruments, such as
thinking aloud, video analysis and interviews are more promising.
Insight-based evaluations may be carried out to understand the po-
tential of a VA solution for knowledge discovery [SND05].

In the following, we discuss selected evaluation strategies and
their use in systems developed for PH. The actual state of evalua-
tions lacks behind the documented knowledge, e.g. in information
visualization [LBI*11] and medical visualization [PRI18]. Many
publications do not document any user feedback. Instead, in a ‘case
study’, the hypothetical use of the system is explained, e.g. in the
ID-VIEWER (recall Section 5.3 and [AAA*16]), in the PANVIZ system
(recall Section 5.5 and [MLR*11]) and in the subpopulation discov-
ery from cohort study data (recall Section 5 and [AHN*17a]).

Other publications gather feedback based on a presentation of the
prototype or a video that illustrates how the prototype is intended
to work. Such a video presentation was used, e.g. by Masoodian

et al. [MLK16] and the discussion with four physicians, including
two epidemiologists revealed some insights and ideas for extensions,
e.g. related to a better support of cooperations.

Klemm et al. [KOL*14, KLG*16] were inspired by the seven
evaluation scenarios discussed by Lam et al. [LBI*11] and chose
the visual data analysis and reasoning scenario to evaluate their
systems. Klemm et al. [KOL*14], for example, discussed how two
epidemiologists employed a system for analysing cohort study data
for hypothesis generation and testing with an in-depth discussion of
understanding associations, use of clustering and detailed inspec-
tion of clustering results. Gesteland et al. [GLG*12] employed a
technology acceptance model [VMDD03] in their evaluation of the
EPICANVAS. According to this model, they questioned the intent to
use.

The injury prevention dashboard was evaluated among others
with distributed cognition—an evaluation technique that is intended
to solve cooperative problem solving. The most extensive evalua-
tion was found in the discussion of the EPINOME system (recall
Section 5.5 and [LRS12]). Ten outbreak scenarios from which the
27 participants got a random selection of four were employed. The
participants were enabled to use the system including the assign-
ment of interventions, such as prophylax of high-risk contacts. The
participants were selected to be as representative as possible for the
target user group in terms of age, responsibility, experience and gen-
der. The underlying data are realistic: it discriminates the reported
cases and the actual (higher) number of cases. The simulation also
considers paradox effects, i.e. systematic contact tracing increases
the number of reported cases but reduces the actual number of cases
since some cases can be avoided by warning or vaccinating contact
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persons. The users appreciated that they can analyse what-if scenar-
ios in detail. In summary, the users were asked among others whether
the system provides new insights and decision support and whether
the system helps them to do their job more efficiently. The large
majority of the users agreed or strongly agreed to all statements. An
even deeper analysis would be more precise in characterizing the
nature of insights and the specific decision support.

Zakker and Sedig [ZS17] performed an informal evaluation with
a demonstration part, an exploration part, and a feedback interview
was performed. Seven PH experts with different background and ex-
perience were recruited from health research centres. Although the
actually used visualizations, prepared with TABLEAU, appear rather
simple from a visualization scientists’ point of view, users uttered
that information overload and clutter needs to be avoided. They pre-
fer simple charts and some were even skeptical that a choropleth
map may be interpreted wrongly.

In summary, different evaluation methods were used to under-
stand the (potential) benefit of visual analytics systems in PH, in-
cluding gathering informal feedback, the use of questionnaires, the
analysis of the reasoning processes, distributed cognition and tech-
nology acceptance models. The evaluations focus on the overall
impression and usefulness of whole visual analytics systems. Al-
though useful, such evaluations do not allow to justify individual
design decisions, related to the use of visualization, interaction and
analysis techniques.

9. Research Agenda

In the following, we describe a research agenda largely driven by
the gaps in the literature and the needs of PH experts.

Cooperative visual analytics. On the one hand, cooperative solu-
tions are particularly important in PH due to the diversity of involved
experts. On the other hand, we found only two systems [AHFSP17,
MLK16] that explicitly addressed cooperation modes. Masoodian
et al. employed targeted support with shared and private views.
Both remote cooperation, e.g. between field workers gathering data
and a PH office, and co-located cooperation is relevant. Al-Hajj
et al. [AHFSP17] discussed the cooperation between domain scien-
tists and visual analytics experts, but without any special hardware
to support the cooperation. General thought on cooperative visual
analytics [TIC09, IFP*12] may serve as orientation.

Visual analytics for the evaluation of PH interventions. An
essential aspect of PH is the evaluation of measures aiming at im-
proved prevention. This is crucial, e.g. to justify the considerable
financial resources necessary to implement measures, such as vacci-
nation programmes. Comprehensive data are acquired for evaluation
purposes. Since the evaluation is strongly based on statistical data
(evidence-based PH), there is an opportunity for visual analytics
research. We have not found visual analytics systems supporting
this evaluation process.

Support data management and integration. Various publica-
tions dealing with the problem-solving processes in PH scenarios
emphasize the need to integrate data from different sources. We
found very few publications that describe their data management,
e.g. [AOH*14]. Due to the spatial and temporal character of the data,

simple databases are not sufficient. Also the size of the data may
require special solutions to ensure that analytical approaches can
be performed fast enough. Support for progressive analytics may
be useful to enable the use of regression analysis and clustering on
large and high-dimensional data [SPG14].

Visual analytics of social media data. Social media data pro-
vide a multitude of timely information related to health problems.
However, this information is informal and multi-lingual making an
analysis challenging [Dre12]. Considerable research efforts in lin-
guistics, topic modelling and text mining were carried out to extract
information useful for PH. This research is mainly motivated by the
expensive, slow and tedious process to collect data in a systematic
manner [Dre12]. Social media analytics is particularly promising
for discovering trends in mental diseases, where the occurrence of
words such as ‘bored’, ‘tired’ and ‘exhausted’ are indicative. There
is increasing use of social media analytics for physical diseases. As
an example, Culotta [Cul14] found that aspects of the personality,
attitude and nutrition add to the traditional demographics variables
to identify vulnerable subpopulations. So far, the analysis of social
media data for PH does not include visual analytics. However, this
is a research opportunity for visual analytics.

Guidance. Most research described in this survey, including all
systems to which the first author has contributed, is not regularly
used by their intended target audience. They are too complex and
rely too much on advanced visualization and analysis techniques
that PH experts do not fully understand. To bring this area forward,
it is essential that research ideas emerge from the actual use of such
systems. Al-Hajj et al. [AHFSP17] discuss this issue with respect to
their injury dashboard and highlight the importance of suggestions
for appropriate visualization techniques (derived from the data to
be displayed), context-sensitive help on demand, instructive videos
and structured tutorials. While these methods may be sufficient for
this particular system, most other systems probably need a major
re-design from a user-centred point of view. The recent trend to-
wards guided visual analytics [CGM*17] is also promising for PH
applications. The statistics wizard developed for epidemiologists
and introduced by Thew et al. [TSP*09] may serve as orientation.

Improved evaluation strategies. This aspect is related to the
previous one: Once more user-centred systems are developed, the
need to assess their use in-depth increases. Since PH experts are
often concerned about the validity of their data and conclusions,
it is essential to understand to what extent they trust the findings
they acquire from using a visual analytics system. Moreover, re-
peated testing is recommended to understand how the use of a
system changes over time and whether it reaches a stable state. Re-
peated testing leads to the idea of long-term case studies, where
users employ the system themselves, report in a diary how they use
a system and get interviewed—a type of evaluation advocated by
Shneiderman and Plaisant [SP06]. Compared to the state in some
other application areas where the knowledge discovery process was
characterized in detail [SS05], the evaluations related to visual an-
alytics in PH are not particularly elaborate. As an example, we
did not find any long-term evaluation. Also, eye-tracking-based
evaluations that have a great potential to reveal how users actu-
ally employed a system were not used in visual analytics for PH.
The survey of Blaschek et al. [BKR*17] may serve as source of
inspiration.
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Molecular epidemiology involves an understanding of the spa-
tial distribution of gene variants in pathogens, e.g. related to HIV
or other infectious diseases. While there is already software sup-
port with basic visualization for analysing this data (see Carroll
et al. [CAD*14]), we found no visual analytics solutions in this area.

Identification of non-linear regression. We discussed regression
analysis as a means to identify and characterize associations between
lifestyle, exposition to risk factors and diseases. In all VA systems
used for PH, this analysis is restricted to linear regression (for scalar
data) and logistic regression (for categorical data), which poses
a severe limitation. Many strong associations are distinctly non-
linear and would not be detected. Examples for non-linear relations
relate to blood pressure and sleeping duration, where a range of
normal values exist and both very low and very high values are
associated with increased risk. Such a risk distribution is referred to
as U distribution [FF11] and may be characterized with quadratic
regression. Care is necessary to avoid overfitting when higher order
polynomial associations are searched for.

Also partial regression, which analyses correlations, which relate
only to a portion of the range of a variable, may yield essential
findings. In other applications, partial regression models were in-
teractively constructed and successfully used [MP13]. This paper
may serve as inspiration for enhancing regression analysis in PH
applications with a focus on a user-steered process.

Data preparation and data quality. There is only few research
on how visual analytics may help to identify, assess or counteract
quality problems in PH data, although this problem is clearly rel-
evant (recall Section 7.3). Credibility and validity of the data is a
major concern for PH experts. More research is needed to formalize
a priori knowledge about the validity and plausibility of data to
employ this knowledge for analysis and visualization of (potential)
quality problems. Often, it may not be possible to reliably correct
data. In this case, at least the resulting uncertainty should be quan-
tified and visualized (recall Section 4.4.4).

Causality analysis and visualization. Visual analytics solutions
are able to identify correlations. The ultimate goal of medical re-
search is, however, to understand causal effects. We found no pub-
lications that discussed causality inference and visualization with
respect to PH. In other areas, causality visualization is discussed
[DMAF15]. The refinement of such techniques, e.g. to cohort study
data, is an important area for further research.

Although not being a research issue in a narrower sense, there is a
great need for open-source software to better cope with the interop-
erability issues, see, e.g. Carroll et al. [CAD*14] for a discussion.

10. Concluding Remarks

PH employs large, heterogeneous, partially incomplete data that
are often geo-referenced and time-dependent. The complex data are
extremely challenging for our cognitive abilities. Visual analytics
solutions may support knowledge discovery and problem solving
if the needs of the different stakeholders, such as epidemiologists
and environmental health specialists, are adequately addressed. A
wide variety of visual analytics techniques and strategies are incor-
porated in PH applications, including graph-based visualization and

graph-theoretic measures, (subspace) clustering, dimension reduc-
tion, coordinated views, regression-based visualizations as well as
various time-based visualizations. Table 4 gives an overview of vi-
sualization techniques in different applications. Not always was the
selection of these visualization techniques carefully justified. Thus,
we summarize the observed use of techniques without being able to
give recommendations. Since most systems contain multiple views,
histograms, scatterplots and timelines for temporal data, we have
not mentioned these techniques. In a similar manner, we summarize
the use of analytical techniques in Table 5. It turns out that differ-
ent variants of clustering are widely used. They primarily serve to
analyse subpopulations. Clustering results are displayed along with
a variety of visualization techniques, typically by colour-coding
the membership of items. The limited completeness and reliability
of the underlying data is rarely considered. Most systems take the
loaded data for granted and apply analytic and visualization tech-
niques directly. While incompleteness is obvious and may give rise
to the use of imputation strategies, unreliability is more difficult to
quantify which would be a prerequisite for an uncertainty-aware
visual analytics process.

Many systems support the spatio-temporal analysis of disease-
related data. They are designed to afford comparisons at differ-
ent temporal and spatial scales and are typically realized as MCW
frameworks. Outbreak surveillance systems often incorporate sim-
ulation to enable predictions and thus to directly support decision-
making with respect to possible interventions.

Despite the strong potential and in-depth research activities from
both visual analytics and PH experts, simple and often static vi-
sualizations dominate in routine practice [ZS17]. Visual analytics
solutions have to represent the temporal and spatial character for
most tasks performed by PH experts, e.g. analysing how health in-
dicators have developed. A tight coupling of visual analytics and
statistics is of utmost importance. While visual analytics solutions
often help to detect patterns and correlations, ultimately they are
supposed to favour an understanding of the underlying mecha-
nisms, e.g. biological and physiological processes that explain the
findings.
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[MP13] MÜHLBACHER T., PIRINGER H.: A partition-based framework
for building and validating regression models. IEEE Transactions
on Visualization and Computer Graphics 19, 12 (2013), 1962–
1971.

[MRH*05] MACEACHREN A. M., ROBINSON A., HOPPER S., GARDNER

S., MURRAY R., GAHEGAN M., HETZLER E.: Visualizing geospatial
information uncertainty: What we know and what we need to
know. Cartography and Geographic Information Science 32, 3
(2005), 139–160.

[MRH*08] MACIEJEWSKI R., RUDOLPH S., HAFEN R., ABUSALAH A.
M., YAKOUT M., OUZZANI M., CLEVELAND W. S., GRANNIS S. J.,
WADE M., EBERT D. S.: Understanding syndromic hotspots - A
visual analytics approach. In Proceedings of IEEE Visual Ana-
lytics Science and Technology (2008), pp. 35–42.

[MRO*12] MACEACHREN A. M., ROTH R. E., O’BRIEN J., LI B.,
SWINGLEY D., GAHEGAN M.: Visual semiotics & uncertainty visu-
alization: An empirical study. IEEE Transactions on Visualiza-
tion and Computer Graphics 18, 12 (2012), 2496–2505.

[MTJ*07] MACIEJEWSKI R., TYNER B., JANG Y., ZHENG C., NEHME

R. V., EBERT D. S., CLEVELAND W. S., OUZZANI M., GRANNIS S.
J., GLICKMAN L. T.: LAHVA: Linked animal-human health visual
analytics. In Proceedings of IEEE Visual Analytics Science and
Technology (2007), pp. 27–34.

[MV13] MARATHE M., VULLIKANTI A. K. S.: Computational epi-
demiology. Communications of the ACM 56, 7 (2013), 88–96.

[NME*13] NORDSBORG R. B., MELIKER J. R., ERSBØLL A. K.,
JACQUEZ G. M., RAASCHOU-NIELSEN O.: Space-time clustering of
non-Hodgkin lymphoma using residential histories in a Danish
case-control study. PLoS One 8, 4 (2013), e60800.

[NME*14] NORDSBORG R. B., MELIKER J. R., ERSBØLL A. K., JACQUEZ

G. M., POULSEN A. H., RAASCHOU-NIELSEN O.: Space-time clusters
of breast cancer using residential histories: A Danish case–control
study. BMC Cancer 14, 1 (2014), 255.

[NSVK14a] NIEMANN U., SPILIOPOULOU M., VÖLZKE H., KÜHN J.: In-
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Subpopulation discovery in epidemiological data with subspace
clustering. Foundations of Computing and Decision Sciences 39,
4 (2014), 271–300.

[OLK*14] OELTZE S., LEHMANN D. J., KUHN A., JANIGA G., THEISEL

H., PREIM B.: Blood flow clustering and applications in virtual
stenting of intracranial aneurysms. IEEE Transactions on Visu-
alization and Computer Graphics 20, 5 (2014), 686–701.

[OS14] OLA O., SEDIG K.: The challenge of big data in public
health: An opportunity for visual analytics. Online Journal of
Public Health Informatics 5, 3 (2014), 223.

[Pea12] PEARCE N.: Classification of epidemiological study designs.
International Journal of Epidemiology 41, 2 (2012), 393–397.

[Ped97] PEDEN D.: Mechanisms of pollution-induced airway dis-
ease: In vivo studies. Allergy 52 (1997), 37–44.

[PKH*16] PREIM B., KLEMM P., HAUSER H., HEGENSCHEID K., OELTZE
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RETTIG R., KORS J. A., UNGERER S, HEGENSCHEID K., KÜHN J. P.,
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