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Abstract

In this thesis, we develop unfitted finite element techniques to simulate fluid-rigid body interaction prob-
lems. The mathematical model for this consists of the incompressible Navier-Stokes equations and rigid
body motion, coupled via the transfer of forces at the fluid-solid interface. Our method solves the resulting
coupled moving domain problem in a fully Eulerian framework.

The discretisations considered in this thesis are based on unfitted finite element approaches (CutFEM). A
fixed background mesh is considered in this approach such that moving domain problems can be solved in
an Eulerian framework. The geometry is then described through a level set function, boundary conditions
are implemented using Nitsche’s method, and the Eulerian approach to the moving domain problem is
enabled via an implicit extension of the solution with ghost-penalty stabilisation. As a result of the
ghost-penalty stabilisation, the resulting linear systems have bounded condition numbers, independent of
the cuts between the level set and the mesh.

We begin in the stationary case by analysing an isoparametric unfitted finite element method, with
Taylor-Hood elements on the active mesh, applied to the Stokes equations on stationary domains. We
then continue to the time-dependent case and analyse the isoparametric CutFEM method for the transient
Oseen equation. We continue by using this method to compute a benchmark problem consisting of a freely
rotating circular obstacle in a channel flow.

To advance to flow problems on moving domains, we develop an Eulerian time-stepping scheme for the
time-dependent Stokes problem on moving domains using CutFEM. This method is then analysed with
respect to stability and accuracy. In particular, we include in our analysis the geometry approximation
error made in CutFEM by the approximation of the level set function. This Eulerian moving domain
method is then applied to a flow problem, driven by the motion of a cylinder, to investigate the properties
of the moving domain method in the full non-linear Navier-Stokes setting.

We progress to coupled fluid-rigid body interaction problems and investigate the stability and accuracy
properties of a method, based on our Eulerian time-stepping scheme, for the coupled motion of a solid in
free-fall with the fluid. Stability is shown for the time-dependent Stokes problem in the fluid domain, and
the error is considered for the reduced case of the heat-equation in the fluid domain. Furthermore, we
consider this method for a fluid-structure interaction problem, which is devised from experiential data.
This problem includes solid contact and the solid rebounding of the fluid boundary wall.

Furthermore, we consider triangular shaped particles as a prototype of non-smooth geometries for the
rigid body. These are then represented in CutFEM using multiple level set functions. In order to work
with small triangular shaped particles which cannot be resolved sufficiently by the computational mesh,
we develop an artificial deep neural network approach to predict the forces acting from the fluid onto
the solid. This network predicts the forces more accurately than the direct evaluation of the forces from
the FEM solution by using input data, which we can compute accurately on coarse meshes. As a result,
the motion of the solid particles we obtain on an under-resolved mesh is comparable to that realised on
highly resolved meshes.





Zusammenfassung

Wir entwickeln in dieser Arbeit eine Finite Elemente Methode um Fluid-Festkörper-Interaktionen zu
simulieren. Das entsprechende mathematische Modell besteht aus den inkompressiblen Navier-Stokes-
und Newton-Euler-Gleichgungen. Diese beiden Systeme sind durch die Kräfte am Interface zwischen dem
Fluid und dem Festkörper gekoppelt. Unsere Methode löst das hieraus entstehende gekoppelte System in
Eulerschen Koordinaten.

Die Diskretisierungen, die wir in dieser Arbeit betrachten, basieren auf einer nicht-angepassten Finite-
Elemente-Methode (CutFEM). Hier verwenden wir dabei ein festes Gitter einer Hintergrundsgeometrie,
wodurch es möglich ist, Probleme mit veränderlicher Geometrie in Eulerschen Koordinaten zu betrachten.
Die Geometrie wird dann durch eine Levelset-Funktion beschrieben und Randbedingungen werden mit
Nitsche’s Methode erzwungen. Der Eulersche Ansatz für sich bewegende Gebiete wird durch eine implizite
Erweiterung der Lösung ermöglicht. Diese Erweiterung wird durch die sogenannte “ghost-penalty” Stabi-
lisierung realisiert. Durch diese Stabilisierung ist zudem gewährleistet, dass die jeweilige Konditionszahl
der linearen Gleichungssysteme, die durch die Diskretisierung entsteht, unabhängig von den Schnitten
zwischen dem Gitter und der Levelset-Funktion beschränkt bleibt.

Zunächst betrachten wir den stationären Fall und analysieren eine isoparametrische CutFEM Methode
für die Stokes-Gleichung mit Taylor-Hood Elementen auf dem aktiven Teil des Gitters. Wir gehen dann
in den zeitabhängigen Fall über und untersuchen die isoparametrische CutFEM Methode anhand der
zeitabhängigen Oseen-Gleichung. Des Weiteren wenden wir die Methode auf ein Fluid-Struktur Problem
an, welches aus einer sich frei drehenden Kugel in einer Kanalströmung besteht.

Um Stömungsmechanikprobleme auf sich bewegenden Gebieten zu betrachten, entwickeln wir ein Euler-
sches Zeitschrittverfahren für die zeitabhängige Stokes-Gleichung auf sich bewegenden Gebieten. Diese
Methode analysieren wir bezüglich Stabilität und Genauigkeit. Insbesondere berücksichtigen wir hier-
bei den Geomtrieapproximationsfehler, der bei CutFEM durch die Approximation der Levelset-Funktion
entsteht. Des Weiteren wenden wir diese Methode auf ein Beispiel an, in dem das Fluid durch die Bewe-
gung eines Zylinders angetrieben wird, um die Eigenschaften unserer Methode im Falle der nicht-linearen
Navier-Stokes Gleichungen zu untersuchen.

Wir fahren damit fort, gekoppelte Fluid-Festkörper-Probleme zu betrachten. Basierend auf dem Euler-
schen Zeitschrittverfahren analysieren wir die Stabilität und Genauigkeit einer Methode für das gekoppelte
Problem eines Festkörpers, der sich im freien Fall in einem Fluid befindet. Wir zeigen die Stabilität der
Methode für den Fall der zeitabhängigen Stokes-Gleichung und der Fehler wird im reduzierten Fall der
Wärmeleitungsgleichung betrachtet. Wir wenden dann das Eulersche Zeitschrittverfahren an einem Fluid-
Struktur-Interaktion Problem an, welches anhand von experimentellen Daten konstruiert wurde. Dieses
Problem beinhaltet das Abprallen der Struktur von der Wand des Fluidbehälters.

Darüber hinaus betrachten wir dreieckförmige Teilchen als Prototypen von Festkörpern mit nicht-glatter
Geometrie. In der CutFEM Methode werden diese durch mehrere Levelset-Funktionen beschrieben. Damit
die Bewegung solcher Teilchen auf sehr groben Gittern genau darstellen zu können, entwickeln wir ein
künstliches neuronales Netz, das die Kräfte, die von dem Fluid auf die Teilchen wirken, vorhersagen soll.
Da dieses Netz Werte als Eingabe erhält, welche auch in sehr grob aufgelösten Gittern genau zu berechnen
sind, ist die Bewegung der Teilchen vergleichbar mit der Bewegung, die auf sehr hoch aufgelösten Gittern
entsteht.
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CHAPTER 1

Introduction

Contents of Chapter

1.1 Aims and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Aims and Motivation
This thesis is concerned with the numerical discretisation of the partial differential equations modelling
the flows laden with particles. Particulate flows or particle settling in a fluid have many industrial and
biological applications. Examples include the transport of blood cells in blood flows and the settling of
sand in water. In particular, we focus on rigid body particles coupled to an incompressible fluid flow.
While the mathematical theory of the motion of rigid particles in a liquid is one of the most classical
problems in fluid dynamics, it remains an active area of mathematical research, c.f. [Gal02] and the
references therein.

From the numerical perspective, there are many difficulties in the accurate discretisation of the fluid-
structure interaction (FSI) problem posed by the dynamics of a rigid body coupled to an incompressible
fluid. These include the coupled nature of the fluid and solid problems and topology changes in the
geometry, which occur when particles collide with each other or with a fluid boundary wall. Furthermore,
in the Eulerian Framework, which is the natural viewpoint for fluid problems, the moving fluid-solid
interface poses additional problems. For one, the motion of this interface is not known a priori, and
second, points that contain the fluid at one point in time may contain the solid in the next point in time
and vice-versa. Any numerical scheme must, therefore, carefully deal with these issues.

The most well-established method for solving this type of problem is the Arbitrary Lagrangian-Eulerian
(ALE) method [DGH82; Don+04]. In the ALE approach, the domain is mapped into a reference config-
uration, and then standard finite element methods (FEM) are used to solve the resulting problem. This
results in very efficient and accurate discretisations for problems where the deformation with respect to
the reference configuration remains moderate. However, if the deformation becomes too large or topo-
logy changes in the geometry occur, then the ALE method fails. In this case, the consideration of fully
Eulerian approaches are appropriate to overcome these problems. This is the approach we will follow in
this thesis.

In a fully Eulerian approach, a general background domain is discretised to define a set of potential
fluid unknowns and the geometry is described separately on this background domain. We shall focus on
a method known as CutFEM [Bur+14]. Here the geometry is represented by a level set function, and
boundary conditions on the interface are implemented using Nitsche’s method. While a significant amount
of research has been devoted to unfitted finite element approaches for problems on stationary domains,
the case of moving domains – one of the main goals of such methods – remains less well studied.



2 Chapter 1 Introduction

The goal of this thesis is to study and extend CutFEM to the coupled moving domain problem posed by
fluid-rigid body interaction problems. The main achievements realised in this thesis are as follows:

• Most analysis of CutFEM ignores the geometry error made by the piecewise linear level set approx-
imation used to define quadrature rules on elements cut by the level set. In this thesis, we extend
the analysis of an isoparametric finite element method [Leh16; Leh17] to flow problems posed on
stationary domains using Taylor-Hood elements. The analysis then includes the consistency error
made through the geometry approximation. This approach uses a parametric mapping to deform
the unfitted mesh such that the explicit, piecewise linear level set, which is used describing the do-
main boundary, is mapped onto a higher-order approximation of the boundary. As a result, optimal
order convergence rates for high-order finite elements are recovered and illustrated numerically.

• We extend an unfitted Eulerian time-stepping scheme from [LO19; BFM19] for moving domain
problems to the time-dependent Stokes problem on a moving domain, using unfitted Taylor-Hood
elements. In contrast to the existing work in [BFM19], this only requires stabilisation in the vicinity
of the unfitted, moving interface and the numerical analysis includes the geometry approximation
resulting from the level set approximation in CutFEM. The method is validated numerically, and we
present additional numerical studies, extending the approach to higher-order and examples including
topology changes.

• We derive stability and error estimates for a version of the Eulerian moving domain discretisation
applied to the coupled fluid-solid problem. The stability is shown for the case of the time-dependent
Stokes equation in the fluid domain, while an error estimate is proven for the reduced case of the
heat equation in the bulk domain. This can be seen as a restriction of the Stokes case to spaces of
divergence-free functions.

• Using data from physical experiments presented in [HTR21], we devise a fluid-structure interaction
set-up, which includes contact and rebound of an elastic particle. We then use this to validate our
Eulerian time-stepping method applied to a coupled fluid-solid problem.

• Most methods for FSI problems rely on a sufficiently accurate discretisation of the fluid-solid in-
terface such that the transfer of forces can be computed accurately. In order to apply the derived
Eulerian time-stepping method in cases where the geometry of the particles is neither smooth nor
resolved by the background mesh, we follow an idea from [MRS21] to train an artificial deep neural
network to accurately predict the transfer of forces from the fluid onto triangular shaped particles.
The accuracy of the predictions results from the network’s input, which is available accurately in
under-resolved situations.

1.2 Overview of Publications
As a result of the research of this thesis’ author as a Ph.D. student, the author worked on several research
papers intended for publication in international, peer-reviewed journals. In this section we give an over-
view of these publications, summarise their content and discuss their impact on this thesis. Furthermore,
the contributions made by the author of this thesis to each of these publications is stated.

Publication I
[Wah+19b] H. von Wahl, T. Richter, C. Lehrenfeld, J. Heiland and P. Minakowski. ‘Nu-

merical benchmarking of fluid-rigid body interactions’. In: Comput. & Fluids 193, 104290
(30th Oct. 2019). doi: 10.1016/j.compfluid.2019.104290

[Wah+19a] H. von Wahl, T. Richter, C. Lehrenfeld, J. Heiland and P. Minakowski. Numerical
benchmarking of fluid-rigid body interactions. Zenodo repository, June 2019. doi: 10.5281/
zenodo.3253455

https://doi.org/10.1016/j.compfluid.2019.104290
https://doi.org/10.5281/zenodo.3253455
https://doi.org/10.5281/zenodo.3253455


1.2 Overview of Publications 3

Abstract: We propose a fluid-rigid body interaction benchmark problem, consisting of a solid spherical
obstacle in a Newtonian fluid, whose centre of mass is fixed but is free to rotate. A number of different
problems are defined for both two and three spatial dimensions. The geometry is chosen specifically,
such that the fluid-solid partition does not change over time and classical fluid solvers are able to solve
the fluid-structure interaction problem. We summarise the different approaches used to handle the fluid-
solid coupling and numerical methods used to solve the arising problems. The results obtained by the
described methods are presented and we give reference intervals for the relevant quantities of interest.

Relevance for this thesis and author’s contribution: This publication represents the first step from classical
fluid dynamics to fluid-structure interactions by considering a geometry and FSI problem accessible to
classical computational fluid dynamic techniques. We shall use the benchmark described in [Wah+19b] in
section 3.4 as a basis for an initial exploration and evaluation of the unfitted finite element method used in
this thesis in the context of fluid-structure interaction. The author’s main contributions to this paper were
the design and definition of the computational scenarios as well as the organisation of the project. The
computations and the descriptions of the different discretisation techniques then split naturally among
the authors. The complete numerical code for the simulations by this thesis’ author was published in the
supplementary open source data set [Wah+19a].

Publication II
[WRL21] H. von Wahl, T. Richter and C. Lehrenfeld. ‘An unfitted Eulerian finite element

method for the time-dependent Stokes problem on moving domains’. In: IMA J. Numer.
Anal. (5th July 2021). doi: 10.1093/imanum/drab044

[WRL20] H. von Wahl, T. Richter and C. Lehrenfeld. An unfitted Eulerian finite element
method for the time-dependent Stokes problem on moving domains. Zenodo repository, Feb.
2020. doi: 10.5281/zenodo.3647571

Abstract: We analyse a Eulerian Finite Element method, combining a Eulerian time-stepping scheme
applied to the time-dependent Stokes equations with the CutFEM approach using inf-sup stable Taylor-
Hood elements for the spatial discretisation. This is based on the method introduced by Lehrenfeld &
Olshanskii [ESAIM: M2AN 53(2):585–614] in the context of a scalar convection-diffusion problems on
moving domains, and extended to the non-stationary Stokes problem on moving domains by Burman,
Frei & Massing [arXiv:1910.03054 [math.NA]] using stabilised equal-order elements. The analysis in-
cludes the geometrical error made by integrating over approximated level set domains in the discrete
CutFEM setting. The method is implemented and the theoretical results are illustrated using numerical
examples.

Relevance for this thesis and author’s contribution: This publication represents a major contribution to
this thesis, both in terms of the numerical method developed and the numerical analysed performed in
that work. In [WRL21], we moved both to unfitted finite elements and moving domain problems. The
critical step taken in this work was to consider an unfitted Eulerian time-stepping approach to fluid
problems in time-dependent domains by considering the time-dependent Stokes equations. This step was
vital to have robust numerical analysis for an Eulerian moving domain method. An Eulerian method was
necessary to work on problems where the deformation of the geometry is very large or even solid contact
occurs such that an Arbitrary Lagrangian-Eulerian approach would fail. We shall go into details of the
method developed in this paper in chapter 4. Much of the analysis developed here forms the base for
the analysis of the Eulerian time-stepping for the coupled fluid-solid problem in chapter 5. The majority
of the work in this paper was done by the thesis’ author. The scripts to reproduce all the numerical
examples in the paper were published in the accompanying open-source data set [WRL21].

https://doi.org/10.1093/imanum/drab044
https://doi.org/10.5281/zenodo.3647571
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Publication III
[Wah+21] H. von Wahl, T. Richter, S. Frei and T. Hagemeier. ‘Falling balls in a viscous fluid

with contact: Comparing numerical simulations with experimental data’. In: Phys. Fluids
33.3, 033304 (2nd Mar. 2021). doi: 10.1063/5.0037971

[Wah+20] H. von Wahl, T. Richter, S. Frei and T. Hagemeier. Falling balls in a viscous fluid
with contact: Comparing numerical simulations with experimental data. Zenodo repository,
Nov. 2020. doi: 10.5281/zenodo.3989604

Abstract: We evaluate a number of different finite element approaches for fluid-structure (contact) inter-
action problems against data from physical experiments. This consists of trajectories of single particles
falling through a highly viscous fluid and rebounding off the bottom fluid tank wall. The resulting flow is
in the transitional regime between creeping and turbulent flows. This type of configuration is particularly
challenging for numerical methods due to the large change of the fluid domain and the contact between
the wall and particle. In the finite element simulations we consider both rigid body and linear elasticity
models for the falling particles. In the first case, we compare results obtained with the well established
Arbitrary Lagrangian Eulerian (ALE) approach and an unfitted moving domain method together with a
simple and common approach for contact avoidance. For the full fluid-structure interaction (FSI) prob-
lem with contact, we use a fully Eulerian approach in combination with a unified FSI-contact treatment
using Nitsche’s method. For higher computational efficiency we use the geometrical symmetry of the
experimental set-up to reformulate the FSI system into two spatial dimensions. Finally, we show full
three-dimensional ALE computations to study the effects of small perturbations in the initial state of the
particle to investigate deviations from a perfectly vertical fall observed in the experiment. The methods
are implemented in open-source finite element libraries and the results are made freely available to aide
reproducibility.

Relevance for this thesis and author’s contribution: We moved to a real fluid-structure interaction problem
with solid contact in this work, backed up by experimental data. Of particular interest for this thesis is
the direct comparison of fluid-rigid body model with full elastic fluid-structure interaction models and
with data from physical experiments. Here we were able to apply the method developed in [WRL21] to a
full Navier-Stokes fluid model. It allowed us to investigate the impact of this reduced model, consisting
of rigid body dynamics and a rotationally symmetric formulation of the PDE problem, onto the relevant
quantities of interest. This thesis will go into the details of this work in chapter 6, beyond that published.
The author of this thesis contributed to this work by extracting a computationally rigorous definition for
the fluid-structure interaction problem and by implementing of the Eulerian time-stepping discretisation
used to compute to the problem posed. Again, the scripts to fully reproduce the computational results
presented in [Wah+21], were made available in the zenodo repository [Wah+20].

Publication IV
[WR21] H. von Wahl and T. Richter. ‘Using a deep neural network to predict the motion of

under-resolved triangular rigid bodies in an incompressible flow’. In: Internat. J. Numer.
Methods Fluids (12th Aug. 2021). doi: 10.1002/fld.5037

Abstract: We consider non-spherical rigid body particles in an incompressible fluid in the regime where
the particles are too large to assume that they are simply transported with the fluid without back-
coupling and where the particles are also too small to make fully resolved direct numerical simulations
feasible. Unfitted finite element methods with ghost-penalty stabilisation are well suited to fluid-structure-
interaction problems as posed by this setting, due to the flexible and accurate geometry handling and for
allowing topology changes in the geometry. In the computationally under resolved setting posed here,
accurate computations of the forces by their boundary integral formulation are not viable. Furthermore,

https://doi.org/10.1063/5.0037971
https://doi.org/10.5281/zenodo.3989604
https://doi.org/10.1002/fld.5037
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analytical laws are not available due to the shape of the particles. However, accurate values of the forces
are essential for realistic motion of the particles. To obtain these forces accurately, we train an artificial
deep neural network using data from prototypical resolved simulations. This network is then able to
predict the force values based on information which can be obtained accurately in an under-resolved
setting. As a result, we obtain forces on very coarse and under-resolved meshes which are on average
an order of magnitude more accurate compared to the direct boundary-integral computation from the
Navier-Stokes solution, leading to solid motion comparable to that obtained on highly resolved meshes
that would substantially increase the simulation costs.

Relevance for this thesis and author’s contribution: We took two significant steps in this paper. First, we
considered non-smooth geometries for the solid bodies, and secondly, we moved away from discretisations
where the fluid-solid interface is fully resolved. The novel approach of training an artificial deep neural
network to steer the solid particles by using information from the bulk of the fluid was an essential step
in realising simulations with solid particles, where a resolved computational mesh of very small particles
does not make sense. We shall make use of this approach in section 7.2. The majority of the work
in [WR21] was done by the author of this thesis.

Publication V
[Leh+21] C. Lehrenfeld, F. Heimann, J. Preuß and H. von Wahl. ‘ngsxfem: Add-on to NG-

Solve for geometrically unfitted finite element discretizations’. In: J. Open Source Softw.
6.64 (10th Aug. 2021), p. 3237. doi: 10.21105/joss.03237. url: https://github.com/
ngsxfem/ngsxfem

Summary: ngsxfem is an add-on library to Netgen/NGSolve, a general purpose, high performance finite
element library for the numerical solution of partial differential equations. The add-on enables the use
of geometrically unfitted finite element technologies known under different labels, e.g. XFEM, CutFEM,
TraceFEM, Finite Cell, fictitious domain method or Cut-Cell methods, etc.. Both, Netgen/NGSolve and
ngsxfem are written in C++ with a rich python interface through which it is typically used. ngsxfem
is an academic software. Its primary intention is to facilitate the development and validation of new
numerical methods.

Relevance for this thesis and author’s contribution: All the unfitted numerical computations presented
in this thesis were implemented using ngsxfem. This thesis’ author’s main contribution to this software
was in the development of the multiple level set functionality of the software. The most significant part
of this was to develop the python interface to enable the user to work flexibly and efficiently with level
set geometries, described by multiple level sets.

1.3 Outline of Thesis
The remainder of this thesis is structured as follows:

• Chapter 2 gives a compact overview of the equations governing the motion of an incompressible
fluid coupled to a rigid body. In addition, we state several related fluid and fluid-rigid body models
which we use in this thesis to develop and study our discretisation techniques.

• In chapter 3, we establish the basics of the unfitted finite element discretisation techniques used
in this thesis. Here we extend an established high-order unfitted finite element discretisation to
the Stokes and time-dependent Oseen problems on smooth geometries, establishing both stability
and energy error-estimates. We then validate these results with numerical examples. Furthermore,

https://doi.org/10.21105/joss.03237
https://github.com/ngsxfem/ngsxfem
https://github.com/ngsxfem/ngsxfem
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we apply this discretisation to our rotating-rigid body benchmark [Wah+19b] to analyse the ap-
proximation properties of the unfitted discretisation in the context of a fluid-rigid body interaction
problem.

• We develop the unfitted Eulerian time-stepping scheme, used to compute flow problems on changing
geometries, in chapter 4. Using the time-dependent Stokes equations as the flow model on a domain
with known motion, we prove the stability of the approach using unfitted Taylor-Hood elements and
prove an error estimate, including the geometry error introduced by considering approximated level-
set geometries, which is often ignored in the unfitted finite element error analysis in the literature.
We present numerical examples illustrating the robustness and approximation properties of our
method. Furthermore, we present several numerical examples using higher-order discretisations in
space and time, illustrating the method’s capabilities beyond that covered by our numerical analysis.
Finally, we apply the method to a moving domain problem with the full Navier-Stokes equations
governing the motion of the fluid. In order to establish the potential of our method in this context,
we compare the results against other unfitted Eulerian time-stepping methods and a highly resolved,
fitted discretisation using the Arbitrary Lagrangian-Eulerian (ALE) approach.

• We move further towards fluid-rigid body interaction problems in chapter 5 by analysing a version of
our unfitted Eulerian time-stepping method, using Lagrange multipliers to implement the boundary
condition on the moving interface, applied to the time-dependent Stokes coupled with translational
rigid body motion. We show the stability of the resulting method and prove an error estimate for
the reduced case of the heat equation in the bulk domain.

• In chapter 6, we work to apply our unfitted Eulerian discretisation for moving domain flow problems
to a fluid-structure interaction with solid contact, for which we have experimental data to compare
our results with. To reduce the computational complexity of this problem, we use the rotational
symmetry of the geometry in cylindrical coordinates to derive a spatially reduced formulation of
the problem. We give details of our solver applied to coupled fluid-solid problems and compute
the fluid-structure interaction problem in the reduced formulation, using a basic contact avoidance
algorithm to deal with the rebound problem posed by the set-up.

• Chapter 7 then deals with non-smooth geometries for the rigid body. Using triangles as the proto-
type for a rigid body with corners, resulting in a fluid domain with re-entrant corners, we investigate
the ability of our method in a context where standard ALE approaches will fail. To efficiently sim-
ulate multiple triangular particles in a fluid in free-fall, we develop a deep neural network approach
to predict the transmission forces acting on the particles. The neural network is trained to use
volumetric information from the fluid as input such that we can then apply the network in highly
under-resolved unfitted finite element simulations with multiple particles.

• We conclude this thesis in chapter 8 by summarising the results obtained and giving an overview
of possible future research directions resulting from this work.



CHAPTER 2

Incompressible Fluids with Rigid Body Motion

Structure of Chapter The mathematical equations used to model the motion of rigid bodies in an
incompressible fluid, and on which our numerical models and discretisations are based, are introduced.
Furthermore, details of simplified equations used in this thesis to develop and analyse the presented
methods are given.

Contents of Chapter

2.1 The Incompressible Navier-Stokes Equations and Rigid Body Motion . . . . . . . . . . . 7
2.1.1 Fluid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Solid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related and Simplified Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 The Incompressible Navier-Stokes Equations and Rigid Body
Motion

Let us consider a rigid body moving through a liquid. We denote the solid domain as S ⊂ Rd, with
d ∈ {2, 3}, and assume that the fluid F = Rd \ S fills the whole space. We assume that the rigid body S
is an open, connected and bounded domain. Then the interface between the solid and the fluid region is
denoted as I = ∂S ⊂ Rd−1.

2.1.1 Fluid Model
We shall consider the incompressible Navier-Stokes equations as the model for the fluid. Let us therefore
consider the fluid space-time domain, given by

Q :=
⋃

t∈(0,tend)

F(t) × {t}.

In this domain and in an inertial frame, the fluid is described by a velocity u and a pressure p. Fol-
lowing the principles of conservation of linear momentum and mass, the velocity and pressure fulfil the
incompressible Navier-Stokes equations given by

ρF
Du

Dt
− div(σ(u, p)) = ρFf (2.1a)

div(u) = 0. (2.1b)

Here ρF is the homogeneous fluid density and
D

Dt
:= ∂t + u · ∇, σ(u, p) := µF (∇u+ ∇uT ) − Id p
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are the total material derivative and the Cauchy stress tensor, respectively, where Id is the identity tensor
in Rd and f is an external body force acting on the fluid. Furthermore, µF = ρFν is the fluid’s dynamic
viscosity while ν > 0 is the fluids kinematic viscosity. Taking the divergence constraint into account, the
momentum balance equation in (2.1) can be rewritten as

ρF∂tu− µF∆u+ ρFu · ∇u+ ∇p = f .

The system (2.1) is then completed with appropriate boundary conditions. On the temporal boundary,
this is an initial condition u(·, 0) = u0(·). On the fluid solid interface, we assume continuity of the
velocity, i.e., we have the inhomogeneous Dirichlet condition u(·, t) = U(t) on I(t) for the rigid velocity
U(t) ∈ Rd. Furthermore, we assume that the liquid is at rest at infinity, i.e., we impose

lim
|x|→∞

u(x, t) = 0. (2.2)

2.1.2 Solid Model
Let S be a rigid body with homogeneous density ρS . We define cS to be the centre of mass of this body
with respect to the origin of our inertial frame. The velocity of the solid is then given by

U = υ + ω × r,

where υ = ∂tcS is the solid’s translational velocity, ω is the solid’s angular velocity and r = x − cS
is a given point on the surface of the solid I relative to the bodies centre of mass. These two velocity
components are then governed by the Newton-Euler equations

mS
d
dtυ = F + Fbuoyant + Fgravity (2.3a)

IS
d
dtω + ω × ISω = T + Tbuoyant (2.3b)

with the particles mass mS = ρS vol(S), the force and torque exerted by the fluid on the particle

F = −
∫

I
σ(u, p)nds and T = −

∫

I
r × σ(u, p)nds, (2.4)

where n is the fluids outward pointing unit normal vector, and the solids moment of inertia tensor defined
by

IS = ρS

∫

S
(∥r∥2 Id3 −r ⊗ r) dx.

The pull due to gravity and the buoyancy force and torque are

Fgravity = mSg, Fbuoyant = −mFg and Tbuoyant = −mFrbo × g,

where mF = ρF vol(S) is the mass of the displaced fluid and rbo is the vector from the centre of mass to
the centre of buoyancy. The centre of buoyancy is defined as the centroid of the displaced fluid volume.
Since the particles are completely submersed and both the fluid and solid have a constant density, the
centre of mass and centre of buoyancy coincide, such that rbo = 0 and therefore Tbuoyant = 0.

Remark 2.1. Note that due to the Helmholtz decomposition, c.f. [Gal11, Theorem III.1.1], the buoyancy
effects can equivalently be included in the system by including the forces due to gravity on the right-hand
side of (2.1) in the form g∇xd. As the numerical methods in this thesis are not pressure-robust [Joh+17],
including buoyancy in the solid and ignoring gravity on the fluid is more accurate on the discrete level. ▲

Remark 2.2. In two spatial dimensions, the non-linear, quadratic term ω × ISω in (2.3b) vanishes.
Furthermore, the moment of inertia reduces to the scalar quantity IS = ρS

∫
S ∥r∥2 dx and the angular

velocity is also a scalar quantity. ▲
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2.1.3 Full Model
The full model of an incompressible fluid contains a rigid body in free-fall is then given as follows: With
the system starting at rest, i.e., u0 = U0 = 0, we search for a fluid velocity and pressure (u, p) and a
solid velocity U such that

ρF (∂tu+ u · ∇u) − div(σ(u, p)) = 0 in Q (2.5a)
div(u) = 0 in Q (2.5b)
u(·, t) = U(·, t) on I(t) (2.5c)
U(x, t) = υ(t) + ω(t) × (x− cS(t)) on I(t) (2.5d)

mS
d
dtυ = F + Fbuoyant + Fgravity in (0, tend) (2.5e)

IS
d
dtω + ω × ISω = T + Tbuoyant in (0, tend), (2.5f)

where the fluid is at rest at infinity, c.f. (2.2).

Changing the Frame of Reference

When considering the system (2.5), the most significant problem is that the fluid domain is an unknown
function of time. Therefore, it is advantageous to rewrite the coupled fluid-solid problem in a frame
attached to the solid S , in which the fluid domain remains constant over time. To this end, we fol-
low [Gal02]. Without loss of generality, consider a frame R′, whose origin coincides with the centre of
mass of the solid cS and which coincides with the inertial frame of reference at time t = 0. Then, if x is
the position vector of a point P and y denotes that same point in R′, it holds that

x = Q(t)y + cS(t), Q(0) = Id, cS(0) = 0. (2.6)

Using that in the solid it holds that ċS(t) = υ and ẋ = U , it follows from (2.6) and (2.5d) that the
angular velocity is related to Q via

Q̇(t)QT (t)a = ω × a for all a ∈ R3. (2.7)

To rewrite the system (2.5) in the frame of reference R′, we define the following transformed fields for
the fluid and solid equations. For the fluid, we set

u(y, t) := QT (t)u(Q(t)y + cS(t), t), p(y, t) := p(Q(t)y + cS(t), t), T(u, p) := QTσ(Qu, p)Q.

For the solid, we further define

ζ(t) := QT (t)υ and ξ(t) := QT (t)ω.

It then follows from (2.7) that

QT (t)Q̇(t)a = ξ × a for all a ∈ R3. (2.8)

We now need to rewrite the fluid and solid equations in terms of these transformed fields. For the
time-derivative of the fluid velocity, we have

∂tu = ∂t(Qu) = Q̇+Q(∂tu + ẏ · ∇yu).

Differentiating (2.6) with respect to time, taking the definitions of u, ζ and ξ into account and applying
(2.7), we also have that

ẏ = QT (u− υ) −QT Q̇y = u − ζ − ξ × y.
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Combining the above equations then gives

QT∂tu = ξ × u + ∂tu + (u − ζ − ξ × y) · ∇yu.

Furthermore, by the definition of the transformed fields, it follows that

divx(u) = divy(u) and QT divx(σ(u, p)) = divy(T(u, p)).

For the Cauchy stress-tensor, we observe that due to (2.6) and the definition of the transformed velocity
it holds

∇xu+ (∇xu)T = QT
(
∇yu + (∇yu)T

)
Q.

Then by the definition of the transformed pressure, it follows that

σ(u, p) = Q(∇yu + (∇yu)T )QT − Id p.

So by the definition of the transformed stress tensor, we see that the Cauchy stress tensor has the same
form in both frames of reference, i.e., T(u, p) = µF (∇u + ∇uT ) − Id p.

Now, let D be the fixed fluid region in the frame R′. As a result of the above considerations, we have
that the Navier-Stokes equations in the frame moving with the rigid body are given by

ρF (∂tu + (u − U) · ∇u + ξ × u) − div(T(u, p)) = QTf in D × (0, tend)
div(u) = 0 in D × (0, tend),

where
U(y, t) = ζ(t) + ξ(t) × y

is the total velocity of the rigid body in the moving frame. The boundary conditions are then

lim
|y|→∞

u(y, t) = 0 and u(y, t) = U(y, t) on I ′ × (0, tend),

where I ′ is the solid boundary in the moving frame.

To complete the system, we now rewrite the solid equations in R′. By the definition of the transformed
solid translational velocity, we have with (2.8) and the orthogonality of Q that

mS
d
dtυ = mS

d
dt (Qζ) = mS(Q̇ζ +Qζ̇) = mSQ(ζ̇ + ξ × ζ).

Denoting n as the unit normal vector pointing out of the fluid, we have that n = Qn, and for the forces
acting from the fluid onto the solid that

∫

I
σ(u, p)nds = Q

∫

I′
T(u, p)n ds.

The equation of linear momentum (2.3a) governing the translational velocity component of the solid is
therefore transformed as

mS
d
dtζ +mSξ × ζ = QTFext −

∫

I′
T(u, p)n ds,

where Fext is the sum of the external forces acting on the solid. To rewrite the equation of angular
momentum (2.3b), we use the identity (Qa) × (Qb) = Q(a× b), so that with I := QT ISQ we find

I d
dtξ + ξ × Iξ = QTText −

∫

I′
y × T(u, p)n ds.
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Now, in order to reformulate the free-fall fluid-rigid body problem (2.5) in the frame moving with the
rigid body, we first note that since the motion of the solid is not known, we also do not know the direction
of the vector G(t) := QT (t)g. Differentiating this with respect to time, and using the orthogonality of Q
and that ġ = 0, we find with (2.8) that

Ġ = Q̇Tg = Q̇TQG = −QT Q̇G = G× ξ.

As a result of the above considerations, we are now able to reformulate the full free fall fluid-rigid body
system (2.5) in the frame moving with the solid body. Given the initial conditions u(·, 0) = ζ(0) = ξ(0) =
0 and G = g, find (u, p, ζ, ξ,G) such that

ρS
(
∂tu + (u − U) · ∇u + ξ × u

)
− µF∆u + ∇p = ρSG in D × (0, tend) (2.9a)

div(u) = 0 in D × (0, tend) (2.9b)
u(·, t) = U(·, t) on I ′ (2.9c)

U(y, t) = ζ(t) + ξ(t) × y on I ′ (2.9d)

mS
d
dtζ +mSξ × ζ = mSG−

∫

I′
T(u, p)n ds in (0, tend) (2.9e)

I d
dtξ + ξ × Iξ = −

∫

I′
y × T(u, p)n ds in (0, tend) (2.9f)

d
dtG = G× ξ in (0, tend), (2.9g)

where the fluid is at rest at infinity. Note that in this form, we do not include the buoyancy effect in the
solid equations, since we include gravity in the fluid momentum balance equation.

Solvability

To arrive at a statement on the existence of solutions to (2.9), we need to derive a weak formulation of
the problem. To this end, let DT := D × [0, tend) and define the space

C :=




φ ∈ C∞(DT )

∣∣∣∣∣∣∣∣

div(φ(·, t)) = 0 for all t ∈ [0, tend), there exist φ1,φ2 ∈ C∞
0 ([0, tend))

such that φ(y, t) = −(φ1(t) +φ2(t) × y)
in a neighbourhood of I ′ and for all t ∈ [0, tend)




.

Multiplying the fluid momentum balance equation (2.9a) with a test-function φ ∈ C, integrating with
respect to DT , integrating by parts with respect to time and space and inserting the balance of linear
and angular momentum for the solid then leads to the weak form

ρF

∫ tend

0

∫

D
−∂φ

∂t
· u − ((u − U) · ∇φ) · u+φ · ξ × u + 2νD(φ) : D(u) dy dt

=
∫ tend

0
mS

dφ1
dt · ζ + dφ2

dt · Iξ −mSξ × u ·φ1 − ξ × (Iξ) ·φ2 + (mS −mF )G ·φ1 dt, (2.10)

where D(u) = 1
2 (∇u + ∇uT ) is the velocity deformation tensor. Furthermore, for (2.9g) we derive with

ψ ∈ C∞
0 ([0, tend)) the weak form

ψ(0) · g +
∫ tend

0

dψ
dt ·G+G+ ξ ×G ·ψ dt = 0. (2.11)
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Notation To formulate the statement on the existence, we require the notion of some function spaces.
In the following, for Ω ⊂ Rd, we will use the standard notation for Sobolev spaces Wk,p(Ω) for scalar
valued, weakly differentiable functions with the associated norm ∥·∥Wk,p(Ω) and semi-norm | · |Wk,p(Ω) for
k ∈ N0 and 1 ≤ p ≤ ∞, [Eva98; EG21a]. As above, spaces and norms of vector valued functions are
indicated by using bold letters. From these spaces, we obtain the Hilbert space Wk,2(Ω) = Hk(Ω) and
the Lebesgue space by W0,p(Ω) = Lp(Ω). The L2(Ω)-inner product is then denoted by (·, ·)Ω and the
resulting natural L2(Ω)-norm is abbreviated to ∥·∥Ω. Additionally, we denote the subspaces L2

0(Ω) as the
space of L2-integrable functions with mean zero and H1

0(Ω) as the set of H1-functions with vanishing
trace on ∂Ω. We further note that notion of Sobolev spaces can be extended to so-called fractional order
spaces for non-integer k. Finally, for time-dependent problems, we denote Bochner spaces by

Lp(t1, t2;X) :=
{
f(x, t) |

∫ t2

t1

∥f∥p
X dt < ∞

}

for a normed space X and p ∈ [0,∞], with the standard modification for p = ∞, [EG21c, Part XIII,
Chapter 64]. Where there is no risk of ambiguity in t1, t2, we will use the shorter notation Lp(X) for
Lp(t1, t2;X).

With these formulations we can therefore formulate the existence of Leray-Hopf weak solutions to the
coupled free fall fluid-rigid body problem.

Theorem 2.3. There exists at least one weak solution (u, ζ, ξ,G) of the free fall fluid-rigid body problem,
such that u ∈ L2(0, tend,H1(D)), u = U = ζ + ξ × y on I ′ × [0, tend] in the sense of traces and (2.10)
and (2.11) hold for all φ ∈ C and ψ ∈ C∞

0 ([0, tend)), respectively.

Proof. See [Gal02, Part I, section 4].

We further refer to [GGH12] for the the Lp-theory for strong solutions of the coupled fluid-rigid body
system (2.5).

Remark 2.4. In the above formulation, the fluid domain fills the entire space, which is not filled by the
solid, and we assumed that the fluid is at rest at infinity. The consideration of an unbounded fluid domain
was chosen to avoid the possibility of contact between a part of the fluid boundary and the solid. In fact,
the correct model for the transition to contact with a solid wall is not yet fully understood. For details on
the current state of research for contact modelling from a theoretical perspective, see section 6.2 below.
As this thesis deals with computational methods for fluid-rigid body interactions, we will only consider
bounded fluid domains below. We, therefore, are mainly concerned with looking at the system before
topological contact occurs between the fluid and a solid boundary of the fluid domains. ▲

2.2 Related and Simplified Models
In the development of our numerical methods, we also consider a number of simplified models of the fluid-
rigid body system, given by (2.5). In models where the motion of the fluid domain is a given quantity,
and there are no solid equations to be considered, we shall refer to the fluid domain as Ω, in line with the
standard notation in computational fluid dynamics (CFD).

Navier-Stokes on Moving Domains

As a simplification of the full fluid-rigid body system (2.5), we take the solid motion as a given quantity.
The resulting equations are the Navier-Stokes equations on a moving domain. We consider a domain
Ω(t) ⊂ Rd with prescribed motion and define the space-time domain as Q :=

⋃
t∈(0,tend) Ω(t) × {t}. In Q
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we then consider the Navier-Stokes equations: Given an initial condition u0, find a velocity and pressure
(u, p) such that

∂tu− ν∆u+ u · ∇u+ ∇p = f (2.12a)
∇ · u = 0, (2.12b)

together with homogeneous Dirichlet boundary conditions on the spatial boundary Γ(t) = ∂Ω(t). We
refer to [Boc77; Sal88; GS06] for details on the existence of solutions to this problem.

Transient Stokes with Translational Body Motion

As an alternative simplification of the full fluid-rigid body system, we ignore the non-linear transport
term and restrict the solid motion to translational motion. The result is a system of linear and coupled
fluid-solid equations. To this end, let Ω = F(t)∪̇I∪̇S be a bounded and connected domain in Rd, and
let Γ = ∂Ω be the outer boundary of the fluid domain. Given a divergence-free initial fluid condition u0
with a compatible initial solid condition U0, we search for a fluid velocity and pressure (u, p) and a solid
velocity U such that

ρF∂tu− div(σ(u, p)) = ρFf in Q (2.13a)
div(u) = 0 in Q (2.13b)
u(·, t) = 0 on Γ (2.13c)
u(·, t) = υ(t) on I(t) (2.13d)

mS
d
dtυ = F + Fbuoyant + Fgravity in (0, tend). (2.13e)

See [Gal02, section 4.1] for details on the existence and uniqueness of the time-dependent Stokes equations
coupled to rigid body motion of a solid body.

Transient Stokes Equations on Moving Domains

As a further simplifications, we consider the transient Stokes problem on a moving domain with prescribed
motion. With a time-dependent domain Ω(t) ⊂ Rd bounded in space, we take the space time-domain
Q :=

⋃
t∈(0,tend) Ω(t) × {t}. In Q we then consider the time-dependent Stokes problem: Find the velocity

u and pressure p such that

∂tu− ν∆u+ ∇p = f (2.14a)
∇ · u = 0, (2.14b)

together with Dirichlet boundary conditions on the space-boundary Γ(t) = ∂Ω(t), an initial condition
u(·, 0) = u0(·) and a forcing term f(t) with the viscosity ν > 0. For the well-posedness of this problem,
we refer to [BFM19, Section 2.1].

Remark 2.5. The time-dependent Stokes equations are not a natural model to consider. If we takes a
creeping flow as the fluid model, such that the convective forces are negligible compared to the diffusion
forces, then the time-derivative can also be ignored, i.e., the complete material derivative can be ignored.
As a result, at every time t, the stationary Stokes equations should be considered in F(t); see for
example [HB81]. We do not consider the time-dependent Stokes equations on moving domains as a
physical model of rigid body motion, but rather a simplification of the Navier-Stokes equations to consider
a linear model, easing the numerical analysis of discretisations, on the way to the full fluid-rigid body
model. ▲
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The Navier-Stokes Equations

As we take the incompressible Navier-Stokes equations as our fluid model, we shall also be interested in the
time-dependent Navier-Stokes equations on a fixed fluid domain. To this end, let Ω ⊂ Rd with d ∈ {2, 3}
be an connected, bounded and fixed domain with Lipschitz continuous boundary. The incompressible
Navier-Stokes equations are then given by

∂tu− ν∆u+ u · ∇u+ ∇p = f in Ω × (0, tend) (2.15a)
∇ · u = 0 in Ω × (0, tend) (2.15b)

u = 0 on Γ × (0, tend) (2.15c)
u(·, 0) = u0(·) in Ω. (2.15d)

Provided sufficient regularity of the initial data u0 and the body force f , we know existence of weak
solutions (u, p) to the Navier-Stokes equations (2.15). Uniqueness is only known in the case of d = 2,
while for d = 3 uniqueness of the solution is an open problem. For details, see for example [BF13,
Chapter V, section 1.3] or [Gal00].

The Time-Dependent Oseen Equations

As a simplification of the Navier-Stokes equations, we shall also consider the time-dependent Oseen
equations. Here the transport field is taken to be a given quantity, rather than the velocity itself. For a
given, divergence-free convection field, the problem is to find a velocity and pressure (u, p) such that

∂tu− ν∆u+ b · ∇u+ ∇p = f in Ω × (0, tend) (2.16a)
∇ · u = 0 in Ω × (0, tend) (2.16b)

u = 0 on Γ × (0, tend) (2.16c)
u(·, 0) = u0(·) in Ω. (2.16d)

See [Deu21] and the references therein for the theoretical existence, uniqueness and long-time behaviour
of the solution to (2.16).

The Stokes Equations

A further simplification is to remove the transport term and assume a stationary solution such that the
time-derivative vanishes. This models a creeping flow where the diffusion forces dominate the inertia
forces. In this case, we end up with the Stokes problem

−ν∆u+ ∇p = f in Ω (2.17a)
∇ · u = 0 in Ω (2.17b)

u = 0 on Γ. (2.17c)

See for example [BF13, Chapter IV, section 5.1] or [Gal11, Chapter IV] for the existence and uniqueness
of solutions to problem (2.17).



CHAPTER 3

Unfitted Finite Elements for Flow Problems

Structure of Chapter The unfitted finite element method used in this work is introduced. Central
concepts relating to the high-order geometry approximation and stabilisation techniques are summarised
from the available literature. The available analysis for the high-order geometry approximation of the
isoparametric CutFEM approach is extended to the Stokes problem on fixed domains using Taylor-Hood
elements. This analysis is further extended to the time-dependent flow problems on stationary domains
using the transient Oseen problem. The theoretical results are illustrated and validated numerically using
high-order finite elements. The first step towards fluid-structure interactions is made by applying the
isoparametric CutFEM to a benchmark problem proposed in our work [Wah+19b], in which the fluid-solid
geometry does not change in time.
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3.1 Introduction to CutFEM
CutFEM is an unfitted finite element method based on a description of the computational domain by a
level set function on some larger background domain [BH10; BH12; BH14; Bur+14; Mas+14]. The idea is
to integrate on the computational domain by generating custom quadrature rules on cut elements, while
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φh(x) +
−

Figure 3.1: Quadrature points for an integration rule of order four on cut and uncut element with respect to a straight
cut.

using the standard polynomial basis on the entire element, on which the computational domain has some
contribution. Boundary conditions inside an unfitted finite element can then be implemented using a
Lagrange multiplier approach [BH10] or more commonly by using Nitsche’s method [Nit71] as presented
in [BH12; BH14; Mas+14]. To ensure numerical stability of this method, independent of the mesh level
set cut configuration, ghost-penalty stabilisation [Bur10] has become very popular.

Related unfitted finite element methods, known under a variety of names, include XFEM [MDB99; FB10],
the Finite Cell method [PDR07], TraceFEM [ORG09] and ϕ-FEM [DL20]. We note that the concepts
of these methods have been used before, for example in penalty methods [Bab73b; BE86], the fictitious
domain method [GPP94a; GPP94b], the immersed boundary method [PM89]. Finally, we note that a
CutFEM method without ghost-penalty stabilisation [BHL21] has been developed very recently.

3.1.1 Geometry Description with Level Sets
Let us consider a open bounded domain Ω ⊂ Rd, for d ∈ {2, 3}, with boundary Γ = ∂Ω. We assume that
this is embedded into a larger polygonal domain Ω̃ ⊃ Ω in Rd, which we will denote as the background
domain. The boundary Γ is then described by a level set function ϕ : Ω̃ → R so that

Γ = {x ∈ Ω̃ | ϕ(x) = 0} and Ω = {x ∈ Ω̃ | ϕ(x) < 0}.

This level set function is taken to be sufficiently smooth, that is in a neighbourhood UG of Γ we have
that ϕ ∈ Cm+1(UΓ) for some m ∈ N>1.

In order to avoid explicitly writing generic constants in inequalities, we will use the notation a ≲ b, iff
there exists a constant c > 0 independent of the mesh size and the mesh-interface cut position such that
a ≤ cb. Similarly, a ≳ b denotes a ≥ cb. If both a ≲ b and a ≳ b hold, then we will write a ≃ b.

Now, we consider a simplicial, shape-regular and quasi-uniform triangulation T̃h of the background do-
main Ω̃. We will refer to this as the background mesh. The parameter h denotes the diameter of the mesh
for which we we have h ≃ hT with the individual element diameter hT for T ∈ T̃h.

In order to achieve higher-order convergence of the method using the isoparametric approach [Leh16;
Leh17] below, we assume that there is a sufficiently good approximation of the smooth level set function
ϕho

h ∈ Pk in the space of continuous and piecewise polynomial functions of order k on T̃h. This assumptions
translates as

∥ϕ− ϕho
h ∥UΓ,∞ + h∥∇ϕ− ∇ϕho

h ∥UΓ,∞ ≲ hk+1,

where ∥·∥X,∞ denotes the L∞(X)-norm and we assume that m ≥ k, and k is the order of our finite
element space.

Explicit Boundary Description An explicit description of the domain is necessary for a robust generation
of quadrature rules on cut elements, see [Bur+14, Section 5]. To this end, we consider a piecewise
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linear level approximation ϕh ∈ P1. With this we can then explicitly define the approximated domain
boundary

Γh := {x ∈ Ω̃ | ϕh(x) = 0}.
This piecewise linear domain boundary results in straight cuts on each elements, such that with a simple
sub-triangulation, quadrature rules can be generated to integrate over the approximated interface and
computational domain. An example of the quadrature points generated by this procedure can be seen in
Figure 3.1. The approximated computational domain is then given by

Ωh := {x ∈ Ω̃ | ϕh(x) < 0}.

The main disadvantage of this geometry approximation is that it introduces an error of order h2 on the
cut elements. As a result methods based on this can be at most of order two. The method we shall deploy
to obtain a geometry error of the correct order will be presented bellow.

Cut Element Notation We introduce the notation we shall use to denote the different parts of the
background mesh used in CutFEM. We define the active mesh

Th := {T ∈ T̃h | T ∩ Ωh ̸= ∅}

as the set of elements which contain some contribution to the approximated domain Ωh. We then take
the set of cut elements

Th,Γ := {T ∈ Th | T ∩ Γh ̸= ∅}
as the elements containing the boundary approximation. The set of uncut, or interior, elements is then
denoted as

Th,in := Th \ Th,Γ.

Furthermore, we consider the interior extension of cut elements by direct facet neighbours

Th,Γ,+ := {T ∈ Th | ∃T ′ ∈ Th,Γ with measd−1(T ∩ T ′) ̸= 0}.

With this, we can then define the set of interior facets of cut elements as

Fh := {F = T 1 ∩ T 2 | T1, T2 ∈ Th,Γ,+ with T1 ̸= T2 and measd−1(F ) > 0}.

Finally, we define the active domain as

OT := {x ∈ T | T ∈ Th} ⊂ Rd

and the domain of cut elements

OTΓ := {x ∈ T | T ∈ Th,Γ} ⊂ Rd.

To achieve higher-order geometry approximations of the discrete level set domain, we assume that h is
sufficiently small, so that ϕ is smooth enough in OTΓ , i.e., OTΓ ⊂ UΓ. In Figure 3.2 we illustrate these
sets of elements and facets for a given mesh and level set approximation.

For the analysis below, we assume that the interface Γ intersects the boundary of every element T ∈ Th,Γ
exactly twice and each cut open edge is intersected exactly once.

3.1.2 Ghost-Penalty Stabilisation
In fictitious domain methods, we integrate over a level set domain on a background mesh constructed
independently of the level set geometry. As a result, it occurs that there are elements T ∈ Th in the
active mesh with very little contribution to the computational domain, i.e., measd(Ωh ∩ T ) ≤ ε for some



18 Chapter 3 Unfitted Finite Elements for Flow Problems

T ∈ T̃h \ Th

T ∈ Th,Γ

T ∈ Th,Γ,+ \ Th,Γ

T ∈ Th \ Th,Γ,+

F ∈ Fh

Γh

Figure 3.2: A background mesh, piecewise linear level set function and the element sets corresponding to the resulting
cut configuration.

small ε > 0. We refer to such mesh-level set cut configurations as bad cuts. Elements with bad cuts in
the active mesh do not affect the accuracy of the numerical integration over Ωh. However, the condition
number of the resulting finite element stiffness matrix is severely impacted by bad cuts, affecting the
accuracy and convergence properties of solvers of the linear system. In fact, for ε → 0, the condition
number of the stiffness matrix becomes unbounded [Bur10].

To improve the robustness of fictitious domain methods with respect to the mesh-level set cut config-
uration, ghost-penalty stabilisation was introduced by Burman [Bur10]. The basic idea is to include
a penalty term in the variational formulation of a given PDE problem, which controls the solution on
cut elements, by taking the solution on neighbouring interior elements into account. We refer to [GM19;
GSM20] for a more abstract and extensive approach to designing a ghost-penalty operator for a given
problem. As a result, ghost-penalty stabilisation gives control over the solution in norms defined on the
entire active domain. Additional benefits include that we are able to prove bounds for the condition
number of the resulting linear systems and that it can provide the necessary pressure stabilisation on cut
cells needed to guarantee solvability.

To the best of our knowledge, there are currently three different types of ghost-penalty operator used in
the literature.

Local Projection Type Ghost-Penalties This version of the ghost-penalty operator was introduced in
the original paper [Bur10]. For F ∈ Fh consider the facet patch ωF = T1 ∪ T2 for T 1 ∩ T 2 = F . Then
the ghost-penalty bilinear form is defined facet-wise as

jLPS
h (u, v) := γgp

∑

F ∈Fh

jLPS
h,F (u, v),

where
jLPS

h,F (u, v) := 1
h2

∫

ωF

(u− ΠωF
u) · (v − ΠωF

v) dx = 1
h2

∫

ωF

(u− ΠωF
u)v dx

for u, v ∈ L2(OTh,Γ,+). Here ΠωF
: L2(ωF ) → Pk(ωF )d is the L2-projection onto the space of polynomials

of order k. We shall not consider this form here.

Normal-Derivative Jump Ghost-Penalties The most widely used ghost-penalty operator in the literat-
ure is the derivative jump version. A non exhaustive list of publications using this includes [BH12; BH14;
Leh17; Mas+14; GO17; MSW18; SW14; GM19; BFM19]. This version has the form

jdjump
h (u, v) =

∑

F ∈Fh

k∑

l=1
γgp,l

h2l−1

l!

∫

F

J∂l
nuK J∂l

nvK ds
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for u, v ∈ Vh, where JwK = w+ − w− with w(x)± = limt→0 w(x ± tn) denotes the jump operator across
a facet F . This version is not well suited for higher-order methods, i.e., k > 1, since this requires the
computation of higher-order normal-derivatives, as well as a choice for each of the k stability parameters.
We note however, that in the majority of the literature, only the case k = 1 is considered, in which the
P1 geometry error also does not play a role.

Direct Version of Ghost-Penalties The so-called direct version of the ghost penalty operator, introduced
by Preuß [Pre18] is the variant we shall focus on in our numerical analysis and use in our numerical
computations. Works in the literature which use this version include [LO19; WRL21; Wah+21; OQS21;
AB21]. Again let ωF = T1 ∪ T2 again denote a facet patch around a facet F ∈ Fh. For u, v ∈ Vh we
define the direct ghost-penalty operator as

jdir
h (u, v) := γgp

∑

F ∈Fh

jdir
h,F (u, v), (3.1)

where
jdir

h,F (u, v) := 1
h2

∫

ωF

(u1 − u2)(v1 − v2) dx.

Here we denote ui = EP(u|Ti
) and vi = EP(v|Ti

) for i ∈ {1, 2}, with the canonical extension of polynomials
EP : P(T ) → P(Rd) from an element T to Rd. Compared to the other versions of the ghost penalty operator
above, this formulation has the advantage of only being implicitly dependent on the polynomial order k
(through the extension operator EP) and only requiring a single choice for the penalty parameter γgp.

Properties of the Ghost-Penalty Operator

We cover the mechanism and the most important theoretical properties of the ghost-penalty stabilisation
used here. The basic principle is to give control norms in the active domain OT . Since we will focus on
the direct version of the ghost-penalty operator, we shall define the volume based jump operator on a
facet patch ωF = T1 ∪ T2 as

JvKωF
:= v1 − v2 (3.2)

with vi = EP(u|Ti
) and the canonical extension of polynomials EP as above.

Lemma 3.1 (Ghost-penalty mechanism). Let ωF = T1 ∪ T2 be a facet patch over a facet F = T 1 ∩ T 2.
Let v be a piecewise polynomial function defined relative to the macro-element T 1 ∪ T 2 and vi be the
restriction of v to Ti. Then there exists a constant cL3.1 > 0 dependent only on the shape-regularity of T
and the polynomial order of v such that

∥v∥2
T1 ≤ cL3.1

(
∥v∥2

T2 + ∥JvKωF
∥2

T1

)
. (3.3)

Proof. See [Pre18, Lemma 3.1].

Lemma 3.2. The direct ghost penalty operator can be bound from above by both the local projection and
normal-derivative ghost-penalty operators

jdir
h (v, v) ≲ jdjump

h (v, v) and jdir
h,F (v, v) ≲ jLPS

h,F (v, v).

Proof. For the normal-derivative bound, see [Pre18, Ch. 3, Remark 6] and for the local projection bound,
see the proof of [LO19, Lemma 5.2].
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Lemma 3.3. For all v ∈ Vh for k ≥ 1, we have for the direct ghost-penalty operator that

∥v∥2
OT

≲
(

∥v∥Ω + h2jdir
h (v, v)

)
≲ ∥v∥2

OT
(3.4)

∥∇v∥2
OT

≲
(

∥∇vh∥Ω + jdir
h (v, v)

)
≲ ∥∇v∥2

OT
(3.5)

with constants independent of the mesh-level set cut position.

Proof. For the first inequality we split the norm into a sum over cut and uncut elements

∥vh∥2
OT

=
∑

T ∈Th,Γ

∥vh∥2
T +

∑

T ∈Th,in

∥vh∥2
T .

Now let T ∈ Th,Γ be a cut element. We assume that the boundary Γ is sufficiently well resolved by the
mesh such that we only have to cross a finite number of facets Fi = T i−1 ∩ T i with T0 = T to reach an
interior element TN ∈ Th,in. We refer to [LO19, Remark 5.2] for a detailed explanation as to why this
assumption is reasonable. Using the ghost-penalty mechanism, we then have

∥v∥2
T ≲ ∥v∥2

TN
+

N−1∑

i=0
∥JvKωF

∥2
Ti

≲ ∥v∥2
TN

+
N∑

i=1
∥JvKωF

∥2
ωF

≲ ∥v∥2
TN

+ h2jdir
h (v, v).

The second inequality follows from Lemma 3.2 and the properties of the other ghost-penalty operators.
For the gradient bound we follow the same lines and use an inverse inequality to get h2jdir

h,F (∇v,∇v) ≲
jdir

h,F (v, v).

In the later analysis, it will be necessary to insert general L2-functions into the ghost-penalty operator.
In this case we take ui = EP(ΠTi

u|Ti
), where ΠTi

is the L2(Ti)-projection onto Pk(T ).

Lemma 3.4 (Consistency of direct ghost-penalties). Let v ∈ Hk+1(OT ) and w ∈ Hk(OT ) for some
k ≥ 1. Then it holds that

jdir
h (v, v) ≲ h2k∥v∥Hk+1(OT )

h2jdir
h (w,w) ≲ h2k∥w∥Hk(OT ).

Furthermore, let I∗
h be the Scott-Zhang interpolation operator [SZ90] for the appropriate finite element

space under consideration. Then we also have

jdir
h (v − I∗

hv, v − I∗
hv) ≲ h2k∥v∥Hk+1(OT )

h2jdir
h (w − I∗

hw,w − I∗
hw) ≲ h2k∥w∥Hk(OT ).

Proof. See [LO19, Lemma 5.8]. The result for h2jdir
h (·, ·) follows by the same line of argument and taking

the h-scaling into account.

3.1.3 Higher-Order Geometry Approximation
As noted above, the P1 level set approximation, used in CutFEM to generating quadrature rules on cut
elements, leads to a geometry approximation error of order h2, in cases where the level set function is not
already (piecewise) linear. As a result, higher-order finite element methods, i.e., where the polynomial
order of the finite element space is chosen as k ≥ 2, optimal order error convergence in the L2-norm
cannot be expected. In order to recover optimal convergence for higher-order finite elements, including the
lowest order inf-sup stable Taylor-Hood elements P2/P1 [TH73], we shall use an isoparametric mapping
approach introduced by Lehrenfeld [Leh16], of which we will give a brief overview in this section.
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We follow [Leh17] for this overview, where the method was described and analysed for the Poisson
problem.

To construct a high order domain approximation, we consider a special parametric mapping Θh ∈ (Pk)d

on the mesh T̃h, which we take to be a bijection on Ω̃. For details on the construction of this mapping
we refer to [Leh16]. With this explicit mesh transformation, we can then explicitly construct a high order
domain approximation

Ωho
h := {Θh(x) | x ∈ Ωh} and Γho

h := {Θh(x) | x ∈ Γh}.

Furthermore, we assume to have an ideal one-to-one transformation Ψ: Ω̃ → Ω̃, which maps the piecewise
linear domain approximation onto the exact domain, i.e.,

Ω := {Ψ(x) | x ∈ Ωh} and Γ := {Ψ(x) | x ∈ Γh}.

For the parametric mapping we then have the following results.

Lemma 3.5. For sufficiently small h > 0 we have for the parametric mapping Θh and the exact trans-
formation Ψ that

Θh(x) = x for x = xV a vertex in Th or x ∈ OT \ OTΓ,+

∥Θh − id∥∞ ≲ h2 ∥DΘh − I∥∞ ≲ h

∥Θh − Ψ∥L∞(OTΓ ) + h∥D(Θh − Ψ)∥L∞(OTΓ ) ≲ hk+1 i.e., dist(Γ,Γho
h ) ≲ hk+1.

Proof. See [LR17, Lemmata 3.5, 3.7 and 3.8].

From this lemma, we can see that Θh is a small perturbation of the identity. Since the mapping essentially
repairs the geometry approximation error made by the piecewise linear level set approximation, this
perturbation vanishes for h → 0. Additionally, we have that the mapping and its inverse are bounded in
higher order derivatives.

Lemma 3.6. For T ∈ Th we have for the parametric mapping that

∥Θh∥m,∞,T ≲ 1 and ∥Θ−1
h ∥m,∞,Θh(T ) ≲ 1 for m ∈ {1, . . . , k + 1}

with the norm ∥·∥m,∞,T := maxl≤m ∥Dl·∥L∞(T ).

Proof. See [Leh17, Lemma 2].

Also, the L2- and H1-norms on the discrete domain and the higher-order domain are equivalent.

Lemma 3.7. For v, w ∈ H1(Ωho
h ) with tr(∇w) ∈ L2(Γho

h ) it holds

∥v ◦ Θh∥Ωh
≃ ∥v∥Ωho

h
and ∥v ◦ Θh∥Γh

≃ ∥v∥Γho
h

∥∇(w ◦ Θh)∥Ωh
≃ ∥∇w∥Ωho

h
and ∥∇(w ◦ Θh)∥Γh

≃ ∥∇w∥Γho
h
.

Proof. See [Leh17, Lemma 3].

In the isoparametric finite element discretisation, the discrete problem will be posed on the discrete
domain Ωho

h , while the original problem is posed on the domain Ω. For the analysis we therefore require a
smooth bijective mapping Φh between these two domains, such that Φh(Γho

h ) = Γ. The piecewise smooth
function Φh := Ψ ◦ Θ−1

h has this property and is again a small perturbation of the identity.
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Lemma 3.8. For h > 0 sufficiently small, Φh := Ψ ◦ Θ−1
h : Ω̃ → Ω̃ defines a homeomorphism with

Φh ∈ C(Ω̃) ∩ Ck+1(Θh(T̃h)), which fulfils

Φh(Ωho
h ) = Ω

∥Φh − id∥L∞(Ω̃) + h∥DΦh − I∥L∞(Ω̃) ≲ hk+1.

Proof. See [LR17, Lemma 5.5].

3.2 CutFEM for the Stokes Problem
We now consider the isoparametric CutFEM method applied to the Stokes equation (2.17). CutFEM was
first applied to the Stokes equation by Burman and Hansbo [BH14] and Massing et al. [Mas+14]. For
stability of this method, pressure-stabilisation with ghost-penalties is necessary, even for elements which
are inf-sup stable on uncut elements. In this context, Guzmán and Olshanskii [GO17] presented the
stability of this discretisation with various inf-sup stable elements. The analysis in these papers assumed
that the discrete domain Ωh and the smooth domain Ω match exactly. In the following section we will
present and analyse the CutFEM finite element method with ghost-penalty stabilisation using Taylor-
Hood elements conjunction with the parametric mapping Θh as introduced by Lehrenfeld [Leh16].

Before we begin with the discretisation, we give the weak formulation for the Stokes problem (2.17).

Problem P1. Find a velocity and pressure (u, p) ∈ H1
0(Ω) × L2

0(Ω) such that for all (v, q) ∈ H1
0(Ω) ×

L2
0(Ω) it holds

a(u,v) + b(p,v) + b(q,u) = f(v). (3.6)

The bilinear and linear forms are thereby given by

a(u,v) := ν

∫

Ω
∇u : ∇v dx, b(q,v) := −

∫

Ω
q∇ · v dx and f(v) :=

∫

Ω
f · v dx. (3.7)

The bilinear form a(·, ·) is continuous and coercive and the bilinear form b(·, ·) is continuous and fulfils an
inf-sup condition, c.f. [Joh16]. For a detailed study of these equations, we refer to [Gal11, Chapter IV].

3.2.1 Discretisation
For the isoparametric CutFEM discretisation of the Stokes equations, we begin by defining the relevant
spaces on the background mesh. With the discrete mapping discussed in subsection 3.1.3, consider the
following isoparametric finite element spaces

V iso
h := {vh ◦ Θ−1

h | vh ∈ [Pk]d} and Qiso
h := {qh ◦ Θ−1

h | qh ∈ Pk−1}

for k ≥ 2 on the active part of the mesh. To allow for the evaluation of the normal-derivative of velocity
functions and the normal of pressure functions on the discrete boundary, we further introduce the following
infinite dimensional spaces

V reg
h := H2(Ωho

h ) ∩ {v ◦ Φh | v ∈ H2(Ω)} and Qreg
h := H1(Ωho

h ) ∩ {q ◦ Φh | q ∈ H1(Ω)}.

For the unfitted, isoparametric finite element method we use a Nitsche variational formulation. The
discrete problem then reads:

Problem P2. Find (uh, ph) ∈ V iso
h ×Qiso

h such that for all (vh, qh) ∈ V iso
h ×Qiso

h there holds that

ah(uh,vh) + νih(uh,vh) + bh(ph,vh) + bh(qh,uh) − 1/νjh(ph, qh) = fh(vh). (3.8)
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Here, the diffusion bilinear form is

ah(uh,vh) := ν

∫

Ωho
h

∇uh : ∇vh dx+ νNh(uh,vh)

with the Nitsche terms

Nh(uh,vh) := N c
h(uh,vh) +N c

h(vh,uh) +Ns
h(uh,vh), where

N c
h(uh,vh) := −

∫

Γho
h

∂nuh · vh ds and Ns
h(uh,vh) := σ

h

∫

Γho
h

uh · vh ds.

Here, σ > 0 is the penalty parameter which must scale with k2 due to an inverse trace estimate [WH03].
We will specify the exact value later. The pressure bilinear form is

bh(qh,vh) := −
∫

Ωho
h

qh∇ · vh dx+N c
h(qh,vh), where N c

h(qh,vh) :=
∫

Γho
h

(qhn) · vh ds.

Note that in our notation, we do not distinguish between the viscosity and pressure Nitsche consistency
terms. The arguments make it clear which is meant. For the stabilising form, we use the direct ghost-
penalty operator (3.1). The diffusion and pressure stabilisation terms are then

ih(uh,vh) := jdir
h (uh,vh) and jh(ph, qh) := h2jdir

h (uh,vh).

The different h-scaling in the velocity and pressure ghost-penalties, is due to the fact that the velocity is
stabilised in an H1-sense, while the pressure is stabilised in the L2-sense.

We then collect all the bilinear forms from the partial differential equation together into

Ah((uh, ph), (vh, qh)) := ah(uh,vh) + bh(ph,vh) + bh(qh,uh)

and the stabilising bilinear forms into

Jh((uh, ph), (vh, qh)) := νih(uh,vh) − 1/νjh(ph, qh).

As a final note, in case of non-homogenous Dirichlet boundary data uD, we modify the right-hand side

fh(vh, qh) :=
∫

Ωho
h

Ef · vh dx+ νN c
h(vh,uD) + νNs

h(uD,vh) +N c
h(qh,uD),

where E : Ω → Ωho
h is a smooth extension operator, the details of which we discuss below.

3.2.2 Notation and Basic Results
Norms For the analysis of the numerical method, we require some further notation. With the discrete
bilinear forms defined above, we define the natural norms resulting thereof as

|||v|||2a := ∥∇v∥2
Ωho

h
+ ∥h1/2∂nv∥2

Γho
h

+ ∥h−1/2v∥2
Γho

h
and |||q|||2b := ∥q∥2

Ωho
h

+ ∥h1/2q∥2
Γho

h
,

as well as norms defined via the entire active domain as

|||v|||2∗ := ∥∇v∥2
OT

+ ∥h−1/2v∥2
Γho

h
, |||v|||∗,−1 := sup

v∈V iso
h

(v,w)Ωho
h

|||w|||∗
and |||q|||2∗ := ∥q∥2

OT
.

We again do not distinguish the notation between the velocity and pressure. The argument makes it clear
which is meant. For the compound velocity-pressure space we then further define

|||(v, q)|||2A := |||v|||2a + |||q|||2b and |||(v, q)|||2∗ := |||v|||2∗ + |||q|||2∗.
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Estimates We collect a number of cut versions of inverse and trace estimates. For vh ∈ Pk(T ), T ∈ T̃h,
we have the inverse and trace estimates:

∥∇vh∥T ≲ h−1
T ∥vh∥T , (3.9a)

∥h1/2∂nvh∥F ≲ ∥∇vh∥T , (3.9b)
∥h1/2∂nvh∥T ∩Γh

≲ ∥∇vh∥T . (3.9c)

For (3.9a) and (3.9b) see for example [Qua17]. For a proof of (3.9c), see [HH02]. For v ∈ H1(T ), T ∈ Th,
we also have the following trace inequality from [HH02]

∥vh∥T ∩Γh
≲ h

−1/2
T ∥vh∥T + h

1/2
T ∥∇vh∥T . (3.10)

Furthermore, we have a discrete version of the Poincaré inequality

∥vh∥OT
≤ cP,h|||vh|||∗ (3.11)

for all vh ∈ Vh, see [Mas+14, Lemma 7.2] for a proof thereof. Due to the equivalence of norms in
Lemma 3.7, the same results hold true for functions from the isomaparemtric spaces V iso

h , Qiso
h and on

the deformed mesh elements Θh(T ), with the high-order level set boundary Γho
h . Therefore, it follows

that
|||vh|||a ≲ |||vh|||∗ and |||qh|||b ≲ |||qh|||∗. (3.12)

Additionally, (3.10), (3.9c) and (3.9a) give us the inverse estimates

|||vh|||∗ ≲ h−1∥vh∥OT
and |||(vh, qh)|||∗ ≲ h−1∥(vh, qh)∥OT

(3.13)

for all (vh, qh) ∈ V iso
h × Qiso

h , where ∥(vh, qh)∥OT
denotes the L2(OT )-norm on the product space, c.f.

[Mas+14, Lemma 7.1].

Interpolation and Extension Let I∗
h be the standard Scott-Zhang interpolation operator [SZ90] for

the appropriate finite element space under consideration. From [SZ90; Ape99], we recall the following
standard interpolation result.

Lemma 3.9. For T ∈ T̃h and w ∈ Hk(T ), k ≥ 1, it holds that

∥Dk(w − I∗
hw)∥T ≤ hk−m∥Dmw∥T , 0 ≤ m ≤ k.

Furthermore, on the boundary of an element it holds

∥w − I∗
hw∥∂T ≤ hk−1/2∥Dkw∥T .

To construct an interpolation L2(OT ) → Vh, i.e, on the entire active mesh, we recall that there is a
linear extension operator E : Hm(Ω) → Hm(OT ) for m ≥ 0 for which it holds that

∥Ev∥Hm(OT ) ≲ ∥v∥Hm(Ω). (3.14)

See for example [Ste70, Section VI.3]. With this extension we define Ih : L2(OT ) → Vh as

Ihv := I∗
hEv.

With the stability of the extension (3.14), the same interpolation estimates hold for Ih as for I∗
h. We

then have the optimal order interpolation estimates

∥∇(Ev − Ihv))∥Ωho
h

≲ hkR(v), h−1/2∥Ev − Ihv∥Γho
h

≲ hkR(v), h
1/2∥∂n(Ev − Ihv)∥Γho

h
≲ hkR(v),
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where R(u) = ∥v∥H3,∞(Ω) if k = 2 and R(u) = ∥v∥Hk+1(Ω) if k ≥ 3; see [LR17; Leh17] for details. We
note that these estimates are primarily due to the regularity of the parametric mapping from Lemma 3.6.
An immediate consequence from the optimal order interpolation estimates is an interpolation estimate in
our triple norms for v ∈ Hk+1(Ω) and q ∈ Hk(Ω)

|||Ev − Ihv|||∗ ≲ hkR(v) and |||Eq − Ihq|||∗ ≲ hk∥q∥Hk(Ω). (3.15)

As we have seen above, the extension operator is used to make sense of function on Ωho
h , which themselves

are defined on Ω. Note that the mapping Φh, defined in Lemma 3.8, also defines such an extension.
However, this is not sufficiently regular, as the extension is only in H1,∞(Ωho

h ). We therefore quantify, in
which sense the mapped function u ◦ Φh are close to the extended function Eu, based on the smoothness
of the boundary Γ ∈ Ck+1.

Lemma 3.10. For all u ∈ H3(Ω) it holds

∥u ◦ Φh − Eu∥Ωho
h
≲ hk+1∥u∥H1(Ω) (3.16)

∥∇u ◦ Φh − ∇Eu∥Ωho
h
≲ hk+1∥u∥H2(Ω) (3.17)

∥u ◦ Φh − Eu∥Γho
h
≲ hk+1∥u∥H2(Ω) (3.18)

∥∂nu ◦ Φh − E∂nu∥Γho
h
≲ hk+1∥u∥H3(Ω). (3.19)

Proof. See [GOR15, Lemma 7.3] for (3.16), (3.17) and (3.18). The estimate (3.19) then immediately
follows by replacing u with ∂nu in (3.18).

Remark 3.11. In [WRL21], we treated the approximation properties of the unfitted finite element space
and the geometrical approximation separately. In this paper, we therefore proved an additional Lemma
for the difference between the mapped and extended exact solution on the boundary, both for the normal
derivative and the trace, where we traded a power of h in the convergence rate on the right-hand side,
for lower regularity of the solution, plus an additional additive higher-order term. Since we require the
regularity u ∈ Hk+1(Ω) and p ∈ Hk(Ω) for the exact solution of the Stokes equations with k ≥ 2 to obtain
optimal order error estimates for the Taylor-Hood elements, see for example [Joh16, Corollary 4.30], the
above Lemma is sufficient. ▲

3.2.3 Stability and Solvability
We begin with the numerical analysis of the method (3.8). The following results show that the bilinear
form from the stabilised CutFEM discretisation fulfils an inf-sup on the product space of the velocity
and pressure space, similar to the spatially smooth case, c.f. [Joh16, Lemma 4.11]. Most importantly,
this property is shown in norms, which are independent of the mesh-interface cut position. As a result
we then obtain the unique solvability of the problem and stability of the solution, independent of the
mesh-interface cut position.

Lemma 3.12 (Continuity). For the diffusion bilinear form, we have that for all u,v ∈ V iso
h +V reg

h that

ah(uh,v) ≲ |||u|||a|||v|||a, (3.20a)

and for all uh,vh ∈ V iso
h that

ah(uh,vh) + νih(uh,vh) ≲ |||uh|||∗|||vh|||∗. (3.20b)

For the pressure bilinear form, we have that for all v ∈ V iso
h + V reg

h and q ∈ Qiso
h +Qreg

h that

bh(q,v) ≲ |||q|||b|||v|||a, (3.21a)

and for all vh ∈ V iso
h and qh ∈ Qiso

h that

bh(qh,vh) ≲ |||qh|||∗|||vh|||∗. (3.21b)
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Proof. The estimates (3.20a) and (3.21a) are an immediate consequence of the Cauchy-Schwarz inequality,
while (3.21b) then immediately follows by (3.12).

For (3.20b), we see that with repeated use of the Cauchy-Schwarz inequality, we have a Cauchy-Schwarz
inequality for the direct ghost-penalties

ih(u,v) =
∑

F ∈Fh

γgp

h2

∫

ωF

JuK · JvK dx ≤
∑

F ∈Fh

[γgp

h2

∫

ωF

JuK · JuK dx
]1/2[γgp

h2

∫

ωF

JvK · JvK dx
]1/2

≤
[ ∑

F ∈Fh

γgp

h2

∫

ωF

JuK · JuK dx
]1/2[ ∑

F ∈Fh

γgp

h2

∫

ωF

JvK · JvK dx
]1/2

= ih(u,u)1/2ih(v,v)1/2. (3.22)

With the trace estimate (3.10), we have

ah(u,v) ≲ ∥∇u∥Ωho
h

∥∇v∥Ωho
h

+ ∥∇u∥Ωho
h

∥h−1/2v∥Γho
h

+ ∥h−1/2u∥Γho
h

∥v∥Ωho
h

+ σ∥h−1/2u∥Γho
h

∥h−1/2v∥Γho
h
.

Using this in combination with Young’s inequality and (3.22), we then get

(ah(u,v) + ih(u,v))2 ≲
(

∥∇u∥2
Ωho

h
+ ih(u,u) + ∥h−1/2u∥Γho

h

)(
∥∇v∥2

Ω + ih(v,v) + ∥h−1/2v∥2
Γho

h

)

≲ |||u|||2∗|||v|||2∗.

The last inequality follows by an application of the ghost-penalty norm equivalence (3.5).

Corollary 3.13. For all (uh, ph), (vh, qh) ∈ V iso
h ×Qiso

h it holds that

(Ah + Jh)((uh, ph), (vh, qh)) ≲ |||(uh, ph)|||∗|||(vh, qh)|||∗.

Proof. Let ωF = T1 ∪ T2 be a facet patch. Due to shape-regularity of the mesh Th, we have that ∥pi∥T1

is equivalent to ∥pi∥T2 . We therefore have that

jh(ph, ph) = γgp

∑

F ∈Fh

∫

ωF

JphK2 dx ≲
∑

F ∈Fh

∥ph,1∥2
ωF

+ ∥ph,2∥2
ωF

≲
∑

F ∈Fh

∥ph,1∥2
T1 + ∥ph,1∥2

T2 + ∥ph,2∥2
T1 + ∥ph,2∥2

T2 ≲
∑

T ∈T Γ,+
h

∥ph∥2
T ≲ ∥ph∥2

OT
.

Using the Cauchy-Schwarz inequality for the ghost-penalty operator (3.22) for the pressure stabilisation,
the claim follows by Lemma 3.12.

Lemma 3.14 (Coercivity of the diffusion operator). For σ sufficiently large and h sufficiently small,
it holds for all uh ∈ V iso

h that
ah(uh,uh) + ih(uh,uh) ≳ |||uh|||2∗.

Proof. For h sufficiently small, shape-regularity of the transformed mesh follows by the mesh regularity
of the original mesh. As a result, Lemma 3.1 and therefore Lemma 3.3 also hold on the transformed
mesh. The claim then follows by [Leh17, Lemma 8].

To formulate the stability result for the pressure coupling bilinear form, we need to introduce the interior
domain, defined as Oint := OT \ OTΓ . This is the domain consisting of active and uncut elements.
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Lemma 3.15 (Disturbed inf-sup result). If h is sufficiently small, then there exists a constant β > 0
such that

β∥qh∥Ωho
h

≤ sup
vh∈V iso

h

bh(qh,vh)
|||vh|||∗

+ jh(qh, qh)1/2

for all qh ∈ Qiso
h with qh|Oint

∈ L2
0(Oint). The constant β is independent of p and h.

Proof. See. [GO17] for the proof on undeformed meshes. The statement then follows from the regularity
of the mesh deformation Θh.

Lemma 3.16 (Inf-sup result). For σ > 0 sufficiently large h > 0 and sufficiently small, there exists a
constant cL3.16 > 0, independent of h and the mesh-interface cut position, such that for all (uh, ph) ∈
V iso

h ×Qiso
h it holds

cL3.16|||(uh, ph)|||∗ ≤ sup
(vh,qh)∈V iso

h
×Qiso

h

(Ah + Jh)((uh, ph), (vh, qh))
|||(vh, qh)|||∗

. (3.23)

Proof. The proof follows standard arguments, c.f. [GO17, section 5]. We give a brief overview due to the
significance of the result. The proof is done for ν = 1. The scaling with respect to arbitrary ν > 0 then
follows by a rescaling argument. For a given (vh, qh) ∈ V iso

h × Qiso
h , we can find a wh ∈ V iso

h such that
|||wh|||∗ = ∥ph∥Ωho

h
. Then due to Lemma 3.15, we have with the continuity of the diffusion bilinear form

and the weighted Young’s inequality that

β∥ph∥2
Ωho

h
≤ bh(ph,wh) + jh(ph, ph)∥ph∥Ωho

h
= Ah((uh, ph), (wh, 0)) − ah(uh,wh) + jh(ph, ph)∥ph∥Ωho

h

≤ (Ah + Jh)((uh, ph), (wh, 0)) +
c2

(3.20b)

4β |||uh|||2∗ + β

4 ∥ph∥2
Ωho

h
+ 1
β
jh(ph, ph) + β

4 ∥ph∥2
Ωho

h
.

With the coercivity of the diffusion bilinear form, we also have

(Ah + Jh)((uh, ph,uh,−ph)) ≥ cL3.14|||uh|||2∗ + jh(ph, ph).

With the appropriate choice of α > 0, we get that

(Ah + Jh)((uh, ph,uh + αwh,−ph)) ≳ |||(uh, ph)|||2∗,

where the constant only depends on β, c(3.20b) and cL3.14, each of which are independent of h and the
mesh-interface cut position. The claim follows by the observation

|||(uh − αwh,−ph)|||2∗ = |||uh − αwh|||2∗ + |||ph|||2∗ ≤ |||uh|||2∗ + α2|||wh|||2∗ + |||ph|||2∗
≤ |||uh|||2∗ + (1 + α2)|||ph|||2∗ ≲ |||(uh, ph)|||2∗.

Corollary 3.17 (Unique solvability). The unfitted, isoparametric finite element discretisation (3.8) of
the Stokes problem admits a unique solution (uh, ph) ∈ V iso

h ×Qiso
h bounded by the data

|||(uh, ph)|||∗ ≤ c−1
L3.16|||fh|||∗,−1.

Proof. This is an immediate consequence of the Banach-Nečas-Babuška theorem, see for example [EG21b,
Theorem 25.9], applicable due to the continuity and stability of the stabilised bilinear form Ah + Jh in
the product space.
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3.2.4 Condition Number
We now investigate the condition number of the stiffness matrix, resulting from the isoparametric unfitted
CutFEM discretisation. In fact, due to the regularity of the parametric mapping for sufficiently small
h and the ghost-penalty stabilisation providing stability in norms independent of the mesh-interface cut
position, we shall recover the standard condition number estimate for second-order problems, c.f. [EG04,
Theorem 9.11].

Definition 3.18. Let A ∈ Rn×n be an invertible matrix. The condition number of A is defined as

κ(A ) := ∥A ∥∥A −1∥

with the matrix norm ∥A ∥ := supx∈Rn\{0} ∥A x∥2/∥x∥2, where (·, ·)2 denoted the Euclidean inner
product and ∥·∥2 the corresponding induced norm.

As noted in subsection 3.1.2, ghost-penalty stabilisation enables the proof of bounds on the condition
number of the system matrix, independent of the mesh interface cut position. Conversely, it is known for
the system matrix A resulting from a CutFEM discretisation without ghost-penalty stabilisation, that
if there are cut elements with only a very small region inside the domain of interest, i.e., there exists
an element T ∈ Th,Γ with measd(T ∩ Ωh) < ε and measd−1(T ∩ Γh) < ε, then the condition number is
bounded from below by κ(A ) ≳ ε−1/2, c.f. [Bur10].

Following [Mas+14], we now show that the condition number of the system matrix resulting from the
stabilised method can be bound by ch−2, independently of the mesh-interface cut position. To prove this
bound, we need to introduce some further notation. Let {ψi}n

i be a basis of the finite element space
V iso

h ×Qiso
h . Then B → Rn, (uh, qh) 7→ U where (uh, qh) =

∑n
i=1 Uiψi defines an isomorphism. We then

have from [EG04, Lemma 9.7] that for a quasi-uniform mesh T̃h it holds

∥U∥2
2 ≃ hd∥(uh, ph)∥2

OT
. (3.24)

Now, we define the stiffness matrix A of (3.8) such that

(A U, V )2 = (Ah + Jh)((uh, ph), (vh, qh))

for all (uh, ph), (vh, qh) ∈ V iso
h × Qiso

h , where we denote U = B((uh, ph)) and V = B((vh, qh)). Now,
since we are considering the Stokes problem with Dirichlet boundary conditions for the velocity on the
entire boundary ∂Ωho

h = Γho
h , the pressure is only unique up to an additive constant. The stiffness matrix

matrix A is therefore singular with kernel ker(A ) = span{B((0, 1))}. For the rest of this section we will
therefore work with A as a bijective mapping between R̂n := Rn/ ker(A ) and R̃n := im(A ).

Theorem 3.19 (Condition number estimate). For the stiffness matrix of the isoparametric CutFEM
discretisation (3.8) of the Stokes problem, it holds that

κ(A ) ≲ h−2.

Before we proceed with the proof, we note that the matrix norm can be equivalently defined as

∥B∥ = sup
U,V ∈Rn\{0}

(BU, V )2
∥U∥2∥V ∥2

.

Proof. With Lemma 3.6 and Lemma 3.7, we have that norms on the deformed mesh are equivalent to
the norm on the untransformed mesh. Using the continuity of the bilinear form in Corollary 3.13, the
inverse estimate (3.13) and the norm equivalence (3.24), we see that for all U, V ∈ R̂n \ {0} it holds

(A U, V )2 = (Ah + Jh)((uh, ph), (vh, qh))
≲ |||(uh, ph)|||∗|||(vh, qh)|||∗ ≲ h−2∥(uh, ph)∥OT

∥(vh, qh)∥OT
≲ hd−2∥U∥2∥V ∥2
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such that ∥A ∥2 ≲ hd−2. Similarly, we have with the inf-sup stability of the system in Lemma 3.16, the
Poincaré inequality (3.11) and the norm equivalence (3.24), that for all U ∈ R̂n \ {0} it holds

(A U, V )2 = (Ah + Jh)((uh, ph), (vh, qh))
≳ |||(uh, ph)|||∗|||(vh, qh)|||∗ ≳ ∥(uh, ph)∥OT

∥(vh, qh)∥OT
≳ hd∥U∥2∥V ∥2.

With this we have that

∥A U∥ = sup
W ∈R̃n\{0}

(A U,W )2
∥W∥2

≥ (A U, V )2
∥V ∥2

≳ hd∥U∥2.

With U = A −1W , which is permissible by the regularity if A on the reduced space, the above inequality
implies that

∥A −1W∥2 ≲ h−d∥W∥2 ⇒ ∥A −1∥2 ≲ h−d.

As a result we have that
κ(A ) = ∥A ∥2∥A −1∥2 ≲ h−2.

3.2.5 A Priori Error Analysis
We shall now show, that the isoparametric CutFEM discretisation of the Stokes problem admits optimal
order error estimates in the natural norm, under the assumption that the exact level set geometry is
sufficiently smooth and that the mesh resolves this geometry sufficiently well. This is to be expected, as
the parametric mapping recovers the correct order in the geometry approximation so that this does not
dominate the approximation properties of the finite element space. However, since V iso

h ̸⊂ H1
0(Ω) and

Qiso
h ̸⊂ L2

0(Ω), we do not have standard Galerkin orthogonality. As a result, the most effort is needed to
show the approximate Galerkin orthogonality/consistency error of the correct order in h.

For the error analysis, we introduce the bilinear and linear forms for the exact geometry. In order to then
test with discrete functions, we make use of the mapping Φh. For u,v ∈ H2(Ω) + {vh ◦ Φ−1

h | vh ∈ V iso
h }

and p, q ∈ H1(Ω) + {qh ◦ Φ−1
h | qh ∈ Qiso

h }, we define

a1(u,v) := a(u,v) −
∫

Γ
∂nu · v ds, b1(q,v) := b(q,v) +

∫

Γ
(qn) · v ds,

A((u, p), (v, q)) := a1(u,v) + b1(p,v) + b1(q,u) and f(v) :=
∫

Ω
f · v dx.

Lemma 3.20 (Weak Galerkin orthogonality). Let (u, p) ∈ H2(Ω)×H1(Ω) be the solution to the Stokes
problem (2.17). Then for all vh, qh ∈ V iso

h ×Qiso
h it holds that

A((u, p), (vℓ
h, q

ℓ
h)) = f(vℓ

h) (3.25)

with (vℓ
h, q

ℓ
h) = (vh ◦ Φ−1

h , qh ◦ Φ−1
h ).

Proof. This follows by applying integration by parts to the volume terms in A(·, ·).

In the literature on the CutFEM method for the Stokes problem [Mas+14; BH14; GO17], the authors
assumed exact geometry handling such that Ωh = Ω. As a result, the authors have the standard Galerkin
orthogonality Ah((u, p), (vh, qh)) = fh(vh).

For the error analysis, we introduce some further notation. Let (u, p) be the solution of the Stokes problem
(2.17) and (uh, ph) the solution of the isoparametric CutFEM discretisation of the Stokes problem (3.8).
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In order for the error to be well-defined on the entire active domain OT , we use the extension operator
E to define the velocity and pressure errors as

E := ue − uh and D := pe − ph,

where ue := Eu and pe := Ep, to ease the notation. We then split this into an interpolation and
discretisation error

E = (ue − Ihu) + (Ihu− uh) =: η + eh (3.26a)
D = (pe − Ihp) + (Ihp− ph) =: ζ + dh, (3.26b)

see subsection 3.2.2 for details on the interpolation.

Now, subtracting (3.25) from (3.8), as well as adding and subtracting appropriate terms, we get the error
equation

(Ah + Jh)((E,D), (vh, qh)) = f(vℓ
h) − fh(vh) + ah(u,vh) − a1(u,vℓ

h) + bh(p,vh) − b1(p,vℓ
h)

+ bh(qh,u) − b1(qℓ
h,u) + ih(ue,vh) − jh(pe, qh)

=: T1 + T2 + T3 + T4 + T5

= Ec(vh, qh). (3.27)

The five terms on the right-hand side of this are the forcing, diffusion, pressure, divergence constraint
and ghost-penalty contributions to the consistency error. For the consistency error, we then have the
following result.

Lemma 3.21 (Consistency error). For the consistency error of the isoparametric CutFEM discretisation
of the Stokes equation, it holds that

|Ec(vh, qh)| ≲ hkRc(u, p,f)|||(vh, qh)|||∗
with Rc(u, p,f) := ∥f∥H1(Ω) + ∥u∥Hk+1(Ω) + ∥p∥Hk(Ω).

Proof. We deal with the five consistency error contributions separately. The proof follows the same lines
as [WRL21, Lemma 5.14].

Consistency term 1: T1 = f(vℓ
h) − fh(vh). Using a chain rule to change the integral over Ω to Ωho

h ,
Lemma 3.8, the stability of the extension and denoting J = det(DΦh) yields

|T1| = |f(vℓ
h) − fh(vh)| = |(f ◦ Φh, (J − 1)vh)Ωho

h
+ (f ◦ Φh − fe,vh)Ωho

h
| ≲ hk∥f∥H1(Ω)∥vh∥Ωho

h
.

See also [LR17, Lemma 5.10] and [GOR14, Lemma 7.5].

Consistency term 2: T2 = ah(u,vh) − a1(u,vℓ
h). First we observe that it follows from the chain rule that

∇vℓ
h(x̂) = ∇(vh ◦ Φ−1)(x̂) = DΦ(x)−T ∇vh(x) for x̂ ∈ Ω, x := Φ−1(x̂). (3.28)

Now we split the diffusion consistency error term into a the volume contribution, the consistency term,
symmetry term and penalty term. For the volume term we have

T1
2 := ν

∫

Ωho
h

∇ue : ∇vh dx− ν

∫

Ω
∇u : ∇vℓ

h dx̂

= ν

∫

Ωho
h

∇ue : ∇vh dx− ν

∫

Ωho
h

(∇u) ◦ Φh : DΦ−T
h ∇vhJ dx

= ν

∫

Ωho
h

∇ue − (∇u) ◦ Φh : ∇vh dx+ ν

∫

Ωho
h

(∇u) ◦ Φh : (I − JDΦ−T
h )∇vh dx

≲ ∥∇ue − (∇u) ◦ Φh∥Ωho
h

∥∇vh∥Ωho
h

+ ∥I − JDΦ−T
h ∥L∞(Ωho

h
)∥(∇u) ◦ Φh∥Ωho

h
∥∇vh∥Ωho

h
.
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Now, with the triangle inequality and Lemma 3.8 we find that

∥I − JDΦ−T
h ∥L∞(Ωho

h
) ≤ ∥(I − IJ)DΦ−T

h ∥L∞(Ωho
h

) + ∥I −DΦ−T
h ∥L∞(Ωho

h
) ≲ hk. (3.29)

So together with (3.17) it holds
|T1

2| ≲ hk∥u∥H2(Ω)∥∇vh∥Ωho
h
.

The boundary terms are a little more involved, since we do not only have to take the different domains
into account, but also the different normal vectors on these different boundaries. Let n̂ denote the unit
normal vector on Γ and n the normal on Γho

h . We then have from [LR17] that
∫

Γ
(∇u)n̂ · vℓ

h dŝ =
∫

Γho
h

(∇u) ◦ Φh DΦ−T
h n · vhJ ds.

Then, together with (3.29) and (3.19) it holds for the consistency term that

T2
2 =

∫

Γho
h

−∂nu
e · vh ds−

∫

Γ
−∂n̂u · vℓ

h dŝ

=
∫

Γho
h

(∇u) ◦ Φh DΦ−T
h n · vhJ ds−

∫

Γho
h

(∇ue)n · vh ds

=
∫

Γho
h

(∇u) ◦ Φh · (JDΦ−T
h − I)n · vh ds+

∫

Γho
h

((∇u) ◦ Φh − ∇ue)n · vh ds

≲ ∥JDΦ−T
h − I∥L∞(Ωho

h
)∥h1/2(∇u) ◦ Φhn∥Γho

h
∥h−1/2vh∥Γho

h
+ hk+1∥u∥H3(Ω)∥vh∥Γho

h

≲ hk+1/2∥u∥H3(Ω)∥h−1/2vh∥Γho
h
.

For the symmetry term, we use the fact that u ◦ Φh = 0 on Γho
h , so that with (3.18) we have

T3
2 =

∫

Γho
h

∂nvh · (u ◦ Φh︸ ︷︷ ︸
=0

−ue) ds ≲ ∥∂nvh∥Γho
h

∥u ◦ Φh − ue∥Γho
h

≲ hk+1/2∥u∥H2(Ω)∥h1/2∂nvh∥Γho
h

≲ hk+1/2∥u∥H2(Ω)∥∇vh∥OT
,

where the last inequality follows from the trace inequality (3.9c). Very similarly, we have for the penalty
term that

T4
2 = 1

h

∫

Γho
h

ue − u ◦ Φh︸ ︷︷ ︸
=0

ds ≤ h1/2∥u2 − u ◦ Φh∥Γho
h

∥h−1/2vh∥Γho
h

≲ hk+1/2∥u∥H2(Ω)∥h−1/2vh∥Γho
h
.

In summary we therefore have

|T2| ≤ |T1
2| + |T2

2| + |T3
2| + |T4

2| ≲ hk∥u∥H3(Ω)|||vh|||∗.

Consistency term 3: T3 = bh(p,vh) − b1(p,vℓ
h). As in (3.28) we have with the chain rule that

∇ · vℓ
h(x̂) = tr(∇(vh ◦ Φ−1)(x̂)) = tr(DΦ(x)−T ∇vh(x)) for x̂ ∈ Ω, x := Φ−1(x̂). (3.30)

We again treat the volume and boundary terms separately. It follows using (3.30), (3.29) and (3.16) that

T1
3 =

∫

Ω
p∇ · vℓ

h dx̂−
∫

Ωho
h

pe∇ · vh dx =
∫

Ωho
h

p ◦ Φh tr(DΦ(x)−T ∇vh)J − pe∇ · vh dx

=
∫

Ωho
h

p ◦ Φh tr((JDΦ(x)−T − I)∇vh) dx+
∫

Ωho
h

(p ◦ Φh − pe) tr(∇vh)

≲ hk∥p∥Ω∥∇vh∥Ωho
h

+ hk+1∥p∥H1(Ω)∥∇vh∥Ωho
h

≲ hk∥p∥H1(Ω)∥∇vh∥Ωho
h
.
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For the boundary term, we use the same change of normal direction and measure as for the diffusion
consistency boundary term, so that

T1
3 =

∫

Γho
h

pen · vh dx−
∫

Γ
pn̂ · vℓ

h dx̂ =
∫

Γho
h

pen · vh − p ◦ ΦhDΦ−T
h n · vh dx

=
∫

Γho
h

(pe − p ◦ Φh)n · vh dx+
∫

Γho
h

p ◦ Φh(I −DΦ−T
h )n · vh dx

≲ hk+3/2∥p∥H2(Ω)∥h−1/2vh∥Γho
h

+ hk∥p ◦ Φh∥Γho
h

∥vh∥Γho
h
.

For the pressure norm on the approximated interface we use a trace inequality so that we can estimate
∥p ◦ Φh∥Γho

h
≃ ∥p∥Γ ≲ ∥p∥H1(Ω). In total we therefore have for the boundary term that

|T2
3| ≤ hk+1/2∥p∥H2(Ω)∥h−1/2vh∥Γho

h
.

Overall this give for the pressure consistency error

|T3| ≤ |T1
3| + |T2

3| ≲ hk∥p∥H2(Ω)|||vh|||∗.

Consistency term 4: T4 = bh(qh,u) − b1(qℓ
h,u). As before we have for the volume term

T1
4 =

∫

Ωho
h

qℓ
h∇ · ue dx̂−

∫

Ωho
h

qh∇ · ue dx =
∫

Ωho
h

qh(∇ · u) ◦ ΦhJ dx−
∫

Ωho
h

qh∇ · ue dx

=
∫

Ωho
h

qh((∇ · u) ◦ Φh − ∇ · ue) dx+
∫

Ωho
h

qh(∇ · u) ◦ Φh(J − 1) dx

≲ hk+1∥qh∥Ωho
h

∥u∥H2(Ω) + hk∥qh∥Ωho
h

∥∇u∥Ω ≲ hk∥qh∥Ωho
h

∥u∥H2(Ω).

For the boundary contribution we proceed as before

T2
4 =

∫

Γho
h

qhn · ue ds−
∫

Γ
qℓ

hn̂ · udŝ =
∫

Γho
h

qhn · ue ds−
∫

Γho
h

qhDΦ−T
h n · u ◦ ΦhJ ds

=
∫

Γho
h

qhn · (ue − u ◦ Φh) ds+
∫

Γho
h

qh(I − JDΦ−T
h )n · u ◦ Φh ds

≲ hk+1∥qh∥Γho
h

∥u∥H2(Ω) + hk∥qh∥Γho
h

∥u∥Γ ≲ hk+1/2∥u∥H2(Ω)∥qh∥OT
.

In the final step we have used the trace estimate (3.10) and the inverse estimate (3.9a) to bound ∥qh∥Γho
h

≲

h−1/2∥qh∥OT
and the fact that u vanishes on Γ. The divergence constraint consistency term is therefore

bound by
|T4| ≤ |T1

4| + |T2
4| ≲ hk∥u∥H2(Ω)|||qh|||∗.

Consistency term 5: T5 = ih(ue,vℓ
h) − jh(pe, qℓ

h). We use the Cauchy-Schwarz inequality for the ghost-
penalty operator (3.22), the consistency of the ghost-penalty operator in Lemma 3.4, as well as the
stability of the extension operator to estimate

|T5| = |γgpνj
dir
h (ue,vh) + γgp

1
ν
h2jdir

h (pe, qh)|

≲ jdir
h (ue,ue)1/2jdir

h (vh,vh)1/2 + (h2jdir
h (pe, pe))1/2(h2jdir

h (qh, qh))1/2

≲ hk∥ue∥Hk+1(OT )∥vh∥H1(OT ) + hk∥pe∥Hk(OT )∥qh∥OT

≲ hk∥u∥Hk+1(Ω)|||vh|||∗ + hk∥p∥Hk(Ω)|||qh|||∗.

Combining the above estimates for the five error contributions then completes the proof.
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The result shown in Lemma 3.21 can be seen as a disturbed Galerkin orthogonality result and it quantifies
the consistency error made through the approximated geometry.

Theorem 3.22 (Energy error estimate). Assume that σ > 0 is appropriately large, h > 0 is sufficiently
small and γgp > 0 appropriate such that Lemma 3.16 holds true. For the exact solution of the Stokes
problem, we assume (u, p) ∈ H3,∞(Ω) × H2(Ω) for k = 2 or (u, p) ∈ Hk+1(Ω) × Hk(Ω) for k ≥ 3
and for the forcing term, we assume that f ∈ H1(Ω) is extended sufficiently smooth into Ωho

h such that
Lemma 3.21 holds. Then it holds for the solution (uh, ph) ∈ V iso

h ×Qiso
h of (3.8) that

|||(E,D)|||A ≲ hkR(u, p,f)

with

R(u, p,f) =
{

∥u∥H3,∞(Ω) + ∥p∥H2(Ω) + ∥f∥H1(Ω) for k = 2
∥u∥Hk+1(Ω) + ∥p∥Hk(Ω) + ∥f∥H1(Ω) for k ≥ 3.

Proof. Using the triangle inequality, we split the error into the interpolation and approximation parts

|||(E,D)|||A ≤ |||(η, ζ)|||A + |||(eh,dh)|||A.

For the discretisation error we use the bound (3.12) and the inf-sup stability of the stabilised bilinear
form in Lemma 3.16 to get

|||(eh,dh)|||A ≲ |||(eh,dh)|||∗ ≲ sup
(v,q)∈V iso

h
×Qiso

h

(Ah + Jh)((eh,dh), (v, q))
|||(v, q)|||∗

.

Adding and subtracting the extended exact solution we then have

(Ah + Jh)((eh,dh), (v, q)) = (Ah + Jh)((η, ζ), (v, q)) + (Ah + Jh)((E,D), (v, q)).

For the first term we use the continuity of the stabilised form and the interpolation properties (3.15).
The second term is the consistency error for which we can apply Lemma 3.21 to conclude the proof.

3.2.6 Numerical Examples
We consider a number of numerical examples to investigate the theoretical results in practice. To be able
to compute errors, we construct a right-hand side such that the exact solution is known. This is slightly
more involved than for fitted FEM, because we do not want to set the Dirichlet condition uD = u on
the approximated boundary, as this would hide the geometry approximation error. We therefore need to
set the condition uD = u|Γ on Γho

h . This is easiest, if this is constant. To this end, let us consider the
background domain Ω̃ = (−1.7, 1.7)2. On this we define the computational domain and corresponding
level set function as

Ω := {x ∈ R2 | 1/2 < ∥x∥2 < 5/2} and ϕ(x) := sin(π(x2
1 + x2

2)).

Taking this level set as the stream function, we then construct the velocity field as

u =
(
∂x2ϕ

−∂x1ϕ

)
=
(

2πx2 cos(π(x2
1 + x2

2))
−2πx1 cos(π(x2

1 + x2
2))

)
,

which is divergence-free due to the Schwarz theorem and fulfils homogeneous Dirichlet boundary condi-
tions on Γ. The forcing term is then defined as f := −ν∆u+ ∇ϕ. Due to the Helmholtz decomposition,
changes in the forcing-term by gradient fields are absorbed by the pressure. The pressure solution is
therefore p = ϕ. Furthermore, we then als have that p ∈ L2

0(Ω). An example numerical solution of this
can be seen in Figure 3.3.
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Figure 3.3: Velocity and pressure solution of the Stokes problem using CutFEM THiso
4 elements with the deformed

mesh with hmax = 0.25, using THiso
4 elements, Nitsche parameter σ = 40k2 and ghost-penalty parameter

γgp = 0.01.

Set-Up

All the numerical examples presented in this thesis are computed using ngsxfem [Leh+21], an add-on to
the high-order finite element library netgen/NGSolve [Sch97; Sch14]. On the active mesh we use Taylor-
Hood elements Pk/Pk−1 for k ≥ 2 [TH73; BF91] which we shall abbreviate as THk. In case the parametric
mapping of order k is applied, we denote this as THiso

k . We shall consider the viscosity ν = 10−3 and to
fix the pressure constant, we use a Lagrange multiplier.

Implementational Efficiency Aspects

Continuous finite element spaces Pk of order k ≥ 3 have degrees of freedom which are internal to an
element. As a result, these can be removed from the global linear system, by a procedure known as
static condensation [Guy65; Iro65]. Here, the local unknowns are removed from the global system via
a Schur complement procedure. Unfortunately, this is incompatible with ghost-penalty stabilisation,
which is inherently local on cut elements. We therefore only apply the static condensation procedure to
degrees of freedom which stem from elements T ∈ Th \Th,Γ,+ and do not participate in the ghost-penalty
stabilisation. Since the number of elements in Th,Γ,+ is small in comparison to the total number of active
elements, we still obtain significant efficiency gains through this procedure, as size of the linear systems
that need to be solved is reduced.

Condition Number Estimate

We investigate the condition number estimate in Theorem 3.19 with respect to the ghost-penalty para-
meter γgp, for the polynomial orders k = 2, 5 with fixed Nitsche penalty parameter σ = 40k2. To this
end, we move the centre of the ring domain between (−0.1, 0) and (0.1, 0) in 201 equal steps on a fixed
mesh with hmax = 0.2. As a result we get 201 different mesh-interface cut positions. The ghost-penalty
parameter is taken as γgp ∈ {0, 10−3, 10−2, 10−1, 1}. For simplicity, we take the same parameter for
both the velocity and pressure stabilisation. The condition number of the resulting linear system is then
estimated by exporting the resulting sparse matrix to MATLAB, where the condition number is estimated
by condest. Note that we consider the full system here, rather than the condensed Schur compliment.
The resulting condition number for the different ghost-penalty parameters and cut positions, depending
on the centre of the ring domain, can be seen in Figure 3.4.

As we can see in Figure 3.4, the condition number estimate of the unstabilised system is very large and
is highly dependent on the mesh-interface cut position. We also see that even a very small ghost-penalty
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Figure 3.4: Condition number estimate of the linear system resulting from the isoparametric CutFEM Taylor-Hood
discretisation of the Stokes problem on a mesh with hmax = 0.2 and different mesh-interface cut configur-
ations as well as different ghost-penalty stabilisation parameters.

parameter γgp = 10−3 improves the condition number significantly and with γgp ≥ 10−1, the dependence
an the mesh-interface cut position as almost entirely removed. Finally, we note that the condition number
increased slightly with the largest testest ghost-penalty parameter γgp = 1.

Parameter Dependence

As a second preliminary investigation, we look into the dependence of the error on the Nitsche and ghost-
penalty parameters. To this end, we consider a fixed mesh of the background domain with mesh size
hmax = 0.2. On this mesh, we consider THiso

2 and THiso
5 elements. The ghost-penalty parameter γgp is

chosen between 10−1 and 10−5 and the Nitsche penalty parameter σ is taken between 4k2 and 400k2. The
resulting velocity errors in the L2(Ωho

h )- and H2(Ωho
h )-norms and the pressure error in the L2(Ωho

h )-norm
are shown in Figure 3.5.

Looking at the results, we see that in general, a smaller ghost-penalty parameter is beneficial for the
error. However, for k = 2, the decrease of the ghost-penalty by four order of magnitude only lead to
a decrease in the error by factor of two. For k = 5 this decrease is more significant by a factor of ten.
Taking the condition number results into account, we see that a balance must be struck when choosing the
ghost-penalty parameter. One the one hand, the stabilisation is necessary in order to obtain reasonably
conditioned linear systems, on the other, choosing the parameter too large deteriorates the resulting error
of the solution.

With respect to the Nitsche parameter, σ = 4k2 appears to be too small. However, over the rest of the
considered parameter range, this did not affect the results.

Convergence Study

Finally, we investigate the error convergence with respect to the mesh size and the polynomial order of the
isoparametric finite element space. To this end, we consider a series of meshes of the background domain,
constructed with 0.016 ≤ hmax ≤ 0.4. On these meshes we consider THiso

k elements with k = 2, 3, 4, 5. The
Nitsche parameter is chosen as σ = 40k2 and the ghost penalty parameter is taken as γgp = 0.01. The
resulting velocity and pressure errors in the relevant norms can be seen in Figure 3.6.

Figure 3.6 shows that we obtain optimal order error convergence for the velocity of order k + 1 in the
L2-norm and of order k in the H1-semi-norm. Furthermore, the pressure error in the L2-norm also
converges optimally with order k, thus illustrating the error estimate in Theorem 3.22.
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Figure 3.5: Velocity and pressure error resulting from the isoparametric Taylor-Hood CutFEM discretisation for the
Stokes problem with different ghost-penalty and Nitsche parameters on a mesh with hmax = 0.2. Solid
lines indicate k = 2 and dashed lines indicate k = 5.
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Figure 3.6: Mesh convergence of the velocity- and pressure-error for the isoparametric CutFEM method for the Stokes
problem using THiso

k elements.
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3.2.7 Summary
The above numerical computations show that the ghost-penalty stabilisation is necessary to obtain
stiffness-matrices with condition numbers independent of the interface-mesh cut position and illustrate
that the bound in Theorem 3.19 is independent on the interface-mesh cut position. Small stabilisation
parameters are sufficient, and the condition number can even increase if the parameter is chosen too large.
We have seen that the velocity and pressure errors depend on the choice of ghost-penalty parameters, but
this dependence is negligible over a wide range of penalty parameters. Furthermore, we observed that
once the Nitsche parameter is sufficiently large, the choice of this parameter has no noticeable effect on
the solution error.

With respect to the convergence properties of the method, we saw that the isoparametric CutFEM
method with Taylor-Hood elements displays optimal order convergence for both the velocity and pressure.
The geometry approximation in the isoparametric CutFEM approach successfully hides the geometry
approximation error. Furthermore, this illustrates that our error estimate in Theorem 3.22 is sharp in
the order k.

3.3 CutFEM for the Time-Dependent Oseen Problem
Moving towards time-dependent fluid problems, on the way to considering fluid-structure interaction
problems, we consider the Oseen problem (2.16) in the context of the isoparametric CutFEM discret-
isation. The weak formulation of the Oseen problem over a finite time interval [0, tend] is then given as
follows:

Problem P3. Find a velocity and pressure (u, p) : (0, tend) → H1
0(Ω) ×L2

0(Ω) with u(0) = u0 such that
for all (v, q) ∈ H1

0(Ω) × L2
0(Ω) it holds

(∂tu,v)Ω + a(u,v) + c(b;u,v) + b(p,v) + b(q,u) = f(v) (3.31)

with a given convection field b ∈ L∞(0, tend;H1,∞(Ω)) with div(b) = 0 and initial condition u0 ∈ H1
0(Ω)

with div(u0) = 0.

The assumed spatial regularity of the transport field is standard in the literature for the Oseen equation,
see for example [Bra+07]. The (bi-)linear forms a(·, ·), b(·, ·) and f(·) are defined as for the Stokes problem
in (3.7) and the trilinear form c(·, ·, ·) is given by

c(b;u,v) :=
∫

Ω
b · ∇u · v dx.

For this form, we have the following properties.

Lemma 3.23. The trilinear form c(·, ·, ·) is continuous on H1
0(Ω)×H1

0(Ω)×H1
0(Ω) and skew symmetric.

That is for 1/p + 1/q + 1/r = 1 and b ∈ H1(Ω) with div(b) = 0 and u,v ∈ H1
0(Ω)

|c(b,u,v)| ≤ ∥b∥Lr(Ω)∥∇u∥Lp(Ω)∥v∥Lq(Ω), c(b,u,v) = −c(b,v,u) and c(b,u,u) = 0. (3.32)

Proof. See for example [BF13, Lemma V.1.1] or [Joh16, Remark 5.6].

3.3.1 Discretisation
Let us consider the isoparametric Taylor-Hood spaces V iso

h × Qiso
h for a polynomial order k ≥ 2 for a

sufficiently smooth level set domain Ω and a finite time-interval [0, tend]. We the consider a uniform
time-step ∆t = tend/N for some fixed N ∈ N and denote tn = n∆t. For simplicity, we take the first-order
BDF1 discretisation of the time derivative to formulate the fully discrete scheme. Superscript indices
denote the time-step at which the function is evaluated.
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Problem P4. With initial data u0
h ∈ V iso

h , for n = 1, . . . , N , find (un
h, p

n
h) ∈ V iso

h × Qiso
h such that for

all (vh, qh) ∈ V iso
h ×Qiso

h it holds

1
∆tmh(un

h,vh) + ah(un
h,vh) + νih(un

h,vh) + ch(b,un
h,vh) + b(pn

h,vh) + bh(qh,u
n
h) − 1/νjh(pn

h, qh)

= 1
∆tmh(un−1

h ,vh) + fh(vh). (3.33)

The bilinear and linear forms ah(·, ·), bh(·, ·) and fh(vh) as well as the stabilisation bilinear forms ih(·, ·)
and jh(·, ·) are as in the Stokes discretisation (3.8). The remaining bilinear forms are

mh(uh,uh) :=
∫

Ωho
h

uh · vh dx and ch(b;uh,vh) :=
∫

Ωho
h

b · ∇uh · vh dx−
∫

Γho
h,in

uh · vh b · n ds

with the inflow boundary Γho
h,in := {x ∈ Γho

h | b · n < 0} for a given, divergence-free convective field
b ∈ H1,∞(Ωho

h ). In cases of a non-homogeneous Dirichlet condition for the velocity u on the unfitted
inflow boundary Γho

h,in, we modify the right-hand side appropriately for a consistent formulation, see for
example [BH07]. For these mass and transport bilinear forms, we have the following properties.

Lemma 3.24. For all uh,vh ∈ V iso
h it holds for the mass bilinear forms that

mh(uh,uh) ≥ 0 and mh(uh,vh) ≲ |||uh|||∗|||vh|||∗,

and for the transport bilinear form it holds

ch(b,uh,uh) ≥ 0 and ch(b,uh,vh) ≲ ∥b∥L∞(Ωho
h

)|||uh|||∗|||vh|||∗.

Proof. The first inequality for the mass bilinear form is trivial, since mh(uh,uh) = ∥uh∥2
Ωho

h

≥ 0. The
second inequality follows by the Cauchy-Schwarz inequality and the Poincaré inequality (3.11).

For the first inequality for the transport term, we see that with integration by parts that
∫

Ωho
h

b · ∇uh · vh dx = −
∫

Ωho
h

uh · vh div(b) + b · ∇vh · uh dx+
∫

Γho
h

uh · vh b · nds.

Due to the divergence-free nature of b, it holds

ch(b;uh,vh) = 1
2∥|b · n|1/2uh∥2

Γho
h

by which the claim follows. The second inequality is a simple application of the generalised Hölder
inequality, as well as the Poincaré inequality (3.11).

Lemma 3.25 (Unique solvability). For every time-step n = 1, . . . , N , the isoparametric CutFEM dis-
cretisation (3.33) of the Oseen equations admits a unique solution, bounded by the data.

Proof. Due to Lemma 3.24, the bilinear form

Aos
h ((un

h, p
n
h), (vh, qh)) := 1

∆tmh(un
h,vh) + ah(un

h,vh) + νih(un
h,vh) + ch(b,un

h,vh)

+ b(pn
h,vh) + bh(qh,u

n
h) − 1/νjh(pn

h, qh)

is bounded on the product space V iso
h × Qiso

h in the |||(·, ·)|||∗-norm. Also due to Lemma 3.24, the inf-
sup property (3.23) can be proven completely analogously for Aos

h (·, ·). Therefore the claim follows by
applying the Banach-Nečas-Babuška theorem recursively.
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Lemma 3.26 (Condition number estimate). For sufficiently small h > 0, the stiffness matrix A os of
the isoparametric CutFEM discretisation (3.33) of the Oseen problem, has a condition number that is
independent of the mesh-interface cut position and is bounded by

κ(A os) ≲ h−2.

Proof. Due to Lemma 3.24, all the necessary properties needed for the bilinear form in the Stokes case,
also hold for the Oseen bilinear form. The proof is therefore identical to that of Theorem 3.19.

A Priori Error Estimate

Before we come to the energy estimate, we see that with integration by parts it holds for the strong
solution of the Oseen problem the weak Galerkin orthogonality

∫

Ω
∂tu · vℓ

h dx̂+A((u, p), (vℓ
h, q

ℓ
h)) + c(b;u,vℓ

h) = f(vℓ
h) for all (vh, qh) ∈ V iso

h ×Qiso
h

with the Stokes bilinear form A(·, ·) and vℓ
h = vh ◦ Φ−1

h , qℓ
h = qh ◦ Φ−1

h . Subtracting this from the discrete
formulation (3.33) and rearranging terms, we then get the error equation for the isoparametric CutFEM
BDF1 discretisation

1
∆t

∫

Ωho
h

(En − En−1) · vh dx+ (Ah + Jh)((En,Dn), (vh, qh)) + ch(b;En,vh)

= f(vℓ
h) − fh(vh) +

∫

Ωho
h

1
∆t (u

n − un−1) · vh dx−
∫

Ω
∂tu · vℓ

h dx̂

+ ah(u,vh) − a1(u,vℓ
h) + bh(p,vh) − b1(p,vℓ

h) + bh(qh,u) − b1(qℓ
h,u)

+ ih(ue,vh) − jh(pe, qh) + ch(b;un
h,vh) − c(b;u,vℓ

h)
=: T1 + T2 + T3 + T4 + T5 + T6 + T7

= Eos
c (vh, qh). (3.34)

Remark 3.27. In contrast to standard methods with exact geometry handling, where the only contri-
bution would result from the discretisation of the time derivative T2, we have the geometry consistency
errors from each of the terms in the original equation and the consistency error introduced by the direct
ghost-penalty stabilisation. ▲

Lemma 3.28 (Consistency estimates). Assume that the strong solution to the Oseen equation has the
spatial regularity (u(t), p(t)) ∈ Hk+1(Ω) × Hk(Ω) as well as the temporal regularity

∂2
tu ∈ L∞(0, tend;L2(Ω)) and ∂tu ∈ L2(0, tend;H1(Ω)).

Furthermore, we have that the divergence-free transport field has the regularity b ∈ H1,∞(Ω). Then for
the consistency error of the isoparametric CutFEM BDF1 discretisation of the Oseen problem, we have
that

|Eos
c (vh, qh)| ≲ (∆t+ hk)R1

c(u, p,f , b)|||vh|||∗ + hkR2
c(u, p)|||qh|||∗ (3.35)

with R1
c(u, p,f , b) = ∥∂2

tu∥L∞(0,tend;L2(Ω)) +∥∂tu∥H1(Ω) +∥u∥Hk+1(Ω) +∥p∥H2(Ω) +∥f∥H1(Ω) +∥b∥H1,∞(Ω)
and R2

c(u, p) = ∥u∥H2(Ω) + ∥p∥Hk(Ω).

Proof. The consistency components T1 and T3 – T6 correspond to the five consistency components of the
Stokes discretisation in (3.27). We therefore only have to deal with the temporal and transport terms.
We omit the explicit notation of the extension for better readability, by identifying u with its extension
Eu. As in Lemma 3.21, the proof is a combination of the use of the chain rule and Lemma 3.10.
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Consistency term 2: T2 =
∫

Ωho
h

1
∆t (un −un−1) ·vh dx−

∫
Ω ∂tu ·vℓ

h dx̂. Using partial integration (product
rule for integrals), we have

T2 = −
∫

Ωho
h

∫ tn

tn−1

t− tn−1

∆t ∂2
tudt · vh dx+

∫

Ωho
h

∂tu · vh dx−
∫

Ω
∂tu · vℓ

h dx̂.

The first term can be bound by
∣∣∣
∫

Ωho
h

∫ tn

tn−1

t− tn−1

∆t ∂2
tudt · vh dx

∣∣∣ ≤ 1
2∆t∥∂2

tu∥L∞(tn−1,tn;Ωho
h

)∥vh∥L1(Ωho
h

)

≲ ∆t∥∂2
tu∥L∞(0,tend;Ω)∥vh∥Ωho

h
.

For the remaining part, we have
∫

Ωho
h

∂tu · vh dx−
∫

Ω
∂tu · vℓ

h dx̂ =
∫

Ωho
h

(∂tu− (∂tu) ◦ Φh) · vh dx+
∫

Ωho
h

(∂tu) ◦ Φh · vh(1 − J) dx

≲ hk∥∂tu∥H1(Ω)∥vh∥Ωho
h

+ hk∥∂tu∥Ω∥vh∥Ωho
h
,

where J = det(DΦh). In sum we therefore have

|T2| ≲ (∆t+ hk)(∥∂2
tu∥L∞(0,tend;L2(Ω)) + ∥∂tu∥H1(Ω))∥vh∥Ωho

h
.

Consistency term 7: T7 = ch(b;un,vh) − c(b;un,vℓ
h). For the volume integral part, we have with the

regularity of b that
∫

Ωho
h

b · ∇un · vh dx−
∫

Ω
b · ∇̂un · vℓ

h dx̂ =
∫

Ωho
h

(b− b ◦ Φh) · ∇un · vh dx

+
∫

Ωho
h

b ◦ Φh · ∇(un − un ◦ Φh) · vh dx

+
∫

Ωho
h

b ◦ Φh · (I − JDΦ−T
h )∇(u ◦ Φh) · vh dx

≲ hk∥b∥H1,∞(Ω)∥u∥H2(Ω)∥vh∥Ωho
h
.

For the boundary part, we have with the trace estimate (3.10) and the inverse estimate (3.9a) that

−
∫

Γho
h,in

un · vh b · n ds+
∫

Γho
h,in

un ◦ Φh︸ ︷︷ ︸
=0

·vh b · nds ≤ ∥un − un ◦ Φh∥Γho
h,in

∥vh∥Γho
h,in

∥b∥L∞(Γho
h,in)

≲ hk+1/2∥u∥H2(Ω)∥vh∥OT
∥b∥L∞(Ω).

This means that we can estimate the transport consistency error by

|T7| ≲ hk∥b∥H1,∞(Ω)∥u∥H2(Ω)∥vh∥OT
.

Combining the above estimates for the individual consistency error contributions then completes the
proof.

As in (3.26), we split the velocity and pressure errors into an interpolation error and a discretisation
error. Inserting this into (3.34) and rearranging terms then gives the following error equation for the
discretisation error

1
∆t

∫

Ωho
h

(en
h − en−1

h ) · vh dx+ ah(en
h,vh) + ch(b, en

h,vh) + bh(dn
h,vh) + bh(qh, en

h)

+ νih(en
h,vh) − 1

ν
jh(dn

h, qh) = Eos
c (vh, qh) + Eos

i (vh, qh) (3.36)
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with the interpolation error component

Eos
i (vh, qh) = − 1

∆t

∫

Ωho
h

(ηn − ηn−1) · vh dx− ah(ηn,vh) − ch(b,ηn,vh)

− bh(ζn,vh) − bh(qh,η
n) − νih(ηn,vh) + 1

ν
jh(ζn, qh). (3.37)

Lemma 3.29. Assume that the exact solution to the Oseen problem fulfils the regularity assumptions
u ∈ L∞(0, tend;Hk+1(Ω)), ∂tu ∈ L∞(0, tend;Hk(Ω)) and p ∈ L∞(0, tend;Hk(Ω)). For the interpolation
error contribution it then holds

|Eos
i (vh, qh)| ≲ hkRi(u, p)|||(vh, qh)|||∗

with Ri(u, p) := ∥u∥L∞(0,tend;Hk+1(Ω)) + ∥∂tu∥L∞(0,tend;Hk(Ω)) + ∥p∥L∞(0,tend;Hk(Ω)).

Proof. Let us consider the individual contributions in (3.37). The estimates for the diffusion, transport,
pressure coupling and mass-conservation terms follow by their continuity and the interpolation properties
(3.15). For the ghost-penalty terms, the estimate follows from Lemma 3.4 and the stability of the
(implicitly included) extension operator. For the time-derivative term, we observe that by the stability
of the extension it holds that

∥∂tη
n∥Ωho

h
≲ hk∥∂tu

n∥Hk(OT ) ≲ hk∥∂tu
n∥Hk(Ω).

Then with the Cauchy-Schwarz inequality we have

∣∣∣ 1
∆t

∫

Ωho
h

(ηn − ηn−1) · vh dx
∣∣∣ ≤ 1

∆t

∥∥∥
∫ tn

tn−1
∂tη(t) dt

∥∥∥
Ωho

h

∥vh∥Ωho
h

≤ ∆t−1/2
(∫ tn

tn−1
∥∂tη

n∥2
Ωho

h
dt
)1/2

∥vh∥Ωho
h

≲ hk sup
t∈[tn−1,tn]

∥∂tu∥Hk(OT )∥vh∥Ωho
h

≲ hk sup
t∈[0,tend]

∥∂tu∥Hk(Ω))∥vh∥Ωho
h
. (3.38)

Theorem 3.30 (Energy error estimate). Under the above regularity assumptions on the data and ex-
act solution, such that Lemma 3.28 and Lemma 3.29 hold true, we have for the velocity error of the
isoparametric CutFEM discretisation with a BDF1 discretisation of the time-derivative, that

∥En∥2
Ωho

h
+ ∆t

n∑

k=1
ν|||En|||2∗ ≲ ∥E0∥2

Ωho
h

+ tn(∆t+ h2k/∆t+ ∆th2k)R(u, p, b,f)

with

R(u, p, b,f) := sup
t∈[0,tn]

[
∥∂2

tu∥2
Ω + ∥∂tu∥2

Hk(Ω) + ∥u∥2
Hk+1(Ω) + ∥p∥2

Hk(Ω) + ∥f∥2
H1(Ω) + ∥b∥2

H1,∞(Ω)

]
.

Proof. We show the claim for the discretisation error. The result for the full error follows then by the
optimal interpolation properties of the finite element space. We test the error equation (3.36) with
2∆t(en

h − dn
h), which gives

∥en
h∥2

Ωho
h

+ ∥en
h − en−1

h ∥2
Ωho

h
− ∥en−1

h ∥Ωho
h

+ 2∆t(ah(en
h, en

h) + νih(en
h, en

h) + ch(b, en
h, en

h))

+ 2∆t1
ν
jh(dn

h,dn
h) = 2∆t

(
Eos

c (en
h,dn

h) + Eos
i (en

h,dn
h)
)
. (3.39)
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Using the coercivity of the stabilised diffusion form in Lemma 3.14, the skew symmetry of the transport
term in Lemma 3.24 and the positivity of the pressure ghost-penalty term, we then have

∥en
h∥2

Ωho
h

+ ∥en
h − en−1

h ∥2
Ωho

h
+ 2∆t|||en

h|||∗ ≲ ∥en−1
h ∥Ωho

h
+ 2∆t

(
|Eos

c (en
h,dn

h)| + |Eos
i (en

h,dn
h)|
)
. (3.40)

With the estimates of Lemma 3.28 and Lemma 3.29 and after an application of Young’s inequality and
a weighted Young’s inequality, we then have for the right-hand side terms that

2∆t
(
Eos

c (en
h,dn

h) + Eos
i (en

h,dn
h)
)
≲ ∆t

(
1/ε(∆t2 + h2k)R(u, p, b,f) + ε|||(en

h,dn
h)|||2∗

)
(3.41)

with R(u, p, b,f) as defined above. Now, it is clear from Lemma 3.16 and Lemma 3.24 that the inf-sup
condition (3.23) also holds if we add the transport term to the bilinear form. That is, for

Aos
h,1((uh, ph), (vh, qh)) := ah(uh,vh) + ch(b,uh,vh) + b(ph,vh) + bh(qh,uh)

we have
|||(uh, ph)|||∗ ≲ sup

(vh,qh)∈V iso
h

×Qiso
h

(Aos
h,1 + Jh)((uh, ph), (vh, qh))

|||(vh, qh)|||∗
for all (uh, ph) ∈ V iso

h ×Qiso
h . So with (3.34) it holds

(Aos
h,1 + Jh)((en

h,dn
h), (vh, qh)) = (Aos

h,1 + Jh)((ηn, ζn), (vh, qh)) + (Aos
h,1 + Jh)((En,Dn), (vh, qh))

≲ |||(ηn, ζn|||∗|||vh, qh)|||∗ + |Eos
c (vh, qh)| + 1

∆t∥E
n − En−1∥Ωho

h
∥vh∥Ωho

h
.

So by splitting the error term 1/∆t∥En − En−1∥Ωho
h

into the interpolation and discretisation error parts,
it then follows with (3.38), the consistency error estimate (3.35) and the interpolation properties (3.15),
that it holds

|||(en
h,dn

h)||| ≲ sup
(vh,qh)∈V iso

h
×Qiso

h

(Aos
h,1 + Jh)((en

h,dn
h), (vh, qh))

|||(vh, qh)|||∗

≲ hk(Ri(u, p) +Rc(u, p, b,f)) + 1
∆t∥en

h − en−1
h ∥Ωho

h
.

So that with the weighted Young’s inequality, we have

∆tε|||(en
h,dn

h)|||2 ≲ ε∆th2kR(u, p, b,f) + ε

∆t∥en
h − en−1

h ∥2
Ωho

h
.

With ε sufficiently small, that is ε ≲ ∆t we get that cε/∆t∥en
h − en−1

h ∥2
Ωho

h

≤ ∥en
h − en−1

h ∥2
Ωho

h

. Inserting
this into (3.41), we get in (3.40) that

∥en
h∥2

Ωho
h

+ 2∆t|||en
h|||∗ ≲ ∥en−1

h ∥Ωho
h

+ (∆t2 + h2k + ∆t2h2k)R(u, p, b,f).

Summing over n = 1, . . . , N and factoring out a factor ∆t on the right-hand side then gives the result.

Remark 3.31. We observe that the above error estimate is not optimal in time. This is due to a
suboptimal bound for ∥ 1

∆t (en
h − en−1

h )∥Ωho
h

. In fact, we lost half an order in the temporal convergence
due to the necessary choice of ε ∼ ∆t after the applications of the weighted Youngs inequality, to absorb
the ∥en

h − en−1
h ∥2

Ωho
h

term in the left hand side. However, since we can expect that ∥en
h − en−1

h ∥Ωho
h

scales
with a factor ∆t, we do not expect that the above estimate is sharp in ∆t.

In standard fitted and conforming finite element methods, an optimal bound for ∥ 1
∆t (en

h − en−1
h )∥Ωho

h
is

obtained by testing the error equation with vh = 1
∆t (en

h − en−1
h ) =: δen

h and using the fact that δen
h,

with the interpolation defined via a Stokes projector, is weakly divergence-free to remove the pressure
from the resulting equation, c.f. [EG21c]. Following the same techniques in our setting did not lead to a
satisfactory result since the pressure discretisation error remains part of the equation such that additional
terms remain for which a bound is not clear. ▲
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Remark 3.32 (BDF2 time-discretisation). To extend the above analysis to the BDF2 discretisation of
the time-derivative ∂tu ≈ 1

∆t

( 3
2u

n − 2un−1 + 1
2u

n−2), we require the following modifications. First, we
replace the polarisation identity used in (3.39) with the polarisation identity

2(3un
h − 4un−1

h + un−2
h ,un

h)Ωh
= ∥un

h∥2
Ωh

+ ∥2un
h − un−1

h ∥2
Ωh

+ ∥un
h − 2un−1

h + un−2
h ∥2

Ωh

− ∥un−1
h ∥2

Ωh
− ∥2un−1

h − un−2
h ∥2

Ωh
, (3.42)

c.f. (6.33) in [EG04]. For an equivalent of the estimate (3.38), we observe that

3
2u

n
h − 2un−1

h + 1
2u

n−2
h = 3

2(un
h − un−1

h ) − 1
2(un−1

h − un−2
h )

so that the proof for (3.38) can be applied to each of these two components. Furthermore, the have the
improved consistency estimate

(1/2∆t(3un
h − 4un−2

h + un−2
h ),vh)Ωh

≲ ∆t2∥∂3
tuh∥L∞(0,tend;L2(Ωh))∥vh∥Ωh

[HNW93]. The final component is then a sufficiently accurate approximation of u1
h, in order to get

second-order convergence. ▲

3.3.2 Numerical Examples
To construct an analytical solution on a suitable level set domain, we take the same domain as for the
Stokes computations in subsection 3.2.6 and construct the exact solution based on that considered for
Stokes. To not affect the boundary conditions, we add a multiplicative temporal component to the exact
solution, which gives

uos = sin(πt)
(

2πx2 cos(π(x2
1 + x2

2))
−2πx1 cos(π(x2

1 + x2
2))

)
and pos = sin(πt) sin(π(x2

1 + x2
2)).

We then take the transport field to be the exact solution, i.e., b = uos and consider the time interval
[0, 1]. Unless otherwise indicated, we consider ν = 10−3, σ = 40k2 and γgp = 0.01. The right-hand side f
is then constructed by plugging in the exact solution into the Oseen equation (2.16). Finally, to measure
the space-time norms we use the time-discrete norm

∥·∥2
ℓ2(X) := ∆t

n∑

i=1
∥·∥2

X

for a given normed space X.

Condition Number Estimate

We consider the identical set-up as in subsection 3.2.6. The resulting condition number estimates for the
system from a BDF1 time-discretisation in the first time-step with a time-step size of ∆t = 1/100 can be
seen in Figure 3.7.

We observe that the results are very similar to the Stokes case in subsection 3.2.6. Indeed, the ghost-
penalty stabilisation results in condition numbers that are almost independent of the mesh-interface cut
configuration. Furthermore, we also observe that as in the Stokes case, the condition number increased
again for γgp = 1. Therefore, in the sense of optimal condition number for the system, the ghost-penalty
parameter should not be chosen too large.

Convergence

We consider the temporal and spatial convergence properties of the discretisation separately.
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Figure 3.7: Condition number estimate of the linear system resulting from the isoparametric CutFEM Taylor-Hood
discretisation for the Oseen problem on a mesh with hmax = 0.2 with different mesh-interface cut config-
urations and ghost-penalty stabilisation parameters. The time-discretisation is with the BDF1 method and
the time=step is chosen as ∆t = 1/100.
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Figure 3.8: Time-step convergence of the velocity- and pressure-errors with BDF1 and BDF2 time-stepping for the
Oseen problem with the isoparametric CutFEM method for the spatial discretisation on a mesh with
hmax = 0.1, using THiso

5 elements.

Time-Step Convergence We consider a background mesh with hmax = 0.1 together with THiso
5 elements.

We then take both the BDF1 and the BDF2 discretisations of the time-derivative and consider time-steps
between ∆t = 1/10 and ∆t = 1/2000. For the BDF2 discretisation, we use a single step of the BDF1
discretisation, to initialise the BDF2 scheme. The resulting errors of the velocity in the ℓ2(L2(Ωho

h ))- and
ℓ2(H1(Ωho

h ))-norm and the pressure in the ℓ2(L2(Ωho
h ))-norm can be seen in Figure 3.8.

Looking at the convergence rates, we see optimal order convergence with respect to the time-step both for
schemes, i.e., first-order convergence for BDF1 and second-order convergence for BDF2 in all considered
norms, until step spatial error begins to dominate in the BDF2 case. As a result of this, we note that the
scheme has not realised the expected loss of half an order of convergence, and the error estimate derived
in Theorem 3.30 is therefore most likely not sharp, as noted upon in Remark 3.31.

Mesh Convergence In order to see the spatial error, rather than the temporal error, we use the BDF2
discretisation for the time-derivative and take the time-step ∆t = 1/1000. We then consider a series of
meshes of the background domain, constructed using mesh parameters 0.04 ≤ hmax ≤ 0.4. On these
meshes, we consider THiso

k elements with k = 2, 3, 4, 5. The resulting space-time errors of the velocity and
pressure can be seen in Figure 3.9.
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Figure 3.9: Mesh convergence of the velocity- and pressure-errors for the isoparametric CutFEM method for the Oseen
problem using THiso

k elements. The time discretisation is done with the BDF2 method and the time-step
∆t = 1/1000.

We again observe optimal order convergence in all three norms considered, while the spatial error appears
to dominate. For higher-order polynomials on the finish meshes, we observe that the temporal error
dominates. For k = 2 we note that we do not have optimal convergence on the coarsest meshes, which we
take to be pre-asymptotic behaviour. Furthermore, it appears that for k = 3, that we have a slight loss in
the convergence in the velocity error, although the errors are still better than in the case for k = 2.

3.3.3 Summary
In the above numerical computations, we have seen that the dependence of the condition number of
the stiffness matrix on the ghost-penalty parameter is very similar to that in the Stokes case. This
illustrates that the bound in Lemma 3.26 is independent of the interface-mesh cut position. Concerning the
asymptotic convergence, we have seen that the isoparametric CutFEM discretisation converges optimally
with the time-step, even though our error analysis did not show this. With respect to the mesh size, the
convergence is not as monotone as in the Stokes case, but we retain optimal order convergence. This
suggests, that Theorem 3.30 is not sharp, and that a better estimate of the term ∥ 1

∆t (en
h − en−1

h )∥Ωho
hshould also be possible in the unfitted case with the addition velocity-pressure coupling introduced by

the geometry consistency error.

3.4 A Fluid-Rigid Body Interaction Benchmark
In [Wah+19b], we published a benchmark for fluid-rigid body interactions for purely rotational motion of
the solid in both two and three spatial dimensions. The basic idea here was to take the well-established
flow around a cylinder benchmark by Schäfer and Turek [ST96] and add additional degrees of freedom
by allowing the rotation of the solid around its centre of mass. In 3d, we modified the spatial setup slightly
to consider a sphere rather than a cylinder to avoid solid-solid contact between the wall and the rotating
solid. As a result of this design, the fluid-solid partition does not change over time, so that standard fluid
solvers can access this benchmark, as the interaction is essentially an implicit defined non-homogeneous
Dirichlet boundary condition on the fluid-solid interface.

We shall use this benchmark to investigate the approximation properties of the isoparametric Cut-FEM
method we have derived and analysed in section 3.2 and section 3.3 when applied to a fluid-rigid body
interaction problem.
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Figure 3.10: Domain for the two-dimensional freely-rotating sphere benchmark.

3.4.1 Benchmark Description
We give brief overview of the definition of the benchmark we shall consider here. In particular, we shall
focus on the stationary Rot2d-1 and the unsteady and fixed time scenario Rot2d-3.

Domain and Equations The domain of interest is given by Ω = (0, 2.2) × (0, 0.41). The solid domain is
given by S = {x ∈ Ω | ∥x− (0.2, 0.2)T ∥2 < 0.05} and the fluid domain is then F = Ω\S . An illustration
of this can be seen in Figure 3.10.

In this domain, we then consider the fluid-rigid body system (2.5). As the rigid body can only rotate
around its centre of mass, and since there are no external forces acting on the fluid, the system reduces
to

ρF (∂tu+ u · ∇u) − div(σ(u, p)) = 0 in F × (0, tend)
div(u) = 0 in F × (0, tend)

for the fluid and

IS∂tω = T in (0, tend)

for the solid. The boundary conditions for the fluid are

u = ω(t)rt⃗ on I × (0, tend)
u = uin on Γin × (0, tend)
u = 0 on Γwall × (0, tend)

ρFν(∇u)n− Ipn = 0 on Γout × (0, tend),

i.e, continuity of the velocity at the fluid solid interface, a Dirichlet inflow condition given by

uin(x, t) = 4U(t)x2(0.41 − x2)
0.412

(
1
0

)
, (3.43)

no-slip conditions on the walls of the channel, and a parallel outflow "do-nothing" condition on the outflow
boundary, see [Ric17, Section 2.4.2]. In these equations, ω(t) is the scalar angular velocity (in a counter-
clockwise sense), t⃗ = (−n2,n1)T is the tangential vector (counter-clockwise) on the solid and r is the
radius of the circular rigid body. In two spatial dimensions, the moment of inertia IS of inertia of the
circular solid body and the torque exerted by the fluid onto the solid are given by

IS = ρS

∫

S
∥x− cS∥2

2 dx = ρS
π

2 r
4 and T =

∫

I
rt⃗ · σ(u, p)n ds.
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CD CL ∆p ω∗

5.57955881 0.004714193 0.1175202 0.0012629346

Table 3.1: Reference values for the benchmark problem "Rot2d-1" taken from [Wah+19b].

CD,max tD,max CL,max tD,max CT,max tD,max ∆p(8) ω∗
max tω,max

2.95089 3.3962 0.4656 5.6939 0.009688 5.8430 −0.11187 0.003347 5.9563

Table 3.2: Reference values for the benchmark problem "Rot2d-3" taken from [Wah+19b].

Benchmark Quantities Amongst the quantities of interest in the benchmarks are the forces acting
on the solid body. The forces acting on the solid in the Euclidean coordinate axes are given by F =∫
I σ(u, p)n ds. As benchmark quantities, we are then interested in the dimensionless drag-lift and torque

coefficients, given by

CD = 2
u2

mρFL
F1, CL = 2

u2
mρFL

F2 and CT = 4
u2

mρFL2T, (3.44)

where um is a characteristic velocity and L is a characteristic length, which in this case is taken as
L = 0.1, the diameter of the obstacle. The characteristic velocity is however problem dependent. As
further quantities of interest, as defined in [Wah+19b], we have the dimensionless angular velocity of the
solid body and the pressure difference between the front and back of the solid. These are given by

ω∗ = ωL

2um
and ∆p := p((0.15, 0.2)) − p((0.25, 0.2)).

Problem Set-Up

We consider two set-ups from [Wah+19b]. The stationary problem Rot2d-1 and the time-dependent
problem over a fixed time-interval denoted as Rot2d-3. In both cases, the fluid’s density is ρF = 1 and
its viscosity is ν = 0.001. The solid density is ρS = 10.

Stationary Problem: Rot2d-1 The inflow speed is U = 0.3, which gives a mean inflow speed of um = 2 ·
0.3/3 = 0.2, which we take as the characteristic speed of the problem. The resulting flow has the Reynolds
number Re = 20 and is stationary. The reference values for this problem are given in Table 3.1.

Time-Dependent Problem Over a Fixed Time-Interval: Rot2d-3 The inflow speed is given by U(t) =
1.5 sin(πt/8) over the time-interval [0, 8]. The characteristic speed is the maximal mean inflow speed,
which is um = 1.0. As a result, the maximal Reynolds number of the flow is Re = 100. The quantities
of interest here are the maximal force coefficients and the maximal dimensionless angular velocity and
the respective times at which these are realised. The reference values for this problem are given in
Table 3.2.

3.4.2 Unfitted Discretisation
The discretisation of the Navier-Stokes equation is based on the isoparametric CutFEM method we
developed and analysed for the Oseen problem in section 3.3. However, in the non-linear case, we change
the formulation of the convective term from the convective formulation used before to the skew-symmetric
form

ch(u,v,w) := 1
2

[ ∫

Ωho
h

u · ∇v ·w dx−
∫

Ωho
h

u · ∇w · v dx
]
.
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This form is equivalent to the convective form and has the advantage of vanishing for w = v, for
all u,v ∈ H1(Ωho

h ), see [Joh16, section 6.1.2]. Therefore, we do not need any additional boundary
contributions for the stability of the form. We compute the forces by evaluating the boundary integrals
which define them, since approaches such as the Babuška-Miller trick [BM84] do not work in the present
unfitted setting.

Stationary Problem

As described in [Wah+19b, section 3.1.1], the stationary problem can be solved directly by applying the
Newton method to solve the problem

j(ω) := T (u(ω)) != 0,

where u(ω) is the stationary Navier-Stokes solution with angular velocity ω and the solid interface. To
approximate the Jacobean of the functional j(·), we then use a finite difference approximation

j′(ω)(δω) ≈ T (u(ω + δ)) − T (u(ω))
δ

.

To solve the necessary stationary Navier-Stokes problems to approximate the torque Jacobean, we use
the following isoparametric CutFEM discretisation.

Problem P5. Find (uh, ph) ∈ V iso
h ×Qiso

h such that for all (vh, qh) ∈ V iso
h ×Qiso

h it holds

ah(uh,vh) + νih(uh,vh) + ch(uh,uh,vh) + bh(ph,vh) + bh(qh,uh) + 1
ν
jh(ph, qh) = 0.

The resulting non-linear system is then solved by a Newton iteration.

Time-Dependent Problem

To decouple the Navier-Stokes fluid equation from the Newton-Euler solid equation, we use a semi-implicit
time-marching scheme for the fluid equation and an explicit scheme for the solid equation.

We discretise the Navier-Stokes equations in time by using the second-order implicit-explicit (IMEX)
SBDF2 scheme [ARW95]. Here, the less stiff convective term is treated completely explicitly such that
we need to solve the same linear system in each time-step. This comes at the cost of a CFL time-step
restriction of order established experimentally as ∆t ≲ h/k3/2 [Wah18]. In conjunction with this scheme,
we use the explicit part, i.e., a second-order extrapolation, to advance the solid ODE problem in time.
Due to the necessarily small time-step for the fluid problem, the explicit treatment of the solid problem
does not result in any stability issues. The discrete scheme then reads in every time-step

1
∆t

3
2mh(un

h,vh) + (ah + νih)(un
h,vh) + bh(ph,vh) + bh(qh,uh) + 1

ν
jh(ph, qh)

= 1
∆t

(
2mh(un−1

h ,vh) − 1
2mh(un−2

h ,vh)
)

− 2ch(un−1
h ,un−1

h ,vh) + ch(un−2
h ,un−2

h ,vh)

for the fluid problem, and

1
∆t

3
2ω

n = 1
∆t

(
2ωn−1 − 1

2ω
n−2
)

+ I−1
S (2T (un−1

h ) − T (un−2
h ))

for the solid. To initialise the system we use the corresponding first-order IMEX SBDF1 scheme, which
is sufficient to realise second-order time-step convergence of the method [Wah18].
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Discretisation Results (Convergence Rate)
k hmax CD CL CT ∆p ω∗

2 0.08 5.58379747 −0.007768625 8.4 · 10−15 0.1162891 0.0043527636
2 0.04 5.57685210 (0.6) 0.010236941 (1.2) 2.6 · 10−11 0.1173639 (3.0) −0.0002105188 (1.1)
2 0.02 5.57903095 (2.4) 0.006133097 (2.0) 1.6 · 10−15 0.1173366 (−0.2) 0.0010200395 (2.6)
2 0.01 5.57929045 (1.0) 0.004716603 (9.2) 7.9 · 10−12 0.1174920 (2.7) 0.0012697050 (5.2)
Reference 5.57955881 0.004714193 0.0 0.1175202 0.0012629346

Table 3.3: Results for the Rot-2d1 problem, computed using the isoparametric CutFEM method with THiso
2 elements

over a series of meshes.

Discretisation Results (Convergence rate)
k hmax nref CD CL CT ∆p ω∗

2 0.04 0 5.57685210 0.010236941 2.6 · 10−11 0.1173639 −0.0002105188
2 0.04 1 5.57944586 (4.6) 0.005804510 (2.3) 3.9 · 10−13 0.1173899 (0.3) 0.0008787381 (1.9)
2 0.04 2 5.57904214 (-2.2) 0.004199299 (1.1) 1.2 · 10−12 0.1174909 (2.2) 0.0013357075 (2.4)
2 0.04 3 5.57954550 (5.3) 0.004666192 (3.4) 1.1 · 10−12 0.1175193 (5.1) 0.0012671340 (4.1)
Reference 5.57955881 0.004714193 0.0 0.1175202 0.0012629346

Table 3.4: Results for the Rot-2d1 problem, computed using the isoparametric CutFEM method with THiso
2 elements

on a mesh with hmax = 0.04 after multiple bisections of cut elements.

3.4.3 Numerical Results
To compute both the Rot-2d1 and Rot-2d3 problems, we begin with a mesh constructed with h = hmax/8
in the front of the channel where x1 ≤ 0.7. In conjunction with our previous results, we take the
ghost-penalty parameter to be γgp = 0.01, and the Nitsche penalty parameter is σ = 40k2.

To compute the convergence behaviour of the method in the functional values of interest, we assume a
form for the error of err(h) = |err| ∼ chr. For two errors, we can then compute the convergence rate
as r =

(
log(err(h)) − log(err(h/2))

)
/ log(2). To capture the true maxima of time-dependent functional

values, we interpolate a fourth-order spline to the data and then take the maximum of the spline as the
reported value.

Rot-2d1 We begin by considering the case k = 2 over a series of meshes. The results of these computa-
tions can be seen in Table 3.3. Here, we see that while all quantities of interest converge to the reverence
values, the lift and angular-velocity functions have the wrong sign on the first two meshes. This can, in
part, be attributed to the fact that these quantities are small in absolute value, and therefore difficult to
approximate.

As the quantities of interest only begin to be accurate on the finer meshes, we consider the mesh with
hmax = 0.04 and bisect the elements cut by the interface. This can be expected to lead to improved results,
as highly accurate force values on the interface require highly resolved meshes at the interface, even in
the fitted setting [Wah+19b]. We consider up to three levels of mesh refinement of cut elements. The
results can be seen in Table 3.4. Since we observe mesh convergence in the functionals, even though only
cut elements are iteratively refined, we see that most of the error in the previous global mesh convergence
study was in the approximation of the solution at the interface.

To consider the effect of the isoparametric mapping, we consider the same sequence of iterative bisection
of elements cut by the solid interface but without the parametric mapping. This corresponds to the choice
of Θh = id, as a result of which the geometry approximation error is of order h2. These results can be
seen in Table 3.5. Here we see that while we still observe convergence of the quantities of interest, the



50 Chapter 3 Unfitted Finite Elements for Flow Problems

Discretisation Results (Convergence rate)
k hmax nref CD CL CT ∆p ω∗

2 0.04 0 5.56379624 0.018412451 −3.1 · 10−12 0.1172884 −0.0017422572
2 0.04 1 5.56966202 (0.7) 0.007492112 (2.3) 1.1 · 10−13 0.1173697 (0.6) 0.0005777901 (2.1)
2 0.04 2 5.57417707 (0.9) 0.000668006 (-0.5) 3.5 · 10−12 0.1174811 (1.9) 0.0019070896 (0.1)
2 0.04 3 5.57738077 (1.3) 0.004808180 (5.4) 9.1 · 10−13 0.1175166 (3.5) 0.0012118283 (3.7)
Reference 5.57955881 0.004714193 0.0 0.1175202 0.0012629346

Table 3.5: Results for the Rot-2d1 problem, computed using the CutFEM method with TH2 elements on a mesh with
hmax = 0.04 after multiple bisections of cut elements.

Discretisation Results (Convergence rate)
k hmax nref CD CL CT ∆p ω∗

3 0.08 3 5.57957643 0.004701057 1.0 · 10−12 0.1175097 0.0012636435
3 0.04 3 5.57955715 (3.4) 0.004711938 (2.5) 1.0 · 10−12 0.1175187 (2.8) 0.0012631640 (1.6)
3 0.02 3 5.57955873 (4.3) 0.004713665 (2.1) 9.9 · 10−13 0.1175197 (1.7) 0.0012630115 (1.6)
4 0.08 3 5.57955948 0.004714107 1.0 · 10−12 0.1175111 0.0012629250
4 0.04 3 5.57955878 (4.5) 0.004714148 (0.9) 1.1 · 10−12 0.1175187 (2.6) 0.0012629416 (0.5)
4 0.02 3 5.57955881 (3.7) 0.004714193 (6.7) 7.6 · 10−13 0.1175197 (1.6) 0.0012629357 (2.7)
5 0.08 3 5.57955879 0.004714195 7.1 · 10−13 0.1175111 0.0012629341
5 0.04 3 5.57955881 (4.9) 0.004714194 (1.6) 2.1 · 10−12 0.1175187 (2.6) 0.0012629357 (−1.2)
5 0.02 3 5.57955881 (−0.8) 0.004714195 (−1.3) 2.0 · 10−12 0.1175197 (1.7) 0.0012629356 (0.2)
5 0.08 0 5.57955289 0.004695598 −3.1 · 10−12 0.1171413 0.0012674014
5 0.08 1 5.57954771 (−0.9) 0.004688067 (−0.5) −3.5 · 10−12 0.1172984 (0.8) 0.0012642677 (1.7)
5 0.08 2 5.57955808 (3.9) 0.004714269 (8.4) −2.0 · 10−13 0.1174582 (1.8) 0.0012628177 (3.5)
5 0.08 3 5.57955879 (5.1) 0.004714195 (5.1) 7.1 · 10−13 0.1175111 (2.8) 0.0012629341 (7.9)
Reference 5.57955881 0.004714193 0.0 0.1175202 0.0012629346

Table 3.6: Results for the Rot-2d1 problem, computed using the isoparametric CutFEM method with THiso
k elements.

convergence rate is significantly reduced compared to the isoparametric results in Table 3.4. Indeed, even
the drag coefficient, which is the easiest functional to compute, is only accurate up to three significant
figures.

Finally, we consider higher-order spaces, that is, k ≥ 3. As we have seen above, the mesh resolution
at the interface is paramount. Therefore, we consider meshes with three levels of iterative bisections of
elements cut by the solid interface. The results from these computations can be seen in Table 3.6. Here
we see that the higher order of the finite element spaces lead to better convergence rates and significantly
more accurate functional values. In fact, for k = 5, we see little convergence, as the resulting values with
hmax = 0.08 and three levels of interface element refinement are already extremely close to the reference
values. However, we still see that even for k = 5, the very fine mesh at the interface is necessary, as the
resulting values with fewer refinements at the interface are significantly worse.

Rot2d-3 As for the stationary case, we consider a number of different mesh configurations. Due to the
stability needs of the IMEX time-stepping scheme, the necessary time-steps are very small. As a result,
we shall keep close to the stability limit as we can expect the spatial error to dominate here. All the results
of our numerical computations for the time-dependent problem Rot2d-3 are reported in Table 3.7.

Looking at the results for k = 2 under uniform mesh refinement, we see that while the drag lift and torque
peaks are identified at the correct time, the maximum of the angular velocity is realised a the wrong time.
Taking the mesh with hmax = 0.04 and considering iterative refinement of cut elements, we see that one
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Figure 3.11: Velocity and pressure solution for the Rot2d-1 problem, computed using THiso
3 elements on a mesh with

hmax = 0.08, h = hmax/8 in the front of the channel and one bisection of cut elements.
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Discretisation Results (Convergence rate)
k hmax nref ∆t CD,max tD,max CL,max tL,max CT,max tT,max ∆p ω∗

L,max tω,max

2 0.08 0 1/1200 2.9552047 3.93682 0.4788927 5.69388 0.0111239 5.84923 −0.1116168 0.0020097 7.37870
2 0.04 0 1/2200 2.9496983 (1.9) 3.93608 0.4657261 (6.7) 5.69465 0.0097047 (6.4) 5.84474 −0.1118929 (3.5) 0.0025218 (0.7) 7.36837
2 0.02 0 1/4400 2.9506717 (2.4) 3.93624 0.4667328 (−3.2) 5.69394 0.0097136 (−0.6) 5.84376 −0.1118075 (−1.4) 0.0029698 (1.1) 5.95713
2 0.01 0 1/8800 2.9506867 (0.1) 3.93620 0.4655993 (10.7) 5.69390 0.0096875 (5.8) 5.84315 −0.1118769 (3.2) 0.0033600 (4.9) 5.95641
2 0.04 0 1/2500 2.9496982 3.93608 0.4656920 5.69469 0.0097041 5.84474 −0.1118957 0.0025219 7.36855
2 0.04 1 1/2500 2.9509427 (4.5) 3.93634 0.4636937 (−4.4) 5.69404 0.0096925 (1.8) 5.84406 −0.1119765 (−2.1) 0.0037934 (0.9) 5.95673
2 0.04 2 1/2500 2.9505026 (−2.9) 3.93627 0.4642352 (0.5) 5.69376 0.0096544 (−2.9) 5.84361 −0.1118376 (1.7) 0.0037990 (−0.0) 5.95621
2 0.04 3 1/2500 2.9509784 (2.1) 3.93623 0.4650435 (1.3) 5.69377 0.0096694 (0.9) 5.84334 −0.1118738 (3.1) 0.0035001 (1.6) 5.95611
3 0.08 3 1/2000 2.9509056 3.93622 0.4656604 5.69363 0.0096888 5.84316 −0.1118570 0.0033580 5.95601
3 0.04 3 1/4000 2.9508918 (3.1) 3.93619 0.4656855 (−0.5) 5.69385 0.0096889 (−0.2) 5.84314 −0.1118711 (3.5) 0.0033506 (1.6) 5.95626
3 0.02 3 1/8000 2.9508932 (−0.8) 3.93619 0.4656606 (0.5) 5.69389 0.0096887 (0.4) 5.84306 −0.1118743 (−1.9) 0.0033485 (1.2) 5.95631
4 0.08 3 1/3100 2.9508943 3.93620 0.4657102 5.69380 0.0096895 5.84316 −0.1118667 0.0033492 5.95621
4 0.04 3 1/6200 2.9508935 (0.3) 3.93619 0.4656678 (0.7) 5.69388 0.0096888 (0.9) 5.84309 −0.1118731 (0.1) 0.0033485 (0.5) 5.95630
4 0.02 3 1/9300 2.9508936 (−0.0) 3.93619 0.4656577 (0.2) 5.69390 0.0096886 (0.3) 5.84305 −0.1118746 (−0.6) 0.0033484 (0.1) 5.95632
5 0.08 3 1/4400 2.9508935 3.93619 0.4656846 5.69386 0.0096891 5.84313 −0.1118700 0.0033485 5.95627
5 0.04 3 1/8800 2.9508936 (−0.0) 3.93619 0.4656587 (0.5) 5.69390 0.0096887 (0.7) 5.84305 −0.1118739 (−7.8) 0.0033484 (0.0) 5.95631
5 0.02 3 1/13200 2.9508936 (0.0) 3.93619 0.4656535 (0.1) 5.69390 0.0096886 (0.2) 5.84302 −0.1118750 (−0.3) 0.0033484 (0.0) 5.95632
Reference 2.95089 3.3962 0.4656 5.6939 0.009688 5.8430 −0.11187 0.003347 5.9563

Table 3.7: Results for the Rot-2d3 problem, computed using the isoparametric CutFEM method with higher-order
elements.

level of refinement is sufficient to identify the correct peak of the angular velocity. This illustrates that a
sufficiently well-resolved interface is vital here to capture the dynamics accurately.

Looking at the mesh convergence results for the higher-order methods with three levels of refinement of
cut elements, we see that the resulting quantities of interest are immediately very close to the known
reference values such that further convergence cannot be observed. However, we also note that the
reference values, as taken from [Wah+19b], only give between four and six significant figures.

3.4.4 Summary
The numerical simulations illustrate the importance of a highly resolved interface and the necessity of
the parametric mapping in order to accurately compute the benchmark quantities of interest, even in this
relatively simple fluid-rigid body interaction example. It is not surprising that a smaller mesh parameter
at the interface is necessary to compute the reference values accurately since this is also the case for fitted
FEM approaches to obtain accurate values [Wah+19b].

While we did not observe monotone convergence in hmax for the functional values, we saw that higher-order
methods generally resulted in higher-order convergence and significantly more accurate values compared
to the lowest order Taylor-Hood element. Furthermore, we have seen that once the interface is sufficiently
resolved, high-order unfitted methods compute the relevant reference values as accurately as the fitted
finite element methods in [Wah+19b].



CHAPTER 4

An Unfitted Eulerian Time-Stepping Method for the Tran-
sient Stokes Problem on Moving Domains

Structure of Chapter The main unfitted Finite Element method using an Eulerian time-stepping ap-
proach for time-dependent flow problems on moving domains is developed. Using the transient Stokes
equations on a moving domain with prescribed motion, the method is developed and analysed numeric-
ally. The numerical analysis is complemented with numerical experiments to illustrate the convergence
behaviour of the scheme. This follows our work from [WRL21] and builds on [LO19; BFM19]. Further
numerical studies, using the Navier-Stokes equations for the fluid model, are presented to compare the
developed methods against other unfitted Finite Element schemes for moving domain flow problems from
the literature. Examples including topology changes in the fluid geometry are presented.
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4.1 Problem Description
To move towards fluid-rigid body interaction, including motion of the solid, such that the fluid-solid
partition changes over time, we consider the time-dependent Stokes problem on a moving domain (2.14).
This consists of two significant simplifications in comparison to the full fluid-rigid body interaction system
(2.5). The first simplification is to only consider the fluid part of the problem, with the motion of the
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fluid domain F(t) given externally. The second is to remove the convection term, thereby assuming a
flow with small Reynolds number. Since the equations are posed entirely in the fluid domain, we shall
refer to the spatial domain as Ω(t).

Following [BFM19], we assume that the domain motion is described by a smooth mapping

Ψ(t) : Ω0 → Ω(T ) with Ψ ∈ L∞(0, tend;Wk+1,∞(Ω0)) ∩ W1,∞(0, tend;Wk,∞(Ω0)),

a smooth reference domain Ω0 and div(∂tΨ(Ψ−1)) = 0. Due to our context of fluid-rigid body dynamics,
we take the continuity of the velocity at the fluid boundary as the Dirichlet boundary condition, i.e.,

u = ∂tΨ(Ψ−1) on Γ(t) := ∂Ω(t).

Defining ũ = u − ∂tΨ(Ψ−1), we can therefore homogenise the boundary condition in the system (2.14)
to obtain

∂tũ− ν∆ũ+ ∇p = f̃ in Q (4.1a)
div(ũ) = 0 in Q (4.1b)
u(·, t) = 0 on Γ(t), (4.1c)

where f̃ = f + ∂2
t Ψ(Ψ−1) − ν∆(∂tΨ(Ψ−1)). To keep the notation simple, we shall drop the tildes and

identify (u, p) as the solution to the homogenised problem (4.1).

Now, let I = [0, tend], V (t) = H1
0(Ω(t)), L(t) = L2(Ω(t)) and Q(t) := L2

0(Ω(t)). We then define the
spaces

VI := {u ∈ L2(0, tend;V (t)) | ∂tu ∈ L2(0, tend;L(t))} and QI := L2(0, tend;Q(t)).

We assume that for the data, we have f ∈ L∞(0, tend;L(t)) and u0 ∈ H1(Ω(0)). Then the weak
formulation of (4.1) is as follows: Find (u, p) ∈ VI ×QI such that

(∂tu,v)Ω(t) + ν(u,v)Ω(t) − (p,∇ · v)Ω(t) − (q,∇ · u)Ω(t) = (f ,v)Ω(t) (4.2)

for all (v, q) ∈ VI ×QI almost everywhere in t ∈ I, with u(·, 0) = u(0) almost everywhere in Ω(0).

4.2 Discretisation
Most methods for solving problems on moving domains, such as (4.22), are based on an at least partially
Lagrangian or purely Eulerian description of the moving boundary. The most common approach is the
Arbitrary Eulerian-Langrangian (ALE) method [HLZ81; DGH82; Don+04]. The ALE approach works by
mapping the domain and equations into a reference configuration in which the problem is solved, usually
using fitted finite element approaches with standard time-stepping schemes [Ric17] or using space-time
Galerkin formulations [Beh01; Beh08; KVV06; Neu13]. A drawback of the ALE approach is that the
deformation with respect to the reference configuration must be small, and topology changes must not
occur. For large deformations, the ALE method can be extended by considering regular mesh updates
or space-time meshing. Purely Eulerian approaches avoid these issues, and we will follow this approach
here. In a purely Eulerian framework, a fixed background mesh is considered to define a set of potential
unknowns. The domain geometry is then described separately; see section 3.1 for an overview of such
unfitted finite element approaches.

When considering time-dependent problems on moving domains in a purely Eulerian framework, the
main challenge is the approximation of the time-derivate ∂tu ≈ 1/∆t(un − un−1) because un and un−1

are defined on different domains such that the difference of the two is not well-defined. An approach that
has been proven to work in the unfitted Eulerian setting is a class of space-time Galerkin formulations.
This has been considered, for example, in the context of scalar bulk problems [LR13; Leh15; Zah18;
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Pre18; Hei20], problems on moving surfaces [GOR15; ORX14; OR14] or surface bulk problems [HLZ16].
Recently, initial steps have also been taken towards two-phase flow problems [VR18; AB21]. However,
the fundamental problem with space-time Galerkin approaches is that (d+1)-dimensional FEM problems
have to be solved, which comes at a high computational cost. An alternative to space-time methods
is to use modified quadrature rules to reduce the space-time formulation into a classical time-stepping
scheme [FR17b]. However, this approach then requires the expensive computation of projections between
discrete function spaces at times tn and tn−1.

Our approach, as presented in [WRL21], follows a different approach to the aforementioned space-time
methods. The idea of our approach is to use an implicit extension, based on ghost-penalty stabilisation,
such that the approximation of the time-derivative 1/∆t(un

h − un−1
h ) is again well-defined. This idea to

enable the Eulerian time-stepping for problems on a moving surface by extended finite element functions
was introduced by Olshanskii and Xu [OX17]. Extending the discrete functions through ghost-penalty
stabilisation was then analysed by Lehrenfeld and Olshanskii [LO19] for a scalar convection-diffusion
problem and extended to the transient Stokes problem on a moving domain (2.14) by Burman, Frei
and Massing [BFM19].

In the context of flow problem, the idea of using ghost-penalties to define an extension of the velocity in
order to apply standard time-discretisations for moving domain problems can be traced back to Schott
[Sch17]. However, the extension in [Sch17] is computed in a separate sub-step, and the extension is limited
to a vertex patch of active elements such that the time-step must obey a Courant–Friedrichs–Lewy (CFL)
type condition ∆t ≲ h. Furthermore, no numerical analysis of the method was provided in [Sch17] for
this approach.

Our work can therefore be seen as an extension of that in [BFM19]. In contrast to the equal-order
spatial discretisation with pressure stabilisation in [BFM19], we shall consider the use of unfitted Taylor-
Hood elements, as in chapter 3, so that the stabilisation is only necessary in the vicinity of the domain
boundary. Furthermore, our analysis focuses on the geometry approximation error inherent in CutFEM
and the robustness in the viscosity ν. Both of these aspects were not covered in [BFM19].

4.2.1 Temporal Semi-Discretisation
Let us consider the uniform time-step ∆t = tend/N for some N ∈ N. As before, we denote tn = n∆t. We
further introduce In = [tn−1, tn), Ωn = Ω(tn) and Γn = Γ(tn) = ∂Ω(tn). The δ-neighbourhood of Ω(t) is
defined as

Oδ(Ω(t)) := {x ∈ Rd | dist(x,Ω(t)) ≤ δ}.
For the method, we then require δ to be sufficiently large for the domain Ωn to be in the δ-neighbourhood
of the previous domain, i.e.,

Ωn ⊂ Oδ(Ωn−1), for n = 1, . . . , N.
This is achieved by the choice

δ = cδw
n
∞∆t,

where wn
∞ is the maximal normal speed of the domain interface and cδ > 0. The time-discretisation is

then based on a combination of the method of lines approach, in combination with an extension operator
for Sobolev functions to the δ-neighbourhood, which ensures that the solution defined on the domain at
the previous time-step is well-defined on the current domain. In the context of unfitted finite element
methods, an extension of the smooth solution is standard, as we have seen in subsection 3.2.2. In this
context of moving domains, we have to define the extension slightly differently, which we discuss below;
see also [LO19; WRL21].

Variational Formulation

We take the weak formulation (4.2) as the basis of our discretisation. We then discretise the time deriv-
ative with the implicit Euler (or BDF1) method combined with the extension operator. The variational
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formulation of the temporally semi-discrete problem then reads as follows:

Problem P6. For n = 1, . . . , N , given un−1 ∈ H1
0(Ωn−1) and fn ∈ H−1(Ωn), find (un, pn) ∈ V n×Qn :=

H1(Ωn) × L2
0(Ωn) such that

1
∆t (u

n,v)Ωn + an(un,v) + bn(pn,v) + bn(q,un) = ⟨fn,v⟩(V n)′,V n + 1
∆t (Eu

n−1,v)Ωn (4.3)

for all (v, q) ∈ V n ×Qn.

The bilinear forms therein are given by

an(u,v) = ν

∫

Ωn

∇u : ∇v dx and bn(q,v) = −
∫

Ωn

q∇ · v dx (4.4)

for the diffusion term and the velocity-pressure coupling, respectively. The extension operator E :
H1(Ωn−1) → H1(Oδ(Ωn−1)) allows us to make sense of the “initial value” un−1 ∈ H1

0(Ωn−1) in
Ωn ⊂ Oδ(Ωn−1). We discuss the details of this extension below.

Extension Operator

For the extension operator, we require the following family of space-time anisotropic spaces

L∞(0, T ;Hm(Ω(t))) :=
{
v ∈ L2(Q)

∣∣∣∣∣
v(·, t) ∈ Hm(Ω(t)) for a.e. t ∈ (0, T )

and ess supt∈(0,T ) ∥v(·, t)∥Hk(Ω(t)) < ∞

}
,

for m = 0, . . . , k + 1. We then denote ∂tv = vt as the weak partial derivative with respect to the time
variable, if this exists as an element of the space-time space L2(Q).

We now assume the existence of a spatial extension operator

E : L2(Ω(t)) → L2(Oδ(Ω(t))),

which fulfils the following properties:

Assumption A1. Let v ∈ L∞(0, T ;Hk+1(Ω(t))) ∩ W2,∞(Q). There exist positive constants cA1a, cA1b

and cA1c that are uniform in t such that

∥Ev∥Hk(Oδ(Ω(t))) ≤ cA1a∥v∥Hk(Ω(t)) (4.5a)
∥∇(Ev)∥Oδ(Ω(t)) ≤ cA1b∥∇v∥Ω(t) (4.5b)

∥Ev∥W2,∞(Oδ(Q)) ≤ cA1c∥v∥W2,∞(Q) (4.5c)

holds. Furthermore, if for v ∈ L∞(0, T ;Hk+1(Ω(t))) it holds for the weak partial time-derivative that
vt ∈ L∞(0, T ;Hk(Ω(t))), then

∥(Ev)t∥Hk(Oδ(Ω(t))) ≤ cA1d

[
∥v∥Hk+1(Ω(t)) + ∥vt∥Hk(Ω(t))

]
, (4.6)

where the constant cA1d > 0 again only depends on the motion of the spatial domain.

Such an extension operator can be constructed explicitly from the classical linear and continuous universal
extension operator for Sobolev spaces (see, e.g., [Ste70, Section VI.3]), when the motion of the domain is
described by a diffeomorphism Ψ(t) : Ω0 → Ω(t) for each t ∈ [0, T ] from the reference domain Ω0 that is
smooth in time. See [LO19] for details thereof.

Assuming sufficient regularity of the domain Ωn, e.g., connected with Lipschitz-boundary, the well-
posedness of (4.3) is given for every time-step by the standard theory of the Stokes-Brinkman prob-
lem or equivalently the Oseen problem with vanishing convective velocity, see for example [Joh16, The-
orem 5.7].
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Stability

We have the following stability estimates, for the semi-discrete scheme in (4.3).

Lemma 4.1. Let {un}N
n=1 be the velocity solution to (4.3) with initial data u0 ∈ H1(Ω0). Then for

n = 1, . . . , N , it holds that

∥un∥2
Ωn + ∆t

n∑

i=1

ν

2 ∥∇ui∥Ωi ≤ exp(cL4.1t
n)


∥u0∥2

Ω0 + ν∆t
2 ∥∇u0∥2

Ω0 + c2
P ∆t
ν

n∑

i=1
∥f i∥2

Ωi


 ,

with a positive constant cL4.1 independent of the time-step size and the number of time-steps n and the
constant cP from the Poincaré-inequality.

Proof. The proof is analogue to that of [LO19, Lemma 3.6], using the test function 2∆t(un,−pn) ∈
V n ×Qn to remove the pressure from the equation.

Lemma 4.2. Let {pn}N
n=1 be the pressure solution to (4.3). Then it holds

∥pn∥Ωn ≤ cL4.2

[
cP ∥fn∥Ωn + 1

∆t∥u
n − Eun−1∥H−1(Ωn) + ν∥∇un∥Ωn

]

with a constant cL4.2 > 0 independent of the time-step size ∆t and the time-step n.

Proof. The claim follows by the inf-sup stability of the form bn(·, ·). We refer to [WRL21] for the details
of the proof.

Remark 4.3. It is not immediately clear that Lemma 4.2 gives us the stability of the pressure, inde-
pendent of the time-step size ∆t. The explanation of why we do not expect a scaling of ∥pn∥Ωn with
∆t−1 is based on an argument with the relation for the discretisation error. Using integration by parts,
we have that the exact solution (u(tn), p(tn)) fulfils for all (v, q) ∈ V n ×Qn the variational problem

(∂tu(tn),v)Ωn + an(u(tn),v) + bn(p(tn),v) + bn(q,u(tn)) = ⟨fn,v⟩(V n)′,V n .

In line with our previous notation, we define the temporal discretisation errors as En := u(tn) − un and
Dk := p(tn) − pn. For n = 1, .., N it then holds that
(
En − EEn−1

∆t ,v

)

Ωn

+ an(En,v) + bn(Dn,v) + bn(q,En) =
(
u(tn) − Eu(tn−1)

∆t − ∂tu(tn),v
)

Ωn

for all (v, q) ∈ V n × Qn. Now, assuming sufficient regularity, i.e. u ∈ W2,∞(Q), we obtain the bound
cR4.3a∆t∥u∥W2,∞(Q)∥v∥Ωn for the right-hand side with a constant cR4.3a independent of n, u and ∆t.
Here, we also made use of (4.5c). As the left side of the equation is the same as in (4.3), we can apply
Lemma 4.1 (using E0 = 0) to obtain the bound

∥En∥Ωn ≤ cR4.3b exp(cR4.3ct
n)∆t∥u∥W2,∞(Q).

Hence, the triangle inequality yields

1
∆t∥u

n − Eun−1∥H−1(Ωn) ≤ 1
∆t∥u(tn) − Eu(tn−1)∥H−1(Ωn)+ 1

∆t∥E
n∥H−1(Ωn)+ 1

∆t∥EE
n−1∥H−1(Ωn)

≤ ∥∂tu(tn)∥H−1(Ωn) + cR4.3d∥u∥W2,∞(Q),

and hence a bound on the norm of pn that is independent on ∆t−1. ▲
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4.2.2 Fully Discrete Method
The spatial discretisation is based on the CutFEM approach discussed in chapter 3. We take a simplicial,
shape-regular and quasi-uniform mesh of the T̃h background domain Ω̃ ⊂ Rd, for which we assume that
Ω(t) ⊂ Ω̃ for all t ∈ [0, tend]. The domain is defined via a level set function ϕ, c.f. subsection 3.1.1. The
discrete level set domain at time tn is then denoted as Ωn

h and its boundary by Γn
h. Arbitrary cuts between

the mesh and the level set function are stabilised via ghost-penalties, c.f. subsection 3.1.2. The only
difference is in the geometry approximation. We will give the details of this below in subsection 4.3.4.

To realise the necessary extension in the discrete setting, we shall make use of the ghost-penalty stabil-
isation, as this gives us control over the discrete solution on the part of the active mesh where we do not
have an equation. In order for the discrete solution from the previous time-step to be well-defined on the
domain at the next time-step, we need to extend the discrete domain Ωn

h in every time-step by

δh = cδh
wn

∞∆t,

with cδh
>1 such that Ωn+1

h is a subset of the extended discrete domain, but also sufficiently small so that
Oδh

(Ωn
h) ⊂ Oδ(Ωn). We then collect all the elements with a contribution to this active domain in the

active mesh at time-step n as

T n
h,δh

:= {T ∈ T̃h | ∃x ∈ T such that dist(x,Ωn
h) ≤ δh} ⊂ T̃h.

The active domain at time n is then

On
δh,T := {x ∈ T | T ∈ T n

h,δh
}.

Similarly, we then define the set of elements which have some contribution to the physical domain at
time n as the cut mesh, denoted by T n

h := T n
h,0, and the cut domain On

T := On
0,T as the domain cut

elements.

As we need to define the ghost-penalty operator on the δh-strip of elements, we require additional sets of
facets in each time-step. To this end, we define the set of elements in the boundary strip as

T n
h,S± := {T ∈ T̃h | ∃x ∈ T with dist(x,Γn

h) ≤ δh},

and the set of interior facets of this strip as

F n
h,δh

:= {F = T 1 ∩ T 2 | T1 ∈ T n
h,δh

, T2 ∈ T n
h,S± with T1 ̸= T2 and measd−1(F ) > 0}.

Since the pressure does not need to be extended in the discrete formulation, we collect the set of boundary
elements at time tn as

Th,Γn
h

:= {T ∈ T̃h | T ∩ Γn
h ̸= ∅},

and the set of interior facets of these elements as

F n
h := {F = T 1 ∩ T 2 | T1 ∈ T n

h , T2 ∈ Th,Γn
h

with T1 ̸= T2 and measd−1(F ) > 0}.

A sketch of these elements and facets can be seen in Figure 4.1. As noted above and discussed in detail
below, we do not use the parametric mapping in the analysis of the method. Consequently, we consider
the standard family of Taylor-Hood elements for k ≥ 2

V n
h := {vh ∈ C(On

δh,T ) | vh|T ∈ [Pk(T )]d for all T ∈ T n
h,δh

}

and

Qn
h := {qh ∈ C(On

T ) | qh|T ∈ Pk(T ) for all T ∈ T n
h }.

Note that while the velocity space is defined on the entire active mesh, the pressure space is only defined
on the cut mesh.
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S±
δh

T ∈ T n
h,δh

\ T n
h

T ∈ Th,Γn
h

T ∈ T n
h,S± \ T n

h,S+

T ∈ T n
h \ T n

h,S±

F ∈ Fn
h,δh

Γnh

T ∈ Th,Γn
h

F ∈ T n
h \ Th,Γn

h

F ∈ F n
h

Γn
h

Figure 4.1: Left: Active elements and facets for the velocity. Right: Active elements and facets for the pressure.

Variational Formulation

With the newly introduced mesh notation, we can now formulate the fully discretised scheme for the
time-dependent Stokes problem on moving domains.

Problem P7. Given an appropriate initial condition u0
h ∈ V 0

h , for n = 1, . . . , N , find (un
h, p

n
h) ∈ V n

h ×Qn
h

such that
∫

Ωn
h

un
h − un−1

h

∆t · vh dx+ an
h(un

h,vh) + bn
h(pn

h,vh) + b(qh,u
n
h) + sn

h((un
h, p

n
h), (vh, qh)) = fn

h (vh) (4.7)

for all (vh, qh) ∈ V n
h ×Qn

h.

As in section 3.2, we consider a symmetric Nitsche formulation for the bilinear forms, now defined on the
domains at time n. For the diffusion bilinear form, we then have

an
h(uh,vh) := ν

∫

Ωn
h

∇uh : ∇vh dx+Nn
h (uh,vh)

Nn
h (uh,vh) := Nn

h,c(uh,vh) +Nn
h,c(vh,uh) +Nn

h,s(uh,vh), with

Nn
h,c(uh,vh) := −

∫

Γn
h

∂nuh · vh ds and Nn
h,s(uh,vh) := σ

h

∫

Γn
h

uh · vh ds,

where σ > 0 is the penalty parameter. For the pressure-coupling bilinear form, we have

bn
h(qh,vh) :=

∫

Ωn
h

qh∇ · vh dx+Nn
h,c(qh,vh), where Nn

h,c(qh,vh) :=
∫

Γn
h

(qhn) · vh ds.

To realise the necessary ghost-penalty extension into the exterior of the domain, we define the stabilising
bilinear form as

sn
h((uh, ph), (vh, qh)) := γu,gp,1νi

n
h(uh,vh) + γu,gp,2

1
ν
inh(uh,vh) + γp,gp

1
ν
jn

h (ph, qh),

with stabilisation parameters γu,gp,1, γu,gp,2, γp,gp > 0. We will discuss a suitable choice of these para-
meters in Remark 4.9 below. As before, the velocity and pressure ghost-penalties stabilise arbitrary
cuts, while the pressure stabilisation is necessary for the unfitted inf-sup property. However, the velocity
ghost-penalty operator now also defines the implicit extension into the δh-strip for the method to control
the solution in the entire active domain. While we continue to use the direct ghost-penalties, the two
forms are now defined as

inh(uh,vh) :=
∑

F ∈Fn
h,δh

1
h2

∫

ωF

JuhK · JvhK dx and jn
h (ph, qh) :=

∑

F ∈Fn
h

∫

ωF

JphKJqhK dx,
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with the facet-patch jump operator J·K = J·KωF
defined in (3.2). Finally, the right-hand side term is

fn
h (vh) :=

∫

Ωn
h

fn · vh dx,

with the standard modification for non-homogeneous Dirichlet data uD of

fn
h (vh, qh) :=

∫

Ωn
h

fn · vh dx+Nn
h,c(vh,uD) +Nh,s(uD,vh) +Nh,c(qh,uD).

With an abuse on notation, we take fn as a (smooth) extension of the forcing term, so that it is well-
defined on Ωn

h.

4.3 Analysis of the Method
We perform the numerical analysis of the fully discrete method (4.7) in this section. To this end, we
introduce some additional notation and cover some of the general results needed for the numerical analysis.
We then show that the problem is well-posed, prove a consistency estimate due to the time-discretisation
and the geometry approximation and then prove an error estimate for the energy error.

4.3.1 Preliminaries
Further Notation

We define the set of extension strip elements as

T n
h,S+ := {T ∈ T̃h | ∃x ∈ Ω̃ \ Ωn

h with dist(x,Γn
h) ≤ δh}.

We also define the sharp strips

S±
δh

(Ωn
h) := {x ∈ Ω̃ | dist(x,Γn

h) ≤ δh} and S+
δh

(Ωn
h) := {x ∈ Ω̃ \ Ωn

h | dist(x,Γn
h) ≤ δh}.

With this, we then define the discrete extended domain Oδh
(Ωn

h) := S±(Ωn
h) ∪ Ωn

h. In the following
analysis, we then require that δ is sufficiently large, such that

On
δh,T ⊂ Oδ(Ωn) and Ωn

h ⊂ Oδ(Ω(t)), for t ∈ In = [tn−1, tn)

for n = 1, . . . , N .

In the analysis, we consider the following mesh-dependent norms. For the velocity, we take

|||v|||2n := ∥∇v∥2
Ωn

h
+ ∥h−1/2v∥2

Γn
h

+ ∥h1/2∂nv∥2
Γn

h

|||v|||2∗,n := ∥∇v∥2
On

δh,T
+ ∥h−1/2v∥2

Γn
h
, and ∥v∥−1,n := sup

w∈V n
h

(v,w)Ωn
h

|||w|||∗,n

.

For the pressure, we introduce the norms

|||q|||2n := ∥q∥2
Ωn

h
+ ∥h1/2q∥2

Γn
h
, and |||q|||∗,n := ∥q∥On

T
,

while for the product space we take

|||(v, q)|||2∗,n := |||v|||2∗,n + |||q|||2∗,n.

Note that the |||·|||n-norms are defined on the physical domain and add control on the normal-derivative
of the velocity and the trace of the pressure at the boundary. These norms arise naturally to bound the
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bilinear forms an
h(u,v) and bn

h(q,v). The second type of norms, the |||·|||∗,n-norms, are defined on the
entire active domain and therefore represent proper norms for discrete functions in our finite element
spaces. As in (3.12), we find using the trace inequality (3.9c) for the velocity norm and the trace and
inverse estimates (3.10), and (3.9a) for the pressure norm, that

|||vh|||n ≲ |||vh|||∗,n and |||qh|||n ≲ |||qh|||∗,n (4.8)

for all vh ∈ V n
h and qh ∈ Qn

h. Similar to (3.11), we also have a Poincaré type inequality

∥vh∥On
δh,T

≤ cP,h|||vh|||∗,n (4.9)

for all vh ∈ V n
h .

Interpolation Properties

We recall the interpolation properties of the Scott-Zhang interpolant in Lemma 3.9. Furthermore, we
have for the triple-norm the following interpolation result.

Lemma 4.4. Let v ∈ Hk+1(Ωn) and q ∈ Hk(Ωn), m ≥ 1. Then the following estimates hold

|||Ev − I∗
hEv|||n ≲ hk∥v∥Hk+1(Ωn) (4.10a)

|||Eq − I∗
hEq|||n ≲ hk∥q∥Hk(Ωn). (4.10b)

Proof. We refer to [WRL21, Lemma 5.2] for details of the proof.

Ghost-Penalty Properties

Assumption A2. We assume that for every strip element T ∈ T n
h,S+ there exists an uncut element

T ′ ∈ T n
h \ T n

h,S+ , which can be reached by a path which crosses a bounded number of facets F ∈ F n
h,δh

.
We assume that the number of facets which have to be crossed to reach T ′ from T is bounded by a
constant L ≲ (1+ δh

h ) and that every uncut element T ′ ∈ T n
h \T n

h,S+ is the end of at most M such paths,
with M bounded independent of ∆t and h. In other words, each uncut elements "supports" at most M
strip elements.

See [LO19, Remark 5.4] for a justification as to why the above assumption is reasonable if the mesh
resolves the domain boundary sufficiently well.

Lemma 4.5 (Ghost-penalty mechanism). For all vh ∈ V n
h and qh ∈ Qn

h it holds that

∥∇vh∥2
On

δh,T
≃ ∥∇vh∥2

Ωn
h

+ L · inh(vh,vh) (4.11a)

∥vh∥2
On

δh,T
≃ ∥vh∥2

Ωn
h

+ h2L · inh(vh,vh) (4.11b)

∥qh∥2
On

T
≃ ∥qh∥2

Ωn
h

+ jn
h (qh, qh). (4.11c)

Proof. The equivalence (4.11c) is simply a reformulation of (3.4). The proof of (4.11a) and (4.11b) is a
repetition of the arguments in the proof of Lemma 3.3, taking into account the number of elements that
need to be crossed to reach an interior element, as described in Assumption A2.

4.3.2 Well-Posedness
Lemma 4.6 (Continuity). For the diffusion bilinear form, we have for all u,v ∈ H1(Oδ(Ωn)) that it
holds that

an(u,v) ≲ ν|||u|||n|||v|||n, (4.12a)
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and for all uh,vh ∈ V n
h it holds that

an
h(uh,vh) + νLinh(vh,vh) ≲ ν|||uh|||∗,n|||vh|||∗,n. (4.12b)

Furthermore, for the velocity-pressure coupling bilinear form, we have for all q ∈ L2(Oδ(Ωn)) and v ∈
H1(Oδ(Ωn)) that

bn
h(q,v) ≲ |||q|||n|||v|||n,

and for all qh ∈ Qn
h and vh ∈ V n

h that

bn
h(qh,vh) ≲ |||qh|||∗,n|||vh|||∗,n.

Proof. The proof is entirely analogue to that of Lemma 3.12 and taking Lemma 4.5 into account.

Lemma 4.7 (Coercivity). There exists a constant cL4.7 > 0, independent of h and the mesh-interface
cut position, such that for sufficiently large σ > 0 there holds

an
h(vh,vh) + νLinh(vh,vh) ≥ νcL4.7|||vh|||2∗,n

for all vh ∈ V n
h .

Proof. For ν = 1 and L = 1, the proof can be seen in [BH12, Lemma 6] or [BH14, Lemma 4.2]. The proof
for general ν > 0 and L > 1 is again a repetition of the identical arguments and taking the ghost-penalty
strip-width into account.

Corollary 4.8 (Bad inf-sup). Let Oint denote the interior, uncut domain. Then for all qh ∈ Qn
h with

qh|Oint
∈ L2

0(Oint), it holds that

β∥qh∥Ωn
h

≤ sup
vh∈V n

h

bh(qh,vh)
|||vh|||∗,n

+ jn
h (qh, qh)1/2. (4.13)

The constant β > 0 is independent of h and qh.

Proof. For each n = 1, . . . , N this statement is given by Lemma 3.15, taking the parametric mapping as
the identity.

Remark 4.9 (Choice of ghost-penalty parameters). Lemma 4.6 and Lemma 4.7 show that the velocity
ghost-penalty parameter should scale with the width of the extension strip L. This is necessary, in order
for an exterior unphysical but active element to obtain the necessary support from an uncut interior
element for which we have to cross at most L elements to reach it, c.f. Assumption A1. As the first part
of the ghost-penalties term sn

h(·, ·) is related to the stabilisation of the viscosity bilinear form an
h(·, ·), it

only has a scaling with ν. We require the same mechanism also for the implicit extension of functions.
As we will see in the analysis below, this requires the velocity ghost-penalties scaled with 1/ν.

The pressure ghost-penalty operator in Corollary 4.8 does not need to be scaled with L, as we require these
ghost-penalties only to stabilise the velocity-pressure coupling at the interface and not for an extension
of the pressure field into a δ-neighbourhood.

For simplicity of the analysis, we choose a common ghost-penalty stabilisation parameter γgp, and set
γu,gp,1 = γu,gp,2 = Lγgp and γp,gp = γgp. ▲

We now collect all fully implicit non-ghost-penalty terms and all the explicit linear terms in the bilinear
and linear forms

An
h((un

h, p
n
h), (vh, qh)) := 1

∆t (u
n
h,vh)Ωn

h
+ an

h(un
h,vh) + bn

h(pn
h,vh) + bn

h(qh,u
n
h)

Fn
h (vh) := 1

∆t (u
n−1
h ,vh)Ωn

h
+ fn

h (vh),
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respectively. We can then rewrite problem (4.7) as: For n = 1, . . . , N , find (un
h, p

n
h) ∈ V n

h ×Qn
h such that

An
h((un

h, p
n
h), (vh, qh)) + sn

h((un
h, p

n
h), (vh, qh)) = Fn

h (vn
h) (4.14)

for all (vh, qh) ∈ V n
h ×Qn

h.

Theorem 4.10 (Well-posedness). Consider the norm |||(un
h, p

n
h)|||2♭,n := 1

∆t ∥un
h∥2

Ωn
h

+ |||(un
h, p

n
h)|||2∗,n.

Then there exists a constant cT 4.10 > 0 such that for all (un
h, p

n
h) ∈ V n

h ×Qn
h it holds that

cT 4.10|||(un
h, p

n
h)|||♭,n ≤ sup

(vh,qh)∈V n
h

×Qn
h

An
h((un

h, p
n
h), (vh, qh)) + sn

h((un
h, p

n
h), (vh, qh))

|||(vh, qn)|||♭,n

.

The solution (un
h, p

n
h) ∈ V n

h ×Qn
h to (4.14) exists and is unique.

Proof. The proof is a repetition of the arguments in the proofs of Lemma 3.16 and Corollary 3.17. See
also the proof of [WRL21, Theorem 5.8] for a detailed proof.

4.3.3 Stability
Lemma 4.11 (Stability of the velocity). For the velocity solution un

h ∈ V n
h , n = 1, . . . , N of (4.7), we

have the stability estimate

∥un
h∥2

Ωn
h

+ ∆t
n∑

i=1

[νcL4.11a

2 |||ui
h|||2∗,i + L

ν
inh(ui

h,u
i
h)
]

≤ exp(cL4.11bν
−1tn)


∥u0

h∥2
Ω0

h
+ ν∆tcL4.11a

2 |||u0
h|||2∗,0 + L

ν
i0h(u0

h,u
0
h) + ∆t

n∑

i=1

c2
P,h

νcL4.11a
∥f i

h∥2
Ωi

h


 .

Since this result is central to understand the scaling of the velocity ghost-penalty operator for the discrete
extension, we give the proof as it is given in [WRL21].

Proof. We test the variational formulation (4.7) with (vh, qh) = 2∆t(un
h,−pn

h) ∈ V n
h × Qn

h. Using the
identity

2(un
h − un−1

h ,un
h)Ωn

h
= ∥un

h∥2
Ωn

h
+ ∥un

h − un−1
h ∥2

Ωn
h

− ∥un−1
h ∥2

Ωn
h

(4.15)

then gives us the equation

∥un
h∥2

Ωn
h

+ ∥un
h − un−1

h ∥2
Ωn

h
+ 2∆t

[
an

h(un
h,u

n
h) + νγgpi

n
h(un

h,u
n
h) + γgp

ν
inh(un

h,u
n
h) + γgp

ν
jn

h (pn
h, p

n
h)
]

= 2∆tfn
h (un

h) + ∥un−1
h ∥2

Ωn
h
.

Using the coercivity result in Lemma 4.7, and the fact that ∥un
h − un−1

h ∥2
Ωn

h
+ 2∆tγgp

ν jn
h (pn

h, p
n
h) ≥ 0, we

get
∥un

h∥2
Ωn

h
+ 2∆tνcL4.7|||un

h|||2∗,n + ∆t2
ν
Linh(un

h,u
n
h) ≤ 2∆tfn

h (un
h) + ∥un−1

h ∥2
Ωn

h
. (4.16)

To bound the forcing term, we use the Cauchy-Schwarz inequality, the discrete Poincaré-inequality (4.9)
and a weighted Young’s inequality. This gives the bound

fn
h (un

h) ≤ ∥fn∥Ωn
h
∥un

h∥Ωn
h

≤ ∥fn∥Ωn
h
cP,h|||un

h|||∗,n ≤
c2

P,h∥fn∥2
Ωn

h

2ε +
ε|||un

h|||2∗,n

2 .

With the choice ε = νcL4.7, inserting this estimate into (4.16) then gives

∥un
h∥2

Ωn
h

+ ∆tνcL4.7|||un
h|||2∗,n + ∆t2

ν
Linh(un

h,u
n
h) ≤

c2
P,h∆t
νcL4.7

∥fn∥2
Ωn

h
+ ∥un−1

h ∥2
Ωn

h
. (4.17)
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To obtain a bound on ∥un−1
h ∥2

Ωn
h
, we utilise the following result, c.f. [LO19, Lemma 5.7]:

∥uh∥2
Oδh

(Ωn
h

) ≤ (1 + c1(ε)∆t)∥uh∥2
Ωn

h
+ c2(ε)ν∆t∥∇uh∥2

Ωn
h

+ c3(ε, h)∆tLinh(uh,uh) (4.18)

with c1(ε) = c′cδh
wn

∞(1 + ε−1), c2(ε) = c′cδh
wn

∞ε/ν and c3(ε) = c′cδh
wn

∞(ε + (1 + ε−1)h2) and c′ > 0
independent of h and ∆t.

Choosing ε = νcL4.7/(2c′cδh
wn

∞), we then have c2 = cL4.7/2. We can then bound c1(ε) ≤ c/ν, with c
independent of ∆t and h and c3 ≤ νcL4.7/2 + h2c/ν. This yields

∥un−1
h ∥2

Ωn
h

≤ ∥un−1
h ∥2

Oδh
(Ωn−1

h
)

≤ (1 + c∆t
ν

)∥un−1
h ∥2

Ωn−1
h

+ ν∆tcL4.7
2 |||un−1

h |||2∗,n−1 + ch2

ν
∆tLin−1

h (un−1
h ,un−1

h ).

Inserting this into (4.17), taking n 7→ i and summing over i = 1, . . . , n for n ≤ N then gives for sufficiently
small h, such that ch2 ≤ 1, the bound

∥un
h∥2

Ωn
h

+ ∆t
n∑

i=1

[νcL4.7
2 |||ui

h|||2∗,i + L

ν
iih(ui

h,u
i
h)
]

≤ ∥u0
h∥2

Ω0
h

+ ν∆tcL4.7
2 |||u0

h|||2∗,0 + L

ν
i0h(u0

h,u
0
h) + ∆t

n∑

i=1

c2
P,h

νcL4.7
∥f i∥2

Ωi
h

+ ∆t
n∑

i=0

c

ν
∥ui

h∥2
Ωi

h
.

Applying a discrete Gronwall inequality, c.f. [Joh16, Lemma A.56], with cL4.13a = cL4.7 and cL4.13b = c
then gives the desired result.

Remark 4.12. From the final two inequalities in the proof of Lemma 4.11, we see that if the estimate
∥vh∥On

δh,T
≤ ∥vh∥Ωn

h
+ h2inh(vh,vh) held true, i.e., if the ghost-penalty mechanism from below held

true with constant c = 1, we could replace the 1
ν i

n
h(un

h,vh) ghost-penalties with 1
∆th

2inh(un
h,vh) ghost-

penalties in the discrete method and obtain a stability result which was independent of the mesh-interface
cut positions, i.e., replace the ∥·∥Fn

h
with a true discrete norm on the entire active mesh On

δh,T . However,
numerical experiments have also shown that this stabilisation does not result in a stable method. ▲

Lemma 4.13 (Pressure stability). For the pressure solution pn
h ∈ Qn

h of (4.7), we have that

∥pn
h∥Ωn

h
≤ cL4.13

[
∥ 1

∆t (u
n
h − un−1

h )∥−1,n + |||un
h|||∗,n + ∥fn∥Ωn

h
+ jn

h (pn
h, p

n
h)1/2

]
. (4.19)

Proof. With the test-function qh = 0, we have from (4.7) that

bn
h(pn

h,vh) = − 1
∆t (u

n
h − un−1

h ,vh)Ωn
h

− (an
h + νLinh)(un

h,vh) − 1/νinh(un
h,vh) + fn

h (vh)

≤
[
∥ 1

∆t (u
n
h − un−1

h )∥−1,n + c(ν + 1/ν)|||un
h|||∗,n + cP,h∥fn∥Ωn

h

]
|||vh|||∗,n

Here we used the continuity of (an
h +νLinh)(·, ·), the estimate inh(u,v) ≤ inh(u,u)1/2inh(v,v)1/2 with (4.11a)

and the Poincaré inequality. The result then follows from the inf-sup result in Corollary 4.8.

Remark 4.14. The above stability estimate (4.19) is not optimal, since the right-hand side depends on
∆t−1. Therefore, it only gives a stability bound for ∆t2

∑n
i=1 ∥pi

h∥2
Ωi

h

rather than ∆t
∑n

i=1 ∥pi
h∥2

Ωi
h

. To
get such a bound, it is necessary to show a bound for ∥ 1

∆t (un
h − un−1

h )∥−1,n, independent of negative
powers of ∆t. At the time of writing, we do not have such an estimate. However, we do expect that such
a bound is possible, since 1

∆t (un
h − un−1

h ) is a first-order approximation of ∂tuh. ▲
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Remark 4.15 (Units of the stabilisation). Looking at the stabilisation scaling ν + 1
ν , we note that

the addition does not make sense when the units of ν are taken into account. Looking at the proof of
Lemma 4.11, we see that the ν + 1

ν scaling results from the choice of ε in (4.18). Looking at (4.18) in
more detail, we see that in order for the inequality to conserve dimensional units, c1(ε) must have units
s−1, c2(ε) must be dimensionless, and c3(ε, h) must have units m2 s−1. By the definition of these three
constants, it follows that ε must have units m. The choice ε = νcL4.7/(2c′cδh

wn
∞) does indeed have units

m2 s−1 m−1 s = m. The correct units from the squared interface normal velocity wn
∞ are therefore lost in

the constant c and in the estimate ch2 < 1.

An alternative, to keep the units of the extension stabilisation consistent, would be to estimatewn
∞ ≤ δ/∆t

and then carry this through to the extension ghost-penalties. However, numerical experiments have
shown that this does not help either the accuracy or the stability. Therefore, we have kept the scaling as
in [WRL21] to keep the presentation readable. ▲

4.3.4 Error Analysis
Geometry Approximation

For the error analysis, we shall assume that we have a higher-order approximation of the level set geometry,
i.e.,

dist(Ωn,Ωn
h) ≲ hq+1,

with the geometry approximation order q ≥ 1. Furthermore, we assume that integrals over Ωn
h and Γn

h

can be computed sufficiently accurate. In comparison to the parametric higher-order geometry approx-
imation described in subsection 3.1.3, the essential difference is that we assume to realise the higher
geometry approximation without deforming the mesh. This is because for moving domain problems with
the parametric mapping, the discrete function un

h and un−1
h are defined with respect to different map-

pings. Therefore, this method requires an efficient and accurate transfer operator in order to evaluate
un−1

h correctly on the mesh which is deformed with respect to the geometry at time tn. In the context of
a scalar convection-diffusion problem on a moving domain, this method, including the transfer operator,
has been analysed in [LL21].

We further assume the existence of a well-defined, continuous mapping Φ: Oδh
(Ωn

h) → Oδh
(Ωn), which

maps the approximated domain onto the exact domain, i.e., it holds that Ωn = Φ(Ωn
h), Γn = Φ(Γn

h) and
Oδh

(Ωn) = Φ(Oδh
(Ωn

h)), as well as

∥Φ − id∥L∞(Oδh
(Ωn

h
)) ≲ hq+1, ∥DΦ − I∥L∞(Oδh

(Ωn
h

)) ≲ hq, ∥det(DΦ) − 1∥L∞(Oδh
(Ωn

h
)) ≲ hq. (4.20)

For sufficiently small h, we take the mapping to be invertible. Such a mapping has been constructed,
for example, in [GOR15, Section 7.1]. As in chapter 3, the mapping Φ is used to map from the discrete
domain to the exact one. Let vh ∈ V n

h and define vℓ
h = vh ◦ Φ−1. From the third estimate in (4.20), we

have det(DΦ) ≃ 1, hence we get using integration by substitution that

∥vℓ
h∥2

Oδh
(Ωn) =

d∑

i=1

∫

Oδh
(Ωn)

(vℓ
h)2

i dx̂ =
d∑

i=1

∫

Oδh
(Ωn

h
)
det(DΦ)(vh)2

i dx ≃ ∥vh∥2
Oδh

(Ωn
h

).

Using similar arguments, we also find

∥vh∥2
Ωn

h
≃ ∥vℓ

h∥2
Ωn and ∥vh∥2

Γn
h

≃ ∥vℓ
h∥2

Γn ,

as well as
∥∇vh∥2

Oδh
(Ωn

h
) ≃ ∥∇vℓ

h∥2
Oδh

(Ωn) and ∥∇vh∥2
Ωn

h
≃ ∥∇vℓ

h∥2
Ωn .

For the extension, we also have the following result, c.f. [GOR15, Lemma 7.3].
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Lemma 4.16. The estimates

∥Eu− u ◦ Φ∥Ωn
h
≲ hq+1∥u∥H1(Ωn), ∥∇(Eu) − (∇u) ◦ Φ∥Ωn

h
≲ hq+1∥u∥H2(Ωn),

∥Eu− u ◦ Φ∥Γn
h
≲ hq+1∥u∥H2(Ωn), ∥E∂nu− ∂nu ◦ Φ∥Γn

h
≲ hq+1∥u∥H3(Ωn),

hold for all u ∈ H3(Ωn), n = 1, . . . , N . Furthermore, it also holds that

∥Eu− (Eu) ◦ Φ∥Oδh
(Ωn

h
) ≲ hq+1∥u∥H1(Ωn). (4.21)

Proof. For the first four estimates, we refer to [GOR15, Lemma 7.3] and c.f. Lemma 3.10. The proof of
(4.21) follows the identical lines of the proof of the estimate over Ωn

h but integration over S±(Ωn
h) rather

that S±(Ωn
h) \ S+(Ωn

h).

Consistency

As in subsection 3.2.5, we cannot test the weak formulation of the smooth problem with discrete test-
functions due to the mismatch of the exact and discrete domains. However, we can again use the mapping
Φ to construct suitable test-functions (vℓ

h, q
ℓ
h) = (vh ◦ Φ−1, qh ◦ Φ−1). Using integration by parts, we then

see that any smooth solution to (2.14) fulfills the variational form
∫

Ωn

∂tu(tn)vℓ
h dx̂+ an

1 (u(tn),vℓ
h) + bn

1 (p(tn),vℓ
h) + bn

1 (qℓ
h,u(tn)) = fn(vℓ

h) (4.22)

for all (vh, qh) ∈ V n
h ×Qn

h, with the the mapping Φ as described above, and the bilinear forms

an
1 (u,v) := an(u,v) + ν

∫

Γn

(−∂nu) · v ds and bn
1 (p,v) := bn(p,v) +

∫

Γn

pv · n ds,

as well as the forcing term fn(v) :=
∫

Ωn f(tn) · v dx. For simplicity of notation, we shall identify the
smooth extension (Eu, Ep) with (u, p), and denote as before

En := un − un
h and Dn := pn − pn

h.

Since Ωn
h ⊂ Oδ(Ω(t)) for t ∈ [tn−1, tn], we have that u(tn−1) = un−1 is well-defined on Ωn

h. Subtract-
ing (4.7) from (4.22), adding and subtracting appropriate terms and rearranging, we obtain the error
equation
∫

Ωn
h

En − En−1

∆t · vh dx+ an
h(En,vh) + bn

h(Dn,vh) + bn
h(qh,En) + sn

h((En,Dn), (vh, qh))

= fn(vℓ
h) − fn

h (vh) +
∫

Ωn
h

un − un−1

∆t · vh dx−
∫

Ωn

∂tu
n · vℓ

h dx̂+ an
h(un,vh) − an

1 (un,vℓ
h)

bn
h(pn,vh) − bn

1 (pn,vℓ
h) + bn

h(qh,u
n) − bn

1 (qℓ
h,u

n) + sn
h((un, pn), (vh, qh))

= T1 + T2 + T3 + T4 + T5 + T6

= En
c (vh, qh). (4.23)

These six terms correspond to the forcing, time-derivative, diffusion, pressure, divergence constraint and
ghost-penalty contributions, respectively.

Lemma 4.17 (Consistency estimate). The consistency error of the Eulerian time-stepping scheme for
the time-dependent Stokes problem on a moving domain has the bound

|En
c ((vh, qh))| ≲

(
∆t+ hq + hkL1/2

ν

)
Rc,1(u, p,f)|||vh|||∗,n + (hq + hk)Rc,2(u, p)|||qh|||∗,n
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with

Rc,1(u, p,f) = ∥u∥W2,∞(Q) + sup
t∈[0,tend]

(
∥f(t)∥H1(Ω(t)) + ∥u(t)∥Hk+1(Ω(t)) + ∥p(t)∥Hk(Ω(t))

)

Rc,2(u, p) = sup
t∈[0,tend]

(
∥u(t)∥Hk+1(Ω(t)) + ∥p(t)∥Hk(Ω(t))

)
.

Proof. Most of the proof follows along the identical lines of Lemma 3.21 and Lemma 3.28, since the
mapping Φ used here and the mapping Φh in chapter 3 fundamentally have the same properties, i.e.,
(4.20) and Lemma 4.16. Thus, the only term we need to deal with separately is the time-derivative term
T2. For the other terms, we summarise

|T1| ≲ hk∥fn∥H1(Ωn)∥vh∥Ωn
h
, |T3| ≲ hk∥un∥H3(Ωn)|||vh|||∗,n,

|T4| ≲ hk∥pn∥H2(Ωn)|||vh|||∗,n, |T5| ≲ hk∥un∥H2(Ωn)|||qh|||∗,n,

and
|T6| ≲ hk(ν + 1/ν)L1/2∥un∥Hk+1(Ωn)|||vh|||∗,n + hk∥pn∥Hk(Ωn)|||qh|||∗,n,

where we have used that On
δh,T ⊂ Oδ(Ωn), and take the extension scaling into account.

For the time-derivative error, we proceed similarly as in the Oseen case but use different norms. We have

T2 =
∫

Ωn
h

∫ tn

tn−1

t− tn−1

∆t ∂2
tudt · vh dx+

∫

Ωn
h

∂tu(tn) · vh dx−
∫

Ωn

∂tu(tn) · vℓ
h dx̂.

Then with Ωn
h ⊂ Oδ(Ω(t)) for t ∈ [tn−1, tn] and the stability of the extension (4.5c), it holds for the first

component that
∣∣∣∣∣

∫

Ωn
h

∫ tn

tn−1

t− tn−1

∆t ∂2
tudt · vh dx

∣∣∣∣∣ ≤ 1
2∆t∥∂2

tu∥L∞(Oδ(Q))∥vh∥L1(Ωn
h

) ≲ ∆t∥u∥W2,∞(Q)∥vh∥Ωn
h
.

For the second part we have
∫

Ωn
h

∂tu · vh dx−
∫

Ωn

∂tu · vℓ
h dx̂ =

∫

Ωn
h

(∂tu− (∂tu) ◦ Φh) · vh dx+
∫

Ωn
h

(∂tu) ◦ Φh · vh(1 − J) dx

≲ hq∥∇∂tu∥L∞(Oδ(Ω(t)))∥vh∥Ωho
h

+ hq∥∂tu∥Ωn∥vh∥Ωn
h

≲ hq∥u∥W2,∞(Q)∥vh∥Ωn
h
.

Combining these estimates and taking the supremum over t ∈ [0, tend].

Remark 4.18. The above consistency estimate is not balanced in the case of a piecewise linear level set
approximation, i.e, q = 1, since we have k ≥ 2. In [WRL21], we have shown a slightly different proof, in
which the two balance. This was achieved by considering a different estimate for the difference between
the mapped and extended functions on the boundary, which included additive interpolation terms, c.f.
[WRL21, Lemma 5.13]. However, since we require the regularity k+1 and k for the velocity and pressure
for optimal order convergence, we only show this version of the result. ▲

Energy Error

For the error estimate, we again split the velocity and pressure errors into an interpolation and discret-
isation part

En = (un − I∗
hu

n) + (I∗
hu

n − uh) =: ηn + en
h (4.24a)

Dn = (pn − I∗
hp

n) + (I∗
hp

n − pn
h) =: ζn + dn

h, (4.24b)
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c.f. (3.26). Note that we have implicitly included the extension operator in the smooth solution part so
that all terms are well-defined on the entire active mesh. Inserting this splitting into the error equation
(4.23) and rearranging the terms then yields
∫

Ωn
h

en
h − en−1

h

∆t · vh dx+ ah
n(en

h,vh) + bn
h(dn

h,vh) + bn
h(qh, en

h) + sn
h((en

h,dn
h), (vh, qh))

= En
c (vh, qh) + En

I (vh, qh), (4.25)

with

En
I (vh, qh) = −

∫

Ωn
h

ηn − ηn−1

∆t · vh dx− ah
n(ηn,vh) − bn

h(ζn,vh) − bn
h(qh,η

n) − sn
h((ηn, ζn), (vh, qh)).

For the interpolation error component we can then prove the following bound.

Lemma 4.19 (Interpolation error estimate). We assume for the smooth velocity and pressure solution
the regularity u ∈ L∞(0, T ;Hk+1(Ω(t))), ut ∈ L∞(0, T ;Hk(Ω(t))) and p ∈ L∞(0, T ;Hk(Ω(t))). The
interpolation error term can then be bounded by.

|En
I (vh, qh)| ≲ hkL1/2

ν
RI,1(u, p)|||vh|||∗,n + hkRI,2(u, p)|||qh|||∗,n,

with

RI,1(u, p) = sup
t∈[0,tend]

(
∥u∥Hk+1(Ω(t)) + ∥ut∥Hk(Ω(t)) + ∥p∥Hk(Ω(t))

)

RI,2(u, p) = sup
t∈[0,tend]

(
∥u∥Hk+1(Ω(t)) + ∥p∥Hk(Ω(t))

)
.

Proof. We split the interpolation error terms into five different parts En
I (vh, qh) = T7+T8+T9+T10+T11.

These are the time-derivative term, the diffusion bilinear form, the pressure coupling term, the divergence
constraint and ghost-penalty operator, respectively. As in Lemma 4.17, we deal with each constituent
term separately.

For the time-derivative contribution T7, we have from [LO19, Lemma 5.12] that

|T7| =
∣∣∣
∫

Ωn
h

ηn − ηn−1

∆t · vh dx
∣∣∣ ≲ hk sup

t∈[0,tend]

(
∥u∥Hk+1(Ω(t)) + ∥ut∥Hm(Ω(t))

)
∥vh∥Ωn

h
.

For the diffusion term T8, we use the continuity result (4.12a) and Lemma 4.4 for the interpolation term,
and (4.8) for the test function. This gives

|T8| = | − an
h(ηn,vh)| ≲ |||ηn|||n|||vh|||n ≲ hk∥un∥Hk+1(Ωn)|||vh|||∗,n.

Using the same technique, we can estimate the pressure and divergence bilinear forms as

|T9| = | − bn
h(ζn,vh)| ≲ hk∥pn∥Hk(Ωn)|||vh|||∗,n

|T10| = | − bn
h(qh,η

n)| ≲ hk∥un∥Hk+1(Ωn)|||qh|||∗,n.

For the ghost-penalty term T11, we use the Cauchy-Schwarz inequality and Lemma 3.4 taking the larger
ghost-penalty strip into account, together with (4.5a); see also [LO19, Lemma 5.12]. We then have

|T11| = |sn
h((ηn,ζn), (vh, qh)) ≲ (ν + 1/ν)L1/2inh(ηn,ηn)1/2L

1/2inh(vh,vh)1/2 + jn
h (ζn, ζn)1/2jn

h (qh, qh)1/2

≲ (ν + 1/ν)hkL
1/2∥un∥Hk+1(On

δh,T
)∥vh∥On

δh,T
+ hk∥pn∥Hk(On

δh,T
)∥qh∥On

δh,T

≲ (ν + 1/ν)hkL
1/2∥un∥Hk+1(Ωn)|||vh|||∗,n + hk∥pn∥Hk(Ωn)|||qh|||∗,n.

Combining these estimates then proves the claim.
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Theorem 4.20 (Energy error estimate). For sufficiently small ∆t and h, the velocity error can be
bounded by

∥En∥2
Ωn

h
+

n∑

i=1

{
∥Ei − Ei−1∥2

Ωi
h

+ ∆t
[
νcL4.7|||Ei|||2∗,i + L

ν
iih(Ei,Ei)

]}

≤ exp((cT 4.20a/ν)tn)


∆t

n∑

i=1
cT 4.20b

[
∆t2 + h2q + h2kL

ν
+ 1

∆t (h
2q + h2k

ν
)
]
R(u, p,f)


 ,

with R(u, p,f) = supt∈[0,tend](∥u∥2
Hk+1(Ω(t)) + ∥ut∥2

Hk(Ω(t)) + ∥p∥2
Hk(Ω(t))) + ∥u∥2

W2,∞(Q) + ∥f∥2
H1(Ωn) and

constants cT 4.20a, cT 4.20b independent of ∆t, n and h. For the pressure, we have the bound

∆t2
n∑

i=1
|||Di|||2∗,i ≲ ∆t

n−1∑

i=1

1
ν

∥Ei∥2
Ωi

h
+ ∆t

n∑

i=1
c
[
∆t2 + h2q + h2kL

ν
+ 1

∆t (h
2q + h2k

ν
)
]
R(u, p,f).

Proof. We prove the result for the discretisation error since the result then immediately follows by optimal
interpolation properties. We start with the velocity estimate. Similar to the stability proof, for n 7→ i,
we test the error equation (4.25) with the test-function (vh, qh) = 2∆t(ei

h,−di
h) and use the polarisation

identity (4.15) to get

∥ei
h∥2

Ωi
h

+ ∥ei
h − ei−1

h ∥2
Ωi

h
+ 2∆t(ai

h + νLiih)(ei
h, ei

h) + 2L∆t/νiih(ei
h, ei

h) + 2∆t/νji
h(di

h,di
h)

= 2∆t(Ei
c + Ei

I)(ei
h,−di

h) + ∥ei−1
h ∥2

Ωi
h
.

Using the coercivity result Lemma 4.7 and (4.18), we get (with the appropriate choice of ε) that

∥ei
h∥2

Ωi
h

+ ∥ei
h − ei−1

h ∥2
Ωi

h
+ 2∆tcL4.7|||ei

h|||2∗,i + ∆t2L
ν
iih(ei

h, ei
h) + ∆t2

ν
ji

h(di
h,di

h)

≤ (1 + c

ν
∆t)∥ei−1

h ∥2
Ωi−1

h

+ ∆tνcL4.7
2 |||ei−1

h |||2∗,i−1 + ∆t c
′h2

ν
Lii−1

h (ei−1
h , ei−1

h )

+ 2∆t(|Ei
c| + |Ei

I |)(ei
h,di

h).

Applying the weighted Young inequality to Lemma 4.17 and Lemma 4.19 then gives

|Ei
c(ei

h,di
h) + Ei

I(ei
h,di

h)|

≤ 1
ε1
c
(
∆t2 + h2q + h2kL

ν2
)
R(u, p,f) + ε1|||ei

h|||2∗,i + 1
ε2
c
(
h2q + h2k

ν2
)
R′(u, p),+ε2|||di

h|||2∗,i (4.26)

with
R′(u, p) = sup

t∈[0,tend]

(
∥u(t)∥2

Hk+1(Ω(t)) + ∥p(t)∥2
Hk(Ω(t))

)
.

Now, we choose ε1 = νcL4.7/4 and ε2 = ∆tβ2
/4cY c2

P,h. With the constant cY > 0 to be specified later.
Inserting these bounds on the consistency and interpolation estimates into the above inequality, summing
over i = 1, . . . , n and using e0

h = 0 gives

∥en
h∥2

Ωn
h

+
n∑

i=1
∥ei

h − ei−1
h ∥2

Ωi
h

+ ∆t
n∑

i=1

[
νcL4.7|||ei

h|||2∗,i + L

ν
ikh(ei

h, ei
h)
]

+ ∆t
n∑

i=1

2
ν
jk

h(di
h,di

h)

≤ ∆t
n−1∑

i=1

c

ν
∥ei

h∥2
Ωi

h
+ ∆t2

2∑

i=1

β2

2cY c2
P,h

|||di
h|||2∗,i

+ ∆t
n∑

i=1
c
[
∆t2 + h2q + h2kL

ν
+ 1

∆t (h
2q + h2k

ν
)
]
R(u, p,f), (4.27)
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under the assumption that h is sufficiently small such that c′h2 ≤ 1. To complete the velocity estimate,
we therefore require the pressure estimate.

Rearranging the error equation (4.25) and using the test-function qh = 0 gives

bk
h(di

h,vh) = −(1/∆t(ei
h − ei−1

h ),vh)Ωi
h

− (ak
h + νLikh)(ei

h,vh) − L

ν
ikh(ei

h,vh) + (Ei
c + Ei

I)(ei
h, 0)

≤
[cP,h

∆t ∥ei
h − ei−1

h ∥Ωi
h

+ νcL4.6|||ei
h|||∗,i + L1/2

ν
iih(ei

h, ei
h)1/2

+ ĉ
(
∆t+ hq + L1/2hm

ν

)
(Rc,1 +RI,1)(u, p,f)

]
|||vh|||∗,i,

where ĉ = cL4.17 + cL4.19. Using the inf-sup result from Corollary 4.8 together with (4.11c), we then have

β|||di
h|||∗,i ≤ cP,h

∆t ∥ei
h − ei−1

h ∥Ωi
h

+ νcL4.6|||ei
h|||∗,i + L1/2

ν
iih(ei

h, ei
h)1/2 + (1 + β)jn

h (di
h,di

h)1/2

+ ĉ
(
∆t+ hq + L1/2hk

ν

)
(Rc,1 +RI,1)(u, p,f).

Squaring this, using Young’s inequality to remove the product terms multiplying with ∆t2 and summing
over i = 1, . . . , n, we get

∆t2
n∑

i=1

β2

c2
P,hcY

|||di
h|||2∗,i ≤

n∑

i=1
∥ei

h − ei−1
h ∥2

Ωi
h

+ ∆t
n∑

i=1

[
∆t(ν2c2

L4.6)|||ei
h|||2∗,i + ∆tL

ν2 iih(ei
h, ei

h)
]

+ ∆t
n∑

i=1
∆t(1 + β)2jn

h (di
h,di

h) + ∆t
n∑

i=1
∆tĉ2(∆t2 + h2q + Lh2k

ν2
)
R(u, p,f), (4.28)

where cY stems from the estimate (
∑n

i=1 ai)2 ≤ n
∑n

i=1 a
2
i . We make the technical assumptions that

∆tν2c2
L4.6 ≤ νcL4.6 and ∆t(1 + β2) ≤ 2/ν. Note that since we are interested in the case of ν ≪ 1, these

assumptions are not problematic and the inequalities are not sharp. For sufficiently small ∆t, that is
∆tL/ν2 ≤ 2L/ν, we can then bound the right-hand side of (4.28) with (4.27), which proves the error
estimate.

The pressure discretisation error on the right-hand side of (4.27) can therefore be bounded by the other
terms on the right-hand side of (4.27). This then gives us the estimate
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R(u, p,f). (4.29)

Applying Gronwall’s Lemma then proves the result.

Remark 4.21. An alternative way to prove the velocity error estimate would be to follow the lines of
the proof of Theorem 3.30 to deal with the discretisation error on the right-hand side of (4.26). That is,
to use the inf-sup property of the Stokes part, which in turn then leaves the term 1

∆t ∥En − En−1∥Ωn
h

on
the right-hand side. As a result, we end up with the same sub-optimal scaling in ∆t in our result. On
the other hand, this illustrates that we do not need to expect that this estimate is sharp. ▲

Remark 4.22 (BDF2 time-discretisation). To extend the method to a BDF2 time-discretisation, we
must ensure that Ωn ⊂ Oδ(Ωn−1) ∩ Oδ(Ωn−2) and Ωn

h ⊂ Oδh
(Ωn−1

h ) ∩ Oδh
(Ωn−2

h ). This can be achieved
by increasing the strip-width to δ = 2cδw

n
∞∆t. Then one can use the BDF2 polarisation identity (3.42)

and adapt the time-derivative estimates as described in Remark 3.32. Finally, the Gronwall arguments
must be adapted to the corresponding version for higher-order BDF schemes. ▲
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Figure 4.2: Initial condition for the numerical examples for the Eulerian time-stepping scheme for the transient Stokes
problem on a moving domain. The background domain is Ω̃ = (−1, −2) × (1, 1), hmax = 0.2 and the
solution is drawn with respect to the P1 level set function. Left: Velocity magnitude. Right: Pressure field.

Remark 4.23 (BDF2 initialisation). A fundamental question for a BDF2 time-discretisation is a suf-
ficiently accurate initialisation u1

h. In the context of ODE’s, a single BDF1 step gives a sufficiently
accurate realisation of u1

h [HNW93]. However, looking at Theorem 4.20, we see that after one BDF1 step,
we only get a ∆t3 term in front of the R(u, p,f) term, which leads to a suboptimal ℓ2(H1) error-estimate.
Therefore, to initialise the BDF2 scheme with sufficient accuracy, we use multiple BDF1 steps with the
smaller time-step ∆̃t ≤ ∆t4/3. We have found this to be necessary for our numerical experiments to obtain
second-order convergence in the time-step. ▲

4.4 Numerical Examples
We consider several numerical tests to evaluate the Eulerian time-stepping method’s performance in this
chapter in practice. To compute errors and estimate the resulting order of convergence, we take a forcing
term fn, such that the solution to the problem is known. This is based on the analytical solution we
constructed in subsection 3.2.6 for the Stokes problem on a stationary domain.

We consider the moving circle Ω(t) = {x ∈ R2 | (x1 −t)2 +x2
2 < 1/2} and on this the velocity and pressure

pair

u(t) =
(

2πx2 cos(π((x1 − t)2 + x2
2))

−2πx1 cos(π((x1 − t)2 + x2
2))

)
and p(t) = sin(π((x1 − t)2 + x2

2)) − 2/π.

The velocity field u is then divergence-free and fulfils homogeneous Dirichlet boundary conditions on
Γ(t), while the pressure p is in L2

0(Ω(t)). The solution at t = 0 is shown in Figure 4.2. The forcing term
is then constructed as f(t) := ∂tu(t) − ν∆u(t) + ∇p(t).

Set-Up

For our computations, we consider the following general set-up. We take the time interval [0, 1] and the
background domain Ω̃ = (−1,−2) × (1, 1), so that Ω(t) ⊂ Ω̃ for all t ∈ [0, 1]. The maximal interface
speed within the time interface is then wn

∞ = 1. The strip-width parameter is chosen as cδ = 1, and
unless otherwise stated, the Nitsche parameter is chosen as σ = 40k2. As the ghost-penalty stabilisation
plays a different role compared to the stationary domain case, we will determine a good choice for the
ghost-penalty parameter below. Unless otherwise stated, we shall consider k = 2, i.e., the lowest order
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ν ↓ \γgp → 0.1 1 10 100 1000

1 4.02 · 10−2 4.15 · 10−2 4.45 · 10−2 6.29 · 10−2 1.64 · 10−1

0.1 1.81 · 10−1 1.88 · 10−1 2.32 · 10−1 4.51 · 10−1 1.17 · 100

0.01 3.67 · 10−1 4.46 · 10−1 7.77 · 10−1 1.39 · 100 1.58 · 100

0.001 4.22 · 10−1 6.73 · 10−1 1.12 · 100 1.26 · 100 1.28 · 100

0.0001 2.05 · 100 3.60 · 100 4.14 · 100 4.32 · 100 4.34 · 100

ν ↓ \γgp → 0.1 1 10 100 1000

1 2.66 · 10−2 2.67 · 10−2 2.67 · 10−2 2.67 · 10−2 2.69 · 10−2

0.1 1.69 · 10−1 1.69 · 10−1 1.69 · 10−1 1.71 · 10−1 1.87 · 10−1

0.01 3.30 · 10−1 3.31 · 10−1 3.37 · 10−1 3.82 · 10−1 6.51 · 10−1

0.001 3.67 · 10−1 3.72 · 10−1 4.24 · 10−1 6.71 · 10−1 8.92 · 10−1

0.0001 3.49 · 10−1 3.47 · 10−1 4.36 · 10−1 5.60 · 10−1 5.65 · 10−1

ν ↓ \γgp → 0.1 1 10 100 1000

1 2.60 · 10−2 2.60 · 10−2 2.60 · 10−2 2.61 · 10−2 2.60 · 10−2

0.1 1.68 · 10−1 1.68 · 10−1 1.68 · 10−1 1.68 · 10−1 1.70 · 10−1

0.01 3.29 · 10−1 3.29 · 10−1 3.30 · 10−1 3.36 · 10−1 3.97 · 10−1

0.001 3.66 · 10−1 3.65 · 10−1 3.75 · 10−1 4.51 · 10−1 6.95 · 10−1

0.0001 3.63 · 10−1 3.66 · 10−1 3.90 · 10−1 4.80 · 10−1 5.40 · 10−1

Table 4.1: ℓ2(L2(Ωh(t))) velocity error for the BDF1 method over a range of viscosities and ghost-penalty parameters
with ∆t = 1/20. Top: hmax = 0.1 and L = 1. Middle: hmax = 0.025 and L = 2. Bottom: hmax = 0.0125
and L = 4.

Taylor-Hood element. However, since the geometry is approximated by a P1 level set function, i.e., q = 1,
we cannot expect optimal spatial convergence for the velocity in the ℓ2(L)2-norm.

To quantify the computational results, we will consider the following discrete space-time errors:
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∥uh − u∥2

L2(Ωk
h

) ∥uh − u∥2
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L2(Ωk
h

)

∥ph − p∥2
ℓ2(L2) := ∆t
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∥ph − p∥2

L2(Ωk
h

).

4.4.1 Stability
As a first investigation, we look into the robustness of the method with respect to viscosity ν, the
dependence on the ghost-penalty parameter γgp and the stability for larger extension strips. To this
end, we consider the time-step ∆t = 1/20. The viscosity is taken as ν ∈ {1, 10−1, . . . , 10−4} and the
ghost-penalty parameter is chosen as γgp ∈ {0.1, 1, . . . , 103}. In obtain different strip widths, in the sense
of the number of elements L = ⌈δh/hmax⌉, we consider hmax = 0.1, 0.025, 0.025 resulting in L = 1, 2, 4,
respectively.

The resulting ℓ2(L2)-velocity errors can be seen in Table 4.1. We see that overall, the method is relatively
robust with respect to over stabilisation. Furthermore, we see that the method is stable for the different
strip-widths considered here. The smaller errors for the finer meshes can be attributed to a dominating
spatial error. With respect to the viscosity, we note that by decreasing the viscosity by a factor of 104,
the largest increase in the error is only a factor of 50 on the coarsest mesh and even smaller on the
finer meshes. Finally, we note that the method is stable, even for viscosities ν ≪ ∆t, contrary to our
assumption in the proof of Theorem 4.20.
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Remark 4.24. In our experience, we have found that if the pressure stabilisation is applied on the
same set of facets as the velocity extension ghost-penalty operator and with the same parameter scaling
γgp,p = Lγgp, then the results are qualitatively the same, but with a larger error constant. ▲

4.4.2 Convergence
To investigate the asymptotic convergence properties of our method, we compute the problem over a
series of uniform mesh refinements (bisections) of the mesh and the time-step. With the initial time-step
∆t0 = 0.1 and the initial mesh diameter h0 = 0.2, the time-step and mesh size are then given by ∆t =
∆t0·2−Lt and hmax = h0·2−Lx , with the number of time-step and mesh refinements Lt, Lx, respectively. In
order evaluate the convergence behaviour, we compute the experimental order of convergence as eocpar =
(log(err(Lpar − 1)) − log(err(Lpar)))/ log(2). For the spatial and temporal error order of convergence, we
take the other parameter on the most refined level. Furthermore, since our analysis predicts a corruption
of the spatial error by a factor ∆t−1, we also compute the diagonal order convergence eocxt, comparing
the results after both a level of spatial and temporal refinement.

For the computations, we choose ν = 0.01. Taking the previous results into account, we take γgp = 1. We
then consider four levels of mesh refinement and a total of eight refinement levels for the time-step.

The results can be seen in Table 4.2. Here we observe the expected linear convergence in time for the
velocity and pressure in all the considered norms. With respect to the spatial convergence (eocx), we see
a drop in the convergence rate on the finest mesh, which we attribute to a dominating temporal error.
However, the rates are also higher than expected, where the spatial error is dominant. We attribute
this to an interplay between the geometry error and the 1/ν scaled consistency error from the ghost-
penalties. Nevertheless, we see at least second-order convergence under spatial refinement. While this is
only optimal for the ℓ2(H1)-velocity error and the ℓ2(L2)-pressure error, this is the best we can expect
for a piecewise linear geometry approximation.

To check whether the factor (h2q + h2m)/∆t is observable, we consider joint refinement of both time and
space with Lt = Lx + 4 for which the theory predicts a loss half an order of convergence. However, the
results in Table 4.2 show that eoxtx ≈ eoxx. This suggests that this part of the analysis is indeed not
sharp, as expected and discussed above.

For the ℓ2(L2)-pressure error, we observe that the experimental order of convergence in space is higher
than expected. This suggests that the velocity error on the right-hand side of the pressure estimate is
the dominating term here.

4.4.3 Error Development
As we have seen in the previous section that Theorem 4.20 is not sharp with respect to the powers of h and
∆t, we investigate whether the exponential factor in the error estimate is too crude as well. Therefore,
we consider the identical set-up as above for Lt = Lx = 0, . . . , 4 and compute the space-time errors for
the velocity and pressure over time.

The results for these computations can be seen in Figure 4.3. Here we see that after an initial fast increase
in the errors, the errors do not accumulate significantly. This suggests that the exponential factor in our
error estimate, due to the application of a Gronwall lemma, is not necessarily sharp. The slow growth in
the error over time corresponds to a similar observation in [BFM19].

4.4.4 Extension to Higher-Order in Space and Time
BDF2 Time-Discretisation

As we have discussed the extension of our Eulerian time-stepping method to a BDF2 approximation of
the time-derivative, we shall also investigate the convergence properties of this method. To this end, we
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Lt ↓ \Lx → 0 1 2 3 4 eoct

0 1.29 · 100 7.41 · 10−1 6.60 · 10−1 6.49 · 10−1 6.54 · 10−1 –
1 1.02 · 100 4.41 · 10−1 3.43 · 10−1 3.31 · 10−1 3.29 · 10−1 0.99
2 8.24 · 10−1 2.76 · 10−1 1.82 · 10−1 1.68 · 10−1 1.66 · 10−1 0.99
3 7.35 · 10−1 1.95 · 10−1 9.87 · 10−2 8.56 · 10−2 8.37 · 10−2 0.99
4 6.91 · 10−1 1.56 · 10−1 5.71 · 10−2 4.38 · 10−2 4.21 · 10−2 0.99
5 6.69 · 10−1 1.39 · 10−1 3.71 · 10−2 2.28 · 10−2 2.12 · 10−2 0.99
6 6.58 · 10−1 1.30 · 10−1 2.77 · 10−2 1.24 · 10−2 1.07 · 10−2 0.98
7 6.53 · 10−1 1.26 · 10−1 2.35 · 10−2 7.20 · 10−3 5.49 · 10−3 0.97
8 6.50 · 10−1 1.24 · 10−1 2.15 · 10−2 4.70 · 10−3 2.86 · 10−3 0.94

eocx – 2.39 2.53 2.19 0.72
eocxt – 2.31 2.32 1.95 1.33

Lt ↓ \Lx → 0 1 2 3 4 eoct

0 8.92 · 100 5.79 · 100 5.42 · 100 5.60 · 100 6.28 · 100 –
1 7.89 · 100 3.97 · 100 3.20 · 100 3.24 · 100 3.37 · 100 0.90
2 6.90 · 100 2.84 · 100 1.89 · 100 1.84 · 100 1.89 · 100 0.83
3 6.48 · 100 2.32 · 100 1.15 · 100 1.01 · 100 1.03 · 100 0.87
4 6.27 · 100 2.09 · 100 7.59 · 10−1 5.52 · 10−1 5.50 · 10−1 0.91
5 6.17 · 100 2.00 · 100 5.92 · 10−1 3.03 · 10−1 2.87 · 10−1 0.94
6 6.12 · 100 1.96 · 100 5.28 · 10−1 1.79 · 10−1 1.48 · 10−1 0.96
7 6.10 · 100 1.94 · 100 5.04 · 10−1 1.24 · 10−1 7.58 · 10−2 0.96
8 6.08 · 100 1.94 · 100 4.94 · 10−1 1.02 · 10−1 3.99 · 10−2 0.93

eocx – 1.65 1.97 2.27 1.36
eocxt – 1.65 1.92 2.09 1.63

Lt ↓ \Lx → 0 1 2 3 4 eoct

0 7.26 · 10−1 4.43 · 10−1 4.13 · 10−1 4.29 · 10−1 4.25 · 10−1 –
1 5.93 · 10−1 2.65 · 10−1 2.05 · 10−1 1.99 · 10−1 2.01 · 10−1 1.08
2 4.85 · 10−1 1.67 · 10−1 1.08 · 10−1 9.79 · 10−2 9.68 · 10−2 1.06
3 4.41 · 10−1 1.19 · 10−1 5.93 · 10−2 4.96 · 10−2 4.80 · 10−2 1.01
4 4.27 · 10−1 9.66 · 10−2 3.51 · 10−2 2.54 · 10−2 2.41 · 10−2 1.00
5 4.31 · 10−1 8.67 · 10−2 2.34 · 10−2 1.34 · 10−2 1.21 · 10−2 0.99
6 4.54 · 10−1 8.30 · 10−2 1.79 · 10−2 7.44 · 10−3 6.14 · 10−3 0.98
7 5.01 · 10−1 8.34 · 10−2 1.54 · 10−2 4.49 · 10−3 3.16 · 10−3 0.96
8 5.83 · 10−1 8.70 · 10−2 1.46 · 10−2 3.06 · 10−3 1.68 · 10−3 0.92

eocx – 2.75 2.57 2.25 0.87
eocxt – 2.30 2.28 1.99 1.42

Table 4.2: Mesh and time-step convergence for the BDF1 method with ν = 10−2. Top: ℓ2(L2(Ωh(t)))-velocity error.
Middle: ℓ2(H1(Ωh(t))) velocity error. Bottom: ℓ2(L2(Ωh(t)))-pressure error.



4.4 Numerical Examples 75

0 0.5 1

10−4

10−2

100

t

∥u − uh∥ℓ2(0,t;L2(Ωh(t)))

0 0.5 1

10−4

10−2

100

t

∥∇(u − uh)∥ℓ2(L2(0,t;Ωh(t)))

0 0.5 1
10−3

10−2

10−1

100

t

∥p − ph∥ℓ2(0,1;L2(0,t;Ωh(t)))

Lx = Lt = 0 Lx = Lt = 1 Lx = Lt = 1 Lx = Lt = 3 Lx = Lt = 4

Figure 4.3: Space-time velocity and pressure errors over time for combined mesh and time-step refinement resulting
from the unfitted Eulerian BDF1 time-stepping method with ν = 0.01.

increase the strip-width to δh = 2cδw
n
∞∆t. The remaining discretisation parameters are kept identical.

However, we consider an additional spatial refinement level and one temporal refinement level less.

The resulting errors, together with the experimental orders of convergence, are presented in Table 4.3.
With respect to the temporal convergence, we see that second-order convergence, i.e., eoct ≈ 2. In fact,
the spatial error starts to dominate on the two highest refinement levels. We also note that there appear
to be some stability issues for very large time-steps on the finest meshes. In these computations, the strip
width was L = 16, 32. However, these are outside of the viscosity/time-step range covered by our error
analysis.

With respect to space, we see that the spatial order of convergence has increased in comparison to the
BDF1 case. Indeed, we even see eocx ≈ 3 for the ℓ2(L2)-velocity error. This can be attributed to the
fact that the temporal error is insignificant compared to the spatial error here, and that the geometry
error contribution in the spatial error also does not dominate. Finally, we see that eocxt ≈ eocx, i.e., a
negative impact of temporal refinement on the spatial error was not observed.

Geometry Handling

In the previous computations in this section, we have used the standard CutFEM approach of a piecewise
linear level set approximation to generate the necessary quadrature rules on cut elements. Unfortunately,
this introduces a geometry approximation error of order O(h2), and as we have seen in some of the above
results, this leads to suboptimal spatial convergence rates. We now consider two approaches in order to
try and recover optimal-order spatial error convergence.

Quadrature Through Subdivisions A straightforward and effective – however also very inefficient –
method to essential "hide" the geometry approximation error and to reveal the underling approximation
error is to approximate the boundary based on a piecewise linear level set after s subdivisions of cut
elements. As a result, the geometry approximation error is then pushed down to O

((
h
2s

))
. The drawback

of this approach is that for every decrease in h, we must increase s in order to balance the errors. As a
consequence, the resulting quadrature is asymptotically infeasible.

In order to balance the geometry and approximation errors, we choose s = O(log2(1/h)) such that we
achieve a geometry error of order O(h4). This is sufficient to realise optimal mesh convergence for both
TH2 and TH3 elements. We emphasise that this is only to investigate the underlying spatial approximation
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Lt ↓ \Lx → 0 1 2 3 4 5 eoct

0 1.39 · 100 5.66 · 10−1 2.42 · 10−1 9.98 · 10−2 1.24 · 10−1 1.67 · 100 –
1 1.10 · 100 2.97 · 10−1 1.07 · 10−1 3.47 · 10−2 1.85 · 10−2 2.40 · 10−1 2.80
2 9.11 · 10−1 2.13 · 10−1 4.90 · 10−2 1.34 · 10−2 4.61 · 10−3 4.01 · 10−3 5.90
3 7.63 · 10−1 1.60 · 10−1 3.35 · 10−2 5.78 · 10−3 1.44 · 10−3 9.36 · 10−4 2.10
4 7.01 · 10−1 1.40 · 10−1 2.59 · 10−2 4.17 · 10−3 5.91 · 10−4 2.35 · 10−4 1.99
5 6.73 · 10−1 1.31 · 10−1 2.24 · 10−2 3.18 · 10−3 4.52 · 10−4 8.33 · 10−5 1.50
6 6.60 · 10−1 1.27 · 10−1 2.10 · 10−2 2.81 · 10−3 3.72 · 10−4 6.44 · 10−5 0.37
7 6.54 · 10−1 1.25 · 10−1 2.03 · 10−2 2.66 · 10−3 3.42 · 10−4 6.02 · 10−5 0.10

eocx – 2.39 2.61 2.94 2.96 2.51
eocxt – 2.51 2.63 3.02 3.10 2.63

Lt ↓ \Lx → 0 1 2 3 4 5 eoct

0 9.22 · 100 5.00 · 100 2.73 · 100 1.26 · 100 2.60 · 100 4.30 · 101 –
1 8.23 · 100 3.35 · 100 1.56 · 100 6.01 · 10−1 2.59 · 10−1 1.05 · 101 2.03
2 7.55 · 100 2.74 · 100 8.95 · 10−1 3.07 · 10−1 9.55 · 10−2 5.20 · 10−2 7.66
3 6.72 · 100 2.26 · 100 6.99 · 10−1 1.63 · 10−1 4.50 · 10−2 1.50 · 10−2 1.79
4 6.37 · 100 2.08 · 100 5.90 · 10−1 1.33 · 10−1 2.25 · 10−2 5.86 · 10−3 1.36
5 6.22 · 100 2.00 · 100 5.30 · 10−1 1.07 · 10−1 1.89 · 10−2 2.74 · 10−3 1.10
6 6.14 · 100 1.96 · 100 5.07 · 10−1 9.72 · 10−2 1.51 · 10−2 2.32 · 10−3 0.24
7 6.11 · 100 1.95 · 100 4.97 · 10−1 9.37 · 10−2 1.35 · 10−2 1.90 · 10−3 0.29

eocx – 1.65 1.97 2.41 2.79 2.83
eocxt – 1.74 1.94 2.46 2.83 2.99

Lt ↓ \Lx → 0 1 2 3 4 5 eoct

0 8.20 · 10−1 3.81 · 10−1 2.24 · 10−1 1.50 · 10−1 3.48 · 10−1 4.00 · 100 –
1 6.60 · 10−1 1.57 · 10−1 6.77 · 10−2 4.48 · 10−2 4.06 · 10−2 9.57 · 10−1 2.06
2 5.60 · 10−1 1.22 · 10−1 2.35 · 10−2 1.08 · 10−2 1.15 · 10−2 1.05 · 10−2 6.51
3 4.76 · 10−1 9.67 · 10−2 1.87 · 10−2 2.54 · 10−3 2.65 · 10−3 2.83 · 10−3 1.89
4 4.59 · 10−1 8.73 · 10−2 1.56 · 10−2 2.29 · 10−3 5.09 · 10−4 6.81 · 10−4 2.05
5 4.79 · 10−1 8.44 · 10−2 1.42 · 10−2 2.01 · 10−3 2.59 · 10−4 1.46 · 10−4 2.22
6 5.31 · 10−1 8.54 · 10−2 1.39 · 10−2 1.87 · 10−3 2.54 · 10−4 4.29 · 10−5 1.76
7 6.28 · 10−1 8.99 · 10−2 1.41 · 10−2 1.82 · 10−3 2.46 · 10−4 4.10 · 10−5 0.07

eocx – 2.80 2.67 2.95 2.89 2.58
eocxt – 2.53 2.63 2.96 2.99 2.63

Table 4.3: Mesh and time-step convergence for the BDF2 method with ν = 10−2. Top: ℓ2(L2(Ωh(t)))-velocity error.
Middle: ℓ2(H1(Ωh(t))) velocity error. Bottom: ℓ2(L2(Ωh(t)))-pressure error.
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Figure 4.4: Mesh convergence for the unfitted Eulerian time-stepping method with THk elements and using subdivisions
on cut elements to hide the geometry approximation error.

error and cannot be seen as a general solution to the problem of approximating curved boundaries in
unfitted finite element methods.

Using the set-up with the BDF2 time-discretisation as our starting point, we take the time-step ∆t =
0.1 · 2−8 such that the spatial error is the dominant factor. We then consider TH2 and TH3 elements in
conjunction with this subdivision strategy.

The resulting errors over a series of mesh refinements can be seen in Figure 4.4. We see here that we have
recovered the optimal order spatial convergence for the velocity error in both the ℓ2(L2)- and ℓ2(H1)-
norms. For the pressure, we see higher convergence rates than expected. As before, we attribute this to
the velocity error dominating over the pressure error.

Parametric Mapping A better approach to deal with the geometry approximation, is to use the isopa-
rametric approach we considered for fixed domain problems in chapter 3. As noted in subsection 4.3.4,
the problem here is the analysis of an efficient and accurate transfer operator to evaluate function defined
with respect to a differently deformed mesh. Since such an operator is implemented in ngsxfem, we shall
consider this approach in practice.

To this end, we consider the same set-up as before, together with THiso
2 and THiso

3 elements. The results can
be seen in Table 4.4 for k = 2 and Table 4.5 for k = 3. Comparing the results to those in Table 4.3 without
the parametric mapping, we see that the spatial error has been reduced here and that the convergence
rate with respect to the time-step has not been affected. Looking at the higher-order results in Table 4.5,
we see that while the ℓ2(L2)-velocity error appears to be missing half an order, the ℓ2(H1)-velocity error
converges with order 3 and the pressure error converges again more quickly than expected. This can again
be explained by the observation that it is dominated by the velocity error. With respect to the time-step,
we again see second-order convergence. However, there appears to be a stability issue for the largest
time-step on the finest mesh. We do not see this as problematic, as this computation would always have
a very unbalanced temporal and spatial error. We note that it was necessary to consider an additional
level of temporal refinement to see the spatial error dominate.

4.4.5 Summary
Our numerical examples show that our method is stable over a wide range of viscosities and ghost-penalty
parameters. Concerning the asymptotic convergence, we did not see any dependence on negative powers of
∆t from Theorem 4.20 in practice, and the method converges optimally in time. This suggests an estimate
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Lt ↓ \Lx → 0 1 2 3 4 eoct

0 1.28 · 100 5.66 · 10−1 2.40 · 10−1 9.94 · 10−2 1.42 · 10−1 –
1 8.70 · 10−1 2.58 · 10−1 1.05 · 10−1 3.38 · 10−2 1.84 · 10−2 2.95
2 6.46 · 10−1 1.63 · 10−1 3.83 · 10−2 1.25 · 10−2 4.46 · 10−3 2.05
3 5.01 · 10−1 1.04 · 10−1 2.44 · 10−2 4.06 · 10−3 1.26 · 10−3 1.82
4 4.40 · 10−1 8.24 · 10−2 1.59 · 10−2 2.63 · 10−3 3.80 · 10−4 1.73
5 4.10 · 10−1 7.23 · 10−2 1.19 · 10−2 1.61 · 10−3 2.19 · 10−4 0.79
6 3.94 · 10−1 6.72 · 10−2 1.02 · 10−2 1.17 · 10−3 1.26 · 10−4 0.80
7 3.85 · 10−1 6.45 · 10−2 9.37 · 10−3 9.93 · 10−4 8.67 · 10−5 0.54

eocx – 2.58 2.78 3.24 3.52
eocxt – 2.60 2.80 3.34 3.76

Lt ↓ \Lx → 0 1 2 3 4 eoct

0 8.91 · 100 5.11 · 100 2.75 · 100 1.26 · 100 3.07 · 100 –
1 7.23 · 100 3.12 · 100 1.60 · 100 6.00 · 10−1 2.60 · 10−1 3.56
2 6.19 · 100 2.36 · 100 7.65 · 10−1 3.06 · 10−1 9.36 · 10−2 1.48
3 5.16 · 100 1.72 · 100 5.73 · 10−1 1.30 · 10−1 4.26 · 10−2 1.14
4 4.71 · 100 1.46 · 100 4.31 · 10−1 1.01 · 10−1 1.83 · 10−2 1.22
5 4.47 · 100 1.32 · 100 3.41 · 10−1 7.47 · 10−2 1.51 · 10−2 0.28
6 4.33 · 100 1.24 · 100 3.00 · 10−1 5.94 · 10−2 1.16 · 10−2 0.38
7 4.24 · 100 1.20 · 100 2.79 · 10−1 5.19 · 10−2 9.09 · 10−3 0.35

eocx – 1.82 2.11 2.43 2.51
eocxt – 1.82 2.10 2.52 2.71

Lt ↓ \Lx → 0 1 2 3 4 eoct

0 7.21 · 10−1 4.07 · 10−1 2.21 · 10−1 1.54 · 10−1 4.05 · 10−1 –
1 4.93 · 10−1 1.34 · 10−1 6.83 · 10−2 4.85 · 10−2 4.18 · 10−2 3.28
2 3.72 · 10−1 9.22 · 10−2 1.91 · 10−2 1.21 · 10−2 1.20 · 10−2 1.80
3 2.91 · 10−1 6.34 · 10−2 1.41 · 10−2 2.78 · 10−3 2.97 · 10−3 2.01
4 2.56 · 10−1 5.25 · 10−2 1.06 · 10−2 1.58 · 10−3 6.76 · 10−4 2.14
5 2.42 · 10−1 4.81 · 10−2 8.35 · 10−3 1.40 · 10−3 2.47 · 10−4 1.45
6 2.41 · 10−1 4.77 · 10−2 7.65 · 10−3 1.10 · 10−3 2.16 · 10−4 0.20
7 2.50 · 10−1 5.05 · 10−2 7.82 · 10−3 9.68 · 10−4 1.63 · 10−4 0.40

eocx – 2.31 2.69 3.01 2.57
eocxt – 2.47 2.65 2.92 2.75

Table 4.4: Mesh and time-step convergence for the unfitted Eulerian BDF2 method and THiso
2 elements for the Stokes

problem on a moving domain with ν = 10−2. Top: ℓ2(L2(Ωh(t)))-velocity error. Middle: ℓ2(H1(Ωh(t)))
velocity error. Bottom: ℓ2(L2(Ωh(t)))-pressure error.
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Lt ↓ \Lx → 0 1 2 3 4 eoct

3 3.09 · 10−2 3.19 · 10−3 1.08 · 10−3 9.40 · 10−4 1.01 · 102 –
4 2.72 · 10−2 2.43 · 10−3 3.79 · 10−4 2.27 · 10−4 2.22 · 10−4 18.80
5 2.56 · 10−2 2.22 · 10−3 2.33 · 10−4 5.90 · 10−5 5.37 · 10−5 2.05
6 2.48 · 10−2 2.14 · 10−3 2.02 · 10−4 2.16 · 10−5 1.30 · 10−5 2.05
7 2.44 · 10−2 2.11 · 10−3 1.91 · 10−4 1.64 · 10−5 3.48 · 10−6 1.90
8 2.42 · 10−2 2.09 · 10−3 1.87 · 10−4 1.57 · 10−5 1.66 · 10−6 1.07
9 2.41 · 10−2 2.08 · 10−3 1.85 · 10−4 1.54 · 10−5 1.46 · 10−6 0.18

eocx – 3.53 3.50 3.58 3.40
eocxt – 3.58 3.49 3.61 3.42
eocxtt – – 3.78 3.83 3.49

Lt ↓ \Lx → 0 1 2 3 4 eoct

3 5.71 · 10−1 9.26 · 10−2 1.97 · 10−2 1.13 · 10−2 1.50 · 104 –
4 5.35 · 10−1 8.52 · 10−2 1.48 · 10−2 3.19 · 10−3 2.58 · 10−3 22.47
5 5.11 · 10−1 8.18 · 10−2 1.27 · 10−2 1.79 · 10−3 6.40 · 10−4 2.01
6 4.98 · 10−1 7.99 · 10−2 1.17 · 10−2 1.51 · 10−3 2.38 · 10−4 1.43
7 4.92 · 10−1 7.90 · 10−2 1.12 · 10−2 1.43 · 10−3 1.94 · 10−4 0.30
8 4.90 · 10−1 7.84 · 10−2 1.10 · 10−2 1.41 · 10−3 1.94 · 10−4 0.00
9 4.89 · 10−1 7.82 · 10−2 1.09 · 10−2 1.40 · 10−3 1.97 · 10−4 -0.02

eocx – 2.64 2.84 2.96 2.83
eocxt – 2.68 2.83 2.99 2.84
eocxtt – – 2.87 3.15 2.87

Lt ↓ \Lx → 0 1 2 3 4 eoct

3 2.68 · 10−2 4.33 · 10−3 2.81 · 10−3 2.63 · 10−3 1.09 · 103 –
4 2.78 · 10−2 2.81 · 10−3 8.33 · 10−4 6.81 · 10−4 6.74 · 10−4 20.62
5 3.20 · 10−2 2.82 · 10−3 3.83 · 10−4 1.80 · 10−4 1.75 · 10−4 1.95
6 3.83 · 10−2 3.17 · 10−3 3.15 · 10−4 5.70 · 10−5 4.49 · 10−5 1.96
7 4.74 · 10−2 3.87 · 10−3 3.40 · 10−4 4.41 · 10−5 1.25 · 10−5 1.85
8 6.08 · 10−2 4.87 · 10−3 4.11 · 10−4 5.62 · 10−5 6.67 · 10−6 0.91
9 7.99 · 10−2 6.32 · 10−3 5.26 · 10−4 7.86 · 10−5 7.69 · 10−6 -0.21

eocx – 3.66 3.59 2.74 3.35
eocxt – 3.34 3.22 2.60 2.87
eocxtt – – 3.50 3.12 2.52

Table 4.5: Mesh and time-step convergence for the BDF2 time-stepping and THiso
3 elements for the Stokes problem

on a moving domain with ν = 10−2. Top: ℓ2(L2(Ωh(t)))-velocity error. Middle: ℓ2(H1(Ωh(t))) velocity
error. Bottom: ℓ2(L2(Ωh(t)))-pressure error.
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of ∥ 1
∆t (un

h − un−1
h )∥−1, independent of negative powers of ∆t, holds. Furthermore, we did not observe

the exponential growth of the error in time, which was predicted by our error estimate. Concerning the
spatial approximation properties, we saw in the case of a low order geometry approximation that the
geometry approximation error could be the dominating factor. Using a sub-division strategy to hide the
geometry approximation error, we revealed the underlying discretisation error for TH2 and TH3 elements.
Extending the approach to higher-order in both space and time, we observed that the extension to a
BDF2 discretisation of the time-derivative is unproblematic, and second-order convergence in time holds.
Furthermore, using isoparametric unfitted finite elements together with a transfer-operator to evaluate
functions defined with respect to one deformation on a mesh deformed with a different deformation leads
to higher-order convergence.

4.5 Application to Navier-Stokes on a Moving Domain and
Comparison with Other Extension Techniques

Since our ultimate goal is to approximate fluid-rigid body problems, we consider applying the method
developed and analysed for the time-dependent Stokes problem on moving domain, applied to the full
nonlinear Navier-Stokes equations on a moving domain (2.12).

4.5.1 Related methods
We shall compare our method with the following two unfitted Eulerian methods.

Explicit Extension

In the thesis by Schott [Sch17], an explicit extension technique for moving domain flow problems
was described and used, which realises an extension to non-fluid elements also based on ghost-penalty
stabilisation. The essential difference to our approach is that the extension is performed in a separate
computational step from the fluid-flow solver and that the extension is only available on a vertex patch
of cut elements. The procedure of this is as follows:

1. Solve the CutFEM flow problem on the current domain Ωn
h using the standard, stationary domain

approach discussed in chapter 3.

2. Mark the set of exterior elements, which share a vertex with a cut element

T n
h,ext := {T ∈ T̃h \ T n

h | ∃T1 ∈ T n
h with measd−2(T ∩ T1) ̸= 0}.

3. Mark the set of interior extension facets

F n
h,ext = {T1 ∩ T2 | T1 ̸= T2 with T1 ∈ T n

h,ext, T2 ∈ T n
h,ext ∪ Th,Γn

h
}.

4. Based on the facets F ∈ F n
h,ext, solve the L2-ghost-penalty problem h2ih(uh,vh) = 0, on the degrees

of freedom in elements T n
h,ext, which were not active in the fluid step 1, to extend the solution into

the set of extension elements. If the Ωn+1
h is a subset of the vertex-patch extended domain, continue

to the next time-step.

See Figure 4.5 for an illustration of this element marking procedure. As the solution is only extended
into a strip with a width of one element, this technique requires a CFL-type condition ∆t ≲ h on the
time-step. An advantage of the method is that the ghost-penalties in the fluid solver only act where they
are necessary for the stability of the fluid system and do not interfere with the fluid solution. However,
to the best of our knowledge, no numerical analysis is available for this approach.
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T ∈ T n
h,ext

T ∈ Th,Γn
h

T ∈ Th,Γn
h

,+ \ Th,Γn
h

T ∈ T n
h \ Th,Γ,+

F ∈ F n
h

F ∈ F n
h,ext

Γn
h

Figure 4.5: Element and facets markings for the explicit ghost-penalty extension technique from [Sch17].

S(t)
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cS(t) = (1.1 + 0.8 sin(2π(t − 0.75)/3), 0.23)
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Γwall

b
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Figure 4.6: Computational domain for the flow driven by a moving cylinder problem at time t = 0.

Implicit Extension for Large Viscosities

The Eulerian time-stepping method for the time-dependent Stokes problem on moving domains, as covered
in this chapter and in [WRL21], is an extension of the same technique for a time-dependent convection-
diffusion problem on moving domains in [LO19]. While the authors did include a diffusion coefficient,
the analysis in [LO19] assumes a viscosity ν ≈ 1. As a result, the ghost-penalty stabilisation in [LO19]
realising the discrete extension only scales with ν, rather than ν + 1/ν as above. As a result of our 1/ν

scaling, the ghost-penalties dominate in the entire extension strip, introducing a potentially very large
consistency error. Therefore, we consider this approach, i.e., only scale the extension ghost-penalties with
ν, applied to the Navier-Stokes equations on a moving domain, to investigate the effects this scaling has
on the resulting flow and the stability of the method.

4.5.2 Numerical Examples
As our reference problem, we shall consider a moving cylinder inside a channel. This set-up is taken
from [Sch17, Section 3.6.4.3]. The background domain is a channel Ω̃ = (0, 2.2) × (0, 0.44). Within this
channel, we have a rigid, circular obstacle S , given by the time-dependent domain

S(t) = {x ∈ R2 | (x1 − d(t))2 + (x2 − 0.23)2 < 0.12 with d(t) = 1.1 + 0.8 sin(π2/3(t− 0.75))}.

The fluid domain is then F(t) = Ω̃ \ S(t). We then consider the incompressible Navier-Stokes equations
in the fluid domain, i.e., the reduced system (2.5a) – (2.5c). On the top, left and bottom boundaries of
the channel Γwall we then consider no-slip boundary conditions, while at the right end of the channel Γout
we consider the do-nothing boundary condition. At the fluid-solid interface I(t) = ∂S(t) we impose a
no-slip condition, i.e., continuity of the velocity. This is given by U(t) = 0.8(2π/3) cos((2π/3)(t− 0.75)).
A sketch of the spatial configuration at t = 0 can be seen in Figure 4.6.

Quantities of Interest

In order to quantify the quality of the resulting computations, we will look at the forces acting on the
cylinder over time with F (t) as defined in (2.4). As quantities of interest, we consider (Fmax

1 , t◦1) and
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(Fmax
2 , t◦2), i.e., the maxima of the two components of the force acting on the cylinder and the times at

which these maxima are realised. As an additional quantity, which is of more interest for fluid-structure
interactions with an elastic solid, we consider the point evaluation of the normal stress σ(u, p)n at the
top of the cylinder x(t) = (1.1 + 0.8 sin(π2/3(t − 0.75)), 0.33). We again look for the maximum of the
components of the normal point force and the time at which these maxima are realised. We denote these
as (fmax

1 , t∗1) and (fmax
2 , t∗2), respectively.

Reference Values

To compute accurate reference values for these quantities of interest, we shall use a fitted ALE approach.
This is feasible because the cylinder remains at a distance of 0.3(= 1.5 ·diam) away from the left and right
boundaries and the distance to the top and bottom boundaries remains constant. The ALE formulation
of the incompressible Navier-Stokes equations is then given as

JALEρF
(
∂tu+ F−1

ALE(u− ∂tŵ) · ∇u
)

− div
(
Jσ(u, p)F−T

ALE
)

= JρFf in F̂
− div

(
JF−1

ALEu
)

= 0 in F̂ ,

where F̂ is the reference fluid domain, FALE = ∇TALE is the deformation gradient and JALE = det(FALE)
ŵ is the mesh velocity. For our computations, we consider the reference domain F̂ := F(0.75), i.e., we
locate the cylinder in the centre of the domain. The ALE mapping for the translational motion is then
defined as

TALE(t) = fALE ·
(

id +
(

0.8 sin(π2/3(t− 0.75))
0

))

fALE =





x1/0.9 for x1 < 0.9
1 for 0.9 ≤ x1 ≤ 1.1
(2.2 − x1)/0.9 for x1 > 1.3.

Consequently, the mesh velocity can therefore also be given analytically and the resulting deformation
gradient is discontinuous. However, we overcome this problem by resolving the discontinuity lines at
x1 = 0.9, 1.3 with the mesh. Because NGSolve uses mapped Gauß-Jacobi type quadrature rules with a
Duffy-transformation, the deformation gradient remains well-defined in every quadrature point.

To compute the body forces, we test the variational formulation with a non-conforming test function vh,
which takes the value 1 in the respective component on the cylinder boundary and is zero everywhere
else. This is known as the Babuška-Miller trick [BM84], which is known to result in convergence of the
forces at twice the order, c.f. [BR06; Wah+19b].

We start a mesh of the reference domain with hmax = 0.08 in the bulk and h = 0.008 on the cylinder
surface. To ensure that the values are computed accurately, we consider Lx = 0, 1, 2, 3 levels of uniform
mesh refinements of this initial mesh. On these meshes, we consider TH5 elements. We use the BDF2
scheme for the temporal discretisation and take the time-step ∆t = 0.005 · 2−Lx . The resulting values for
the quantities of interest can be seen in Table 4.6. While we only observe second-order convergence in the
first three functional values, we still have at least three significant figures of accuracy in all quantities of
interest. This rate indicates that the temporal error is the dominant factor here or that the exact solution
lacks the regularity for higher-order convergence. Furthermore, the curves of the four functional values
can be seen in Figure 4.7. Here we can see that it is challenging to identify the correct maximum of the
body forces since there are two points in time where local maxima are realised with similar values.

Method Comparison

We now compare how the three Eulerian moving domain approaches using the moving cylinder example.
In the following, we will denote the explicit extension technique as EE, the implicit extension approach
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Discretisation Results
Lx ∆t Fmax

1 t◦
1 Fmax

2 t◦
2 fmax

1 t∗
1 fmax

2 t∗
2

0 1/200 0.973 925 · 100 2.42 1.032 954 · 100 2.435 0.297 942 · 100 0.69 0.648 448 · 100 1.475
1 1/400 0.974 399 · 100 2.42 1.038 728 · 100 2.435 0.298 125 · 100 0.69 0.642 801 · 100 1.475
2 1/800 0.973 745 · 100 2.42 1.041 018 · 100 2.43375 0.298 138 · 100 0.69 0.642 894 · 100 1.47375
3 1/1600 0.973 482 · 100 2.42 1.041 359 · 100 2.43375 0.298 142 · 100 0.69 0.642 966 · 100 1.473125
Extrapolated(order) 0.973 306 · 100(1.32) – 1.041 418 · 100(2.75) – 0.298 143 · 100(1.84) – 0.643 202 · 100(0.38) –

Table 4.6: Results for the moving cylinder problem computed using a fitted ALE TH5 discretisation.
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Figure 4.7: Reference curves for the moving cylinder problem. Computed using an ALE discretisation with TH5 elements
on a mesh with hmax = 0.01 and h = 0.001 on the cylinder, BDF2 time-stepping with ∆t = 1/1600 and an
analytical formulation of the ALE mapping.

for large viscosities as IELO and our choice of extension scaling as IEWRL.

All computations are performed of a quasi-uniform mesh of the background domain. Specifically, no
region of the mesh is refined towards the cylinder. As we have seen in subsection 3.4.3, this means that
the force values are not very accurate. However, since the cylinder moves over time, we would have an
over refined mesh in most of the bulk if we refined the mesh in the whole region where the cylinder will
be over time, and the EE method would require even smaller time-steps.

Convergence Study We compute the moving cylinder problem using TH2 elements and the mesh and
time-step pars (hmax,∆t) = (0.02, 1/500), (0.01, 1/1000), (0.005, 1/2000). Note that we have chosen particu-
larly small time-steps here in order for all three methods to work. For all the methods, the ghost-penalty
parameter is γgp = 0.1.

The full results can be seen in Table 4.7, and a close up of the drag force around the two similar local
maxima can be seen in Figure 4.8. Furthermore, the velocity and pressure solution for all three methods on
the coarsest mesh, compared against an ALE reference solution, can be seen in Figure 4.9 and Figure 4.10,
respectively.

In Table 4.7, we see that the results from the EE and IELO methods are very similar and that these
methods manage to capture the correct peak of the drag and lift functionals of the two finer meshes. The
point forces are less accurate but also converge towards the values determined with the high-order ALE
computations. For the IEWRL method, we see that while the drag and lift values also converge towards
the correct values, we do not manage to capture the correct time of realisation. Furthermore, the realised
values are not accurate.

Looking at the plots in Figure 4.8, we observe that the force evaluation is highly unstable in all three
methods, but particularly in the IEWRL method. Also, these instabilities remain large under mesh/time-
step refinement for the IEWRL computations. This explains why the maxima were realised at the wrong
point in time, even on the finer meshes.

Examining the visualisation of the velocity magnitude in Figure 4.9, we see that both the EE and IELO
methods manage to capture most artefacts of the flow well. However, we also see that the extension is very
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Method Discretisation Results
hmax ∆t Fmax

1 t◦
1 Fmax

2 t◦
2 fmax

1 t∗
1 fmax

2 t∗
2

EE 0.02 1/500 0.932 332 · 100 2.25 0.937 533 · 100 2.122 0.704 371 · 100 0.724 0.743 263 · 100 1.474
EE 0.01 1/1000 0.970 163 · 100 2.425 1.044 377 · 100 2.115 0.585 481 · 100 0.77 0.660 947 · 100 1.463
EE 0.005 1/2000 0.975 244 · 100 2.4195 1.039 498 · 100 2.434 0.388 403 · 100 0.727 0.642 949 · 100 1.4705

IELO 0.02 1/500 0.931 615 · 100 2.25 0.939 532 · 100 2.122 0.702 661 · 100 0.724 0.742 830 · 100 1.474
IELO 0.01 1/1000 0.970 256 · 100 2.425 1.045 478 · 100 2.115 0.584 517 · 100 0.77 0.661 351 · 100 1.455
IELO 0.005 1/2000 0.975 705 · 100 2.42 1.040 348 · 100 2.434 0.388 481 · 100 0.727 0.643 203 · 100 1.4705

IEWRL 0.02 1/500 1.397 117 · 100 2.186 0.545 835 · 100 2.206 0.565 051 · 100 0.724 0.813 698 · 100 1.476
IEWRL 0.01 1/1000 1.007 292 · 100 2.116 0.996 508 · 100 2.137 0.422 517 · 100 0.77 0.793 305 · 100 1.487
IEWRL 0.005 1/2000 0.957 557 · 100 2.08 1.004 391 · 100 2.1165 0.354 375 · 100 0.727 0.645 141 · 100 1.4685

Reference 0.973 300 · 100 2.42 1.041 400 · 100 2.433 0.298 143 · 100 0.69 0.643 000 · 100 1.473

Table 4.7: Results from the three Eulerian methods for the moving cylinder problem.
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Figure 4.8: Close up of the drag functional resulting from the Eulerian time-stepping methods for the moving cylinder
problem for 1.9 ≤ t ≤ 2.7.

unstable. For the IEWRL method, we have several observations. First, we note that the extension outside
of the fluid domain is very stable. However, we also see that the extension has a large influence on the
fluid in the region where we apply the extension ghost-penalties. We attribute this to the ghost-penalty
stabilisation term, which dominates the system in this region due to the 1/ν scaling. We view this as the
influence of the consistency error of the ghost-penalty operator since the solution cannot be represented
by a single polynomial in the extension region. This appears to have the effect that the fluid is obstructed,
making the cylinder effectively larger, increasing the Reynolds number of the flow, explaining the more
turbulent velocity field. If we further look at the pressure field in Figure 4.10, we again see that the EE
and IELO results match the ALE solution well, while the IEWRL pressure is very different. Note that
both in Figure 4.9 and Figure 4.10, the colour range was based on the ALE reference solution.

Improving the Implicit Extension: Choice of Ghost-Penalty Parameter The difference between the
IELO and IEWRL methods is the scaling of the extension ghost-penalties of ν and ν + 1

ν , respectively. To
investigate the effect of the very large and intrusive extension ghost-penalties, we consider the mesh with
hmax = 0.01 and time-step ∆t = 1/1000, and decrease the ghost-penalty parameter.

The resulting quantities of interest can be seen in Table 4.8, and a close up of the drag functional around
the two similar local maxima can be seen on the left of Figure 4.11. The values seen in Table 4.8 indicate
that a smaller ghost-penalty term is indeed beneficial for this problem. However, with a very small
stabilisation parameter, we also do not achieve good results. This could be due to the loss of control over
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Figure 4.9: Velocity solution of the moving cylinder problem at t = 1.18. From top to bottom: ALE, EE, IELO and
IEWRL. ALE computed on a mesh with hmax = 0.02 and ∆t = 1/800. Unfitted computations on a mesh with
hmax = 0.02 and ∆t = 1/500. (A video of the simulations is available at https://youtu.be/Wka_WyXyJmg.)

https://youtu.be/Wka_WyXyJmg
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Figure 4.10: Pressure solution of the moving cylinder problem at t = 1.18. From top to bottom: ALE, EE, IELO and
IEWRL. ALE computed on a mesh with hmax = 0.02 and ∆t = 1/800. Unfitted computations on a mesh
with hmax = 0.02 and ∆t = 1/500.
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Discr. Results
γgp Fmax

1 t◦
1 Fmax

2 t◦
2 fmax

1 t∗
1 fmax

2 t∗
2

0.1 1.007 292 2.116 0.996 508 2.137 0.422 517 0.77 0.793 305 1.487
0.01 0.958 161 2.253 1.059 681 2.134 0.443 084 0.77 0.819 559 1.46
0.001 0.929 864 2.079 1.064 706 2.129 0.486 860 0.77 0.765 608 1.461
0.0001 0.899 494 2.076 1.023 838 2.119 0.553 787 0.77 0.691 719 1.468
Reference 0.973 300 2.42 1.041 400 2.433 0.298 143 0.69 0.643 000 1.473

Table 4.8: Results for the IEWRL method for the moving cylinder problem over a series of different ghost-penalty
stabilisation parameters with hmax = 0.01 and ∆t = 1/1000.

Discr. Results
hmax ∆t Fmax

1 t◦
1 Fmax

2 t◦
2 fmax

1 t∗
1 fmax

2 t∗
2

0.02 1/500 1.180 75 2.158 0.706 26 2.49 0.546 45 0.724 1.125 70 1.498
0.01 1/1000 1.053 76 2.103 1.185 67 2.14 0.473 37 0.77 0.968 98 1.499
0.005 1/2000 0.961 62 2.079 1.059 11 2.442 0.370 53 0.727 0.804 64 1.4995

Reference 0.973 30 2.42 1.041 40 2.433 0.298 14 0.69 0.643 00 1.473

Table 4.9: Results for the IEWRL method for the moving cylinder problem where the extension ghost-penalties are only
applied in the area where they are strictly necessary.

the pressure on cut elements with a small stability parameter. Looking at the left plot in Figure 4.11,
we see that we capture more of the dynamics. However, we also note that the instabilities of the drag
evaluation increase. This makes sense, since on the one hand, a smaller ghost-penalty parameter means
that the ghost-penalties are less obstructive to the flow, while on the other hand, we have less control
over the solution on cut and unphysical extension elements.

Improving the Implicit Extension: Strictly Necessary Extension In the previous computations, the
extension has been applied naively in the entire δ-extension strip. However, in this example, the motion of
the solid and thereby the exact extension region is known a priori. We, therefore, refine the implementation
to only apply the large extension (ν + 1/ν)-scaled ghost-penalties in the portion of the extension strip,
where the extension is strictly necessary. We then take the same series of meshes and time-steps as
considered for the naive implementation above.

The results for the quantities of interest can be seen in Table 4.9, and a close up of the drag functional
around the two largest local maxima can be seen on the right of Figure 4.11. Furthermore, we compare
the velocity and pressure solution between the naive and the more refined IEWRL implementations against
the ALE reference solution in Figure 4.12 and Figure 4.13, respectively.

In Table 4.9, we see that the resulting values are much better than before. While still not as accurate
as the other methods, F2,max is realised at the correct peak on the finest mesh. Looking at the solution
from the coarsest discretisation in Figure 4.12 and Figure 4.13, we see that the solution is much closer to
the ALE solution than before. However, we also observe in Figure 4.11 that the instabilities in the drag
evaluation are still present, although not as large as before.

Improving the Implicit Extension: Functional Smoothing As we have observed in all the previous
plots of the drag functional for all three extension methods, the functional values oscillate very strongly
around a mean curve. Therefore, to establish whether more accurate values for the quantities of interest
can be obtained from the IEWRL method, we take the values obtained from the implementation where
the extension is only applied in the necessary region, and approximate the data by a fourth-order spline.
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Figure 4.11: Drag force on the moving cylinder computed with the IEWRL method. Left: Computed on a mesh
with hmax = 0.01 and time-step ∆t = 1/1000 for different ghost-penalty stabilisation parameters. Right:
Extension scaled ghost-penalties only applied where the extension is strictly necessary.

Figure 4.12: Velocity solution of the moving cylinder problem at t=1.18. Top: ALE reference, Middle: IEWRL, Bottom:
IEWRL where the extension is only applied in the necessary region. Unfitted computations on a mesh
with hmax = 0.02 and ∆t = 1/500. (A video of these simulations is available at https://youtu.be/
tunYqJ3LTb4.)

https://youtu.be/tunYqJ3LTb4
https://youtu.be/tunYqJ3LTb4
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Figure 4.13: Pressure solution of the moving cylinder problem at t = 1.18. Top: ALE reference, Middle: IEWRL,
Bottom: IEWRL where the extension is only applied in the necessary region. Unfitted computations on a
mesh with hmax = 0.02 and ∆t = 1/500.
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Discr. Results
hmax ∆t Fmax

1 t◦
1 Fmax

2 t◦
2 fmax

1 t∗
1 fmax

2 t∗
2

0.02 1/500 1.148 98 2.152 99 0.680 84 2.488 01 0.226 53 0.703 51 0.889 30 1.515 55
0.01 1/1000 1.025 66 2.101 66 1.174 62 2.139 24 0.261 63 0.713 67 0.694 91 1.441 27
0.005 1/2000 0.959 94 2.077 90 1.055 54 2.441 18 0.289 22 0.722 76 0.654 00 1.468 69

Table 4.10: Results for the IEWRL method for the moving cylinder problem after smoothing the data with a fourth-order
spline. The extension scaled ghost-penalties are only applied in the area where they are strictly necessary.
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Figure 4.14: Drag force on the moving cylinder computed with the IEWRL method where the extension ghost-penalties
only applied where the extension is strictly necessary and the spline approximation of the resulting data.

We construct the spline by placing a knot at every fifteenth time-step and determining the coefficients
through a least-squares fit to the data.

The quantities of interest, as computed by the evaluation of the fourth-order spline, can be seen in
Table 4.10. The original data points and the resulting splines for the drag functional around the two
largest local maxima can be seen in Figure 4.14. Here we see that while the results are better than without
the spline smoothing, the improvement is not particularly large. However, looking at Figure 4.14, we see
that the curves have smoothed the data well, removing the unwanted variance while also capturing the
functional’s features.

Larger Extension Comparison In order to be able to compare the extension methods, the previous
computations have been using very small time-steps in comparison to the mesh size. Therefore, we
investigate the behaviour of the three methods for larger time-steps. To this end, we take the coarsest
considered mesh with hmax = 0.02 and take the time-step to ∆t = 1/125, 1/250, 1/500. For the IEWRL
method, we take the implementation, which only applies the extension ghost-penalty stabilisation on
elements where it is strictly necessary.

The resulting quantities of interest can be seen in Table 4.11. Here we see that the IEWRL extension
method is the only robust method with respect to larger extension domains. On the coarsest mesh, the
CFL condition for the EE method is violated, and IELO is unstable. With the second time-step, both the
EE and IELO are unstable due to the weak extension. The results from the smallest time-steps are the
same as above. These results are not surprising since the EE and IELO methods do not give a very stable
extension into the solid domain, as we have seen above.

As an addition, we consider the time-steps ∆t = 1/75, 1/1000 as well as the time-step ∆t = 1/125 in
combination with the smaller extension ghost-penalty parameter γu,gp,2 = 0.01 on the mesh with hmax =
0.02. Furthermore, we consider the finer mesh with hmax = 0.01 and the large time-step ∆t = 1/125.
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Method Discr. Results
∆t K Fmax

1 t◦
1 Fmax

2 t◦
2 fmax

1 t∗
1 fmax

2 t∗
2

EE 1/125 3 CFL condition violated
EE 1/250 2 Method Unstable
EE 1/500 1 0.932 332 2.25 0.937 533 2.122 0.704 371 0.724 0.743 263 1.474

IELO 1/125 3 Method unstable
IELO 1/250 2 Method unstable
IELO 1/500 1 0.975 244 2.4195 1.039 498 2.434 0.388 403 0.727 0.642 949 1.4705

IEWRL 1/125 3 1.373 278 2.248 0.418 367 2.536 0.524 403 0.712 0.537 514 1.544
IEWRL 1/250 2 1.247 883 2.184 0.548 222 2.492 0.526 115 0.724 0.947 352 1.496
IEWRL 1/500 1 1.397 117 2.186 0.545 835 2.206 0.565 051 0.724 0.813 698 1.476

Reference 0.973 300 2.42 1.041 400 2.433 0.298 143 0.69 0.643 000 1.473

Table 4.11: Comparison of the three Eulerian methods for the moving cylinder problem on a fixed mesh with hmax =
0.02 and a series of different time-steps, resulting in larger extension regions.
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Figure 4.15: Drag force on the moving cylinder computed with the IEWRL method. Computed on a mesh with hmax =
0.02 and different time-steps, resulting in different extension region widths. Extension scaled ghost-
penalties are only applied in the region where they are strictly necessary.

The resulting drag functional around the two largest maxima can be seen in Figure 4.15. Here we
see that the computations with smaller time-steps are more accurate on the same mesh. However, the
drag evaluation also becomes less stable with smaller time-steps. We also note that we have achieved a
comparably accurate and stable computation on the medium mesh with hmax = 0.01 together with the
relatively large time-step ∆t = 1/125, resulting in a maximal extension domain of width K = 6 elements.
For the computation with a smaller extension ghost-penalty parameter but the same stability parameter,
we see that the drag is similarly accurate as the resulting value from the smallest time-step on that mesh
while being about as stable as the results from the largest time-steps on this mesh.

Remark 4.25 (Choice of ghost-penalty operator). All presented computations have been implemented
using the direct version of the ghost-penalty operator. A more popular choice is to penalise normal-
derivative jumps across between elements. However, this choice has the disadvantage that normal-
derivatives of higher-order are difficult to compute (accurately), making the normal-derivative version
only feasible for lower-order methods. Tests with the IEWRL method, using TH2 elements and the normal-
derivative jump ghost-penalty operator, resulted in functional values, which were significantly less stable
than the results using the direct version on the same discretisation. ▲

Remark 4.26 (Evaluation of the drag/lift functional). The dominating ghost-penalties in the extension
region of the IEWRL method could be behind the observed instabilities in the drag/lift functional when
evaluating the drag functional in its basic form, i.e., integrating directly over the relevant boundary. To
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transfer the boundary integral on the unfitted boundary onto the other boundaries and a volume integral,
we use integration by parts.

We split the boundary of the domain into fitted Dirichlet part ΓD, a fitted Neumann part ΓN and the
unfitted interface at the cylinder Γ◦. As a result, we have ∂Ω = ΓD ∪ ΓN ∪ Γ◦ and ΓD ∩ ΓN = ∅,
ΓD ∩ Γ◦ = ∅, ΓN ∩ Γ◦ = ∅. We take the momentum-balance equation of the Navier-Stokes equations
in the strong form, multiply with a test function v ∈ H1(Ω), integrate over Ω and apply integration by
parts to the Stokes (stress) term, i.e.

(∂tu+ u · ∇u,v)Ω − (∇ · σ(u, p),v)Ω = 0
⇒ (∂tu+ u · ∇u,v)Ω + (σ(u, p),∇v)Ω − (σ(u, p)n,v)∂Ω = 0.

We can then split the boundary into the three different parts, and using that the normal stress vanishes
on the Neumann boundary we have

(σ(u, p)n,v)Γ◦ = (∂tu+ u · ∇u,v)Ω + (σ(u, p),∇v)Ω − (σ(u, p)n,v)ΓD
.

Using appropriate test functions v, we can therefore transfer integrals over the unfitted boundary into
an integral over the volume plus an integral on the fitted boundary where there is no ghost-penalty
stabilisation. The Stokes part vanishes for the drag and lift functionals since we can choose v to be
constant.

Test have shown that while this approach is slightly more accurate than the single unfitted boundary
integral evaluation, the observed instabilities do not vanish and are sometimes even more pronounced. ▲

Example with Topology Change

As a further investigation into the capabilities of the IEWRL method applied to the Navier-Stokes equa-
tions, we consider examples with topological changes in the geometry. While we do not have any theoret-
ical justification to expect anything in this situation, we can be hopeful that the method yields reasonable
results since we based the method on the work in [LO19], where the authors also presented a numerical
example with topology changes for their method for convection-diffusion problems. Furthermore, if the
method produces reasonable results, this would be advantageous compared with ALE methods since we
know that the ALE approach breaks down if changes in topology occur.

We note that this is non-physical behaviour since the Navier-Stokes equations do not permit contact in
two dimensions [Hil07]. However, since it is very difficult to resolve the problem sufficiently in practice,
contact can easily occur numerically. It is therefore advantageous if the method can cope with this.

Specifically, we shall consider two situations. First, we take a situation where we have contact between
two solids in the fluid. However, since we can treat the level sets of the solid regions separately, using
the multiple level set functionality of ngsxfem [Leh+21], and only the smooth level sets touch, it is
possible that the P 1 interpolated discrete level set functions never overlap or touch each other, even if
each domain has a contribution on a single element. Secondly, we take a situation where there is a real
topology change, in the sense that the two solid domains merge and separate again.

Set-Up We extend the previous example of the flow around a moving cylinder. Taking the same back-
ground domain Ω̃, we consider two cylindrical obstacles S1(t) and S2(t), each with a diameter of 0.2
and the centres initially at (0.3, 0.23) and (1.9, 0.23), respectively. The fluid domain is then given by
F(t) = Ω̃ \ (S1(t) ∪ S2(t)). A sketch of this initial configuration can be seen in Figure 4.16.

As quantities of interest, we will look at the two components of the forces acting on each of the two
cylinders. As we cannot compute an ALE reference solution for problems with topology changes, we also
look at the fulfilment of the divergence constraint of the finite element solutions.

In the following, we will exclusively use the IEWRL method, with the extension only applied in the strictly
necessary regions.
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Figure 4.16: Initial configuration for the flow around two cylinders with contact problems.
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Figure 4.17: Drag and lift functionals on the two cylinders and the divergence error of the fluid velocity for two moving
cylinders with contact at t = 1.5.

Contact We take the time interval [0, 3], and prescribe the centres of the two cylinder to be cS1(t) =
(0.65 + 0.35 sin(2π(t− 0.75)/3), 0.23) and cS2(t) = (1.55 + 0.35 sin(2π(t+ 0.75)/3), 0.23), respectively. As
a result, contact occurs between the two cylinders at t = 1.5. We consider the mesh/time-step pairs
(0.01, 1/100), (0.005, 1/100), (0.005, 1/200) and (0.0025, 1/500). The resulting quantities of interest can be
seen in Figure 4.17.

We first note that the simulations worked without any problems. Looking at the drag and lift forces,
we see the same instabilities as in the single moving cylinder example. However, the values appear
reasonable. There is a spike in the drag at t = 1.5, i.e., when the contact occurs, and this spike becomes
more pronounced on the finer meshes. We consider this to be reasonable since contact is unphysical for
the Navier-Stokes equations in 2d and the forces in the horizontal axis act against the motion trying to
create the contact. This shows that we require both very fine meshes and a small time-step to realise the
limiting behaviour of a rebound without contact.

Looking at the divergence constraint, we see that it is not fulfilled well. However, we also see that it
decreases with smaller meshes and time-step sizes and that it also depends on the speed of the cylinder
at a given time.



94 Chapter 4 Unfitted Eulerian Time-Stepping for Stokes on Moving Domains

0 1 2 3

−5

0

S 1
Force F1

0 1 2 3
−0.1

0

0.1

Force F2

0 1 2 3

100

102

‖div(uh)‖Fh(t)

0 1 2 3

0

5

S 2

0 1 2 3
−0.1

0

0.1

hmax = 0.01, ∆t = 1/100

hmax = 0.005, ∆t = 1/100

hmax = 0.005, ∆t = 1/200

hmax = 0.0025, ∆t = 1/500

Figure 4.18: Drag and lift functionals on the two cylinders and the divergence error of the fluid velocity for two moving
cylinders with overlap during t ∈ [1.25061304, 1.74938696].

Overlap We take the time interval [0, 3], and prescribe the motion of the two cylinders such that the
centres cylinders of the two cylinders come within a distance of 0.1 of each other at t = 1.5, i.e., two
cylinders overlap each other for a period of time. The centres of the cylinders are then given by cS1(t) =
(0.675+0.375 sin(2π(t−0.75)/3), 0.23) and cS2(t) = (1.525+0.375 sin(2π(t+0.75)/3), 0.23), respectively.
The two cylinders therefore have some overlap in during the time interval [1.25061304, 1.74938696]. We
note that the drag and lift functionals are no longer computed on the entire boundary ∂Si but only
on the interface section, Ii = ∂Si ∩ (Ω̃ \ Sj), i.e., on the part of the boundary of Si, which is inside
the complement of Sj for i ̸= j. We consider the same mesh/time-step pairs as before. The resulting
quantities of interest can be seen in Figure 4.18.

In general, the results are comparable to the results where contact but no overlap occurred. However,
especially in the drag functionals F1, we see three big spikes. This occurs at the points in time where the
two cylinders begin to overlap (t ≈ 1.25), the point where the cylinders change direction (t = 1.5) and the
time point where the two cylinders separate again. Furthermore, we note that the divergence constraint
is almost completely lost at the point of topology change. Fortunately, this recovers again to the levels
before the topology change, after the cylinders have separated again. This issue, visible in the results for
the phase with overlap, is not surprising since there are issues with a mismatch of the boundary condition
at the point where the two level sets cross.

4.5.3 Summary
To summarise the comparison of the different extension techniques, we have established that the IEWRL
method is the only approach that can handle problems where the extension is necessary in a strip that has
a width of more than one element. On the other hand, we have seen that the large scaling of the extension
ghost-penalty stabilisation terms leads to a deterioration of the velocity around the solid interface such
that forces cannot be computed accurately. Therefore, the method must be implemented carefully so that
the extension is only applied in the area where it is strictly necessary. Furthermore, scaling the extension
and stability ghost-penalties with different parameters also seems to be a good approach to reducing
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the ghost-penalty operator’s influence. Using larger time-steps also appears to be helpful to avoid large
instabilities in the evaluation of the force functional.

From the numerical experiments with topology changes, we can conclude the following. First, our implicit
extension method is stable if contact occurs and even continues to work when we have an overlap of solid
domains. Second, very highly resolved spatial meshes and time-steps are needed to realise the physical
forces, which prevent contact in the context of the two-dimensional Navier-Stokes equations. Finally, we
have observed that there can be issues in the fulfilment of the divergence constraint, especially during
the unphysical merger of the two solid objects, but in general, this is recovered up to the pre-contact
accuracy once the body motion is again physical.





CHAPTER 5

Analysis of the Eulerian Time-Stepping for Coupled Fluid-
Rigid Body Interactions

Structure of Chapter An Eulerian time-stepping scheme for the Stokes system coupled to rigid body
motion (2.13), based on our work in chapter 4, is developed and analysed. The stability of the scheme
is shown in the continuous, semi-discrete and fully discrete cases. The fully discrete error analysis is
performed for the reduced case of the heat equation as the partial differential equation in the bulk
domain.
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5.1 Method
We aim to apply the Eulerian time-stepping method, derived and analysed in chapter 4, not only in cases
of prescribed motion of the solid, such as in section 4.5, but also in cases where the rigid body motion
is driven by both the fluid forces and the acceleration due to gravity. Therefore, let us consider the
time-dependent Stokes problem coupled to translational solid motion of a rigid particle (2.13).

To rewrite this into a weak formulation, let us consider the Sobolev and Lebesgue spaces

V (t) := {v ∈ H1(F(t)) | v|Γ = 0}, Q(t) := L2
0(F(t)), N(t) := H−1/2(I(t)).

The weak formulation of (2.13) then reads as follows.

Problem P8. Find (u(t), p(t), U(t),λ(t)) ∈ V (t) ×Q(t) × Rd ×N(t) such that

(∂tu,v)F(t) + ν(∇u,∇v)F(t) − (p,∇ · v)F(t)+(λ,v)I(t) = 0 (5.1a)
− (q,∇ · u)F(t) = 0 (5.1b)

(µ,u)I(t) = (µ, U)I(t) (5.1c)

( d
dtU, V )2 = (Fext + F , V )2 (5.1d)

for all (v, q, V,µ) ∈ V (t) ×Q(t) × Rd ×N(t).

Here, (·, ·)2 denotes the scalar product in Rd and Fext := Fbuoancy + Fgravity = (ρS − ρF ) vol(S)g is
the sum of the external body forces acting on the solid due to gravity and buoyancy. Using integration
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by parts in the momentum balance equation (5.1a), it is immediately apparent that the solution of the
Lagrange multiplier is λ = −σ(u, p)n.

Remark 5.1 (Enforcement of boundary condition on solid). Including the Dirichlet boundary condition
at the interface to enforce continuity of the velocity in the space V (t) would be unnatural since the value
which has to be enforced at I(t) is not known a priori. The boundary condition must therefore be
enforced externally. In the previous chapters, we have worked with Nitsche’s method to enforce Dirichlet
boundary conditions on the unfitted interface. This has the advantage of not needing to discretise the
space H−1/2(I). Nevertheless, the Lagrange multiplier approach has also been applied in the context
of CutFEM [BH10] and fictitious domain methods [GPP94b; Glo+00]. While we continue to implement
Dirichlet conditions in practice using Nitsche’s method, we consider the Lagrange multiplier formulation
here since the Lagrange multiplier solution is the normal stress on the solid’s boundary, which in turn
makes the analysis easier to present and read. ▲

We can equivalently reformulated the system (5.1) as

(∂tu,v)F(t) + ν(∇u,∇v)F(t) − (p,∇ · v)F(t) − (q,∇ · u)F(t)

+ (λ,v)I(t) − (µ,u− U)I(t) + (∂tU, V )2 = (Fext + F , V )2. (5.2)

With this, we can then formulate our stability estimate for the fluid and solid velocity solutions.

Lemma 5.2 (Stability of the continuous weak formulation). For the fluid and solid velocity solution
(u, U) of (5.2), we have that

∥u(t)∥2
F(t) + ∥U(t)∥2

2 +
∫ t

0
ν∥∇u(s)∥2

F(s) ds ≤ ∥u(0)∥2
0 + ∥U(0)∥2

2 + t
c2
F c

2
P

ν|I | ∥Fext∥2
2. (5.3)

Proof. Testing (5.2) with (v, q,µ, V ) = (u,−p,λ, U), we have

(∂tu,u)F(t)︸ ︷︷ ︸
T1

+ν∥∇u∥2
F(t) −(σ(u, p)n, U)I(t)︸ ︷︷ ︸

T2

+ ( d
dtU, U)2
︸ ︷︷ ︸

T3

= (Fext + F , U)2︸ ︷︷ ︸
T4

. (5.4)

Let us therefore reformulate and derive estimates for the individual terms.

Fluid time derivative T1 = (∂tu,u)F(t). We recall Reynolds transport theorem for moving domains:

d
dt

∫

ω(t)
ϕ(x, t) dx =

∫

ω(t)
∂tϕ(x, t) dx+

∫

∂ω(t)
ϕ(x, t)w · n ds, (5.5)

where ϕ is some scalar quantity and w is the velocity of the moving interface ∂ω(t), c.f. for example
[Joh16, Remark 2.3]. Setting ϕ = u · u in (5.5), using the fact that U is both the velocity of the moving
interface and the trace of u on this interface, we have

(∂tu,u)F(t) = 1
2

( d
dt∥u∥2

F(t) −
∫

I(t)
(u · u)U · n ds

)
.

Now, since we have that u|I = U , we may interchange U and u in the integral over the interface. Using
the fact that U is constant in space, we then find using the divergence theorem that

−
∫

I(t)
(u · u)U · n ds = −∥U∥2

2

∫

I(t)
u · n ds = −∥U∥2

2

∫

F(t)
∇ · udx = 0.

As a result, we have
(∂tu,u)F(t) = 1

2
d
dt∥u∥2

F(t). (5.6)
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Stress Coupling T2 = −(σ(u, p)n, U)I(t). Using the fact that U is constant in space, we find that

−(σ(u, p)n, U)I(t) = −
∫

I(t)
σ(u, p)nds · U = (F , U)2.

This then cancels with the drag contribution on the right-hand side of (5.4).

Solid time derivative T3 = ( d
dtU,U)2: Since U is independent of space, we immediately have

(∂tU,U)2 = 1
2

d
dt∥U∥2

2. (5.7)

External solid forces T4a = (Fext, U)2. Under our assumption that Fext is constant in space and using
that u = U on I(t), we can rewrite the term as

(Fext, U)2 = 1
|I | (Fext,u)I(t).

Using the trace and Poincaré estimates, we then find

|(Fext, U)2| ≤ 1√
|I |

∥Fext∥2cF∥u∥H1(F(t)) ≤ 1√
|I |

∥Fext∥2cF cP ∥∇u∥F(t),

where with an abuse of notation cP = max{2, cP }. Note that the Poincaré inequality is applicable, since
u|Γ = 0, c.f. [Joh16, Remark A.37]. With a weighted Young’s inequality, we then have

|(Fext, U)2| ≤ c2
F c

2
P

2ν|I | ∥Fext∥2
2 + ν

2 ∥∇u∥2
F(t). (5.8)

Having derived estimates for the individual terms in (5.4), we insert (5.6), (5.7) and (5.8), and use the
observation that T2 cancels with (F , U)2. This then gives

d
dt∥u∥2

F(t) + ν∥∇u∥2
F(t) + d

dt∥U∥2
2 ≤ c2

F c
2
P

ν|I | ∥Fext∥2
2. (5.9)

Integrating with respect to time then gives the result, having used that gravity is constant in time.

5.2 Discretisation and Stability Analysis
As the aim is to apply the Eulerian time-stepping method to the coupled problem (2.13), we proceed as
before and begin with the temporal semi-discretisation.

5.2.1 Temporal Semi-Discretisation
Let us consider a finite time interval [0, T ], and a fixed time-step ∆t = T/N for some fix N ∈ N. We then
denote the time tn = n∆t and set Fn and In the fluid and interface domains at time tn. Furthermore,
we define the spaces V n, Qn and Nn to be the corresponding velocity, pressure and Lagrange multiplier
space on Fn and In, respectively. We note that the position of the solid (and therefore also the interface
and fluid region) is determined through the discretised solid ODE. The ODE governing the solid motion,
in turn, depends on the forces resulting from the discretised fluid problem. As a result, there is a mismatch
between Fn and F(tn). We will quantify this discrepancy in section 5.3 below. Furthermore, we define
the diffusion and pressure-coupling bilinear forms as

an(u,v) := ν

∫

Fn

∇u : ∇v dx and bn(p,v) := −
∫

Fn

q∇ · v dx.
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We further take a smooth extension operator

E : L2(F(t)) → L2(Oδ(F(t)))

as in subsection 4.2.1 such that Fn ⊂ Oδ(Fn−1) for n = 0, . . . , N . This is again achieved by setting
δ = cδw

n
∞∆t with wn

∞ := maxt∈[0,T ] |U · n|. The fact that this is bounded follows from the stability
estimate below. Furthermore, bounds on the terminal settling speed are available in the literature, for
example [Wei72] for slender bodies. We refer to Assumption A1 for the details of the necessary regularity
assumption of this extension operator.

The temporally semi-discrete scheme then reads as follows: For i = 1, . . . , N , find (ui, pi, U i,λi) ∈
V i ×Qi × Rd ×N i such that

1
∆t (u

i,v)F i + ai(ui,v) + bi(pi,v) + bi(q,ui) + (λi,v)Ii − (µ,ui − U i)Ii + 1
∆t (U

i, V )2

= (Fext + F , V )2 + 1
∆t (Eu

i−1,v)F i + 1
∆t (U

i−1, V )2 (5.10)

for all (v, q, V,µ) ∈ V i × Qi × Rd ×N i. For this we then have the following stability result, analogous
to Lemma 5.2.

Lemma 5.3 (Stability of the semi-discrete velocity solution). Let {ui, U i}N
i=1 be the fluid and solid

velocity solution to (5.10) with compatible initial data (u0, U0) ∈ V 0 ×Rd. We then have for n = 1, . . . , N
the stability estimate

∥un∥2
Fn + ∥Un∥2

2 + ∆t
n∑

i=1

ν

2 ∥∇ui∥2
F i

≤ exp
(
cL5.3a

ν
tn
)[

∥u0∥2
Ω0 + ∥U0∥2

2 + ν∆t
2 ∥∇u0∥Ω0 + cL5.3b∥Fext∥2

2
ν

tn,

]
(5.11)

with constants cL5.3a, cL5.3b > 0 independent of the time-step and the number of steps n.

Proof. We test (5.10) with (v, p, V,µ) = 2∆t(ui,−pi, U i,λi) to obtain

2(ui − Eui−1,ui)F i + 2(U i − U i−1, U i)2 + 2∆tν∥∇ui∥F i + 2∆t(λi, U i)Ii

= 2∆t(Fext + F , U i)2. (5.12)

For the two terms originating from the approximation of the time-derivative, we have the polarisation
identity 2(ui − Eui−1,ui)F i = ∥ui∥2

F i + ∥ui − Eui−1∥2
F i − ∥Eui−1∥2

F i . For the Lagrange multiplier and
external forcing terms we have as in the proof of Lemma 5.2 above that

(λi, U i)Ii = (F , U i)2 and (Fext, U
i)2 ≤ c1

2ν ∥Fext∥2
2 + ν∥∇ui∥2

F i

with c1 = c2
F c2

P

|I| . Using these equalities and estimates, we get from (5.12) that

∥ui∥2
F i + ∥U i∥2

2 + ν∆t∥∇ui∥2
F i ≤ ∥Eui−1∥2

F i + ∥U i−1∥2
2 + c1∆t

ν
∥F∥2

2. (5.13)

Now, for arbitrary ε > 0, we have

∥Eu∥Oδ(Ω) ≤ (1 + (1 + ε−1)δc′)∥u∥2
Ω + δc′′ε∥∇u∥2

Ω,
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c.f. [LO19, Lemma 3.5]. Then with the choice of δ and ε = ν
2c′′cδwn

∞
, it follows

∥Eui−1∥2
F i ≤ ∥Eui−1∥2

Oδ(F i−1) ≤
(

1 +
(

1 + 2c′′cδw
n
∞

ν

)
c′cδw

n
∞∆t

)
∥ui−1∥2

F i−1 + ν∆t
2 ∥∇ui−1∥2

F i−1

≤ (1 + c2∆t
ν

)∥ui−1∥2
F i−1 + ν∆t

2 ∥∇ui−1∥2
F i−1 .

Applying this to (5.13) then gives the estimate

∥ui∥2
F i + ∥U i∥2

2 + ν∆t
2 ∥∇ui∥2

F i

≤ (1 + c2∆t
ν

)∥ui−1∥2
F i−1 + ν∆t

2 ∥∇ui−1∥2
F i−1 + ∥U i−1∥2

2 + c1∆t
ν

∥Fext∥2
2.

Summing this over i = 1, . . . , n leads to

∥un∥2
Fn + ∥Un∥2

2 + ν∆t
2

n∑

i=1
∥∇ui∥2

F i

≤ ∥u0∥2
F0 + ν∆t

2 ∥∇u0∥2
F0 + ∥U0∥2

2 + c2∆t
ν

n−1∑

k=0
∥ui∥2

F i + c1t
n

ν
∥Fext∥2

2. (5.14)

Applying a discrete version of Gronwall’s lemma, see [HR90, Lemma 5.1], with the choices cL5.3a = c2
and cL5.3b = c1 then proves the claim.

Remark 5.4. The form of the discrete version of Gronwall’s lemma proven in [HR90, Lemma 5.1] is
without the additional term ∥Un∥2

2 on the left-hand side. However, the proof in [HR90] makes it imme-
diately apparent that the form used above also holds. ▲

Remark 5.5. Compared to Lemma 5.2, we were only able to show stability for the temporally semi-
discrete method for very short times due to Gronwall’s lemma resulting in the exponential-in-time term.
However, we note that this stability result is of the same form as Lemma 4.1 with a constant forcing
term. This similarity is noteworthy since the interface motion in chapter 4 is presumed not to depend on
the solution itself. ▲

Remark 5.6. We note that the interface position, an additional unknown in the system (5.10), as
recovered from the initial position and the solid velocity, does not explicitly appear in the stability
estimate. This is because the extension is made sufficiently large by choice of δ, which guarantees that
the interface In is contained in Oδ(Fn−1). Therefore, the exact position of the interface within Oδ(Fn−1)
does not play a role in the method’s stability. ▲

5.2.2 Fully Discrete Method
We now consider a version of the fully discrete Eulerian time-stepping method from chapter 4 applied
to the coupled fluid-solid problem (5.1). That is a CutFEM discretisation of the spatial integrals and
an implicit extension of the velocity through extra ghost-penalty stabilisation in a δ-strip around the
moving interface. As in subsection 4.2.2, let us consider continuous and inf-sup stable Taylor-Hood
spaces on the active mesh for the velocity and pressure, and an appropriate discretisation of the Lagrange
multiplier space. The fully discrete method then reads as follows: For i = 1, . . . , N , find (ui

h, p
i
h, U

i
h,λ

i
h) ∈

V i
h ×Qi

h × Rd ×N i
h such that

1
∆t (u

i
h − ui−1

h ,vh)F i
h

+ ai
h(ui

h,vh) + bi
h(pi

h,vh) + bi
h(qh,u

i
h) +

(
ν + 1

ν

)
iih(ui

h,vh) − 1
ν
ji

h(pi
h, qh)

+ (λi
h,vh)Ii

h
− (µh,u

i
h − U i

h)Ii
h

+ 1
∆t (U

i
h − U i−1

h , Vh)2 = (Fext + Fh, Vh)2 (5.15)
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for all (vh, qh, Vh,µh) ∈ V i
h × Qi

h × Rd × N i
h. Here we denote Fn

h and In
h as the fluid and interface

domains at time tn resulting from the discretised fluid and solid time derivatives and forces resulting
from the spatial discretisation used. Note that even though we consider exact geometry handling in the
integrals, there is again a mismatch between F(tn) and Fn

h . Note that the subscript “h” indicates that
the bilinear forms are defined with respect to the domains from the motion resulting from the discretised
problem.

In the following, we shall consider the following norm, which is independent of the mesh-cut position

|||vh|||∗,i := ∥∇vh∥Oi
δh,T

,

where Oi
δh,T is the entire active fluid mesh at time ti, i.e., those elements which either contribute to the

fluid domain or on which the extensions ghost-penalties act, c.f. subsection 4.3.1.

Lemma 5.7 (Stability of the velocity from the fully discrete method). Let {(ui
h, U

i
h)}N

i=1 be the fluid
and solid velocity solutions to (5.15). Then for n = 1, . . . , N , we have the stability estimate

∥un
h∥2

Fn
h

+ ∥Un
h ∥2

2 +
n∑

i=1

[
cν∆t

2 |||ui
h|||2∗,i + L

ν
iih(ui

h,u
i
h)
]

≤ exp((cL5.7a)tn)
[
∥u0

h∥2
F0 + ν∆t

2 |||u0
h|||2∗,0 + L∆t

ν
i0h(u0

h,u
0
h) + ∥U0

h∥2
2 + tn

cL5.7b

|I |ν ∥Fext∥2
2

]
.

Proof. The proof in very similar to that of Lemma 5.3, with the main difference in the discrete way with
which we deal with the ui−1

h term. To this end we test (5.15) with (vh, qh, Vh,µh) = 2∆t(ui
h,−pi

h, U
i
h,λ

i
h).

This gives with the BDF1 polarisation identity that

∥ui
h∥2

F i
h

+ ∥U i
h∥2

2 + 2ν∆t(∥∇ui
h∥2

F i
h

+ iih(ui
h,u

i
h)) + 2∆tL

ν
iih(ui

h,u
i
h) + ji

h(pi
h, p

i
h)

≤ 2∆t(F,U i
h)Ii

h
+ ∥ui

h∥2
F i−1

h

+ ∥U i−1
h ∥2

2. (5.16)

On the left-hand side of (5.16) we have with the ghost-penalty mechanism that

c1|||ui
h|||2∗,i ≤ ∥∇ui

h∥2
F i

h
+ iih(ui

h,u
i
h).

Furthermore, the pressure ghost-penalty term is positive and can therefore be bounded from below by 0.
On the right-hand side, we proceed as above for (5.8) to get

2∆t(F,U i
h)Ii

h
≤ c2∆t

ν|I | ∥F∥2
2 + ∆tc1ν|||ui

h|||∗,i.

For the ∥ui
h∥2

F i−1
h

, we then apply (4.18) together with our choice of δh and the appropriate choice of
ε = ν/(2c1c

′cδh
wn

∞), which gives

∥ui−1
h ∥2

F i
h

≤ ∥ui−1
h ∥2

Oδh
(F i−1

h
) ≤ (1 + c3∆t

ν
)∥ui−1

h ∥2
F i−1

h

+ c1ν

2 |||ui−1
h |||2∗,i−1 + c3h

2 ∆tL
ν

ii−1
h (ui−1

h ,ui−1
h ).

For h sufficiently small, we have that c3h
2 ≤ 1. Inserting these four estimates into (5.16), we have

∥ui
h∥2

F i
h

+ ∥U i
h∥2

2 + ν∆tc1
2 |||ui

h|||2∗,i + 2∆tL
ν

iih(ui
h,u

i
h)

≤ c2∆t
ν|I | ∥F∥2

2 + (1 + c3∆t
ν

)∥ui−1
h ∥2

F i−1
h

+ c1ν

2 |||ui−1
h |||2∗,i−1 + ∆tL

ν
ii−1
h (ui−1

h ,ui−1
h ) + ∥U i−1

h ∥2
2.

Summing up over i = 1, . . . , n and applying a discrete version of Gronwall’s lemma then concludes the
proof.
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5.3 Semi-Discrete Error Analysis
In this section, we develop an error estimate for the temporally semi-discrete problem. This quantifies
the error made by considering the motion from the coupled and discretised solid equation. To this end,
we will simplify the equation under consideration to the heat equation. That is, we remove the pressure
and the divergence constraint from the system, which can be seen as a reduction of the velocity space
to divergence-free functions. This simplification is to make the (already complex structure) easier to
present and understand. At the end of the section, we will remark on how the presented analysis can be
transferred to the Stokes equation.

Consider the smooth weak formulation

(∂tu,v)F(ti) + (∇u,∇v)F(ti) + (λ,v)I(ti) − (µ,u− U)I(ti) + (∂tU, V )2 = (Fext + F , V )2, (5.17)

with test-functions (v, V,µ) ∈ V (ti) × Rd × N(ti). The temporally semi-discrete weak formulation is
then given by

1
∆t (u

i − Eui−1,vi)F i + (∇ui,∇vi)F i + (λi,vi)Ii − (µi,ui − U i)Ii + 1
∆t (U

i − U i−1, V i)2

= (Fext + F i, V i)2, (5.18)

with test-functions (vi, V i,µi) ∈ V i ×Rd ×N i defined on the spatially smooth domains at time ti, where
the location of the interface is given by the temporally discrete solution. In the following, we shall drop
the explicit notation of the extension operator by identifying un−1 with Eun−1 for better readability.

Now, let C(ti) and Ci denote the position of the solid at time ti in the temporally smooth and temporally
discrete cases, respectively. We then have for the temporally smooth case that

C(ti) = C(0) +
∫ ti

0
U(t) dt = C(ti−1) +

∫ ti

ti−1
U(t) dt,

while for the temporally discrete case we have

Ci = Ci−1 + ∆tU i.

The difference C(ti)−Ci therefore represents the miss-match in the domains resulting from the temporal
semi discretisation (including the extension) of the smooth problem (5.17). We can therefore define
a mapping from the temporally discrete domain to the exact domain at time ti. We define this as
Φi : F i → F(ti) with

Φi := id +(C(ti) − Ci)φi, (5.19)

where φi ∈ C∞(F i) such that φ|Ii = 1 and φi
∣∣
F i\Oδ(Ii) = 0. We then take this mapping to be

invertible. In the following, this mapping takes a similar role as the geometry approximation mapping in
chapter 4.

Lemma 5.8. Let ∥·∥∞ be the L∞ norm on F i. Then for the mapping Φi : F i → F(ti) defined in (5.19),
it holds that

∥id −Φi∥2
∞ ≲ ∆t2

i∑

j=0
∥Uj∥2

2 + ∆t3ti∥∂tU∥2
∞, (5.20)

where Ui := U(ti) − U i.

Proof. Be definition of the mapping Φi and the fact that φi is smooth, we have that

∥id −Φi∥2
∞ ≲ ∥C(ti) − Ci∥2

2∥φi∥2
∞ ≲ ∥C(ti) − Ci∥2

2.
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Then by the definition of C(ti) and Ci, we have

∥C(ti) − Ci∥2
2 ≲ ∥C(ti−1) − Ci−1∥2

2 + ∥
∫ tk

ti−1 U(t) − U i dt∥2
2. (5.21)

With respect to the final term, we have for t ∈ [ti−1, ti] that U(t) ≤ U(ti) − t∥∂tU∥∞,[ti−1,ti] ≤ U(ti) −
∆t∥∂tU∥∞,[ti−1,ti]. Therefore, we have

∥∥∥
∫ tk

ti−1
U(t) − U i dt

∥∥∥
2

2
≤
∥∥∥
∫ tk

ti−1
U(ti) − ∆t∥∂tU∥∞,[ti−1,ti] − U i dt

∥∥∥
2

2

≤ ∆t2∥Ui∥2
2 + ∆t4∥∂tU∥2

∞,[ti−1,ti]. (5.22)

Applying (5.22) to (5.21) recursively, it follows

∥id −Φi∥2
∞ ≲

i∑

j=0

[
∆t2∥Uj∥2

2 + ∆t4∥∂tU∥2
∞,[tj−1,tj ]

]
≲ ∆t2

i∑

j=0
∥Uj∥2

2 + ∆t3ti∥∂tU∥2
∞.

Lemma 5.9. For the mapping Φi defined in (5.19), describing the mismatch between the exact and the
discrete domain at time ti, we have that

∥I −DΦi∥∞ ≃ ∥id −Φi∥∞, ∥1 − det(DΦi)∥∞ ≃ ∥id −Φi∥∞,

∥id −Φi∥∞,Ii ≃ ∥id −Φi∥∞, ∥1 − det(DΦi)∥∞,Ii ≃ ∥id −Φi∥∞.

Proof. This follows by φi ∈ C∞(F i) and the fact that the remaining components of Φi are independent
of space.

Lemma 5.10. Let

M(Ui,∆t) = ∆t2
i∑

j=0
∥Uj∥2

2 + ∆t3ti∥∂tU∥2
∞.

Then for u ∈ H3(F(ti)), it holds that

∥u ◦ Φi − Eu∥2
F i ≲ ∥u∥2

H1(F(ti))M(Ui,∆t), (5.23)
∥(∇u) ◦ Φi − ∇Eu∥2

F i ≲ ∥u∥2
H2(F(ti))M(Ui,∆t), (5.24)

∥u ◦ Φi − Eu∥2
Ii ≲ ∥u∥2

H2(F(ti))M(Ui,∆t), (5.25)
∥(∂nu) ◦ Φi − ∂nEu∥2

Ii ≲ ∥u∥2
H3(F(ti))M(Ui,∆t). (5.26)

Proof. Φi maps the approximated interface location I i to the exact interface location I(ti), and we know
that the distance between the two is given by |C(ti) − Ci| for which we have proven the estimate in the
proof of Lemma 5.8. The proof of (5.23)–(5.26) is therefore completely analogous to that of [GOR15,
Lemma 7.3].

Let us now denote the fluid velocity, Lagrange multiplier and solid velocity errors by

Ei := u(ti) − ui Li := λ(ti) − λi Ui := U(ti) − U i.

Now, if (vi,V i,µi) are applicable test-functions for (5.18), then vi
ℓ = vi ◦(Φi)−1, V i

ℓ = V i ◦(Φi)−1 (= V i)
and µi

ℓ = µi ◦ (Φi)−1 are compatible test functions for the temporally smooth problem (5.17). Testing
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(5.17) with (vi
ℓ, V

i
ℓ ,µ

i
ℓ), subtracting (5.18) from the result of this, as well as adding and subtracting

appropriate terms, we get the error equation

1
∆t (E

i − Ei−1,vi)2
F i + (∇Ei,∇vi)F i + (Li,vi)Ii − (µi,Ei − Ui)Ii + 1

∆t (U
i − Ui−1, V i)2

= (F (ti) − F i, V i)2 + 1
∆t (u(ti) − u(ti−1),vi)F i − (∂tu(ti),vi

ℓ)F(ti)

+ (∇u(ti),∇vi)F i − (∇u(ti),∇vi
ℓ)F(ti) + (λ(ti),vi)Ii − (λ(ti),vi

ℓ)I(ti)

+ (µi
ℓ,u(ti) − U(ti))I(ti) − (µi,u(ti) − U(ti))Ii + 1

∆t (U(ti) − U(ti−1), V i)2 − (∂tU(ti), V i
ℓ )2

= T1 + T2 + T3 + T4 + T5 + T6 =: Ei
c(vi, V i,µi). (5.27)

Therefore, the right-hand side represents the consistency error made by the Eulerian time-stepping scheme
and the resulting error in the interface/solid position.

The goal is to test (5.27) with (vi, V i,µi) = (Ei,Ui,Li) in order to get an error estimate along similar
lines as the stability estimates before. As we have seen in section 5.1, a number of the Lagrange multiplier
terms on the left-hand side cancel each other out when testing symmetrically. Therefore, we look at which
terms remain in (5.27) after symmetric testing to not include unnecessary terms. We, therefore, look at
the Lagrange multiplier terms on the left-hand side:

(Li,Ei)Ii − (Li,Ei − Ui)Ii = (Li,Ui)Ii = (λ(ti),Ui)Ii − (λi,Ui)Ii .

Furthermore, the drag terms on the right-hand side can be rewritten as

(F − F n,Ui)2 = (∂nu(ti),Ui)I(ti) − (∂nu
i,Ui)Ii .

Now, the Lagrange multiplier solution is known to be λ(ti) = ∂nu(ti) and λi = ∂nu
i. Combining the

above two equalities in the tested error equation means that we are left with

T′
1 = (λ(ti),Ui)I(ti) − (λ(ti),Ui)Ii (5.28)

on the right-hand side.

Now, we define the space-time domain resulting from the motion of the smooth problem as Q :=⋃
t∈[0,T ] F(t) × {t}. We can then bound the error contributions in the following lemma.

Lemma 5.11. For (vi, V i,µi) ∈ V i × Rd ×N i we have that

|T′
1| ≲ M(Ui,∆t)1/2∥u(ti)∥H3(F(ti))∥Ui∥Ii |T2| ≲ (∆t+ M(Ui,∆t)1/2)∥u∥W2,∞(Q)∥∇vi∥F i,

|T3| ≲ M(Ui,∆t)1/2∥u(ti)∥H2(F(ti))∥∇vi∥F i , |T4| ≲ M(Ui,∆t)1/2∥u(ti)∥H3(F(ti))∥∇vi∥F i ,

|T5| ≲ M(Ui,∆t)1/2∥u(ti)∥H2(F(ti))∥µi∥Ii , |T6| ≲ ∆t∥∂2
tU∥∞,[0,ti]∥V i∥2,

with T′
1 and Ti i = 2, . . . , 6, as defined in (5.28) and (5.27), respectively.

Proof. For the modified Lagrange multiplier term T′
1, we use that Ui ∈ Rd such that Ui = Ui ◦ (Φi)−1.

Denoting J := det(DΦi), we then get the estimate

|T′
1| = |(λ(ti)) ◦ Φi, JUi)Ii − (λ(ti),Ui)Ii |

= |(λ(ti) ◦ Φi − λ(ti), JUi)Ii − (λ(ti), (J − 1)Ui)Ii |
≲ ∥λ(ti) ◦ Φi − λ(ti)∥I(ti)∥Ui∥Ii + ∥1 − J∥∞,Ii∥∂nu(ti)∥I(ti)∥Ui∥Ii

≲
[
∆t2

i∑

j=0
∥Uj∥2

2 + ∆t3ti∥∂tU∥2
∞
]1/2

∥u(ti)∥H3(F(ti))∥Ui∥Ii , (5.29)
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where the last estimate results from Lemma 5.9 and Lemma 5.10.

For the fluid time-derivative consistency error term, we have

|T2| =
∣∣∣ 1
∆t (u(ti) − u(ti−1),vi)F i − (∂tu(ti),vi

ℓ)F(ti)

∣∣∣

=
∣∣∣−
∫

F i

∫ ti

ti−1

t− tn

∆t ∂2
tu(t) dt · vi dx+ (∂tu(ti), vi)F i − (∂tu(ti), vi

ℓ)F(ti)

∣∣∣

≤ 1
2∆t∥u∥W2,∞(Q)∥vi∥F i + |(∂tu(ti) − ∂tu(ti) ◦ Φi,vi)F i |

≲ (∆t+ M(Ui,∆t)1/2)∥u∥W2,∞(Q)∥vi∥F i .

See also [LO19, Lemma 5.11]. The claim then follows by an application of the Poincaré inequality.

For the diffusion consistency error, we have with Lemma 5.10, Lemma 5.9 and Lemma 5.8 that

|T3| = |(∇u(ti),∇vi)F i − (∇u(ti),∇vi
ℓ)F(ti)|

= |(∇u(ti),∇vi)F i − (∇u(ti) ◦ Φi, J(DΦi)−1)∇vi)F i |
= |(∇(u(ti) − u(ti) ◦ Φi), J(DΦi)−1)∇vi)F i + (∇u(ti), (I − J(DΦi)−1)∇vi)F i |
≤ M(Ui,∆t)1/2∥u(ti)∥H2(F(ti))∥∇vi∥F i .

For the Lagrange multiplier term, we similarly find by additionally using a trace and the Poincaré in-
equality that

|T4| = |(λ(ti),vi)Ii − (λ(ti),vi
ℓ)I(ti)| = |(λ(ti),vi)Ii − (λ(ti) ◦ Φi, Jvi)Ii |

= |(λ(ti) − λ(ti) ◦ Φi, Jvi)Ii − (λ(ti), (1 − J)vi)Ii |
≲ M(Ui,∆t)1/2∥u(ti)∥H3(F(ti))∥∇vi∥F i .

Furthermore, using the fact that U ∈ Rd, so that U ◦ Φi = U , we have for the boundary condition term
that

|T5| = |(µi
ℓ,u(ti) − U(ti))I(ti) − (µi,u(ti) − U(ti))Ii |

= |(Jµi,u(ti) ◦ Φi − U(ti) ◦ Φi)Ii − (µi,u(ti) − U(ti))Ii |
= |((J − 1)µi, U(ti))Ii + (Jµi,u(ti) ◦ Φi − u(ti))Ii + ((J − 1)µi,u(ti))Ii |
≲ M(Ui,∆t)1/2∥u(ti)∥H2(F(ti))∥µi∥Ii .

The solid velocity consistency error is bounded similar to T2. However, the situation is simpler here
because U ∈ Rd does not depend on the domain consistency. Therefore,

|T6| =
∣∣∣ 1
∆t (U(ti) − U(ti−1), V i)2 − (∂tU(ti), V i

ℓ )2

∣∣∣ ≲ ∆t∥∂2
tU∥∞,[0,ti]∥V i∥2.

Theorem 5.12 (Error estimate for the temporally semi-discrete problem). If for the solution of the
smooth problem (2.13) the regularity u ∈ W3,∞(Q) holds, then for ∆t sufficiently small, we have the
error estimate

∥En∥2
Fn + ∆t

n∑

i=1

1
4∥∇Ei∥2

F i + ∥Un∥2
2 ≤ exp

(
∆t

n∑

i=1

r(u)
1 − ∆t r(u)

)[
cT 5.12a∆t

n∑

i=1
∆t2R(u, U)

]
, (5.30)
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where

r(u) := cT 5.12b

[
tn(3 + ∆t)(1 + ∥u∥2

W3,∞(Q)) + 1
]

R(u, U) := ∥u∥2
W3,∞(Q) + ∥u∥4

W3,∞(Q) + ∥∂tU∥2
∞,[0,tn]

and cT 5.12a, cT 5.12b > 0 are constants independent of the time-step ∆t and the number of time-steps n.

Proof. Testing (5.27) with (vi, V i,µi) = 2∆t(Ei,Ui,Li), we get analogous to (5.16) that

∥Ei∥2
F i + ∥Ei − Ei−1∥2

F i + 2∆t∥∇Ei∥2
F i + ∥Ui∥2

2

≤ ∥Ei−1∥2
F i + ∥Ui−1∥2

2 + 2∆t(|T′
1(Ui)| + |T2(Ei)| + |T3(Ui)|

+ |T4(Ei)| + |T5(Li)| + |T6(Ui)|)
≤ (1 + c1∆t)∥Ei−1∥2

F i−1 + ∆t/2∥∇Ei−1∥F i−1 + ∥Ui−1∥2
2

+ 2c2∆t
[
M(Ui,∆t)1/2∥u∥W3,∞(Q)

{
∥Ui∥Ii + ∥∇Ei∥F i + ∥Li∥Ii

}

+ ∥u∥W2,∞(Q)∥∇Ei∥F i + ∥∂tU∥∞,[0,ti]∥Ui∥2

]
,

(5.31)

where the second inequality is due to (5.29) and Lemma 5.11.

As the aim is to sum this over i = 1, . . . , n, we need to deal with the error terms at time ti on the
right-hand side.

Motion error with solid velocity error: With the weighted Young’s inequality and the fact that Ui ∈ Rd,
we have that

2c2∆tM(Ui,∆t)1/2∥u(ti)∥W3,∞(Q)∥Ui∥Ii ≤ M(Ui,∆t) + c∆t2|I i|∥u(ti)∥2
W3,∞(Q)∥Ui∥2

2.

Motion error with the gradient of the fluid velocity error: Again, with a weighted Youngs inequality, we
have that

2c2∆tM(Ui,∆t)1/2∥u(ti)∥W3,∞(Q)∥∇Ei∥Ii ≤ M(Ui,∆t) + c∆t2∥u(ti)∥2
W3,∞(Q)∥∇Ei∥2

F i . (5.32)

Motion error with the Lagrange multiplier error: For the Lagrange multiplier term, we note that we have
an inf-sup condition:

There exists a constant β > 0 such that for all µ ∈ N it holds that

β∥µ∥N ≤ sup
v∈V

(µ,v)I
∥∇v∥F

.
(5.33)

The bilinear form (·, ·)I is bounded on N ×V due to the Cauchy-Schwarz, trace and Poincaré estimates.
The inf-sup condition (5.33) is therefore an immediate consequence of the unique solvability of the Poisson
problem with Lagrange multipliers to enforce boundary condition [Bab73a] and the more general theory
for saddle-point problems [BBF13].

Testing (5.27) with (vi, V i,µi) = (vi, 0, 0), we have that

(Li,vi)Ii = − 1
∆t (E

i − Ei−1,vi)2
F i − (∇Ei,∇vi)F i − T2 − T4 − T4

≤
[ cP

∆t∥E
i − Ei−1∥F i + ∥∇Ei∥F i + c(∆t+ M(Ui,∆t)1/2∥u∥W3,∞(Q))

]
∥∇v∥F i .

As a result of the inf-sup condition (5.33), we then have

∥Li∥Ii ≤ 1
β

[ cP

∆t∥E
i − Ei−1∥F i + ∥∇Ei∥F i + c(∆t+ M(Ui,∆t)1/2∥u∥W3,∞(Q))

]
. (5.34)
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With this, the Lagrange multiplier error contribution in (5.31) then becomes
2c2
β

∆tM(Ui,∆t)1/2∥u∥W3,∞(Q)

[ cP

∆t∥E
i − Ei−1∥F i + ∥∇Ei∥F i + c(∆t+ M(Ui,∆t)1/2∥u∥W3,∞(Q))

]
.

Now we deal with the additive components of this term separately:

•With the weighted Young’s inequality we get for the first term that
2c2
β

∆tM(Ui,∆t)1/2∥u∥W3,∞(Q)
cP

∆t∥E
i − Ei−1∥F i ≤ cM(Ui,∆t)∥u∥2

W3,∞(Q) + ∥Ei − Ei−1∥2
F i .

•The second term, containing the fluid velocity gradient term, is
2c2
β

∆tM(Ui,∆t)1/2∥u∥W3,∞(Q)∥∇Ei∥F i

for which we already have a bound with (5.32), such that this term can be absorbed there.

•The next term is estimated as
2c2
β

∆t2M(Ui,∆t)1/2∥u∥2
W3,∞(Q) ≤ ∆tM(Ui,∆t) + c∆t3∥u(ti)∥4

W3,∞(Q).

•The final term is then left as
c∆tM(Ui,∆t)∥u∥2

W3,∞(Q).

Uncoupled gradient of the velocity error: This term appears in the same form in the uncoupled setting.
With a weighted Young’s inequality we have

2c2∆t2∥u∥W2,∞(Q)∥∇Ei∥F i ≤ c∆t3∥u∥2
W2,∞(Q) + ∆t∥∇Ei∥2

F i ,

such that the ∆t∥∇Ei∥2
F i-term can be absorbed in the left-hand side of (5.31).

Uncoupled solid velocity error: We proceed again with the weighted Young’s inequality to get the estimate

2c2∆t
[
∆t∥∂tU∥∞,[0,ti]∥Ui∥2

]
≤ ∆t

[
∆t2c∥∂tU∥2

∞,[0,ti] + ∥Ui∥2
2

]
.

To ease the notation, we shall denote R1(u) := ∥u(ti)∥2
W3,∞(Q) and R2(U) := ∥∂tU∥2

∞,[0,tn]. Then
combining the above estimates for the right side terms of (5.31) gives

∥Ei∥2
F i + ∆t∥∇Ei∥2

F i + ∥Ui∥2
2 ≤ (1 + c1∆t)∥Ei−1∥2

F i−1 + ∆t
2 ∥∇Ei−1∥2

F i−1 + ∥Ui−1∥2
2

+ c∆t2R1(u)∥Ui∥2
2 + 2c∆t2R1(u)∥∇Ei∥2

2 + ∆t∥Ui∥2
2

+ c(3 +R1(u) + ∆t+ ∆tR1(u))M(Ui,∆t)
+ c∆t3R1(u)2 + c∆t3R1(u) + c∆t3R2(U).

Summing this over i = 1, . . . , n then gives

∥En∥2
Fn + ∆t

n∑

i=1

[1
2 − c∆tR1(u)

]
∥∇Ei∥2

F i + ∥Un∥2
2

≤ ∆t
n−1∑

i=1
c1∥Ei∥2

Fk + ∆t
n∑

i=1

[
c∆tR1(u) + 1

]
∥Ui∥2

2

+ c(3 +R1(u) + ∆t+ ∆tR1(u))
n∑

i=1
M(Ui,∆t)

+ ∆t
n∑

i=1

[
c∆t2R1(u)2 + c∆t2R1(u) + c∆t2R2(U)

]
. (5.35)
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Before we can apply Gronwall’s lemma, we need to deal with the term
∑n

i=1 M(Ui,∆t). For this we
estimate

n∑

i=1
M(Ui,∆t) =

n∑

i=1


∆t3ti∥∂tU∥2

∞,[0,ti] + ∆t2
k∑

i=1
∥Ui∥2

2


 ≤ ∆t3

n∑

i=1
tiR2(U) + ∆t tn

n∑

i=1
∥Ui∥2

2.

Inserting this into (5.35) then gives

∥En∥2
Fn + ∆t

n∑

i=1

[1
2 − c∆tR1(u)

]
∥∇Ei∥2

F i + ∥Un∥2
2

≤ ∆t
n−1∑

i=1
c1∥Ei∥2

Fk + ∆t
n∑

i=1

[
c∆tR1(u) + ctn(3 +R1(u) + ∆t+ ∆tR1(u)) + 1

]
∥Ui∥2

2

+ ∆t
n∑

i=1

[
c∆t2R1(u)2 + c∆t2R1(u) + c∆t2(1 + ti)R2(U)

]
.

For ∆t sufficiently small we have that 1
4 <

1
2 − c∆tR1(u) so that we we can apply a discrete version of

Gronwall’s lemma to conclude the proof.

Remark 5.13 (Necessary regularity for the error estimate). Compared to the case in chapter 4, where
the domain motion is given, the error estimate derived here requires a higher regularity of the solution
of u ∈ W3,∞(Q) resulting from the domain error in the estimate of the Lagrange multiplier consistency
error, compared to u ∈ W2,∞(Q) needed in [LO19; WRL21] and section 4.3. We note here that this
higher regularity condition was avoided in [WRL21] by a discrete "detour", thereby requiring less regularity
but adding additional error terms. ▲

Remark 5.14 (Time-step restriction). The stability estimates in Lemma 5.3 and Lemma 5.7 in chapter 4
and the literature [LO19; BFM19; WRL21] used the form of Gronwall’s lemma, in which the time-step
did not affect the exponential factor. However, the more general form of Gronwall’s lemma had to be
applied here due to the error resulting from the coupling between the solution and the domain motion.
As a result, the above error estimate only holds under a time-step restriction dependent on ∥u∥W3,∞(Q).
We note, however, that such a restriction can also be seen in the literature. For example, a time-step
restriction depending on ∥u∥W2,∞(Ω) is required in [SR20] for the error estimate of the solution resulting
from the Crank-Nicolson scheme for the Navier-Stokes equations. ▲

Remark 5.15 (Error estimate for the fully discrete method applied to the Stokes problem). Looking
at the proofs for the error estimates of the unfitted Eulerian time-stepping method in section 4.3 and the
literature [LO19; BFM19; WRL21], we find that most of the work towards a full error estimate for the
discretised scheme applied to the Stokes equations in this coupled setting, has been done by quantifying
the domain consistency error and then carrying this through to the temporal estimate in Theorem 5.12.

For an error estimate for the fully discretised method, we would get an additional discretisation factor
h2k in the domain error in M in Lemma 5.11. This would then lead to additional additive terms in
the consistency estimate, which can be dealt with as above. This, together with standard interpolation
estimates, then makes the derivation of the full error estimate a technical exercise in combining the
elements used for the proof of Theorem 5.12 and [WRL21, Theorem 5.16]. ▲





CHAPTER 6

A Fluid-Structure Interaction Problem with Contact

Structure of Chapter The full fluid-rigid body system (2.5) is considered in the context of a fluid-
structure interaction problem with solid contact, for which we have experimental data to validate our
results against. The rotational symmetry of the set-up of this experiment in cylindrical coordinates allows
the consideration of the underlying partial differential equation in a spatially reduced formulation. This
allows the simulation of the three-dimensional problem using a two-dimensional discretisation. We present
the known derivation of this reduced formulation and illustrate the accuracy and efficiency of this approach
numerically. Using a simple contact avoidance scheme from the literature, we then simulate the full fluid-
structure interaction scheme using our Eulerian time-stepping scheme developed in chapter 4. This follows
our work in [Wah+21]. Details of the discretisation for the coupled problem, without prescribed geometry
motion, are given, and the contact model’s impact is studied numerically.
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6.1 Spatial Reduction of Rotationally Symmetric PDEs
Three-dimensional finite element discretisations are computationally more expensive than the correspond-
ing two-dimensional discretisations due to the larger number of couplings between elements, resulting in
denser systems. Under the assumptions of symmetry of the computational domain, data and the solu-
tion, the question arises whether a lower-dimensional computation suffices to solve the higher-dimensional
problem and how to formulate such a reduced discretisation. In the following, we consider domains that
are symmetric with respect to rotations in cylindrical coordinates. In order to compute flow problems
posed in such geometries using a spatially reduced formulation, we derive the corresponding reduced
weak formulations of the terms that constitute the weak formulation of the partial differential equations
governing the fluid motion.
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6.1.1 Derivation
Notation In the following, we shall use x, y, z to denote the three Cartesian coordinate directions.
Images of functions and differential operators in Cartesian coordinates will be indicated by a ” ̂ ”, i.e.,
û or ∇̂. Furthermore, we shall use lower case Roman indices to indicate an index from the Cartesian
coordinate set. The three cylindrical coordinates (radius, angle and height) are denoted as r, ϕ, z while
functions and differential operators are denoted without additional notation, i.e., simply u or ∇. Indices
running over the cylindrical coordinate directions will be denoted by using lower case Greek letters.

The domain in which the PDE problem is posed is denoted as Ω in cylindrical coordinates. For the solution
of a given PDE to be rotationally symmetric, we need to assume that the domain is also symmetric with
respect to ϕ. To reduce the dimension of the problem, we will rotate the domain into the r+ − z-plane.
The two-dimensional domain is then denoted as Ω2d. We further split the boundary of Ω2d into the
rotational axis part Γrot = {x ∈ ∂Ω2d | r = 0} and the remainder Γout = ∂Ω2d \ Γrot.

Coordinate Transformation In order to transform coordinates and derivatives, we consider the following
mapping from cylinder to Cartesian coordinates:

Tt : (r, ϕ, z) 7→ (r cos(ϕ), r sin(ϕ), z) = (x, y, z).

The Jacobi matrix and its inverse of this mapping are given by

J =




cos(ϕ) −r sin(ϕ) 0
sin(ϕ) r cos(ϕ) 0

0 0 1


 and J−1 =




cos(ϕ) sin(ϕ) 0
−sin(ϕ)/r cos(ϕ)/r 0

0 0 1


 .

Assuming that the solution to a given partial differential equation is symmetric with respect to rotation,
we can reduce the spatial description from a three-dimensional problem into a two-dimensional one by
rotating the image of the solution into the (x− z)-plane. This transformation is defined by

T (ϕ) =




cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


 = (Tr, Tϕ, Tz).

For a velocity field û ∈ R3, we then have

û(x, y, z) = T (ϕ)u(r, ϕ, z).

We note that it holds that ∂ϕTr = Tϕ and ∂ϕTϕ = −Tr. In addition, we have that the columns of T (ϕ)
are orthogonal, i.e., Tα · Tβ = δαβ where δαβ denotes the Kronecker delta.

As we will need the inverse Jacobean often, we shall denote this as F = J−1. For this, we then have the
identities

FFT =




1 0 0
0 1/r2 0
0 0 1


 and TTFT =




1 0 0
0 1/r 0
0 0 1


 . (6.1)

Transformation of Weak Forms

We transform the weak forms constituting the Navier-Stokes equations from the three-dimensional de-
scription in Cartesian coordinates to the rotationally symmetric and two-dimensional form.
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Vector Laplace We begin by transforming the image and the coordinates from Cartesian to cylindrical
coordinates. For brevity and simplicity of notation, we denote the domain of integration in the r- and
z-components in cylinder coordinates as R and Z, respectively:

(∇̂û, ∇̂v̂)Ω̂ =
∑

i

∫

Ω
FT ∇(Tu)i · FT ∇(Tvi) dx =

∑

i

∫ 2π

0

∫

R,Z

FFT ∇(Tu)i · ∇(Tv)ir dr dz dϕ

=
∑

i

∫ 2π

0

∫

R,Z

r∂r(Tu)i∂r(Tv)i + 1
r
∂ϕ(Tu)i∂ϕ(Tv)i + r∂z(Tu)i∂z(Tv)i dr dz dϕ. (6.2)

Now, since the basis vectors are dependent on ϕ, we do not have that ∂ϕ(Tu) = 0. Therefore, we need
to transform the basis as well. For the first term in (6.2), we have that

∂r(Tu)i = ∂r(êi, Tu) = ∂r(êi,
∑

α

Tαuα) = (êi,
∑

α

(∂rTα)uα + Tα(∂ruα)) = (êi,
∑

α

Tα(∂ruα)), (6.3)

where the final equality followed from ∂rTα = 0. For the remaining two terms, we find

∂z(Tu)i = (êi,
∑

α

Tα(∂zuα)), ∂ϕ(Tu)i = (êi,
∑

α

(∂ϕTα)uα + Tα(∂ϕuα)) = (êi, Tϕur − Truϕ), (6.4)

where the last equality follows from ∂ϕTz = 0 and ∂ϕu = 0. Now, using the orthogonality of the columns
of T , we find using the above three representations of the derivatives of the transformed images that

∑

i

∂r(Tu)i∂r(Tv)i = (
∑

α

Tα(∂ruα),
∑

β

Tβ(∂rvβ)) =
∑

α,β

Tα · Tβ∂ruα∂rvβ =
∑

α

∂ruα∂rvα,

and similarly
∑

i

∂z(Tu)i∂z(Tv)i =
∑

α

∂zuα∂zvα

∑

i

∂ϕ(Tu)i∂ϕ(Tv)i = (Tϕur − Truϕ, Tϕvr − Trvϕ) = urvr + uϕvϕ.

The weak form of the vector Laplace (6.2) can therefore be written as

(∇̂û, ∇̂v̂)Ω̂ = 2π
∫

R,Z

r
[∑

α

∂ruα∂rvα + ∂zuα∂zvα

]
+ 1
r

(urvr + uϕvϕ) dr dz.

Unfortunately, the expression on the right-hand side of this is still three-dimensional. As a result, we need
an additional equation for uϕ. In order to rotate û into the (x − z)-plane, we have assumed that uϕ is
constant. The only physical choice in the context of u being a fluid velocity is uϕ = 0. Any non-zero value
would correspond to a rotation of the frame of reference. This would then cause Coriolis and centrifugal
forces after the transformation back to Cartesian coordinates. However, there is no reason for these to
appear. We can therefore write the vector Laplace equation into the two-dimensional expression

(∇̂û, ∇̂v̂)Ω̂ = 2π
[
(r∇u2d,∇v2d)Ω2d + (1

r
u2d

r ,v2d
r )Ω2d

]
. (6.5)

Finally, we need a boundary condition for ur on the axis of rotational symmetry at r = 0 since the
original problem does not give this. Since we have that u is a flow velocity, and therefore divergence-free,
it holds

0 = ∇ · u = 1
r
∂r(rur) + 1

r
∂ϕuϕ + ∂zuz = 1

r
ur + ∂rur + ∂zuz

for a rotationally symmetric u. For r → 0 it must therefore hold that ur = 0 on the symmetry axis.

Remark 6.1 (Quadrature). The second term on the right-hand side of (6.5) has a singularity on the
rotational axis r = 0. As a result, a finite element discretisation for this equation must be based on
quadrature rules that do not contain any points on the boundary. As noted in subsection 4.5.2, NGSolve
uses mapped Gauß-Jacobi quadrature rules on simplices for higher-order (k > 1) elements such that shape
functions do not have to be evaluated on the element boundary. ▲
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Transposed Gradient For fluid-structure interaction problems, we require the transformed transposed
gradient for the Cauchy stress tensor. We look at the components of the two matrices in ((∇̂û)T , ∇̂v̂)Ω̂.
For the test function, we have with the product rule that

(∇̂v̂)ij = (FT ∇(Tv))ij =
∑

α,β

f t
iα∂α(tjαvα) =

∑

α,β

fiα(∂αvβ)ttβj + f t
iϕtjϕvr = (FT (∇v)TT )ij + f t

iϕtjϕvr,

where the penultimate equality follows from vϕ = 0 and ∂ϕTr = Tϕ. Similarly, we have for the trial
function

(∇̂û)T
ij = (T (∇u)TF )ij + tiϕfϕjur.

Writing this out in full and using that ∂ϕv = 0 then gives

∇̂v̂ =




cos2(ϕ)∂rvr + sin2(ϕ)vr/r cos(ϕ) sin(ϕ)∂rvr − cos(ϕ) sin(ϕ)vr/r cos(ϕ)∂rvz

cos(ϕ) sin(ϕ)∂rvr − cos(ϕ) sin(ϕ)vr/r sin2(ϕ)∂rvr + cos2(ϕ)vr/r sin(ϕ)∂rvz

cos(ϕ)∂rvz sin(ϕ)∂rvz ∂zvz


 .

This then leads to

(∇̂û)T : ∇̂v̂ = ∂rur∂rvr + ∂ruz∂zvr + ∂zur∂rvz + ∂zuz∂zvz + 1
r2urvr

= (∇2du2d)T : ∇2dv2d + 1
r2urvr.

Integrating with respect to Ω̂, using the above expression, changing the integration to cylinder coordinated
and integrating with respect to ϕ then gives the two-dimensional weak expression

((∇̂û)T , ∇̂v̂)Ω̂ = 2π
[
(r(∇u2d)T ,∇v2d)Ω2d + (1

r
u2d

r ,v2d
r )Ω2d

]
. (6.6)

Pressure Coupling We proceed as before by transforming the image and coordinates into cylinder co-
ordinates. In the following, lower case letters will denote the matrix entries for the coordinate and image
transformation matrices. We compute using the product rule that

(p̂, ∇̂ · v̂)Ω̂ =
∑

i

∫

Ω̂
p̂ ∂̂i(Tv)i dx̂ =

∑

i,α

∫ 2π

0

∫

R,Z

rpfT
iα∂α(Tv)i dr dz dϕ

=
∑

i,α,β

∫ 2π

0

∫

R,Z

rpfT
iα∂α(ti,βvβ) dr dz dϕ =

∑

i,α,β

∫ 2π

0

∫

R,Z

rpfT
iα((∂αti,β)vβ + tiβ∂αvβ) dr dz dϕ

=
∑

i,α,β

∫ 2π

0

∫

R,Z

rpfϕi(∂ϕtiβ)vβ + rp(tTβif
T
ir∂rvβ + tTβif

T
iz∂zvβ) dr dz dϕ, (6.7)

where the last equality follows from T only depending on ϕ and v being independent of ϕ. For the first
part of (6.7), we have

∑

i,β

fϕi(∂ϕtiβ)vβ =
(

− sin(ϕ)
r

cos(ϕ)
r 0

)



− sin(ϕ) − cos(ϕ) 0
cos(ϕ) − sin(ϕ) 0

0 0 0


v = vr

r
.

For the second part of (6.7), we use (6.1) such that
∑

i,β

tTβif
T
ir∂rvβ + tTβif

T
iz∂zvβ = ∂rvr + ∂zvz.

In total, we therefore have
(p̂, ∇̂ · v̂)Ω̂ = 2π(p,v2d

r + r∇ · v2d)Ω2d .
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Time-Derivative As this does not contain spatial derivatives, we only need to transform the image.
Using the orthogonality of the transformation matrix T and the fact that we assume uϕ = 0, we get

(∂tû, v̂)Ω̂ =
∑

i

∫ 2π

0

∫

R,Z

∂t(Tu)i(Tv)ir dr dz dϕ

=
∑

α,β

∫ 2π

0

∫

R,Z

Tα · Tβ∂tuαvβr dr dz dϕ = 2π(r∂tu
2d,v2d)Ω2d . (6.8)

Transport For the convention term, we compute using (6.1)

(û · ∇̂v̂, ŵ)Ω̂ =
∑

i

∫ 2π

0

∫

R,Z

(
u · (TTFT ∇(Tv))

)
i
(Tw)ir dr dz dϕ

=
∑

i

∫ 2π

0

∫

R,Z

(
rur∂r(Tv) + uϕ∂ϕ(Tv) + ruz∂z(Tv)

)
i
(Tw)i dr dz dϕ.

The middle term vanishes by assumption. For the first term, we make use of (6.3) such that
∑

i

rur∂r(Tv)i(Tw)i =
∑

α,β

Tα · Tβrur(∂rvα)wβ =
∑

α

rur(∂rvα)wα.

We get the analogous result for the third term by using (6.4). In sum, this gives

(û · ∇̂v̂, ŵ)Ω̂ = 2π(ru2d · ∇v2d,w2d)Ω2d . (6.9)

Forcing To transform the forcing term f̂ , we simply need to transform the image. Using the fact that
the columns of T are orthogonal, we have

(f̂ , v̂)Ω̂ =
∫ 2π

0

∫

R,Z

TTTf · vr dr dz dϕ = 2π
∫

R,Z

f · vr dr dz.

Since we have assumed that uϕ = 0, we also have fϕ = 0. The above expression is therefore a two-
dimensional one.

Boundary Forces In order to compute forces acting on an object within our flow domain, we also have
to transform the stress σ(u, p) into two dimensions.

Transforming the image and gradient into cylindrical coordinates and using the orthogonality of the
transformation T gives

((ν∇̂û− Ip̂)n̂, v̂)Γ̂ = (TTFT ∇(Tu)Tn− TTTpn,v)Γ = (TTFT ∇(Tu)Tn− Ipn,v)Γ.

Using (6.3) and (6.4) together with the orthogonality of the columns of T then gives
∑

i

∂r(Tu)i · (Tn)i =
∑

α

∂ruαnα and
∑

i

∂z(Tu)i · (Tn)i =
∑

α

∂zuαnα,

while (6.4) and uϕ = 0 give
∑

i

∂ϕ(Tu)i · (Tn)i =
∑

β

Tϕ · Tβurnβ − Tr · Tβuϕnβ = urnϕ.
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Combining these results with (6.1), we have

TTFT ∇(Tu)Tn · v =




1 0 0
0 1/r 0
0 0 1





∑

α ∂ruαnα

urnϕ∑
α ∂zuαnα





vr

vϕ

vz


 =

∑

α

[
∂ruαnαvr + ∂zuαnαvz

]
+ 1
r
urnϕ.

Integrating with respect to ϕ and using the fact that
∫ 2π

0
1/rurnϕ dϕ = 0 then gives

((∇̂û− Ip̂)n̂, v̂)Γ̂ = 2π(r(ν∇2du2d − Ip)n2d,v2d)Γ2d .

Note: The surface element in cylindrical coordinates is ds = rer dϕdz + eϕ dr dz + rez dr dϕ.

CutFEM Nitsche Discretisation

In order to use the rotationally symmetric formulation to compute three-dimensional problems with a two-
dimensional discretisation, we need to derive the appropriate Nitsche formulation to implement boundary
conditions on an unfitted interface and appropriate ghost-penalty operators.

Enforcing Dirichlet boundary conditions To derive the rotationally symmetric Nitsche formulation, we
follow the heuristic derivation of the symmetric interior penalty method in [PE12]. Integration by parts
of (6.5) gives

(r∇2du2d,∇2dv2d)Ω2d + (1
r
u2d

r ,v2d
r )Ω2d

= −(∇2d · (r∇2du2d),∇2dv2d)Ω2d + (r(∇2du2d)n,v2d)∂Ω2d + (1
r
u2d

r ,v2d
r )Ω2d

= −(∂ru
2d + r∆2du2d,v2d)Ω2d + (1

r
u2d

r ,v2d
r )Ω2d + (r(∇2du2d)n,v2d)∂Ω2d .

The two volume terms correspond exactly to 1
2π (−∆u,v)Ω3d in cylindrical coordinates, under our assump-

tion that ∂ϕuα = uφ = 0 and taking the volume measure in cylindrical coordinates into consideration.
The boundary term −(r(∇2du2d)n,v2d)∂Ω2d is therefore needed in our weak formulation for consistency.
To make the formulation symmetric, we add the term −(u2d, r(∇2dv2d)n)∂Ω2d , which is consistent due
to the homogeneous Dirichlet boundary condition for u2d. To enforce the boundary condition, we add
the consistent penalty term σ

h (ru2d,v2d)∂Ω2d with the penalty parameter σ > 0 and mesh size h. This
term then also gives coercivity of the combined bilinear form, under the assumption that σ is sufficiently
large in the appropriate natural norm. In total, the consistent and symmetric Nitsche formulation for the
vector valued diffusion operator reads

a2d(u,v) := (r∇2du,∇2dv)Ω2d + (1
r
ur,vr)Ω2d

− (r(∇2du)n,v)Γ2d − (ru, (∇2dv)n)Γ2d + σ
k2

h
(ru,v)Γ2d , (6.10)

where Γ2d is the part of the two-dimensional boundary on which we enforce Dirichlet values. Similarly
integration by parts gives a consistent two-dimensional formulation for the pressure coupling as

b2d(v, q) := −(q,vr + r div(v))Ω2d + (rq,vn)Γ2d . (6.11)

Finally, if we consider inhomogeneous boundary data uD, then the right-hand side is adapted accordingly
with the symmetry and penalty terms for the velocity and pressure

f2d(v) := (rf ,v)Ω2d − (ruD, (∇2dv)n)Γ2d + σ
k2

h
(ruD,v)Γ2d + (rq,uDn)Γ2d . (6.12)
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Ghost-Penalty Stabilisation As we have seen in chapter 3, ghost-penalty stabilisation is intended to
provide stability estimates for CutFEM discretisations in natural norms, defined on the entire active
mesh. To this end, let Ω̃2d be the background domain to the rotationally reduced domain Ω2d. In the
spirit of our previous notation T 2d

h then denotes a shape-regular and quasi-uniform mesh of Ω̃2d and O2d
T

denotes the domain of the active mesh. In the unfitted, rotationally reduced setting, we then consider
the following natural norms for the rotationally reduced Stokes problem

|||v|||2♯ := ∥r1/2∇v∥2
O2d

T
+ ∥r−1/2vr∥2

O2d
T

+ ∥h−1/2r
1/2v∥2

Γ2d and |||q|||2♯ := ∥r1/2q∥2
O2d

T
,

c.f. subsection 3.2.2.

Looking at the reduced formulation of the diffusion operator (6.5), it is clear that the ghost-penalty
operator must stabilise r1/2-scaled gradients and the r1/2-scaled r-component in the L2-sense. The direct
version of the velocity ghost-penalty operator in the rotationally reduced formulation is therefore given
by

i2d
h (u,v) := γgp,u

∑

F ∈Fh

∫

ωF

r

h2 JuK · JvK + 1
r
JurKJvrK dx. (6.13)

Similarly for the pressure, we have

j2d
h (p, q) := γgp,p

∑

F ∈Fh

∫

ωF

rJpKJqK dx. (6.14)

With the all the terms needed transformed into the rotationally reduced formulation, we can now formu-
late the reduced problems.

Problem P9. The rotationally reduced CutFEM discretisation of the Stokes problem reads as follows.
Find (uh, ph) ∈ Vh ×Qh such that

νa2d
h (uh,vh) + νi2d

h (uh,vh) + b2d
h (vh, ph) + b2d

h (uh, qh) − 1
ν
j2d

h (ph, qh) = f2d
h (vh, qh)

for all (vh, qh) ∈ Vh×Qh, with the rotationally reduced diffusion, pressure coupling, forcing and stabilising
forms given in (6.10), (6.11), (6.12), (6.13) and (6.14), respectively, and the boundary conditions ur = 0
and ∂ruz = 0 on the symmetry axis r = 0.

Due to the scaling of the ghost-penalty operators, it is a repetition of the arguments presented in chapter 3
to show stability and unique solvability of Problem P9 using the natural norms |||·|||♯. Error estimates then
follow immediately in these norms since they only include an additional scaling in r, which is independent
of the mesh size and the polynomial order. Furthermore, we note that by the construction of the weak
forms, it is clear that these natural norms are equivalent to the three-dimensional standard norms in the
case of a rotationally symmetric flow solution.

The rotationally reduced CutFEM discretisation of the Navier-Stokes problem using the BDF1 time-
discretisation reads as follows:

Problem P10. With compatible initial data u0
h, for n = 1, . . . , N , find (un

h, p
n
h) ∈ Vh ×Qh such that

1
∆tm

2d
h (un

h − un−1
h ,vh) + νa2d

h (uh,vh) + νi2d
h (uh,vh) + ch(un

h,u
n
h,vh)

+ b2d
h (vh, ph) + b2d

h (uh, qh) − 1
ν
j2d

h (ph, qh) = f2d
h (vh, qh)

for all (vh, qh) ∈ Vh ×Qh, together with the boundary conditions ur = 0 and ∂ruz = 0 on the symmetry
axis r = 0 and the rotationally reduced diffusion, pressure coupling, forcing and stabilising forms given
in (6.10), (6.11), (6.12), (6.13) and (6.14), respectively, as well as the mass term

m2d
h (uh,vh) = (ruh,vh)Ωh

and transport term
c2d

h (uh,vh,wh) = (ruh · ∇vh,wh)Ωh
.
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Figure 6.1: Mesh convergence for the rotationally reduced Stokes problem using unfitted Taylor-Hood elements in
two-dimensional norms equivalent to the three-dimensional norms.

6.1.2 Numerical Examples
We illustrate the accuracy and efficiency of the rotationally reduced formulation with two numerical
examples.

Example 1: Stokes

To illustrate the convergence behaviour of the rotationally reduced formulation, we consider a CutFEM
discretisation of a simple cylinder with forcing data such that the exact solution is known. Consider the
cylinder Z = {(r sin(ϕ), r cos(ϕ), z) ∈ R3 | r ∈ [0, 1), ϕ ∈ [0, 2π), z ∈ (0, 1)}. The rotationally reduced
domain is then given by Ω2d = (0, 1)2. In Z, consider the rotationally symmetric, divergence-free velocity
field and the pressure with mean zero

u =



πr2(1 − r2) cos(πz)

0
(5r3 − 3r) sin(πz)


 and p = r2(1 − r2) sin(πz) − 4

15π .

We then take the forcing term as f = −ν∆u+ ∇p and choose the viscosity as ν = 10−2.

For simplicity, we take the background domain as Ω̃ = (0, 1)×(0, 1.1) and the level set function as ϕ = y−1.
The ghost-penalty parameters are chosen as γgp,u = γgp,p = 0.01 and the Nitsche penalty parameter as
σ = 40k2. We compute the problem on a series of uniformly refined meshes using Taylor-Hood elements
of order 2 ≤ k ≤ 6 and measure the error in the scaled two-dimensional norms, corresponding to the
three-dimensional norm under the assumption of rotational symmetry.

The resulting errors can be seen in Figure 6.1. We can clearly see optimal-order convergence for the
velocity and pressure error in the considered norms until machine precision is reached, thereby validating
our transformed unfitted formulation.

Example 2: Navier-Stokes

To illustrate the validity of the transformation for a more involved problem, we consider the stationary
Navier-Stokes flow in a cylinder around a spherical obstacle. To this end, let us consider the cylinder
Z = {(r sin(ϕ), r cos(ϕ), z) ∈ R3 | r ∈ [0, 1), ϕ ∈ [0, 2π), z ∈ (0, 3)} and the sphere S = {x ∈ R3 | x2

1 +
x2

2 + (x3 − 1.5)2 < 0.52}. The fluid domain is then given by Ω3d = Z \ S. The rotationally reduced
domain is then given as Ω2d = (0, 1) × (0, 3) \ {x ∈ R2

+ | x2
1 + (x2 − 1.5)2 ≤ 0.52}. A sketch of these two

domains can be seen in Figure 6.2.
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Figure 6.2: Left: Three-dimensional domain for the flow around a sphere in a cylinder. Right: Rotationally reduced
two-dimensional domain.

At the top boundary of the cylinder Γtop at z = 3, we impose a parabolic inflow profile given as uin =
(0, 0, umax(r2 − 1))T . Taking the maximal inflow speed as umax = 0.2, we get the mean inflow speed
um = 0.2π/2 ≈ 0.31. With the viscosity ν = 10−3, the fluid density ρF = 1 and the diameter of the
obstacle as the reference length L = 1, the resulting flow has the Reynolds number Re = umL

ν ≈ 31. This
is sufficiently small for the flow to be stationary. At the outer walls of the cylinder and on the surface of
the obstacle Γwall ∪ I , we impose a no-slip condition u = 0 and at the bottom boundary of the cylinder
Γbottom at z = 0, we set the “do-nothing” condition.

As the quantity of interest, we consider the dimensionless drag coefficient CF3 = 2F3
u2

mρFL with F =∫
∂S
σ̂(û, p̂) dŝ.

Reference: Fitted Three-Dimensional Computation To establish a reference for our computations,
we compute the problem in full three dimensions using a high-order, point-wise divergence-free, hybrid
discontinuous Galerkin (HDG) method based on [LS16]. This uses H(div)-conforming finite elements of
order k for the velocity, discontinuous pressure elements of order k − 1 and is inf-sup stable. The code is
adapted from [Wah+19a].

We use a tetrahedral mesh of the three-dimensional domain with local meshing parameter h = hmax/6 on
the sphere. The forces on the sphere are evaluated using the boundary-integral formulation. To evaluate
the accuracy of the force evaluation, we also look at the first two components, which should be zero by
the symmetry of the set-up.

The computational results can be seen in Table 6.1, and a visualisation of the velocity can be seen on
the left of Figure 6.3. Looking at the two horizontal forces, we see that they indeed converge towards
zero for h and p refinement. In fact, we see that going for higher-order elements leads to in significantly
more efficient results compared to mesh refinement. From these results, we conclude that we can have
−CF3 = 4.38983 as a reference for the drag coefficient.

Rotationally Symmetric CutFEM Computation For the rotationally reduced CutFEM computations,
we take a uniform mesh of the background domain and consider the isoparametric Taylor-Hood dis-
cretisation from chapter 3. In line with our previous numerical experiments, we take the ghost-penalty
parameter as γgp,u = γgp,p = 0.01 and the Nitsche penalty parameter as σ = 40k2. The results are
presented in Table 6.2, and a sample velocity solution is shown on the right of Figure 6.3.

Here we see again that higher-order elements appear to be very beneficial with respect to accuracy
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Discretisation Results
hmax k dof(gdof) × 103 nze × 106 CF1 CF2 −CF3 Time(s)

0.5 1 961.6(113.0) 6.467 −1.44 · 10−2 −2.68 · 10−3 4.47336 9
0.5 2 1931.2(271.3) 25.866 −5.54 · 10−3 −2.34 · 10−3 4.43372 32
0.5 3 3221.0(527.6) 71.851 −9.64 · 10−4 −3.81 · 10−4 4.39744 94
0.5 4 4831.0(904.5) 161.664 −9.35 · 10−5 −2.62 · 10−6 4.39802 246
0.5 5 6761.2(1424.8) 316.861 −1.01 · 10−5 −5.09 · 10−6 4.39829 718
0.5 6 9011.7(2110.9) 563.309 −1.98 · 10−7 1.85 · 10−7 4.39833 1600
0.25 1 5210.7(593.3) 34.315 −1.34 · 10−3 −6.05 · 10−3 4.38948 138
0.25 2 10 411.5(1427.3) 137.258 4.18 · 10−4 −1.58 · 10−4 4.40718 454
0.25 3 17 315.8(2780.0) 381.272 5.23 · 10−5 −3.04 · 10−5 4.39804 2459
0.25 4 26 013.7(4771.8) 857.863 1.96 · 10−6 −2.54 · 10−6 4.39830 8581
0.5 2 1913.2(271.3) 25.866 −5.54 · 10−3 −2.34 · 10−3 4.43372 32
0.25 2 10 411.5(1427.3) 137.258 4.18 · 10−4 −1.58 · 10−4 4.40718 454
0.125 2 42 811.7(5858.1) 563.621 5.72 · 10−5 2.41 · 10−5 4.39951 6135

Table 6.1: Computational results for the three-dimensional HDG discretisation for the flow around a sphere in a cylinder.
ndof: Degrees of freedom of the finite element space, gdof: Global degrees of freedom (after static
condensation), nze: Non-zero entries of the linearised system.

for this problem. The drag value converges towards the value established above, and in fact, we can
conclude that −CF3 = 4.398326. Furthermore, we note that to realise this value to this accuracy, the
two-dimensional computation were faster by a factor 100 compared to the three-dimensional computations
(2d: hmax = 0.04, k = 4, 3d: hmax = 0.5, k = 6). We note that this gain in efficiency is not surprising since
the matrices resulting from a three-dimensional finite element discretisation are less sparse compared to
those resulting from a two-dimensional discretisation. This can be seen by the number of non-zero entries
in the stiffness matrix per condensed degree of freedom in Table 6.1 and Table 6.2. Finally, comparing
the two velocity solutions from the three and two-dimensional computations in Figure 6.3, we see that
the two-dimensional solution does indeed match the three-dimensional solution in the centre plane of the
cylinder.

6.1.3 Summary
The above numerical results show that the transformed weak formulation of the Navier-Stokes equations
and the corresponding Nitsche and ghost-penalty terms result in a method that retains the optimal order
convergence of the underlying discretisation. Comparing the results obtained with a three-dimensional
discretisation using a point-wise divergence-free HDG method with the results from a Taylor-Hood, iso-
parametric CutFEM method, we saw that the drag coefficient from the rotationally reduced formulation
converged to the same value as the three-dimensional reference. Furthermore, we saw that the reduced
formulation was significantly more efficient in obtaining the drag coefficient accurately, even without any
mesh refinement towards the obstacle.

6.2 Experiment
For our work in [Wah+21], we considered specific set-ups of experiments conducted by Hagemeier,
Thévenin and Richter [HTR21] and the resulting data set [Hag20] to establish a numerical experiment
backed up by physical data for a fluid-structure interaction problem with solid-solid contact. This consists
of a single elastic spherical particle falling freely in a viscous fluid and rebounding off the bottom wall of
the fluid domain, where the resulting Reynolds numbers are in the transitional regime between creeping
and turbulent flows. The multiphase and fluid-structure interaction (FSI) problem with solid contact
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Discretisation Results
hmax k dof(gdof) × 103 nze × 106 −CF3 Time(s)

0.24 2 0.6(0.6) 0.019 4.16118412719 0.483
0.12 2 2.1(2.0) 0.065 4.34105445496 1.780
0.06 2 8.1(7.8) 0.242 4.38343130848 6.898
0.03 2 31.1(30.5) 0.927 4.39459237132 7.868
0.015 2 122.7(121.6) 3.650 4.39717451783 14.135
0.0075 2 486.0(483.8) 14.436 4.39804879025 47.259
0.24 3 1.4(1.1) 0.062 4.32877441109 0.927
0.12 3 5.0(4.1) 0.203 4.38876196773 3.485
0.06 3 19.4(15.8) 0.740 4.39730912657 7.236
0.03 3 75.3(61.4) 2.804 4.39822190768 9.826
0.015 3 298.7(243.9) 10.980 4.39830416341 23.693
0.0075 3 1185.3(968.8) 43.288 4.39832420403 84.184
0.24 4 2.6(1.8) 0.141 4.38079362737 2.127
0.12 4 9.2(6.3) 0.440 4.39689061845 4.953
0.06 4 35.9(24.0) 1.543 4.39825020273 7.971
0.03 4 139.8(92.8) 5.742 4.39832605973 16.746
0.015 4 555.5(367.2) 22.252 4.39832632417 49.775

Table 6.2: Computational results for the rotationally reduced formulation using the isoparametric Taylor-Hood CutFEM
discretisation for the flow around a sphere in a cylinder. ndof: Degrees of freedom of the finite element
space, gdof: Global degrees of freedom (after static condensation), nze: Non-zero entries of the linearised
system.

Figure 6.3: Velocity solution for the flow around a sphere in a cylinder. Left: Three-dimensional solution computed on
a tetrahedral grid with hmax = 0.5 using a point-wise divergence-free HDG discretisation of order k = 5.
Right: two-dimensional computation with the rotationally reduced formulation using unfitted THiso

4 elements
on a uniform mesh with hmax = 0.06.
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posed by the settling in the fluid and rebounding off a wall is challenging from both an analytical and
numerical perspective.

From the theoretical side, the topic of contact in the context of fluid-structure interactions remains an
active area of research. For example, the correct model for the transition to contact with a solid wall is
not yet fully understood. If, as in our case, a rigid solid is assumed, most flow models lead to results
contradicting real-world observations. For example, if a creeping flow is assumed such that the linear
Stokes equations are applicable, contact can only occur under singular forces, c.f. [Bre61]. When the non-
linear incompressible Navier-Stokes equations with no-slip boundary conditions are taken for the fluid
model, then contact cannot occur, and it is impossible to release contact [Fei03a]. This problem can be
overcome if the boundary condition is modified to a free-slip condition [GHC15], the rough nature of the
surface is taken into account [GH14] or the fluid is taken to be compressible [Fei03b]. If the solid model is
changed to take the body’s elasticity into account, then it is currently assumed, that even with perfectly
smooth boundaries and incompressibility, rebounding without contact can occur due to the storage of
energy in the elastic solid [DSH86; GH16; HT09]. In the setting of the Stokes equations, this has been
refined recently [Gra+20], where it has been shown that internal storage of energy is not sufficient, but
that additionally, a change in the “flatness” is necessary to achieve physically meaningful rebound without
topological contact.

From the numerical side, fluid-structure interaction problems with solid contact also pose significant
challenges. The discretisation of the FSI system results in a free boundary value problem with a mov-
ing interface. As remarked upon in section 5.1, the most established method for this is the ALE ap-
proach. However, the ALE method breaks down when the deformation becomes too large or when
contact occurs [FRW16]. To deal with large deformations, overlapping mesh techniques have been de-
veloped [JLL15]. Here the background fluid domain and the region around the structure are meshed
separately to resolve the fluid-solid interface. The two meshes are then coupled using unfitted approaches.
This approach then allows a hybrid approach, where the solid and the near fluid are treated using the
ALE framework while the remaining fluid is treated in Eulerian coordinates [SAW19]. To overcome both
the problems of large deformations and contact, fully Eulerian approaches have lately become the focus of
research. In the case of rigid bodies, a number of different approaches have been considered. For example,
based on fictitious domain methods using Lagrange multipliers [Glo+99], XFEM type approaches [CFL13;
CF15] and CutFEM approaches using Nitsche’s method, such as in chapter 4 and [BFM19; AB21]. A
considerable problem for these methods is to achieve a realistic rebound effect since an artificial con-
tact/lubrication force is added to the equation governing the motion of the solid to prevent overlap of
the solid regions [Glo+99]. Nevertheless, as we have seen in section 4.5, topological changes appear to be
unproblematic for the CutFEM type approaches. In the case of the full fluid elastic structure problem,
several different approaches have been considered. For example, immersed approaches mesh the fluid
and solid domains separately, treat the equations in their natural Eulerian and Lagrangian formulations,
respectively, and then couple the two together, either using Nitsche’s method [BF14; HH03] or using Lag-
range multipliers [Baa01; LCB06; GW08]. Another new approach to deal both with large deformations
and contact is to formulate both the fluid and elastic-solid problems in the Eulerian framework [Dun06;
CMM08; Ric13; Fre16; HP17].

All the above methods have been applied to different problem set-ups, and a priori error analysis is
available for most approaches. Furthermore, the most well established FSI benchmark [TH06] avoids solid
contact, and a number of numerical FSI methods can now specifically deal with solid contact [Age+19;
ASW20; BFF20; ZAV21; Bur+21], it is interesting to consider an FSI set-up resulting in solid contact,
which is backed up by experimental data. Thereby we are able to validate results rather than interpreting
the rebound dynamics qualitatively.

In the remainder of this section, we will give a brief overview of the experiment and describe the resulting
set-up extracted from the data for numerical experiments.
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Figure 6.4: Spatial configuration for the simulation of falling ball in a cylindrical container. Left: Three-dimensional
domain. Right: Rotationally reduced domain.

Physical Experiment

The experiments in [HTR21] capture the vertical settling of spherical particles of different sizes and
densities inside a cylindrical tank filled with a 1:1 water-glycerine mixture. The walls of the cylindrical
tank consist of acrylic glass, and the tank sits inside a rectangular container filled with a refractive
index matching liquid to compensate for optical distortions caused by the curved walls of the cylinder.
This cylinder rests on a steel anvil for an impact object. The filling level then allows for a vertical
settling distance of between 140mm–160mm, depending on the particle’s size. At the beginning of the
experiment, the particle is submerged and held in place by vacuum tweezers. The experiment is then
started by switching off the vacuum pump to release the particle. The particle is then tracked in the
settling and rebound from the steel anvil with a high-speed CMOS-camera to acquire shadow images at
1000fps and a scale factor of 8.89 pixel/mm. A post-processing algorithm then established the in-plane
trajectories and velocities of each particle, and the data is available via Mendeley Data [Hag20].

6.2.1 Problem Description
Geometry Description

Based on the physical experiments, we consider the following domain description for our numerical
experiments. We consider the cylindrical domain Ω = {x ∈ R3 | x2

1 + x2
2 < R2, 0 < x3 < H}

for a given radius R and a height H. In the initial state at t = 0, the solid domain is given by
S(0) = {x ∈ R3 | x2

1 + x2
2 + (x3 − (h0 + rS))2 < r2

S} for a given radius rS of the particle and an
initial height h0 of the bottom of the particle.

We denote the top cylinder boundary at x3 = H as Γtop, the bottom boundary at x3 = 0 as Γbottom and
the side of the cylinder at x2

1 +x2
2 = R2 as Γwall. A sketch of the domain with the boundary nomenclature

can be seen on the left of Figure 6.4.

Boundary Conditions

At the bottom and wall boundaries, we impose a no-slip boundary condition u = 0, while at the top
boundary, we set a slip boundary condition u3 = uz = 0 to approximate the free surface of the fluid in
the experiments. At the interface I = ∂S , we impose a no-slip condition, i.e., continuity of the velocity
u = U . For the rotationally reduced case, appropriate boundary conditions on the rotational axis r = 0
are given by ur = 0 and ∂ruz = 0.
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Experiment Geometry Boundary Conditions
R (m) H (m) rS (m) h0 (m) Γwall ∪ Γbottom Γtop I

PTFE6 0.055 0.2 0.003 0.1616616
u = 0 ud = 0 u = USRubber22 0.011 0.1461203

Table 6.3: Spatial parameters for the falling ball in a cylindrical container.

Experiment Material parameters
g (m s−2) µF (kg m−1 s−1) ρF (kg m−3) ρS (kg m−3)

PTFE6 −9.807 0.008 1141 2122
Rubber22 1361

Table 6.4: Material parameters for the falling balls in a cylindrical container under consideration.

Rotationally Reduced Domain

The three-dimensional domain is rotationally symmetric in cylindrical coordinates. The experimental
data shows a rotational component to the solid motion as well as a small deflection from the centreline.
However, since we intend to consider material parameters for the flow to be in the intermediate Reynolds
number regime [HTR21], we assume that the solution is described sufficiently well by a rotationally
symmetric solution.

Considering the three-dimensional domain in cylindrical coordinates (r, ϕ, z), we rotate the domain into
the (r+, z)-plane to reduce the computational problem into a two-dimensional one, as discussed in detail
in section 6.1.

The reduced background domain is then given by Ω2d = {(r, z)T ∈ R2 | 0 < r < R, 0 < z < H}, and
the reduced initial solid domain is given by S2d = {(r, z)T ∈ R2

+ | r2 + (z − (h0 + rS))2 < r2
S}. The

upper, lower and right boundaries of the fluid domain are then referred to as Γtop, Γbottom and Γwall,
respectively. A sketch of this domain can be seen on the right of Figure 6.4.

Problem Parameters

We consider two different cases from [HTR21].

Spatial Parameters The radius of the cylindrical fluid tank is R = 0.055m, and the height is H = 0.2m.
We consider the cases of a Polytetrafluorethylene/Teflon (PFTE) ball with diameter dS = 2rSO = 6mm
and of a rubber ball of diameter dS = 22mm. We refer to these cases as PTFE6 and Rubber22, respectively.
The initial heights of these balls are given by h0 = 0.1616616m and h0 = 0.1461203m, respectively. A
summary of these parameters is given in Table 6.3.

Material Parameters For our fluid-rigid body model, we require the fluid’s density and viscosity as
well as the solid’s density. These parameters, as provided in [HTR21, Table 1], are summarised in
Table 6.4.

Quantities of Interest

To compare the numerical results with the experimental data, we consider the following quantities of
interest:
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Figure 6.5: Illustration of the quantities of interest for the falling ball in a cylindrical container experiment.

t∗ Let t0 = t|cS=h0
be the time at which the centre of mass is at h0, i.e., when the ball has traveled

a vertical distance of rS . The reference time t∗ is then defined as the time between t0 and the
time at which dist(I ,Γbottom) = dS , i.e., for PTFE6 t∗ = t|cS=(0,0,0.009) − t0 and for Rubber22
t∗ = t|cS=(0,0,0.033) − t0.

v∗ The velocity of the ball in the z-direction at t = t∗ + t0.

f∗ The vertical component of the force F acting on the ball at time t∗ + t0.

tcont The time of the first solid contact relative to t0, i.e., tcont = t|cS=(0,0,dS/2) − t0.

tjump The time between contact and the the time at which the second change in direction is realised, i.e.,
the amount of time the balls travels upwards after the first contact.

djump The maximum of dist(I ,Γbottom) after contact, i.e., the size of the bounce.

An illustration of how these quantities are defined can be seen in Figure 6.5.

Remark 6.2 (Design of reference quantities). We observed in the data from the physical experiments
that the particles did not immediately start to fall when they are released. While the particles were fully
submerged at the beginning of the experiment, the particles were nevertheless close to the free liquid
surface and in contact with the vacuum pump. The observation that the particles do not immediately
start to settle can therefore be attributed to the fact that particles experience an increased drag force
when moving away or towards a free fluid surface or solid wall.

Due to the resulting slow motion at the beginning of the experiment, it is difficult to determine the
moment of release from the data set. The time t0 was therefore chosen as the moment in time, where the
particle has already travelled a distance of one radius, which is easily determined both in the experimental
and numerical data. The remaining quantities are then defined relative to t0. ▲

Remark 6.3. To extract the reference quantities from the experimental data, we interpolated the data
using a spline of order 3. The quantities of interest were then computed by evaluating the resulting
spline. ▲

Remark 6.4. The experimental study [HTR21] was conducted, so that the horizontal displacement
of the particles was minimal. Looking at the data from the experiments, we see that the maximal
horizontal displacement is less than 2.00 · 100 mm and 0.75 · 100 mm in the PTFE6 and Rubber22 cases,
respectively. This compares with the mean over time of the maximal deviation in the centre’s location
between experiment repetitions of 0.19 · 100 mm and 0.14 · 100 mm for the PTFE6 and Rubber22 cases,
respectively.

Since the experiment was only able to capture the projection of the horizontal displacement onto the
x-z-plane, it is not possible to detect the true horizontal motion. As a result, we have therefore ignored
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the horizontal motion in the computation of the reference values. However, as the overall horizontal
deflection is small, the results are reasonable for the purposes here. ▲

6.2.2 Mathematical model
By considering the rotationally reduced formulation, we assume that the ball neither rotates nor moves
horizontally. Therefore, we consider a reduced form of the fluid-rigid body interaction system (2.5). In the
fluid domain, we continue to consider the incompressible Navier-Stokes equations (2.5a)–(2.5b) together
with the continuity of the velocity at the fluid-solid interface (2.5c). However, the assumption on the
solid velocity reduces the equation of motion for the solid’s to U(t) = υ(t). The first two components of
the solid’s velocity are then constant zero and the third component is governed by the scalar ordinary
differential equation

d
dtU3 = ρS − ρF

ρS
g + F3

vol(S)ρS
, (6.15)

c.f (2.3a). The position of the solid cS is then recovered via the relationship d
dtcS = U .

6.3 Discretisation
The following section discusses the details of our unfitted solver for the coupled fluid-rigid body interaction
problem.

The discretisation is based on the rotationally symmetric formulation of the three-dimensional problem
and the isoparametric mapping approach from chapter 3 together with the Eulerian time-stepping from
chapter 4 for the temporal discretisation of the coupled moving domain problem.

6.3.1 Partitioned Approach for Fluid-Rigid Body Interactions
To solve the coupled fluid-solid system (2.5), we consider a partitioned approach with relaxation. The
relaxation update with parameter ω ∈ (0, 1) is necessary for the stability of the scheme. The resulting
procedure for a single time-step of the fluid-solid problem can be seen in Algorithm 6.1.

Data: Fluid state (un, pn) and solid state (υn,ωn) at time t = tn.
1 Set (un+1

0 , pn+1
0 ) = (un, pn)

2 for i = 0, . . . , max_it do
3 Use (un+1

i , pn+1
i ) to compute the forces acting on the solid (F n+1

i ,T n+1
i ).

4 Solve for solid states (υ̃n+1
i+1 , ω̃

n+1
i+1 ) using an ODE solver with right-hand sides (F n+1

i ,T n+1
i ).

5 Do relaxation step υn+1
i+1 = ωυ̃n+1

i+1 + (1 − ω)υn+1
i and ωn+1

i+1 = ωω̃n+1
i+1 + (1 − ω)ωn+1

i .
6 Update solid position via the ODE relation with right-hand side υn+1

i+1 ,ω
n+1
i+1 .

7 Solve fluid equations for (un+1
i+1 , p

n+1
i+1 ) according to the solid states υn+1

i+1 and ωn+1
i+1 .

8 if ∥υn+1
i+1 − υn+1

i ∥ < tol and ∥ωn+1
i+1 − ωn+1

i ∥ < tol then
9 break

Result: Updated states (un+1
i , pn+1

i ) and (υn+1
i ,ωn+1

i ) solving the fluid-solid system implicitly up
to the given tolerance tol > 0.

Algorithm 6.1: Partitioned iteration scheme to solve the fluid-solid system.

Our unfitted Eulerian time-stepping method from chapter 4 works by including extension ghost-penalties
such that all elements in the active fluid domain On

T have a sufficient history for the right-hand side of
the finite difference approximation ∂tuh(tn) ≈ 1

∆t (un
h − un−1

h ) to be well-defined. In chapter 4, this was
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realised by applying the extension ghost-penalties in a δh-strip S± around the interface, with the choice
δh = cδh

wn
∞∆t guaranteeing that the strip is sufficiently large based on the a priori knowledge of wn

∞.
This was possible because the domain motion was a given quantity. In the coupled fluid-solid problem
under consideration here, the motion of the interface is part of the solution. As we have also seen in
section 4.5, simply applying the extension in a very large δ-strip, based on some educated guess of the
terminal settling velocity is not a good option since this deteriorates the solution significantly. In order to
realise a stable extension method, while also only applying the extension where it is strictly necessary, we
compute a new δh in each time-step based on wn

n = max{υn−1n, (2υn−1 −υn−2)n}, i.e., the maximum of
a first- and second-order extrapolation of the solid’s velocity as a good guess for the necessary extension
for the next time-step.

Aitken Relaxation

The idea of Aitken’s ∆2 method is to use the values from two previous iteration steps to predict an
optimal relaxation parameter. For simplicity of notation, we focus on the velocity component υn+1

i to
describe the method. The subscript i here denotes the step of the sub-iteration in a time-step. Since the
procedure is the same for every time-step, we drop the explicit superscript n+ 1.

Given two solution states (υ̃i,υi−1) and (υ̃i+1,υi), the next state used for the boundary condition is

υi+1 = υi−1υ̃i+1 − υ̃iυi

υi−1 − υ̃i − υi + υ̃i+1
. (6.16)

Now, allowing for a variable relaxation parameter, we can rewrite the relaxation step in line 5 of Al-
gorithm 6.1 as

υi+1 = ωi+1υ̃i+1 + (1 − ωi+1)υi

= υi + ωi+1(υ̃i+1 − υi). (6.17)

We denote υ̃i+1 − υi =: ri+1 as the residual in the (i + 1)th sub-iteration step. Setting (6.16) equal to
(6.17), we find that the relaxation parameter is

ωi+1 = υi−1 − υi

(υi−1 − υ̃i) − (υi − υ̃i+1) .

From (6.17), for i 7→ i − 1, we have υi−1 − υi = ωi(υi−1 − υ̃i). The formula for the (i + 1)th relaxation
parameter then has the iterative representation

ωi+1 = ωi
υi−1 − υ̃i

(υi−1 − υ̃i) − (υi − υ̃i+1)
= −ωi

ri

ri+1 − ri
.

We note that the division in the above expression only makes sense for scalar quantities. For vector
valued quantities, it is suggested in [KW08] to follow [IT69], and to use the vector inverse. This then
gives the relaxation parameter

ωi+1 = −ωi
rT

i (ri+1 − ri)
|ri+1 − ri|2

.

Since the computation of the relaxation parameter is not possible in the first iteration, the relaxation
ω1 must be chosen differently. We suggest to use min{ω0, ω

n
max}, where ω0 is some manually specified

relaxation parameter and ωn
max is the final relaxation parameter from the last time-step. The minimum

is taken to ensure that the first relaxation is not too large, potentially leading to the instabilities that we
aim to avoid by using a relaxation scheme.
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6.3.2 Contact Algorithm
One of the biggest challenges in simulating the fluid-structure interaction problem described in section 6.2
is the occurrence of contact when the particles rebound off the bottom of the fluid tank. As we have
seen in subsection 4.5.2, our unfitted Eulerian discretisation can deal with contact/topology changes.
However, as we have described above, there are already issues due to solid-solid contact in fluid-structure
interaction problems on the modelling side. On the practical side, we cannot realise the forces necessary to
prevent contact with the mesh size and time-steps used in practice. Therefore, we require some additional
methodology to ensure that a rebound is achieved.

Inspired by [ST08; Fre16; Fre17; FR17a], we consider a basic contact avoidance algorithm. The idea of
this algorithm is to introduce an artificial force acting on the rigid body in the vicinity of the contact
wall, which increases the closer the ball comes to the wall and acts in the direction away from the wall
such that contact does not occur. We define this force as

fc(S) =
{

0 if dist(I ,Γc) ≥ dist0

γc
dist0−dist(I,Γc)

dist(I,Γc) if dist(I ,Γc) < dist0,
(6.18)

where dist0 and γc are free parameters which remain to be chosen, Γc is the contact wall and dist(I ,Γc)
is the minimal distance between the solid boundary and the contact wall. Therefore, the penalty force is
0 when the solid is at a considerable distance from the contact wall and goes to +∞ when the distance
between the wall and the solid interface goes to zero. We then add this artificial force to the right-
hand side of the ODE (2.3a). For the specific application of vertical motion with a rebound off the
bottom of the fluid tank, we take Γc = Γbottom. As a result, we add this penalty force to the vertical
component of (2.3a). This change is then carried through to (6.15), so that the right-hand side becomes
ρS−ρF

ρS
g + Fz+fc

vol(S)ρS
.

Remark 6.5. In [Fre16; Fre17], the artificial force was defined to act point-wise on the elastic body. As
a result, the force could be interpreted as an additional pressure acting below dist0. In our case, the force
acts on the ODE governing the motion of the rigid solid. Therefore, we can interpret the contact force
as additional buoyancy. As we have seen in Remark 2.1, this inclusion of buoyancy in the solid ODE is
a consequence of not including gravity on the right-hand side of the fluid equation. If gravity were to be
included in the fluid equation, this would only affect the pressure. Therefore, the extra buoyancy here
can also be seen as an additional pressure acting on the solid. ▲

6.4 Numerical Computations
We use the temporal discretisation methodology as described in section 6.3 with our Eulerian time-
stepping scheme using a BDF2 discretisation of the temporal derivatives to simulate the PTFE6 and
Rubber22 scenarios described in section 6.2. For the spatial discretisation, we use the rotationally reduced
formulation of the Navier-Stokes equations derived in section 6.1 using unfitted finite elements.

The rotationally reduced background domain Ω2d = (0, 0.055) × (0, 0.2) is meshed with a global mesh
parameter hmax and the left part with 0 ≤ r ≤ 2/3 · dS has a local mesh parameter of h = hmax/7 and
h = hmax/4 for the PTFE6 and Rubber22 cases, respectively. This is to resolve the interface of the falling
ball more accurately and the local mesh size is chosen in order to construct meshes with a similar number
of active elements for the two scenarios.

On these meshes, we consider THiso
2 elements and the Nitsche parameter is chosen as σ = 100k2. As we

have seen in section 4.5, it is beneficial to choose a smaller ghost-penalty parameter for the 1/ν-scaled
ghost-penalties. We therefore set the stabilising ghost-penalty parameters as γu,gp,1 = γp,gp =: γgp,s = 0.1
and the extension ghost-penalty parameter as γu,gp,2 =: γpg,e = 0.01, respectively. The extension-strip
parameter is cδ = 4 to compensate for any underestimation of wn

∞. We iterate between the fluid and
solid systems until the velocity update is below the tolerance of tol < 10−8.
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hmax ∆t t∗ v∗ f∗

value |err| eoc value |err| eoc value |err| eoc

0.008 1/2000 0.579181 4.017 · 10−2 −0.289922 2.407 · 10−2 1.116 00 · 10−3 4.420 · 10−6

0.004 1/2000 0.536698 2.312 · 10−3 4.12 −0.316896 2.900 · 10−3 3.05 1.087 00 · 10−3 3.327 · 10−5 −2.91
0.002 1/2000 0.530537 8.473 · 10−3 −1.87 −0.321826 7.830 · 10−3 −1.43 1.082 00 · 10−3 3.836 · 10−5 −0.21
0.002 1/1000 0.522575 1.644 · 10−2 −0.328963 1.497 · 10−2 1.081 00 · 10−3 3.914 · 10−5

0.002 1/2000 0.530537 8.473 · 10−3 0.96 −0.321826 7.830 · 10−3 0.93 1.082 00 · 10−3 3.836 · 10−5 0.03
0.002 1/4000 0.537140 1.870 · 10−3 2.18 −0.314027 3.098 · 10−5 7.98 1.092 00 · 10−3 2.845 · 10−5 0.43
0.008 1/500 0.559084 2.007 · 10−2 −0.298432 1.556 · 10−2 1.098 00 · 10−3 2.207 · 10−5

0.004 1/1000 0.524553 1.446 · 10−2 0.47 −0.328431 1.444 · 10−2 0.11 1.085 00 · 10−3 3.559 · 10−5 −0.69
0.002 1/2000 0.530537 8.473 · 10−3 0.77 −0.321826 7.830 · 10−3 0.88 1.082 00 · 10−3 3.836 · 10−5 −0.11

Reference 0.53901 −0.313996 1.120 21 · 10−3

Table 6.5: Results for the pre-contact quantities of interest for the PTFE6 scenario. Reference values are taken from
the extrapolated ALE results in [Wah+21].

6.4.1 Pre-Contact
We consider the pre-contact dynamics of the system. This is the part of the experiment considered in
our theory in chapter 5.

PTFE6

We compute the PTEF6 set-up as described above and consider mesh-refinement with a constant time-
step, time-step refinement on a constant mesh and combined mesh and time-step refinement. The full
results for the pre-contact quantities of interest can be seen in Table 6.5, and the resulting height of the
ball under mesh refinement can be seen below in Figure 6.11. The reference values in Table 6.5 are based
on the extrapolated results of the ALE simulation of the fluid-solid system in [Wah+21].

In general, we see that our method approximates the dynamics of the system well. Looking at the con-
vergence behaviour of the quantities of interest in Table 6.5, we see that it appears that the temporal
discretisation error is the dominating factor in the presented simulations. While we even see some di-
verging behaviour in the drag reference quantity, we see convergence both for the time at which the ball
reaches the distance of dS to the bottom of the tank and the solid velocity at this moment in time.
We attribute this to the instabilities we have previously observed in the drag functional in section 4.5.
Nevertheless, in Figure 6.11, we see that the ball’s position converges towards the experimental data.

Remark 6.6. A video of the solution on the mesh with hmax = 0.002 is available at https://youtu.
be/TuolP94g1Hs or by scanning the QR code. ▲

Rubber22

We compute the Rubber22 set-up as described above and consider mesh-refinement, time-step refine-
ment and combined mesh/time-step refinement. The resulting values for the quantities of interest can
be seen in Table 6.6, and the height resulting from the computations under mesh-refinement can be
seen in Figure 6.12. Furthermore, a visualisation of the velocity and pressure solutions can be seen in
Figure 6.6.

For the reference quantity t∗, we see convergence under time and diagonal refinement. This again in-
dicates that while the scheme is of higher order, the temporal discretisation is the dominating error
component. While we see some convergence in the drag f∗, we cannot see convergence in v∗. Since we
have the convergence in t∗, we attribute the lack of convergence to the inaccuracies and instabilities in
the force evaluation, as f∗ and v∗ represent quantities that are by definition more sensitive to local in

https://youtu.be/TuolP94g1Hs
https://youtu.be/TuolP94g1Hs
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hmax ∆t t∗ v∗ f∗

value |err| eoc value |err| eoc value |err| eoc

0.008 1/2000 0.453455 1.877 · 10−3 −0.282641 2.098 · 10−2 0.009 64 1.670 · 10−3

0.004 1/2000 0.454081 1.251 · 10−3 0.59 −0.281923 2.170 · 10−2 −0.05 0.010 26 1.048 · 10−3 0.67
0.002 1/2000 0.453789 1.543 · 10−3 −0.30 −0.282187 2.143 · 10−2 0.02 0.010 41 9.035 · 10−4 0.21
0.002 1/1000 0.450554 4.778 · 10−3 −0.284958 1.866 · 10−2 0.010 25 1.065 · 10−3

0.002 1/2000 0.453789 1.543 · 10−3 1.63 −0.282187 2.143 · 10−2 −0.20 0.010 41 9.035 · 10−4 0.24
0.002 1/4000 0.455396 6.416 · 10−5 4.59 −0.280821 2.280 · 10−2 −0.09 0.010 51 8.020 · 10−4 0.17
0.008 1/500 0.447853 7.479 · 10−3 −0.287129 1.649 · 10−2 0.010 47 8.429 · 10−4

0.004 1/1000 0.449218 6.114 · 10−3 0.29 −0.285817 1.780 · 10−2 −0.11 0.009 97 1.343 · 10−3 −0.67
0.002 1/2000 0.453789 1.543 · 10−3 1.99 −0.282187 2.143 · 10−2 −0.27 0.010 41 9.035 · 10−4 0.57

Reference 0.455332 −0.30362 0.011 31

Table 6.6: Results for the pre-contact quantities of interest for the Rubber22 scenario. Reference values are taken from
the extrapolated ALE results in [Wah+21].

time inaccuracies compared to t∗. In total, we can conclude that the fluid-solid model can capture the
pre-contact dynamics well, even for the more elastic rubber solid material.

6.4.2 Contact and Rebound
We investigate the behaviour of our numerical method, with focus on the contact algorithm and the
resulting rebound.

PTFE6

To investigate the effect and usability of our simple contact avoidance model, we consider a number
of simulations together with different parameters in the contact model. To this end, we consider THiso

2
elements on a mesh with hmax = 0.004 and h = hmax/7 in the central region where the ball is situated,
together with the time-step ∆t = 1/2000.

We consider dist0 ∈ {1 · 10−4, 2 · 10−4, 4 · 10−4} and a range of values for γc such that the forces acting on
the ball are broadly similar. The resulting height of the bottom of the ball for each of these computations
can be seen in Figure 6.7. For the smallest value dist0 = 10−4, we see that a rebound only occurs for a
very small range of γc. In fact, the algorithm failed for γc = 0.21. Note that here dist0 ≈ 0.2h for the
local mesh-size at the contact boundary. Increasing the value of dist0 to 2 · 10−4, we see that the scheme
is successful for a much wider range of γc. However, we also note that the resulting rebound is highly
dependent on the choice of γc, with the rebound being about three times as large for γc = 0.76 compared
with the other considered values of γc. Finally, for dist0 = 4 · 10−4, we see that the resulting rebound is
less dependent on the choice of γc and that the resulting rebound is larger than the experimental value
of 2.21 · 10−3 m for all considered choices here.

To study the effects of the contact model more closely, we look at the height of the ball for the choice
dist0 = 2.00 · 10−4 at the time-steps where the contact model is active in Figure 6.8. We have marked
the time-steps where the contact model is active, i.e., dist(I ,Γbottom) < dist0, using square mark and
the remaining time-steps are identified with circular marks. In Figure 6.8, we see that for smaller γc, the
ball is allowed to drop lower, and the contact model is active for a larger number of time-steps. Looking
further at the forces acting on the rigid body during this time in Figure 6.9, we see that relative to the
drag force where we have no contact model, the contact force is very large. However, the drag experienced
by the ball during these time-steps is also very large, so that the total force acting on the ball is about half
the value of the contact force. The very large drag experienced can be explained by the observation that
the sudden upward movement of the ball, due to the repelling contact force, created a very high negative
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Figure 6.6: Velocity and pressure solution for the Rubber22 set-up at t = 0.625. Computed using THiso
2 elements

on a mesh with hmax = 0.002 with ∆t = 1/2000. (A video of the simulation is available at https:
//youtu.be/fls9V5z212Q.)
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https://youtu.be/fls9V5z212Q
https://youtu.be/fls9V5z212Q
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Figure 6.9: The forces acting on the rigid PTFE6 ball during the time the contact model is active for dist0 = 2 · 10−4.
Computed on a mesh with hmax = 0.004 and the time-step ∆t = 1/2000.

pressure between the ball and the bottom wall. This effectively sucks the ball back down, as shown in the
negative drag force realised here. This is further illustrated when looking at the finite element solution
during these time-steps in Figure 6.10.

Finally, we consider the effects of the contact model on the rebound under mesh refinement. We choose
the parameters γc = 0.38 and dist0 = 2 · 10−4 since these parameters lead to the most realistic rebound
above. A plot of the resulting height can be seen in Figure 6.11, while the contact and rebound quantities
of interest can be seen in Table 6.7.

Looking at the results in Figure 6.11, we see that the rebound is similar to the experimental data on
the two finest meshes. Furthermore, we see some convergence of the quantities of interest towards the
experimental reference values in Table 6.7.

hmax ∆t tcont tjump djump

0.008 1/2000 0.600328 0.017827 1.339 74 · 10−3

0.004 1/2000 0.556037 0.030627 2.706 81 · 10−3

0.002 1/2000 0.549543 0.030749 2.692 50 · 10−3

Experiment 0.534503 0.02792 2.211 70 · 10−3

Table 6.7: Contact and rebound results results for the PTFE6 scenario. The experimental values are from [Hag20].
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Figure 6.10: Close up of the PTFE6 velocity and pressure solution at the contact boundary for 0.6 ≤ t ≤ 0.6025. The
artificial contact force acts at t = 0.601, 0.6015, 0.602.
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Figure 6.12: Vertical height of the Rubber22 ball over time for a series of meshes using the time-step ∆t = 1/2000 and
the contact parameters dist0 = 2 · 10−4 and γc = 0.38, together with the experimental data.

Rubber22

Having considered "tuned" parameters for the PTFE6 case, we investigate how these parameters perform
when applied to the Rubber22 case. Since the rubber ball has a mass ∼ 31.6 times larger than the PTFE
ball, we increase the contact force parameter to γc = 12. As a result, the acceleration acting on the solid
body, depending on dist(I ,Γbottom), is the same.

The resulting height of the ball can be seen in Figure 6.12. Here we see that the resulting rebound is
significantly larger compared to the experimental data. In fact, the rebound is between two to three times
larger than in the experiment. This illustrates that while the contact algorithm can lead to reasonable
rebound results, the accuracy is highly dependent on the "correct" choice of the model parameters, which
are unknown a priori.

6.4.3 Summary
From the above numerical computation of the considered fluid-rigid body scenarios, we are able to con-
clude the following for our Eulerian time-stepping method, applied to a coupled fluid-rigid body system.
First, we note that we observed higher-order convergence in the time at which the solid reached a given
position and the velocity of the body at that time. Here we saw that the temporal discretisation error
was the dominating error component.

With respect to the simple contact avoidance algorithm, we conclude that while it is possible to tune



6.4 Numerical Computations 135

the parameters to realise a realistic rebound, this task is not easy. The model is especially sensitive with
respect to the parameter dist0. We have also seen that, while the parameters tuned to the PTFE6 case
were able to cause a rebound for the Rubber22 scenario, the resulting jump was off by up to a factor of
three. Therefore, using a full FSI model that takes the modelling of the elastic body into account, also
considered in our work [Wah+21], is the most accurate approach to deal with the rebound.

Finally, we note that for the above scenarios, the rotationally reduced formulation could capture the three-
dimensional dynamics of the experimental data well, with significant gains in efficiency, as illustrated in
section 6.1.





CHAPTER 7

Non-Smooth Rigid Bodies

Structure of Chapter The fluid-rigid body system (2.5) is considered in the context of non-smooth rigid-
body particles. As a prototype for a particle with corners, we consider triangular bodies. The Eulerian
time-stepping scheme is considered both for prescribed and free rotational motion of large triangular
bodies on resolved meshes. In order to work with the time-stepping scheme on problems with small
particles on under-resolved meshes, we develop an artificial deep neural network approach following our
work in [WR21]. This neural network is trained to predict the forces acting on small triangular particles
accurately based on volumetric fluid information in under-resolved cases where the directly evaluated
forces do not lead to accurate solid motion.
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7.1 Rotating Triangular Bodies in a Channel Flow
In the previous chapter, we have considered smooth geometries defined using a single level set function.
We now move away from this setting into a more complex area by considering non-smooth geometries,
defined with multiple level set functions.

As a prototype of a non-smooth rigid particle in two dimensions, we consider triangular rigid bodies. This
is a challenging scenario since triangular bodies involve re-entrant corners in the fluid domain, whereby the
approximation property of the finite element solution suffers due to a lack of regularity of the solution,
posing a challenge for the coupled simulation. Therefore, the setting of triangular particles contains
all the challenges posed by considering non-smooth domains with re-entrant corners while keeping the
parametrisation of the level set geometry as simple as possible. To this end, we initially consider a single,
large triangular particle in two settings. First, we prescribe the motion of the triangular body, and second,
we consider free rotational around the body’s centre of mass. These are already settings where standard
ALE methods will fail due to mesh entanglement such that frequent re-meshing and projection onto the
new finite element spaces are needed.
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Figure 7.1: Quadrature points for an integration rule of order 2 on an element cut by two level sets.
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Figure 7.2: Domain sketch and initial configuration for the flow around a rotating triangular obstacle.

7.1.1 Complex Geometries Defined by Multiple Level Set Functions
Let Ω0 = {x ∈ Rd | ϕ0(x) < 0} and Ω1 = {x ∈ Rd | ϕ1(x) < 0} be two simple domains described by
two level set functions ϕ0 and ϕ1, respectively. We can then construct more complex geometries using
standard Boolean set operations, which in turn can be translated into a manipulation of the level sets.
For example

Ω0 ∪ Ω1 = {x ∈ Rd | min
(
ϕ0(x), ϕ1(x)

)
= ϕ(x) < 0}

Ω0 ∩ Ω1 = {x ∈ Rd | max
(
ϕ0(x), ϕ1(x)

)
= ϕ(x) < 0}

Ω0 \ Ω1 = {x ∈ Rd | max
(
ϕ0(x),−ϕ1(x)

)
= ϕ(x) < 0}

Ω0 △ Ω1 = {x ∈ Rd | min
(

max
(
ϕ0(x),−ϕ1(x)

)
,max

(
ϕ1(x),−ϕ0(x)

))
= ϕ(x) < 0},

c.f. [Bur+14, section 4].

Compared to the previous cases with a single level set function, constructing the cut quadrature on
elements cut by both level sets needs more care. In CutFEM, the quadrature rules on cut elements are
usually constructed with respect to a piecewise linear level set function, c.f. section 3.1. If one takes
the single level set ϕ constructed using ϕ0 and ϕ1, then on elements where both ϕ0 = 0 and ϕ1 = 0, a
piecewise linear approximation ϕh would not take the sharp corner on the interior of the element into
account. To integrate accurately on domains described by multiple level set functions, ngsxfem uses
piecewise linear approximations of the individual level sets to then constructing the quadrature rules
based on the resulting straight cuts; see Figure 7.1 and compare with Figure 3.1.

7.1.2 Example 1: Prescribed Motion
Based on our work in [Wah+19b], we consider a rotating rigid body in a channel flow. We consider the
domain Ω = (0, 2.2)× (0, 0.41) and the solid is given by an equilateral triangle of side-length L = 0.1 with
the centre of mass at cS = (0.2, 0.2). The initial rotation of the triangle can be seen in Figure 7.2.

At the top and bottom boundary Γwall, we impose a no-slip Dirichlet condition u = 0. On the outflow
boundary Γout, we take the "do-nothing" outflow condition, and at the inflow boundary Γin, we impose a
parabolic inflow profile (3.43). Since the motion of the triangle is restricted to rotation arounds its centre
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Data: Triangle tin with vertices abc and angle α with which the triangle is rotated for the next
time-step.

Result: Elements on which to apply ghost-penalties needed for the extension.
/* We denote the sides of the triangle abc opposite each vertex as ABC. Each side

is assumed to be described by a level set function. */
1 Make a copy tr of the input triangle tin and rotate tr by angle α.
2 for vertex v ∈ abc of tin do
3 Compute the closest intersection points v1, v2 between tin and tr on the sides connected to

vertex v.
4 Compute area av of the triangle v1v2v, i.e., the area inside tin and outside tr at vertex v.
5 Compute hv such that hv · (|v1v| + |v2v|) = av.
6 for side S ∈ ABC of tin do
7 Shift the level set describing S by hS = maxv∈abc\s{hv} perpendicular to S outwards.
8 Compute triangle text described by the shifted level sets of tin.
9 Compute a bounding circle cb of tin.

10 Select all elements that have some overlap with (text ∪ cb) \ tr.

Algorithm 7.1: Procedure to select extension elements of a rotating triangle.

of mass, the boundary condition on the fluid-solid interface I is given by u = ω ·
(

−(x2−cS,2)
x1−cS,1

)
for a given

scalar angular velocity ω.

The fluid parameters are ν = 0.001 and ρF = 1. We then consider the maximal inflow speed U = 1.5,
resulting in a mean inflow speed of um = 1. The angular velocity of the rotating triangle is prescribed as
1. As the reference speed, we take the mean inflow relative to the maximal horizontal component of the
rigid body’s velocity. This is given by U = 1 + 1 · 2/3 ·

√
3/2 · 0.1 ≈ 1.057. As a result the resulting flow has

a Reynolds number of Re ≈ 106. We then look at the dimensionless drag, lift and torque coefficients as
defined in (3.44).

Element Marking Strategy To apply our unfitted Eulerian finite element scheme from chapter 4 to the
above problem, we need to define the extension region S+ to realise the necessary extension. However,
as we have seen in subsection 4.5.2, this needs to be done carefully so that the extension ghost-penalties
do not disturb the solution, where the extension is not needed.

To select the extension and support elements as sparingly as possible, we use our knowledge of the angle
of rotation α = ω∆t in a given time-step ∆t. By determining the area outside the current domain but
inside the domain after a rotation of the triangle by α, we can select the elements that contribute to
these sections as the extension elements. We then select approximately the same number of elements
inside the physical domain as support elements. The details of this selection procedure can be found in
Algorithm 7.1.

In Figure 7.3, we illustrate the area used to select elements on which we apply the extension ghost-
penalties, i.e., lines 3 – 5 in Algorithm 7.1. The striped area at each vertex is the area av (lines 3 – 4).
At each of these vertices, hv is computed such that the combined hatched area of the two rectangles at
each vertex matches the area of the striped triangle at that vertex (line 5). Then at each side, we take
the maximal distance hv from each of the two vertices and shift the side’s level sets by this distance away
from the centre (line 8). These shifted level sets then describe the triangle text (line 10).
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Figure 7.3: Illustration to Algorithm 7.1 for marking extension elements.

Set-Up We consider a mesh constructed with a local mesh parameter hmax in the right three-quarters of
the channel and h = hmax/5 on the left quarter for our numerical computations. On the resulting meshes,
we consider standard TH2 elements. We represent the triangle using three separate level set functions,
each describing one side of the triangle. We note that since each of the triangle sides is already a linear
function, the resulting cut cell integration is exact for the geometry.

For our unfitted Eulerian time-stepping scheme, we take the Nitsche parameter σ = 40k2 and the extension
and stability ghost-penalty parameters are given by γgp,e = 0.01 and γgp,s = 0.1, respectively.

As initial "warm-up" data for the time-dependent problem, we take a stationary Stokes solution on the
initial domain with the corresponding boundary conditions.

Results

BDF1 We use the BDF1 discretisation of the time-derivative and consider the problem over the interval
[0, 5]. In Figure 7.4, we see the resulting drag lift and torque coefficients over the time interval [4, 5],
i.e., one full rotation of the equilateral triangle, for a series of joint mesh and time-step refinements.
Additionally, we have plotted the splines approximating the curves to try and remove the observed
instabilities; see also subsection 4.5.2 where we first applied this approach. The spline is established
by placing a knot at every fifteen time-steps and then solving the least-squares problem to minimise
the difference between the spline and the data using the python library scipy.interpolate. Looking
at these results, we see the periodic nature of the flow, given by the constant rotation of the obstacle
and the symmetry of the triangular obstacle. This can also be observed in the snapshot of the solution
in Figure 7.5. Here we also note that compared to the flow around a rotating cylinder benchmark at
Re = 100, see for example [Joh16, Fig. D.9], there is almost no wake behind the obstacle here, before the
vortices form.

In the force coefficients in Figure 7.4, we see that the coarsest computation is under-resolved. Especially
the curve of the lift and torque coefficients have a different form compared to curves from the other two
computations. Furthermore, while the raw data from each of the three plotted periods is different, the
smaller features in the spline curves appear in every period. This suggests that these smaller features are
features of the solution.

To investigate whether the lack of accuracy on the previously coarsest computation is due to the mesh
or time-step, we consider the mesh with hmax = 0.08 over the same series of time-steps and the fixed
time-step ∆t = 1/250 over the same series of meshes. The resulting force coefficients over the period [4, 5]
can be seen in Figure 7.6 and Figure 7.7, respectively. Comparing these results, we see that while the
smaller time-step do realise smaller features in the spline approximation, the mesh size seems to be the
dominating factor in determining the overall accuracy of the resulting force coefficients.

BDF2 Unlike in the case of a flow around a cylinder benchmark from [ST96], the BDF1/implicit Euler
discretisation is sufficient here to realise the vortex shedding. Nevertheless, we also consider the BDF2
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Figure 7.4: Force functionals on an equilateral triangle, rotating with constant speed. The spline approximations are
defined with a knot at every 15th time-step. Computed using TH2 elements and the Eulerian BDF1 time-
discretisation.

Figure 7.5: Unfitted mesh, velocity- and pressure-solution of an equilateral triangular obstacle rotating with constant
speed in a channel flow. Computed on a mesh with hmax = 0.04 using the unfitted Eulerian BDF1
time-stepping method with the time-step ∆t = 1/500. (A video of the velocity solution is available at
https://youtu.be/Pg1aENR7XzY.)

https://youtu.be/Pg1aENR7XzY
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Figure 7.6: Force functionals on an equilateral triangle, rotating with constant speed. The spline approximations are
defined with a knot at every 15th time-step. Computed using TH2 elements on a fixed mesh with and the
Eulerian BDF1 time-discretisation.
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Figure 7.7: Force functionals on an equilateral triangle, rotating with constant speed. The spline approximations are
defined with a knot at every 15th time-step. Computed using TH2 elements on a series of meshes and the
Eulerian BDF1 time-discretisation with a fixed time-step.
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Figure 7.8: Force functionals on an equilateral triangle, rotating with constant speed. The spline approximations are
defined with a knot at every 15th time-step. Computed using TH2 elements and the Eulerian BDF2 time-
discretisation.
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Figure 7.9: Spline approximation of the torque functional resulting from the unfitted Eulerian BDF1 and BDF2 time-
stepping schemes.

time-discretisation to study the flow around a rotating, equilateral triangular obstacle.

We consider the same combined mesh and time-step refinement study as above. The results can be seen
in Figure 7.8. Compared to the BDF1 case, we see larger instabilities in the data, which attribute to the
larger necessary extension region. However, the resulting splines appear to be very similar to the BDF1
case. In Figure 7.9, we can see the splines for the torque coefficient resulting from both the BDF1 and
BDF2 discretisations. Here we see that the main difference between the BDF1 and BDF2 results is a
small phase shift. This again shows that the main challenge here is the spatial resolution.

7.1.3 Example 2: Free Rotation
As a second example, we consider a triangular rigid body that is free to rotate around its centre of mass.
Therefore, the angular velocity of rigid body is the solution of

IS∂tω = T ,

where IS = ρS
∫
S ∥r∥2

2 dx is the solid’s moment of inertia, and T is the scalar torque exerted by the fluid
onto the solid, c.f. subsection 2.1.2. For the solid S , we consider an isosceles triangle with side-length 0.16
and 0.08 with the centre of mass as cS = (0.2, 0.205) and density ρS = 100. The background domain and
fluid set-up are identical to subsection 7.1.2. A sketch of this configuration can be seen in Figure 7.10.
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I = ∂S

width=2.2

height=0.41

cS = (0.2, 0.205)
Γin ΓoutΓwall

b
long sides=0.16

short side=0.08

Figure 7.10: Initial configuration for a freely rotating isosceles triangle shaped rigid body in a channel.

Taking the blocked vertical section of the channel as the reference length, we then have that the resulting
flow has the Reynolds number Re = 80–160. Consequently, we expect vortex shedding and a periodic
solution state.

To solve the resulting coupled fluid-solid problem, we use the partitioned solver described in section 6.3
with a BDF1 discretisation of the time-derivatives. As we have seen in the above example, this is sufficient
to realise the expected vortex shedding. The discretisation parameters are the same as in the previous
example in subsection 7.1.2, while we go into the details of the mesh construction below.

Results

Mesh Construction As we have seen in the previous case of an equilateral triangle, the spatial resolution
is more important for the accuracy of the resulting flow than the temporal resolution. Note that we made
a similar observation in the case of the moving cylinder in subsection 4.5.2 above. Furthermore, since the
fluid-solid interface is not smooth, we cannot expect high-order regularity of the solution and, therefore,
only low order convergence locally. As a result, we need to consider a finer mesh in the region of the
moving interface compared to the bulk of the domain. Consequently, we investigate how we can construct
an appropriate mesh for this coupled fluid-solid problem.

To this end, we consider the following meshing strategy for the background domain. In the right
three-quarters of the domain, we prescribe the meshing parameter as hmax and in the front quarter
as hmax/δfront. Additionally, we iteratively bisect any elements potentially containing the solid nref times.
As a result, the mesh has three local mesh sizes hmax, hf = hmax · δfront and htr = hf · 2−nref . The
time-step is chosen as ∆t = 1/250.

In order to make the comparison between the different meshes fair, we choose the parameters such that
the resulting active part of the mesh has approximately the same number of elements. as a reference we
the solution from a mesh with hmax = 0.02, δfront = 0.25 and nref = 2. Therefore, the resulting mesh
is more resolved in every region of the mesh compared with the meshes we will be considering. As a
measure of the accuracy of the solution compared with our reference, we integrate the absolute difference
of the total rotation of the triangular rigid body over the time interval [0, 6].

The results for a range of different meshes can be seen in Table 7.1. Looking at the integrated error in the
rotation over time, we see that the most important factor is htr. Since the mesh with with δfront = 1 and
nref = 3 gave the best results, we will use this mesh construction for the remaining computations.

Convergence We consider the problem with mesh and time-step refinement. Due to our observation
that larger time-steps are sufficient, we consider larger time-steps compared with the computations in
subsection 7.1.2. The dimensionless force coefficients, the angular velocity and the total rotation relative
to the initial state can be seen in Figure 7.11. Furthermore, a sample solution of the resulting fluid system
in the periodic state can be seen in Figure 7.12.

In Figure 7.11, we first see that the mesh with hmax = 0.08 is again too coarse, although the mesh around
the triangle here is comparable with the resolution around the equilateral triangle with hmax = 0.04. For
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Parameters Mesh Result
hmax δfront nref hmax hf htr # Els. Err. Rotation

0.08 1 4 0.08 0.08 0.005 5470 5.60 · 10−1

0.08 0.5 3 0.08 0.04 0.005 5390 6.05 · 10−1

0.08 0.25 2 0.08 0.02 0.005 5910 3.72 · 10−1

0.044 1 3 0.044 0.044 0.0055 5450 3.36 · 10−1

0.044 0.5 2 0.044 0.022 0.0055 5490 7.28 · 10−1

0.052 0.25 1 0.052 0.013 0.0065 5820 7.40 · 10−1

0.0265 1 2 0.0265 0.0265 0.006625 5650 6.29 · 10−1

0.0295 0.5 1 0.0295 0.01475 0.007375 5930 7.41 · 10−1

Table 7.1: Rotation error for different meshes with approximately 5000 elements.
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Figure 7.11: Force coefficients angular velocity and total rotation of a freely rotating isosceles triangle in a channel
flow in the periodic state. Computed using the Eulerian time-stepping with a BDF1 time-discretisation
and three levels of mesh refinements in a bounding circle of the triangle.

the remaining computations, we see that the periodic state has been reached at t = 20, and the frequency
of the functional values appears to be the same. However, the mean of the total rotation in the periodic
state is not entirely clear. As a result, we also observe some difference in the amplitude and mean of the
drag and lift coefficients.

7.1.4 Summary
We draw the following conclusions from the above computations. First, we note that non-smooth domains
are in general unproblematic for the Eulerian time-stepping scheme and that even the BDF1 method allows
for the appearance of vortex shedding. This is in contrast to the BDF1 method applied to flow problems
on smooth and fixed domains such as the Schäfer-Turek 2d-3 problem, where it is known that the BDF1
method is too diffusive and therefore leads to very inaccurate results [JMR06].

Concerning the force coefficient functionals, we saw the same instabilities as for smooth geometries for a
prescribed motion of the solid domain, c.f. subsection 4.5.2. Approximating this data by a spline allowed
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Figure 7.12: Unfitted mesh, velocity- and pressure-solution at t = 20 of the freely rotating isosceles triangle shaped
rigid body in a channel flow. Computed on a mesh with hmax = 0.04 and three mesh refinements in a
bounding circle of the rigid body using the unfitted Eulerian BDF1 time-stepping with ∆t = 1/250. (A
video of the velocity solution is available at https://youtu.be/ST8H1EYMF7w.)

https://youtu.be/ST8H1EYMF7w
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Figure 7.13: Velocity solution to the ST-2D1 problem with hmax = 0.02. Top: Fitted FEM. Bottom: CutFEM.

us to realise a periodic curve, as expected for these functionals. With our partitioned fluid-solid solver,
these instabilities were significantly smaller for the case of the solid motion being driven by the fluid
forces.

Finally, we observed that the most significant discretisation parameter for accurate results is the local
mesh parameter in the area where the moving solid body is located. Even when using a BDF1 time-
discretisation, relatively large time-steps were sufficient, and the use of the BDF2 method did not improve
the results. In fact, the necessity of a larger extension region for the BDF2 method generally leads to
larger instabilities in the functional values.

7.2 Learning Forces Using Deep Neural Networks for
Under-Resolved Computations

In subsection 7.1.3, we have seen that very fine meshes are necessary in the vicinity of a triangular rigid
body to obtain accurate motion of the particle. This was possible there since we considered a single very
large rigid body, and the motion was restricted to a small region of the fluid domain. However, in the
following, we want to consider small particles moving freely in the fluid domain. As a result, a fully
resolved mesh is unfeasible. Consequently, we need to consider alternative methods to obtain accurate
values for the forces acting on a rigid particle in an under-resolved simulation. To this end, we will train
an artificial neural network to predict the forces acting on a particle, which takes fluid features as input,
which are available accurately in an under-resolved setting. This section follows our work in [WR21].

Example 7.1 (Motivation of approach). To illustrate that we can compute volumetric flow features
accurately, while the boundary forces are not computed accurately in an under-resolved CutFEM simula-
tion, we consider the flow around a cylinder benchmark [ST96] and take the stationary "2D-1" test case.
We compute this once using a fitted approach together with the Babuška-Miller trick [BM84] to evaluate
the drag and lift functional, and once using the isoparametric CutFEM approach with the direct evalu-
ation of the boundary integral to realise the force values. For both the fitted and unfitted simulations,
we use TH3 elements. To make the comparison as fair as possible, we consider unstructured meshes with
the same mesh size in each computation.

In Figure 7.13, we can see the velocity solution to these computations together with the computational
meshes. Note that it is nearly impossible to distinguish the two solutions visually. In Table 7.2, we see
the benchmark quantities resulting from the two computations. Here we immediately see that while the
values from the fitted computations are reasonably for such coarse mesh, the values resulting from the
CutFEM computations even result in the wrong sign for the lift coefficient.

Since the solutions in the bulk of the domains look indistinguishable, it is natural to ask whether there
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Benchmark quantities
Method CD err. CL err. ∆p err.

Fitted TH3 5.579521 0.00025% 0.0105942 0.232% 0.117162 0.30%
CutFEM TH3 5.571512 0.14379% −0.0063662 160.0% 0.119766 1.91%

Ref. 5.579535 0.0106189 0.117520

Table 7.2: Benchmark quantities for the ST-2D1 problem computed using fitted FEM and CutFEM on meshes with
hmax = 0.02. Reference values obtained from www.featflow.de (visited on 15.02.2021).

Volumetric Quantities
Method Avg. u1 err. Avg. u2 err.

Fitted TH3 4.293 27 · 10−3 0.0013% 1.492 00 · 10−5 0.031%
CutFEM TH3 4.287 96 · 10−3 1.2506% 1.493 17 · 10−5 0.109%

Ref. 4.293 33 · 10−3 1.491 55 · 10−5

Table 7.3: Benchmark quantities for the ST-2D1 problem computed using fitted FEM and CutFEM on meshes with
hmax = 0.02. Reference values computed using fitted TH6 elements on a mesh with hmax = 0.005.

are other quantities based on the solution near the obstacle, which we can compute accurately in both
settings. To this end, we compute the average velocity in a strip of width 0.05 around the obstacle. The
results from this are presented in Table 7.3. Here we see that while the fitted FEM solution resulted in
values closer to the reference values compared to CutFEM, the difference between the accuracy of the
fitted and unfitted computations are significantly smaller. Furthermore, we see that we keep multiple
significant figures of accuracy in the functional value, even at values of order 10−5.

We conclude from these simulations that while it is difficult to obtain accurate forces from the boundary
integral formulation in an under-resolved CutFEM computation, other solution features can be obtained
much more accurately, even on such coarse meshes. Therefore, if we can construct a mapping from flow
features near the obstacle to the forces acting on the obstacle, we should be able to get more accurate
force values in the under resolved CutFEM setting. ▲

Material parameters

We choose our fluid and solid material parameters to have a setting that can be given some physical
meaning while remaining in the regime of small to moderate Reynolds numbers.

We choose the fluid and solid parameters to approximate coarse sand in a glycerol/water mixture. We
take a mixture of 1 part water to 4 parts glycerol at a temperature of 21◦C. The resulting relevant
material parameters are summarised in Table 7.4. The fluid parameters are obtained through an online
calculator tool1 and the density of the solid is taken as the density of quartz2. The ISO standard 14688-
1:20173 defines coarse sand to have a particle size of 0.63 – 2.0 mm. As a prototype for a sand particle,
we shall consider an equilateral triangle to keep the parametrisation simple. We then take the side length
of our triangles to be dS = 2.00 · 10−3 m.

A Priori Computations In order to establish the regime of the resulting flow when the triangular particle
is left in free fall, we consider a single triangular particle in free-fall with the material parameters as
summarised in Table 7.4. We restrict the motion of the particle to free vertical motion and use an ALE

1www.met.reading.ac.uk/ sws04cdw/viscosity_calc.html, visited on 25.09.2020
2www.matweb.com/search/datasheet _print.aspx?matguid=8715a9d3d1a149babe853b465c79f73e, visited on 25.09.2020
3www.sis.se/api/document/preview/80000191, visited on 25.09.2020

http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark1_re20.html
http://www.met.reading.ac.uk/~sws04cdw/viscosity_calc.html
http://www.matweb.com/search/datasheet_print.aspx?matguid =8715a9d3d1a149babe853b465c79f73e
https://www.sis.se/api/document/preview/80000191
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Parameter µF ρF νF ρS

Value 8.5679 · 10−2 N s m−2 1.2167 · 103 kg m−3 7.0419 · 10−5 m2 s−1 2.65 · 103 kg m−3

Table 7.4: Fluid and solid material properties of a 1:4 water-glycerine mixture and quartz

discretisation, similar to the discretisation in section 4.5, using the partitioned fluid-solid approach to
solve the coupled fluid-solid system accurately.

We choose the domain Ω = (0, 0.1) × (0.0, 2) over the time interval [0, 10] with the initial centroid of the
triangular particle at cS = (0.05, 0.15). Additionally, we consider a range of different angles of attack.

For the ALE computation, we use a mesh with hmax = 1.00 · 10−3 in the bulk and h = 2.50 · 10−5

on the solid boundary together with inf-sup stable P5/P3
dc elements. The time derivatives in the ALE

formulation are then discretised using the BDF1 scheme and the time-step ∆t = 1/500.

We observed in these computations that the maximal terminal velocity of the triangle was v = 0.047m s−1.
Taking the side-length of the triangular particle as the reference length then leads to a Reynolds number
of Re = vL

νF
≈ 1.33. This is sufficiently large to justify considering the full Navier-Stokes equations,

rather than the creeping flow Stokes equations, and small enough to ensure that the local flow around
the triangle is laminar.

7.2.1 Neural Network
The idea to predict the forces acting on a small, moving particle originated from Minakowska, Richter
and Sager [MRS21]. Due to the similar aim of our neural network, we shall take [MRS21] as our starting
point for the design of our network. We note that while in [MRS21] it was the aim to use a neural network
to predict the forces based on the speed and shape of very small particles in a linear Stokes flow and
without back-coupling of the particles onto the fluid, we want to predict the forces based on the fluid
solution near our particle, which couples back to the fluid governed by the non-linear Navier-Stokes
equations.

Network Design

Architecture We shall consider a fully connected feed-forward network with at least three hidden layers
and the ReLU activation function, i.e., f(x) = max{0, x}. An example of such a network can be seen in
Figure 7.14. We shall refer to networks by the number of neurones. For example, a network with three
hidden layers consisting of l, m and n neurones is denoted by l/m/n. The number of neurones per layer
and the number of layers we shall need for our network will be determined experimentally by inspecting
the results achieved during training.

Input A good choice for the network is vital since this must contain sufficient information for the network
to learn the input to output map. To capture the force acting on the triangular rigid body, it makes sense
that the features have to be in some sense local to the rigid body. Point evaluations of the velocity and
pressure near the rigid body would be one choice. Unfortunately, while we found that this does indeed
capture the necessary information needed by a neural network, the unresolved nature of the CutFEM
discretisation means that we do not have a chance of obtaining sufficiently accurate values to feed to the
network at run-time.

We have seen in Example 7.1 that an integral of the velocity components can be obtained accurately in
a coarse CutFEM computation. For a rigid body S , we define O(S) := {x ∈ F | ∥x− cS∥2

2 < (dO/2)2}
to be a circular fluid domain around the solid, centred at the solid’s centre of mass with radius dS . As
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input1

input2

output1

output2

output3

Hidden layer Hidden layer Hidden layerInput layer Output layer

Figure 7.14: Illustration of a fully connected feed-forward networks with two inputs, three hidden layers consisting of
8, 5, and 5 neurones, respectively, and a three outputs.

the network input, we then take the mean fluid velocity, relative to the solid’s velocity in O(S), i.e,

rel vel :=
∫

O(S)
u− U dx.

We have found dO = 4dS to be an appropriate choice. For the input, we then de-dimensionalise the data
and take input = rel vel/v, where v is the characteristic velocity, which we take as the terminal settling
velocity v = 0.047m s−1.

As the forces only depend on the angle of attack between the mean (integrated) flow relative to the
triangle’s velocity and orientation, we shall consider the input in a reference configuration. For this, we
choose the bottom side of the triangle to be parallel to the x-axis. As a result, the network learns the
forces resulting from any angle of attack in this reference orientation. To obtain the physical forces, we
rotate the input into the reference configuration and rotate the drag/lift predictions back into the physical
orientation. Since the torque in two spatial dimensions is a scalar quantity, it is invariant with respect to
rotation.

Output We train the network to learn the dimensionless drag, lift and torque coefficients CD, CL and
CT , respectively, to keep the network general. See (3.44) for the definition of these coefficients. The
reference speed is taken as the terminal velocity established below as um = v = 0.047m s−1 and the
reference length L = dS = 0.002m.

Training Data

In order to train a neural network of which we can expect sufficient accuracy for our application, we
need to generate an appropriate training data set. To this end, we generate training data based on
idealised configurations which are very close to the final application, computed using highly resolved
discretisations.

Set-Up We consider two idealised situations for the training data. The first setting consists of purely
translational motion, thereby allowing a simple and accurate ALE discretisation. To generate learning
data for translational motion, we take the domain (0, 0.5)2 with the equilateral triangular obstacle located
at (0.25, 0.25) in the reference configuration. This rigid body then moved from (0.1, 0.25) to (0.4, 0.25)
and back again over a time interval [0, tend]. To get a wide range of relative velocities between the triangle
and the mean flow around the triangle, we accelerate the particle at different rates, i.e., consider different
values for tend. The physical location of the body is then given by

cS(t) = (0.25 − 0.15 cos
( πt

2tend

)
, 0.25).
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Case(Method) hmax hloc ∆t CD,max CL,min CT,max

Translational (ALE) 0.02 2 · 10−4 1/250 2.6094 · 102 −5.9548 · 101 2.9674 · 101

0.01 1 · 10−4 1/500 2.6105 · 102 −5.9673 · 101 2.9699 · 101

0.005 5 · 10−5 1/1000 2.6111 · 102 −5.9751 · 101 2.9694 · 101

Rotational: (CutFEM) 0.0084 – 1/250 1.6025 · 10−2 −1.3880 · 10−2 3.3697 · 10−1

0.0042 – 1/500 1.3443 · 10−2 −1.5876 · 10−2 3.5969 · 10−1

0.0021 – 1/1000 1.0735 · 10−2 −8.9824 · 10−3 3.5636 · 10−1

Table 7.5: Validation results of the discretisation to generate the training data set.

for t ∈ [0, tend]. To implement this motion, we use a prescribed ALE mapping, as above. To generate the
data with different angles of attack, we rotate the rigid body by an angle α around its centre of mass and
rotate the resulting relative velocities and forces back into the reference configuration. As a result, we
can reuse the same ALE mapping to simulate different directions of relative motion of the solid body.

Since the above ALE computations only include translational motion, this is equivalent to only considering
a parallel flow around a fixed obstacle. For the network to be universally usable, we also need to include
rotational flow data. This corresponds to rotating the triangle. To this end, we consider a triangular rigid
body located at the centre of the domain Ω = (0, 0.1)2. This is then rotated at different speeds, clockwise
and anti-clockwise, such that the total rotation at time t with respect to the initial configuration is given
by

α(t) = sin(2π · t/tend).

This set-up is not suitable for a simple ALE discretisation as relatively small rotations will lead to mesh-
entanglement. Consequently, we use a highly resolved moving domain CutFEM simulation to generate
data with rotational input.

Validation To ensure that the generated learning data is computed sufficiently accurate, we consider
the above cases over a series of meshes and time-steps. For this test case, we take tend = 2.0 for both
set-ups and α = 0 for the translational set-up.

For the ALE discretisation, we take TH4 elements on a mesh with diameter hmax in the bulk and a local
mesh parameter hloc on the boundary of the rigid body. In time we discretise using the BDF1 scheme
with the time-step ∆t.

For the CutFEM discretisation, we take TH2 elements on a mesh with global meshing parameter hmax,
three levels of mesh bisections in the domain where we compute the average relative velocity and an
additional five levels of mesh bisections in the bounding circle of the rotating triangle.

The results for the convergence study can be seen in Table 7.5. For the ALE computations, we see that the
discretisation is accurate and that the second mesh already provides 2 – 3 significant figures of accuracy
in the target data. Since the neural network prediction will introduce an additional approximation error,
we consider this to be sufficiently accurate for the training data. For the rotational CutFEM data, we see
that the forces are (in absolute value) significantly smaller than the translational data. However, we also
see that the second finest discretisation should be accurate enough for the training of the network.

Data Generation To generate the data set, we consider tend ∈ {2, 2.5, 3, 4, 6, 8, 1}, and rotate the triangle
with angle α ∈ { 2iπ

3·40 | i = 0, . . . , 39}. Since the triangle is equilateral, the remaining angles of attack
α ∈ [2π/3, 2π) can be obtained by post-processing the data appropriately. Based on the above validation
computations, we consider the mesh with hmax = 0.01, and take the time-step ∆t = 1/500. The resulting
data set then contains 2.13 · 106 input/output pairs.
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Training data Validation data
Architecture Unknowns Target ∥·∥mean ∥·∥∞ ∥·∥mean ∥·∥∞

30/20/10 953 CD 1.66 · 100 1.73 · 101 1.87 · 100 1.19 · 101

CL 1.64 · 100 1.88 · 101 1.77 · 100 1.46 · 101

CT 5.87 · 10−1 5.01 · 100 6.57 · 10−1 4.29 · 100

50/20/20 1653 CD 1.05 · 100 8.62 · 100 1.19 · 100 7.88 · 100

CL 1.05 · 100 8.92 · 100 1.17 · 100 8.12 · 100

CT 5.56 · 10−1 4.16 · 100 6.25 · 10−1 3.75 · 100

50/20/20/10 1833 CD 1.19 · 100 1.06 · 101 1.32 · 100 7.92 · 100

CL 1.16 · 100 8.62 · 100 1.32 · 100 7.88 · 100

CT 5.61 · 10−1 4.50 · 100 6.32 · 10−1 3.76 · 100

100/50/20/20 6853 CD 9.58 · 10−1 8.75 · 100 1.08 · 100 8.02 · 100

CL 9.68 · 10−1 8.60 · 100 1.09 · 100 7.88 · 100

CT 5.51 · 10−1 4.09 · 100 6.20 · 10−1 3.76 · 100

100/50/50/20 8983 CD 9.73 · 10−1 8.55 · 100 1.10 · 100 7.80 · 100

CL 9.58 · 10−1 8.77 · 100 1.07 · 100 8.01 · 100

CT 5.51 · 10−1 3.96 · 100 6.19 · 10−1 3.58 · 100

Table 7.6: Prediction errors in a weighted ℓ2 norm and the maximum norm on the training and validation data sets
after 20000 epochs of training for a number of different network sizes. Each network predicts all three
functional values simultaneously.

For the rotational data we choose tend ∈ {0.5, 1, 2, 3, 5, 6}. Based on the above validation computations,
we take the mesh with hmax = 0.0042, and the time-step is chosen as ∆t = 1/500. As a result, we then
obtain an additional 8.79 · 103 input/output pairs.

Training

We implement the neural networks described above using PyTorch [Pas+19]. We use the mean squared
error as the loss function and take the Adam algorithm [KB14; LH17] as the optimiser with a step size of
10−4. The networks are trained for a total of 20000 epochs. For each network to predict all three values
simultaneously, we scale both the input and output data to be in the interval [−1, 1]. In practice, we
scale the predictions back appropriately so that the appropriate coefficients are obtained.

To make sure that we do not over fit the network to the training data set, we also generated a validation
data set in the same fashion as the translational part of the training data set but with different angles of
attack and values for tend. This then consists of 4.32 · 105 data points. We evaluate the network on the
validation data set during training to ensure that the training error does not decrease while the validation
error increases.

The errors of the predictions made by the networks on the training and validation data sets can be
seen in Table 7.6 for the case where a single network was used to predict drag lift and torque, while
Table 7.7 shows the error for separate networks for each force. To make the results on data sets of
different sizes comparable, we use the norm ∥err∥2

mean := 1
N

∑N
i=1(predictioni − valuei)2 and ∥err∥∞ :=

maxi=1,...,N (|predictioni − valuei|).
To find an appropriate network size, which is large enough to capture all the information contained in
the data set while also being small enough for fast evaluations in the final solver, we consider a number
of different networks. The chosen number of layers and neurones per layer can be seen in the first column
of Table 7.6.

The results in Table 7.6 show that the results are broadly similar for all six considered network archi-
tectures. Looking at the three-layer networks, we observe that the prediction error resulting from the
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Training data Validation data
Target ∥·∥mean ∥·∥∞ ∥·∥mean ∥·∥∞

CD 9.59 · 10−1 8.83 · 100 1.08 · 100 8.10 · 100

CL 9.96 · 10−1 8.67 · 100 1.12 · 100 7.87 · 100

CT 5.54 · 10−1 4.14 · 100 6.23 · 10−1 3.63 · 100

Table 7.7: Prediction errors in a weighted ℓ2 norm and the maximum norm on the training and validation data sets
after 20000 epochs of training. Separate networks of the architecture 50/20/20 with 1611 unknowns are
used to predict the three functional values.
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Figure 7.15: Target data and network prediction for 300 random points in the training data set. Network architecture:
50/20/20, 1653 unknowns.

30/20/10 network are almost two times larger than that of the 50/20/20 network. Looking at the four-
layer networks, we see that the errors are generally the same as for the 50/20/20 network, with some
small deviations in both directions.

In order to check whether we can gain more accuracy by considering separate networks for the three
functionals, we train three separate 50/20/20 networks. The results thereof can be seen in Table 7.7,
where we observe that the prediction errors are about the same as those realised by the single network
with the same architecture in Table 7.6.

Both in Table 7.6 and Table 7.7, we see that the errors are generally similar and very large. To give these
errors more meaning, we plot the predictions and the target values for a random selection of point from
the validation data set in Figure 7.15. Here we see that the predicted values generally match the target
values well. This indicates that the size of the errors in Table 7.6 and Table 7.7 are due to the size of the
target values. The errors in Table 7.6 indicate that overall the force dynamics are captured with about
1 – 2 significant figures of accuracy.

As a result of the above considerations, we choose the single 50/20/20 network to predict the drag,
lift and torque from the average velocity around the rigid particle in our application. Considering this
network as a function R2 → R3, we can then plot the individual components as a function of the input
in a three-dimensional plot. This can be seen in Figure 7.16. This illustrates that while the drag and lift
coefficients are represented by a relatively simple function, the torque coefficient functional is significantly
more involved.

Remark 7.2. The input for the network requires two integrals over a relatively small area and a rotation
of these two values into the reference configuration. Furthermore, because the network is relatively small,
the additional computation effort introduced to the solver by predicting the forces, rather than evaluating
them directly, is negligible compared to the effort required to solve the non-linear system resulting from
the FEM discretisation of the Navier-Stokes equations. ▲
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Figure 7.16: Network predictions from the 50/20/20 network as functions of input variables.

Remark 7.3 (Training times). The training of the above networks was performed on a Tesla V100 PCIe
16GB graphics card with PyTorch using CUDA version 10.1. Due to the small size and simple structure of
the networks, the training times for 2 · 104 epochs ranged between 277 seconds for the 30/20/10 network
and 936 seconds for the 100/50/20/20 network. ▲

Validation

During training, we have compared the predictions against the ground truth in the sense of the ALE
training data. However, the network aims to predict the forces acting on a particle in a CutFEM simulation
and be more accurate than evaluating the boundary integral.

To validate that the neural network predictions are more accurate than the direct evaluation of the forces
from the boundary integral, we run a moving domain CutFEM simulation of the set-up, with which
we generated the training data for tend = 3 and α ∈ {0, π/6, π/3, π/2, 2π/3}. Here we take a background
mesh with h = 10−3 in the area where we compute the average of the velocity around the triangle and
hmax = 0.04 in the remaining part of the domain. The mesh in the averaging area is therefore a factor
of two smaller than the size of the rigid body. On this mesh, we work with both unfitted TH2 and TH3
elements. The errors of the force prediction and evaluation are then evaluated by comparing the values
against the direct evaluation of a highly resolved ALE computation of the identical set-up. The spatial
discretisation is identical to the training data generation above. In both cases, the time-step ∆t = 1/300
was chosen.

The resulting prediction errors of the forces in the CutFEM simulation can be seen in Table 7.8. Here we
see that the mean and maximal predictions are at least one order of magnitude smaller than the direct
evaluation. In Figure 7.17, we plot the resulting forces for a single run of the above computations (α = 0).
This shows that while there is a visible difference between the prediction and the “ground truth”, the
predictions approximate the real forces significantly more accurately than the direct computation via
the boundary-integral evaluation. We also note that there was no significant improvement in the direct
evaluation when using higher-order elements. We conclude that while the predictions are not perfect,
we have improved on the direct computation of the forces on an under-resolved computational mesh.
However, we also note that we cannot expect any asymptotic mesh convergence here, as the prediction
error will begin to dominate once the interface is sufficiently resolved in every time-step.

7.2.2 Numerical Examples
We now consider several numerical examples which use the neural network constructed in subsection 7.2.1
in the context of the fluid-rigid body system (2.5) with small triangular rigid bodies and the system
discretised with an under resolved moving-domain CutFEM discretisation.
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CD CL CT

Force comp. Discr. ∥·∥mean ∥·∥∞ ∥·∥mean ∥·∥∞ ∥·∥mean ∥·∥∞

Evaluation TH2 7.86 · 100 8.41 · 101 1.33 · 100 3.32 · 101 1.44 · 102 2.29 · 103

Prediction TH2 1.54 · 100 2.32 · 101 2.26 · 10−1 4.81 · 100 1.48 · 10−1 2.92 · 100

Evaluation TH3 6.59 · 100 7.17 · 101 1.47 · 100 4.15 · 101 2.41 · 102 3.92 · 103

Prediction TH3 1.52 · 100 2.28 · 101 2.37 · 10−1 5.05 · 100 1.48 · 10−1 2.90 · 100

Table 7.8: Absolute errors in the forces resulting from the direct evaluation of the boundary integrals and the prediction
made by the neural network in a CutFEM computation.
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Figure 7.17: Prediction and evaluation in a CutFEM simulation with TH2 elements compared against the values eval-
uated in a fitted ALE computation.

Restricted Motion with ALE Comparison

In subsection 7.2.1, we validated that the neural network is able to predict the forces acting on a particle
with prescribed motion more accurately than the direct evaluation thereof. To validate the method in our
target setting of free-fall, we shall consider the settling of a single particle restricted to vertical motion.
We consider this simplification to compare the results against a resolved ALE simulation.

To this end, we take the domain Ω = (0, 0.1)2, assert no-slip boundary conditions at the left and right walls
Γleft ∪ Γright, and the “do-nothing” at the top and bottom boundaries Γtop ∪ Γbottom. This approximates
the section of a vertical pipe. The rigid body is an equilateral triangle with side-length dS = 2 · 10−3, and
the fluid and solid material parameters are as in Table 7.4. At t = 0, the centre of mass of the rigid body
is at (0.05, 0.08), and we rotate the body by an angle α with respect to reference configuration, in which
the bottom of the triangle is parallel to the x-axis. We shall consider α = 0, π/12, π/6. An illustration of
this configuration can be seen in the left of Figure 7.18.

For the ALE reference computation, we consider TH5 elements on a mesh with hmax = 5 · 10−3, h =
1.25 · 10−3 in a horizontal strip of height 8 · 10−3 around the rigid body and h = 4 · 10−4 on the interface
of the rigid body. Based on our validation experiments above, this discretisation is sufficiently accurate
to serve as a reference here.

We run one simulation with the solid motion based on the forces boundary integral evaluation and one with
the forces predicted by our neural network to validate the neural network approach. For both CutFEM
computations, we consider a mesh with hmax = 10−3 on which we consider TH2 elements. For the unfitted
discretisation used, we take the Nitsche parameter to enforce the Dirichlet boundary conditions on the
level set interfaces as σ = 100k2 while the stability and extension ghost-penalty parameters are γgp,s = 0.1
and γgp,e = 0.001, respectively.

We take the time-step ∆t = 1/250 and compute until t = 1.0. For the partitioned fluid-solid solver, we
take the initial relaxation parameter as ω = 0.5, allow a maximum of 10 sub-iterations per time-step
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Figure 7.18: Domain sketches for the initial configurations of the computational examples. Left: A single particle.
Right: Five particles.

and a tolerance of 1% in the relative update. The forces acting from the fluid onto the rigid body are
evaluated using the single 50/20/20 network for drag, lift and torque.

In Figure 7.19, we can see the vertical force, the vertical speed and the vertical position of the centre of
mass of the rigid body over time for each of the three triangle orientations. Here we see that for all three
orientations, the drag obtained by the network prediction is significantly more accurate than the direct
evaluation of the boundary integral. Looking at the body’s vertical speed and position, we see a visible
difference between the ALE reference solution and the movement resulting from the predicted forces. The
uniformly faster speed in the CutFEM prediction computations is because, at low speeds of the particle,
the network underestimated the drag, as can be seen in the left column of Figure 7.19. However, we
also see that the predictions are significantly more accurate than the result from the direct evaluation
of the forces. This clearly shows that the neural network approach is able to realise accurate results on
very coarse and under-resolved meshes, where the unfitted approach with the standard evaluation of the
resulting forces does not lead to reasonable motion.

Free Motion of a Single Particle

We now consider the full fluid-rigid body system, including translational movement in all directions as
well as rotational motion. As a result, we do not have an ALE reference to compare the results with, so
that we only compare qualitatively against the results from the previous example with restricted motion.
The initial configuration is therefore chosen as in the previous example with restricted motion. The initial
rotation is chosen as α = π/3.

We again take the background mesh with hmax = 10−3 and consider a second mesh with hmax = 7.5 ·10−4

to investigate the mesh dependence. On each mesh, we take TH2 elements. The remaining discretisation
parameters are chosen as in the unfitted simulation in the previous example.

The fluid solution at time t = 1.0 on the coarser of the two meshes is visualised in Figure 7.20. In
Figure 7.21, we see the resulting velocity components that make up the movement of the rigid body for
the two considered meshes.

Looking at velocity components in Figure 7.21, we immediately see that there is very little difference
between the results from the two considered meshes. While this does not indicate the method’s accuracy,
this does show that the method is stable. As is to be expected, the vertical velocity component dominates
the translational motion. Furthermore, we see that while a terminal velocity is not fully reached, that the
acceleration between t = 0.5 and t = 1.5 is small, and the velocity during this time is very similar and
only about 10% faster compared to the a priori computations to establish the terminal settling velocity
above and in our validation example with restricted motion above.
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Figure 7.19: Vertical force, velocity and position of a single falling triangular rigid body restricted to vertical motion.
Comparison between an ALE reference computation, the force computation in an under-resolved CutFEM
computation and the network prediction in an under-resolved CutFEM computation.
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Figure 7.20: Velocity field (left) and pressure with mesh (right) at t = 1.0 resulting from a single triangular rigid body
in free fall on a mesh with hmax = 10−3 with the forces governing the solid motion obtained from a neural
network. (A video of the simulation is available at https://youtu.be/BiWKHN4fzt4.)
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Figure 7.21: Translational and rotational velocity components of a single triangular rigid body in free fall on an under-
resolved mesh with the forces from the predictions by a deep neural network.

The angular velocity in Figure 7.21 appears very large at first sight. Factoring in that the side-length
of the body is 2 · 10−3, we find that the resulting maximal velocity at the corners of the triangular rigid
bodies is of order 10−2. So, in general, the velocity of the triangle resulting from rotation is smaller than
the vertical velocity component.

Overall, this example shows that our method leads to plausible results on highly under-resolved meshes, on
which the standard CutFEM approach cannot realise accurate forces and thereby cannot realise accurate
solid motion. Finally, we emphasise that a comparison to a fitted ALE simulation is out of scope for
this example. An ALE discretisation of this problem would have to include re-meshing procedures and
projections of the solution onto the resulting new meshes to avoid mesh-entanglement resulting from the
rotation of the particles.

Free Motion of a Multiple Particles

As a final and more advanced example, consider the same basic fluid set-up as before, but now take
five triangular rigid bodies denoted by Si, 1 = 0, . . . , 4. Each particle’s initial position and orientation is
described by the centre of mass and the angle of rotation with respect to the reference configuration. In the
reference configuration, the bottom side of the triangle is parallel to the x-axis. We then denote the initial

https://youtu.be/BiWKHN4fzt4
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Figure 7.22: Velocity field (left) and pressure with mesh (right) at t = 1.0 resulting from five triangular rigid bodies in
free fall on a mesh with hmax = 10−3 with the forces governing the solid motion obtained from a neural
network. (A video of the simulation is available at https://youtu.be/y-BTRvX9IIU.)

centre of mass and rotation by (cx, cy, α). We consider the initial states (0.035, 0.09, 0), (0.02, 0.065, π/6),
(0.05, 0.06, π), (0.075, 0.07, π/7) and (0.08, 0.0925, π/13) for S0, . . . ,S4, respectively. A sketch of this
configuration can be seen in the right of Figure 7.18. The discretisation parameters of the moving
domain CutFEM method remain as in the previous example.

The results from these computations are shown in Figure 7.22 and Figure 7.23. The fluid solution
at t = 1.0 is shown in Figure 7.22, while Figure 7.23 shows the translational and rotational velocity
components of the individual particles.

In Figure 7.23, we again see that there is no significant dependence on the mesh and that, in general, the
translational velocity of all particles are larger than in the single-particle case above. Nevertheless, the
order of magnitude is the same as before. These slightly faster translational speeds of the particles make
sense, as each particle sets the fluid in motion, which then, in turn, helps to transport the other particles.
Furthermore, we see both in Figure 7.23 and Figure 7.22 that S4 has the largest (vertical) velocity. This
observation also makes sense, as this is directly in the wake of S3. In addition, we note that the angular
velocity of S0 and S4, which are above the other particles, is smaller than that of the other particles. We
attribute this to the fact that these two particles are in the parallel flow wake of the other three particles,
resulting in a smaller torque acting on these two particles.

7.2.3 Summary
We conclude the following from the above hybrid finite element/neural network approach for small tri-
angular rigid particles settling in an incompressible fluid. First, we saw that relatively small deep neural
networks can capture the information contained in the average velocity components around the particle to
predict the forces acting on the particle. Applying this network to an under-resolved CutFEM simulation
of the idealised training data scenarios, the network could predict the forces significantly more accurately
than the direct evaluation of the boundary integral defining these forces. The same could be observed in
the case of a particle in free-fall, restricted to vertical motion. Applying the network to completely free
settling of the triangular particles in an under-resolved CutFEM setting, we found that the results were
stable with respect to the mesh size, and the settling behaviour was reasonable. Since we did not have a
reference solution to compare the behaviours for the free particles with, it would remain very interesting
to compare these results with an appropriate ALE simulation with re-meshing to include the rotational
effects. Finally, we note that it remains open to see if other flow features can feed into a neural network
to obtain more accurate predictions and extend the approach to higher Reynolds-number flows.

https://youtu.be/y-BTRvX9IIU
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Figure 7.23: Translational and rotational velocity of five triangular rigid bodies in free fall in an under-resolved CutFEM
simulation where the forces governing the solid motion are from the evaluation of a deep neural network.



CHAPTER 8

Conclusions and Outlook

8.1 Conclusions
We have presented a new numerical method for solving fluid-rigid body interaction problems. This
is based on a CutFEM discretisation of the fluid domain and an implicit extension, via ghost-penalty
stabilisation, to enable an Eulerian time-stepping scheme for the fluid problem. We now summarise the
most important achievements in this thesis.

Isoparametric CutFEM for Flow Problems

We extended the isoparametric unfitted finite element approach [Leh16; Leh17] to the Stokes equations
using Taylor-Hood elements in section 3.2 and proved an optimal order error estimate in the energy norm.
This estimate included the geometry approximation error. Optimal order convergence of the velocity in
the L2-norm was also shown in practice. In section 3.3, we extended the method to the time-dependent
Oseen equations. However, the resulting error estimate was not optimal in time due to the velocity-
pressure coupling. In practice, we nevertheless observed optimal order convergence in both the mesh
and time-step sizes. Finally, we solved a benchmark problem with this method, consisting of a freely
rotating sphere in a channel flow, with similar accuracy as the available reference values. To achieve this,
high-order elements and significant local mesh refinement near the fluid-solid interface was necessary, see
subsection 3.4.3.

Eulerian Time-Stepping for Moving Domain Flow Problems

To work towards fluid-rigid body interaction problems, we extended the analysis of an Eulerian time-
stepping scheme [LO19; BFM19] to the time-dependent Stokes problem on moving domains using Taylor-
Hood elements in chapter 4. In the stability analysis, we were careful in the stabilisation scaling with
respect to viscosity, and we included the geometry approximation error in our error analysis. In the error
analysis, we saw that geometrical consistency error, introduced by the discrete approximation of the level
set domain, leads to additional coupling between the velocity and pressure error which is non-standard.
Similar to the case of CutFEM for the Oseen equations on a stationary domain, additional coupling
appeared because the approximation of the time-derivative is not weakly divergence-free with respect to
the pressure space at time tn, which resulted in a suboptimal error estimate of ∥ 1

∆t (un
h − un−1

h )∥−1. While
our error estimate was not optimal in the time-step, the method converged with the expected rates. Our
numerical examples also illustrated the method’s stability with respect to a wide range of viscosities and
sizes of the extension strip, see subsection 4.4.1. Furthermore, we illustrated the potential of extending
the method to higher-order both in space and time in subsection 4.4.4. When applying this method to the
Navier-Stokes equations on moving domain in section 4.5, we observed that the inverse-viscosity scaling
of the ghost-penalty stabilisation term realising the discrete extension, smears out the solution at the
moving interface. This scaling has a significant negative impact on both the flow and the forces acting on
the moving interface. Nevertheless, this scaling of the extension ghost-penalties was necessary to have a
stable method for large time-steps where the interface crosses multiple elements. Finally, we illustrated
that the method remains stable in the case of topology changes.
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Eulerian Time-Stepping for Coupled Fluid-Rigid Body Problems

Working further towards the fully coupled fluid-solid interaction problem, we considered a version of
the Eulerian time-stepping scheme, using Lagrange multipliers to implement the boundary condition,
and applied this to the problem of the time-dependent Stokes equations coupled to translational rigid
body motion. With respect to stability, we saw in section 5.2 that the method has the same stability
bound as in the case of prescribed motion. We then developed an error estimate for this approach in
the temporally semi-discrete case for the heat equation in the bulk in section 5.3. Here we observed that
higher regularity of the solution and a more restrictive time-step restriction is necessary for the coupled
problem, compared to the case of prescribed motion. Applying the Nitsche version of the method to a
fluid-structure interaction problem in section 6.4, we found the method to be convergent in the pre-contact
dynamics. Here we also observed that with the model reduction of the solid from an elastic to a rigid
body, we were still able to simulate the pre-contact dynamics with good agreement with the experimental
data on which the set-up is based. With respect to the contact dynamics in the FSI problem, we saw
that while it is possible to realise a realistic rebounding effect with the very simple contact algorithm
considered here, this is very heavily parameter and material dependent, and there is no a priori method
to determine appropriate model parameters.

Non-Smooth Rigid-Body Particles

As a prototype for rigid body particles with non-smooth geometries, we considered triangular particles,
described using multiple level set functions, in chapter 7. Our method was able to simulate cases where
standard ALE approaches will fail. As before, local mesh refinement near the moving interface was
vital for accurate results. To work with small particles that are both too small to work on resolved
meshes and too large to assume no back coupling to the fluid, we developed a hybrid finite element/deep
neural network approach in section 7.2. We trained an artificial deep neural network based on data
from resolved simulations of idealised situations. The resulting neural network was then able to predict
the forces acting on triangle-shaped particles based on information available in highly under-resolved
situations. The neural network predictions were significantly more accurate than the direct evaluation of
the forces in cases where the fluid-solid interface was under-resolved. As a result, the particle motion was
comparable to that obtained from resolved meshes.

8.2 Outlook and Future Work
We discuss a number of open problems relating to the discretisation presented in this thesis, which we
consider interesting for future research.

Isoparametric CutFEM for Flow Problems

Concerning the isoparametric CutFEM method, it remains to prove optimal error estimates for the
time-dependent Stokes and Oseen problems. This is because in the unfitted case, the geometry error
and pressure stabilisation make it difficult to decouple the velocity and pressure, which in turn leads to
suboptimal results in the approximation error of the time-derivative, c.f. Remark 3.31. Furthermore, it is
known that pressure-robust and exactly divergence-free methods are of great benefit for high Reynolds-
number flow problems. However, CutFEM is in its current form cannot be pressure-robust due to the
necessary pressure stabilisation. Therefore, we consider it an interesting and relevant topic of future
research to develop unfitted finite element methods with improved mass conservation or which are even
fully pressure-robust.
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Eulerian Time-Stepping for Moving Domain Flow Problems

Since we found that the Eulerian time-stepping scheme converges optimally with respect to the time-
step, it remains an open topic for future research to prove optimal order and sharp error estimates for the
Eulerian time-stepping scheme on moving domains. Since the extension of the approach to higher-order
in both space and time works in practice, it remains to put this on a solid theoretical fundament, as done
in the case for a scalar convection-diffusion problem on moving domains in [LL21]. Furthermore, we have
seen in subsection 4.5.2, the conservation of mass is particularly poor here. Improving the conservation
of mass is, therefore, also relevant for the moving domain approach.

As we have seen, the Eulerian time-stepping scheme derived for the time-dependent Stokes equations
on moving domains requires 1/ν-scaled ghost-penalties for the discrete extension. However, this does
not take into account the direction of motion of the domain, or if a transport term is included, the
direction into which the extension must act. For the Navier-Stokes case, it would therefore be interesting
to investigate other approaches which do not disturb the solution at the interface. For example, using
unfitted space-time appears to be a promising approach [AB21].

Coupled Fluid-Rigid Body Problems

While our analysis of the Eulerian time-stepping scheme for the coupled problem of a body in free-fall in
a fluid relied on a Lagrange multiplier formulation in the discretisation, our applications used Nitsche’s
method to impose the boundary condition on the moving interface. Therefore, it remains an open problem
to extend the analysis to the Nitsche approach. Furthermore, the error analysis was only performed for
the temporally semi-discrete case, so that is remains to go through the analysis in the fully discrete
case.

As we have seen in section 6.4, the results from our rotationally symmetric formulation and rigid-body
model for the solid are in good agreement with the data from the physical experiments. However, it
remains to investigate the role of imperfections in the mass distribution within the solid and the roughness
of the solid’s surface and whether these factors can explain the deviation between the experimental and
numerical results.

Several questions warrant future research for our hybrid finite element/neural network approach to sim-
ulate the interaction between rigid-body particles and the fluid on under-resolved meshes. For example,
it would be very interesting to compare the results realised with our approach with those from an ALE
simulation with re-meshing. Furthermore, generalising the approach to other particle shapes and sizes
remains open. In this context, it would be interesting to see if a different choice of input data could
generalise the approach to a single network to predict accurate forces for multiple material parameters.
For example, alternative input data could include additional information such as the acceleration of the
particle or the fluid could be taken into account. Also, the approach should be generalised and extended
to include the interaction of closely neighbouring particles and particle-wall interaction. Finally, we note
that all our unfitted simulations were performed in two spatial dimensions so that further effort should be
put into extending the approach to full three-dimensional computations. Furthermore, as we only used
direct solvers to solve the linear systems in our simulations, this includes work into efficient CutFEM
preconditioners; see for example [Lud20] for work in this direction.
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