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Kurzfassung

Klassische Theorien der Kontinuumsmechanik bestimmen Verformungen üblicherweise in Bereichen
von Millimetern zu Metern, also auf der sogenannten makroskopischen Skala. Es handelt sich bei die-
sen Modellen um Annäherungen der physikalischen Realität, die die zugrundeliegende Mikrostruktur
vernachlässigen. Beispielsweise kann ein Cauchy-Kontinuum, also ein Kontinuum mit einer elasti-
schen Energie, die als Funktion der Gradienten seiner makroskopischen Verschiebung bestimmt wird,
das Verhalten eines physikalischen Systems nur ausreichend annähern, solange die Mikrostruktur
eine viel kleinere Längenskala als die Makrostruktur aufweist. Obwohl diese Modelle in theoretischen
Studien für große und kleine Maßstäbe genutzt wurden, haben Experimente gezeigt, dass die klassi-
schen Modelle nicht in der Lage sind, die kleineren Skalen richtig abzudecken; insbesondere werden
häufig Probleme in Mikro- und Nanodimensionen beobachtet. Größeneffekte, die im Rahmen dieser
Theorien nicht erfasst werden können, scheinen die Quelle dieses Problems zu sein. Darüber hinaus
ist das Auftreten lokaler Singularitäten an den Rissspitzen (wie auch in Gegenwart von Punkt- und
Linienlasten) eine der bekannten Grenzen der klassischen Theorie der Kontinuumsmechanik. Die
Verallgemeinerung dieser Modelle durch die Einführung zusätzlicher kinematischer Zusammenhänge
zur Berücksichtigung der zugrundeliegenden Mikrostruktureffekte auf makroskopischen Ebenen ist
eine Möglichkeit, die oben genannten Probleme zu überwinden. 1964 veröffentlichte Mindlin seine
bahnbrechende Arbeit über eine neue Elastizitätstheorie für Kontinua mit Mikrostrukturen. Dieses
umfassende Werk vereinfacht die Dehnung von Gradientenelastizitätstheorien, indem es eine Be-
ziehung zwischen den Mikroverformungen und Gradienten der Makroverformungen einführt. In der
Dehnungsgradiententheorie enthält das Dehnungsenergiefunktional sowohl die Dehnungsterme als
auch ihre Gradienten, was zu Spannungen in Abhängigkeit von höherwertigen Ableitungen des
Verschiebungsfeldes führt. Man kann das Spannungsfeld regularisieren und somit die negativen
Auswirkungen der Singularitäten beseitigen, indem man diese Dehnungsgradientenmodelle ausnutzt.
In letzter Zeit erfreut sich die Phasenfeldmethode im Kontext von Rissausbreitungsvorgängen bei
Forschern großer Beliebtheit, da die Verfolgung von Rissoberflächen nicht explizit erforderlich ist.
Dies ist bereits eine signifikante Verbesserung bei der Untersuchung des Rissphänomens im Ver-
gleich zu den herkömmlichen numerischen Werkzeugen, bei denen die Finite-Elemente-Methode in
Verbindung mit der linear-elastischen Bruchmechanik verwendet wird und die Risse explizit eingeführt
werden müssen, indem die Rissspitze verfolgt und während der numerischen Simulation neue interne
Grenzen eingeführt werden. Alle aktuellen phasenfeldbasierten Modelle der Bruchmechanik basieren
jedoch auf der klassischen Theorie der Kontinuumsmechanik, bei der an der Rissfront singuläre
Spannungsspitzen unvermeidlich sind. Obwohl die sogenannte Phasenfeldfunktion das betrachtete
Problem reguliert und damit die Auswirkungen einer Singularität mildert, ist das singuläre Verhalten
im mathematischen Modell immer noch vorhanden und wirkt daher spürbar auf die Qualität der
Endergebnisse.
Ziel des aktuellen Beitrags ist es zunächst, die nachteiligen Auswirkungen der auftretenden Sin-
gularitäten aufzuzeigen, die in vielen aktuellen Forschungsaktivitäten aus verschiedenen Gründen
vernachlässigt zu werden scheinen. Zur Validierung bzw. Verifizierung der theoretischen Herleitungen
werden in den meisten Fällen eindimensionale Beispiele untersucht und die beobachteten Funde an-
schließend auf höherdimensionale Fälle übertragen. Dieszüglich ist festzuhalten, dass das klassische
Cauchy-Kontinuum im eindimensionalen Fall keine Singularitäten aufweist. Daher ist die Annahme,
dass die für den eindimensionalen Fall gezogenen Schlussfolgerungen auch für höherdimensionale
Probleme vollständig wirksam sind, kritisch zu sehen. Ausschließlich bei zwei- und dreidimensionalen
Fragestellungen tritt das Problem der Singularitäten bei der Nutzung von linien- und punktförmigen
Randbedingungen auf. Kurz gesagt, gibt es in diesen Fällen keine Beiträge zur internen Arbeit
zur Aufrechterhaltung von Linien- und Punktkräften. Das zweite Ziel dieser Arbeit ist es, ein Mo-
dell vorzustellen, das die Dehnungsgradiententheorie im Rahmen der Phasenfeldbruchmechanik
nutzt, um diese nachteiligen Effekte zu beseitigen. Es werden in dieser Arbeit zwei Formulierungen
für die Nutzung von Dehnungsgradienten in den Phasenfeldmodellen zweiter und vierter Ordnung
vorgeschlagen. Es wird gezeigt, dass die erarbeiteten Gradientenmodelle die klassischen Modelle
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verbessern, indem sie die Singularitäten regularisieren. Darüber hinaus deuten die numerischen
Ergebnisse darauf hin, dass das Modell vierter Ordnung dem Modell zweiter Ordnung überlegen ist,
da es realistischere Lösungsmerkmale bietet. Ein weiterer Vorteil der Formulierung vierter Ordnung
ist die signifikante Reduzierung der Netzempfindlichkeit in numerischen Simulationen. Im Rahmen
dieser Dissertation wird gezeigt, dass zukünftige Ansätze zur Phasenfeldmodellierung von Rissaus-
breitungsvorgängen die Auswirkungen von Spannungssingularitäten berücksichtigen müssen, um
realistischere Ergebnisse zu erzielen.
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Abstract

Originally, the classical continuum mechanics theories are supposed to determine deformations
in ranges from millimeter to meter at the so-called macroscopic scales. In fact, these models are
approximations of physical systems neglecting the underlying microstructure. For instance, a Cauchy
continuum, i.e., a continuum with an elastic energy determined as a function of the gradients of its
macroscopic displacement, can only approximate the behavior of a physical system sufficiently as
long as the microstructure has a much smaller length-scale than the macrostructure. Although these
models were exploited in studies for large and small scales, experiments have shown that the classical
models are not able to properly cover the smaller scales; in particular, problems in micron- and
nano-dimensions are frequently observed. Size effects, which cannot be captured exploiting these
theories, seem to be the source of this issue. On top of that, the appearance of local singularities at
the crack tips (or more broadly, in the presence of point and line loads) is one of the known limitations
of the classical continuum mechanics theory. Generalizing these models by introducing additional
kinematic terms to consider the underlying microstructure effects at macroscopic levels is one way
of overcoming the aforementioned problems. In 1964, Mindlin published his seminal work on a new
elasticity theory for continua with microstructures. This broad-spectrum framework simplifies to strain
gradient elasticity theories by introducing the relation between the micro-deformations and gradients
of the macro-deformations. In the strain gradient theory, the strain energy functional contains both the
strain terms and their gradients, which leads to stresses depending on higher-order derivatives of the
displacement field. One can regularize the stress field and therefore, remove the negative effects of
the singularities by exploiting these strain gradient models.
Recently, the phase-field modelling of fracture is becoming very popular among researchers due
to the fact that the tracking of crack surfaces is not explicitly required. This is already a significant
improvement in studying the fracture phenomenon, compared to the conventional numerical tools
where the finite element method is used in conjunction with linear elasticity fracture mechanics
and the cracks must be introduced explicitly by tracking the crack tip and introducing new internal
boundaries during the numerical simulation. However, all current phase-field based models of fracture
mechanics are based on the classical continuum mechanics theory, where singular stress fields are
inevitable at the crack front. Although the so-called degradation function regularizes the problem
under consideration and thus, mitigates the effects of a singularity, the singular behavior is still present
in the mathematical model and therefore, exerts a notable effect on the final results.
The goal of the current contribution is first to demonstrate the adverse effect of the singularity which
seems to be neglected in current investigations for different reasons. In fact, to validate the theoretical
derivations, more often than not one-dimensional examples are investigated and the observed finding
are subsequently transferred to higher-dimensional cases. In that regard, it is important to realize
that the classical Cauchy continuum does not suffer from any singularities in the one-dimensional
case. Therefore, assuming that conclusions drawn for the one-dimensional case are also fully valid
for higher-dimensional problems must be seen very critically. Only in two and three dimensions the
problem of singularities arises when applying line and concentrated boundary conditions. Roughly
speaking, in these cases, there are no contributions to the internal work to sustain line and point
forces. The second goal of this work is to propose a model to integrate the strain gradient theory
within the phase-field fracture mechanics framework in order to remove these spurious effects. Two
strain gradient enhanced formulations are proposed based on the second-order and the fourth-order
phase-field fracture models. It is shown that the proposed gradient models improve the performance
of the classical models by regularizing the singular response. Moreover, the numerical results indicate
that the proposed fourth-order model is superior to the second-order one in that it provides more
realistic solution characteristics. Another advantage of the fourth-order formulation is the significant
reduction of mesh sensitivity in numerical simulations. With this contribution, it has been demonstrated
that future approaches directed towards phase-field fracture modelling need to take the effects of
stress singularities into account to achieve more realistic results.
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1 Introduction

This chapter provides essential information regarding the main topics discussed in this thesis.
After a short history of generalized continua, a summary of the efforts done to predict the
fracture in brittle materials is provided with a focus on the phase-field method. Thereafter,
the motivation behind the current work is discussed, and an outline of the remaining chapters
is provided.

1.1 Generalized Continua

The classical continuum mechanics theories were initially supposed to determine defor-
mations ranging from millimeter to meter, the so-called macroscopic scales. These mod-
els are approximations of physical systems neglecting the underlying microstructure. A
Cauchy continuum, i.e., a continuum equipped with an elastic energy that depends on the
gradients of its macroscopic displacements, can only approximate the behavior of a physical
system sufficiently provided that the microstructure has a much smaller length-scale than
the macrostructure [1]. Although these models have been exploited in studies for large
and small scales, experiments show that the classical models cannot adequately cover
the smaller scales; in particular, problems in micron- and nano-dimensions are frequently
observed [2]. Size-effects, which cannot be captured exploiting these theories, seem to be
the source of this issue. Although showing considerable complexity in their structure and
interior architecture, a diverse range of materials can be modeled at a small length scale by a
classical Cauchy medium. Such a model can be characterized by a considerable number of
degrees of freedom, even for a small sample. On the one hand, this choice allows us to use
standard numerical tools based on finite element methods (FEM) which are optimized for this
kind of models. On the other hand, the complexity of the considered continua makes the use
of such a model unsuitable from the point of view of computational costs. Gradient models
allow to obtain sufficiently accurate solutions comparable with those of the Cauchy theory,
but at much smaller computational expenses (see e.g., [3–5]). There are many examples
for materials where the corresponding continuum models are obtained by a homogenisation
procedure which leads to micromorphic generalized continua. Gradient materials are a very
particular case of such micromorphic continua (see e.g., [6–13] for generalized continua with
microstructure and [14–17]). Gradient models involve an increase of material parameters
necessary to describe the more detailed characterization of deformations. Therefore, specific
tests, both experimental and numerical, can be designed to identify such parameters as
proposed in [18–23].
The appearance of local singularities in the presence of point and line loads is one of
the known limitations of the classical continuum mechanics theory [24]. Point forces and
force distributions along lines are fundamental concepts in mechanics; however, in classical
continuum mechanics where a Cauchy continuum is used, these concepts are not included. It
has been shown in the literature that exploiting strain gradient models helps with overcoming
this problem, as a continuum body in these theories can sustain contributions from point and
line loads [24–27].
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1 Introduction 1.1 Generalized Continua

The idea of using higher-order spatial derivatives in the continuum equations goes back
to the early 1850s to Piola [28–30] and Cauchy [31–33], who proposed exploiting them to
approximate the behavior of discrete lattice models using an additional constitutive parameter
representing the elementary volume’s size. The early attempts to generalize the theory in
this direction were either only physically motivated, lacking a concise mathematical theory
(like the works of Cauchy), or were involving complicated mathematical concepts resulting
in complex models that could only be solved making use of severe simplifications (see, for
instance, the studies by Voigt [34–36]). In 1909, the Cosserat brothers added micro-rotations
as additional degrees of freedom and included the corresponding couple-stresses into the
classical theory [37]. Their model considers the size-effect; namely, a small sample of the
same material shows a stiffer behavior compared to a larger one. This theory was later
developed by Eringen [38], who added the micro-inertia terms and renamed the theory
to Micropolar elasticity. After Cosserats’ work, this research area did not receive much
attention until the early 1960s, where the seminal works of Toupin and Mindlin [39–41] picked
up on the topic. Mindlin published his article on a new elasticity theory for continua with
microstructures in 1964 [42]. This broad-spectrum framework simplifies to strain gradient
elasticity theories by introducing the relation between the micro-deformations and gradients
of the macro-deformations. In gradient elasticity, the strain energy function contains both
the strain terms and their gradients, which leads to stresses depending on higher-order
derivatives of the displacement field. Mindlin’s original paper only included the first gradients
of the strain, while in a later article, he expanded his theory to second gradients [43]. Mindlin
categorized the gradient theory into three forms: Form I where the microscopic deformation
gradients are defined as the second (and third) gradients of the macroscopic displacement,
Form II where the microscopic deformation gradients are replaced with the gradients of the
macroscopic strain, and Form III where the microscopic deformation is split into gradients
of the macroscopic displacements and rotations. The resulting boundary value problems,
written in terms of the displacement field, are identical for all three forms. However, the
notions and characteristics of double- and triple-stresses are different among them (see
[44–50]).
The strain gradient models have recently been shown to be applicable for the homogenization
of the micro-structure of metamaterials of any scale for different types of lattices [51–53].
One of the motivations of proposing the gradient elasticity theory for solid mechanics is
to overcome the problem of singular fields in the vicinity of crack fronts and dislocation
cores. The existence of singular stress fields in front of the crack tip in linear elastic fracture
mechanics (LEFM) has been shown analytically in the literature (see, for instance, [54–56]).
In short, in LEFM, the stress field possesses an O(1/√r) singularity at the tip of a crack, with
r being the distance from the crack tip. In reality, however, there is no stress singularity at the
crack tip as confirmed by atomistic simulations [57, 58]. The source of the problem causing
stress singularities is presumably related to the incapability of the classical Cauchy model in
sustaining line and point forces acting on a continuum. The effect of these kinds of forces is
similar to the effects resulting from the crack front. It has been shown that this fundamental
problem can be solved using appropriate gradient models [25, 59–63]. In this context, it
is well known that the first and second strain gradient theories are sufficient to remove the
singularities caused by line and point loads, respectively (see [25–27]). In the context of
strain gradient models, many contributions in the literature show that exploiting the gradient
models results in a non-singular solution for the crack tip and dislocation lines, among which
we name [59, 60, 64–67]. For an extensive review, the interested reader can consult [2] and
[68] and the references therein.
The involvement of higher-order derivatives in the partial differential equations of gradient
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elasticity theories makes it difficult to solve them directly using conventional numerical tools
such as Lagrangian finite elements. The finite element method is mostly used in engineering
to study problems with moving boundaries. The FEM is a numerical tool to solve partial
differential equations and obtain the unknown field by discretizing the domain into a finite
number of smaller elements. A series of points, called nodes, defines these elements. Shape
functions are used to approximate any field (such as geometry and displacement) between
these nodal points. In general, the unknown field is assumed to be C0-continuous across
element boundaries resulting in globally discontinuous derivatives. In contrast, gradient
theories require higher-order derivatives to be continuous all over the discretized domain.
That is to say, first and second strain gradient theories need C1- and C2-continuous elements,
respectively. One possible workaround to circumvent this problem is to split the higher-order
equation into multiple lower-order equations using a so-called operator split method [69,
70]. Another approach would be to use Lagrange multipliers to fulfill additional constraints
in a weak sense [25, 27]. These methods reduce the computational efficiency drastically
as they introduce additional equations/unknowns to the original problem. Yet another way
of tackling this issue is to utilize numerical methods that naturally support higher-order
continuities inside the computational domain. One primary example among these methods
is the isogeometric analysis (IGA) introduced by Hughes et al. [71] in 2005. IGA integrates
computer-aided design (CAD) into the scientific simulation pipeline by using spline basis
functions to describe both the geometry and the numerical solution. Initially, it was introduced
for non-uniform rational basis splines (NURBS), but shortly after, other spline technologies
were also implemented into the framework. Since then, several studies have been done
exploiting the IGA in commercial and non-commercial analysis software packages. In the
area of gradient elasticity, many researchers have exploited IGA and showed its robustness
and efficiency compared to conventional approaches [26, 63, 72–76].

1.2 Fracture Mechanics

Until the end of the 19th century, cracks were not considered to play a significant role in
the failure of massive structures. In the early years of the 20th century, a series of sudden
failures in large structures like ships and aircraft drew several researchers’ attention to the
importance of these small, seemingly irrelevant defects. In 1921, Griffith [77], inspired by the
work of Inglis [78], proposed an energy-based failure criterion taking into account the energy
required to break atomic bonds and the strain energy released as the crack propagates. This
is considered to be the first attempt to derive a mathematical model for fracture mechanics
and is widely used today. However, his model had some limitations; namely, it could not
predict the crack nucleation and branching. We refer the interested reader to [77] and [79]
for more discussions on the topic.
Fracture occurs when, as a result of external loadings, multiple micro-defects in an object
merge and form a crack, sometimes leading to its failure. In continuum mechanics, modelling
crack initiation and propagation requires exploiting specific criteria to determine whether
the crack can propagate. For brittle and quasi-brittle materials, these criteria are provided
within the framework of LEFM. Studies with the focus on LEFM can be divided into two major
groups: fracture mechanics and continuous/continuum damage mechanics (CDM) [80, 81].
In fracture mechanics, the crack is recognized as a discrete topological discontinuity, which
in terms of finite elements means that considering this framework, a separation should occur
between element edges [82]. Consequently, LEFM requires the crack to be (a priori) present
in the model. CDM, on the other hand, works with smeared cracks. Smeared (or distributed)
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cracks are the counterpart of discrete cracks where the cracked structure is still assumed to
be a continuum. In terms of micro/macro dimensions, one can say that in fracture mechanics,
the focus is on macroscopic cracks, while microscopic cracks are considered in CDM.
The finite element method is a candidate to solve fracture mechanics problems numerically.
However, as mentioned before, using classical elements and shape functions, the unknown
field is assumed to be continuous throughout the domain, and therefore, studying fracture
and cracks, where a discontinuity in the displacement field is expected, becomes challenging.
Using the conventional FEM, one needs to track the crack tip position and re-mesh the domain
whenever the crack propagates. This procedure involves introducing internal boundaries to
the problem and gets very complicated for sophisticated crack paths.
There are more suitable developments of the FEM available where studying discontinuous
unknown fields has been made easier. One of the most famous approaches is the extended
finite element method (XFEM) [83–86]. The idea here is to improve the finite element
approximation using known characteristics of the solution field utilizing the enrichment
concepts from the partition of unity finite element method (PUFEM) [87]. This enrichment
makes the approach capable of approximating non-smooth features such as the discontinuous
displacement field in a cracked structure by introducing additional degrees of freedom
associated with the enrichment functions to the problem. For fracture mechanics problems,
XFEM uses two different sets of enrichment functions to represent the discrete crack
independent of the finite element mesh: (1) discontinuous enrichment functions to handle
the jumps in the displacement field along the crack path, and (2) singularity enrichment
functions in the vicinity of the crack front [88]. In XFEM, the crack’s direction is obtained
using stress intensity factors and various criteria for each step [89–91], while the length of
each propagation increment is usually constant during the simulation. The crack path is
always straight within each increment. Numerical integration in the framework of XFEM be-
comes tricky as the classical Gaussian schemes cannot be used because of the non-smooth
functions [83, 92–94]. Also, ill-conditioning caused by the potential linear dependence of
the shape functions used for the standard and enriched parts of the approximation, both for
jump and tip enrichments, is another source of complexity with XFEM [95–100]. Moreover,
the extension to three-dimensional problems and particularly the definition of the crack
propagation increment in three dimensions is cumbersome [88]. It is worth noticing that
XFEM is very close in definition to the generalized finite element method (GFEM) [87, 101,
102], with the difference that the XFEM was originally developed to handle discontinuities
using local enrichments keeping the sparsity of the final matrices for the problems involving
localized phenomena, while the enrichment was global in the classical GFEM. With the later
advances in GFEM, the local enrichment was also used, and currently, XFEM and GFEM
are virtually indistinguishable [103, 104].
Another approach to fracture which has gained momentum in recent years and is worth
mentioning here is the peridynamics (PD) theory which discretizes the structure into a cloud
of points. The theory is motivated by molecular dynamics and involves integral equations
(integro-differential equations) instead of the usual differential equations of the classical
continuum mechanics. This formulation has the advantage that no spatial derivatives are
involved in the governing equations, making it very appealing to handle problems with
discontinuities (see [105–112]). Moreover, in contrast to XFEM, the fracture criterion is
embedded in the theory and no extra criteria is needed to simulate the crack propagation. PD
performs very well in simulating the crack branching phenomenon, for instance when studying
fracture in shattered glasses [113, 114]. For the sake of brevity, other numerical methods
being capable of handling fracture problems are only mentioned at this point, e.g., phantom
node method [115, 116], meshless methods [117, 118], scaled boundary finite element
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method [119–121], and cohesive zone [122, 123] and segment [124] models among others.
Decades after Griffith’s pioneering works, Ginzburg, and Landau [125, 126], based on the
idea of diffuse interfaces, used a so-called order parameter to expand the thermodynamic
state functions in their remarkable theory of phase transitions. The prospect of seeing the
interface between two phases as diffusive goes back to van der Waals [127] who believed
that it is more natural to assume the interface between material phases to be diffusive rather
than sharp. Cahn and Hilliard [128, 129] exploited the same idea to develop a spinodal
decomposition model by using the alloy concentration as the order parameter. Aifantis and
Serrin [130] later revisited the idea in 1983 in their mechanical theory of vapor-liquid phase
transitions.
The term phase-field was introduced in the 1980s by Fix et al. [131] and Langer [132]. The
phase-field method circumvents the problem of tracking the interface boundary by adding a
phase-field parameter (order parameter) defined in the whole computational domain. This
new parameter is restricted between two distinct states (0 and 1 in scientific papers) where
the transition between these values takes place smoothly in a so-called interphase region.
For instance, in terms of phase transition problems, one can define the phase-field as 1
where a specific phase exists and 0 where it vanishes. The crucial assumption here is that
the phase-field diffuseness exists on a scale that is below the microstructure scale of interest
[125, 132].
In 1998, Francfort et al. [133], proposed an energy minimization variational approach to
develop a continuum theory that can predict the crack nucleation and propagation phenomena.
Two years later, Bourdin et al. [134] regularized this variational formulation and introduced a
scalar-valued phase-field parameter s to distinguish the intact material from the crack. The
proposed formulation was capable of predicting both the crack nucleation and propagation.
They also proposed a new parameter for the interphase ε, which defines the width of transition
region between the damaged and undamaged material states. The Griffith energy analog
to a sharp crack will be recovered in the limit case when the value of ε goes to zero. These
studies paved the way for a classical FEM implementation of fracture mechanics. Miehe and
his group [135, 136] developed an alternative phase-field fracture mechanics model based on
continuum mechanics and showed its thermodynamic consistency. Built on this framework,
many researchers proposed different variations to the original model [137]; among them, we
mention [138–140] for dynamic fractures, and [141–143] for fracture in polymers, piezoelectric
ceramics, and multi-physics problems, respectively. A successful implementation in the IGA
framework was achieved in [140, 144–147] for different spline technologies such as NURBS,
T-Splines, and (Truncated-) Hierarchical Basis Splines. A fourth-order phase-field formulation
is used in some of these studies, which requires C1-continuity and benefits from the higher
continuity of IGA shape functions.

1.3 Motivation

From a computational point of view, the simulation of crack propagation has always been a
challenging task. In the past, many mathematical and mechanical assumptions had to be
taken into account to simulate this process successfully. The problem of tracking the sharp
crack surface was among the first issues which was alleviated by introducing phase-field
models. The appearance of stress singularities near the crack tip in classical continuum
mechanics theory is considered to be another source of problem which makes selecting
proper mesh sizes for numerical models very cumbersome and may lead to unphysical
results. In the presence of a singularity, the crack propagation starts earlier in problems
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with a finer discretization, which is only natural, considering that the strain energy density is
higher and increases faster for smaller mesh sizes. Likewise, a loading that generally could
not cause a crack to nucleate or propagate inside a structure will do so in the numerical
simulation due to over-estimated stresses. Therefore, it stands to reason that removing this
singular field from the results is a very crucial step in achieving physically meaningful results.
The overarching goal of this thesis is twofold: first, existing phase-field models are shown to
exhibit a singular stress behavior. This is important as the problem seems to be neglected in
the community of phase-field fracture. One reason for this could be that the original phase-
field fracture formulation already does a fine job of regularizing the stress field. However,
solely using the idea of phase-field modelling is not sufficient to overcome the problem as
singularities are inherent in the fundamental equations of continuum mechanics used in the
current formulations. A series of concise numerical studies are needed to see the remaining
effects of the singular field. Moreover, it is very common to use linear elements in studies of
phase-field problems. Most of the time, the discretizations used for such models are already
fine because of the requirement that the mesh size should be smaller than the interphase
width of the order parameter. Here, using meshes with small distances between adjacent
nodes is somehow forced, and higher-order interpolations do not significantly improve the
results. Therefore, higher-order elements are usually avoided to decrease the computational
effort. The problem is that the effects of the singularity (e.g., oscillations in the results because
of a sudden jump between the values of two adjacent computational points) can be concealed
when using linear elements. It is only when using higher-order elements that one notices the
effects of the existence of a singular field. Finally, there are analytical solutions to the problem
available, which do not show any signs of a singular response. Almost all of these analytical
solutions are derived for the one-dimensional case (e.g., a space truss element), and the
classical Cauchy theory does not exhibit singularities in one dimension, as a line body can
sustain line and point boundary conditions. It is only in two and three dimensions that this
specific problem emerges. The second goal of the current work is to propose a possible
remedy to this problem based on the application of higher-order displacement gradients.
For this purpose, two formulations for phase-field modelling of fracture mechanics based on
strain gradient theory will be proposed and their performance in regularizing the singularities
in the solution field will be investigated.

1.4 Structure of the Work

This thesis is organized in the following way: after this introduction, Chapter 2 provides
an introduction to continuum mechanics and strain gradient theories. Two simplified strain
gradient models based on Form I and Form II of Mindlin’s theory are also introduced ,which
will be exploited in the following chapters. Chapter 3 provides the governing equations of
phase-field fracture models. Here also two models based on the standard formulation are
introduced and the main components of these models are discussed in detail. In the final
section of Chapter 3, the ideas of strain gradient elasticity and phase-field modelling of
fracture are subsequently combined into two strain gradient elasticity enhanced phase-field
fracture models, exploiting the advantages of both theories. Afterwards, Chapter 4 introduces
the numerical method being used to discretize the problem; namely the isogeometric analysis.
Some essential information regarding the employed shape functions are provided, and a
complete representation of the residual and tangent matrices is given for all the previously
discussed models. The numerical models are discussed in Chapter 5, where the material
and geometric properties that are used in the benchmark tests are also reported. The
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results section starts with showing the ability of the simplified strain gradient models in
regularizing the singular fields for static problems, i.e., without considering fracture. The
results are demonstrated for two strain gradient models for two- and three-dimensional
settings verifying the performance of the models as well as the numerical method exploited
to discretize the governing equations. Next, the problems associated with using the classical
phase-field fracture models are shown and discussed for a benchmark test. After that,
the performance of the proposed strain gradient enhanced phase-field fracture models is
investigated. A comprehensive discussion on the results is provided by comparing the strain
energy density and individual stress fields from the classical phase-field fracture and the
proposed formulations. Finally, conclusions, as well as an outlook on ongoing research
activities and the future research direction are presented in Chapter 6.
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2 Strain Gradient Elasticity

We start the chapter by briefly providing the necessary background on continuum mechanics,
following by an introduction to Mindlin’s theory of elasticity with microstructures. Different
notions of double-stresses in Forms I and II of Mindlin’s theory are discussed afterward. In
the final sections of this chapter, two simplified strain gradient models are provided, which
will be our gradient models of choice for the studies done in the following chapters.

2.1 Classical Continuum Mechanics

Classical continuum mechanics is based on two important assumptions: (1) considering only
the macroscopic scales and ignoring the discontinuities in the microstructure level, objects
are continuous in space, and (2) the material properties can be characterized by averaged
values in this space, where they can change continuously within this space [148].

2.1.1 Force and Stress

We start with Newton’s second law of motion,

f = m a = m
dv

dt
, (2.1)

where f is a vector and represents the summation of all forces acting on the continuum, m
is the total mass of the body, t represents time, and v and a denote the velocity vector and
its first derivative with respect to time, the acceleration vector, respectively. In continuum
mechanics, we mostly deal with two different kinds of forces. Body forces which act on
every material element in the object and surface forces (also known as traction or contact
forces) that act on the object boundaries. Body forces acting on a body are proportional
to its mass, while surface forces are proportional to the total area of the region where the
forces are applied. Figure 2.1 provides a graphical representation of these forces for a
material volume Ω bounded by a surface Γ . In this figure, b and t represent body and
surface forces, respectively, while n is the unit normal vector of the infinitesimal area dA. The
reliance of surface forces on the area on which they are applied makes it difficult to quantify
and compare them without taking the size of this area into account. Therefore, we tend to
normalize the quantity of surface forces using the size of the area leading to the introduction
of the concept of stresses [148]. In general, stress is defined as the surface force per unit
area. From a continuum mechanics point of view, we usually look for stresses at a material
point, i.e., in the limit of the size of the area going to zero [149]. A material point is referred
to an infinitesimal volume with an infinitesimal mass. Classical stresses can be divided into
two major types. Normal stresses caused by force vectors normal to the surface, and shear
stresses where the force vector is parallel to the surface. When a force vector is neither
parallel nor normal to the surface, one can extract the normal and tangential components of it
with respect to the surface and then calculate the corresponding normal and shear stresses.
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x1
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b

dV

Γ

Ω

dA

t
n

Figure 2.1: Surface and body forces acting on a body

The full stress tensor can be represented by the coefficient matrix,

Sij =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 , (2.2)

where and henceforth, we use Einstein’s summation convention. In this form, the diagonal
terms represent the normal stress components, while the non-diagonal terms are the shear
stresses. To keep the element volume in equilibrium, the shear stress components must fulfill
Sij = Sji, a result of the principle of conservation of angular momentum, cf. Sect. 2.1.3.2.
Figure 2.2 shows the full stress state acting on an elemental volume. Components of the
stress tensor are denoted by Sij where i and j denote the direction normal to the surface
and the direction of stress component, respectively.

S22

S23

S21

S12

S13

S11

S32

S33

S31

x1

x3

x2

Figure 2.2: Stress state of an infinitesimal volume in a continuum
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2 Strain Gradient Elasticity 2.1 Classical Continuum Mechanics

2.1.2 Deformation and Strain

The continuum deforms under the applied body and surface forces (stresses) as shown
in Fig. 2.3. Deformation can be measured using a vector connecting the positions of the
element of the body before and after deformation. Displacement components of a material
particle can be determined by

ui := xi −Xi, (2.3)

where Xi and xi (i = 1, 2, 3) are the material and spatial position vectors with respect to the
fixed origin of a Cartesian coordinate system.
In what follows, we assume only small deformations, i.e., the displacement gradients are
assumed to be very small compared to unity,

∂uj
∂Xi

� 1. (2.4)

Consequently, one can assume

∂uj
∂Xi

≈ ∂uj
∂xi

, uj = uj(xi, t). (2.5)

Moreover, neglecting the rigid body deformations, i.e., translations and rotations, the defor-
mations caused by body forces and stresses produce distortions (strains) in the body. We
define the symmetric part of the displacement gradient, the linear strain tensor Eij ,

Eij :=
uj,i + ui,j

2
, (2.6)

where the comma notation denotes partial derivative in space. The stress tensor shown in

undeformed
configuration

deformed
configuration

x3

x2

x1

X

dX

dx
Γ Γt

x

Ω

Ωt

u(X + dX, t)

u(X, t)

Figure 2.3: Undeformed and deformed (at time t) configurations of a material volume
bounded by its surface
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Eq. (2.2) is the work-conjugate of

Eij =

E11 E12 E13

E21 E22 E23

E31 E32 E33

 . (2.7)

The variable Eij denotes a deformation determined by the displacement uj varying linearly
in the direction of xi. In the same way, the stress component Sij , the work-conjugate of Eij ,
corresponds to a force vector in the direction xj acting on a plane with a normal in the xi
direction. Figure 2.4 shows an example where a strain E22 of magnitude k (a constant value)
is applied on a unit cube. Considering E22, we have u2 = kx2 and u1 = u3 = 0.
In the same way, for the case of pure shear stress (no normal stresses) in the x2-x3 plane, a
strain E23 = E32 = k is applied on the same unit cube. Considering E23 and E32, we have
u3 = kx2, and u2 = kx3, respectively, while u1 = 0 (see Fig. 2.5).

2.1.3 Conservation Laws

Every physical system can evolve with the condition that certain measurable physical quanti-
ties, such as energy, remain conserved. In this section, we go through the conservation laws
in the context of continuum mechanics.

2.1.3.1 Conservation of Mass

Conservation of mass states that the total mass of an object does not change. In terms
of continuum mechanics, for a stationary elemental volume, mass is neither generated nor
consumed inside the volume. In other words, the only way to change the mass of the volume
is to flow mass across its boundaries. We define the material density ρ to be the amount of
mass per unit volume. Considering the infinitesimal elemental volume shown in Fig. 2.6,

x1

x3

x2

undeformed

deformed

k

S22

Figure 2.4: A cubic volume of unit edges under constant strain E22 = k and related work-
conjugate stress S22

11



2 Strain Gradient Elasticity 2.1 Classical Continuum Mechanics

x1

x3

x2

undeformed

deformed

k

k

S23

S32

Figure 2.5: A cubic volume of unit edges under constant strain E23 = E32 = k and related
work-conjugate stress S23 = S32

x1

x3

x2

ρv1

ρv2

ρv3

dx1

dx2

dx3

Figure 2.6: Mass flux across boundaries of an elemental volume

ρ =
m

V
m = ρ V = ρ dx1 dx2 dx3. (2.8)

According to the law of conversation of mass, the rate of changes in the mass should be
equaled to the flux of mass entering the volume minus the flux of mass leaving the volume.
For the shown elemental volume, we can consider the flux of mass on each face and
accumulate the values to find the total rate of changes in the mass. The flow of a mass
entering a face can be calculate by taking the product of density, velocity and the area of the
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face. For instance, for the elemental volume shown in Fig. 2.6,

∂

∂t
(ρ dx1 dx2 dx3) =

[
(ρv1dx2 dx3 )x1 − (ρv1dx2 dx3 )x1+dx1

]
+
[
(ρv2dx1 dx3 )x2 − (ρv2dx1 dx3 )x2+dx2

]
+
[
(ρv3dx1 dx2 )x3 − (ρv3dx1 dx2 )x3+dx3

]
,

(2.9)

where vi represent the components of the velocity vector. Considering the stationarity of the
elemental volume and subdividing both sides of Eq. (2.9) by dx1 dx2 dx3, in the limit of dx1,
dx2, and dx3 going to zero, we have:

∂ρ

∂t
= −

(
∂ρv1

∂x1

+
∂ρv2

∂x2

+
∂ρv3

∂x3

)
= −∂ρvj

∂xj
. (2.10)

Eq. (2.10) is known as the continuity equation [148, 150]. The negative sign means that
a decrease in the net gradient of the mass flux along the spatial coordinates results in
accumulation of mass in the volume. Using the divergence operator, Eq. (2.10) can be
written in the compact form of

∂ρ

∂t
= −∇ · (ρv) . (2.11)

which states the principle of conservation of mass. Carrying out the derivation in Eqs. (2.10)
and (2.11) yields

∂ρ

∂t
+ vj

∂ρ

xj
= −ρ∂vj

xj
. (2.12)

The term on the left-hand side is called the "special" or "material" derivative [150],

Dρ

Dt
=
∂ρ

∂t
+ vj

∂ρ

xj
. (2.13)

We can re-write Eq. (2.11) as

Dρ

Dt
= −ρ∂vj

xj
. (2.14)

For materials in which the density is constant in time, Dρ/Dt = 0, Eq. (2.14) leads to the
divergence of the velocity field to be zero as well.

2.1.3.2 Conservation of Linear Momentum

Conservation of linear momentum (also known as balance of linear momentum) is an
essential concept in continuum mechanics. According to this principle, for an elemental
volume, the rate of changes in momentum is equal to the flow of momentum entering the
volume minus the flow of momentum leaving the volume plus the sum of forces acting on the
volume [151]. Momentum is a vector quantity and can be determined from the product of
mass and velocity. Using Eq. (2.8), we can relate momentum to density and volume, and
then, the flow of momentum can be calculated by taking the product of density, the velocity
at which the momentum flows, and the area of the face across which the momentum flows.
For instance, for the elemental volume shown in Fig. 2.7, one can write the following relation
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x1

x3

x2

ρv1v1

ρv2v2

ρv3v3

dx1

dx2

dx3

b1

b2

b3

Figure 2.7: Momentum flux across boundaries of an elemental volume

for the flux of the xi-direction component of momentum [148]:

momentum flux = (ρ vi v1 dx2 dx3)x1 − (ρ vi v1 dx2 dx3)x1+dx1

+ (ρ vi v2 dx1 dx3)x2 − (ρ vi v2 dx1 dx3)x2+dx2

+ (ρ vi v3 dx1 dx2)x3 − (ρ vi v3 dx1 dx2)x3+dx3
.

(2.15)

In addition to the above relation, we should consider the changes in the rate of momentum
caused by the body and surface forces (consider an elemental volume dx1 dx2 dx3 such as
the one shown in Fig. 2.2):

∆ (mV )

∆t
=− (S1i dx2 dx3)x1 + (S1i dx2 dx3)x1+dx1

+

− (S2i dx1 dx3)x2 + (S2i dx1 dx3)x2+dx2
+

− (S3i dx1 dx2)x3 + (S3i dx1 dx2)x3+dx3
+ ρ bi dx1 dx2 dx3,

(2.16)

where ρbi is the body force density and ∆ denotes changes of the quantity. With this, we can
write the principle of conservation of linear momentum for the i-th direction:

∂

∂t
(ρ vi dx1 dx2 dx3) = (ρ vi v1 dx2 dx3)x1 − (ρ vi v1 dx2 dx3)x1+dx1

+ (ρ vi v2 dx1 dx3)x2 − (ρ vi v2 dx1 dx3)x2+dx2

+ (ρ vi v3 dx1 dx2)x3 − (ρ vi v3 dx1 dx2)x3+dx3

− (S1i dx2 dx3)x1 + (S1i dx2 dx3)x1+dx1

− (S2i dx1 dx3)x2 + (S2i dx1 dx3)x2+dx2

− (S3i dx1 dx2)x3 + (S3i dx1 dx2)x3+dx3

+ ρ bi dx1 dx2 dx3.

(2.17)
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2 Strain Gradient Elasticity 2.1 Classical Continuum Mechanics

Dividing Eq. (2.17) by dx1 dx2 dx3, in the limit case when the dimensions dx1, dx2, and dx3

go to zero, we have

∂

∂t
(ρ vi) = − ∂

∂xj
(ρ vj vi) +

∂Sij
∂xj

+ ρ bi. (2.18)

Carrying out the differentiation of the left-hand side and the first term of the right-hand side
of Eq. (2.18), we have

ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)
+ vi

(
∂ρ

∂t
+ vj

∂ρ

∂xj
+ ρ

∂vj
xj

)
=
∂Sij
∂xj

+ ρ bi. (2.19)

Considering the principle of conservation of mass (Eqs. (2.17) and (2.18)), and the definition
of special derivatives introduced in the previous section, we end up with the equations for the
conservation of linear momentum [148]:

ρ
Dvi
Dt

= Sij,j + ρ bi, (2.20)

or, in matrix notation

ρ
Dv

Dt
= ∇ · S + ρb. (2.21)

In this work, we only consider static and quasi-static models, and with this assumption,
Eq. (2.20) can be simplified to

∇ · S + ρb = 0. (2.22)

2.1.3.3 Conservation of Angular Momentum

Let us write the equations for balance of angular momentum in our elemental volume [152]

∫
Γ1

x × t̄1 dA+

∫
Ω

x × b ρ dV =
d

dt

(∫
Ω

x × v ρ dV

)
, (2.23)

or, in index notation,∫
Γ1

εijk xj t̄
1
k dA+

∫
Ω

εijk xj bk ρ dV =
d

dt

(∫
Ω

εijk xi vk ρ dV

)
, (2.24)

where t̄1i and xi denote the prescribed surface tractions and the position vector, respectively,
and εijk is the alternating tensor 1. The left-hand side is the resultant moment exerted by
surface tractions and body forces, while in the right-hand side we have the total angular
momentum of the elemental volume. Writing the equation in terms of Sij, after some
transformations and consideration of the principles of conservation of mass and linear

1The superscript �1 in t̄1i is to distinguish between surface tractions and double-tractions as well as edge
tractions, which will be introduced in the following sections.
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2 Strain Gradient Elasticity 2.1 Classical Continuum Mechanics

momentum, we end up with the following equations:

S12 − S21 = 0,

S23 − S32 = 0,

S13 − S31 = 0.

(2.25)

In other words, the principle of conservation of angular momentum requires the Cauchy
stress to be symmetric, i.e.,

Sij = Sji. (2.26)

2.1.4 Constitutive Law

The discussions provided in the previous sections were independent of the material properties
of the body. The constitutive laws provide the relation between stresses and strains. In other
words, they tell us how the body will behave under the applied stresses. In the current work,
we will only focus on homogeneous linear elastic isotropic materials and small deformations.
We can use Hooke’s law to study the behavior of these materials. The general formulation
for Hooke’s law is

S = C : E, (2.27)

or, in index notation,

Sij = CijklEkl, (2.28)

where C is a fourth-order tensor and is called the material stiffness tensor or the tensor of
elastic moduli [152],

Cijkl = λ δijδkl + µ (δikδjl + δilδjk) , (2.29)

with λ and µ being the Lamé constants and δij the Kronecker delta.

2.1.5 Principle of Virtual Work

Variational principles based on weak formulations, and in particular the principle of virtual
work, form the basis for the finite element solution of continuum mechanics equations. We
begin the derivation by multiplying the balance of linear momentum equation, cf. Eq. (2.22),
by a test function δu, and then will integrate the resulting equation over the whole domain,∫
Ω

(−∇ · S− ρb) · δu dV = 0, (2.30)

or, in index notation,∫
Ω

(−Sij,j − ρ bi) δui dV = 0. (2.31)

In Eqs. (2.30) and (2.31), δ is a linear operator and can be treated as a differential operator.
The test function is chosen to be arbitrary, but should vanish in regions where Dirichlet
(essential) boundary conditions are applied. Moreover, its value should be always trivial,
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independent of the value of the actual displacement, which is our primary unknown field.
Applying the divergence theorem yields

−
∫
Ω

Sij,j δui dV =

∫
Ω

Sij δEij dV −
∫
Γ1

Sij nj δui dA, (2.32)

where we have used the symmetry of the Cauchy stresses, i.e.,

Sij δEij = Sij

(
δui,j + δuj,i

2

)
=

1

2
(Sij δui,j + Sji δui,j) = Sij δui,j. (2.33)

Replacing Eq. (2.32) in Eq. (2.31) yields∫
Ω

Sij δEij dV =

∫
Γ1

Sij nj δui dA+

∫
Ω

bi δui ρ dV. (2.34)

The left-hand side of Eq. (2.34) represents the work of internal forces, δΨ int. In the absence
of dynamic forces, the principle of virtual work states

δΨ int = δΨ ext. (2.35)

For Eq. (2.35) to be valid, the external forces δΨ ext should have the form

δΨ ext =

∫
Γ1

t̄1i δui dA+

∫
Ω

bi δui ρ dV, (2.36)

which yields the weak formulation∫
Ω

Sij δEij dV =

∫
Γ1

t̄1i δui dA+

∫
Ω

bi δui ρ dV. (2.37)

At this point, it should be noted that the same outcome can be achieved by considering
the stored energy as the starting point and taking its first variation with respect to the
displacements [153, 154]. This will be discussed in more detail in the following sections.

2.2 Mindlin’s Theory of Elasticity with Micro-Structures

2.2.1 Introduction

We base our formulation on the theory of elasticity with micro-structures introduced by Mindlin
[42]. This theory provides a comprehensive framework, considering both the macro- and
micro-deformations, to study the behavior of materials taking their internal structure into
account. Mindlin’s theory is based on the idea of unit cells and therefore a continuum in
this sense has some characteristics of lattice crystals. A crystal is created by repetitive
translations of the unit cells. This means that a unit cell is the smallest portion of a crystal
which can be repeated to construct the whole structure. Figure 2.8 shows a simple cubic unit
cell of a lattice crystal. According to Mindlin, the unit cell in his theory can also be regarded
as a molecule of a polymer, a crystallite of a polycrystal or a grain of a granular material [42].
Before we continue, we need to define some new variables related to the microstructure of
the material, such as micro-displacements and micro-rotations. As this is the only section in
this work which deals with variables in micro-scales and to make it easier for the reader to
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Unit Cell Lattice

Figure 2.8: A simple cubic unit cell of a crystal lattice. The black circles denote the so-called
lattice points which represent crystalline solid particles, such as atoms, molecules,
or ions.

distinguish between macro- and micro-fields, we will use Greek letters and "prime" symbols
to represent the microscopic fields such as micro-rotations and relative deformation.
We have already introduced the macro-displacements, ui in the previous sections, cf. Eq. (2.3).
We further define the micro-displacements,

u′i := x′i −X ′i, (2.38)

where it is assumed that a micro-volume is embedded in each material point, and x′ and
X′ are the spatial and material position vectors of this micro-volume, respectively. The
axes of the coordinate system corresponding to the new position vectors are parallel to the
original Cartesian coordinate system of the macro-volume, but its origin moves with the
macro-displacement ui (see Fig. 2.9). Considering small deformations, one can write

undeformed
configuration

deformed
configuration

x3

x2

x1

X

Γ Γt

x

Ω
Ωt

Ω′
t

Ω′

u(X, t)

X′

X′

x′1

x′2

x′3

x′1

x′2

x′3

u′(X′, t)

Figure 2.9: Undeformed and deformed (at time t) configurations of a material volume
bounded by its surface, and a micro-volume embedded to a material point for
Mindlin’s theory of elasticity with microstructures
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∂u′j
∂X ′i

� 1, (2.39)

and therefore,

∂u′j
∂X ′i

≈ ∂u′j
∂x′i

, u′j = uj(xi, x
′
i, t). (2.40)

Let us further define the displacement gradient in the microscopic volume, the so-called
micro-deformation,

φij = u′j,i′ . (2.41)

The micro-deformations can be divided into a symmetric part, micro-strain,

φ(ij) =
φij + φji

2
, (2.42)

and an anti-symmetric part, micro-rotation,

φ[ij] =
φij − φji

2
. (2.43)

Moreover, one can define two new variables, the relative deformation,

γij = Lij − φij, (2.44)

and the micro-deformation gradient,

χijk = φjk,i, (2.45)

where Lij = uj,i is the macroscopic-displacement gradient (the distortion tensor). For
a better understanding of the meaning of these new variables, the reader is referred to
Figs. 2.10–2.12. We define the potential energy density to be a quadratic function of Eij
(6 independent components), γij (9 independent components), and χijk (27 independent
components),

ψgrad = ψgrad (Eij, γij, χijk) =
1

2
CijklEijEkl +

1

2
Bijklγijγkl +

1

2
Aijklmnχijkχlmn

+Dijklmγijχklm + FijklmχijkElm +GijklγijEkl,
(2.46)

where the density is considered with respect to the macroscopic volume, and we have the
following symmetries:

Cijkl = Cklij = Cjikl resulting in 21 independent coefficients,
Bijkl = Bklij resulting in 45 independent coefficients,

Aijklmn = Almnijk resulting in 378 independent coefficients,
Dijklm resulting in 243 independent coefficients,

Fijklm = Fijkml resulting in 162 independent coefficients, and
Gijkl = Gijlk resulting in 54 independent coefficients.

(2.47)
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dX1

undeformed

deformed

x2

x1

σ12 σ12

dx1

dx2

L21

L21

γ12

φ12

x′1

x′2 2d

2d

Figure 2.10: Components of relative stress σij, macro-displacement gradient Lij, micro
deformation φij , and relative deformation γij (adapted from [42])

The energy-conjugate of Eij is the Cauchy stress Sij . We further define the relative stress,

σij =
∂ψgrad

∂γij
, (2.48)

the energy-conjugate of γij , and the double stress,

µijk =
∂ψgrad

∂χijk
, (2.49)

the energy-conjugate of χijk. Equation (2.46) has 42× 42 = 1764 coefficients, 903 of which
are independent. In other words, the generality of Mindlin’s theory results in 903 independent
coefficients to define a specific material. Certainly, it is almost impossible to determine
all these material coefficients, therefore simplification is meant to be done. Considering a
centrosymmetric isotropic material (applicable to all the materials which we use in the current
work), we can simplify Eq. (2.46) as the odd-order tensors vanish. Centrosymmetry in crystal
structures refers to the existence of a centre of symmetry about which for each particle (for
example, an atom) at (x, y, z) there exists a particle at (−x,−y,−z) [155]. The simplified
Eq. (2.46) can be written as

ψgrad =
1

2
CijklEijEkl +

1

2
Bijklγijγkl +

1

2
Aijklmnχijkχlmn +GijklγijEkl. (2.50)

The material tensors in Eq. (2.50) can be defined in terms of products of Kronecker delta:

Cijkl = c1δijδkl + c2δikδjl + c3δilδjk,

Bijkl = b1δijδkl + b2δikδjl + b3δilδjk,

Gijkl = g1δijδkl + g2δikδjl + g3δilδjk,

20



2 Strain Gradient Elasticity 2.2 Mindlin’s Theory of Elasticity with Micro-Structures
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dX2
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σ12
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L12
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x′1

x′2
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Figure 2.11: Components of relative stress σij, macro-displacement gradient Lij, micro
deformation φij , and relative deformation γij (adapted from [42])

Aijklmn = a1δijδklδmn + a2δijδkmδnl + a3δjkδinδlm + a4δijδilδmn + a5δjkδimδnl

+ a6δjkδinδlm + a7δkiδjlδmn + a8δkiδjmδnl + a9δkiδjnδlm + a10δilδjmδkn

+ a11δjlδkmδin+ a12δklδimδjn+ a13δilδjnδkm+ a14δjlδknδim+ a15δklδinδjm, (2.51)

where, because of the symmetries described in Eq. (2.47), we should consider the following
requirements:

c2 = c3,

g2 = g3,

a1 = a6, a2 = a9, a5 = a7, a11 = a12.

(2.52)

Using these relations, and replacing c1 = λ, and c2 = c3 = µ where λ and µ are the so-called
Lamé constants (cf. Eq. (2.29)) and are well-known with the measurement details [156],
yields

ψgrad =
1

2
λEiiEjj + µEijEij +

1

2
b1γiiγjj + b2γijγij + b3γijγji + g1λiiEjj

+ g2 (γij + γji)Eij + a1χiikχkjj + a2χiikχjkj +
1

2
a3χiikχjjk +

1

2
a4χijjχikk

+ a5χijjχkik +
1

2
a8χijiχkjk +

1

2
a10χijkχijk + a11χijkχjki +

1

2
a13χijkχikj

+
1

2
a14χijkχjik +

1

2
a15χijkχkji,

(2.53)

which results in 18 independent material coefficients. However, compared to the only two
coefficients (e.g., the Lamé constants) needed for the classical theory, this number is still too
large. In an attempt to reduce the number of required material properties, Mindlin himself has
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dX2
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σ22

σ22

dx1

dx2 x′2

x′12d

2d

2dφ22

dx2L22

Figure 2.12: Components of relative stress σij, macro-displacement gradient Lij, micro
deformation φij (adapted from [42])

suggested some simplifications to relate the macroscopic deformations and their microscopic
counterparts. These simplifications can be categorized into three separate forms:

• Form I: also known as Distortion Gradient Elasticity (DGE), where the microscopic
deformation gradient is defined using the second gradient of the macroscopic displace-
ment (the first gradient of the distortion tensor),

• Form II: also known as Strain Gradient Elasticity (SGE), where the microscopic defor-
mation gradient is defined as the first gradient of the macroscopic strain, and,

• Form III: where the microscopic effect is split into gradients of the macroscopic rotation
and displacement.

In the literature, Forms I and II are frequently referred to as strain gradient elasticity [45].
It is crucial to note that all three forms lead to the same boundary-value problem in terms
of the (macroscopic) displacement field, but the notion of the so-called hyper-stresses,
i.e., double-stresses for the first-strain gradient models, is different among them [42, 43, 157].
In the following sections, we first go through the general formulation of Mindlin’s theory for a
linear elastic isotropic material, and then we will focus on two more simplified models derived
from this formulation, i.e., the model introduced in Reiher et al. [25] (Form I) and the model
from Aifantis and his co-workers (GRADELA) [66].

2.2.2 Distortion Gradient Elasticity (Form I)

Assuming only small deformations, cf. Eq. (2.39), we can define the third-order microscopic
deformation gradient tensor as

Gijk := uk,ji, (2.54)
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which is symmetric with respect to its first two indices. Assuming centrosymmetry, a quadratic
form for the stored elastic energy of a homogeneous linear isotropic material can be defined
as

ΨDGE
grad :=

∫
Ω

ψDGE
grad dV =

∫
Ω

(
1

2
EijCijklEkl +

1

2
GijkDijklmnGlmn

)
dV, (2.55)

where ψDGE
grad is the strain energy density, and Cijkl and Dijklmn are the fourth-order and the

sixth-order material tensors, respectively.
Under the previously mentioned assumptions, the stored energy density can be simplified to

ψDGE
grad :=

1

2
λEiiEjj + µEijEij

+ a1GiikGkjj + a2GijjGikk + a3GiikGjjk + a4GijkGijk + a5GijkGkji.
(2.56)

Accordingly, the energy formulation consists of seven independent material coefficients.

λ =
νE

(1− 2ν) (1 + ν)
, µ =

E

2 (1 + ν)
, (2.57)

and a1 to a5 are the gradient material parameters. In Eq. (2.57), E and ν are the Young’s
modulus and Poisson’s ratio, respectively. Next, we can define the stresses and double-
stresses

Sij :=
∂ψDGE

grad

∂Eij
= λEppδij + 2µEij (2.58)

and,

PDGE
ijk :=

∂ψDGE
grad

∂Gijk

=
1

2
a1 (δjkGppi + 2δijGkpp + δikδppj)

+ a2 (δjkGipp + δikGjpp)

+ 2a3δijGppk + 2a4Gijk + a5 (Gkji +Gkij) ,

(2.59)

where δij denotes the Kronecker delta. This completes the derivation of the required fields
for Form I formulation.

2.2.3 Strain Gradient Elasticity (Form II)

For Form II where the higher-order terms depend on the gradient of the strain tensor, we
define

Hijk := Ejk,i =
uk,ji + uj,ki

2
, (2.60)

where the microscopic deformation gradient Hijk is a third-order tensor and is symmetric
with respect to its last two indices. The variable Hijk denotes a deformation determined by
a strain Ejk varying linearly in the direction of xi. In this case, the quadratic stored elastic
energy becomes

ΨSGE
grad :=

∫
Ω

ψSGE
grad dV =

∫
Ω

(
1

2
EijCijklEkl +

1

2
HijkDijklmnHlmn

)
dV. (2.61)
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The strain energy density ψSGE
grad can be simplified to

ψSGE
grad :=

1

2
λEiiEjj + µEijEij

+ b1HiikHkjj + b2HijjHikk + b3HiikHjjk + b4HijkHijk + b5HijkHkji.
(2.62)

with b1 to b5 being the gradient material parameters. Accordingly, the double-stresses will be
defined as

P SGE
ijk :=

∂ψSGE
grad

∂Hijk

=
1

2
b1 (δijHkpp + 2δjkHppi + δkiHjpp)

+ 2b2δjkHipp + b3 (δijHppk + δikHppj)

+ 2b4Hijk + b5 (Hkij +Hjki) ,

(2.63)

while the stresses remain the same as in Eq. (2.58). At this point, it is worth noting that there
is a relation between the gradient material parameters of Form I and Form II; namely,

b1 = 2a1 − 4a3,

b2 = −a1 + a2 + a3,

b3 = 4a3,

b4 = 3a4 − a5,

b5 = −2a4 + 2a5.

(2.64)

Moreover, obviously, the hyper-stresses (double-stresses) of DGE and SGE are not the
same, i.e., PDGE 6= PSGE. In the next two sections, we briefly go through the differences
between these two (hyper-stress) notions.

2.2.4 Hyper-Stresses in Distortion Gradient Elasticity

In DGE, we use the distortion hjk and its gradient Gijk for the higher-order terms of the
stored elastic energy. The variable Gijk denotes a deformation determined by the distortion
hjk varying linearly in the direction of xi. In the same way, the double-stress PDGE

ijk , the
work-conjugate of Gijk, corresponds to a double-force in direction of xk acting on a plane
with a normal in the xj direction, having a lever arm of direction xi. Figure 2.13 shows
an example, where a first distortion gradient G211 = G121 = k of magnitude k (a constant
value) is applied on a unit cube. Considering G211, we have a dilatation L11 = kx2. In the
same way, considering G121, one obtains the distortion L21 = kx1. Combining the two, the
displacements can be determined as u1 = kx1x2, and u2 = u3 = 0. In this figure, the
double-forces are shown using arrows starting from the surface on which the force is applied.
A transversal stroke is used to show the lever arm, which is determined from the first index of
the corresponding double-stress.
To help getting a better comprehension of the three-dimensional case, Fig. 2.14 shows the
same unit cube, this time for an applied distortion of G213 = G123 = k. Following the previous
procedure, we will get to a distortion of L13 = kx2 for G213 and a distortion of L23 = kx1 for
G123. Therefore, one can determine the displacements u1 = u2 = 0 and u3 = kx1x2.
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deformed

undeformed

x2

x1

P121

P2112

1

2

1
k

Figure 2.13: A cubic volume element of unit edges under constant distortion gradient
G121 = G211 = k and related work-conjugate double stresses P121 = P211.
The superscript "DGE" is omitted for brevity (adapted from [45]).

deformed

undeformed

x1

x2

x3

P213

P123

k

2

1

Figure 2.14: A cubic volume element of unit edges under constant distortion gradient
G213 = G123 = k and related work-conjugate double stresses P213 = P123.
The superscript "DGE" is omitted for brevity (adapted from [45]).

2.2.5 Hyper-Stresses in Strain Gradient Elasticity

In SGE, we use the strain Ejk and its gradient Hijk for the gradient terms of the stored elastic
energy. The variable Hijk denotes a deformation determined by a strain Ejk varying linearly
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in the direction of xi. In the same way, the double-stress P SGE
ijk , the work-conjugate of Hijk

corresponds to a double-force in direction of xk acting on a plane with a normal in the xj
direction, having a lever arm of direction xi. Figure 2.15 shows an example, where a first
distortion gradient H121 = H112 = k of magnitude k (a constant value) is applied on a unit
cube. Here, the displacements can be determined as u1 = kx1x2, u2 = 1

2
k (x1)2 and u3 = 0,

leading to E11 = kx2, E12 = kx1, E22 = E33 = 0, and E13 = E23 = 0.
To illustrate the three-dimensional case, Fig. 2.16 shows the same unit cube, this time for an
applied strain gradient of H132 = H123 = k. Following the previous procedure, one obtains a
displacement field of u1 = 0, u2 = kx1x3, and u3 = kx1x2.

2.3 Simplified Models

Although Mindlin’s theory is compellingly describing the behavior of a first-strain gradient
material using seven independent material coefficients, one has to point out that finding these
material properties is in no way a trivial task [2, 158–160]. Therefore, many researchers have
tried to simplify the model even further to reduce the number of material coefficients required,
among which we consider the models proposed by Reiher et al. [25] and Aifantis et al. [61,
66]. The former is based on Form I of Mindlin’s theorem, while the latter can be considered a
Form II type.

2.3.1 Reiher’s Model

The elastic energy is defined as a function of the first- (∇) and the second- (∇(∇)) gradients
of the displacement field as in Sec. 2.2.2 (Form I). The second-gradient strain energy in [25]

1

x2

x1

undeformed

deformed

1

1

1

1

k

k

k

P112

P121

Figure 2.15: A cubic volume element of unit edges under constant strain gradient H121 =
H112 = k and related work-conjugate double stresses P121 = P112. The super-
script "SGE" is omitted for brevity (adapted from [45]).
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Figure 2.16: A cubic volume element of unit edges under constant strain gradient H132 =
H123 = k and related work-conjugate double stresses P132 = P123. The super-
script "SGE" is omitted for brevity (adapted from [45]).

is defined by,

Ψgrad :=

∫
Ω

ψgraddV =

∫
Ω

(
1

2

(
2µ′E : E + λ′ tr (E)2)+

1

2
(λ1∇(∇u) :·∇(∇u))

)
dV, (2.65)

where λ1 is called the second-gradient stiffness parameter. In Eq. (2.65), : and :·
represent the scalar product of second-order (A : B := Aij Bij) and third-order tensors
(A :·B := Aijk Bijk), respectively. A reference length-scale lref and a reference Lamé
constant λref are introduced to make the energies independent of the problem dimensions,

λ′ =
λ

λref

, µ′ =
µ

λref

, λ1 =
λ1real

λref l2ref

. (2.66)

In the current work, to avoid unnecessary confusion and to keep consistency with the rest of
the thesis, we will not use these dimensionless material coefficients, i.e., in what follows, we
will use the real Lamé constants and the real second-gradient stiffness parameter.
Taking δE = sym (∇δu), the first variation of the elastic energy becomes,

δΨgrad =

∫
Ω

(S : δE + P :·∇ (∇u)) dV. (2.67)
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Deriving the weak form by applying the principle of virtual work yields,

δΨ int
grad = δΨ ext

grad∫
Ω

((2µE : δE + λ tr (E) tr (δE)) + λ1real∇(∇u) :·∇(∇δu)) dV =∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA+

∫
Γ1

t̄2 · δ∇n u dA,+

∫
Σ

t̄3 · δu dL,

(2.68)

where b is the vector of body forces, and t̄1, t̄2, and t̄3 are the prescribed surface tractions,
surface double-tractions and edge tractions, respectively. Moreover, the intersections of the
surface boundary Γ1 segments define a network of boundary curves (edges) e, the union of
which describes the boundary Σ. We will discuss these boundary terms in more detail in the
next section.

2.3.2 Aifantis’ Model

This model is mostly referred to as GRADELA in the literature. Assuming a linear elastic
isotropic material and taking into account the assumption that the stress-strain symmetry
of the elastic energy should also be valid for the gradient terms (see [49, 61, 62, 69]), the
Helmholtz free energy provided in Mindlin’s theory reduces to

Ψgrad (E,H) :=

∫
Ω

ψgraddV

=

∫
Ω

(
1

2
λ(tr E)2 + µE : E + l2

(
1

2
λ(tr H · tr H) + µH :·H

))
dV,

(2.69)

which is a function of the first and the second gradients of the displacement. In Eq. (2.69), l
denotes the length-scale parameter for the gradient elasticity theory, and the first two terms
of the right-hand side are equal to the classical strain energy density, ψe. Moreover, the trace
of H is a vector and is defined by

tr H := ∇ [tr E] . (2.70)

It should be noted that setting l = 0 recovers the classical Cauchy continuum model. We
define the stress, S and the double-stress, P as

S :=
∂ψgrad

∂E
= λ (tr E) I + 2µE, (2.71)

and

P :=
∂ψgrad

∂H
= l2∇ (λ (tr E) I + 2µE) , (2.72)

where I is the second-order identity tensor. Considering δE := ∇sym (δu) and δH := ∇ (δE),
and calculating the first variation of the work of the internal forces yield

x. (2.73)
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Applying the divergence theorem, the first term of the right-hand side of Eq. (2.73) is simplified
to∫
Ω

S : δE dV = −
∫
Ω

(∇ ·S) · δu dV +

∫
Γ1

(S ·n) · δu dA, (2.74)

where Ω and Γ1 represent the whole volume and its surface, respectively, and n denotes
the outer normal to the surface. In the same way, the second term of the right-hand side of
Eq. (2.73) is transformed∫
Ω

P :· δH dV = −
∫
Ω

(∇ ·P) : δE dV +

∫
Γ1

(P ·n) : δE dA. (2.75)

Applying again the surface divergence theorem on both terms of the right-hand side of
Eq. (2.75) results in∫
Ω

(∇ ·P) : δE dV = −
∫
Ω

∇2P · δu dV +

∫
Γ1

[(∇ ·P) ·n] · δu dA, (2.76)∫
Γ1

(P ·n) : δE dA =

∫
Γ1

[P : [n⊗ n]] · δ∇nu dA

+

∫
Γ1

[
∇s ·n P2 : [n⊗ n]−∇s · [P2 ·n]T

]
· δu dA

+

∫
Σ

∑
e

[P2 : [m⊗ n]] · δu dL, (2.77)

where ∇s ·� := [[∇�] · [I− n⊗ n]] : I represents the surface divergence, n is the outward
normal vector to Γ1, and m is the outward normal vector to Ψ and is perpendicular to n
(see Fig. 2.17). In the last term of the right-hand side of Eq. (2.77), the contributions of the
stresses P on each edge e correlated to the volume are summed up. Finally, substituting
Eqs. (2.76) and (2.77) into Eq. (2.75) provides the internal energy contribution of the gradient
part,∫
Ω

P :· δH dV =

∫
Ω

∇2P · δu dV

+

∫
Γ1

[
− (∇ ·P) ·n +∇s ·n P : [n⊗ n]−∇s · [P ·n]T

]
· δu dA

+

∫
Γ1

[P : [n⊗ n]] · δ∇nu dA+

∫
Σ

∑
e

[P : [m⊗ n]] · δu dL.

(2.78)

For a more detailed derivation of the boundary terms, we refer to [24, 74, 161]. Considering
only the classical vector of body forces b and neglecting the contributions of the so-called
body double-forces, Eqs. (2.74) and (2.78) yield the following form for the work of the external
forces

δΨ ext
grad =

∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA+

∫
Γ1

t̄2 · δ∇n u dA+

∫
Σ

t̄3 · δu dL. (2.79)
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Figure 2.17: Illustration of vectors n and m for surfaces Si and Sj (adapted from [24])

Finally, we can introduce the weak form of the governing equations via the principle of virtual
work as:

δΨ int
grad = δΨ ext

grad,∫
Ω

S : δE dV +

∫
Ω

P :· δH dV =∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA+

∫
Γ1

t̄2 · δ∇n u dA+

∫
Σ

t̄3 · δu dL.

(2.80)

An alternative representation of the above equations in index notation is provided in [42] (see
Eqs. (9.15)–(9.23) and the paragraph below, cf. Eq. (11.7)).
It ought to be remarked at this point that the existence of internal energy contributions
at the edges in Eqs. (2.78) and (2.80) shows that a body must be equipped at least with
second-gradient elastic energy to sustain concentrated line tractions at its edges. Note that
the internal energy in the classical Cauchy theory only includes the contribution in volumes
and surfaces, leading to the fact that the theory does not show any singular behavior in the
presence of external volume and surface forces, but encounters problems with handling edge
and point loads. In the same way, exploiting the third-gradient theory results in internal energy
contribution at points and ensures that the body can sustain concentrated point tractions at
its vertices (see also [24, 25]). The latter can be exploited when studying crack propagation
phenomena in a three-dimensional structure. In those cases, a third displacement gradient
model similar to the one introduced in [67] can be used following the same reasoning which
leads to exploiting the first-strain gradient models to overcome the problem of singularity for
the two-dimensional cases of fracture.
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3 Phase-Field Modelling of Fracture

Tracking the crack surface (internal-discontinuity boundaries, Γc) is well-known to be numeri-
cally a challenging task. This, in particular, becomes difficult if one considers multiple cracks
propagating in two- or three-dimensional settings, for instance. Before we start discussing
phase-field models for fracture mechanics, a summary of linear elasticity fracture mechanics
is given.

3.1 Linear Elasticity Fracture Mechanics

What follows is a quick review of topics related to fracture mechanics which mostly follow
the book by Gross and Seelig [162]. Fracture mechanics can be classified into linear and
non-linear theories. Linear (elastic) fracture mechanics is mostly used to study fracture
processes in brittle materials. This is in particular because the theory is based on linear
elasticity and is sufficient to study the behavior of brittle materials. On the other hand,
the so-called non-linear fracture mechanics considers the fracture processes in inelastic
materials. During fracture, the body separates into two or more parts, causing the formation
of new surfaces. LEFM is based on the ideas of continuum mechanics, which only considers
a body’s macrostructure, neglecting the microstructure. From a macroscopic point of view,
one can consider the crack to be a cut in a body. The surfaces created in the body because
of crack propagation are called crack surfaces (or faces). The end of a crack is called the
crack tip or the crack front. Figure 3.1 provides a graphical representation of these concepts.

The loading of a crack can be categorized into three different types of crack opening (see
Fig. 3.2):

• Mode I: also known as the opening mode is a symmetric crack opening normal to the
crack face and occurs because of a tensile type of loading. It is the most common
mode and usually receives the highest attention in research and practical applications
as it causes the major part of damage,

• Mode II: also known as the shearing mode, as the name suggests, occurs when a
shear type of loading is applied in the in-plane direction, and the crack faces slide on
each other relatively normal to the crack front. Mode II is of second place in terms
of the attention from the scientific community, as the problem is still considered to be
two-dimensional, and,

• Mode III: also known as the tearing mode, is the same as the shearing mode, but this
time the shear loading is applied on the out-of-plane direction, and the crack faces
slide on each other in a direction parallel to the crack front. Mode III of crack opening
is very rare.

It is very well established that even metals that are classified as brittle material undergo
some inelastic deformations close to the crack front in the so-called yielding zone. This zone
causes non-singular finite stresses (and strains) around the crack tip, and the behavior of the
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Figure 3.1: Representation of a cracked body
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Figure 3.2: Crack opening modes

material in this region cannot be studied by classical linear elasticity. Nevertheless, assuming
that the yielding zone is a small region, the theory of linear elasticity can be exploited very
well in the other regions of the body. Using the method of complex variables, assuming a
plane strain state and Mode I of crack opening, we end up with the analytical solution and
the following expressions for the stress field [162],S11

S22

S12

 =
KI√
2πr

cos

(
θ

2

)1− sin
(
θ
2

)
sin
(

3θ
2

)
1 + sin

(
θ
2

)
sin
(

3θ
2

)
sin
(
θ
2

)
cos
(

3θ
2

)
 , (3.1)

where KI is the stress intensity factor for Mode I crack opening. The stress intensity factor
can be recognized as a measure for the strength of the crack. In Eq. (3.1), the stress field
clearly posseses a singularity of order O(1/√r) (in the limit of r going to zero, the stresses go
to infinity; see Fig. 3.3).
In the rest of this chapter, we will exploit a numerical approach, namely the phase-field
method of fracture, which can circumvent the problem of tracking the crack surfaces by
defining the crack as a continuous field over the whole domain. The idea is to use a scalar-
valued variable s, ranging from zero to one to distinguish between the damaged and the
intact material states. This change significantly helps approximating the crack surface at
the cost of introducing an extra degree of freedom to the problem. Another advantage of
using the phase-field method is that, since a variational approach is used to study the cracks,
investigating the crack nucleation, branching, and propagation is possible without any extra
efforts.
The total potential energy of the body (also known as the Griffith functional) can be considered
as

Ψ = Ψe + Ψc =

∫
Ω

ψedV +

∫
Γc

GcdA, (3.2)

32



3 Phase-Field Modelling of Fracture 3.1 Linear Elasticity Fracture Mechanics
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Figure 3.3: Representation of the crack tip field in 2D
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Figure 3.4: Representation of a body with a sharp (left) and a diffusive crack (right) under
Dirichlet and Neumann boundary conditions

where Ψe and Ψc are the elastic energy and the fracture energy of the body, respectively. In
Eq. (3.2), Gc corresponds to the energy required to create a unit area crack surface and is
called the critical energy release rate or the crack thoughness in the literature. Moreover,
the integration

∫
Γc

dA is equivalent to Hd−1(Γc), the (d − 1)−Hausdorff measure (where
d represents the dimensionality of the problem) giving the surface area of the crack. In
the phase-field modelling of fracture, the second term of the right-hand side of Eq. (3.2) is
approximated by a volume integral, namely

Ψc =

∫
Γc

GcdA ≈
∫
Ω

GcΓ
n
s dV, (3.3)

where Γ n
s is an n-th order crack density functional depending on derivatives of the phase-

field parameter s up to order n [163], and a crack length-scale parameter ε which governs
the width of the crack (see Fig. 3.4). Whether to treat the length-scale ε as a numerical
parameter or material properties is still an open debate. While it was initially considered
to be merely a numerical parameter, the idea of considering it as a material parameter is
gaining popularity and some studies have shown that it is possible to determine it through
experiments [164–167].
In the next section, we will discuss two well-known classical phase-field fracture models with
second-order and fourth-order derivatives of s.
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3 Phase-Field Modelling of Fracture 3.2 Classical Phase-Field Fracture Models

3.2 Classical Phase-Field Fracture Models

In this section, the derivation of the governing equations of fracture using the linear elasticity
fracture mechanics and the phase-field method is discussed. We separate our discussions
to two main categories based on the order of the final governing equations. It should be
emphasized that both the formulations in Sects. 3.2.1 and 3.2.2 are based on the classical
continuum mechanics theory, i.e., no higher-order displacement derivatives are involved in
the formulation. In other words, the order of the equations is based on the approximation
functions used to describe the phase-field crack parameter.

3.2.1 Second-Order Phase-Field Fracture Model

Considering a one-dimensional setting and following the approach used by Miehe et al. [135],
let us first assume an exponential function s(x) with the properties

s(x = 0) = 0 and s(x = ±∞) = 1 (or s′(x = ±∞) = 0) . (3.4)

One suitable candidate for such a function would be

s(x) = 1− exp

(
−|x|

2ε

)
. (3.5)

Figure 3.5 depicts the non-smooth function described by Eq. (3.5). Clearly, in the limit of ε
going to zero, the classical Griffith’s theory with sharp cracks is recovered. We would like our
final crack profile to look like this, that is we are looking for a differential equation with such a
solution field. Considering the boundary conditions introduced in Eq. (3.4), we end up with
the following homogeneous differential equation

1− s+ 4ε2s′′ = 0, (3.6)

where the double-prime symbol is used to show the second-derivate with respect to the only
spatial direction, x. Equation (3.6) has the same solution as the minimization problem

argmin
s

(I (s)) , I (s) =

∫
Γ 2
s dx, (3.7)

s=0.0

s=1.0
s

x

2ε 2ε

Figure 3.5: Crack profile for the second-order phase-field fracture model
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where

Γ 2
s =

(1− s)2

4ε
+ ε|∇s|2, (3.8)

which can be obtained by constructing the Galerkin-type weak form of the Euler equation, cf.
Eq. (3.6). In the general case (multi-dimensional settings), for the second-order phase-field
fracture model, we use∫
Γ

Gc dA ≈
∫
Ω

Gc

(
(1− s)2

4ε
+ ε|∇s|2

)
dV. (3.9)

The model is based on the linear elasticity theory, and neglecting the contributions of external
forces, the total energy of the fracture model is represented by

Ψ (2) =

∫
Ω

[
g(s)ψe + Gc

(
(1− s)2

4ε
+ ε|∇s|2

)]
dV. (3.10)

where the superscript �(2) refers to the second-order phase-field model, and ψe is the strain
energy density of a linear elastic material in the classical Cauchy theory. In Eq. (3.10), g(s)
is the so-called degradation function (e.g., g(s) = s2) whose role is to reduce the elastic
strength of the material. We will discuss this function in the following sections.
Considering the classical stresses, Eq. (2.71), and applying the principle of virtual work, cf.
Sect. 2.1.5, the weak form of the mechanical part yields∫
Ω

(g (s) S : δE) dV =

∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA. (3.11)

For the phase-field part, the evolution of s is governed by a Ginzburg-Landau type evolution
equation [168, 169],

ṡ = −MδΨ (2)(E, s)

δs
, (3.12)

where ṡ := ∂s/∂t is the partial derivative of the phase-field with respect to time, and M ≥ 0 is
a kinetic coefficient and is called the mobility constant [170]. It is worth to note here that the
kinetic coefficient can be defined as a function as well, but it is considered to be constant in
the standard Ginzburg-Landau formulation [169]. The limit of M going to infinity leads to the
quasi-static case. Therefore, it can be assumed that finite values of M resemble a viscous
approximation of the quasi-static case.
In Eq. (3.12), δΨ/δs represents a functional derivative. Given a functional

F [p(r)] =

∫
f
(
r, p(r),∇p(r),∇(2)p(r)

)
dr, (3.13)

the functional derivative would be

δF [p]

δp
=
∂f

∂p
−∇ · ∂f

∂(∇p) +∇(2) · ∂f

∂
(
∇(2)p

) . (3.14)
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Inserting Eq. (3.14) into Eq. (3.12) yields

ṡ = −M
(
g′(s)ψe − 2Gcε∆s+

Gc(s− 1)

2ε

)
, (3.15)

which is the strong form of the phase-field. Multiplying Eq. (3.15) with a weighting function
and applying integration by parts results in the weak form of the phase-field∫
Ω

[
ṡ

M
δs+ 2Gcε∇s δ∇s+

(
g′(s)ψe +

Gc(s− 1)

2ε

)
δs

]
dV =

∫
Γ2

qn δs dA, (3.16)

where qn is the normal flux acting on Γ2 and is usually assumed to be zero [171].

3.2.2 Fourth-Order Phase-Field Fracture Model

Equation (3.15) is a second-order phase-field model for crack propagation. Borden et al.
[172] introduced a fourth-order model, including the Laplacian of the order parameter (∆s),
which is supposed to improve the accuracy of the obtained results in the case of anisotropic
materials [173, 174], and also relaxes the mesh size requirements of the second-order theory
[174]. In what follows, we derive the weak form for this model.
Let us introduce an exponential function s(x) with the properties

s(x = 0) = 0, s′(x = 0) = 0, and s(x = ±∞) = 1, (3.17)

which has an extra constraint on the gradient of s at x = 0 compared to the second-order
case. One suitable candidate for such a function would be [172]

s(x) = 1−
(

1 +
|x|
ε

)
exp

(
−|x|
ε

)
. (3.18)

Figure 3.6 depicts the smooth function described in Eq. (3.18). We would like to find
a differential equation with such a solution field. Considering the boundary conditions
introduced in Eq. (3.17), we end up with the following homogeneous differential equation

1− s+ 2ε2s′′ + ε4s′′′′ = 0. (3.19)

s=0.0

s=1.0
s

x

2ε 2ε

Figure 3.6: Crack profile for the fourth-order phase-field fracture model
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Equation (3.6) has the same solution as the minimization problem

argmin
s

(I (s)) , I (s) =

∫
Γ 4
s dx, (3.20)

where

Γ 4
s =

(1− s)2

4ε
+

1

2
ε|∇s|2 +

1

4
ε3 (∆s)2 , (3.21)

which can be obtained by constructing the Galerkin-type weak form of the Euler equation,
cf. Eq. (3.19).
In the general case, for the fourth-order phase-field fracture model, we use∫
Γ

Gc A ≈
∫
Ω

Gc

(
(1− s)2

4ε
+

1

2
ε|∇s|2 +

1

4
ε3 (∆s)2

)
dV. (3.22)

The model introduced in [172] is also based on the classical theory of linear elasticity. The
total fracture energy for the fourth-order formulation is therefore

Ψ (4) =

∫
Ω

[
g(s)ψe + Gc

(
(1− s)2

4ε
+

1

2
ε|∇s|2 +

1

4
ε3 (∆s)2

)]
dV, (3.23)

where the superscript �(4) refers to the fourth-order phase-field model. Following the same
procedure as in Sect. 3.2.1 leads to the weak-form of the fourth order model,∫
Ω

[
ṡ

M
δs+ Gc

(
ε∇s δ∇s+

ε3

2
∆s δ∆s

)
+

(
g′(s)ψe +

Gc(s− 1)

2ε

)
δs

]
dV

=

∫
Γ2

qn δs dA.

(3.24)

Applications of the fourth-order model can be found in [175, 176]. The phase-field fracture
models introduced in Sects. 3.2.1 and 3.2.2 are usually referred in the literature as the
standard models; however, they are not the only phase-field formulations to study the crack.
In the following sections we will briefly discuss the points of departure and differences
between the available models.

3.2.3 Geometric Crack Function

In the introduced formulations we always use a quadratic potential or geometric crack function

w(s) = (1− s)2 , (3.25)

which determines the distribution of the crack field. In some sources, it is referred to as the
local dissipated energy density function [177]. In general, the geometric crack function w(s)
should fulfill the conditions [167]

w(0) = 0, and w(1) = k, (3.26)
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for monotonic functions, with k being a finite positive value. Clearly, Eq. (3.25) is not the only
possible choice and alternatives are proposed in the literature, such as the profile introduced
in Pham et al. [178] where gradient damage models are incorporated. Two broadly used
functions with these properties are

w(s) = (1− s) , (3.27)

and Eq. (3.25) which we will refer to as linear [177, 179] and quadratic [134, 135, 140, 170]
geometric crack functions, respectively. The equivalent to Eq. (3.8) for the linear function is

Γ 2
s =

3

8ε

(
1− s+ ε2|∇s|2

)
. (3.28)

Although double-well potentials such as [180, 181]

w(s) = 16s2 (1− s)2 , (3.29)

are very popular in the community of phase-field modelling, for phase-field modelling
of fracture, usually monotonic functions are preferred. The problem with using double-
well potentials is two-fold: first, there is no mathematical proof that the surface energy
approximated by these functions converges to the one from the variational formulation;
second, since the peak of the function is at s = 0.5 the phase-field tends to evolve away from
the actual crack s = 0 [134, 167, 182]. All three functions are demonstrated in Fig. 3.7.
For the second-order phase-field formulation, the resulting crack profile for the linear case is
given by

s(x) =

1−
( |x|

2ε
− 1

)2

if −2ε ≤ x ≤ 2ε,

0 otherwise,
(3.30)

while for the quadratic case the profile is given by Eq. (3.5). Figure 3.8 compares the crack
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Figure 3.7: Graphical representation of different types of geometric crack functions
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Figure 3.8: Graphical representation of the phase-field profile for different types of geometric
crack functions for a normalized domain

profile of the given functions for a normalized domain. As it is shown in this figure, the
quadratic geometric crack function results in a localization band with an infinite support
causing the phase-field variable and consequently the degradation function to start evolving
as soon as a load is applied to the structure. This is in contrast with the expected behavior of
brittle materials where the response is assumed to be linear elastic until a crack is initiated.
On the other hand, the linear approximation has a finite support of 4ε providing the basis for
a purely elastic behavior appearance of damage [88, 167, 177].
That being said, the quadratic function still has benefits over its linear counterpart; namely,
using the quadratic function, the boundedness of the phase-field crack parameter is au-
tomatically guaranteed; that is, the phase-field parameter always remains between zero
and one during the simulation. It can also be seen in Fig. 3.7 that the quadratic function
has a local minimum at s = 1, i.e., the undamaged state, meaning that in the absence of
mechanical loadings, s = 1 is a minimizer of the total energy. The linear function, on the
other hand, needs extra treatment, and additional constraints must be added to the problem
using the penalty method or the Lagrange multipliers method to ensure the boundedness
of the phase-field parameter, which results in an increase in the computational costs. The
final system of equations with these extra constraints needs to be solved using staggered
iterative schemes [183] (see Sect. 3.2.6.2 for more information on staggered solvers). Using
the quadratic function, in the case of a staggered solution, the phase-field part of the prob-
lem is linear (compared to a non-linear system for the linear function due to the additional
constraints), which gives this formulation an extra advantage. Apart from these, using the
linear approximation, a different kind of degradation function is needed, which adds an upper
bound to the value of the crack length-scale parameter ε [177]. This will be discussed in the
next section. We, therefore, decide to stick with the quadratic function in our formulations. It
should be noted here that using the double-well function has the advantage of having a local
minimum as well; however, as mentioned earlier, these functions do not coincide very well
with Griffith’s theory.

3.2.4 Energy Degradation Function

The form of the equation for the total potential energy of the body, cf. Eq. (3.2), implies
that to maintain the total energy of the system conserved, any changes in the fracture
energy must be compensated by the elastic energy. In other words, if the fracture energy
increases due to an increase in the crack surface resulting from crack propagation, we should
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compensate this increase by decreasing the elastic energy. To achieve this, a coupling
between the crack phase-field variable and the stored elastic energy must be established.
In Eqs. (3.10) and (3.23), g(s) is the so-called energy degradation function whose task is to
model the loss of stiffness in the material during fracture and determines how the elastic
energy is released in relation to the evolution of the phase-field. This function is required to
be non-negative in the interval [0, 1], with g(s = 1) = 1 and g(s = 0) = 0, representing the
intact and cracked material states, respectively. Moreover, to avoid the so-called damage
widening where the damage zone becomes very wide after the localization of deformation is
completed [184], we add an extra constraint, requiring the function to fulfill g′(s = 0) = 0 as
well [167]. We also demand the degradation function to be monotonically increasing, i.e., in
no point between the two material states can the function decrease. The original degradation
function used in Bourdin et al. [134] was

g(s) = s2; (3.31)

a quadratic function which was originated by Ambrosio and Tortorelli [185]. This function
is mostly used in the literature and is sometimes referred to as the classical degradation
function. Higher-order functions are also available in the literature, for instance, cubic [144,
186]

g(s) = 3s2 − 2s3, (3.32)

and quartic [181, 187, 188]

g(s) = 4s3 − 3s4, (3.33)

degradation functions. Figures 3.9 and 3.10 show the graphical representation of these
functions and their derivative with respect to the crack phase-field variable. The advantage
of having a zero derivative at s = 1, g′(1) = 0, is that in conjunction with the quadratic
geometric crack function, the degradation of the material does not occur immediately in the
initial loading steps as s = 1 remains an admissible solution of the evolution equation [186].
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Figure 3.9: Graphical representation of different types of degradation functions
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Figure 3.10: Graphical representation of the first derivative of different types of degradation
functions with respect to the phase-field value

All the above mentioned degradation functions are compatible with the quadratic geometric
crack approximation discussed in Sect. 3.2.3. The cubic and quartic degradation functions
show a more reliable stress-strain relation to model brittle materials before reaching the
maximum stress response. These functions provide a stiffer behavior of the material and
therefore the resulting maximum stress is higher in comparison with the quadratic function
[186]. However, as also discussed in [186], due to the existence of multiple admissible
solutions (because of g′(s = 1) = 0), using these higher-order functions needs introducing
numerical treatments to the problem by adding a perturbation of the crack field for the first
Newton’s method iteration of each load step, and even with this the final results still do not
match the expectations from the analytical solutions. It should be also pointed out that for the
linear geometric crack approximation discussed in the previous section, Geelen et al. [177]
have proposed a degradation function of form

g(s) =
s2

s2 + m̄ (1− s) (1 + p̄ (1− s)) with p̄ ≥ 1 and ε <
3EGc

4 (p̄+ 2)σ2
c

, (3.34)

where m̄ denotes the initial slope of the degradation function

m̄ = g′(s0) =
3Gc

8εψcrit

, (3.35)

and p̄ is the initial slope of the softening curve assuming the initial phase-field s0 = 1.
Moreover, σc and ψcrit represent the critical tensile strength and the critical fracture energy
density, respectively,

ψcrit =
σ2
c

2E
. (3.36)

As mentioned before, this formulation restricts the value of the length-scale parameter [167].
For a review on more sophisticated degradation functions available in the literature we refer
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to [167, 174, 186].
The choice of degradation function especially becomes crucial when dealing with the crack
nucleation phenomenon, i.e., when the material is intact all over the domain at the beginning
of the loading, which is not the case in the studies carried out in the current work. It is
also reported that the influence of the type of the degradation function becomes trivial after
the crack nucleation [186]. As our aim here is to study the effects of the singular stress
field on the simplest model possible, and the quadratic degradation function is most broadly
used in the community, we choose to remain with this standard formulation. Moreover, the
author is not aware of any studies with the fourth-order model with degradation functions
different than the quadratic form. While using different degradation functions is interesting for
future investigations, introducing new changes to the model could raise further questions
that the results shown in the next chapters could result from one of these changes. Another
reason for choosing this formulation is that the results obtained by Borden et al. [144] show
that using the higher-order degradation functions leads to a smaller process zone for the
phase-field parameter in front of the crack tip compared to the one from the original quadratic
formulation. Later in Chapter 5, we show that merely changing the formulation for the elastic
energy to the strain gradient theory results in smaller process zones without changing the
degradation function.

3.2.5 Irreversibility

In macroscopic scales, the crack is irreversible. Irreversibility of a crack means that the crack
does not heal, i.e.,

Γc(t) ⊆ Γc(t+ ∆t). (3.37)

This restriction ensures as well that the crack does not move. A disadvantage of using
a Ginzburg-Landau type evolution equation for the phase-field parameter is that the
irreversibility is not automatically fulfilled. In other words, the phase-field parameter changes
freely based on the loading condition. Choosing a double-well function as the local fracture
energy can make the formulation to some extent irreversible; however, we use a quadratic
potential in our formulation, w(s) = (1− s)2, which does not add any constraints in favor of
the irreversibility [186].
Different methods have been proposed to overcome the problem of reversible cracks in the
literature, from using history variables to using Dirichlet type boundary conditions, or using
damage-like constraints on ṡ [134, 136, 182]. The idea behind using Dirichlet boundary
conditions is to add a constraint that ensures once the phase-field value at a computational
point is reduced to a certain value close to zero, from that moment on, it cannot increase
anymore and will be fixed to zero. Obviously, before reaching that specific amount of damage,
the phase-field value can still recover and increase due to unloading cases. Furthermore,
one can define a history variable based on the strain energy density and put a set of Karush-
Kuhn-Tucker (KKT) [189, 190] conditions to ensure that the history variable on each point
always represents the maximum value reached on that point during the procedure. The
damage-like condition ṡ < 0 can be deduced from the same idea [88, 186].
The examples considered in the current work are limited to tensile tests and the Mode I
crack opening for isotropic materials (see also Sect. 3.2.6.3), and consequently, the imple-
mentation of irreversibility is not necessary. Therefore, it is not considered in the numerical
implementations described in the next chapters for the sake of simplicity and clarity.
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3.2.6 Remarks

In the previous sections, we discussed some of the most important aspects to consider when
modelling fracture using the phase-field approach. In the current section, we make some
remarks about the other elements of the formulation, and try to justify our choices for the
final model used in the following sections.

3.2.6.1 Model Parameter η̄

One point of debate in the formulation is the presence of an additional model parameter, η̄, in
the literature (see, for instance, [135, 170]), which was first used by Ambrosio and Tortorelli
[185] to avoid ill-posedness and to guarantee well-conditioning of the problem. The idea
is to use g(s) = s2 + η̄ (sometimes also g(s) = (1 + η̄) s2 + η̄) instead of g(s) = s2 as the
degradation function where η̄ has a very small value. Following Borden et al. [172], we set
η̄ = 0 as we could not recognize any significant differences in our numerical results between
using a minimal value of η̄ or zero. Wu et al. [167] have also reported the same observation
(see "Remark 16" therein).

3.2.6.2 Monolithic vs. Staggered Solvers

After assembling the system matrices for the phase-field fracture, we end up with a system
of equations where we have coupling terms in the stiffness matrix (see Chapter 4). These
terms include both mechanical and phase-field degrees of freedom. Two major solution
techniques are used in the literature to solve such a system of equations. The monolithic
solver is the first approach which deals with the whole system in the same time, i.e., the
system is solved for displacements and the phase-field variable simultaneously. Although
it seems to be the most natural and accurate way of solving this system of equations, it
turns out that because of the non-convexity of the main energy functional, the performance
of Newton-Raphson method is not satisfactory and, especially for more complex problems,
occasionally the convergence cannot be achieved. Roughly speaking, the solver gets trapped
in local minima and cannot find the correct global minimum. Among the attempts to tackle
this issue, we name Gerasimov and De Lorenzis [191] where the authors have used a line
search method to improve the results, and May et al. [192] where an arc-length method has
been used to achieve the same goal.
Alternatively, there are the so-called staggered solvers, also known as alternate minimization
solvers in the literature [164, 193]. The idea here is that first, the solver handles the system
of equations for the displacement field assuming the phase-field parameter to be constant,
and then in the second step, using the solution from the previous step, the system is solved
for the phase-field variable with the displacement field considered to be constant during
the solution step. The Newton-Raphson method can be used for this solution strategy as
well. The advantage here is that the complexity of these subproblems are much less in
comparison to the original problem since the coupling components in the stiffness matrix
vanish. For instance, for the case of a standard formulation [134], a simple linear problem
needs to be solved for the displacement field. However, using the staggered solvers comes
with the problem of slower convergence rate. It is therefore very crucial to choose a proper
time (load) step size for these solutions. A large step size can result in inaccurate results,
while choosing very small step sizes is computationally expensive. Moreover, since each field
is solved separately and the coupling between the mechanical and phase-field parameters is
removed, a termination scheme is required to stop the simulation after the crack has reached
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the domain boundaries [134, 137]. The same as with the monolithic approach, many studies
have been done to increase the convergence rate for the staggered solvers [194–196].
Although it has been shown in the literature that choosing the right load step size and
termination criterion, the staggered solutions can produce acceptable results, we still believe
that using the monolithic solution scheme gives a more accurate result and it is more natural
to use it for the current study as we try to keep the effect of the other factors which can
possibly influence the final results as low as possible.

3.2.6.3 Energy Split

Another topic to be discussed here is the choice between isotropic and anisotropic phase-field
formulations. Our degradation function g(s) of choice acts on the whole stored elastic energy
potential Ψe which means that in our formulation, we do not distinguish between the tension
and compression forces. In the literature, this form is usually referred to as the isotropic or
the standard formulation of the phase-field fracture (see, for instance, [134, 137, 167]). Using
this formulation, the crack will grow under both compression and tension forces. Obviously,
this is not a realistic behavior for the fracture of brittle material where no fracture should
occur under pure compression forces. Using this formulation, it is also not possible to study
fatigue problems where cyclic loads are applied to the structure. Due to these shortcomings,
the so-called anisotropic phase-field models are introduced where the material stiffness is
degraded based on a split of the stored energy into the energies coming from tension and
compression, where fracture is only caused by tension forces, i.e.,

Ψe = g(s)Ψ+
e + Ψ−e . (3.38)

This approach is very common in gradient damage mechanics. Unfortunately, there is no
reference way of splitting the energy in fracture mechanics, and therefore, how to define
Ψ+

e is different based on the type of energy split approach exploited. Among the most
common approaches in the literature, we can name the model by Lancioni et al. [197]
where the energy split is based on the shear fracture and only the deviatoric part of the
stored energy is assumed to be responsible for crack propagation. Amor et al. [164] also
used a volumetric/deviatoric decomposition to keep the negative part of the stored energy
undegraded. We should also mention the contrbutions of Miehe et al. [135, 136] and Wu et
al. [198] where, respectively, spectral decompositions of strain and stress tensors are used
to achieve the same goal. All the mentioned formulations are variationally consistent. The
problem with these models, apart from the lack of a reference energy split approach, is that
using these formulations, the equilibrium equation to solve for the displacement field becomes
non-linear leading to an increase in the complexity of the problem and the computational
costs.
There are also the so-called hybrid approaches, which are a combination of the isotropic
and anisotropic models where the equilibrium equation remains the same as in the isotropic
case, and the evolution of the crack field is only influenced by the positive part of the stored
energy [137]. The resulting formulation is of course variationally not consistent anymore as
it is not possible to obtain the evolution equations for the displacement field and the crack
field from a single energy functional. Finally, in contrast to the previously mentioned models
which have mathematical backgrounds, we can also mention the fracture mechanics driven
models to split the energy [199]. In Bilgen et al. [199], the authors discuss the inevitability of
using a hybrid formulation to capture the correct behavior of quasi-brittle fracture when using
mathematically driven models, however they also emphasize that such a hybrid formulation
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is neither unique nor evident from the physical point of view. They suggest using ad-hoc
physically driven models based on fracture mechanics to tackle practical examples. For
discussions and comparisons of the anisotropic models, we refer the interested reader to
[137, 167, 199].
Clearly, the discussion is still open and there is no "universal" energy split formulation on
which everyone agrees. From the results shown in the previously mentioned literature, even
slight changes in the model can produce different crack paths, which is only obvious because
of the different ways that the crack driving forces are determined in each model. It should
be noted that all the presented formulations are still based on the classical Cauchy theory,
and will nevertheless exhibit the stress singularity which is the main concern of the current
contribution. Apart from that, as mentioned above, by introducing the energy split, the
mechanical part of the problem becomes non-linear and it becomes almost impossible to
use a monolithic solver. This is not the case for the hybrid formulations, however they are not
variationally consistent. Therefore, we believe that, at this stage, introducing an energy split
in the formulation not only adds unnecessary computational complexities, but it also affects
the generality of the conclusions to be made. That being said, in this work, we do not split
the elastic energy contributions concerning tension and compression. We are aware that
choosing this configuration restricts our choices in applying the formulation for models with
various loading cases, however it should be emphasized again that an isotropic formulation
together with Mode I crack opening of a body with a homogeneous isotropic material will
suffice (and somehow facilitate the process, as it will be evident in Chapter 5) to perform a
thorough investigation on the stored energy density and stress fields in the damaged material
and in front of the crack tip, as the crack path is expected to be a straight line in this case.

3.2.7 Summary

Here, we summarize the previous sections and list the characteristics of the phase-field
fracture model formulation exploited in the next section. Two different models based
on the second-order and the fourth-order formulations, respectively, will be introduced
(Sects. 3.2.1 and 3.2.2). A quadratic function will be used as the geometric crack function
(Sect. 3.2.3), together with a quadratic degradation function (Sect. 3.2.3) acting on the whole
stored energy of the model, i.e., no energy split (Sect. 3.2.6.3). No extra constraints for the
irreversibility of the crack will be applied to keep the numerical results intact (Sect. 3.2.5). We
also do not add any model parameters to improve/guarantee well-conditioning of the problem
(Sect. 3.2.6.1). Finally, for all the numerical models studied in the current work, a monolithic
solver together with the Newton-Raphson method will be used (Sect. 3.2.6.2).

3.3 Strain Gradient Enhanced Phase-Field Fracture Models

This section discusses the integration of the strain gradient elasticity into the phase-field
modelling of fracture mechanics. The classical phase-field fracture model only considers
strains, and no higher-gradients of the displacement field are involved in the formulation,
which may lead to a singular response near the crack tip. In the current work, we propose an
energy functional for the fracture that is a function of strain and its gradients as well as the
phase-field parameter and its gradients. In contrast to this model, there are other fracture
models based on the strain gradient elasticity available in the literature where the energy
functional is based on the strains and higher gradients of the displacement field, together with
a damage parameter, but without any contributions from the gradients of this damage field.
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We refer to the formulations based on this approach as strain gradient enhanced damage
models [193, 200].
The section is separated into two main parts: first, a second-order phase-field fracture model
based on the first strain gradient elasticity is proposed. We will focus mainly on Aifantis’
model (GRADELA, cf. Sect. 2.3.2) as it is indeed a prevalent model in the strain gradient
community, and many studies have shown its effectiveness despite the inherent simplicity.
The last section of this chapter is devoted to a fourth-order model integrating the fourth-order
phase-field model with the fourth-order strain gradient formulation.
For the sake of conciseness, in what follows, we adopt the following terminology:

• Second-order formulation: the second-order phase-field model based on gradient
elasticity.

• Fourth-order formulation: the fourth-order phase-field model based on gradient elastic-
ity.

In other words, we formally distinguish the two formulations only based on the order of the
phase-field model, which is the decisive difference between both approaches.

3.3.1 Second-Order Phase-Field Fracture Model

In Chapter 2, we went through the fundamentals of strain gradient elasticity and introduced
some simplified models. In this chapter, we modify the phase-field models introduced in
Sect. 3.2 and replace the classical elastic energy with the ones from the strain gradient
models.
In Section 3.2.1, we ended up with the following expression for the total energy of fracture, cf.
Eq. (3.10):

Ψ (2) =

∫
Ω

[
g(s)ψe + Gc

(
(1− s)2

4ε
+ ε|∇s|2

)]
dV.

Using a quadratic degradation function and the strain energy density expression from the
classical theory of continuum mechanics leads to

Ψ (2)(E, s) =

∫
Ω

[
s2

(
1

2
λ(tr E)2 + µE : E

)
+ Gc

(
(1− s)2

4ε
+ ε|∇s|2

)]
dV. (3.39)

Replacing the strain energy density contribution in Eq. (3.39) with the one from Eq. (2.69)

ψgrad =
1

2
λ(tr E)2 + µE : E + l2

(
1

2
λ (tr H · tr H) + µH :·H

)
, (3.40)

in the presence of external forces, yields

Ψ
(2)
grad(E,H, s) =

∫
Ω

[
ψ

(2)
grad + Gc

(
(1− s)2

4ε
+ ε|∇s|2

)]
dV −

∫
Ω

b ·u dV, (3.41)

where

ψ
(2)
grad =

1

2
s2
(
E : [CE] + l2H :·∇ [CE]

)
= s2

(
1

2
λ(tr E)2 + µE : E + l2

(
1

2
λ(tr H · tr H) + µH :·H

)) (3.42)
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is called the effective (degraded) strain energy density. The corresponding effective stresses,
Sfrac and Pfrac, are consequently defined as

Sfrac :=
∂ψ

(2)
grad

∂E
= s2 (λ(tr E)I + 2µE) , (3.43)

Pfrac :=
∂ψ

(2)
grad

∂H
= s2

(
l2∇ (λ(tr E)I + 2µE)

)
. (3.44)

Applying the principle of virtual work, the weak form of the mechanical part yields an
expression which is very similar to Eq. (2.80)∫
Ω

(
Sfrac : δE + Pfrac :· δH

)
dV =

∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA

+

∫
Γ1

t̄2 · δ∇n u dA+

∫
Σ

t̄3 · δu dL.

(3.45)

For the phase-field counterpart, the evolution of s is governed by

ṡ = −M
(
s
(
E : [CE] + l2H :·∇ [CE]

)
− 2Gcε∆s+

Gc(s− 1)

2ε

)
. (3.46)

Multiplying Eq. (3.46) with a weighting function and applying integration by parts results in
the weak form of the phase-field∫
Ω

[
ṡ

M
δs+ 2Gcε∇s δ∇s+

(
s
(
E : [CE] + l2H :·∇ [CE]

)
+
Gc(s− 1)

2ε

)
δs

]
dV

=

∫
Γ2

qn δs dA.

(3.47)

3.3.2 Fourth-Order Phase-Field Fracture Model

In our numerical approach, we employ a linear elastic constitutive model based on a Laplacian
formulation, see Eq. (3.41). Therefore, one could consider combining it with the correspond-
ing fourth-order phase-feld model. Following the same procedure as Sect. 3.3.1, the total
fracture energy (analogous to Eq. (3.23)) for the fourth-order phase-field model

Ψ (4) =

∫
Ω

[
g(s)ψe + Gc

(
(1− s)2

4ε
+

1

2
ε|∇s|2 +

1

4
ε3 (∆s)2

)]
dV.

Considering strain gradient elasticity and replacing the degradation function with a quadratic
type, the total fracture energy is

Ψ
(4)
grad(E,H, s) =

∫
Ω

[
1

2
s2

(
E : [CE] + l2H :·∇[CE]

)
+ Gc

(
(1− s)2

4ε
+

1

2
ε|∇s|2 +

1

4
ε3
(
∆s
)2
)]

dV −
∫
Ω

b ·u dV,

(3.48)
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where the effective strain energy density and stresses are defined as before, cf.
Eqs.(3.43) and (3.44). Equation (3.48) leads to the following weak form for the fully fourth-
order formulation,∫
Ω

[
ṡ

M
δs+ Gc

(
ε∇s δ∇s+

ε3

2
∆s δ∆s

)
+

(
s
(
E : [CE] + l2H :·∇[CE]

)
+
Gc(s− 1)

2ε

)
δs

]
dV =

∫
Γ2

qn δs dA.

(3.49)

At this point, all the required weak forms for the pure strain gradient elasticity models, as well
as the strain gradient enhanced phase-field fracture models have been derived successfully.
In the next chapter, we will go through the numerical implementation of these models.
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4 Numerical Implementation

In this chapter, the discretization of the governing equations in the framework of isogeometric
analysis is discussed. For the sake of completeness, we will first briefly introduce the concept
of NURBS, which are used as shape functions in our numerical approach. After that, we
start with the discrete forms of pure strain gradient models (i.e., without a coupled phase-field
variable) introduced in Chapter 2 for three- and two-dimensional settings. Finally, the discrete
forms of the system matrices for the strain gradient enhanced phase-field fracture models
(Chapter 3) in two dimensions are presented.

4.1 Isogeometric Analysis

Concerning the numerical method to discretize the governing equations, Isogeometric
Analysis, one of the recent developments of the finite element method, will be used.
Introduced to fill the gap between computer-aided geometric design and analysis worlds,
IGA has recently attracted the interest of many researchers. Hughes et al. [71] introduced
the concept in 2005, where they proposed to use non-uniform rational B-splines as the
basis function both for the geometry and the analysis. NURBS are the industry standard in
Computer-Aided Geometric Design (CAGD), and using them as the basis of the analysis will
eliminate the need to approximate the geometry to have an analysis-suitable model such
that one obtains more accurate results. Consequently, further refinements to the analysis
model can be performed without the need of going back to the original geometry in CAGD.
Besides, using NURBS shape functions will provide a smoother solution field, i.e., higher
continuity (regularity).

4.1.1 Non-Uniform Rational Basis-Splines

NURBS are a rational generalization of Basis splines (B-splines) and the result of projecting
B-splines from Rd+1 into Rd where d represents the dimensionality of the problem. A NURBS
entity can be defined using knot vectors and a series of control points. The name "knot
vector" can be deceiving as a knot vector is in fact a list of non-decreasing entries called
knots, i.e., it does not possess a direction like a real vector. A knot vector

Ξ =
[
ξ1 ξ2 . . . ξn+p+1

]
(4.1)

defines the parametric space of a univariate (curve) NURBS entity. In Eq. (4.1), p and n
represent the degree of the NURBS and the number of control points, respectively. A knot
vector can range between any two real numbers, however it is very common to choose 0
and 1 as the lower- and upper-bounds of the parameteric space, respectively. The space
between two adjacent knots is called a knot span. Non-zero knot spans can be compared to
elements in classical FEM.
Knot vectors control the discretization of the geometry and the continuity across elements,
whereas the control points are responsible for all the changes in the geometry. NURBS

49



4 Numerical Implementation 4.1 Isogeometric Analysis

patches are geometrically simple domains within which the element type and material are
presumed to be uniform. As a rule, a degree p NURBS has Cp−m̃-continuity across the knot
spans inside a patch, where m̃ is the knot multiplicity in the knot vector. The first and the
last knots in the knot vectors of "open" NURBS considered in this study have a multiplicity of
p+ 1, making their ends C−1-continuous.
Figure 4.1 demonstrates an example of a univariate B-spline. The knot vector for this curve
is:

Ξ =
[
0 0 0 0 0.2 0.2 0.2 0.5 0.8 0.8 0.8 1 1 1 1

]
. (4.2)

Since the first and the last knots are repeated 4 times, we can conclude that the curve is
cubic, p = 3. Moreover, there are 15 knots listed in the knot vector, therefore one should
expect n = 15 − 3 − 1 = 11 control points. The basis is C3−3 = C0 on knots 0.2 and 0.8,
although it is not visually apparent for the former knot by merely looking at the geometry. The
control points are interpolatory to the curve on these locations. The continuity on the middle
knot, 0.5 is C3−1 = C2. An open NURBS/B-spline is always parallel to its control polygon at
the start and end knots. The knot vector in Eq. (4.2) consists of four non-zero knot spans,
resembling four elements for the numerical simulation in the sense of FEM.
A univariate NURBS is a rational generalization of a B-spline curve. Provided the knot vector
and the control points, a NURBS curve can be determined using the interpolation relation,

T(ξ) =
n∑
i=1

Ri(ξ)Pi, (4.3)

where Ri(ξ) is the i-th NURBS basis function.
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Figure 4.1: Example of a univariate B-spline. The control polygon is responsible for all the
changes in the geometry, while the knot vector controls the discretization. The
circles around each knot represent its multiplicity in the knot vector.
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4.1.1.1 Basis Functions

For a degree p NURBS curve, the basis function is given by

Ri(ξ) =
Np
i (ξ)wi
W (ξ)

=
Np
i (ξ)wi∑

î=1N
p

î
(ξ)wî

, (4.4)

where W (ξ) is the weighting function, wi are the weights associated to the control points,
and Np

i (ξ) are the standard B-spline basis functions in the parametric space. B-spline
basis functions are linearly independent, always non-negative, and benefit from the partition
of unity property. It is worth to note that in the case where all the weights associated to
the NURBS control points have the same value, the NURBS and B-spline basis functions
become indistinguishable:

Ri(ξ) =
Np
i (ξ)wi∑

î=1N
p

î
(ξ)wî

=
Np
i (ξ)wi
wi

= Np
i . (4.5)

This means that the B-spline curve demonstrated in Fig. 4.1 can be considered as a NURBS
curve where the weight associated to each control point is 1.0. Considering the diagonal
matrix of weights,

W =


w1

w2

. . .
wn

 , (4.6)

one can rewrite Eq. (4.4) in matrix-form as,

R(ξ) =
1

W (ξ)
WN(ξ). (4.7)

Figure 4.2 shows the basis functions of the curve given in Fig. 4.1. Shape functions of the
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Figure 4.2: Basis functions of the B-spline demonstrated in Fig. 4.1. The basis functions are
plotted only on the region of their local support, i.e., when their value is non-zero.
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basis splines are defined by the Cox-de Boor recursion formula [201]. We have

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise,
for p = 0, (4.8)

and

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ) for p = 1, 2, 3, . . . . (4.9)

A bivariate (surface) NURBS is a rational generalization of a tensor-product B-spline surface
which itself is created from tensor-products of univariate B-splines. In two dimensions, the
NURBS basis functions are

Rij(ξ, η) =
Np
i (ξ)M q

j (η)wi,j

W (ξ, η)
=

Np
i (ξ)M q

j (η)wi,j∑
î=1

∑
ĵ=1 N

p

î
(ξ)M q

ĵ
(η)wî,ĵ

, (4.10)

where p and q are the degrees of the univariate B-splines in ξ and η, respectively, W (ξ, η)
is the weighting function, wi,j are the weights associated to the control points, and finally,
Np
i (ξ) and M q

j (η) are the standard B-spline basis functions in the parametric space [202].
In the same way, the shape functions of the trivariate (volume) NURBS are provided by

Rijk(ξ, η, ζ) =
Np
i (ξ)M q

j (η)Lrk(ζ)wijk

W (ξ, η, ζ)
=

Np
i (ξ)M q

j (η)Lrk(ζ)wi,j∑
î=1

∑
ĵ=1

∑
k̂=1N

p

î
(ξ)M q

ĵ
(η)Lr

k̂
(η)wîĵk̂

. (4.11)

4.1.1.2 Derivatives of Basis Functions

Applying the quotient rule on the NURBS shape functions, one can derive the local derivatives
of the shape functions in the parametric space

d

dξ
Ri(ξ) =

W (ξ)N̄p
i (ξ)− W̄ (ξ)Np

i (ξ)

(W (ξ))2
wi, (4.12)

where

N̄p
i (ξ) =

d

dξ
Np
i (ξ) =

p

ξi+p − ξi
Np−1
i (ξ) +

p

ξi+p+1 − ξi+1

Np−1
i+1 (ξ) (4.13)

and

W̄ (ξ) =
∑
î=1

N̄p

î
(ξ)wî. (4.14)

There is also a generalized expression for higher-derivatives of the NURBS shape functions
available [202, 203]

dk

dξk
Ri(ξ) =

A
(k)
i (ξ)−∑k

j=1

(
k
j

)
W (j)(ξ) d(k−j)

dξ(k−j)Ri(ξ)

W (ξ)
, (4.15)
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where(
k

j

)
=

k!

j!(k − j)! , (4.16)

A
(k)
i (ξ) =

dk

dξk
Np
i (ξ)wi, (4.17)

dk

dξk
Np
i (ξ) =

p!

(p− k)!

k∑
j=0

αkjN
p−k
i+j (ξ), (4.18)

with

α0
0 = 1,

αk0 =
αk−1

0

ξi+p−k+1 − ξi
,

αkj =
αk−1
j − αk−1

j−1

ξi+p+j−k+1 − ξi+j
j = 1, ..., k − 1,

αkk =
−αk−1

k−1

ξi+p+1 − ξi+k
.

(4.19)

Whenever the denominator of any α�
� coefficient is zero, that coefficient is considered to be

zero. These expressions yield the derivatives of the shape functions in local coordinates. A
different mapping between the parametric and physical spaces is required to calculate the
global derivatives which is discussed in Appendix A.

4.1.1.3 Refinement Techniques

Refinement of NURBS entities is usually achieved by modifying the underlying B-spline (in
Rd+1). There are three methods to refine a B-spline/NURBS entity:

• knot insertion, where as the name suggests more knots are added to the knot vector,
consequently increasing the number of control points and basis functions. Knot
insertion is very close to the concept of h-refinement in the classical FEM,

• degree elevation, where the polynomial degree of the NURBS entity is increasing
preserving the continuity of the curve. Degree elevation is the equivalent of p-refinement
in the classical FEM, and

• the so-called k-refinement which is a combination of the knot insertion and degree
elevation techniques. k-refinement makes it possible to increase the polynomial degree
of the NURBS object while increasing its continuity, and does not have any equivalents
in the conventional FEM.

It is important to note that none of the above mentioned refinement techniques changes the
original geometry of the NURBS object. For a more detailed introduction to NURBS, the
interested reader is referred to the seminal monograph by Piegl and Tiller [203].
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4.1.2 Bézier Extraction Method

Although exploiting higher-order NURBS shape functions in a simulation provides the benefit
of a smoother solution field, it comes at a price to pay, i.e., it is not possible easily to
adapt already developed finite element software packages to support isogeometric analysis
techniques. In other words, as the structure of the discretized domain is different than the
conventional FEM models, new software must be developed to perform IGA. In IGA, the
parametric space which is defined using knot vectors can contain several elements. This is
of course in contrast with the classical FEM, where the parametric space is defined over one
parent element. Therefore, an extra mapping from the parametric space to the parent element
is needed. Moreover, the conventional numerical integration methods, such as Gauss-
Legendre quadrature rules, cannot be used for NURBS domains with higher regularities.
Another difficulty would be to handle models with multi-patch settings (i.e., analysis models
which are created from more than one NURBS patch); in these cases, an extra loop over the
patches should be added to the global assembly routine.
To overcome the problems listed above, Borden et al. [204] proposed a new data structure
for IGA based on Bézier extraction of NURBS. They showed that using their method allows
for the implementation of the IGA concept in already-developed finite element codes at the
cost of calculating an extraction operator. Following their approach, numerical integration of
smooth functions will be carried out on C0-continuous Bézier elements using the extraction
operator. It also enables the use of other spline technologies (such as T-Splines) as the
analysis basis without much difficulty. In fact, any spline technology for which a Bézier
extraction operator can be derived is possible to be employed in this framework.
The basic idea here is to decompose NURBS objects and construct the so-called Bézier
elements. Hence, in the literature, this method is sometimes referred to as Bézier decom-
position. One can think of a Bézier element as a B-spline with no inner knots in its knot
vector. Bézier elements are usually defined in the domain from 0 to 1 in the parametric space.
However, to be able to facilitate using the numerical integration approaches, we will define
them over the interval [−1, 1], the same as the classical finite elements. This will save us
from mapping the parent element to the parametric space, as the mapping, in this case,
would be one-to-one. Moreover, although it is possible to use the Cox-de Boor recursion
formula to calculate basis functions of Bézier elements, using the interval [−1, 1], we can
determine the basis functions by explicit relations:

Bp
i (ξ) =

1

2
(1− ξ)Bp−1

i (ξ) +
1

2
(1 + ξ)Bp−1

i−1 (ξ) , (4.20)

where

B0
1(ξ) = 1. (4.21)

These functions are defined to be zero for i values smaller than 1 and higher than p + 1.
The basis functions of Bézier elements are called Bernstein polynomials. They have the
same properties as B-spline basis functions, such as the partition of unity and non-negativity.
Calculating the local derivatives is also straightforward; for instance, the first derivatives can
be determined by

d

dξ
Bp
i (ξ) =

1

2

(
Bp−1
i−1 (ξ)−Bp−1

i (ξ)
)
. (4.22)

The process of decomposing a NURBS entity to its Bézier elements involves using the knot
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insertion technique. The idea is to insert inner knots into the knot vector of the NURBS object
until the multiplicity of each inner knot is p. This produces a set of Bézier elements which
are connected to each other because of the C0-continuity achieved by the knot insertion. In
theory, we should achieve p+ 1 multiplicity for each knot to have entirely separated Bézier
elements, but it suffices to have the multiplicity of p; it is computationally less expensive
as well. The information required for this mapping will be stored in the so-called extraction
operators. One should remember that this procedure does not change the original geometry
and its parametrization.
Let us explain the procedure using the NURBS curve considered in the previous section, cf.
Eq. (4.2),

Ξ =
[
0 0 0 0 0.2 0.2 0.2 0.5 0.8 0.8 0.8 1 1 1 1

]
,

as the original knot vector. The knot vector has three inner knots: 0.2, 0.5, and 0.8. The
multiplicities of knots 0.2 and 0.8 are already m̃ = p = 3. For knot 0.5, the multiplicity is one
and therefore we need to insert two knots into our knot vector, {0.5, 0.5}.
At this point, let us look closer into the knot insertion procedure. In order to preserve the
geometry and its parametariaztion, special care must be taken when adding the new control
points resulting from adding the new knots.
Let Ξ = [ξ1, ξ2, . . . , ξn+p+1] be a given knot vector. Inserting a new knot ξ̄ = [ξk, ξk+1[ with
k > p into the knot vector requires m̄ = n+ 1 new basis functions to be defined using the
Cox-de Boor recursion formula (see Sect. 4.1.1.1). To preserve the geometry, the new set of
control points, P̄, must be defined from the original set of control points, P, [203, 204]

P̄i =


P1, i = 1,

βiPi + (1− βi) Pi−1, 1 < i < m̄,

Pn, i = m̄,

(4.23)

where

βi =


1, 1 ≤ i ≤ k − p,
ξ̄ − ξi
ξi+p − ξi

, k − p+ 1 ≤ i ≤ k,

0, i ≥ k + 1.

(4.24)

The Bézier extraction operator will be determined using the relations given in
Eqs. (4.23) and (4.24). Let {ξ̄j} with j = 1,m be a set of knots required to produce
C0 continuity on the inner knots of the B-spline object. Let us define βji with i = 1, n+ j to
be the ith β for the jth knot inserted. Then, one can define the new control variables P̄j+1

created after inserting ξ̄j into the knot vector as

P̄j+1 =
(
Cj
)T

P̄j, (4.25)

with P̄1 = P, i.e., the set of original B-spline control points. In Eq. (4.25), Cj can be defined
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as

Cj =


β1 1− β2 0 · · · 0
0 β2 1− β3 0 · · · 0
0 0 β3 1− β4 0 · · · 0
... . . . . . .
0 · · · 0 βn+j−1 1− βn+j

 . (4.26)

It can be shown that the last set of control points P̄m+1 gives us the set of control points for
Bézier elements [204]. The relation between the control points of the Bézier elements and
the B-spline object can be written as

Pb = CTP, (4.27)

where,

CT = (Cm)T (Cm−1
)T · · ·

(
C1
)T
, (4.28)

and C is the global Bézier extraction operator. The B-spline basis functions can be written in
terms of Bézier basis functions (Bernstein polynomials),

N(ξ) = CB(ξ). (4.29)

The equivalent to Eq. (4.27) for NURBS is

Pb =
(
Wb
)−1

CTWP, (4.30)

where Wb is the diagonal matrix of weights associated to the control points of Bézier
elements,

Wb =


wb1

wb2
. . .

wbn+m

 . (4.31)

Taking the NURBS weight vector w = {wi} with i = 1, n, the components of wb for the
Bézier entity can be determined through wb = CTw. Moreover, using the Bézier extraction
operator, NURBS basis functions can be written as,

R(ξ) =
1

W b(ξ)
WCB(ξ), (4.32)

where W b(ξ) = W (ξ) [204]. Finally, the NURBS curve can be determined in terms of
C0-continuous Bézier elements,

T (ξ) =
1

W b(ξ)
PTWCB(ξ). (4.33)

Figures 4.3 and 4.4 demonstrate the Bézier elements and their basis functions for the B-
spline curve presented in Sect. 4.1.1.1. Considering that the Bézier extraction process
creates a Bézier element for each non-zero knot interval, it is possible to localize the process
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Figure 4.3: Bézier curve equivalent to the B-Spline curve represented in Fig. 4.1. The circles
around each knot represent its multiplicity in the knot vector.
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Figure 4.4: Basis functions of the Bézier curve demonstrated in Fig. 4.3. The basis functions
are plotted only on the region of their local support, i.e., when their value is
non-zero.

and handle the mapping in the element level [204]. There are efficient algorithms to handle
the knot insertion and Bézier decomposition available in the literature [204, 205]. The Bézier
extraction operators corresponding to the elements of our example are:

C1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , C2 =


1 0 0 0
0 1 0.5 0.25
0 0 0.5 0.5
0 0 0 0.25

 ,

C3 =


0.25 0 0 0
0.5 0.5 0 1
0.25 0.5 1 0

0 0 0 1

 , C4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
(4.34)

where Ce represents the extraction operator for element e. As it can be seen in Eq. (4.34),
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the extraction operator for the knot intervals where no knot insertion is required is the identity
matrix.
Kronecker products will be used to establish the extraction operators for bi-variate and tri-
variate B-splines and NURBS. Defining Ci

ξ, Cj
η, and Ck

ζ to be the ith, jth, and kth univariate
element extraction operators in the ξ, η, and ζ directions, respectively, we can define the
surface (bi-variate) and solid (tri-variate) element extraction operators as,

Ce = Cj
η ⊗Ci

ξ, (4.35)

and,

Ce = Ck
ζ ⊗Cj

η ⊗Ci
ξ, (4.36)

where, for two matrices A and B we have

A⊗B =

A11B A12B · · ·
A21B A22B

... . . .

 . (4.37)

In practice, only the elemental extraction operators are needed to perform IGA using the
Bézier extraction method. All the other information, such as the knot vectors and the control
points are transferred from the original NURBS model. As we are dealing with C0-continuous
elements like the ones from the classical finite elements, it is possible to slightly modify
the shape function routines and calculate the basis functions for each NURBS element
by multiplying the extraction operator with the corresponding Bézier basis functions (cf.
Eq. (4.20)) or their derivatives for that specific element. Consequently, there is no need to,
for instance, determine the control points of the Bézier elements for IGA.

4.2 Strain Gradient Elasticity

The numerical solution of gradient elasticity equations needs higher continuities of the solution
field. This is one of the issues where the advantages of the IGA method become evident.
Fischer et al. [73] used IGA to solve the problem of gradient elasticity in two dimensions and
exploited the higher continuity nature of the NURBS basis functions to overcome the need of
introducing auxiliary degrees of freedom. Since then, many studies have been performed
based on the IGA and its application in gradient elasticity theory, among which we name [26,
74, 76, 206].
In this section, we provide the numerical implementation of the strain gradient models
introduced in Chapter 2. Our focus will be on the two simplified models (Reiher’s and
Aifantis’) as the derivation of the required system matrices is more straightforward for these
cases, and in the same way the implementation is easier. However, as mentioned before,
these models can be considered as special cases of Mindlin’s model with five gradient
parameters. Therefore, for the sake of completeness, the full representation of the system
matrices of the discrete form for the general theory and the three-dimensional setting is
provided in Appendix B for the interested reader.
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4.2.1 Reiher’s Model

In Sect. 2.3.1, we have derived the weak form for the simplified model introduced in [25],
which is repeated here, cf. Eq. (2.68),∫
Ω

((2µE : δE + λ tr (E) tr (δE)) + λ1real∇(∇u) :·∇(∇δu)) dV =∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA+

∫
Γ1

t̄2 · δ∇n u dA,+

∫
Ξ

t̄3 · δu dL.

The approximation of the displacement field u and its variation δu using NURBS shape
functions can be obtained from

u :=
∑
ijk

ūijkRijk, δu :=
∑
ijk

δūijkRijk. (4.38)

In Eq. (4.38), ūijk represents the displacement vector of the control point ijk. For the sake
of clarity, we will use a single index I = 1, . . . , ncp where ncp is the total number of control
points, instead of the triple index ijk, i.e., ūI = ūijk and RI = Rijk.
The weak form is composed of first- and second-gradient terms of the displacement field.
Using Voigt notation (denoted by underlined letters in the following) in three dimensions, we
define the linear strain E as

E =
[
E11 E22 E33 2E12 2E23 2E13

]T
:=

n∑
I=1

[Bu
I ] ūI , (4.39)

where n = (p + 1)(q + 1)(r + 1) is the number of control points generating each element.
In Eq. (4.39), [Bu

I ] represents the strain-displacement matrix for the Ith control point and is
defined as

[Bu
I ] :=


RI,1 0 0

0 RI,2 0
0 0 RI,3

RI,2 RI,1 0
0 RI,3 RI,2

RI,3 0 RI,1

 , (4.40)

where RI,k = ∂RI

∂xk
. The discretized form of the second-gradient terms, for instance in the

x1-direction is

(∇(∇u))11 :=
∑
I

∂2RI

∂x2
1

ūI , (4.41)

which clearly requires the second-derivatives of the shape functions to exist throughout the
domain, i.e., continuous first-derivatives (at least C1-continuity).
For a static analysis, in the absence of external forces, the residual matrix is given by

P̂u
I =

∫
Ω̄

(
[Bu

I ]TCE + λ1real∇(∇RI)∇(∇ u)
)

dV, (4.42)
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Therefore, we end up with the following system of equations

P̂ = K̂ū, (4.43)

where K̂ denotes the stiffness matrix, and ū represents the discretized field of unknowns, i.e.,
the displacement field. For the sake of clarity, the stiffness matrix will be decomposed into
two main parts, the classical part K̂1 and the second-gradient part K̂2. The total stiffness
matrix is the sum of these two expressions, i.e., K̂ = K̂1 + K̂2.
The classical theory contribution for the pair of control points IJ is

K̂1
IJ =

∫
Ω̄

[Bu
I ]TC [Bu

J ] dV. (4.44)

In the same way, K2 consists of the second-gradient terms

K̂2
IJ =

∫
Ω̄

λ1∇(∇RI)∇(∇RJ) dV. (4.45)

For a more detailed derivation, the interested reader is referred to [26] and the discussions
therein.

4.2.2 Aifantis’ Model

The weak form for this model was derived in Sect. 2.3.2 and is repeated here, cf. Eq. (2.80),∫
Ω

S : δE dV +

∫
Ω

P :· δH dV =∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA+

∫
Γ1

t̄2 · δ∇n u dA,+

∫
Ξ

t̄3 · δu dL,

which can be re-written as∫
Ω

(2µE : δE + λ tr (E) tr (δE)) dV +

∫
Ω

(2µH :· δH + λ tr (H) · tr (δH)) dV

=

∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA+

∫
Γ1

t̄2 · δ∇n u dA,+

∫
Ξ

t̄3 · δu dL.
(4.46)

From this point on, we change the problem setting to a two-dimensional one assuming plane
strain (this will be discussed further in Chapter 5). In the same way as the previous section,
we use NURBS shape functions to approximate the displacement field and its variation

u :=
∑
ij

ūijRij δu :=
∑
ij

δūijRij. (4.47)

We replace the double index ij with a single index I (i.e., uI = uij , and RI = Rij).
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Using Voigt notation in two dimensions, we define the strain E and its first gradient H as

E = [E11 E22 2E12]T :=
n∑
I=1

[Bu
I ] ūI ,

Hk = [E11,k E22,k 2E12,k]
T :=

n∑
I=1

[
∂Bu

I

∂xk

]
ūI ,

(4.48)

where xk represents the kth component of the Cartesian coordinates. In Eq. (4.48),
[
Bu
I

]
represents the strain-displacement matrix for the Ith control point, and is defined as

[Bu
I ] :=

RI,1 0
0 RI,2

RI,2 RI,1

 , [∂Bu
I

∂x1

]
:=

RI,11 0
0 RI,21

RI,21 RI,11

 ,
[
∂Bu

I

∂x2

]
:=

RI,12 0
0 RI,22

RI,22 RI,12

 ,
(4.49)

where RI,kl = ∂2RI

∂xk∂xl
. For a static analysis, in the absence of external forces, the residual

matrix is given by

P̂u
I =

∫
Ω

(
[Bu

I ]TCE + l2
2∑

k=1

([
∂Bu

I

∂xk

]T

CHk

))
dV, (4.50)

and we end up with the following system of equations

P̂ = K̂ū, (4.51)

where, the same as before, K̂ denotes the stiffness matrix, and ū represents the discretized
unknown field. For the sake of clarity, the stiffness matrix will be decomposed into two main
parts, the classical part K̂1 and the second-gradient part K̂2. The total stiffness matrix is the
sum of these two expressions, i.e., K̂ = K̂1 + K̂2.
The contribution of the classical theory for the pair of control points IJ is the same as before,
cf. Eq. (4.44). K2 is different, though,

K̂2
IJ =

∫
Ω̄

l2

(
2∑

k=1

[
∂Bu

I

∂xk

]T

C

[
∂Bu

J

∂xk

])
dV. (4.52)

4.3 Strain Gradient Enhanced Phase-Field Fracture Models

In the previous sections, we provided the residual and stiffness matrices required to establish
the system of equation for pure strain gradient models. Since we are dealing with static
problems for those cases, the tangent matrix required for the Newton-Raphson method
consists only of the stiffness matrix. For the phase-field fracture problems, we assume
a quasi-static mechanical problem together with a weak form for the phase-field variable
evolution which consists of transient terms as well. For this reason, in the current section, in
addition to the residual and stiffness matrices, the so-called damping matrix is also required
for the phase-field part of the solution. In what follows, we provide the representation of
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these matrices for the second-order and the fourth-order formulations.

4.3.1 Second-Order Phase-Field Fracture Model

We start by considering the second-order model. From Chapter 3, we have, cf. Eq. (3.45),∫
Ω

(
Sfrac : δE + Pfrac :· δH

)
dV

=

∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA+

∫
Γ1

t̄2 · δ∇n u dA,+

∫
Ξ

t̄3 · δu dL

which can be re-written as∫
Ω

s2 ((2µE : δE + λ tr(E) tr(δE)) + (2µH :· δH + λ tr(H) · tr(δH))) dV

=

∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA+

∫
Γ1

t̄2 · δ∇n u dA,+

∫
Ξ

t̄3 · δu dL,
(4.53)

and represents the weak form of the mechanical part. Furthermore, cf Eq. (3.47),∫
Ω

[
ṡ

M
δs+ 2Gcε∇s δ∇s+

(
s
(
E : [CE] + l2H :·∇ [CE]

)
+
Gc(s− 1)

2ε

)
δs

]
dV

=

∫
Γ2

qn δs dA,

provides the weak form for the phase-field parameter. The approximation of the displacement
field u and its variation δu were defined in the last section. Keeping the single notation
introduced in the previous section, for the scalar-valued phase-field s and its variation δs, we
have

s :=
∑
I

s̄IRI , δs :=
∑
I

δs̄IRI , (4.54)

where sI represents the phase-field value of the control point I. We further define the
gradient of the phase-field by

∇s :=
n∑
I=1

[Bs
I ] s̄I , [Bs

I ] :=

[
RI,1

RI,2

]
. (4.55)

In the absence of external forces, the residual matrix for the control point I derived from
Eqs. (3.45) and (3.47) is

[
P̂I

]
=

[
P̂u
I

P̂ s
I

]
=

∫
Ω


s2

(
[Bu

I ]TCE + l2
∑2

k=1

([
∂Bu

I

∂xk

]T

CHk

))
RI

ṡ
M

+ 2Gcε [Bs
I ]

T∇s+
RI

(
s
(
ET · (CE) + l2

∑2
k=1(HT

k ·CHk)
)

+ Gc(s−1)
2ε

)
 dV. (4.56)
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As we use the Newton-Raphson method to solve the problem (see Sect. 3.2.6.2), linearization
of the residual is required. We define the tangent matrix for the control point pair IJ to be

ŜIJ = d1K̂IJ + d2D̂IJ = d1

(
∂P̂I

∂αJ

)
+ d2

(
∂P̂I

∂α̇J

)
, (4.57)

where K̂IJ denotes the stiffness matrix, D̂IJ is the damping matrix, d1 and d2 represent the
multipliers derived from the time integrator (in our case, the Backward Euler scheme), and
αJ and α̇J are the vectors of degrees of freedom and their derivatives with respect to time
for the control point J , respectively. Consequently, the stiffness matrix can be written as[

K̂IJ

]
=

∫
Ω

[
K̂uu
IJ K̂us

IJ

K̂su
IJ K̂ss

IJ

]
dV, with

K̂uu
IJ = s2

(
[Bu

I ]TC [Bu
J ] + l2

(
2∑

k=1

[
∂Bu

I

∂xk

]T

C

[
∂Bu

J

∂xk

]))
,

K̂us
IJ = 2s

(
[Bu

I ]TCE + l2

(
2∑

k=1

[
∂Bu

I

∂xk

]T

CHk

))
RJ ,

K̂su
IJ = 2sRI

(
(CE)T [Bu

J ] + l2

(
2∑

k=1

(CHk)
T

[
∂Bu

J

∂xk

]))
,

K̂ss
IJ = 2Gcε [Bs

I ]
T [Bs

J ] +RI

(
ET ·CE + l2

2∑
k=1

(
HT

k ·CHk

)
+
Gc

2ε

)
RJ .

(4.58)

Finally, the damping matrix has the form[
D̂IJ

]
=

∫
Ω

[
0 0
0 1

M
RIRJ

]
dV. (4.59)

4.3.2 Fourth-Order Phase-Field Fracture Model

Considering the weak form derived in Chapter 3, we have, cf. Eq. (3.49)∫
Ω

[
ṡ

M
δs+ Gc

(
ε∇s δ∇s+

ε3

2
∆s δ∆s

)
+

(
s
(
E : [CE] + l2H :·∇[CE]

)
+
Gc(s− 1)

2ε

)
δs

]
dV =

∫
Γ2

qn δs dA,

which needs to be discretized. Taking the same steps as presented in Sect. 4.3.1, we obtain
the discretized form of the fourth-order formulation. Indeed, most of the terms are similar
to the case of the second-order model. Therefore, we only repeat selected steps that are
different from the previous derivation. We define the Laplacian of s as

∆s :=
n∑
I=1

2∑
k=1

[
∂2RI

∂x2
k

]
s̄I , (4.60)
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and the residual matrix becomes

[
P̂I

]
=

[
P̂u
I

P̂ s
I

]
=

∫
Ω


s2

(
[Bu

I ]TCE + l2
(∑2

k=1

[
∂Bu

I

∂xk

]T

CH

))
RI

ṡ
M

+ Gc

(
ε [Bs

I ]
T∇s+ ε3

2

(∑2
k=1

∂2RI

∂x2k

)
∆s
)

+RI

(
s
(
ET · (CE) + l2

∑2
k=1

(
HT

k ·CHk

))
+ Gc(s−1)

2ε

)
 dV.

(4.61)

For the stiffness matrix, only the Kss
IJ component in Eq. (4.58) changes:

K̂ss
IJ = Gc

(
ε [Bs

I ]
T [Bs

J ] +

(
2∑

k=1

∂2RI

∂x2
k

)(
2∑

k=1

∂2RJ

∂x2
k

))

+RI

(
ET ·CE + l2

2∑
k=1

(
HT

k ·CHk

)
+
Gc

2ε

)
RJ .

(4.62)

With this, we are done with deriving the discrete forms of the governing equations. In the next
chapter, the performance of the aforementioned models will be investigated using different
geometries and loading conditions.
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5 Results and Discussion

In this section, the numerical results obtained using the different models introduced in the
previous chapters are presented. All the models are implemented as user elements into
the Finite Element Analysis Program (FEAP) and its IGA add-on (igaFEAP) [207], which is
developed based on the Bézier extraction method [204]. For the three-dimensional strain
gradient model, an additional subroutine was written to determine the global second-order
derivatives of the basis functions. The details for the calculation of global second- and
third-order derivatives of the basis functions can be be found in [26] and in Appendix A of the
current work.
This chapter is structured as follows: In the first section, the ability of the strain gradient
elasticity models to regularize the strain energy density field near the singular zones is
investigated. We first start with a three-dimensional model (Reiher’s model) and show that
a first-strain gradient model is indeed sufficient to overcome the stress singularity caused
by line displacements (or loads). Moreover, the superiority and higher efficiency of the
isogeometric analysis over the conventional finite element approaches in solving higher-order
problems is demonstrated. Then, the same conclusion will be achieved for the GRADELA
model by Aifantis in a two-dimensional plane strain case, this time for a point displacement
boundary condition. After that, the phase-field fracture models, coupled with the strain
gradient theory, are investigated in the second section of this chapter. The results obtained
from the classical phase-field models of fracture are compared with the ones from the
proposed enhanced models and a detailed discussion on the strain energy density and
individual stress components is provided.

5.1 Strain Gradient Elasticity

5.1.1 Reiher’s Model

We start the section by simulating the behavior of a cube under an edge displacement
boundary condition. In such a case, as discussed in the previous chapters, a first-strain
gradient stored elastic energy is sufficient to overcome the problem of singularity of the
strain energy density. Figure 5.1 shows the model size and the applied boundary conditions.
The bottom surface is completely fixed in all directions. A uniform line displacement of
magnitude 0.05 mm in x1-direction has been prescribed, while the movement in x3-direction
is suppressed (producing a kind of shear test). In all the following studies, the material
properties from Reiher et al. [25] have been used: λ = 1.0 MPa, µ = 0.08 MPa, and
λ1real = 0.04 N.
A mesh convergence study has been done to verify the method and determine its robustness
compared to the conventional finite element method. The results are presented in Fig.
5.2. Trivariate cubic (tri-cubic, i.e., p = q = r = 3) NURBS elements (C2-continuous
across elements/knot spans) and hexahedral cubic Lagrangian elements are chosen for the
isogeometric analysis and the finite element method, respectively. Uniform meshes are used
for the study, starting from only one element for the first model, then two elements in each
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Figure 5.1: Model size and applied boundary conditions for Reiher’s model
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Figure 5.2: Mesh convergence study results for Reiher’s model. The plot shows the strain
energy relative error for the case of cubic NURBS and Lagrangian finite elements.

direction (i.e., total number of 8 elements), and so on. The significant difference between
the total number of degrees of freedom (DOFs) of one NURBS element (=192) versus one
hexahedral cubic Lagrange element (=1400) is because of the usage of Lagrange multipliers
in the finite element simulation. In IGA, there are only three degrees of freedom, belonging
to the displacement field, per control point, whereas, in the finite element analysis (FEA),
apart from the primary displacement field, auxiliary degrees of freedom are involved. Since
the classical cubic finite elements are C0-continuous, additional degrees of freedom need
to be introduced for each second-gradient term, i.e., components of the third-order tensor
H, per node. Moreover, another set of degrees of freedom are required for the Lagrange
multipliers to establish constraints between the displacement and the second-gradient DOFs,
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i.e., H − ∇(∇u) = 0, which leads to a significant increase in the number of DOF of the
final element in comparison to a classical cubic Lagrange element. Moreover, comparing
the discretizations with more than one element, tri-cubic C2-continuous NURBS models will
always have less number of DOFs than their C0-continuous FEM counterparts.
Looking at the results in Fig. 5.2, IGA shows a slightly better convergence rate, probably
because of the higher regularity. There is an offset between IGA and FEM results, which
is due to the less number of DOFs per element for the NURBS discretizations. Figure 5.3
depicts the strain energy density for a 13×13×13 model. Taking a very fine tri-quartic NURBS
mesh results as the reference value for the total elastic strain energy of the body, Table 5.1
compares the results for different kinds of basis functions. IGA results show significantly
shorter analysis times compared to the FEM. Although the number of degrees of freedom is
significantly lower using tri-quartic NURBS elements, the elapsed time is almost the same
as the tri-cubic NURBS. The reason appears to be the difference in the quadrature order.
While the required quadrature order for the cubic NURBS basis is 4 (64 quadrature points
per element), 5 is needed for the quartic mesh (thus, 125 quadrature points per element),
which considerably increases the computational time. The non-efficiency of the higher-order
elements due to the cost of quadrature is a well-known problem in the FEM community and
many researchers have proposed approaches to overcome this issue (see, for instance,
[208] and [209]). Since dealing with the quadrature methods is out of the present work’s
scope, we refer the interested reader to the mentioned articles and [210].
Although the obtained results are promising, the problem with Reiher’s model is that there
is no straightforward way to calculate the gradient material parameter λ1real . A thorough
parameter study based on the classical and gradient strain energies is needed for each set of
geometry and material to find the proper material coefficients, making it difficult to exploit the

Strain Energy Density (MPa)

x1

x2

x3

Figure 5.3: Results for a cube under an applied line displacement (deformed shape). A
13×13×13 elements cube (cubic NURBS)
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Table 5.1: Comparison between IGA and FEA results

Basis Order Elapsed Time No. of DOF Total
Elastic Strain Energy

Lagrangian (FEA) Cubic 430.0 s 225104 8.291583e−05 N.mm

NURBS (IGA) Cubic 20.0 s 14739 8.291579e−05 N.mm

NURBS (IGA) Quartic 20.3 s 3993 8.291577e−05 N.mm

† The CPU times are calculated on an Intel® CoreTM i7-4790 at 3.60 GHz clock speed with 32.0 GB

of memory (DDR3-1600 MHz) running Microsoft Windows 10 Pro (64-bit) for the finite element
method results and Ubuntu 16.04 LTS (64-bit) for the isogeometric analysis results.
† The Intel® Pardiso sparse solver has been used for all the simulations.

model for general purposes. Nevertheless, it is a very simple model showing the efficiency of
the strain gradient theories to overcome the problem of singular stress fields, considering
only one of the five gradient material coefficients of the original theory.

5.1.2 Aifantis’ Model

The simplified model proposed by Aifantis and co-workers, on the other hand, makes the
usage of the gradient theory much simpler by defining a length-scale parameter and using
the Lamé constants for the gradient part of the stored energy as well. In this section, we first
show this model’s ability to regularize the singular stress fields in two-dimensional settings.
This reduction of the problem’s dimensionality is to validate our assumption that the first-strain
gradient model is capable of regularizing the singular stress fields caused by application
of point load/displacement boundary conditions. In the final section of this chapter, we will
exploit the same model to investigate the fracture process in brittle materials.
Let us take the 1×1 mm2 square shown in Fig. 5.4 as the geometry. The displacement
in x1-direction is constrained on the right edge of the model. On the bottom edge, from
x1 = 0.25 mm to x1 = 1.0 mm, all the displacements in x2-direction are constrained as
well. For the material properties, we adopt the Lamé constants from [211], namely we have
λ = 50727.5 MPa and µ = 46825.4 MPa. Moreover, a displacement boundary condition
with the magnitude of u2 = 0.01 mm is applied on the top edge. As we will see in the next
chapter, this amount of applied displacement is enough for a crack to start propagating in this
model. The discontinuous Dirichlet boundary condition in the bottom of Fig. 5.4 resembles
a crack tip in the structure. Therefore, we predict to have a singular response on this point
using the classical continuum mechanics theory. Our goal here is to show that a first-strain
gradient model, such as the one introduced by Aifantis and his co-workers, is sufficient to
overcome the problem of singularity in this case. Since we have reduced our model from
a three-dimensional one to a two-dimensional plane strain model, in the same way, one
can assume that the line displacements/loads will be reduced to point displacement/loads.
Therefore a body equipped with second displacement gradients should be able to sustain
this kind of loading.
Figure 5.5 shows the results for different values of the length-scale parameter l. All the studies
are done on a bi-quadratic C1-continuous NURBS surface, i.e., p = q = 2. Three different
discretizations have been considered for this study. A relatively coarse mesh consisting of
84×85 (h ≈ 0.012 mm) control points. A finer 193×194 (h ≈ 0.005 mm) control points mesh
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x1

x2

0.25 mm

1.0 mm

ū

Figure 5.4: Geometry and boundary conditions for the pure gradient elasticity (without phase-
field fracture) simulation model

and finally we have the finest mesh with 408×409 (h ≈ 0.002 mm) control points, where
h denotes the mesh size defined as the maximum distance between two adjacent control
points in each parametric direction. For the strain gradient models, a mesh is sufficiently fine
if the mesh size is smaller than the length-scale parameter so that the mesh can capture the
so-called size effects. This requirement is fulfilled for all the studies performed, except for
the case of l = 0.01 with the 84×85 mesh. Here, we focus on the classical part of the strain
energy density (ψe) and study the convergence of its maximum and minimum values, which
always occur in front of the crack tip, i.e., the region close to the point (0.25, 0). Before we
start with discussing the results, it should be noted that we expect the strain energy density
to be always positive for this material throughout the computational domain. However, since
we are using NURBS as basis functions, whenever a sudden jump in the results happen, it
results in the Gibbs phenomenon [212, 213], causing oscillations and, consequently, negative
values in the interpolated results. This behavior is discussed in more detail in the following
sections. Moreover, l = 0 recovers the classical Cauchy theory. For this case, as expected,
the results show an exponential growth for finer meshes, and no convergence is in prospect
which is an obvious sign of singularity. There is also a significant amount of negative strain
energy density that is unacceptable and increases exponentially for the refined meshes. On
the other hand, the strain gradient models (l > 0) show a different behavior; namely, all the
results tend to converge even for minimal values of the length-scale parameter. It is also
to conclude that all the chosen discretizations are fine enough and in the converged zone,
following the results from the previous chapter (see Fig. 5.2). Moreover, the minimum strain
energy density is positive and close to zero for all models, which shows that there are no
sudden jumps in the results. There is one exception here, where the minimum strain energy
density is negative for l = 0.01 and the 84×85 mesh, but one should note that this mesh is
not sufficiently fine for this value of the length-scale parameter. Figures 5.6 and 5.7 depict
the strain energy density fields for two different values of the length-scale parameter. Based
on these results, it can be concluded that the simplified model introduced by Aifantis can be
used to overcome the problem of singularity for the plane strain two-dimensional case. It
should be noted that the same conclusion was proposed by Niiranen et al. [63].
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Figure 5.5: Mesh convergence study results for Aifantis’ model (above: maximum strain
energy density, below: minimum strain energy density)

5.2 Phase-Field Fracture Models

For all the following numerical simulations, we use a square geometry and plane strain
assumptions. Keep in mind that we have chosen this academic benchmark problem on
purpose to clearly observe the effects of the singularity, which are not fully eliminated by the
phase-field approach alone. The size of the model is 1 mm×1 mm. We take the left-bottom
corner of the square as the origin of the coordinate system. As for boundary conditions, the
movement of the control points at the bottom edge of the plane is constrained in x2-direction.
Moreover, the control points belonging to the right edge are fixed in x1-direction, and a
uniform line displacement of ūy = 0.1 mm is acting on the top edge and is applied in a
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Strain Energy Density (MPa)
l = 0.00

Strain Energy Density (MPa)
l = 0.00

Figure 5.6: Classical strain energy density (ψe) distribution for the classical continuum me-
chanics theory (l = 0)

Strain Energy Density (MPa)
l = 0.04

Strain Energy Density (MPa)
l = 0.04

Figure 5.7: Classical strain energy density (ψe) distribution for the strain gradient theory
(l = 0.04)

quasi-static manner. We introduce a pre-existing crack by initializing the phase-field itself.
The initial crack length is 0.25 mm and is located in the middle of the plane, starting from
the left edge (see Fig. 5.8). The material properties used are the same as in the previous
chapter, i.e.,λ = 50727.5 MPa, µ = 46825.4 MPa, Gc = 2.0 N/mm, and M = 2000.0 1/MPa · s

[211]. The interphase width (the length-scale parameter for the phase-field) is chosen as
ε = 0.02 mm. Bi-quadratic NURBS with full integration (9 quadrature points per element)
are used as it is the lowest degree which provides C1-continuity needed for the fourth-order
formulations. There are three different meshes with uniform subdivisions (equidistant inner
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Figure 5.8: Boundary conditions and the initial crack for the phase-field fracture simulations

knots) of 84×85, 192×193, and 408×409 control points chosen as coarse, normal, and fine
meshes, respectively. The number of control points in each parametric direction is chosen so
that there will always be a control point at the position (x1, x2) = (0.25, 0.50) where the initial
crack tip is located. The results are verified using a similarly refined (i.e., almost with the same
number of control points as the fine quadratic mesh) bi-quartic (p = q = 4) C3-continuous
NURBS model. At this point, we remind the reader that the same discretizations were used
in the previous section, and therefore it is safe to assume that all the meshes are sufficiently
fine for the upcoming simulations.
For each model, we define the initial crack as a Dirichlet boundary condition. This procedure
ensures that the initial crack does not heal and, at the same time, reduces the total number of
equations to be solved. At the beginning of the simulation, a static-analysis step is performed
in the absence of mechanical loads to regularize the crack phase-field (see [170]).
In order to facilitate the comparability of the results, we evaluate them when the peak of the
strain energy density (near the crack front) reaches the line x = 0.65 mm. Figure 5.9 shows
the contour plots for the phase-field parameter s for the second- and the fourth-order crack
models at this state, side by side.

5.2.1 Post-Processing of NURBS Results

Before we continue, a short remark on the visualization of NURBS results ought to be given.
Most of the widely-used post-processing (FEM) software tools do not support splines to
visualize the results, and ParaView [214], which is our software of choice for post-processing,
is not an exception. One popular workaround to visualize IGA results using current post-
processing tools is to first construct a standard FE mesh based on low-order Lagrange
elements and to map the results on this visualization mesh (see, for instance, [215]). This FE
model is usually based on a linear approximation of the geometry, and each isogeometric
element is subdivided into a number of these linear elements depending on the desired
accuracy. Although this method has been proven to yield an acceptable approximation
of the original mesh, because of the dissimilar positions of the control points/nodes, and
also different continuities of the original and the visualization mesh, most often, it is not
possible to obtain the exact values in the post-processing stage (the projected values are
very close, but not exactly the same as the values on the NURBS entity). That being said,
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Second-Order Phase-Field Model Fourth-Order Phase-Field Model

Figure 5.9: Phase-field contours for the second- and the fourth-order crack models based on
gradient elasticity

we have extended this approximation to quadratic FE elements in order to be closer to the
original NURBS models [216]. There is still a problem of non-matching continuity, i.e., our
quadratic NURBS model is C1-continuous while the FEM model exhibits only C0-continuity,
which results in different positions of the control points/nodes. Therefore, it is not surprising
that in the following figures, although we are plotting the values on the line y = 0.5 mm,
and we expect the strain energy density and the phase-field to be exactly zero at least in
the region of the initial crack, this is not the case. In fact, there is almost no point in the
projected mesh where the phase-field has a value of exactly zero (even at the beginning of
the analysis). Here, one should note the non-interpolatory nature of NURBS control variables
as well. Fortunately, this does not result in difficulties in post-processing as we always use
the same meshes (NURBS/FEM) to visualize the results for classical and gradient theories,
and we compare these projected results. For better comprehension, the reader is referred to
Fig. 5.10, where the results from ParaView (PP data) and the control points (CP data) are
illustrated. Moreover, the effective strain energy density (s2 ψe) at y = 0.5 mm is not zero
even in the NURBS data (control variables). It is due to another projection error (local least
squares method [217]), where the energy values and the phase-field are projected from
quadrature points to the NURBS control points.

5.2.2 Strain Energy Density Analysis

5.2.2.1 Classical Model

We start by studying the results of the classical Cauchy continuum theory (l = 0.0). Figures
5.11 and 5.12 depict the simulation results based on the second- and the fourth-order
formulations, respectively. The results are plotted along the three paths illustrated in Fig. 5.8.
Path A-A′ is along the initial crack direction and shows the path that we expect the crack to
grow in. Paths B-B′ and C-C′ are perpendicular to the path A-A′, and they are located at
the distances 0.1 mm and 0.4 mm from the left edge, respectively. The difference between
B-B′ and C-C′ is that the first path is located where we constrain the crack using Dirichlet
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Figure 5.10: Comparison between the visualization mesh (post-processing data) and the
direct results from the IGA mesh (control points data) for the phase-field (left),
and the strain energy density (right). The results are shown for a quadratic
NURBS with 408×409 control points and demonstrate the values for the second-
order formulation on the line x = 0 mm at the time 0.005 s with l = 0.0.

boundary conditions (resulting in exactly zero values for the phase-field, initial crack position)
while the latter path does not intersect a region with prescribed values. The left column
depicts the phase-field values, while the right one displays the degraded strain energy density
s2 ψe. The results are shown for three different meshes. Studying the results presented in
Fig. 5.11, the coarse mesh (green dashed line) certainly does not perform well. Along Path
A-A′, the oscillations in the phase-field and the energy plots are due to a zigzag behavior in
the crack movement at the beginning of the propagation (the mesh is simply not fine enough).
It coincides with the shifts observed along Paths B-B′ and C-C′. The value we are most
interested in is the value of the energy at the crack tip, roughly 15.0 MPa for the coarse
mesh. The finer meshes perform much better and exhibit some kind of convergence for the
phase-field values (see the left column of Fig. 5.11). However, studying the results for Path
A-A′, it is clear that refining the mesh increases the maximum strain energy density value.
This particular behavior is usually considered to be a sign of the existence of a singularity in
the results. Evaluating the results for Paths B-B′ and C-C′, three crucial observations are
made:

• The results are plotted when the crack has passed both Paths B-B′ and C-C′, meaning
that the material is broken. Consequently, the existence of relatively high energy
density values (roughly 2.0 MPa) does not have a physical meaning.

• Refining the mesh changes the distribution of the energy density in the vicinity of the
crack zone, leading to a high concentration of strain energy density for finer meshes
suggesting that the anomalies are mesh sensitive.

• There are considerable negative strain energy density values because of oscillations in
the crack zone’s vicinity. Here, Runge’s phenomenon (similar to Gibbs’ phenomenon
in Fourier-series approximations) is observed because of a sudden jump in the value
of the strain energy density. It is shown in [212] and [213] that the phenomenon
also appears for splines with equidistant interpolation points, which is the case in our
examples. It should be noted that the implemented user element in igaFEAP always
checks the value of the (effective) strain energy density on the quadrature point level
for positivity, i.e., the simulation will be aborted if the subroutine finds negative values
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Figure 5.11: Results for the classical second-order phase-field theory (coupled with linear
elasticity) for different mesh sizes. Distributions of the phase-field (left), and the
strain energy density (right) along three different cross-sections in the plane.
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Figure 5.12: Results for the classical fourth-order phase-field theory (coupled with linear
elasticity) for different mesh sizes. Distributions of the phase-field (left), and the
strain energy density (right) along three different cross-sections in the plane.
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of energy density on the quadrature points. This means that the negative values on
the strain energy density plots are merely because of the interpolation procedure and
existence of sudden jumps in the results.

We have already observed a similar behavior around the pointwise boundary conditions in
three-dimensional problems in the existence of a singularity (see [26], Fig. 9). The effect of
this phenomenon can be mitigated by refining the mesh, which is, in fact, the reason why
the domain of oscillation reduces in finer meshes in Fig. 5.11. The crucial message that
needs to be highlighted here is that the existence of this jump in the energy is unphysical
in the first place. Almost all of the above assertions also hold for the results depicted in
Fig. 5.12 for the fourth-order formulation. Although the results for Path A-A′ show a kind
of convergence for the maximum strain energy density, the behavior is different behind the
crack tip for different mesh sizes. Moreover, the localization of the strain energy density
is observable in the results for Paths B-B′ and C-C′. It is also interesting to mention that
although the material properties have not been changed, the maximum strain energy density
in the case of l = 0.0 drops severely, going from the second-order to the fourth-order theory
(from 24.33 MPa to 14.01 MPa). One could argue that this is because the fourth-order theory
is less mesh dependent, and the fact that the value in the second-order theory is much higher
because the considered mesh is not fine enough. While we do acknowledge that this might
be the case, we doubt if there will be any convergence in the presence of singularity. At
this point, we remind the reader that the results presented in Fig. 5.11 depict a completely
different trend where a more refined mesh has an even larger maximum energy density.
Therefore, due to the described behavior, we can conclude that singularities are present in
the numerical phase-field fracture model based on the classical theory of elasticity developed
by Cauchy.

5.2.2.2 Strain Gradient Enhanced Model

The current section investigates the same model and merely exchanges the classical theory
of elasticity by the strain gradient theory. In the following, the influence of different values
of the gradient material length-scale l, on the results is studied in detail. We consider
three cases: l = 0.0 which is equivalent to the non-gradient model (representing the same
results already provided in Sect. 5.2.2.1 for comparison purposes), l = ε which takes the
same value for the crack and the gradient length-scales, and finally, l = 2ε. It should be
emphasized that, in general, higher values of the gradient length-scale parameter result in a
stiffer material behavior. According to our numerical results, we assume a relation between
the phase-field crack-width ε and the gradient elasticity length-scale l. By taking length-scale
values much higher than ε (l > 3 ε), the computed crack width significantly increases. In
the current simulations, the value ε = 0.02 is chosen for the phase-field (see [135, 170]),
and the gradient elasticity length-scales are adapted accordingly. Figure 5.13 illustrates
the simulation data for the second-order formulation. Note that all simulations have been
executed for the finest mesh (408×409 control points), and the results are plotted on the
paths introduced in the previous section. From the obtained results, we can conclude:

• There is a clear difference between the classical (l = 0.0) and the gradient theories
in the results depicted for Path A-A′. In the visualization of the phase-field parameter,
a wider transition zone between the cracked and intact material is observed for the
classical theory. This transition is much sharper for the two gradient results, and
accordingly, it is easier to determine the crack tip position. In other words, the rate of
changes of the phase-field parameter in the crack-growth direction for the classical
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Figure 5.13: Results for the second-order formulation for different values of l and the 408×409
mesh. Distributions of the phase-field (left), and the strain energy density (right)
along three different cross-sections in the plane.

78



5 Results and Discussion 5.2 Phase-Field Fracture Models

theory is rather slow compared to the behavior in the normal direction (see the phase-
field values in Paths A-A′ and B-B′). This is not the case for the other two values of
l.

• The results for l = ε are more localized (exhibit a faster rate of change) than the ones
for l = 2ε, making the distance between the energy density peak and the crack tip
smaller.

• Considering the energy density, Paths B-B′ and C-C′ show no oscillations around the
crack zone for the gradient theory results, and the strain energy density is zero in the
vicinity of the crack zone.

• The energy density in the results for Paths B-B′ and C-C′ is more uniformly distributed
for the gradient theory in comparison to the classical theory where it is strongly
localized.

There is, however, one problem with these results. Although not easily noticeable at first,
the phase-field for the l = ε simulations is slightly deviated from the expected path resulting
in a slightly non-symmetric phase-field distribution on Paths B-B′ and C-C′. The effect is
better seen in Fig. C.1 in the Appendix, where the results for l = ε are depicted individually
for different mesh sizes. According to our numerical results, the source of this is expected
to originate from using a second-order formulation for the phase-field in conjunction with a
fourth-order one for the mechanical part. On the other hand, using non-matching formulations
for the phase-field and the displacements where a second-order elasticity model is coupled to
a fourth-order formulation for the crack field does not result in deteriorated solutions. Similar
behavior is also seen if the length-scale parameter is increased to l = 2ε.
Finally, Fig. 5.14 shows the numerical solutions for the fourth-order formulation. The results
for the two cases l = ε and l = 2ε illustrate all advantages of the previous case, plus, this time
there is no deviation of the phase-field values, i.e., the phase-field distributions for different
meshes almost completely match, and the energy is settled in the crack zone. It should
also be emphasized that the severe drop of the maximum strain energy density from the
second-order to the fourth-order theory, which is observed in the classical theory and was
discussed in the previous section, does not happen in the gradient elasticity models and
the difference between the maximum energy values, comparing the second-order to the
fourth-order formulation, is relatively small.

5.2.2.3 Finite Element Analysis Results

The numerical results provided so far have been obtained using the isogeometric analysis
approach in conjunction with quadratic NURBS shape functions. These shape functions
exhibit C1-continuity and are therefore, ideal when using first strain gradient models. In
the wide body of literature, the standard finite element method is favoured for numerical
simulations based on the classical second-order phase-field fracture model. Therefore, we
additionally provide the results for the model described in Sect. 3.2.1 using bi-linear finite
elements (4-node quadrilaterals) which are shown in Fig. 5.15. The results are illustrated
for three different mesh sizes h which are significantly finer than the ones used in the IGA
simulations. The first model consists of 501×501 equidistant nodes which results in a mesh
size of h = 0.002 mm, while the second and third refinement steps feature models consisting
of 1001×1001 (h = 0.001 mm) and 2001×2001 (h = 0.0005 mm) nodes. All the mesh sizes
are far smaller than the assumed phase-field length-scale parameter ε = 0.02 mm. Note that
the same results as discussed in Sect. 5.2.2.1 can be observed. Although the phase-field
plots for different meshes coincide with each other, the maximum strain energy density in
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Figure 5.14: Results for the fourth-order formulation for different values of l and the 408×409
mesh. Distributions of the phase-field (left), and the strain energy density (right)
along three different cross-sections in the plane.
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front of the crack tip is different and does not seem to converge. Moreover, the strain energy
density in the broken material behind the crack tip remains non-zero showing no signs of
mitigation for finer meshes. Since linear elements are used in the studies and a sudden
jump in the results do not produce oscillations in this case, there are no negative strain
energy density values present in the plots shown in Fig. 5.15. It is worth mentioning that we
also executed these simulations using the same number of nodes but quadratic Lagrangian
shape functions (tensor product space). Increasing the polynomial order did not alleviate the
observed problems, instead the maximum strain energy density values in front of the crack
for the models with quadratic interpolation were higher than the corresponding linear ones.
Therefore, we can only conclude that influence of the singularity inherited from the classical
Cauchy continuum theory also prevails when the classical finite element method is applied,
although the signs of a singular behavior are not as evident as in the case with IGA elements
with higher regularity.

5.2.2.4 Summary

To summarize our findings, we concentrate on a comparison between the strain energy
density contour plots for different values of the gradient material length-scale l. In fact,
Fig. 5.16 combines all results from Sects. 5.2.2.1 and 5.2.2.2. The values for the second-
and the fourth-order models are depicted side-by-side. To facilitate the comparison of the
graphs, the data ranges for the color maps are regularized to the results presented in the
second-order model with l = ε as it has the widest range of strain energy density values
among the gradient models. The following remarks ought to be provided:

• We observe the existence of non-zero energy values in the broken material in the
top row where the results for the classical second-order and fourth-order theories are
compared (l = 0.0). There is a change in the value of these non-zero points in the
transition area from the initial to the propagated crack for the fourth-order formulation.
In fact, all these (unphysical) values are relatively high in both cases. We should stress
that the gradient theory results (l > 0) do not exhibit this behavior and the strain energy
density tends to vanish in the broken material.

• Far away from the crack tip, both the classical and the gradient theories predict the
same strain energy density distribution. It is only around the crack tip that the classical
theory drastically overestimates the stresses, which may cause problems such as
predicting the failure of the structure due to cracks under loadings that normally could
not cause a crack to nucleate or propagate.

In the results represented in Fig. 5.16, there are strain energy density values that marginally
differ from zero (roughly 0.1 MPa) behind the crack tip for the l = ε case in the fourth-order
formulation. This is not the case at the initial crack region, which implies that the non-zero
value of the energy is related to the numerically non-zero values of the phase-field s in those
regions. Because of numerical limitations, it is not possible to obtain an exactly zero value in
the solution region, and the phase-field has very small (close to zero) values in those areas.
We should also note that, though very small, there are still some negative energy values for
the second-order theory with l = ε and l = 2ε even with the gradient theory, which suggests
that there are still small jumps of the strain energy density value in the broken material. It
could be a motivation for considering other (more sophisticated) gradient models for future
studies. One should note that the GRADELA model used in the current work is a simple
strain gradient elasticity model involving only one internal length parameter instead of the
originally proposed five parameters of [42]. Therefore, although in theory first strain gradient

81



5 Results and Discussion 5.2 Phase-Field Fracture Models

0.00 0.20 0.40 0.60 0.80 1.00

0.0

0.5

1.0

x1 (mm)

A
-A

′

ph
as

e-
fie

ld
(-

)

0.00 0.20 0.40 0.60 0.80 1.00

0.0

0.5

1.0

x1 (mm)

A
-A

′

ph
as

e-
fie

ld
(-

)

0.00 0.20 0.40 0.60 0.80 1.00

0.0

0.5

1.0

1.5

2.0

2.5

3.0
·101

x1 (mm)

st
ra

in
en

er
gy

de
ns

ity
(M

P
a)

0.00 0.20 0.40 0.60 0.80 1.00

0.0

0.5

1.0

x2 (mm)

B
-B

′

ph
as

e-
fie

ld
(-

)

0.48 0.50 0.52

0.0

0.5

1.0

x2 (mm)

st
ra

in
en

er
gy

de
ns

ity
(M

P
a)

0.00 0.20 0.40 0.60 0.80 1.00

0.0

0.5

1.0

x2 (mm)

C
-C

′

ph
as

e-
fie

ld
(-

)

0.48 0.50 0.52

0.0

0.5

1.0

x2 (mm)

st
ra

in
en

er
gy

de
ns

ity
(M

P
a)

501×501 mesh 1001×1001 mesh 2001×2001 mesh

Figure 5.15: FEM results for the classical second-order phase-field theory (coupled with
linear elasticity) for different mesh sizes with linear elements. Distributions of
the phase-field (left), and the strain energy density (right) along three different
cross-sections in the plane.
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models are sufficient to remove the singularities caused by line loads (i.e., point loads in the
two-dimensional cases) [24], this seems not to be the case for the simplified model exploited
in the present study. Higher-order theories, involving the third-gradients of the displacement
field, can be considered for further investigations on this topic, cf. [53, 67, 218].
To conclude, the outcome of the fourth-order formulation seems to be in better agreement with
the theoretical considerations than the second-order model. Moreover, the different choices
of the length-scale parameter l = ε and l = 2ε produce outstanding results concerning the
removal of the crack tip singularity. Using l = 2ε, the results are less mesh sensitive and
already converged for the 192×193 control points grid (see Fig. C.4). However, using the
finest mesh with l = ε also gives acceptable results. Therefore, we recommend setting the
length-scale parameter ε ≤ l ≤ 2ε to obtain meaningful results.

5.2.3 Stress Analysis

We finished the previous section by showing problems associated with using classical
phase-field fracture formulations, and we used plots of strain energy density to show these
shortcomings. The strain energy density is a cumulative measure, meaning that it is in-
fluenced by all the stress and strain components in the problem. Although it is indeed a
good measure to show the overall problem because of the mentioned property, the source
of the problem remains ambiguous. In other words, the questions of "which strain/stress
components are responsible for this behavior?" and "how adding strain gradient terms can
help to solve the problem?" have not been entirely addressed yet. This section tries to clarify
and help find answers to the mentioned questions by studying individual stress components.
Although the patterns which are going to be discussed are observable as well when studying
the strain energy density, it comes out that the effects are more pronounced when looking at
the individual stress components. All the results in this section are for the 408×409 mesh
and show the state where the maximum strain energy density reaches the line x1 = 0.65 mm
as was the case in the previous section.

5.2.3.1 Classical Model

We start with the classical phase-field fracture models. Figure 5.17 shows the contour
plots for the primary degrees of freedom (displacements and the phase-field variable) and
the effective stress components for the second-order model. Looking at the results for the
displacement in x1-direction, the maximum displacement occurs in a small region in the
left side of the model where the initial crack is supposed to start. Apparently, we have a
considerable value of the displacement in x1-direction in that region comparing to the rest
of the domain which is not expected. This could lead to high gradients and therefore high
strains on that specific point. The maximum displacement in x1-direction is expected to occur
close to the top and bottom edges where the displacements in x2-direction are restricted.
The same results can be seen for the classical fourth-order theory in Fig. 5.18. On the
other hand, the displacements in the x2-direction look as expected in both figures. The
minimum displacement in this direction happens in the lower half of the model, which is
natural due to the fracture and the applied displacement boundary conditions. High changes
of the displacement field is noticeable around the crack, while the transition is smoother in
the undamaged region. The minimum value for the displacement in this direction is slightly
affected on the region where maximum u1 displacements is observed. The figures also show
the phase-field contour plot in that state. Again, as expected, the phase-field looks a bit
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Second-Order Phase-Field Model Fourth-Order Phase-Field Model

Figure 5.16: Comparison between contour plots of the strain energy density (left: second-
order, and right: fourth-order phase-field model) for different values of l for the
408×409 mesh
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wider for the fourth-order model. On the right side of both the figures, the stress components
are plotted. As it was the case with the strain energy density plots, here also using the
fourth-order model leads to smaller maximum stress values for all the components. At first
glance there is no sign of any potential problems with these plots, and it is likely that this
is the reason that other studies done using the phase-field modelling of fracture have not
reported any anomalies with the results. Before looking more closely into these plots, let us
review the results for the strain gradient theory.

5.2.3.2 Strain Gradient Enhanced Model

Now, let us look at the results produced by the phase-field fracture models tuned with the
strain gradient elasticity. Figure 5.19 shows the contour plots for the primary degrees of
freedom (displacements and the phase-field variable) and the effective stress components
for the second-order model. We will focus on the results for the case with the strain gradient
elasticity length-scale parameter of l = ε = 0.02 as it was shown in the previous section that
it produces acceptable results with the 408×409 mesh while keeping the extra regularization
of the strain gradient fields in a moderate level. Here, because of the integration of the
strain gradient theory, double-stresses are also involved in the simulation. Figure 5.20
depicts the plots for these stress components. Note that Pijk is the energy conjugate of
Hijk which denotes the linear changes of Ekj in xi-direction (see Sect. 2.2.5). Looking at
the results provided in Fig. 5.19, at first glance, there is a tangible difference in the plot
for the displacements in x1-direction compared to the ones from the classical theory. It is
because that singular point on the left edge does not appear in the results obtained from
the strain gradient theory, although the same boundary conditions have been applied to
the model. The reason could be the fact that here we are using a non-local theory and
the displacement field is more enriched because of the higher-order gradients involved.
Despite the wider phase-field profile, the distribution of the displacement field in x2-direction
looks the same as in the classical cases. The maximum stresses are also further reduced
compared to the classical fourth-order model. The problem with the wider crack band in the
second-order theory and the corresponding deviation of the strain energy density once again
shows itself in the results of the effective shear stresses (Sfrac

12 ) where the absolute value
of the maximum and minimum stresses are slightly different, i.e., the stress distribution is
not entirely symmetric. The problem can be seen even for non-shear components of the
double-stresses. This is not the case for the results shown in Figs. 5.21 and 5.22 for the
fourth-order formulation, once again showing the superiority of the fourth-order model over
its second-order counterpart.
Comparing the plots for the phase-field parameter in Figs. 5.17–5.19 and 5.21, the crack
front in the results shown for the strain gradient enhanced model is slightly behind the crack
front of the results for the classical models. This difference between the position of the crack
fronts, apart from the reasons discussed in the previous section, is due to the usage of an
adaptive time stepping scheme and different time steps used in solving each model. Because
of this difference, it is not possible to compare all the results at a specific time. As we want to
avoid interpolating the results in time, we use the results from the closest time step after the
maximum strain energy density has reached the line x1 = 0.65. The difference is trivial as
during crack propagation, the time step size decreases to 5e−5 s and 5e−6 s for the classical
and gradient models, respectively (keep in mind that the total applied displacement is 0.1 mm
making the load step size one order of magnitude smaller). An interesting observation can
be made here; the results for the second-order classical model, cf. Fig. 5.17, are plotted
at time t ≈ 6.18e−2 s, while this value is t ≈ 6.04e−2 s for the fourth-order classical model,
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s (-)

u2 (mm)

u1 (mm)

S12 (MPa)

S22 (MPa)

S11 (MPa)

Figure 5.17: Contour plots of displacements and the phase-field variable (left), and effective
stress components (right) for the classical theory (l = 0.00) and the second-
order phase-field model. The superscript �frac of the effective stresses is omitted
for brevity.
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s (-)

u2 (mm)

u1 (mm)

S12 (MPa)

S22 (MPa)

S11 (MPa)

Figure 5.18: Contour plots of displacements and the phase-field variable (left), and effective
stress components (right) for the classical theory (l = 0.00) and the fourth-order
phase-field model. The superscript �frac of the effective stresses is omitted for
brevity.
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s (-)

u2 (mm)

u1 (mm)

S12 (MPa)

S22 (MPa)

S11 (MPa)

Figure 5.19: Contour plots of displacements and the phase-field variable (left), and effective
stress components (right) for the gradient theory (l = 0.02) and the second-order
phase-field model. The superscript �frac of the effective stresses is omitted for
brevity.
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P112 (N/mm)

P122 (N/mm)

P111 (N/mm)

P212 (N/mm)

P222 (N/mm)

P211 (N/mm)

Figure 5.20: Contour plots of effective double-stress components (right) for the gradient
theory (l = 0.02) and the second-order phase-field model. The superscript �frac

of the effective stresses is omitted for brevity.
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s (-)

u2 (mm)

u1 (mm)

S12 (MPa)

S22 (MPa)

S11 (MPa)

Figure 5.21: Contour plots of displacements and the phase-field variable (left), and effective
stress components (right) for the classical theory (l = 0.02) and the fourth-order
phase-field model. The superscript �frac of the effective stresses is omitted for
brevity.
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P112 (N/mm)

P122 (N/mm)

P111 (N/mm)

P212 (N/mm)

P222 (N/mm)

P211 (N/mm)

Figure 5.22: Contour plots of effective double-stress components (right) for the gradient
theory (l = 0.02) and the fourth-order phase-field model. The superscript �frac

of the effective stresses is omitted for brevity.
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t ≈ 6.30e−2 s for the second-order gradient model and t ≈ 6.26e−2 s for the fourth-order
gradient model. Assuming the propagation speed of the crack, the difference between
the mentioned times is noticeable. In both the classical and gradient models, the crack
propagation starts earlier using the fourth-order theory, which can also be concluded from
the fact that the maximum strain energy density in front of the crack tip has reached the
x1 = 0.65 mm line earlier than for the second-order model. This is not surprising though
since the crack density functional is different between the second-order and fourth-order
formulations, cf. Eqs. (3.8) and (3.21). Moreover, comparing the results for second-order and
fourth-order formulations for both the classical and strain gradient enhanced formulations,
the crack starts earlier in the classical theory supporting our initial suspicions on an early
start of the failure and the crack propagation phenomenon in the presence of singularities.
Based on the applied boundary conditions and the chosen crack opening mode, the normal
stress components are dominant in comparison to the shear stresses. Between the normal
stress components, in all the plotted results, the normal component in x2-direction, i.e,
Sfrac

22 is almost two times larger than the stress in x1-direction. The minimum values for
S22 happen in the left-top and left-bottom corners of the model, while they are located at
right-top and right-bottom corners for the S11 component. In the same way, for the gradient
models, the double-stresses corresponding to the normal components and in particular
to the x2-direction (i.e., P frac

211 , P frac
122 , and P frac

222 ) have higher maximum values. The double-
stress components only have significant values around the crack field because of the higher
stress/strain gradients in these zones. Therefore, the strain gradient contributions are trivial
far away these regions which also shows why the strain energy density is similar to the
values of the classical models far away from the crack front. Figures 5.23 and 5.24 further
plot all the stress and double-stress components for Paths A-A′, B-B′, C-C′ introduced in the
previous section for the second-order and the fourth-order formulation, respectively. All the
stress components vanish smoothly in the regions where the crack exists. Interesting to note
is the different behavior of the stress components between Paths B-B′ (far from the crack
front) and C-C′ (closer to the crack front). The dominance of Sfrac

22 and its corresponding
double-stress components is more obvious in the plots for Path A-A′.

5.2.3.3 Summary

Comparing the results shown in Figs. 5.23 and 5.24 for Paths B-B′ (or C-C′), between the
second-order and the fourth-order models, all the classical (Cauchy) stress components
have visually almost the same profiles, except for Sfrac

22 . It is only for this stress component
that a different profile can be seen comparing the two models. Considering Path B-B′, for
the second-order formulation, Sfrac

22 smoothly increases to zero and then decreases again
once the cracked region is passed. A different behavior can be seen for the fourth-order
formulation where the stress component increases up to some point close to the crack, and
then decreases to zero in a small region which could correspond to the diffusive interphase
of the crack, and then show a symmetric behavior after passing the crack. Before looking
closer into this behavior, let us go back and study the results obtained from the classical
theories (l = 0) with a focus on the Cauchy stress components.
Figure 5.25 summarizes all the results for the stress analysis concerning the classical
components. The left column depicts the profiles for the classical and gradient second-order
phase-field formulations, while the corresponding fourth-order results are shown in the right
column. Let us start with the results for Path A-A′. All the results in this path seem to be
conforming, specifically far from the crack front. There is not much differences between the
peak values of the stress components for all the models, i.e., second-order and fourth-order
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Figure 5.23: Results for the second-order formulation for l = 0.02 and the 408×409 mesh.
Distributions of the classical Cauchy stress components (left), and the double-
stress components (right) along three different cross-sections in the plane. The
superscript "frac" is omitted for brevity.
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Figure 5.24: Results for the fourth-order formulation for l = 0.02 and the 408×409 mesh.
Distributions of the classical Cauchy stress components (left), and the double-
stress components (right) along three different cross-sections in the plane. The
superscript "frac" is omitted for brevity.
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Second-Order Phase-Field Model Fourth-Order Phase-Field Model
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Figure 5.25: Comparison of classical Cauchy stress components between the results from
the classical theory and the strain gradient enhanced phase-field models for
the second-order (left) and the fourth-order (right) formulations. The superscript
"frac" is omitted for brevity.
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classical and gradient formulations. The same behavior is observed for the strain energy
density plots, here also the gradient enhanced models produce sharper changes of the stress
components, i.e., the transition (process) zone for the classical theory is wider. For Path
B-B′, stress components Sfrac

11 and Sfrac
12 show a very good agreement for both second-order

and fourth-order theories. Again, there are obvious differences between the profiles for
the Sfrac

22 , the dominant stress component. Looking at the second-order formulation results,
we have already mentioned the smooth behavior of the gradient enhanced model. The
classical model, though, somehow follows the same behavior of the gradient enhanced
fourth-order formulation in the sense that it increases smoothly up to a point very close
to the crack, then an abrupt change in the value, presumably to zero, occurs causing an
oscillation of the interpolated stress profile. The same situation is encountered for the second
dominant stress component Sfrac

11 , but in a smaller scale. The trend remains the same for the
fourth-order formulations where the oscillations are still obvious, although they are much less
in comparison to the second-order formulation.
Now, the question is "what is the expected behavior?". Of course, in general, an abrupt
change of the stress field normal to a crack is very desirable as it is a sign of a corresponding
abrupt change in the displacement field which is only natural thinking of the fracture phe-
nomenon. However, this seems not to be the expected behavior when using the phase-field
method. We have a crack profile and the material is expected to get degraded in correlation
with this crack phase-field parameter. Although the changes in the phase-field value and the
mechanical measures are not one-by-one comparable, no sudden changes in the computa-
tional fields are expected and everything must happen in a so-called transition (interphase)
zone as it is the expected behavior in general phase-field models. This brings us to the
results shown in Fig. 5.26. Here a selection of the results already shown in Fig. 5.23 are
plotted. We are looking at the results of Path B-B′, normal to the crack field. Only the stress
component Sfrac

22 is plotted for both the classical and gradient enhanced second-order and
fourth-order formulations. In addition to these stress profiles, the crack profile is plotted in a
scaled view comparable to the stress peaks, namely all the values of the crack profile are
multiplied by a factor of 20.0 for better demonstration. Two vertical lines show the borders
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Figure 5.26: Comparison of Sfrac
22 stress component of the results from the classical theory

and the strain gradient enhanced phase-field models for the second-order (left)
and the fourth-order (right) formulations. The superscript "frac" is omitted for
brevity.
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of the 4ε zone of the crack profile. The results for the second-order and the fourth-order
classical models (l = 0) show that the sudden change in the stress values is not directly
related to the phase-field variable. The plots preserve their trend until a point very close to the
cracked region and then suddenly change their value to fulfill the zero strain energy desnity
requirement, resulting in an oscillation in the results. On the other hand, looking at the results
for the fourth-order gradient enhanced model, the decrease in the stress component close to
the cracked region follows the phase-field profile very well, not showing any sudden changes
in the final plot.
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In this thesis, an integration of strain gradient elasticity into phase-field fracture mechanics is
proposed. It is shown that generalized continua and in particular strain gradient theory is
capable of overcoming the problems of strain energy density singularities in the presence
of line and point boundary conditions. First and second strain gradient models are required
to regularize the singular fields caused by these boundary conditions. Using two simplified
strain gradient models, it is shown that the contributions of the second-derivatives of the
displacement field in the stored energy functional are crucial in removing the effects of
singularity in the strain energy density for the three-dimensional case with line loads and
for the two-dimensional models with point loads. The superiority of IGA in solving partial
differential equations of higher-order in comparison to the classical finite element methods
is demonstrated as well. Concerning the phase-field fracture models, it is first shown that
the classical Cauchy elasticity theory employed in the previous investigations results in
a singular stress field, which could lead to inaccurate predictions. Therefore, the strain
gradient theory is exploited, and its ability to regularize singularities is verified for these
kinds of problems. That is to say, the results obtained from the proposed models meet
the expectations regarding the stress distribution, i.e., the strain energy density vanishes
smoothly in the broken material following the crack profile, resulting in no sudden jumps in
the stress fields and consequently the strain energy density field. It has been demonstrated
that the length-scale parameter of the strain gradient theory could be defined as a function of
the phase-field interphase width, which makes it possible to integrate the gradient theory into
the phase-field fracture formulation without introducing new parameters. Having a length-
scale parameter for the microstructure seems to be a good choice as it is only through this
parameter and its comparison with the length-scale parameter from the crack field that one
can decide whether the crack goes through the microstructure or propagates through the
boundaries of the microparticles. Two different strain gradient enhanced formulations are
proposed for phase-field modelling of fracture. It is shown that both the models improve the
current formulations in terms of mesh sensitivity. The fourth-order model performs better
than its second-order counterpart in the sense that the results coming from this model better
match the expectations.
It should be noted that this is only a preliminary investigation, and there are still various
aspects that must be explored in detail. The main goal of this contribution was to create
awareness in the community that stress singularities are still present in the numerical model
despite employing the phase-field approach. A possible solution to this problem has been
successfully proposed.
In the following, topics for further research activities are suggested:

• The gradient elasticity model used is one of the most simplified versions assuming that
the higher-order stresses/strains inherit the symmetry of the classical ones making
it possible to perform studies by adding a gradient length-scale parameter to the
problem. More advanced versions of the theory might help improving the removal of
the singularities.
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• In all of the conducted simulations in this thesis, only Mode I crack propagation is
considered. As discussed earlier, this choice is evident and even required if one aims to
deeply study the stress and energy density fields close to the crack field. Nevertheless,
the performance of the model in Mode II and III needs to be further investigated. For
this, new models based on energy split of gradient materials should be derived and
exploited.

• In the early chapters of this thesis, it is shown why a second strain gradient model is
required to handle singularity problems related to point boundary conditions. With the
same way of thinking that led us to use a first strain gradient model to overcome the
singularities with the phase-field model in two dimensions, one can think of the crack
tip in three dimensions to have an effect similar to a point load. For this purpose, a
second-strain gradient model is needed to overcome the singularities of the classical
phase-field models in three dimensions. Therefore, another potential direction for the
upcoming research is to study the same phenomenon using second and higher-order
strain gradient models. Our initial results in this direction suggest that unfortunately
GRADELA is not performing well in three-dimensional settings. Namely, applying the
same boundary conditions as shown in Fig. 5.1, results in unexpected strain energy
density concentrations at the corners of the model. More sophisticated strain gradient
models are therefore required to handle these problems.

• Finally, all simulations in this contribution are done based on the assumption of a
pre-existing crack. In other words, only crack propagation is considered. The crack
nucleation is for many applications equally important and should also be considered.
Preliminary results with geometric cracks (by defining internal boundaries in the model)
have shown an even more significant improvement in the outcome using the proposed
model compared to the conventional ones. It can be attributed to the fact that the effect
of singular points is much more pronounced when nucleation processes are studied. In
these studies, the effect of using various degradation functions need to be additionally
investigated.
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Higher-Order Derivatives of Shape
Functions

A1 Global First and Second Derivatives

Here, we will show the process to transform the local derivatives of the shape functions
(derivatives with respect to the parametric coordinates) to their global (spatial) counterparts.
We will use the same approach employed by R. L. Taylor’s team in nurbFEAP/igaFEAP [207]
for the implementation of two-dimensional global second-derivatives and will expand it to
three dimensions and global third-derivatives.
The calculations here are independent of the shape function nature and demonstrate merely
the mapping from local to global coordinates. For the calculations related to deriving the
NURBS shape functions, we refer the reader to [202]. We will do the calculations for the
most general case, i.e., ∂3Na/∂ξ∂η∂ζ, all the other third derivatives are in fact parts of this one
(e.g. replacing η with ξ results in ∂3Na/∂ξ2∂ζ).
First, we need to find the relation between the local and global first derivatives (i.e., ∂Na/∂ξ in
terms of ∂Na/∂x1, ∂Na

∂x2
and ∂Na/∂x3). Using the chain rule,

∂Na

∂ξ
=
∂x1

∂ξ
· ∂Na

∂x1

+
∂x2

∂ξ
· ∂Na

∂x2

+
∂x3

∂ξ
· ∂Na

∂x3

, (A.1)

where (∂x1/∂ξ) are components of the Jacobian matrix. Deriving the relation for all the
parametric directions (ξ, η, and ζ), solving the following system of equations gives us the
global first derivatives:
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The next step is to find the relation between second order derivatives,

∂2Na

∂ξ∂η
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. (A.4)

Applying the product rule, Eq. (A.4) becomes
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(A.5)

In Eq. (A.5), there are four new kinds of components. First, ∂
2Na

∂ξ∂η
which is the local derivative

and is known. The second type includes the elements like ∂2x
∂ξ∂η

which can be calculated using
the same procedure as the Jacobian matrix (only this time with second order derivatives).

Components like ∂Na

∂x1
represent the global first derivatives. Finally there are ∂

∂η

(
∂Na

∂x1

)
kind

of components, which need special treatment. Using the chain rule yields
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Doing the same procedure for all the similar elements and replacing them in Eq. (A.5), after
re-ordering, Eq. (A.5) becomes
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The same applies for other second-derivatives. Now, to calculate the unknowns, the following
system of equations must be solved (see Eq. (A1)).
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Moving the second part of Eq. (A1) RHS to left,
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=



∂2Na
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∂ξ∂η

∂2z

∂ξ∂η

∂2x

∂ξ∂ζ

∂2y

∂ξ∂ζ

∂2z

∂ξ∂ζ

∂2x

∂η∂ζ

∂2y

∂η∂ζ

∂2z

∂η∂ζ
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Finally, the global derivatives can be calculated using Eq. (A.9).
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A2 Global Third Derivatives

The same procedure applies for the third-derivatives. Here, to avoid tremendous matrix
representations, a summary of the necessary steps to derive the unknowns is presented.
The Eq. (A.7) counterpart for the third-derivatives is
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· ∂x1
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After doing the same calculations for all the third-derivatives and re-ordering, this results to a
system of equations which looks similar to Eq. (A1),

a10×1 = B10×10 ·c10×1 + D10×6 ·e6×1 + F10×3 ·g3×1, (A.11)

where the subscripts denote the dimensions. In Eq. (A.11), a is the vector of local third-
derivatives (known), c represents the unknown vector of global third-derivatives, e is the
vector of global second-derivatives (known from Eq. (A.9)), g denotes the vector of global
first-derivatives (known from Eq. (A.3)), and B, D and F (all known) are coefficient matrices.
At last, defining

h10×1 = a10×1 − D10×6 ·e6×1 − F10×3 ·g3×1, (A.12)

the global third-derivatives vector, c, can be calculated from,

c10×1 = B−1
10×10 ·h10×1. (A.13)

A full representation of the above matrices can be found in [26].
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Phase-Field Fracture and Mindlin’s
Theory

In this section, a complete representation of the residual and tangent matrices for the
Mindlin’s Form II formulation (Sec. 2.2.3) integrated with the phase-field fracture model in the
framework of isogeometric analysis is provided. Most of the variables are already defined in
the previous chapters.

B1 Second-Order Phase-Field Fracture Model

The quadratic stored elastic energy is given by, cf. Eq. (2.61)

ΨSGE
grad :=

∫
Ω

ψSGE
grad dV =

∫
Ω

(
1

2
EijCijklEkl +

1

2
HijkDijklmnHlmn

)
dV, (B.1)

where the material stiffness Dijklmn can be defined as

Dijklmn = c1 (δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm) + c2δijδknδml

+ c3 (δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn)

+ c4 (δilδjmδkn + δimδjlδkn)

+ c5 (δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl) ,

(B.2)

where c1 − c5 are the gradient material parameters. Note that in contrast to the Lamé
constants (λ, µ) which are of unit pressure, the gradient material parameters in Eq. (B.2)
are of unit force. Their physical meaning ([18, 219–222]), experimental determination ([158,
223–225]), and numerical homogenization ([226–229]) are heavily discussed in the literature;
we refer to [230] for a recent review.
The total energy of fracture is given by

Ψ frac
grad(E,H, s) =

∫
Ω

[
s2 ψSGE

grad + Gc
(

(1− s)2

4ε
+ ε|∇s|2

)]
dV −

∫
Ω

b ·u dV. (B.3)

The effective classical stresses are given by Eq. (3.43),

Sfrac
ij := s2CijklEkl = s2 (λEppδij + 2µEij) (B.4)

For the effective double stresses, we have

P frac
ijk := s2DijklmnHlmn = s2 (c1 (2δijHkll + δikHllj + δjkHlli) + c2δijHllk

+c3 (2δikHjll + 2δjkHill) + 2c4Hijk + c5 (2Hijk + 2Hjki)) .

(B.5)
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Note that, here, the gradient of the strain tensor is defined by

Hijk := Eij,k =
ui,jk + uj,ik

2
. (B.6)

For the displacement degrees of freedom (the mechanical part), we have∫
Ω

(
Sfrac : δE + Pfrac :· δH

)
dV

=

∫
Ω

b · δu dV +

∫
Γ1

t̄1 · δu dA+

∫
Γ1

t̄2 · δ∇n u dA,+

∫
Ξ

t̄3 · δu dL,
(B.7)

as the weak form. The relation for the second-order phase-field model becomes∫
Ω

[
ṡ

M
δs+ 2Gcε∇s δ∇s+

(
2s ψSGE

grad +
Gc(s− 1)

2ε

)
δs

]
dV =

∫
Γ2

qn δs dA, (B.8)

For the second-order phase-field model, in the absence of external forces, the residual matrix
for the control point I, derived from Eqs. (B.7) and (B.8), is (the superscript "frac" is omitted
from S and P )

[
P̂I
]

=


P̂ I
u1

P̂ I
u2

P̂ I
u3

P̂ I
s

 (B.9)

with,

P̂ I
u1

= s2
[(
S11R

I
,1 + S12R

I
,2 + S13R

I
,3

)
+
(
P111R

I
,11 + P112R

I
,12 + P113R

I
,13

+P211R
I
,12 + P212R

I
,22 + P213R

I
,23 + P311R

I
,13 + P312R

I
,23 + P313R

I
,33

)]
,

(B.10)

P̂ I
u2

= s2
[(
S22R

I
,2 + S12R

I
,1 + S2,3R

I
,3

)
+
(
P211R

I
,11 + P212R

I
,12 + P213R

I
,13

+P221R
I
,12 + P222R

I
,22 + P223R

I
,23 + P321R

I
,13 + P322R

I
,23 + P323R

I
,33

)]
,

(B.11)

P̂ I
u3

= s2
[(
S33R

I
,3 + S13R

I
,1 + S2,3R

I
,2

)
+
(
P311R

I
,11 + P312R

I
,12 + P313R

I
,13

+P321R
I
,12 + P322R

I
,22 + P323R

I
,23 + P331R

I
,13 + P332R

I
,23 + P333R

I
,33

)]
,

(B.12)

and,

P̂ I
s = RI 1

M

∂s

∂t
+ 2Gcε

(
RI
,1s,1 +RI

,2s,2 +RI
,3s,3

)
+RI

(
2sψSGE

grad +
Gc(s− 1)

2ε

)
. (B.13)

Consequently, the stiffness matrix can be written as

[
K̂IJ

]
=

∫
Ω


K̂IJ
u1u1

K̂IJ
u1u2

K̂IJ
u1u3

K̂IJ
u1s

K̂IJ
u2u2

K̂IJ
u2u3

K̂IJ
u2s

K̂IJ
u3u3

K̂IJ
u3s

symm. K̂IJ
ss

 dV (B.14)
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with

K̂IJ
u1u1

= s2
[
λRI

,1R
J
,1 + µ

(
2RI

,1R
J
,1 +RI

,2R
J
,2 +RI

,3R
J
,3

)
+c1

(
RI
,11R

J
,33 +RJ

,11R
I
,33 +RI

,11R
J
,22 +RJ

,11R
I
,22

+2RI
,13R

J
,13 + 2RI

,12R
J
,12 + 4RI

,11R
J
,11

)
+c2

(
RI
,13R

J
,13 +RI

,12R
J
,12 +RI

,11R
J
,11

)
+c3

((
RI
,33 +RI

,22 + 2RI
,11

)
RJ
,33 +

(
RJ
,22 + 2RJ

,11

)
RI
,33

+
(
RI
,22 + 2RI

,11

)
RJ
,22 + 2RJ

,11R
I
,22

+RI
,13R

J
,13 +RI

,12R
J
,12 + 4RI

,11R
J
,11

)
+c4

(
RI
,33R

J
,33 + 2RI

,23R
J
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,22R
J
,22

+3RI
,13R

J
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J
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J
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(
RI
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J
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,23R
J
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,22R
J
,22

+5RI
,13R

J
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J
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J
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)]
,

(B.15)

K̂IJ
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Finally, the damping matrix has the form

[
D̂IJ

]
=

∫
Ω


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

M
RIRJ

 dV. (B.25)

B2 Fourth-Order Phase-Field Fracture Model

The same matrices can be obtained for the fourth-order phase-field formulation from
Eqs. (B.7) and the weak form of the fourth-order phase-field model,∫
Ω

[
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M
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with the only differences being the P̂ I
s component of the residual matrix, and the K̂IJ
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component of the stiffness matrix
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and,
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Mesh Convergence Study (Strain
Gradient Elasticity Enhanced Models)

In the following, the results of the mesh convergence study for the second-order and the fourth-
order formulations for different values of the length-scale parameter l are provided. Figure C.1
represents the results for the second-order formulation with l = ε. The convergence trend can
be seen clearly in the results both for the phase-field and the strain energy density values.
The energy density completely vanishes in the crack zone for path B-B′ in a sufficiently
refined mesh. Here, the previously mentioned deviation of the phase-field and the energy
density plots is easier to observe (cf. Sect. 5.2.2.2). The same results are depicted in Fig. C.2
for the case l = 2ε.
Figures C.3 and C.4 illustrate the mesh convergence study results for the fourth-order
formulation with l = ε and l = 2ε, respectively. Again, the convergence trend of the
phase-field and the strain energy density values is obvious. The symmetric distribution of
the phase-field and the energy density is preserved for both the results. In this context,
acceptable results are already obtained for a normal mesh with 192× 193 control points.
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C Mesh Convergence Study (Strain Gradient Elasticity Enhanced Models)
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Figure C.1: Results for the second-order formulation for l = ε = 0.02 for different mesh sizes.
Distributions of the phase-field (left), and the strain energy density (right) along
three different cross-sections in the plane
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Figure C.2: Results for the second-order formulation for l = 2ε = 0.04 for different mesh
sizes. Distributions of the phase-field (left), and the strain energy density (right)
along three different cross-sections in the plane
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Figure C.3: Results for the fourth-order formulation for l = ε = 0.02 for different mesh sizes.
Distributions of the phase-field (left), and the strain energy density (right) along
three different cross-sections in the plane
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Figure C.4: Results for the fourth-order formulation for l = 2ε = 0.04 for different mesh sizes.
Distributions of the phase-field (left), and the strain energy density (right) along
three different cross-sections in the plane
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Figure C.5: Results for the second-order formulation for different values of l and the 84×85
mesh. Distributions of the phase-field (left), and the strain energy density (right)
along three different cross-sections in the plane
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Figure C.6: Results for the second-order formulation for different values of l and the 192×193
mesh. Distributions of the phase-field (left), and the strain energy density (right)
along three different cross-sections in the plane
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Figure C.7: Results for the fourth-order formulation for different values of l and the 84×85
mesh. Distributions of the phase-field (left), and the strain energy density (right)
along three different cross-sections in the plane
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Figure C.8: Results for the fourth-order formulation for different values of l and the 192×193
mesh. Distributions of the phase-field (left), and the strain energy density (right)
along three different cross-sections in the plane
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