
https://doi.org/10.1007/s10443-020-09833-3

On the Difference Between the Tensile Stiffness of Bulk
and Slice Samples of Microstructured Materials
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Abstract
Many materials with a microstructure are statistically inhomogeneous, like casting skins
in polymers or grain size gradients in polycrystals. It is desirable be able to account for
the structural gradient. The first step is to measure the location dependent properties, for
example by tensile testing of thin slices. Unfortunately, the slices properties can differ sig-
nificantly from the bulk properties, since the slices lack a scale separation in one direction.
For Polypropylen, we measured that Young’s modulus of the slices is approximately 70% of
the respective bulk value. We have identified three significant effects, all making the slices
appear softer than the bulk material:

• Load path confinement: The approximate plane stress forces the load path through a
softer phase where in 3D-of-plane load distribution is possible.

• Free lateral straining: In thin slices, small regions can contract freely, while phases
have to contract concurrently in the bulk. Therefore, when two phases have very
different Poisson ratios, the bulk appears stiffer than a slice.

• Topological changes upon slicing: Interpenetrating phases in the bulk can show
features of a matrix-inclusion-structure in the slices.

We examine and quantify these effects in the linear elastic range for matrix-inclusion-
structures and an interpenetrating-phase-structure. Some approaches on how the slice- vs
bulk difference can be estimated are given.
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1 Introduction

With the advancement of analytic and simulation tools, it becomes feasible to account
for structural gradients and statistical inhomogeneous microstructures in engineering parts.
Today, methods for optimizing a microstructure w.r.t. desired effective material properties
are established, and textbook knowledge is available [1, 10]. The next step is to do such
adjustments locally, as for example in [2] who optimized the local material distribution of a
structure. A more recent example is the work of [6] who optimized the density of a polymer
lattice in a cantilever beam. By this method, gradient structures are the result of a design
process to enhance a part’s functionality, but they also occur unintentional, for example as
casting skins in polymers [15] or grain size gradients in metals [14].

To set up simulation models of such parts, the local material parameters are needed. To
test the material locally, one might try to cut small samples. Unfortunately, these behave
different from the bulk material, since the sliced samples lack a scale separation in one
direction. This is also known from elastic homogenization. If the virtual samples (RVE-
representative volume elements) are not large enough, i.e., not representative, the effective
stiffness is underestimated when homogeneous stress boundary conditions are used, and
overestimated when homogeneous strain boundary conditions are used. The kinematic con-
straints of homogeneous strains along the boundary cause reaction stresses additionally to
the stresses inside the RVE, hence the stresses are overestimated and the material appears
stiffer. On the other hand, homogeneous stress boundary conditions, like a traction-free
surface in a tensile test, correspond to a minimum of kinematic constraints and hence a mini-
mum of reaction stresses, so they underestimate the effect of embedding the RVE in a similar
material. For RVE that tesselate, periodic boundary conditions mimic the embedding, and
are exact for periodic microstructures but impose otherwise an artificial periodicity frame.
The traction-free surfaces in tensile tests correspond to the homogeneous stress case, hence
the slices appear softer in tensile tests. In general, the boundary influence vanishes upon
increasing the RVE edge length l. Typically, a hyperbolic 1/l-convergence towards the
effective properties is observed as l is increased, see e.g. [18] Fig. 3a or [7] Fig. 4 and 5,
among many others. This is because the RVE volume grows with l3 while the RVE bound-
ary grows with l2. The RVE aspect ratios are usually kept constant, and convergence is
rarely examined for individual RVE dimensions, although this offers some interesting per-
spectives. For example in thin wires with l1 � l3 and l2 � l3, Young’s modulus along the
l3-direction is just the Reuss1 (harmonic) average of the individual phases’ Young’s mod-
uli, since the load flows serial through the phases. The 2D tensile stiffness is intermediate
between the 1D Reuss average and the 3D stiffness, i.e.

E1D < E2D < E3D (1)

holds. A sketch is given in Fig. 1. The ordering can be understood intuitively: At an inter-
face, the material arrangement is serial along the one interface normal n and parallel in the
D − 1 directions parallel to the interface. The more dimensions D, the closer is the effec-
tive elasticity to the Voigt (arithmetic) average [24], while in the D = 1 case the effective

1[20] proposed a homogeneous stress field in a different context, but in homogenization the term has been
established for the harmonic mean of the stiffness, as it relies on the same assumption.
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Fig. 1 Relation between sample dimensions l1, l2 and l3 and convergence to 1D-, 2D- und 3D-Young-moduli
(green) as limiting values l1 � l3, l2 � l3 (E1D), l1 � l3, l2 ≈ l3 (E2D), l1 ≈ l2, l2 ≈ l3 (E3D) in case of iso-
stress boundary conditions (left image: lower curve) and iso-strain boundary conditions (left image: upper
curve). The left part shows convergence from 1D to 2D when transitioning from a thin wire to a slice. The
right part shows convergence from 2D to 3D, i.e. when the second cross-sectional extension is increased as
well. The iso-stress boundary conditions correspond to traction free faces in tensile tests, which is why E1D
corresponds to the Reuss average of the Young-moduli. The encircled values are accessible by experiment.
The iso-strain boundary conditions are practically impossible to realize experimentally, but can be imposed
easily in simulations. On the right a sketch of the qualitative behaviour of the measured Young modulus is
given depending on the cross sectional extensions l1 and l2

elasticity is the Reuss average, see [23]. Another homogenization result for lamellar
structures with variable dimensions is given in [5].

Note that this effect can well be described in a purely classical, size-insensitive modelling
framework, and does not require strain gradient modelling or micropolar approaches.

Contents of this article Firstly, we describe experimental findings for injection-molded
polypropylene (PP) that clearly show the systematic difference between the 2D and the 3D
properties (Sections 2 and 3) .

The second part is devoted to the generation and analysis of synthetic data, which is
obtained by mimicking the 2D and 3D tensile tests in FE simulations (Section 4).

In Section 5 we construct regressions for the 3D elasticity from this data. The statistical
significance of the regression parameters allows to identify important contributions, which
helped to identify the relevant softening effects due to slicing.

We finally make a proposal how the 2D to 3D difference can be accounted for at least in
parts in well established estimates in Section 6.

2 Example 1: Sliced Polypropylene

Polymer parts exhibit a casting skin as depicted in Fig. 2. They are often used for thin-
walled structures that undergo bending, which induces the largest strains near the surface.
To accurately represent the loading in such parts, it is desirable to characterize the material
properties layer-wise.

2.1 Sample Generation

Cuboid shaped specimens of dimensions 4 mm × 10 mm × 40 mm of a commercially
available polypropylene (HJ120UB by Borealis) were produced by injection molding, with
a melt temperature of 220 ◦C and an injection pressure of 195 bar (see [15] for more details).
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Fig. 2 Left: Geometry of an injection-molded PP sample for bending tests, the injection nozzle is at the
center of the bottom plane. Right: micrograph inside the x − z-plane showing skin (right) and core (left)
structure of a typical injection molded PP sample

2.2 Tensile Testing of Bulk Specimen

The polymer block was clamped directly into a universal testing machine (Zwick/Roell
Z010). The gauge length was assumed to be the clamping distance. The test speed was
27 mm/minute at a clamping distance of 27 mm, such that the nominal strain rate was
1/60 s−1 ≈ 0.0176 s−1.

2.3 Tensile Testing of Thin Films

The injection molded bars were cut in the y-z-plane into slices of 50 μm by stepwise micro-
toming from the surface to the core via a Leica SM2500E sectioning system. The toming
direction was the z-direction. Tensile specimens (shouldered test bars) were punched from
these layers using a cutting-die unit according to ISO 527-2 Typ 5B. The positioning of the
stencil was carefully adjusted to always cut the shouldered test strip at the same position.
The specimen size was 6 mm × 35 mm, with a specimen gauge length of 12 mm. The ten-
sile testing for the stress vs strain behavior was carried out on a Zwick universal testing
machine (Z010, Zwick/Roell) at room temperature and a testing speed of 12 mm/min. The
testing speeds were adjusted in proportion to the gauge length, such that the nominal strain
rate was the same (1/60 s−1 ≈ 0.0176s−1) for all tests.

A total of 40 slices was examined, from a depth of 25 μm (mid-plane) to 1975 μm in
steps of 50 μm. For each depth we averaged the results of at least 3 tests. For the largest
sample set (7 slices) the standard deviation was less than 5% for Young’s modulus. Some
characteristic stress-strain curves are presented in Fig. 3 along with the fitted material model
as detailed in the Section 2.4.

2.4 Material Model

We did not examine the strain rate dependence in more detail. The material properties
depend on the depth. We found the deformation plasticity theory using the Ramberg-
Osgood-relationship [19] to match the stress-strain behaviour up to approximately 10 % of
strain quite well at all depths, see Fig. 3 for some representative stress-strain curves. The
Ramberg-Osgood-law gives the strains as an explicit function of the stresses

ε = 1

E

[
σ +

(
σ

σy

)n]
, (2)
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Fig. 3 Left: True stress over engineering strain curves obtained on thin sections at different depths, where the
number indicates the starting depth of the layer (e.g., “100 μm” indicates the third layer, spanning the depth
from 100 μm to 150 μm). The coloured solid lines correspond to the tensile test data, the black dotted lines
represent the fitted material model (Eq. 2). The black dots indicate the yield point as obtained from fitting the
Ramberg-Osgood material parameters. The bulk stress strain curve shows a higher stiffness and strength than
most layers. Only at a depth of 350 μm, the bulk stress is exceeded in a small interval. Right: Zoom on the
elastic portion. The bulk’s Young modulus is considerably larger than any of the Young moduli of the slices

where E is Young’s modulus, σy the yield stress and n the hardening exponent. The
Ramberg-Osgood-model does not introduce plastic strains but is a nonlinear elasticity which
mimics an elastic-plastic behavior, similar to the deformation theory of plasticity by [8] and
[13]. Therefore, it cannot be applied if unloading or strain path changes occur.

Yield limit As can be seen in Fig. 3, no pronounced yield point is visible. In such cases, the
yield point can be defined according to some rule, like the 0.2 % residual strain rule. For the
Ramberg-Osgood law, the residual strain εyres after loading to σy is obtained by inserting
σ = σy and ε = εyres + σy/E,

εyres = 1/E. (3)

For our measurements of E ≈ 600 MPa near the surface of the bulk sample to 1200 MPa
well below the surface of the bulk sample, this corresponds to a residual strain between
0.083 % and 0.16 %, i.e., a reasonable yield point definition.

Hardening Note that larger values of n imply less hardening, hence the inverse hardening
exponent 1/n actually quantifies the hardening. 1/n is the slope of the stress-strain-curve
beyond the yield point in a double logarithmic plot.

Fitting the parameters E , σy and n to the experimental data The three parameters were
fitted by the least squares method to the experimental data in the strain interval from 0 to
10 %, which is just before necking occurs in most of the tests. This was done for all layers
between 25 μm (mid-plane) and 1975 μm in steps of 50 μm. The adopted material param-
eters are plotted over the depth in Fig. 4. One can see that on the surface, stiffness, yield
strength and hardening have a local minimum. Conversely, approximately 300 μm below
the surface, Young’s modulus and the inverse hardening exponent have a local maximum,
while the yield stress remains roughly the same. At approximately 700 μm below the sur-
face, Young’s modulus has a local minimum, the yield stress a local maximum and the
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Fig. 4 Young’s modulus E, the yield stress σy and the inverse hardening exponent 1/n over the depth in mm
as fitted to the tensile test data (solid line) and on average (dashed line). The dotted line corresponds to the
value for the bulk sample. One can see that the slice average differs significantly from the bulk values. The
vertical lines at depths of 0.15 mm and 0.5 mm indicate the surface layer transitions between surface, shear
zone and core
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inverse hardening exponent drops to approximately 0.08. Since the core material is more
brittle, there is an increased scattering of the results.

2.5 Layer Properties vs Bulk Properties

The layer-wise stiffnesses and yield limits are somewhat lower than the bulk properties of
polypropylene. Young’s modulus lies usually between 1300 MPa and 1800 MPa [9], the
yield stress lies mostly between 25 MPa and 35 MPa [22]. Here, the average Young modulus
of the layers is approximately 920 MPa, while the bulk’s Young modulus is approximately
1320 MPa. Hence, the elastic properties are underestimated by a factor of approximately
0.7, see Fig. 3 right.

Similar observations hold for the plastic properties. We found the bulk sample to have a
yield limit of only 16 MPa in comparison to an average around 23 MPa in the slices, and a
high inverse hardening exponent of 0.18 in comparison to an average of around 0.09 in the
slices, see Fig. 4.

Another finding is an increased scattering in the slices near the core (Fig. 4), which con-
tains large spherulites. These approach the slice’s thickness of 50 μm (see Fig. 2). Near the
surface, a finer microstructure prevails. Still, the variations do not exceed the bulk values.
The semi-crystalline spherulites with a diameter of approximately 50 μm are much stiffer
than the amorphous matrix. In a bulk sample, the load path will go mostly through con-
nected spherulites, (black arrows in Fig. 5. Upon sectioning, the load path is forced through
the softer amorphous matrix (red arrows in Fig. 5). Additionally, the nearly incompressible
amorphous matrix can freely contract in the slice (blue deformed shape in Fig. 5). Note that
this is a size-independent effect.

Fig. 5 Lateral contraction and
load path change upon slicing
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3 Example 2: An Anisotropic Stiffness

3.1 Hooke’s law in 3 Dimensions

An anisotropic stiffness is characterized by a fourth order tensor C that maps from the
strains to the stresses or by the inverse mapping S = C

−1,

σ = C : ε ε = S : σ . (4)

Here, the inverse always refers to the non-singular part of a tensor. For C, this is in the
space of fourth order tensors with the left and right subsymmetries, conveniently denoted as
the inverse of the matrix in the normalized Voigt notation. W.r.t. an orthonormal basis ei , the
above scalar contractions become σij = Cijklεkl in indices, implying the usual summation
over multiple indices. A suitable representation is the Kelvin-Mandel-basis2

B1 = e1 ⊗ e1 B2 = e2 ⊗ e2 B3 = 1√
2

(e1 ⊗ e2 + e2 ⊗ e1) (5)

B4 = e3 ⊗ e3 B5 = 1√
2

(e1 ⊗ e3 + e3 ⊗ e1) B6 = 1√
2

(e2 ⊗ e3 + e3 ⊗ e2), (6)

see e.g. [3] Sects. 26.2 and 26.3. The basis is normalized, such that the usual rules of cal-
culus for matrices can be applied to corresponding component matrices. Note that we have
chosen an ordering such that the components in the 1-2-plane are indexed from 1 to 3 while
the components of the 1-2-plane are indexed from 4 to 6. This allows for a block-matrix
separation of the in-plane and-of-plane parts of the stresses, strains and constitutive tensors
C and S. Hooke’s law is then a matrix-vector product w.r.t. this basis.

(7)

or

σi = Cij εj and εi = Sij σj , with Sij = C−1
ij , i, j = 1 . . . 6 (8)

in indices, where the components are

σi = σ : B i (9)

εi = ε : B i (10)

Cij = C :: B i ⊗ Bj (11)

Sij = S :: B i ⊗ Bj . (12)

3.2 Restriction to Plane States

Conversions from 3D to plane stress or plane strain cases are dispersed in the literature for
different symmetries. Here, in case of plane strains in the 1-2-plane we have ε4 = 0, ε5 =

2Mandel introduced the normalized basis in [16], but it has already been used in a convoluted way by Kelvin
[21].
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0, ε6 = 0 and in case of plane stresses in the 1-2-plane we have σ4 = 0, σ5 = 0, σ6 = 0.
For the in-plane part it is then sufficient to consider the upper left 3 × 3 block matrix of
Cij in case of plane strains or of Sij in case of plane stresses. We denote the truncation or
projection to the 3×3-block matrix by P .

To calculate the 2D stiffness from the 3D stiffness in case of plane stresses, we need to
invert firstly C to obtain S, truncate to the in plane part, and invert the remaining 3 × 3-
matrix to obtain the plane stress stiffness. The 3D to 2D transitions can be summarized as
follows for the different cases:

compliance stiffness

plane stresses: S2D
ij = P(Sij ) C2D

ij = (P(C−1
ij ))−1 (13)

plane strains: S2D
ij = (P(S−1

ij ))−1 C2D
ij = P(Cij ). (14)

As one expects, the conversions from 3D to 2D are homogeneous of degree 1 in the elastic
constants. Further, as a consequence of Cauchy’s interlacing theorem (see, e.g., [11]), for
plane stresses the eigenvalues of the plane stiffness tensor are smaller than the eigenvalues of
the 3D stiffness tensor, λCplane stress � λC3D , i.e. the stiffness is reduced. Conversely, for plane
strains the eigenvalues of the plane compliance tensor are smaller than the eigenvalues of
the 3D compliance tensor, λSplane strain � λS3D , i.e. the stiffness is increased. This increase in
stiffness reflects the reaction stresses due to the kinematic constraint of plane deformations.

3.3 Reconstruction of the 3D Stiffness fromOrthogonal Plane Stress Stiffnesses

The above considerations hold identically for homogeneous materials. For inhomogeneous
materials, the plane stiffnesses of thin slices are smaller due to reasons given in the introduc-
tion. Nevertheless, reversing the projections to plane states as described above is possible:
Having measured plane stiffnesses in three orthogonal planes, we can invert these on the
3 × 3 matrix space, reassemble the 3D compliance (i.e. reversing the truncation/projection),
and take its inverse in the 6 × 6 matrix space to get an extrapolated 3D stiffness.

Luckily, [4] have performed exactly such RVE simulations for diamond/β-SiC composite
thin film RVE and RAE (representative area elements) as depicted in Fig. 6.

The microstructure has been obtained from measurements. The plane stress stiffnesses
from the RAE simulations are

C
e1 =

⎡
⎣ 408.6 78.1 −0.6 × √

2
410 −0.8 × √

2
sym 163.7 × 2

⎤
⎦ B{2,4,6} ⊗ B{2,4,6} (15)

C
e3
1 =

⎡
⎣ 384.7 74.1 0 × √

2
428.7 −0.3 × √

2
sym 158.6 × 2

⎤
⎦ B{2,1,3} ⊗ B{2,1,3} (16)

C
e3
2 =

⎡
⎣ 382.9 74.1 −1.4 × √

2
430.6 −2.4 × √

2
sym 158.4 × 2

⎤
⎦ B{2,1,3} ⊗ B{2,1,3}, (17)
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Fig. 6 3D RVE and three orthogonal 2D RAE, from [4]

with the index equal to the plane’s normal vector. The effective material is tetragonal: the
1-2 and the 1-3 planes exhibit equal effective properties. The given 3D stiffness from RVE
simulations is

C =

⎡
⎢⎢⎢⎢⎢⎣

541.8 121.4 121.4 0 0 0
482. 119.1 0 0 0

482 0 0 0
330.6 × 2 0 0

347.4 × 2 0
sym 347.4 × 2

⎤
⎥⎥⎥⎥⎥⎦

B{1,2,4,6,5,3} ⊗ B{1,2,4,6,5,3}, (18)

see Table 9 [4]. All values are in GPa, we have added the normalizing factors of the Kelvin-
Mandel-basis. We reassembled the 3D stiffness from the plane stress stiffnesses in the
following way:

1. neglecting the almost zero components with absolute values below 3 GPa,
2. averaging the plane stiffnesses Ce3

1,2 to Ctransverse.
3. inverting Ctransverse and C

e1 to obtain the plane stress compliances,
4. reconstructing S

3D from the latter, presuming the symmetry Stransverse = S
e2 = S

e3 (see
Fig. 6).

5. inverting S
3D to obtain C

3D .

This procedure yields

C
extrapolated =

⎡
⎢⎢⎢⎢⎢⎣

453.5 98.8 99 0 0 0
417.1 94.8 0 0 0

417.8 0 0 0
327.4 × 2 0 0

317 × 2 0
sym 317 × 2

⎤
⎥⎥⎥⎥⎥⎦

B{1,2,4,6,5,3} ⊗ B{1,2,4,6,5,3}. (19)
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One can see that the extrapolated stiffness underestimates systematically the stiffness as
measuerd on 3D RVE, with eigenvalue reductions between 1% and 16% w.r.t. the stiffness
from the 3D RVE. Apparently, the lateral softening due to a lack of scale separation is at
work. The difference is not as pronounced as in Section 2 because Poisson’s ratios of the
phases used in [4] are similar (0.2 vs. 0.17, see Table 1 in [4]).

4 Synthetic Data Generation

There are some potential problems with the measurements: The thin slices are prone to
material modifications upon slicing, and minimal variations of the thickness may have a
significant influence on the results. It is therefore not easy to separate the softening due to
the loss of scale separation from other effects. To exclude such biases and examine the pure
scale separation effect, we performed the same experiments numerically.

4.1 FE-Models

A simple bar of dimensions 10×10×50 has been used as a tensile test sample. We
have used a simple regular hexahedral mesh with quadratic shape functions and reduced
integration (C3D20R in the Abaqus element library). The bulk has been meshed with
40×40×200 = 320000 Elements. The total number of DOF is 4 000 083 in the 3D model.
The material phases were assigned on the integration point level. The sliced samples with
dimensions 10×0.1×50 where cut directly from the bulk sample, with 171 609 DOF in
40×1×200=8 000 elements. Hence for each bulk sample we had 100 sliced samples. When
talking about the effective properties of the slices, we always refer to the average over these
100 slices.

4.2 Microstructures

Firstly, a matrix with spherical inclusions with volume fractions 0.275, 0.358 and 0.5 has
been studied. Secondly, a foam-like, symmetric, interpenetrating phase structure has been
examined, see Fig. 7. Both structures are isotropic. The matrix inclusion structure has been
generated by randomly dispersing spheres of uniform size for vinc = 0.275 and vinc =
0.358. For vinc = 0.5 the spheres sizes needed to be reduced monotonically with increasing
vinc. The foam structure has been generated by a spinodal decomposition algorithm that is
known to produce structures similar to a Cahn-Hilliard phase separation (see, e.g., [12]).
We initialized a discrete lattice of dimensions 200 × 200 × 1000 randomly with the values
0 or 1. Then, a Monte-Carlo evolution is applied, namely a flipping of the values according
to the average in a surrounding 3 x 3 x 3 cube. An average above 0.5 leads to the lattice
value 1 and an average below 0.5 to the lattice value 0. The resulting structures appear to be
isotropic, foam-like, and both phases have almost equal volume fractions.

4.3 Material Laws

We prescribed isotropic linear elasticity in the phases. Then, Hooke’s law relates the devi-
atoric part ε′ = ε − ε◦ and the dilatoric part ε◦ = trε

3 I of the strain tensor ε individually
to the same decomposition of the stresses σ by the shear modulus G and the compression
modulus K ,

σ = 3Kε◦ + 2Gε′. (20)
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Fig. 7 The two structures
“spherical inclusions” and
interpenetrating phases (or
“foam”) have been examined

One sees that the coefficients 3K and 2G are eigenvalues to the eigentensors ε◦ (1D
eigenspace) and ε′ (5D eigenspace), which correspond to volumetric and shape-changing
deformations, respectively. However, usually Young’s modulus E = σlong/εlong and Pois-
son’s ratio ν = −εtrans/εlong are accessible in tensile tests, where the tensile direction is
“long” and the transverse direction is “trans”. The following relationships hold between
E, ν, K and G:

E = 9KG

3K + G
(21)

ν = 3K − 2G

6K + 2G
(22)

K = E

3(1 − 2ν)
(23)

G = E

2(1 + ν)
. (24)

In our simulations, we considered all nontrivial combinations K1,2 ∈ {1, 10, 100} MPa and
G1,2 ∈ {1, 10, 100} MPa. Trivial combinations are completely homogeneous composites
like K1 = K2 and G1 = G2 simultaneously, which need not be considered. Additionally,
the foam structure is due to the morphological symmetry invariant against interchanging the
phase properties. This leads to 72 material combinations for each matrix-inclusion structure,
i.e. regarding the three different volume fractions a total of 216 matrix-inclusion-samples,
and 36 material combinations for the foam structure.
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4.4 Results

4.4.1 Transition Behavior

We firstly examine the transition behavior of the effective Young’s modulus from the slice
to the bulk properties for the material combination Kinc = 10 MPa, Ginc = 10 MPa,
Kmatrix = 10 MPa, Gmatrix = 1 MPa in the matrix-inclusion-structure with vinc = 0.36. We
looked at thicknesses t=0.1 mm (100), 0.2 mm (50), 0.4 mm (25), 0.8 mm (12), 1.6 mm
(6), 3.2 mm (3), 6.4 mm (1) and 10 mm (1) with the number of sample realizations given in
brackets. All slices results are averages. The outcome is plotted with a regression in Fig. 8.
As a regression we use

E = Ebulk + E−1

a + t
+ E−2

(b + t)2
, (25)

where the parameter Ebulk is the asymptotic bulk modulus obtained for t → ∞, the sec-
ond term captures the main asymptotic behavior and the third term corrects the asymptotic
towards t → 0 when the thickness is much smaller than the inclusions. From the regres-
sion we obtain an effective Young’s modulus of 5.12 MPa for a thin slice and 6.5 MPa
for the bulk. One obtains the ratio E2D/E3D ≈ 0.79 for this particular microstructure.
E1D = 4.23 MPa can be calculated by Eq. 21 and the harmonic (Reuss) mean

E1D =
(
vincE

−1
inc + vmatrixE

−1
matrix

)−1
. (26)

Interestingly, the ratio E1D/E2D ≈ 0.82 is close to E2D/E3D ≈ 0.79. We will see that, as
nice as this is, equating these ratios is in general not a good extrapolation strategy to obtain
E3D.

Fig. 8 Transition behavior as for the matrix inclusion structure with Kinc = 10, Ginc = 10, Kmatrix = 10,
Gmatrix = 1 and vinc = 0.36. The red line indicates the inclusion diameter
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4.4.2 Patterns in E2D/E3D

We have already discussed that E1D < E2D < E3D holds. One might suspect that for a
specific microstructure and material combination

E1D

E2D
≈ E2D

E3D
(27)

may hold. However, this is not the case, as Fig. 9 makes clear. It may well happen that
one of the values is around 0.2 while the other one is around 0.8. Nevertheless, patterns are
visible. For some material parameter combinations, the volume fraction change along the
dotted lines has a sickle shape, with the foam binary mixture near the cusp. Another way of
looking at the data are histograms of the Young’s moduli ratios given in Fig. 10. One can
see that the experimental value of 0.7 from Section 2 is a rather common value.

4.4.3 Load Redistribution Upon Slicing

In any case, the stress state is constrained to be plane in the slices, hence one dimen-
sion is not available for the load distribution, and the slices behave softer. Additionally,
we observed a change of the microstructure topology in the foam structure. The slicing
affects significantly the connectivity of the phases, which does not occur in the matrix-
inclusion structure. The latter remains of matrix-inclusion type in the slices, while the foam
structure tends to show inclusions in the slices while there are no inclusions in the bulk
sample. This leads to a more pronounced strain concentration in the foam structure, see
Fig. 11.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9 Scattering of E2D
E3D

over E1D
E2D

for the 216 combinations of the matrix-inclusion structure (black dots)
and the 36 combinations of the foam structure (red). Equal material parameter combinations are connected
by dotted lines. For the matrix-inclusion structure, the arrows point in direction of the increasing volume
fraction
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Fig. 10 Histograms of E1D
E2D

(left) and E2D
E3D

(right) for all simulations. The foam structure has been counted

twice to account for the structural symmetry. One can see that the experimental value E2D
E3D

≈ 0.7 is very
typical

5 Regressions

To include the structural gradient in simulations of components, one is interested in the
local 3D material properties. These are best obtained from statistically homogeneous bulk
samples or RVE simulations. Unfortunately, homogeneous bulk samples of, e.g., only

Inclusion

Disconnection Strain concentration

Fig. 11 Tensile test with the same prescribed nominal strain in the foam structure (top left) with the strain-
(right) and stress distributions (bottom). The slice corresponds to the top surface of the bulk, of which only the
lower half is shown. One can see phase disconnections due to the slicing, which causes a strain concentration
in the softer phase in the slice and hence lower stresses in the slice and therefore an overall softer response of
the slice. The material parameters are ν1 = ν2 = 0, E1 = 1 MPa, E1 = 100 MPa. The effective properties
are E3D ≈ 19.9 MPa, E2D ≈ 5.16 MPa, E1D = 1.98 MPa
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the casting skin, are not available, and RVE simulations require a 3D microstructure
characterization, numerical effort and precise microscale modeling.

Therefore, we try to extrapolate to a local E3D when only slices and the phase’s material
parameters are available. E2D is obtained from tensile tests on the slices and the phases
elasticities are assumed to be given. We construct a regression on the synthetic data with the
following properties:

• The regression has to be invariant under a change of the physical unit for the stiffness.
• It minimizes the relative error between the true value and the estimate.
• It uses only E2D, the volume fractions and the phase’s elasticities as input.
• Its parameters are interpretable physically.
• It gives the exact result in the homogeneous case.

To comply with the first two requirements we formulate the regression in terms of the ratio
of the increase of Young’s modulus. Further, we already found that the difference of the
phase’s Poisson ratios plays a major role. The approach

Ereg3D

E2D
= reg

(
�ν,

E2D

E1D

)
= 1 + pν�ν2 + pE

(
E2D

E1D
− 1

)
(28)

turned to give a reasonable regression with only two parameters pν and pE , which both
reflect a physical effect, as discussed later on. E1D is obtained from the volume fractions and
phase’s elasticities by Eq. (21). Further, one can see that the fifth requirement is met, i.e. in
case of homogeneity we have E2D/E1D = 1 and �ν = 0, which yields Ereg3D/E2D = 1.

The parameters pν and pE have been adopted by a least square method. The result is
plotted in Fig. 12 along with two automatic regressions. We tried different expressions, and
found the t-test and significances where highest for the above approach. The t-test is approx-
imately the ratio between the regression value and the standard error, and higher values
indicate more significant contributions to the regressions. The values and their significances
are given in Table 1. One can see that pν is more significant than pE and similar in both
structures, while pE is three times larger in the foam structure. The reason for this is that
pν captures the apparent softening due to free lateral contraction in the slices, for which
the phase’s arrangement is not so important, but the difference between the Poisson ratios.
On the other hand, pE extrapolates the stiffness increase from 1D → 2D to 2D → 3D. As
depicted in 11, additional dimensions allow for alternative load paths. While in both cases
the load redistribution is significant when going from 1D to 2D, in the matrix-inclusion
structure nothing new happens when going from 2D to 3D while new phase connections
appear in this case in the foam structure. Thus, the extrapolation of Young’s moduli is more
significant in the foam.

Table 1 Regression values for pE and pν for both microstructures

Value Standard error t-test Significance

Matrix-inclusion pν 0.753 0.05891 12.78 3.584×10-28

pE 0.09394 0.03013 3.085 0.002305

Foam pν 0.6188 0.1527 4.052 0.0002792

pE 0.2842 0.108 2.631 0.01272
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Fig. 12 The predicted E3DReg from the regression over the actual E3DSim. Double logarithmic axes are cho-
sen to visualize the uniform relative error. The manual 2-parameter-regression performs as good as automatic
regressions. Ideally, all points would lie on the diagonal

It is surprising how well the manual regression compares to automatic regressions that
have been obtained with a computer algebra system, as shown in Fig. 12. For the automatic
regressions the set was split into training set (80%) and a test set (20%).

6 2D to 3D Transition by Lateral Confinement Relaxation

The above results bear the question of how one can account for the difference between plane
and 3D stiffnesses using well-established models. We want to present a simple scheme how
at least the 2D to 3D- lateral confinement effect can be quantified.

The free lateral straining in plane stress states can be approximately accounted for by
matching the phases’ Poison’s ratios. Assuming a given estimate of the 3D stiffness prop-
erties of a two phase composite with isotropic phases with material parameters E1,2, ν1,2,
a relaxation of the stress field from 3D to 2D can be mimiced by matching ν1 and ν2. A
simple approach is to replace ν1 and ν2 in the 3D estimate by the average ν = v1ν1 + v2ν2.
A comparison of the original 3D estimate and the relaxed version gives an estimate on how
much the effective tensile moduli differ in the slice and the bulk material. Especially, the
ratio E2D/E3D can be given as a function of volume fractions and material parameters. The
microstructure morphology is accounted for by selecting the 3D estimate. We expect this
to work reasonably well in matrix-inclusion-structures, as these remain matrix-inclusion
structures when they are sliced. Therefore, we consider the Mori-Tanaka-approach [17].
It is relatively simple and works well for small volume fractions and not too large phase
contrasts. For an isotropic matrix and isotropic spherical inclusions we have

GMT = Gmat(Ginc(8Gmatvinc + 12Gmat + 9Kmatvinc + 6Kmat) + Gmatvmat(8Gmat + 9Kmat))

Gmat(6vinc(2Gmat + Kmat) + 8Gmat + 9Kmat) + 6Gincvmat(2Gmat + Kmat)
(29)

KMT = 4Gmatrix(Kincvinc + Kmatrixvmatrix) + 3KincKmatrix

4Gmatrix + 3(Kincvmatrix + Kmatrixvinc)
. (30)
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Fig. 13 Left: Comparison of the 3D- and plane stress-relaxed (2D) Mori-Tanaka approaches along with the
3D Voigt-Reuss-bounds. Right: Comparison of the ratios E2D/E3D for the Mori-Tanaka-estimates and the
simulation results. We have restricted this comparison to the case vinc = 0.275 and 1/5 < Ematrix/Einc < 5,
since the Mori-Tanaka estimate gives only for small volume fractions and small phase contrasts reasonable
results

With the conversion Eqs. (21) to (24) the estimates can be recast as

EMT(Einc, Ematrix, νinc, νmatrix). (31)

A plane stress, 2D-estimate with free lateral contraction is obtained by replacing
vmatrixνmatrix + vincνinc in the last two entries of Eq. (31). We have plotted the result for an
example material Ematrix = 100 MPa, Einc = 50 MPa, νmatrix = 0, νinc = 0.4 in Fig. 13 left.

One can see that q = EMT2D/EMT3D can be estimated. Simple tests of plausibility
hold: q = 1 for νinc = νmatrix, q < 1 for νinc �= νmatrix or νmatrix �= νinc, where for
extreme differences the relaxed MT-estimate approaches the lower Reuss bound, i.e. the
1D-stiffness. Moreover we have E1D = EReuss ≤ EMT2D ≤ EMT3D ≤ EVoigt, i.e. the
correct ordering is obtained. Figure 13 right shows the quality of the estimate of the Young’s
moduli ratios for plane stress and 3D tests with vinc = 0.275 and for all simulations with
1/5 < Ematrix/Einc < 5. The Poisson’s ratios are in the interval −0.96 < ν < 0.495, where
the largest difference is |νE − νM | ≈ 1.45. One can see that the predictive capability of the
simple relaxation is not too bad, even for large reductions of stiffness and in view of the large
differences of Poisson-ratios and the moderate quality of the Mori-Tanaka approach. For
larger volume fractions and phase contrasts the quality deteriorates quickly. Especially for
polymeres with Ecrystalline/Eamorphous ≈ 103 and volume fractions vcrystalline ≈ 0.4 . . . 0.6
better approaches are needed.

Nevertheless, the relaxation has the advantage that it can be applied to existing 3D esti-
mates, as long as these can be recast in terms of the phase’s Poisson ratios. It should further
also be possible to employ such a relaxation in the anisotropic case.

7 Summary

We have discussed the stiffness reduction as encountered when materials with microstruc-
tures are subjected to tensile tests as bulk and sliced samples, and have given two real world
examples. The lower Young modulus of the sliced sample is the consequence of a lack of
scale separation along the slice normal and a confinement to the plane stress state. The direc-
tion normal to the slice is not available for load distribution. Analysing the phenomenon with
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synthetic data, we were able to identify the contributions to the stiffness reduction. The first
contribution is the free lateral straining in tensile tests in slices, which is more significant
the bigger the difference of the phase’s Poisson’s ratios is. For the latter effect, we propose
a relaxation scheme that simply mimics the free lateral contraction by matching the Pois-
son ratios. The latter approach can be applied to any 3D estimate that can be recast in terms
of the Poisson’s ratios of the phases. The second effect, namely topological changes upon
slicing, is harder to account for. A 3D-microstructure with interpenetrating phases shows
characteristics of a matrix-inclusion structure when slices are considered. This results in a
considerable load path change from the 3D to the 2D case.

We believe to only have scratched the surface of this interesting and apparently not much
appreciated phenomenon, which is worth more attention. For example, grain structures have
not been considered here. Possible benefits from further investigations include

• more precise material characterizations when structural gradients are present,
• extrapolations from 2D to 3D may allow for approaching the 3D properties from

representative area elements with less numerical effort,
• technological use of the possibly drastic reduction of stiffness when going from bulk to

slice structures.
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9. Horváth, Z., et al.: Effect of molecular architecture on the crystalline structure and stiffness of iPP
homopolymers: Modeling based on annealing experiments. J. Appl. Polymer Sci. 130.5, 3365–3373
(2013)

10. Huang, L., Geng, L.: Discontinuously Reinforced Titanium Matrix Composites: Microstructure Design
and Property Optimization. Springer, Singapore (2017)

11. Hwang, S.-G.: Cauchy’s interlace theorem for eigenvalues of hermitian matrices. The American
Mathematical Monthly 111.2, 157–159 (2004)

12. Hyde, J.M. et al.: Modelling spinodal decomposition at the atomic scale: beyond the Cahn - Hilliard
model. Model. Simulation Mater. Sci. Eng. 4.1, 33–54 (1996)

13. Ilyushin, A.A.: Theory of plasticity at simple loading of the bodies exhibiting plastic hardening.
Rossı́iskaya Akademiya Nauk (Prikl Mat. Mekh.) 11, 291 (1947)

14. Lin, Y. et al.: Mechanical properties and optimal grain size distribution profile of gradient grained nickel.
Acta Mater. 153, 279–289 (2018)

15. Mahmood, N. et al.: Influence of structure gradients in injection moldings of isotactic polypropylene on
their mechanical properties. Polymer 200, 122556 (2020)

16. Mandel, J.: Generalisation de la theorie de plasticite de W. T. Koiter. International Journal of Solids and
Structures 1.3, 273–295 (1965)

17. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with mifitting
inclusions. Acta Metallurgica 21.5, 571–574 (1973)

18. Quayum, S., et al.: Computational model generation and RVE design of self-healing concrete. Frontiers
of Structural and Civil Engineering 9(4), 383–396 (2015)

19. Ramberg, W., Osgood, W.R.: Description of stress-strain curves by three parameters. Technical Note
902, 1–28 (1943)

20. Reuss, A.: Berechnung der fließgrenze von Mischkristallen auf Grund der plastizitätsbedingung für
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