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Abstract
In psychological research often paired comparisons are used in which either full or
partial profiles of the alternatives described by a common set of two-level attributes
are presented. For this situation the problem of finding optimal designs is considered
in the presence of third-order interactions.
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1 Introduction

Paired comparison experiments have received considerable attention in many fields
of applications like psychology, health economics, transportation economics and
marketing to study people’s preferences for goods or services where behaviors of inter-
est involve either qualitative (so-called discrete choice experiments) or quantitative
responses (so-called conjoint analysis). A comprehensive introduction to this gen-
eral area of paired comparison experiments can be found in Großmann and Schwabe
(2015), van Berkum (1987b) and Louviere et al. (2000).

Typicallywith paired comparisons, respondents usually evaluate pairs of competing
options (alternatives) in a hypothetical (occasionally real) setting which are generated
by an experimental design and are represented by a combination of the levels of several
attributes (factors). However, in applications, situationsmay arise in which onemay be
interested in special relations between the attributes (interactions). For example, Elrod
et al. (1992) considered a study on student preferences for rental apartments in which
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four attribute interactions were of special interest. The corresponding result is well
summarized in Table 2 of their paper. A full factorial experiment where four attribute
interactions were of interest can also be found in Collins et al. 2009, p. 17). As was
pointed out by Collins et al. (2009), there are few areas in the social and behavioral
sciences in which theory makes specific predictions about higher-order interactions
(four attribute interactions, for example), and it appears that to date there has been
relatively little empirical investigation of such interactions. This paper is motivated
by the situation where the designs enable identification of main effects and two and
three and four attribute interactions, which may not be of primary application interest
but theoretically worthwhile (e.g., see El-Helbawy and Ahmed 1984; Quenouille and
John 1971; Lewis and Tuck 1985).

In applications the preference (or choice task) imposes cognitive burden when the
alternatives presented are specified by too many attributes. This has a detrimental
effect on the validity of the estimated parameters. In this situation, a way to simplify
the choice task is to specify only a few components (attributes) of the alternatives
known as partial profiles (e.g., see Graßhoff et al. 2003; Chrzan 2010; Großmann
2018). The number of attributes that are presented in this restricted setting is called
the profile strength (Graßhoff et al. 2003). It should be noted that for full profiles, the
alternatives are represented by level combinations in which all attributes are involved.

The aim of this paper is to introduce an appropriate model for the situation of full
and partial profiles and to derive optimal designs in the presence of interactions. We
consider the case when the alternatives are specified by a common set of two-level
attributes. Work on determining the structure of the optimal designs in this two-level
situation has been carried out by van Berkum (1987a, b) and Street et al. (2001) in the
case of full profiles in amain effects and first-order interactions setup, and by Schwabe
et al. (2003) for partial profiles. Corresponding results when the common number of
the attribute levels is larger than two have been obtained by Graßhoff et al. (2003) and
Nyarko (2019) in a first- and second-order interactions setup, respectively, for both
full and partial profiles. The two-level situation for the corresponding second-order
interactions setup has been investigated by Nyarko and Schwabe (2019). Here we treat
the case of third-order interactions and provide detailed proofs.

The remainder of the paper is organized as follows. In Sect. 2 a general model
is introduced for paired comparison experiments. Section 3 provides the third-order
interactions model for both full and partial profiles. Optimal designs are characterized
in Sect. 4 and the final Sect. 5 offers some conclusions. All major proofs are deferred
to the Appendix.

2 General setting

2.1 Model considerations

We consider the context in which K attributes (or factors) are of influence. In many
contexts we would obtain at least one direct observation under some, if not all, of
the combinations of these K factors. However in the context of paired comparison
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experiments, we only obtain (comparative) observations under some, if not all, pairs
of these combinations.

Let i = (i1, i2, . . . , iK ) and j = ( j1, j2, . . . , jK ) denote two factor combinations
or sets of attributes, defining a pair (i, j), under which we obtain an nth observation.
So ik and jk denote levels of the kth attribute of influence, k = 1, 2, . . . , K . Also
(i, j) define a pair of alternatives, which we label 1, 2 (for 1st and 2nd) respectively
and we let a = (1, 2). Denote this observation by Yn(i, j). So n indexes both Y and
i, j. To motivate a model for Yn(i, j), it is useful to imagine what models we might
consider for observations under each of i (a = 1) and j (a = 2) separately. Denote
these observations by Yn1(i) and Yn2(j). Potential general linear models for these are:

Yn1(i) = μn + f(i)�β + εn1(i)

Yn2(j) = μn + f(j)�β + εn2(j). (1)

Here β is the vector of parameters of interest, while the term μn is the block or pair
effect. Its dependence on n would normally create an identifiability problem. However
it is removed from our model for Yn(i, j) under the assumption that the preferences
between alternatives (i, j) is defined as the difference

Yn(i, j) = Yn1(i) − Yn2(j).

This can be viewed as a difference between utilities of the two options. So a model
for Yn(i, j) is:

Yn(i, j) = [f(i) − f(j)]�β + εn(i, j). (2)

Here [f(i) − f(j)] is the derived regression function and the random errors εn(i, j) =
εn1(i) − εn2(j), associated with the different pairs, are assumed to be uncorrelated,
and with constant variance.

2.2 Design considerations

Further the settings x = (i, j) are chosen from the design regionX = I×I of possible
pairs of alternatives.

The quality of the statistical analysis based on a paired comparison experiment
depends on the set of pairs (alternatives) in the choice sets which are presented. The
choice of such pairs (i1, j1), . . . , (iN , jN ) is called a design ξN of size N . The perfor-
mance of the design ξN is measured by its information matrix

M(ξN ) =
N∑

n=1

(f(in) − f(jn))(f(in) − f(jn))
�. (3)
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To enhance efficient comparison of designs with different sample sizes we have to
make use of the standardized (per observation) information matrices

M(ξ) = 1

N
M(ξN ) (4)

which are related to the concept of generalized (approximate) designs (e.g., see Kiefer
1959), which are defined as discrete probability measures ξ on the design region X .

As a performance measure in a majority of works about optimal designs for
paired comparison experiments, we confine ourselves to the D-optimality criterion
which aims at maximizing the determinant of the information matrix M(ξ). Any
design that is proposed for estimating the model parameters can be compared to
these designs. In general, the D-efficiency of the approximate design ξ is given by
(detM(ξ)/detM(ξ∗))1/p where ξ∗ is D-optimal and p is the number of parameters
that have to be estimated in the model.

2.3 Related contributions

It is worthwhile mentioning that the linear difference model considered here can
be realized as a linearization of the binary response model by Bradley and Terry
(1952) under the assumption of indifference, β = 0 (e.g., see Großmann et al. 2002).
Specifically, under this indifference assumption of equal choice probabilities, the
Bradley-Terry type choice experiments in which the probability of choosing i from the
pair (i, j) [given by exp[f(i)�β]/(exp[f(i)�β] + exp[f(j)�β])], and the probability of
choosing j from the pair (i, j) [given by 1− exp[f(i)�β]/(exp[f(i)�β]+ exp[f(j)�β])
as in the work of Street and Burgess (2007), amongst others] can be derived by con-
sidering the linear paired comparison model. In particular, this assumption simplifies
the information matrix of the binary logit model which coincides with the information
matrix of the linear paired comparison model. This is the approach taken by others
(see Graßhoff et al. 2003, 2004; Großmann and Schwabe 2015).

3 Third-order interactionsmodel

Usually, in paired comparison experiments one may be interested in both the main
effects and interactions of the attributes. For that setting optimal designs have been
derived (see van Berkum 1987b; Graßhoff et al. 2003; Nyarko and Schwabe 2019) in
a first- and second-order interactions setup. In this paper we derive optimal designs
for the third-order interactions model.

In what follows, we commence with the situation of full profiles where two options
(alternatives) are considered simultaneously. As was already pointed out, in this case
the alternatives are represented by level combinations in which all attributes are
involved. The first alternative is denote by i = (i1, i2, . . . , iK ) and the second alterna-
tive by j = ( j1, j2, . . . , jK ), which are both elements of the set I = {−1, 1}K where
1 and −1 represent the first and second level of each attribute, respectively. Specif-
ically, the choice set (i, j) is an ordered pair of alternatives i and j which is chosen
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Optimal 2K paired comparison designs... 2071

from the design region X = I × I. Note that for each attribute (component) k the
corresponding regression functions fk is just the identiy, fk(ik) = ik for alternatives
ik ∈ I = {−1, 1} (see e.g., Nyarko and Schwabe 2019).

In the presence of up to third-order interactions we consider the model

Yna(i) = μn +
K∑

k=1

βkik +
∑

k<�

βk�ik i� +
∑

k<�<m

βk�miki�im

+
∑

k<�<m<r

βk,�,m,r iki�imir + εna(i) (5)

for the direct response Yna(i) at the corresponding alternative i = (i1, i2 . . . , iK ) of
full profiles. Here βk denotes the main effect of the kth attribute, βk� is the first-order
interaction of the kth and �th attribute, βk�m is the second-order interaction of the kth,
�th and mth attribute and βk�mr is the third-order interaction of the kth, �th, mth and
r th attribute. The vectors (βk)1≤k≤K ofmain effects, (βk�)1≤k<�≤K of first-order inter-
actions, (βk�m)1≤k<�<m≤K of second-order interactions and (βk�mr )1≤k<�<m<r≤K of
third-order interactions have dimensions p1 = K , p2 = K (K − 1)/2, p3 = K (K −
1)(K −2)/6 and p4 = (1/24)K (K −1)(K −2)(K −3), respectively. Hence, the com-
plete parameter vector β = (β1, . . . , βK , (βk�)

�
k<�, (βk�m)�k<�<m, (βk�mr )

�
k<�<m<r )

�
has dimension p = p1 + p2 + p3 + p4. Here the regression functions are given by

f(i) = (i1, . . . , iK , (ik i�)
�
k<�, (ik i�im)�k<�<m, (ik i�imir )

�
k<�<m<r )

� (6)

of dimension p, where, in f(i), the first p1 = K components i1, . . . , iK are associated
with the main effects, the second set of p2 components ik i�, 1 ≤ k < � ≤ K , are
associated with the first-order interactions, the third set of p3 components ik i�im ,
1 ≤ k < � < m ≤ K , are associated with the second-order interactions, and the
remaining p4 components ik i�imir , 1 ≤ k < � < m < r ≤ K , are associated with the
third-order interactions.

Due to the cognitive burden associatedwith alternatives involving a large number of
attributes and its detrimental effect on the validity of the estimatedmodel parameters, it
has become commonpractice in the literature to hold the levels of some of the attributes
constant in the alternatives that are presented within a single paired comparison. These
constant attributes are usually set to zero, i.e. ik = 0 in the preference task (presented
scenarios) and the remaining attributes constitute the resulting preference task. The
profiles in such a preference task are known as partial profiles, and the number of
attributes that are allowed in the partial profiles is called the profile strength, denoted
as S (see Graßhoff et al. 2003; Kessels et al. 2011). Here the remaining K−S attributes
are not shown and remain thus unspecified.

Now, for partial profiles, a direct observation may be described by model (5) when
summation is taken only over those S attributes contained in the describing subset.
Note that a profile strength S ≥ 4 is required to ensure identifiability of the interactions.
As already pointed out, we introduce an additional level 0 for each attribute indicating
that the corresponding attribute is not present in the partial profile. In this setting a
direct observation can be described by (5) even when one considers a partial profile i
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from the set

I(S) ={i; ik ∈ {−1, 1} for S components and

ik = 0 for K − S components}, (7)

of alternatives with profile strength S. In particular, I(K ) = I(S) in the case of full
profiles S = K . For general profile strength S the vector of regression functions f and
the interpretation of the parameter vector β remain unchanged.

The corresponding paired comparison model is thus given by

Yn(i, j) =
K∑

k=1

(ik − jk)βk +
∑

k<�

(ik i� − jk j�)βk� +
∑

k<�<m

(ik i�im − jk j� jm)βk�m

+
∑

k<�<m<r

(ik i�imir − jk j� jm jr )βk�mr + εn(i, j) (8)

as before. However, caution is necessary for the specification of the design region
in the case of partial profiles. Then it has to be taken into account that the same S
attributes are used in both alternatives. To accommodate this restriction, the design
region can be specified as

X (S) ={(i, j); ik, jk ∈ {−1, 1} for S components and

ik = jk = 0 for K − S components} (9)

for the set of partial profiles with profile strength S.

4 Optimal designs

In the present setting, we derive optimal designs for the paired comparison model (8)
with corresponding regression functions f(i) defined by (6).Without loss of generality,
we defined as the comparison depthwhich describes the number of attributes presented
in which the two alternatives differ satisfying 1 ≤ d ≤ S ≤ K (see Graßhoff et al.
2003).

Following Nyarko and Schwabe (2019), for profile strength S the design region
X (S) can be partitioned into disjoint sets as

X (S) =
S⋃

d=1

X (S)
d , (10)

where (i, j) ∈ X (S)
d : i and j differ by exactly d components. These sets constitute the

orbits with respect to both permutations of the levels ik, jk = −1, 1 for each attribute
and to permutations of the attributes k = 1, . . . , K , themselves.
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The D-criterion is invariant with respect to those permutations (see Schwabe 1996,
p. 17), which induce a linear reparameterization. Hence, it suffices to find optimal
designs within the class of invariant designs.

Let Nd = 2S
(K
S

)(S
d

)
be the number of paired comparisons inX (S)

d with comparison
depth d and denote by ξ̄d the uniform approximate design which assigns equal weights
ξ̄d(i, j) = 1/Nd to each pair (i, j) in X (S)

d and weight zero to all remaining pairs in
X (S). The information matrix for ξ̄d is given in the following. We mention that the
three functions h1(d), h2(d) and h3(d) are identical to the terms for the second-order
interaction models considered by Nyarko and Schwabe (2019), and Idm denotes the
identity matrix of order m for every m.

Lemma 1 Let d ∈ {0, . . . , S}. The uniform design ξ̄d on the set X (S)
d of comparison

depth d has block diagonal information matrix

M(ξ̄d) =

⎛

⎜⎜⎜⎝

h1(d)IdK 0 0 0
0 h2(d)Id(K2)

0 0

0 0 h3(d)Id(K3)
0

0 0 0 h4(d)Id(K4)

⎞

⎟⎟⎟⎠ ,

where h1(d) = 4d

K
, h2(d) = 8d(S − d)

K (K − 1)
, h3(d) = 4d(3S2 − 6Sd + 4d2 − 3S + 2)

K (K − 1)(K − 2)

and h4(d) = 16d(S − d)(2d2 − 2Sd + S2 − 3S + 4)

K (K − 1)(K − 2)(K − 3)
.

Generally, invariant designs ξ̄ can be written as a convex combination ξ̄ =∑S
d=1 wd ξ̄d of uniform designs ξ̄d on the comparison depths d (which describes the

number of attributes presented in which the two alternatives differ) with correspond-
ing weights wd ≥ 0,

∑S
d=1 wd = 1. Consequently, for every invariant design the

information matrix can be obtained as the corresponding convex combination of the
information matrices for the uniform designs on fixed comparison depths.

Lemma 2 Every invariant design ξ̄ = ∑S
d=1 wd ξ̄d on the setX (S) has block diagonal

information matrix

M(ξ̄ ) =

⎛

⎜⎜⎜⎝

h1(ξ̄ )IdK 0 0 0
0 h2(ξ̄ )Id(K2)

0 0

0 0 h3(ξ̄ )Id(K3)
0

0 0 0 h4(ξ̄ )Id(K4)

⎞

⎟⎟⎟⎠ ,

where hr (ξ̄ ) = ∑S
d=1 wdhr (d), r = 1, 2, 3, 4.

First we consider optimal designs for the main effects, the first-order interac-
tion, the second-order interaction and the third-order interaction terms separately
by maximizing the corresponding entries h1(d), h2(d), h3(d) and h4(d), respec-
tively, in the information matrix. The resulting designs are optimal with respect
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2074 E. Nyarko

to any invariant criterion for the corresponding subset of the full parameter vec-
tor β = (β1, . . . , βK , (βk�)

�
k<�, (βk�m)�k<�<m, (βk�mr )

�
k<�<m<r )

�. To start with, we
mention that the three following results (Result 1, Result 2 and Result 3) paraphrase
theorems given in Graßhoff et al. (2003) and Nyarko and Schwabe (2019) for both
first and second-order interaction models.

Result 1 The uniform design ξ̄S on the largest possible comparison depth S is optimal
for the vector of main effects (β1 . . . , βK )�.

This means that for the main effects only those pairs of alternatives should be used
which differ in all attributes presented, subject to the profile strength S.

Result 2 (a) For S even the uniform design ξ̄S/2 is optimal for the vector of first-order
interaction effects (βk�)

�
k<�.

(b) For S odd the uniform designs ξ̄(S−1)/2 and ξ̄(S+1)/2 are both optimal for the vector
of first-order interaction effects (βk�)

�
k<�.

Thismeans that, for first-order interactions those pairs of alternatives should be used
which differ in about half of the attributes presented, subject to the profile strength S.

Result 3 (a) For S = 3 the uniform designs ξ̄1 and ξ̄3 are both optimal for the vector
of second-order interaction effects (βk�m)�k<�<m.

(b) For S ≥ 4 the uniform design ξ̄S is optimal for the vector of second-order inter-
action effects (βk�m)�k<�<m.

This also means that, for the second-order interactions only, those pairs of alter-
natives should be used, which differ in all attributes presented, subject to the profile
strength S.

The optimal designs of Results 1, 2 and 3 are the same as in the first- and second-
order interactions models (see Graßhoff et al. 2003; Nyarko and Schwabe 2019).
However, for the present setting of third-order interactions, we obtain the following
result.

Theorem 1 There exists a single comparison depth d∗ such that subject to the profile
strength S, the uniform design ξ̄d∗ is D-optimal for the third-order interaction effects
(βk�mr )

�
k<�<m<r .

This means that also for the third-order interactions only those pairs of alternatives
should be used which differ in a portion of the attributes presented subject to the
profile strength S. In particular, the corresponding values of d∗ from Theorem 1 that
are presented in Table 1 were obtained by first calculating the values of h4(d) and
determining the maximum. For the case of full profiles (S = K = 4, for example), the
pairs of the alternatives which are presented differ in only one, i.e. d∗ = 1 of all the
attributes. Moreover, for the case of partial profiles S < K , where, for a total number
of attributes K = 12, only S = 8 are shown; for example, the pairs of the alternatives
which are presented differ in only two, i.e. d∗ = 2 of all the profile strength S = 8,
while the remaining K − S = 4 attributes are not shown (officially set to zero). For a
practical approach (a study in health research which is currently being planned) where
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Table 1 Values of the optimal
comparison depths d∗ of the
D-optimal uniform designs ξ̄d∗
for the third-order interactions
with S ≤ K binary attributes

S

K 4 5 6 7 8 9 10 11 12

4 1

5 1 1

6 1 1 1

7 1 1 1 1

8 1 1 1 1 2

9 1 1 1 1 2 2

10 1 1 1 1 2 2 2

11 1 1 1 1 2 2 2 3

12 1 1 1 1 2 2 2 3 3

there are K = 11 two-level attributes of which S = 4 are shown in each pair and
the two alternatives within each pair have different levels for d∗ = 2 attributes (see
Großmann 2018, Example 3).

For results relating to the full parameter vector β, we note that a single comparison
depth d may be sufficient for non-singularity of the information matrixM(ξ̄d); i.e. for
the identifiability of all parameters. This can easily be seen by observing hr (1) > 0,
r = 1, 2, 3, 4, for d = 1. But this is not true for all comparison depths as for example
h2(S) = h4(S) = 0. In view of Results 1, 2, 3 and Theorem 1 no design exists which
simultaneously optimizes the information for the components of the whole parameter
vector. Therefore we restrict our attention to the D-criterion for the whole parameter
vector.

For later use we mention that a design ξ with nonsingular information matrixM(ξ)

has a variance function of the form V ((i, j), ξ) = (f(i) − f(j))�M(ξ)−1(f(i) − f(j)).
This variance function plays an important role for the D-criterion. According to the
equivalence theorem by Kiefer and Wolfowitz (1960), a design ξ∗ is D-optimal if the
associated variance function is bounded by the number of parameters p,V ((i, j), ξ∗) ≤
p for all (i, j) ∈ X .

Now, for invariant designs ξ̄ the variance function V ((i, j), ξ̄ ) is also invariant with
respect to permutations and, hence constant on the orbits X (S)

d of fixed comparison
depth d. Denote by V (d, ξ̄ ) the value of the variance function for the invariant design ξ̄

evaluated at comparison depth d where V (d, ξ̄ ) = V ((i, j), ξ̄ ) onX (S)
d . The following

result provides a formula for calculating the variance function.

Theorem 2 For every invariant design ξ̄ the variance function V (d, ξ̄ ) is given by

V (d, ξ̄ ) = 4d
(

1
h1(ξ̄ )

+ S−d
h2(ξ̄ )

+ 3S2−6dS+4d2−3S+2
6h3(ξ̄ )

+ (S−d)(2d2−2Sd+S2−3S+4)
6h4(ξ̄ )

)
.

If the invariant design ξ̄ is concentrated on a single comparison depth, then this rep-
resentation simplifies.
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Corollary 1 For a uniform design ξ̄d ′ on a single comparison depth d ′ the variance
function is given by

V (d, ξ̄d ′)

= d

d ′
(
p1 + p2

S−d
S−d ′ + p3

3S2−6dS+4d2−3S+2
3S2−6d ′S+4d ′2−3S+2

+ p4
(S−d)(2d2−2Sd+S2−3S+4)

(S−d ′)(2d ′2−2Sd ′+S2−3S+4)

)
.

Note that for d = d ′, V (d, ξ̄d) = p1 + p2 + p3 + p4 = p which recovers the D-
optimality of ξ̄d on X (S)

d in view of the equivalence theorem by Kiefer and Wolfowitz
(1960).

The following result gives an upper bound on the number of comparison depths
required for a D-optimal design.

Theorem 3 In the third-order interactionsmodel, the D-optimal design ξ∗ is supported
on, at most, four different comparison depths d∗, d∗

1 , d∗ + 1 and d∗
1 + 1, say.

Further the results for the full parameter vector β of the D-optimal design may depend
on both the profile strength S and the number K of attributes, as can be seen by the
following result and the numerical examples presented in Table 2. In particular, for
the case S = K = 4 of full profiles, the D-optimal design can be given explicitly. It
is worth mentioning that the corresponding situation of S = K = 4 of full profiles
can also be regarded as complete interactions (see Graßhoff et al. 2003, Theorem 4).
Here we show that the corresponding result can be given explicitly.

Theorem 4 If S = K = 4 then the design ξ∗ = 4
15 ξ̄1 + 2

5 ξ̄2 + 4
15 ξ̄3 + 1

15 ξ̄4 which is
uniform on all pairs with non-zero comparison depth is D-optimal in the third-order
interactions model.

Note that for S = K = 4 all four comparison depths are needed for D-optimality.
For S ≥ 5, comparison depths d and d1 with corresponding weights wd and wd1 ,

the numerical results presented in Table 2 were obtained by direct maximization of
ln(det(M(wd ξ̄d + (1 − wd)ξ̄d1))) for the corresponding optimal comparison depth
d∗ and optimal weights w∗

d∗ where 1 − w∗
d∗ = w∗

d∗
1
. In particular, by considering the

designs ξ∗ = w∗
d∗ ξ̄d∗ + (1 − w∗

d∗)ξ̄d∗
1
, the numerical results show that two different

comparison depths d∗ and d∗
1 may be needed for D-optimality. This is verified by the

Kiefer andWolfowitz (1960) equivalence theorem in Table 4. Specifically, for various
choices of profile strengths S = 5, . . . , 12, S ≤ K and the optimal comparison
depths d∗ and d∗

1 , the corresponding optimal weights w∗
d∗ satisfy the condition w∗

d∗ =
d∗
1 /(d∗ + d∗

1 ) for d∗ = [(S + 1)/3] and d∗ + d∗
1 = S + 1.

It is worth mentioning that for S = K = 4 the uniform design ξ̄d∗ where d∗ = 1 or
3 has D-efficiency effD(ξ̄d∗) = 0.909, while ξ̄2 and ξ̄4 result in singular information
matrices. Exhibited in Table 3 are the D-efficiencies for the designs ξ̄d∗ with optimal
comparison depths d∗ for the particular case S = K = 5, . . . , 8. The D-efficiencies
are also recorded in the case of full profiles for the designs ξ̄1 as another competitor.
The designs ξ̄d∗ show quite high efficiencies of at least 90%, while for the competing
designs ξ̄1 the efficiencies reduce to about 70% when the number of attributes gets
large. We note that the designs for the case S = K > 8 result in singular information
matrices.
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Table 2 Optimal comparison depths d∗ and optimalweightsw∗
d∗ for the D-optimal designs ξ∗ = w∗

d∗ ξ̄d∗ +
(1 − w∗

d∗ )ξ̄d∗
1
in the case of full profiles (S = K )

S

5 6 7 8 9 10 11 12

d∗ 2 2 2 3 3 3 4 4

w∗
d∗ 0.667 0.714 0.750 0.667 0.700 0.727 0.667 0.692

d∗
1 4 5 6 6 7 8 8 9

w∗
d∗
1

0.333 0.286 0.250 0.333 0.300 0.273 0.333 0.308

Table 3 D-efficiencies of the
designs ξ̄1 and ξ̄d∗ with single
comparison depth d∗ from the
optimal designs ξ∗ in Table 2 in
the case of full profiles (S = K )

K 5 6 7 8

d∗ 2 2 2 3

effD(ξ̄d∗ ) 0.982 0.991 0.993 0.996

effD(ξ̄1) 0.858 0.807 0.764 0.723

The optimality of the so obtained designs has been checked numerically by virtue of
the Kiefer-Wolfowitz equivalence theorem. For full profiles S = K , the corresponding
values of the normalized variance function V (d, ξ∗)/p are recorded in Table 4, where
maximal values less than or equal to 1 establish optimality.

5 Discussion

For paired comparisons in a linear model without interactions optimal designs require
that the alternatives in the choice sets show distinct levels in each attribute subject
to the profile strength (Graßhoff et al. 2004). Moreover, in a first-order interactions
model pairs have to be used for an optimal design in which approximately one half of
the attributes are distinct and one half of the attributes coincide, subject to the profile
strength (Graßhoff et al. 2003). In a second-order interactionsmodel both types of pairs
have to be used for an optimal design in which either all attributes have distinct levels
or approximately one half of the attributes are distinct and one half of the attributes
coincide, subject to the profile strength and the total number of attributes available
(see Nyarko and Schwabe 2019). Here it is shown that, in a third-order interactions
model, two types of pairs have to be used, in which the numbers of distinct attributes
are symmetric with respect to about half of the profile strength, to obtain a D-optimal
design for the whole parameter vector. Optimal designs may be concentrated on one,
two, three or four different comparison depths depending on the number of the profile
strengths. The invariance considerations used here can be extended to larger numbers
of levels for each attribute.
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Appendix

Proof of Lemma 1 The quantities h1(d), h2(d) and h3(d) can be obtained as in
Graßhoff et al. (2003) and Nyarko and Schwabe (2019). The quantity h4(d) can be
obtained on similar lines. First note that for the levels i, j = −1, 1 we have i2 = 1
and i j = −1, (i − j)2 = 4 for i �= j .

For third-order interactions we consider attributes k, �,m and r , say, and distinguish
between pairs in which all four attributes are distinct, pairs in which three of these
attributes k, � and m, say, have distinct levels in the alternatives while the same level
is presented in both alternatives for the remaining attribute, pairs in which two of
these attributes k, �, say, have distinct levels in the alternatives while the same level
is presented in both alternatives for the remaining two attributes and, finally, pairs in
which only one of the attributes, say, k, has distinct levels in the alternatives while the
same level is presented in both alternatives for the three remaining attributes. Then
ik i�imir = jk j� jm jr in the first and third case, while ik i�imir = − jk j� jm jr in the
second and last case. Hence,

(ik i�imir − jk j� jm jr )
2 = 0 for ik �= jk, i� �= j�, im �= jm and ir �= jr ,

(ik i�imir − jk j� jm jr )
2 = 4 for ik �= jk, i� �= j�, im �= jm and ir = jr ,

(ik i�imir − jk j� jm jr )
2 = 0 for ik �= jk, i� �= j�, im = jm and ir = jr ,

and

(ik i�imir − jk j� jm jr )
2 = 4 for ik �= jk, i� = j�, im = jm and ir = jr ,

respectively, where the roles of the attributes k, �, m and r may be interchanged.
For given attributes k, �, m and r , the pairs with distinct levels in the four attributes

occur
( K−4
S−4

) ( S−4
d−4

)
2S times in X (S)

d , while those which differ in the three attributes

occur
(
4
3

) ( K−4
S−4

) ( S−4
d−3

)
2S times inX (S)

d , while thosewhich differ in the two attributes

occur
(
4
2

) ( K−4
S−4

) ( S−4
d−2

)
2S times in X (S)

d and, finally, those which differ only in one
attribute occur

(
4
1

) ( K−4
S−4

) ( S−4
d−1

)
2S times. As a consequence, since the number Nd of

paired comparisons in X (S)
d equals Nd = (

K
S

) (
S
d

)
2S , for the third-order interactions
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the diagonal elements h4(d) in the information matrix are given by

h4(d) = 1

Nd

( K−4
S−4

) ( ( S−4
d−3

)
2S+4 + ( S−4

d−1

)
2S+4

)

= 16(S − d)d(d − 1)(d − 2)

K (K − 1)(K − 2)(K − 3)
+ 16(S − d)(S − d − 1)(S − d − 2)d

K (K − 1)(K − 2)(K − 3)

= 16d(S − d)(2d2 − 2Sd + S2 − 3S + 4)

K (K − 1)(K − 2)(K − 3)
. (11)

Finally, it can be noted that all off-diagonal entries in the information matrix vanish
because the terms in the corresponding sums add up to zero due to the “orthogonality”
condition for single attributes. 	

Proof of Theorem 2. First we note that the inverse of the information matrix of the
design ξ̄ is given by

M(ξ̄ )−1 =

⎛

⎜⎜⎜⎜⎝

1
h1(ξ̄ )

IdK 0 0 0

0 1
h2(ξ̄ )

Id(K2)
0 0

0 0 1
h3(ξ̄ )

Id(K3)
0

0 0 0 1
h4(ξ̄ )

Id(K4)

⎞

⎟⎟⎟⎟⎠
.

Hence, we obtain for the variance function

V ((i, j), ξ̄ ) = (f(i) − f(j))�M(ξ̄ )−1(f(i) − f(j))

= 1

h1(ξ̄ )

K∑

k=1

(ik − jk)
2

+ 1

h2(ξ̄ )

∑

k<�

(ik i� − jk j�)
2

+ 1

h3(ξ̄ )

∑

k<�<m

(ik i�im − jk j� jm)2

+ 1

h4(ξ̄ )

∑

k<�<m<r

(ik i�imir − jk j� jm jr )
2. (12)

From the proof of Theorem 2 in Nyarko and Schwabe (2019), it can be seen that
the first, second and third sum on the right hand side of (12) associated with the
main effects, the first-order interactions and the second-order interactions equal 4d,
4d(S − d) and 4d(3S2 − 6dS + 4d2 − 3S + 2)/6, respectively.

For the terms associated with the third-order interactions, we have (ik i�imir
− jk j� jm jr )2 = 4, if (ik i�imir ) and ( jk j� jm jr ) differ in three of the associated
four attributes k, �,m and r or in exactly one of these attributes, and (ik i�imir −
jk j� jm jr )2 = 0 otherwise. For a pair (i, j) ∈ X (S)

d of comparison depth d there are
(S − d)

(
d
3

)
third-order interaction terms for which the four attributes k, �,m and r
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differ in exactly three of the attributes, and there are d
(
S−d
3

)
third-order interaction

terms for which the four attributes k, �,m and r differ in exactly one attribute. As a
result, there are

(S − d)
(
d
3

) + d
(
S−d
3

)

= (S − d)d(d − 1)(d − 2)/6 + d(S − d)(S − d − 1)(S − d − 2)/6

= d((S − d)(2d2 − 2Sd + S2 − 3S + 4))/6

non-zero entries (equal to 4) in the fourth sum on the right hand side of (12) and,
hence, this sum equals 4d((S − d)(2d2 − 2Sd + S2 − 3S + 4))/6.

By substituting this result into (12) for fixed K and S, it can be seen that the value
of the variance function depends on the pair (i, j) only through its comparison depth
d and so the proposed formula is obtained. 	

Proof of Corollary 1. In view of Theorem 2 it is sufficient to note that the representation
of the variance function follows immediately by inserting the values of hr (ξ̄d) from
Lemma 1 and pr = (K

r

)
, r = 1, 2, 3, 4. 	


Proof of Theorem 3. Let ξ∗ be an invariant D-optimal design with weights w∗
d on the

comparison depths d for which the variance function V (d, ξ∗) is equal to the number
of parameters p for all d such that w∗

d > 0. By Theorem 2 the variance function
V (d, ξ∗) is a polynomial of degree 4 in the comparison depth d with negative leading
coefficient. For integer d the variance function V (d, ξ∗) may thus be equal to p
for, at most, four different values of d. Now, by the Kiefer and Wolfowitz (1960)
equivalence theorem itself V (d, ξ∗) ≤ p for all d = 0, 1, . . . , S. Hence, by the shape
of the variance function we obtain that V (d, ξ∗) = p may occur only at, at most two
adjacent comparison depths d∗ and d∗ + 1 or d∗

1 and d∗
1 + 1, say, in the interior. 	


Proof of Theorem 4. For the design ξ∗ we obtain h1(ξ∗) = 8/15, h2(ξ∗) = 2/15,
h3(ξ∗) = 1/30 and h4(ξ∗) = 1/120. Inserting this into the variance function of
Theorem 2 yields V (d, ξ∗) = 5d(−1/2d3 + 5d2 − 35/2d + 25)/4, which results in
V (1, ξ∗) = V (2, ξ∗) = V (3, ξ∗) = V (4, ξ∗) = 15. Hence, the variance function is
bounded by the number of parameters p = 15 which establishes the D-optimality of
ξ∗ by virtue of the Kiefer-Wolfowitz equivalence theorem. 	
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