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Abstract
Decision-making is considered as a vital mechanism that can allow linking multiple
autonomous systems (e.g., agents) together to design a more intelligent and capable
artificial system than considering each of them in isolation. To model or to engineer
such a successful collective autonomous distributed system is a very challenging task, as
the resulting collective behaviour is a self-organised and emergent phenomenon arisen
from the local interactions between the agents and their environment. It does not rely
upon a particular leader and is based only on incomplete and noisy sensory information
acquired by single individuals. In this way, the collective decision-making mechanism
and the underlying collective information processing represent one of the means of de-
signing autonomy at the global level. The current thesis focuses on the question of how
individuals have to integrate the personal noisy assessments of their physical and social
surroundings to make accurate collective decisions.

The existing state-of-the-art collective decision-making strategies are dominated by
biologically inspired approaches and generally established opinion-based models of vot-
ing. Although they are described as simple and have low computational requirements,
they are highly dependent on the environmental context that can limit their performance.
This thesis proposes solutions to enhance the accuracy, the speed, and the generality
of existing collective decision-making algorithms, which can be generalised across vari-
ous spatial patterns in the environment. In this regard, the thesis presents models of
decision-making based on preferences and beliefs along with opinions. Furthermore, it
proposes three mechanisms for sharing evidence to update personal beliefs. These mech-
anisms are defined as collective, social, and individual learning. The best-of-n problem
is considered, where a swarm of artificial agents has to come to a consensus on the best
option out of n available alternatives. Specifically, the collective perception scenario as
the spatially distributed consensus achievement task is addressed and the issue of scala-
bility for n > 2 is studied. For this purpose, the multi-featured benchmark set generator
is proposed consisting of nine spatial visual patterns with different characteristics and
noise variability.

We introduce an Ising-based binary decision-making model which includes prefer-
ences and opinions, generalising the state-of-the-art models of voting such as the major-
ity rule and the voter model. Inspired by the cognitive dissonance theory, the proposed
co-adaptation process of preference-opinion dynamics is designed to resolve the incon-
sistency between the agent’s personal preference and an expressed opinion. As a result,
the developed collective decision-making mechanism has been shown to be as fast as the
majority rule while also being as accurate as the voter model, combining the best of both
strategies. Moreover, assigning preferences to the agents initially in the process allows a
designer to steer the self-organisation process to a particular outcome. Other strategies
for controlling self-organised collective decisions utilising isomorphic transformations of
the environment are also proposed in this thesis. The agent-based simulations conducted
on a diverse set of environmental patterns show that the spatial distribution and clus-
tering levels of the features, along with their quantitative ratio, define the difficulty of
the task and can significantly deteriorate the collective performance. In this regard,
we present the belief-based decision-making model employing the evidence theory in
the context of the best-of-n framework. The experiments performed on the proposed
benchmark set of collective perception scenarios with n > 2 options and twelve most com-
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mon operators of evidence fusion indicate the viability and generality of the established
collective decision-making strategy. Finally, the superiority of social learning over the
collective and the individual learning types is highlighted in terms of the accuracy of the
produced collective decisions.
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Zusammenfassung
Entscheidungsfindung wird als ein wichtiger Mechanismus betrachtet, der es ermöglicht,
mehrere autonome Systeme (z. B. Agenten) miteinander zu verbinden, um ein intelligen-
teres und leistungsfähigeres künstliches System zu entwerfen, als jedes einzelne von ihnen
isoliert betrachtet. Ein solches erfolgreiches kollektives autonomes verteiltes System zu
modellieren oder zu entwickeln ist eine sehr anspruchsvolle Aufgabe, da das resultierende
kollektive Verhalten ein selbstorganisiertes und emergentes Phänomen ist, das aus den
lokalen Interaktionen zwischen den Agenten und ihrer Umgebung entsteht. Es ist nicht
auf einen bestimmten Anführer angewiesen und basiert nur auf unvollständigen und
verrauschten sensorischen Informationen, die von einzelnen Individuen aufgenommen
werden. Auf diese Weise stellen der kollektive Entscheidungsfindungsmechanismus und
die zugrunde liegende kollektive Informationsverarbeitung eines der Mittel zur Gestal-
tung der Autonomie auf globaler Ebene dar. Die vorliegende Arbeit beschäftigt sich mit
der Frage, wie Individuen die persönlichen verrauschten Einschätzungen ihrer physischen
und sozialen Umgebung integrieren müssen, um korrekte kollektive Entscheidungen zu
treffen.

Bestehende kollektive State-of-the-Art-Entscheidungsstrategien werden überwiegend
von biologisch inspirierten Ansätzen und allgemein etablierten meinungsbasierten Mod-
ellen der Abstimmung dominiert. Obwohl sie als einfach beschrieben werden und einen
geringen Rechenaufwand haben, sind sie stark vom Umgebungskontext abhängig, was
ihre Leistung einschränken kann. Diese Arbeit schlägt Lösungen vor, um die Genauigkeit,
die Geschwindigkeit und die Allgemeinheit bestehender kollektiver Entscheidungsalgo-
rithmen zu verbessern, die über verschiedene räumliche Muster in der Umgebung ver-
allgemeinert werden können. In diesem Zusammenhang stellt die Arbeit Modelle der
Entscheidungsfindung vor, die auf Präferenzen und Überzeugungen sowie Meinungen
basieren. Außerdem schlägt es drei Mechanismen vor, um durch einen Evidenzaus-
tausch persönliche Überzeugungen zu aktualisieren. Diese Mechanismen werden als
kollektives, soziales und individuelles Lernen definiert. Es wird das Best-of-n-Problem
betrachtet, bei dem ein Schwarm von künstlichen Agenten einen Konsens über die beste
Option aus n verfügbaren Alternativen finden muss. Insbesondere wird das kollektive
Wahrnehmungsszenario als räumlich verteilte Konsensleistungsaufgabe behandelt und
die Frage der Skalierbarkeit für n > 2 untersucht. Zu diesem Zweck wird ein Generator
mit mehreren Merkmalen vorgeschlagen, der aus neun räumlichen visuellen Mustern mit
unterschiedlichen Eigenschaften und Rauschvariabilität besteht.

Wir stellen ein Ising-basiertes binäres Entscheidungsmodell vor, das Präferenzen
und Meinungen berücksichtigt und die State-of-the-Art-Modelle der Abstimmung wie
die Mehrheitsregel und das Wählermodell verallgemeinert. Inspiriert von der Theorie
der kognitiven Dissonanz ist der vorgeschlagene Co-Anpassungsprozess der Präferenz-
Meinungs-Dynamik darauf ausgelegt, die Inkonsistenz zwischen persönlicher Präferenz
des Agenten und einer geäußerten Meinung aufzulösen. Ergebnisse zeigen, dass der
entwickelte kollektive Entscheidungsfindungsmechanismus so schnell wie die Mehrheit-
sregel und gleichzeitig so genau wie das Wählermodell ist, wobei es das Beste aus bei-
den Strategien kombiniert. Darüber hinaus erlaubt die Zuweisung von Präferenzen an
die Agenten zu Beginn des Prozesses einem Designer, den Selbstorganisationsprozess
auf ein bestimmtes Ergebnis zu lenken. Andere Strategien zur Steuerung selbstor-
ganisierter kollektiver Entscheidungen, die isomorphe Transformationen der Umgebung

iii



nutzen, werden in dieser Arbeit ebenfalls vorgeschlagen. Agentenbasierte Simulationen,
die mit einer Vielzahl von Umgebungsmustern in dieser Arbeit durchgeführt wurden,
zeigen, dass die räumliche Verteilung und die Clusterungsebenen der Merkmale sowie
ihr quantitatives Verhältnis die Schwierigkeit der Aufgabe definieren und die kollek-
tive Leistung erheblich verschlechtern können. In diesem Zusammenhang stellen wir
das auf Überzeugungen basierte Entscheidungsfindungsmodell vor, das die Evidenzthe-
orie im Kontext des Best-of-n-Frameworks verwendet. Die Experimente, die mit dem
vorgeschlagenen Benchmark-Set von kollektiven Wahrnehmungsszenarien mit n > 2 Op-
tionen und zwölf häufigsten Operatoren der Evidenzfusion durchgeführt wurden, zeigen
die Durchführbarkeit und Allgemeinheit der etablierten kollektiven Entscheidungsstrate-
gie. Schließlich wird die Überlegenheit des sozialen Lernens gegenüber der kollektiven
und der individuellen Lerntypen in Bezug auf die Genauigkeit der produzierten kollek-
tiven Entscheidungen hervorgehoben.
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Introduction

Decisions are a ubiquitous part of daily life. The ability to decide refers to one of the most
important aspects of intelligence and is, therefore, considered as the desired property to
replicate in an Artificial Intelligence (AI) system. Under the decision, we mean a direct
selection between several given alternatives. It is a common assumption that decisions
made by a group are more robust than individual ones. Both biological and artificial
collectives are constantly faced with making choices based mostly only on partial and
noisy information provided by their physical and social surroundings. Therefore, to
ensure an expected superiority of shared decision-making, special attention should be
paid to the exploitation and processing of social and environmental information at the
collective level. The current thesis presents contributions in this regard and studies the
impact of environmental and social biases on decentralised collective decision-making in
spatially distributed discrete consensus achievement tasks.

This chapter provides a general overview of the topic as well as a motivation for the
proposed methodology and the key concepts used in the thesis. Afterwards, the decision-
making as the best-of-n problem is outlined along with the summary of the existing
challenges. Finally, the research questions and objectives of the thesis are stated and an
outline is given.

1.1 Background and Research Topic

The design of the state-of-the-art collective decision-making algorithms is primarily bi-
ologically inspired. Social insects such as ants or honeybees can leverage environmental
bias based on simple heuristics and perform group decisions, making them one of the
most popular models of collective decision-making (Sasaki and Pratt, 2018). In this
context, a cognitive aspect of a single individual is often not considered in much detail.
Nonetheless, each individual is also a cognitive unit with personal motivations, prefer-
ences, and beliefs guiding its individual decisions (Amdam and Hovland, 2012). These
are often hidden from an agent itself and formed during the decision-making process,
impacting alongside the choices of an agent as well as of the others. As such, they can
be considered as a flexible tool to manipulate collective decisions. To that end, the cur-
rent dissertation endeavours to examine the possible mechanisms underlying collective
cognition.



2 CHAPTER 1. INTRODUCTION

In the following, we briefly consider (1) how decision-making is carried out at different
levels of living organisms, (2) factors that can affect the speed and accuracy of decisions
in natural systems, and discuss (3) the cognitive approach to modelling decision-making
as a philosophy for the methodology developed in this thesis.

Decision-making across scales

While the human brain serves as the common model and an inspiration for AI, it is
not considered as a single entity but as a collection of approximately 86 billion neu-
rons (Azevedo et al., 2009) that interact with each other forming a large distributed
network. Each neuron performs its own internal computations based on the inputs from
the sense organs of the human body and the other neurons from different areas of the
brain. The communication between neurons is done by means of sending electrical im-
pulses, where the firing rate of interactions identifies the strength of the connections
and, hence, the way an incoming signal is processed and how the human reacts as a
whole to the particular external stimulus. Being faced with a choice problem as a cog-
nitive task, the brain areas responsible for decision-making are activated and a decision
is assumed to be taken when a firing rate threshold is met by the neurons related to a
particular choice (Potemkowski, 2017). In this way, the undertaken decision is consid-
ered as an outcome of not a single neuron but of a whole assembly of neurons driven by
their multiple inter-individual interactions, which, in turn, and identify the end result.
Since neurons form a distributed static network with fixed positions in the brain, the
way the inner connections between neurons are established is what makes each human
being’s problem-solving style unique (Smith and Ratcliff, 2004). As a result, decision
intelligence in this case can be viewed as an emergent property of a human brain, which
is arisen from the local interactions of neurons with each other triggered by an input
received from the outside physical surrounding.

Similar structures are also observed in biological systems such as insect colonies (e.g.,
ants), slime mould or the immune system. Each individual in such a system acts in a
role of a neuron but in contrast to the “solid” human brain, the created network is
characterised by the ability of its nodes (individuals) to change their physical positions
in space and time, that is, to move. As a result, the inter-individual connections are
not fixed and are not reinforced as much between particular nodes but more conditioned
by their movements and the immediate neighbourhood at a certain time. In this scope,
Solé et al. (2019) has proposed the term “liquid brain” for describing the system, which
implies the network of dynamic (i.e., non-static) elements with unstable connections.
The introduction of the name of the term is not a coincidence, since the behaviour of
such systems resembles the behaviour of fluids (liquids) along with the inheritance of
similar properties (Tennenbaum et al., 2015). It is assumed that physical movement and
dynamic local interactions complicate the system in a non-trivial way compared to a
“solid brain”, where the positions of the network’s elements are fixed (Solé et al., 2019).
A number of studies have shown that despite being a brainless organism (e.g., slime
mould, fungi), “liquid brain” system as the whole is successful in solving optimisation
problems such as finding the shortest path (Bonifaci et al., 2012; Adamatzky, 2014) or
performing decision-making tasks related with nutritional decisions (Dussutour et al.,
2010; Beekman and Latty, 2015; Reid et al., 2016).
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The principle of “acting together as a whole, one can achieve more than the sum of its
solitary parts” is also inherent to more sophisticated living organisms like birds, animals,
and even human beings themselves. In this instance, a single individual alone already
represents a fully functioning autonomous bio-system that is able to solve tasks on its
own. However, the emergent phenomenon of interest, in this case, is observed on a higher
level of organisation, that is, the society. As most social creatures, the individuals from
the corresponding representative group are highly affected by the interactions with each
other and their behaviour in the closest physical surroundings, similar to the neurons in
“solid” and “liquid” brain. In this way, the decision-making process is also considered
to be done in a group, where everyone’s decision is induced by the choices done by the
others, forming a “collective mind”. Many animal species (e.g., primates, fish) and social
insects (e.g., bees, ants) benefit from such sharing decision-making, which allows them
to find better places to nest, feed, and to migrate, keeping them alongside together to
enhance their chances on survival before predators (Strandburg-Peshkin et al., 2015;
Couzin, 2018). The resulting collective behaviour is referred to as swarm intelligence
and is considered to be a self-organised and emergent phenomenon arisen from local
interactions between individuals.

Speed and accuracy of collective decision-making in natural systems

Swarm intelligence benefits from the inter-individual interactions, allowing a collective
to solve complex cognitive tasks unbearable to a single individual unit. Nevertheless,
the speed and accuracy trade-off (SAT) during natural decision-making has been traced
on all scales of the aforementioned living systems. That is, fast decisions are likely to
be unreliable while improving the accuracy requires more information and, hence, more
time and costs to perform (Zimmerman, 2011).

Often a connection between the difficulty of the task defined by the physical envi-
ronment and the speed and accuracy with which it is solved is examined. However, the
latter is not always concerned with the SAT problem. For instance, the difficulty of nat-
ural discrimination tasks, in which it is necessary to distinguish between sensory inputs
and to react accordingly, often lies in the similarities between the target alternative and
the other options serving as distractors (Franks et al., 2003; Perry and Barron, 2013).
In this regard, the evidence from the study on honey-bees foraging behaviour (Dyer and
Chittka, 2004a; Dyer and Chittka, 2004b; Skorupski et al., 2006) shows an increase in
the decision time but also decrease in the selection success, when the colours of the
fruitful sources are not clearly dissimilar from the unfruitful ones.

The SATs are often observed in tasks with negative stimuli in the form of a “stressor”,
which induces a bias into the system. As such, limiting the time to perform a certain
cognitive task often leads to a decrease in the accuracy of human decision-making, while
for more difficult tasks in general more time is required to undertake a decision (Pachella,
1973). The choice between food options under the light exposure forces slime mould to
make quicker and usually more inaccurate decisions preferring the ones in the shaded
areas to avoid the harmful impact threatening its survival (Latty and Beekman, 2011).
There, the SAT problem can be further complicated with the setup of less distinguishable
options. That is, an incorrect choice between similar options is characterised by less cost
(penalty) since their differences are not significant to be harmful to survival relative to
the “stress” factor.
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Similarly, in spatially distributed decision-making tasks, a spatial factor brings addi-
tional costs impacting the exploration process. That is, the closer-located options (e.g.,
new nest sites, food sources) are more preferable than the distant ones, though the latter
can turn out to be of better quality. Nevertheless, Franks et al. (2008) has found that
ants decide on a new nest site based on the quality and not on the distance from the old
nest, using the closer options only as an auxiliary step towards more distant and better
alternatives. Furthermore, the studies on nest-site selection by honey bees (Passino and
Seeley, 2005; Passino et al., 2008; Makinson et al., 2010; Laomettachit et al., 2015)
also indicated that bee swarms are able to select high-quality sites regardless of their
distance but required more time to reveal them (Janson et al., 2007; Zurbuchen et al.,
2010). Overall, time has to be spent to achieve an accurate decision. In this regard,
one can suppose that the SATs observed in natural systems often appear as the result
of the trade-off between the quality of the options and their costs such as, e.g., the time
necessary to explore them. However, exploration time is not the only factor that can
affect a group’s performance costs (effort).

To reinforce weak (distanced) signals, social colonies rely on the mechanism of the
positive feedback 1 (Sasaki and Pratt, 2018). It acts as a means of coordination between
group members and controls foraging dynamics, helping them to spread information
quickly and reach an agreement. As a result, the number of individuals that favour a
given option grows with an increase of the number of individuals already committed to it,
creating a positive cascade. However, in addition to reaching a consensus with a relative
fast speed, it also tends to magnify errors in the system. As a consequence, when many
noisy evaluations are coupled with a positive feedback mechanism, the collective outcome
can turn out to be highly inaccurate. In this regard, Nicolis et al. (2011) claim that the
positive feedback is a heuristic that produces quick and effective group decision-making,
but is often prone to “irrationality” in specific environmental conditions. Indeed, as
a heuristic, it is considered as more domain-specific than domain-general. According
to Gigerenzer and Gaissmaier (2015), it operates successfully in environments in which
it is meant to be “ecologically rational”. That is, a chosen heuristic has to match with
the structure of an environment and be able to exploit it. In this way, the environment
itself can assist the heuristic. Considering this, the accuracy of the collective decisions
done by natural systems based on positive feedback should always be assessed in relation
to a particular environment and its structure (Nicolis et al., 2011; Sumpter et al., 2012).

A cognitive approach to modelling decision-making

One can draw a parallel between the positive feedback loop, which is a mechanism of
behavioural ecology, in social insects and the feedbacks between the neurons in the
human brain. However, while decision-making models of behavioural ecology (Mangel
and Clark, 2019) mainly focus on how individuals interact with their surroundings, they
ignore the underlying neurological (psychological) mechanisms that occur in the brain.
In this regard, the model of an agent is often oversimplified (DeAngelis and Diaz, 2019),
neglecting the fact that it is also a cognitive entity on its own and can possess attitudes
along with multiple mental states, such as, e.g., preferences and beliefs.

1Positive feedback is a force that strengthens a commitment to a particular choice. As an example,
pheromone trails left by foraging ants result in a positive feedback allowing to find the best food source.
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The behavioural ecology is based on the assumption of the rational agent model as
in economic theory (Kacelnik, 2006), where the individuals act to maximise their fitness
(utility). Nevertheless, the decision-making process can not be viewed as completely
rational as it is often based on objective and subjective 2 information. Indeed, even when
designing rational decision-making in technical systems, one can talk only about bounded
rationality (Simon, 1990) due to the incomplete and imperfect sensory information,
computational capacity, time restrictions, and chosen heuristics. That is, even though an
artificial agent can be programmed to make rational decisions, it will be still limited by its
technological and design constraints. Overall, the views on the concept of “rationality”
vary depending on the research field, be it psychology, biology, economics or neuroscience,
and their philosophical discussion is beyond the scope of this thesis.

In this thesis, we refer to the BPC 3 model of rationality as defined by Gintis (2005).
He postulates that the agents’ choices are driven by their cognitions such as beliefs
(B) and preferences (P), along with constraints (C). It is supposed to serve as a gen-
eral framework unifying the behavioural sciences, avoiding connotations of “rationality”,
and, therefore, has been chosen as a motivation for the proposed methodology in the
current thesis. In addition, it also encompasses the concept of bounded rationality under
incomplete knowledge assumption. Although BPCs are commonly considered in real life,
combinations of these cognitive states together are rather understudied in the AI liter-
ature (Rouahi et al., 2018) and their definitions are often confused (see Section 1.1.1).
The BPC model is commonly considered within a single individual, but there is nothing
that can prevent it from also considering the welfare of other individuals in a group set-
ting (Gintis, 2005). However, in the collective context, the interactions between agents
with different mental states can complicate the process of achieving a common group
decision. In this scope, the mental states of the agents have to evolve together with the
choices and to adapt through social interactions respectively (Hoogendoorn et al., 2010).

Considering that the agents can possess heterogeneous mental states, the desire to
maintain inclusion in the group and, hence, consensus can lead to a state known as cog-
nitive dissonance. According to the theory of cognitive dissonance proposed by Festinger
(1957), an individual always seeks alignment (consonance) of its cognitive states. That
is, the beliefs, preferences, and choices of an individual have to be consistent with each
other. As a typical example of cognitive dissonance, one can consider the case when a
person wants to get rid of some habit, but still consciously continues to follow it. In this
example, the cognition (preference/belief) of an agent and its choice are in disagreement
with each other. It is assumed that being in such a state causes cognitive distress, which
motivates actions from an individual aimed at reducing it. As one of the techniques to
minimise cognitive dissonance, one can either modify the importance of his/her cognition
(e.g., persuade yourself that the habit is harmful) or completely change it (e.g., decide
that you did not really want to get rid of this habit). Both approaches aim to rationalise
the choice which has been taken in the past and cannot be reversed, but the resulting
alteration in cognitions can lead to new behaviours in the future.

When an individual is considered as a member of a social group, the social group
can induce as well as reduce cognitive dissonance. Festinger (1957) stated that cognitive

2An agent is subjectively rational when its decisions are consistent with the available evidence and,
in the absence of these, with its own subjective estimates.

3BPC is a short form for “beliefs, preferences, and constraints”.
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dissonance in a group occurs when its members openly express a disagreement. Accord-
ing to his theory, the fact that another member of a homogeneous group has a different
opinion from my own generates dissonance, which causes discomfort and triggers indi-
vidual mechanisms to mitigate it. Indeed, if an agent is in a state of consonance, e.g., its
choice and preference are both towards an option a, but acquires a new piece of infor-
mation from its social environment which is towards another option b, the agent enters
the dissonance state. That is, in such a case, the post-decision cognitive alteration will
be activated regardless of the agent’s decision to keep its opinion a or to change it to b.
As such, while initial disagreements between agents can be transformed into collective
consensus, intra-individual inconsistencies 4 are resolved over time as well. The latter
can also lead to the formation of the shared social cognition in terms of homogeneous
attitudes and mental states (Matz and Wood, 2005). Overall, cognitive dissonance has
been shown to have a larger impact on the systems with strong self-organisation prop-
erties (Colosio et al., 2017). In this regard, it acts as a driving force of implicit cognitive
bias that alters decision-making and social interactions.

Despite the capacity for cognitive dissonance in human behaviour has long been
recognised and researched in the social and cognitive sciences, it has received little at-
tention in the design of artificial (robotic) systems. While there is some research moti-
vated by cognitive dissonance to address the problem of designing intrinsic motivation
systems (Kaplan and Oudeyer, 2007), no studies have been found which investigated its
impact on the design of bio-inspired collective decision-making strategies.

1.1.1 Preferences, Opinions, and Beliefs

In the following, we discuss the basic terminology used in decision sciences and through-
out this thesis. Namely, the definitions of the terms such as “constraints”, “information”,
“knowledge”, “beliefs”, “opinions”, and “preferences” are given. According to Corcoran
and Hamid (2015), the last four mainly differ in the levels of certitude and are all inter-
dependent on each other (see Figure 1.1).

Constraints introduce limitations that sort out the set of alternatives from which the
choice can be done in a given situation due to specific characteristics of the system and,
in this way, partially predefine the decisions (Gintis, 2010). Information refers to data
or a state (not necessarily a true one) which is received or communicated. Knowledge is
considered as the objective personal state of the highest level of certitude, while beliefs
and opinions are representatives of subjective states with relatively higher and lower
certitude respectively. Beliefs, being subjective states, can be taken as the knowledge in
case if their true state is justified by the perceived evidence, otherwise they express a
certain degree of hesitation. In contrast, opinions do not reassure any rate of reliability
in any way as they primarily reflect the preferences and the beliefs of the individual
rather than the (true) knowledge. It is also said that “a belief not known to be true
is considered to be an opinion” (Corcoran and Hamid, 2015). In general, beliefs are
associated with the probability of a certain outcome that will result from a predetermined
choice, i.e., represent internal representations of the relationship between actions and
outcomes (Steele and Stefánsson, 2016). According to Hausman (2012), preferences

4Under intra-individual inconsistency, we mean the case when the agent holds a cognition towards
one option a but chooses another option b.
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beliefs

knowledgeopinions

preferences

subjective states objective state

confidence 
levels low medium high

Figure 1.1: Mental states of different confidence levels. Preferences represent pre-opinions
and coevolve with the opinions themselves together in a closed-loop. Depending on the
amount of justification, beliefs can pass into opinions or knowledge. Opinions, beliefs,
and knowledge can be considered as information.

are subjective states that are defined not only by choices of the individuals but are
also considered to be subject to the beliefs. As such, preferences are the subject of
both, opinions and beliefs, and define the individuals’ rationality in terms of how the
individuals perceive the information. One can expect preferences to be consistent with
the choices but not necessarily serving the collective goals (i.e., welfare-enhancing).

1.1.2 Individual, Social, and Collective Learning

Possessing a variety of different mental states can create confusion regarding what kind
of information to communicate and, hence, which states to share between individuals.
Furthermore, their subjectivity can lead to social biases hindering the success of the
group (Bang and Frith, 2017). In the following, we operate with the definition of ‘learn-
ing’ as an update in the knowledge that results from the experience. In such a setting,
we consider learning and decision-making to be interwoven with each other, since un-
dertaken decisions usually depend on what agents have learned about the state of the
world and are, therefore, considered further as a product of learning.

There is evidence that in severe circumstances, individuals count more on their own
decisions than on the decisions of other individuals. For instance, Franks et al. (2003)
observed that individual decision-making prevails over the collective one in ants foraging,
when the ants are faced with the wind. Under individual decision-making, one considers
a type of asocial learning based only on accumulating clues from the environment without
communication with other individuals. As a result, agents use only personally obtained
information from the environment by observation and their own “reflections”. Only
recent and past individual information is combined to shape the representation of the
environment, subject to the agent’s personal mental state.

Situations, when more attention is paid to the accuracy than to the speed, relate
to the conditions which do not introduce a threat to the agents’ survival, allowing in-
dividuals to consider the actions of the others (Franks et al., 2003). Decision-making
promoted by observing or interactions with the other individuals as well as the artefacts
which they leave (e.g., pheromones) is referred to as a social type of learning (Heyes and
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Galef, 1996; Huber, 2012). The terms ‘social’ and ‘collective’ are often interchangeable
and confused in the literature, as both imply the exchange of information with other
members. In this thesis, we distinguish them based on the content of the transferred
information and the way it is integrated with already existing personal information of
an individual itself.

One of the easiest social mechanisms to deal with limited cognitive abilities and
incomplete information about the environment is considered to be imitation, where in-
dividuals ignore their personal information and simply copy the behaviour of / or in-
formation from a demonstrator (Conlisk, 1980; Hoppitt and Laland, 2013). In a swarm
context, each individual can be in the role of a demonstrator and an observer at the same
time, creating coupled dynamics between the decisions of the individuals. The resulting
emergent phenomenon is also known as herding, which is commonly observed in certain
species of mammals and birds (Zhao et al., 2011). Though simple, it allows birds to stay
together as a flock along the migration routes, maintaining collective consensus on the
direction of movement despite the possible negative influence coming from the external
environment, e.g., headwinds. It primarily promotes the transfer of navigational infor-
mation from informed to uninformed individuals in a group and through generations.
According to Berdahl et al. (2018), such a uni-directional process of passing personal
or observed environmental information to other individuals in a swarm is referred to as
social learning. In this regard, under social decisions we mean decisions/actions under-
taken by the individuals based on the information received in the scope of the particular
social learning procedure driven by imitation or transfer of unprocessed information from
informed to uninformed members.

Meanwhile, preserving personal information is considered to be desirable and benefi-
cial in most natural and artificial systems, as the individuals can differ in their decision-
making abilities as well as in their access to the information. Marshall et al. (2017)
argue that the weighted aggregation of individual decisions in a group is usually under-
estimated in the research on collective animal behaviour, although there is theoretical
evidence that it can promote better decisions. However, it is also a more costly proce-
dure than imitation, since it requires communication and combination of different pieces
of information. The same holds for enhancing the individuals’ capabilities with more so-
phisticated learning mechanisms preceding decision-making such as associative learning,
i.e., learning with reinforcement and matching environmental cues with rewards, which
has shown to be efficient as well in the collective context (Kao et al., 2014). As such,
the cumulative incorporation of information from other individuals over multiple social
interactions into private individual information within time, including further transfer of
the obtained accumulated knowledge, is referred to as collective learning (Berdahl et al.,
2018). Thus, new knowledge emerges from numerous interactions between individuals,
while social learning rather promotes the dissemination of information (evidence) not
known to others. In this way, decisions/actions based on the exchanged accumulated ac-
quired partial information from the environment and from other individuals are referred
to as collective decisions.

As an illustrative example: a student doing coursework performs an individual type of
learning provided that he/she relies on his/her own gained knowledge; students attending
a lecture are subjects of a social type of learning passively accumulating information from
a lecturer; while the development of the ideas in a research group is already considered
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as collective learning in the result of which new knowledge can emerge.

1.2 Decision-Making as the Best-of-n Problem

A decision is a choice out of multiple options, carried out by a system based on infor-
mation gained as a result of learning about the state-of-the-world prior to the decision-
making process. Unattached from any kind of scenario, reaching an agreement between
multiple system’s elements, i.e., agents, over the best choice from a set of available pos-
sibilities is classified as the best-of-n problem. Under ‘the best’ is meant an option that
maximises (or minimises, dependent on the common goal) a certain given task-related
metric or a fitness function of the system. Such type of problem has been primar-
ily studied for many years in a biological context addressing the behaviour of natural
systems (Conradt and Roper, 2005) and served later on as an inspiration for the de-
velopment of the decentralised collective decision-making algorithms for multiple-robot
systems (Parker and Zhang, 2004; Parker and Zhang, 2009; Parker and Zhang, 2011).

Artificially replicating collective decision-making of self-organised systems is assumed
to be particularly challenging. Without a central control unit, it relies on partial informa-
tion assessed from local perceptions and local communications between the individuals.
As a result, a collective decision is regarded as an outcome of an emergent process that is
difficult to predict (Valentini et al., 2014). It is also considered as one of the basic swarm
behaviours and the prerequisite in a range of swarm robotics applications (Brambilla et
al., 2013; Bose et al., 2017; Schranz et al., 2020). However, the developed algorithms
are usually rather problem-specific and designed to address a particular scenario. In this
regard, Valentini (2017) has derived the concept of the best-of-n problem, which unifies
most of these application scenarios, representing itself an abstract model of the consen-
sus achievement task. That is, he has introduced a modular framework for the design
of decentralised collective decision-making algorithms based on the work of Parker and
Zhang (2009). In comparison to their previous work, it provides the possibility to con-
sider different types of decisions, including individual decision-making of the agents. In
this regard, Valentini (2017) has mainly studied opinion-based decision-making strate-
gies for n = 2 options, where each agent shares its opinion with other individuals and
changes it according to the voting rules. As such, due to the modular structure and
supposed generality of the best-of-n framework 5, it has been also selected as the basis
for studying discrete decentralised decision-making in the current thesis.

1.2.1 Overview of the Challenges

The work of Valentini (2017) caused further interest in the swarm robotics community
to address the case of multiple options, e.g., Lee et al. (2018a), Ebert et al. (2018), Tala-
mali et al. (2019), although concentrating mainly on the variations of the problem with
asymmetric quality and symmetric cost 6. Theoretical study of the best-of-n problem
by Reina et al. (2017) has shown that increasing the number of alternatives can sig-
nificantly alter the swarm dynamics. The particular attention was paid to the analysis

5For more details, we refer the reader to Section 2.4.
6The existing classification of the best-of-n problem with respect to the quality and cost is given

later in Section 1.2, where symmetric corresponds to equal values and asymmetric to differing ones.
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of the signalling ratio and, hence, the impact of the strength of positive feedback on
the decision process. In this regard, the optimal strength of positive feedback can differ
between the number of options. According to Nicolis et al. (2011) and Sumpter et al.
(2012), the feedback rate which generates good decisions for a larger number of options
can lead to poor decisions for a smaller one. Nevertheless, the binary variant (n = 2) of
the best-of-n problem dominates the current research in the field of swarm robotics and
requires adaptations of the existing methods for n > 2.

The presence of a bias in the physical environment can impose asymmetry in the
cost of the options, e.g., expressed as travel distance to the food source during foraging.
Previous studies (Passino and Seeley, 2005; Reina et al., 2015) have shown that a swarm
that can not compensate for environmental bias selects less costly alternatives regard-
less of their quality. As a result, the high-quality options which are harder to reach
can be overlooked in favour of less costly but lower-quality ones, leading to inaccurate
decisions. In this way, an environmental bias induces a negative impact on the collec-
tive decision-making process. To the best of our knowledge, after the study of Valentini
(2017) only a few works addressing the negative environmental bias in the context of the
best-n problem have appeared. Based on the prior work of Reina et al. (2015), Cody
(2018) has investigated in computer simulation a value-sensitive collective best-of-n deci-
sion strategy in the context of the task sequencing framework. Specifically, he proposed
mechanisms of interaction delays to control the relative importance of the option’s cost
and quality. Talamali et al. (2020) examined the distance-quality trade-offs within the
model of the optimal foraging theory and developed it to address the negative environ-
mental bias. The virtual pheromone trails as observed in ant’s colonies were employed.
Both studies imply asymmetric cost of the options in terms of the distance between the
option (source area) and the central gathering depot of the agents (the ‘nest’), assuming
that the system is well-mixed 7 and has access to the global qualities of the sources. In
general, violation of the aforementioned assumptions complicates the decision-making
process, resulting in poor collective performance (Trabattoni et al., 2018). Indeed, con-
sidering that the agents interact only in the ‘nest’, a longer distance to the source (i.e.,
a longer exploration time) implies that some individuals interact more often than the
others, thereby infringing the well-mixed state. Controlling the time agents spend in
the ‘nest’ by adjusting the direct modulation of positive feedback can thereby even com-
munication chances, helping agents to overcome the spatial bias and leading the group
towards high-quality decisions (Cody, 2018; Talamali et al., 2020).

While ‘nest’-containing scenarios are common for natural systems, in real-world ap-
plications, such as, e.g., environmental monitoring, multiple returns to the base can
be considered as impractical and energy-consuming, especially when faced with many
options (n > 2). That is, the physical environment can impose additional challenges
(e.g., rough terrain, wind, or water currents), which are often neglected and not taken
into consideration during algorithm development. Furthermore, since the environment
is assumed to be a priori unknown, the designer (human operator) is unaware of its
potential biases. As such, the well-mixed state can be difficult to achieve, in particular
without the common gathering point (‘nest’). Therefore, there is a need for the develop-
ment of decentralised decision-making strategies that are robust across various unknown
environmental structures.

7Each agent in the swarm has the same chance of interacting with any other agent.
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1.3 Research Goals and Objectives

The thesis aims to develop and examine how the opinion-based decision-making ap-
proaches can be extended to improve the performance and generality of decentralised
collective decision-making strategies within the best-of-n framework. Specifically, one
of the most important modular blocks to undergo modifications is concerned with the
way of how agents make their choices, i.e., individual decision-making. Furthermore, a
particular focus is placed on the analysis of the performance in terms of accuracy and
speed of the collective decisions (achieving consensus) in relation to the environment and
its influence.

We believe that endowing artificial agents with inner motivation and high-level men-
tal states can allow a design of more robust and generic collective decision-making strate-
gies. Therefore, in this thesis, we employ preferences and beliefs along with opinions
inspired by the BPC model of rationality and study them coupled with the mechanism
of the positive feedback within the best-of-n framework.

Our first goal is to obtain a better understanding of how social and physical environ-
ments impact a decentralised consensus process. As mentioned in the previous section,
decisions in spatially distributed decision-making tasks are subject to a priori unknown
influence imposed by the features of the physical environment. The latter can induce
a bias into collective behaviour, inclining the collective towards choices that are easier
to discover but not necessarily the best ones. Similarly, a social environment can also
impose a bias. Namely, the agent’s motivations (preferences) are mostly hidden from
others, but they are reflected in the agent’s choices, and, therefore, implicitly bias group
decisions. As a consequence, a designer has to develop an understanding of how to
manage physical and social spaces to exploit the benefits of collective decision-making.

Our second goal is the design of generic individual decision-making rules to improve
the performance of consensus achievement strategies. In essence, a decision-making
rule acts based on the accumulated information from the environment and respectively
modifies the mental states of an agent. In this regard, there are two main questions to
be answered: (i) which information has to be shared between the agents and (ii) how
it should be aggregated to get the most reliable collective performance in the shortest
amount of time. Besides speed and accuracy, the degree to which individual decision-
making rules can be generalised across environments with different spatial structures
(patterns) and the number of alternatives is of particular interest to the current study.

To achieve these goals, the specific objectives outlined below will be addressed.

“Vertical” upgrade of the mental model. Assuming that preferences do not re-
quire any cognitive abilities but induce an inner bias to a certain outcome, we aim to
evaluate their impact on opinion dynamics by integrating them as pre-opinions into in-
dividual voting rules. This corresponds to the “vertical” change in the agent’s mental
model as according to Figure 1.1. Although preferences are often shaped by opinions
and in previous work (Valentini, 2017) are completely defined by the latter, they refer to
different mental states and are not necessarily always consistent with each other. Con-
sidering that inconsistency in mental states triggers a state of cognitive dissonance at
the individual level, one of the objectives is to develop a social mechanism that allows
for its reduction. In this regard, the thesis investigates how inner motivation to prevent
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cognitive dissonance manipulates social preferences and affects the speed and accuracy
of collective decisions (see Chapter 3).

Analysis of the impact of the environment. To ensure the generality of individual
decision-making rules across different environments, it is important to understand how
particular environmental structures affect collective decision-making and, in particular,
bias the direct modulation of positive feedback. In this instance, the thesis intends to
demonstrate how self-organisation can be facilitated by exclusively manipulating the
environment without actual modifications of its global structure and without any changes
in the individual decision model (see Chapter 4).

“Horizontal” upgrade of the mental model. Another subjective mental state of
a higher level than an opinion is a belief that seeks the state of knowledge and requires
more cognitive resources from an agent. A belief oscillates between an opinion and an
objective state of the “truth”, corresponding to the “horizontal” change in the mental
model (see Figure 1.1). The theory of belief functions (Smets and Kennes, 2008) provides
a mathematical basis that allows handling partial and imperfect information. In this
regard, the thesis studies how to achieve a state of mutual “knowledge” shared by all
individuals through the use of beliefs, as well as how to improve collective accuracy
despite environmental structure (see Chapter 5).

Analysis of the impact of the information type shared between the individ-
uals. Given that collective decision-making is carried out due to the communication
of information between the individuals, it is important to take into consideration what
type of information is involved in this exchange process. Therefore, the thesis exam-
ines the performance of collective decision-making with respect to individual, social, and
collective learning mechanisms of information exchange (see Chapter 5).

Scalability to several alternatives. Another aspect of the generality of individual
decision rules is the ability to remain efficient with an increase in the number of al-
ternatives. Therefore, one of the primary objectives is to create a scalable collective
decision-making framework that maintains its performance for n > 2 (see Chapter 5).

Preserving modularity. To ensure the generality of the developed methods to tackle
the best-of-n problem rather than a specific application scenario, a secondary objective is
to preserve the modular structure of the existing framework without major modifications.

1.4 Thesis Outline
The thesis is organised in six chapters.

Chapter 2 introduces the collective perception scenario as the best-of-n problem cho-
sen as a case study for the current thesis. The formalisation of the best-of-n in general is
given, along with a description of its existing classification and scenarios of application.
A choice of the collective perception scenario as a case study is explained. Section 2.2
provides the problem statement and a scenario description including the multi-agent
simulation specifications. In Section 2.3, an overview of the state-of-the-art concerning
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collective perception is given and the concept of the scenario task difficulty in the current
literature is discussed. The general best-of-n modular framework, based on which Chap-
ters 3-5 are developed, is reviewed in Section 2.4. In addition, the most commonly used
opinion-based voting methods and standard evaluation metrics to validate the collective
performance are described. Finally, Section 2.5 specifies the modular blocks which will
undergo modifications in the following chapters.

In Chapter 3, the preferences of individuals are incorporated alongside their opinions
and the corresponding preference-based decision-making algorithm is proposed. Dy-
namic update rules are developed to maintain the dynamic interplay and autonomous
adjustment of both mental states, i.e., preferences and opinions, with respect to each
other to reduce the cognitive dissonance of the individuals. Sections 3.1 and 3.2 provide
motivation and necessary background on the concepts, which are aimed at the devel-
opment of the proposed methodology. The respective experimental study is conducted
on the binary collective perception problem and the obtained results with the following
research implications are analysed and discussed in detail. The work presented in this
chapter is based on (Bartashevich and Mostaghim, 2019b).

In Chapter 4, a new benchmark set consisting of nine visual pattern generators
with different characteristics is designed to assist the study of collective perception and
its generality across a variety of environmental structures. All introduced benchmark
problems are illustrated and analysed in Section 4.3. To assess the impact of the spa-
tial distributions of the options and the structure of the environment on the collective
decision-making, the environment is reconsidered as a combinatorial object and studied
under two algebraic transformations. The original best-of-n framework as of Valen-
tini (2017) with opinion-based decision-making is validated on the introduced binary
benchmark problems, as well as their counterparts that have undergone algebraic trans-
formations. In this regard, the analysis of the speed and accuracy of collective decisions
is performed and the results with and without direct modulation of positive feedback are
discussed. The work presented in this chapter is based on (Bartashevich and Mostaghim,
2019c; Bartashevich and Mostaghim, 2019a).

Chapter 5 is based on the findings of Chapter 4 and introduces beliefs into the
decision-making process of the agents, offering the framework to tackle collective per-
ception with n > 2 options and without any a priori information about the environmental
structure. In Section 5.1, the benchmark set introduced in Chapter 4 is scaled up to
n ∈ {3,5,8,10} and analysed on the respective pattern characteristics. Section 5.3 pro-
vides the necessary mathematical background on the theory of belief functions, while the
respective belief-based decision-making framework for the best-of-n problem is proposed
in Section 5.4 along with individual, social, and collective learning mechanisms. An
extensive experimental study with twelve different fusion rules to combine the beliefs is
conducted on the multi-featured benchmark set consisting of seven different environmen-
tal patterns to validate the viability of the proposed methodology. Besides the speed and
accuracy analysis, this chapter also contains the comparison of the proposed learning
mechanisms for sharing information preceding decision-making. The work presented in
this chapter has been published in (Bartashevich and Mostaghim, 2021).

Finally, in Chapter 6, we conclude the thesis by summarising the research contribu-
tions and proposing future research directions.

Appendix A provides the reader with a table of default settings for collective per-
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ception scenario used throughout this dissertation.
Appendix B and Appendix C contain supplementary materials and statistical analysis

of the results for Chapters 3 and 5, respectively.
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2
Collective Perception as the Best-of-n

Problem
In this chapter, we consider collective perception as a special case of consensus achieve-
ment task in collective decision-making. Section 2.1 provides a formalisation of the
best-of-n problem as a general collective decision-making task, description of existing
problem classification, and application scenarios. Section 2.2 describes in detail a sce-
nario representation of collective perception together with the settings for the simulation
model of the multi-agent system. Section 2.3 gives the current overview of the state of
the art, which provides the necessary background information. Afterwards, the general
best-of-n framework, within which the scenario is considered throughout the thesis, is
given in Section 2.4, including the description of the baseline evaluation metrics that are
used to assess its performance. Finally, in Section 2.5, we outline the modular blocks of
the framework to be modified in order to address the objectives stated in Section 1.3.

2.1 Formalisation of the Best-of-n Problem

The best-of-n problem as a general collective decision-making problem can be formulated
as follows. Let us consider a set Ω= {ω1,ω2, . . . ,ωn} of n candidate options. Each option
ωi , i = 1, . . . ,n is characterised by a certain quality qi ∈ R and by a cost ci ∈ R. The
corresponding functions Q,C :Ω→ R such that Q :ωi 7→ qi , C :ωi 7→ ci define the quality
and cost values, respectively. Both functions Q,C are initially unknown to the decision-
maker and describe the specific properties of the target environment (e.g., light intensity,
humidity, shelter size). In general, quality values qi are either considered as subject to
noisy measurements and can not be assessed in their pure form, or are not directly
available to single individuals. In the case of more than one environmental attribute
of interest, the quality Q is commonly constructed as a weighted aggregation function
combining all the attributes under consideration. The cost function C is defined as the
time needed for an individual to assess the quality value of the corresponding option.
The goal for a group of N individuals is to make a collective decision for the option ωbest

that maximises the profit expressed in terms of the option’s quality maxω∈ΩQ(ω) while
minimising its costs minω∈ΩC (ω). When all members of the swarm commit to the same
option, a consensus is said to be reached.
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2.1.1 Existing Problem Classification

Figure 2.1 illustrates different complexities of the best-of-n problem according to Valen-
tini et al. (2017), depending on how set of options Ω, quality Q, and cost C are configured
in an application scenario.
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Figure 2.1: Classification of the best-of-n problem.

Taking the number of options |Ω| = n, one can distinguish the binary case n = 2 as
a particular case of a general discrete case with more than two options n ≥ 2, which
is further called as the best-of-many problem. The most complex case in this regard
corresponds to the infinitely many (countable or continuum) amount of options, which
is called the best-of-infinity problem (denoted as the best-of-∞). In terms of quality
function Q or cost function C , the problem is classified as either symmetric or asym-
metric. As such, depending on different combinations of quality and cost values of the
options, the best-of-n problem can be (1) symmetric concerning both quality and cost,
(2) symmetric only concerning quality and asymmetric concerning cost (or vice versa),
(3) asymmetric concerning both quality and cost. In terms of quality (or cost), sym-
metric means that all options have the same quality (or cost) values and there is no
difference between them, i.e., Q(ωi ) = Q(ω j ) (or C (ωi ) = C (ω j )) for all i , j ∈ {1,2, . . . ,n}.
While in the asymmetric case with regard to the quality (or to the cost), at least two op-
tions exist of different qualities (or costs), i.e., ∃i , j ∈ {1,2, . . . ,n} such that Q(ωi ) 6=Q(ω j )
(or C (ωi ) 6=C (ω j )). When the cost and the quality are both asymmetric, the interaction
of these two plays an important role. When the option with the best quality is char-
acterised by the minimum cost, the interaction between cost and quality functions is
described as synergic and is referred to as the synergic best-of-n problem. However, in
many real-world problems the considered objectives Q and C can compete against each
other, in the sense that the option with the best (i.e., the lowest) cost will be the worst
in terms of quality and vice versa the option with the best (i.e., the highest) quality will
be very costly to get (i.e., will be the worst concerning the cost). This implies that some
features in the environment counterbalance each other by producing opposite effects that
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prevent an actual decision-maker from reaching the target. Such type of interactions is
described as antagonistic, expanding the complexity of the asymmetric problem, and is
called as an antagonistic best-of-n problem. As an example from nature, foraging path
selection can be considered as the antagonistic best-of-n problem if the path to the best
food source is also the longest and, as the synergic best-of-n problem, if this path is the
shortest one.

Overall, one can think about the complexity of the best-of-n problem as about the
volume of the tetraeder (as shown in Figure 2.1) with the vertices on the axes describing
the corresponding characteristics (n, Q, C). In this way, with the increase of at least one
parameter (described by a dot on the corresponding axis), the complexity of the problem
grows as well. For thorough introduction and deep results on the best-of-2 problem, we
refer to the monograph of Valentini (2017) dedicated to the case with asymmetric quality
and symmetric cost, as well as containing the profound literature review on the problem
of interest according to the provided above classification.

2.1.2 Application Scenarios

Referring to Valentini et al. (2017), there are three typical application scenarios in the
literature, known as benchmark models for the best-of-n problem: (i) the shortest-path
(or double-bridge) scenario, (ii) site selection and (iii) collective perception. The last one
is the least studied and is considered as one of the recently introduced scenarios (Valentini
et al., 2016). In comparison to (iii), (i)-(ii) are characterised by the presence of a
meeting spot, which is referred to as ‘nest’, similar to honey-bees or ants. In this way,
the well-mixture of the whole system is obtained, which is considered as one of the
strict requirements (limitations) in the current state-of-the-art approaches. However,
due to spatial dynamics and established social networks, most populations (natural or
artificial) in the real world are inherently not well-mixed (Nowak, 2006). In this respect,
the collective perception scenario represents itself as a viable benchmark, where the
agents have to operate in the same region of environment, performing the decisions as
they move and without guarantee of the well-mixed state. As such, it was chosen as a
case study for this dissertation.

2.2 Collective Perception Scenario

According to Schranz et al. (2020), collective perception is one of the basic swarm be-
haviours referred to as decision-making, which allows a swarm of agents to come to a
common conclusion on the matter of contention, based only on locally gathered infor-
mation. The concept of collective perception aims at achieving the global awareness
about the object of interest through the exchange of the information perceived using
local sensors between the agents to assist the others to gain the information about the
“blind spots”, i.e., areas which they were not able to observe by themselves. It is widely
used in the context of object recognition (Giusti et al., 2012; Stegagno et al., 2014), clas-
sification (Kornienko et al., 2005; King and Breedon, 2011), sensor fusion (Elmenreich,
2002; Majcherczyk et al., 2021), surface coverage (Olfati-Saber and Jalalkamali, 2012;
Mazdin and Rinner, 2019), where the area/object is too large for a single individual to
perceive, and can be considered as one of the aspects of cognitive intelligence (Cahen and
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Tacca, 2013). In this regard, such a swarm of artificial agents has to be able to merge
multiple perception instances of single individuals into one global picture, to collectively
assemble an image of a “map” to solve the given task.

In the current work, we study a collective perception scenario as the model of the
spatially distributed best-of-n problem proposed by Valentini et al. (2016) and describe
it more in detail.

2.2.1 Problem Statement

The environment is modelled as a two-dimensional squared grid consisting of Γ regular
cells of equal size, i.e., cel l ×cel l squared units each. Each such squared cell is coloured
in one of the j = 1, . . . ,n colours, where colours are considered as spatially distributed
options ω j ∈Ω, specifying a discrete-choice problem (for more details see Section 1.2).
The quality {q j }n

j=1 of each option is defined as the proportion of the cells with colour
j in the grid, i.e., q j := Γ j /Γ. Accordingly, the goal in terms of the best-of-n problem
is to identify the option with the highest quality. Therefore, if another is not stated, a
swarm of N agents distributed over the grid has to come to a consensus on the most
prevailing colour 1 ωbest within the environment. Each colour j is also associated with a
certain cost c j , which can be expressed as the time needed to assess and to explore this
particular option. Since the colours are distributed randomly over the grid, they have
equal opportunities to be discovered by the agents, indicating the symmetric cost of the
options. In turn, the qualities of the options are asymmetric and are not directly accessi-
ble to single individuals. Each agent can perceive the environment only locally through
underneath sensors and, therefore, requires multiple sampling of the environment to
assess the profitability of the available options.

2.2.2 Concept of the Task Difficulty

The difficulty of the task is defined by the ratio of options’ qualities ρ expressed as the
ratio of the number of cells {Γ j }n

j=1 with available colours in the environment. According
to Valentini (2017), if ∃k such that Γk À Γ j for any j 6= k ( j = 1, . . . ,n), the more noticeable
the difference in qualities and, thus, the easier it is to decide. As the colour proportions
approach each other, that is, ρ→ 1, the decision-making becomes more challenging. As
such, lower values of ρ correspond to the easier difficulty settings of the task, while
higher ones to the more difficult.

2.2.3 Motion Specifications

Coordinates and heading directions of the individuals in a swarm are initialised according
to a uniform distribution in the ranges of (x, y) ∈ [1,

p
Γ+1]× [1,

p
Γ+1] and φ ∈ [0,2π],

respectively. Each agent has a circular shape of the same diameter equals Θ units, which
is proportional to the size of the grid’s cells.

1In the following, the option ω j and the colour j are considered interchangeable.
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Figure 2.2: (a) Multi-agent simulation: environment and agents, (b) Spatial distribution
of 20 individuals resulting from their movements during 400 seconds: result over 1 run, (c)
result over 100 runs. Pictures (a) and (c) are taken from (Bartashevich and Mostaghim,
2021).

Individual Movement

Each agent performs a continuous random motion over discrete time steps (further called
iterations) so that at each iteration an agent moves. The implemented model of random
motion consists of two alternating phases of (1) linear motion with constant speed |~v |
units/s and (2) rotation on the spot with a respective constant angular velocity ω rad/s.
The duration of each new movement phase is defined for each individual separately and
sampled from a normal distribution with a mean of 40 s and variance of 1 s for linear
motion, and from a uniform distribution between 0 and 4.5 s for rotational motion.
The direction of rotation (either clockwise or counter-clockwise) is chosen each time at
random. Such a motion model can be considered as a random direction model (Nain et
al., 2005) characterised by a homogeneous uniform distribution of the agents. This differs
from another well-known random waypoint model of motion (Bettstetter and Wagner,
2002), which results in a high density of agents in the middle of the two-dimensional
squared environment and zero probability at its borders. In our case, the former model is
more desirable than the latter, since it is not biased to any specific locations and, hence,
ensures better coverage and exploration of the space by the agents without control of
their positions.



20 CHAPTER 2. COLLECTIVE PERCEPTION AS THE BEST-OF-n PROBLEM

Collision Avoidance

As a collision between the agents is detected, the individuals’ current motion phases
are switched to the rotation on the spot in opposite directions to their respective oppo-
nent. That is, one of the agents rotates clockwise and another one counter-clockwise,
to accelerate a “traffic congestion” resolution. The respective collision rotation phase
of each individual lasts until its heading direction allows it to resume an instantaneous,
free from collision, linear motion. When the agent hits the borders of the environment,
it enters the rotation phase (in a random direction) until it is turned around on 180°
from its initial collision direction. Such an approach is supposed to prevent a pileup of
agents at the borders and to return them quickly to the main area.

Spatial distribution of individuals’ trajectories

Figure 2.2b illustrates the resulting density histograms for x- and y-positions of N = 20
agents moving simultaneously over 400 seconds, corresponding to the maximum duration
T of one trial, where each agent’s position is plotted every 10th iteration. The spatial
distribution depicted in Figure 2.2b is characterised by some peaks at the places of colli-
sions and prolonged stays of the agents due to the rotation on the spot. The probability
that an agent is located at the borders is similar to the other free-from-collisions places
of the simulation arena due to the specifics of the introduced before border avoidance
mechanism. Depending on the time drawn for the following after-collision linear motion
phase and the initial collision-direction with the border, an agent can come back to the
inside area of the arena or hit another adjacent border. Figure 2.2c reveals that the spa-
tial distribution of the whole population over 100 runs can be considered to be almost
uniform. In this scope, there is an equal chance for every coloured cell to be visited by
the agents within 100 runs.

2.3 Overview of the State of the Art

There are different interpretations of the collective perception such as cooperative or
distributed sensing in different fields of research and its applications in vehicular ad-
hoc networks (Gunther et al., 2016; Thandavarayan et al., 2020) or the Internet of
Things (Simoens et al., 2018), where a group of sensors has to determine the state of
the environment through the exchange of the information, which is performed within
special communication protocols. Whereas in the swarm intelligence context, collective
perception is considered as a self-organised phenomenon arising from the local commu-
nication, implying low computational effort and exchange of the messages with a small
amount of semantics between simple individuals with limited capabilities.

In this regard, Kornienko et al. (2005) studied collective perception as a collaborative
object classification task using a swarm of micro-robots, where each robot can observe
only a limited part of an object from its current point of view such that it is not enough to
identify to which class it belongs. Schmickl et al. (2007) considered collective perception
in the context of the aggregation scenario, where a group of robots has to assess and
gather at the target areas proportionally to their respective sizes. The size of each area
is unknown to the swarm and can not be directly assessed by a single individual, as
the agent can only determine whether it is within the target area or not. Morlino et
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al. (2010) has proposed an environment for collective perception scenario modelled by
circular black spots painted on a white ground in a grid-like structure, with the task
to identify their density. The agents can perceive the colour of the arena only locally
and communicate with the others by emitting the flashing signals with the frequency
corresponding to the local density estimate. In this way, a collective flashing signal of
the whole swarm encodes the global density of the features of interest.

As a decision-making task, a collective perception has been studied by Valentini et
al. (2016) on the same environment as in (Morlino et al., 2010) but within a voting
context, where the agents need to collectively decide in a distributed way which of the
two colours on the arena ground, e.g., black or white, is the most frequent one. In their
work, particular attention was paid to popular decision-making strategies such as the
voter model and majority rule. Later, the same scenario of randomly-generated black
and white cells has been used as a benchmark problem for collective decision-making in
other studies as well. As such, the security issue and the existence of malicious activity in
a swarm were addressed by Strobel et al. (2018) using blockchain technology on the top
of the collective decision-making algorithms from (Valentini et al., 2016) and within the
same binary collective perception benchmark. Ebert et al. (2018) examined a randomly-
generated multi-featured case with a dynamic task allocation strategy to decide between
three different colours in finite time. To the best of the author’s knowledge, no more
research has been performed for the case with more than two colours in the same context
of collective perception. A case with a dynamic binary environment was investigated
in (Soorati et al., 2019), where the proportions of the colours in the grid are changing
over time such that a swarm has to continually revise its obsolete judgment. The findings
of the above investigations revealed that, independently of the used methodology, the
most difficult scenario setting is the one with almost identical colours’ ratios, where the
ratio defines the qualities of the options.

Despite the different nature of the studies (Ebert et al., 2018; Strobel et al., 2020),
it was also observed that even the easiest collective perception task difficulty setting is
hard to solve if the features (namely, options) are non-homogeneously distributed in the
space, e.g., forming a 2-section environment. There, the agents can be heavily biased
to one of the outcomes based on their movement areas (exploration), resulting in highly
conflicting pieces of evidence obtained by different agents from the environment. The
voting rules are admitted to be inadequate in this case, as they are not sufficient to
model the conflict between experts (Xu et al., 1992). For this purpose, possibility and
probability-based theories are used to address the imprecision and uncertainty of the
measurements (Martin et al., 2008). In this regard, Ebert et al. (2020) presented a
distributed collective decision-making algorithm based on the idea of Bayesian inference
and applied it to the randomly-generated binary collective perception scenario. There,
each agent employs a Bayesian model of the colour ratio (i.e., option quality) and updates
it upon observations. Though, the approach has shown to be successful, achieving fast
and accurate decisions regardless of the task difficulty, additional parameters identifying
a prior model of the distribution of the features are needed to be defined and tuned
accordingly. This can cause complications in practical situations, where there is no a
priori information available.

In this regard, the belief function-based (evidence) theories such as Dempster-Shafer
theory (DST) can provide a more appealing mathematical framework for dealing with un-
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certain information without any necessity in a priori distributions of the features (Shafer,
1976). Apart from uncertainty, the theory of evidence also allows expressing a full or
partial ignorance, i.e., “unknown” state, which has been shown to be beneficial in sev-
eral following studies on the consensus formation in multi-agent and natural systems.
To note, the further mentioned works are considered in the context of the site-selection
selection scenario, i.e., a choice to move together to one of the discrete targets. In ani-
mal groups (Couzin et al., 2011; Hartnett et al., 2016), it was observed that uninformed
individuals, namely those without any preference to a specific option, can significantly
modify the outcome of collective consensus decisions. Reina et al. (2015) studied a macro-
scopic description of the site-selection dynamics, where each agent was in either commit-
ted state to one of the options or in the overall uncommitted state in order to discover
the new ones, promoting better exploration. Crosscombe and Lawry (2016a; 2016b)
considered a three-valued logic to model a middle truth value, i.e., borderline true-false
value, as “unknown” state resulting during the combination of conflicting binary truth
values. It was shown that such an approach accelerates the consensus with high accuracy
in a fully connected network in comparison to a simple binary model, supported also
by other studies, e.g., Perron et al. (2009). Later, Crosscombe et al. (2018) evaluated
the same three-valued consensus model in a real robot swarm and demonstrated its ro-
bustness to noise compared to the weighted voter model, introduced earlier by Valentini
et al. (2014), though with an increased convergence time. The conducted experiments
in Crosscombe et al. (2018) have not addressed any particular best-of-n scenario and
concentrated mainly on the propagation of initially predefined binary opinions based on
local interactions in a swarm without exploration of the options. There, the agents’ be-
liefs are represented as vectors of n = 3 logical values, i.e., {1,0, 1

2 }, and are updated using
solely logical operations. While in the DST, besides incorporated “unknown” state, the
beliefs are represented as continuous confidence measures in each option separately as
well as in the omnifarious unions of options, e.g., {ωi ,ω j }.

To integrate the gathered evidence from multiple sources, there exist different com-
bination operators in the DST literature (Sentz and Ferson, 2002; Smets, 2007), to name
a few, which aid in achieving a unifying degree of belief that encompasses all the avail-
able information into account. In the context of the best-of-n problem, Crosscombe et
al. (2019) investigated four DST belief combination operators for multi-agent consensus
formation on a fully-connected graph within a site-selection model (Valentini, 2017).
There are also studies in other domains (Kanjanatarakul and Denoeux, 2017; Zoghby et
al., 2014), where DST has been studied as an asynchronous distributed linear consensus
mechanism on time-varying networks, though in a different context from the best-of-n
problem. Notably, alongside belief combination with other agents, in (Crosscombe et al.,
2019) each agent makes also individual updates based on his personal partial knowledge
perceived from the environment. In this way, exploration of the options has a direct
impact on the formation of the agents’ beliefs. While, for instance, in (Valentini, 2017)
perceived evidence influenced the decision-making process only indirectly, defining the
time during which the agent can exchange his opinion with other individuals.

Although in a setting as in (Crosscombe et al., 2019) the agents can already assess
the problem based on their own personal measurements, a further combination with
the beliefs of the other agents has shown to be more beneficial. A similar observation
was conducted by Lee et al. (2018b) in an agent-based system, where a direct Bayesian
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updating along with probability pooling was able to reach a faster and better consensus
than based only on solitary personal Bayesian updates. Also, later it was coupled with
modulation of the negative feedback to update the opinions and tested in robot-based
simulation experiments on the site-selection scenario (Lee et al., 2018a). So far, however,
a collective perception scenario has remained still unattended by the aforementioned
approaches. In comparison to collective perception, the qualities of the options in site-
selection studies are directly accessible to the agents and mostly spatially independent
due to the nature of the considered scenario model, where the individuals alternate their
visits between the place of common gathering (the ‘nest’) and the sites placed on the
same distance around it.

In fact, the accumulation of solely direct evidence from an environment by an in-
dividual can be considered as an individual type of learning (IND) in the sense of the
way of acquiring the information about the environment. IND mainly concerns isolated
agents that interact only with an environment and decide purely based on their own
local sensory inputs. While most of the natural organisms are social creatures (Kao et
al., 2014), the inter-individual interactions allow them to share and propagate the infor-
mation in a group resulting in a social and collective types of learning (further denoted
respectively as SL and CL, see Section 1.1.2 for definitions). In the same vein, studies
in social epistemology (Wenmackers et al., 2014; Goldman and O’Connor, 2019) address
the question of how individuals on their own, as well as in the collective, can best seek
the truth regarding the given problem with the assistance of others in a social context.
Berdahl et al. (2018) highlighted how CL and SL drive the emergence of animal culture in
the context of migration, where new routes can emerge as a result of gradual information
gathering from multiple individuals. Sasaki and Biro (2017) have shown that the accu-
mulation of knowledge within the group through IND and successive SL progressively
improves a collective performance. Previous studies on SL in animals (Laland, 2004;
Galef and Laland, 2005) have revealed that a combination of several types of learning,
such as IND and SL, increases the mean population fitness compared to when only one
learning mechanism is involved. Also, Marshall et al. (2017) argued that variance in
individual decision-making abilities can promote better decision-making/learning in the
group as the whole. In contrast, far too little attention has been paid to this aspect
within the collective perception problem.

2.4 General Framework

As mentioned at the beginning of Section 2.3, there are various algorithms in the litera-
ture addressing the problem of collective perception. However, they are mainly difficult
to compare with each other or to apply to other scenarios due to their diverse nature
and the lack of a unifying framework. At the same time, the best-of-n framework pro-
posed by Valentini (2017) is characterised by the modular structure, which supports its
application and re-implementation on different scenarios, belonging to the general class
of discrete consensus achievement problems. Such an approach allows studying the un-
derlying concepts of collective decision-making systematically, without rigid reference to
the concrete task, promoting their generalisability and transparency. For that reason, a
design framework of Valentini (2017) has been selected as the base for the current study
as well.
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j

Figure 2.3: General framework. Figure adapted from (Valentini, 2017).

A general modular structure of a collective decision-making algorithm as of Valentini
(2017) is illustrated in Figure 2.3 and represented by a behaviour-based approach. Each
agent can have one or several mental states (e.g., see Section 1.1.1) and behaves accord-
ingly, taking into account the external information. The motion routine of the agents, as
defined in Section 2.2.3, remains unaffected by their current behavioural or mental state.
The set of possible options Ω is assumed to be given. In original framework (Valentini,
2017), the mental state of each agent i in a swarm is performed by the opinion opi ,
reflecting its subjective judgment on the best option.

There are two main individual behavioural states essential for tackling the best-of-n
problem and referred to as (i) exploration and (ii) dissemination states.

• Exploration state is responsible for the discovery of the potential options and the
individual gathering of the information exclusively from the environment, including
a personal assessment of the received input, without interaction with the other
agents. Even if the set of options (e.g., colours) present in the environment is given
to the swarm, the options’ attributes (e.g., their location, quality characteristics)
remain unknown to the agents and, therefore, have to be explored.

• Dissemination state corresponds to the process of information pooling (Campo
et al., 2011), implying the propagation of the information through the swarm
and the reconsideration of personal decisions, i.e., an individual decision-making
mechanism based on the information obtained from the other agents.

Initially, each agent i chooses an option ω j ∈Ω uniformly at random as its primary
opinion opi with which it enters the exploration state. The goal of the agent in this
state is to explore the option corresponding to its current opinion, i.e., [Goto(opi )] 2.
The duration of the exploration t = const is fixed during the whole decision-making
process and set by a designer. During this time, each agent samples the quality of its
own opinion opi by interacting with the environment through the “ground sensor”. The
quality of the options {q j }n

j=1 (q j ∈R) is defined as the ratio of cells with colour j to the
2In this context, the colour j selected by the agent i as the option ω j ∈Ω and his opinion opi are

interchangeable.



2.4. GENERAL FRAMEWORK 25

total amount of cells in the environment. Since it is an unknown parameter, the quality
estimate q̂i of the agent i is taken as the ratio of the time during which it perceived the
colour j corresponding to his opi to the total amount of the given exploration time t ,
that is, “Estimate(q j )”. As such, every iteration the agent i counts the perception of
the option ω j =: opi as a valid observation and takes a proportion of such observations
to its total amount of perceptions during this state as its q̂i ∈R value.

When the time of the exploration state t is over, the agent enters the dissemination
state. One of the agent’s goals in this state is to broadcast its current opinion and to
collect the opinions of its local neighbours while continuing its motion. The communi-
cation is carried out with frequency ∆τC and the channel is established only with one
agent at a time, which is randomly selected within the interaction radius of dmax units.
In Figure 2.2a, thin (green) lines between the agents illustrate possible communication
channels, while bold (magenta) ones state for the actual communication between two
agents at the given time. The information received twice in a row from one and the
same neighbour is not registered by the agent in order to prevent multiple records of
identical data. For this, the agents also exchange their IDs along with the main infor-
mation message. The duration of dissemination τ is different for each individual i in a
swarm and depends on its personal quality estimate q̂i , obtained in the agent’s preceding
exploration state. The time τ is defined by the direct modulation of a positive feedback
loop performed by the linear function positively correlated with the option’s quality es-
timate, i.e., Modulation(q̂i )=q̂i ∗ t . The essence of the positive feedback is to amplify
the propagation of the opinions with high quality, such that a swarm can have a higher
probability to converge on the best option. For the same reason, the agent listens only
to those who are also in the dissemination state, gathering in this way the fittest opin-
ions, and ignoring the ones in the exploration state. If all the necessary conditions are
met and a pairwise communication channel is established, the agent i saves the received
package of the information if and only if it is currently in the last δτ iterations of its
own time τ. This is believed to facilitate effective population mixing and to guarantee
that the agent collects the latest up-to-date information.

At the end of the dissemination state, the agent i enters the decision-making state,
i.e., Decision(), where it reconsiders its committed option ω j ∈ Ω. Afterwards, it gets
back in the exploration state to re-evaluate its updated judgment opi . The entire process
repeats until the whole population comes to a consensus on the same option or the given
time is run out.

2.4.1 Opinion-based Decision-Making

A decision-making rule, corresponding to the block “Decision()” in Figure 2.3, represents
the “brain” of an agent. This rule is used by each individual in a swarm to revise its
particular mental state, e.g., opinion. In this case, a decision rule is performed by a
function h :Ωk →Ω such that

h : {op1, . . . ,opk } 7→ opi , (2.1)

taking k collected opinions by the agent i during its dissemination state as an input
and giving back a new opinion opi ∈ Ω as an output. To avoid potential delays in
implementing the function h and the impact of the outdated information, the input set
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is shortened to the last L perceived opinions to ensure that only the latest ones shape
a new decision of an agent. The input can also include the current opinion of an agent
itself, depending on the selected strategy. The construction of the function h greatly
affects the efficiency of the collective decision-making algorithm, identifying its speed
and accuracy (Franks et al., 2003) along with the type of the consensus, i.e., full or
partial.

Below we give three of the most popular decision-making strategies studied in (Valen-
tini, 2017) and provide explicit definitions of the corresponding functions h from Equa-
tion (2.1).

Voter Model

The voter-based decision-making mechanism is defined by the function h as follows:

h : {opk−L+1, . . . ,opk } 7→ r and({opk−L+1, . . . ,opk }), (2.2)

such that an agent i selects the opinion of a random neighbour j from the pool of the
last L collected ones, ignoring its own current opinion opi .

Majority Rule

Let C (op j ) denote the frequency of the opinion op j in the set {opk−L+1, . . . ,opk }∪ {opi }
and s be the index of an opinion with the maximum frequency in this set. The majority-
based decision-making mechanism is defined by the function h as follows:

h : {opk−L+1, . . . ,opk }∪ {opi } 7→
{

ops , if C (ops) ≥ L+1
2

opi , otherwise.
(2.3)

That is, if the index s is unique and ops is shared by at least half of the observed
neighbours of the agent i , including itself, the ops is adopted by the agent i as its new
opinion. In the other case or in case of a tie, i.e., if there exist several such indexes s,
the agent i keeps its current opinion opi .

Direct Comparison

The direct comparison rule was introduced in (Valentini et al., 2016) and implies that
agents besides the opinions also exchange their quality estimates. Let opr denote a
randomly chosen opinion from the set of {opk−L+1, . . . ,opk }. Then, a direct comparison
mechanism is defined by the function h as follows:

h : {opk−L+1, . . . ,opk } 7→
{

opr , if q̂r > q̂i

opi , otherwise.
(2.4)

That is, the agent i adopts the opinion opr of a randomly selected neighbour r if the
quality of this opinion q̂r is better than its own q̂i .

In comparison to the voter- and majority-based decision-making, direct comparison
is characterised by the absence of the modulation of a positive feedback loop in the
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dissemination state, i.e., such that τ = t . It also requires more capable individuals to
accurately differentiate between the alternatives based on the qualities, while the other
methods operate only based on the agents’ opinions.

2.4.2 Evaluation Metrics

The performance of a particular decision-making rule is determined by the general agree-
ment of the whole swarm (full consensus) on the best option ωbest ∈Ω. Depending on
the type of mental state, different metrics (e.g., degree of belief, confidence level) can be
introduced to evaluate the welfare of an agent, hence, of a swarm, and will be identified
where necessary in the corresponding chapters of the thesis. While the time and accuracy
of the undertaken collective decisions constitute two major characteristics of a collective
decision-making algorithm, regardless of its underlying mental model. In the following,
these universal metrics are given in the context of the opinion-based decision-making
model.

Consensus Time

Consensus time T cor r ect
N is considered as the number of iterations of the whole decision-

making process until all members of a group share the same opinion opi corresponding
to the ωbest ∈Ω.

Exit Probability

Exit probability EN defines the accuracy of collective decision-making and is calculated
as the ratio of successful trials. A trial is taken as “successful” if a swarm has converged
to a consensus on the right alternative, i.e., the ωbest .

2.5 Summary
In the following we highlight the connection between several objectives stated in Sec-
tion 1.3 and the modular blocks of the best-of-n framework as of Figure 2.3.

• Both “vertical” and “horizontal” upgrades of the agent’s mental model require
modifications of the function h from Equation (2.1), which determines the “Deci-
sion()” block.

• The structure of the environment and the spatial distribution of the options define
the values of the individual estimates and, as such, are handled in the “Estimate()”
block.

Modular Blocks Chapter 3 Chapter 4 Chapter 5
Decision() × ×
Estimate() ×

Broadcast()/ Listen() ×

Table 2.1: Research design.
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• The type of information that agents transmit to each other and based on which
decisions are taken is handled by “Broadcast()” and “Listen()”.

In Table 2.1 we specify which modular blocks are the focus of modifications (denoted
by cross) in which chapter of the thesis. As such, by introducing modifications in separate
blocks of the framework, we intend to preserve its current structure.



C
h

a
p

t
e

r

3
Preference-based Decision-Making for

the Best-of-2 Problem
In this chapter, we propose a decision-making model, which can be considered as a
combination of both voting models aforementioned in the previous chapter, namely, the
majority rule and the voter model. The developed decision-making mechanism is based
on the “vertical” upgrade of the mental model within the collective perception frame-
work and, therefore, additionally incorporates the personal preferences of the individuals
in a collective. In this regard, the research questions to be considered are: (i) how to
dynamically co-evolve preferences with the opinions of the agents to be consistent with
each other and (ii) how such inclusion of the low-level mental states affects the perfor-
mance of the collective decision-making system as a whole. For this purpose, we suggest
the mechanism of the preference update based on the undertaken decisions of the indi-
vidual and validate it in the collective setting on the collective perception scenario as a
binary collective decision-making problem. In this way, the current chapter focuses on
the introduction of modifications in the “Decision()” block as of Figure 2.3.

The chapter is organised as follows. Section 3.1 outlines the problem statement and
motivation of this chapter, followed by Section 3.2 with the necessary mathematical
background. Section 3.3 describes the proposed methodology along with the designed
opinion-preference dynamics, defining the preference-based decision-making mechanism.
To verify the upgraded framework, the experiments are conducted in Section 3.4 on the
collective perception scenario with randomly distributed black and white colours. The
chapter is concluded with a summary and discussion of the results in Section 3.5. The
presented concepts and findings of this chapter were previously published by the current
author in (Bartashevich and Mostaghim, 2019b).

3.1 Problem Statement and Contribution

As it was mentioned in Chapter 2, popular opinion-based decision-making mechanisms
such as the majority voting (MR) (Galam, 2008) and the voter models (VM) (Liggett,
1999) have been extensively studied in the literature, e.g., (Valentini, 2017; Strobel et
al., 2018) to name a few, using simulated artificial agents as well as robot swarms. They
are also widely used in our daily lives. Let us imagine the situation that a group of
friends is going to select whether they are going tonight to a pizzeria or a sushi bar, i.e.,
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binary decision-making problem. Every person in a group has his/her own opinion on
where to go, but they all need to come to a consensus on one option as a group to stay
together. The two common ways of approaching this problem are either to select the
opinion of the majority, namely MR, or to flip a coin and select a random one, namely
VM. The dilemma is which of these approaches is a better one such that the outcome
(final decision) satisfies everyone at most and in the shortest possible time. Another issue
is that neither of the approaches is taking explicitly into account the personal preferences
of the individuals. That is, under the preference we mean what I usually like more than
something else, e.g., “I prefer pizza more than sushi”. While opinion is my point of
view on a matter in a current situation, e.g., “I take pizza”. In such interpretation,
one can have certain preferences but not necessarily have their own opinions. In the
beginning, the opinions and the preferences can coincide with each other but, as soon
as the collective decision-making is started, they can become contradicting under the
influence of the other members or based on some preliminary acquired knowledge, for
example, that the pizzerias are not good in this region. However, the latter does not
mean that you do not like pizza more than sushi but implies that in this particular
situation you can have an opinion that does not correspond to your common preference.
In this regard, the preferences can also change over time to fit more with opinions. It
is considered that one’s preferences are unknown a priori and have to be discovered by
experience, therefore they are not considered permanent (Jacobs, 2016). Nevertheless,
people’s preferences and opinions attempt to be consistent with each other to reduce a
personal cognitive dissonance (Jacobs, 2016). As such, the research question is how one
can design such a co-adaptation process of two mental states, preferences and opinions,
given constantly incoming information from the surrounding (other agents, environment)
and how it affects the collective decision-making process.

Drawing an analogy with the previous example, one can consider a swarm of artificial
agents (e.g., robots) which has to collectively identify the abundance or the scarcity of the
hazardous materials in a certain unknown area, which is hard to reach and dangerous for
exploration by human beings. The applied decision rule is suggested to be chosen by the
designer in advance before the artificial system is deployed in the environment (Khaluf
et al., 2019), while the further collective decision-making process is considered to be
running without human intervention and assumed to be self-organised (Valentini et al.,
2014). The environment is unknown a priori to the agents, however, a human operator
(the designer) can have some preliminary information based on which the conjecture
about the possible correct outcome can be formulated. Referring back to the previous
example with sushi and pizza, one can consider this additional information similar to
the knowledge that “the pizzerias are not good in this region”. Therefore, we intend to
integrate this information into agents before they begin the decision-making process in
the form of their initial pre-opinions (i.e., preferences) and propose a preference-based
decision-making mechanism, which in particular cases includes the majority rule and the
voter model, allowing the collective to take into account individuals’ preferences along
with opinions during the process of undertaking decisions.

In this chapter, we describe collective perception as the collective decision-making
using a family of spin system models, taking inspiration from (Hartnett et al., 2016),
where a two-choice decision task was studied on the 2D square static lattice of individ-
uals with and/or without a steady bias regarding the particular option. In (Hartnett
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et al., 2016), the dynamics of the agents’ opinions were studied only within local inter-
actions predefined by the lattice structure, while, in our case, the agents also acquire
information from the environment, driven by the modulation of the positive feedback
and dynamic interactions with the others (see Section 2.4). In this regard, following
previous works (Berdahl et al., 2013; Torney et al., 2009), where the interdependence
between social and environmental influence on the decision-making of a moving group of
individuals has been studied, we expect to observe an adaptive group decision-making
process in our case. Besides that, we also integrate a learning mechanism for prefer-
ences, which allows agents to maintain consistent correspondence between preferences
and opinions within themselves over time, to avoid individuals’ cognitive dissonance.

3.2 Mathematical Background
To study the behaviour of spin models, in which spins can have only two possible states,
one can refer to the Ising model, which is widely used in statistical physics to study
ferromagnetism, the phenomenon of spin alignment with each other under the influ-
ence of a strong magnetic field. Considering the resulting emergent phenomenon, it has
been also used to study opinion formation in the collective systems, including consensus
decision-making, and in the application to social sciences (Galam, 1997; Stauffer, 2008).
As a common assumption, the Ising model is defined on a static lattice such that the
neighbouring spins (i.e., the neighbourhood of each agent on a lattice) stay fixed over
time. While natural systems (such as colonies of insects, flocks of birds, etc.) are char-
acterised by dynamic topologies, where individuals constantly change their positions in
space over time, creating dynamic networks. In this regard, we consider social appli-
cation of the two-dimensional Ising model on the dynamic random geometric graph of
agents to address the collective perception problem as described in Section 2.2.

In the following, we briefly introduce a theoretical background, including the descrip-
tion of the original Ising model and an overview of the concepts from the social impact
theory, needed in this chapter.

3.2.1 Ising Model

The Ising model is one of the basic models in statistical physics to study ferromagnetism
and to describe phase transition (i.e., change from one state to another). It is named
after Ernst Ising (1925), who was the first to solve the one-dimensional version of the
model and has shown that it does not have phase transition to an ordered ferromagnetic
state, what, however, does not apply for its higher dimensions.

Originally, it is defined on a d-dimensional lattice, i.e., Zd ⊆Rd , with the coordinates
as integer numbers. A finite lattice Λ` ⊂ Zd of size ` consists of the elements i called
sites and is defined as follows:

ΛL = {i = (i1, i2, ..., id ) : 1 ≤ i j ≤ `, j = 1,2, ...,d}.

As such, in the case of d = 2, each point of the lattice (i.e., site) is connected to the
other four adjacent ones, forming a static square lattice with the shape of a virtual torus
(periodic boundary conditions) in relation to the neighbourhood (see Figure 3.1). In
addition, each site i ∈ Λ` is characterised by a discrete variable σi ∈ {+1,−1}, which is
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called spin. That is, in Figure 3.1, a spin pointed “up” corresponds to σi = +1 and a
spin pointed “down” to σi =−1, respectively. The assignment of a spin value σi to each
lattice site i ∈Λ` represents a spin configuration σ := {σi }i∈Λ`

.

Figure 3.1: Example of a two-dimensional Ising model configuration on a square lattice
Λ4. Each spin is interacting with its neighbouring spins in the von Neumann neighbour-
hood (depicted in magenta colour).

In this way, the Ising model is defined by the total energy of its current spin config-
uration σ and is computed by the Hamiltonian H as follows:

H(σ) =− ∑
〈i j 〉

wi jσiσ j −h
∑

i
σi , (3.1)

where 〈i j 〉 is a pair of neighbouring sites on a lattice Λ` such that 〈i j 〉 = {i , j ∈Λ` : |i− j | =
1}, i.e., the Euclidean distance between two adjacent points equals 1. The interaction
between corresponding neighbouring spins σi and σ j is specified by parameter wi j . The
sign of wi j identifies whether the spins prefer to align (wi j > 0) or to anti-align (wi j < 0),
while its absolute value determines the strength of the interaction. As such, to calculate
the energy of the interactions between spins in the system, one has to sum over all pairs
of neighbouring sites, while longer range interactions are neglected. In the case of the
presence of an external magnetic field, which tries to align all the spins in one direction,
one has to define the term h > 0. Here, we consider the case with h = 0 such that

H(σ) =− ∑
〈i j 〉

wi jσiσ j . (3.2)

The probability that the system is in a state with configuration σ is called the configu-
ration probability µ`(σ) and is calculated as follows:

µ`(σ) = exp(−βH(σ))/
∑
σ

exp(−βH(σ)), (3.3)

where β= 1/kT with temperature T and Boltzmann constant k. The denominator sums
over all possible 2` spin configurations of a given finite lattice Λ` and defines the partition
function of the model, which describes the statistical properties of a system.
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To simulate the two-dimensional Ising model, one can use a modified Monte Carlo
method, namely the Metropolis algorithm (Newman and Barkema, 1999). It follows the
concept of single-spin-flip dynamics and is aimed at total energy minimisation, being
established as follows:

(1) Given the configuration σ, a lattice site is selected at random with probability 1/`
and its respective spin is flipped.

(2) The energy H(σ′) of a new configuration σ′ is calculated according to Equation 3.2.

(3) If H(σ′) < H(σ) the flip performed at step (1) is accepted, otherwise it is accepted
only with probability exp(−β(H(σ′)−H(σ)).

(4) Return to the step (1).

The process is repeated until all spins of a lattice are aligned. The evidence exists
that the system converges in the case of d = 2 (Peierls, 1936). In such a setting, the
temperature T is responsible for the exploitation-exploration trade-off, since high values
of T increase the probability to accept the flip, which does not minimise the total energy
of the system, and, as such, promote explorative behaviour, while lower values of T
decrease the chance of accepting not energy-minimising flips and, therefore, enhance the
exploitation.

The average value of all the spins on a lattice Λ` defines the level of model’s magne-
tization such that

M(σ) = 1

`

∑̀
i=1

σi . (3.4)

While one is usually interested in the study of the system’s dynamics in the thermody-
namic limit, i.e., `→∞, it was also shown that spontaneous magnetization is observed
already on relatively small lattices, although characterised by the smoothed singularities
due to the finite size (Bonati, 2014).

3.2.2 Social Impact Theory

Social impact theory (SIT) was proposed by Latané (1981) to model and predict how the
social environment affects an individual. It is based on the concepts, attempting to cover
a range of emotions, perceptions, attitudes, and physiological states of the individuals
and their impact on the others within a society. The impact of a social group on a
focal 1 individual is modelled by a social force field I and represents a multiplicative
function of the strength of the assertiveness s, proximity dE , and the number of the
individuals N , that is, I = f (N · s ·dE ). It is considered that these three parameters have
a significant effect on the exerted influence, such as if one of them approaches zero, the
whole impact is neglected. In particular, assertiveness is aimed to describe the aspect of
the psychological coupling between the individuals, encompassing different interpersonal
and situation-specific factors.

To observe the spread and change in the attitudes of individuals in the group, Nowak
et al. (1990) refined the static model of Latané (1981) and suggested using a type of Ising

1Selected person under consideration.
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model to model the dynamics of social interactions like spin dynamics, following the
principles of SIT. The same as in the case of the Ising model, the individuals in (Nowak
et al., 1990) do not move in space and have fixed positions on a lattice. The psychological
coupling between the individuals is expressed by two parameters, persuasiveness, pi j ,
and supportiveness, si j . The former indicates the degree to which the individual j can
convince the individual i to change the opinion, while the latter sets the degree to which
the individual j supports the individual i to keep the opinion. In this regard, the social
impact Ii of a group consisting of N members on the individual i is calculated in the
following way:

Ii =
[ N∑

j=1

pi j

dα
E (i , j )

(1−σiσ j )
]
−

[ N∑
j=1

si j

dα
E (i , j )

(1+σiσ j )
]

, (3.5)

where σi ∈ {−1,+1} represents a binary opinion of the individual i and dE (i , j ) is the
Euclidean distance between two individuals i and j in the physical space along with the
parameter α≥ 0, regulating the degree of a decline in the influence of distant individuals
j from the individual i . The parameters si j , pi j ≥ 0 are reassigned to random positive
values each time an individual changes its opinion.

The persuasive component (the first sum of Equation 3.5) equals zero, if the agents
hold the same opinions, resulting in Ii < 0, and Ii > 0 otherwise. As such, the opinion
dynamics of the individual i depends on the sign of the I t

i at time t and is defined as
follows:

σt+1
i =−σt

i sg n(I t
i ). (3.6)

That is, the individual i changes its opinion if Ii > 0, and keeps it if Ii < 0. Equation 3.6
is applied synchronously to every individual. To simulate possible “misunderstandings”
that can arise between the individuals during communication, one can introduce noise
β > 0 into Equation (3.6). As such, the individual will change its opinion with the
probability proportional to exp(βI t

i ).
Based on the extensive computer simulations in (Nowak et al., 1990), clustering and

polarization of opinions were noted as the most typical collective behaviours using Equa-
tions 3.5 and 3.6, depending on the initial distribution of opinions. Also, Lewenstein et
al. (1992) studied these equations theoretically using a mean-field approach, considering
a fully connected system of agents, and obtained the results confirming the simulations.
The considered above opinion dynamics can be modified by introducing the learning pro-
cedure for the parameters pi j and si j such that their variations with time are adjusted
to be correlated with the opinions of the individuals. For a review of learning effects in
SIT, we refer to Kohring (1996) and Holyst et al. (2001).

3.3 Proposed Methodology

In this section we propose an adaptation of the Ising model complemented with the
principles of the dynamic SIT to be applied to the binary scenario of collective perception.

In the collective perception scenario, instead of fixed lattice sites, we consider N in-
dividuals which are moving in the physical space, changing their local neighbourhoods,
and receiving information not only from their immediate neighbours (subject to the ful-
filment of certain conditions, see Section 2.4) but also from the environment. Unlike the
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models in Section 3.2, where the analysis of convergence is focused solely on the relations
between the agents given initial population configuration, here the agents must agree
on the most dominant feature in an unknown environment. Thus, these features have
to be additionally explored. Considering this, we keep the exploration as in Figure 2.3
and concentrate on modifications to the “Decision()” block. Different from the classical
opinion-based decision-making approaches considered in Section 2.4.1, along with opin-
ions we endow the agents with the preferences representing a bias towards one of the
possible outcomes. In the following, we describe our developed model of coupled opinion
and preference dynamics.

3.3.1 Opinion Dynamics

Considering a binary scenario, we assume that each member i of a swarm can share one
of two opposing opinions on a subject of matter, i.e., the most frequently met colour
in the environment, denoted as σi = ±1, i = 1,2. . . N , black or white (analogue of “up”
and “down” spins). Besides, we also assume that each individual i possesses an inner
preference for a particular outcome, denoted as ςi =±1. To note, the agents keep their
preferences solely to themselves and do not communicate them to others.

The idea is that the individuals can directly affect each other’s decisions with different
strengths, depending on whether the opinions held by the others are in correspondence
with the preference of the agent under consideration or not. As such, each agent in a
group favours the evidence from the others supporting its own preference and represents
a subject of confirmation bias.

Example 3.1 Let us consider an agent z, which holds a preference for black colour,
i.e., ςz =+1. Whenever this agent encounters another agent j with opinion “black”, i.e.,
σ j =+1, it places greater importance on this “evidence” than on the one from the agent
i corresponding to the white colour, i.e., σi =−1.

To define the social field of agent z to fit the aforementioned concept, as the first
step, we rewrite Equation 3.2 as follows:

I∗z =− ∑
〈z j 〉

wz jσzσ j = 1

2

∑
〈z j 〉

wz j (1−σzσ j )− 1

2

∑
〈z j 〉

wz j (1+σzσ j ), (3.7)

where 〈z j 〉 denotes a pair of neighbouring individuals in communication mode and the
value of |wz j | indicates the intensity of their “psychological impact” on each other,
holding opinions σz and σ j , respectively. As such, if agents z and j share the same
mental states, then Equation 3.7 consists only of the second sum and of the first sum
otherwise.

As the second step, we incorporate preferences in Equation 3.7. According to our
Example 3.1, within one interaction, when the opinion of the neighbouring agent j , i.e.,
σ j , coincides with the preference ςz of the focal agent z, the social field of the agent z has
to amplify the role of such neighbours before those whose opinions are in contradiction
with the preference ςz . In the following, we introduce the parameter wz to describe
the degree of confirmation needed for the agent to be confident in its own preference.
This means that if we consider in Equation 3.7 the mental state σz as the preference
of the individual z, i.e., ςz , then the second term of Equation 3.7 has to be wz times
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greater than the first one. As such, when the preference σz and the opinion σ j are
opposing each other, Equation 3.7 consists only of the first term, which in turn has to
be wz times smaller than when Equation 3.7 is represented only by the second one. As
such, if the agent has low value of wz , he needs to seek for more evidence from the
others to become confident in itself (i.e., “self-doubting” agent) than the one with higher
value of wz (i.e., “self-confident” agent). That is, in the classical model of social impact,
as of Equations 3.5 and 3.6, the agents are “attentive” to others in the sense that the
psychological coupling wz j is expressed via two parameters pz j and sz j , which indicate
the particular influence exerted by the individual j on the individual z and as such is
defined mainly by the influencing individual j . While in our case, as in Example 3.1, the
strength of impact coming from others is controlled by the agent z itself from “inside”,
i.e., self-centred influence on the contrary to the socio-centric one as in Equation 3.5.

In this way, considering that agent z puts in wz > 1 times more weight on the opinions
of its neighbours j that correlate with its own preference ςz than on the opinions of those
that do not, we redefine Equation 3.7 as follows:

Iz = 1

2

Nz∑
j=1

wzςz (1+ςz ·σ j )− 1

2

Nz∑
j=1

ςz (1−ςz ·σ j ) = (3.8)

=
{

wz n+
z −n−

z , if ςz =+1

n+
z −wz n−

z , if ςz =−1.

As such, the weight wz is applied as an enhancement of the impact of neighbours that
identify with an individual’s internal preference. In other words, it acts as an “inner”
supportive parameter sz j := wz , which is the same for all neighbours j in the neigh-
bourhood Nz of the individual z, while a persuasive parameter is omitted (or pz j := 1).
One should also take into account the sign of I∗z and respectively of its sum parts in
Equation 3.7. That is, if ςz = −1 then the respective weighted sum with neighbouring
individuals of opinion σ j =−1 has to bias the value of Iz to be negative, while in the case
of ςz =+1 and σ j =+1 – to be a positive one. Therefore, to control the sign of the sums
in Equation 3.7 to correlate with the preference of the individual z, we multiply each
of them on the value ςz such that the non-zero sum over the neighbouring individuals
with opinion σ j =−1 gets always the negative sign. As a result, one can distinguish two
cases depending on the preference ςz as shown in Equation 3.8, where n+

z and n−
z depict

the number of neighbouring agents with opinion σ j =+1 and σ j =−1, respectively. We
assume that if wz = 1, the individual does not have any preference for the outcomes, i.e.,
it is indifferent.

To generalise the case distinction considered in Equation 3.8, we introduce in Equa-
tion 3.9 the parameter w ′

z such that w ′
z = wz if ςz =+1 and w ′

z = 1
wz

if ςz =−1. That is,
w ′

z ∈ (0,1) if ςz =−1 and w ′
z > 1 if ςz =+1, while w ′

z = 1 if there is no preference. After
normalisation, we get the following:

Îz =
w ′

z n+
z −n−

z

w ′
z n+

z +n−
z
∈ [−1,1]. (3.9)

To incorporate the impact of the spatial distances between the neighbouring individ-
uals z and j such that the closer individuals to the agent z have greater influence than
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the farther ones, following SIT principle one can modify Equation 3.9 as follows:

Îz =
w ′

z
∑

j∈N +
z

(1/dα
E (z, j ))− ∑

j∈N −
z

(1/dα
E (z, j ))

w ′
z

∑
j∈N +

z

(1/dα
E (z, j ))+ ∑

j∈N −
z

(1/dα
E (z, j ))

∈ [−1,1], (3.10)

where N +
z and N −

z represent the neighbourhoods of the agent z with the agents of
opinion σ j =+1 and σ j =−1, respectively. In case α= 0, Equation 3.9 is the particular
case of Equation 3.10.

Given a normalised social field Îz of the individual z, we define the opinion dynamics
based on the probability values obtained from the following sigmoid activation function
according to (Hartnett et al., 2016):

pβ(Îz ) = 1

2

(
1+ t anh(βÎz )

t anh(β)

)
∈ [0,1], (3.11)

where β ∈ (0,∞) describes the nonlinearity of the model. Changing the parameter β from
0 to ∞ one can get a range of voting behaviours between the voter model and the majority
rule (Drouffe and Godrèche, 1999). Indeed, when β→ 0, pβ is approximated by the linear
function which equals 0 and 1 at the corresponding ends of a given segment Îz ∈ [−1,1]
(see Figure 3.2). As a result, the probability to switch the opinion is proportional to
the difference between the number of agents with σ j =+1 and σ j =−1 (given w ′

z = 1 in
Equation 3.9), what corresponds to the likelihood defined by the voter model. While,
when β→ ∞, pβ represents a step function such that pβ = 1 if Îz > 0 and pβ = −1 if
Îz < 0 along with pβ = 0.5 at Îz = 0. In this way, the switch is determined by the sign
of the majority, i.e., for Îz > 0 individuals with σ j = +1 are in majority and, therefore,

Figure 3.2: Activation function according to Equation 3.11.
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σ j =+1 will be selected as the new opinion, while for Îz < 0 – σ j =−1 (given w ′
z = 1 in

Equation 3.9). As such, the model is correspondent to the majority rule for β→∞.

Decision-making

Finally, the agent z changes its opinion from σt
z at discrete time t to σt+1

z at t + 1
according to the following function h :Ω→Ω:

h :σt
z 7→σt+1

z :=
{
+1 with probability pβ(Îz ), if σt

z =−1

−1 with probability 1−pβ(Îz ), if σt
z =+1.

(3.12)

3.3.2 Preference Dynamics

The decision of an individual z to change its current opinion σt
z is based on its social

field Îz calculated according to Equation 3.10, which is mainly defined by the individual’s
preference ςz and its strength w ′

z . While one can assume that the preference keeps static,
in the following, we adjust the introduced above opinion dynamics by incorporating
the learning procedure for the preferences as originally proposed by the current author
in (Bartashevich and Mostaghim, 2019b).

The purpose of the proposed Algorithm 3.1 is to balance the opinions and preferences
of an individual such that they are in consonance with each other in order to avoid
cognitive dissonance. The state of cognitive dissonance can be considered as a state of
inner disagreement within an individual, when its opinion σz (visible to everyone) does
not correspond to its inner cognition/preference ςz (not visible to others), e.g., σz =−1
and ςz =+1. Since the value of the preference strength w ′

z and the preference itself ςz

are correlated by definition, we do not operate explicitly with the parameter ςz but with
w ′

z . As such, by controlling the value of w ′
z one can dynamically adjust the preference

Algorithm 3.1: Preference Dynamics (Bartashevich and Mostaghim, 2019b)
1: if w ′

z > 1 & σt
z =+1 then

2: if σt+1
z =−1 then

3: w ′
z = w ′

z −∆w ′

4: end if
5: if σt+1

z =+1 then
6: w ′

z = w ′
z

7: end if
8: end if
9: if w ′

z > 1 & σt
z =−1 then

10: if σt+1
z =−1 then

11: w ′
z = w ′

z −2∆w ′

12: end if
13: if σt+1

z =+1 then
14: w ′

z = w ′
z +∆w ′

15: end if
16: end if

17: if w ′
z < 1 & σt

z =+1 then
18: if σt+1

z =−1 then
19: w ′

z = w ′
z −∆w ′

20: end if
21: if σt+1

z =+1 then
22: w ′

z = w ′
z +2∆w ′

23: end if
24: end if
25: if w ′

z < 1 & σt
z =−1 then

26: if σt+1
z =−1 then

27: w ′
z = w ′

z

28: end if
29: if σt+1

z =+1 then
30: w ′

z = w ′
z +∆w ′

31: end if
32: end if



3.4. EXPERIMENTAL STUDY 39

of the respective individual z. That is, as soon as the value of w ′
z becomes greater or

less than 1, its corresponding preference value ςz changes accordingly, i.e., becomes +1
or −1, respectively. In this regard, at the transition phase (Equation 3.12), depending
on the current opinion σt

z and the new opinion σt+1
z of an agent z as well as its current

preference (defined by w ′
z), we either decrease or increase the preference strength w ′

z .
That is, if after interaction with social and physical environment the agent z changes its
opinion to σt+1

z such that

a) the agent gets into cognitive dissonance at t + 1, we reduce the strength of its
preference on ∆w ′ to incline the preference towards a new opinion σt+1

z (lines 3
and 30 in Algorithm 3.1).

b) the agent remains in the cognitive dissonance at t +1, we perform a double decline
in the preference strength to accelerate the corresponding change of the preference
(lines 11 and 22 in Algorithm 3.1).

c) the agent gets out of cognitive dissonance at t +1, we enhance its preference by
reinforcing the preference strength on ∆w ′ to the respective side (lines 14 and 19
in Algorithm 3.1).

d) the agent stays in the cognitive consonance at t +1, the preference and its strength
do not change (lines 6 and 27 in Algorithm 3.1)

Thus, the proposed preference decision-making mechanism is performed by the com-
position of the function h :Ω→Ω given in Equation 3.12 and Algorithm 3.1, in the result
of which opinions and preferences “co-evolve” together by means of social experiences
and interactions with the environment.

3.4 Experimental Study

The experimental study of this chapter is designed to provide the proof-of-concept for
the proposed methodology and, hence, to address the first objective set in Section 1.3. In
particular, the impact of the preferences on the opinion-based collective decision-making
process is investigated along with the nonlinearity of the proposed model in Section 3.3.

The multi-agent simulation setup and the model of the collective perception environ-
ment are provided in Sections 2.2 and 2.4. The prevailing colour in the environment is
set to “white”. That is, we assume that a swarm of N = 20 agents reached the consensus
on the correct outcome, when any individual z in a swarm holds the opinion σz = −1
(i.e., “white”). The opinion and the preference updates are done at the end of the
dissemination state of a given agent before its new exploration state (i.e., “Decision()”
block in Figure 2.3) based on its last Lmax = 4 neighbours with whom the agent has
communicated (as described in Section 2.4) during its last δτ = 0.3 seconds (s) of the
dissemination state. The period of each individual’s exploration state is constant and
lasts t = 10 s. If another is not stated, the simulation configuration parameters can be
found in Appendix A.

To validate the proposed methodology, we investigate the following preference-based
decision-making strategies:
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• without preference update:

– Static policy is defined by the function h in Equation 3.12 and does not
follow Algorithm 3.1 such that the initial preferences of the individuals are
kept stable and do not change within time as well as their respective preference
strength. In this regard, we set the preference ςz of each individual z in a
swarm to coincide with its initial opinion σz and define w ′

z := 1.5 for ςz =+1
(preference for “black”) and w ′

z := 1/1.5 for ςz =−1 (preference for “white”),
respectively.

– W-Static policy is the variation of the Static one but with the initial guess
concerning the correct outcome provided by a designer (a capital letter of the
policy name indicates an expected outcome, i.e., “W”-white). In this vein, the
initial preference for a swarm is given by a designer/human as a conjecture
(e.g., “white is correct” as in the considered case) based on some information
sources not available to the agents. In this sense, the given conjecture repre-
sents only one hypothesis, which is given to all individuals in a swarm to test
it in a distributive manner. As such, each individual in a swarm independent
of its initial opinion is initialised with the global value w ′

z < 1 (i.e., the same
for each individual) sampled uniformly at random in the interval (0,1) at each
simulation rum.

– B-Static is based on the same principle as W-Static, with the difference that
initial conjecture set by a designer is wrong and corresponds to the incorrect
outcome. That is, the agents assume that “black is correct”. Therefore, each
agent is initialised with the global value w ′

z > 1 sampled uniformly at random
in the interval (1,2).

• with preference update:

– Adaptive policy is defined by the composition of the function h in Equa-
tion 3.12 and Algorithm 3.1 such that the preferences of the individuals and
their respective strengths are changing within time. We initialise preferences
in the agreement with agents’ initial opinions and set the global preference
strength for each member z in the swarm, which is sampled uniformly at ran-
dom in the range of (0,1) and in the range of (1,2) for ςz =−1 and for ςz =+1,
respectively. In this way, w ′

z values are initially the same for the agents with
the same preference. To note, the value of w ′

z for ςz = −1 is not an inverse
value of w ′

z for ςz =+1 as in Static policy.
– W-Adaptive represents the counterpart of W-Static but with dynamic pref-

erences following Algorithm 3.1.
– B-Adaptive is the counterpart of B-Static with adaptive policy following

Algorithm 3.1.

In the following, we summarise considered above policies in Table 3.1. To note, the
value of the preference strength w ′

z is set globally to a swarm each simulation run. If
not stated otherwise, we set ∆w ′ = 0.1 in Algorithm 3.1 and α= 0 in Equation 3.10.

Besides, a swarm can contain unbiased individuals, that is, those who do not have
a preference for any of the options, and, hence, are defined by w ′

z = 1. We assume that if
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Static W-Static B-Static Adaptive W-Adaptive B-Adaptive
agents with σz =−1 w ′

z = 1/1.5
w ′

z = r and(0,1) w ′
z = r and(1,2)

w ′
z = r and(0,1)

w ′
z = r and(0,1) w ′

z = r and(1,2)agents with σz =+1 w ′
z = 1.5 w ′

z = r and(1,2)
use of Alg. 3.1 no no no yes yes yes

Table 3.1: Preference initialisation of six preference-based decision-making strategies
with respect to the agents’ initial opinions σz ∈ {+1,−1}.

such individuals are present in the swarm, they do not update their preferences regardless
of the applied policy, as such remaining indifferent during the entire simulation time of
T = 40000 iterations.

The opinions of the individuals are initialised in equal proportions, favouring correct
and incorrect outcomes. That is, the initial densities of the individuals in the popu-
lation with opinion σz = −1 and σz = +1 are equal and correspond to %wh = %bl = 0.5,
respectively. As such, depending on the density of unbiased individuals in the popula-
tion %un ∈ [0,1], the agents’ preferences in the case of Static and Adaptive policies are
distributed in the following way. Given a swarm of N agents, N ∗%un individuals are
assigned w ′

z = 1, whereas %wh = %bl = (1−%un)∗0.5 such that the remaining N ∗%wh and
N ∗%wb individuals with corresponding opinions σz = −1 and σz = +1 are assigned the
preference strengths w ′

z < 1 and w ′
z > 1, respectively.

The experimental study is organised as follows. Section 3.4.1 aims to give an insight
into the influence of the nonlinearity parameter β in Equation 3.11 on the behaviour of
the model introduced in Section 3.3 along with the impact of unbiased individuals on
the collective decision-making. Section 3.4.2 investigates the performance of static and
adaptive preference-based decision-making policies with respect to the given preference
for the whole swarm (see Table 3.1) over different colour ratios in the environment, while
Section 3.4.3 examines the influence of initial opinion distribution. Finally, Section 3.4.4
sheds some light on the weight of physical distance between the agents in Equation 3.10
regarding the collective performance in the given context.

3.4.1 Impact of Indifferent Individuals

The goal of the first experiment is to investigate how density %un of indifferent individuals
(those who have no inherent preference, i.e., wz = 1) affects the consensus time and the
exit probability of a swarm on the correct outcome with regard to the nonlinearity
parameter β. For this purpose, three preference-based decision-making policies, namely,
Static, Adaptive, and W-Adaptive, are evaluated on the binary collective perception
scenario with a random distribution of black and white cells being almost in equal
proportions in the environment, i.e., ρ∗

b = 0.92 2.
In Figure 3.3, for each parameter β ∈ {0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0}, we anal-

yse the consensus time on the correct outcome as a function of ρun ∈ {0,0.1, . . . ,1.0} using
a local weighted regression (LOESS) and a generalised linear model (GLM) with a bi-
nomial distribution for the exit probability, respectively, to show trends in the data
gathered over 40 simulation runs. Regardless of the parameter β, the performance of
W-Adaptive drops significantly in both metrics with the increase in the number of in-

2The value of ρ∗b indicates the ratio of black Γbl and white Γwh cells on the grid such that ρ∗b =
Γbl /Γwh , given Γwh > Γbl .
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Figure 3.3: Consensus time (T cor r ect
N ) and exit probability (EN ) over density %un of

unbiased individuals in the swarm for each value of the nonlinearity parameter β (top
headings). Shaded areas represent the 95% confidence interval. Task difficulty: ρ∗

b = 0.92.
Top plot is from (Bartashevich and Mostaghim, 2019b).

different individuals in the population. As expected, in the case of %un = 0, it is the
best decision-making policy (DM) among others with the lowest consensus time and the
highest exit probability rate, reaching its peak performance for β ∈ {4.0,4.5}. The results
provide evidence that being initially biased towards the correct outcome, individuals
following W-Adaptive policy can maintain their preferences, i.e., w ′

z ∈ (0,1), despite al-
most equal proportions of the colours in the environment. However, as indifferent agents
are integrated into the group, the accuracy of the W-Adaptive swarm degrades steadily
along with the increase in the consensus time, while Adaptive and Static policies are less
affected by the presence of unbiased sub-groups, preserving the exit probability around
(0.6,0.7) across examined values of %un and β. In general, Adaptive and Static policies are
described by the similar accuracy (exit probability) but differ in the consensus speed,
where the former is primarily faster than the latter for lower densities %un . Overall,
the best results in terms of speed and accuracy are mainly observed for both adaptive
policies at %un = 0 with β ∈ (2.0,5.0).

Interestingly to note, for Static policy, the presence of indifferent agents in the pop-
ulation facilitates a decrease in the consensus time without deteriorating accuracy for
some values of β, i.e., at %un = 0.4 for β = {3.0,4.0} and at %un = 0.5 for β = {4.5,5.0},
respectively. In the case of β = 4.0, a steady rate in the consensus time for both W-
Adaptive and Adaptive is observed up to %un = 0.4, while Static consensus time drops by
this point. Generally, the consensus speed for W-Adaptive and Adaptive raises with the
number of unbiased individuals for most of the considered values of β, accompanied by
some non-significant decline around %un = 0.6 for lower values of β ∈ (0.5,1.5). Neverthe-
less, the best performance for both adaptive strategies in terms of consensus speed and
the accuracy is observed at %un = 0 for β= 4.5. As such, in the following experiments of
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this chapter, we set β= 4.5.
The observed results for Static policy, in particular, in the case of β = {4.5,5.0},

are consistent with the findings in (Hartnett et al., 2016), where it was shown that
the individuals without a preference (i.e., indifferent ones) reduce the time to reach a
consensus state in a collective placed on a two-dimensional square lattice with fixed
positions and without environmental stimuli. Our finding suggests that in the case of
static preferences, being coupled with a positive feedback loop and interactions with the
environment, indifferent members in a dynamic geometric graph of agents assist in the
propagation of opinions reflecting the correct outcome and of the highest quality. While
this does not apply in the case of adaptive preferences, where the unbiased individuals,
particularly in the case of W-Adaptive, deteriorate the collective performance. The
latter can be explained by the fact that the preference strength of indifferent agents, i.e.,
wz = 1, remains constant over time without undergoing individual adaptation, thereby
attenuating the adaptation process as a whole at the collective level, resulting in longer
periods of consensus time.

3.4.2 Influence of the Task Difficulty

The goal of the second experiment is to determine how preferences alone impact the opin-
ion dynamics and, hence, the collective outcome in comparison to the classical preference-
free opinion-based decision-making strategies such as majority rule and the voter model
coupled together with direct modulation of the positive feedback, namely DMMD and
DMVD, as in (Valentini, 2017). To do this, we vary the task difficulty ρ∗

b and evaluate
the performance of three static (Static, W-Static, B-Static) and three adaptive (Adap-
tive, W-Adaptive, B-Adaptive) preference-based decision-making policies with regard
to different preference initialisation without the presence of indifferent individuals, as
indicated in Table 3.1, relative to the performance of DMMD and DMVD.

Figures 3.4 and 3.5 show the exit probability using a GLM with binomial distribu-
tion and the consensus time on the correct outcome smoothed using LOESS over eight
task difficulty variations and 100 simulation runs for each difficulty and decision-making
policy. As one can observe from the figures, the performance primarily drops with the
increase of the task difficulty, regardless of the applied strategy. The results for the
DMVD and the DMMD strategies are consistent with those presented in (Strobel et al.,
2018), where the updated simulation implementation of Valentini et al. (2016) was used.
That is, the DMVD strategy is more accurate than the DMMD, i.e., characterised by a
higher exit probability at all difficulty settings (Figure 3.4), while the DMMD is below
1.0 exit probability even on ρ∗

b = 0.52. However, the DMVD has higher consensus time
(T cor r ect

N ) and higher variability than the DMMD, especially for higher difficulties, i.e.,
ρ∗

b ≥ 0.67 (Figure 3.5).
As shown in Figure 3.4, the exit probability (EN ) of Static and Adaptive policies

share a similar pattern with the DMVD strategy along with the decrease for higher ρ∗
b ,

although Adaptive is characterised by slightly higher EN values for the most difficult
setting. At the same time, according to Figure 3.5, Adaptive is significantly faster than
both DMVD and Static, especially for ρ∗

b ≥ 0.67. It is even faster than the DMMD
strategy at almost all difficulty configurations, reaching the same T cor r ect

N only at ρ∗
b =

0.92, along with a higher accuracy EN . While T cor r ect
N of the Static is in-between the
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Figure 3.4: Exit probability (EN ) as a function of the task difficulty ρ∗
b . Configuration

of parameters: %un = 0, β= 4.5. Shaded areas represent the 95% confidence interval.

DMVD and the Adaptive for ρ∗
b < 0.67, reaching the same T cor r ect

N as the DMMD at
ρ∗

b ∈ {0.67,0.72}, and increases for ρ∗
b > 0.72 at the same speed as the DMVD.

Indeed, the results obtained using W-Static and W-Adaptive are the best among
others in both metrics EN and T cor r ect

N . However, the exit probabilities of both policies
are also characterised by a decline for higher difficulty settings, although W-Static drops
only to EN ≈ 0.95 at ρ∗

b = 0.92, while the EN of the W-Adaptive is already decreased for
ρ∗

b ≥ 0.72 reaching EN ≈ 0.87 at ρ∗
b = 0.92. The consensus time using the W-Static policy

is unaffected by the task difficulty and remains stable around T cor r ect
N ≈ 30 s. even at

the highest difficulty. Interestingly to note, the W-Adaptive is characterised by lower
consensus time than W-Static up to ρ∗

b = 0.67, the same T cor r ect
N for ρ∗

b ∈ {0.67,0.72} and
higher T cor r ect

N for ρ∗
b > 0.72.

As expected, the performance of the B-Static policy is the worst among others.
It has EN ≈ 0.6 at the easiest difficulty setting and drops to EN ≈ 0.15 at the hardest
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Adaptive
DMMD
DMVD
W-Adaptive
Static
W-Static

B-Adaptive
B-Static

Figure 3.5: Consensus time (T cor r ect
N ) as a function of the task difficulty ρ∗

b . Config-
uration of parameters: %un = 0, β = 4.5. Shaded areas represent the 95% confidence
interval.

one, accompanied by the longest consensus time T cor r ect
N also increasing with the task

difficulty along with high variability. By analogy with W-Static and W-Adaptive, one
could expect that the results obtained with the B-Adaptive policy should go aligned
with the B-Static with a slightly better performance due to the dynamic update of the
preferences, especially on the easier settings. Indeed, we observe a significantly better
performance of the B-Adaptive policy in comparison to the B-Static in both metrics EN

and T cor r ect
N , although it is still worse than the other strategies under consideration. That

is, the consensus time (T cor r ect
N ) of the B-Adaptive policy resembles the pattern of the

DMVD strategy, reaching similar T cor r ect
N on average as the B-Static with less variability

for higher difficulties. While the exit probability of the B-Adaptive goes close to the exit
probability of the DMMD strategy, especially for the easiest difficulty of the task, it drops
below the EN of the DMMD at the hardest setting, i.e., EN ≈ 0.45. Nevertheless, such a
significant improvement of the B-Adaptive policy in terms of accuracy (EN ) compared
to the B-Static indicates that the learning procedure 3.1 with the chosen reward ∆w ′

allows agents with the initial preferences in the range of (1,2) to reach the range of (0,1)
with the probability of EN ≈ 0.93 for ρ∗

b = 0.52.
In summary, the results indicate that the Static policy driven by direct modulation

of positive feedback resembles the DMVD strategy, but with a faster consensus speed
for easier difficulty settings, owing to local noise-induced amplifications caused by the
nonlinearity parameter β. Due to the preference dynamics, the resulting Adaptive pol-
icy is significantly faster in the consensus speed than both the DMVD and the DMMD
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strategies, reaching only the similar consensus time as the DMMD at the highest diffi-
culty, while keeping the high exit probability rates as the DMVD. The performance of
the static policies is the best among the others in both metrics T cor r ect

N and EN when the
agents’ initial preferences are correlated with the actual correct outcome. On the other
hand, these policies are the least reliable and the slowest ones when the agents’ prefer-
ences are associated with a non-dominant colour (incorrect outcome). A similar pattern
in performance is observed for the adaptive policies with the respective initialisation
of preferences as well. However, adaptive policies are generally faster than their static
counterparts. Moreover, in the case of the “non-appropriate” 3 preference initialisation,
the Adaptive policy is significantly more accurate relative to the Static one with the
same initialisation.

The incorporation of the global preference towards the correct outcome in the Static
policy leads to the expected almost 100% exit probability with the constant low con-
sensus time unaffected by the task difficulty ρ∗

b . However, when the swarm is globally
biased towards the incorrect outcome (as in the B-Static), the collective performance
significantly deteriorates, although the B-Static is still able to keep the exit probability
rate above the chance level for ρ∗

b < 0.61. It seems possible that the latter result is due to
the numerical bias hidden in the values of the preference strength w ′

z of the individuals.
Indeed, the preference strength w ′

z in Equation 3.9 advocates for both biases towards
black and white outcomes, that is, leaving the weight of 1.0 and additionally the weight
greater than 1.0, depending on the agent’s z preference. Let us consider the following
example. Even if we pretend that w ′

z = 2, which is outside the initialisation range of the
B-Static, it means that “the agent z prefers ‘black’ two times stronger than ‘white’ ”
or “the agent z prefers ‘white’ with 0.5 of the strength as it prefers ‘black’ ”. As such,
an initialisation with other values below 2 in the range of (1,2) leads even to a weaker
preference strength in the black outcome and, hence, to a stronger than 0.5 preference
strength in white. As a result, in the case of the easier difficulty settings and the direct
modulation of the positive feedback, it shows itself as not strong enough to keep the
agent’s opinions biased towards black preference. To verify the latter, in the following,
we provide additional experiments in the environment with the prevailing colour set to
‘black’.

Figure 3.6 shows the exit probability for six preference-based decision-making policies
using a GLM with binomial distribution over eight task difficulty configurations based on
the data gathered in 100 simulation runs for the environments E wh and E bl with correct
outcomes ‘white’ and ‘black’, respectively. While one can expect symmetrical results for
both environments, we observe that this holds only for the Static policy, whereas the
performance of the others in the case of the E bl : ‘black is correct’ has deteriorated in
comparison to their counterparts in the case of the E wh : ‘white is correct’. Compared
to the B-Static policy on the E wh , the exit probability of the W-Static on the E bl drops
below the chance level already for the easiest difficulty of the task. Indeed, in the case
of the W-Static, the preference strength of an agent z is initially set in the range (0,1)
such that considering, for instance, w ′

z = 0.2 means that “the agent z prefers ‘white’ five
times stronger than ‘black’ ” or “the agent z prefers ‘black’ with 0.2 of the strength as
it prefers ‘white’ ”. As such, one can see that the initial relative preference strength

3Under “non-appropriate” preference initialisation, we mean the case when initial preferences of the
agents are correlated with a non-dominant colour (incorrect outcome).
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Figure 3.6: Exit probability (EN ) as a function of the task difficulty ρ∗
b for the en-

vironments with the prevailing colour ‘black’ and ‘white’ on the left-hand and on the
right-hand side, respectively. Shaded areas represent the 95% confidence interval.

of the agents with the preference towards white can be much stronger than of the ones
with the preference towards black. That is, as it was shown in the example with w ′

z ≈ 2,
the maximum relative possible strength of the agents’ preference for the B-Static equals
2, while in the case of the W-Static it can go much above this value, e.g., it equals 5
in the case of w ′

z = 0.2. Therefore, the agents with the white preference are in general
less biased towards ‘black’ in comparison to the ‘white’ bias for the agents with the
black preference. That is, the lowest possible initial bias towards ‘white’ in the case
of the black preference equals 0.5 (due to the maximum value of 2 for w ′

z), while the
initial bias towards ‘black’ in the case of the white preference can go below 0.5, as in
the example here, it equals 0.2. In this way, the applied numerical initialisation of the
preference strengths is biased to supply individuals with relatively stronger preference
towards ‘white’ compared with ‘black’ regardless of the agent preference. As a result,
the agents with black preference are easier prone to switch to the white than those with
the white preference to the black. The latter is also confirmed by the results of the
Adaptive policy and its biased counterparts (W- and B-Adaptive) shown in Figure 3.6.
That is, the exit probability of the Adaptive strategy on the E bl is lower than on the
E wh for all difficulties and has an exit probability below 1.0 even at the easiest setting
on the E bl . This is expected since half of the population with the preference towards
white is stronger in their social field than the ones with the black preference, resulting in
the better performance on the E wh and the worse one on the E bl . For the same reason,
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endowing agents with an initial preference towards the black outcome (i.e., B-Static,
B-Adaptive) leads to higher exit probability rates on the E wh than for the ones endowed
towards white (i.e., W-Static, W-Adaptive) on the E bl . Overall, the relative performance
of the most decision-making policies in relation to each other primarily remains the same
regardless of the disclosed numerical bias on both E wh and E bl . That is, those initially
biased to the correct outcome are the best among all the others, while those biased to the
wrong are the worst, for both static and adaptive policies. The exception holds only for
the Adaptive policy alone, where its performance comes closer to the DMMD strategy
on the E bl than to the DMVD as on the E wh , indicating no superiority before the Static
policy on the E bl .

3.4.3 Role of Opinion Initialisation

According to the preliminary experiments, in order to ensure a consensus on any option
in a finite time T any

N , the initial agents’ opinions have to coincide with their initial
preferences. That is, at the beginning when the agent is not receiving any information
from the surrounding, its opinion simply reflects its preference. After interactions with
others and the environment, the opinions start to evolve with respect to the personal
preferences of the individuals. In this regard, we investigate how the performance of
the introduced preference-based decision-making policies, namely Static and Adaptive,
depends on the initialisation of the opinions and, hence, of the preferences compared to
the DMVD and the DMMD strategies.

Figure 3.7 shows the regression with the 95% confidence interval for the consensus
time T any

N using a generalised additive model and the exact values of the exit probability
(EN ) with the standard error over the initial number of agents Ea(0), which prefer the
option a = ‘bl ack ′, while the option b = ‘whi te ′ being a correct one, for ρ∗

b ∈ {0.52,0.92}.
We consider the population of N = 20 agents without indifferent individuals, i.e., %un = 0,
and β = 4.5, conducting 100 simulation runs for each Ea(0) ∈ {1,2, . . . ,19}. The observed
results confirm the ones obtained in the previous section for Ea(0) = 10. For all policies,
EN decreases with increasing values of the initial individuals Ea(0) preferring the incorrect
outcome, i.e., ‘black’. On the easiest scenario (ρ∗

b = 0.52), the exit probabilities of the
Static and the Adaptive policies share similar patterns to the DMVD strategy, with the
Adaptive being in-between of the Static and the DMVD due to the dynamic adjustments
of the preferences. Additionally, the Adaptive policy is the fastest policy for all initial
settings Ea(0), while the Static is characterised by a similar consensus speed as the
DMVD. The consensus time T any

N of the DMMD strategy declines for Ea(0) > 13, which
is explained by the decreasing EN (i.e., EN < 0.5 for Ea(0) > 13), while the T any

N of other
strategies drops only for Ea(0) > 17 also being accompanied by the downward change of
the EN below the chance level. On the hardest scenario (ρ∗

b = 0.92), the DMVD is the
slowest policy with the highest T any

N values for all initial settings Ea(0) but being the
most accurate one for Ea(0) > 12. While the DMMD strategy is described by the lowest
consensus time T any

N , it is also the least accurate, especially for Ea(0) > 10. As in the
case of ρ∗

b = 0.52, the performance of the Static and the Adaptive policies is between
the DMMD and the DMVD strategies. The preference-based decision-making policies
take the best from both, the DMMD and the DMVD strategies. That is, the decision
accuracy of the Static and the Adaptive until Ea(0) < 10 is as high as of the DMMD, while
for Ea(0) > 10 it decreases slower than the DMMD strategy, approaching the accuracy
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Figure 3.7: Consensus time (T cor r ect
N ) and exit probability (EN ) as a function of the

initial number Ea(0) of individuals with opinion a for ρ∗
b ∈ {0.52,0.92}. Bottom plots:

DMMD - 2, DMVD - 3, Static - 4, Adaptive - #. Error bars indicate the standard
error for the EN , considering sample as binomial random variables.

of the DMVD. In general, the Static policy is inferior to the Adaptive policy for all
Ea(0) in both metrics T any

N and EN . The pattern of the consensus speed for the Static
approaches the DMVD, while the Adaptive is as fast in the consensus time T any

N as the
DMMD, although with higher T any

N values for Ea(0) > 10 due to its higher EN , which is
as accurate as for the DMVD.

3.4.4 Physical Distance Dependency

In the following, we analyse the impact of the spatial Euclidean distance dE between
the agents during communication on the preference-based decision-making process by
varying the parameter α in Equation 3.10. For this purpose, we conduct the experiments
over 40 simulation runs on the hardest binary scenario (ρ∗

b = 0.92) with α ∈ {0,1,2} and
β = 4.5 using the Static and the Adaptive policies along with their best counterparts,
namely, the W-Static and the W-Adaptive, respectively, for different proportions of the
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Figure 3.8: Smoothed conditional means of consensus time (T cor r ect
N ) and exit probability

(EN ) as a function of the proportion of unbiased individuals in the swarm for different
distance-weightings, i.e., {d−1

E ,d−2
E }. The notion of d 0

E (solid line) corresponds to the
non-distance-based case. Configuration of parameters: ρ∗

b = 0.92, β= 4.5.

indifferent individuals in a swarm, i.e., %un ∈ {0,0.1, ...,1.0}.
The obtained results in Figure 3.8 regarding the impact of %un confirm the ones in

Section 3.4.1. That is, the Static policy is improving its performance with the increase
of %un , while the Adaptive is deteriorating as more indifferent individuals are introduced
in the population, the same as for the W-Static and the W-Adaptive policies. As such,
the results for %un = 0 are also the best among the others regardless of the distance-
weighting factor (except for the Static policy). Overall, for a swarm of size N = 20 with
the maximum communication distance of dmax = 5 units between the agents, we observe
that primarily the best results in terms of the mean of both consensus time (T cor r ect

N )
and exit probability (EN ) are obtained for α= 0, indicating that the inclusion of the spa-
tial distance between the agents does not significantly affect the collective performance.
The experiments with the increased dmax up to 10 units (see Supplementary material
Appendix B, Figures B.1 and B.2) also confirm this observation. They demonstrate no
significant difference in the performance between considered distance-weighting factors
for the Static as well as for the Adaptive policies, where the latter with α= 0 is better
for higher difficulties ρ∗

b in terms of the T cor r ect
N than its distance-weighted counterparts.
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Indeed, since the agents are constantly moving and switching their modes from explo-
ration to communication, it can occur that the neighbours of the focal agent are holding
opinions that do not reflect the information (i.e., colour) of this local area as they are
already jumbled. In this case, the amplification of the influence of the physically closest
neighbours does not necessarily follow the concept that the closer individuals hold simi-
lar opinions, as in the case of the classical SIT, therefore resulting in the non-significant
numerical corrections in the calculation of the individuals’ social fields in the regard of
the collective perception.

3.5 Summary and Discussion

In this chapter, we have presented an Ising-based approach for collective decision-making
that corresponds to the “vertical” upgrade of the mental model and integrates both
opinions and preferences of the group members, following the principles of the social
impact theory. The proposed preference-based decision-making model is inspired by
the model of the physical spin systems studied by Hartnett et al. (2016). The main
difference between our and their work is threefold. First, we introduce the learning
procedure for the preferences into the model, meaning that the personal preferences
are varying with time along with opinions. Secondly, we consider different problems.
They focused only on the consensus depending on the initial configuration of opinions,
while we require the social system to converge on a particular environmental state. The
latter is expressed as the dominant colour in the environment and has to be explored by
the agents. In this respect, our model includes direct modulation of positive feedback,
implying interaction of the agents with the physical environment. Whereas in their work,
the physical environment is considered to be absent. Thirdly, in our work, the individuals
are not fixed on the lattice but continuously move. This results in dynamically changing
communication topologies, which are intensified by behaviour phases, exploration and
dissemination.

The main goal of this chapter was to investigate how the inclusion of an initial inner
personal bias into individual decision-making towards one of the options can affect the
outcome of the decision-making process at a collective level. In particular, the main
focus was put on the interplay between two mental states of an agent, namely, prefer-
ences and opinions. While initially, the agents are in inner “harmony” with themselves,
interactions with others and the environment during the decision-making process can
lead to intermediate inner disagreements of an agent within its personal mental states,
i.e., opposing preferences and opinions of an agent. We refer to the latter as the agent’s
state of cognitive dissonance. According to Festinger (1957), it is supposed to be an
undesirable state of an individual which triggers motivation to reduce it. In its turn, we
assume that mitigating the state of inner disagreement by the dynamic re-adjustment
of individuals’ initial preferences can also help to eliminate a potential socially negative
bias on the undertaken decisions (i.e., towards incorrect outcome). In this regard, along
with the static approach, where the preferences remain stable, this chapter proposes
the adaptation procedure for the individuals’ preferences such that their variation is
correlated with the individual’s opinion dynamics.

One can also think about preferences as an initial conjecture of the agents about
how the environment looks like, i.e., what a correct outcome can be. Thus, an initial
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conjecture can be also considered as a designer’s choice, communicated to the swarm
before the start of the decision-making process, based on some information sources not
available to the agents. In this sense, it will represent a single hypothesis, given in the
form of an initial global preference, the same for all individuals (i.e., homogeneous swarm
concerning preferences), to test it in a distributed manner. In case, when there is no
available evidence to decide on the initial preference, one can let a collective figure it out
on its own by assigning equal proportions of the population with preferences towards one
or another option under consideration. As such, we have evaluated swarm configurations
with and without initial conjectures to understand the possible implications on the
collective decision-making process.

The experiments without a particular initial conjecture have shown that the proposed
preference-based decision-making model behaves primarily similar to the voter model
(DMVD) and majority rule (DMMD) with direct modulation of the positive feedback.
Considering that the voter model is generally more accurate but slower than the majority
rule, the adaptive decision-making policy with introduced dynamic preferences leverages
the best of both, namely, being as accurate as the voter model and as fast (or even
faster on the easier scenarios) than the majority rule. While the static policy with fixed
preferences mainly resembles the DMVD strategy in both accuracy and consensus speed.
As such, the introduced learning procedure for the preferences allows speeding up the
consensus compared to the static policy without deprivation of the accuracy, confirming
our research hypothesis. This observation is also supported by similar trends for different
initialisation of opinions and, hence, preferences. Especially, in the case of the hardest
scenario (ρ∗

b = 0.92), the adaptive policy shows superiority before other strategies in
the consensus speed for up to 75% of the initial population biased towards the wrong
outcome, while remaining as accurate as the DMVD.

The results for the preference-based decision-making policies with correct and wrong
initial conjecture have shown the best and the worst performance among all considered
policy variations, respectively. In this regard, the adaptive policy with correct initial
guess is faster than its static counterpart for easier scenarios maintaining 100% of accu-
racy, although degrading in both for higher difficulties compared to the static one. In
the case of the wrong initial conjecture, the dynamic adaptation of the preferences in the
adaptive policy allows a collective to achieve a significantly better performance in both
speed and accuracy than its static counterpart, achieving around 90% of accuracy on
the easiest scenario. Taken together with the results obtained without a specific initial
conjecture, the latter also provides the evidence to confirm our research hypothesis, indi-
cating that the co-evolution of the preference-opinion dynamics avoiding inner states of
disagreement within the individuals (i.e., personal cognitive dissonance) promotes faster
and more precise undertaking of the collective decisions.

However, the experiments have also demonstrated that the proposed preference-based
decision-making model has an asymmetric behaviour concerning the correct outcome.
This is mainly caused by the unequal strength of the preferences’ initialisation due to
the different ranges of strength values defining the preferences. Further research should
be done to investigate more equal preference strength’s initialisation concerning the
potential options to ensure symmetric results with respect to the correct outcome. In
future work on this subject, the learning procedure for the preferences can be modified to
follow the principle of “cumulative advantage” (Kohring, 1996). In this way, an increase
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in one’s preference strength will be done proportionally to its current level, thereby
bringing more balanced numerical updates to the system with regard to the preference
strength ranges. It can also be possible to define the model using separate strength
parameters for each option in Equation 3.7 instead of relative preference strength w ′

z .
As such, both strengths will belong to the same numerical interval, similar to persuasive
and supportive parameters, which should be easier to control in equal proportions. 
Additionally, in the future, it might also be worth investigating the use of social proximity
in Equation 3.10 derived from socially spatial information. It was shown to be more
influential on decision-making than that from physically spatial information (Angst et
al., 2010), such that the agents would exchange opinions only with those they trusted.

Overall, the presented Ising-based approach for collective decision-making can be
considered as a generalisation of the voting strategies, incorporating processes ranging
from voter to plurality models, regulated by the nonlinearity parameter. The addition
of preferences into the model enables a designer to manipulate the undertaken decisions
of the individuals based on a presumption of the right outcome, as such, giving the
possibility to steer and to take control over the self-organisation process to some degree.
The latter is referred to as one of the attributes of the human-collective interaction
strategies, which aim to provide operators with the means to influence and to better
inform collective decisions, increasing in this way the fault tolerance of the autonomous
system (Cody et al., 2021). Indeed, in the case of the correct initial conjecture imposed
in the developed preference-based decision-making model, one can observe fast consensus
achievement with high accuracy even in the case of a small difference between the options.
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Influence of the Environment on

Collective Decision-Making
The following chapter analyses the impact of the environmental structure on collective
decision-making in the context of the binary collective perception scenario, addressing
the second objective posed in Section 1.3. The interaction of individuals with the physi-
cal environment, as expressed in the “Estimate()” block in Figure 2.3, is another aspect
determining the efficiency of a collective decision-making system in addition to individ-
ual decision-making mechanism. When there is some bias hidden in the environment,
the agents are the object of its indirect influence, which is often not under their con-
trol. Therefore, the goal of this chapter is to build an understanding of what features
or characteristics of the environment make it really difficult for distributed collective
perception.

The chapter is organised as follows. Section 4.1 introduces the problem statement
and motivation of the chapter, followed by Section 4.2 with the necessary mathematical
background. Section 4.3 describes the proposed methodology including the considered
representation of the environment. In Section 4.3.2, we suggest a binary-featured bench-
mark set consisting of nine spatial patterns and define their distinctive characteristics in
Sections 4.3.3 and 4.3.4. The proposed benchmarks are evaluated in Section 4.4 within
the state-of-the-art opinion-based decision-making strategies, which were described pre-
viously in Section 2.4. Finally, in Section 4.5, the summary and the interpretation of
the obtained results are given, refining the existing concept of the task difficulty for the
collective perception scenario. The presented ideas in this chapter and the respective ex-
periments were published in the previous works of the author of this thesis (Bartashevich
and Mostaghim, 2019c; Bartashevich and Mostaghim, 2019a).

4.1 Problem Statement and Contribution

Looking at Figure 2.2a, the reader can perceive the picture as the whole, having access to
the global information about the environment, based on which one can decide about the
prevailing colour. In this regard, collective perception can be thought of as a cognitive
process that occurs in human brains while viewing the images, with agents representing
neurons of the prefrontal cortex of the brain (Libedinsky and Livingstone, 2011). Nigel
(2018) points out that some visuals are easier to perceive than others, depending on “the
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Figure 4.1: Example of two collective perception scenarios with the same colour propor-
tions ρ = 0.92 (52% white and 48% black cells in the grids).

spatial properties of the imagery”. In particular, he highlights that the visual perception
of the image features that are relatively close to each other occurs faster than those
that are sparse. Indeed, if we look at the images in Figure 4.1, it is easier to infer the
predominant colour in the image on the right-hand side than on the left-hand side. Both
images in Figure 4.1 have the same amount of black (48%) and white cells (52%) but
differ in the relative positions of the colours to each other. Previous research (Shepard
and Metzler, 1971) has shown that spatial manipulations in the brain, such as e.g.,
“mental rotation” described as the brain rotating objects while the characteristics of the
object remain unchanged, can aid in the recognition of the objects or their particular
features in the environment. The Rubik’s Cube, for example, is a common puzzle that
requires three-dimensional mental rotation. By drawing on this concept, one can also
manipulate the mental representation of the grid on the left in Figure 4.1 to match the
one on the right, thereby facilitating the decision-making.

The question arises whether the same observations are valid for a collective of artifi-
cial agents spatially distributed over the environment and operating with state-of-the-art
decision-making strategies in the context of the considered collective perception task. As
such, this chapter aims to focus on the customised environmental transformations f , as
in Figure 4.1, that presumably can have a positive effect on the collective behaviour,
while maintaining the global structure of the environment intact. To test our hypoth-
esis, we investigate the performance of the opinion-based decision-making described in
Section 2.4 on different representations of the environment using a particular type of
transformation known in discrete mathematics as isomorphism, which is used in mathe-
matical as well as biological studies to obtain a deeper understanding of the objects with
similar connections (Kulvicki, 2004).

4.2 Mathematical Background
In the following, we introduce mathematical definitions and concepts from (Beth et al.,
1999), which are necessary for the methodology of this chapter.

4.2.1 Incidence Structures and Isomorphism

Definition 1. An incidence structure is a pair S = (P ,B), where P is a finite set
called the point set of S and B is a collection of subsets of P called the block set of S.
The elements of the point set are called points and denoted by pi ∈P . The elements of
the block set are called blocks and denoted by B j ∈B.
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Definition 2. Let S = (P ,B) be an incidence structure with points P = {p1, ..., pk } and
blocks B = {B1, ...,Br }. An incidence matrix M = (mi j ) of the incidence structure S is
a k × r binary matrix defined by mi j = 1 if pi ∈ B j and mi j = 0 otherwise.

As a primary method for determining the similarities between two incidence struc-
tures, one refers to an isomorphism relation (Beth et al., 1999), which can be defined
in terms of the respective incidence matrices as follows.
Definition 3. Two incidence structures S = (P ,B) and S′ = (P ′,B′) with incidence
matrices M and M ′ are called isomorphic if there exist permutation matrices H and Q
such that H MQ = M ′, where H permutes the rows (i.e., points of S) and Q permutes the
columns (i.e., blocks of S).
Definition 4. A permutation matrix is a square binary matrix each row and column
of which contains exactly one entry 1.

That is, by permuting the rows and columns of the incidence matrix M of an incidence
structure S one can get another representation of this incidence structure S′, although the
incidence relation (i.e., the set inclusion) between its points and blocks remains the same.
In general, it is a difficult problem to differentiate between different incidence structures.
The following invariant 1 distinguishes different incidence structures independently of the
representation.
Definition 5. Let A ∈ Zk×r be given. There exist unimodular matrices 2 U ∈ Zk×k ,
V ∈Zr×r and a diagonal matrix D ∈Zk×r such that A =U DV , where the diagonal entries
of D are d1,d2, ...,ds ,0, ...,0, such that each di is a positive integer and di |di+1 (that is,
di divides di+1) for i = 1,2, ..., s −1. Then the diagonal matrix D is called the Smith
normal form (SNF) of A.

As such, the SNF is a natural choice of an invariant 3 for an incidence relation, since
its computation requires only the methods of elementary linear algebra, which makes it
easy to compute. We will use the SNF in the subsequent sections to distinguish different
incidence structures.

4.3 Proposed Methodology
In the following, we introduce the equivalence relation on the set of grids by identifying
them with the equivalence structures.

4.3.1 Environment Representation and Transformation

A randomly created square grid of black and white cells is typically used to provide
the environmental setting for the collective perception scenario (Valentini et al., 2016;
Strobel et al., 2018; Ebert et al., 2020). In this respect, one can encode the grid as the
binary matrix M ∈ Zk×k

2 , where 0’s of the matrix M correspond to the white cells and
1’s to the black ones in the grid. As such, we set values of the matrix M = (mi j ) to
determine the relationship I ⊆ V ×E between columns of the grid as the set of blocks

1Under “invariant”, we mean a certain characteristic of an incidence structure that does not change
after applying equivalence relation, i.e., isomorphism.

2Matrices which determinants are equal to 1 or −1 are called unimodular.
3The SNF does not depend on an arbitrary ordering of the sets, that is, the matrix D is the same

for all possible incidence matrices of the incidence structure.
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Algorithm 4.1: New isomorphic matrix
Input: M ∈Zk×k

2 ;
Output: Mnew , where Mnew

∼= M , Mnew 6= M ;
1 begin
2 Generate two random permutations: H ,Q, where H 6= Ik ,Q 6= Ik , and Ik is the

identity matrix of order k.
3 Mnew = H ·M ·Q
4 return Mnew

E = {e1,e2, ...,ek } and its rows as the set of points V = {v1, v2, ..., vk } such that vi ∈ e j for
each pair of indices (i , j ) if and only if mi j = 1, meaning that the corresponding cell of
the grid ci , j has a black colour. One can also associate the obtained incidence structure
S = (V ,E ) with an undirected hypergraph, where the set of points V forms the vertices of
the graph and the set of blocks E forms its edges, while the values mi j of the respective
incidence matrix M denote that a vertex vi belongs to the edge e j if mi j = 1.

Further, we use Algorithm 4.1 to produce isomorphic grids from a given one. In this
way, new grids isomorphic to a specified one are created and defined by the obtained
matrices Mnew . Figure 4.2 shows an example of different representations of the environ-
ment under consideration as an incidence structure, where the objects in the top and in
the bottom rows are isomorphic to each other. In particular, the ones at the bottom were
obtained from the top ones using Algorithm 4.1. It is important to note that a trans-
formation induced by Algorithm 4.1 does not alter incidence relation on the grid, i.e.,
I ⊆ V ×E , such that the combinatorial structure of the environment remains the same,
although the visual representation of the incidence relation can change. Furthermore,
the global task characteristic such as the ratio of the colours ρ stays intact.

v01
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v03 v04

v05

v06

e01

e06

e02

e03

e04

e05

v1

v2 v3 v4

v5v6

e1
e2

e3 e4
e5

e6

Figure 4.2: Example of different environment representations as isomorphic incidence
structures (Bartashevich and Mostaghim, 2019c).
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Algorithm 4.2: New non-isomorphic matrix (but with the same amount of 0s
and 1s)

Input: M ∈Zk×k
2 ; l ∈N - number of replaced points;

Output: Mnew , where Mnew 6∼= M ;
1 begin
2 Compute Smith’s Normal Form of M :
3 {U ,D,V } = SN F (M)
4 repeat
5 Get Mnew : Replace l random black points by white and l white by black
6 Compute: {Unew ,Dnew ,Vnew } = SN F (Mnew )

7 until Dnew 6= D

8 return Mnew

Albeit it is difficult to determine whether two given incidence structures are isomor-
phic (neither known to be P nor known to be NP-complete problem (Toran, 2004)),
one can get a numerical validation that two of them are not isomorphic based on the
SNFs of their respective incidence matrices. In Algorithm 4.2 we define the procedure
for constructing non-isomorphic matrices Mnew to a given one M by ensuring that the
Smith Normal Forms of M and Mnew are not identical. There, by replacing certain 0’s
with 1’s or vice versa in the matrix M , one can destroy the old incidence relations and
sets the new ones, thus altering the combinatorial properties of the object. In this re-
gard, the manipulations with the colour ratio parameter ρ relate to the non-isomorphic
transformations of the environment as well, modifying the global task characteristics.
The parameter ρ has shown to have a great impact on the state-of-the-art collective
decision-making strategies (Valentini, 2017), identifying the concept of the difficulty for
the collective perception task. Inspired by human brain capabilities such as “mental
rotation” (Nigel, 2018), we aim to explore how the introduced isomorphic transforma-
tions of the environment alter the distributed collective perception, while keeping the
combinatorial and global characteristics of the environment intact.

4.3.2 Binary-Featured Benchmark Set

Based on the concepts of visual patterns in matrices, considered in the literature on
matrix visualisation (Behrisch et al., 2016; Behrisch et al., 2017; Behrisch et al., 2018),
we construct binary grids as a new benchmark set for the collective perception scenario.
There, under a visual pattern, one means a “visual structure in the matrix that exposes
information about the underlying graph topology”. The latter is in agreement with our
environment representation as illustrated in Figure 4.2. Therefore, for our study, we
consider in the following nine of the most common visual patterns retrieved from the
binary matrices, which are illustrated at the top of Figure 4.3, where, without loss of
generality, black colour forms the pattern, that is:

• “Random”: A random pattern is a common benchmark scenario used in collective
perception (Morlino et al., 2010; Valentini, 2017), described by a random distribu-
tion of black and white cells in the matrix.
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• “Block”: A block pattern is designed by blocks consisting of at least 2×2 black
cells going along the main diagonal of the matrix and two blocks at the corners of
its minor diagonal.

• “Off-diagonal”: An off-diagonal pattern is similar to the “Block” but is described
only by two big black blocks placed at the corners of the minor diagonal of the
matrix.

• “Star”: A star pattern consists of horizontal and vertical black lines that do not
necessarily run the entire width or length of the matrix, respectively.

• “Stripe”: A stripe pattern is performed by a wide horizontal or vertical black band
stretching along the entire width or length of the matrix, respectively.

• “Band”: A band pattern consists of black lines parallel to the main diagonal of
the matrix but not lying on it.

• “Band-Stripe”: A band-striped pattern is similar to the “Band” but is, instead of
lines, characterised by two wide black parallel bands, placed on the opposite sides
relative to the main diagonal of the matrix.

• “Bandwidth”: A bandwidth pattern resembles a black frame around a rhombus
packed with white cells such that one of the rhombus diagonals runs along the
matrix’s main diagonal while the length of the other one is randomly defined.

• “Bandwidth-Rand”: A bandwidth-rand is essentially a bandwidth pattern with
both rhombus diagonals of random lengths.
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Figure 4.3: Binary-featured pattern samples with ρ∗
b = 0.92 (Bartashevich and

Mostaghim, 2019a).

A binary-featured benchmark generator based on the types of the aforementioned
visual patterns, matrix (grid) size, and the ratio of the black and white cells ρ∗

b = Γbl /Γwh ,
Γbl < Γwh was implemented in MATLAB (2018) by the current author. In this way, each
newly generated environment with the same input differs in spatial configuration while
maintaining the same visual structure. That is, the respective visuals of the patterns,
such as blocks or lines, are not fixed and vary in their size and positions on the grid
within the same pattern type. If there are not enough empty cells in the grid to be filled
in with the specific colour without interfering with the pattern, the pattern’s visuals
can contain “artefacts” which are represented by cells of another colour disrupting the
pattern. To that end, one can observe randomly placed white or black cells obstructing
some patterns (see Figure 4.3).
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4.3.3 Patterns Metrics

We introduce the following metrics to quantify spatial characteristics of visual patterns,
in addition to the colour ratio ρ in a grid (matrix):

• Entropy (E ) is used to define the density of the cells’ patches with the same colour
(i.e., clusters) in a pattern P .

Assuming that black colour defines the visuals of the pattern, let |Ci | denote the
number of black cells in the cluster Ci and Γbl denote the total number of black cells in
P . As such, E is calculated in the following way:

E = H max
c −Hc

H max
c

(4.1)

Hc =−
M∑

i=1

|Ci |
Γbl

log2
|Ci |
Γbl

(4.2)

H max
c =−∑

Γbl

1

Γbl
log2

1

Γbl
, (4.3)

where M is the number of clusters, H max
c is the maximum entropy. The value of E

increases as the number of clusters decreases. That is, a value of E close to 1 indicates
an ordered colour state in the environment, whereas a value of E close to 0 points out
its random distribution. Nevertheless, the value of E provides no information about the
appearance of the cluster(s), that is, whether it is dense like a “block” or sparse like a
“chain”. In this regard, another metric is considered together with E , namely:

• Moran Index (M I) is used to characterise the degree of correlation in colours among
nearby cells in a pattern P . In other words, it defines the degree of connectivity
between clusters (if any).

Let ci and c j denote the colours (1 is ‘black’ and 0 is ‘white’) of two adjacent cells
in a pattern P and Γ is the total number of cells in a matrix. As such, M I is defined as
follows:

M I = Γ∑Γ
i j wi j

·
∑Γ

i j wi j (ci − c̄)(c j − c̄)∑N
i (ci − c̄)2

, (4.4)

where c̄ is the mean of all cell values in P , that is, c̄ = Γbl /Γ. If cells ci and c j are
neighbours in the von Neumann neighbourhood ←→←→ (see as in Figure 3.1), then wi j = 1
and wi j = 0 otherwise. In this way, the values of wi j = w j i and determine the degree
of spatial proximity of the cells ci and c j , respectively. As such, M I → 1 if P has
many ←→←→ -linked black cells, M I → 0 if they are sparsely located to each other (randomly
distributed), and M I →−1 if the colours alternate like on a chessboard.

4.3.4 Patterns Quantification

Based on the described above metrics, we analyse how the pattern instances of the
proposed binary-featured benchmark set quantitatively differ from one another. The
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!"

Figure 4.4: Scatter diagrams of the patterns’ metrics’ statistics over 100 generations
“before” (left-hand side) and “after” applying isomorphism (right-hand side). The figure
is adapted from (Bartashevich and Mostaghim, 2019a). The same colour of points
denotes that they belong to the same pattern group.

metrics’ values vary mostly between the patterns and are unaffected by the colour ratio
parameter ρ.

Figure 4.4-left shows the mean (points) and the standard deviation (bars) of the
Moran Index M I and Entropy E evaluated over 100 generations of each pattern instance.
According to the Kruskal-Wallis ANOVA analysis (Hollander et al., 2013), there is a
statistically significant difference (p < 0.01) between all the patterns in M I , except for
“Block” and “Off-diagonal”, while in E some patterns indicate no statistically significant
difference. That is, the same colour of the points in Figure 4.4-left represents the patterns
that are not statistically significantly different (p > 0.01) between each other in E . As
such, they form the following groups: (1) “Band-Stripe”, “Bandwidth” and “Star” (in
red); (2) “Stripe” and “Band-Random-Width” (in green); (3) “Off-diagonal” and “Block”
(in blue). In this regard, we assume that the performance of the collective decision-
making strategies on the benchmarks from the same group will be similar. To note,
“Band” and “Random” are not associated with any of the defined categories, as they
are significantly different (p < 0.01) from all other pattern instances in both E and
M I characteristics. Figure 4.4-right shows the statistics for the Entropy E and Moran
Index M I of the benchmark instances isomorphic to the respective patterns. While
the isomorphic transformations f I do not modify the pattern instance’s combinatorial
properties, they alter its visual representation (see an example of two isomorphic patterns
in Figure 4.1), which is reflected in the shift of E and M I values.

4.4 Experimental Study

The experiments in this chapter were carried out to determine the impact of the envi-
ronment on the distributed collective perception in the context of the best-of-2 problem,
addressing the second objective defined in Section 1.3. Three state-of-the-art opinion-
based decision-making strategies listed in Section 2.4.1, namely DMVD (voter model),
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DMMD (majority rule), and DC (direct comparison), are evaluated on the proposed
above binary-featured benchmark set in the multi-agent setting as described in Sec-
tions 2.2 and 2.4. The following experimental design was originally reported in (Barta-
shevich and Mostaghim, 2019a). However, in the current study, we employ a different
implementation of the DMVD and DC strategies. In particular, the DMVD strategy is
driven by direct modulation of positive feedback and the DC is not, while in our previous
work this was done vice versa. Therefore, the results provided in this section differ from
those presented in our prior work.

4.4.1 Influence of Patterns on Collective Decision-Making

The first experiment aims to demonstrate how different pattern configurations and colour
ratios ρ∗

b affect collective perception in terms of consensus time on the correct outcome
(T cor r ect

N ) and exit probability (EN ) as defined in Section 2.4.2. In Figure 4.5, we analyse
the T cor r ect

N as a function of ρ∗
b ∈ {0.52,0.56,0.61,0.67,0.72,0.79,0.85,0.92} using a local

weighted regression (LOESS) and a generalised linear model (GLM) with a binomial
distribution for the EN . The results are based on the data gathered over 40 simulation
runs for each benchmark instance and each ρ∗

b with a maximum simulation time of
T = 400 sec (where 1 simulated second corresponds to 100 iterations). As such, if a
swarm has not converged to the correct outcome during the time T , the trial is taken as
a failed one. For each pattern, we also provide quantitative characteristics (mean±std)
of M I and E calculated over 100 generated instances.

P1-Random (M I = −0.003± 0.035, E = 0.526± 0.07) has been a main focus of the
previous studies. We observe similar results for the DMVD, DMMD, and DC strategies
as in (Strobel et al., 2018). That is, the DMVD is more accurate than the DMMD
strategy but is slower for higher difficulties ρ∗

b , while the DC strategy is the fastest and
the most accurate among all three for any ρ∗

b .
P4-Star (M I = 0.406±0.104, E = 0.814±0.141) and P6-Band (M I = 0.272±0.15, E =

0.727±0.064) seem to deteriorate the performance of collective perception compared to
P1. The DMVD and the DMMD on P4 are described by the same indicators of consensus
time with the DMVD being more accurate over ρ∗

b . On P6, the accuracy as well as the
speed of the DMVD become significantly worse such that the DMVD and the DMMD
are comparable in the accuracy but the DMVD is slower over ρ∗

b . The DC still keeps the
highest performance among all three, although its performance starts to decline earlier
than on P1, i.e., at ρ∗

b = 0.67, and reaches comparable performance to the others at
ρ∗

b = 0.92.
P8-Bandwidth (M I = 0.572±0.029, E = 0.866±0.06) and P9-Bandwidth-Rand (M I =

0.698±0.046,E = 0.98±0.048) are characterised by controversial results in the performance
of the DMVD and the DMMD strategies. That is, the DMMD strategy is more accurate
and faster than the DMVD, although both reach the same indicators of consensus time
at the highest difficulty ρ∗

b = 0.92. The accuracy of both strategies on P9 declines faster
than on P8 with the EN for the DMVD falling below the chance level by ρ∗

b = 0.92. While
the exit probability of the DC strategy EN = 1.0 for all ρ∗

b ≤ 0.79 and drops to EN ≈ 0.8
at ρ∗

b = 0.92. The consensus time (T cor r ect
N ) of the DC increases with the increase of ρ∗

b
similar as on P1 and P6, reaching the same T cor r ect

N as the DMVD and the DMMD by
ρ∗

b = 0.92.
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Figure 4.5: Consensus time (T cor r ect
N ) and exit probability (EN ) as a function of task

difficulty ρ∗
b for each pattern. Dashed (red), solid (green) and dash-dotted (blue) lines

correspond to the DMVD, DMMD and DC strategies, respectively. Shaded areas repre-
sent 95% confidence interval.

P7-Band-Stripe (M I = 0.633±0.122,E = 0.861±0.041) is visually similar to P6, but
the performance of the strategies differs significantly between these patterns, indicating
that P7 is more challenging for collective perception. The consensus time using the
DMVD as well as the DMMD strategies is higher than for the already aforementioned
patterns over all levels of the task difficulty. The exit probability of the DMVD is below
the chance level even at the easiest difficulty setting and is worse than the EN for the
DMMD, which is also significantly lower than on previous benchmarks. The consensus
time (T cor r ect

N ) of the DC strategy is the smallest among all three but increasing with
the rise of ρ∗

b , reaching the same T cor r ect
N as the DMMD and the DMVD by ρ∗

b = 0.92.
Its exit probability EN = 1.0 for ρ∗

b ≤ 0.61 and drops to EN ≈ 0.65 at ρ∗
b = 0.92.

P2-Block (M I = 0.791± 0.041,E = 0.901± 0.061) and P3-Off-diagonal (M I = 0.803±
0.039,E = 0.904±0.049) share similar visuals but are described by different results in the
performance of collective decision-making. The exit probabilities on P3 are significantly
lower than on P2 and other aforementioned benchmarks for all decision-making strate-
gies. That is, the exit probability of the DMVD is EN ≈ 0.4 on P3 and does not change
with ρ∗

b , while the EN of the DMMD is higher for easier settings but declining to the
same level as the DMVD by ρ∗

b = 0.92. There, the consensus time (T cor r ect
N ) of both the

DMVD and the DMMD strategies are the same and higher than on the other patterns
considered above. The performance of the DC significantly deteriorates on P3. Its exit
probability EN = 1.0 only at the easiest difficulty and drops to EN ≈ 0.1 by ρ∗

b = 0.92.



64
CHAPTER 4. INFLUENCE OF THE ENVIRONMENT ON COLLECTIVE

DECISION-MAKING

The consensus time of the DC is as high as the other strategies and increases with the
rise of ρ∗

b . As such, the DC is the worst among others at the highest difficulty setting
on P3. The results on P2 are characterised by similar trends in the performance of the
strategies relative to each other, but with quantitatively higher exit probabilities rates
over ρ∗

b .
P5-Stripe (M I = 0.827 ± 0.051, E = 0.986 ± 0.04) is shown to be the most difficult

pattern in the benchmark set. All decision-making strategies under consideration are
characterised by long consensus times (T cor r ect

N ), whereas the DMVD strategy completely
fails, being unable to perform for ρ∗

b > 0.79. The exit probability rates (EN ) of the
DMMD and the DMVD are significantly below the chance level already at the easiest
task difficulty setting, decreasing further to EN ≈ 0.2 and EN = 0 by ρ∗

b = 0.92, respectively.
While on the other patterns, the DC strategy was able to maintain EN = 1.0 for the
easier settings, on P5, it is described by EN ≈ 0.7 at ρ∗

b = 0.52 which also drops to zero
by ρ∗

b = 0.92.

Summary. The obtained findings indicate that the speed and accuracy performance
of the state-of-the-art opinion-based decision-making strategies (Valentini et al., 2016),
namely the DMVD, DMMD, and DC, significantly varies across different visual patterns
of the collective perception scenario. Overall, it is reasonable to claim that the com-
plexity of the collective perception task is determined not only by the ratio ρ∗

b of one
colour to another but also by the spatial distribution of each colour. That is, although
the DMVD is known to be more accurate than the DMMD strategy in a setting with a
random distribution of the features, our results show that this is not the case when the
features are spatially correlated. While the DC strategy does not make use of the direct
modulation of positive feedback, compared to the DMVD and the DMMD, it appears
to be more robust in its outcome across the patterns with a lower degree of spatial cor-
relations, that is M I É 0.6 and E ≈ 0.8 (P1, P4, P6, P8), although its performance also
significantly deteriorates on the patterns with 0.6 < M I É 0.8 and with E value close to 1
(P2, P3, P5, P7, P9). As such, since the environment is a priori unknown to the agents,
one can conclude that clustered patches of the features induce a negative environmental
bias, distorting the quality of the agents’ estimates, regardless of the global quality of
the features ρ∗

b . After all, the decisions of all three strategies are guided by individu-
als’ estimates of the option qualities, which are used either implicitly, i.e., in the direct
modulation of the positive feedback, as for the DMVD and the DMMD strategies, or
directly in the individual decision-making mechanism as in the case of the DC.

4.4.2 Influence of Isomorphic Transformations in the Environment

In the second experiment, we assess the generalizability of the opinion-based collective
decision-making strategies on the benchmark set consisting of the isomorphic patterns to
the ones considered in the previous experiment. For this purpose, we apply isomorphic
transformations, as described in Section 4.3.1, to the nine visual patterns under consid-
eration. In this way, we aim to examine the performance of collective decision-making on
a broader range of environment configurations sharing the same combinatorial structure,
i.e., the same number of features and the same connectivity relations to each other. As
such, in Figures 4.6-4.7, we analyse the impact of the isomorphic transformations of the
environment on the consensus time (T cor r ect

N ) and exit probability (EN ) of the DMVD,
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Figure 4.6: Consensus time (T cor r ect
N ) and exit probability (EN ) within patterns “before”

(left-hand side) and “after” applying isomorphism (right-hand side) for ρ∗
b = 0.52. The

curves over box-plots are fitted via local weighted regression. Shaded areas represent
95% confidence interval.
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Figure 4.7: The same analysis as in Figure 4.6 but for the “task difficulty” of ρ∗
b = 0.92.

DMMD, and DC strategies over 100 simulation runs for the easiest and the most difficult
settings, i.e., ρ∗

b ∈ {0.52,0.92}, respectively.
The findings reveal a significant difference in the collective output in terms of T cor r ect

N
as well as of EN on the patterns “before” (Figures 4.6 and 4.7 on the left-hand side) and
“after” (Figures 4.6 and 4.7 on the right-hand side) isomorphic transformations of the
environment. The statistical comparison in the performance, according to the Mann-
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Figure 4.8: The heatmaps of significance levels (denoted by asterisks ∗ – p < .05, ∗∗ –
p < .01, ∗∗∗ – p < .001) according to the Mann-Whitney U-test for the difference in the
performance of the decision policies across the patterns. The lower (LT) and the upper
triangular (UT) parts of the matrices correspond to the performance on the patterns
“before” and “after” isomorphic changes, respectively (top row: ρ∗

b = 0.52; bottom row:
ρ∗

b = 0.92). The diagonal elements demonstrate how isomorphism affects the performance
of a given policy on a single pattern. Non-significant results are denoted by circles of
varying sizes and colours that depict the exact p-values.

Whitney U-test (Mann and Whitney, 1947), between the decision-making strategies on
the same benchmark instances as well as across the patterns and their isomorphic coun-
terparts is illustrated in Figures 4.9-4.10. As Figure 4.8 shows, there is a significant
difference between each strategy on one and the same “before” and “after” patterns,
except “P1: Random” and “P4: Star” for ρ∗

b = 0.52 (top row: diagonal elements). That
is, the performance of each strategy is significantly improved on the constructed iso-
morphic patterns relative to their basic counterparts. While on the basic patterns, the
results of each decision-making policy were significantly different from the ones on “P1:
Random”, after their isomorphic transformations one can observe that there is no more
statistical significance between the outcome on most of the patterns and “P1: Random”.
The exceptions are P3-P5 for the DMMD and P4-P5 for the DC, where the performance
on these patterns remains to be worse than on P1 also after applying isomorphism. For
the DMVD, the performance on the “after”-patterns differs from P1 on most of the
patterns. In general, for the DMMD and the DC there is no statistical difference in
the performance across the “after”-patterns, except for “P4: Star” and “P5: Stripe”
(see UT-parts of the matrices in Figure 4.8-top). Further analysis for ρ∗

b = 0.92 showed
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Figure 4.9: The heatmaps of significance levels (denoted by asterisks ∗ – p < .05, ∗∗

– p < .01, ∗∗∗ – p < .001) according to the Mann-Whitney U-test for the difference in
the performance of the decision policy with itself between the easiest and the hardest
settings of ρ∗

b on each pattern. The circle indicates a statistically non-significant result.

no statistical significance difference across all “after”-patterns for the DMVD and the
DMMD strategies, while for the DC patterns P4 and P5 still remain the exceptions (see
UT-parts of the matrices in Figure 4.8-bottom).

As Figure 4.9 shows, there is a significant difference in the performance of a sin-
gle decision-making strategy with itself between respective pattern configuration with
ρ∗

b = 0.52 and ρ∗
b = 0.92 “before” applying the isomorphism (non-isomorphic) as well as

“after” (isomorphic). The exception is only for the DMVD on the non-transformed “P2:
Block”, for which outcome there is no statistically significant difference between the eas-
iest and the hardest pattern configurations ρ∗

b , although its isomorphic counterparts are
statistically significant (p < .001) between ρ∗

b = 0.52 and ρ∗
b = 0.92. Overall, the increase

of the difficulty ρ∗
b diminishes the performance of collective decision-making regardless

of the pattern type and the applied transformation of the environment. However, the
isomorphic transformations of the respective patterns significantly improve the perfor-
mance of the strategies relative to the non-transformed ones in the case of ρ∗

b = 0.92 as
well as in the case of ρ∗

b = 0.52 (see Figure 4.8-bottom).
On the original patterns with ρ∗

b = 0.52 (see LT-parts of the matrices in Figure 4.10-
top), the DMMD is statistically significantly faster than the DMVD on P3 and P7 along
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Figure 4.10: The heatmaps of significance levels (denoted by asterisks ∗ – p < .05, ∗∗ – p <
.01, ∗∗∗ – p < .001) according to the Mann-Whitney U-test for the pairwise comparison in
the performance of the decision policies. The lower triangular (LT) part of the matrices
corresponds to the results on the given pattern “before”, and the upper one – to the
results “after” applying isomorphism, respectively (top row: ρ∗

b = 0.52; bottom row:
ρ∗

b = 0.92). Non-significant results are denoted by circles of varying sizes and colours
that depict the exact p-values.
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with higher rates of exit probability EN , while on the other patterns (except classical P1)
there is no statistically significant difference in the performance between the DMMD and
the DMVD strategies. However, on their isomorphic counterparts (see UT-parts of the
matrices in Figure 4.10-top), there is a statistically significant difference in the T cor r ect

N
between the DMVD and the DMMD on P1-P2, P6-P8, such that the DMVD strategy
is faster and more accurate than the DMMD at the easiest difficulty setting ρ∗

b . In
turn, the DC strategy in the case of ρ∗

b = 0.52 is statistically significantly better than the
others in T cor r ect

N and EN on the patterns “before” as well as “after” applying isomor-
phism. For ρ∗

b = 0.92 (see LT-parts of the matrices in Figure 4.10-bottom), there is no
statistically significant difference in the consensus time (T cor r ect

N ) between the DMVD
and the DMMD strategies on the non-transformed patterns, except for the two striped
scenarios, namely P5 and P7. There, one can also observe controversial results, that
is, the DMVD is less accurate but faster than the DMMD strategy. Further analysis
after isomorphic transformations of the respective patterns indicates no statistically sig-
nificant difference in the performance between both of the voting strategies. While the
DC is statistically significantly different from the DMVD and the DMMD on most of
the patterns, no significant differences in the performance were found between the DC
and two other strategies on the “before”-P1, P4-P5. While “after” isomorphic transfor-
mations of the environment in the case of ρ∗

b = 0.92, there is primarily no statistically
significant difference observed in the T cor r ect

N between the DC and the voting strategies
on most of the patterns, except for P2 (for DMVD vs. DC) and P3, P7-P9 (for both
DMVD, DMMD vs. DC), where the DC strategy is appeared to be more accurate than
the others.

Summary. Whilst an isomorphism retains the environment’s overall structure, the
properties of patterns with high clustering density after applying isomorphic mappings
f I have been modified (see Figure 4.4). Specifically, the values of M I are decreased for
most of the patterns to the range of [−0.1,0.1], while the entropy Ec is primarily kept
in the range of [0.7,0.8]. The exceptions are P3 (“Off-diagonal”), P4 (“Star”), and P5
(“Stripe”), which are characterised by M I ∈ [0.2,0.5] and Ec ∈ [0.4,0.9] after undergoing
isomorphic transformations. Notably, exactly on these patterns, one observes an increase
in the consensus time (T cor r ect

N ) relative to the other transformed benchmarks for the
easiest difficulty setting (ρ∗

b = 0.52). This matches with the results obtained in the
first experiment, indicating that the environments with a higher density of clustering
between the features deteriorate the performance of the considered collective decision-
making strategies. Overall, the difference in the collective performance between voting
mechanisms is levelled off on the respective isomorphic patterns regardless of the colour
ratio ρ∗

b , thereby emphasising the generality of the proposed benchmarks.

4.5 Summary and Discussion

In this chapter, we have introduced a benchmark suite for collective decision-making
as a set of collective perception scenarios to investigate the generality and robustness
of collective decision-making strategies across a variety of environments with different
spatial patterns. Specifically, we quantified the scenarios according to the entropy (E )
and Moran index (M I) of the options in the environment, proposing these metrics as
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another measures of the “task difficulty” in addition to the classically considered ratio
of the features. Our benchmark analysis shows that spatial distribution of the features
with high degree of correlations induces negative environmental bias that significantly
distorts the direct modulation of majority (DMMD) and voter-based decision (DMVD)
strategies, regardless of the relative amount of the features. The same decline in the
performance was observed for the strategy of the direct comparison of options’ qualities
(DC), that does not have direct modulation mechanism.

Inspired by the ability of the human brain to solve problems by performing men-
tal transformations of the visuals, we explored the performance of the aforementioned
decision-making strategies on the isomorphic set of patterns to the proposed bench-
marks. Previously, isomorphism has been demonstrated to be an effective tool for creat-
ing a complex range of computer cognitive games (Sedig and Haworth, 2012). Similarly,
we used isomorphic transformations of the environment to broaden the proposed suite
of benchmarks without changing the combinatorial structure of the respective instances.
It can also be thought of as a process of rearranging elements of the picture using brains
to aid problem-solving (Bilge and Taylor, 2017).

The results indicate that isomorphic changes in the environment lead to faster and
more accurate collective decision-making of the examined policies, eliminating the con-
troversial relative performance of the DMVD and the DMMD strategies observed on the
patterns other than that of random distribution. In this way, isomorphism allows for
the mapping of complex environments into simpler ones in terms of M I and E , while
preserving the global structure of the pattern. In turn, this supports the definitions of
M I and E as the measures of the difficulty of the task along with the quantity of the
features, as well as the generality of the proposed benchmark suite. However, direct
changes to the environment in the real world appear to be difficult to implement. In
this regard, during the exploration phase, one can consider transformations related to
the agents’ locations to promote a better mix of their opinions or in the agents’ “inner
world” (Ziemke et al., 2005) as a result of collaborative latent learning (Jensen, 2006).

One can draw an analogy between how spatial bias in a site-selection scenario influ-
ences the frequency of the agents engaging in the dissemination and how spatial correla-
tions of the features in the collective perception scenario hinder direct modulation of the
positive feedback. Compared to site-selection, where the distance from the nest to the
site defines the exploration time, the duration of the exploration phase for the agents
in the collective perception is set to be the same independently of the chosen option.
However, for instance, if an agent holds a ‘white’ opinion and is located in the patched
black area, it will undergo several exploration phases, bypassing dissemination, until it
reaches the white area. This results in several exploration phases in a row, which can be
considered as an artificial increase in exploration time, leading to a lower frequency of
interactions with others. In this way, similar to travelling to a more distant site relative
to the nest, spatial correlations of the features indirectly affect the time necessary to
explore a particular option and, hence, its cost. Such a collective perception scenario
can be classified as the best-of-2 problem with asymmetric cost and asymmetric quality
(see Section 2.1.1). Our results indicate that variability in options’ costs depending on
the agents’ opinions and their spatial positions deteriorates the collective performance
of the considered opinion-based decision-making strategies. In contrast to a random
distribution of the features, i.e., the collective perception scenario with symmetric costs,
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we observe a significantly slower and less accurate consensus process. To overcome the
negative effects of the resulting sample bias, the agents could assess the frequency of the
missed dissemination phases to account for in the calculations of their direct modula-
tion, similar to leveraging distance-quality trade-offs. However, such modifications can
lead to a general increase in the duration of the decision-making process and still do
not guarantee a well-mixed state of the swarm during dissemination (Trabattoni et al.,
2018). The latter can require the design of specific adaptive motion patterns to use spa-
tial patterns to an advantage for a decision-maker. This could also potentially assist the
DC strategy to obtain more relevant and less noisy quality estimates. Indeed, although
the DC strategy does not use a mechanism of direct modulation, its performance is also
deteriorated by the presence of spatial correlations resulting in the contradicting esti-
mates of the equally high quality, rendering their direct comparison as idle. Meanwhile,
adjustment of the motion routines concerns the low-level controller of the agents, which
does not relate to the generality of a decision-making strategy.

Therefore, in the following chapter, we concentrate on the development of individual
decision-making mechanisms that can successfully perform across the variety of spatial
distribution of the features and despite the negative effects of the spatial correlations.
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Belief-based Decision-Making for the

Best-of-many Problem
As it was shown in the previous chapter, spatial distribution and clustering levels of
the features define the complexity of the collective perception alongside the ratio of the
global quality of the features. Considering that the environment is a priori unknown,
these properties can be viewed as additional hidden characteristics of the options. In
such a context, they can not be directly measured by individuals but can induce sample
bias, hindering decisions. The commonly used opinion-based decision-making strategies,
such as voter and majority rules, demonstrated themselves inefficient in this regard and
are not robust in their performance with the increase of the number of options. In
this chapter, the framework based on the theory of belief functions is introduced and
analysed for the case of multiple features n > 2, which is referred to as the best-of-many
problem. The research questions to be answered are: (i) what to exchange and (ii)
how to integrate the gathered information in a swarm to get the most reliable collective
decision, regardless of the environmental structure. For this purpose, the impact of the
communicated information type and the upgrade of the “horizontal” mental model, as
the objectives stated in Section 1.3, will be addressed and reflected in the modifications
of the three modular blocks, namely, “Decision()”, “Broadcast()” and “Listen()”, as of
Figure 2.3.

The chapter is organised as follows. In Section 5.1, we extend the binary-featured
benchmark set from the previous chapter for the case of multiple colours, as well as
analyse its characteristics. After the problem statement and motivation in Section 5.2,
we provide the necessary mathematical background in Section 5.3, including description
of the twelve fusion operators to be investigated. Section 5.4 is concerned with the
methodology proposed for this study, followed by the experiments in Section 5.5 and the
general discussion of the results in Section 5.6. The proposed approach and the findings
of this chapter were previously presented by the current author in (Bartashevich and
Mostaghim, 2021) as the “Evidence Theory-Based Design Framework”.

5.1 From Binary to Multi-Featured Collective Perception

To examine how a collective perception scenario as the best-of-many problem scales
with an increasing number of options and concerning different spatial distributions, we



72
CHAPTER 5. BELIEF-BASED DECISION-MAKING FOR THE BEST-OF-many

PROBLEM

extend the binary benchmark set from the previous chapter to a multi-featured case with
n > 2 colours.

5.1.1 Proposed Multi-Featured Benchmark Set Generator

The resulted multi-featured benchmark set consists of the following seven environmen-
tal patterns, namely “Random”, “Star”, “Stripe”, “Band”, “Band-Stripe”, “Bandwidth”,
and “Rectangle” 1. Due to the increasing difficulty to keep the pattern with the increase
of the number of colours and the limited number of available cells in the grid, scenarios
“Block” and “Off-diagonal” from the binary benchmark set are reduced to the “Rectan-
gle” scenario for the multi-featured case. Similarly, the binary “Bandwidth-Rand” in case
n > 2 coincides with the “Bandwidth” scenario. Figure 5.1 illustrates the corresponding
scenario samples with respect to the number of options n ∈ {3,5,8,10} and ρ ∈ {0.67,0.93},
i.e., the “old” task difficulty metric as defined in Section 2.2.

Figure 5.1: Samples of the patterns for different amount of options n = {3,5,8,10} and
ρ ∈ {0.67,0.93}.

1In the following, we employ abbreviated forms of “Band-S”, “Band-W”, and “Rec” for “Band-
Stripe”, “Bandwidth”, and “Rectangle”, respectively.
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To avoid further coupling of the collective decision-making outcome with the par-
ticular spatial distribution, the environment is not predefined and is generated each
simulation run. The target colour (i.e., the best option ωbest ∈Ω) differs each time as
the environment is generated, as well as the location of the colours in the grid. If there
are not enough cells of a certain colour to shape a particular pattern element, then an-
other colour that is available 2 can be used instead. In turn, this can result in some
artefacts, i.e., distinct cells of a different colour in respect to most of the neighbourhood.
This is particularly observed in the case of ρ = 0.93, when the proportions of the colours
are nearly the same, e.g., see “Band-Stripe” in Figure 5.1b.

As in the binary case, to generate the pattern one has to define the colour ratio
parameter ρ. Let ~fΩ = ( fω1 , ..., fωn ) be a vector of the proportion of the cells fωi with a
specific colour ωi ∈Ω in the environment, such that fωi ≤ fωi+1 and ∑n

i=1 fωi = 1. In case
of n > 2, we calculate the value of ρ(~fΩ) in the following way:

ρ(~fΩ) := 1− g i ni (~fΩ) = 1− 1

n −1

(
n +1−2 ·

(
n∑

i=1

i∑
j=1

fω j

)
·
(

n∑
i=1

fωi

)−1)
, (5.1)

where the Gini coefficient g i ni (·) ∈ [0,1] is a measure of the degree of inequality in a
distribution (Gini, 1921). It indicates how the given ~fΩ differs from the equal distribution
of the features’ frequencies, i.e., defines a degree of the colours’ disproportion. That
is, g i ni (~fΩ) equals zero in the case when there is an equal amount of cells of each
feature ωi ∈ Ω, and it equals one when there is a definitive distinction between them,
i.e., complete inequality.

To stay consistent with the difficulty levels of ρ as those for the binary case, i.e.,
ρ ∈ {0.67,0.93}, we need to define colour proportions ~fΩ also for n > 2 in such a way
that ρ(~fΩ) keeps its concept regardless of the vector’s length |~fΩ| = n. According to
our definition of ρ(~fΩ) in Equation 5.1, where g i ni (~fΩ) = 1−ρ(~fΩ), the easiest case of
ρ(~fΩ) = 0.67 corresponds then to the Gini value of 0.33, indicating some level of colour
disproportion. While ρ(~fΩ) = 0.93 implies almost equal colour distribution, as intended,
since the Gini value is approaching zero in this case, i.e., g i ni (~fΩ) = 0.07. For instance,
in the case of n = 3 and ρ(~fΩ) = 0.67, the vector of colour ratios is then defined as follows:
~fΩ = (0.17,0.33,0.5).

5.1.2 Benchmarks Characteristics

The general visual of the pattern is preserved each time it is generated but its quantitative
characteristics can vary (see Section 4.3.3). The latter is due to the fact that the positions
of the coloured cells forming the pattern are not fixed on the grid. In the following, we
perform the analysis of the introduced multi-featured benchmark set for n ∈ {3,5,8,10}
and ρ ∈ {0.67,0.93} with respect to the proposed metrics, Entropy and Moran Index as
defined in Section 4.3.3.

Figure 5.2 presents the mean and the standard deviation values of the Moran Index
M I and the Entropy parameter E evaluated over 100 runs for each configuration. The
results for both metrics are compared between the patterns to verify whether the data
comes from the same distribution or not. According to the Kruskal-Wallis ANOVA

2That is a colour that has not yet reached its ratio in the grid.
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Figure 5.2: Scatter diagrams of the statistics over 100 runs for patterns’ characteristics.
Left: ρ = 0.67. Right: ρ = 0.93.
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analysis (Hollander et al., 2013), there is a statistically significant difference (p < 0.01)
between most of the patterns in both M I and E characteristics, regardless of the n and
the ρ configuration. In case of ρ = 0.67, the exceptions are mainly for “Random”, “Band”
and “Star”. There is no statistical difference in M I for “Random” and “Band”, despite
the n and ρ values. The same holds for “Band” and “Star” in terms of E , when n = 3 and
ρ ∈ {0.67,0.93}. In case of ρ = 0.93, there is no statistical difference for “Band” and “Rec”
in terms of E as well as for “Bandwidth” and “Band-Stripe”, when n = 5 and ρ = 0.93.
Also, in case of n = 3 and ρ = 0.67, “Rec” and “Band-Stripe” are not considered to be
statistically different in both M I and E characteristics.

The same “up-”colour in Figure 5.2 indicates a non-significant difference (p > 0.01) in
the Entropy between the corresponding patterns, while the same “down-”colour states
for the non-significance difference in the Moran Index. The empty circles of Figure 5.2
imply a significant difference (p < 0.01) between each other in both parameters according
to the Kruskal-Wallis ANOVA analysis (Hollander et al., 2013).

The complexity of the scenario increases in the diagonal direction from the left-
bottom corner to the right-top corner of each plot in Figure 5.2, which is consistent
with the results of Chapter 4. That is, from “Random” as the easiest scenario case to
“Stripe” as the most difficult one, together with other patterns in-between. However,
with an increase in the number of possible features n, there is also observed a significant
drop in the values of characteristics towards easing the complexity in terms of M I and
E . This is primarily due to the limited grid size, which remains constant regardless of
the number of options n, making it more difficult to replicate the pattern for a larger
n while preserving the proportions of the necessary features ρ(~fΩ). As intended by the
construction, the parameter ρ does not significantly affect the characteristics’ values
of the patterns with the increase of n (the only exception is “Bandwidth” pattern, see
Figure 5.2). Similar to the binary case, a negative correlation is expected between the
performance of the collective decision-making algorithm and the underlying complexity
of the pattern, together with an increase in the number of options.

5.2 Problem Statement and Contribution
In this chapter, we propose the methodology to tackle spatial correlations in an a pri-
ori unknown environment in the context of a collective perception scenario. As it was
indicated in Chapter 4, the environment with large clusters of cells of the same colour
introduces challenges in the decision-making process in comparison to the random sce-
nario. Since the spatial distribution of the features is a priori unknown to the swarm,
it can impose sample bias into the exploration process, thereby indirectly biasing the
collective performance. As a result, the cost (in terms of time) to explore a particular
option ω j ∈Ω becomes dependent on its spatial setup. This introduces a corresponding
disbalance in the estimation process, i.e., “Estimate(q j )” 3, sabotaging exploration of
the options due to the spatial arrangements of the features and the movement trajecto-
ries of the individuals. That is, the time to discover (reach) areas with certain features
is relative to the agent’s initial position and the location of this area.

As it was shown in Chapter 4, the opinion-based decision-making seems to be inef-
ficient in this regard, while the preference-based approach (as introduced in Chapter 3)

3The value q j corresponds to the actual quality of the option j , i.e., of the ω j ∈Ω.



76
CHAPTER 5. BELIEF-BASED DECISION-MAKING FOR THE BEST-OF-many

PROBLEM

has demonstrated itself prone to error already in the case of a random scenario if the
agents hold the wrong initial conjecture. Nevertheless, the preference update process
of the Algorithm 3.1 can be modified for less impact on the opinion dynamics and,
hence, for a slower altering of opinions. The latter can lead to a better exploration of
alternatives than in the case of pure opinion-based decision-making strategies. However,
the requirement to tune multiple parameters makes it difficult to apply in an unknown
environment.

The task becomes even more complicated in the case of multiple options n > 2, where
the agents require efficient allocation strategies to switch between the estimation of differ-
ent alternatives ω j ∈Ω to ensure sufficient exploration (Ebert et al., 2018). In addition,
the latter demands adaptation of the agents’ exploration trajectories to a given spatial
distribution of the options, which is challenging since the distribution of alternatives is
a priori unknown to the swarm (Khaluf et al., 2019). This also implies modifications
related to the low-level controller of the agents, which is application-dependent and rep-
resents a subject of the domain specifics, e.g., cluttered spaces, rough surfaces, external
forces.

Therefore, there is a need to develop decision-making algorithms that are scalable
and robust (trustworthy) in a wide range of environments regardless of the spatial dis-
tribution of the features. Non-homogeneous distribution together with imperfect and
local estimates of the perceived information biases the agents towards gathering highly
conflicting pieces of evidence. The Dempster-Shafer theory is well suited for this type
of problem as it reflects the uncertainty and provides tools for handling imperfect and
conflicting information (Liu and Yager, 2008). This theory is based on the concept of
the belief functions and allows combining information from multiple sources into one
common shared belief without relying on any prior knowledge. As already mentioned in
Section 2.3, four DST belief combination operators have been studied in the case of the
site-selection scenario with a fully connected graph of agents, where the global knowl-
edge (quality values of the options) was available to the agents and was not a subject to
spatial dependencies (Crosscombe et al., 2019).

In this chapter, the DST framework is exploited to address the collective perception
as the best-of-many problem, particularly in the presence of sample bias imposed by
the environment and expressed in the distribution of the features. In comparison to
opinion-based decision-making, DST represents the framework of belief functions that
operates with a powerset of options (i.e., a set of all subsets) and not only with n single
options ω j ∈Ω, j = 1, . . . ,n. In this regard, we hypothesise that the allocation of beliefs
to the union of options {ωi ,ω j }, e.g., either ‘black’ (ω1) or ‘white’ (ω2) in the case n = 2,
will slow down the collective consensus. On the other hand, this will give extra time to
resolve the potential conflict 4 between the agents from different clustered areas. Besides,
one can expect the agent’s choices based on continuous opinion dynamics (as in the DST
case) to be more reliable and resulting in a more precise collective outcome than based
on the counts of opinions, i.e., discrete opinion dynamics. This also involves that the
mechanism for undertaking decisions on its own will be able to provide an adequate
exploration of the options’ space without adjustments of the agents’ low-level controller.

4The terms conflict and disagreement are used interchangeably.
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5.3 Mathematical Background

Dempster–Shafer theory (DST) is aimed to express the uncertainty under partial knowl-
edge (Kohlas and Monney, 1994). In its probabilistic interpretation, the probabilities
are allocated to the set of outcomes and not only to single events. To estimate how close
the evidence is to the possibility that a given event is true, the belief intervals are used
instead of the classical probability distribution. In the following, we introduce the basic
terminology used in this chapter.

5.3.1 Basics of Evidence Theory

A finite set Ω of n mutually exhaustive and exclusive single events (singletons) is called
a frame of discernment. One and only one element of such set Ω is believed to be
true. In this vein, our set of n candidate options (colours) Ω = {ω1,ω2, ...,ωn} repre-
sents a frame of discernment. The set of all possible subsets {Ai }2n−1

i=0 of Ω, includ-
ing an empty set and Ω itself, forms the powerset 2Ω. For example, if n = 3, then
2Ω = {∅,ω1,ω2,ω3, {ω1,ω2}, {ω1,ω3}, {ω2,ω3},Ω}.

The theory of evidence assigns to each subset Ai ∈ 2Ω a non-negative weight called
mass, which is defined by a basic belief assignment or a mass function m : 2Ω → [0,1],
satisfying the conditions m(∅) = 0 and ∑

Ai⊆Ωm(Ai ) = 1. The condition m(∅) = 0 can be
relaxed if one observes that the given set Ω is not complete and a true state can be
outside Ω, i.e., not exhaustive assumption. The subsets Ai characterised by m(Ai ) > 0
are called focal elements of m. In the case m(Ω) > 0, the mass function is said to be
non-dogmatic. A mass function m is considered to be normalised, when ∅ is not its focal
element, that is, m(∅) = 0.

The value m(Ai ) is interpreted as the measure of belief (or degree of confidence),
which is entrusted exactly to the set Ai without indicating how it is specifically divided
among its separate subsets A j ⊆ Ai . In the case m({ωi }) = 1 for a singleton ωi ∈Ω (ωi ∈ Ai

and |Ai | = 1), one deals with the state of full certainty that the truth lies in ωi . When
it is difficult to discriminate between two single events, e.g., ωi and ω j , their union is
allocated a certain mass value m({ωi ,ω j }). To this extent, unions of options reflect the
state of partial ignorance, whereas ∅ implies impossibility of the perceived event,
meaning that it does not belong to Ω. The state of full ignorance, when nothing is
known, is described by a vacuous mass function such that ∀Ai 6=Ω hold m(Ai ) = 0 and
m(Ω) = 1.

The total belief Bel (Ai ) committed to the set Ai is considered as the sum of masses
m(A j ) of all its subsets A j ⊆ Ai . As such, Bel (Ai ) reflects all provided evidence that
approves the truthfulness of Ai . The sum of the mass values not committed to the
negation of Ai defines the plausibility Pl (Ai ), i.e., Pl (Ai ) = 1−Bel (¬Ai ). That is, Bel (¬Ai )
expresses the degree of evidence that contradicts Ai , such that Pl (Ai ) specifies then a
measure of evidence that potentially supports Ai . Therefore, Bel (Ai ) provides the lower
and Pl (Ai ) the upper bound to the probability that the event Ai is true, such that
0 ≤ Bel (Ai ) ≤ Pl (Ai ) ≤ 1. In such terms, the uncertainty measure for all Ai ⊆Ω is defined
as u(Ai ) = Pl (Ai )−Bel (Ai ). The precise definitions of the respective belief and plausibility
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functions Bel ,Pl : 2Ω→ [0,1] are given in the following way:

Bel (Ai ) := ∑
A j⊆Ai ,
A j 6=∅

m(A j ), Pl (Ai ) := ∑
A j∩Ai 6=∅

m(A j ). (5.2)

In addition, there are several other functions that are used as an analogue for a mass
function m, that is, implicability b : 2Ω→ [0,1] and commonality Q : 2Ω→ [0,1] functions,
defined respectively as:

b(Ai ) := Bel (Ai )+m(∅), Q(Ai ) := ∑
A j⊂Ω,
Ai⊆A j

m(A j ). (5.3)

The implicability function b is used instead of Bel in the case of an unnormalised mass
function m, while the commonality function Q expresses the probability of obtaining
a set observation that is consistent with every element of Ai . Function Q is mainly
used to simplify the computations. Depending on the application, one can use any
of the aforementioned functions, i.e., m,Bel ,Pl ,b, or Q, since they all can be derived
through one another. However, a mass function m is considered as the most fundamental
representation of the belief. The term ‘belief’ is ambiguous as it is used as a particular
term related to the Bel function as well as in a general sense. In the following, we
continue to use it as a general term unless it is stated otherwise.

According to (Smets and Kennes, 2008), in order to make decisions based on mass
functions, one has to transform them into probabilities via the pignistic transformation:

BetP ({ωi }) := ∑
A:ωi∈A

1

|A|
m(A)

1−m(∅)
, (5.4)

where |A| is the cardinality of the subset A ∈ 2Ω and m(∅) 6= 1. When m is normalised,
this transformation evenly redistributes the mass values of focal elements with |A| > 1
among the singletons ωi ∈ A.

5.3.2 Mass function types

In the following, we provide definitions of the specific types of mass functions, which will
be used further in the chapter.

A Bayesian model of uncertainty is also considered as a special case of the theory of
evidence (Smets, 1993). When all focal elements of a mass function m are singletons,
then such a mass function is called Bayesian (Shafer, 1976) and it is equivalent to a
probability distribution. In this case, for all Ai ∈ 2Ω, we have: Bel (Ai ) = m(Ai ) = Pl (Ai ).

Another special case of a mass function m that assigns a positive value w(Ai ) ∈ [0,1]
to two and only two subsets Ai ∈ 2Ω such that:

m(A j ) =


1−w if A j = Ai

w if A j =Ω
0 otherwise,

(5.5)

is called a simple support function (SSF) with focus on Ai (Ke et al., 2014) and denoted
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as Aw(Ai ). In other words, it represents a weight of evidence that provides support to one
and only one subset Ai ⊂Ω. SSF represents that there is “a good reason to believe” in
a given event Ai and in nothing more. If w(Ai ) ∈ [0,+∞), then such a support function
is called a generalised simple support function (GSSF) and, respectively, indicates that
there are some “good reasons not to believe” in a certain event Ai .

In the case when evidence supporting solely one subset is pooled together from several
observations, such a combination of two or more SSF forms a separable support function.
Unlike a SSF, a separable support function focuses on multiple subsets Ai ⊂ Ω. In
comparison to a general mass function, for any of its two focal elements Ai and A j , if
Ai ∩ A j 6= ;, then Ai ∩ A j is also a focal element. Decomposition of separable and non-
dogmatic mass function (i.e., with m(Ω) > 0) is unique and can be used to decrease the
computational complexity (Barnett, 2008), especially in case of combination of a large
number of sources (Zhou et al., 2017). As stated by Smets (1995), any non-separable,
non-dogmatic mass function can be decomposed using GSSF. Both, separable and non-
separable functions, can be also extended to the case of dogmatic mass function (i.e.,
with m(Ω) = 0) by assigning a small value ε→ 0 to the Ω set and redistributing it over
the rest subsets.

With respect to the canonical decomposition as proposed by Smets (1995), the
weights w(Ai ) ∈ [0,+∞) for every Ai ⊂Ω can be obtained from the values of commonality
function Q : 2Ω→ [0,1] as follows:

w(Ai ) = ∏
A j⊇Ai

Q(A j )(−1)|A j |−|Ai |+1

or equivalently

ln w(Ai ) =− ∑
A j⊇Ai

(−1)|A j |−|Ai | lnQ(A j ).
(5.6)

The Fast Möbius Transformation (Kennes and Smets, 1990) can be used to compute
ln w from − lnQ.

5.3.3 Fusion Rules

Dempster-Shafer theory suggests that each piece of evidence is represented by a separate
function of a given belief representation (see Section 5.3), e.g., a mass function m : 2Ω→
[0,1]. The idea is that evidence gathered from multiple distinct sources s can be further
combined by fusing their corresponding mass functions m1,m2, . . . ,ms to get certainty
about the state of the world Ω. There are different types of belief fusion rules in the
literature (Smets, 2007), which mainly differ in the way how they handle conflicting
pieces of evidence. The degree of disagreement K between two pieces of evidence is
allocated to the empty set of their resulting mass function combination, which has to
be re-distributed in a particular way among the remaining subsets Ai ∈ 2Ω \ {;}. Within
the framework of this thesis, we work under the “closed-world” (exhaustive) assumption,
meaning that there no piece of evidence exists which is out of the a priori defined set Ω.
This also implies that m(∅) has to be equal to zero for any considered mass function m.

In the following, we introduce the twelve most well-known fusion rules from the
literature on evidence theory, which are used in this thesis to address the hypotheses
defined in Section 5.2.
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1. Dempster’s Rule (DR) is known as the original combination rule in Dempster-
Shafer evidence theory. It strongly emphasizes the agreement between multiple
sources (resembles “AND”-operator), ignoring the conflicting evidence through a
normalisation factor K , such that a combination of two sources of evidence m1⊕2

for all A ∈ 2Ω is calculated as:

mDR
1⊕2(A) := 1

1−K

∑
B∩C=A 6=∅

m1(B) ·m2(C ), (5.7)

where K =∑
B∩C=∅m1(B)·m2(C ). The normalisation redistributes conflicting masses

to non-conflicting ones, and thereby tends to eliminate any conflict in the resulting
mass distribution, keeping m1⊕2(∅) = 0. However, when the pieces of evidence are
highly conflicting, this rule tends to produce illogical results known as Zadeh’s
paradox (Shafer, 1976). That is, the greater is the conflict between pieces of evi-
dence, the greater is the certainty in the combination. Dempster’s rule is undefined
for K = 1. As another limitation, it is assumed that the sources of evidence to be
combined should be independent, i.e., distinct (Dempster, 1967). Classical Bayes’s
rule is considered as a special case of Dempster’s rule (Dezert et al., 2013).

2. Dubois-Prade’s Rule (DP) assigns the mass associated with the empty set in
combination (i.e., conflict) to the disjunction of conflicting evidences (resembles
“OR”-operator). As a result, it does not generate any conflict and does not reject
any of the information asserted by the sources. No normalisation procedure is
required. Formally, it is expressed as:

mDP
1⊕2(A) := ∑

B∩C=A 6=∅
m1(B) ·m2(C )+ ∑

B∩C=∅,
B∪C=A

m1(B) ·m2(C ) (5.8)

In the absence of conflict, it is equivalent to the Dempster’s rule. While if K = 1,
it consists only of the disjunctive part. In this way, the behaviour of this rule
is considered as adaptive between conjunctive (i.e., “AND”) and disjunctive (i.e.,
“OR”) modes. Thus, it is supposed to maintain a reasonable trade-off between
precision and reliability.

3. Yager’s Rule (YR) is an analogue of the Dempster’s Rule without normalisation.
The conflict K is added up to the set of full ignorance Ω (Sentz and Ferson, 2002).
If K = 0, this rule yields the same result as the Dempster’s one.

mY R
1⊕2(A) :=

{∑
B∩C=A 6=∅m1(B) ·m2(C ) ∀A ⊆Ω, A 6=Ω, A 6=∅

m1(Ω) ·m2(Ω)+K if A =Ω (5.9)

4. Averaging (Avg) of all the pieces of evidence instead of applying a specific combi-
nation rule can be used to eliminate the influence of any strongly conflicting single
belief. To this extent, no evidence is lost but the rule lacks convergence towards
certainty.

m Av g
1⊕2 (A) := 1

2
(m1(A)+m2(A)) (5.10)
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5. PCR5/6 is based on a proportional conflict redistribution (in short form PCR)
principle for combining highly conflicting independent (i.e., distinct and non-
interacting) sources of evidence. It implies that the conflicting mass is passed
only to the elements involved in the conflict and proportionally to their particular
individual masses, such that the specificity of the information is predominantly re-
tained. Firstly, the conjunctive rule is applied and then total or partial conflicting
masses are redistributed proportionally as follows:

mPC R5/6
1⊕2 (A) := ∑

X ,Y ∈2Ω,
X∩Y =A

m1(X ) ·m2(Y )+ (5.11)

+ ∑
Z∈2Ω\{A},

A∩Z=∅

[
m1(A)2 ·m2(Z )

m1(A)+m2(Z )
+ m2(A)2 ·m1(Z )

m2(A)+m1(Z )

]

The fraction in Equation 5.12 is discarded, if its respective denominator equals
zero. In the case of only two sources of information s = 2, this rule is known as
PCR5, and for s > 2 as PCR6 (Smarandache and Dezert, 2005). Detailed numerical
examples, as well as implementation code in MATLAB (2018), could be found in
(Smarandache et al., 2010).

Moreover, the following statement was shown by Smarandache and Dezert (2013).

Theorem 1 If s ≥ 2 sources of evidences provide binary mass functions (i.e., which
contain only two numerical values 0 and 1) on 2Ω and their total conflicting mass
K = 1, then PCR5/6 fusion rule coincides with the averaging fusion rule.

6. Murphy’s Rule (MR) allows pieces of evidence from s sources that are in agree-
ment to reinforce each other while dropping those which disagree. It provides
convergence to the averaging method by combining it with the Dempster’s rule
(Murphy, 2000). Initially, the evidence of all s sources is averaged, reducing the
possible dominance of a single one, i.e., m Av g

1⊕2⊕...⊕s . Afterwards, the Dempster’s rule
is applied for s −1 times to the obtained before average combination.

mMur phy
1,2..s (A) := mDS

1′⊕2′⊕...⊕s′(A), (5.12)

where m1′ = m2′ = ... = ms′ = m Av g
1⊕2⊕...⊕s . Since the evidence is averaged prior to

combination, Zadeh’s paradox is eliminated. While all the methods mentioned
above assume that the sources of evidence are independent of each other, the
Murphy’s rule can be applied to the situations where the sources of evidence are
either dependent (i.e., coming from the same source) or independent (i.e., coming
from distinct sources).

7. Normalised Cautious Conjunctive Rule (NCCR) is not related to conflict
minimisation but solves the data incest problem, which appears when the informa-
tion from a given source is taken into account several times or when the considered
sources are dependent (Denœux, 2008). It is based on the minimum of the weights
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obtained from the canonical decomposition of mass functions (see Equation 5.6) as
the conjunctive combination of GSSF. That is, for two non-dogmatic mass func-
tions m1,m2, their cautious combination is denoted by m1©∧2 and defined as:

m1©∧2 := ©∩
A⊂Ω

Aw1(A)∧w2(A), (5.13)

for all A ⊆Ω such that w1(A)∧w2(A) 6= 1, where ∧ denotes the minimum operator,
i.e., w1(A)∧ w2(A) = min({w1, w2}). Aw j (A) is the GSSF focused on A with the
weight function w j (A) issued from the canonical decomposition of m j and ©∩ is
the unnormalised Dempster’s rule. A normalised version of this operator, i.e.,
m1©∧ ∗2, is defined by replacing the conjunctive operator ©∩ by the Dempster’s rule⊕ or simply through introducing the normalisation factor K = m1©∧2(∅) as follows:

m1©∧ ∗2 := ⊕
A⊂Ω

Aw1(A)∧w2(A) =
{

1
1−K ·m1©∧2(A) ∀A ∈ 2Ω \ {∅}

0 if A =∅
. (5.14)

Note that we can never have K = 1, because the cautious combination of two non-
dogmatic (i.e., with m(Ω) > 0) mass functions can never be dogmatic (i.e., with
m(Ω) = 0).

8. Neighbourhood confidence algorithm (NCA) was proposed in (Ducourthial
et al., 2012) mainly for distributed information fusion in communication networks
based on the adapted Dempster’s rule, which performs on weight functions instead
of masses (see Equation 5.6), denoted by w1�2 and defined for any A ∈ 2Ω \ {Ω,∅}:

w1�2(A) := w1(A) ·w2(A). (5.15)

The algorithm itself works as follows. Every node i ∈ {1,2, . . . , s} of a network has its
own direct confidence (Inpi ), which is updated regularly by some external sources,
e.g., sensors. It also represents a local mass function mi and is expressed by
the corresponding weight function wi (see Equation 5.6). At certain time steps,
each node sends its direct confidence to its neighbours (ancestors). Nodes are not
synchronised and act according to their own local clocks, such that the frequencies
of sending the results can differ between nodes. Upon certain time expiration,
each node i computes its neighbourhood confidence (Outi ) by combining its direct
confidence (Inpi ) with received ones from the neighbours j as: Outi =Outi �Inp j .
At the beginning, it is assumed that Outi := Inpi . Important to note that only
direct confidence and not the neighbourhood one is exchanged between the nodes.
According to Ducourthial et al. (2012), the outputs of the algorithm get stabilised
as soon as the topology and the direct confidences stop varying.

9. Distributed confidence algorithm (DCA) is an extension of the neighbour-
hood confidence algorithm (Ducourthial et al., 2012). It assumes an exchange of
the distributed confidence and its further combination with the current direct con-
fidence of the node using discounting and cautious operator. It works with weights
obtained from the commonality functions (see Equation 5.6) in a way that their
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cautious combination is denoted by w1©∧2 and defined as:

w1©∧2(A) := min(w1(A), w2(A)). (5.16)

The forwarded last computed distributed confidence (Out j ) of a neighbouring node
j is additionally discounted prior its cautious combination with direct confidence
(Inpi ) of the receiving node i as: Outi =Outi ©∧ r(Out j ), where r is a discounting
operator and Outi := Inpi initially. The choice of r is application-dependent. Note
that, here, only the distributed confidence and not the direct one is propagating
through the network. In (Ducourthial et al., 2012) it was shown that the algorithm
converges in finite time from any initialisation as soon as the topology becomes
stable (i.e., sending and receiving nodes remain the same). Some application ex-
periments could be found in (Ducourthial and Cherfaoui, 2016).

10. Florea’s Rule (Flo) defines a compromise between disjunctive ©∪ and conjunctive
©∩ rules in accordance with the global conflict K = ∑

B∩C=∅m1(B) ·m2(C ) for any
A ∈ 2Ω, A 6=∅ (Florea et al., 2006; Martin and Osswald, 2007).

mF l o
1⊕2(A) :=βK · ∑

B∪C=A
m1(B) ·m2(C )+ (5.17)

+(1−βK ) · ∑
B∩C=A

m1(B) ·m2(C ),

where βK = K
1−K+K 2 . In comparison to the Dubois-Prade’s rule, wherein even in the

presence of high conflict K → 1 at least one of the two masses’ sources is supposed
to be the true outcome, here, the disjunctive rule has more weight than conjunctive
one, assuming that both sources are non-reliable. While in the case of absence or
low conflict K → 0, the whole combination turns into a conjunctive mode, supposing
the reliability of the sources.

11. Cautious Florea’s Rule (CFlo) is a counterpart of the Flo rule for dependent
sources of information. Conjunctive and disjunctive rules used inside Flo rule as-
sume the independence of sources, while it can be not the case in the real-world
situations. For this, conjunctive and disjunctive parts of Flo are replaced by their
corresponding cautious counterparts, namely cautious conjunctive (without nor-
malisation) and bold disjunctive rules (Denœux, 2008), respectively. The cautious
conjunctive operator was introduced before by Equation 5.13. In the following,
we describe the bold disjunctive rule, denoted by m1©∨2, for two subnormal mass
functions m1,m2 such that m1(∅) = m2(∅) > 0:

m1©∨2 := ©∪
A 6=∅

Av1(A)∧v2(A), (5.18)

where Av j (A) is called a negative GSSF assigning a mass v j (A) > 0 to ∅, and a
mass 1−v j (A) to A for all A ∈ 2Ω\{∅}. As in the cautious rule, ∧ denotes a minimum
operator. The function v j : 2Ω\{∅} → (0,+∞) is called a disjunctive weight function
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and defined through a corresponding implicability function b j as follows:

v j (A) = ∏
B⊇A

b j (B)(−1)|A|−|B |+1
or equivalently

ln v j (A) =− ∑
B⊇A

(−1)|A|−|B | lnb j (B).
(5.19)

Finally, the resulting CFlo rule with K = m1©∧2(∅) and βK is defined as:

mC F l o
1⊕2 (A) :=βK ·m1©∨2 + (1−βK ) ·m1©∧2. (5.20)

12. Modified Weighted Average Approach (MWA) is considered as the modifi-
cation of Murphy’s rule (MR) and is based on the evidence distance (Jousselme
et al., 2001) and the uncertainty measure (Chen et al., 2018). Instead of simple
averaging of s pieces of evidence before applying the classical Dempster’s rule for
s −1 times as it is done in MR, the weighted sum of the evidence is considered:

mMW A
1,2,...,s :=

s∑
i=1

αi ·mi , (5.21)

where αi is the corresponding weight degree of each mass mi , such that ∑s
i=1αi = 1.

To define the weights {αi }s
i=1, evidence distance between two mass functions mi and

m j is calculated as:

d(mi ,m j ) =
√

1

2
(mi −m j )T ·D · (mi −m j ), (5.22)

where D is a 2n × 2n matrix, which elements are D(Ai , A j ) = |Ai ∩ A j |/|Ai ∪ A j |,
Ai ∈ 2Ω. The lesser the distance d(mi ,m j ), the more mi and m j are similar to
each other, that is, Si m(mi ,m j ) = 1−d(mi ,m j ). In this way, a similarity matrix
Si m ∈Rs×s can be constructed between all available pieces of evidence. The support
Sup and the credibility Cr d degree of their corresponding mass functions {mi }s

i=1
are calculated as follows:

Sup(mi ) =
s∑

j=1,i 6= j
Si m(mi ,m j ) and Cr d(mi ) = Sup(mi )∑s

i=1 Sup(mi )
, (5.23)

such that ∑s
i=1 Cr d(mi ) = 1. The value of Cr d(mi ) reveals the relative importance

of a particular piece of evidence in comparison to the all gathered evidence. After
it is combined with the uncertainty measure Ui = ∑

A j∈2Ω ui (A j ) of the respective
mass function mi in a way that Cr d ′(mi ) = Cr d(mi ) · eUi , its normalised value is
used as the corresponding weight αi in Equation 5.21, that is:

αi = Cr d ′(mi )∑s
i=1 Cr d ′(mi )

. (5.24)

Thus, more weight is given to the evidence which is greater supported by others
(i.e., high credibility Cr d) and which possesses a lesser uncertainty degree, indicat-
ing its high quality. While the conflicting evidence (i.e., low credibility Cr d) with a
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higher uncertainty degree gets less weight and, hence, less influence on the overall
result. Lastly, the same as in the MR, the classical Dempster’s rule is applied to
combine mMW A

1,2,...,s for s −1 times.

All the operators are defined for one-off combinations between two pieces of evidence
(beliefs), which in the context of the collective perception scenario are studied in an
iterative setting, therefore it is important to consider their algebraic properties, given
in Table 5.1. If the fusion operator possesses the respective property in the table, it is
marked by a filled circle and by an empty one otherwise. The associativity implies that,
given a particular sequence of evidence, the order in which its pairwise standing elements
are merged (i.e., rearranging the parentheses in a sequence) does not change the outcome.
If the rule is quasi-associative (for more details, the reader is referred to Yager (1987)),
it can be transformed into an associative one by applying the algorithm proposed by
Smarandache and Dezert (2004b). The commutativity means that changing the order
of the elements in the evidence sequence has no impact on the resulting combination.
This property is one of the most preferable ones, as it indicates that the order in which
the agent communicates with the others in some temporarily fixed neighbourhood does
not affect its evidence fusion. The idempotence ensures that no piece of evidence is
counted twice, which is an important property in the case of dependent sources, i.e.,
overlapping, non-distinct items of evidence (Denœux, 2008). The assumption concerning
independence or dependence of the sources, when applying the corresponding fusion
operator, is marked by the respectively filled-in side of the circle in the last row of
Table 5.1. For instance, MR can be applied in both cases, i.e., when the sources are
either independent or dependent, and therefore is depicted by a fully-filled circle mark.

The fusion operators (1)-(4) have been studied in (Crosscombe et al., 2019) on the
fully connected graph of agents within the site-selection best-of-n problem and later in
the work of the current author (Bartashevich and Mostaghim, 2021) along with rules
(5), (10)-(12) on the collective perception scenario. The results of this chapter are
primarily based on the author’s previous work (Bartashevich and Mostaghim, 2021) and
are complemented by the consideration of the operators (6)-(9).

5.4 Proposed Methodology
In this section, we introduce modifications into the general framework described in Chap-
ter 2.4 to adapt it for the application of the DST to handle the collective perception
scenario. In particular, “Decision()” and “Broadcast()” blocks in Figure 2.3 are modi-
fied, addressing the fourth and the fifth objectives defined in Section 1.3. The described
methodology has been previously proposed by the author of the current work in (Bar-
tashevich and Mostaghim, 2021).

5.4.1 Belief-based Decision-Making

In the context of the DST, the mental state of an agent k is modelled by a belief, repre-
sented in a form of a normalised mass function mk : 2Ω→ [0,1], satisfying the exhaustive
assumption. That is, the agents form their beliefs about the “world” described by the
set Ω, which is assumed to be complete and constant throughout the entire simulation
period T , such that mk (;) = 0, excluding the impossibility state. Initially, the agents do
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DR DP YR Avg MR PCR5/6 NCCR NCA DCA Flo CFlo MWA
associative  # quasi #  #    #   

commutative             
idempotent # # #  # #  #  #  #
ind/depn G# G# G# G#  G# H# G#  G# H#  

Table 5.1: Algebraic properties (by rows) of fusion operators (by columns).

not have any information about the environment and, therefore, are characterised by a
vacuous mass function such that mk (Ω) = 1, indicating the state of a full ignorance.

To revise its personal mental state mk , the agent gathers information by interacting
either with the environment (in the exploration state) or with the other agents (in the
dissemination state). Therefore, the evidence gathered from the external sources (i.e.,
environment, agents) has to be also recorded in terms of the belief representation, i.e.,
mass functions. In the following, we distinguish between two masses of evidence, that
is, direct evidence from the environment mek gathered by the agent k and the agent’s
personal belief mk .

In the collective perception scenario, during time t in the exploration state, an agent
gathers the evidence supporting its chosen hypothesis ωi ∈ Ω while moving through
the environment. The agent can identify only one colour at a time, meaning that it
explores only those subsets A ∈ 2Ω which satisfy |A| = 1. In particular, it senses either the
respective colour ωi is underneath it or not. Based on the latter, the quality estimate
q̂i of the option ωi is built. In this way, if the agent has not perceived the chosen colour
ωi over time t of its exploration state, it has not gathered any evidence supporting that
this option is a “true state of the world”, i.e., the dominant colour. Thus, its direct
confidence in ωi corresponds to 0 as well as its current quality estimate, i.e., q̂i = 0. In
contrast, if the agent has observed only ωi and nothing else in its exploration state, it gets
the evidence fully supporting its choice along with the maximum quality estimate, i.e.,
q̂i = 1. As such, the piece of evidence received by an agent directly from the environment
can be modelled by a quality estimate q̂i , regarding the alternative ωi under the agent’s
consideration. In this regard, we define the evidence mass mek obtained by the agent
k in the exploration state through a simple support function (as given in Equation 5.5)
with a focus on the respectively explored option ωi , that is, mek := A1−q̂i . In this way,
the quality estimate q̂i is allocated to mek ({ωi }) as a mass value, implying precisely a
degree of confidence in the chosen alternative ωi and in nothing else, leaving the value
1− q̂i as a level of uncertainty, i.e., mek (Ω) = 1− q̂i .

Entering the dissemination state, the agents exchange the pieces of evidence and
not the opinions as it was done in Chapter 2.4. Given that each agent k holds two
types of the mass functions representing the evidence, that is, mek and mk , one can
differentiate different ways of learning about the “world”. Under “learning” we mean the
process of updating the mental state through observation (perception) of others and/or
the environment. The “learning from the others” is done via establishing communica-
tion channels between the agents. As described in Section 2.4, the exchange between
the agents is not necessarily performed in a pairwise symmetric manner, unlike in the
previous work (Crosscombe et al., 2019).
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Learning Mechanism

Let MN := {(m1, . . . ,mN ) | mi : 2Ω → [0,1]} denote the set of tuples of N mass functions
mi . Then, the learning mechanism is defined by the function

l : MN → M, (5.25)

which, depending on the type of its input (i.e., broadcasted mass functions), determines
the type of learning: individual, collective or social. As such, the driving mechanism of
learning in our case lies in the fusion of beliefs (denoted by ⊕), determined on the basis
of one of the combination rules specified in Section 5.3.3.

In Sections 5.4.2-5.4.4, we give explicit definitions of the corresponding functions l
describing each learning type in particular.

Decision-Making

Based on the “learned” information during exploration and dissemination states, which
is stored in the form of the agent’s belief, each agent k undertakes a decision about the
true state of the world Ω. This decision corresponds to its opinion opk on a certain
option ω j ∈Ω to be explored in its next exploration state. Thus, the decision-making
mechanism is defined by the function h : M →Ω such that

h : mk 7→ opk , (5.26)

where mk is the belief of an agent k at the end of its current dissemination state, already
representing by itself the accumulative evidence as an outcome of the learning function
l from Equation 5.25. That is, the input of the function h represents the result of the
fusion of several pieces of evidence gathered by the agent over one or several behaviour
cycles (i.e., exploration and dissemination states).

To transit from the belief to opinion, one has to transform the agent’s mass function
mk into probabilities about possible outcomes ω j ∈ Ω to be true using the pignistic
transformation as given in Equation 5.4. A roulette wheel selection is then applied to
the set of probabilities obtained as the result of the composition of functions BetP ◦ l :
MN → [0,1] to select the best option ωi ∈Ω, which is further taken as a new opinion of
an agent k. As such, the function h in Equation 5.26 is defined by the composition of
roulette wheel selection and pignistic probability function BetP .

5.4.2 Individual Learning

We define individual learning (IND) for the case that there is no communication between
the individuals and, hence, no information exchange. Here, the agent forms its belief
mk based only on its own evidence received directly from the environment. In such a
setting, its learning mechanism is given by the following function:

l : (mk ,mek ) 7→ mk := mk ⊕mek . (5.27)

As soon as time t of the agent’s exploration state is expired, it combines its current mass
function mk with the received evidence in the form of mek (since mek ∈ M, i.e., N = 1,
the brackets for mek are omitted in the input notations of the function l). The resulted
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mass combination mk ⊕mek is set as a new mass of an agent k at the beginning of the
agent’s dissemination state.

In this case, the dissemination state serves solely for the better mixing of the group
and provides its members the time between two exploration states to reach other loca-
tions in the environment to collect new pieces of evidence mek .

5.4.3 Collective Learning

We define collective learning (CL) as the case that implies interaction between the indi-
viduals and exchange of their personal beliefs mki with each other. In this way, an agent
k gathers the beliefs of its N neighbours, satisfying the conditions for communication
in the dissemination state. As such, the learning mechanism is defined by the function
l as follows:

l : (mk , (mk1 , . . . ,mkL )) 7→ mk := (((mk ⊕mk1 )⊕ . . . )⊕mkL ). (5.28)

The agent k combines its current belief mk with the belief of another agent ki as soon
as it receives the information from it, i.e., mk ⊕mk1 . The resulting accumulative mass
function mk of N + 1 individuals is set as a new belief of the agent k by the end of
its dissemination state. The received masses can be also firstly collected and saved by
the agents in a separate archive and later combined sequentially by the end of the state.
However, this requires extra memory for the agents and can also cause time delays as the
final combination of all the collected masses at once takes extra time. Additionally, the
preliminary experiments (not reported here) have not indicated a significant influence
on the collective outcome in comparison to the direct combination upon the receipt. In
this scope, we consider and analyse the results obtained only for the case where the
combinations are done as soon as the information becomes available to the agents, i.e.,
dynamic fusion mechanism.

It is important to note, that this learning mechanism incorporates in itself individual
learning as well. That is, the beliefs mki shared between agents (including mk) are
already updated with the respective evidence grasped by each agent ki on its own directly
from the environment (following Equation 5.27). It is also the first step, which allows
agents to leave their initial state of ignorance, providing them further with meaningful
combinations with each other (while a fusion of vacuous mass functions results again in
a vacuous mass function).

5.4.4 Social Learning

We define social learning (SL) as passing of the pure information from the environment
observed by an agent k to the other agents during communication. Thus, the evidence
gathered by the agents in their respective exploration states in the form of meki

, and
not the agents’ beliefs mki , is broadcasted in the dissemination state, as opposed to CL.
The learning mechanism, in this case, is defined by the function l in the following way:

l : (mk , (mek1
, . . . ,mekL

)) 7→ mk := (((mk ⊕mek1
)⊕ . . . )⊕mekL

). (5.29)

Similar, as in the case of CL, the agent k combines directly at once its current belief mk

with the received evidence meki
from another agent, assigning mk ⊕mek1

as its updated
belief upon the first reception from the agent k1. The resulting agent’s belief mk by the
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end of its dissemination state represents pure cumulative evidence from the environment,
assessed by N +1 agents during their personal exploration states.

Notably, in SL the agent’s belief mk is primarily updated with its own observation
of the environment mek and, therefore, in case of zero encounters with the other agents,
coincides with Equation 5.27. In general, SL resembles the individual learning (IND)
but with additional L pieces of evidence meki

acquired from different locations in the
environment instead of a single one mek . That is, SL is characterised by an increased
frequency of receiving direct evidence from the environment.

5.4.5 Evaluation Metrics

As it was previously mentioned in Section 2.4.2, the performance of the collective
decision-making mechanism is defined by the consensus of the group on the best al-
ternative ωbest ∈Ω. However, the opinion-based metrics (defined in Section 2.4.2) seem
to be not reliable for the evaluation of the belief-based decision-making, since in the lat-
ter the opinions are formed probabilistically based on the agents’ beliefs. In this regard,
the convergence of the group on one option, e.g., ω j , is determined by the achieving of
the state of full certainty by each agent k in a swarm of size N , that is, mk ({ω j }) = 1 for
all k = 1. . . N . In this case, the group attains the objective state of collective “knowledge”
as depicted in Figure 1.1, illustrating the highest degree of confidence in the selected
outcome, which also corresponds to the stabilised group opinion dynamics (i.e., opk =ω j

for all k = 1. . . N).
To estimate how close is the collective to the state of “knowledge”, we introduce the

following evaluation metrics.

Average population belief

Average population belief depicts the average mass value in the target option ωbest ∈Ω
over all individuals in the group at a given time, that is, ∑P

k=1 mk (ωn)/P , where P is
the size of the population. As such, it shows the average aggregate degree of faith in
the hypothesis that ωbest is the true state of the world. The state of collective absolute
“knowledge” corresponds to the average population belief value of 1.

Population success rate

Population success rate over time specifies the metric of the average population belief by
indicating the proportions of individuals in a group corresponding to different states of
certitude according to their current mass values for the target option, i.e., mk ({ωbest }).
Given the belief value, one can quantify the confidence level in a certain outcome sub-
dividing it into one of the following categories:

(a) mk ({ωbest }) = 0 corresponds to the state of the absolute disbelief in ωbest ;

(b) mk ({ωbest }) ∈ (0,0.5] indicates the degree of uncertainty that ωbest is entirely im-
possible;

(c) mk ({ωbest }) ∈ (0.5,1) indicates that ωbest is most likely the correct outcome but
there is some degree of uncertainty that it is the only one probable hypothesis;
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(d) mk ({ωbest }) = 1 corresponds to the state of full certainty that ωbest is the only one
correct outcome.

As opposed to the average belief, this metric demonstrates the belief dynamics in the
population, in particular, the flow of individuals from one state into another from (a)-(d)
over time.

5.5 Experimental Study

In this section, we describe the results of the experiments designed to address the fol-
lowing objectives previously defined in Section 1.3. The first objective is to determine
whether the proposed belief-based decision-making could enhance the efficiency of the
opinion-based framework mentioned in Section 2.4. The main focus lies in obtaining a
higher degree of collective accuracy regardless of the environmental structure. Overall,
the proposed decision-making mechanism h from Equation 5.26 is tightly bound with
the learning mechanism l from Equation 5.25. In this regard, the second objective is
to analyse the impact of the learning type on the performance of decision-making in
general. For this, collective, social and individual types of learning are studied coupled
together with twelve belief fusion operators outlined in Section 5.3.3. Finally, the third
objective is to evaluate the scalability of the proposed methodology with the increased
number of options n > 2. For the evaluation, the metrics introduced in Section 5.4.5 are
used. The description and the results of this section are based on (Bartashevich and
Mostaghim, 2021).

The experimental study is organised as follows. Section 5.5.1 seeks to address the
first objective and provides insights on the performance of fusion operators within en-
vironments with different characteristics. Section 5.5.3 compares the performance of
individual, collective and social learning in the scope of the proposed methodology, ful-
filling the second objective. Section 5.5.4 investigates the impact of the population size,
while Section 5.5.5 studies the question of scalability with an increase in the number of
options.

5.5.1 Convergence Analysis - I

In the following, we perform the set of experiments on seven benchmarks introduced in
Section 5.1.1 with n = 3 and ρ = 0.67 to evaluate the convergence of the swarm to the
state of collective global “knowledge” over time for each learning type in particular and
within twelve fusion rules from Section 5.3.3. For each configuration, we execute 100
trials with a maximum period of simulation time T = 400 s each. The duration of each
single agent’s exploration state is fixed and set to t = 10 s along with δt = 0.3 s for each
dissemination state, where 1 s is equivalent to 100 iterations, as defined in Section 2.2.
While the outcomes and performance analysis for all three learning types (collective,
social, and individual learning) are considered in the studies below, the primary purpose
of this section is to evaluate how fusion rules from Section 5.3.3 operate in the context
of the decentralised collective perception framework across the variety of environments,
and to identify which rules are more successful and general than the others.
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Figure 5.3: The results for collective learning in the population of N = 20 agents for
ρ = 0.67 and n = 3 (statistics of 100 runs). Samples of the corresponding patterns are
illustrated in (a) on the right.

Collective Learning

Figure 5.3a shows the mean average population belief over time T along with standard
deviation of twelve fusion rules (by columns, denoted as DM1,...,DM12, where the index
number corresponds to the rule mentioned in the same order as in Section 5.3.3) on
seven environmental patterns (by rows) using collective learning mechanism l from
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Equation 5.28.
DM1 and DM7-DM9 exhibit similar trends and are characterised by fast convergence

to stable performance independent of the considered pattern. Although, for “Stripe”,
“Band-S”, and “Rec”, the population ends up in the uncertain state (i.e., average belief of
0.5) with half of the agents being more in favour of the option ωbest , while exactly another
half feels less confident about it but without any agents with full or zero confidence (see
Figure 5.3b), indicating the collective indecision on average. To note, “Stripe”, “Band-
S” and “Rec” belong to the same group of patterns with high E and M I values and
thus relating to the hardest scenarios. For another pattern group, considered as the
easiest one, that is, “Random” and “Band” with the non-statistical difference in M I ,
DM1 converges faster than DM7-DM9 and reaches the median belief of 0.7 already at
the 10th iteration, staying unchangeable, while the performance of DM7-DM8 is slightly
improved and stabilised at 0.75 value by the 50th iterations together with the DM9 up
to 0.85 of average belief. There, on both patterns, DM9 has one-fourth of the population
in the state of the full certainty, followed by DM7 and DM8 with around one-tenth part
of the fully committed individuals and no single one with complete disbelief. While
DM1 is characterised by a much lower proportion of confident agents (5−10%) and also
the non-significant presence of disbelieved ones in the case of “Random”. In case of
middle complexity scenarios, that is, the “Star” and the “Band-W”, the average belief
performance for DM1, DM7-DM9 is higher than 0.5 on average (median values of 0.6,
0.65 for DM1,7 and 0.6 for DM8-9 in case of “Star”, and 0.65, 0.55, 0.65, 0.6 for DM1,
DM7-DM9, respectively, in the case of “Band-W”). The results on these patterns are
similar to the ones on the hardest group of scenarios, as there are no agents with either
complete disbelief or complete certainty that ωbest is the true state of the world.

DM6 is characterised by a similar convergence trend across the patterns. However,
in comparison to DM1 and DM7-9, it does not converge to a certain value but more
oscillates around it. In particular, in case of “Random” and “Band”, its average pop-
ulation belief median values are around 0.91 and 0.893 respectively, along with 100%
of the population holding the beliefs in the range of (0.5,1). Although, there are no
individuals observed with full confidence as well as full disbelief. This indicates that the
whole population is much more confident in ωbest than in other options. The latter was
not the case for DM1,7-9, where the quarter of the agents was characterised by complete
disbelief in ωbest . DM6 on “Random” is marked by a small standard deviation at the
end of the time T , indicating almost full convergence with median average population
belief value of 0.91, significantly outperforming DM1. However, on “Stripe”, “Band-S”
and “Rec”, DM6 is not superior to DM1,7-9 and its average population belief oscillates
around median value of 0.5 with 50− 50% ratio of hesitant individuals, that is, those
with beliefs in the ranges of (0,0.5] and (0.5,1), respectively (see Figure 5.3b). While, on
“Star” and “Band-W”, DM6 statistically significantly outperforms DM1,7-9 with 0.789
and 0.825 median average population beliefs and 90−100% of the population inclined
towards ωbest .

DM4, as expected, is characterised by the lack of convergence towards certainty
with low average population belief median values around 0.3− 0.4 and the prevailing
majority of highly uncertain agents with levels of confidence below 0.5, regardless of the
considered pattern type. Such a result is also consistent with the one from previous
studies (Crosscombe et al., 2019) and corresponds to the worst performance among all
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the considered combination rules.

The rest fusion rules DM2-3, DM5, and DM10-12 stands apart from the aforemen-
tioned ones and is considered as the one with more successful outcomes in general. The
median values of average population belief of DM2-3,5,10-12 correspond to 1 and are
not statistically significantly different between each other according to the two-sided
pairwise Mann-Whitney-U test 5 (Mann and Whitney, 1947). However, DM10 has been
shown to be the one among all twelve fusion rules which completely converges towards
certainty on “Random” with 100% success rate over all 100 runs (see Figure 5.3b). Also,
for “Band” (as a scenario with statistically the same M I as “Random” but higher E ),
there is no statistically significant difference between the medians of the mentioned DMs’
average population beliefs values, indicating convergence to the complete certainty. Al-
though, DM5 and DM11 are characterised by the highest success rates, i.e., 99%, among
the other rules, along with DM5 being also the fastest one. The convergence speed on
“Star” slows down significantly at the beginning for DM11 and DM12 with later level-
ling out again to the high performance by 100 iterations. In addition, the success rate
also drops to around 90%, so not every agent is fully convinced in ωbest compared to
above scenarios. DM12 gets stable by 300 iterations but with the highest fraction (i.e.,
1
4 th) of the population among others with zero belief in ωbest . While for “Band-W”,
DM5 and DM11 converge to a full certainty with a 100% success rate with DM5 be-
ing the fastest one as in the case of “Band”. However, the results for DM2-3,10,12 are
not considered as statistically significantly different from DM5 and DM11 by the end
of simulation time T . On “Band-S”, DM5 is also characterised by the fast convergence
speed towards certainty with the highest median average population belief up to 200
iterations in comparison to the other rules. Notably, it is the only rule in the consid-
ered group with no agents in the state of full disbelief in ωbest by the end of time T
(see Figure 5.3b). Compared to the aforementioned scenarios, the performance of DM5
and DM11 is significantly slowed down on “Rec”. However, DM5 attains the state of
collective “knowledge” by 300 iterations with only 5% of the group being in the state
of full disbelief. The same non statistically significant different results, according to the
two-sided pairwise Mann-Whitney-U test 5 (Mann and Whitney, 1947), hold for other
DMs (DM2-3,10,12) except DM11 on “Rec” (for DM11, the median value of average
belief equals 0.975). However, in comparison to “Band-S”, here, DM2-3,10 are charac-
terised by a lesser amount of completely disbelieved individuals and more by uncertain
ones, i.e., those in the range of (0,0.5]. Finally, on “Stripe”, DM5 is the best one among
the others in both metrics, i.e., the average population belief and the population success
rate. In contrast to the other rules, it shows the statistically significant results in the
average population belief with the highest median value of 0.917 attained by the end
of simulation time T . Furthermore, it demonstrates the convergence trend towards cer-
tainty almost without disbelieved agents and is characterised by half of the population
in the uncertain state biased towards ωbest at the end of the given time T , i.e., those
with beliefs in the range of (0.5,1]. To shed more light on the convergence behaviour of
DM5, a more detailed analysis with a prolonged simulation time T will be performed in
Section 5.5.5.

5For more details, see supplementary material, Appendix C.
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Individual Learning

As shown in Figure 5.4a, DM11 is the fastest and the best one in terms of the average
population belief among the others, independently of the benchmark scenario. It sta-
bilises already by the 100th iteration, converging to a certain population belief value of
0.65. On “Band”, DM11 achieves the highest performance (and statistically significantly
different one from the others) with a median average belief of 0.7 by the end of the given
time T , while on other benchmarks it is around 0.55−0.6. In the case of “Stripe”, “Rec”
and “Band-S” (the hardest group of scenarios), the performance of almost all fusion
rules (except DM4 and DM6) is statistically significantly the same and mainly converges
to the median average population belief value of 0.5−0.55, indicating the high level of
uncertainty in a swarm. As in the case of collective learning, DM4 shows the worst
performance on all considered patterns with the population of uncertain agents with be-
liefs in the range of (0,0.5] and around 0.2−0.4 median population belief on average. In
contrast, DM6 is described by the majority of agents biased towards ωbest with beliefs
in the range of (0.5,1). That is, except “Stripe” and “Rec”, on most of the patterns
DM6 is characterised by 50% of the agents with beliefs in the range of (0.5,1) and by
100% on “Random” and “Band”. Besides, on “Random”, DM6 indicates the highest and
the best performance along with DM11 (DM11 is non statistically significantly different
from DM6 by the end of the time T ). In general, despite a considered fusion rule or a
scenario, with this type of learning there are no extreme individuals observed, that is,
either being fully certain or fully disbelieved in ωbest .

Social Learning

The results for social learning mechanism in Figure 5.5 resemble the ones for collective
learning in Figure 5.4. The performance of DM1 and DM7-9 in case of Equation 5.29
remains similar as in the case of collective learning (Equation 5.28) and is characterised
by high collective uncertainty levels with half of the population’s beliefs in the range of
(0,0.5] and another half — (0.5,1). The same holds for SL-DM4 and SL-DM6, which are
keeping the same trends as in the collective case and both lack the convergence towards
certainty. A significant difference is observed for DM12, which in the case of social learn-
ing has statistically significantly deteriorated in the performance. In comparison to CL,
SL-DM12 lacks individuals fully converged to either 1 or 0 beliefs and mainly consists
of the agents in the uncertain states with beliefs in the range of (0.5,1). This leads to
unreliable results with median average population belief values around 0.7− 0.8 on all
patterns under consideration. However, for SL-DM2-3, SL-DM5 and SL-DM10-11, the
amount of agents in the state of complete disbelief has been reduced. On “Random”
and “Band-W”, SL-DM2, SL-DM5 and SL-DM11 converge to fully certainty with 100%
population success rate. In comparison to CL, SL-DM3 on “Random” and “Band-W”
indicates a similar speed of convergence but higher reliability with almost 100% success
rate, whereas DM10 keeps statistically significantly the same performance as in CL. Ad-
ditionally, on “Band”, DM5,10-11 are characterised by convergence towards certainty
with 100% population of individuals in the state of full certitude on average. In general,
SL-DM2 and SL-DM3 display more trustworthy swarms than their collective counter-
parts. On “Star”, DM3 and DM10 have a performance rate of approximately 100% of the
population in the state of certainty, while their median average population belief values
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Figure 5.4: The results for individual learning in the population of N = 20 agents for
ρ = 0.67 and n = 3 (statistics of 100 runs).

remain statistically significantly the same as in the case of CL. On the hardest scenarios,
that is, “Band-S”, “Rec” and “Stripe”, there is no statistically significant difference in
performance between DM2-3, DM5 and DM10. These fusion rules are characterised by
similar convergence trends in the average population belief but with a decreased amount
of fully disbelieved agents (almost in 2 times) by the end of the given time T in com-
parison to CL. Nevertheless, the performance of SL-DM5 has significantly deteriorated
compared to its CL outcomes, where it was statistically significantly the best one among
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Figure 5.5: The results for social learning in the population of N = 20 agents for ρ = 0.67
and n = 3 (statistics of 100 runs).

the others with a clear trend towards certainty.

Discussion

Independent of the type of learning, certain fusion rules can be grouped according to
their similar performance behaviour. That is, a group consisting of DR, NCCR, NCA
and DCA (i.e., DM1 and DM7-9 respectively) does not aim to conflict minimisation by
its nature. Moreover, DR serves as the base operator for NCCR, NCA and DCA,
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thus a similar performance is expected. Particularly, the case of high conflict (K = 1)
is not addressed here and the combination of such pieces of evidence is not handled,
that is, the corresponding mass of the agent remains unchanged. As a result, this group
of combination rules reaches its stable performance (is frozen) as soon as the agents
become highly conflicting with each other, lacking reliability and convergence towards
certainty. It is especially crucial in scenarios with high values of M I and E , which imply
clustered patches of options in certain areas of the arena that result in the gathering of
highly conflicting evidence by the agents. However, MR (DM6) is also based on DR
but before applying DR operator it averages the evidence, reducing in this way certain
belief’s predominance and eliminating Zadeh’s paradox (Shafer, 1976). This leads to
a significantly better and more reliable performance in case of scenarios with scattered
options (i.e., those with lower values of M I and E ), though remains a challenge for the
clustered ones (i.e., with higher values of M I and E ). While averaging on its own (DM4)
fully lacks convergence towards certainty independent of the environmental characteris-
tics. Fusion rules from another performance group, that is, DP, YR, PCR5/6, Flo,
CFlo and MWA (DM2-3, DM5 and DM10-12, respectively), are particularly designed
to handle conflicting beliefs and, hence, better results than in aforementioned groups are
expected.

Interestingly, the performance of CFlo (DM11) is in general (regardless of the learn-
ing type, i.e., either collective or social) more reliable than Flo (DM10), while both
represent the same rule with the only difference that CFlo uses cautious counterparts.
Although CFlo is intended for dependent sources, it still lacks reliability on the scenar-
ios with high M I and E . In case of the conflict absence (K = 0), YR (DM3) is considered
as a counterpart of DR but as soon as the conflict appears it sums up with the full igno-
rance set. This improves significantly the performance in comparison to DR, leading to
convergence towards certainty mainly on the scenarios with lower M I and E parameters.
While both DP and Flo (DM2 and DM10) resolve the conflict differently from YR (see
Section 5.3.3), all three are characterised by similar convergence trend and not statis-
tical significantly different performance. MWA (DM12) represents an updated DM6
based on DR and shows similar convergence performance as DP, YR and Flo (i.e.,
DM2-3 and DM10) but inferiors in reliability. PCR5/6 (DM5) explicitly redistributes
the conflict between involved elements and is shown to be the best rule among others,
especially in the case of the scenarios with high M I and E parameters values. It is the
only one fusion rule among twelve considered, which on “Stripe” (n = 3, E = 0.993±0.026,
M I = 0.894±0.031) indicates a clear convergence trend towards certainty with a signifi-
cant decrease of uncertain individuals, i.e., those with the beliefs in the range of (0,0.5],
which in turn are predominantly moving to the category of (0.5,1) and later to a fully
certain state over time.

5.5.2 Convergence Analysis - II

In this section, we perform the same set of experiments as in Section 5.5.1 on the bench-
marks with n = 3 and ρ = 0.93. Figures 5.6-5.8 show the results for collective, individual
and social learning, respectively.

The environment with ρ = 0.93 is characterised by the feature vector corresponding
to the almost equal ratios of the colours, i.e., ~fΩ = (0.295,0.34,0.365). Comparing the
results of Figures 5.4-5.5 with Figures 5.6-5.8, one can observe significant deterioration
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Figure 5.6: The results for collective learning in the population of N = 20 agents for
ρ = 0.93 and n = 3 (statistics of 100 runs).

in the accuracy of the fusion rules in the latter, expressed in high standard deviation
of the average population belief and increased percentage of the agents in the disbelief
state. Nevertheless, the group of operators consisting of DM2-3, DM5, and DM10-12
illustrates the convergence trend towards certainty in the median average population
belief for both CL and SL in the case of ρ = 0.93 as well.

Considering CL in Figure 5.6, on “Random”, DM11 demonstrates itself as the most
reliable rule, characterised by 90% of agents in the state of complete certainty in ωbest
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Figure 5.7: The results for individual learning in the population of N = 20 agents for
ρ = 0.93 and n = 3 (statistics of 100 runs).

and the rest ones in the state of absolute disbelief by the end of the given time T . While
DM2-3, DM5, DM10,12 converge to the highly polarised population already by 100−200
iterations (see Figure 5.6b). However, on most of the other patterns, excluding “Star”
and “Rec”, DM5 is considered as the one with the majority part of the population in
the state of certainty in comparison to the other fusion rules. Interestingly to note,
on “Stripe”, the aforementioned group of rules is described by the more trustworthy
population of agents than in the case of ρ = 0.67 (see Figure 5.3b). Nevertheless, CL-
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Figure 5.8: The results for social learning in the population of N = 20 agents for ρ = 0.93
and n = 3 (statistics of 100 runs).

DM5 remains the best one among the others also in the case of ρ = 0.93, although with
the increased amount of agents in the uncertain state, i.e., 25% of the population with
beliefs in the range of [0,0.5] versus 10% in the case of ρ = 0.67.

The results for SL in Figure 5.8 are characterised by a significant decrease in the
percentage of complete disbelievers on average compared to CL, in particular on “Ran-
dom”,“Band” and “Star”, which belong to a similar scenario group (see Figure 5.2). On
“Stripe”, the difference between SL-DM2, SL-DM5, and SL-DM10 in the median aver-
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age population belief is not statistically significant, suggesting that this group of rules
is better than the others. However, SL-DM5 is described by more trustworthy swarms
than the other rules on the considered benchmarks, indicating its generalisability across
different environments.

In the case of IND in Figure 5.7, the convergence performance for any of the con-
sidered fusion rules is statistically not significantly different between each other and
mainly converges to the median average population belief value of 0.4 independently of
the benchmark scenario, indicating the state of collective uncertainty.

Discussion

Since the number of cells with a specific colour determines the quality of the corre-
sponding alternative ωi ∈Ω, it is expected that the proportion of the colours ρ in the
benchmark setup will significantly affect the decision-making performance. Although
this is supported by the findings presented in Section 5.5.2, it has been also shown that
the distribution and the clustering levels of the features significantly impact the decision-
making process irrespective of the ratio of the colours. The same observation was done
in Chapter 4 on the binary benchmark set within the opinion-based decision-making
framework. There, “Stripe” corresponds to the hardest pattern type with the highest
levels of entropy and Moran index, causing difficulties for collective perception.

In the context of the proposed belief-based decision-making framework, according
to the results of Section 5.5.1 and Section 5.5.2 for n = 3, PCR5/6 has shown relative
robustness in comparison to the other fusion operators across the diversity of environ-
mental patterns, retaining comparably high collective performance. In particular, on
“Stripe”, it is the one which is characterised by a clear convergence trend towards the
state of collective “knowledge” in ωbest , regardless of the ratio of the colours ρ. Such a
performance can be explained by the construction of the operator and how it combines
the conflicting pieces of evidence (Section 5.3.3). Specifically, it redistributes the aris-
ing conflict only over the conflicting propositions proportionally to the values of their
respective mass values. In the case of “Stripe”, the agents for the most part of the
time possess highly conflicting pieces of evidence, primarily in the form of a binary mass
function with full certainty in one or another option ωi and in nothing else. That is,
due to the specifics of the underlying spatial distribution of the features and the mo-
tion of the agents, the individuals observe for most of the time some certain option ωi ,
which results in the environmental evidence mek (ωi ) = 1 in case if ωi was also the opinion
under consideration of an agent k or mek (Ω) = 1 otherwise. As such, the belief fusion
between agents from different feature-locations of the environment is characterised by
the high degree of conflict K = 1. In such a setting, by Theorem 1, PCR5/6 operates
as the averaging operator. As a result, the beliefs in the conflicting propositions, e.g.,
ωi and ω j , are evened out such that the agent k is set into an uncertain state regarding
both of the options, that is, mk (ωi ) = 0.5 and mk (ω j ) = 0.5. Later in the decision stage,
according to Equation 5.26, an agent equiprobable selects one of these options as its
new opinion opk to explore. In turn, this slows down the entire decision-making process
but promotes a more thorough exploration of the most likely outcomes, leading to more
accurate collective decision-making. To support this hypothesis, we perform additional
experiments with PCR5/6 in Section 5.5.5 on prolonged period of time T .
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5.5.3 Comparison of Individual, Social, and Collective Learning

In this section, we perform the comparison between different learning types within the
performance of twelve fusion rules by the end of the simulation time T = 400 s on the
benchmark set with n = 3 and ρ ∈ {0.67,0.93}. Figures 5.9-5.11 show the distribution of
the average population belief at T = 400 s. across 100 trials, respectively illustrating the
differences between collective and social (i), collective and individual (ii), social
and individual (iii) types of learning for both ρ = 0.67 and ρ = 0.93. In the following,
the results are described by the groups of the fusion operators as in previous sections.

According to Figure 5.9a, for the group consisting of DM1 and DM7-9 the overall
shape and distribution of the population beliefs are similar for both CL and SL regard-
less of the environmental pattern. In case of DM6, CL results are more shifted towards
certainty on “Star”, “Band” and “Band-W” (middle-difficulty scenarios). SL-DM4 is
represented by a higher median average population belief than its CL counterpart, while
both correspond to an uncertain state. On “Random” (the easiest scenario), both SL
and CL variants of DM2, DM5, and DM11 are characterised by the distribution of beliefs
highly concentrating around the median value, which indicates the state of collective cer-
tainty in ωbest . However, CL is described by more outliers on the ends of the distribution
shape (skinny on the ends and wide in the middle). Similar results are demonstrated
on “Band”, while on “Band-W”, DM5 and DM10-11 have identical shapes of the SL
and CL belief distributions. On “Stripe” (the hardest scenario), DM2-3, DM10, and
DM12 are described by bimodal distributions of the population beliefs with two peaks
on the opposite ends, corresponding to the states of “complete certainty” and “complete
disbelief” that ωbest is the true state of the world. The peak of “disbelief” in the case of
CL is higher than the one with SL. The latter is also described by a higher median belief
value, indicating its bias towards certainty. To note, DM5 (PCR5/6) is characterised
by similar shapes of CL and SL belief distributions with a higher median value in the
case of CL but with more outliers than for SL. On “Star”, “Band-S” and “Rec”, DM2-3,
DM5, and DM10-11 have similar shapes of belief distributions with a number of outliers
for both CL and SL cases.

From Figure 5.10a, one can see the largest difference in the shape of the distributions
between CL and IND as well as in their median population belief values, independent
of the pattern type. The median population belief difference is more apparent for the
group of fusion operators such as DM2-3, DM5, and DM10-12 on all the patterns, while
for DM1, DM4 and DM6-9 this is not always the case. On the hardest set of benchmark
scenarios, i.e., “Stripe”, “Band-S” and “Rec”, the median values of the aforementioned
fusion group mainly coincide for both learning types and lack convergence towards cer-
tainty. In general, IND distribution is concentrated around the 0.5 belief value despite
the applied combination operator. Figure 5.11a confirms the same observation for SL
and IND, indicating, in the case of DM2-3, DM5, and DM10-12, the striking difference
between the two (SL and IND) distributions. While for DM1, DM4, and DM6-9, they
are mainly similar on the scenarios with high E and M I parameters.

According to Figure 5.9b, belief distributions for both CL and SL do not significantly
differ, when there are almost equal ratios of the colours in the environment (ρ = 0.93).
CL and SL counterparts of DM1 share similar shapes of belief distribution with the
same median average population belief values, indicating the uncertainty, across the
benchmarks. A similar observation holds for the operators DM6-9, with the exception
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for DM6 on “Random” and “Band”. There, beliefs of CL-DM6 are highly concentrated
around the median, referring to the state of “complete certainty”, with the increased
number of outliers compared to SL-DM6. The most difference in the results between
CL and SL is observed for DM12. Except for the hardest benchmark scenarios, that is,
“Stripe”, “Band-S” and “Rec”, SL-DM12 is described by uni-modal belief distribution
concentrating around the state of uncertainty versus bimodal distribution for CL-DM12
with two peaks around the states of “complete certainty” and “complete disbelief”. While
the median population belief of CL-DM12 corresponds to the collective certainty, the
SL variant is characterised by a lower median on the hard scenarios, though sharing
similar bimodal belief distribution as its CL counterpart. CL and SL for DM2-3, DM5,
and DM10-11 also share similar bimodal distributions of the beliefs regardless of the
underlying pattern in the environment. To note, CL-DM5 on “Stripe” is described by
numerous outliers in comparison to SL-DM5, while both have the same median average
population belief values and shapes of the belief distributions.

From Figure 5.10b, one can see that IND distribution is highly concentrated around
the median value of 0.4, which is, in turn, lower than for the case of ρ = 0.67. In case
of “Stripe”, “Rec”, “Band-S” and “Band-W” (hard scenarios), the shapes of IND and
CL distributions coincide for the group of fusion operators such as DM1, DM4 and
DM6-9. In the rest scenarios, the median belief’s values of the aforementioned rules are
almost the same, while the CL shape distribution is more stretched in both directions
and the IND one is more concentrated around the median. Figure 5.11b illustrates the
comparison between SL and IND and holds the same relative performance as in the case
of CL versus IND in Figure 5.10b.

Discussion

Individual learning alone is characterised by a highly uncertain population of agents
lacking any convergence even on easy scenarios, e.g., such as “Random”, independently
of the applied fusion rule. Nevertheless, additional consideration of the interactions be-
tween the agents together with individual updates (resulted in either social or collective
types of learning) leads mainly to a significant improvement in collective performance.
However, in this case, the selected combination rule and the scenario complexity have
to be taken into account. Specifically, for the group of rules which is not designed for
conflict minimisation, that is, DM1, DM7-9, there is no significant difference between
considered types of learning (collective vs individual or social vs individual) on
the scenarios with high E and M I parameters. While another group of rules, that is,
DM2-3, DM5 and DM10-12, is mainly able to resolve the conflict in evidence fusion
with other agents independent of the type of the exchanged information, either social
or collective, on all the benchmark patterns.

In general, social learning promotes the transfer of the information received solely
from the environment between the agents, increasing in this way the rate of individual
learning. Compared to individual learning, the resulting belief based on social learning is
a cumulative environmental estimate of individual estimates performed by the members
of the population from different parts of the environment, without requiring additional
time for the agent to explore on its own. To note, the results of the experiments in
this section indicate that mutual decisions based on social learning are more robust to
outliers compared to the ones based on the collective learning, while both end up with
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relatively high performance depending on the applied fusion operator. The reason for
this can be attributed to the type of the mass functions which encode one or another
type of evidence and which mass functions evolve as the result of the belief fusion due
to the specifics of the underlying fusion rule. That is, in the case of SL, the agent
combines its current mass mk only with mass functions in the form of SSF focused on
one of the options ωi ∈Ω. While in the case of CL the fusion is done between different
types of mass function, which already represent the outcome of previous combinations
and, therefore, can have mass values on the subsets Ai ∈ 2Ω, depending on the applied
combination operator. The latter can lead to higher collective variability in the average
population mass in ωbest during the decision-making process, which makes the collective
result potentially more noisy than in the case of social learning.

Depending on the applied fusion rule, the results on the hardest benchmark sce-
nario, namely, “Stripe”, are subdivided into two categories regardless of the learning
type, that is, polarisation of the group into extreme states (either “complete certainty”
or “complete disbelief” in ωbest ) or convergence to the state of collective uncertainty.
The exception is PCR5/6, which is described by the average population beliefs highly
concentrated around the state of “complete certainty” and which is free from outliers
using social learning. In particular, on “Stripe” with ρ = 0.93, PCR5/6 is characterised
by the numerous amount of outliers based on the collective learning compared to a so-
cial one, which remains reliable, maintaining high collective accuracy given almost equal
qualities of the options. To note, the performance of the most successful group of fusion
operators based on collective learning in the case of ρ = 0.93 is primarily featured by the
bimodal distribution even on benchmarks with low E and M I . While PCR5/6 based
on social learning holds population belief distribution condensed around the certainty
state independent of the benchmark type.

5.5.4 Influence of the Population Size

In this section, we analyse the influence of the increased size of the population of agents
on the collective convergence towards the state of certainty that ωbest ∈Ω is the true state
of the world. Following the results of the previous sections, we evaluate the performance
of the most successful group of fusion operators, that is, DM2-3, DM5, and DM10-12, on
the easiest and the most complex benchmark scenarios, namely, “Random” and “Stripe”,
both with ρ = 0.67.

Figure 5.12 shows the average population belief in ωbest ∈Ω (top) and the population
success rate (bottom) averaged across 100 runs for the population of N = 60 individuals
based on (a) collective and (b) social learning using the aforementioned fusion operators.
Given the fixed size of the environment and the scale of the agents (see Chapter 2), the
total area coverage by the swarm of N = 60 homogeneous individuals constitutes 10.5% in
contrast to 3.5% when N = 20. Comparing the results in Figure 5.12a and Figure 5.12b
with Figure 5.4 and Figure 5.5 respectively, one can see a significant change in the
performance of considered fusion operators on “Random” for both types of learning. In
particular, all the aforementioned operators with CL on “Random” can reach the global
state of complete certainty with the high collective accuracy (100% of the population in
the state of “fully certainty”) and are described by increased convergence speed compared
to previous experiments. Similar results are observed in the case of SL on “Random”,
although SL-DM11 and SL-DM12 do not achieve the same convergence performance
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Figure 5.12: Average belief (top) and success rate (bottom) over time in the population
of N = 60 agents for ρ = 0.67 and n = 3 (Bartashevich and Mostaghim, 2021).

as the other operators. SL-DM11 is slower than SL counterparts of DM2-3, DM5, and
DM10, but still reaches the state of collective certainty, while SL-DM12 oscillates around
0.9 average population belief without any agent able to achieve the certainty state (0% of
the population in the state of “fully certainty” w.r.t. population success rate). However,
both SL-DM11 and SL-DM12 with N = 60 indicate an improvement in their performance
compared to the case with N = 20.

With the increase of the population size, on “Stripe”, the collective accuracy and
the average population belief in ωbest ∈Ω are significantly improved for DM2 and DM3,
regardless of the learning type. Compared to Figure 5.4 and Figure 5.5, DM2 and DM3 in
Figure 5.12 are described by the increased linear growth of the agents achieving the state
of complete certainty and significantly decreased amount of the ones in the disbelief state,
which result in a more robust global convergence towards certainty than with smaller
population. In particular, SL-DM2 and SL-DM3 indicate better performance on “Stripe”
than their CL counterparts, almost without agents in the state of complete disbelief. To
note, DM2 significantly outperforms DM5 on “Stripe” with the increased population size
(N = 60) for both types of learning, while with a smaller population (N = 20) DM5 was
the best fusion rule among the others. That is, both CL and SL versions of DM5 are
primarily characterised by the uncertain population with beliefs in the range of (0.5,1).
While CL-DM5 with N = 60 is described by a belated transition (starting from 200 s.) of
the non-significant amount of agents into a state of confidence, SL-DM5 contains almost
no individuals on average in a state of certainty by the end of the whole given time T .
Similarly, the performance of DM11 is significantly deteriorated with the increase of the
population size for both learning types, resulting in a highly uncertain population of
agents with beliefs in the range of (0,0.5]. In case of DM10 and DM12 with N = 60 on
“Stripe”, the results do not significantly differ from the ones with N = 20. Nevertheless,
both CL and SL counterparts of DM10 and DM12 are characterised by the belated
though accelerated afterwards transition of the agents into extreme states, i.e., “fully
certainty” and “complete disbelief” in ωbest ∈Ω, compared to Figure 5.4 and Figure 5.5.
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Specifically, the average population belief of CL-DM12 is higher in the case of N = 60
than the one in the case of N = 20, due to the transfer of agents into disbelief state only
after 200 s. along with rapid linear growth of the ones in the state of certainty.

Discussion

The larger amount of individuals increases the coverage of the arena as well as the
amount of collected evidence, however at the same time makes it harder for the agents
to move freely through the environment without collisions with their neighbours. In
addition, due to the specific collision avoidance mechanism, the agents tend to move
together or in proximity to each other for a certain time after the collision is resolved,
creating in this way temporary flocks. Together with the increased population size,
this leads to a higher probability of the agents’ interactions in a limited communication
radius and, hence, to a higher rate of the incoming evidence. As a result, the agents can
keep stable topological structures in their neighbourhoods for certain periods of time,
resulting mainly in a tree network topology spanning over the whole swarm. In turn,
this leads to a stabilised input from the environment and other agents scattered over
the space and, thus, to a faster and less prone to uncertainties collective consensus in
the unstructured environments, e.g., such as “Random”, than with a smaller amount of
individuals. However, due to the high spatial conflict between the options in the case of
environments with a particular structure, i.e., with high M I and E , such as “Stripe”, the
higher connectivity in the swarm requires more time to propagate the conflict between
different areas of the environment, and respectively to resolve it, than in comparison
to a sparser swarm of smaller sizes. As a result, a later appearance of the extreme
beliefs (i.e., fully convinced or fully unconvinced ones) is observed in the population. In
turn, this belated confidence growth leads to more robust results with a lesser amount
of fully disbelieved agents and also to a faster, though a later, growth of convinced ones,
depending on the way of resolving the conflict.

For social learning, due to the frequent agents’ collisions and the tendency to form
and move in clusters, the individuals exchange predominantly the same direct evidence
perceived from the same area sources as their closest neighbours, specifically in the
case of the high spatial conflict between the options. In this way, the conflict can be
detected only when the corresponding agents are passing the spatial border between
the options during their exploration phase, so that later they can communicate this
evidence. While in collective learning, individuals exchange their cumulative beliefs,
such that the conflict can be identified from experience and does not depend only on the
last exploration trajectory of the agents as in social learning. As a result, SL performance
on “Stripe” is in general characterised by slower confidence as well as disbelief growth in
the population than with respective collective counterparts, resulting in a more accurate
collective outcome depending on the applied fusion rule.

5.5.5 Scalability with the Increased Number of Options

In this section, based on the findings of Sections 5.5.1 and 5.5.2, we provide additional
experiments to investigate in more detail the performance of the most successful fusion
operator, that is, PCR5/6 (DM5), given an extended period of simulation time T = 2000
s., compared to T = 400 s. in previous experiments. In particular, the goal of the
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Figure 5.13: Average belief (top) and success rate (bottom) of DM5 (i.e., PCR5/6) over
longer period of time (i.e., 2000 iterations) in the population of N = 20 agents for a variety
of options n ∈ {3,5,8,10}. Statistics of 100 runs. Learning type: collective (Bartashevich
and Mostaghim, 2021).

following experiments is to evaluate the scalability of the PCR5/6 to the larger number
of options, i.e., n ∈ {3,5,8,10}, in the context of collective learning on three benchmark
scenarios representing different levels of complexity, i.e., “Random” (the easiest), “Star”
(middle) and “Stripe” (the hardest), with ρ ∈ {0.67,0.93}.

In Figure 5.13 there is a clear trend of decreasing the collective performance with
increasing the number of alternatives in the environments under consideration, regardless
of the options’ quality ratios ρ. The increase of the number of alternatives is primarily
accompanied by the increase in the number of agents in the state of “complete disbelief”
in ωbest ∈ Ω. In particular, on “Random” and “Star” (ρ = 0.67), the quarter of the
population transfers from the state of “complete certainty” into the state of “complete
disbelief” with each increment in the number of possible colours, e.g., from 3 to 5 and then
from 5 to 8. This results into high standard deviation values of the average population
belief on both “Random” and “Star” (ρ = 0.67) with n > 3. In general, PCR5/6 is
characterised by faster convergence to the collective steady state on “Random” compared
to “Star”. That is, on both scenarios with n ∈ {8,10}, the collective performance is
characterised by a highly polarised population of agents in two opposing extreme states.
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Whereas on “Stripe” (ρ = 0.67), PCR5/6 is described by the absence of the individuals
in the state of “complete disbelief” in ωbest ∈ Ω up to n = 5 inclusively. As a result,
the overall trend indicates steady convergence towards certainty. The decline in the
performance is observed with n ∈ {8,10}. That is, the case of “Stripe” (ρ = 0.67) with
n = 8 is characterised by 40% of disbelieved agents along with only 25% in the state
of “complete certainty” by the end of the given simulation time T . While the case of
“Stripe” with n = 10 is described by the worst performance of PCR5/6 for ρ = 0.67.
There, the swarm completely fails to identify ωbest ∈Ω, ending up with almost the whole
population of agents in the disbelief state by the end of 2000 s.

The results on the benchmarks with ρ = 0.93 are in general worse than the ones with
ρ = 0.67. According to Figure 5.13b and Figure 5.13a, one can observe a faster decline
in the performance with the increase of the number of option n in the case of ρ = 0.93,
compared to the case of ρ = 0.67. The performance on “Random” and “Star” for ρ = 0.93
and n = 3 resembles the one for n = 5 and ρ = 0.67, characterised by the quarter of the
population in the state of “complete disbelief”, which is expanding further to more than
50% in the case of more options, creating a highly polarised population for n ≥ 5. On
“Stripe” (ρ = 0.93) with n = 3, PCR5/6 gets stabilised already by 1000 s. and described
by 75% of the population with beliefs biased towards certainty in ωbest ∈Ω, i.e., in the
range (0.5,1], among which 50% are in the state of “complete certainty” along with only
around 5% in the state of “complete disbelief”. While for n = 5 the performance is already
significantly deteriorated with the average population belief below the certainty level,
i.e., around 50% of the population is in the disbelief state and only 25% possesses the
beliefs in the range of (0.5,1] by the end of the entire given time T . The same holds for
n = 8. For n = 10, the population converges four times quicker to the collective state of
“complete disbelief” in contrast to the corresponding case with ρ = 0.67, i.e., already by
500 s. the average population belief in ωbest ∈Ω equals zero.

Discussion

The obtained results are consistent with previous work (Crosscombe et al., 2019), where
only limited scalability of the DST approach to the best-of-n problem was shown on
a fully connected network of agents simulating a spatially independent site-selection
scenario with direct access to the global quality of the options. Alongside this, the
increase of sensibility to noise was depicted there as well with an increase of n. In the
context of the current work, a considered collective perception task is specified by very
high noise levels on its own. For instance, scenario “Stripe” with n = 3 and ρ = 0.67
is described by the following vector of global qualities of the options ~q = (0.17,0.33,0.5)
(where ∑n

i=1 qi = 1 and max~q is the best option). However, these global quality values
are not accessible to the agents and can be only locally estimated based on the time the
agent has observed its committed option during its last movement. Due to the spatial
characteristics of “Stripe”, the estimates are mainly taking extreme values such as 0 and
1, when the agent has not observed the selected colour and when it has seen nothing
else except it, respectively. The intermediate estimate in the range of (0,1) takes place
only when the agent crosses the spatial border between the selected colour and any
other one. The obtained value, in this case, is far from the corresponding option’s real
global quality value qi and is purely defined by the crossing border trajectory of the
agent. As a result, especially in case of lower n, the estimated qualities by the agents
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mainly contradict each other, such that one excludes another, i.e., either qi = 1 or q j = 1
(taking into account that ∑n

i=1 qi = 1). In such case, i.e., when the degree of conflict
K = 1, the resulting combination using PCR5/6 represents the average of the beliefs,
providing equal probabilities, i.e., 50%−50% chance, for both of the options ωi and ω j

to be explored in the next exploration phase. In turn, this prevents agents from the
premature convergence on a single option and gives extra time for better mixing of the
population, resulting in a longer convergence time but a high success rate for up to n = 5,
as can be observed in Figure 5.13a. Though for n > 5, this does not already hold due to
the arising options’ exploration difficulties accompanied by a higher frequency of agents’
crossing the spatial borders between the options (especially on “Stripe”). For instance,
considering n = 8, the communication between agents k and l with corresponding mass
functions mk (ω1) = 0.67, mk (Ω) = 0.33 and ml (ω2) = 0.45, ml (Ω) = 0.55, results in the
following combination mk⊕l using PCR5/6, where mk⊕l (ω1) = 0.5489, mk⊕l (ω2) = 0.2696,
mk⊕l (Ω) = 0.1815, which is further assigned as a new mk := mk⊕l and ml := mk⊕l of
the corresponding agents, subject to the fulfilment of all the necessary communication
conditions. As a result, confidence in both options, ω1 and ω2, is preserved but decreased
accordingly to their degree of conflict. Later, combining with another more confident
neighbour z, e.g., mk with mz (ω3) = 1, brings it up to mk⊕z (ω1) = 0.1945, mk⊕z (ω2) =
0.0573, mk⊕z (ω3) = 0.7482 (being further assigned under other conditions as a new mass
for agents k and z, i.e., mk := mk⊕z and mz := mk⊕z), decreasing in this way the confidence
in the ω1 and ω2 even further but still keeping a small chance for them to be selected
for the next exploration phase. Assuming that the true state of the world ωbest is the
ω8, which has not been even explored yet, it would be hard for the agent k to get
into corresponding exploration mode for the ω8 and, hence, to participate in further
dissemination phases. That is, as according to the current mass function mk , the option
ω3 will be highly probable selected and there is zero chance to switch for the exploration
of the ω8 unless the agent changes its mass. In other words, after the agent leaves the
environmental area of ω3, it will stay in the exploration phase constantly re-selecting the
option to explore according to Equation 5.4 until the selected option will be correlated
with the agent’s current movement trajectory. Hence, until this moment, the agent will
be cut off from any sources of information (either other individuals or the environment)
and will stick to its old belief, which, in the case of larger n, is very unlikely to reflect
the correct state of the world. Thus, the rise of unconvinced individuals in the ωbest is
primarily observed for n > 5, independently of the pattern type (see Figure 5.13).

Notably, since the size of the arena remains the same, with the increasing number
of options the area covered by each colour in general decreases. As a consequence,
it makes it harder for the agents to enter the dissemination phase and to participate
in communication, as they stay locked in an exploration state until they move into
the area of their selected colour. Especially, for larger n, this point is crucial at the
beginning, where the agents select randomly the option to explore. As it was observed
from simulations, dependent on the initial position and choice of the option, the agent
can spend a long period of time iterating over n options while it finds the one correlated
with its current movement trajectory. In fact, the communication happens then only
between agents which have lately observed the selected by them option (what means
that this option has the highest mass value among others) and predominantly occurs
between either those coming from adjacent areas with conflicting options (e.g., from
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adjacent colour stripes) or from the area with the same colour. Accordingly, the agent
needs always to stay up-to-date and be updated by the information from its neighbours in
order to be successful in the succeeding phase, when he moves to another colour-area. For
instance, the agent k with mass function mk (ω2) = 0.63, mk (Ω) = 0.37, crossing the spatial
border between ω2 and ω5, connects with the corresponding agent l of ml (ω5) = 1, so that
their resulting combination mk⊕l using PCR5/6 is characterised by mk⊕l (ω2) = 0.2435,
mk⊕l (ω5) = 0.7656, being assigned as a new mass function mk := mk⊕l for agent k. Here,
the option ω5 is the most likely to be selected for the next k-th exploration phase and
coincides with a new current spatial area of the agent. Thus, the agent gets personal
quality update with me (ω5) = 1, which reinforces its confidence in the ω5 even further.
Though, if the agent does not connect with any other individual from the next area
(stripe section), it will miss the succeeding dissemination phases until it is back to the
area with ω5. Therefore, lack of communication, due to the indirect influence of the
agent’s quality reflected in its dissemination time, leads to poor performance for n > 5,
as can be observed from Figure 5.13.

5.6 Summary and Discussion

In this chapter, we have proposed a belief-based decision-making framework to model the
collective decision process in the context of the collective perception scenario as the best-
of-n problem with n > 2 options. The main focus was to overcome the potential sample
bias induced by the unknown environment through resolving the local conflicts at the
level of individuals. For this purpose, we explored the application of evidence theory (or
DST) to model the decision-making of the agents. In particular, we compared the perfor-
mance of the twelve most common belief fusion operators with regard to their robustness
across seven spatial patterns in the collective perception scenario as a distributed con-
sensus achievement problem. The DST has been previously applied by Crosscombe et
al. (2019) in the context of the best-of-n problem, where the macro-level convergence
properties of four belief combination operators were studied in a dynamic spatially inde-
pendent multi-agent setting. The main difference between the current work presented in
this chapter and the previous work is threefold: (1) in the collective perception scenario
the agents cannot directly access the quality of the features, while in (Crosscombe et al.,
2019) the quality was directly measured like in traditional site selection problem; (2) in
the previous work, the agents had access to any other agent in the population, forming
a fully connected network, while in the current work the communication is subject to
the agents’ movements and their respective behaviour states; (3) we also consider the
modulation of the positive feedback in the decision-making process.

Apart from different mental models compared to the original opinion-based decision-
making framework (see Section 2.4), the proposed methodology implies that (1) the
evidence from the environment is directly incorporated in the process of forming agents’
mental states, that is, involving individual learning; as well as (2) the current belief of
an agent (mass function mk) is necessarily included in the aggregation of the acquired
individual’s information, while not all voting models take into account the current per-
sonal opinion of an agent. As such, our proposed belief-based decision-making framework
operates on a dynamic random geometric graph of agents with quantitative belief assign-
ments based on the observation time estimates of the selected options, coupled together
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with direct modulation of positive feedback.

The research findings of this chapter confirm our hypothesis and show that the
re-distribution of beliefs across unions of options allows the mechanism of collective
decision-making to successfully overcome inter-individual conflicts as a result of a cer-
tain environmental structure, albeit at the expense of the consensus (convergence) speed.
In this regard, PCR5/6 fusion rule has demonstrated itself as the most successful op-
erator among the studied ones in the collective perception task under consideration for
smaller swarm size of N = 20. It has indicated high collective accuracy across the diverse
set of benchmarks (from the ones with low E and M I to the ones with respectively
high values) without any additional modifications, suggesting its generality. As such,
the choice of PCR5/6 becomes advantageous before robots’ placement in the scenarios,
where there is no a priori information about the features’ distributions to be explored.
PCR5/6 has also been noted in the DST literature as the effective tool to resolve the
arising conflict during fusion of quantitative beliefs (Smarandache and Dezert, 2004a), as
well as demonstrating itself worthwhile in a number of applications, such as, multisensor
distributed target tracking (Kirchner et al., 2007), grid occupancy estimation (Dezert et
al., 2015), threat assessment in decision support systems (Israel and Blasch, 2016), to
name a few. However, according to our results, with an increase of the size of a swarm
up to N = 60, the performance of PCR5/6 tends to deteriorate. In particular, the
convergence towards the collective state of full confidence is significantly slowed down.
A possible explanation for this can be due to the increased frequency of communica-
tion and, hence, more accumulated information by individuals. The latter can trigger
an early start of the process of conflict redistribution, which facilitates exploration and
slows down exploitation. To the best of the author’s knowledge, the current work is the
first to study the DST fusion operators (including PCR5/6) to address the problem of
collective perception in the context of the best-of-n framework. Additionally, the im-
pact of the observations’ frequency, i.e., time intervals between the observations, can be
studied in regard to how they define quality estimates of the agents and, respectively,
affect the fusion outcomes. In the current work, a high frequency of agent’s observations
was considered, which leads to the collection of less spatially distributed evidence, while
the lower frequency of observations can be more beneficial in clustered scenarios.

Results obtained on the scenarios with the increased amount of options (i.e., n ≥ 3)
reveal the scalability of PCR5/6 up to n = 5 alternatives, sustaining for n = 5 about
75% of the agents in the state of “complete certainty” on the easiest and the middle
difficulty benchmarks. On the hardest one, i.e., “Stripe”, around 90% of the population
was skewed towards ωbest ∈ Ω, among which 62% of the individuals were absolutely
convinced in its truth. The reason for the decline in the performance for n > 5 can lie
in the manifestation of the ineffectiveness of the positive feedback mechanism due to the
reduced coverage of the area by the features of a certain colour. This results in a lesser
likelihood to reach the propagation process by the agent that strongly depends on its
initial location and, hence, leading to a reduced number of encounters with the others.
As a result, the agent remains stuck with its first evidence update unless it enters again
the initial area. In this regard, more effective task allocation mechanisms are required
to explore a larger space of options. As another possibility, in the case of PCR5/6, a
larger set of options can be split into smaller subsets of the size up to n = 5, due to its
shown reliability on the scenarios with up to five options. By doing so, one can also
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prevent the growth of computational complexity with the increasing size of the frame of
discernment for a larger number of options n, which is one of the main restrictions of
the applying of PCR5/6 in the real-world applications (Scholte and Norden, 2009).

Noteworthy, with the increase of the number of options, especially on “Stripe”, the
agents have a tendency to converge on the second-best alternative, resulting in a sub-
optimal collective decisions. There, large patches of the same features require longer
exploration times along with more energy consumption of the agents. Since the fea-
ture’s prevalence is taken as the corresponding option’s quality, the time required to
sample the respective alternative can be defined as its associative cost. As such, spa-
tial correlations of the colours can make one options be harder for exploration than the
others, i.e., demanding longer exploration times. This can in turn create a negative bias
in the collective decision-making process, depending on the quality of the option. The
latter is supported by the observed cost-quality trade-off in the results of PCR5/6 in
Section 5.5.5, indicating longer convergence time on the scenarios with clustered features,
despite the ratio complexity ρ and the options’ number n.

The impact of learning as the mechanism of “sharing with the others” on the decision-
making process has been also investigated, comparing collective, social and individual
types of information sharing within the proposed methodology. The obtained results
provide the evidence that transfer of the pure (albeit rather noisy) information sampled
from the environment (considered as a social way of learning) leads to comparable and
even more robust outcomes to those obtained by sharing the full cumulative knowledge
of the agents (collective way of learning). That is, social learning has demonstrated
robustness and effectiveness over a collective one, while both confirm the superiority to
the solo individual accumulation of information. The latter is in the agreement with
the findings of other works (Lee et al. (2018b); Crosscombe et al. (2019), to name a
few), while the former has not been studied so far in previous studies to the best of the
author’s knowledge.

Social learning implies the broadcast of the information sampled by the individuals
directly from the environment, while collective learning means the broadcasting of the
entire accumulated knowledge attained by the agent over time from different informa-
tion sources (i.e., environment, other agents) and retained in the agent’s personal mass
function. As such, the evidence obtained by the agent from the environment can be
communicated to the other agent as a single value (i.e., qi ∈R of an option ωi , i = 1. . .n)
in comparison to the whole vector of mass values in the case of the agent’s mass func-
tion. The former makes social learning to be more appealing to the application in a
robotic system due to the less chance of potential communication delays compared to
collective learning. Moreover, the combinations of simple support functions (i.e., mass
function representation in the case of social learning) are in general performed faster
than of the other mass function’s types (Barnett, 2008), giving another advantage to
the deployment of social learning in the real-time distributed robotics systems. How-
ever, due to the increased rate of the perceptions directly from the environment in social
learning, one should also maintain the sufficient mingling of the population to prevent
the accumulation of overly repeating pieces of evidence. The latter is supported by the
deterioration of the social learning output for the population coverage ratio of 1 : 10
relative to the size of the environment (see Section 5.5.4).

Overall, the results of this chapter indicate the viability and generalisability of the
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proposed belief-based decision-making framework to tackle spatial correlations of the
features, without modifications of the low-level controller of the individuals (e.g., their
movements).
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Conclusion

One of the key components of collective cognition is the processing of a large number
of local observations, which allows a collective to identify an environmental or social
state more accurately than a single individual (Sasaki and Pratt, 2018). In this regard,
decision-making as a group cognitive ability is determined by individual behavioural
rules that operate on incomplete information assessed through local interactions with
others and physical surroundings. As such, one of the challenges in the design of an
artificial cognitive system is determining how to aggregate this information and which
individual decision-making rules to apply. While these rules are usually referred to as
“simple” in the literature on self-organisation (Jeanson et al., 2012), this is rarely the case
for the underlying cognitive mechanisms inside an individual that enable them. Indeed,
biological systems often rely on simple heuristics such as the mechanism of positive
feedback for sharing information and achieving consensus on a single option. However,
the performance of such heuristics highly depends on the environmental context.

In this thesis, we have argued that by considering individuals as cognitive entities
with multiple personal mental states, one can design generic individual decision-making
rules that provide collective accuracy across a variety of environments. To this end, we
have introduced preferences and beliefs along with opinions into the decision-making pro-
cess and studied the proposed models in a multi-agent setting on the collective perception
scenario. In the following, we summarise the corresponding contributions presented in
this dissertation and suggest future directions of the research.

6.1 Research Contributions

In this dissertation, we have developed individual decision-making rules which enable
more accurate and robust collective decisions across various environments than existing
opinion-based decision-making strategies within the best-of-n framework. The main
focus lied on the generalisability across different environmental structures (patterns)
and scalability for a larger number of options n > 2. In this instance, the structure of
the physical environment can impose bias into the collective system. This is expressed
in the corresponding bias in social space as some opinions prevail over others due to
the particular spatial distribution of the options and, hence, bias the decision-making
process. Therefore, in order to improve the performance of collective decision-making
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algorithms, our first goal was to understand how social and physical environments can
affect the opinion-based decision-making strategies.

In Chapter 3, we studied the bias in the social environment given by preferences.
For this purpose, we have proposed a decision-making model based on the Ising model
from statistical mechanics that generalises both the majority rule and the voter model,
which are referred to as the state-of-the-art opinion-based decision-making strategies.
There, setting up the nonlinearity parameter of the model, one can obtain a variety
of voting behaviours ranging from the voter to the majority rule. To introduce the
bias into the social system, we endowed agents with preferences and incorporated them
into our Ising-based decision model by following the concepts of social impact theory.
Thus, we developed a preference-based decision-making strategy that takes into account
the opinions of others in terms of the individual’s personal preferences. Simulation
experiments have shown that by assigning a global preference, a designer can guide
the autonomous collective system towards a particular outcome. In this regard, the
consensus speed can serve as an indicator of the successful assignment (i.e., most likely
matching the best option) in the case of two alternatives, especially if they are of close
quality. Furthermore, we also introduced a mechanism of online preference adaptation
such that preferences can co-evolve together with opinions. The latter was inspired by
the cognitive dissonance theory of Festinger (1957) according to which an individual is
self-driven to reduce the inconsistency between its cognitive representations, which, in
our case, are expressed by opinions and preferences. The results on the binary collective
perception scenario indicate that such an adaptive strategy takes the best of both, being
as fast as the majority and as accurate as the voter model, even on the scenario with
close-quality options. Therefore, we confirmed our hypothesis that intrinsic motivation
can manipulate social biases and lead to more accurate and faster collective decisions by
altering preference dynamics.

To study the bias imposed by the physical environment, the collective perception
scenario as the best-of-2 problem has been examined in Chapter 4 for benchmarking and
generalisability across different distributions of the features (options). For this purpose,
we proposed and analysed nine environmental patterns taken from the matrix visualisa-
tion literature as scenarios of collective perception task besides commonly used random
distribution of the colours. Simulation experiments on a diverse set of problems have
shown that the real task difficulty lies not only in the quantity ratio of the features, but
also in their distributions and the clustering levels. Two metrics based on the entropy
and Moran index were proposed to characterise a new measure of the difficulty. The
experiments with three state-of-the-art collective decision-making mechanisms (majority
rule, voter model, and direct comparison) supported their validity. As such, spatial cor-
relations of the features have demonstrated to define the cost of the options with respect
to the system driven by the mechanism of positive feedback. That is, similar to the
environmental bias imposed by the distance from the site to the nest in the site selection
scenarios, spatial patterns induce sample bias into the distributed collective perception
system. In this regard, we also analysed how environmental transformations can affect
the collective decision-making without modifying the individual decision-making rule.
The focus lied on the application of a special kind of equivalence relation, namely iso-
morphism, to the environment. It introduces local changes in the scene, keeping the
global information as well as the relationships between the features in space, i.e., the
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global structure of the environment. The results on nine patterns showed that with the
help of isomorphism, one can manipulate the physical environment without changing
its combinatorial structure and improve the speed and accuracy of collective decisions.
The latter is associated with a decrease in the complexity of the problem in terms of
introduced metrics and, hence, in the options’ costs due to the spatial transformation of
the patterns and, thereby, modulation of positive feedback.

Our second goal was to design generic individual decision-making rules for collective
decision-making that can be robust across different environmental patterns and a number
of options (n > 2). To the extent that agents holding preferences can manipulate social
bias and, hence, collective decisions (as in Chapter 3), we have argued that sample bias
imposed by the physical environment can be resolved in a social space at the level of
disagreement between the agents. In Chapter 5, we developed the belief-based decision-
making framework based on the Dempster–Shafer evidence theory (DST), which allows
handling of uncertain and imprecise information. As such, it implies the ability to
integrate evidence from multiple sources without prior knowledge of their distributions,
considering not only mutually exclusive options but also the grouped ones. In this
regard, we extended our benchmark set of collective perception scenarios proposed in
Chapter 4 for n > 2 colours and conducted a comparative study of twelve fusion operators
designed for one-off combinations of two independent beliefs. The latter enables agents
to incorporate evidence while on the go, as soon as it is received or assessed from the
social and physical surroundings, respectively. Simulation results have demonstrated
that small swarms of up to 20 individuals employing evidence theory can successfully
aggregate personal beliefs to collectively assess the environments with spatial correlations
of the features. In particular, fusion operators designed to deal with opposing evidence
have been shown to be effective in forming a trustworthy swarm, robust across a variety
of spatial environmental patterns. In this context, we showed that proportional conflict
redistribution of incoming evidence to unions of options allows a collective to successfully
resolve conflict across clustered regions of features up to n ≤ 5. The obtained result is the
subject of the speed-accuracy trade-off, as a high level of collective accuracy is achieved
at the expense of consensus time.

Using the belief-based decision-making model developed in Chapter 4, we also stud-
ied which information type is best to exchange to achieve more accurate collective deci-
sions. For this purpose, we defined and compared three types of learning mechanisms,
namely individual, social and collective learning, which differ in the type of communi-
cated evidence. The results indicated the superiority of social learning over collective
and individual types. In this regard, we have found out that sharing of direct evidence
(albeit biased/noisy) from the physical environment (referred to as social learning) pro-
duces the same or more robust collective performance than sharing of the cumulative
evidence of the agents (referred to as collective learning). The variability mainly depends
on the applied fusion operator and the underlying environmental pattern. Overall, social
learning can also produce less communication overhead than the collective approach, due
to the exchange of only one mass (belief) value in the context of considered belief-based
decision-making, which gives it another advantage to be employed in the distributed
real robotic system. Although individual learning has demonstrated itself as the least
effective, it has been shown to support the function of the direct modulation of positive
feedback in both social and collective learning. That is, the agent’s personal estimate
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of the environment is also directly integrated into the agent’s belief (referred to as in-
dividual learning) and not only in the direct modulation of the positive feedback as in
Chapter 3. As a result of these mechanisms’ coupling, we demonstrated that as the agent
directly accumulates the evidence from physical and social environments over time, the
collective can come up with more accurate decisions.

Finally, a secondary goal was to preserve the modularity of the best-of-n frame-
work without major modifications of its design to ensure the generality of the proposed
methodologies. For this purpose, we concentrated on the framework’s high-level proce-
dures as in Figure 2.3 rather than specific low-level controllers, such as the motion of the
agents. The latter, however, can impact the quality of the information assessed by indi-
viduals from the environment, especially in the presence of spatial correlations. In this
regard, the question is how to aggregate the information and what to exchange to obtain
a precise collective estimate. The current thesis proposes solutions to this question by
mainly focusing on the design of the “Decision()” block, where an agent reconsiders its
existing mental states. In particular, we demonstrated how, exclusively by means of
individual decision-making mechanisms, one can obtain accurate and robust collective
decisions without tweaking of the “Modulation()” block across different environmental
patterns.

6.2 Limitations and Future Research Directions

The collective decision-making algorithms presented in this thesis include two behavioural
phases prior to decision-making: exploration and dissemination. Their duration, i.e., the
time during which an agent explores the options and then participates in the dissemina-
tion process, is defined through the modulation of positive feedback. Although the time
for switching between the phases impacts the speed and accuracy of the decision-making
strategy, it is highly dependent on the characteristics of the physical environment as well
as on robots’ specifications. Since the environment is assumed to be a priori unknown to
the designer, tuning the parameters for direct modulation and, hence, phases’ duration
in advance becomes problematic. As mentioned at the end of the previous section, in
the current study we did not tweak the mechanism of direct modulation of positive feed-
back and concentrated on the decision-making component, using default and the same
modulation parameters across different environments. For instance, in the considered
collective perception scenario, the exploration time is independent of the chosen option.
While this is feasible in the case of the random distribution of the features, when the
features are clustered, the exploration time can vary depending on the initial spatial
position of an agent. In this regard, short exploration time can reduce the accuracy
and the long one can lead to a low consensus speed. Future research can look towards
developing adaptive timing of the phases with regard to the assessed information about
the features. To that end, each agent can assess the scattering of the options and incor-
porate it into its quality estimate similar to how the biological systems weigh multiple
criteria when deciding for the best alternative (Detrain and Deneubourg, 2002).

As part of future work, one can also seek ways to improve the performance of the
proposed decision-making operators within the framework, specifically to decrease the
variance in the collective performance. For instance, this can be addressed by incorpo-
rating a modulation of the negative feedback, which, according to Talamali et al. (2020),
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has been shown to be effective, either alone or in combination with positive feedback, in
reducing deviations from the target distribution in colony foraging performance.

Further studies exploring the issue of scalability for n > 2 options are suggested. In
particular, the preference-based decision-making introduced in Chapter 3 can be ex-
tended to study the case of the best-of-n problem with n > 2 by considering the gener-
alisation of the Ising model known as the Potts model (Martin, 1991). In this regard,
the development of specific dynamic task allocation techniques, such as those described
in (Ebert et al., 2018), can assist the scalability issue for larger number of options by
allowing agents to explore alternatives independently of their initial choice allocations.
However, the question remains of how many options are in fact feasible in the real-world
applications of collective perception scenario, additionally requiring further user studies.
As one of the promising examples of such a real-world application, one can consider weed
monitoring (Albani et al., 2017). In addition, the validation of the developed methodolo-
gies on other application scenarios of the best-of-n problem besides collective perception
is of future interest, including robotic implementations.

Considering learning mechanisms introduced in Chapter 5, as one of the possible
extensions, one can investigate the balance of collective, social, and individual informa-
tion while combining the evidence. For this purpose, one can consider the weighting of
different types of evidence in the fusion process. So far, the collective and social learning
mechanisms of the evidence update studied in the current work integrate individual esti-
mates and those acquired from others in an equal proportion. It would be interesting to
study which weightings are performing well in which environments and how they change
across different feature distributions.

While the current thesis focuses on the design of high-level procedures, such as an
individual decision-making mechanism, another possibility for future work is to develop
adaptive movement routines for better exploration of the options. In the context of
the collective perception scenario, one can consider the development of directed motion
procedures based on the agent’s decisions with regard to the assessment of the spatial
distribution of the features. For this purpose, one can try to employ collective Levy
walk (Khaluf et al., 2018) or Brownian motion procedures, which allow for analytical
design support (Hamann and Wörn, 2007) and, thus, can be compatible with compart-
mental modelling approach for the best-of-n problem as by Valentini (2017). Also, it
could be interesting to examine how the propagation of information responds to different
communication models in the context of the proposed methodologies.

Furthermore, the presented frameworks in the current work operate based on the
assumption that the full set of possible options is given a priori. In future, the pre-
liminary exploration process determining the alternatives can be added. In particular,
the framework introduced in Chapter 5 can be modified to operate without any knowl-
edge about the frame of discernment, which can be dynamically built up as the options
discovered (Smarandache and Dezert, 2012). Such an ability to incorporate a dynamic
frame fusion will make it appealing for further applications, which require constant ex-
ploration of the environment or/and characterised by dynamic changes, where options
can evolve (appear or disappear) within time. While the consensus achievement in the
current work is considered as reaching a state of full certainty in a particular outcome, in
the future one can seek to implement individual response thresholds (Sumpter, 2006) in
the belief fusion process as the stop criteria when enough evidence is found. In this way,
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one can also control the responsiveness of the system to the possible dynamic changes
in the environment.

Finally, in this dissertation, we have treated preferences and beliefs as independent
mental states of an agent interacting separately with its opinion (see Figure 1.1). In the
future, one can aim to design a generalised decision-making framework that also includes
interactions between preferences and beliefs (Rouahi et al., 2018) and study its impli-
cations on collective behaviour in the context of the best-of-n problem. As our findings
indicate, in this regard, it is important to note that while an agent’s enhanced mental
capacity can lead to better and more robust collective decisions across environmental
settings, it also imposes larger computational demands at the individual level.

Overall, the author hopes that the findings and insights gained in the current work
can be helpful for the further development of robust collective decision-making strategies
in artificial distributed cognitive systems.
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ix A
Parameters of Collective Perception

Scenario

Parameter description Symbol Value
Number of cell in a grid Γ 400

Size of a grid cell cel l × cel l 1×1 unit2

Speed of linear motion |~v | 1.6 units/s 1

Angular velocity ω 7.5 rad/s
Agent diameter Θ 0.7 units

Population size (default) N 20
Maximum communication radius dmax 5 units

Communication frequency ∆τC 10 times per second
Exploration time t 10 seconds

Table A.1: Table of default simulation parameters for collective perception scenario.

1One physical second (s) is modeled by 100 iterations in the simulation and one unit corresponds to
10 cm.



A
p

p
e

n
d

ix B
Supplementary Material to Chapter 3

30

40

50

60

70

0
.5

2

0
.5

6

0
.6

1

0
.6

7

0
.7

2

0
.7

9

0
.8

5

0
.9

2

Difficulty (ρb
∗)

C
o

n
s
e

n
s
u

s
 t

im
e

 (
T

Nc
o

rr
e

c
t /1

0
0

)
0
.8

5
0
.9

2

DM_type

Static

IDW1−S

IDW2−S

30

40

50

60

70

0
.5

2

0
.5

6

0
.6

1

0
.6

7

0
.7

2

0
.7

9

0
.8

5

0
.9

2

Difficulty (ρb
∗)

C
o

n
s
e

n
s
u

s
 t

im
e

 (
T

Nc
o

rr
e

c
t /1

0
0

)
0
.8

5
0
.9

2
DM_type

Adaptive

IDW1−A

IDW2−A

Figure B.1: Consensus time (T cor r ect
N ) and exit probability (EN ) as a function of the

task difficulty ρ∗
b . Configuration of parameters: %un = 0, β = 4.5. Maximum possible

communication distance between the agents dmax = 5 units. IDW1 and IDW2 indicate
the inverse distance weighting with power 1 and 2, respectively, for adaptive and static
policy. Shaded areas represent the 95% confidence interval.
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Figure B.2: Exit probability (EN ) as a function of the task difficulty ρ∗
b . Configuration

of parameters: %un = 0, β = 4.5. Maximum possible communication distance between
the agents – top: dmax = 5 units, bottom: dmax = 10 units. IDW1 and IDW2 indicate
the inverse distance weighting with power 1 and 2, respectively, for adaptive and static
policy. Shaded areas represent the 95% confidence interval.
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Supplementary Material to Chapter 5

C.1 Statistical Analysis of Collective, Social, and
Individual Learning

Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 0.7 0.669 0.632 0.286 0.674 0.709 0.709 0.703 0.75 0.61 0.479 0.579
Stripe 0.5 0.5 0.482 0.38 0.526 0.491 0.5 0.5 0.502 0.464 0.45 0.55
Star 0.551 0.55 0.541 0.286 0.599 0.594 0.6 0.55 0.55 0.568 0.444 0.536
Band 0.602 0.636 0.605 0.312 0.676 0.658 0.7 0.65 0.75 0.642 0.504 0.659
Band-S 0.5 0.527 0.5 0.339 0.543 0.526 0.527 0.516 0.541 0.491 0.487 0.561
Band-W 0.612 0.598 0.559 0.28 0.649 0.582 0.55 0.6 0.566 0.584 0.494 0.593
Rec 0.5 0.5 0.55 0.327 0.519 0.521 0.5 0.5 0.5 0.5 0.429 0.5

50

Random 0.7 1 1 0.33 1 0.915 0.75 0.75 0.85 1 1 1
Stripe 0.55 0.55 0.597 0.396 0.6 0.545 0.55 0.55 0.524 0.6 0.502 0.587
Star 0.6 0.991 0.95 0.34 0.888 0.792 0.65 0.6 0.575 0.95 0.897 0.9
Band 0.65 1 1 0.354 1 0.898 0.725 0.7 0.85 1 1 1
Band-S 0.55 0.7 0.7 0.38 0.803 0.605 0.55 0.525 0.55 0.7 0.625 0.8
Band-W 0.65 1 1 0.348 1 0.828 0.55 0.65 0.6 1 0.887 0.95
Rec 0.55 0.668 0.7 0.39 0.681 0.557 0.507 0.5 0.5 0.69 0.522 0.65

100

Random 0.7 1 1 0.321 1 0.921 0.75 0.75 0.85 1 1 1
Stripe 0.55 0.616 0.605 0.394 0.654 0.501 0.55 0.55 0.527 0.625 0.546 0.6
Star 0.6 1 1 0.342 1 0.771 0.65 0.6 0.575 1 1 1
Band 0.65 1 1 0.383 1 0.877 0.725 0.7 0.85 1 1 1
Band-S 0.55 0.85 0.8 0.389 0.923 0.609 0.55 0.525 0.55 0.862 0.75 0.9
Band-W 0.65 1 1 0.342 1 0.824 0.55 0.65 0.6 1 1 1
Rec 0.55 0.8 0.85 0.389 0.834 0.545 0.525 0.5 0.5 0.85 0.55 0.825

200

Random 0.7 1 1 0.349 1 0.917 0.75 0.75 0.85 1 1 1
Stripe 0.55 0.683 0.75 0.402 0.762 0.505 0.55 0.55 0.525 0.75 0.594 0.725
Star 0.6 1 1 0.358 1 0.769 0.65 0.6 0.575 1 1 1
Band 0.65 1 1 0.372 1 0.895 0.725 0.7 0.85 1 1 1
Band-S 0.55 1 1 0.38 1 0.586 0.55 0.525 0.55 1 0.937 1
Band-W 0.65 1 1 0.377 1 0.823 0.55 0.65 0.6 1 1 1
Rec 0.55 0.95 0.95 0.368 0.949 0.516 0.525 0.5 0.5 1 0.75 0.95

300

Random 0.7 1 1 0.332 1 0.925 0.75 0.75 0.85 1 1 1
Stripe 0.55 0.7 0.85 0.416 0.846 0.509 0.55 0.55 0.525 0.759 0.6 0.8
Star 0.6 1 1 0.338 1 0.794 0.65 0.6 0.6 1 1 1
Band 0.65 1 1 0.368 1 0.891 0.725 0.7 0.85 1 1 1
Band-S 0.55 1 1 0.392 1 0.572 0.55 0.525 0.55 1 1 1
Band-W 0.65 1 1 0.361 1 0.837 0.55 0.65 0.6 1 1 1
Rec 0.55 1 1 0.376 1 0.555 0.525 0.5 0.5 1 0.85 1

400

Random 0.7 1 1 0.356 1 0.91 0.75 0.75 0.85 1 1 1
Stripe 0.55 0.75 0.85 0.441 0.917 0.504 0.55 0.55 0.525 0.85 0.6 0.85
Star 0.6 1 1 0.359 1 0.789 0.65 0.6 0.6 1 1 1
Band 0.65 1 1 0.35 1 0.893 0.725 0.7 0.85 1 1 1
Band-S 0.55 1 1 0.39 1 0.56 0.55 0.525 0.55 1 1 1
Band-W 0.65 1 1 0.348 1 0.825 0.55 0.65 0.6 1 1 1
Rec 0.55 1 1 0.367 1 0.569 0.525 0.5 0.5 1 0.975 1

Table C.1: Collective Learning, ρ = 0.67: Median belief values at different run lengths.
Best performance is indicated in bold font. The results which have equal medians with
the best performance (in each line) are indicated by light gray color (including the best
result in bold). Statistical significance is stated by two-sided pairwise Mann-Whitney-U
test with p-value< 0.05.
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Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 0.678 0.619 0.61 0.353 0.69 0.7 0.674 0.682 0.702 0.634 0.518 0.519
Stripe 0.5 0.495 0.477 0.461 0.521 0.503 0.517 0.5 0.518 0.546 0.45 0.544
Star 0.627 0.547 0.55 0.367 0.606 0.589 0.603 0.561 0.558 0.55 0.466 0.517
Band 0.686 0.594 0.611 0.359 0.682 0.671 0.703 0.653 0.623 0.639 0.502 0.49
Band-S 0.541 0.507 0.499 0.39 0.529 0.476 0.539 0.546 0.513 0.535 0.45 0.487
Band-W 0.6 0.606 0.594 0.362 0.643 0.613 0.573 0.575 0.646 0.554 0.489 0.525
Rec 0.5 0.516 0.456 0.383 0.526 0.499 0.5 0.5 0.5 0.5 0.4 0.5

50

Random 0.75 1 1 0.382 1 0.886 0.75 0.75 0.8 1 1 0.688
Stripe 0.55 0.6 0.551 0.43 0.569 0.489 0.55 0.5 0.55 0.618 0.5 0.598
Star 0.65 0.9 0.834 0.39 0.848 0.721 0.65 0.6 0.6 0.862 0.757 0.654
Band 0.7 1 1 0.413 1 0.838 0.75 0.725 0.75 1 0.991 0.758
Band-S 0.55 0.704 0.709 0.436 0.707 0.592 0.55 0.55 0.55 0.7 0.55 0.594
Band-W 0.6 1 0.95 0.392 0.999 0.74 0.6 0.6 0.668 0.95 0.898 0.693
Rec 0.55 0.679 0.65 0.403 0.678 0.512 0.5 0.525 0.5 0.647 0.545 0.59

100

Random 0.75 1 1 0.375 1 0.871 0.75 0.75 0.8 1 1 0.757
Stripe 0.55 0.66 0.573 0.446 0.644 0.507 0.55 0.5 0.55 0.652 0.5 0.6
Star 0.65 1 1 0.419 1 0.687 0.65 0.6 0.6 1 0.955 0.668
Band 0.7 1 1 0.388 1 0.828 0.75 0.725 0.75 1 1 0.757
Band-S 0.55 0.85 0.9 0.431 0.875 0.556 0.55 0.55 0.55 0.824 0.661 0.639
Band-W 0.6 1 1 0.379 1 0.744 0.6 0.6 0.675 1 1 0.778
Rec 0.55 0.823 0.849 0.388 0.779 0.498 0.5 0.525 0.5 0.8 0.639 0.66

200

Random 0.75 1 1 0.387 1 0.874 0.75 0.75 0.8 1 1 0.732
Stripe 0.55 0.8 0.712 0.461 0.703 0.472 0.55 0.5 0.55 0.75 0.591 0.709
Star 0.65 1 1 0.399 1 0.673 0.65 0.6 0.6 1 1 0.739
Band 0.7 1 1 0.398 1 0.831 0.75 0.725 0.75 1 1 0.737
Band-S 0.55 1 1 0.435 1 0.582 0.55 0.55 0.55 1 0.75 0.826
Band-W 0.6 1 1 0.41 1 0.758 0.55 0.6 0.675 1 1 0.731
Rec 0.55 0.95 1 0.405 0.933 0.552 0.5 0.525 0.5 0.975 0.787 0.8

300

Random 0.75 1 1 0.403 1 0.899 0.75 0.75 0.8 1 1 0.76
Stripe 0.55 0.9 0.757 0.44 0.741 0.524 0.55 0.5 0.55 0.9 0.6 0.772
Star 0.65 1 1 0.404 1 0.708 0.65 0.6 0.6 1 1 0.743
Band 0.7 1 1 0.429 1 0.828 0.75 0.725 0.75 1 1 0.738
Band-S 0.55 1 1 0.441 1 0.544 0.525 0.55 0.55 1 0.85 0.825
Band-W 0.6 1 1 0.394 1 0.751 0.55 0.6 0.675 1 1 0.808
Rec 0.55 1 1 0.415 1 0.531 0.5 0.525 0.5 1 0.914 0.818

400

Random 0.75 1 1 0.386 1 0.886 0.775 0.75 0.8 1 1 0.77
Stripe 0.55 0.9 0.9 0.446 0.781 0.54 0.55 0.5 0.55 0.95 0.6 0.763
Star 0.65 1 1 0.398 1 0.681 0.65 0.6 0.6 1 1 0.7
Band 0.7 1 1 0.407 1 0.832 0.75 0.725 0.75 1 1 0.767
Band-S 0.55 1 1 0.441 1 0.57 0.5 0.55 0.55 1 1 0.868
Band-W 0.6 1 1 0.398 1 0.753 0.55 0.6 0.675 1 1 0.792
Rec 0.55 1 1 0.394 1 0.553 0.5 0.525 0.5 1 1 0.843

Table C.2: Social Learning, ρ = 0.67: Median belief values at different run lengths. Best
performance is indicated in bold font. The results which have equal medians with the
best performance (in each line) are indicated by light gray color (including the best
result in bold). Statistical significance is stated by two-sided pairwise Mann-Whitney-U
test with p-value< 0.05.
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Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 0.486 0.478 0.495 0.242 0.488 0.448 0.505 0.512 0.401 0.463 0.423 0.489
Stripe 0.5 0.5 0.5 0.337 0.5 0.457 0.5 0.5 0.5 0.5 0.507 0.5
Star 0.504 0.453 0.459 0.268 0.52 0.445 0.498 0.5 0.432 0.47 0.473 0.477
Band 0.508 0.493 0.471 0.261 0.512 0.443 0.469 0.498 0.418 0.493 0.462 0.494
Band-S 0.5 0.494 0.492 0.32 0.489 0.425 0.5 0.5 0.474 0.508 0.5 0.47
Band-W 0.5 0.481 0.497 0.25 0.498 0.412 0.522 0.498 0.45 0.458 0.474 0.5
Rec 0.5 0.5 0.45 0.335 0.5 0.441 0.496 0.5 0.477 0.5 0.485 0.498

50

Random 0.5 0.55 0.55 0.284 0.55 0.615 0.55 0.55 0.45 0.5 0.635 0.55
Stripe 0.55 0.525 0.55 0.424 0.5 0.462 0.525 0.5 0.5 0.5 0.55 0.55
Star 0.55 0.5 0.55 0.317 0.55 0.532 0.55 0.55 0.45 0.55 0.558 0.5
Band 0.55 0.55 0.55 0.286 0.55 0.584 0.5 0.5 0.45 0.55 0.644 0.55
Band-S 0.5 0.525 0.5 0.393 0.55 0.496 0.55 0.525 0.5 0.55 0.55 0.5
Band-W 0.55 0.55 0.55 0.297 0.55 0.535 0.55 0.525 0.5 0.525 0.6 0.55
Rec 0.5 0.55 0.5 0.354 0.5 0.442 0.5 0.5 0.5 0.55 0.5 0.5

100

Random 0.5 0.55 0.55 0.281 0.55 0.637 0.55 0.55 0.45 0.5 0.65 0.55
Stripe 0.55 0.525 0.55 0.418 0.5 0.483 0.525 0.5 0.5 0.5 0.55 0.55
Star 0.55 0.5 0.55 0.307 0.55 0.554 0.55 0.55 0.45 0.55 0.6 0.5
Band 0.55 0.55 0.55 0.298 0.55 0.637 0.5 0.5 0.45 0.55 0.667 0.55
Band-S 0.525 0.525 0.5 0.372 0.55 0.463 0.55 0.525 0.5 0.55 0.55 0.5
Band-W 0.55 0.55 0.55 0.315 0.55 0.57 0.55 0.525 0.5 0.525 0.6 0.55
Rec 0.5 0.55 0.5 0.355 0.5 0.44 0.5 0.5 0.5 0.55 0.5 0.5

200

Random 0.5 0.55 0.55 0.274 0.55 0.67 0.55 0.55 0.45 0.5 0.65 0.55
Stripe 0.55 0.525 0.55 0.39 0.5 0.479 0.525 0.5 0.5 0.5 0.55 0.55
Star 0.55 0.5 0.55 0.31 0.55 0.544 0.55 0.55 0.45 0.55 0.6 0.5
Band 0.55 0.55 0.55 0.303 0.55 0.634 0.5 0.5 0.45 0.55 0.7 0.55
Band-S 0.525 0.525 0.5 0.392 0.55 0.482 0.55 0.525 0.5 0.55 0.55 0.5
Band-W 0.55 0.55 0.55 0.319 0.55 0.555 0.55 0.525 0.5 0.525 0.6 0.55
Rec 0.5 0.55 0.5 0.359 0.5 0.458 0.5 0.5 0.5 0.55 0.5 0.5

300

Random 0.5 0.55 0.55 0.285 0.55 0.666 0.55 0.55 0.45 0.5 0.65 0.55
Stripe 0.55 0.525 0.55 0.415 0.5 0.473 0.525 0.5 0.5 0.5 0.55 0.55
Star 0.55 0.5 0.55 0.306 0.55 0.546 0.55 0.55 0.45 0.55 0.6 0.5
Band 0.55 0.55 0.55 0.301 0.55 0.622 0.5 0.5 0.45 0.55 0.7 0.55
Band-S 0.525 0.525 0.5 0.366 0.55 0.497 0.55 0.525 0.5 0.55 0.55 0.5
Band-W 0.55 0.55 0.55 0.298 0.55 0.573 0.55 0.525 0.5 0.525 0.6 0.55
Rec 0.5 0.55 0.5 0.355 0.5 0.448 0.5 0.5 0.5 0.55 0.5 0.5

400

Random 0.5 0.55 0.55 0.272 0.55 0.678 0.55 0.55 0.45 0.5 0.65 0.55
Stripe 0.55 0.525 0.55 0.405 0.5 0.482 0.525 0.5 0.5 0.5 0.55 0.55
Star 0.55 0.5 0.55 0.298 0.55 0.532 0.55 0.55 0.45 0.55 0.6 0.5
Band 0.55 0.55 0.55 0.297 0.55 0.638 0.5 0.5 0.45 0.55 0.7 0.55
Band-S 0.525 0.525 0.5 0.378 0.55 0.475 0.55 0.525 0.5 0.55 0.55 0.5
Band-W 0.55 0.55 0.55 0.315 0.55 0.574 0.55 0.525 0.5 0.525 0.6 0.55
Rec 0.5 0.55 0.5 0.368 0.5 0.429 0.5 0.5 0.5 0.55 0.5 0.5

Table C.3: Individual Learning, ρ = 0.67: Median belief values at different run lengths.
Best performance is indicated in bold font. The results which have equal medians with
the best performance (in each line) are indicated by light gray color (including the best
result in bold). Statistical significance is stated by two-sided pairwise Mann-Whitney-U
test with p-value< 0.05.
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Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 0.451 0.4 0.347 0.174 0.453 0.434 0.35 0.4 0.442 0.321 0.228 0.399
Stripe 0.4 0.35 0.4 0.251 0.417 0.349 0.4 0.35 0.395 0.362 0.3 0.4
Star 0.4 0.329 0.343 0.197 0.385 0.376 0.45 0.386 0.35 0.301 0.298 0.422
Band 0.451 0.351 0.386 0.205 0.454 0.419 0.4 0.466 0.505 0.348 0.238 0.414
Band-S 0.4 0.334 0.329 0.235 0.389 0.349 0.372 0.414 0.4 0.35 0.3 0.366
Band-W 0.4 0.371 0.344 0.191 0.472 0.346 0.403 0.45 0.429 0.316 0.302 0.454
Rec 0.35 0.345 0.315 0.243 0.379 0.366 0.362 0.4 0.359 0.325 0.3 0.4

50

Random 0.45 0.835 0.595 0.186 0.776 0.803 0.35 0.45 0.45 0.614 0.478 0.534
Stripe 0.4 0.455 0.5 0.277 0.522 0.397 0.4 0.35 0.4 0.45 0.421 0.462
Star 0.4 0.473 0.415 0.206 0.453 0.438 0.45 0.4 0.375 0.442 0.375 0.562
Band 0.45 0.632 0.8 0.217 0.91 0.719 0.4 0.475 0.55 0.706 0.549 0.688
Band-S 0.4 0.45 0.4 0.247 0.589 0.423 0.4 0.45 0.4 0.425 0.404 0.398
Band-W 0.4 0.656 0.478 0.223 0.77 0.462 0.4 0.45 0.45 0.526 0.511 0.675
Rec 0.35 0.376 0.428 0.25 0.411 0.364 0.375 0.4 0.4 0.35 0.377 0.499

100

Random 0.45 1 1 0.181 1 0.799 0.35 0.45 0.45 1 0.999 0.901
Stripe 0.4 0.55 0.6 0.285 0.6 0.38 0.4 0.35 0.4 0.55 0.492 0.563
Star 0.4 0.575 0.382 0.211 0.612 0.495 0.45 0.4 0.375 0.564 0.486 0.75
Band 0.45 1 1 0.212 1 0.739 0.4 0.475 0.55 1 0.866 1
Band-S 0.4 0.6 0.45 0.24 0.763 0.408 0.4 0.45 0.4 0.45 0.45 0.463
Band-W 0.4 0.917 0.713 0.208 0.951 0.488 0.4 0.45 0.45 0.71 0.603 0.825
Rec 0.35 0.425 0.5 0.237 0.498 0.397 0.375 0.4 0.4 0.406 0.446 0.568

200

Random 0.45 1 1 0.185 1 0.82 0.35 0.45 0.45 1 1 1
Stripe 0.4 0.7 0.75 0.282 0.788 0.38 0.4 0.35 0.4 0.725 0.511 0.65
Star 0.4 0.905 0.579 0.187 0.65 0.479 0.45 0.4 0.375 0.888 0.569 1
Band 0.45 1 1 0.212 1 0.773 0.4 0.475 0.55 1 1 1
Band-S 0.4 0.724 0.599 0.261 0.947 0.391 0.4 0.45 0.4 0.452 0.581 0.6
Band-W 0.4 1 1 0.234 1 0.49 0.4 0.45 0.45 1 0.943 1
Rec 0.35 0.425 0.6 0.243 0.612 0.405 0.375 0.4 0.4 0.647 0.45 0.873

300

Random 0.45 1 1 0.178 1 0.833 0.35 0.45 0.45 1 1 1
Stripe 0.4 0.847 0.85 0.273 0.85 0.39 0.4 0.35 0.4 0.8 0.55 0.7
Star 0.4 1 0.979 0.2 0.719 0.523 0.45 0.4 0.375 1 0.95 1
Band 0.45 1 1 0.211 1 0.782 0.4 0.475 0.55 1 1 1
Band-S 0.4 0.825 0.625 0.259 1 0.415 0.4 0.45 0.4 0.649 0.55 0.737
Band-W 0.4 1 1 0.199 1 0.541 0.4 0.45 0.45 1 1 1
Rec 0.35 0.624 0.785 0.242 0.679 0.334 0.375 0.4 0.4 0.728 0.6 0.95

400

Random 0.45 1 1 0.2 1 0.821 0.35 0.45 0.45 1 1 1
Stripe 0.4 0.88 0.85 0.28 0.944 0.381 0.4 0.35 0.4 0.9 0.572 0.775
Star 0.4 1 1 0.216 0.885 0.472 0.45 0.4 0.375 1 1 1
Band 0.45 1 1 0.197 1 0.755 0.4 0.475 0.55 1 1 1
Band-S 0.4 0.975 0.675 0.257 1 0.405 0.4 0.45 0.4 0.578 0.7 0.85
Band-W 0.4 1 1 0.216 1 0.489 0.4 0.45 0.45 1 1 1
Rec 0.35 0.75 0.946 0.251 0.83 0.363 0.375 0.4 0.4 0.95 0.547 1

Table C.4: Collective Learning, ρ = 0.93: Median belief values at different run lengths.
Best performance is indicated in bold font. The results which have equal medians with
the best performance (in each line) are indicated by light gray color (including the best
result in bold). Statistical significance is stated by two-sided pairwise Mann-Whitney-U
test with p-value< 0.05.
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Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 0.457 0.373 0.372 0.208 0.443 0.372 0.45 0.438 0.437 0.348 0.228 0.381
Stripe 0.4 0.399 0.347 0.309 0.385 0.363 0.4 0.4 0.35 0.35 0.3 0.356
Star 0.397 0.313 0.318 0.197 0.353 0.366 0.399 0.4 0.362 0.372 0.26 0.345
Band 0.403 0.351 0.343 0.225 0.474 0.325 0.462 0.44 0.45 0.3 0.252 0.344
Band-S 0.397 0.382 0.392 0.264 0.415 0.324 0.4 0.4 0.4 0.351 0.3 0.372
Band-W 0.402 0.368 0.328 0.238 0.41 0.371 0.401 0.45 0.4 0.298 0.303 0.354
Rec 0.369 0.35 0.301 0.253 0.392 0.326 0.377 0.392 0.35 0.35 0.294 0.351

50

Random 0.5 0.789 0.743 0.203 0.77 0.611 0.45 0.45 0.5 0.702 0.437 0.398
Stripe 0.4 0.5 0.443 0.304 0.46 0.365 0.4 0.4 0.4 0.456 0.398 0.44
Star 0.4 0.445 0.413 0.217 0.423 0.41 0.4 0.4 0.4 0.486 0.336 0.419
Band 0.45 0.685 0.654 0.267 0.758 0.574 0.5 0.5 0.5 0.56 0.454 0.394
Band-S 0.4 0.525 0.453 0.292 0.566 0.366 0.4 0.4 0.4 0.45 0.415 0.415
Band-W 0.45 0.597 0.49 0.252 0.639 0.433 0.4 0.45 0.41 0.501 0.443 0.375
Rec 0.4 0.404 0.316 0.248 0.508 0.34 0.4 0.4 0.35 0.415 0.364 0.332

100

Random 0.5 1 1 0.191 1 0.657 0.45 0.45 0.5 1 0.601 0.415
Stripe 0.4 0.623 0.5 0.307 0.549 0.398 0.4 0.4 0.4 0.573 0.421 0.561
Star 0.4 0.536 0.423 0.25 0.538 0.426 0.4 0.4 0.4 0.529 0.372 0.453
Band 0.45 1 0.872 0.234 0.996 0.592 0.5 0.5 0.5 0.974 0.515 0.43
Band-S 0.4 0.608 0.546 0.285 0.67 0.395 0.4 0.4 0.4 0.535 0.449 0.387
Band-W 0.45 0.701 0.497 0.246 0.711 0.434 0.4 0.45 0.425 0.674 0.595 0.391
Rec 0.4 0.427 0.369 0.265 0.522 0.383 0.4 0.4 0.35 0.522 0.444 0.443

200

Random 0.5 1 1 0.194 1 0.661 0.45 0.45 0.5 1 0.878 0.399
Stripe 0.4 0.75 0.55 0.321 0.689 0.383 0.4 0.4 0.4 0.7 0.515 0.625
Star 0.4 0.655 0.516 0.236 0.616 0.399 0.4 0.4 0.4 0.61 0.417 0.397
Band 0.45 1 1 0.226 1 0.539 0.5 0.5 0.5 1 0.804 0.364
Band-S 0.4 0.8 0.728 0.305 0.792 0.422 0.4 0.4 0.4 0.741 0.501 0.42
Band-W 0.45 1 0.611 0.259 0.963 0.429 0.4 0.45 0.425 0.895 0.65 0.433
Rec 0.4 0.595 0.534 0.245 0.623 0.34 0.4 0.4 0.35 0.658 0.449 0.483

300

Random 0.5 1 1 0.196 1 0.668 0.45 0.45 0.5 1 1 0.46
Stripe 0.4 0.85 0.636 0.29 0.73 0.35 0.4 0.4 0.4 0.75 0.5 0.6
Star 0.4 0.83 0.608 0.242 0.631 0.453 0.4 0.4 0.4 0.626 0.355 0.404
Band 0.45 1 1 0.241 1 0.543 0.45 0.5 0.5 1 1 0.397
Band-S 0.4 0.9 0.9 0.291 0.916 0.41 0.4 0.4 0.4 0.922 0.573 0.496
Band-W 0.45 1 0.95 0.255 1 0.413 0.4 0.45 0.425 1 0.825 0.396
Rec 0.4 0.793 0.723 0.255 0.676 0.356 0.4 0.4 0.35 0.842 0.51 0.409

400

Random 0.5 1 1 0.203 1 0.631 0.45 0.45 0.5 1 1 0.373
Stripe 0.4 0.95 0.75 0.296 0.769 0.378 0.4 0.4 0.4 0.762 0.6 0.701
Star 0.4 0.98 0.704 0.228 0.716 0.407 0.4 0.4 0.4 0.684 0.421 0.4
Band 0.45 1 1 0.238 1 0.531 0.45 0.5 0.5 1 1 0.441
Band-S 0.4 1 1 0.289 1 0.395 0.4 0.4 0.4 1 0.65 0.585
Band-W 0.45 1 1 0.258 1 0.396 0.4 0.45 0.425 1 1 0.384
Rec 0.4 0.871 0.7 0.26 0.73 0.377 0.4 0.4 0.35 0.938 0.628 0.516

Table C.5: Social Learning, ρ = 0.93: Median belief values at different run lengths. Best
performance is indicated in bold font. The results which have equal medians with the
best performance (in each line) are indicated by light gray color (including the best
result in bold). Statistical significance is stated by two-sided pairwise Mann-Whitney-U
test with p-value< 0.05.
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Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 0.351 0.339 0.348 0.156 0.352 0.275 0.354 0.38 0.312 0.36 0.283 0.378
Stripe 0.399 0.393 0.395 0.255 0.399 0.333 0.4 0.35 0.384 0.365 0.381 0.39
Star 0.35 0.349 0.347 0.168 0.373 0.29 0.347 0.345 0.348 0.351 0.334 0.355
Band 0.385 0.373 0.364 0.174 0.388 0.308 0.362 0.382 0.316 0.353 0.307 0.375
Band-S 0.38 0.353 0.35 0.211 0.372 0.329 0.376 0.35 0.35 0.36 0.353 0.35
Band-W 0.398 0.392 0.39 0.175 0.383 0.321 0.399 0.394 0.363 0.39 0.376 0.388
Rec 0.35 0.365 0.349 0.215 0.353 0.285 0.357 0.35 0.35 0.365 0.358 0.374

50

Random 0.35 0.4 0.4 0.163 0.4 0.338 0.375 0.4 0.365 0.4 0.371 0.4
Stripe 0.4 0.4 0.4 0.274 0.4 0.336 0.4 0.35 0.4 0.4 0.4 0.4
Star 0.35 0.4 0.375 0.174 0.4 0.325 0.35 0.35 0.379 0.4 0.4 0.35
Band 0.4 0.4 0.4 0.175 0.4 0.359 0.4 0.4 0.35 0.4 0.4 0.4
Band-S 0.4 0.4 0.4 0.242 0.399 0.338 0.4 0.4 0.35 0.4 0.4 0.397
Band-W 0.4 0.4 0.4 0.207 0.4 0.345 0.4 0.4 0.4 0.4 0.4 0.4
Rec 0.35 0.4 0.35 0.233 0.4 0.33 0.375 0.375 0.35 0.4 0.4 0.4

100

Random 0.35 0.4 0.4 0.16 0.4 0.375 0.375 0.4 0.372 0.4 0.4 0.4
Stripe 0.4 0.4 0.4 0.281 0.4 0.341 0.4 0.35 0.4 0.4 0.4 0.4
Star 0.35 0.4 0.375 0.195 0.4 0.344 0.35 0.35 0.398 0.4 0.4 0.35
Band 0.4 0.4 0.4 0.183 0.4 0.354 0.4 0.4 0.35 0.4 0.449 0.4
Band-S 0.4 0.4 0.4 0.236 0.4 0.325 0.4 0.4 0.35 0.4 0.4 0.4
Band-W 0.4 0.4 0.4 0.199 0.4 0.348 0.4 0.4 0.4 0.4 0.4 0.4
Rec 0.35 0.4 0.35 0.21 0.4 0.327 0.375 0.375 0.35 0.4 0.4 0.4

200

Random 0.35 0.4 0.4 0.156 0.4 0.365 0.375 0.4 0.375 0.4 0.442 0.4
Stripe 0.4 0.4 0.4 0.281 0.4 0.333 0.4 0.35 0.4 0.4 0.4 0.4
Star 0.35 0.4 0.375 0.184 0.4 0.334 0.35 0.35 0.4 0.4 0.4 0.35
Band 0.4 0.4 0.4 0.186 0.4 0.371 0.4 0.4 0.35 0.4 0.45 0.4
Band-S 0.4 0.4 0.4 0.244 0.4 0.336 0.4 0.4 0.35 0.4 0.4 0.4
Band-W 0.4 0.4 0.4 0.206 0.4 0.331 0.4 0.4 0.4 0.4 0.4 0.4
Rec 0.35 0.4 0.35 0.219 0.4 0.315 0.375 0.375 0.35 0.4 0.4 0.4

300

Random 0.35 0.4 0.4 0.157 0.4 0.382 0.375 0.4 0.375 0.4 0.425 0.4
Stripe 0.4 0.4 0.4 0.277 0.4 0.339 0.4 0.35 0.4 0.4 0.4 0.4
Star 0.35 0.4 0.375 0.187 0.4 0.323 0.35 0.35 0.4 0.4 0.4 0.35
Band 0.4 0.4 0.4 0.173 0.4 0.368 0.4 0.4 0.35 0.4 0.45 0.4
Band-S 0.4 0.4 0.4 0.234 0.4 0.325 0.4 0.4 0.35 0.4 0.4 0.4
Band-W 0.4 0.4 0.4 0.189 0.4 0.327 0.4 0.4 0.4 0.4 0.4 0.4
Rec 0.35 0.4 0.35 0.237 0.4 0.326 0.375 0.375 0.35 0.4 0.4 0.4

400

Random 0.35 0.4 0.4 0.161 0.4 0.377 0.375 0.4 0.375 0.4 0.425 0.4
Stripe 0.4 0.4 0.4 0.276 0.4 0.341 0.4 0.35 0.4 0.4 0.4 0.4
Star 0.35 0.4 0.375 0.21 0.4 0.351 0.35 0.35 0.4 0.4 0.4 0.35
Band 0.4 0.4 0.4 0.184 0.4 0.364 0.4 0.4 0.35 0.4 0.45 0.4
Band-S 0.4 0.4 0.4 0.257 0.4 0.351 0.4 0.4 0.35 0.4 0.4 0.4
Band-W 0.4 0.4 0.4 0.205 0.4 0.33 0.4 0.4 0.4 0.4 0.4 0.4
Rec 0.35 0.4 0.35 0.226 0.4 0.316 0.375 0.375 0.35 0.4 0.4 0.4

Table C.6: Individual Learning, ρ = 0.93: Median belief values at different run lengths.
Best performance is indicated in bold font. The results which have equal medians with
the best performance (in each line) are indicated by light gray color (including the best
result in bold). Statistical significance is stated by two-sided pairwise Mann-Whitney-U
test with p-value< 0.05.
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C.2 Statistical comparison - I: Collective, Social, and
Individual Learning

Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.7 0.5 0.551 0.602 0.5 0.612 0.5
SL-DM1 0.678 0.5 0.627 0.686 0.541 0.6 0.5
IND-DM1 0.486 0.5 0.504 0.508 0.5 0.5 0.5
CL-DM2 0.669 0.5 0.55 0.636 0.527 0.598 0.5
SL-DM2 0.619 0.495 0.547 0.594 0.507 0.606 0.516
IND-DM2 0.478 0.5 0.453 0.493 0.494 0.481 0.5
CL-DM3 0.632 0.482 0.541 0.605 0.5 0.559 0.55
SL-DM3 0.61 0.477 0.55 0.611 0.499 0.594 0.456
IND-DM3 0.495 0.5 0.459 0.471 0.492 0.497 0.45
CL-DM4 0.286 0.38 0.286 0.312 0.339 0.28 0.327
SL-DM4 0.353 0.461 0.367 0.359 0.39 0.362 0.383
IND-DM4 0.242 0.337 0.268 0.261 0.32 0.25 0.335
CL-DM5 0.674 0.526 0.599 0.676 0.543 0.649 0.519
SL-DM5 0.69 0.521 0.606 0.682 0.529 0.643 0.526
IND-DM5 0.488 0.5 0.52 0.512 0.489 0.498 0.5
CL-DM6 0.709 0.491 0.594 0.658 0.526 0.582 0.521
SL-DM6 0.7 0.503 0.589 0.671 0.476 0.613 0.499
IND-DM6 0.448 0.457 0.445 0.443 0.425 0.412 0.441
CL-DM7 0.709 0.5 0.6 0.7 0.527 0.55 0.5
SL-DM7 0.674 0.517 0.603 0.703 0.539 0.573 0.5
IND-DM7 0.505 0.5 0.498 0.469 0.5 0.522 0.496
CL-DM8 0.703 0.5 0.55 0.65 0.516 0.6 0.5
SL-DM8 0.682 0.5 0.561 0.653 0.546 0.575 0.5
IND-DM8 0.512 0.5 0.5 0.498 0.5 0.498 0.5
CL-DM9 0.75 0.502 0.55 0.75 0.541 0.566 0.5
SL-DM9 0.702 0.518 0.558 0.623 0.513 0.646 0.5
IND-DM9 0.401 0.5 0.432 0.418 0.474 0.45 0.477
CL-DM10 0.61 0.464 0.568 0.642 0.491 0.584 0.5
SL-DM10 0.634 0.546 0.55 0.639 0.535 0.554 0.5
IND-DM10 0.463 0.5 0.47 0.493 0.508 0.458 0.5
CL-DM11 0.479 0.45 0.444 0.504 0.487 0.494 0.429
SL-DM11 0.518 0.45 0.466 0.502 0.45 0.489 0.4
IND-DM11 0.423 0.507 0.473 0.462 0.5 0.474 0.485
CL-DM12 0.579 0.55 0.536 0.659 0.561 0.593 0.5
SL-DM12 0.519 0.544 0.517 0.49 0.487 0.525 0.5
IND-DM12 0.489 0.5 0.477 0.494 0.47 0.5 0.498

Table C.7: Median values after 10 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.7 0.55 0.6 0.65 0.55 0.65 0.55
SL-DM1 0.75 0.55 0.65 0.7 0.55 0.6 0.55
IND-DM1 0.5 0.55 0.55 0.55 0.5 0.55 0.5
CL-DM2 1 0.55 0.991 1 0.7 1 0.668
SL-DM2 1 0.6 0.9 1 0.704 1 0.679
IND-DM2 0.55 0.525 0.5 0.55 0.525 0.55 0.55
CL-DM3 1 0.597 0.95 1 0.7 1 0.7
SL-DM3 1 0.551 0.834 1 0.709 0.95 0.65
IND-DM3 0.55 0.55 0.55 0.55 0.5 0.55 0.5
CL-DM4 0.33 0.396 0.34 0.354 0.38 0.348 0.39
SL-DM4 0.382 0.43 0.39 0.413 0.436 0.392 0.403
IND-DM4 0.284 0.424 0.317 0.286 0.393 0.297 0.354
CL-DM5 1 0.6 0.888 1 0.803 1 0.681
SL-DM5 1 0.569 0.848 1 0.707 0.999 0.678
IND-DM5 0.55 0.5 0.55 0.55 0.55 0.55 0.5
CL-DM6 0.915 0.545 0.792 0.898 0.605 0.828 0.557
SL-DM6 0.886 0.489 0.721 0.838 0.592 0.74 0.512
IND-DM6 0.615 0.462 0.532 0.584 0.496 0.535 0.442
CL-DM7 0.75 0.55 0.65 0.725 0.55 0.55 0.507
SL-DM7 0.75 0.55 0.65 0.75 0.55 0.6 0.5
IND-DM7 0.55 0.525 0.55 0.5 0.55 0.55 0.5
CL-DM8 0.75 0.55 0.6 0.7 0.525 0.65 0.5
SL-DM8 0.75 0.5 0.6 0.725 0.55 0.6 0.525
IND-DM8 0.55 0.5 0.55 0.5 0.525 0.525 0.5
CL-DM9 0.85 0.524 0.575 0.85 0.55 0.6 0.5
SL-DM9 0.8 0.55 0.6 0.75 0.55 0.668 0.5
IND-DM9 0.45 0.5 0.45 0.45 0.5 0.5 0.5
CL-DM10 1 0.6 0.95 1 0.7 1 0.69
SL-DM10 1 0.618 0.862 1 0.7 0.95 0.647
IND-DM10 0.5 0.5 0.55 0.55 0.55 0.525 0.55
CL-DM11 1 0.502 0.897 1 0.625 0.887 0.522
SL-DM11 1 0.5 0.757 0.991 0.55 0.898 0.545
IND-DM11 0.635 0.55 0.558 0.644 0.55 0.6 0.5
CL-DM12 1 0.587 0.9 1 0.8 0.95 0.65
SL-DM12 0.688 0.598 0.654 0.758 0.594 0.693 0.59
IND-DM12 0.55 0.55 0.5 0.55 0.5 0.55 0.5

Table C.8: Median values after 50 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.7 0.55 0.6 0.65 0.55 0.65 0.55
SL-DM1 0.75 0.55 0.65 0.7 0.55 0.6 0.55
IND-DM1 0.5 0.55 0.55 0.55 0.525 0.55 0.5
CL-DM2 1 0.616 1 1 0.85 1 0.8
SL-DM2 1 0.66 1 1 0.85 1 0.823
IND-DM2 0.55 0.525 0.5 0.55 0.525 0.55 0.55
CL-DM3 1 0.605 1 1 0.8 1 0.85
SL-DM3 1 0.573 1 1 0.9 1 0.849
IND-DM3 0.55 0.55 0.55 0.55 0.5 0.55 0.5
CL-DM4 0.321 0.394 0.342 0.383 0.389 0.342 0.389
SL-DM4 0.375 0.446 0.419 0.388 0.431 0.379 0.388
IND-DM4 0.281 0.418 0.307 0.298 0.372 0.315 0.355
CL-DM5 1 0.654 1 1 0.923 1 0.834
SL-DM5 1 0.644 1 1 0.875 1 0.779
IND-DM5 0.55 0.5 0.55 0.55 0.55 0.55 0.5
CL-DM6 0.921 0.501 0.771 0.877 0.609 0.824 0.545
SL-DM6 0.871 0.507 0.687 0.828 0.556 0.744 0.498
IND-DM6 0.637 0.483 0.554 0.637 0.463 0.57 0.44
CL-DM7 0.75 0.55 0.65 0.725 0.55 0.55 0.525
SL-DM7 0.75 0.55 0.65 0.75 0.55 0.6 0.5
IND-DM7 0.55 0.525 0.55 0.5 0.55 0.55 0.5
CL-DM8 0.75 0.55 0.6 0.7 0.525 0.65 0.5
SL-DM8 0.75 0.5 0.6 0.725 0.55 0.6 0.525
IND-DM8 0.55 0.5 0.55 0.5 0.525 0.525 0.5
CL-DM9 0.85 0.527 0.575 0.85 0.55 0.6 0.5
SL-DM9 0.8 0.55 0.6 0.75 0.55 0.675 0.5
IND-DM9 0.45 0.5 0.45 0.45 0.5 0.5 0.5
CL-DM10 1 0.625 1 1 0.862 1 0.85
SL-DM10 1 0.652 1 1 0.824 1 0.8
IND-DM10 0.5 0.5 0.55 0.55 0.55 0.525 0.55
CL-DM11 1 0.546 1 1 0.75 1 0.55
SL-DM11 1 0.5 0.955 1 0.661 1 0.639
IND-DM11 0.65 0.55 0.6 0.667 0.55 0.6 0.5
CL-DM12 1 0.6 1 1 0.9 1 0.825
SL-DM12 0.757 0.6 0.668 0.757 0.639 0.778 0.66
IND-DM12 0.55 0.55 0.5 0.55 0.5 0.55 0.5

Table C.9: Median values after 100 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.7 0.55 0.6 0.65 0.55 0.65 0.55
SL-DM1 0.75 0.55 0.65 0.7 0.55 0.6 0.55
IND-DM1 0.5 0.55 0.55 0.55 0.525 0.55 0.5
CL-DM2 1 0.683 1 1 1 1 0.95
SL-DM2 1 0.8 1 1 1 1 0.95
IND-DM2 0.55 0.525 0.5 0.55 0.525 0.55 0.55
CL-DM3 1 0.75 1 1 1 1 0.95
SL-DM3 1 0.712 1 1 1 1 1
IND-DM3 0.55 0.55 0.55 0.55 0.5 0.55 0.5
CL-DM4 0.349 0.402 0.358 0.372 0.38 0.377 0.368
SL-DM4 0.387 0.461 0.399 0.398 0.435 0.41 0.405
IND-DM4 0.274 0.39 0.31 0.303 0.392 0.319 0.359
CL-DM5 1 0.762 1 1 1 1 0.949
SL-DM5 1 0.703 1 1 1 1 0.933
IND-DM5 0.55 0.5 0.55 0.55 0.55 0.55 0.5
CL-DM6 0.917 0.505 0.769 0.895 0.586 0.823 0.516
SL-DM6 0.874 0.472 0.673 0.831 0.582 0.758 0.552
IND-DM6 0.67 0.479 0.544 0.634 0.482 0.555 0.458
CL-DM7 0.75 0.55 0.65 0.725 0.55 0.55 0.525
SL-DM7 0.75 0.55 0.65 0.75 0.55 0.55 0.5
IND-DM7 0.55 0.525 0.55 0.5 0.55 0.55 0.5
CL-DM8 0.75 0.55 0.6 0.7 0.525 0.65 0.5
SL-DM8 0.75 0.5 0.6 0.725 0.55 0.6 0.525
IND-DM8 0.55 0.5 0.55 0.5 0.525 0.525 0.5
CL-DM9 0.85 0.525 0.575 0.85 0.55 0.6 0.5
SL-DM9 0.8 0.55 0.6 0.75 0.55 0.675 0.5
IND-DM9 0.45 0.5 0.45 0.45 0.5 0.5 0.5
CL-DM10 1 0.75 1 1 1 1 1
SL-DM10 1 0.75 1 1 1 1 0.975
IND-DM10 0.5 0.5 0.55 0.55 0.55 0.525 0.55
CL-DM11 1 0.594 1 1 0.937 1 0.75
SL-DM11 1 0.591 1 1 0.75 1 0.787
IND-DM11 0.65 0.55 0.6 0.7 0.55 0.6 0.5
CL-DM12 1 0.725 1 1 1 1 0.95
SL-DM12 0.732 0.709 0.739 0.737 0.826 0.731 0.8
IND-DM12 0.55 0.55 0.5 0.55 0.5 0.55 0.5

Table C.10: Median values after 200 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.7 0.55 0.6 0.65 0.55 0.65 0.55
SL-DM1 0.75 0.55 0.65 0.7 0.55 0.6 0.55
IND-DM1 0.5 0.55 0.55 0.55 0.525 0.55 0.5
CL-DM2 1 0.7 1 1 1 1 1
SL-DM2 1 0.9 1 1 1 1 1
IND-DM2 0.55 0.525 0.5 0.55 0.525 0.55 0.55
CL-DM3 1 0.85 1 1 1 1 1
SL-DM3 1 0.757 1 1 1 1 1
IND-DM3 0.55 0.55 0.55 0.55 0.5 0.55 0.5
CL-DM4 0.332 0.416 0.338 0.368 0.392 0.361 0.376
SL-DM4 0.403 0.44 0.404 0.429 0.441 0.394 0.415
IND-DM4 0.285 0.415 0.306 0.301 0.366 0.298 0.355
CL-DM5 1 0.846 1 1 1 1 1
SL-DM5 1 0.741 1 1 1 1 1
IND-DM5 0.55 0.5 0.55 0.55 0.55 0.55 0.5
CL-DM6 0.925 0.509 0.794 0.891 0.572 0.837 0.555
SL-DM6 0.899 0.524 0.708 0.828 0.544 0.751 0.531
IND-DM6 0.666 0.473 0.546 0.622 0.497 0.573 0.448
CL-DM7 0.75 0.55 0.65 0.725 0.55 0.55 0.525
SL-DM7 0.75 0.55 0.65 0.75 0.525 0.55 0.5
IND-DM7 0.55 0.525 0.55 0.5 0.55 0.55 0.5
CL-DM8 0.75 0.55 0.6 0.7 0.525 0.65 0.5
SL-DM8 0.75 0.5 0.6 0.725 0.55 0.6 0.525
IND-DM8 0.55 0.5 0.55 0.5 0.525 0.525 0.5
CL-DM9 0.85 0.525 0.6 0.85 0.55 0.6 0.5
SL-DM9 0.8 0.55 0.6 0.75 0.55 0.675 0.5
IND-DM9 0.45 0.5 0.45 0.45 0.5 0.5 0.5
CL-DM10 1 0.759 1 1 1 1 1
SL-DM10 1 0.9 1 1 1 1 1
IND-DM10 0.5 0.5 0.55 0.55 0.55 0.525 0.55
CL-DM11 1 0.6 1 1 1 1 0.85
SL-DM11 1 0.6 1 1 0.85 1 0.914
IND-DM11 0.65 0.55 0.6 0.7 0.55 0.6 0.5
CL-DM12 1 0.8 1 1 1 1 1
SL-DM12 0.76 0.772 0.743 0.738 0.825 0.808 0.818
IND-DM12 0.55 0.55 0.5 0.55 0.5 0.55 0.5

Table C.11: Median values after 300 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.7 0.55 0.6 0.65 0.55 0.65 0.55
SL-DM1 0.75 0.55 0.65 0.7 0.55 0.6 0.55
IND-DM1 0.5 0.55 0.55 0.55 0.525 0.55 0.5
CL-DM2 1 0.75 1 1 1 1 1
SL-DM2 1 0.9 1 1 1 1 1
IND-DM2 0.55 0.525 0.5 0.55 0.525 0.55 0.55
CL-DM3 1 0.85 1 1 1 1 1
SL-DM3 1 0.9 1 1 1 1 1
IND-DM3 0.55 0.55 0.55 0.55 0.5 0.55 0.5
CL-DM4 0.356 0.441 0.359 0.35 0.39 0.348 0.367
SL-DM4 0.386 0.446 0.398 0.407 0.441 0.398 0.394
IND-DM4 0.272 0.405 0.298 0.297 0.378 0.315 0.368
CL-DM5 1 0.917 1 1 1 1 1
SL-DM5 1 0.781 1 1 1 1 1
IND-DM5 0.55 0.5 0.55 0.55 0.55 0.55 0.5
CL-DM6 0.91 0.504 0.789 0.893 0.56 0.825 0.569
SL-DM6 0.886 0.54 0.681 0.832 0.57 0.753 0.553
IND-DM6 0.678 0.482 0.532 0.638 0.475 0.574 0.429
CL-DM7 0.75 0.55 0.65 0.725 0.55 0.55 0.525
SL-DM7 0.775 0.55 0.65 0.75 0.5 0.55 0.5
IND-DM7 0.55 0.525 0.55 0.5 0.55 0.55 0.5
CL-DM8 0.75 0.55 0.6 0.7 0.525 0.65 0.5
SL-DM8 0.75 0.5 0.6 0.725 0.55 0.6 0.525
IND-DM8 0.55 0.5 0.55 0.5 0.525 0.525 0.5
CL-DM9 0.85 0.525 0.6 0.85 0.55 0.6 0.5
SL-DM9 0.8 0.55 0.6 0.75 0.55 0.675 0.5
IND-DM9 0.45 0.5 0.45 0.45 0.5 0.5 0.5
CL-DM10 1 0.85 1 1 1 1 1
SL-DM10 1 0.95 1 1 1 1 1
IND-DM10 0.5 0.5 0.55 0.55 0.55 0.525 0.55
CL-DM11 1 0.6 1 1 1 1 0.975
SL-DM11 1 0.6 1 1 1 1 1
IND-DM11 0.65 0.55 0.6 0.7 0.55 0.6 0.5
CL-DM12 1 0.85 1 1 1 1 1
SL-DM12 0.77 0.763 0.7 0.767 0.868 0.792 0.843
IND-DM12 0.55 0.55 0.5 0.55 0.5 0.55 0.5

Table C.12: Median values after 400 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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C.2.1 Collective vs Social Learning, ρ = 0.67

Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 7.8e-01 9.6e-01 8.1e-01 7.4e-07 3.7e-01 5.5e-01 9.6e-01 8.7e-01 8.9e-01 4.2e-01 9.8e-02 9.9e-01
Stripe 4.9e-01 4.6e-01 3.5e-01 2.1e-07 4.5e-01 5.5e-01 7.2e-01 7.9e-01 5.5e-01 1.4e-02 5.9e-01 3.6e-01
Star 5.3e-02 9.3e-01 4.6e-01 2.0e-06 3.6e-01 5.8e-01 4.2e-01 1.3e-01 4.0e-01 6.2e-01 2.1e-01 8.0e-01
Band 1.5e-01 8.1e-01 7.3e-01 8.0e-05 5.0e-01 5.4e-01 7.6e-01 4.4e-01 1.0e+00 3.0e-01 5.3e-01 1.0e+00
Band-S 3.1e-01 4.7e-01 7.3e-01 5.7e-04 6.4e-01 9.7e-01 4.4e-01 3.0e-01 6.4e-01 1.7e-01 9.1e-01 1.0e+00
Band-W 7.7e-01 2.6e-01 1.3e-01 6.8e-06 6.6e-01 3.7e-01 1.2e-01 9.1e-01 3.6e-02 8.4e-01 1.5e-01 1.0e+00
Rec 3.5e-01 1.2e-01 9.4e-01 3.2e-03 2.3e-01 7.5e-01 5.0e-01 1.6e-01 3.1e-01 7.0e-01 8.7e-01 5.9e-01

50

Random 1.8e-01 8.5e-01 5.5e-01 3.0e-04 6.5e-01 1.0e+00 6.2e-01 3.8e-01 5.6e-01 7.0e-01 1.0e+00 1.0e+00
Stripe 5.0e-01 1.2e-01 4.0e-01 2.1e-02 8.9e-01 1.0e+00 7.5e-01 8.5e-01 4.7e-01 5.9e-02 5.6e-01 6.4e-01
Star 7.8e-02 9.8e-01 1.0e+00 1.5e-04 7.3e-01 9.8e-01 3.1e-01 2.4e-01 2.6e-01 8.7e-01 9.6e-01 1.0e+00
Band 5.0e-02 9.6e-01 9.4e-01 6.3e-04 9.9e-01 1.0e+00 3.9e-01 3.7e-01 9.8e-01 6.9e-01 1.0e+00 1.0e+00
Band-S 3.6e-01 6.5e-01 2.8e-01 8.5e-05 9.9e-01 9.0e-01 5.2e-01 3.1e-01 8.3e-01 3.6e-01 9.9e-01 1.0e+00
Band-W 8.3e-01 6.9e-01 9.8e-01 6.2e-05 8.4e-01 1.0e+00 1.9e-01 9.8e-01 8.1e-02 7.8e-01 3.5e-01 1.0e+00
Rec 4.0e-01 4.7e-01 7.6e-01 6.2e-02 5.8e-01 9.6e-01 7.5e-01 2.8e-01 3.8e-01 9.7e-01 5.8e-01 8.4e-01

100

Random 1.8e-01 3.2e-01 1.6e-01 3.1e-04 3.4e-01 1.0e+00 6.2e-01 3.8e-01 5.6e-01 9.1e-01 8.7e-01 1.0e+00
Stripe 5.0e-01 1.1e-01 5.8e-01 1.6e-03 8.6e-01 2.3e-01 7.8e-01 8.5e-01 4.8e-01 7.9e-02 7.4e-01 5.0e-01
Star 7.7e-02 9.2e-01 9.5e-01 2.1e-07 9.1e-01 1.0e+00 2.7e-01 2.4e-01 2.6e-01 6.9e-01 9.9e-01 1.0e+00
Band 5.0e-02 7.7e-01 4.9e-01 2.2e-01 9.2e-01 1.0e+00 4.2e-01 3.8e-01 9.8e-01 1.9e-01 8.9e-01 1.0e+00
Band-S 3.6e-01 6.2e-01 8.2e-02 1.4e-03 9.6e-01 1.0e+00 5.7e-01 3.1e-01 8.3e-01 4.1e-01 9.5e-01 1.0e+00
Band-W 8.3e-01 1.6e-01 8.6e-01 1.3e-03 9.1e-01 1.0e+00 2.7e-01 9.8e-01 7.3e-02 5.5e-01 5.6e-01 1.0e+00
Rec 4.0e-01 2.5e-01 4.7e-01 2.3e-01 6.3e-01 9.7e-01 7.5e-01 2.9e-01 4.0e-01 9.2e-01 7.3e-02 9.9e-01

200

Random 1.8e-01 7.9e-02 4.5e-02 9.6e-04 7.9e-02 1.0e+00 5.1e-01 3.8e-01 5.6e-01 8.4e-01 1.6e-01 1.0e+00
Stripe 5.0e-01 5.1e-02 3.6e-01 1.6e-04 9.8e-01 9.1e-01 7.9e-01 8.5e-01 4.6e-01 1.2e-01 4.6e-01 8.1e-01
Star 7.7e-02 7.2e-01 8.3e-01 1.5e-03 1.0e+00 1.0e+00 2.3e-01 2.4e-01 2.6e-01 2.2e-01 8.8e-01 1.0e+00
Band 5.0e-02 2.8e-01 4.8e-01 2.5e-03 7.2e-01 1.0e+00 5.3e-01 3.8e-01 9.8e-01 8.1e-03 7.2e-01 1.0e+00
Band-S 3.6e-01 5.8e-01 4.2e-01 9.2e-04 9.9e-01 6.4e-01 6.4e-01 3.1e-01 8.3e-01 3.3e-01 9.9e-01 1.0e+00
Band-W 8.3e-01 1.2e-02 3.5e-01 5.0e-03 1.0e+00 1.0e+00 4.0e-01 9.8e-01 7.2e-02 8.3e-01 7.6e-01 1.0e+00
Rec 4.0e-01 2.0e-01 3.9e-01 2.4e-01 6.1e-01 1.2e-01 7.5e-01 2.9e-01 4.0e-01 6.6e-01 2.3e-01 1.0e+00

300

Random 1.8e-01 7.9e-02 4.5e-02 5.8e-05 7.9e-02 1.0e+00 4.6e-01 3.8e-01 5.6e-01 8.4e-01 1.6e-01 1.0e+00
Stripe 5.0e-01 7.8e-02 2.4e-01 5.9e-03 9.9e-01 3.0e-01 7.9e-01 8.5e-01 4.6e-01 6.1e-02 6.8e-01 8.8e-01
Star 7.7e-02 4.0e-01 8.1e-01 7.3e-05 9.7e-01 1.0e+00 2.2e-01 2.4e-01 2.7e-01 1.9e-02 8.4e-01 1.0e+00
Band 5.0e-02 2.8e-01 2.1e-01 2.6e-05 1.6e-01 1.0e+00 6.6e-01 3.8e-01 9.8e-01 2.0e-03 1.6e-01 1.0e+00
Band-S 3.6e-01 7.3e-01 3.9e-01 1.4e-03 9.7e-01 9.2e-01 7.4e-01 3.1e-01 8.3e-01 3.0e-01 9.9e-01 1.0e+00
Band-W 8.3e-01 2.2e-02 2.8e-02 5.3e-03 1.0e+00 1.0e+00 6.2e-01 9.8e-01 7.2e-02 8.5e-01 1.0e+00 1.0e+00
Rec 4.0e-01 8.9e-02 6.1e-01 6.8e-03 5.8e-01 9.7e-01 7.6e-01 2.9e-01 4.0e-01 7.1e-01 4.0e-02 1.0e+00

400

Random 1.8e-01 7.9e-02 4.5e-02 5.5e-03 7.9e-02 1.0e+00 3.9e-01 3.8e-01 5.6e-01 8.4e-01 1.6e-01 1.0e+00
Stripe 5.0e-01 5.0e-02 2.0e-01 3.4e-02 9.9e-01 9.7e-02 8.4e-01 8.5e-01 4.6e-01 7.8e-02 5.5e-01 9.7e-01
Star 7.7e-02 3.8e-01 6.7e-01 2.3e-03 8.8e-01 1.0e+00 1.7e-01 2.4e-01 2.7e-01 5.0e-02 5.9e-01 1.0e+00
Band 5.0e-02 2.8e-01 2.1e-01 3.1e-04 1.6e-01 1.0e+00 7.2e-01 3.8e-01 9.8e-01 2.0e-03 1.6e-01 1.0e+00
Band-S 3.6e-01 7.1e-01 2.6e-01 4.7e-03 1.0e+00 4.9e-01 8.1e-01 3.1e-01 8.3e-01 3.6e-01 9.7e-01 1.0e+00
Band-W 8.3e-01 2.2e-02 2.8e-02 2.9e-04 1.0e+00 1.0e+00 7.5e-01 9.8e-01 7.2e-02 8.0e-01 1.0e+00 1.0e+00
Rec 4.0e-01 4.2e-02 7.5e-01 2.3e-01 3.3e-01 8.8e-01 7.6e-01 2.9e-01 4.0e-01 5.1e-01 6.1e-02 1.0e+00

Table C.13: CL-SL, ρ = 0.67: p-values at different run lengths.
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C.2.2 Collective vs Individual Learning, ρ = 0.67

Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00
Stripe 9.3e-01 3.3e-01 1.1e-01 9.9e-01 7.1e-01 9.6e-01 7.5e-01 9.5e-01 9.1e-01 1.1e-01 4.2e-04 8.6e-01
Star 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 2.1e-01 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 9.1e-01 8.9e-01 9.3e-01 9.0e-01 1.0e+00 1.0e+00 8.1e-01 9.6e-01 1.0e+00 2.1e-01 3.0e-01 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 8.4e-01 1.0e+00 1.0e+00 1.0e+00 4.2e-01 1.0e+00
Rec 8.5e-01 1.9e-01 9.6e-01 5.3e-01 8.3e-01 1.0e+00 9.3e-01 6.8e-01 9.3e-01 3.3e-01 2.8e-03 6.8e-01

50

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.7e-01 9.0e-01 9.6e-01 1.4e-01 1.0e+00 1.0e+00 5.8e-01 9.3e-01 8.0e-01 9.6e-01 2.4e-01 9.8e-01
Star 9.9e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.7e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 8.0e-01 1.0e+00 1.0e+00 6.4e-01 1.0e+00 1.0e+00 6.2e-01 8.5e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 6.5e-01 1.0e+00 1.0e+00 9.4e-01 1.0e+00 1.0e+00 8.9e-01 5.3e-01 8.6e-01 1.0e+00 6.6e-01 1.0e+00

100

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.5e-01 9.7e-01 9.9e-01 1.3e-01 1.0e+00 7.9e-01 5.9e-01 9.2e-01 8.0e-01 1.0e+00 5.2e-01 9.9e-01
Star 9.9e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 8.0e-01 1.0e+00 1.0e+00 9.1e-01 1.0e+00 1.0e+00 6.2e-01 8.6e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 6.4e-01 1.0e+00 1.0e+00 9.2e-01 1.0e+00 1.0e+00 8.9e-01 5.4e-01 8.7e-01 1.0e+00 9.5e-01 1.0e+00

200

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.5e-01 9.8e-01 1.0e+00 8.6e-01 1.0e+00 9.8e-01 5.7e-01 9.2e-01 7.8e-01 1.0e+00 8.5e-01 1.0e+00
Star 9.9e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 8.0e-01 1.0e+00 1.0e+00 5.0e-01 1.0e+00 1.0e+00 6.3e-01 8.6e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 6.4e-01 1.0e+00 1.0e+00 8.9e-01 1.0e+00 1.0e+00 8.9e-01 5.4e-01 8.7e-01 1.0e+00 1.0e+00 1.0e+00

300

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.5e-01 9.9e-01 1.0e+00 5.4e-01 1.0e+00 9.7e-01 5.7e-01 9.2e-01 7.8e-01 1.0e+00 9.5e-01 1.0e+00
Star 9.9e-01 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 8.0e-01 1.0e+00 1.0e+00 9.2e-01 1.0e+00 1.0e+00 6.3e-01 8.5e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 6.4e-01 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 8.9e-01 5.4e-01 8.7e-01 1.0e+00 1.0e+00 1.0e+00

400

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.5e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00 9.3e-01 5.7e-01 9.2e-01 7.8e-01 1.0e+00 9.8e-01 1.0e+00
Star 9.9e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 8.0e-01 1.0e+00 1.0e+00 9.7e-01 1.0e+00 1.0e+00 6.3e-01 8.5e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 6.4e-01 1.0e+00 1.0e+00 9.1e-01 1.0e+00 1.0e+00 8.9e-01 5.4e-01 8.7e-01 1.0e+00 1.0e+00 1.0e+00

Table C.14: CL-IND, ρ = 0.67: p-values at different run lengths.
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C.2.3 Social vs Individual Learning, ρ = 0.67

Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 7.5e-01
Stripe 9.3e-01 3.8e-01 1.5e-01 1.0e+00 7.3e-01 9.8e-01 5.0e-01 7.9e-01 8.6e-01 9.5e-01 3.4e-04 8.9e-01
Star 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.3e-01 9.9e-01
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.3e-01
Band-S 9.9e-01 9.0e-01 7.5e-01 1.0e+00 1.0e+00 1.0e+00 8.8e-01 9.9e-01 1.0e+00 7.1e-01 2.7e-02 8.5e-01
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 7.9e-01 9.2e-01
Rec 9.1e-01 6.9e-01 4.0e-01 1.0e+00 9.5e-01 1.0e+00 9.3e-01 9.2e-01 9.8e-01 1.6e-01 8.6e-06 6.4e-01

50

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.7e-01 1.0e+00 9.7e-01 8.8e-01 9.6e-01 9.5e-01 2.9e-01 6.3e-01 8.1e-01 1.0e+00 1.3e-01 9.3e-01
Star 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 9.3e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 6.3e-01 9.6e-01 9.9e-01 1.0e+00 8.1e-01 9.7e-01
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.3e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 7.4e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 6.4e-01 7.8e-01 9.2e-01 1.0e+00 6.5e-01 9.8e-01

100

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.5e-01 1.0e+00 9.8e-01 9.8e-01 1.0e+00 9.2e-01 2.7e-01 6.1e-01 8.0e-01 1.0e+00 2.5e-01 1.0e+00
Star 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 9.3e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.7e-01 9.6e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 8.9e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 7.2e-01 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 6.6e-01 7.8e-01 9.2e-01 1.0e+00 1.0e+00 1.0e+00

200

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.4e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 6.8e-01 2.4e-01 6.0e-01 8.0e-01 1.0e+00 9.5e-01 1.0e+00
Star 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 9.3e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 4.9e-01 9.6e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 7.7e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 7.2e-01 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 6.6e-01 7.7e-01 9.2e-01 1.0e+00 1.0e+00 1.0e+00

300

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.4e-01 1.0e+00 1.0e+00 9.9e-01 1.0e+00 9.9e-01 2.4e-01 6.0e-01 7.9e-01 1.0e+00 8.5e-01 1.0e+00
Star 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 9.3e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 3.6e-01 9.6e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 7.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 6.4e-01 7.7e-01 9.2e-01 1.0e+00 1.0e+00 1.0e+00

400

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Stripe 7.4e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.9e-01 6.0e-01 7.9e-01 1.0e+00 9.9e-01 1.0e+00
Star 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Band-S 9.3e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 2.6e-01 9.6e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00
Band-W 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 3.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
Rec 7.2e-01 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 5.9e-01 7.7e-01 9.2e-01 1.0e+00 1.0e+00 1.0e+00

Table C.15: SL-IND, ρ = 0.67: p-values at different run lengths.
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C.3 Statistical comparison - II: Collective, Social, and
Individual Learning

Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.451 0.4 0.4 0.451 0.4 0.4 0.35
SL-DM1 0.457 0.4 0.397 0.403 0.397 0.402 0.369
IND-DM1 0.351 0.399 0.35 0.385 0.38 0.398 0.35
CL-DM2 0.4 0.35 0.329 0.351 0.334 0.371 0.345
SL-DM2 0.373 0.399 0.313 0.351 0.382 0.368 0.35
IND-DM2 0.339 0.393 0.349 0.373 0.353 0.392 0.365
CL-DM3 0.347 0.4 0.343 0.386 0.329 0.344 0.315
SL-DM3 0.372 0.347 0.318 0.343 0.392 0.328 0.301
IND-DM3 0.348 0.395 0.347 0.364 0.35 0.39 0.349
CL-DM4 0.174 0.251 0.197 0.205 0.235 0.191 0.243
SL-DM4 0.208 0.309 0.197 0.225 0.264 0.238 0.253
IND-DM4 0.156 0.255 0.168 0.174 0.211 0.175 0.215
CL-DM5 0.453 0.417 0.385 0.454 0.389 0.472 0.379
SL-DM5 0.443 0.385 0.353 0.474 0.415 0.41 0.392
IND-DM5 0.352 0.399 0.373 0.388 0.372 0.383 0.353
CL-DM6 0.434 0.349 0.376 0.419 0.349 0.346 0.366
SL-DM6 0.372 0.363 0.366 0.325 0.324 0.371 0.326
IND-DM6 0.275 0.333 0.29 0.308 0.329 0.321 0.285
CL-DM7 0.35 0.4 0.45 0.4 0.372 0.403 0.362
SL-DM7 0.45 0.4 0.399 0.462 0.4 0.401 0.377
IND-DM7 0.354 0.4 0.347 0.362 0.376 0.399 0.357
CL-DM8 0.4 0.35 0.386 0.466 0.414 0.45 0.4
SL-DM8 0.438 0.4 0.4 0.44 0.4 0.45 0.392
IND-DM8 0.38 0.35 0.345 0.382 0.35 0.394 0.35
CL-DM9 0.442 0.395 0.35 0.505 0.4 0.429 0.359
SL-DM9 0.437 0.35 0.362 0.45 0.4 0.4 0.35
IND-DM9 0.312 0.384 0.348 0.316 0.35 0.363 0.35
CL-DM10 0.321 0.362 0.301 0.348 0.35 0.316 0.325
SL-DM10 0.348 0.35 0.372 0.3 0.351 0.298 0.35
IND-DM10 0.36 0.365 0.351 0.353 0.36 0.39 0.365
CL-DM11 0.228 0.3 0.298 0.238 0.3 0.302 0.3
SL-DM11 0.228 0.3 0.26 0.252 0.3 0.303 0.294
IND-DM11 0.283 0.381 0.334 0.307 0.353 0.376 0.358
CL-DM12 0.399 0.4 0.422 0.414 0.366 0.454 0.4
SL-DM12 0.381 0.356 0.345 0.344 0.372 0.354 0.351
IND-DM12 0.378 0.39 0.355 0.375 0.35 0.388 0.374

Table C.16: Median values after 10 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.45 0.4 0.4 0.45 0.4 0.4 0.35
SL-DM1 0.5 0.4 0.4 0.45 0.4 0.45 0.4
IND-DM1 0.35 0.4 0.35 0.4 0.4 0.4 0.35
CL-DM2 0.835 0.455 0.473 0.632 0.45 0.656 0.376
SL-DM2 0.789 0.5 0.445 0.685 0.525 0.597 0.404
IND-DM2 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM3 0.595 0.5 0.415 0.8 0.4 0.478 0.428
SL-DM3 0.743 0.443 0.413 0.654 0.453 0.49 0.316
IND-DM3 0.4 0.4 0.375 0.4 0.4 0.4 0.35
CL-DM4 0.186 0.277 0.206 0.217 0.247 0.223 0.25
SL-DM4 0.203 0.304 0.217 0.267 0.292 0.252 0.248
IND-DM4 0.163 0.274 0.174 0.175 0.242 0.207 0.233
CL-DM5 0.776 0.522 0.453 0.91 0.589 0.77 0.411
SL-DM5 0.77 0.46 0.423 0.758 0.566 0.639 0.508
IND-DM5 0.4 0.4 0.4 0.4 0.399 0.4 0.4
CL-DM6 0.803 0.397 0.438 0.719 0.423 0.462 0.364
SL-DM6 0.611 0.365 0.41 0.574 0.366 0.433 0.34
IND-DM6 0.338 0.336 0.325 0.359 0.338 0.345 0.33
CL-DM7 0.35 0.4 0.45 0.4 0.4 0.4 0.375
SL-DM7 0.45 0.4 0.4 0.5 0.4 0.4 0.4
IND-DM7 0.375 0.4 0.35 0.4 0.4 0.4 0.375
CL-DM8 0.45 0.35 0.4 0.475 0.45 0.45 0.4
SL-DM8 0.45 0.4 0.4 0.5 0.4 0.45 0.4
IND-DM8 0.4 0.35 0.35 0.4 0.4 0.4 0.375
CL-DM9 0.45 0.4 0.375 0.55 0.4 0.45 0.4
SL-DM9 0.5 0.4 0.4 0.5 0.4 0.41 0.35
IND-DM9 0.365 0.4 0.379 0.35 0.35 0.4 0.35
CL-DM10 0.614 0.45 0.442 0.706 0.425 0.526 0.35
SL-DM10 0.702 0.456 0.486 0.56 0.45 0.501 0.415
IND-DM10 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM11 0.478 0.421 0.375 0.549 0.404 0.511 0.377
SL-DM11 0.437 0.398 0.336 0.454 0.415 0.443 0.364
IND-DM11 0.371 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM12 0.534 0.462 0.562 0.688 0.398 0.675 0.499
SL-DM12 0.398 0.44 0.419 0.394 0.415 0.375 0.332
IND-DM12 0.4 0.4 0.35 0.4 0.397 0.4 0.4

Table C.17: Median values after 50 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.45 0.4 0.4 0.45 0.4 0.4 0.35
SL-DM1 0.5 0.4 0.4 0.45 0.4 0.45 0.4
IND-DM1 0.35 0.4 0.35 0.4 0.4 0.4 0.35
CL-DM2 1 0.55 0.575 1 0.6 0.917 0.425
SL-DM2 1 0.623 0.536 1 0.608 0.701 0.427
IND-DM2 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM3 1 0.6 0.382 1 0.45 0.713 0.5
SL-DM3 1 0.5 0.423 0.872 0.546 0.497 0.369
IND-DM3 0.4 0.4 0.375 0.4 0.4 0.4 0.35
CL-DM4 0.181 0.285 0.211 0.212 0.24 0.208 0.237
SL-DM4 0.191 0.307 0.25 0.234 0.285 0.246 0.265
IND-DM4 0.16 0.281 0.195 0.183 0.236 0.199 0.21
CL-DM5 1 0.6 0.612 1 0.763 0.951 0.498
SL-DM5 1 0.549 0.538 0.996 0.67 0.711 0.522
IND-DM5 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM6 0.799 0.38 0.495 0.739 0.408 0.488 0.397
SL-DM6 0.657 0.398 0.426 0.592 0.395 0.434 0.383
IND-DM6 0.375 0.341 0.344 0.354 0.325 0.348 0.327
CL-DM7 0.35 0.4 0.45 0.4 0.4 0.4 0.375
SL-DM7 0.45 0.4 0.4 0.5 0.4 0.4 0.4
IND-DM7 0.375 0.4 0.35 0.4 0.4 0.4 0.375
CL-DM8 0.45 0.35 0.4 0.475 0.45 0.45 0.4
SL-DM8 0.45 0.4 0.4 0.5 0.4 0.45 0.4
IND-DM8 0.4 0.35 0.35 0.4 0.4 0.4 0.375
CL-DM9 0.45 0.4 0.375 0.55 0.4 0.45 0.4
SL-DM9 0.5 0.4 0.4 0.5 0.4 0.425 0.35
IND-DM9 0.372 0.4 0.398 0.35 0.35 0.4 0.35
CL-DM10 1 0.55 0.564 1 0.45 0.71 0.406
SL-DM10 1 0.573 0.529 0.974 0.535 0.674 0.522
IND-DM10 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM11 0.999 0.492 0.486 0.866 0.45 0.603 0.446
SL-DM11 0.601 0.421 0.372 0.515 0.449 0.595 0.444
IND-DM11 0.4 0.4 0.4 0.449 0.4 0.4 0.4
CL-DM12 0.901 0.563 0.75 1 0.463 0.825 0.568
SL-DM12 0.415 0.561 0.453 0.43 0.387 0.391 0.443
IND-DM12 0.4 0.4 0.35 0.4 0.4 0.4 0.4

Table C.18: Median values after 100 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.45 0.4 0.4 0.45 0.4 0.4 0.35
SL-DM1 0.5 0.4 0.4 0.45 0.4 0.45 0.4
IND-DM1 0.35 0.4 0.35 0.4 0.4 0.4 0.35
CL-DM2 1 0.7 0.905 1 0.724 1 0.425
SL-DM2 1 0.75 0.655 1 0.8 1 0.595
IND-DM2 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM3 1 0.75 0.579 1 0.599 1 0.6
SL-DM3 1 0.55 0.516 1 0.728 0.611 0.534
IND-DM3 0.4 0.4 0.375 0.4 0.4 0.4 0.35
CL-DM4 0.185 0.282 0.187 0.212 0.261 0.234 0.243
SL-DM4 0.194 0.321 0.236 0.226 0.305 0.259 0.245
IND-DM4 0.156 0.281 0.184 0.186 0.244 0.206 0.219
CL-DM5 1 0.788 0.65 1 0.947 1 0.612
SL-DM5 1 0.689 0.616 1 0.792 0.963 0.623
IND-DM5 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM6 0.82 0.38 0.479 0.773 0.391 0.49 0.405
SL-DM6 0.661 0.383 0.399 0.539 0.422 0.429 0.34
IND-DM6 0.365 0.333 0.334 0.371 0.336 0.331 0.315
CL-DM7 0.35 0.4 0.45 0.4 0.4 0.4 0.375
SL-DM7 0.45 0.4 0.4 0.5 0.4 0.4 0.4
IND-DM7 0.375 0.4 0.35 0.4 0.4 0.4 0.375
CL-DM8 0.45 0.35 0.4 0.475 0.45 0.45 0.4
SL-DM8 0.45 0.4 0.4 0.5 0.4 0.45 0.4
IND-DM8 0.4 0.35 0.35 0.4 0.4 0.4 0.375
CL-DM9 0.45 0.4 0.375 0.55 0.4 0.45 0.4
SL-DM9 0.5 0.4 0.4 0.5 0.4 0.425 0.35
IND-DM9 0.375 0.4 0.4 0.35 0.35 0.4 0.35
CL-DM10 1 0.725 0.888 1 0.452 1 0.647
SL-DM10 1 0.7 0.61 1 0.741 0.895 0.658
IND-DM10 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM11 1 0.511 0.569 1 0.581 0.943 0.45
SL-DM11 0.878 0.515 0.417 0.804 0.501 0.65 0.449
IND-DM11 0.442 0.4 0.4 0.45 0.4 0.4 0.4
CL-DM12 1 0.65 1 1 0.6 1 0.873
SL-DM12 0.399 0.625 0.397 0.364 0.42 0.433 0.483
IND-DM12 0.4 0.4 0.35 0.4 0.4 0.4 0.4

Table C.19: Median values after 200 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.



C.3. STATISTICAL COMPARISON - II: COLLECTIVE, SOCIAL, AND
INDIVIDUAL LEARNING 167

Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.45 0.4 0.4 0.45 0.4 0.4 0.35
SL-DM1 0.5 0.4 0.4 0.45 0.4 0.45 0.4
IND-DM1 0.35 0.4 0.35 0.4 0.4 0.4 0.35
CL-DM2 1 0.847 1 1 0.825 1 0.624
SL-DM2 1 0.85 0.83 1 0.9 1 0.793
IND-DM2 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM3 1 0.85 0.979 1 0.625 1 0.785
SL-DM3 1 0.636 0.608 1 0.9 0.95 0.723
IND-DM3 0.4 0.4 0.375 0.4 0.4 0.4 0.35
CL-DM4 0.178 0.273 0.2 0.211 0.259 0.199 0.242
SL-DM4 0.196 0.29 0.242 0.241 0.291 0.255 0.255
IND-DM4 0.157 0.277 0.187 0.173 0.234 0.189 0.237
CL-DM5 1 0.85 0.719 1 1 1 0.679
SL-DM5 1 0.73 0.631 1 0.916 1 0.676
IND-DM5 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM6 0.833 0.39 0.523 0.782 0.415 0.541 0.334
SL-DM6 0.668 0.35 0.453 0.543 0.41 0.413 0.356
IND-DM6 0.382 0.339 0.323 0.368 0.325 0.327 0.326
CL-DM7 0.35 0.4 0.45 0.4 0.4 0.4 0.375
SL-DM7 0.45 0.4 0.4 0.45 0.4 0.4 0.4
IND-DM7 0.375 0.4 0.35 0.4 0.4 0.4 0.375
CL-DM8 0.45 0.35 0.4 0.475 0.45 0.45 0.4
SL-DM8 0.45 0.4 0.4 0.5 0.4 0.45 0.4
IND-DM8 0.4 0.35 0.35 0.4 0.4 0.4 0.375
CL-DM9 0.45 0.4 0.375 0.55 0.4 0.45 0.4
SL-DM9 0.5 0.4 0.4 0.5 0.4 0.425 0.35
IND-DM9 0.375 0.4 0.4 0.35 0.35 0.4 0.35
CL-DM10 1 0.8 1 1 0.649 1 0.728
SL-DM10 1 0.75 0.626 1 0.922 1 0.842
IND-DM10 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM11 1 0.55 0.95 1 0.55 1 0.6
SL-DM11 1 0.5 0.355 1 0.573 0.825 0.51
IND-DM11 0.425 0.4 0.4 0.45 0.4 0.4 0.4
CL-DM12 1 0.7 1 1 0.737 1 0.95
SL-DM12 0.46 0.6 0.404 0.397 0.496 0.396 0.409
IND-DM12 0.4 0.4 0.35 0.4 0.4 0.4 0.4

Table C.20: Median values after 300 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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Random Stripe Star Band Band-S Band-W Rec
CL-DM1 0.45 0.4 0.4 0.45 0.4 0.4 0.35
SL-DM1 0.5 0.4 0.4 0.45 0.4 0.45 0.4
IND-DM1 0.35 0.4 0.35 0.4 0.4 0.4 0.35
CL-DM2 1 0.88 1 1 0.975 1 0.75
SL-DM2 1 0.95 0.98 1 1 1 0.871
IND-DM2 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM3 1 0.85 1 1 0.675 1 0.946
SL-DM3 1 0.75 0.704 1 1 1 0.7
IND-DM3 0.4 0.4 0.375 0.4 0.4 0.4 0.35
CL-DM4 0.2 0.28 0.216 0.197 0.257 0.216 0.251
SL-DM4 0.203 0.296 0.228 0.238 0.289 0.258 0.26
IND-DM4 0.161 0.276 0.21 0.184 0.257 0.205 0.226
CL-DM5 1 0.944 0.885 1 1 1 0.83
SL-DM5 1 0.769 0.716 1 1 1 0.73
IND-DM5 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM6 0.821 0.381 0.472 0.755 0.405 0.489 0.363
SL-DM6 0.631 0.378 0.407 0.531 0.395 0.396 0.377
IND-DM6 0.377 0.341 0.351 0.364 0.351 0.33 0.316
CL-DM7 0.35 0.4 0.45 0.4 0.4 0.4 0.375
SL-DM7 0.45 0.4 0.4 0.45 0.4 0.4 0.4
IND-DM7 0.375 0.4 0.35 0.4 0.4 0.4 0.375
CL-DM8 0.45 0.35 0.4 0.475 0.45 0.45 0.4
SL-DM8 0.45 0.4 0.4 0.5 0.4 0.45 0.4
IND-DM8 0.4 0.35 0.35 0.4 0.4 0.4 0.375
CL-DM9 0.45 0.4 0.375 0.55 0.4 0.45 0.4
SL-DM9 0.5 0.4 0.4 0.5 0.4 0.425 0.35
IND-DM9 0.375 0.4 0.4 0.35 0.35 0.4 0.35
CL-DM10 1 0.9 1 1 0.578 1 0.95
SL-DM10 1 0.762 0.684 1 1 1 0.938
IND-DM10 0.4 0.4 0.4 0.4 0.4 0.4 0.4
CL-DM11 1 0.572 1 1 0.7 1 0.547
SL-DM11 1 0.6 0.421 1 0.65 1 0.628
IND-DM11 0.425 0.4 0.4 0.45 0.4 0.4 0.4
CL-DM12 1 0.775 1 1 0.85 1 1
SL-DM12 0.373 0.701 0.4 0.441 0.585 0.384 0.516
IND-DM12 0.4 0.4 0.35 0.4 0.4 0.4 0.4

Table C.21: Median values after 400 iterations. Best performance is indicated in bold
font. The results which have equal medians with the best performance (in each line) are
indicated by light gray color (including the best result in bold). Statistical significance
is stated by two-sided pairwise Mann-Whitney-U test with p-value< 0.05.
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C.3.1 Collective vs Social Learning, ρ = 0.93

Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 8.5e-01 5.3e-01 7.9e-02 2.8e-03 6.0e-01 9.5e-01 5.2e-02 4.5e-01 4.4e-01 4.4e-01 5.3e-01 8.1e-01
Stripe 6.6e-01 1.3e-01 9.8e-01 1.0e-05 9.6e-01 5.9e-01 4.0e-01 2.0e-02 9.2e-01 9.0e-01 3.6e-01 5.6e-01
Star 7.8e-01 4.5e-01 8.6e-01 1.9e-01 9.3e-01 9.5e-01 9.6e-01 3.7e-01 5.4e-01 2.0e-02 9.0e-01 9.9e-01
Band 9.6e-01 7.2e-01 9.4e-01 4.6e-02 6.7e-01 9.9e-01 1.1e-01 5.8e-01 9.1e-01 8.9e-01 1.3e-01 9.7e-01
Band-S 5.7e-01 5.0e-02 9.6e-02 5.2e-02 3.8e-01 5.5e-01 1.5e-01 3.0e-01 4.2e-01 5.6e-01 5.7e-01 2.1e-01
Band-W 4.1e-01 6.0e-01 6.3e-01 3.0e-03 9.8e-01 2.3e-01 6.6e-01 3.0e-01 7.0e-01 7.1e-01 4.2e-01 1.0e+00
Rec 9.6e-02 2.5e-02 4.3e-01 5.0e-01 1.8e-01 5.2e-01 2.6e-01 8.7e-01 9.1e-01 3.0e-01 6.8e-01 9.8e-01

50

Random 6.9e-01 8.1e-01 1.2e-01 2.8e-02 3.2e-01 1.0e+00 2.5e-02 4.4e-01 1.1e-01 3.8e-01 8.2e-01 7.1e-01
Stripe 5.4e-01 5.6e-02 1.0e+00 1.2e-01 9.6e-01 8.0e-01 4.5e-01 4.3e-02 9.3e-01 3.0e-01 8.2e-01 8.1e-01
Star 7.5e-01 6.0e-01 6.6e-01 1.5e-01 8.8e-01 7.5e-01 9.0e-01 3.6e-01 4.9e-01 1.3e-01 7.9e-01 9.9e-01
Band 9.1e-01 4.0e-01 9.4e-01 1.5e-03 9.9e-01 1.0e+00 8.7e-02 4.4e-01 6.5e-01 7.9e-01 8.4e-01 9.9e-01
Band-S 6.0e-01 2.6e-02 1.5e-01 2.1e-02 9.4e-01 9.9e-01 2.4e-01 3.9e-01 4.3e-01 8.9e-02 6.0e-01 1.1e-01
Band-W 3.6e-01 8.5e-01 4.8e-01 2.7e-03 1.0e+00 5.7e-01 6.7e-01 2.0e-01 8.4e-01 5.3e-01 9.2e-01 1.0e+00
Rec 1.0e-01 2.0e-01 9.7e-01 3.9e-01 9.8e-02 7.1e-01 2.0e-01 8.1e-01 8.4e-01 1.2e-01 4.5e-01 1.0e+00

100

Random 6.9e-01 6.6e-01 6.1e-02 1.9e-01 5.8e-02 1.0e+00 2.8e-02 4.5e-01 1.2e-01 1.7e-01 1.0e+00 7.9e-01
Stripe 5.3e-01 7.6e-02 9.9e-01 5.5e-02 9.7e-01 3.3e-01 4.7e-01 3.4e-02 9.4e-01 1.9e-01 6.5e-01 8.4e-01
Star 7.5e-01 8.6e-01 4.7e-01 2.6e-04 9.0e-01 9.7e-01 8.9e-01 3.6e-01 5.0e-01 3.6e-01 9.7e-01 9.9e-01
Band 9.1e-01 2.2e-01 9.4e-01 8.8e-02 9.6e-01 1.0e+00 1.0e-01 4.3e-01 6.4e-01 4.9e-01 1.0e+00 9.9e-01
Band-S 6.1e-01 1.4e-01 1.2e-01 7.8e-04 8.6e-01 5.6e-01 2.7e-01 3.9e-01 4.0e-01 1.3e-01 6.0e-01 4.6e-01
Band-W 3.6e-01 9.3e-01 9.7e-01 1.4e-03 1.0e+00 9.9e-01 7.2e-01 2.1e-01 8.3e-01 8.8e-01 7.6e-01 1.0e+00
Rec 1.1e-01 1.9e-01 9.4e-01 1.0e-01 1.7e-01 4.5e-01 2.0e-01 8.2e-01 8.6e-01 1.3e-01 4.6e-01 9.9e-01

200

Random 6.9e-01 1.5e-01 1.5e-03 1.6e-01 1.3e-03 1.0e+00 3.1e-02 4.5e-01 1.2e-01 8.5e-02 1.0e+00 8.4e-01
Stripe 5.3e-01 2.6e-01 9.9e-01 7.6e-03 1.0e+00 3.7e-01 5.2e-01 3.4e-02 9.4e-01 5.5e-01 6.6e-01 9.4e-01
Star 7.5e-01 7.7e-01 4.9e-01 4.0e-05 5.3e-01 9.9e-01 8.5e-01 3.6e-01 5.0e-01 5.8e-01 9.9e-01 9.8e-01
Band 9.1e-01 6.5e-02 5.1e-01 2.2e-02 6.0e-01 1.0e+00 1.4e-01 4.3e-01 6.4e-01 2.0e-01 1.0e+00 9.8e-01
Band-S 6.0e-01 2.4e-01 4.7e-02 2.3e-02 9.4e-01 3.6e-01 3.4e-01 3.9e-01 4.0e-01 6.6e-02 6.0e-01 6.1e-01
Band-W 3.6e-01 9.1e-01 1.0e+00 3.9e-02 1.0e+00 1.0e+00 8.3e-01 2.1e-01 8.3e-01 9.4e-01 1.0e+00 1.0e+00
Rec 1.0e-01 1.8e-01 7.1e-01 2.1e-01 2.3e-01 9.6e-01 1.8e-01 8.2e-01 8.6e-01 2.2e-01 5.4e-01 9.9e-01

300

Random 6.9e-01 9.9e-02 7.9e-05 8.5e-03 7.0e-04 1.0e+00 2.9e-02 4.5e-01 1.2e-01 4.5e-02 1.0e+00 8.4e-01
Stripe 5.3e-01 2.2e-01 9.6e-01 8.9e-02 9.9e-01 9.5e-01 6.0e-01 3.4e-02 9.4e-01 7.0e-01 6.2e-01 9.8e-01
Star 7.5e-01 8.0e-01 4.2e-01 4.0e-03 3.3e-01 9.9e-01 8.4e-01 3.6e-01 5.0e-01 5.5e-01 1.0e+00 9.9e-01
Band 9.1e-01 2.5e-02 1.3e-01 7.6e-03 2.2e-01 1.0e+00 2.1e-01 4.3e-01 6.4e-01 2.0e-01 1.0e+00 9.8e-01
Band-S 6.0e-01 1.9e-01 2.6e-02 6.1e-03 8.8e-01 8.5e-01 4.8e-01 3.9e-01 4.0e-01 1.2e-01 4.7e-01 6.8e-01
Band-W 3.6e-01 8.5e-01 1.0e+00 2.2e-03 1.0e+00 1.0e+00 8.8e-01 2.1e-01 8.3e-01 9.4e-01 1.0e+00 1.0e+00
Rec 1.0e-01 2.9e-01 6.3e-01 1.3e-01 2.7e-01 3.3e-01 1.7e-01 8.2e-01 8.6e-01 1.8e-01 7.4e-01 9.9e-01

400

Random 6.9e-01 9.9e-02 7.9e-05 3.6e-01 1.9e-04 1.0e+00 2.5e-02 4.5e-01 1.2e-01 4.5e-02 9.9e-01 8.5e-01
Stripe 5.3e-01 2.0e-01 9.1e-01 7.0e-02 9.9e-01 6.7e-01 6.3e-01 3.4e-02 9.4e-01 6.5e-01 4.5e-01 9.6e-01
Star 7.5e-01 7.7e-01 3.5e-01 1.7e-01 3.7e-01 9.8e-01 8.2e-01 3.6e-01 5.0e-01 4.3e-01 1.0e+00 9.9e-01
Band 9.1e-01 1.6e-02 8.8e-02 1.8e-03 1.7e-01 1.0e+00 2.8e-01 4.3e-01 6.4e-01 1.3e-01 9.9e-01 9.8e-01
Band-S 6.0e-01 1.6e-01 1.7e-02 4.2e-03 9.0e-01 5.5e-01 5.7e-01 3.9e-01 4.0e-01 9.5e-02 6.6e-01 6.2e-01
Band-W 3.6e-01 7.8e-01 9.9e-01 4.1e-03 1.0e+00 1.0e+00 9.4e-01 2.1e-01 8.3e-01 8.8e-01 1.0e+00 1.0e+00
Rec 1.0e-01 3.3e-01 7.0e-01 7.8e-02 3.9e-01 5.1e-01 1.7e-01 8.2e-01 8.6e-01 1.4e-01 3.8e-01 9.9e-01

Table C.22: CL-SL, ρ = 0.93: p-values at different run lengths.
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C.3.2 Collective vs Individual Learning, ρ = 0.93

Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 1.0e+00 9.7e-01 4.0e-01 9.9e-01 9.8e-01 1.0e+00 7.6e-01 9.4e-01 1.0e+00 2.8e-01 2.8e-03 7.2e-01
Stripe 4.4e-01 5.7e-02 3.6e-01 4.7e-01 9.3e-01 9.4e-01 1.4e-01 3.5e-01 6.7e-01 6.3e-01 4.1e-05 6.8e-01
Star 1.0e+00 1.2e-01 5.6e-01 1.0e+00 5.3e-01 1.0e+00 1.0e+00 9.2e-01 7.8e-01 1.2e-01 1.8e-02 9.9e-01
Band 1.0e+00 5.2e-01 8.6e-01 1.0e+00 1.0e+00 1.0e+00 8.0e-01 9.9e-01 1.0e+00 3.9e-01 6.4e-06 9.6e-01
Band-S 9.0e-01 9.3e-02 1.7e-01 9.8e-01 9.3e-01 9.7e-01 8.0e-01 9.8e-01 1.0e+00 9.3e-02 5.0e-03 4.3e-01
Band-W 6.6e-01 1.8e-01 1.7e-02 9.9e-01 1.0e+00 9.2e-01 9.4e-01 9.9e-01 1.0e+00 4.4e-03 2.9e-04 1.0e+00
Rec 6.1e-01 5.2e-04 3.0e-02 9.8e-01 8.5e-01 9.9e-01 5.0e-01 9.6e-01 9.6e-01 1.0e-02 1.3e-03 8.6e-01

50

Random 1.0e+00 1.0e+00 9.5e-01 9.8e-01 1.0e+00 1.0e+00 5.1e-01 9.2e-01 9.9e-01 1.0e+00 9.8e-01 7.1e-01
Stripe 2.2e-01 9.9e-01 1.0e+00 7.3e-01 1.0e+00 1.0e+00 6.3e-02 3.0e-01 6.5e-01 9.8e-01 8.6e-01 1.0e+00
Star 9.7e-01 9.3e-01 8.9e-01 9.7e-01 9.7e-01 1.0e+00 1.0e+00 8.3e-01 6.3e-01 8.6e-01 3.6e-01 1.0e+00
Band 1.0e+00 9.8e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 4.8e-01 9.8e-01 1.0e+00 1.0e+00 9.9e-01 1.0e+00
Band-S 6.5e-01 8.8e-01 8.5e-01 8.4e-01 1.0e+00 1.0e+00 7.3e-01 9.4e-01 1.0e+00 8.9e-01 8.6e-01 5.6e-01
Band-W 5.0e-01 1.0e+00 9.0e-01 8.7e-01 1.0e+00 1.0e+00 7.7e-01 9.5e-01 9.9e-01 9.8e-01 1.0e+00 1.0e+00
Rec 4.4e-01 2.3e-01 9.5e-01 8.3e-01 9.5e-01 9.8e-01 2.6e-01 9.3e-01 8.7e-01 3.8e-01 4.2e-01 1.0e+00

100

Random 1.0e+00 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.0e+00 5.6e-01 9.2e-01 9.9e-01 1.0e+00 1.0e+00 8.1e-01
Stripe 2.2e-01 1.0e+00 1.0e+00 4.0e-01 1.0e+00 9.9e-01 5.2e-02 2.8e-01 6.5e-01 1.0e+00 1.0e+00 1.0e+00
Star 9.6e-01 1.0e+00 5.9e-01 8.9e-01 9.9e-01 1.0e+00 1.0e+00 8.2e-01 5.7e-01 9.7e-01 1.0e+00 9.9e-01
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 4.7e-01 9.8e-01 1.0e+00 1.0e+00 1.0e+00 9.9e-01
Band-S 6.4e-01 1.0e+00 8.7e-01 5.4e-01 1.0e+00 1.0e+00 7.2e-01 9.3e-01 1.0e+00 7.4e-01 9.8e-01 7.1e-01
Band-W 4.9e-01 1.0e+00 1.0e+00 4.8e-01 1.0e+00 1.0e+00 7.7e-01 9.5e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00
Rec 4.6e-01 6.2e-01 1.0e+00 9.5e-01 9.8e-01 1.0e+00 2.6e-01 9.3e-01 8.7e-01 8.3e-01 9.4e-01 9.9e-01

200

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.7e-01 9.2e-01 9.8e-01 1.0e+00 1.0e+00 8.4e-01
Stripe 2.2e-01 1.0e+00 1.0e+00 6.7e-01 1.0e+00 9.9e-01 5.2e-02 2.9e-01 6.4e-01 1.0e+00 1.0e+00 1.0e+00
Star 9.6e-01 1.0e+00 9.5e-01 7.4e-01 1.0e+00 1.0e+00 1.0e+00 8.2e-01 5.5e-01 9.6e-01 1.0e+00 9.8e-01
Band 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 4.7e-01 9.8e-01 1.0e+00 1.0e+00 1.0e+00 9.8e-01
Band-S 6.3e-01 1.0e+00 9.1e-01 9.5e-01 1.0e+00 1.0e+00 7.2e-01 9.2e-01 1.0e+00 7.9e-01 1.0e+00 7.7e-01
Band-W 4.9e-01 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 7.7e-01 9.5e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00
Rec 4.5e-01 5.9e-01 1.0e+00 9.8e-01 1.0e+00 1.0e+00 2.6e-01 9.3e-01 8.6e-01 9.8e-01 9.9e-01 9.9e-01

300

Random 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 5.7e-01 9.2e-01 9.8e-01 1.0e+00 1.0e+00 8.4e-01
Stripe 2.2e-01 1.0e+00 1.0e+00 2.4e-01 1.0e+00 1.0e+00 5.2e-02 2.9e-01 6.4e-01 1.0e+00 1.0e+00 1.0e+00
Star 9.6e-01 1.0e+00 9.6e-01 9.2e-01 9.9e-01 1.0e+00 1.0e+00 8.2e-01 5.5e-01 9.1e-01 1.0e+00 9.9e-01
Band 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 4.7e-01 9.8e-01 1.0e+00 1.0e+00 1.0e+00 9.8e-01
Band-S 6.3e-01 1.0e+00 9.5e-01 9.8e-01 1.0e+00 1.0e+00 7.2e-01 9.2e-01 1.0e+00 6.1e-01 1.0e+00 7.0e-01
Band-W 4.9e-01 1.0e+00 1.0e+00 9.1e-01 1.0e+00 1.0e+00 7.7e-01 9.5e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00
Rec 4.5e-01 8.3e-01 1.0e+00 6.4e-01 1.0e+00 9.1e-01 2.6e-01 9.3e-01 8.6e-01 9.9e-01 1.0e+00 9.9e-01

400

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.7e-01 9.2e-01 9.8e-01 1.0e+00 1.0e+00 8.4e-01
Stripe 2.2e-01 1.0e+00 1.0e+00 5.7e-01 1.0e+00 1.0e+00 5.2e-02 2.9e-01 6.3e-01 1.0e+00 1.0e+00 1.0e+00
Star 9.6e-01 1.0e+00 9.5e-01 9.6e-01 1.0e+00 1.0e+00 1.0e+00 8.2e-01 5.5e-01 8.9e-01 1.0e+00 9.9e-01
Band 1.0e+00 1.0e+00 1.0e+00 9.1e-01 1.0e+00 1.0e+00 4.7e-01 9.8e-01 1.0e+00 1.0e+00 1.0e+00 9.8e-01
Band-S 6.3e-01 1.0e+00 9.0e-01 6.8e-01 1.0e+00 1.0e+00 7.2e-01 9.2e-01 1.0e+00 7.6e-01 1.0e+00 6.9e-01
Band-W 4.9e-01 1.0e+00 1.0e+00 9.2e-01 1.0e+00 1.0e+00 7.7e-01 9.5e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00
Rec 4.5e-01 8.2e-01 1.0e+00 9.1e-01 1.0e+00 1.0e+00 2.6e-01 9.3e-01 8.6e-01 9.4e-01 1.0e+00 9.9e-01

Table C.23: CL-IND, ρ = 0.93: p-values at different run lengths.
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C.3.3 Social vs Individual Learning, ρ = 0.93

Iterations Pattern DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12

10

Random 1.0e+00 9.1e-01 9.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 4.2e-01 5.7e-04 3.9e-01
Stripe 2.6e-01 4.9e-01 1.8e-03 1.0e+00 3.6e-01 9.2e-01 2.0e-01 9.7e-01 1.3e-01 1.4e-01 4.7e-04 6.4e-01
Star 9.6e-01 1.1e-01 7.7e-02 1.0e+00 4.5e-02 9.9e-01 9.8e-01 9.8e-01 8.5e-01 8.6e-01 4.0e-05 2.5e-01
Band 7.1e-01 2.8e-01 1.8e-01 1.0e+00 1.0e+00 8.8e-01 1.0e+00 9.9e-01 1.0e+00 1.6e-02 4.9e-04 2.9e-01
Band-S 8.4e-01 7.1e-01 8.5e-01 1.0e+00 9.7e-01 9.3e-01 9.8e-01 9.9e-01 1.0e+00 6.1e-02 2.6e-03 7.8e-01
Band-W 7.8e-01 7.9e-02 4.3e-03 1.0e+00 9.1e-01 9.8e-01 8.3e-01 1.0e+00 9.9e-01 1.6e-04 9.1e-04 2.9e-01
Rec 9.5e-01 1.1e-01 4.4e-02 9.8e-01 9.7e-01 9.9e-01 7.9e-01 7.3e-01 6.3e-01 9.0e-02 4.1e-05 1.0e-01

50

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.7e-01 1.0e+00 1.0e+00 9.7e-01 2.3e-01
Stripe 1.8e-01 1.0e+00 5.7e-01 9.6e-01 1.0e+00 1.0e+00 5.9e-02 9.2e-01 1.1e-01 1.0e+00 4.2e-01 9.9e-01
Star 8.1e-01 9.9e-01 8.6e-01 1.0e+00 8.9e-01 1.0e+00 9.6e-01 9.6e-01 6.9e-01 9.9e-01 4.6e-02 9.0e-01
Band 7.8e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 8.6e-01 7.3e-01
Band-S 5.3e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.4e-01 9.2e-01 9.6e-01 1.0e+00 9.9e-01 6.9e-01 9.7e-01
Band-W 7.2e-01 1.0e+00 9.5e-01 1.0e+00 1.0e+00 1.0e+00 5.8e-01 9.9e-01 9.3e-01 9.6e-01 8.8e-01 2.0e-01
Rec 9.0e-01 4.8e-01 1.1e-01 8.7e-01 1.0e+00 8.8e-01 6.5e-01 6.7e-01 5.5e-01 9.2e-01 5.6e-01 8.8e-02

100

Random 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 1.0e+00 9.7e-01 1.0e+00 1.0e+00 1.0e+00 7.7e-01
Stripe 1.8e-01 1.0e+00 1.0e+00 9.4e-01 1.0e+00 1.0e+00 3.9e-02 9.3e-01 9.1e-02 1.0e+00 9.3e-01 1.0e+00
Star 8.1e-01 1.0e+00 9.7e-01 1.0e+00 1.0e+00 1.0e+00 9.8e-01 9.5e-01 6.4e-01 1.0e+00 4.3e-01 9.7e-01
Band 7.7e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 9.6e-01 7.1e-01
Band-S 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 8.9e-01 9.5e-01 1.0e+00 9.8e-01 9.9e-01 4.6e-01
Band-W 7.0e-01 1.0e+00 9.1e-01 1.0e+00 1.0e+00 1.0e+00 4.9e-01 9.9e-01 9.3e-01 1.0e+00 1.0e+00 2.8e-01
Rec 9.0e-01 8.5e-01 7.3e-01 1.0e+00 1.0e+00 1.0e+00 6.6e-01 6.8e-01 5.2e-01 1.0e+00 9.7e-01 7.7e-01

200

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.7e-01 1.0e+00 1.0e+00 1.0e+00 6.7e-01
Stripe 1.8e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 3.2e-02 9.3e-01 8.8e-02 1.0e+00 1.0e+00 1.0e+00
Star 8.1e-01 1.0e+00 9.9e-01 1.0e+00 1.0e+00 1.0e+00 9.8e-01 9.5e-01 6.2e-01 1.0e+00 6.8e-01 7.1e-01
Band 7.7e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.9e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00 2.9e-01
Band-S 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 8.6e-01 9.5e-01 1.0e+00 1.0e+00 1.0e+00 6.6e-01
Band-W 6.9e-01 1.0e+00 9.8e-01 1.0e+00 1.0e+00 1.0e+00 3.0e-01 9.9e-01 9.3e-01 9.9e-01 1.0e+00 7.5e-01
Rec 9.0e-01 9.8e-01 1.0e+00 1.0e+00 1.0e+00 9.9e-01 6.7e-01 6.8e-01 5.0e-01 1.0e+00 9.9e-01 9.3e-01

300

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.7e-01 1.0e+00 1.0e+00 1.0e+00 9.8e-01
Stripe 1.8e-01 1.0e+00 1.0e+00 7.9e-01 1.0e+00 7.2e-01 2.3e-02 9.3e-01 8.8e-02 1.0e+00 1.0e+00 1.0e+00
Star 8.1e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.9e-01 9.5e-01 6.2e-01 9.9e-01 1.8e-01 8.2e-01
Band 7.7e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.8e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00 7.1e-01
Band-S 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 7.6e-01 9.5e-01 1.0e+00 1.0e+00 1.0e+00 8.2e-01
Band-W 6.9e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 2.1e-01 9.9e-01 9.3e-01 1.0e+00 1.0e+00 3.0e-01
Rec 9.0e-01 1.0e+00 1.0e+00 9.1e-01 1.0e+00 9.8e-01 6.8e-01 6.8e-01 5.0e-01 1.0e+00 9.9e-01 6.4e-01

400

Random 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.7e-01 1.0e+00 1.0e+00 1.0e+00 2.4e-01
Stripe 1.8e-01 1.0e+00 1.0e+00 9.5e-01 1.0e+00 9.8e-01 1.9e-02 9.3e-01 8.5e-02 1.0e+00 1.0e+00 1.0e+00
Star 8.1e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00 9.9e-01 9.9e-01 9.5e-01 6.2e-01 1.0e+00 6.6e-01 7.6e-01
Band 7.7e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.6e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00 9.6e-01
Band-S 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 6.8e-01 9.5e-01 1.0e+00 1.0e+00 1.0e+00 9.9e-01
Band-W 6.9e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.2e-02 9.9e-01 9.3e-01 1.0e+00 1.0e+00 6.0e-01
Rec 9.0e-01 1.0e+00 1.0e+00 9.9e-01 1.0e+00 1.0e+00 6.8e-01 6.8e-01 5.0e-01 1.0e+00 1.0e+00 9.4e-01

Table C.24: SL-IND, ρ = 0.93: p-values at different run lengths.
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E h r e n e r k l ä r u n g   

 

 

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und 

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete 

fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich 

nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte 

haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten 

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. 

 

Ich habe insbesondere nicht wissentlich: 

- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen, 

- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter  

 Weise zu interpretieren, 

- fremde Ergebnisse oder Veröffentlichungen plagiiert, 

- fremde Forschungsergebnisse verzerrt wiedergegeben. 

 

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und 

Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die 

Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland 

noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als 

Ganzes auch noch nicht veröffentlicht. 
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