
1Scientific Data |            (2021) 8:52  | https://doi.org/10.1038/s41597-021-00836-8

www.nature.com/scientificdata

LC-MS based plant metabolic 
profiles of thirteen grassland 
species grown in diverse 
neighbourhoods
Sue Marr  1,2,3 ✉, Jos A. Hageman  4, Ron Wehrens4, Nicole M. van Dam  3,5, 
Helge Bruelheide  2,3 & Steffen Neumann  1,3

In plants, secondary metabolite profiles provide a unique opportunity to explore seasonal variation 
and responses to the environment. These include both abiotic and biotic factors. In field experiments, 
such stress factors occur in combination. This variation alters the plant metabolic profiles in yet 
uninvestigated ways. This data set contains trait and mass spectrometry data of thirteen grassland 
species collected at four time points in the growing season in 2017. We collected above-ground 
vegetative material of seven grass and six herb species that were grown in plant communities with 
different levels of diversity in the Jena Experiment. For each sample, we recorded visible traits and 
acquired shoot metabolic profiles on a UPLC-ESI-Qq-TOF-MS. We performed the raw data pre-
processing in Galaxy-W4M and prepared the data for statistical analysis in R by applying missing data 
imputation, batch correction, and validity checks on the features. This comprehensive data set provides 
the opportunity to investigate environmental dynamics across diverse neighbourhoods that are 
reflected in the metabolomic profile.

Background & Summary
Plants respond and adapt to environmental changes in many ways. Some plant species, for example, possess 
physical defences to cope with herbivores and abiotic stress factors1. In addition, plants also produce chemicals 
as defence strategies. These plant metabolites provide a unique opportunity to explore these adaptations as the 
metabolic profile is known to reflect environmental changes2–4. Both the primary and the secondary metabolome 
are involved in the responses to biotic5,6 and abiotic factors7–9. However, especially secondary metabolites, which 
are not directly involved in the primary metabolism, play a key role in plant defence strategies5,6,10–12.

Furthermore, compared to primary metabolite profiles, secondary metabolite profiles are more species spe-
cific even in varying environments13. Previous studies showed that plants change the composition of their meta-
bolic profile and alter the abundance and the number of specific compounds, such as phenolics and terpenoids7,14, 
while maintaining their distinctive profiles13,15. In field experiments, the impact of abiotic and biotic factors vary 
across the season16,17. These factors include, for instance, light, nutrients, water and herbivory18. Changes in these 
conditions may affect the plants’ metabolic fingerprint in yet uninvestigated ways. The investigation of these 
changes may provide insights into the mechanisms behind plant adaptation strategies.

Grasslands are an ideal study system to investigate the effects of plant community compositions on the plant 
metabolomic profiles. In these ecosystems, we find a relatively high number of fast-growing grass and herb spe-
cies19. Species that share similar characteristics form functional groups (FG). Here, we distinguish between the 
two FG: grasses and herbs. Most studies focus on visible traits when investigating these two FG20–22. Visible 
traits, for example, are a useful tool to understand and predict ecological strategies and functions. They are also 
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supporting the investigation of relationships between functional traits – that describe all measurable characteris-
tics of a plant individual - and the individual plant performance23–26. However, the investigative power of combin-
ing metabolomics data with such trait data has already been demonstrated in other studies14,15,27–29.

In this data set, we collected plant material for metabolomic analysis in the field experiment “The Jena 
Experiment: Trait-Based-Experiment”, Germany30. An overview of the data set is provided in Table 1 and Fig. 1, 
including the experimental setup (①-⑤), metabolomic analysis (⑥-⑩), and the data processing (⑪-⑯). We 
recorded both visible traits and metabolomic profiles to investigate species specific responses of thirteen grassland 
species to the composition of their neighbourhoods. For the metabolomic analysis, we collected shoot material 
across the growing season in 2017 at four time points: May (A), July (B), August (C), October (D). We chose these 
time points to cover the whole growing season (May to October; Fig. 1 ①). The sown (target) species belonged to 
the FGs grasses and herbs (Fig. 1 ②, Fig. 2a). We investigated plants grown in communities with diversity levels 
(DL) composed of one (DL1), two (DL2), four (DL4) and eight (DL8) different species (Fig. 1 ③, Fig. 2). We 
collected shoots of two replicates per DL and species (Fig. 1 ④-⑤). For each species, we recorded characteristics 
of their surrounding neighbourhoods, including the number of plant species and their abundances per plot. For 
each sample, we recorded visible traits, such as the plant height, number of leaves and the level of damage caused 
by herbivory or pathogens.

In total, we collected 512 samples. For each sample, we acquired the metabolic profiles of methanolic 
extracts of the shoots on an Ultra Performance Liquid Chromatography coupled with an Electrospray Ionisation 
Quadrupole Time-of-Flight Mass Spectrometry (UPLC-ESI-Qq-TOF-MS; abbreviated to LC-MS in the 

Table 1. Steps of analysis performed on the thirteen target species and the quality controls. Species belonging 
to the functional groups (FG) grass and herb were assembled in two groups of eight species (Pool). The Pools 
included four species per FG. Three of the species were represented in both pools (*). Shoots were collected at 
four time points (seasons: A, B, C, D) in four diversity levels (DL1, DL2, DL4, DL8). A detailed list of the study 
samples can be found in the associated Metadata Record (MTBLS67933). For details of the experimental setup, 
see Fig. 1, and Ebeling et al.30 for a plot overview. Study samples are processed in the respective analysis step (+). 
One sample was excluded from the analysis due to the loss of the sampled material, and some samples did not 
pass the final validation check (±; see section “Cryo Sample Preparation” and “Sample Validity Check”). This 
overview also indicates where the quality controls were used for the analysis.
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following; Fig. 1 ⑥-⑩). We used quality controls (blanks and pooled extracts) to ensure data quality. We con-
verted the acquired raw LC-MS data to an open file format (Fig. 1 ⑪) and processed them on the Galaxy-W4M 
infrastructure31. In Galaxy-W4M, we performed the feature detection, grouping and feature annotation (Fig. 1 
⑫). After this pre-processing, we prepared the data for statistical analysis. In R32, we performed missing data 
imputation, batch correction and validity checks on the LC-MS feature (Fig. 1 ⑬-⑯). In this data descriptor, 
we provide a detailed description of the analytical steps performed on the acquired LC-MS data and provide the 
comprehensive data set in the MetaboLights repository MTBLS67933.
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Fig. 1 Data set overview. The data set includes the metadata of the experimental setup for the plant material 
collected in the TBE plots of the Jena Experiment (①-⑤), LC-MS raw data acquisition (⑥-⑩), data pre-
processing steps (⑪-⑫), as well as data cleaning and validation (⑬-⑯). Created with BioRender.com.
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Methods
Experimental setup. Experimental design. The Jena Experiment34 is a biodiversity ecosystem functioning 
experiment, designed to study plant and trait diversity effects on plant communities. The Jena Experiment is 
located in Jena, Germany, and includes the Trait-Based-Experiment30 (TBE; Fig. 2a). We collected plant mate-
rial in the plots of the TBE. In the TBE, eight species selected from the functional groups (FG) grass and herb 
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Fig. 2 Experimental Design. (a) Plot and species overview. Plant material was collected in the plots of the TBE 
(grey borders) in the Jena Experiment. We collected shoots of seven grass (light green) and six herb species 
(dark green) in plots with four different diversity levels (DL). Here, either one (DL1), two (DL2), four (DL4) or 
eight (DL8) different species were grown per plot. In each plot, we harvested shoots of two replicates. The white 
arrow indicates the sampling direction, starting at the south end of the TBE. (b) Design overview. Plant material 
of species in both P1 and P2 were collected at four time points across the growing season in 2017 (May: A, July: 
B, August: C, October: D). The species pools P1 and P2 were each composed of four grass and four herb species. 
The three species LEUVUL, PHLPRA and PLALAN, were part of both pools. In total, we collected 512 study 
samples: 4 seasons x 4 DL x 2 Pool x 8 species x 2 replicates. For a detailed list of the species codes see Table 1.
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form a species pool. These Pools include four grass and four herb species30. Pool 1 (P1) comprises the grass 
species Avenula pubescens (AVEPUB), Festuca rubra (FESRUB), Phleum pratense (PHLPRA) and Poa praten-
sis (POAPRA) and the herbs Centaurea jacea (CENJAC), Knautia arvensis (KNAARV), Leucanthemum vul-
gare (LEUVUL) and Plantago lanceolata (PLALAN). Pool 2 comprises the grasses Anthoxanthum odoratum 
(ANTODO), Dactylis glomerata (DACGLO), Holcus lanatus (HOLLAN) and Phleum pratense (PHLPRA) and 
the herbs Geranium pratense (GERPRA), Leucanthemum vulgare (LEUVUL), Plantago lanceolata (PLALAN) and 
Ranunculus acris (RANACR). The target species of this study belonged to either P1 or P2 (Table 1, Fig. 2b). The 
three species Leucanthemum vulgare, Phleum pratense, and Plantago lanceolata were part of both pools.

In the TBE, the plant species are grown in plots with different diversity levels (DL): one (DL 1), two (DL 2), 
four (DL 4), and eight (DL 8) different species per plot (Fig. 2a). The plots are randomly distributed across the 
experimental site. P1 and P2 determine the plant species composition for each DL. Hence, all DL were composed 
of the species belonging to the respective Pool. For example, DL8 (P1) was composed of the following species: 
grass: AVEPUB, FESRUB, POAPRA, PHLPRA, herb: CENJAC, KNAARV, LEUVUL, PLALAN, while DL8 (P2) 
comprises these species: grass: ANTODO, DACGLO, HOLLAN, PHLPRA, herb: GERPRA, RANACR, LEUVUL, 
PLALAN. We collected the above-ground vegetative tissues of the thirteen target species. Per plot, we collected 
two plant individuals (replicates) at four time points in 2017. We chose dates across the growing season: May (A),  
July (B), August (C) and October (D). In total, we sampled 512 study samples: 4 seasons x 4 DL x 2 Pools x 8 spe-
cies x 2 replicates (Fig. 1 ①-④, Fig. 2).

Traits & sampling. Prior to plant biomass collection in each season, we surveyed each plot to record the actual 
number of present species (species richness), both sown (target) and weed (not deliberately cultivated) species. 
We also estimated the abundance of each species (Shannon diversity) in relation to the plot size.

In each season, we collected the above-ground tissue of two replicates per plot and species (Fig. 2b). In each 
plot, we randomly chose two plant individuals as replicates from specimens with a similar phenological stage 
according to the BBCH35 scale. We recorded the following traits of these plant individuals: phenological stage 
(BBCH35), the number of leaves and inflorescences, plant height, and the proportional damage inflicted by either 
pathogen or mechanically.

The plants were cut 3 cm above the ground (Fig. 1 ⑤). An aliquot of shoot (leaf and stem) tissues was collected 
in plastic vials, snap-frozen on dry ice and stored for LC-MS analysis (referred to as study sample). The remaining 
biomass, including the inflorescences, was stored in plastic bags for biomass measurements. We collected the 
samples following the order of plots in the TBE (randomised DLs and Pools across the experimental site), starting 
at the southern end of the TBE30. We also recorded the exact time of the sampling for each sample to account for 
possible time-related shifts in the metabolic profile (sampling between 1 pm and 8 pm). We collected the samples 
within a single day to reduce the environmental influences to a minimum (for the exact dates see the MTBLS67933 
data repository).

We applied the following labelling scheme to ensure the randomisation for sample extraction and LC-MS data 
acquisition. For each season, we assigned a number between 001 and 128 to each sample. These Lab-IDs were 
chosen randomly for each sample while collecting the biomass. For example, the Lab-ID 013_2017_A refers to the 
sample 2017_A_PHLPRA_A002_a: collected in season 2017_A; Phleum pratense, in plot A002, which is referring 
to DL2 in P1, replicate a; and 013_2017_C refers to the sample 2017_C_FESRUB_B067_b: collected in season 
2017_C; Festuca rubra; in plot B067, which is referring to DL4 in P1; replicate b. The plot numbers (e.g. A002 and 
B067) and the corresponding DLs (e.g. DL2 and DL4) are specified in the sample metadata in the data records 
MTBLS67933. The sample preparation and extraction for the LC-MS data acquisition were conducted in the order 
of the respective Lab-IDs to ensure the equal distribution of seasons and full randomisation across the species, 
DL and replicates. Details on the randomisation can be found in the section “Sequence of LC-MS Measurements”. 
All details concerning the sampling strategy are included in the sample table in the MTBLS67933 data repository.

LC-MS data dacquisition. Cryo sample preparation. We prepared the 511 study samples of frozen shoot 
material, collected in 20 mL vials, by adding two steel balls (7 mm) to the tubes. One sample tube (2017_B: FESRUB 
(P1): DL1_b) broke prior to analysis and was, therefore, excluded from further analysis. We used a cryo ball mill 
equipped with an autosampler (Labman IPB Cryogrinder Ball Mill, Labman Automation, Middlesbrough, UK) to 
grind the material at −75 °C for 150 s (5 cycles: 30 s grinding, 30 s pausing). We ground the samples according to 
their Lab-IDs and the season they were collected in (Fig. 1 ⑥).

Methanolic extraction. We transferred aliquots (100 mg ± 50 mg) of the fine frozen powder to extraction tubes 
and added extraction beads (Rimax/Zircosil, 1.2–1.7 mm). For the extraction, we used methanol/water (80/20 v/v; 
HPLC-grade, Honeywell, Seelze, Germany) as the extraction solvent. We added the following internal standards 
at a 5 mM concentration to the extraction solvent: Kinetin (Roth, Karlsruhe, Germany), IAA-Val (Sigma-Aldrich, 
St. Louis, USA) and Biochanin A (Sigma-Aldrich, St. Louis, USA). The extraction solvent was added in a 
weight-specific five-fold surplus (Fig. 1 ⑦) to the frozen powder (e.g. 500 µL added to 100 mg powder), which 
we kept on liquid nitrogen. We thawed the prepared samples for 3 minutes at room temperature before extract-
ing them in a homogeniser (Precellys® 24 Tissue Homogenizer, Bertin Technologies, Montigny-le-Bretonneux, 
France) for 90 s (2 cycles: 45 s run, 15 s pausing) at 6500 rpm. We centrifuged the extracts at 16168 g for 15 min 
and collected the supernatants in fresh extraction tubes (Fig. 3a). After an additional extraction of the remaining 
pellet, 160 µL of the combined supernatants were added to 40 µL of water/formic acid (99.9/0.1 v/v) (formic acid: 
VWR International, Radnor, USA) and stored at −20 °C for at least 48 hours (Fig. 3a).

To prepare the samples for mass spectrometry, we centrifuged the sample extracts at 16168 g for 15 minutes to 
remove particles. We transferred 160 µL of the resulting supernatant to vials equipped with 300 µL glass inserts 
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Fig. 3 LC-MS sample extraction and sequence of measurements. (a) We prepared the 511 frozen study samples 
by grinding and extracting the resulting fine powder with methanol (note: one sample was lost prior to analysis, 
see “Cryo Sample Preparation”). For each sample, we combined the supernatants of two extraction steps to the 
sample extract. (b) We pooled aliquots of all 511 sample extracts and used them as the Quality Control (QC). 
(c) The LC-MS measurements were split into 12 analytical batches. Here, each batch measurement was led by 
a run-in sequence: 3 x acetonitrile, 1 x QC measurement. Per batch, samples were measured in four blocks, 
consisting of eleven analytical samples. The sample measurements were preceded by one QC measurement and 
one blank, and flanked by QC measurements. We randomised the 511 LC-MS samples (13 species, 4 seasons, 
4 diversity levels) equally across the 12 batches. For treatment colour codes, see Fig. 2. Solid black arrows mark 
processing steps, while dashed black arrows indicate the transfer to another process. The dashed grey arrow 
indicates a zoom-in for clarification purposes. Created with BioRender.com.
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(analytical sample). We extracted all study samples in batches of 44 samples, in the order of their Lab-IDs (e.g. 
one analytical batch contains analytical samples with the Lab-IDs 001 to 011 of season 2017_A, 2017_B, 2017_C, 
and 2017_D).

Quality controls. We used two types of blanks to account for possible contamination or inconsistency during 
extraction. The field blanks (plastic vials used for sampling) were included in the sampling, transportation and 
grinding steps. After the sampling in season 2017_A, we used a new shipment of plastic vials. We, therefore, 
labelled the field blanks “old” and “new” for the vials either used in 2017_A or 2017_B to 2017_D, respectively. 
We used the extraction blanks (eX01–03) to capture contaminations introduced in the methanolic extraction 
steps. For each replacement of extraction solvent, a new extraction blank was used. Both field blanks and extraction 
blanks were processed according to the extraction protocol applied to the study samples.

Furthermore, we pooled 10 µL aliquots of the 511 sample extracts, which we used as Quality Control (QC) 
throughout the LC-MS measurements (Fig. 1 ⑧; Fig. 3b).

Sequence of LC-MS measurements. We measured the 511 analytical samples in 12 analytical batches. Each batch 
was composed of an acetonitrile aliquot, a blank, a QC aliquot and 44 analytical samples (Fig. 1 ⑨, Fig. 3c). We 
distributed the analytical samples equally across the batches in the order of their Lab-IDs, and the season they 
were collected in (Lab-IDs were assigned to the samples randomly while sampling; see “Traits & Sampling”). For 
example, the analytical samples 2017_A_001 to 011, 2017_B_001 to 011, 2017_C_001 to 011, and 2017_D_001 
to 011 were measured in batch “pos01”. We started the batch measurement sequence with three acetonitrile runs 
followed by the QC. After this run-in sequence, we measured the QC again, to equilibrate both the LC-column 
and MS-system, followed by one blank and a block of 11 analytical samples (Fig. 3c). We used the different blanks 
to detect potential systematic contaminations that were either introduced during sampling, extraction or the 
LC-MS measurements. After each block of analytical samples, we measured the QC again. The samples measured 
within one block were chosen randomly from the 44 samples assigned to the batch. After each batch, the MS ion 
source was cleaned, and the MS was recalibrated.

Analytical setup & data acquisition. We performed the data acquisition (Fig. 1 ⑩) on a liquid chromatogra-
phy system (UPLC; ACQUITY UPLC System, Waters Corporation, Milford, USA) coupled with a mass spec-
trometer (ESI-Qq-TOF-MS; ESI-micrOTOF-Q-II, Bruker Daltonics, Bremen, Germany). Aliquots (2 µL) of 
the analytical samples were separated at 40 °C on an HSS T3 C18-column (1.8 µm, 1.0 × 100 mm, RP, Waters 
Corporation, Milford, USA) with the elution binary gradient at 0.15 mL min−1 flow rate: Solvent A (water/formic 
acid 99.9/0.1 v/v)/ Solvent B (acetonitrile/formic acid 99.9/0.1 v/v; acetonitrile: Merck, Darmstadt, Germany); 
initial: A 95%, 3 minutes linear A 82.7%, 10 minutes linear A 76%, 17 minutes linear A 5%, 18 minutes A 5%, 
18.1 minutes linear A 95%, 20 min A 95%. We measured the ions in positive mode from 100–1000 m/z using the 
following instrument settings: capillary voltage 5000 V; nebuliser gas nitrogen; nebuliser 1.4 bar; dry gas nitrogen; 
dry gas temperature 190 °C; dry gas flow 6 L min−1; spectra rate 3 Hz; endplate offset: −500 V; Funnel 1 RF: 200 
Vpp; Funnel 2 RF: 200 Vpp; in-source CID energy 0 eV; hexapole RF 100 Vpp; quadrupole ion energy 3 eV; colli-
sion gas nitrogen; collision energy 7 eV; collision RF 200/200 Vpp (timing 50/50); transfer time 58.3 µs; pre pulse 
storage 5 µs. We used an internal calibration (lithium formate clusters, 10 mM lithium hydroxide in isopropanol/
water/formic acid, 49.9/49.9/0.2 v/v/v, at 18 min) for the normalisation of the measurements.

LC-MS data pre-processing. We exported the vendor-specific data files (Bruker “.d”) using CompassXport 
(Bruker, version 3.0.9, http://www.bruker.com). The conversion of LC-MS raw data files to the open data format 
(“.mzML”)36 enables the data analysis in vendor-independent environments (Fig. 1 ⑪).

We pre-processed the raw LC-MS spectra of the analytical samples and the quality controls (blanks and QC) 
on the Galaxy-W4M infrastructure31 (based on XCMS 3.0). The workflow (https://doi.org/10.15454/1.56404977
89529167E12) includes the following analytical and processing steps: feature detection, grouping and retention 
time correction (Fig. 1 ⑫). A detailed description of parameter settings and tool versions used in the workflow 
is also shown in Table 2.

The initial step in the workflow is feature detection. The parameters were set in order to separate measured 
peaks from background noise (Table 2). We then grouped the features across samples and corrected them for 
retention time shifts. We grouped the corrected spectra again and annotated adducts and isotopes of the meas-
ured features.

After these pre-processing steps, we filtered the detected features for the region of interest (ROI). We cut 
features with retention times between 0 s to 80 s (injection peak and very polar compounds) and from 840 s to 
1080 s (very nonpolar compounds). We exported the pre-processed data as separate data tables for sample meta-
data (sampleMetadata), variable metadata (variableMetadata) and the data matrix (dataMatrix), containing the 
measured intensities. These data matrices are also available in the associated metadata records MTBLS67933. The 
number of detected features per species is shown in Table 3.

Data Records
A detailed description of the experimental setup, the performed analysis and the metadata of both study samples 
and the quality controls are available as MTBLS67933 “From Field to Feature in Ecometabolomics – LC-MS Based 
Metabolite Profiles of Thirteen Grassland Plant Species Reflecting Environmental Dynamics”. Raw data files of 
LC-MS analysis are also available in the repository. Furthermore, we provide data matrices of all stages of the 
processing steps (see Table 1).

https://doi.org/10.1038/s41597-021-00836-8
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The W4M-Galaxy history (https://doi.org/10.15454/1.5640497789529167E12) that was used for data 
pre-processing is available at https://workflow4metabolomics.usegalaxy.fr/histories/list_published. All processing 
steps used for the data clean up are explained in the Supplementary File 1.

Technical Validation
Data processing. A detailed tutorial of the processing steps performed in R32 and the complete code used for 
data processing are provided as PDF and as R script in the MTBLS67933 repository. The tutorial PDF is also made 
available as supplemental material (Supplementary File 1).

Missing data imputation. In this study, the pre-processing of highly diverse LC-MS spectra lead to a data matrix 
with 90% zero values. This high number of zeros is a result of the data matrix containing all detected features, of 
which only small fractions belonged to a particular species (Table 3). Hence, features that are not part of the meta-
bolic fingerprint in this species were not detected and are recognised as true zeros. Within a species, some features 
are only detected in a few specimens. These absences either occur due to variations in the technical performance 
or are indicators of actual biological adaptations to environmental changes. These are NA values, as the reason for 
their absence is uncertain at this stage of analysis. In the following, we refer to any missing values as missing data. 
In order to prepare the data matrix for further data cleaning and to make it accessible to processing and statistical 
analysis, we replaced the missing data with imputed values. Here, we imputed the missing data with random val-
ues (noise) by drawing absolute values from a normal distribution with mean 70 and a standard deviation of 20.  

Tool name Description Version Parameter Value

MSnbase readMSData Import mass-spectrometry data files 2.8.2.1

findChromPeaks feature detection 3.4.4.1 extraction method 40

peak width (s) 5, 20

signal to noise ratio 5

prefilter 3, 100

noise filter 100

xcms findChromPeaks Merger merging xcms findChromPeaks 3.4.4.0

xcms groupChromPeaks (group) grouping of chromatographic peaks 3.4.4.0 method PeakDensity

bandwidth 6

minimum fraction 0.75

minimum number 1

width of m/z slices 0.005

xcms adjustRtime (retcor) retention time correction 3.4.4.1 method PeakGroups

minimum fraction 0.75

maximum number 1

smooth method Loess – non-linear 
alignment

degree smoothing 0.2

family gaussian

xcms groupChromPeaks (group) grouping of chromatographic peaks 3.4.4.0 method PeakDensity

bandwidth 6

minimum fraction 0.75

minimum number 1

width of m/z slices 0.005

CAMERA.annotate Annotation of putative compounds 2.2.4 multiplier of sd 6

general ppm error 5

general abs error 0.005

maximum ion charge 3

maximum number 4

isotope annotation 0.5

correlation threshold 0.75

grouping into pseudospectra hcs

correlation threshold 0.05

Check Format Checking/formatting the sample and 
variable names 3.0.0

Generic_Filter Deleting samples and/or variables 2017.06 remove in “…” values upper “rt”, 840 (s)

remove in”…” values lower “rt”, 80 (s)

Table 2. Tools and Parameter used for pre-processing the LCMS raw data. The complete workflow is available 
in Galaxy-W4M (https://doi.workflow4metabolomics.org/W4M00008).

https://doi.org/10.1038/s41597-021-00836-8
https://doi.org/10.15454/1.5640497789529167E12
https://workflow4metabolomics.usegalaxy.fr/histories/list_published
https://doi.workflow4metabolomics.org/W4M00008


9Scientific Data |            (2021) 8:52  | https://doi.org/10.1038/s41597-021-00836-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

We chose these values as they are below the threshold initially set for our data set, which equals 100 (Fig. 1 ⑬, see 
Table 2: feature detection). This choice is instrument specific and based on the prefilter parameters used in the 
pre-processing steps.

Batch correction. We performed a batch correction on the imputed data matrix. Splitting the 511 analytical 
samples into 12 analytical batches enhanced the chance of technical performance variability due to cleaning, 
recalibration and solvent replacements. These batch effects are mostly reflected in changes of intensities of the 
features across different batches. To account for these intensity shifts, the QC, which was measured multiple times 
across all batches (see “Sequence of LC-MS Measurements”), was used to determine the unwanted variation 
within (intra-batch distance) and between (inter-batch distance) batches. Ideally, the intensity profiles of the QC 
in all batches are identical. However, systematic variation between and within batches was present. Here, we used 
the RUVs function in the RUVSeq package (version 1.20.0)37, which is based on a principal component analysis 
(PCA), and applied it to the QC measurements (referred to as pool in dataMatrix). RUVs creates a PCA model 
of the systematic part of the variation of the QC. This PCA model describes unwanted systematic variation. In 
the next step, it substracts the PCA model from the study samples; thereby eliminating any unwanted systematic 
variation. A detailed description of the underlying calculations can be found in Risso et al.37.

The performance of the batch correction mainly depends on the number of components used for the analysis. 
We determined the optimal number of components to be used for the correction with a scree plot. In this scree 
plot, we compared the remaining inter-batch distances (Supplementary File 1 Fig. 1) after correction for different 
numbers of components. In this data set, the knee (or elbow) in the plot was reached after 6 components, as the 
inter-batch distances did not decrease anymore after 6 components (see Supplementary File 1 Table 3.2). After the 
batch correction, the calculated inter-batch distances for the QC measurements showed a strong decline (Table 4; 
Fig. 1 ⑭). The score plots before the batch correction show apparent batch effects in PC 1 and PC 2 (Fig. 1 ⑭). 
This shows that the batches, in which the QC has been measured, are the largest systematic source of variation 
for the QC measurements. After correction, the pattern in the PCs related to the different batches was no longer 
distinguishable. This shows that the huge variation of the feature intensities present in the original measurements 
related to the batches is removed and does not influence any consequent (statistical) analysis.

After performing the batch correction, the QC measurements are removed from both the metadata and data 
matrix (Table 1).

FG Species Code

Pre-processed Validated

Smeas Fmeas Sval Fval

total 596 10252 499 10126

grass ANTODO 32 1430 30 1310

grass AVEPUB 32 1455 32 1358

grass DACGLO 32 1281 32 1178

grass FESRUB 31 1120 31 1020

grass HOLLAN 32 1428 31 1317

grass PHLPRA 64 1118 60 1054

grass POAPRA 32 1046 29 924

herb CENJAC 32 1711 32 1614

herb GERPRA 32 1543 32 1464

herb KNAARV 32 1708 32 1621

herb LEUVUL 64 1384 62 1280

herb PLALAN 64 1673 64 1581

herb RANACR 32 1446 32 1348

Quality Controls blank 12 126 0 0

QC 73 5236 0 0

Table 3. Number of unique LC-MS features (Fmeas) measured in both the analytical samples and the quality 
controls (Smeas). A feature is counted as part of the species when it is detected in at least 25% of the samples 
belonging to this particular species. After processing and blank removal, the remaining number of samples 
(Sval) and features (Fval) is used for analytical statistics.

Data pre BC post BC

QC 16.845 0.720

analytical samples 0.056 0.058

Table 4. Inter-batch distances calculated for both the QC (multiple measurements) and the analytical samples 
(single measurements). Distances are calculated before (pre BC) and after (post BC) applying the batch 
correction.
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Blank removal. We checked the validity of the features before using them in the statistical analysis. We assigned a 
feature as valid when it was derived from an analytical sample. Here, we used the blanks as a reference for the valid-
ity check. Blanks did not contain a biological sample but were handled and processed like the analytical samples.  
Hence, we considered all features that were detected in blanks to be systematic contaminations introduced during 
sampling, extraction or the LC-MS analytical process. We removed all features that were detected in at least one 
blank from the data matrix and excluded them from any further analysis (Fig. 1 ⑮; see Table 3 for the number 
of features before and after the blank removal). Following this feature validity check, we also removed the blank 
samples from the sample metadata (Table 1).

Sample validity check. The amount of biological variation in the metabolomic profiles within a species differed 
across the species. This intra-species variation was found to be lower than the inter-species variation. To check the 
validity of each sample and, thereby, ensuring that the sample was not contaminated, we compared their metab-
olomic profiles to the average composition of their species. Here, we defined a feature as belonging to a species 
when it was detected in at least 8 of the samples (25%) in that species (Table 3). Note that for assigning a feature to 
the respective species, we used the data matrix without the imputed values (see “Missing Data Imputation”). As a 
quality measure, for each sample, we calculated Mahalanobis distances (Fig. 1 ⑯). We compared the distance of 
each sample to the average distance of the remaining samples in the respective species. For example, we calculated 
distances for the 32 samples in the species Holcus lanatus and compared the distance of the sample “HOLLAN 
(P2): 2017_A (DL4_b)” to the average distance of the other 31 samples. We kept only those samples that were 
closer than three times the average distance and shared over 25% of their features with their species (Table 1). 
Consequently, we excluded the following samples from further analysis as they did not pass the validity check: 
ANTODO (P2): 2017_B (DL8_b), 2017_C (DL1_b); HOLLAN (P2): 2017_A (DL4_b); LEUVUL (P2): 2017_D 
(DL4_a, DL4_b); PHLPRA (P1): 2017_D (DL1_b, DL8_b); PHLPRA (P2): 2017_D (DL8_a, DL8_b), POAPRA 
(P1): 2017_D (DL2_b, DL8_a, DL8_b).

Preparation for statistical analysis. After performing validity checks on the data, we prepared the cleaned and 
processed data matrix to be used for statistical analysis. The data matrix can be accessed in three different stages, 
with (1) imputed values or (2) zeros or (3) NAs for missing values (see “Missing Data Imputation”). Depending 
on the nature of the planned analysis, either one of the matrices can be used for statistical analysis and conclusion 
drawing.

Usage Notes
This comprehensive data set provides the opportunity to investigate the metabolomic profiles on the feature level 
of thirteen grassland species grown in diverse neighbourhoods. The profiles were acquired from plants collected 
at different time point across the growing season. Therefore, relevant features and seasonality can be investigated 
within this eco-metabolomic dataset. Additionally, the mass spectrometry raw data are available in an open file 
format (mzML) and provide the opportunity to be re-processed with common metabolomics tools, such as xcms, 
OpenMS and MS-Dial.

Code availability
The raw data files and processed data matrices are available in the online repository MTBLS67933. The complete 
history of the used workflow for the raw LC-MS data pre-processing is available in Galaxy-W4M31 from https://
doi.workflow4metabolomics.org/W4M00008. We provide the complete R32 script used to process the data along 
with a detailed tutorial in the supplemental material (Supplementary File 1).
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